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Preface

This volume contains the extended abstracts selected for presentation at ESA
2015, the 23rd European Symposium on Algorithms, held in Patras, Greece,
September 14–16, 2015, as part of ALGO 2015. The ESA symposia are devoted to
fostering and disseminating the results of high-quality research on algorithms and
data structures. ESA seeks original algorithmic contributions for problems with
relevant theoretical and/or practical applications and aims at bringing together
researchers in the computer science and operations research communities. Ever
since 2002, it has had two tracks, the Design and Analysis Track (Track A),
intended for papers on the design and mathematical analysis of algorithms, and
the Engineering and Applications Track (Track B), for submissions dealing with
real-world applications, engineering, and experimental analysis of algorithms.
Information on past symposia, including locations and LNCS volume numbers,
is maintained at{http://esa-symposium.org}.

In response to the call for papers, ESA 2015 attracted a record number of
320 submissions, 261 for Track A and 59 for Track B. Paper selection was based
on originality, technical quality, and relevance. Considerable effort was devoted
to the evaluation of the submissions, with at least three reviews per paper. With
the help of more than 980 expert reviews and more than 514 external reviewers,
the two committees selected 86 papers for inclusion in the scientific program
of ESA 2015, 71 in Track A and 15 in Track B, yielding an acceptance rate of
about 26%. In addition to the accepted contributions, the symposium featured
two invited lectures by Rasmus Pagh (IT University of Copenhagen, Denmark)
and Paul Spirakis (University of Liverpool, UK and CTI & University of Patras,
Greece). Abstracts of the invited lectures are also included in this volume.

The European Association for Theoretical Computer Science (EATCS) spon-
sored a best paper award and a best student paper award. A submission was
eligible for the best student paper award if all authors were doctoral, master,
or bachelor students at the time of submission. This award was shared by two
papers: one by Sascha Witt for his contribution on “Trip-Based Public Transit
Routing” and the other by Meirav Zehavi for her contribution entitled “Mixing
Color Coding-Related Techniques.” The best paper award went to Christina
Boucher, Christine Lo, and Daniel Lokshtanov for their paper entitled “Consen-
sus Patterns (Probably) Has No EPTAS.”Our warmest congratulations to all of
them for these achievements!

We wish to thank all the authors who submitted papers for consideration,
the invited speakers, the members of the Program Committees for their hard
work, and all the external reviewers who assisted the Program Committees in
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the evaluation process. Special thanks go to Giuseppe Italiano for answering our
many questions along the way, and to Christos Zaroliagis, who helped with the
local organization of the conference.

July 2015 Nikhil Bansal
Irene Finocchi
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Ordóñez Pereira, Alberto
Orlin, James
Otachi, Yota
Ott, Sebastian
Ozkan, Ozgur
Pachocki, Jakub
Paes Leme, Renato
Pagh, Rasmus
Panigrahi, Debmalya
Panolan, Fahad
Parekh, Ojas
Parter, Merav
Pascual, Fanny
Patel, Amit
Patel, Viresh
Patt-Shamir, Boaz
Paul, Saurabh
Pedrosa, Lehilton L.C.
Peng, Richard
Penna, Paolo
Pettie, Seth



Organization XI

Pfetsch, Marc
Pham, Ninh
Phillips, Cynthia
Pietracaprina, Andrea
Pilipczuk, Micha�l
Piperno, Adolfo
Pisanti, Nadia
Pontecorvi, Matteo
Pouget-Abadie, Jean
Price, Eric
Pritchard, David
Proietti, Guido
Pruhs, Kirk
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Invited Lectures



Correlated Locality-Sensitive Hashing�

Rasmus Pagh

IT University of Copenhagen, Denmark

After an introduction to the area, we consider a new construction of locality-
sensitive hash functions for Hamming space that is covering in the sense that is
it guaranteed to produce a collision for every pair of vectors within a given radius
r. The construction is efficient in the sense that the expected number of hash
collisions between vectors at distance cr, for a given c > 1, comes close to that of
the best possible data independent LSH without the covering guarantee, namely,
the seminal LSH construction of Indyk and Motwani (FOCS ’98). The efficiency
of the new construction essentially matches their bound if log(n)/(cr) is integer,
where n is the number of points in the data set, and differs from it by at most
a factor ln(4) < 1.4 in the exponent for larger values of cr. As a consequence,
LSH-based similarity search in Hamming space can avoid the problem of false
negatives at little or no cost in efficiency.

* The research leading to these results has received funding from the European
Research Council under the European Union’s Seventh Framework Programme
(FP7/2007-2013) / ERC grant agreement no. 614331.



On the Discrete Dynamics of Probabilistic
(Finite) Population Protocols

Paul Spirakis1,2,3

1Department of Computer Science, University of Liverpool, UK
P.Spirakis@liverpool.ac.uk

2Department of Computer Engineering and Informatics, University of Patras,
26504 Patras, Greece

3Computer Technology Institute and Press “Diophantus”,

N. Kazantzaki Str., Patras University Campus, 26504 Patras, Greece

Population Protocols are a recent model of computation that captures the way
in which complex behavior of systems can emerge from the underlying local
interactions of agents. Agents are usually anonymous and the local interaction
rules are scalable (independent of the size, n, of the population). Such protocols
can model the antagonism between members of several “species” and relate to
evolutionary games.

In the recent past the speaker was involved in joint research studying the
discrete dynamics of cases of such protocols for finite populations. Such dynam-
ics are, usually, probabilistic in nature , either due to the protocol itself or due
to the stochastic nature of scheduling local interactions. Examples are (a) the
generalized Moran process (where the protocol is evolutionary because a fitness
parameter is crucially involved) (b) the Discrete Lotka-Volterra Population Pro-
tocols (and associated Cyclic Games) and (c) the Majority protocols for random
interactions.

Such protocols are usually discrete time transient Markov Chains. However
the detailed states description of such chains is exponential in size and the state
equations do not facilitate a rigorous approach. Instead, ideas related to fil-
tering, stochastic domination and Potentials (leading to Martingales) help in
understanding the dynamics of the protocols.

In the talk we discuss such rigorous approaches and their techniques. We
examine the question of fast (in time polynomial in the population size) con-
vergence (to an absorbing state). We also discuss the question of most probable
eventual state of the protocols (and the computation of the probability of such
states). Several aspects of such discrete dynamics are wide open and it seems that
the algorithmic thought can contribute to the understanding of this emerging
subfield of science.
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Approximation Algorithms for Connected Maximum Cut and Related
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 693

MohammadTaghi Hajiaghayi, Guy Kortsarz, Robert MacDavid,
Manish Purohit, and Kanthi Sarpatwar

The Offset Filtration of Convex Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 705
Dan Halperin, Michael Kerber, and Doron Shaharabani

Approximation Algorithms for Polynomial-Expansion and Low-Density
Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 717

Sariel Har-Peled and Kent Quanrud

Monotone Drawings of 3-Connected Plane Graphs . . . . . . . . . . . . . . . . . . . . 729
Xin He and Dayu He

Faster Fully-Dynamic Minimum Spanning Forest . . . . . . . . . . . . . . . . . . . . . 742
Jacob Holm, Eva Rotenberg, and Christian Wulff-Nilsen

On the Equivalence among Problems of Bounded Width . . . . . . . . . . . . . . 754
Yoichi Iwata and Yuichi Yoshida

Fast Output-Sensitive Matrix Multiplication . . . . . . . . . . . . . . . . . . . . . . . . . 766
Riko Jacob and Morten Stöckel
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Abstract. In this paper we consider the Stochastic Matching problem,
which is motivated by applications in kidney exchange and online dating.
We are given an undirected graph in which every edge is assigned a
probability of existence and a positive profit, and each node is assigned
a positive integer called timeout. We know whether an edge exists or not
only after probing it. On this random graph we are executing a process,
which one-by-one probes the edges and gradually constructs a matching.
The process is constrained in two ways: once an edge is taken it cannot
be removed from the matching, and the timeout of node v upper-bounds
the number of edges incident to v that can be probed. The goal is to
maximize the expected profit of the constructed matching.

For this problem Bansal et al. [4] provided a 3-approximation algo-
rithm for bipartite graphs, and a 4-approximation for general graphs.
In this work we improve the approximation factors to 2.845 and 3.709,
respectively.

We also consider an online version of the bipartite case, where one
side of the partition arrives node by node, and each time a node b arrives
we have to decide which edges incident to b we want to probe, and in
which order. Here we present a 4.07-approximation, improving on the
7.92-approximation of Bansal et al. [4].

The main technical ingredient in our result is a novel way of probing
edges according to a random but non-uniform permutation. Patching this
method with an algorithm that works best for large probability edges (plus
some additional ideas) leads to our improved approximation factors.

1 Introduction

In this paper we consider the Stochastic Matching problem, which is motivated
by applications in kidney exchange and online dating. Here we are given an
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undirected graph G = (V,E). Each edge e ∈ E is labeled with an (existence)
probability pe ∈ (0, 1] and a weight (or profit) we > 0, and each node v ∈ V
with a timeout (or patience) tv ∈ N

+. An algorithm for this problem probes
edges in a possibly adaptive order. Each time an edge is probed, it turns out to
be present with probability pe, in which case it is (irrevocably) included in the
matching under construction and provides a profit we. We can probe at most
tu edges among the set δ(u) of edges incident to node u (independently from
whether those edges turn out to be present or absent). Furthermore, when an
edge e is added to the matching, no edge f ∈ δ(e) (i.e., incident on e) can be
probed in subsequent steps. Our goal is to maximize the expected weight of the
constructed matching. Bansal et al. [4] provide an LP-based 3-approximation
when G is bipartite, and via reduction to the bipartite case a 4-approximation
for general graphs (see also [3]).

We also consider the Online Stochastic Matching with Timeouts problem in-
troduced in [4]. Here we are given in input a bipartite graph G = (A∪B,A×B),
where nodes in B are buyer types and nodes in A are items that we wish to sell.
Like in the offline case, edges are labeled with probabilities and profits, and
nodes are assigned timeouts. However, in this case timeouts on the item side
are assumed to be unbounded. Then a second bipartite graph is constructed
in an online fashion. Initially this graph consists of A only. At each time step
one random buyer b̃ of some type b is sampled (possibly with repetitions) from
a given probability distribution. The edges between b̃ and A are copies of the
corresponding edges in G. The online algorithm has to choose at most tb un-
matched neighbors of b̃, and probe those edges in some order until some edge ab̃
turns out to be present (in which case ab̃ is added to the matching and we gain
the corresponding profit) or all the mentioned edges are probed. This process is
repeated n times, and our goal is to maximize the final total expected profit1.

For this problem Bansal et al. [4] present a 7.92-approximation algorithm.
In his Ph.D. thesis Li [8] claims an improved 4.008-approximation. However,
his analysis contains a mistake [9]. By fixing that, he still achieves a 5.16-
approximation ratio improving over [4].

1.1 Our Results

Our main result is an approximation algorithm for bipartite Stochastic Matching
which improves the 3-approximation of Bansal et al. [4] (see Section 2).

Theorem 1. There is an expected 2.845-approximation algorithm for Stochastic
Matching in bipartite graphs.

Our algorithm for the bipartite case is similar to the one from [4], which works
as follows. After solving a proper LP and rounding the solution via a rounding
technique from [7], Bansal et al. probe edges in uniform random order. Then they
show that every edge e is probed with probability at least xe · g(pmax), where
1 As in [4], we assume that the probability of a buyer type b is an integer multiple of
1/n.
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xe is the fractional value of e, pmax := maxf∈δ(e){pf} is the largest probability
of any edge incident to e (e excluded), and g(·) is a decreasing function with
g(1) = 1/3.

Our idea is to rather consider edges in a carefully chosen non-uniform random
order. This way, we are able to show (with a slightly simpler analysis) that
each edge e is probed with probability xe · g (pe) ≥ 1

3xe. Observe that we have
the same function g(·) as in [4], but depending on pe rather than pmax. In
particular, according to our analysis, small probability edges are more likely to
be probed than large probability ones (for a given value of xe), regardless of the
probabilities of edges incident to e. Though this approach alone does not directly
imply an improved approximation factor, it is not hard to patch it with a simple
greedy algorithm that behaves best for large probability edges, and this yields
an improved approximation ratio altogether.

We also improve on the 4-approximation for general graphs in [4]. This is
achieved by reducing the general case to the bipartite one as in prior work, but
we also use a refined LP with blossom inequalities in order to fully exploit our
large/small probability patching technique.

Theorem 2. There is an expected 3.709-approximation algorithm for Stochastic
Matching in general graphs.

Similar arguments can also be successfully applied to the online case. By
applying our idea of non-uniform permutation of edges we would get a 5.16-
approximation (the same as in [8], after correcting the mentioned mistake).
However, due to the way edges have to be probed in the online case, we are
able to finely control the probability that an edge is probed via dumping fac-
tors. This allows us to improve the approximation from 5.16 to 4.16. Our idea
is similar in spirit to the one used by Ma [10] in his neat 2-approximation algo-
rithm for correlated non-preemptive stochastic knapsack. Further application of
the large/small probability trick gives an extra improvement down to 4.07 (see
Section 3).

Theorem 3. There is an expected 4.07-approximation algorithm for Online
Stochastic Matching with Timeouts.

1.2 Related Work

The Stochastic Matching problem falls under the framework of adaptive stochas-
tic problems presented first by Dean et al. [6]. Here the solution is in fact a
process, and the optimal one might even require larger than polynomial space
to be described.

The Stochastic Matching problem was originally presented by Chen et al. [5]
together with applications in kidney exchange and online dating. The authors
consider the unweighted version of the problem, and prove that a greedy algo-
rithm is a 4-approximation. Adamczyk [1] later proved that the same algorithm
is in fact a 2-approximation, and this result is tight. The greedy algorithm does
not provide a good approximation in the weighted case, and all known algorithms
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for this case are LP-based. Here, Bansal et al. [4] showed a 3-approximation for
the bipartite case. Via a reduction to the bipartite case, Bansal et al. [4] also
obtain a 4-approximation algorithm for general graphs (see also [3]).

2 Stochastic Matching

2.1 Bipartite Graphs

Let us denote by OPT the optimum probing strategy, and let E [OPT ] denote
its expected outcome. Consider the following LP:

max
∑

e∈E

wepexe (LP-BIP)

s.t.
∑

e∈δ(u)

pexe ≤ 1, ∀u ∈ V ; (1)

∑

e∈δ(u)

xe ≤ tu, ∀u ∈ V ; (2)

0 ≤ xe ≤ 1, ∀e ∈ E. (3)

The proof of the following Lemma is already quite standard [3,4,6] — just note
that xe = P [OPT probes e] is a feasible solution of LP-BIP.

Lemma 1. [4] Let LPbip be the optimal value of LP-BIP. It holds that LPbip ≥
E [OPT ].

Our approach is similar to the one of Bansal et al. [4] (see also Algorithm
2.1 in the figure). We solve LP-BIP: let x = (xe)e∈E be the optimal fractional
solution. Then we apply to x the rounding procedure by Gandhi et al. [7], which
we shall call just GKPS. Let Ê be the set of rounded edges, and let x̂e = 1 if
e ∈ Ê and x̂e = 0 otherwise. GKPS guarantees the following properties of the
rounded solution:

1. (Marginal distribution) For any e ∈ E, P [x̂e = 1] = xe.
2. (Degree preservation) For any v ∈ V ,

∑
e∈δ(v) x̂e ≤ �∑e∈δ(v) xe� ≤ tv.

3. (Negative correlation) For any v ∈ V , any subset S ⊆ δ(v) of edges incident
to v, and any b ∈ {0, 1}, it holds that P [∧e∈S(x̂e = b)] ≤ ∏

e∈S P [x̂e = b] .

Our algorithm sorts the edges in Ê according to a random permutation and
probes each edge e ∈ Ê according to that order, but provided that the endpoints
of e are not matched already. It is important to notice that, by the degree
preservation property, in Ê there are at most tv edges incident to each node v.
Hence, the timeout constraint of v is respected even if the algorithm probes all
the edges in δ(u) ∩ Ê.

Our algorithm differs from [4] and subsequent work in the way edges are
randomly ordered. Prior work exploits a random uniform order on Ê. We rather
use the following, more complex strategy. For each e ∈ Ê we draw a random
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Algorithm 1. Approximation algorithm for bipartite Stochastic Matching.
1. Let (xe)e∈E be the solution to LP-BIP.
2. Round the solution (xe)e∈E with GKPS; let (x̂e)e∈E be the rounded 0-1 solution,

and Ê = {e ∈ E|x̂e = 1}.
3. For every e ∈ Ê, sample a random variable Ye distributed as P [Ye ≤ y] = 1−e−ype

pe
.

4. For every e ∈ Ê in increasing order of Ye:
(a) If no edge f ∈ δ̂(e) := δ(e) ∩ Ê is yet taken, then probe edge e

variable Ye distributed on the interval
[
0, 1

pe
ln 1

1−pe

]
according to the following

cumulative distribution: P [Ye ≤ y] = 1
pe

(1− e−pey) . Observe that the density
function of Ye in this interval is e−ype (and zero otherwise). Edges of Ê are sorted
in increasing order of the Ye’s, and they are probed according to that order. We
next let Y = (Ye)e∈Ê .

Define δ̂(v) := δ (v) ∩ Ê. We say that an edge e ∈ Ê is safe if, at the time we
consider e for probing, no other edge f ∈ δ̂(e) is already taken into the matching.
Note that the algorithm can probe e only in that case, and if we do probe e, it
is added to the matching with probability pe.

The main ingredient of our analysis is the following lower-bound on the prob-
ability that an arbitrary edge e is safe.

Lemma 2. For every edge e it holds that P
[
e is safe| e ∈ Ê

]
≥ g (pe), where

g (p) :=
1

2 + p

(
1− exp

(
− (2 + p)

1

p
ln

1

1− p

))
.

Proof. In the worst case every edge f ∈ δ̂(e) that is before e in the ordering can
be probed, and each of these probes has to fail for e to be safe. Thus

P

[
e is safe| e ∈ Ê

]
≥ EÊ\e,Y

⎡

⎣
∏

f∈δ̂(e):Yf<Ye

(1− pf )

∣∣∣∣∣∣
e ∈ Ê

⎤

⎦ .

Now we take expectation on Y only, and using the fact that the variables Yf are
independent, we can write the latter expectation as

EÊ\e

⎡

⎣
ˆ 1

pe
ln 1

1−pe

0

⎛

⎝
∏

f∈δ̂(e)

(P [Yf ≤ y] (1 − pf) + P [Yf > y])

⎞

⎠ e−pe·ydy

∣∣∣∣∣∣
e ∈ Ê

⎤

⎦ .

(4)

Observe that P [Yf ≤ y] (1− pf ) + P [Yf > y] = 1 − pfP [Yf ≤ y] . When y >
1
pf

ln 1
1−pf

, then P [Yf ≤ y] = 1, and moreover, 1
pf
(1 − e−pf ·y) is an increasing

function of y. Thus we can upper-bound P [Yf ≤ y] by 1
pf
(1 − e−pf ·y) for any
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y ∈ [0,∞], and obtain that 1 − pfP [Yf ≤ y] ≥ 1 − pf
1
pf
(1 − e−pf ·y) = e−pf ·y.

