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Abstract. This paper studies output-sensitive algorithms for enumer-
ation problems in multiobjective combinatorial optimization (MOCO).
We develop two methods for enumerating the extreme points of the
Pareto-frontier of MOCO problems. The first method is based on a dual
variant of Benson’s algorithm, which has been originally proposed for
multiobjective linear optimization problems. We prove that the algorithm
runs in output polynomial time for every fixed number of objectives if
the weighted-sum scalarization can be solved in polynomial time. Hence,
we propose the first algorithm which solves this general problem in out-
put polynomial time. We also propose a new lexicographic version of the
dual Benson algorithm that runs in incremental polynomial time in the
case that the lexicographic optimization variant can be solved in polyno-
mial time. As a consequence, the extreme points of the Pareto-frontier of
the multiobjective spanning tree problem as well as the multiobjective
global min-cut problem can be computed in polynomial time for a fixed
number of objectives. Our computational experiments show the practi-
cability of our improved algorithm: We present the first computational
study for computing the extreme points of the multiobjective version
of the assignment problem with five and more objectives. We also em-
pirically investigate the running time behavior of our new lexicographic
version compared to the original algorithm.

1 Introduction

In practical optimization, we often deal with problems having more than one
objective. Unlike in single objective optimization, there usually does not exist a
single optimal value and we usually have many solutions which are incomparable.
If we agree that we will always prefer a solution over all solutions that are worse
in all objectives then we can use this relation as a partial order on the solutions,
called the Pareto-dominance. More precisely, we say a vector a ∈ R

d dominates
a vector b ∈ R

d or a � b if a ≤ b (componentwise) and a �= b. Analogously, for
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two solutions x, y ∈ X and an objective function c : X → R
d we say x � y if

c(x) � c(y). The set of all minimal solutions with respect to this partial order is
called the set of efficient or Pareto-optimal solutions; the corresponding image
under the objective function is called the set of nondominated points or Pareto-
frontier.

In this spirit, we can define multiobjective combinatorial optimization (MOCO)
problems consisting of a base set A, a set of feasible solutions S ⊆ 2A and
an objective function c : A → Q

d. The cost of a solution x ∈ S thus is
c(x) :=

∑
a∈x c(a). The goal is to find for all points y of the Pareto-frontier

one solution x such that c(x) = y. This notion is motivated by the multicriteria
decision making community: Two solutions which are mapped to the same image
by the objective function are supposed to be essentially the same object.

One serious computational issue of many MOCO problems is that the size
of the Pareto-frontier can be large in the worst case, i.e., exponential in the in-
put size. Then again, the output being exponential is also true for many other
enumeration problems and has been addressed by the theory of output-sensitive
complexity. Johnson, Papadimitriou and Yannakakis [13] provide a summary of
these complexity notions: An algorithm runs in output polynomial time (origi-
nally referred to as polynomial total time) if its running time can be bounded by
a polynomial in the input and the output size. Besides the total running time, a
usually more interesting property is the delay of an enumeration algorithm. Let
N be the number of elements to output. We say the 0-th delay is the running
time prior to the first output of a solution, the k-th delay is the running time
between the output of the k-th and (k + 1)-th solution, and the N -th delay is
the running time after the last output until the termination of the algorithm. An
enumeration algorithm runs in polynomial (time) delay if all delays are bounded
by a polynomial in the input size. To relax this notion a bit, an algorithm runs in
incremental polynomial time, if the k-th delay is bounded by a polynomial in the
input and k. One purpose of this paper is to encourage a line of research which
applies these complexity notions to multiobjective optimization problems and—
surprisingly enough—there is only one other paper which considers this [14].

Moreover, in a recent work by Röglin and Brunsch [5], it is shown that in a
smoothed analysis setting, the expected size of the Pareto-frontier of a MOCO
problem of n variables and d objectives is O(n2dΦd) for every perturbation pa-
rameter Φ ≥ 1. This result gives reason to believe that pursuing the goal to
find the entire Pareto-frontier might still be practical as long as the number of
objectives is not too large.

