
Self-Adjusting Binary Search Trees:
What Makes Them Tick?

Parinya Chalermsook1, Mayank Goswami1, László Kozma2,
Kurt Mehlhorn1, and Thatchaphol Saranurak3,�

1 Max-Planck Institute for Informatics, Saarbrücken, 66123, Germany
2 Department of Computer Science, Saarland University, Saarbrücken, 66123, Germany

3 KTH Royal Institute of Technology, Stockholm, 11428, Sweden

Abstract. Splay trees (Sleator and Tarjan [11]) satisfy the so-called access
lemma. Many of the nice properties of splay trees follow from it. What makes
self-adjusting binary search trees (BSTs) satisfy the access lemma? After each
access, self-adjusting BSTs replace the search path by a tree on the same set
of nodes (the after-tree). We identify two simple combinatorial properties of the
search path and the after-tree that imply the access lemma. Our main result

(i) implies the access lemma for all minimally self-adjusting BST algorithms
for which it was known to hold: splay trees and their generalization to
the class of local algorithms (Subramanian [12], Georgakopoulos and Mc-
Clurkin [7]), as well as Greedy BST, introduced by Demaine et al. [5] and
shown to satisfy the access lemma by Fox [6],

(ii) implies that BST algorithms based on “strict” depth-halving satisfy the ac-
cess lemma, addressing an open question that was raised several times since
1985, and

(iii) yields an extremely short proof for the O(log n log log n) amortized access
cost for the path-balance heuristic (proposed by Sleator), matching the best
known bound (Balasubramanian and Raman [2]) to a lower-order factor.

One of our combinatorial properties is locality. We show that any BST-algorithm
that satisfies the access lemma via the sum-of-log (SOL) potential is necessarily
local. The other property states that the sum of the number of leaves of the after-
tree plus the number of side alternations in the search path must be at least a
constant fraction of the length of the search path. We show that a weak form of
this property is necessary for sequential access to be linear.

1 Introduction

The binary search tree (BST) is a fundamental data structure for the dictionary problem.
Self-adjusting BSTs rearrange the tree in response to data accesses, and are thus able
to adapt to the distribution of queries. We consider the class of minimally self-adjusting
BSTs: algorithms that rearrange only the search path during each access and make the
accessed element the root of the tree. Let s be the element accessed and let P be the
search path to s. Such an algorithm can be seen as a mapping from the search path P

� Work done while at Saarland University.

c© Springer-Verlag Berlin Heidelberg 2015
N. Bansal and I. Finocchi (Eds.): ESA 2015, LNCS 9294, pp. 300–312, 2015.
DOI: 10.1007/978-3-662-48350-3_26

Self-Adjusting Binary Search Trees 301

Fig. 1. The search path to s is shown on the left, and
the after-tree is shown on the right. The search path
consists of 12 nodes and contains four edges that con-
nect nodes on different sides of s (z = 4 in the lan-
guage of Theorem 1). The after-tree has five leaves.
The left-depth of a in the after-tree is three (the path
from the root to a goes left three times) and the right-
depth of y is two. The set {a, c, f, v, y} is subtree-
disjoint. The sets {d, e, g}, {b, f}, {x, y}, {w} are
monotone.

(called “before-path” in the sequel)
to a tree A with root s on the same
set of nodes (called “after-tree” in
the sequel). Observe that all subtrees
that are disjoint from the before-path
can be reattached to the after-tree in
a unique way governed by the or-
dering of the elements. In the BST
model, the cost of the access plus the
cost of rearranging is |P |, see Fig-
ure 1 for an example.

Let T be a binary search tree
on [n]. Let w : [n] → R>0 be
a positive weight function, and for
any set S ⊆ [n], let w(S) =∑

a∈S w(a). Sleator and Tarjan de-
fined the sum-of-log (SOL) potential
function ΦT =

∑
a∈[n] logw(Ta),

where Ta is the subtree of T rooted at a. We say that an algorithm A satisfies the
access lemma (via the SOL potential function) if for all T ′ that can be obtained as a
rearrangement done by algorithm A after some element s is accessed, we have

|P | ≤ ΦT − ΦT ′ +O(1 + log
W

w(s)
),

where P is the search path when accessing s in T and W = w(T). The access lemma is
known to hold for the splay trees of Sleator and Tarjan [11], for their generalizations to
local algorithms by Subramanian [12] and Georgakopoulos and McClurkin [7], as well
as for Greedy BST, an online algorithm introduced by Demaine et al. [5] and shown
to satisfy the access lemma by Fox [6]. For minimally self-adjusting BSTs, the access
lemma implies logarithmic amortized cost, static optimality, and the static finger and
working set properties.