Thus (4) can be lower bounded by

EÊ\e

[ˆ 1
pe

ln 1
1−pe

0

e−
∑

f∈δ̂(e) pf ·y−pe·ydy

∣∣∣∣∣ e ∈ Ê

]

=EÊ\e

[
1∑

f∈δ̂(e) pf + pe

(
1− e−(

∑
f∈δ̂(e) pf+pe) 1

pe
ln 1

1−pe

)∣∣∣∣∣ e ∈ Ê

]
.

From the negative correlation and marginal distribution properties we know
that EÊ\e

[
x̂f | e ∈ Ê

]
≤ EÊ\e [x̂f ] = xf for every f ∈ δ (e), and therefore

EÊ\e
[∑

f∈δ̂(e) pf

∣∣∣ e ∈ Ê
]
≤ ∑

f∈δ(e) pfxf ≤ 2, where the last inequality follows

from the LP constraints. Consider function f(x) := 1
x+pe

(
1− e−(x+pe)

1
pe

ln 1
1−pe

)
.

This function is decreasing and convex. From Jensen’s inequality we know that
E [f(x)] ≥ f(E [x]). Thus

EÊ\e

⎡

⎣f

⎛

⎝
∑

f∈δ̂(e)

pf

⎞

⎠

∣∣∣∣∣∣
e ∈ Ê

⎤

⎦ ≥ f

⎛

⎝EÊ\e

⎡

⎣
∑

f∈δ̂(e)

pf

∣∣∣∣∣∣
e ∈ Ê

⎤

⎦

⎞

⎠

≥ f(2) =
1

2 + pe

(
1− e−(2+pe)

1
pe

ln 1
1−pe

)
= g(pe). �

From Lemma 2 and the marginal distribution property, the expected contri-
bution of edge e to the profit of the solution is

wepe ·P
[
e ∈ Ê

]
·P

[
e is safe| e ∈ Ê

]
≥ wepexe ·g(pe) ≥ wepexe ·g(1) = 1

3
wepexe.

Therefore, our analysis implies a 3 approximation, matching the result in [4].
However, by playing with the probabilities appropriately we can do better.

Patching with Greedy. We next describe an improved approximation algorithm,
based on the patching of the above algorithm with a simple greedy one. Let δ ∈
(0, 1) be a parameter to be fixed later. We define Elarge as the (large) edges with
pe ≥ δ, and let Esmall be the remaining (small) edges. Recall that LPbip denotes
the optimal value of LP-BIP. Let also LPlarge and LPsmall be the fraction of
LPbip due to large and small edges, respectively; i.e., LPlarge =

∑
e∈Elarge

wepexe

and LPsmall = LPbip − LPlarge. Define γ ∈ [0, 1] such that γLPbip = LPlarge.
By refining the above analysis, we obtain the following result.
Lemma 3. Algorithm 2.1 has expected approximation ratio 1

3γ + g(δ) (1− γ).

Proof. The expected profit of the algorithm is at least:
∑

e∈E

wepexe · g(pe) ≥
∑

e∈Elarge

wepexe · g(1) +
∑

e∈Esmall

wepexe · g(δ)

=
1

3
LPlarge + g(δ)LPsmall =

(
1

3
γ + g(δ) (1− γ)

)
LPbip. �
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Consider the following greedy algorithm. Compute a maximum weight match-
ing Mgrd in G with respect to edge weights wepe, and probe the edges of Mgrd in
any order. Note that the timeout constraints are satisfied since we probe at most
one edge incident to each node (and timeouts are strictly positive by definition
and w.l.o.g.).

Lemma 4. The greedy algorithm has expected approximation ratio δγ.

Proof. It is sufficient to show that the expected profit of the obtained solution is
at least δ ·LPlarge. Let x = (xe)e∈E be the optimal solution to LP-BIP. Consider
the solution x′ = (x′

e)e∈E that is obtained from x by setting to zero all the
variables corresponding to edges in Esmall, and by multiplying all the remaining
variables by δ. Since pe ≥ δ for all e ∈ Elarge, x′ is a feasible fractional solution
to the following matching LP:

max
∑

e∈E

wepeze (LP-MATCH)

s.t.
∑

e∈δ(u)

ze ≤ 1, ∀u ∈ V ;

0 ≤ ze ≤ 1, ∀e ∈ E. (5)

The value of x′ in the above LP is δ · LPlarge by construction. Let LPmatch be
the optimal profit of LP-MATCH. Then LPmatch ≥ δ · LPlarge. Given that the
graph is bipartite, LP-MATCH defines the matching polyhedron, and we can
find an integral optimal solution to it. But such a solution is exactly a maximum
weight matching according to weights wepe, i.e.

∑
e∈Mgrd

wepe = LPmatch. The
claim follows since the expected profit of the greedy algorithm is precisely the
weight of Mgrd. �

The overall algorithm, for a given δ, simply computes the value of γ, and runs
the greedy algorithm if γδ ≥ (

1
3γ + g(δ) (1− γ)

)
, and Algorithm 2.1 otherwise2.

The approximation factor is given by max{ γ
3 +(1−γ)g(δ), γδ}, and the worst

case is achieved when the two quantities are equal, i.e., for γ = g(δ)

δ+g(δ)− 1
3

, yielding

an approximation ratio of δ·g(δ)
δ+g(δ)− 1

3

. Maximizing (numerically) the latter func-
tion in δ gives δ = 0.6022, and the final 2.845-approximation ratio claimed in
Theorem 1.

2.2 General Graphs

For general graphs, we consider the linear program LP-GEN which is obtained
from LP-BIP by adding the following blossom inequalities :

∑

e∈E(W )

pexe ≤ |W | − 1

2
∀W ⊆ V, |W | odd. (6)

2 Note that we cannot run both algorithms, and take the best solution.
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Here E(W ) is the subset of edges with both endpoints in W . We remark that,
using standard tools from matching theory, we can solve LP-GEN in polynomial
time despite its exponential number of constraints; see the book of Schrijver for
details [11]. Also in this case xe = P [OPT probes e] is a feasible solution of
LP-GEN, hence the analogue of Lemma 1 still holds.

Our Stochastic Matching algorithm for the case of a general graph G = (V,E)
works via a reduction to the bipartite case. First we solve LP-GEN; let x =
(xe)e∈E be the optimal fractional solution. Second we randomly split the nodes
V into two sets A and B, with EAB being the set of edges between them. On the
bipartite graph (A ∪B,EAB) we apply the algorithm for the bipartite case, but
using the fractional solution (xe)e∈EAB

induced by LP-GEN rather than solving
LP-BIP. Note that (xe)e∈EAB

is a feasible solution to LP-BIP for the bipartite
graph (A ∪B,EAB).

The analysis differs only in two points w.r.t. the one for the bipartite case.
First, with ÊAB being the subset of edges of EAB that were rounded to 1, we
have now that P

[
e ∈ ÊAB

]
= P [e ∈ EAB] · P

[
e ∈ ÊAB

∣∣∣ e ∈ EAB

]
= 1

2xe. Sec-
ond, but for the same reason, using again the negative correlation and marginal
distribution properties, we have

E

⎡

⎣
∑

f∈δ̂(e)

pf

∣∣∣∣∣∣
e ∈ ÊAB

⎤

⎦ ≤
∑

f∈δ(e)

pfP
[
f ∈ ÊAB

]
=

∑

f∈δ(e)

pfxf

2
≤ 2− 2pexe

2
≤ 1.

Repeating the steps of the proof of Lemma 2 and including the above inequality
we get the following.

Lemma 5. For every edge e it holds that P
[
e is safe| e ∈ ÊAB

]
≥ h (pe), where

h (p) :=
1

1 + p

(
1− exp

(
− (1 + p)

1

p
ln

1

1− p

))
.

Since h(pe) ≥ h(1) = 1
2 , we directly obtain a 4-approximation which matches

the result in [4]. Similarly to the bipartite case, we can patch this result with the
simple greedy algorithm (which is exactly the same in the general graph case).
For a given parameter δ ∈ [0, 1], let us define γ analogously to the bipartite case.
Similarly to the proof of Lemma 3, one obtains that the above algorithm has
approximation factor γ

4 +
1−γ
2 h(δ). Similarly to the proof of Lemma 4, the greedy

algorithm has approximation ratio γδ (here we exploit the blossom inequalities
that guarantee the integrality of the matching polyhedron). We can conclude
similarly that in the worst case γ = h(δ)

2δ+h(δ)−1/2 , yielding an approximation

ratio of δ·h(δ)
2δ+h(δ)−1/2 . Maximizing (numerically) this function over δ gives, for

δ = 0.5580, the 3.709 approximation ratio claimed in Theorem 2.

3 Online Stochastic Matching with Timeouts

Let G = (A ∪B,A×B) be the input graph, with items A and buyer types B.
We use the same notation for edge probabilities, edge profits, and timeouts as
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in Stochastic Matching. Following [4], we can assume w.l.o.g. that each buyer
type is sampled uniformly with probability 1/n. Consider the following linear
program:

max
∑

a∈A,b∈B

wabpabxab (LP-ONL)

s.t.
∑

b∈B

pabxab ≤ 1, ∀a ∈ A

∑

a∈A

pabxab ≤ 1, ∀b ∈ B

∑

a∈A

xab ≤ tb, ∀b ∈ B

0 ≤ xab ≤ 1, ∀ab ∈ E.

The above LP models a bipartite Stochastic Matching instance where one side
of the bipartition contains exactly one buyer per buyer type. In contrast, in the
online case several buyers of the same buyer type (or none at all) can arrive, and
the optimal strategy can allow many buyers of the same type to probe edges.
Still, that is not a problem since the following lemma from [4] allows us just to
look at the graph of buyer types and not at the actual realized buyers.

Lemma 6. ([4], Lemmas 9 and 11) Let E [OPT ] be the expected profit of the
optimal online algorithm for the problem. Let LPonl be the optimal value of LP-
ONL. It holds that E [OPT ] ≤ LPonl.

We will devise an algorithm whose expected outcome is at least 1
4.07 · LPonl,

and then Theorem 3 follows from Lemma 6.

The Algorithm. We initially solve LP-ONL and let (xab)ab∈A×B be the optimal
fractional solution. Then buyers arrive. When a buyer of type b is sampled, then
1) if a buyer of the same type b was already sampled before we simply discard
her, do nothing, and wait for another buyer to arrive, 2) if it is the first buyer of
type b, then we execute the following subroutine for buyers. Since we take action
only when the first buyer of type b comes, we shall denote such a buyer simply
by b, as it will not cause any confusion.

Subroutine for Buyers. Let us consider the step of the online algorithm in which
the first buyer of type b arrived, if any. Let Ab be the items that are still avail-
able when b arrives. Our subroutine will probe a subset of at most tb edges ab,
a ∈ Ab. Consider the vector (xab)a∈Ab

. Observe that it satisfies the constraints∑
a∈Ab

pabxab ≤ 1 and
∑

a∈Ab
xab ≤ tb. Again using GKPS, we round this vector

in order to get (x̂ab)a∈Ab
with x̂ab ∈ {0, 1}, and satisfying the marginal distri-

bution, degree preservation, and negative correlation properties3. Let Âb be the
3 Actually in this case we have a bipartite graph where one side has only one vertex,

and here GKPS reduces to Srinivasan’s rounding procedure for level-sets [12].
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set of items a such that x̂ab = 1. For each ab, a ∈ Âb, we independently draw a
random variable Yab with distribution: P [Yab < y] = 1

pab
(1− exp (−pab · y)) for

y ∈
[
0, 1

pab
ln 1

1−pab

]
. Let Y = (Yab)a∈Âb

.

Next we consider items of Âb in increasing order of Yab. Let αab ∈ [ 12 , 1] be a
dumping factor that we will define later. With probability αab we probe edge ab
and as usual we stop the process (of probing edges incident to b) if ab is present.
Otherwise (with probability 1−αab) we simulate the probe of ab, meaning that
with probability pab we stop the process anyway — like if edge ab were probed
and turned out to be present. Note that we do not get any profit from the latter
simulation since we do not really probe ab.

Dumping Factors. It remains to define the dumping factors. For a given edge
ab, let

βab := EÂb\a,Y

⎡

⎣
∏

a′∈Ab:Ya′b<Yab

(1− pa′b)

∣∣∣∣∣∣
a ∈ Âb

⎤

⎦ .

Using the inequality
∑

a∈Ab
pabxab ≤ 1, by repeating the analysis from Section 2

we can show that

βab ≥ h(pab) =
1

1 + pab

(
1− exp

(
− (1 + pab)

1

pab
ln

1

1− pab

))
≥ 1

2
.

Let us assume for the sake of simplicity that we are able to compute βab exactly.
We set αab =

1
2βab

. Note that αab is well defined since βab ∈ [1/2, 1].

Analysis. Let us denote by Ab the event that at least one buyer of type b arrives.
The probability that an edge ab is probed can be expressed as:

P [Ab] · P [no b′ takes a before b|Ab] · P [b probes a| Ab ∧ a is not yet taken] .

The probability that b arrives is P [Ab] = 1 − (
1− 1

n

)n ≥ 1 − 1
e . We shall show

first that
P [b probes a|Ab ∧ a is not yet taken]

is exactly 1
2xab, and later we shall show that P [no b′ takes a before b|Ab] is at

least 1

1+ 1
2 (1− 1

e )
. This will yield that the probability that ab is probed is at least

(
1− 1

e

)
1

1 + 1
2

(
1− 1

e

) · 1
2
xab =

e− 1

3e− 1
xab >

1

4.16
xab.

Consider the probability that some edge a′b appearing before ab in the random
order blocks edge ab, meaning that ab is not probed because of a′b. Observe that
each such a′b is indeed considered for probing in the online model, and the
probability that a′b blocks ab is therefore αa′bpa′b + (1 − αa′b)pa′b = pa′b. We
can conclude that the probability that ab is not blocked is exactly βab.
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Due to the dumping factor αab, the probability that we actually probe edge
ab ∈ Âb is exactly αab · βab = 1

2 . Recall that P

[
a ∈ Âb

]
= xab by the marginal

distribution property. Altogether

P [b probes a|Ab ∧ a is not yet taken] =
1

2
xab. (7)

Next let us condition on the event that buyer b arrived, and let us lower
bound the probability that ab is not blocked on the a’s side in such a step,
i.e., that no other buyer has taken a already. The buyers, who are first occur-
rences of their type, arrive uniformly at random. Therefore, we can analyze the
process of their arrivals as if it was constructed by the following procedure:
every buyer b′ is given an independent random variable Yb′ distributed expo-
nentially on [0,∞], i.e., P [Yb′ < y] = 1 − ey; buyers arrive in increasing order
of their variables Yb′ . Once buyer b′ arrives, it probes edge ab′ with probabil-
ity (exactly) αab′βab′xab′ =

1
2xab′ — these probabilities are independent among

different buyers. Thus, conditioning on the fact that b arrives, we obtain the
following expression for the probability that a is safe at the moment when b
arrives:

P [no b′ takes a before b|Ab]

≥ E

⎡

⎣
∏

b′∈B\b:Yb′<Yb

(1− P [Ab′ | Ab]P [b′ probes ab′| Ab′ ] pab′)

∣∣∣∣∣∣
Ab

⎤

⎦

=

ˆ ∞

0

∏

b′∈B\b
(1− P [Ab′ |Ab] · P [Yb′ < y| Ab′ ] · P [b′ probes ab′| Ab′ ] pab′) e

−ydy.

Now let us upper-bound each of the probability factors in the above product.
First of all P [Ab′ | Ab] = 1− (

1− 1
n

)n−1 ≤ 1− 1
e . Second, P [Yb′ < y| Ab′ ] = 1−

e−y just by definition4. Third, from (7) we have that P [b′ probes ab′| Ab′ ] =
xab

2 .
Thus the above integral can be lower bounded by

ˆ ∞

0

∏

b′∈B\b

(
1−

(
1− 1

e

)(
1− e−y

) · 1
2
xab′ · pab′

)
e−ydy

≥
ˆ ∞

0

∏

b′∈B\b
exp

(
−
(
1− 1

e

)
1

2
xab′ · pab′ · y

)
e−ydy

=
1

1 +
(
1− 1

e

)
1
2

(∑
b′∈B\b pab′ · xab′

) ≥ 1

1 + 1
2

(
1− 1

e

) =
2e

3e− 1
.

Above in the first inequality we used the fact that 1 − c(1 − e−y) ≥ e−cy for
c ∈ [0, 1] and any y ∈ R: here c =

(
1− 1

e

)
1
2xab′ ·pab′ . In the first equality we used´∞

0
e−axdx = 1

a . In the last inequality we used the LP constraint
∑

b′∈B\b pab′ ·
xab′ ≤ 1.
4 The Ab′ event in the condition simply indicates that Yb′ was drawn.
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Altogether, as anticipated earlier,

P [ab is probed] ≥
(
1− 1

e

)
xab

2
· 2e

3e− 1
= xab · e− 1

3e− 1
>

1

4.16
· xab.

Technical Details. Recall that we assumed that we are able to compute the
quantities βab, hence the desired dumping factors αab. Indeed, for our goals it is
sufficient to estimate them with large enough probability and with sufficiently
good accuracy. This can be done by simulating the underlying random process
a polynomial number of times. This way the above probability can be lower
bounded by ( e−1

3e−1+ε)xe for an arbitrarily small constant ε > 0. In particular, by
choosing a small enough ε the factor 4.16 is still guaranteed. The approximation
factor can be further reduced to 4.07 via the technique based on small and big
probabilities that we introduced before. The omitted technical details will be
given in the full version of the paper (see also [2]). Theorem 3 follows.
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Abstract. In this paper, we look at the complexity of designing al-
gorithms without any bank conflicts in the shared memory of Graphi-
cal Processing Units (GPUs). Given input of size n, w processors and
w memory banks, we study three fundamental problems: sorting, per-
muting and w-way partitioning (defined as sorting an input containing
exactly n/w copies of every integer in [w]).

We solve sorting in optimal O( n
w
log n) time. When n ≥ w2, we solve

the partitioning problem optimally in O(n/w) time. We also present a
general solution for the partitioning problem which takes O( n

w
log3

n/w w)
time. Finally, we solve the permutation problem using a randomized
algorithm in O( n

w
log log logn/w n) time. Our results show evidence that

when working with banked memory architectures, there is a separation
between these problems and the permutation and partitioning problems
are not as easy as simple parallel scanning.

1 Introduction

Graphics Processing Units (GPUs) over the past decade have been transformed
from special-purpose graphics rendering co-processors, to a powerful platform for
general purpose computations, with runtimes rivaling best implementations on
many-core CPUs. With high memory throughput, hundreds of physical cores and
fast context switching between thousands of threads, they became very popular
among computationally intensive applications. Instead of citing a tiny subset of
such papers, we refer the reader to gpgpu.org website [11], which lists over 300
research papers on this topic.

