
Online Appointment Scheduling
in the Random Order Model

Oliver Göbel1, Thomas Kesselheim2,�, and Andreas Tönnis1,��

1 Department of Computer Science, RWTH Aachen University, Germany
{goebel,toennis}@cs.rwth-aachen.de

2 Max-Planck-Institut für Informatik and Saarland University,
Saarbrücken, Germany

thomas.kesselheim@mpi-inf.mpg.de

Abstract. We consider the following online appointment scheduling
problem: Jobs of different processing times and weights arrive online
step-by-step. Upon arrival of a job, its (future) starting date has to be
determined immediately and irrevocably before the next job arrives, with
the objective of minimizing the average weighted completion time. In this
type of scheduling problem it is impossible to achieve non-trivial compet-
itive ratios in the classical, adversarial arrival model, even if jobs have
unit processing times. We weaken the adversary and consider random
order of arrival instead. In this model the adversary defines the weight-
processing time pairs for all jobs, but the order in which the jobs arrive
online is a permutation drawn uniformly at random.

For the case of jobs with unit processing time we give a constant-
competitive algorithm. We use this algorithm as a building block for the
general case of variable job processing times and achieve competitive
ratio O(log n). We complement these algorithms with a lower bound of
Ω(n) for unit-processing time jobs in the adversarial input model.

1 Introduction

In scheduling problems there is a number of jobs given and the scheduler decides
how, when and where each job is processed. The resulting schedule is evalu-
ated under some objective function, typically minimizing a cost function on the
completion time of the jobs. Often such schedules need to be computed online,
meaning the scheduler has to make decisions without knowing the complete input
for the problem instance. In a standard online variant, once a job is completed,
the scheduler selects which job to process next from the jobs that have arrived
in the meantime. Even worst-case competitive analysis admits surprisingly good
results in this model (see Section 1.1 for an overview).

In stricter settings, worst-case analysis is overly pessimistic and therefore un-
able to produce meaningful results. Consider the following appointment schedul-
ing problem: Jobs arrive online one after the other and directly upon arrival each
� Supported in part by the DFG through Cluster of Excellence MMCI.

�� Supported by the DFG GRK/1298 “AlgoSyn”.

© Springer-Verlag Berlin Heidelberg 2015
N. Bansal and I. Finocchi (Eds.): ESA 2015, LNCS 9294, pp. 680–692, 2015.
DOI: 10.1007/978-3-662-48350-3_57

Online Appointment Scheduling in the Random Order Model 681

job has to be assigned a starting and completion time in the future so as to opti-
mize some objective function such as the weighted sum of completion times. As
a motivation, just imagine a doctor’s receptionist taking phone calls and making
appointments for the next day. On the one hand he does not want to re-schedule
appointments, on the other hand the most urgent cases should be treated first.
In worst-case analysis, it is impossible to achieve any non-trivial competitive
ratios for this kind of problem as we illustrate by giving a lower bound later on.

An interesting way to bypass these impossibility results is to incorporate a
small stochastic component into the input model. A prime example of this phe-
nomenon from a different domain is the secretary problem: A sequence of entities
with different scores show up one after the other. After an entity has arrived,
one has to make an irrevocable decision whether to keep this entity and to stop
the sequence or to discard the entity and continue. Assuming a worst-case input,
it is impossible to achieve a non-trivial competitive ratio. The situation is dif-
ferent if the adversary determines the scores but the arrival order of the entities
is drawn uniformly from all possible permutations. Under these circumstances,
it is possible to pick the highest-scored entity with probability 1

e . Generalizing
this problem, in many online maximization settings, it is possible to achieve a
constant competitive ratio assuming a random input order whereas worst-case
analyses would be pointless.

These positive results hold for maximization problems, whereas scheduling
problems are typically cost-minimization problems. This can mean a big dif-
ference, particularly in a probabilistic setting: In a maximization problem it is
possible to achieve reasonable (expected) competitive ratios, even if the algo-
rithm returns no solution at all with probability 1/2. Many algorithms indeed
exploit this fact by using a constant fraction of the input only for “statistical”
purposes and dropping it afterwards. In a minimization problem, this is gener-
ally impossible as one is usually required to satisfy certain cover contraints such
that dropping input elements is not readily possible. We show that the random-
order assumption makes a significant difference in online minimization problems
nevertheless.

