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Abstract. We investigate the power of randomized algorithms for the
maximum cardinality matching (MCM) and the maximum weight match-
ing (MWM) problems in the online preemptive model. In this model, the
edges of a graph are revealed one by one and the algorithm is required to
always maintain a valid matching. On seeing an edge, the algorithm has
to either accept or reject the edge. If accepted, then the adjacent edges
are discarded. The complexity of the problem is settled for deterministic
algorithms [7,9].

Almost nothing is known for randomized algorithms. A lower bound
of 1.693 is known for MCM with a trivial upper bound of two. An upper
bound of 5.356 is known for MWM. We initiate a systematic study of the
same in this paper with an aim to isolate and understand the difficulty.
We begin with a primal-dual analysis of the deterministic algorithm due
to [7]. All deterministic lower bounds are on instances which are trees at
every step. For this class of (unweighted) graphs we present a randomized
algorithm which is 28

15 -competitive. The analysis is a considerable exten-
sion of the (simple) primal-dual analysis for the deterministic case. The
key new technique is that the distribution of primal charge to dual vari-
ables depends on the “neighborhood” and needs to be done after having
seen the entire input. The assignment is asymmetric: in that edges may
assign different charges to the two end-points. Also the proof depends on
a non-trivial structural statement on the performance of the algorithm
on the input tree.

The other main result of this paper is an extension of the deterministic
lower bound of Varadaraja [9] to a natural class of randomized algorithms
which decide whether to accept a new edge or not using independent
random choices. This indicates that randomized algorithms will have to
use dependent coin tosses to succeed. Indeed, the few known randomized
algorithms, even in very restricted models follow this.

We also present the best possible 4
3 -competitive randomized algorithm

for MCM on paths.
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1 Introduction

Matching has been a central problem in combinatorial optimization. Indeed, al-
gorithm design in various models of computations, sequential, parallel, stream-
ing, etc., have been influenced by techniques used for matching. We study the
maximum cardinality matching (MCM) and the maximum weight matching
(MWM) problems in the online preemptive model. In this model, edges e1, . . . ,
em of a graph, possibly weighted, are presented one by one. An algorithm is
required to output a matching Mi after the arrival of each edge ei. This model
constrains an algorithm to accept/reject an edge as soon as it is revealed. If
accepted, the adjacent edges, if any, have to be discarded from Mi.

An algorithm is said to have a competitive ratio α if the cost of the matching
maintained by the algorithm is at least 1

α times the cost of the offline optimum
over all inputs. The deterministic complexity of this problem is settled. For
maximum cardinality matching (MCM), it is an easy exercise to prove a tight
bound of two.

The weighted version (MWM) is more difficult. Improving an earlier result
of Feigenbaum et al. [5], McGregor [7] gave a deterministic algorithm together
with an ingenious analysis to get a competitive ratio of 3 + 2

√
2 ≈ 5.828. Later,

this was proved to be optimal by Varadaraja [9].
Very little is known on the power of randomness for this problem. Recently,

Epstein et al. [4] proved a lower bound of 1+ln 2 ≈ 1.693 on the competitive ratio
of randomized algorithms for MCM. This is the best lower bound known even
for MWM. Epstein et al. [4] also give a 5.356-competitive randomized algorithm
for MWM.

In this paper, we initiate a systematic study of the power of randomness for this
problem. Our main contribution is perhaps to throw some light on where lies the
difficulty. We first give an analysis of McGregor’s algorithm using the traditional
Primal-Dual framework (see Appendix A in [3]). All lower bounds for determin-
istic algorithms (both for MCM and MWM) employ growing trees. That is, the
input graph is a tree at every stage. It is then natural to start our investigation
for this class of inputs. For this class, we give a randomized algorithm (that uses
two bits of randomness) that is 28