Yet, most of these results are experimental and the theory community seems
to shy away from designing and analyzing algorithms on GPUs. In part, this
is probably due to the lack of a simple theoretical model of computation for
GPUs. This has started to change recently, with introduction of several theoret-
ical models for algorithm analysis on GPUs.

A Brief Overview of GPU Architecture. A modern GPU contains hun-
dreds of physical cores. To implement such a large number of cores, a GPU
is designed hierarchically. It consists of a number of streaming multiprocessors

� Work supported in part by the Danish National Research Foundation grant DNRF84
through Center for Massive Data Algorithmics (MADALGO).

c© Springer-Verlag Berlin Heidelberg 2015
N. Bansal and I. Finocchi (Eds.): ESA 2015, LNCS 9294, pp. 13–24, 2015.
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Global memory

sh. mem

wSM
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wSM

Fig. 1. A schematic of GPU architecture

(SMs) and a global memory shared by all SMs. Each SM consists of a number
of cores (for concreteness, let us parameterize it by w) and a shared memory of
limited size which is shared by all the cores within the SM but is inaccessible by
other SMs. With computational power of hundreds of cores, latency of accessing
memory becomes non-negligible and GPUs take several approaches to mitigate
the problem.

First, they support massive hyper-threading, i.e., multiple logical threads may
run on each physical core with light context switching between the threads.
Thus, when a thread stalls on a memory request, the other threads can continue
running on the same core. To schedule all these threads efficiently, groups of w
threads, called warps, are scheduled to run on w physical cores simultaneously
in single instructions, multiple data (SIMD) [9] fashion.

Second, there are limitations on how data is accessed in memory. Accesses to
global memory are most efficient if they are coalesced. Essentially, it means that
w threads of a warp should access contiguous w addresses of global memory.
On the other hand, shared memory is partitioned into w memory banks and
each memory bank may service at most one thread of a warp in each time
step. If more than one thread of a warp requests access to the same memory
bank, a bank conflict occurs and multiple accesses to the same memory bank are
sequentialized. Thus, for optimal utilization of processors, it is recommended to
design algorithms that perform coalesced accesses to global memory and incur
no bank conflicts in shared memory [19].

Designing GPU Algorithms. Several papers [13, 17, 18, 22] present theoreti-
cal models that incorporate the concept of coalesced accesses to global memory
into the performance analysis of GPU algorithms. In essence, all of them intro-
duce a complexity metric that counts the number of blocks transferred between
the global and internal memory (shared memory or registers), similar to the
I/O-complexity metric of sequential and parallel external memory and cache-
oblivious models on CPUs [2,3,5,10]. The models vary in what other features of
GPUs they incorporate and, consequently, in the number of parameters intro-
duced into the model.

Once the data is in shared memory, the usual approach is to implement
standard parallel algorithms in the PRAM model [14] or interconnection net-
works [16]. For example, sorting data in shared memory, is usually implemented
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using sorting networks, e.g. Batcher’s odd-even mergesort [4] or bitonic merge-
sort [4]. Even though these sorting networks are not asymptotically optimal,
they provide good empirical runtimes because they exhibit small constant fac-
tors, they fit well in the SIMD execution flow within a warp, and for small inputs
asymptotic optimality is irrelevant. On very small inputs (e.g. on w items – one
per memory bank) they also cause no bank conflicts.

However, as the input sizes for shared memory algorithms grow, bank conflicts
start to affect the running time.

The first paper that studies bank conflicts on GPUs is by Dotsenko et al. [8].
The authors view shared memory as a two-dimensional matrix with w rows,
where each row represents a separate memory bank. Any one-dimensional array
A[0..n− 1] will be laid out in this matrix in column-major order in �n/w� con-
tiguous columns. Note, that strided parallel access to data, that is each thread
t accessing array entries A[wi + t] for integer 0 ≤ i < �n/w�, does not incur
bank conflicts because each thread accesses a single row. The authors also ob-
served that the contiguous parallel access to data, that is each thread scanning
a contiguous section of �n/w� items of the array, also incurs no bank conflicts if
�n/w� is co-prime with w. Thus, with some extra padding, contiguous parallel
access to data can also be implemented without any bank conflicts.

Instead of adding padding to ensure that �n/w� is co-prime with w, another
solution to bank-conflict-free contiguous parallel access is to convert the ma-
trix from column-major layout to row-major layout and perform strided access.
This conversion is equivalent to in-place transposition of the matrix. Catanzaro
et al. [6] study this problem and present an elegant bank-conflict-free parallel
algorithm that runs in Θ(n/w) time, which is optimal.

Sitchinava and Weichert [22] present a strong correlation between bank con-
flicts and the runtime for some problems. Based on the matrix view of shared
memory, they developed a sorting network that incurred no bank conflicts. They
show that although compared to Batcher’s sorting networks their solution incurs
extra Θ(log n) factor in parallel time and work, it performs better in practice
because it incurs no bank conflicts.

Nakano [18] presents a formal definition of a parallel model with the matrix
view of shared memory, which is also extended to model memory access latency
hiding via hyper-threading.1 He calls his model Discrete Memory Model (DMM)
and studies the problem of offline permutation, which we define in detail later.

The DMM model is probably the simplest abstract model that captures the
important aspects of designing bank-conflict-free algorithms for GPUs. In this
paper we will work in this model. However, to simplify the exposition, we will
assume that each memory access incurs no latency (i.e. takes a unit time) and
we have exactly w processors. This simplification still captures the key algo-
rithmic challenges of designing bank-conflict-free algorithms without the added
complexity of modeling hyper-threading. We summarize the key features of the
model below, and for more details refer the reader to [18].

1 Nakano’s DMM exposition actually swapped the rows and columns and viewed mem-
ory banks as columns of the matrix and the data laid out in row-major order.
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Model of Computation. Data of size n is laid out in memory as a matrix M
with dimensions w×m, wherem = �n/w�. As in the PRAMmodel, w processors
proceed synchronously in discrete time steps, and in each time step perform access
todata (aprocessormay skip accessingdata in some time step).Everyprocessor can
access any itemwithin thematrix. However, an algorithmmust ensure that in each
time step atmost one processor accesses data within a particular row.2 Performing
computation on a constant number of items takes unit time and, therefore, can be
completed within a single time step. The parallel time complexity (or simply time)
is the number of time steps required to complete the task. The work complexity (or
simply work) is the product of w and the time complexity of an algorithm.3

Although the DMM model allows each processor to access any memory bank
(i.e. any row of the matrix), to simplify the exposition, it is helpful to think of
each processor fixed to a single row of the matrix and the transfer of information
between the processors being performed via “message passing”, where at each
step, processor i may send a message (constant words of information) to another
processor j (e.g., asking to read or write a memory location within row j). Next,
the processor j can respond by sending constant words of information back to
row i. Crucially and to avoid bank conflicts, we demand that at each parallel
computation step, at most one message is received by each row; we call this the
“Conflict Avoidance Condition” or CAC.

Note that this view of interprocessor communication via message passing is
only done for the ease of exposition, and algorithms can be implemented in the
DMM model (and in practice) by processor i directly reading or writing the
contents of the target memory location from the appropriate location in row j.
Finally, CAC is equivalent to each memory bank being accessed by at most one
processor in each access request made by a warp.

Problems of Interest. Using the above model, we study complexity of devel-
oping bank conflict free algorithms for the following fundamental problems:

• Sorting: The matrix M is populated with items from a totally ordered
universe. The goal is to have M sorted in row-major order.4

• Partition: The matrix M is populated with labeled items. The labels form
a permutation that contains m copies of every integer in [w] and an item with
label i needs to be sent to row i.

• Permutation: The matrix M is populated with labeled items. The labels
form a permutation of tuples [w] × [m]. And an item with label (i, j) needs to
be sent to the j-th memory location in row i.

2 This is analogous to how EREWPRAMmodel requires the algorithms to be designed
so that in each time step at most one processor accesses any memory address.

3 Work complexity is easily computed from time complexity and number of processors,
therefore, we don’t mention it explicitly in our algorithms. However, wemention it here
because it is a useful metric for efficiency, when compared to the runtime of the optimal
sequential algorithms.

4 The final layout within the matrix (row-major or column-major order) is of little
relevance, because the conversion between the two layouts can be implemented effi-
ciently in time and work required to simply read the input [6].
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While the sorting problem is natural, we need to mention a few remarks
regarding the permutation and the partition problems. Often these two problems
are equivalent and thus there is little motivation to separate them. However
rather surprisingly, it turns out that in our case these problems are in fact very
different. Nonetheless, the permutation problem can be considered an “abstract”
sorting problem where all the comparisons have been resolved and the goal is
to merely send each item to its correct location. The partition problem is more
practical and it appears in scenarios where the goal is to split an input into
many subproblems. For example, consider a multi-way quicksort algorithm with
pivots, p0 = −∞, p1, · · · , pw−1, pw = ∞. In this case, row i would like to send all
the items that are greater than pj−1 but less than pj to row j but row i would
not know the position of the items in the final sorted matrix. In other words,
in this case, for each element in row i, we only know the destination row rather
than the destination row and the rank.

Prior Work. Sorting and permutation are among the most fundamental algo-
rithmic problems. The solution to the permutation problem is trivial in the ran-
dom access memory models – O(n) work is required in both RAM and PRAM
models of computation – while sorting is often more difficult (the Ω(n log n)
comparison-based lower bound is a very classical result). However, this picture
changes in other models. For example, in both the sequential and parallel exter-
nal memory models [2, 3], which model hierarchical memories of modern CPU
processors, existing lower bounds show that permutation is as hard as sorting
(for most realistic parameters of the models) [2, 12].

In the context of GPU algorithms, matrix transposition was studied as a spe-
cial case of the permutation problem by Catanzaro et al. [6] and they showed
that one can transpose a matrix in-place without bank conflicts in O(n) work.
While they didn’t explicitly mentioned the DMM model, their analysis holds
trivially in the DMM model with unit latency. Nakano [18] studied the prob-
lem of performing arbitrary permutations in the DMM model offline, where the
permutation is known in advance and we are allowed to pre-compute some infor-
mation before running the algorithm. The time to perform the precomputation
is not counted toward the complexity of performing the permutation. Offline
permutation is useful if the permutation is fixed for a particular application and
we can encode the precomputation result in the program description. Common
examples of fixed permutations include matrix transposition, bit-reversal per-
mutations, and FFT permutations. Nakano showed that any offline permutation
can be implemented in linear work. The required pre-computation in Nakano’s
algorithm is coloring of a regular bipartite graph, which seems very difficult to
adapt to the online permutation problem.

As mentioned earlier, Sitchinava and Weichert [22] presented the first algo-
rithm for sorting w×w matrix which incurs no bank conflicts. They use Shear-
sort [21], which repeatedly sorts columns of the matrix in alternating order
and rows in increasing order. After Θ(logw) repetitions, the matrix is sorted in
column-major order. Rows of the matrix can be sorted without bank conflicts.
And since matrix transposition can be implemented without bank conflicts, the
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0 0 0 0 . . . 0 0 1 1 1. . .

Fig. 2. Consider one row that is being converted to column-major layout. The elements
that will be put in the same column are bundled together. It is easily seen that each
row will create at most one dirty column.

columns can also be sorted without bank conflicts via transposition and sorting
of the rows. The resulting runtime is Θ(t(w) logw), where t(w) is the time it
takes to sort an array of w items using a single thread.

Our Contributions. In this paper we present the following results.

• Sorting: We present an algorithm that runs in O(m log(mw)) time, which
is optimal in the context of comparison based algorithms.

• Partition: We present an optimal solution that runs in O(m) time when
w ≤ m. We generalize this to a solution that runs in O(m log3m w) time.

• Permutation: We present a randomized algorithm that runs in expected
O(m log log logm w) time. Even though this is a rather technical solution (and
thus of theoretical interest), it strongly hints at a possible separation between
the partition and permutation problems in the DMM model.

2 Sorting and Partitioning

In this section we improve the sorting algorithm of Sitchinava and Weichert [22]
by removing a Θ(logw) factor. We begin with our base case, a “short and wide”
w×m matrix M where w ≤ √

m. The algorithm repeats the following twice and
then sorts the rows in ascending order.

1. Sort rows in alternating order (odd rows ascending, even rows descending).
2. Convert the matrix from row-major to column-major layout (e.g., the first

w elements of the first row form the first column, the next w elements form
the second column and so on).

3. Sort rows in ascending order.
4. Convert the matrix from column-major to row-major layout (e.g., the first

m/w columns will form the first row).

Lemma 1. The above algorithm sorts the matrix correctly in O(m logm) time.

Proof. We would like to use the 0-1 principle [15] but since we are not working
with a sorting network, we simply reprove the principle. Observe that our al-
gorithm is essentially oblivious to the values in the matrix and only takes into
account the relative order of them. Pick a parameter i, 1 ≤ i ≤ mw, that we
call the marking value. Based on the above observation, we attach a mark of
“0” to any element that has rank less than i and “1” to the remaining elements.
These marks are symbolic and thus invisible to the algorithm. We say a column
(or row) is dirty if it contains both elements with mark “0” and “1”. After the
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first execution of steps 1 and 2, the number of dirty columns is reduced to at
most w (Fig. 2). After the next execution of steps 3 and 4, the number of dirty
rows is reduced to two. Crucially, the two dirty rows are adjacent. After one
more execution of steps 1 and 2, there would be two dirty columns, however,
since the rows were ordered in alternating order in step 1, one of the dirty rows
will have “0”s toward the top and “1”s toward the bottom, while the other will
have them in reverse order. This means, after step 3, there will be only one dirty
column and only one dirty row after step 4. The final sorting round will sort the
elements in the dirty row and thus the elements will be correctly sorted by their
mark.

As the algorithm is oblivious to marks, the matrix will be sorted by marks re-
gardless of our choice of the marking value, meaning, the matrix will be correctly
sorted. Conversions between column-major and row-major (and vice versa) can
be performed in O(m) time using [6] while respecting CAC. Sorting rows is the
main runtime bottleneck and the only part that needs more than O(m) time. ��

Corollary 1. The partition problem can be solved in O(m) time if w ≤ √
m.

Proof. Observe that for the partition problem, we can “sort” each row in O(m)
time (e.g., using radix sort). ��

Using the above as a base case, we can now sort a square matrix efficiently.

Theorem 1. If w = m, then the sorting problem can be solved in O(m logm)
time. The partition problem can be solved in O(m) time.

Proof. Once again, we use the idea of the 0-1 principle and assume the elements
are marked with “0” and “1” bits, invisible to the algorithm. To sort an m×m
matrix, partition the rows into groups of

√
m adjacent rows. Call each group a

super-row. Sort each super-row using Lemma 1. Each super-row has at most one
dirty row so there are at most

√
m dirty rows in total. We now sort the columns

of the matrix in ascending order by transposing the matrix, sorting the rows,
and then transposing it again. This will place all the dirty rows in adjacent rows.
We sort each super-row in alternating order (the first super-row ascending, the
next descending and so on). After this, there will be at most two dirty rows left,
sorted in alternating order. We sort the columns in ascending order, which will
reduce the number of dirty rows to one. A final sorting of the rows will have the
matrix in the correct sorted order.

The running time is clearly O(m logm). In the partition problem, we use radix
sort to sort each row and thus the running time will be O(m). ��

For non-square matrices, the situation is not so straightforward and thus more
interesting. First, we observe that by using the O(logw) time EREW PRAM
algorithm [7] to sort w items using w processors, the above algorithm can be
generalized to non-square matrices:

Theorem 2. A w ×m matrix M, w ≥ m, can be sorted in O(m logw) time.
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Proof. As before assume “0” and “1” marks have been placed on the elements
in M. First, we sort the rows. Then we sort the columns of M using the EREW
PRAM algorithm [7]. Next, we convert the matrix from column-major to row-
major layout, meaning, in the first column, the first m elements will form the
first row, the next m elements the next row and so on. This will leave at most
m dirty rows. Once again, we sort the columns, which will place the dirty rows
in adjacent rows. We sort each m × m sub-matrix in alternating order, using
Theorem 1, which will reduce the number of dirty rows to two. The rest of the
argument is very similar to the one presented for Theorem 1. ��

The next result might not sound very strong, but it will be very useful in the
next section. It also reveals some differences between the partition and sorting
problems. Note that the result is optimal as long as w is polynomial in m.

Lemma 2. The partition problem on a w×m matrix M, w ≥ m > 2
√
logw, can

be solved in O(m log3m w) time. The same bound holds for sorting O(log n)-bit
integers.

Proof. We use the idea of 0-1 principle, combined with radix sort, which allows
us to sort every row in O(m) time. The algorithm uses the following steps.

Balancing. Balancing has �logm w� rounds; for simplicity, we assume logm w is
an integer. In the zeroth round, we createw/m sub-matrices of dimensionsm×m
by partitioning the rows into groups of m adjacent rows and then sort each sub-
matrix in column-major order (i.e., the elements marked “0” will be to the left and
the elementsmarked “1” to the right).At the beginning of each subsequent round i,
we havew/mi sub-matriceswith dimensionsmi×m.Wepartition the sub-matrices
into groups of m adjacent sub-matrices; from every group, we create mi square
m × m matrices: we pick the j-th row of every sub-matrix in the group, for 1 ≤
j ≤ mi, to create the j-th square matrix in the group. We sort eachm×mmatrix
in column-major order. Now, each group will form anmi+1×m sub-matrix for the
next round. Observe that balancing takes O(m logm w) time in total.

Convert and Divide (C&D). With a moment of thought, it can be proven
that after balancing, each row will have between w0

w − logm w and w0

w + logm w
(resp. w1

w − logm w and w1

w + logmw) elements marked “0” (resp. “1”) where w0

(resp. w1) is the total number of elements marked “0” (resp. “1”). This means,
that there are at most d = 2 logm w dirty columns. We convert the matrix from
column-major to row-major layout, which leaves us with w

md adjacent dirty rows
(each column is placed in w

m rows after conversion). Now, we divide M into md
smaller matrices of dimension w

md ×m. Each matrix will be a new subproblem.

The Algorithm. The algorithm repeatedly applies balancing and C&D steps:
after the i-th execution of these two steps, we have (md)i subproblems where
each subproblem is a w

(md)i ×m matrix, and in the next round, balancing and

C&D operate locally within each subproblem (i.e., they work on w
(md)i × m

matrices). Note that before the divide step, each subproblem has at most w
(md)i

adjacent dirty rows. After the divide step, these dirty rows will be sent to at
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most two different sub-problems, meaning, at the depth i of the recursion, all
the dirty rows will be clustered into at most 2i groups of adjacent rows, each
containing at most w

(md)i rows. Since, m > 2
√
logm w, after 2 logm w steps of

recursion, the subproblems will have at most m rows and thus each subproblem
can be sorted in O(m) time, leaving at most one dirty row per sub-problem.
Thus, we will end up with only 22 logm w dirty rows in the whole matrix M.