Formal Problem Statement. We assume there are n ∈ N jobs and a single pro-
cessing unit. Each job i has a specific weight wi ∈ R

+ as well as a process-
ing time li ∈ N. All jobs are to be processed sequentially without preemption.
Thus a feasible solution is a vector of starting times s such that in no time-step
two jobs are processed simultaneously, i.e. sj �∈ [si, si + li) for all i, j ∈ [n],
i �= j. The objective is to minimize the weighted sum of completion times, i.e.,∑n

j=1 wjCj =
∑n

j=1 wj(sj +lj−1). In the scheduling literature, this optimization
problem is also referred to as 1|| ∑n

j=1 wjCj in the online list model.
Jobs arrive sequentially and scheduling decisions have to be made immediately

and irrevocably. Upon its arrival, a job’s processing time li and its weight wi are
revealed and the algorithm has to assign a position in the schedule to the job1. In
1 Note that the time slots in this schedule are unrelated to the rounds in which the

jobs arrive. Throughout the proofs, we will refer to the schedule slots by s and t,
whereas the rounds will be referred to as r.

682 O. Göbel, T. Kesselheim, and A. Tönnis

a fully adversarial input, even with identical job processing times, no randomized
algorithm can be better than Ω(n)-competitive (for a proof see Section 4), which
is trivially achieved by any schedule without idle slots. Therefore, we consider the
random-order model. Here an adversary constructs the instance and determines
the processing times and weights of the jobs, but the arrival order is drawn at
random. Technically, a permutation π ∈ Sn is drawn uniformly at random and
then the jobs are presented according to this permutation. The algorithm gets
to know the processing time of the sequence n before the first round.

We evaluate our online algorithms in terms of the widespread competitive
ratio. It is defined by E[ALG]

OPT , where ALG and OPT denote the cost of the online
and the optimal algorithm, respectively. The optimal algorithm, however, works
offline and is assumed to know the whole instance in advance. In our algorithms,
the expectation of their cost is only with respect to the random input.

Our Contribution. Our main contribution is an algorithm for the case of iden-
tical processing times. That is, similarly to the secretary problem, n entities of
different weights are revealed online. We have to assign each entity to a slot
1, 2, . . . so as to minimize the weighted sum of slot numbers. Our algorithm
for this problem is 34-competitive. Specifically, the competitive factor holds for
every single job and not only in expectation over all jobs. This means there is
no job that suffers a bad position for the sake of the overall solution as each job
is guaranteed to lose at most the competitive factor in expectation.

Upon arrival of a job, the algorithm computes the optimal schedule of all jobs
seen so far. This solution includes a slot number for the currently considered
job. We use this number as a guide to find the permanent slot for the online
job. To this end, we scale the locally optimal solution with a factor depending
on the fraction of the overall input that we have seen up to this point. This
factor decreases as we learn more about the problem instance at hand. Finally
we schedule the job to the first free slot after this tentative slot.

As a next step we generalize the setting toward jobs with different processing
times. We present an O(log n)-competitive algorithm. It divides the jobs into
classes of almost equal processing times. For each processing time class it runs
the algorithm for jobs with identical processing time as a subroutine. We devise
a labeling scheme that associates slots to processing time classes and guarantees
that every instance of the subroutine loses no more than a factor 2 log n on top
of its inherent competitive ratio.

We complement this algorithm with the simple lower bound that all online
algorithms are Ω(n)-competitive in the worst-case input order.

1.1 Related Work

In offline scheduling minimizing the weighted completion time is well understood.
On a single machine the problem can be solved easily with Smith’s ratio rule.
For more complex versions with identical machines, related machines and release
dates there are PTAS known [1,7]. A common online variant of the problem is
as follows. The jobs are unknown to the algorithm until their respective release

Online Appointment Scheduling in the Random Order Model 683

dates. At any point in time, the algorithm decides which of the released jobs
to process next. This setting has been studied intensively when only a single
machine or identical parallel machines are available as well as when preemption
is allowed or not allowed, respectively; see [19,8,27,28,15] for detailed results.
More recently a stochastic variant has been considered. Here the scheduler does
not learn the true processing time of a job upon its arrival, but he learns a
probability distribution over the processing time of the job instead; see [20,21]
for the latest results. Stochastic processing times have also been considered in
[5] regarding offline appointment scheduling. All these online results are in the
adversarial input model, where an oblivious adversary creates the worst-case
input sequence online.

Note that this setting (both the deterministic and the stochastic variant) is
significantly different from the one studied in this paper. The crucial difference is
that in the traditional model scheduling is an ad-hoc decision. It only affects (at
most) the time until completing the currently processed job. In contrast, in our
problem every job needs to be assigned its starting date irrevocably immediately
upon its arrival. To the best of our knowledge, there is only a single previous
result in this “online list scheduling model”. Fiat and Woeginger [13] show that
with worst-case input there is no O(log(n))-competitive randomized online list
scheduling algorithm, even on a single machine and with unit weights. We show
that in the random-order model we can get constant- or O(log n)-competitive
even if jobs have weights.