15 competitive. While this result is modest, already
the analysis is considerably more involved than the traditional primal dual anal-
ysis. In the traditional primal dual analysis of the matching problem, the primal
charge (every selected edge contributes one to the charge) is distributed (perhaps
equally) to the two end-points. In the online case, this is usually done as the al-
gorithm proceeds. Our assignment depends on the structure of the final tree, so
this assignment happens at the end. Our charge distribution is not symmetric. It
depends on the position of the edge in the tree (we make this clear in the analysis)
as also the behavior of neighboring edges. The main technical lemma shows that
the charge distribution will depend on a neighborhood of distance at most four.
We also note that these algorithms are (restricted versions of) randomized greedy
algorithms even in the offline setting. Obtaining an approximation ratio less than
two for general graphs, even in the offline setting is a notorious problem. See [8,2]
for a glimpse of the difficulty.
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The optimal maximal matching algorithm for MCM, and McGregor’s [7] op-
timal deterministic algorithm for MWM are both local algorithms. The choice
of whether a new edge should accepted or rejected is based only on the weight
of the new edge and the weight of the conflicting edges, if any, in the current
matching.

It is natural to add randomness to such local algorithms, and to ask whether
they do better than the known deterministic lower bounds. An obvious way to
add randomness is to accept/reject the new edge with certain probability, which
is only dependent on the new edge and the conflicting edges in the current match-
ing. The choice of adding a new edge is independent of the previous coin tosses
used by the algorithm. We call such algorithms randomized local algorithms. We
show that randomized local algorithms cannot do better than optimal deter-
ministic algorithms. This indicates that randomized algorithms may have to use
dependent coin tosses to get better approximation ratios. Indeed, the algorithm
by Epstein et al. does this. So do our randomized algorithms.

The randomized algorithm of Epstein et al. [4] works as follows. For a pa-
rameter θ, they round the weights of the edges to powers of θ randomly, and
then they update the matching using a deterministic algorithm. The weights get
distorted by a factor θ ln θ

θ−1 in the rounding step, and the deterministic algorithm
has a competitive ratio of 2 + 2

θ−2 on θ-structured graphs, i.e., graphs with edge
weights being powers of θ. The overall competitive ratio of the randomized algo-
rithm is θ ln θ

θ−1 ·
(

2 + 2
θ−2

)
which is minimized at θ ≈ 5.356. A natural approach

to reducing this competitive ratio is to improve the approximation ratio for θ
structured graphs. However, we prove that the competitive ratio 2 + 2

θ−2 is tight
for θ-structured graphs, as long as θ ≥ 4, for deterministic algorithms.

One (minor) contribution of this paper is a randomized algorithms for MCM
on paths, that achieves a competitive ratio of 4

3 , with a matching lower bound.

2 Barely Random Algorithms for MCM

In this section, we present barely random algorithms, that is, algorithms that
use a constant number of random bits, for MCM on growing trees.

The ideal way to read the paper, for a reader of leisure, is to first read our
analysis of McGregor’s algorithm (presented in Appendix A in [3], then the
analysis of the algorithm for trees with maximum vertex degree three (presented
in Appendix B.2 in [3]) and then this section. The dual variable management
which is the key contribution gets progressively more complicated. It is local in
the first two cases. Here are the well known Primal and Dual formulations of the
matching problem.

Primal LP Dual LP
max

∑
e xe min

∑
v yv

∀v :
∑

v∈e xe ≤ 1 ∀e : yu + yv ≥ 1
xe ≥ 0 yv ≥ 0
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2.1 Randomized Algorithm for MCM on Growing Trees

In this section, by using only two bits of randomness, we beat the deterministic
lower bound of 2 for MCM on growing trees.

Algorithm 1. Randomized Algorithm for Growing Trees
1. The algorithm maintains four matchings: M1,M2,M3, and M4.
2. On receipt of an edge e, the processing happens in two phases.

(a) The augment phase. The new edge e is added to each Mi in which there
are no edges adjacent to e.

(b) The switching phase. For i = 2, 3, 4, in order, e is added to Mi (if it was not
added in the previous phase) and the conflicting edge is discarded, provided it
decreases the quantity

∑
i,j∈[4],i�=j

|Mi ∩ Mj |.
3. Output matching Mi with probability 1

4 .

We begin by assuming (we justify this below) that all edges that do not belong
to any matching are leaf edges. This helps in simplifying the analysis. Suppose
that there is an edge e which does not belong to any matching, but is not a
leaf edge. By removing e, the tree is partitioned into two subtrees. The edge e
is added to the tree in which it has 4 neighboring edges. (There must be such a
subtree, see next para.) Each tree is analysed separately.