We now sort the columns of the matrix M: we fit each column of M in a
w
m × m submatrix and recurse on the submatrices using the above algorithm,
then convert each submatrix back to a column. We will end up with a matrix with
22 logm w dirty rows but crucially, these rows will be adjacent. Equally important
is the observation that 22 logm w ≤ m/2 since m > 2

√
logw. To sort these few

dirty rows, we decompose the matrix into square matrices of m ×m, and sort
each square matrix. Next, we shift this decomposition by m/2 rows and sort
them again. In one of these decompositions, an m×m matrix will fully contain
all the dirty rows, meaning, we will end up with a fully sorted matrix. If f(w,m)
is the running time on a w ×m matrix, then we have the recursion f(w,m) =
f(w/m,m) +O(m log2m w) which gives our claimed bound. ��

3 A Randomized Algorithm for Permutation

In this sectionwe present an improved algorithm for the permutation problem that
beats our best algorithm for partitioning for when the matrix is “tall and narrow”
(i.e.,w 
 m).We note that the algorithm is only of theoretical interest as it is a bit
technical and it uses randomization. However, at least from this theoretical point
of view, it hints that perhaps in the GPUmodel, the permutation problem and the
partitioning problem are different and require different techniques to solve.

Remember that we have a matrix M which contains a set of elements with
labels. The labels form a permutation of [w] × [m], and an element with label
(i, j) needs to be placed at the j-th memory location of row i. From now on, we
use the term “label” to both refer to an element and its label.

To gain our speed up, we use two crucial properties: first, we use randomization
and second we use the existence of the second index, j, in the labels.

Intuition and Summary. Our algorithm works as follows. It starts with a
preprocessing phase where each row picks a random word and these random
words are used to shuffle the labels into a more “uniform” distribution. Then,
the main body of the algorithm begins. One row picks a random hash function
and communicates it to the rest of the rows. Based on this hash function, all
the rows compute a common coloring of the labels using m colors 1, . . . ,m such
that the following property holds: for each index i, 1 ≤ i ≤ w, and among the
labels (i, 1), (i, 2), . . . , (i,m), there is exactly one label with color j, for every
1 ≤ j ≤ m. After establishing such a coloring, in the upcoming j-th step,
each row will send one label of color j to its correct destination. Our coloring
guarantees that CAC is not violated. At the end of the m-th step, a significant
majority of the labels are placed at their correct position and thus we are left
only with a few “leftover” labels. This process is repeated until the number of
“leftover” labels is a 1/ log3m w fraction of the original input. At this point, we
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use Lemma 2 which we show can be done in O(m) time since very few labels are
left. Next, we address the technical details that arise.

Preprocessing Phase. For simplicity, we assume w is divisible by m. Each row
picks a random number r between 1 and m and shifts its labels by that amount,
i.e., places a label at position j into position j+ r (mod m). Next, we group the
rows into matrices of size m×m which we transpose (i.e., the first m rows create
the first matrix and so on).

The Main Body and Coloring. We use a result by Pagh and Pagh [20].

Theorem 3. [20] Consider the universe [w] and a set S ⊂ [w] of size m. There
exists an algorithm in the word RAM model that (independent of S) can select a
family H of hash functions from [w] to [v] in O(logm(log v)O(1)) time and using
O(logm+ log logw) bits, such that:

– H is m-wise independent on S with probability 1−m−c for a constant c
– Any member of H can be represented by a data structure that uses O(m log v)

bits and the hash values can be computed in constant time. The construction
time of the structure is O(m).

The first row buildsH then picks a hash function h from the family. This function,
which is represented as a data structure, is communicated to the rest of the rows
in O(logw+m) time as follows: assume the data structure consumes Sm = O(m)
space. In the first Sm steps, the first row sends the j-th word in the data structure
to row j. In the subsequent log(w) rounds, the j-th word is communicated to any
row j′ with j′ ≡ j (mod Sm), using a simple broadcasting strategy that doubles
the number of rows that have received the j-th word. This boils down the problem
of transferring the data structure to the problem of distributing Sm randomwords
between Sm rows which can be easily done in Sm steps while respecting CAC.

Coloring. A label (i, j) is assigned color k where j ≡ h(i) + k (mod m).

Communication. Each row computes the color of its labels. Consider a row
i containing some labels. The communication phase has αm steps, where α is
a large enough constant. During step k, 1 ≤ k ≤ m, the row i picks a label of
color k. If no such label exists, then the row does nothing so let’s assume a label
(ik, jk) has assigned color k. The row i sends this label to the destination row
ik. After performing these initial m steps, the algorithm repeats these m steps
α− 1 times for a total of αm steps. We claim the communication step respects
CAC: assume otherwise that another label (i′k, j

′
k) is sent to row ik during step

k; clearly, we must have i′k = ik but this contradicts our coloring since it implies
j′k ≡ h(ik) + k ≡ jk (mod m) and thus j′k = jk. Note that the communication
phase takes O(m) time as α is a constant.

Synchronization. Each row computes the number of labels that still need to be
sent to their destination, and in O(logw+m) time, these numbers are summed
and broadcast to all the rows. We repeat the main body of the algorithm as long
as this number is larger than wm

log3
m w

.
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Finishing.We present the details in the full version of the paper [1] but roughly
speaking, we do the following: first, we show that we can pack the remaining
elements into a w × O( m

log3
m w

) matrix in O(m) time (this is not trivial as the

matrix can have rows with Ω(m) labels left). Then, we use Lemma 2 to sort the
matrix in O(m) time. Finishing off the sorted matrix turns out to be relatively
easy.

Correctness and Running Time. Correctness is trivial as at the end all rows
receive their labels and the algorithm is shown to respect CAC. Thus, the main
issue is the running time. The finishing and preprocessing steps clearly takes
O(m) time. The running time of each repetition of coloring, communication and
synchronization is O(logw + m) and thus to bound the total running time we
simply need to bound how many times the synchronization steps are executed.
To do this, we need the following lemma (proof is in the full paper [1]).

Lemma 3. Consider a row � containing a set S� of k labels, k ≤ m. Assume
the hash function h is m-wise independent on S�. For a large enough constant
α, let Cheavy be the set of colors that appear more than α times in �, and Sheavy be
the set of labels assigned colors from Cheavy. Then E[|Sheavy|] = m(k/2m)α and the

probability that |Sheavy| = Ω(m(k/2m)α/10) is at most 2−
√
m(k/2m)α/10

.

Consider a row � and let ki be the number of labels in the row after the i-th
iteration of the synchronization (k0 = m). We call � a lucky row if the hash
function is m-wise independent on � during all the i iterations. Assume � is
lucky. During the communication step, we process all the labels except those in
the set Sheavy. By the above lemma, it follows that with high probability, we will
have O(m(ki/2m)a/10) labels left for the next iteration on �, meaning, with high
probability, ki+1 = O(m(ki/2m)a/10).

Observe that if m ≥ logO(1) w (for an appropriate constant in the exponent)

and ki > m/ log3m w, then
√
m

(
ki

2m

)α/10
> 3 logw which means the probability

that Lemma 3 “fails” (i.e., the “high probability” fails) is at most 1/w3. Thus,
with probability at least 1 − 1/w, Lemma 3 never fails for any lucky row and
thus each lucky row will have at most

O

(
m

(
k0
2m

)(α/10)i
)

labels left after the i-th iteration. By Theorem 3, the expected number of unlucky
rows is at most n/mc at each iteration which means after i = O(log log logm w) it-
erations, there will be O( mw

log3
m w

+mwi
mc ) = O(mwlog3m w) labels left. So we proved

that the algorithm repeats the synchronization step at most O(log log logm n)
times, giving us the following theorem.

Theorem 4. The permutation problem on an w × m matrix can be solved in
O(m log log logm w) expected time, assumingm = Ω(logO(1) w). Furthermore, the
total number of random words used by the algorithm is w +O(m log log logm w).
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Abstract. We investigate the problem of finding a minimum-area con-
tainer for the disjoint packing of a set of convex polygons by translations.
In particular, we consider axis-parallel rectangles or arbitrary convex sets
as containers. For both optimization problems which are NP-hard we de-
velop efficient constant factor approximation algorithms.

1 Introduction

Algorithms for efficiently packing objects into containers have important appli-
cations: In two dimensions, the problem occurs, e.g., in the context of cutting
out a given set of patterns from a given large piece of material minimizing waste,
typically in apparel fabrication or sheet metal processing. In three dimensions
the problem occurs naturally in minimizing storage space or container space for
transportation.

The problem has numerous variants. The most basic one is the decision prob-
lem whether a set of given objects can be packed into a given container. In sheet
metal and apparel processing, mostly the problem of strip packing [12,13,5] oc-
curs, i.e., a given set of objects needs to be packed inside a strip of a given fixed
width using as short a piece of the strip as possible. Here, we will consider the
problem of minimizing the area of the container.

Moreover, the shape of objects to be packed is significant, e.g., in two dimen-
sions arbitrary rectangles, axis-parallel rectangles, convex polygons, or simple
polygons. Furthermore, the allowable transformations for placing the objects
play an important role: Is it allowed to rotate them, i.e., apply rigid motions, or
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are only translations allowed? We will consider packing by translations, which
is an important variant in practice. For example, in apparel production there
are usually patterns of weaving or texture on the material so that the position
where a piece should be cut out cannot be rotated arbitrarily.

Already the most simple versions of the problem are NP-hard, e.g., packing
a given set of axis-parallel rectangles into a given axis-parallel container by
translation, as can easily be seen by reduction from PARTITION (see, e.g.,
[4]). So, only for a constant number of objects polynomial-time algorithms are
known, see [1,2,14,3,8,9,10,7]. Therefore, numerous approximation algorithms
and heuristics have been investigated, mostly in the operations research and
combinatorial optimization communities and mostly on axis-parallel rectangles
under translation for a given container or strip. For a survey see [11].

Not much work has been done so far on approximation algorithms for the
problem of finding minimum area containers, either convex ones or axis-parallel
boxes. For objects that are axis-parallel, rectangles under translation, and ar-
bitrary rectangles or convex polygons under rigid motion, approximation algo-
rithms can be developed from the known ones for strip packing [13]. In fact,
in [15] it is shown that packing axis-parallel rectangles under translation with
an approximation factor of 2, and packing convex polygons under rigid motions
with an approximation factor of 4 is possible efficiently.

Thus the status of the packing problem in the translational case can be sum-
marized as follows: all known algorithms that produce optimal results or have
provable approximation ratios fall into one of two categories: they either pack
only a very special kind of objects like line-segments or axis-parallel boxes, or
they pack a constant number of polygons. Since the problem for a non-constant
number of objects is NP-hard, this leaves the following question: can the packing
problem for n objects that are not axis-parallel be efficiently approximated? We
answer this question affirmatively for packing a set P of convex polygons into
a minimum-area rectangular container. Using this result, we also show how to
approximate the minimum-area convex container for P . Our algorithms run in
O(n log n) time.

We remark that the restriction to translational packing makes the problem
harder. Indeed, if we allow rotations then we can compute a minimum-area
oriented bounding box for each input polygon, rotate those boxes so that they
become axis-parallel, and then pack the boxes using a known algorithm for axis-
parallel boxes. Since the minimum-area oriented bounding box has area at most
twice the area of the polygon itself, this can give a good approximation ratio.
When we are not allowed to rotate the polygons this approach fails, since the
area of the axis-parallel bounding box of a polygon can be arbitrarily much
larger than the area of the polygon itself. Our result shows that we can still get
a constant-factor approximation in the translational case. The approximation
factors we obtain are fairly large, but to the best of our knowledge this is the
first proof that these NP-hard optimization problems can be approximated at
all.
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2 The Algorithm

Let P := {p1, . . . , pk} be a set of convex polygons with n vertices in total. We
call an axis-aligned box into which we can pack all polygons (without rotating
them) a container for P . Our goal is to find a container for P of minimum area.
Let bopt be a minimum-area container for P , and let opt be its area. Below we
present an algorithm that finds a container of area at most 17.45 · opt.

Define the height of a polygon p, denoted height(p), to be the difference between
its maximum and minimum y-coordinates, and let hmax := maxp∈P height(p).
Furthermore, define the width of a polygon p, denoted width(p), to be the differ-
ence between its maximum andminimum x-coordinates, and let wmax := maxp∈P

width(p). We partition P into height classes using a parameter α, with 0 < α < 1
which is determined later to give the optimal approximation factor.More precisely,
P is partitioned into subsets P0, P1, . . . according to the height: Polygons with
height between hmax and αhmax go into P0, polygons with height between αhmax

and α2hmax go into P1, and so on. More precisely, Pi contains all polygons p ∈ P
such that hi+1 < height(p) � hi, where hi = αihmax. Our general strategy is now
as follows:

1. Pack each height class Pi separately into a container Bi of height hi.
2. Replace each nonempty container Bi by a collection of axis-aligned mini-

containers that are not too wide. Pack all mini-containers into a single con-
tainer B.

Next we explain each of these steps in more detail.

Step 1: Packing Polygons from One Height Class. Consider the height class Pi,
which contains all polygons whose height lies in the range (αhi, hi]. Let σ :=
[0,∞)× [0, hi] be a semi-infinite strip of height hi. We place the polygons from
Pi into σ in a greedy manner, as follows: For a polygon p, let s(p) be the segment
connecting the lowest vertex of p to the highest vertex of p. (If p has horizontal
edges, then s(p) connects the bottom-left vertex to the top-right vertex.) We call
s(p) the spine of p. We sort the polygons in Pi according to the slopes of their
spines and then we place them one by one into σ, where each polygon is pushed
as far to the left as possible—that is, until it hits a previously placed polygon
or the left edge of σ—while keeping its lowest vertex on the bottom edge of σ.
Fig. 1 illustrates the process. After we have placed all polygons, we close the
container Bi; the right edge of Bi is defined by the vertical line through the
rightmost vertex of any of the placed polygons.

Lemma 1. The area of the container Bi computed for Pi satisfies

area(Bi) � 2/α ·
∑

p∈Pi

area(p) + 2hi ·max
p∈Pi

width(p).

Proof. Recall that we push each polygon (in order of the slope of the spines) to
the left until either it hits the left edge of σ or until it hits a previously placed
polygon. We define a polygon p to be relevant if
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hi

Fig. 1. Example of a packing produced by our algorithm for a single height class

(i) it is the last polygon that hits the left edge of σ, or
(ii) there is a previously placed relevant polygon r′ such that p is the last polygon

that hits r′.

By definition, there is a relevant polygon touching the left edge of Bi. There
must also be a relevant polygon touching the right edge of Bi. Indeed, assume
otherwise and let p be the relevant polygon placed last. Then either the right
edge of Bi is determined by the rightmost vertex of some irrelevant polygon p′

placed before p or there are polygons placed after p. In the first case, p′ would
block p from reaching the left side of Bi by some chain of relevant polygons.
In the second case, none of the polygons placed after p can touch p, because
otherwise one of them would become relevant, as well. Let p′ be the one placed
directly after p. On its left, p′ must touch some (irrelevant) polygon p′′ placed
before p. But then, the union of p′ and p′′ would separate p from the left edge
of Bi. Hence, p cannot be relevant, a contradiction.

We conclude that in our analysis we can safely restrict our attention to the
relevant polygons. Now let P ∗

i be the set of relevant polygons in Pi. We will
prove that

area(Bi) � 2/α ·
∑

p∈P∗
i

area(p) + 2hi · max
p∈P∗

i

width(p), (1)

which obviously implies the lemma.
Let p1, p2, . . . , pt be the polygons in P ∗

i , ordered according to the slope of
their spines, and let S := {s(p1), . . . , s(pt)} be the set of spines of the relevant
polygons. Imagine placing each spine with its lower endpoint in the origin. Let
B(S) be the box of height hi and minimum width containing all the spines placed
in this manner, see Figure 2. Note that

area(B(S)) � 2hi · max
p∈P∗

i

width(p). (2)

Partition B(S) into pieces by extending the spines until they hit the boundary
of B(S). Let Δ0, Δ1, . . . , Δt be the resulting set of pieces, where the numbering
is in clockwise order around the origin.

To bound the area of Bi, we first partition Bi into regions (which are either
triangles, quadrilaterals, or 5-gons) by extending the spines of the polygons in P ∗

i
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Δ0

Δ1

s(r1)

s(r2)

B(S)

Δt

hi

Fig. 2. Illustration for the proof of Lemma 1

until they hit the boundary of Bi. Let Q0, Q1, . . . , Qt be these regions ordered
from left to right. Thus Qj lies between spines s(pj) and s(pj+1), except for
the first and last region which lie before the first spine and after the last spine,
respectively. We claim (and will prove below) that

area(Qj) � 2/α · (area(prj) + area(plj+1)
)
+ area(Δj). (3)

where pl and pr are the right and left hand side, respectively, into which a
polygon p is split by its spine, and, with a slight abuse of notation (since p0 and
pt+1 do not exist) we define area(p0) = area(pt+1) = 0. From the claim we derive

area(Bi) =
∑

j area(Qj)

�
∑

j

(
2/α · (area(prj) + area(plj+1)) + area(Δj)

)

� 2/α ·∑p∈P∗
i
area(p) + area(B(S)),

(4)

which, using (2), proves the lemma.
It remains to prove claim (3). To simplify the presentation we assume 0 <

j < t; it is easily verified that a similar argument applies when j = 0 and when
j = t. To get a bound on the area of Qj , let sp be the segment parallel to s(pj)
that splits Qj and passes through the point p where pj touches pj+1. Let q be
the lower endpoint of sp. There are two cases, as illustrated in Fig. 3.

pj+1

q

sp

Case A Case B

pj
p

pj
pj+1

p

q

sp
sq

plj

prj

Fig. 3. The two cases in the proof of Lemma 1
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Case A: The point q lies to the left of the lower endpoint of s(pj+1). Now connect
q to the opposite boundary of Bi with a segment, sq, which is parallel to s(pj+1).
The segments sp and sq partition Qj into three pieces Q1

j , Q
2
j , and Q3

j . First

consider the left piece, Q1
j , which is bounded from the left by s(pj) and from

the right by sp. Let A be the parallelogram between the lines spanned by s(pj),
sp, and the upper and lower edges of Bi. Because height(pj) � αhi, the area of
the triangle T defined by s(pj) and p is at least area(A) · α/2 which is at least
area(Q1

j) · α/2. (Q1
j can be smaller than A, because unlike A it can be bounded

by the right or left edge of Bi.) Since also the area of T is at most area(prj), we
have

area(Q1
j ) � 2/α · area(prj). (5)

A similar argument shows that the area ofQ3
j , the rightmost piece, is at most 2/α·

area(plj+1). The middle piece,Q2
j , is bounded by s(pj) and s(pj+1), so area(Q

2
j) �

area(Δj). This finishes the claim for Case A.