The random-order model has been studied mostly in the context of packing
problems. Motivated by the classical secretary problem, Babaioff et al. [4] intro-
duced the matroid secretary problem and conjectured that it is O(1)-competitive.
Toward this end several O(log log(ρ))-competitive algorithms have been pro-
posed recently [18,12]. Here ρ is the rank of the considered matroid. Further
variants of the secretary problem are given in [3], among them also one that
aims at minimizing the sum of the accepted ranks. Another branch of research
focuses on linear constraints. This includes (generalizations of) matching [22,9]
and general packing LPs [11,2,26,16]. It is a common assumption in these prob-
lems that capacities are large compared to the consumption in a single round.
In this case, there are even 1 − ε-competitive algorithms.

Apart from scheduling, a few other min-sum online optimization problems
have been studied. For facility location there is a deterministic lower bound
of Ω(log(n)), while Meyerson [23] shows a constant competitive factor in the
random order model. For network design [25] and the parking permit problem
[24] only adversarial input has been studied. They admit O(k)-competitive al-
gorithms where k is the number of options available. A general framework for
linear online covering problems with adversarial input has been presented by
Buchbinder and Naor [6]. However, naturally in weighted settings, the competi-
tive ratio is limited by strong impossibility results, such as Ω(n) in our case.

A number of alternative online input models that combine adversarial and
stochastic components have been studied. Devanur et al. [10] use the i.i.d.
model and introduce generalization, the adversarial stochastic model. Kleinberg

684 O. Göbel, T. Kesselheim, and A. Tönnis

and Weinberg [17] consider the prophet inequality model, in which weights are
stochastic but the arrival order is adversarial. In [14], a unifying graph sam-
pling model is introduced that contains the random-order and prophet inequality
model as special cases.

2 Jobs with Uniform Processing Time

We start with investigating the online appointment scheduling where all jobs’
processing times are uniform, i.e. we consider them to be normalized to 1. The
optimal solution is an ordering of the jobs, decreasing in their weight. In this
setting the challenge is to order the online incoming jobs according to their weight
when they arrive. Given a sufficiently large fraction of the unknown input, a job’s
relative position in this fraction is a quite good representative for its position
in the complete input. This is why Algorithm 1 uses a local solution to guide
the online computation. Generally, it works as follows: Upon the arrival of an
element i the optimal ordering s̃(r) on set J containing all jobs that have arrived
so far is computed. Afterwards, this local solution is scaled by a factor fr in
order to create sufficiently large gaps between the jobs. This steady distribution
is essential for later insertions of jobs as they tend to be ranked between those
ones scheduled up to now. The incoming job i is assigned a so-called tentative slot
hatsi in this scaled solution. As tentative slots are not unique, we solve eventual
conflicts by assigning i to the first free slot si after its tentative position. At the
end of the analysis it will become clear how to choose the parameters c and d.

Algorithm 1. Algorithm for Uniform Jobs
Let J be the set of jobs arrived so far, initially J = ∅
for each round r with incoming job i do

J := J ∪ {i};
s̃(r) := optimal solution in round r on set J ;

ŝi :=
⌈

fr · s̃
(r)
i

⌉
, where fr = c

(
n
r

)1/d;

si := earliest free slot after ŝi;

Theorem 1. The algorithm for jobs with uniform processing time schedules ev-
ery single job 34-competitive in expectation.

The proof of this theorem will be split into three parts. First, in Section 2.1, we
will bound the expected tentative slot number that is assigned to a job. Next, in
Section 2.2, we bound the amount by which a job is shifted due to collisions, i.e.,
by how much the final slot differs from the tentative slot. Finally, in Section 2.3,
we combine these insights to prove the claim.

Note that the job indices are irrelevant for the algorithm. Therefore, in the
analysis, we assume that these indices are assigned such that w1 > w2 > . . . >
wn. By this assumption, the optimal offline solution is simply 1, 2, . . . , n.

Online Appointment Scheduling in the Random Order Model 685

2.1 Bound on Tentative Slot Numbers

As a first step, for a fixed job i, we bound its tentative slot number. Note that,
by our assumption w1 > w2 > . . . > wn its slot number in the offline optimum
would be i.

Lemma 2. The expected tentative slot of job i is E [ŝi] ≤ cd
d−1 ·i+1+O

(
n1/d−1)

.