We will say that a vertex(/an edge) is covered by a matching Mi if there is
an edge in Mi which is incident on(/adjacent to) the vertex(/edge). We also say
that an edge is covered by a matching Mi if it belongs to Mi. We begin with
the following observations.

– After an edge is revealed, its end points are covered by all 4 matchings.
– An edge e that does not belong to any matching has 4 edges incident on one

of its end points such that each of these edges belong to a distinct matching.
This holds when the edge is revealed, and does not change subsequently.

An edge is called internal if there are edges incident on both its end points. An
edge is called bad if its end points are covered by only 3 matchings.

We begin by proving some properties about the algorithm. The key struc-
tural lemma that keeps “influences” of bad edges local is given below. The two
assertions in the Lemma have to be proved together by induction.

Lemma 1. 1. An internal edge is covered by at least four matchings (counted
with multiplicities). It is not necessary that these four edges be in distinct
matchings.

2. If p, q and r are three consecutive vertices on a path, then bad edges cannot
be incident on all 3 of these vertices, (as in figure 1).

The proof of this lemma is in the Appendix B.4 in [3].
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p q r

“bad” “bad” “bad”

Fig. 1. Forbidden Configuration

Theorem 1. The randomized algorithm for finding MCM on growing trees is
28
15 -competitive.

A local analysis like the one in Appendix B.2 in [3] will not work here. For
a reason, see Appendix B.3 in [3]. The analysis of this algorithm proceeds in
two steps. Once all edges have been seen, we impose a partial order on the
vertices of the tree and then with the help of this partial order, we distribute the
primal charge to the dual variables, and use the primal-dual framework to infer
the competitive ratio. If every edge had four adjacent edges in some matching
(counted with multiplicities) then the distribution of dual charge is easy. However
we do have edges which have only three adjacent edges in matchings. We would
like the edges in matchings to contribute more to the end-points of these edges.
Then, the charge on the other end-point would be less and we need to balance
this through other edges. Details follow.
Ranks: Consider a vertex v. Let v1, . . . , vk be the neighbors of v. For each i, let
di denote the maximum distance from v to any leaf if there was no edge between
v and vi.The rank of v is defined as the minimum of all the di. Observe that the
rank of v is one plus the second highest rank among the neighbors of v. Thus
there can be at most one neighbor of vertex v which has rank at least the rank
of v. All leaves have rank 0. Rank 1 vertices have at most one non-leaf neighbor.

Lemma 2. There exists an assignment of the primal charge amongst the dual
variables such that the dual constraint for each edge e ≡ (u, v) is satisfied at least
15
28 in expectation, i.e. E[yu + yv] ≥ 15

28 .

Proof. Consider an edge e ≡ (u, v) where rank of u is i and rank of v is j. We will
show that yu+yv ≥ 2+ε for such an edge, when summed over all four matchings.
The value of ε is chosen later. The proof is by induction on the lexicographic
order of < j, i >, j ≥ i.
Dual Variable Management: Consider an edge e from a vertex of rank i to
a vertex of rank j, such that i ≤ j. This edge will distribute its primal weight
between its end-points. The exact values are discussed in the proof of the claim
below. In general, we look to transfer all of the primal charge to the higher
ranked vertex. But this does not work and we need a finer strategy. This is
detailed below.
– If e does not belong to any matching, then it does not contribute to the value

of dual variables.
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– If e belongs to a single matching then, depending on the situation, one of 0,
ε or 2ε of its primal charge will be assigned to the rank i vertex and rest will
be assigned to the rank j vertex. The small constant ε is determined later.

– If e belongs to two matchings, then at most 3ε of its primal charge will be
assigned to the rank i vertex as required. The rest is assigned to the rank j
vertex.

– If e belongs to three or four matchings, then its entire primal charge is
assigned to the rank j vertex.

The analysis breaks up into six cases.