Case B: the point q lies to the right of or coincides with the lower endpoint
of s(pj+1). As before we can bound the area between s(pj) and sp by 2/α ·
area(prj). (This area may not be completely contained in Qj, but this does not
matter.) The only part of Qj we have not accounted for is the part between sp
and the line through s(pj+1) above the intersection point of sp and s(pj+1). The
area of this part is bounded by the area of Δj . This finishes the proof of claim
(3) for Case B and, hence, finishes the proof of the lemma. ��

Step 2: Generating and Packing Mini-Containers. Step 1 results in a collection of
containers Bi of various lengths li, each containing all polygons from the height
class Pi. We replace each Bi by mini-containers of equal lengths as follows.
Recall that wmax is the maximum width of any polygon in P . First, partition Bi

into boxes of width cwmax—we will determine a suitable value for c later—and
height hi, except for the last box which may have width smaller than wmax.
Now assign each polygon p ∈ Pi to the box b containing its leftmost point. (If
the leftmost point lies on the boundary between two boxes we assign it to the
righthand box.) We now generate a mini-container from each box b by extending
b to the right until its width is exactly (c + 1)wmax. Note that (the extended)
b contains all polygons assigned to b. This results in a collection Ri of at most
li/(cwmax)+1 mini-containers each having width exactly (c+1)wmax. Since the
height of Bi and of each mini-container is hi, we have

∑

b∈Ri

area(b) � (1 +
1

c
) · area(Bi) + (c+ 1)wmaxhi. (6)

Let R :=
⋃
Ri be the collection of all mini-containers obtained in this manner.

Packing these mini-containers can trivially be done without any loss of area:
since all mini-containers in R have the same width we can simply stack them on
top of each other to obtain our final container B.

We can now state our result about packing polygons.
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Theorem 1. Let P be a set of polygons in the plane with n vertices in total. We
can pack P in O(n logn) time into an axis-aligned rectangular container B such
that area(B) � 17.45 · opt, where opt is the minimum area of any axis-aligned
rectangular container for P .

Proof. Let B be the container computed by our algorithm. Observe that opt �∑
p∈P area(p) and opt � wmaxhmax. We have

area(B) =
∑

b∈R area(b)

�
∑

i

{
(1 + 1

c ) · area(Bi) + (c+ 1)wmaxhi

}
by (6)

� (1 + 1
c )

∑
i

{
2/α ·∑p∈Pi

area(p) + 2hi ·maxp∈Pi width(p)
}

+ 1
1−α · (c+ 1)wmaxhmax

(by Lemma 1 and because hi = αihmax)

� (1 + 1
c ) ·

(
2/α ·∑p∈P area(p) + 2/(1− α) · wmaxhmax

)

+ 1
1−α (c+ 1) · opt

�
(
(1 + 1

c )(
2
α + 2

1−α ) +
c+1
1−α

)
· opt.

(7)
The term before opt simplifies to

f(c, α) :=

(
1 +

1

c

)
· 2 + cα

α− α2
(8)

In order to minimize the approximation factor, we determine the optimal
values for c and α by setting the partial dervatives to zero: ∂f

∂c = 0 and ∂f
∂α = 0.

The first equation yields the identity α = 2/c2. Using this in the second
equation gives that c is obtained by c3 − 4c− 2 = 0 which has the solution c =
2.214.. which gives α = 0.407... and the approximation factor f(c, α) = 17.449....

In order to get the desired runtime, we first observe that partitioning the
polygons in P into height classes takes linear time and sorting the ones in each
class by the slopes of their spines takes a total time of O(n log n).

In order to pack each polygon p efficiently in Step 1, we maintain a balanced
binary search tree. It contains, ordered by y-coordinate, those vertices of the set
P ′ of polygons already packed which are visible from the right, see the dashed
lines in Figure 4. Thus, in order to find the point where p hits first a polygon of
P ′ when moved to the left, we search for the y-coordinates of the vertices of p
visible from the left finding the corresponding candidate edges in P ′ in O(log n)
time (dotted arrows). Vice versa, for all vertices of P ′ in the y-range of p we
find the corresponding edges of p (dashed arrows) in time O(log n) assuming
that the vertices of p are available sorted clockwise in an array. Observe that
this operation is done altogether at most once per vertex, since afterwards it
is not visible from the right any more and removed from the data structure.
Instead, the vertices of p visible from the right must be inserted. Consequently,
each vertex is inserted into and deleted from the data structure at most once,
taking O(n log n) time in total.
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p

Fig. 4. The data structure for inserting polygons

��

3 Convex Containers

Next, we consider the problem of finding an arbitrary convex container of min-
imal area for a set of convex polygons . In other words, we want to pack the
input polygons by translation such that the area of the convex hull of their
union is minimized. We will give an approximation algorithm based on the one
for minimum enclosing boxes from before.

The idea is to find a suitable orientation φ∗ ∈ S1, determine the approximately
optimal bounding box B with that orientation using the algorithm from Section
2 and then return B as the approximate solution.

Given a set P of polygons, we choose φ∗ to be that orientation minimizing
hmax(φ)wmax(φ), where hmax(φ) is the maximal extent of any polygon in direc-
tion perpendicular to φ and wmax(φ) the extent in direction φ. The orientation
φ∗ can be determined in O(n logn) time by using rotating calipers simultane-
ously around all the polygons from P .

To see this, observe that the functions hmax(φ) and wmax(φ) are composed
piecewise of functions of the form a sin(φ + b) for some constants a, b ∈ R. The
number of these functions equals the number of pairs of antipodal vertices in
all polygons, so it is O(n). Two of these functions can intersect at most once,
so by an algorithm of Hershberger [6] their upper envelope can be constructed
in O(n log n) time and consists of O(nα(n)) pieces of the functions above. The
upper envelope of hmax(φ)wmax(φ) is a piecewise trigonometric function as well
where the pieces result from merging the pieces of the upper envelopes of hmax(φ)
and wmax(φ). Therefore, it also consists of O(nα(n)) pieces and it can be con-
structed and its minimum determined in O(n logn) time.

To get an estimate on the quality of the solution, let us consider the optimal
solution which is some convex polygon Copt. Consider a bounding box Bopt of
Copt that has a side parallel to a longest line segment pq contained in Copt. We
claim that

area(Bopt) ≤ 2 · area(Copt). (9)

To see this, observe that Bopt is partitioned into two rectanglesB1 and B2 (one
of which can be empty) by pq. The triangle in B1 formed by pq and the opposite
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tangent point has half the area of B1. The same holds for the corresponding
triangle in B2. Since the union of both triangles is contained in Copt, claim (9)
follows.

Now, let hopt and wopt be the height and width of Bopt, respectively. Then by
the choice of φ∗,

hmax(φ
∗)wmax(φ

∗) � hoptwopt = area(Bopt) � 2 · opt. (10)

Observe that now opt denotes the area of the smallest enclosing convex con-
tainer rather than bounding box. Therefore, using (10) the derivation in (7) can
be replaced by

area(B) =
∑

b∈R area(b)

�
∑

i

{
(1 + 1

c ) · area(Bi) + (c+ 1)wmaxhi

}

� (1 + 1
c )

∑
i

{
2/α ·∑p∈Pi

area(p) + 2hi ·maxp∈Pi width(p)
}

+1/(1− α) · (c+ 1)wmaxhmax

� (1 + 1
c ) ·

(
2/α ·∑p∈P area(p) + 2/(1− α) · wmaxhmax

)

+2/(1− α) · (c+ 1) · opt
� c+1

c ( 2
α + 4

1−α + 2c
1−α ) · opt.

(11)

Let f(c, α) denote the factor before opt in the last line, then the partial deriva-
tives are:

∂f
∂c = −1

c2 · ( 2
α + 4+2c

1−α ) + c+1
c · 2

1−α

∂f
∂α = c+1

c · (− 2
α2 + 4+2c

(1−α)2 )

As easily can be verified, both expressions evaluate to zero for c = 2 and α = 1/3,
so we obtain the optimal approximation factor f(2, 1/3) = 27, if we choose these
values in our algorithm. We obtain:

Theorem 2. Let P be a set of convex polygons in the plane with n vertices
in total. We can pack P in O(n log n) time into a convex polygon B such that
area(B) � 27 · opt, where opt is the minimum area of any convex container
for P .

Acknowledgement. We would like to thank an anonymous referee for a useful
hint by which we could improve the approximation factors.
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Abstract. We study online scheduling problems on a single processor
that can be viewed as extensions of the well-studied problem of minimiz-
ing total weighted flow time. In particular, we provide a framework of
analysis that is derived by duality properties, does not rely on potential
functions and is applicable to a variety of scheduling problems. A key in-
gredient in our approach is bypassing the need for “black-box” rounding
of fractional solutions, which yields improved competitive ratios.

We begin with an interpretation of Highest-Density-First (HDF) as a
primal-dual algorithm, and a corresponding proof that HDF is optimal
for total fractional weighted flow time (and thus scalable for the integral
objective). Building upon the salient ideas of the proof, we show how to
apply and extend this analysis to the more general problem of minimizing∑

j wjg(Fj), where wj is the job weight, Fj is the flow time and g is a
non-decreasing cost function. Among other results, we present improved
competitive ratios for the setting in which g is a concave function, and
the setting of same-density jobs but general cost functions. We further
apply our framework of analysis to online weighted completion time with
general cost functions as well as scheduling under polyhedral constraints.

1 Introduction

We consider online scheduling problems in which a set of jobs J arriving over
time must be executed on a single processor. In particular, each job j ∈ J is
characterized by its processing time pj > 0 and its weight wj > 0, which become
known after its release time rj ≥ 0. The density of j is δj = wj/pj, whereas, given
a schedule, its completion time, Cj , is defined as the first time t ≥ rj such that pj
units of j have been processed. The flow time of j is then defined as Fj = Cj−rj ,
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and represents the time elapsed after the release of job j and up to its completion.
A natural optimization objective is to design schedules that minimize the total
weighted flow time, namely the sum

∑
j∈J wjFj of all processed jobs. A related

objective is to minimize the weighted sum of completion times, as given by the
expression

∑
j∈J wjCj . We assume that preemption of jobs is allowed.

Im et al. [14] studied a generalization of the total weighted flow time prob-
lem, in which jobs may incur non-linear contributions to the objective. More
formally, they defined the Generalized Flow Time Problem (GFP) in which the
objective is to minimize the sum

∑
j∈J wjg(Fj), where g : R+ → R

+ is a given
non-decreasing cost function with g(0) = 0. This extension captures many inter-
esting and natural variants of flow time with real-life applications. Moreover, it
is an appropriate formulation of the setting in which we aim to simultaneously
optimize several objectives. We define the Generalized Completion Time Prob-
lem (GCP) along the same lines, with the only difference being the objective
function, which equals to

∑
j∈J wjg(Cj). A further generalization of the above

problems, introduced in [6], associates each job j with a non-decreasing cost
function gj : R+ → R

+ and gj(0) = 0; in the Job-Dependent Generalized Flow
Time Problem (JDGFP), the objective is to minimize the sum

∑
j∈J wjgj(Fj).

Very recently, Im et al. [11] introduced and studied a general scheduling prob-
lem called Packing Scheduling Problem (PSP). Here, at any time t, the sched-
uler may assign rates {xj(t)} to each job j ∈ J . In addition, we are given a
matrix B of non-negative entries. The goal is to minimize the total weighted
flow time subject to packing constraints {Bx ≤ 1,x ≥ 0}. This formulates
applications in which each job j is associated with a resource-demand vector
bj = (b1j , b2j, . . . , bMj) so that it requires an amount bij of the i-th resource.

In this paper, we present a general framework based on LP-duality principles,
for online scheduling with generalized flow time objectives. Since no online algo-
rithm even for total weighted flow time is constant competitive [4], we study the
effect of resource augmentation, introduced by Kalyanasundaram and Pruhs [15].
More precisely, given some optimization objective (e.g. total flow time), an al-
gorithm is said to be α-speed β-competitive if it is β-competitive with respect
to an offline optimal scheduling algorithm of speed 1/α (here α ≥ 1).

Related Work. It is well-known that the algorithm Shortest Remaining Pro-
cessing Time (SRPT) is optimal for online total (unweighted) flow time. Bec-
chetti et al. [7] showed that the natural algorithm Highest-Density-First (HDF)
is (1+ ε)-speed 1+ε

ε -competitive for total weighted flow time. At each time, HDF
processes the job of highest density. Concerning the online GFP, Im et al. [14]
showed that HDF is (2 + ε)-speed O(1ε )-competitive algorithm for general non
decreasing functions g. On the negative side, they showed that no oblivious al-
gorithm is O(1)-competitive with speed augmentation 2 − ε, for any ε > 0 (an
oblivious algorithm does not know the function g). In the case in which g is a
twice-differentiable, concave function, they showed that the algorithm Weighted
Late Arrival Processor Sharing (WLAPS) is (1+ε)-speed O( 1

ε2 )-competitive. For
equal-density jobs and general cost functions [14] prove that FIFO is (1+ε)-speed
4
ε2 -competitive. Fox et al. [9] studied the problem of convex cost functions in the
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non-clairvoyant variant providing a (2+ε)-speed O(1ε )-competitive algorithm; in
this variant, the scheduler learns the processing time of a job only when the job
is completed. Bansal and Pruhs [5] considered a special class of convex functions,
namely the weighted �k norms of flow time, with 1 < k < ∞, and they showed
that HDF is (1 + ε)-speed O( 1

ε2 )-competitive. Moreover, they showed how to
transform this result in order to obtain an 1-speed O(1)-competitive algorithm
for the weighted �k norms of completion time.

Most of the above works rely to techniques based on amortized analysis (see
also [13] for a survey). More recently, techniques based on LP duality have been
applied in the context of online scheduling for generalized flow time problems.
Gupta et al. [10] gave a primal-dual algorithm for a class of non-linear load
balancing problems. Devanur and Huang [8] used a duality approach for the
problem of minimizing the sum of energy and weighted flow time on unrelated
machines. Of particular relevance to our paper is the work of Antoniadis et
al. [3], which gives an optimal offline energy and fractional weighted flow trade-
off schedule for a speed-scalable processor with discrete speeds, and uses an
approach based on primal-dual properties (similar geometric interpretations arise
in the context of our work, in the online setting). Anand et al. [1] were the first
to propose an approach to online scheduling by linear/convex programming and
dual fitting. Nguyen [16] presented a framework based on Lagrangian duality
for online scheduling problems beyond linear and convex programming. Im et
al. [11] applied dual fitting in the context of PSP. For the weighted flow time
objective, they gave a non-clairvoyant algorithm that is O(log n)-speed O(log n)-
competitive, where n denotes the number of jobs. They also showed that for any
constant ε > 0, any O(n1−ε)-competitive algorithm requires speed augmentation
compared to the offline optimum.

We note that a common approach in obtaining a competitive, resource-
augmented scheduling algorithm for flow time and related problems is by first
deriving an algorithm that is competitive for the fractional objective [7,13]. An
informal interpretation of the fractional objective is that a job contributes to
the objective proportionally to the amount of its remaining work (see Section 2
for a formal definition). It is known that any α-speed β-competitive algorithm
for fractional GFP can be converted, in “black-box” fashion, to a (1+ ε)α-speed
1+ε
ε β-competitive algorithm for (integral) GFP, for 0 < ε ≤ 1 [9]. Fractional

objectives are often considered as interesting problems in their own (as in [3]).

Contribution. We present a framework for the design and analysis of algo-
rithms for generalized flow time problems that is based on primal-dual and
dual-fitting techniques. Our proofs are based on intuitive geometric interpre-
tations of the primal/dual objectives; in particular, we do not rely on potential
functions. An interesting feature in our primal-dual approach, that differs from
previous ones, is that when a new job arrives, we may update the dual variables
for jobs that already have been scheduled without affecting the past portion
(primal solution) of the schedule. Another important ingredient of our analy-
sis consists in relating, in a direct manner, the primal integral and fractional
dual objectives, without passing through the fractional primal. This allows us to
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bypass the “black-box” transformation of fractional to integral solutions which
has been the canonical approach up to now. As a result, we obtain an improve-
ment to the competitive ratio by a factor of O(1ε ), for (1 + ε)-speed.

In Section 3 we begin with an interpretation of HDF as a primal-dual al-
gorithm for total weighted flow time. Our analysis, albeit significantly more
complicated than the known combinatorial one [7], yields insights about more
complex problems. Note that our approach differs from [8] (in which the objective
is to minimize the sum of energy and weighted flow time), even though the two
settings are seemingly similar. More precisely, the relaxation considered in [8]
consists only of covering constraints, whereas for minimizing weighted flow time,
one has to consider both covering and packing constraints in the primal LP.

In Sections 4 and 5 we expand the salient ideas behind the above analysis
of HDF and derive a framework which is applicable to more complicated ob-
jectives. More precisely, we show that HDF is (1 + ε)-speed 1+ε

ε -competitive for
GFP with concave functions, improving the (1+ε)-speedO( 1

ε2 )-competitive anal-
ysis of WLAPS [14], and removing the assumption that g is twice-differentiable.
For GFP with general cost functions and jobs of the same density, we show
that FIFO is (1 + ε)-speed 1+ε

ε -competitive, which improves again the analysis
in [14] by a factor of O(1ε ) in the competitive ratio. For the special case of GFP
with equal-density jobs and convex (resp. concave) cost functions we show that
FIFO (resp. LIFO) are fractionally optimal, and (1 + ε)-speed 1+ε

ε -competitive
for the integral objective. In addition, we apply our framework to the following
problems: i) online GCP: here, we show that HDF is optimal for the fractional
objective, and (1 + ε)-speed 1+ε

ε -competitive for the integral one; and ii) on-
line PSP assuming a matrix B of strictly positive elements: here, we derive an
adaptation of HDF which we prove is 1-competitive and which requires resource
augmentation maxj

Bj

bj
, with Bj = maxi bij and bj = mini bij .

Last, we extend ideas of [12], using, in addition, the Lagrangian relaxation of
a non-convex formulation for the online JDGFT problem. We thus obtain a non-

oblivious (1+ ε)-speed 4(1+ε)2

ε2 -competitive algorithm, assuming each function gj
is concave and differentiable (this result can be entirely found in the full version
[2] of this paper since it does not rely on our framework).

Complete proofs, that are omitted or sketched, can be found in [2].

Notation. Let z be a job that is released at time τ . For a given scheduling
algorithm, we denote by Pτ the set of pending jobs at time τ (i.e., jobs released
up to and including τ but not yet completed), and by Cτ

max the last completion
time among jobs in Pτ , assuming no jobs are released after τ . We also define Rτ

as the set of all jobs released up to and included τ and Jτ as the set of all jobs
that have been completed up to time τ .

2 Linear Programming Relaxation

In order to give a linear programming relaxation of GFP, we pass through the
corresponding fractional variant. Formally, let qj(t) be the remaining processing
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time of job j at time t (in a schedule). The fractional remaining weight of j at
time t is defined as wjqj(t)/pj . The fractional objective of GFP is now defined

as
∑

j

∫∞
rj

wj
qj(t)
pj

g(t − rj). An advantage of fractional GFP is that it admits a

linear-programming formulation (in fact, the same holds even for the stronger
problem JDGFP. Let xj(t) ∈ [0, 1] be a variable that indicates the execution
rate of j ∈ J at time t. The primal and dual LPs are:

min
∑

j∈J
δj

∫ ∞

rj

g(t− rj)xj(t)dt (P )

∫ ∞

rj

xj(t)dt ≥ pj ∀j ∈ J (1)

∑

j∈J
xj(t) ≤ 1 ∀t ≥ 0 (2)

xj(t) ≥ 0 ∀j ∈ J , t ≥ 0

max
∑

j∈J
λjpj −

∫ ∞

0

γ(t)dt (D)

λj − γ(t) ≤ δjg(t− rj) ∀j ∈ J , t ≥ rj (3)

λj , γ(t) ≥ 0 ∀j ∈ J , ∀t ≥ 0

In this paper, we avoid the use of the standard transformation from fractional
to integral GFP. However, we always consider the fractional objective as a lower
bound for the integral one. Specifically, we will prove the performance of an
algorithm by comparing its integral objective to that of a feasible dual solution
(D). Note that by weak duality the latter is upper-bounded by the optimal
solution of (P ), which is a lower bound of the optimum solution for integral GFP.