Proof. The algorithm sets ŝi =
⌈
fπ(i)s̃

(π(i))
i

⌉
≤ fπ(i)s̃

(π(i))
i + 1. So

E [ŝi − 1] ≤ E
[
fπ(i)s̃

(π(i))
i

]
= cn

1/d
n∑

r=1
Pr [r = π(i)]

1
r1/d

E
[
s̃
(π(i))
i

∣
∣
∣ π(i) = r

]
,

where π is the random permutation the jobs are presented in. Observe that
s̃
(π(i))
i − 1 is exactly the number of jobs whose weight is larger than wi that

come in rounds before r. Conditioning on π(i) = r, the order of the remaining
n − 1 jobs is still uniform. Out of these exactly i − 1 have a weight larger than
wi. In expectation, a r−1

n−1 fraction of these are assigned to rounds 1, . . . , r − 1.
This gives us E

[
s̃
(π(i))
i

∣
∣
∣ π(i) = r

]
= (i − 1) r−1

n−1 + 1. Using that furthermore
Pr [π(i) = r] = 1

n for all r, we get

E
[
fπ(i)s̃

(π(i))
i

]
≤ cn

1/d

(
i − 1

n

n∑

r=1

r1−1/d

n
+ 1

n

n∑

r=1

1
r1/d

)

.

We approximate both sums by the corresponding integrals (see full version).
Regarding the bound on E [ŝi − 1], this gives us

E [ŝi − 1] ≤ cn
1/d

(
i − 1
n2

(
1

2 − 1
d

n2−1/d + n1−1/d

)

+ 1
n

+ 1
n1/d

1
1 − 1

d

)

= c

(

(i − 1) 1
2 − 1

d

+ i − 1
n

+ 1
n1−1/d

+ 1
1 − 1

d

)

≤ ci
1

1 − 1
d

+ c

n1−1/d

and therefore we get E [ŝi] ≤ c
1− 1

d

· i + c
n1−1/d + 1. ��

2.2 From Tentative to Actual Slots

It still remains to bound the number of the actual slot that is assigned to a job
i. To this end, we will use the following intuition. Imagine the schedule to be a
queue, first all jobs that have tentative slots between slot 1 and ŝi arrive. While
processing these jobs, the arrival continues and more jobs come in. These new
jobs are also processed before we start to work off i. We will use the fact that
the average expected number of jobs tentative assigned to a slot is bounded by
some q < 1. This causes the effects of this cascade to be bounded in expectation.
To formalize this, we use the following technical lemma for a queueing process.

686 O. Göbel, T. Kesselheim, and A. Tönnis

Lemma 3. Consider non-negative integer random variables At such that there
is q ∈ (0, 1) with the property that for any t ∈ N and a1, . . . , at−1 ∈ N, we have
E [At | A1 = a1, . . . , At−1 = at−1] ≤ q. Furthermore, let Q0 ∈ N and Qt+1 =
max {0, Qt + At+1 − 1} and T = min {t | Qt = 0}, then E [T] ≤ 1

1−q Q0.

Proof. We divide the time2 waiting for Qt = 0 into phases as follows: If phase p
ends at time Tp−1, then phase p lasts exactly for QTp−1 steps. The intuition is
that we are waiting for a FIFO queue to become empty. The initial queue length
is Q0. After Q0 steps, the initial elements of the queue have been processed.
During this processing, additional elements may have arrived that need to be
processed. This process continues until Qt = 0 for the first time.

Formally, we set Tp = Tp−1 + QTp−1 , T0 = 0. By this definition we have
QTp = QTp−1 +

∑Tp

t=Tp−1+1 At + (Tp − Tp−1) =
∑Tp

t=Tp−1+1 At. Now induction

gives us E
[
QTp

∣
∣ A1, . . . , ATp−1

]
= E

[∑Tp

t=Tp−1+1 At

∣
∣
∣ A1, . . . , ATp−1

]
≤ q(Tp −

Tp−1) = QTp−1 using the condition on the expectation. This implies E
[
QTp

] ≤
qE

[
QTp−1

]
and by induction E

[
QTp

] ≤ qpQ0.
We have T = maxp Tp and therefore T =

∑∞
p=0 QTp . By linearity of expecta-

tion, we get E [T] =
∑∞

p=0 E
[
QTp

] ≤ ∑∞
p=0 qpQ0 = 1

1−q Q0 . ��
Using this lemma, we will show that the index of the actual slot a job is

mapped to is at most a constant factor larger than the tentative slot. This proof
is still technically involved because we have to be careful with dependencies.
Besides, in each round there are only a few possible options for the respectively
assigned tentative slot. So, the arrival is not as balanced as in Lemma 3.

Lemma 4. Fix a job i and a round r. Conditioned on the event that job i comes
in round r and gets tentative slot ŝi, the expected first feasible slot si is given by
E [si | π(i) = r, ŝi] ≤ 1

1−q ŝi with q =
(

r
n

)1/d · 2d
c .