Theorem 1. Let A be a minimally self-adjusting BST algorithm. If (i) the number of
leaves of the after-tree is Ω(|P | − z) where P is the search path and z is the number of
“side alternations1” in P and (ii) for any element t > s (resp. t < s), the right-depth
of t (left-depth of t) in the after-tree is O(1), then A satisfies the access lemma.

Note that the conditions in Theorem 1 are purely combinatorial conditions on the
before-paths and after-trees. In particular, the potential function is completely hidden.
The theorem directly implies the access lemma for all BST algorithms mentioned above
and some new ones.

Corollary 2. The following BST algorithms satisfy the access lemma: (i) Splay tree, as
well as its generalizations to local algorithms (ii) Greedy BST, and (iii) new heuristics
based on “strict” depth-halving.

1 z is the number of edges on the search path connecting nodes on different sides of s. The
right-depth of a node is the number of right-going edges on the path from the root to the node.

302 P. Chalermsook et al.

The third part of the corollary addresses an open question raised by several au-
thors [12,2,7] about whether some form of depth reduction is sufficient to guarantee
the access lemma. We show that a strict depth-halving suffices.

For the first part, we formulate a global view of splay trees. We find this new descrip-
tion intuitive and of independent interest. The proof of (i) is only a few lines.

We also prove a partial converse of Theorem 1.

Theorem 3 (Partial Converse). If a BST algorithm satisfies the access lemma via the
SOL-potential function, the after-trees must satisfy condition (ii) of Theorem 1.

We call a BST algorithm local if the transformation from before-path to after-tree can
be performed in a bottom-up traversal of the path with a buffer of constant size. Nodes
outside the buffer are already arranged into subtrees of the after-tree. We use Theorem 3
to show that BST-algorithms satisfying the access lemma (via the SOL-potential) are
necessarily local.

Theorem 4 (Characterization Theorem). If a minimally self-adjusting BST algorithm
satisfies the access lemma via the SOL-potential, then it is local.

The theorem clarifies, why the access lemma was shown only for local BST algo-
rithms.

In the following, we introduce our main technical tools: subtree-disjoint and mono-
tone sets in § 2, and zigzag sets in § 3. Bounding the potential change over these sets
leads to the proof of Theorem 1 in § 3. Corollary 2(i) is also proved in § 3. Corol-
lary 2(iii) is the subject of § 4. In § 5.1 we show that condition (ii) of Theorem 1 is nec-
essary (Theorem 3), and in § 5.2 we argue that a weaker form of condition (i) must also
be fulfilled by any reasonably efficient algorithm. We prove Theorem 4 in § 6. For lack
of space, in this version of the paper we omit some of the proofs (e.g. Corollary 2(ii)).
We refer the reader to the preprint version [3] for full details.

Notation: We use Ta or T (a) to denote the subtree of T rooted at a. We use the same
notation to denote the set of elements stored in the subtree. The set of elements stored
in a subtree is an interval of elements. If c and d are the smallest and largest elements
in T (a), we write T (a) = [c, d]. We also use open and half-open intervals to denote
subsets of [n], for example [3, 7) is equal to {3, 4, 5, 6}. We frequently write Φ instead
of ΦT and Φ′ instead of ΦT ′ .

2 Disjoint and Monotone Sets

Let A be any BST algorithm. Consider an access to s and let T and T ′ be the search
trees before and after the access. The main task in proving the access lemma is to relate
the potential difference ΦT − ΦT ′ to the length of the search path. For our arguments,
it is convenient to split the potential into parts that we can argue about separately. For a
subset X of the nodes, define a partial potential on X as ΦT (X) =

∑
a∈X logw(T (a)).

We start with the observation that the potential change is determined only by the
nodes on the search path and that we can argue about disjoint sets of nodes separately.

Self-Adjusting Binary Search Trees 303

Proposition 5. Let P be the search path to s. For a �∈ P , T (a) = T ′(a). Therefore,

ΦT − ΦT ′ = ΦT (P) − ΦT ′(P). Let X =
⋃̇k

i=1Xi where the sets Xi are pairwise

disjoint. Then ΦT (X)− ΦT ′(X) =
∑k

i=1(ΦT (Xi)− ΦT ′(Xi)).

We introduce three kinds of sets of nodes, namely subtree-disjoint, monotone, and
zigzag sets, and derive bounds for the potential change for each one of them. A subset
X of the search path is subtree-disjoint if T ′(a) ∩ T ′(a′) = ∅ for all pairs a �= a′ ∈
X ; remark that subtree-disjointness is defined w.r.t. the subtrees after the access. We
bound the change of partial potential for subtree-disjoint sets. The proof of the following
lemma was inspired by the proof of the access lemma for Greedy BST by Fox [6].