Moreover, we will analyze algorithms that are α-speed β-competitive. In other
words, we compare the performance of our algorithm to an offline optimum
with speed 1/α (α, β > 1). In turn, the cost of this offline optimum is the
objective of a variant of (P ) in which constraints (2) are replaced by constraints∑

j∈J xj(t) ≤ 1/α for all t ≥ 0. The corresponding dual is the same as (D),

with the only difference that the objective is equal to
∑

j∈J λjpj − 1
α

∫∞
0 γ(t)dt.

We denote these modified primal and dual LP’s by (Pα) and (Dα), respectively.
In order to prove that the algorithm is α-speed β-competitive, it will then be
sufficient to show that there is a feasible dual solution to (Dα) for which the
algorithm’s cost is at most β times the objective of the solution.

3 A Primal-Dual Interpretation of HDF for
∑

j wjFj

In this section we give an alternative statement of HDF as a primal-dual al-
gorithm for the total weighted flow time problem. We begin with an intuitive
understanding of the complementary slackness (CS) conditions. In particular,
the primal CS condition states that for a given job j and time t, if xj(t) > 0,
i.e., if the algorithm were to execute job j at time t, then it should be that
γ(t) = λj − δj(t− rj). We would like then the dual variable γ(t) to be such that
we obtain some information about which job to schedule at time t. To this end,
for any job j ∈ J , we define the line γj(t) = λj−δj(t−rj), with domain [rj ,∞).
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The slope of this line is equal to the negative density of the job, i.e, −δj. Our
algorithm will always choose γ(t) to be equal to max{0,maxj∈J :rj≤t{γj(t)}}
for every t ≥ 0. We say that at time t the line γj (or the job j) is dominant
if γj(t) = γ(t). We can thus restate the primal CS condition as a dominance
condition: if a job j is executed at time t, then γj must be dominant at t.

We will consider a class of scheduling algorithms, denoted by A, that comply
to the following rules: i) the processor is never idle if there are pending jobs; and
ii) if at time τ a new job z is released, the algorithm will first decide an ordering
on the set Pτ of all pending jobs at time τ . Then for every t ≥ τ , it schedules
all jobs in Pτ according to the above ordering, unless a new job arrives after τ .

We now proceed to give a primal-dual algorithm in the classA (which will turn
out to be identical to HDF). The algorithm will use the dominance condition
so as to decide how to update the dual variables λj , and, on the primal side,
which job to execute at each time. Note that once we define the λj ’s, the lines
γj ’s as well as γ(t) are well-defined, as we emphasized earlier. In our scheme we
change the primal and dual variables only upon arrival of a new job, say at time
τ . We also modify the dual variables for jobs in Jτ , i.e., jobs that have already
completed in the past (before time τ) without however affecting the primal
variables of the past, so as to comply with the online nature of the problem.

By induction, suppose that the primal-dual algorithm A ∈ A satisfies the
dominance condition up to time τ , upon which a new job z arrives. Let qj be the
remaining processing time of each job j ∈ Pτ at time τ and |Pτ | = k. To satisfy
CS conditions, each line γj must be defined such that to be dominant for a total
period of time at least qj , in [τ,∞). If a line γj is dominant at times t1, t2, it
must also be dominant in the entire interval [t1, t2]. This implies that for two
jobs j1, j2 ∈ Pτ , such that j1 (resp. j2) is dominant at time t1 (resp. t2), if t1 < t2
then the slope of γj1 must be smaller than the slope of γj2 (i.e., −δj1 ≤ −δj2).
We derive that A must make the same decisions as HDF. Consequently, the
algorithm A orders the jobs in Pτ in non-decreasing order of the slopes of the
corresponding lines γj . For every job j ∈ Pτ , define Cj = τ +

∑
j′≺j qj′ , where

the precedence is according to the above ordering of A. These are the completion
times of jobs in Pτ in A’s schedule, if no new jobs are released after time τ ; so we
set the primal variables xj(t) = 1 for all t ∈ (Cj−1, Cj ]. Procedure 1 formalizes
the choice of λj for all j ∈ Pτ ; intuitively, it ensures that if a job j ∈ Pτ is
executed at time t > τ then γj is dominant at t (see Figure 1 for an illustration).

Procedure 1. Assignment of dual variables λj for all j ∈ Pτ

1: Consider the jobs in Pτ in increasing order of completion times C1 < C2 < . . . < Ck

2: Choose λk such that γk(Ck) = 0
3: for each pending job j = k − 1 to 1 do
4: Choose λj such that γj(Cj) = γj+1(Cj)

The following lemma shows that if no new jobs were to be released after time
τ , HDF would guarantee the dominance condition for all times t ≥ τ .
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Fig. 1. Figure (a) depicts the situation right before τ : the two lines γ1, γ2 correspond
to two pending jobs prior to the release of z. In addition, γ(t) is the upper envelope of
the two lines. Figure (b) illustrates the situation after the release of a third job z at
time τ = r3; the area of the shaded regions is the dual objective. In Figure (c), the area
of the shaded regions is the primal fractional objective for the three jobs of Figure (b).

Lemma 1 (future dominance). For λj ’s as defined by Procedure 1, and A ≡
HDF , if job j ∈ Pτ is executed at time t ≥ τ , then γj is dominant at t.

Observe that Procedure 1 modifies (increases) the λj variables of all jobs
pending at time τ . In turn, this action may violate the dominance condition
prior to τ . We thus need a second procedure that will rectify the dominance
condition for t ≤ τ . We consider again the jobs in Pτ in increasing order of their
completion times, i.e., C1 < C2 < . . . < Ck, with k = |Pτ |. We partition Rτ into
k disjoint sets S1, S2, . . . , Sk. Each set Sj is initialized with the job j ∈ Pτ , which
is called the representative element of Sj (we use the same index to denote the
set and its representative job). Informally, the set Sj will be constructed in such
a way that it will contain all jobs a ∈ Jτ whose corresponding variable λa will
be increased by the same amount in the procedure. This amount is equal to the
increase, say Δj , of λj , due to Procedure 1 for the representative job of Sj . We
then define Procedure 2 that increases the dual variables for jobs in Jτ .

Procedure 2. Updating of dual variables λj for all jobs j ∈ Jτ

1: for j = 1 to k do
2: Add j in Sj

3: for each job a ∈ Jτ in decreasing order of completion times do
4: Let b be the job such that γa(Ca) = γb(Ca)
5: Let Sj be the set that contains b
6: Add a in Sj

7: for each set Sj , 1 ≤ j ≤ k, do
8: Let Δj be the increase of λj , due to Procedure 1, for the representative of Sj

9: Increase λa by an amount of Δj for all a ∈ Sj \ {j}

Geometrically, the update operation is a vertical translation of the line γ(t)
for t < τ . The following lemma shows that, if a line γj was dominant for a time
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t < τ prior to the arrival of the new job at time τ , then it will remain dominant
after the application of Procedures 1 and 2.

Lemma 2 (past dominance). For λj’s as defined by both Procedure 1 and
Procedure 2, and A ≡ HDF , if job j ∈ Jτ ∪ Pτ is executed at time t < τ , then
γj is dominant at t.

The following lemma states that the dual variable γ(t) has been defined in
such a way that it is zero for all t > Cτ

max. This will be required in order to
establish that the primal and dual solutions have the same objective value.

Lemma 3 (completion). For λj’s defined by Procedures 1 and 2, we have that
γ(t) = 0 for every t > Cτ

max.

The proof of the following theorem is based on Lemmas 1, 2 and 3, and it is
a simplified case of the proof of Theorem 2 which is given in the next section.

Theorem 1. The primal-dual algorithm A ≡ HDF is an optimal online al-
gorithm for the total fractional weighted flow time and a (1 + ε)-speed 1+ε

ε -
competitive algorithm for the total (integral) weighted flow time.

4 A Framework for Primal-Dual Algorithms

Building on the primal-dual analysis of HDF for total weighted flow time, we
can abstract the essential properties that we need to satisfy in order to obtain
online algorithms for other similar problems. For the problems we consider, the
primal solution is generated by an online primal-dual algorithm A ∈ A which
may not necessarily be HDF. In addition, each job j will now correspond to a
curve γj (for the total weighted flow time problem, γj is a line), and we will also
have a dual variable γ(t) that will be set equal to max{0,maxj∈J :rj≤t{γj(t)}}
for every t ≥ 0. Finally, the crux is in maintaining dual variables λj , upon release
of a new job z at time τ , such that the following properties are satisfied: (P1)
Future dominance: if the algorithm A executes job j at time t ≥ τ , then γj is
dominant at t; (P2) Past dominance: if the algorithm A executes job j at time
t < τ , then γj remains dominant at t. In addition, the primal solution (i.e., the
algorithm’s scheduling decisions) for t < τ does not change due to the release of
z; and (P3) Completion: γ(t) = 0 for all t > Cτ

max. Essentially properties (P1),
(P2) and (P3) reflect that the statements of Lemmas 1, 2 and 3 are not tied
exclusively to the total weighted flow time problem.

Theorem 2. Any algorithm that satisfies the properties (P1), (P2) and (P3)
with respect to a feasible dual solution is an optimal online algorithm for frac-
tional GFP and a (1 + ε)-speed 1+ε

ε -competitive algorithm for integral GFP.

Proof. The feasibility of the solution is directly implied by the fact that λj ≥ 0
and from our definition of γ(t) which implies that the constraints (3) are satisfied
and γ(t) ≥ 0. Let Cmax be the completion time of the last job. We will assume,



Primal-Dual and Dual-Fitting Analysis of Online Scheduling Algorithms 43

without loss of generality, that at time t ≤ Cmax there is at least one pending job
in the schedule; otherwise, there are idle times in the schedule and we can apply
the same type of analysis for jobs scheduled between consecutive idle periods.

We will first show that the primal and the dual objectives are equal. Consider
a job j and let [t1, t2], [t2, t3], . . . , [tk−1, tk] be the time intervals during which j
is executed. Note that xj(t) = 1 for every t in these intervals (and xj′ (t) = 0
for j′ 	= j). Hence, the contribution of j to the primal (fractional) objective is∑k−1

i=1 δj
∫ ti+1

ti
g(t− rj)dt. By properties (P1) and (P2), the line γj is dominant

during the same time intervals. Thus, the contribution of job j to the dual is

λjpj −
k−1∑

i=1

∫ ti+1

ti

γ(t)dt =

k−1∑

i=1

δj

∫ ti+1

ti

g(t− rj)dt

since
∑k−1

i=1

∫ ti+1

ti
λjdt = λj

∑k−1
i=1

∫ ti+1

ti
xj(t)dt = λjpj . The first part of the

theorem follows by summing over all jobs j, and by accounting for the fact that∫∞
Cmax

γ(t) = 0 (from property (P3)).
For the second part of the theorem, consider again the time intervals dur-

ing which a job j is executed. The contribution of j to the integral objec-
tive is wjg(Cj − rj) = δjg(Cj − rj)pj . By properties (P1) and (P2), for any

t ∈ ⋃k−1
i=1 [ti, ti+1] we have that γj(t) ≥ 0. In particular, it holds for tk = Cj ,

that is λj ≥ δjg(Cj − rj). Therefore, the contribution of j to the integral ob-
jective is at most λjpj . Since we consider the speed augmentation case, we
will use as lower bound of the optimal solution the dual program that uses
a smaller speed as explained in Section 2. By properties (P1) and (P2), we have
γ(t) = λj−δjg(t−rj) ≤ λj during the time intervals where the job j is executed.
Thus, the contribution of j to the dual objective is at least

λjpj − 1

1 + ε

k−1∑

i=1

∫ ti+1

ti

γ(t)dt ≥ λjpj − 1

1 + ε

k−1∑

i=1

∫ ti+1

ti

λjdt =
ε

1 + ε
λjpj ,

since
∑k−1

i=1

∫ ti+1

ti
λjdt = λj

∑k−1
i=1

∫ ti+1

ti
xj(t)dt = λjpj . From property (P3) we

have
∫∞
Cmax

γ(t)dt = 0. Summing up over all jobs, the theorem follows. 
�
We can apply the proposed framework to three different settings and we get

the following results (see [2]).

Theorem 3. The primal-dual algorithm A ≡ HDF is an optimal algorithm for
fractional GCP and a (1 + ε)-speed 1+ε

ε -competitive algorithm for integral GCP.

Theorem 4. The primal-dual algorithm A ≡ FIFO (resp. A ≡ LIFO) is an
optimal online algorithm for fractional GFP and a (1+ ε)-speed 1+ε

ε -competitive
algorithm for integral GFP, when we consider convex (reps. concave) cost func-
tions and jobs of equal density.

Theorem 5. For the online PSP problem with constraints Bx ≤ 1 and bij > 0
for every i, j, an adaptation of HDF is maxj{Bj/bj}-speed 1-competitive for
fractional weighted flow time and maxj{(1+ε)Bj/bj}-speed (1+ε)/ε-competitive
for integral weighted flow time.
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5 A Generalized Framework Using Dual-Fitting

In this section we relax certain properties in order to generalize our framework
and apply it to the integral variant of more problems. Our analysis here is based
on the dual-fitting paradigm, since the analysis of Section 3 provides us with in-
tuition about the geometric interpretation of the primal and dual objectives. We
consider, as concrete applications, GFP for given cost functions g. We again as-
sociate with each job j the curve γj and set γ(t) = max{0,maxj∈J :rj≤t{γj(t)}}.
Then, we need to define how to update the dual variables λj , upon release of a
new job z at time τ , such that the following properties are satisfied: (Q1): if
the algorithm A schedules job j at time t ≥ τ then γj(t) ≥ 0 and λj ≥ γj′(t) for
every other pending job j′ at time t; (Q2): if the algorithm A schedules job j
at time t < τ , then γj(t) ≥ 0 and λj ≥ γj′(t) for every other pending job j′ at
time t. In addition, the primal solution for t < τ is not affected by the release of
z; and (Q3): γ(t) = 0 for all t > Cτ

max.
Note that (Q1) is relaxed with respect to property (P1) of Section 4, since

it describes a weaker dominance condition. Informally, (Q1) guarantees that for
any time t the job that is scheduled at t does not have negative contributions
in the dual. On the other hand, property (Q2) is the counterpart of (Q1), for
times t < τ (similar to the relation between (P1) and (P2)). Finally, note that
even though the relaxed properties do not guarantee anymore the optimality for
the fractional objectives, the following theorem (Theorem 6) establishes exactly
the same result as Theorem 2 for the integral objectives. This is because in the
second part of the proof of Theorem 2 we only require that when j is executed
at time t then λj ≥ γj′ (t) for every other pending job j′ at t, which is in fact
guaranteed by properties (Q1) and (Q2). Therefore, the proof of the following
theorem is identical with the one of Theorem 2.

Theorem 6. Any algorithm that satisfies the properties (Q1), (Q2) and (Q3)
with respect to a feasible dual solution is a (1+ε)-speed 1+ε

ε -competitive algorithm
for integral GFP with general cost functions g.

5.1 Online GFPwith General Cost Functions and Equal-Density Jobs

We will analyze the FIFO algorithm using dual fitting. We will use a single
procedure, namely Procedure 3, for the assignment of the λj variables for each
job j released by time τ . We denote this set of jobs by Rτ , and k = |Rτ |.
Procedure 3. Assignment and updating of λj ’s for the set Rτ of all jobs released by
time τ .
1: Consider jobs in Rτ in increasing order of completion times C1 < C2 < . . . < Ck

2: Choose λk such that γk(Ck) = 0
3: for j = k − 1 to 1 do
4: Choose the maximum possible λj such that for every t ≥ Cj , γj(t) ≤ γj+1(t)
5: if γj(Cj) < 0 then
6: Choose λj such that γj(Cj) = 0
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We can show that the dual solution created by Procedure 3 satisfies the prop-
erties (Q1), (Q2) and (Q3). Hence, the following theorem is an immediate con-
sequence of Theorem 6.

Theorem 7. FIFO is a (1 + ε)-speed 1+ε
ε -competitive for integral GFP with

general cost functions and equal-density jobs.

5.2 Online GFP with Concave Cost Functions

We will analyze the HDF algorithm using dual fitting. As in Section 3, we will
employ two procedures for maintaining the dual variables λj . The first one is
Procedure 4 which updates the λj ’s for j ∈ Pτ . The second procedure updates
the λj ’s for j ∈ Jτ ; this procedure is identical to Procedure 2 of Section 3.

The intuition behind Procedure 4 is to ensure property (Q1) that is, γj(t) ≥ 0
and λj ≥ γj′(t) for all j′ ∈ Pτ , which in some sense is the “hard” property to
maintain. Specifically, for given job j there is a set of jobs A (initialized in
line 4) for which the property does not hold. The while loop in the procedure
decreases the λ values of jobs in A so as to rectify this situation (see line 6(ii)).
However, this decrement may, in turn, invalidate this property for some jobs b
(see line 6(i)). These jobs are then added in the set of “problematic” jobs A and
we continue until no problematic jobs are left.

Procedure 4. Assignment of dual variables λj for all j ∈ Pτ .

1: Consider the jobs in Pτ in increasing order of completion times C1 < C2 < . . . < Ck

2: For every 1 ≤ j ≤ k choose λj such that γj(Ck) = 0
3: for j = 2 to k do
4: Define A := {jobs 1 ≤ a ≤ j − 1 : γa(Cj−1) > λj}
5: while A �= ∅ do
6: Continuously reduce λa by the same amount for all jobs a ∈ A until:

(i) ∃ a ∈ A and b ∈ Pτ \ A with b < a s.t. λa = γb(Ca−1); then A ← A ∪ {b}
(ii) ∃ a ∈ A s.t. γa(Cj−1) = λj ; then A ← A \ {a}

We can show that the dual solution maintained by Procedures 3 and 2 sat-
isfies the properties (Q1), (Q2) and (Q3). Hence, the following theorem is an
immediate consequence of Theorem 6.

Theorem 8. HDF is a (1+ ε)-speed 1+ε
ε -competitive for integral GFP with con-

cave cost functions.