Proof. Let A′
t be the random variable counting the number of jobs that are

tentatively allocated onto slot t by the end of round r − 1. Analogously to
Lemma 3 we define Q′

t = max
{

0, Q′
t−1 + A′

t − 1
}

and T ′ = min {t | Q′
t = 0}. If

we set Q′
0 = ŝi then T ′ ≥ si is an upper bound for the first feasible slot after

ŝi. Unfortunately, Lemma 3 cannot be applied here because the A′
t are mutually

dependent. To apply the lemma nevertheless, we define a set of variables At

that are coupled to A′
t in such a way, that

∑
t′≤t A′

t′ ≤ ∑
t′≤t At′ holds for all t.

Furthermore we choose Q0 = Q′
0. It is easy to see that by this definition Q′

t ≤ Qt

for all t and therefore we also have T ′ ≤ T . Thus it suffices to consider At to
prove the lemma.

We choose At in such a way that we divert mass away from A′
t onto the

A′
t′ with t′ < t. As a first step, we balance the load between different slots,

which we will exploit later. To this end, let Ur′ be drawn independently uni-
formly from [0, fr′], where fr′ = c

(
n
r

)1/d is the scaling factor used in round r′.
2 Note that the notion of time within this proof refers to the queueing perspective,

not to the algorithm’s input.

Online Appointment Scheduling in the Random Order Model 687

Define Zr′ = fr′ s̃
(r′)
π−1(r′) − Ur′ . So, Zr′ is a real-valued random variable taking

values on [0, fr′r′]. Indeed it is uniformly distributed on this interval because,
conditioned on the set J in a round r′, π−1(r′) can be considered drawn uni-
formly from J . So, s̃

(r′)
π−1(r′) is drawn uniformly from {1, 2, . . . , r′}. We will use

�Zr′	 as a lower bound on the tentative slot used in round r′. Therefore, define
Xt,r′ to be 1 if Zr′	 = t and 0 otherwise. Now, let

At =
∑

r′≤r

(
1

br′
+

(

1 − t

br′

)

· Xt,r′

)

with br′ = �fr′r′	 =
⌈

c
(n

r′
)1/d

r′
⌉

.

To complete the proof of the lemma, it now remains to show the following
two claims. (a)

∑
t′≤t At′ ≥ ∑

t′≤t A′
t′ for all t. (b) Given arbitrary numbers

a1, . . . , at−1 ∈ N, we have E [At | A1 = a1, . . . , At−1 = at−1] ≤ q. Then Lemma 3
directly gives the desired result. Due to space limitations, the formal proof of
Claim (a) can only be found in the full version.

Proof of Claim (b) For an arbitrary matrix x = (xt′,r′)t′,r′∈N, xt′,r′ ∈ {0, 1}, let
Ex be the event that Xt′,r′ = xt′,r′ for all t′ < t and all r′ ≤ r. We now upper-
bound the value of Pr [Xt,r′ = 1 | Ex]. Observe that �Zr′	 ≤ �fr′r′	. Therefore,
if t > fr′r′, we immediately have Xt,r′ = 0. Furthermore, if xt′,r′ = 1 for some
t′ < t, then also Xt,r′ = 0. So, let us, without loss of generality, assume that
t ≤ �fr′r′	 and xt′,r′ = 0 for all t′ < t.

We also observe that the algorithm only uses relative ranks to determine
the slot allocation: In each round r′′ the solution s always allocates the same
slots S′, regardless of the actual job weights. Therefore, Zr′ can considered to
be independent of all Zr′′ , r′′ �= r′. Consequently, conditioned on Ex, Zr′ is
uniformly distributed on (t − 1, br′]. Therefore, we get

Pr [Xt,r′ = 1 | Ex] ≤ 1
br′ − (t − 1)

.

Given arbitrary numbers a1, . . . , at−1 ∈ N, we now bound the conditioned ex-
pectation E [At | A1 = a1, . . . , At−1 = at−1]. To this end observe, that the event
A1 = a1, . . . , At−1 = at−1 can equivalently be expressed by a set X of 0/1 ma-
trices x with the property that A1 = a1, . . . , At−1 = at−1 if and only if there is
x ∈ X such that Xt′,r′ = xt′,r′ for all t′ < t and all r′ ≤ r.

Using the above bound on Pr [Xt,r′ = 1 | Ex], we get

E [At | Ex] =
∑

r′≤r

(
1

br′
+

(

1 − t

br′

)

· Pr [Xt,r′ = 1 | Ex]
)

≤
∑

r′≤r

(
1

br′
+

(

1 − t − 1
br′

)

· 1
br′ − (t − 1)

)

=
∑

r′≤r

2 1
br′

= 2
cn1/d

∑

r′≤r

(r′)1/d−1 .