Lemma 6. Let X be a subtree-disjoint set of nodes. Then

|X | ≤ 2 + 8 · log W

w(T (s))
+ ΦT (X)− ΦT ′(X).

Proof: We consider the nodes smaller than s and greater or equal to s separately, i.e.
X = X<s∪̇X≥s. We show |X≥s| ≤ 1 + ΦT (X≥s) − ΦT ′ (X≥s) + 4 log W

w(T (s)) , and
the same holds for X<s. We only give the proof for X≥s.

Denote X≥s by Y = {a0, a1, . . . , aq} where s ≤ a0 < . . . < aq . Before the access,
s is a descendant of a0, a0 is a descendant of a1, and so on. Let T (a0) = [c, d]. Then
[s, a0] ⊆ [c, d] and d < a1. Let w0 = w(T (a0)). For j ≥ 0, define σj as the largest
index � such that w([c, a�]) ≤ 2jw0. Then σ0 = 0 since weights are positive and [c, d]
is a proper subset of [c, a1]. The set {σ0, . . .} contains at most �log(W/w0)� distinct
elements. It contains 0 and q.

Now we upper bound the number of i with σj ≤ i < σj+1. We call such an element
ai heavy if w(T ′(ai)) > 2j−1w0. There can be at most 3 heavy elements as otherwise
w([c, aj+1]) ≥

∑
σj≤k<σj+1

w(T ′(ak)) > 4 · 2j−1w0, a contradiction.
Next we count the number of light (= non-heavy) elements. For each such light

element ai, we have w(T ′(ai)) ≤ 2j−1w0. We also have w(T (ai+1)) ≥ w([c, ai+1]) >
w([c, aσj]) and thus w(T (ai+1)) > 2jw0 by the definition of σj . Thus the ratio ri =
w(T (ai+1))/w(T

′(ai)) ≥ 2 whenever ai is a light element. Moreover, for any i =
0, . . . , q − 1 (for which ai is not necessarily light), we have ri ≥ 1. Thus,

2number of light elements ≤
∏

0≤i≤q−1

ri =

⎛

⎝
∏

0≤i≤q

w(T (ai))

w(T ′(ai))

⎞

⎠ · w(T
′(aq))
w0

.

So the number of light elements is at most ΦT (Y)− ΦT ′(Y) + log(W/w0).
Putting the bounds together, we obtain, writing L for log(W/w0):

|Y | ≤ 1 + 3(�L� − 1) + ΦT (Y)− ΦT ′(Y) + L ≤ 1 + 4L+ ΦT (Y)− ΦT ′(Y).

�

304 P. Chalermsook et al.

Now we proceed to analyze our second type of subsets, that we call monotone sets.
A subset X of the search path is monotone if all elements in X are larger (smaller) than
s and have the same right-depth (left-depth) in the after-tree.

Lemma 7. Assume s < a < b and that a is a proper descendant of b in P . If {a, b} is
monotone, T ′(a) ⊆ T (b).

Proof: Clearly [s, b] ⊆ T (b). The smallest item in T ′(a) is larger than s, and, since a
and b have the same right-depth, b is larger than all elements in T ′(a). �

Lemma 8. Let X be a monotone set of nodes. Then

Φ(X)− Φ′(X) + log
W

w(s)
≥ 0.

Proof: We order the elements in X = {a1, . . . , aq} such that ai is a proper descendant
of ai+1 in the search path for all i. Then T ′(ai) ⊆ T (ai+1) by monotonicity, and hence

Φ(X)− Φ′(X) = log

∏
a∈X w(T (a))

∏
a∈X w(T ′(a))

= log
w(T (a1))

w(T ′(aq))
+

q−1∑

i=1

log
w(T (ai+1))

w(T ′(ai))
.

The second sum is nonnegative. Thus Φ(X)−Φ′(X) ≥ log w(T (a1))
w(T ′(aq))

≥ log w(s)
W . �

Theorem 9. Suppose that, for every access to an element s, we can partition the ele-
ments on the search path P into at most k subtree-disjoint sets D1 to Dk and at most �
monotone sets M1 to M�. Then

∑

i≤k

|Di| ≤ ΦT (S)− ΦT ′(S) + 2k + (8k + �) log
W

w(s)
.

The proof of Theorem 9 follows immediately from Lemma 6 and 8. We next give
some easy applications.

Path-Balance: The path-balance algorithm maps the search path P to a balanced BST
of depth c = �log2(1 + |P |)� rooted at s. Then

Lemma 10. |P | ≤ Φ(P)− Φ′(P) +O((1 + log |P |)(1 + log(W/w(s)))).