6 Conclusion

A promising direction for future work is to apply our framework to non-
clairvoyant problems. It would be very interesting to obtain a primal-dual anal-
ysis of Shortest Elapsed Time First (SETF) which is is known to be scalable [15];
moreover, this algorithm has been analyzed in [9] in the context of the online GFP
with convex/concave cost functions. Interestingly, one canuse duality to argue that
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SETF is the non-clairvoyant counterpart of HDF; more precisely, one can derive
SETF as a primal-dual algorithm in a similar manner as the discussion of HDF in
Section 3. It remains to bound the primal and dual objectives, which appears to be
substantially harder than in the clairvoyant setting. A further open question is ex-
tending the results of this paper to multiple machines; here, one potentially needs
to define the dual variable γ(t) with respect to as many curves per job asmachines.
Last,wewould like to further relax the conditions of the current framework in order
to allow for algorithms that are not necessarily scalable.
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Abstract. We discuss the well known job scheduling problem with re-
lease times and deadlines, alongside an extended model - buffer man-
agement for packets with processing requirements. For job scheduling,

an Ω(
√

log κ
log log κ

) lower bound for any randomized preemptive algorithm

was shown by Irani and Canetti (1995), where κ is the the maximum job
duration or the maximum job value (the minimum is assumed to be 1).
The proof of this well-known result is fairly elaborate and involved. In
contrast, we show a significantly improved lower bound of Ω(log κ) using
a simple proof. Our result matches the easy upper bound and closes a
gap which was supposedly open for 20 years.

We also discuss an interesting extension of job scheduling (for tight
jobs). We discuss the problem of handling a FIFO buffer of a limited
capacity, where packets arrive over time and may be preempted. Most of
the work in buffer management considers the case where each packet has
unit processing requirement. We consider a model where packets require
some number of processing cycles before they can be transmitted. We aim
to maximize the value of transmitted packets. We show an Ω( log κ

log log κ
)

lower bound on the competitive ratio of randomized algorithms in this
setting. We also present bounds for several special cases. For packets with
unit values we also show a ϕ ≈ 1.618 lower bound on the competitive
ratio of deterministic algorithms, and a 2-competitive algorithm for this
problem. For the case of packets with constant densities we present a
4-competitive algorithm.

Keywords: Competitive analysis, buffer management, job scheduling,
online algorithms, deadlines.

1 Introduction

We discuss the job scheduling problem with release times, deadlines and values.
Jobs arrive over time at a server. At each time step, the server may choose some
job to process. The server gains the value of a job if it is fully processed before
its deadline. This model has been discussed in detail by Canetti and Irani [5].
To phrase their results we add the following definition:
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Definition 1. Let κ be the minimum between the maximum job value V , the
maximum job duration T and the maximum job value-density ρ. The minimum
value and duration is assumed to be 1.

In [5] an Ω(
√

log κ
log log κ ) lower bound for randomized preemptive algorithms is

shown. We improve this bound to Ω(log κ), and close a gap which was open for
20 years.

We then discuss a buffer management problem. Unit-sized packets arrive at a
server. The server has a FIFO buffer of size B. Each packet has a processing time
requirement and a value associated with it. The server may process any packet
from its buffer at each time slot. Once the processing requirement is met the
packet may be transmitted subject to the buffer’s FIFO nature, i.e. only packets
at the head of the buffer can be transmitted. A packet may be preempted from
the buffer before transmission, but such a packet is lost. We aim to maximize
the value of successfully transmitted packets (full description appears in ‘Model
Description’ paragraph).

Our Contributions - Job Scheduling. We discuss the problem of scheduling
jobs with release times, deadlines and values. There we show the following result:

– An Ω(log κ) lower bound for any randomized preemptive algorithm for the
job scheduling problem, for κ defined above.

This result is complementary to the upper bound provided by a ‘Classify and
Randomly Select’ algorithm, randomly choosing between possible job values or
durations, similar to that presented in [5]. This algorithm is O(log κ)-competitive
and constitutes an upper bound matching our lower bound.

Our Contributions - Buffer Management. Our results for the buffer man-
agement problem include:

– For packets with unit value: A ϕ lower bound on the competitive ratio of any
deterministic algorithm, where ϕ ≈ 1.618 is the golden ratio; A deterministic
2-competitive algorithm called SRPTB.

– For packets with constant densities: A deterministic 4-competitive algorithm
called KeepPackets.

– For packets with arbitrary values and processing requirements: An Ω( log κ
log log κ )

lower bound on the competitive ratio of any randomized algorithm, for κ de-
fined above.

For packets with unit values our algorithm is based on the Shortest-Remaining-
Processing-Time scheduler. We show that this algorithm is between 2 and (2− 1

B )
competitive for maximizing throughput. An independent upper bound of 2 for
this problem was shown by Kogan et al [18]. Our ϕ lower bound is the first lower
bound for the unit value model, and previous lower bounds where only known
for the case that packets have values [6].
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For packets with constant densities the KeepPackets (or KP ) algorithm is
between 4 and (4 − 1

B ) competitive. For its admission control, the algorithm
prefers more valuable packets, which are at least twice as valuable as the least
valuable packet in the buffer.

Our randomized lower bound shows that for arbitrary values the problem is
made significantly more difficult. Interestingly the lower bound holds for both a
FIFO and a non-FIFO buffer. An upper bound of O(log κ) can be achieved by a
‘Classify and Randomly Select’ algorithm, randomly choosing between different
possible processing times.

We also show an Ω(min(V,
√
T )) lower bound on the competitive ratio of all

deterministic algorithms in this setting, for V ,T defined above.

Related Work. Online scheduling is a widely researched field, with many dif-
ferent variations of the problem studied. The simplest job scheduling problem
with release times and deadlines was discussed by Canetti and Irani [5]. They
show a poly-logarithmic lower bound on the competitive ratio of all randomized
algorithms. A quadratic gap has existed between their lower bound and upper
bound. There are various simplifying assumptions that can be made to the ba-
sic model described such that a constant competitive deterministic algorithm
exists. If all job’s densities are constant there exists a 4-competitive algorithm,
as shown by Koren et al [21]. Alternatively, if all job durations are constant a
1.828-competitive algorithm was presented by Englert et al [9]. For jobs that
have a window length that is at least α times longer than their duration there
exists an ( α

α−1 )-competitive algorithm [7, 10]. A different approach for relaxing
this problem is through resource augmentation. In this relaxation, if we give the
algorithm processors which are faster by a factor of (1 + ε) than those of the
optimum, a (1+ 1

ε )-competitive algorithm was found by Kalyanasundaram et al
[12]. All these modifications show that there are many variations to the model,
all of which result in the logarithmic bound collapsing to a constant competi-
tive algorithm. Extensive surveys of the job scheduling problem can be found in
[24, 25].

The buffer management problem with unit processing times has been well
researched. The research in this field was initiated in [15, 22]. Kesselman et
al [15] analyzed the performance of the greedy algorithm in the bounded-buffer
model for packets with values. In this model, they show that the greedy algorithm
is 2-competitive. The model where packets have values has also been considered
in [1, 8]. A model where packets have dependencies between them was studied
in [16, 23]. The multi-queue model has also been considered, for example in
[2–4, 13, 14].

Buffer management for a bounded buffer with processing time requirements
has been researched in numerous articles. Kogan et al [18] showed a 2-competitive
deterministic algorithm for this variation of the scheduling problem. In [17] re-
source augmentation is studied. It is shown that by moderately increasing the
speed of the processor, the gap between an algorithm’s performance and that
of the optimal algorithm can be closed. In [20], packets that have sizes in addi-
tion to required processing time is researched, for non-FIFO buffers. Chuprikov
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et al [6] discuss a model where packets have values in addition to processing
requirements. Surveys of this field can be found in [11, 19].

Model Description. In Section 2, we discuss the well-known job scheduling
problem for single or multiple processors. In this model, jobs arrive over time
at a server. Each job has some duration for which it must be processed, some
deadline, and a value attained by successfully processing the packet before its
deadline. Jobs may be preempted and may migrate between different processors.
The goal is to maximize the value of completed jobs.

In Section 3 we consider the problem of a server managing a FIFO buffer of
limited capacity. We denote the buffer’s capacity as B. Packets arrive sequen-
tially and must be handled. The packets are unit-sized, meaning each packet
p occupies a single unit of space in the buffer. It also has a certain amount of
processing time r(p) ∈ {1, . . . , T }, and a value v(p) ∈ {1, . . . , V } associated with
it. We denote the packet’s arrival time by a(p). For a given algorithm processing
the input, we denote by rt(p) the residual processing time of a packet p at time
t. Note that ra(p)(p) = r(p). At each time step t three tasks must be performed
sequentially:

i Scheduling : one of the packets in the buffer, p, that has rt−1(p) > 0, is
chosen for processing. The residual processing time of the chosen packet is
then reduced by 1, i.e. rt(p) = rt−1(p)− 1

ii Transmission: all packets p at the head of the buffer that have rt(p) = 0 are
transmitted and leave the buffer. Note that more than one packet can be
transmitted at a given time-step.

iii Buffer Management: new packets arrive at the server and are handled. At this
stage, some packets that are already in the buffer may be preempted. This
means those packets are lost, but all trailing packets are pushed forward
in the buffer. Newly arriving packets can be either accepted or rejected.
Accepted packets are placed at the end of the buffer, while rejected packets
are lost forever.

The goal is to maximize the value of transmitted packets. It is easy to see that
for a unit sized buffer, this is equivalent to the job scheduling problem. In Section
3.1 we analyze packets that have unit values, i.e. each packet p has v(p) = 1. In
Section 3.2 we analyze packets that have a density of 1, i.e. each packet p has
v(p) = r(p). In Section 3.3 we discuss the most general model where a packet’s
processing time and value are arbitrary. There we also discuss a modification
of this model where the buffer is not FIFO. This means that packets can be
transmitted from any place in the buffer, regardless of the order of their arrival.

2 Job Scheduling

We proceed to discuss the job scheduling problem form processors. As mentioned
before, a O(log κ) upper bound is provided by the ‘Classify and Randomly Select’
algorithm. We provide a tight lower bound improving on the previously known

lower bound of Ω(
√

log κ
log log κ ) shown in [5].
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Theorem 1. Any randomized preemptive algorithm for the job scheduling prob-
lem with deadlines has a competitive ratio which is Ω(log κ) for κ defined above.

Proof. Let ALG be some randomized algorithm solving the job scheduling prob-
lem. If we let ALG transmit packets fractionally, clearly a 1-competitive algo-
rithm exists for tight jobs. Nevertheless, in our analysis, we give ALG some
additional power: we assume ALG can fractionally transmit jobs that have been
continuously processed since their arrival, i.e. for a job with value v and duration
d that arrived at time t0, after being processed for some t < d time by time t0+t,
ALG gains t

dv value from the job. We define log κ
2 job types, where the i’th job

type has a duration of 4i and a value of 2i for each 0 ≤ i < log κ
2 . We build an

input sequence that is composed of a series of phases. At the beginning of each
phase, m jobs of each type are sent to the server. We define pi to be the expected
number of i-type jobs accepted by ALG. Note that since all m log κ

2 arrived at
the same time and they are all tight, at most m of them can be accepted by
ALG. This means that

∑
i pi ≤ m. We define ri =

∑
j≤i

pj

2i−j +
∑

j>i
pj

2j−i . We
note that

∑

i

ri =
∑

i

∑

j≤i

pj
2i−j

+
∑

i

∑

j>i

pj
2j−i

=
∑

i

(pi
∑

j≥i

2i−j) +
∑

i

(pi
∑

j<i

2j−i)

=
∑

i

2pi +
∑

i

pi ≤ 3m

Hence, there exists some i such that ri ≤ 3m
log κ

2

= 6m
log κ . OPT processes the

jobs of type i during this phase and gains a value of 2im. ALG’s expected gain

during this phase is
∑

j≤i 2
jpj +

∑
j>i 2

i 2j+1

4j+1 pj . This is since ALG may be semi-
fractional. Denote the k’th phase as σk. Then

ALG(σk)

OPT (σk)
=

1

m
(
∑

j≤i

2j−ipj +
∑

j>i

2j+1

4j+1
pj) ≤ 1

m
(
∑

j≤i

2j−ipj +
∑

j>i

2−j−1pj)

≤ 1

m
(
∑

j≤i

2j−ipj +
∑

j>i

2i−jpj) ≤ ri
m

≤ 6

log κ

We begin a new phase immediately when OPT completes processing its jobs. We
repeat this process N times, for some largeN . Note that due to ALG being semi-
fractional, it can only improve its situation by replacing a partially processed
job of type i with the job of type i that arrives at the beginning of the new
phase. Hence we can assume that ALG preempts the currently processed job
immediately before the start of a new phase. Thus the analysis holds for all
phases but the last one, where ALG has a gain of at most mV . We denote the
full input sequence by σ. Using the claims above, we get that

OPT (σ)

ALG(σ)
=

∑
iOPT (σi)

mV +
∑

i ALG(σi)
≥

log κ
6 (

∑
i ALG(σi))

mV +
∑

i ALG(σi)

Thus as the number of phases N tends to ∞, the ratio tends to log κ
6 which

implies the lower bound. �	
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3 Buffer Management

In this section, we discuss the buffer management problem for packets with pro-
cessing requirements. We begin by discussing the case that arriving packets have
unit values. We present a 2-competitive deterministic algorithm called SRPTB,
and a ϕ lower bound on the competitive ratio of all deterministic algorithms
for this problem. We then discuss packets with constant densities, and show a
4-competitive deterministic algorithm called KP . Finally, we present a lower
bound on the competitive ratio of any randomized algorithm for packets with
arbitrary values and processing requirements.

3.1 Packets with Unit Values

We begin by defining the SRPTB’s scheduling policy and its buffer management
policy:

i Scheduling : always process the packet with the shortest remaining processing
time (SRPT). Break ties by processing the packet closer to the head of the
buffer.

ii Buffer Management: accept a packet p if there is room in the buffer, or if
the buffer is full and the packet in the buffer with the greatest remaining
processing time, q, has more processing time remaining than p (in this case,
preempt q). The algorithm also maintains a counter of completed packets,
i.e. packets whose processing time has reached 0 (including both transmitted
packets and those still in the buffer). When this counter reaches B, the buffer
is cleared, i.e. all packets that have positive remaining processing time are
preempted, and then all packets still remaining in the buffer (if any), all
of which have 0 remaining processing time, are transmitted. The counter is
reset once the buffer is cleared.

Theorem 2. SRPTB is at most 2-competitive.

The following lemma shows that the analysis of SRPTB’s competitive ratio is
tight:

Lemma 1. SRPTB is at least (2− 1
B )-competitive

We proceed to show a lower bound on the competitive ratio of any deterministic
algorithm for this problem. The lower bound is shown using a simple choice
between one of two possible input sequences.

Theorem 3. Any deterministic online algorithm ALG is at least (ϕ − 1
B )-

competitive, where ϕ ≈ 1.618 is the golden ratio.

Proof. Given a deterministic online algorithm ALG, we design an input sequence
σ on which the number of packets transmitted by OPT is at least (ϕ− 1

B ) times

more than those transmitted by ALG. At time 0, we send B − 
B
ϕ � packets

whose required processing time is B. We call these type-a packets. Immediately
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thereafter, we send 
B
ϕ � packets whose required processing time is 1. We call

these type-b packets. We then wait until time t = 
B
ϕ �. At this time there are

two options for the remainder of the input sequence:

i No packets were transmitted by ALG by this time. In this case, we send
B type-b packets. We then wait for ALG to finish processing and transmit-
ting its buffer. Regardless of what ALG decided to do with the new type-b
packets, the maximum number of packets that ALG can transmit is B, the
number of packets it can have in its buffer. OPT , on the other hand, could
have rejected all type-a packets. It could then have transmitted all 
B

ϕ � ini-
tial type-b packets before time t. It could then transmit all B new type-b
packets that arrived at time t. Thus we get

OPT (σ)

ALG(σ)
≥ B + 
B

ϕ �
B

≥ 1 +
1

ϕ
− 1

B
= ϕ− 1

B

ii Some packets were transmitted by ALG during this time. In this case, we
send no more new packets. All the packets transmitted by ALG must have
been type-b. This is since t < B, so no type-a packet could have been fully
processed. Due to the FIFO nature of the buffer, all type-a packets must have
been preempted or rejected. This means that ALG’s maximum gain is 
B

ϕ �,
the total number of type-b packets. OPT can simply process and transmit
all B packets. This yields

OPT (σ)

ALG(σ)
≥ B


B
ϕ �

≥ ϕ

In either case, we get that ALG’s competitive ratio on the input sequence is
OPT (σ)
ALG(σ) ≥ ϕ − 1

B , as desired. By repeating the sequence, we conclude that the

lower bound holds even if we allow the competitive ratio an additive constant.
�	

3.2 Packets with Constant Density

In this section we limit ourselves only to packets that have a constant density.
We present an algorithm called KeepPackets, or KP , which is 4-competitive in
this setting. We first define the algorithm:

i Scheduling : greedily process the packet at the head of the buffer.
ii Buffer Management: accept a packet if there is room in the buffer, or if the

buffer is full and the packet in the buffer with the smallest value, q, has
v(q) ≤ 1

2v(p) (in this case, preempt q).

We prove the following upper bound on the competitive ratio of KP :

Theorem 4. The KP algorithm is at most 4-competitive.
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Proof. We assume WLOG that KP ’s buffer is empty only at the beginning and
the end of its processing of the input sequence σ. Otherwise, we could simply
divide σ into phases σ1, . . . , σk, where our assumption holds in each σi. We
could then analyze KP ’s operation on each σi independently. Let σ be some
input sequence. As explained above, we assume that during KP ’s operation on
σ its buffer is only empty at times 0 and tmax, where after time tmax no more
packets arrive. Let 0 < t ≤ tmax be some time step. If OPT doesn’t schedule a
packet at this time, then it obviously has no gain at this time step. Otherwise,
at this time, OPT schedules some packet p. If p is not eventually transmitted by
OPT then it gains nothing from processing p, and otherwise over the r(p) time
steps that OPT takes to process p, it gains v(p) = r(p). Thus, it can be said that
OPT has a gain of at most 1 at time step t, and we see that OPT ’s gain until
tmax, OPTt≤tmax(σ) ≤ tmax. We now analyze KP ’s gain until time tmax. KP ’s
buffer is not empty, so at any time it schedules some packet, q. We inspect q’s
preemption chain, q1, q2, . . . , qj = q, . . . , qn, such that qi was preempted at the
arrival of qi+1 and qn was accepted by KP . By the buffer management policy,
v(qi) ≤ 1

2v(qi+1). This means that

n∑

i=1

v(qi) ≤ 2v(qn)

We denote by ci the i’th preemption chain, and by ni its length. We denote
the packets of the i’th preemption chain by ci,1, . . . , ci,ni . We see that the value
gained by KP until tmax, which is precisely all of KP ’s gain, holds:

KP (σ) =
∑

i

v(ci,ni) ≥
1

2

∑

i

(

ni∑

j=1

v(ci,j)) ≥ 1

2
tmax ≥ 1

2
OPTt≤tmax(σ) (1)

The final inequality holds since {ci,j} contains at least all the packets scheduled
by KP until tmax, and as of such their total duration (and their total value) is
at least tmax.