A very promising approach to solve MOCO problems is the two-phase method
(cf. e.g., [7]). In this method, the Pareto-frontier is partitioned into two sets:
extreme nondominated and nonextreme nondominated points. (Exact definitions
of these sets will be given later.) In a first phase, we compute the extreme
nondominated points. In the second phase we can exploit this knowledge to
find the remaining nondominated points. The two-phase method is motivated
by the observation that it is often NP-hard even to decide if there exists a
solution which dominates a given point y ∈ Q

d. But at least in the biobjective
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case, if the lexicographic variant can be solved in polynomial time, then we can
enumerate the set of extreme nondominated points in incremental polynomial
time by using standard methods like the dichotomic approach [3]. Although the
problem of finding the extreme nondominated points of a MOCO problem seems
to be solved in the biobjective case, it is an open problem to enumerate these
points and corresponding solutions for problems with an arbitrary number of
objectives in reasonable time. Ehrgott and Gandibleux address this problem in
their survey paper from 2005 [7] as a “first step to an application of the two phases
method in three or more criteria MOCO”. The main concern of this paper will be
how to compute the set of extreme nondominated points in output polynomial
running time in theory and practice.

For d = 2, finding the extreme points of the Pareto-frontier is equivalent to the
combinatorial parametric optimization problem. See, e.g., [1] for a parametric
version of the minimum spanning tree problem. Thus, the problem we consider
here is a natural generalization of this very well known class of problems.

Previous Work. There exist only a few other methods to enumerate the extreme
nondominated points for MOCO problems with more than two objectives. Przy-
bylski, Gandibleux and Ehrgott [17] propose a method to find these points for
general multiobjective integer linear programming problems for which the ideal
point exists. The algorithm is theoretically capable of computing the extreme
nondominated points for an arbitrary number of objectives and the authors pro-
vide deep improvements in the case of three objectives. They also conducted a
set of experiments on three-objective assignment and knapsack problems show-
ing a very decent running time. Özpeynirci and Köksalan [15] suggest a method
to compute the set of extreme nondominated points based on the dichotomic ap-
proach which is usually utilized in the biobjective case. The authors also present
experiments on several MOCO problems with three and four objectives. Both of
the above works do not provide running time guarantees for their algorithms.

In [14], the authors propose an algorithm that enumerates all efficient span-
ning trees which are a solution to a weighted-sum of the objectives with polyno-
mial delay. The algorithm bases on the reverse search by Avis and Fukuda [4] to
output the efficient vertices of the spanning tree polytope. A note is here in order,
because the algorithm follows a different model where all efficient solutions are
sought. It is possible that there exist many spanning trees which are mapped to
the same point in the objective space. Consider a complete graph with n vertices
where all edges are mapped to the 1-vector in R

2 by the objective function. Then
each of the nn−2 spanning trees is efficient, but the Pareto-frontier consists of
only one point.

Another branch of research which tackles the problem of an exponential sized
Pareto-frontier of MOCO problems was raised by a paper by Papadimitriou and
Yannakakis [16]. In this work and in many papers that followed, an ε-Pareto set,
i.e., a subset S of the solution set such that for each point y of the Pareto-frontier
there is one solution x ∈ S such that c(x) ≤ (1 + ε)y, is computed. In [16], it is
also proven that for each ε > 0 and fixed number of objectives there exist such
an ε-Pareto set of size polynomial in the input size and 1

ε .
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Our Contributions. A well known method to find extreme nondominated points
(or more general supported points, see below) in the first phase of the two-
phase method for a MOCO problem (A,S, c) is to optimize the weighted-sum
scalarization: (P1(�)) : min{�T c(x) | x ∈ S} for some � ∈ Q

d, � > 0. On one hand,
this problem is as easy as the single objective version of the problem, as long as
the encoding lengths of the components of � are not too large. (Considering that
� is not part of the original input.) On the other hand, we do not easily know
how these � need to be chosen to find all obtainable points of the Pareto-frontier.

The set of solutions which can be obtained by this weighted-sum method
are called supported (efficient) solutions. A point of the Pareto-frontier which
corresponds to a supported solution is called a supported (nondominated) point.
A geometric view on the supported part of the Pareto-frontier can be acquired
by looking at the convex hull of Y := c(S). A point y of the Pareto-frontier is
thus supported iff y is a point on the boundary of convY. Moreover, we call a
supported point y an extreme (nondominated) point, if y is an extreme point of
convY. The set of extreme nondominated points will be denoted as YX . Our
concern in this paper will thus be to enumerate the set YX .