Proof: We decompose P into sets P0 to Pc, where Pk contains the nodes of depth k in
the after-tree. Each Pk is subtree-disjoint. An application of Theorem 9 completes the
proof. �

Theorem 11. Path-Balance has amortized cost at most O(log n log logn).

Proof: We choose the uniform weight function: w(a) = 1 for all a. Let ci be the cost of
the i-th access, 1 ≤ i ≤ m, and let C =

∑
1≤i≤m ci be the total cost of the accesses.

Note that
∏

i ci ≤ (C/m)m. The potential of a tree with n items is at most n logn.
Thus C ≤ n logn +

∑
1≤i≤m O((1 + log ci)(1 + logn)) = O((n + m) logn) +

O(m log n) · log(C/m) by Lemma 10. Assume C = K(n + m) logn for some K .
Then K = O(1) +O(1) · log(K logn) and hence K = O(log logn). �

Self-Adjusting Binary Search Trees 305

Greedy BST: The Greedy BST algorithm was introduced by Demaine et al. [5]. It is
an online version of the offline greedy algorithm proposed independently by Lucas and
Munro [9,8]. The definition of Greedy BST requires a geometric view of BSTs. Our
notions of subtree-disjoint and monotone sets translate naturally into geometry, and
this allows us to derive the following theorem.

Theorem 12. Greedy BST satisfies the (geometric) access lemma.

The geometric view of BSTs and the proof of Theorem 12 are omitted here. We
refer to the preprint version [3] for details. We remark that once the correspondences to
geometric view are defined, the proof of Theorem 12 is almost immediate.

3 Zigzag Sets

Let s be the accessed element and let a1, . . . , a|P |−1 be the reversed search path without
s. For each i, define the set Zi = {ai, ai+1} if ai and ai+1 lie on different sides of s,
and let Zi = ∅ otherwise. The zigzag set ZP is defined as ZP =

⋃
i Zi. In words, the

number of non-empty sets Zi is exactly the number of “side alternations” in the search
path, and the cardinality of ZP is the number of elements involved in such alternations.

Rotate to Root: We first analyze the rotate-to-root algorithm (Allen, Munro [1]), that
brings the accessed element s to the root and arranges the elements smaller (larger) than
s so the ancestor relationship is maintained, see Figure 2 for an illustration.

Lemma 13. |Z| ≤ Φ(ZP)− Φ′(ZP) +O(1 + log W
w(T (s))).

Proof: Because s is made the root and ancestor relationships are preserved otherwise,
T ′(a) = T (a) ∩ (−∞, s) if a < s and T ′(a) = T (a) ∩ (s,∞) if a > s. We first deal
with a single side alternation.

Claim. 2 ≤ Φ(Zi)− Φ′(Zi) + log w(T (ai+1))
w(T (ai))

.

Proof: This proof is essentially the proof of the zig-zag step for splay trees. We give
the proof for the case where ai > s and ai+1 < s; the other case is symmetric. Let
a′ be the left ancestor of ai+1 in P and let a′′ be the right ancestor of ai in P . If
these elements do not exist, they are −∞ and +∞, respectively. Let W1 = w((a′, 0)),
W2 = w((0, a′′)), and W ′ = w((ai+1, 0)). In T , we havew(T (ai)) = W ′+w(s)+W2

and w(T (ai+1)) = W1 + w(s) + W2, and in T ′, we have w(T ′(ai)) = W2 and
w(T ′(ai+1)) = W1.

Thus Φ(Zi) − Φ′(Zi) + log W1+w(s)+W2

W ′+w(s)+W2
≥ log(W1 + w(s) + W2) − logW1 +

log(W2 + w(s) +W ′) − logW2 + log W1+w(s)+W2

W ′+w(s)+W2
≥ 2 log(W1 +W2)− logW1 −

logW2 ≥ 2, since (W1 +W2)
2 ≥ 4W1W2 for all positive numbers W1 and W2. �

Let Zeven (Zodd) be the union of the Zi with even (odd) indices. One of the two sets
has cardinality at least |ZP | /2. Assume that it is the former; the other case is symmetric.
We sum the statement of the claim over all i in Zeven and obtain

∑

i∈Zeven

(

Φ(Zi)− Φ′(Zi) + log
w(T (ai+1))

w(T (ai))

)

≥ 2 |Zeven| ≥ |ZP | .

306 P. Chalermsook et al.

The elements in ZP \Zeven form two monotone sets and hence Φ(ZP \Zeven)−Φ′(ZP \
Zeven) + 2 log(W/w(s)) ≥ 0. This completes the proof. �

The following theorem combines all three tools we have introduced: subtree-disjoint,
monotone, and zigzag sets.