Case 1. Suppose e does not belong to any matching. Then it must be a leaf edge.
Hence, i = 0. There must be 4 edges incident on v besides e, each belonging to
a distinct matching. Of these 4, at least 3 say e1, e2, and e3, must be from lower
ranked vertices to the rank j vertex v. The edges e1, e2, and e3, each assign a
charge of 1 − 2ε to yv. Therefore, yu + yv ≥ 3 − 6ε ≥ 2 + ε.

Case 2. Suppose e is a bad edge that belongs to a single matching. Since no
internal edge can be a bad edge, i = 0. This implies (Lemma 1) that, there is an
edge e1 from a rank j − 1 vertex to v, which belongs to a single matching. Also,
there is an edge e2, from v to a higher ranked vertex, which also belongs to a
single matching. The edge e assigns a charge of 1 to yv. If e1 assigns a charge
of 1 (or 1 − ε) to yv, then e2 assigns ε (or 2ε respectively) to yv. In either case,
yu + yv = 2 + ε. The key fact is that e1 could not have assigned 2ε to a lower
ranked vertex. Since, then, by Lemma 1, e cannot be a bad edge.

Case 3. Suppose e is not a bad edge, and it belongs to a single matching.
Case 3(a). i = 0. There are two sub cases.

– There is an edge e1 from some rank j − 1 vertex to v which belongs to 2
matchings, or there are two other edges e2 and e3 from some lower ranked
vertices to v, each belonging to separate matchings. The edge e assigns a
charge of 1 to yv. Either e1 assigns a charge of at least 2 − 3ε to yv, or
e2 and e3 assign a charge of at least 1 − 2ε each, to yv. In either case,
yu + yv ≥ 3 − 4ε ≥ 2 + ε.

– There is one edge e1, from a rank j − 1 vertex to v, which belongs to a
single matching, and there is one edge e2, from v to a higher ranked vertex,
which belongs to 2 matchings. The edge e assigns a charge of 1 to yv. If e1
assigns a charge of 1 (or 1 − ε or 1 − 2ε) to yv, then e2 assigns ε (or 2ε or 3ε
respectively) to yv. In either case, yu + yv = 2 + ε.

Case 3(b). i > 0. There are two sub cases.

– There are at least two edges e1 and e2 from lower ranked vertices to u, and
one edge e3 from v to a higher ranked vertex. Each of these edges are in one
matching only (not necessarily the same matching).

– There is one edge e4 from a vertex of lower rank to u, at least one edge e5
from a lower ranked vertex to v, and one edge e6 from v to a vertex of higher
rank. All these edges belong to a single matching (not necessarily the same).
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The edge e assigns a charge of 1 among yu and yv. If e1 and e2 assign a charge of
at least 1 − 2ε each, to yu, then yu + yv ≥ 3 − 4ε ≥ 2 + ε. Similarly, if e4 assigns
a charge of at least 1 − 2ε to yu, and e5 assigns a charge of at least 1 − 2ε to yv,
then yu + yv ≥ 3 − 4ε ≥ 2 + ε.

Case 4. Suppose e is a bad edge that belongs to two matchings. Then i = 0.
This implies that there is an edge e1, from v to a vertex of higher rank which
belongs to a single matching. The edge e assigns a charge of 2 to yv, and the
edge e1 assigns a charge of ε to yv. Thus, yu + yv = 2 + ε.

Case 5. Suppose e is not a bad edge and it belongs to two matchings. This
means that either there is an edge e1 from a lower ranked vertex to u, which
belongs to at least one matching, or there is an edge from some lower ranked
vertex to v that belongs to at least one matching, or there is an edge from v to
some higher ranked vertex which belongs to two matchings. The edge e assigns
a charge of 2 among yu and yv. The neighboring edges assign a charge of ε to yu

or yv (depending on which vertex it is incident), to give yu + yv ≥ 2 + ε.

Case 6. Suppose, e belongs to 3 or 4 matchings, then trivially yu + yv ≥ 2 + ε.
From the above conditions, the best value for the competitive ratio is obtained
when ε = 1

7 , yielding E[yu + yv] ≥ 15
28 . �	

Lemma 2 implies that the competitive ratio of the algorithm is at most 28
15 .