As this bound holds for all x ∈ X , we also have

E [At | A1 = a1, . . . , At−1 = at−1] ≤ 2
cn1/d

∑

r′≤r

(r′)1/d−1 ≤
(r

n

)1/d

· 2d

c
. ��

688 O. Göbel, T. Kesselheim, and A. Tönnis

2.3 Putting the Pieces Together

Using the insights from the previous sections, the proof of Theorem 1 is relatively
straightforward.

Proof (of Theorem 1). Combining Lemmas 2 and 4, we get that for every job i

E [si] ≤
n∑

i=1
wi · 1

1 − 2d
c

E [ŝi] ≤
n∑

i=1
wi

1
1 − 2d

c

·
(

cd

d − 1
i + 1 + O

(
n

1/d−1
))

.

We omit the O-term since it tends towards 0 for large n. Setting c = 8 and
d = 2, we get 1

1− 2d
c

·
(

cd
d−1 i + 1

)
= 2(16i + 1) ≤ 34i. Therefore for every job i the

allocated slot si in expectation only deviates by a factor of 34 from its optimal
slot s∗

i in the offline schedule. ��

3 General Jobs

With the constant competitive algorithm for jobs with uniform processing time
as a subroutine we devise an algorithm for jobs with variable processing times.
We use several instances of Algorithm 1 to schedule jobs with similar processing
time. We sort jobs into processing time classes where every class λ = 2b for b ∈ N

contains the jobs with processing times between two powers of two 2b−1 < li ≤
2b. To this end we define a labeling scheme that maps the sub-schedules of the
different processing time classes onto the overall schedule in such a way, that no
job is pushed back by more than a factor of 2 log(n) compared to his position in
the sub-schedule.

Theorem 5. The algorithm for jobs with general processing time is 2α log(n)-
competitive where α is the competitive factor of the algorithm for jobs with uni-
form jobs used as subroutine.

We start out with the labeling scheme that allows us to group slots to meta-
slots, each associated to a single processing time class. Without loss of generality
let the total number of jobs n be a power of two. Let Tk be a complete binary
tree of height log(n). We call the level of the leaves j = 0. Now we label a node
σ on level j of Tk with λ(σ) = 2k+j . This way, the leaves get label 2k, their
parents get label 2k+1 up to the root with label 2k+log n.

Now we traverse the tree T0 in post-order and map its nodes onto the slots
in our schedule. In this traversal order we descend left first and map a parent
node right after all his children. For each node σ with label λ(σ) we create a
meta-slot of λ(σ) many neighboring slots. We proceed to map T1 starting from
the first free slot after T0 and so on.

Observation 6. The mapping of tree Tk requires 2kn log(n) slots in the schedule
and starts at slot (2k − 1)n log(n) + 1.

This follows simply from the fact that every level j in tree Tk contains n
2j

nodes and each node takes 2j+k slots.

Online Appointment Scheduling in the Random Order Model 689

Lemma 7. The γ-th meta slot with label λ ends no later than slot 2 log(n)γλ
in the schedule.

Proof. The first occurrence of label λ is in tree Tk with k = 0 if λ ≤ n and
k = log(λ) − log(n) otherwise. Therefore tree Tk′ with k′ = 0 if λ ≤ n and
k′ = log(λ) + log(γ) − log(n) otherwise is the first tree that contains at least γ
meta-slots with label λ.

Now we make a case distinction, if k′ = 0, then label λ is used on level
j = log(λ). In the post-order traversal when reaching the γ-th node with label
λ, the subtrees of previous nodes of label λ have been traversed plus the subtree
of the current node plus at most a γ

n/2j -fraction of all nodes on higher levels.

Each subtree takes log(λ)λ many slots. There are
⌊

γ
n/2j

n
2−j

⌋
≤ γ2j−j′ nodes on

higher levels j′ = log(λ) + 1, . . . , log n, each taking 2j′ slots. So the γ-th node
with label λ ends on slot γ log(λ)λ + (log n − log(λ))γ2j = log(n)γλ.

In the other case, if k′ �= 0 it follows from Observation 6 that tree Tk′ starts at
slot (2k′ − 1)n log(n) + 1 ≤ λ + γn log(n) + 1 = 2log(γ)+log(λ)−log(n)n log(n) + 1 =
γλ log(n)+1. Furthermore label λ is used on level j = log(λ)−k′ in tree Tk′ and
the leaves in tree Tk′ take 2k′ slots each. Thus the total number of slots used
through the post-order traversal on Tk′ is bounded byγ(log(λ) − k′) · 2log(λ)−k′ ·
2k′ + (log n − (log(λ) − k′))γλ = log(n)γλ. So, the γth slot of label λ ends no
later than 2 log(n)γλ. ��

Algorithm 2. Log-Algorithm for Jobs with different processing times

for each round r with incoming job i having processing time li do
choose b such that 2b−1 < li ≤ 2b;
Let Jb := {jobs j with lj ∈ (2b−1, 2b]};
Let Σb := {meta-slots σ|λ(σ) = 2b};
s(b) = output from uniform algorithm with job i on known Jb;
schedule i on si-th meta-slot in Σb;

Proof (of Theorem 5). We run one instance of an α-competitive algorithm for
jobs with uniform processing time for every processing time class as a subroutine.
These subroutines give for every job i a γ = s

(b)
i and a λ = 2b such that

2b−1 < li ≤ 2b. Now meta-slot γ of the subroutine would end in slot γλ if no
other labels were interwoven. Therefore the labeling stretches the α-competitive
schedule s(b) by an additional factor of 2 log(n)γλ

γλ = 2 log(n). ��

4 Lower Bound for Fully Worst-Case Input

As mentioned before, we motivate the use of the random order model by giving a
lower bound when performing classical worst-case analysis in the general setting

690 O. Göbel, T. Kesselheim, and A. Tönnis

with different job processing times and weights. There, an adversary is allowed
to construct the instance, i.e. to determine the jobs’ weights, and then also to
present the jobs in any preferred order. This, obviously, is more powerful, but
we show that it does not allow designing algorithms that achieve a reasonable
competitive ratio. As we use a randomized instance, we can extend our results
to even hold for randomized algorithms by applying Yao’s principle.

Theorem 8. For every randomized online algorithm weights can be chosen in a
way such that E [ALG] ≥ n

8 · OPT, even if all jobs have equal processing times.

Proof. We show this claim by using Yao’s principle. We will devise a randomized
instance such that for any deterministic algorithm E

[ALG
OPT

] ≥ n
8 . To this end, let

T be drawn uniformly from {1, . . . , n}. We define the weights of a job arriving in
round t to be wt = M t if t ≤ T and wt = 0 otherwise, with M > n. First, we com-
pute the cost incurred by an optimal algorithm. According to the construction
described above, T many jobs with non-zero weights M, M2, . . . , MT are given.
It is obviously the best solution to put the heaviest job first, and then proceed
with the jobs decreasing in their weight. Formally, job j is assigned slot T −j +1.
This results in cost OPT =

∑T
j=1 M j (T − j + 1) =

∑T −1
j=0 MT −j(j+1) ≤ 2·MT .

Now we focus on the cost of a deterministic online algorithm ALG. Until
(including) round T , the behavior of this algorithm is independent of T . Its
behavior after this point is irrelevant for the resulting cost. Therefore, we can
express the algorithm’s choices as an injective function σ : [n] → N, meaning
that the ith job is scheduled to slot σ(i).

As the function is injective, there is a set S ⊆ [n] of size
⌈

n
2

⌉
such that σ(i) ≥

⌊
n
2

⌋
+ 1 ≥ n

2 for all i ∈ S. Note that if T ∈ S, then ALG ≥ n
2 · MT ≥ n

2 · OPT
2 ,

so ALG
OPT ≥ n

4 . As T ∈ S happens with probability at least 1
2 , we get E

[ALG
OPT

]

≥ n
8 . ��

References

1. Afrati, F.N., Bampis, E., Chekuri, C., Karger, D.R., Kenyon, C., Khanna, S., Milis,
I., Queyranne, M., Skutella, M., Stein, C., Sviridenko, M.: Approximation schemes
for minimizing average weighted completion time with release dates. In: Proc. 40th
Symp. Foundations of Computer Science (FOCS), pp. 32–44 (1999)

2. Agrawal, S., Wang, Z., Ye, Y.: A dynamic near-optimal algorithm for online linear
programming. Operations Research 62(4), 876–890 (2014)

3. Ajtai, M., Megiddo, N., Waarts, O.: Improved algorithms and analysis for secretary
problems and generalizations. SIAM J. Discrete Math. 14(1), 1–27 (2001)

4. Babaioff, M., Immorlica, N., Kleinberg, R.: Matroids, secretary problems, and on-
line mechanisms. In: Proc. 18th Symp. Discr. Algorithms (SODA), pp. 434–443
(2007)

5. Begen, M.A., Queyranne, M.: Appointment scheduling with discrete random du-
rations. Math. Oper. Res. 36(2), 240–257 (2011)

6. Buchbinder, N., Naor, J.: Online primal-dual algorithms for covering and packing.
Math. Oper. Res. 34(2), 270–286 (2009)

Online Appointment Scheduling in the Random Order Model 691

7. Chekuri, C., Khanna, S.: A PTAS for minimizing weighted completion time on
uniformly related machines. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.)
ICALP 2001. LNCS, vol. 2076, pp. 848–861. Springer, Heidelberg (2001)