Theorem 14. Suppose that, for every access we can partition P \ s into at most k
subtree-disjoint sets D1 to Dk and at most � monotone sets M1 to M�. Then

∑

i≤k

|Di|+ |ZP | ≤ Φ(P)− Φ′(P) +O((k + �)(1 + log
W

w(s)
)).

Proof: We view the transformation as a two-step process, i.e., we first rotate s to the
root and then transform the left and right subtrees of s. Let Φ′′ be the potential of the
intermediate tree. By Lemma 13, |ZP | ≤ Φ(P) − Φ′′(P) + O(1 + log W

w(T (s))). By

Theorem 9,
∑

i≤k |Di| ≤ Φ′′(P)− Φ′(P) +O((k + �)(1 + log W
w(T (s)))). �

We next derive an easy to apply corollary from this theorem. For the statement, we
need the following proposition that follows directly from the definition of monotone
set.

Proposition 15. Let S be a subset of the search path consisting only of elements larger
than s. Then S can be decomposed into � monotone sets if and only if the elements of S
have only � different right-depths in the after-tree.

Theorem 16 (Restatement of Theorem 1). Suppose the BST algorithm A rearranges
a search path P that contains z side alternations, into a tree A such that (i) s, the
element accessed, is the root of A, (ii) the number of leaves of A is Ω(|P | − z), (iii)
for every element x larger (smaller) than s, the right-depth (left-depth) of x in A is
bounded by a constant. Then A satisfies the access lemma.

Proof: Let B be the set of leaves of T and let b = |B|. By assumption (ii), there is
a positive constant c such that b ≥ (|T | − z)/c. Then |T | ≤ cb + z. We decompose
P \ s into B and � monotone sets. By assumption (iii), � = O(1). An application of
Theorem 14 with k = 1 and � = O(1) completes the proof. �

Fig. 2. A global view of splay trees. The transformation from the
left to the middle illustrates rotate-to-root. The transformation from
the left to the right illustrates splay trees.

Splay: Splay extends
rotate-to-root: Let s =
v0, v1, . . . vk be the re-
versed search path. We
view splaying as a two
step process, see Fig-
ure 2. We first make s
the root and split the
search path into two
paths, the path of el-
ements smaller than s
and the path of ele-
ments larger than s. If

v2i+1 and v2i+2 are on the same side of s, we rotate them, i.e., we remove v2i+2 from
the path and make it a child of v2i+1.

Self-Adjusting Binary Search Trees 307

Proposition 17. The above description of splay is equivalent to the Sleator-Tarjan
description.

Theorem 18. Splay satisfies the access lemma.

Proof: There are |P | /2 − 1 odd-even pairs. For each pair, if there is no side change,
then splay creates a new leaf in the after-tree. Thus

of leaves ≥ |P | /2− 1− # of side changes.

Since right-depth (left-depth) of elements in the after-tree of splay is at most 2, an
application of Theorem 16 finishes the proof. �

4 New Heuristics: Depth Reduction

Already Sleator and Tarjan [11] formulated the belief that depth-halving is the property
that makes splaying efficient, i.e. the fact that every element on the access path reduces
its distance to the root by a factor of approximately two. Later authors [12,2,7] raised the
question, whether a suitable global depth-reduction property is sufficient to guarantee
the access lemma. Based on Theorem 16, we show that a strict form of depth-halving
suffices to guarantee the access lemma.

Let x and y be two arbitrary nodes on the search path. If y is an ancestor of x in the
search path, but not in the after-tree, then we say that x has lost the ancestor y, and y
has lost the descendant x. Similarly we define gaining an ancestor or a descendant. We
stress that only nodes on the search path (resp. the after-tree) are counted as descen-
dants, and not the nodes of the pendent trees. Let d(x) denote the depth (number of
ancestors) of x in the search path. We give a sufficient condition for a good heuristic,
stated below. The proof is omitted.

Theorem 19. Let A be a minimally self-adjusting BST algorithm that satisfies the fol-
lowing conditions: (i) Every node x on the search path loses at least (12 + ε) · d(x)− c
ancestors, for fixed constants ε > 0, c > 0, and (ii) every node on the search path, ex-
cept the accessed element, gains at most d new descendants, for a fixed constant d > 0.
Then A satisfies the access lemma.

We remark that in general, splay trees do not satisfy condition (i) of Theorem 19.
One may ask how tight are the conditions of Theorem 19. If we relax the constant in
condition (i) from (12 + ε) to 1

2 , the conditions of Theorem 16 are no longer implied.
There exist rearrangements in which every node loses a 1

2 -fraction of its ancestors, gains
at most two ancestors or descendants, yet both the number of side alternations and the
number of leaves created areO(

√|P |), whereP is the before-path (details can be found
in [3]). If we further relax the ratio to (12 − ε), we can construct an example where the
number of alternations and the number of leaves created are only O(log |P |/ε).