In general, we can compute the extreme nondominated points of convY
by enumerating the extreme nondominated points of the multiobjective linear
program

(MOLP) : min{c(x) | x ∈ conv(χ(S))}, (1)

where χ(S) denotes the characteristic vectors of the solutions of our MOCO
problem for a fixed ordering of the variables. In Sec. 3, we will conduct a running
time analysis of a recently proposed algorithm for MOLP. We will prove that
it can efficiently find the extreme points of the Pareto-frontier of an MOLP if
the ideal point exists. Luckily, in the case in which we derive an MOLP from a
MOCO problem, the ideal point exists iff the problem has a solution. But indeed,
it might be hard to construct the MOLP, the number of facets of the feasible
set might be large or it might have a large encoding length. We will also show
that it suffices to have a polynomial time algorithm for problem (P1(�)) without
constructing the MOLP explicitly.

Theorem 1. For every MOCO problem P with a fixed number of objectives, the
set of extreme nondominated points of P can be enumerated in output polynomial
time if we can solve the weighted-sum scalarization of P in polynomial time.

Subsequently in Sec. 4, we will also suggest an improvement of this algorithm to
get a better running time at the expense of needing to solve the lexicographic
version of the MOCO problem (lex-P1(�)) : lexmin{(�T c(x), c1(x), . . . , cd(x))
| x ∈ S}:
Theorem 2. For every MOCO problem P with a fixed number of objectives,
the set of extreme nondominated points of P can be enumerated in incremental
polynomial time if we can solve the lexicographic version of P in polynomial
time.
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For many classical problems in combinatorial optimization this is not a restric-
tion. For example in the case of shortest path, minimum spanning tree or the
assignment problems the lexicographic variant can be solved in polynomial time.
In general, if we have a compact LP formulation for a weighted-sum scalariza-
tion, then we can solve the lexicographic variant in polynomial time. This is a
direct consequence of Lemma 6 in Sec. 4.

If we apply Theorem 1 to the multiobjective spanning tree problem, we imme-
diately obtain an algorithm with a polynomial upper bound on the running time
with respect only to the input size to find the extreme nondominated points
for each fixed number of objectives. This is well known in the biobjective (or
parametric) case, but it is a new result for the general case. It bases on the well
known fact that for this problem there exists at most O(m2(d−1)) extreme non-
dominated points [10]. We obtain a similar result for the multiobjective global
min-cut problem, as it has been shown in [2] that the parametric complexity is
polynomial in the input size for any fixed number of objectives. To show that
these results are not mere theoretical, we implemented the algorithm and a lex-
icographic oracle for the multiobjective version of the assignment (or minimum
weight bipartite matching) problem. The results of this study and a comparison
to the method from [15] are presented in Sec. 5. They show that our algorithm
is capable of finding the extreme nondominated points of moderately sized in-
stances with up to six objectives. To the best of our knowledge this is the first
computational study for five and six objectives.

Moreover, we compare the lexicographic variant of the algorithm to the orig-
inal algorithm. Since in theory we are able to improve the running time bound,
we investigate if this is also true in practice.

2 Theoretical Preliminaries

By [n] we denote the set {1, . . . , n} and ||x||1 will be the 1-norm of x ∈ R
d,

i.e., ||x||1 :=
∑d

i=1 |xi|. The nondominated subset of a set of points M ⊆ R
d is

minM := {x ∈ M | x is nondominated in M}. The Minkowski sum (product) of
two sets A,B ⊆ R

d is the set A + B := {a+ b | a ∈ A, b ∈ B} (A · B := {a · b |
a ∈ A, b ∈ B}).

The multiobjective linear programming problem (MOLP) is the problem to
find for matrices A ∈ Q

m×n, C ∈ Q
d×n and a vector b ∈ Q

m an extreme point
representation of the Pareto-frontier min{Cx | Ax ≥ b}. To work on MOLP, it
is convenient to define the feasible set P := {x ∈ R

n | Ax ≥ b} and the upper
image P := C ·P +R

d
≥, where R

d
≥ := {x ∈ R

d | x ≥ 0}. It is well known that the
extreme points of P are exactly the extreme points of the Pareto-frontier of the
corresponding MOLP (cf. [8]). We will write vertM to denote the set of extreme
points of a polyhedral set M and thus, our concern will be to enumerate vertP ,
i.e., the extreme points of P .

We define the normalized weighting vectors to be the set W 0
d := {� ∈ R

d
≥ |

||�||1 = 1}. The weighted-sum linear program w.r.t. � ∈ W 0
d of a given MOLP

is the parametric linear program P1(�) : min{�TCx | Ax ≥ b}. The ideal point
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of an MOLP is then defined as being the point yI := (minP1(ei))i∈[d], where ei
denotes the i-th unit vector in R

d. Note that an ideal point does not exist for
every MOLP.