3 Lower Bounds

3.1 Lower Bound for MWM

In this section, we prove a lower bound on the competitive ratio of a natural
class of randomized algorithms in the online preemptive model for MWM. The
algorithms in this class, which we call local algorithms, have the property that
their decision to accept or to reject a new edge is completely determined by the
weights of the new edge and the conflicting edges in the matching maintained
by the algorithm. Indeed, the optimal deterministic algorithm by McGregor [7]
is a local algorithm. The notion of locality can be extended to randomized algo-
rithms as well. In case of randomized local algorithms, the event that a new edge
is accepted is independent of all such previous events, given the current match-
ing maintained by the algorithm. Furthermore, the probability of this event is
completely determined by the weight of the new edge and the conflicting edges
in the matching maintained by the algorithm. Given that the optimal (3+2

√
2)-

competitive deterministic algorithm for MWM is a local algorithm, it is natural
to ask whether randomized local algorithms can beat the deterministic lower
bound of (3 + 2

√
2) by Varadaraja [9]. We answer this question in the negative,

and prove the following theorem.

Theorem 2. No randomized local algorithm for the MWM problem can have a
competitive ratio less than α = 3 + 2

√
2 ≈ 5.828.
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Note that the randomized algorithm by Epstein et al. [4] does not fall in this
category, since the decision of accepting or rejecting a new edge is also dependent
on the outcome of the coins tossed at the beginning of the run of the algorithm.
(For details, see Section 3 of [4].) In order to prove Theorem 2, we will crucially
use the following lemma, which is a consequence of Section 4 of [9].

Lemma 3. If there exists an infinite sequence (xn)n∈N of positive real numbers
such that for all n, βxn ≥ ∑n+1

i=1 xi + xn+1, then β ≥ 3 + 2
√

2.

Characterization of Local Randomized Algorithms. Suppose, for a con-
tradiction, that there exists a randomized local algorithm A with a competitive
ratio β < α = 3 + 2

√
2, β ≥ 1. Define the constant γ to be

γ =
β

(
1 − 1

α

)
(

1 − β
α

) = β(α − 1)
α − β

≥ 1 >
1
α

For i = 0, 1, 2, if w is the weight of a new edge and it has i conflicting edges,
in the current matching, of weights w1, . . . , wi, then fi(w1, . . . , wi, w) gives the
probability of switching to the new edge. The behavior of A is completely de-
scribed by these three functions. We need the following key lemma to state our
construction of the adversarial input.

The lemma states (informally) that given an edge of weight w1, there exists
weights x and y, close to each other such that if an edge of weight x (respective
y) is adjacent to an edge of weight w1, the probability of switching is at most
(respectively at least) δ.

Lemma 4. For every δ ∈ (0, 1/α), ε > 0, and w1, there exist x and y such that
f1(w1, x) ≥ δ, f1(w1, y) ≤ δ, x − y ≤ ε, and w1/α ≤ y ≤ x ≤ γw1.

The proof of this lemma can be found in Appendix C in [3].

The Adversarial Input. The adversarial input is parameterized by four pa-
rameters: δ ∈ (0, 1/α), ε > 0, m, and n, where m and n determine the graph
and δ and ε determine the weights of its edges.

Define the infinite sequences (xi)i∈N and (yi)i∈N, as functions of ε and δ, as
follows. x1 = 1, and for all i, having defined xi, let xi+1 and yi be such that
f1(xi, xi+1) ≥ δ, f1(xi, yi) ≤ δ, xi+1 − yi ≤ ε, and xi/α ≤ yi ≤ xi+1 ≤ γxi.
Lemma 4 ensures that such xi+1 and yi exist. Furthermore, by induction on i,
it is easy to see that for all i,

1/αi ≤ yi ≤ xi+1 ≤ γi (1)

These sequences will be the weights of the edges in the input graph.
Given m and n, the input graph contains several layers of vertices, namely

A1, A2, . . . , An+1, An+2 and B1, B2, . . . , Bn+1; each layer containing m vertices.
The vertices in the layer Ai are named ai