Allowing more gained descendants and limiting instead the number of gained ances-
tors is also beyond the strength of Theorem 16. It is possible to construct an example [3]
in which every node loses an (1− o(1))-fraction of ancestors, yet the number of leaves
created is only O(

√|P |) (while having no alternations in the before-path).

308 P. Chalermsook et al.

Finally, we observe that depth-reduction alone is likely not sufficient: one can re-
structure the access path in such a way that every node reduces its depth by a constant
factor, yet the resulting after-tree has an anti-monotone path of linear size [3]. Based on
Theorem 20, this means that if such a restructuring were to satisfy the access lemma in
its full generality, the SOL potential would not be able to show it.

5 Necessary Conditions

5.1 Necessity of O(1) Monotone Sets

In this section we show that condition (ii) of Theorem 1 is necessary for any minimally
self-adjusting BST algorithm that satisfies the access lemma via the SOL potential
function.

Theorem 20. Consider the transformations from before-path P to after-tree A by al-
gorithm A. If A \ s cannot be decomposed into constantly many monotone sets, then A
does not satisfy the access lemma with the SOL potential.

Proof: We may assume that the right subtree of A cannot be decomposed into constantly
many monotone sets. Let x > s be a node of maximum right depth in A. By Lemma 15,
we may assume that the right depth is k = ω(1). Let ai1 , . . . , aik be the elements on
the path to x where the right child pointer is used. All these nodes are descendants of x
in the before-path P .

We now define a weight assignment to the elements of P and the pendent trees for
which the access lemma does not hold with the SOL potential. We assign weight zero
to all pendent trees, weight one to all proper descendants of x in P and weight K to all
ancestors of x in P . Here K is a big number. The total weight W then lies between K
and |P |K .

We next bound the potential change. Let r(ai) = w(T ′(ai))/w(T (ai)) be the ratio
of the weight of the subtree rooted at ai in the after-tree and in the before-path. For any
element aij at which a right turn occurs, we have w(T (aij)) ≤ |P | and w(T ′(aij)) ≥
K . So r(aij) ≥ K/|P |. Consider now any other ai. If it is an ancestor of x in the
before-path, then w(T (ai)) ≤ W and w(T ′(ai)) ≥ K . If it is a descendant of x, then
w(T (ai)) ≤ |P | and w(T ′(ai)) ≥ 1. Thus r(ai) ≥ 1/ |P | for every ai. We conclude

Φ′(T)− Φ(T) ≥ k · log K

|P | − |P | log |P |.
If A satisfies the access lemma with the SOL potential function, then we must have

Φ′(T)− Φ(T) ≤ O(log W
w(s) − |P |) = O(log(K |P |)). However, if K is large enough

and k = ω(1), then k · lg K
|P | − |P | lg |P | � O(log(K |P |)). �

5.2 Necessity of Many Leaves

In this section we study condition (i) of Theorem 1. We show that some such condition
is necessary for an efficient BST algorithm: if a local algorithm consistently creates
only few leaves, it cannot satisfy the sequential access theorem, a natural efficiency
condition known to hold for several BST algorithms [13,6].

Self-Adjusting Binary Search Trees 309

Definition 21. A self-adjusting BST algorithmA satisfies the sequential access theorem
if starting from an arbitrary initial tree T , it can access the elements of T in increasing
order with total cost O(|T |).

Theorem 22. If for all after-trees A created by algorithm A executed on T , it holds
that (i) A can be decomposed into O(1) monotone sets, and (ii) the number of leaves of
A is at most |T |o(1), then A does not satisfy the sequential access theorem.

The rest of the section is devoted to the proof of Theorem 22.
Let R be a BST over [n]. We call a maximal left-leaning path of R a wing of R.

More precisely, a wing of R is a set {x1, . . . , xk} ⊆ [n], with x1 < · · · < xk, and such
that x1 has no left child, xk is either the root of R, or the right child of its parent, and
xi is the left child of xi+1 for all 1 ≤ i < k. A wing might consist of a single element.
Observe that the wings of R partition [n] in a unique way, and we call the set of wings
of R the wing partition of R, denoted as wp(R). We define a potential function φ over
a BST R as follows: φ(R) =

∑
w∈wp(R) |w| log(|w|).