3 Dual Variant of Benson’s Algorithm

The dual variant of Benson’s algorithm solves MOLP in the sense that it com-
putes the extreme points of a polyhedron which is a geometric dual polyhedron
to P . The algorithm in its original version requires the existence of an ideal
point, which we will assume in the following and is always the case in MOCO
problems. It was only recently proposed in [8] and got its background theory
from [12]. In the next section, we will consider the algorithm as it was given
in [8, 11]. We will first give some background theory about the geometric dual
polyhedron the algorithm computes and subsequently, describe the algorithm in
two levels of detail. The section concludes with its running time analysis in the
sense of output-sensitive complexity.

The Geometric Dual Polyhedron. In [12], Heyde and Löhne define a dual polyhe-
dron, or lower image, D to the upper image P of an MOLP which we will define
now.

Since our weight vectors � of the weighted-sum problem are always normalized,
i.e., ||�||1 = 1, it suffices to consider �1, . . . , �d−1 and calculate �d when needed.
For ease of notation we define for v ∈ R

d : λ(v) := (v1, . . . , vd−1, 1 −
∑d−1

i=1 vi).
Then, we consider the dual problem of the weighted-sum LP, which is (D1(�)) :
max{bTu | u ∈ R

m
≥ , ATu = CT �}. The dual polyhedron D now consists for all

possible vectors � ∈ W 0
d and solutions u to D1(�) of the vectors (�1, . . . , �d−1, b

Tu).
Thus, D := {(�1, . . . , �d−1, b

Tu) ∈ R
d | � ∈ W 0

d , u ∈ R
m
≥ , ATu = CT �}. Following

LP duality theory, for each point y on the upper boundary of this polyhedron yd
is also the optimal value of P1(λ(y)). To take the notion of the upper boundary
to a more formal level, we define the Kd-maximal subset of a set M ⊆ R

d, where
Kd := {(0, . . . , 0, y) ∈ R

d | y ≥ 0}: A point y ∈ M is said to be Kd-maximal in
M if (y +Kd) ∩M = {y}. The subset of Kd-maximal points of M is written as
maxKd

M .
In [12], it is proven, that the dual polyhedron can be characterized by D =

{x ∈ R
d | ∀y ∈ vertP : ψ(y)Tx ≥ −yd, λ(x) ≥ 0}, where ψ(y) := (v1 −

vd, . . . , vd−1 − vd,−1). In other words, apart from the inequalities λ(x) ≥ 0, we
can describe the polyhedron as an intersection of halfspaces {x ∈ R

d | ψ(y)Tx ≥
−yd} for each extreme point y of the upper image P . Further, Heyde and Löhne
also prove that each of these inequalities defines a facet. Thus, we can solve the
original MOLP by enumerating the facets of D. While the dual algorithm origi-
nally enumerates the extreme points of D, we change the exposition accordingly.

Algorithm Description. We will follow [8] in describing the geometric dual al-
gorithm and use ideas of [11]. Proofs of correctness and finiteness can be found
in both places. A formal description of the entire algorithm can be found in
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Algorithm 1. Dual Variant of Benson’s Outer Approximation Algorithm

Require: Matrices A,C, and vector b : P �= ∅ and ∃y ∈ R
d : y +C · P ⊆ R

d
≥

Ensure: List R of pairs (x, y) for all y ∈ vertP and some x ∈ P such that Cx = y
1: Find solution x of P1(e1) and set y ← Cx
2: L ← {x ∈ R

d | λ(x) ≥ 0, ψ(y)Tx ≥ −yd} � Initial polyhedron
3: M ← Extreme points of L � Perform a vertex enumeration
4: while M �= ∅ do
5: pick one v ∈ M , M ← M\{v}
6: x ← optimal solution to P1(λ(v)) and y ← Cx � Shoot ray straight down
7: if λ(v)T y < vd then � Not an extreme point of D
8: L ← L ∩ {x ∈ R

d | ψ(y)Tx ≥ −yd} � Add new inequality
9: M ←Extreme points of L � Perform a vertex enumeration

10: R ← L ∪ {(x, y)} � Add new candidate extreme point of P
11: Remove redundant entries from R