1, ai
2, . . . , ai

m, and those in layer Bi are
named analogously. We have a complete bipartite graph Ji between layer Ai
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and Ai+1 and an edge between ai
j and bi

j for every i, j (that is, a matching Mi

between Ai and Bi).
For i = 1 to n, the edges {(ai

j, ai+1
j′ )|1 ≤ j, j′ ≤ m}, in the complete bipartite

graph between Ai and Ai+1, have weight xi, and the edges {(ai
j , bi

j)|1 ≤ j ≤ m},
in the matching between Ai and Bi, have weight yi. The edges in the complete
graph Jn+1 have weight xn, and those in the matching Mn+1 have weight yn.
Note that weights xi and yi depend on ε and δ, but are independent of m and n.
Clearly, the weight of the maximum weight matching in this graph is bounded
from below by the weight of the matching

⋃n+1
i=1 Mi. Since yi ≥ xi+1 −ε, we have

OPT ≥ m

(
n∑

i=1
yi + yn

)
≥ m

(
n+1∑
i=2

xi + xn+1 − (n + 1)ε

)
(2)

The edges of the graph are revealed in n+1 phases. In the ith phase, the edges
in Ji ∪ Mi are revealed as follows. The phase is divided into m sub phases. In
the jth sub phase of the ith phase, edges incident on ai

j are revealed, in the order
(ai

j , ai+1
1 ), (ai

j , ai+1
2 ), . . . , (ai

j , ai+1
m ), (ai

j , bi
j).

Analysis of the Lower Bound. The overall idea of bounding the weight of
the algorithm’s matching is as follows. In each phase i, we will prove that as
many as m − O(1) edges of Ji and only δm + O(1) edges of Mi are picked by the
algorithm. Furthermore, in the i + 1th phase, since m − O(1) edges from Ji+1
are picked, all but O(1) edges of the edges picked from Ji are discarded. Thus,
the algorithm ends up with δm+O(1) edges from each Mi, and O(1) edges from
each Ji, except possibly Jn and Jn+1. The algorithm can end up with at most
m edges from Jn ∪Jn+1, since the size of the maximum matching in Jn ∪Jn+1 is
m. Thus, the weight of the algorithm’s matching is at most mxn plus a quantity
that can be neglected for large m and small δ.

Let Xi (resp. Yi) be the set of edges of Ji (resp. Mi) held by the algorithm at
the end of input. Then we have,

Lemma 5. For all i = 1 to n

E[|Yi|] ≤ δm + 1 − δ

δ

Lemma 6. For all i = 1 to n − 1

E[|Xi|] ≤ 1 − δ

δ

Lemma 7.
E[|Yn+1|] ≤ δm + 1 − δ

δ

The proof of the above lemmas can be found in Appendix C in [3].
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We are now ready to prove Theorem 2. The expected weight of the matching
held by A is

E[ALG] ≤
n∑

i=1
yiE[|Yi|] + ynE[|Yn+1|] +

n−1∑
i=1

xiE[|Xi|] + xnE[|Xn ∪ Xn+1|]

Using Lemmas 5, 7, 6, and the facts that yi ≤ xi+1 for all i and E[|Xn ∪Xn+1|] ≤
m (since Xn ∪ Xn+1 is a matching in Jn ∪ Jn+1), we have

E[ALG] ≤
(

δm + 1 − δ

δ

) (
n+1∑
i=2

xi + xn+1

)
+ 1 − δ

δ

n−1∑
i=1

xi + mxn

Since the algorithm is β-competitive, for all n, m, δ and ε we must have E[ALG]
≥ OPT /β. From the above and equation (2), we must have

(
δm + 1−δ

δ

) (∑n+1
i=2 xi + xn+1

)
≥ m

β

(∑n+1
i=2 xi + xn+1 − (n + 1)ε

)
+ 1−δ

δ

∑n−1
i=1 xi + mxn

Since the above holds for arbitrarily large m, ignoring the terms independent of
m (recall that xi’s are functions of ε and δ only), we have for all δ and ε,

δ

(
n+1∑
i=2

xi + xn+1

)
+ xn ≥ 1

β

(
n+1∑
i=2

xi + xn+1 − (n + 1)ε

)

that is,

xn ≥ 1
β

(
n+1∑
i=2

xi + xn+1 − (n + 1)ε

)
− δ

(
n+1∑
i=2

xi + xn+1

)