8. Correa, J.R., Wagner, M.R.: Lp-based online scheduling: from single to parallel
machines. Math. Program. 119(1), 109–136 (2009)

9. Devanur, N.R., Hayes, T.P.: The adwords problem: online keyword matching with
budgeted bidders under random permutations. In: Proc. 10th Conf. Electr. Com-
merce (EC), pp. 71–78 (2009)

10. Devanur, N.R., Jain, K., Sivan, B., Wilkens, C.A.: Near optimal online algorithms
and fast approximation algorithms for resource allocation problems. In: Proc. 12th
Conf. Electr. Commerce (EC), pp. 29–38 (2011)

11. Feldman, J., Henzinger, M., Korula, N., Mirrokni, V.S., Stein, C.: Online stochastic
packing applied to display ad allocation. In: de Berg, M., Meyer, U. (eds.) ESA
2010, Part I. LNCS, vol. 6346, pp. 182–194. Springer, Heidelberg (2010)

12. Feldman, M., Svensson, O., Zenklusen, R.: A simple O(log log(rank))-competitive
algorithm for the matroid secretary problem. In: Proc. 26th Symp. Discr. Algo-
rithms (SODA), pp. 1189–1201 (2015)

13. Fiat, A., Woeginger, G.J.: On-line scheduling on a single machine: Minimizing the
total completion time. Acta Inf. 36(4), 287–293 (1999)

14. Göbel, O., Hoefer, M., Kesselheim, T., Schleiden, T., Vöcking, B.: Online indepen-
dent set beyond the worst-case: Secretaries, prophets, and periods. In: Esparza, J.,
Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014, Part II. LNCS,
vol. 8573, pp. 508–519. Springer, Heidelberg (2014)

15. Günther, E., Maurer, O., Megow, N., Wiese, A.: A new approach to online schedul-
ing: Approximating the optimal competitive ratio. In: Proc. 24th Symp. Discr.
Algorithms (SODA), pp. 118–128 (2013)

16. Kesselheim, T., Radke, K., Tönnis, A., Vöcking, B.: Primal beats dual on online
packing LPs in the random-order model. In: Proc. 46th Symp. Theory of Comput-
ing (STOC), pp. 303–312 (2014)

17. Kleinberg, R., Weinberg, S.M.: Matroid prophet inequalities. In: Proc. 44th Symp.
Theory of Computing (STOC), pp. 123–136 (2012)

18. Lachish, O.: O(log log rank) competitive ratio for the matroid secretary prob-
lem. In: Proc. 55th Symp. Foundations of Computer Science (FOCS), pp. 326–335
(2014)

19. Megow, N., Schulz, A.S.: On-line scheduling to minimize average completion time
revisited. Oper. Res. Lett., 32(5):485–490 (2004)

20. Megow, N., Uetz, M., Vredeveld, T.: Models and algorithms for stochastic online
scheduling. Math. Oper. Res., 31(3):513–525 (2006)

21. Megow, N., Vredeveld, T.: A tight 2-approximation for preemptive stochastic
scheduling. Math. Oper. Res. 39(4), 1297–1310 (2014)

22. Mehta, A., Saberi, A., Vazirani, U.V., Vazirani, V.V.: Adwords and generalized
online matching. J. ACM 54(5) (2007)

23. Meyerson, A.: Online facility location. In: Proc. 42nd Symp. Foundations of Com-
puter Science (FOCS), pp. 426–431 (2001)

24. Meyerson, A.: The parking permit problem. In: Proc. 46th Symp. Foundations of
Computer Science (FOCS), pp. 274–284 (2005)

692 O. Göbel, T. Kesselheim, and A. Tönnis

25. Meyerson, A., Munagala, K., Plotkin, S.A.: Designing networks incrementally. In:
Proc. 42nd Symp. Foundations of Computer Science (FOCS), pp. 406–415 (2001)

26. Molinaro, M., Ravi, R.: The geometry of online packing linear programs. Math.
Oper. Res. 39(1), 46–59 (2014)

27. Schulz, A.S., Skutella, M.: The power of α-points in preemptive single machine
scheduling. Journal of Scheduling 5, 121–133 (2002)

28. Sitters, R.: Competitive analysis of preemptive single-machine scheduling. Opera-
tions Research Letters 38(6), 585–588 (2010)

	Online Appointment Scheduling in the Random Order Model
	1 Introduction
	1.1 Related Work

	2 Jobs with Uniform Processing Time
	2.1 Bound on Tentative Slot Numbers
	2.2 From Tentative to Actual Slots
	2.3 Putting the Pieces Together

	3 General Jobs
	4 Lower Bound for Fully Worst-Case Input