Alg. 1. From a high-level perspective, the algorithm works as follows: First, the
algorithm constructs a polyhedron containing D (lines 1 to 3). Then, in each
iteration, it picks one new extreme point v of the current intermediate polyhe-
dron and shoots a ray into the polyhedron D (lines 5 and 6). We can shoot a
ray in the direction of −Kd by finding an optimal solution x of P1(λ(v)) with
value vector y = Cx. Either, we discover that v is an extreme point of D, if
λ(v)T y = vd and we proceed to the next iteration. Or, v is not an extreme point,
which we see if λ(v)T y < vd or in other words, the weighted optimal value is
smaller than the value represented by v. Then, the algorithm computes a face
defining inequality which separates v from D. Because of geometric duality, we
can use the new inequality ψ(y)Tx ≥ −yd. In lines 8 and 9, the algorithm inter-
sects the current polyhedron with the halfspace corresponding to this inequality.
Additionally, it saves y as a candidate for an extreme nondominated point in
line 10. This repeats until all extreme points have been confirmed to be part of
D. In the end, we still have to remove redundant pairs from the set of candidate
extreme nondominated points (see line 11).

Running Time Analysis. The key insight to the running time of the algorithm is
that the vertex enumeration steps are performed in the ordinarily much smaller
domain of the polyhedron D, which is of dimension d. Additionally, the number of
inequalities we enumerate in the process of the algorithm is at most the number
of K-maximal faces of D which—by the geometric duality theorem of [12]—is
exactly the number of faces of P . The number of faces of P can be bounded by
reducing the polyhedron to a polytope and using the asymptotic upper bound
theorem [18]. Let thus ve be the number of extreme points of P .

Lemma 3. Let d be fixed, the number of faces of P is at most O(ve
� d

2 �).

This shows that the number of faces of D and thus the number of inequalities the
algorithm computes does not exceed O(ve

� d
2 �). To compute the extreme points

of the intermediate polyhedra, we can use the asymptotic optimal algorithm for
fixed d by Chazelle [6].
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Regarding encoding length, there is a subtle problem we need to address. The
running times of the known polynomial-time algorithms to compute a solution
to the weighted-sum LPs, e.g., the ellipsoid method, depend on the largest num-
ber in the input. One potential problem is that the weighted-sum LP not only
consists of numbers of the input MOLP, but also of the weight vector � which is
recomputed in the process of the algorithm. We can prove that these lengths are
not too large by using the fact that the weights are computed from the interme-
diate extreme points we get. These points are solutions to linear systems of the
face defining inequalities we find, which in turn are computed from the extreme
points of the upper image P . These extreme points of P are again linear images
of extreme points in the decision space and it is well known that the encoding
length of these extreme points can be bounded by O(poly(n, L)), where L is the
encoding length of the largest number in A and thus independent of �.

Lemma 4. The encoding length of an intermediate extreme point is bounded by
O(poly(d, n, L)).

This concludes the running time analysis and we can give the running time in
the following theorem. We will be able to significantly improve on the d2 in the
exponent in the next section.

Theorem 5. Let ve be the number of vertices of P and d be fixed. Then, Al-
gorithm 1 has a running time bounded by O(ve

� d
2 �(poly(n,m,L) + ve

d2

4 log ve) +
poly(n, ve, L)).

To arrive at Theorem 1, we can solve problem (1). Problem (P1(�)) is then
equivalent to solving a single linear objective over the feasible set. Instead of
constructing the LP explicitly, we can solve the weighted-sum scalarization of the
combinatorial optimization problem. Since the encoding length of the weights we
use can be bounded by a polynomial in the original input, an algorithm running
in weakly polynomial time also suffices to prove the claim.

4 Lexicographic Dual Benson

One serious drawback of the algorithm is that we might enumerate many redun-
dant supporting hyperplanes. This is especially a problem since the number of
vertex enumeration steps depends on the number of supporting inequalities we
find. Also the number of redundant extreme points we compute depends heavily
on this quantity. Hence, it is very much desirable to enumerate facet supporting
hyperplanes only. This is the motivation to propose a lexicographic variant of the
dual Benson algorithm which we call the lexicographic dual Benson algorithm
and will be the subject of this section.