Taking limit inferior as δ → 0 in the above inequality, and noting that limit
inferior is super-additive we get for all ε,

lim infδ→0 xn ≥
1
β

(∑n+1
i=2 lim infδ→0 xi + lim infδ→0 xn+1 − (n + 1)ε

)

− lim supδ→0 δ
(∑n+1

i=2 xi + xn+1

)

Recall that xi’s are functions of ε and δ, and that from equation (1), 1/αi ≤
xi+1 ≤ γi, where the bounds are independent of δ. Thus, all the limits in the
above inequality exist. Moreover, limδ→0 δ

(∑n+1
i=2 xi + xn+1

)
exists and is 0, for

all ε. This implies lim supδ→0 δ
(∑n+1

i=2 xi + xn+1

)
= 0 and we get for all ε,

lim inf
δ→0

xn ≥ 1
β

(
n+1∑
i=2

lim inf
δ→0

xi + lim inf
δ→0

xn+1 − (n + 1)ε

)

Again, taking limit inferior as ε → 0, and using super-additivity,

lim inf
ε→0

lim inf
δ→0

xn ≥ 1
β

(
n+1∑
i=2

lim inf
ε→0

lim inf
δ→0

xi + lim inf
ε→0

lim inf
δ→0

xn+1

)
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Note that the above holds for all n. Finally, let xn = lim infε→0 lim infδ→0 xn+1.
Then we have the infinite sequence (xn)n∈N such that for all n, βxn ≥ ∑n+1

i=1 xi +
xn+1. Thus, by Lemma 3, we have β ≥ 3 + 2

√
2.

3.2 Lower Bound for θ Structured Graphs

Recall that an edge weighted graph is said to be θ-structured if the weights
of the edges are powers of θ. The following bound applies to any deterministic
algorithm for MWM on θ-structured graphs.

Theorem 3. No deterministic algorithm can have a competitive ratio less than
2 + 2

θ−2 for MWM on θ-structured graphs, for θ ≥ 4.

The proof of the above theorem can be found in Appendix D in [3].

4 Randomized Algorithm for Paths

When the input graph is restricted to be a collection of paths, then every new
edge that arrives connects two (possibly empty) paths. Our algorithm consists
of several cases, depending on the lengths of the two paths.

Algorithm 2. Randomized Algorithm for Paths
1: M = ∅. {M is the matching stored by the algorithm.}
2: for each new edge e do
3: Let L1 ≥ L2 be the lengths of the two (possibly empty) paths P1, P2 that e

connects.
4: If L1 > 0 (resp. L2 > 0), let e1 (resp. e2) be the edge on P1 (resp. P2) adjacent

to e.
5: if e is a disjoint edge {L1 = L2 = 0 } then
6: M = M ∪ {e}.
7: else if e is revealed on a disjoint edge e1 {L1 = 1, L2 = 0. e1 ∈ M} then
8: with probability 1

2 , M = M \ {e1} ∪ {e}.
9: else if e is revealed on a end point of path of length > 1 {L1 > 1, L2 = 0} then

10: if e1 /∈ M , M = M ∪ {e} .
11: else if e joins two disjoint edges {L1 = L2 = 1. e1, e2 ∈ M} then
12: with probability 1

2 , M = M \ {e1, e2} ∪ {e}.
13: else if e joins a path and a disjoint edge {L1 > 1, L2 = 1. e2 ∈ M} then
14: if e1 /∈ M , M = M \ {e2} ∪ {e}.
15: else if e joins two paths of length > 1{L1 > 1, L2 > 1} then
16: if e1 /∈ M and e2 /∈ M , M = M ∪ {e}.
17: end if
18: Output M .
19: end for

The following simple observations can be made by looking at the algorithm:
– All isolated edges belong to M with probability one.
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– The end vertex of any path of length > 1 is covered by M with probability 1
2 ,

and this is independent of the end vertex of any other path being covered.
– For a path of length 2, 3, or 4, each maximal matching is present in M with
probability 1

2 .

Theorem 4. The randomized algorithm for finding MCM on path graphs is
4
3 -competitive.

The proof of above theorem can be found in Appendix E in [3].
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