Let T0 be a left-leaning path over [n] (i.e. n is the root and 1 is the leaf). Consider
a minimally self-adjusting BST algorithm A, accessing elements of [n] in sequential
order, starting with T0 as initial tree. Let Ti denote the BST after accessing element i.
Then Ti has i as the root, and the elements yet to be accessed (i.e. [i + 1, n]) form the
right subtree of the root, denoted Ri. To avoid treating T0 separately, we augment it
with a “virtual root” 0. This node plays no role in subsequent accesses, and it only adds
a constant one to the overall access cost.

Using the previously defined potential function, we denote φi = φ(Ri). We make
the following easy observations: φ0 = n logn, and φn = 0.

Next, we look at the change in potential due to the restructuring after accessing
element i. Let Pi = (x1, x2, . . . , xni) be the access path when accessing i in Ti−1, and
let ni denote its length, i.e. x1 = i−1, and xni = i. Observe that the set P ′

i = Pi\{x1},
is a wing of Ti−1.

Let us denote the after-tree resulting from rearranging the path Pi as Ai. Observe that
the root of Ai is i, and the left child of i in Ai is i− 1. We denote the tree Ai \ {i− 1}
as A′

i, and the tree A′
i \ {i}, i.e. the right subtree of i in Ai, as A′′

i .
The crucial observation of the proof is that for an arbitrary wing w ∈ wp(Ti), the

following holds: (i) either w was not changed when accessing i, i.e. w ∈ wp(Ti−1),
or (ii) w contains a portion of P ′

i , possibly concatenated with an earlier wing, i.e. there
exists some w′ ∈ wp(A′

i), such that w′ ⊆ w. In this case, we denote ext(w′) the
extension of w′ to a wing of wp(Ti), i.e. ext(w′) = w \ w′, and either ext(w′) = ∅, or
ext(w′) ∈ wp(Ti−1).

Now we bound the change in potential φi − φi−1. Wings that did not change during
the restructuring (i.e. those of type (i)) do not contribute to the potential difference. Also
note, that i contributes to φi−1, but not to φi. Thus, we have for 1 ≤ i ≤ n, assuming
that 0 log 0 = 0, and denoting f(x) = x log(x):

φi − φi−1 =
∑

w′∈wp(A′′
i)

(
f(|w′|+ |ext(w′)|)− f(|ext(w′)|)) − f(ni − 1).

310 P. Chalermsook et al.

By simple manipulation, for 1 ≤ i ≤ n:

φi − φi−1 ≥
∑

w′∈wp(A′′
i)

f(|w′|)− f(ni − 1).

By convexity of f , and observing that |A′′
i | = ni − 2, we have

φi−φi−1 ≥ |wp(A′′
i)|·f

(
ni − 2

|wp(A′′
i)|

)

−f(ni−1) = (ni−2)·log ni − 2

|wp(A′′
i)|

−f(ni−1).

Lemma 23. If R has right-depth m, and k leaves, then |wp(R)| ≤ mk.

Proof: For a wing w, let �(w) be any leaf in the subtree rooted at the node of maximum
depth in the wing. Clearly, for any leaf � there can be at most m wings w with �(w) = �.
The claim follows. �

Thus, |wp(A′′
i)| ≤ no(1). Summing the potential differences over i, we get φn−φ0 =

−n logn ≥ −∑n
i=1 ni log (n

o(1)) − O(n). Denoting the total cost of algorithm A on
the sequential access sequence as C, we obtain C =

∑n
i=1 ni = n · ω(1).

This shows that A does not satisfy the sequential access theorem.

6 Small Monotonicity-Depth and Local Algorithms

In this section we define a class of minimally self-adjusting BST algorithms that we
call local. We show that an algorithm is local exactly if all after-trees it creates can
be decomposed into constantly many monotone sets. Our definition of local algorithm
is inspired by similar definitions by Subramanian [12] and Georgakopoulos and Mc-
Clurkin [7]. Our locality criterion subsumes both previous definitions, apart from a
technical condition not needed in these works: we require the transformation to bring
the accessed element to the root. We require this (rather natural) condition in order to
simplify the proofs. We mention that it can be removed at considerable expense in tech-
nicalities. Apart from this point, our definition of locality is more general: while existing
local algorithms are oblivious to the global structure of the after-tree, our definition of
local algorithm allows external global advice, as well as non-determinism.