As already stated, in [12], Heyde and Löhne prove that every inequality
ψ(y)Tx ≥ −yd is facet defining iff y is an extreme point of P . So it suffices
to find only extreme points of P in lines 1 and 6. We observe that this can be
accomplished by computing an optimal solution x of P1(λ(v)) with lexicographic
minimal y := Cx: The set of optimal solutions M of P1(λ(v)) is mapped by the
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objective function to a face F of P such that C · M = F . If we search for a
lexicographic minimal Cx for x ∈ M , we will find a lexicographic minimal point
of F . Since F is a polyhedron and assuming the ideal point of the MOLP exists,
we will always arrive at an extreme point of F and thus of P .

We define lex-P1(�) : lexmin{(�TCx, c1x, . . . , cdx) | Ax ≥ b}, where c1, . . . , cd
are the rows of C and change lines 1 and 6 accordingly. Moreover, the points
we add in line 10 are already vertices of P and we can skip line 11 and do not
need to remove redundant entries anymore. We still have to prove that we can
solve this lexicographic LP in polynomial time, but we omit the proof because
of space restrictions.

Lemma 6. A solution to a lexicographic LP can be computed in polynomial
time.

Both of these observations are a game changer in this running time analysis and
we arrive at the following theorem.

Theorem 7. Let ve be the number of vertices of P and d be fixed. The lexico-
graphic dual Benson algorithm has a running time of O(ve

� d
2 �(poly(n,m,L) +

ve log ve)).

This is a significant improvement over Theorem 5, since we eliminate the term
having d2 in the exponent. Moreover, we are now able to bound the delay of the
algorithm. In the original algorithm this was not possible since it could take a
large number of iterations until the (d+ 1)-th extreme point is found.

Theorem 8. Let d be fixed. For the lexicographic dual Benson algorithm the
k-th delay is in O(k�

d
2 � poly(n,m,L)).

Analogously to Theorem 1, we want to use this algorithm to find extreme non-
dominated points of MOCO problems. Instead of constructing the corresponding
lexicographic LP, which is equivalent to solving a lexicographic objective func-
tion over the set of feasible points of problem (1), we can solve the lexicographic
version of the MOCO problem. Hence, exchanging the lexicographic LP oracle
by an algorithm which computes a lexicographic optimal solution of the MOCO
problem suffices to prove Theorem 2.

5 Computational Study

We investigated the practical aspects of the lexicographic dual Benson algorithm.
To achieve this, we conducted a comparison with the method from [15], which is
to the best of our knowledge the only practical method to compute the extreme
points of MOCO problems with four and more objectives. Both implementations
were tested on instances of the multiobjective assignment (or minimum weight
bipartite matching) (MO-A) problem. The MO-A problem is often used as a
benchmark problem in the biobjective case, but is also used in the computational
studies of the approaches existing for three and four objectives [15, 17].



Output-Sensitive Algorithms for MOCO Problems 297

Table 1. Computational results on multiobjective assignment instances with d objec-
tives and n resources. Instances with an * were taken from [15].

Lexicographic Dual Benson OK10 implementation
Running Time [s] |YX | Running Time [s] |YX | no. solved

d n Median MAD Median MAD Median MAD Median MAD #
3 10* 0.01 0.002 31.5 4.448 0.03 0.010 31.5 4.448 20

20* 0.11 0.014 150.5 17.050 6.31 1.491 150.5 17.050 20
30* 0.70 0.120 368.5 51.150 160.24 57.858 368.5 51.150 20
40 2.57 0.195 709.0 51.150 1660.63 542.646 709.0 51.150 20
80 67.22 4.442 2819.0 185.325 — — — — 0 (0/20)
150 1350.28 87.874 9626.0 374.357 — — — — 0 (20/0)

4 10* 0.06 0.019 102.5 26.687 3.29 2.447 102.5 26.687 20
15 0.33 0.079 453.5 97.852 (253.35) (105.681) (347.0) (14.826) 7 (13/0)
30 12.97 1.824 3646.0 444.039 — — — — 0 (20/0)
70 1978.68 269.907 48667.0 5777.692 — — — — 0 (20/0)

5 8 0.22 0.131 125.5 34.100 (29.91) (36.378) (124.0) (31.876 ) 18 (2/0)
14 33.30 16.416 1228.0 313.570 — — — — 0 (20/0)
20 1055.82 252.966 5052.5 699.787 — — — — 0 (20/0)

6 6 0.16 0.094 75.0 20.015 (39.01) (50.977) (73.0) (17.791) 18 (2/0)
8 1.73 1.096 228.0 54.856 (159.25) (45.658) (164.5) (20.015) 2 (18/0)
12 213.95 159.990 1798.0 549.303 — — — — 0 (20/0)

Though, the algorithm in [15], to which we will refer to as OK10 algorithm,
is not easily implemented efficiently. Instead of using points with large encoding
length on the axes, we use projective points at infinity to reduce the numerical
inconsistencies which occurred in the experimental setting in [15]. Nevertheless,
the implementation still misses some extreme nondominated points, but does
find more than the original implementation. To compute optimal assignment
solutions in the OK10 algorithm, we use an implementation of the Hungarian
method.

The experiments were performed on an Intel Core i7-3770, 3.4 GHz and 16
GB of memory running Ubuntu Linux 12.04. The algorithms were implemented
in C++ using double precision arithmetic and compiled using LLVM 3.3. To
compute the extreme points of the intermediate polyhedra, we implemented a
version of the Double Description method with full adjacency information in
the case of d ∈ {3, 4} and for d > 4, we used the CDD library [9]. To find
lexicographic minimal assignments for the lexicographic dual Benson algorithm,
we implemented a lexicographic version of the Hungarian method.

The computational study for computing the set of all extreme nondominated
points of MO-A instances in [15] uses a series of 20 randomly generated instances.
The sizes of the instances vary from 10 up to 30 resources and the integer objec-
tive function coefficients were uniformly drawn in [1, 20]. For our experiments,
we have taken the instances from [15] for d ∈ {3, 4} and additionally generated
similar instances with more resources and objectives.1 We enforced two kinds of
limits on the computational experiments. That is, a memory limit of 16 GB and
a computation time limit of one hour should not be exceeded.

1 All instances are available at https://ls11-www.cs.tu-dortmund.de/staff/
boekler/moco-instances
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Table 2. Comparison of the dual Benson implementation with and without lexico-
graphic oracle on multiobjective assignment instances with d = 5

Running Times Tlex/T Points found
Hungarian algorithm VE Total lex / no lex

n Median MAD Median MAD Median MAD Mean σ

20 1.114 0.0301 1.000 0.0091 1.002 0.0086 1.000 0.0003
22 1.118 0.0221 1.000 0.0046 1.000 0.0045 1.000 0.0002
24 1.130 0.0110 0.999 0.0055 1.000 0.0055 1.000 <0.0001
26 1.126 0.0170 0.999 0.0044 0.999 0.0045 1.000 <0.0001

In Table 1 we can see some selected results including the median and median
absolute deviation (MAD) of the running times and numbers of extreme points
found. We observe that the lexicographic dual Benson implementation is able to
solve all instances in the given limits. The implementation of the OK10 algorithm
is only able to solve very small instances with three and four objectives. In all
other cases there are instance classes where the implementation can not solve
all of the instances, prohibiting a statistical analysis. Nevertheless, we give the
median and MAD in parentheses if the OK10 implementation was not able to
solve all instances.

In the last column of Table 1, we can see the number of instances the OK10
implementation was able to solve. In parentheses we see the number of instances
that could not be solved due to the memory and time limit, respectively. We see
that in most cases memory was the limiting factor. This is not surprising, since
for every new point d new states are introduced and many survive the pruning
steps. In the cases where the OK10 implementation is able to solve all instances,
we see that the lexicographic dual Benson implementation is up to a factor of
640 times faster.

In the second set of experiments, we compare the practical performance of
the dual Benson algorithm when using our theoretical improvements from Sec.
4 to the original variant. The same instances as in the previous experiments
were used; we present the experiments with five objectives. Table 2 displays the
medians and MADs of the quotients of the lexicographic variant over the non-
lexicographic variant. The table shows these statistics for the cumulated running
time of the Hungarian algorithm, the vertex enumeration (VE) and the total time.
In addition, the last column of Table 2 displays the mean and standard deviation
of the quotient of the number of points found by both algorithms. Median and
MAD are in all cases 1 and 0, respectively.

We observe that the running times are very similar. The quotients of the total
running time medians are very close to 1. On one hand, the vertex enumeration
is only slightly faster when using a lexicographic oracle. On the other hand, the
cumulated time of the lexicographic oracle is always slower than the time of the
original Hungarian method. Of course, the vertex enumeration dominates the
total running time, but we also observe that it does not happen too often that
redundant inequalities are found.

We can also observe that the medians of the total running time quotients
seem to shrink when increasing the number of ressources. In order to observe if
this trend continues, we need to test much larger instances which is not possible
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with the current implementation, because of running times of already more than
12 hours on instances with 26 ressources.
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