Consider the before-path P and the after-tree A. A decomposition of the transforma-

tion P → A is a sequence of BSTs (P = Q0
P0−→ Q1

P1−→ . . .
Pk−1−−−→ Qk = A), such

that for all i, the tree Qi+1 can be obtained from the tree Qi, by rearranging a path Pi

contained in Qi into a tree Ti, and linking all the attached subtrees in the unique way
given by the element ordering. Clearly, every transformation has such a decomposition,
since a sequence of rotations fulfills the requirement. The decomposition is local with
window-size w, if it satisfies the following conditions:

(i) (start) s ∈ P0, where s is the accessed element in P ,
(ii) (progress) Pi+1 \ Pi �= ∅, for all i,

(iii) (overlap) Pi+1 ∩ Pi �= ∅, for all i,
(iv) (no-revisit) (Pi − Pi+1) ∩ Pj = ∅, for all j > i+ 1,
(v) (window-size) |Pi| ≤ w, for some constant w > 0.

Self-Adjusting Binary Search Trees 311

We call a minimally self-adjusting algorithm A local, if all the before-path → after-
tree transformations performed by A have a local decomposition with constant-size
window. The following theorem shows that local algorithms are exactly those that re-
spect condition (ii) of Theorem 1 (proof omitted).

Theorem 24. Let A be a minimally self-adjusting algorithm. (i) If A is local with win-
dow size w, then all the after-trees created by A can be partitioned into 2w monotone
sets. (ii) If all the after-trees created by A can be partitioned into w monotone sets, then
A is local with window-size w.

Due to the relationship between monotone sets and locality of algorithms, we have

Theorem 25. If a minimally self-adjusting BST algorithm A satisfies the access lemma
with the SOL potential, then A can be made local.

Open Questions: Does the family of algorithms described by Theorem 16 satisfy other
efficiency-properties not captured by the access lemma? Properties studied in the liter-
ature include sequential access [13], deque [13,10], dynamic finger [4], or the elusive
dynamic optimality [11].

One may ask whether locality is a necessary feature of all efficient BST algorithms.
We have shown that some natural heuristics (e.g. path-balance or depth reduction) do
not share this property, and thus do not satisfy the access lemma with the (rather nat-
ural) sum-of-logs potential function. It remains an open question, whether such “truly
nonlocal” heuristics are necessarily bad, or if a different potential function could show
that they are good.

Acknowledgement. The authors thank Raimund Seidel for suggesting the study of
depth-reducing heuristics and for useful insights about BSTs and splay trees.

References

1. Allen, B., Munro, J.I.: Self-organizing binary search trees. J. ACM 25(4), 526–535 (1978)
2. Balasubramanian, R., Venkatesh, R.: Path balance heuristic for self-adjusting binary search

trees. In: Proceedings of FSTTCS, pp. 338–348 (1995)
3. Chalermsook, P., Goswami, M., Kozma, L., Mehlhorn, K., Saranurak, T.: Self-adjusting bi-

nary search trees: What makes them tick? CoRR, abs/1503.03105 (2015)
4. Cole, R.: On the dynamic finger conjecture for splay trees. part ii: The proof. SIAM Journal

on Computing 30(1), 44–85 (2000)
5. Demaine, E.D., Harmon, D., Iacono, J., Kane, D.M., Patrascu, M.: The geometry of binary

search trees. In: SODA 2009, pp. 496–505 (2009)
6. Fox, K.: Upper Bounds for Maximally Greedy Binary Search Trees. In: Dehne, F., Iacono, J.,

Sack, J.-R. (eds.) WADS 2011. LNCS, vol. 6844, pp. 411–422. Springer, Heidelberg (2011)
7. Georgakopoulos, G.F., McClurkin, D.J.: Generalized template splay: A basic theory and cal-

culus. Comput. J. 47(1), 10–19 (2004)
8. Lucas, J.M.: Canonical forms for competitive binary search tree algorithms. Tech. Rep. DCS-

TR-250, Rutgers University (1988)
9. Munro, J.I.: On the competitiveness of linear search. In: Paterson, M. (ed.) ESA 2000. LNCS,

vol. 1879, pp. 338–345. Springer, Heidelberg (2000)

312 P. Chalermsook et al.

10. Pettie, S.: Splay trees, Davenport-Schinzel sequences, and the deque conjecture. In: SODA
2008, pp. 1457–1467 (2008)

11. Sleator, D.D., Tarjan, R.E.: Self-adjusting binary search trees. J. ACM 32(3), 652–686 (1985)
12. Subramanian, A.: An explanation of splaying. J. Algorithms 20(3), 512–525 (1996)
13. Tarjan, R.E.: Sequential access in splay trees takes linear time. Combinatorica 5(4), 367–378

(1985)

	Self-Adjusting Binary Search Trees: What Makes Them Tick?
	1 Introduction
	2 Disjoint and Monotone Sets
	3 Zigzag Sets
	4 New Heuristics: Depth Reduction
	5 Necessary Conditions
	5.1 Necessity of O(1) Monotone Sets
	5.2 Necessity of Many Leaves

	6 Small Monotonicity-Depth and Local Algorithms