It remains to see what happens after time tmax. By the definition of tmax, no
new packets arrive after this time. This means that OPT can gain at most the
total value stored in its buffer at time tmax. We match each packet p in OPT ’s
buffer to some packet q transmitted by KP , in a manner such that the sum of
the values of the packets in OPT ’s buffer is at most twice the sum of the values
gained by KP from the packets in the matched packets’ preemption chains. This
will mean that the value in OPT ’s buffer at time tmax is at most 2KP (σ). The
matching scheme is as follows:

i We first match all packets in OPT ’s buffer at time tmax that where accepted
by KP . For each such packet p we match it with itself. Clearly this matching
is one-to-one. The sum of values of all such packets is clearly at most twice
the value of the packets at the head of the matched preemption chains, which
is precisely the value gained by KP from these preemption chains.
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ii We now match the remaining packets. Let p be a packet in OPT ’s buffer at
time tmax that was rejected by KP , and let t = a(p). As p is rejected by
KP , KP ’s buffer is full at time t. As we are matching at most B packets,
there exists some packet q in KP ’s buffer at time t such that no packet
in q’s preemption chain is already matched (each packet in KP ’s buffer at
a given time belongs to a different preemption chain). We then match p
with the packet q′ at the head of q’s preemption chain. As p was rejected,
v(q′) ≥ v(q) > 1

2v(p).

This matching gives us that

OPTt>T (σ) ≤ 2KP (σ) (2)

We conclude the proof. By combining inequalities (1) and (2), we get that

OPT (σ)

KP (σ)
=

OPTt≤tmax(σ) +OPTt>tmax(σ)

KP (σ)
≤ 2KP (σ) + 2KP (σ)

KP (σ)
= 4

�	

The following lemma shows that the analysis of KP ’s competitive ratio is tight:

Lemma 2. KP is at least (4− 1
B )-competitive.

3.3 Arbitrary Value and Processing Requirement

We begin by providing a lower bound on the competitive ratio of any determin-
istic algorithm for packets with general values:

Lemma 3. Any deterministic algorithm for this model is Ω(min(V,
√
T ))-

competitive, for V and T defined above.

The above lower bound shows than no constant-competitive deterministic al-
gorithm exists for the model with general values. Thus we inspect randomized
algorithms and show a lower bound for them. This lower bound shows us that
even randomized algorithms for this problem cannot be constant-competitive.
This means that the model with added values is substantially more difficult
than that previously described. The lower bound we provide holds even for the
non-FIFO setting, where completed packets can be transmitted from any place
in the buffer. Note that for the non-FIFO case, one can easily find 1-competitive
algorithms for packets with unit values or unit processing times. The construc-
tion of this lower bound is similar to that in Theorem 1.

Theorem 5. Any randomized preemptive algorithm in this setting has a com-
petitive ratio which is Ω( log κ

log log κ) for κ defined above, even if the buffer is not
FIFO.
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Proof. We define γ = log κ
log log κ . We define γ

2 packet types, where the i’th packet

type has a processing requirement of γ2i and a value of γi for each 0 ≤ i < γ
2 .

Note that γγ ≤ κ, and as of such all defined packet types have legal processing
requirements and values. We build an input sequence that is composed of a
series of phases. At the beginning of each phase, B packets of each type are sent
to the server. We define ei to be the expected number of type-i packets that
ALG accepts. Note that since all B γ

2 packets arrive at the same time, at most
B of them can be accepted by ALG. This means that

∑
i ei ≤ B. As there are

γ
2 packet types, there exists some i such that ei ≤ 2B

γ . We assume that OPT
processes the B type-i packets during this phase. This means that during the
phase, OPT has a gain of γiB over a time span of γ2iB. ALG’s expected gain
during this phase has 3 components:

i Gain from type-i packets: this is clearly at most γiei ≤ 2γi−1B.

ii Gain from smaller packets: there are at most B smaller packets in ALG’s
buffer, each with value at most γi−1. Thus the gain from these packets is at
most γi−1B.

iii Gain from larger packets: there are at most B larger packets in ALG’s buffer.
The total time for which they are processed is at most γ2iB. Notice that

each of these has a density of at most γi+1

γ2i+2 = 1
γi+1 . Thus the gain from these

packets is at most γ2iB
γi+1 = γi−1B.

If we denote the n’th phase as σn, notice that this means that

ALG(σn)

OPT (σn)
≤ 2γi−1B + γi−1B + γi−1B

γiB
≤ 4

γ

We begin a new phase once OPT finishes processing its packets. In the above
calculation, we gave ALG gain proportional to the fractional part of packets it
has processed, regardless of their position in the buffer. As of such, ALG can
only improve its situation by replacing a partially processed packet of type i
with a packet of type i that arrives at the beginning of the new phase. Hence
we can assume that ALG preempts all currently processed packets immediately
before the start of a new phase. We repeat this process N times, for some large
N . Thus the above analysis holds for all phases but the last one, where ALG
has a gain of at most V B. We denote the full input sequence by σ. Using the
claims

OPT (σ)

ALG(σ)
=

∑
i OPT (σi)

V B +
∑

i ALG(σi)
≥

γ
4 (
∑

iALG(σi))

V B +
∑

i ALG(σi)

Thus as the number of phases N tends to ∞, the ratio tends to γ
4 = Ω( log κ

log log κ).
This means that the input sequence σ gives the required lower bound. �	
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Abstract. In this paper we describe a new approach for solving the
shift minimisation personnel task scheduling problem. This variant of
fixed job scheduling problems arises when tasks with fixed start and end
times have to be assigned to personnel with shift time constraints. We
present definitions, formulations and briefly discuss complexity results
for the variant that focuses on minimising the number of machines (or
workers) that are required to schedule all jobs. We first develop some
mathematical properties of the problem and subsequently, the necessary
and sufficient conditions for feasibility. These properties are used to de-
velop a new branch and bound scheme, which is used in conjunction
with two column generation based approaches and a heuristic algorithm
to create an efficient solution procedure. We present extensive compu-
tational results for large instances and thereby, empirically demonstrate
the effectiveness of our new approach.

1 Introduction

There are many situations in which tasks or jobs with fixed start and end times
have to be scheduled on multiple machines. Such problems are variously called
the fixed job scheduling problem (FJSP), interval scheduling problem or task
scheduling problem. We come across fixed start and end times for tasks (or activ-
ities) when there is an externally imposed timetable on tasks and/or machines.
For example, airline schedules imply that cleaning, maintenance, baggage han-
dling and other tasks at airports have fixed times.

Recently the FJSP with spread time constraints has received considerable at-
tention in the literature (see for example [1, 3, 12, 15, 19–22]) In these problems,
there is a limit on the maximum time between the start of the first task and the
end of the last task assigned to a machine or worker. Another type of constraint
is a working time constraint that limits the total duration of all jobs assigned
to a machine irrespective of the amount of idle time in between (see [21]). The
variant presented in [12] has the machines different in the speed at which they
process tasks, so that intervals always have the same start time but different fin-
ishing time depending on the machine that they are assigned to. Alternatively
machines may differ in the cost for completing tasks or in terms of whether or
not they are, in some sense, qualified to carry out tasks. The operational variant

c© Springer-Verlag Berlin Heidelberg 2015
N. Bansal and I. Finocchi (Eds.): ESA 2015, LNCS 9294, pp. 59–70, 2015.
DOI: 10.1007/978-3-662-48350-3�6
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of these problems aims to maximise the number or value of tasks completed
with a fixed number of machines. The tactical variant minimises the number of
machines required to complete all of a given list of tasks.

These problems are also referred to as interval scheduling (e.g. [11]). The bus
driver scheduling discussed in [4] is an example application of this problem.
Surveys of the interval scheduling literature can be found in [7, 8].

The motivation for our work in this paper is to solve the Shift Minimization
Personnel Task Scheduling Problem (SMPTSP). This variant of the personnel
task scheduling problem [9] (PTSP) was first introduced in [10]. The SMPTSP
is a tactical fixed job scheduling problem with (machine) availability and (ma-
chine to job) qualification constraints. A heuristic approach that is provided in
[10] solves large instances of the SMPTSP. A metaheuristic approach for solving
the SMPTSP is published in [17] and a more recent heuristic for this problem
is described in [13]. The SMPTSP, which is derived from a personnel scheduling
application, is not limited to rostering problems faced in large organizations.
It can be extended to solve a wide variety of applications: in the telecommu-
nications industry, in production centers with high product variety, car rental
applications, luxury cottage rental applications and so on.

The SMPTSP consists of assigning a set of tasks with specific start and end
times to workers or shifts who have specific skill sets and availability intervals.
The qualification constraints specify which workers are qualified to perform each
task. The objective is to find a feasible assignment of all of the tasks that min-
imises the number of workers used. This objective occurs, for example, when
casual workers are used to complete the tasks on a given day and it is advisable
to minimise the total number of staff that are employed.

In this paper, we provide a novel exact solution approach for the SMPTSP.
We first present an integer programming (IP) formulation and provide basic no-
tation and definitions. Using mathematical properties of the problem developed
in this paper we create a unique branching scheme for this problem. This is
used in conjunction with two column generation formulations. We then present
computational results and analysis of the algorithmic alternatives.

2 IP Formulation and Complexity

Throughout the paper we use the following notation
J = {1, . . . , n} The set of tasks or jobs,
W = {1, . . . ,m} The set of workers that can perform tasks,
sj , fj The start time and finish time of the tasks, respectively,
Pj The set of staff or workers that can perform task j,
Tw The set of tasks that worker w ∈ W can perform.

The aim is to solve a minmax problem of completing as many tasks as possible
with the minimum number of people The sets Pj and Tw may also be defined
in terms of the skills or preferences of workers, although they may also take
into account start and end times of availability (e.g. shift start and end times).
Multi–tasking is not allowed. This leads us to define the following set of tasks
which is the fundamental block for the formulation of the problem.
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Definition 1. A set of tasks K ⊆ J is called a clique if all tasks overlap for
some interval of time in the planning time horizon. A maximal clique is a
clique that cannot be extended further, that is for which no additional task in
J \K overlaps with the tasks in the clique.

Obviously, for any clique at most one task can be assigned to the same worker.
Let C = {K1, . . . ,Kp} be the set of all maximal cliques defined on the set of
tasks J . The set of maximal cliques can be found in polynomial time (see for
example [6]). We can find the maximal clique set Cw, for each worker w, with
respect to the tasks Tw.

To define the problem let xjw = 1 if task j ∈ J is assigned to worker w ∈ W .
Let yw = 1 if worker w ∈ W is used and zero otherwise. Also, let uj = 1 if task
j is unallocated. The SMPTSP can then be formulated as the following IP:

Problem P : min
∑

w∈W

yw +
∑

j∈J

M uj

s.t.
∑

w∈Pj

xjw + uj = 1 ∀ j ∈ J (1)

∑

j∈K

xjw ≤ yw ∀ w ∈ W, K ∈ Cw (2)

xjw ∈ {0, 1}, yw ∈ [0, 1], uj ∈ [0, 1] ∀j ∈ J, w ∈ W

where M is a sufficiently large number.
Problem P is always feasible, since uj = 1, for all j ∈ J , is a trivial solution

to the problem. Moreover, for the instances of the problem P where all tasks can
be assigned to machines without multi–tasking and preemption, we could fix all
variables uj ≡ 0. For those instances (P) is shown to be a NP–hard problem –
see [10]. Therefore, obviously, (P) is NP–hard as well.

However, some special cases of the problem can be solved in polynomial time.
In [10] it is shown that if all workers are identical in terms of ’qualification’,
Tw = P and Pj = W for all w and j, then (P) can be solved in O(n logn) with
a ’sorting of jobs’ dominating the algorithm. This can be achieved by assigning
the tasks, in order of its start time, to an available worker, with a preference to
available workers who have been used in the solution before (already).

As a special case of the polynomially solvable variant with no qualification
constraints, consider the case where there is only a single worker. In what follows
we are interested in solving a variant of the single worker problem which we refer
to as the packing problem. Consider a worker w and the following problem of
assigning the highest value set of tasks to the worker given a set of prices π.

Problem Pack (π, Tw) : max
xj∈{0,1}

∑

j∈Tw

πjxj s.t.
∑

j∈K

xj ≤ 1 ∀ K ∈ Cw. (3)

From each maximal clique at most one task is assigned to the worker such that
the objective function is maximized. Hereafter we refer to this problem as the
packing problem and denote it as Pack(π, Tw). In [10] it is shown that the packing
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problem can be solved in polynomial time and it was suggested to use a longest
path algorithm, that is a dynamic programming approach on the acyclic network,
to solve the packing problem.

3 Mathematical Foundations of the Problem

This section investigates the mathematical properties of the problem P in or-
der to identify necessary and sufficient conditions for feasibility. To do so, we
summarize some relevant results on totally unimodular matrices (see [14, 16]).

For any totally unimodular (TU ) matrix A and for an integral vector b, the
polyhedron P := {x|Ax ≤ b} is integral (i.e. every vertex of P is integral). Hence
we can find an integer solution by solving the LP relaxation of the corresponding
IP. It is well known that consecutive ones matrices (C1 matrices) are TU. A C1
matrix is one in which there is permutation of the columns (rows) so that all
ones in each row (or column) are consecutive. The following proposition follows
immediately from Ghouila–Houri’s characterisation of TU matrices [5]:

Proposition 1. Let A,B be {0, 1,−1} matrices and B has at most one non-zero
entry in each column. Then A is TU if and only if the matrix [A B] is TU.

3.1 Unimodularity in Submatrices of P

Let C = {K1, . . . ,Kp} be the set of all maximal cliques defined on the set of
tasks J . Consider a matrix Ap×n defined by C, where rows and columns represent
maximal cliques and tasks respectively, i.e. aij = 1 if task j ∈ Ki and aij = 0
otherwise. We refer to this matrix as the (maximal) clique–task incidence matrix.
Sorting cliques by time gives consecutive ones in each column, hence:

Proposition 2. The clique incidence matrix is a C1’s matrix.

Corollary 1. The clique incidence matrix is totally unimodular (TU).

Let Aw be the maximal clique incidence matrix defined on the set Tw for
worker w. Due to Proposition 2 each Aw is TU. This provides another proof
that Pack(λw , Tw) can be solved in polynomial time. Without loss of generality,
we assume that 1’s are consecutive in each column of Aw.

Consider the coefficient matrix corresponding to variables of the problem P

⎛

⎜⎜⎜⎜⎝

B1 B2 B3 . . . Bm 0 I
A1 0 0 . . . 0 D1 0
0 A2 0 . . . 0 D2 0
. . . . . . . . . . . . . . . . . . . . .
0 0 0 . . . Am Dm 0

⎞

⎟⎟⎟⎟⎠
(4)

Bw is a n× |Tw| binary matrix where columns represent tasks that can be per-
formed by the worker and the rows represent the set of tasks J ; and each
row and column has a single non–zero element representing the task.
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I is the identity matrix,

Aw is the maximal clique–task incidence matrix of the worker w.

Dw represents the coefficients corresponding to variable yw thus has 0’s every-
where except w–th column, where all elements are 1.

In general, the matrix (4) is not TU. However, some parts (submatrices) of the
matrix are TU. We will exploit this structure to develop new solution approaches
for P.

Theorem 1. Let the coefficient matrix of P be given in the form as in (4). Then

1. each block matrix is a C1’s matrix with 1’s consecutively in a single block,

2. each column partition in (4) is a TU matrix.

Proof. The proof immediately follows from the definition of the matrices Aw,
Bw, Dw and I; and the Corollary 1. ��

Moreover, certain types of TU sub–matrices can be obtained from the matrix (4).
Let us consider the following block matrix:

⎛

⎜⎜⎜⎜⎝

B̄1 B̄2 B̄3 . . . B̄m I
Ā1 0 0 . . . 0 0
0 Ā2 0 . . . 0 0
. . . . . . . . . . . . . . . . . .
0 0 0 . . . Ām 0

⎞

⎟⎟⎟⎟⎠
(5)

This was obtained from (4) by removing columns corresponding to some of the
xjw and the entire column partition corresponding to yw variables. Some rows of
the matrices Āw may no longer represent maximal cliques but they all represent
cliques (not necessarily unique so that Āw may have multiple identical rows).
Note that the Āw are a column-wise C1’s matrices.

Theorem 2. For any worker w and for any two cliques Kp and Kq, represented
by the rows of the matrix Āw, the matrix (5) is TU if

rKp ∩Kq 
= ∅ implies either Kp ⊆ Kq or Kq ⊆ Kp (6)

3.2 Existence of Non–trivial Solutions

Problem P has the nice property that certain fractional solutions of the LP
relaxation of the problem (LP) have an associated integer solution to P.

Let us consider a feasible solution (x̄, ȳ, ū) of the LP.

Definition 2. The solution (x̄, ȳ, ū) has a conflicting triplet if for some
w ∈ W there exits a triplet (x̄j1w, x̄j2w, x̄j3w) > 0 such that no clique K ∈ Cw

contains all three tasks j1, j2 and j3, but there exist cliques Kp and Kq in Cw

such that j1, j2 ∈ Kp and j2, j3 ∈ Kq.
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For a conflicting triplet jobs j1 and j3 do not overlap but j2 overlaps with both,
and all three jobs have a non-zero allocation to the same worker. We refer to a
feasible LP solution as triplet free if it doesn’t contain any conflicting triplets.

Note that, any integer solution to P is a triplet free solution to LP due to the
constraints (2). The converse is also true. If we only consider a triplet free set of
possible task allocations then each task only appears in one of the constraints (2)
for each shift. Hence P becomes a linear assignment assignment problem and x̄ is
a fractional assignment. It is well known that feasible set of the linear assignment
problem is integral. Thus, using simplex methods we can get an integral solution
which, obviously, must be not worse than the fractional solution.” Thus triplet
free solutions of LP are integer and any integer solution is a triplet free solution.
This property can be used to develop a novel branching scheme to solve P as
described in the next section.

4 A Triplet-Based Branch and Bound Algorithm

In this section we describe a branching strategy based on the notion of conflicting
triplets. If at the current node, the LP relaxation LP has a conflicting triplet then
we branch on x variables. For the chosen conflicting triplet (x̄j1w, x̄j2w, x̄j3w) > 0
we create two descendant nodes. If j1, j2 ∈ Kp and j2, j3 ∈ Kq, for some cliques
Kp,Kq ∈ Cw, then we branch on xj2w fixing its value to 0 and 1. Note that, for
all descendant nodes of the current node the triplet (xj1w, xj2w, xj3w) is conflict
free for any feasible solution to LP.

In the case that the solution of LP at the current node is triplet free, then we
can always find an integer optimal solution (x̃, ũ) to the auxiliary problem Paux

and an integer solution to P is constructed as follows:

ỹw =

{
1 if ∃ j ∈ Tw s.t. x̃jw > 0
0 otherwise

(7)

Note that the integer solution (x̃, ỹ, ũ) to P is not necessarily an optimal
solution for P at the current node. Thus, in order to find a better integer solution,
we branch on yw variables. We add a descendant node for each worker w used in
the integer solution by fixing it to 0, unless it has a fixed assignment. In other
words, if ỹw > 0 and none of the variables xjw are fixed to 1 due to branching
then we add a node with yw = 0.

An initial upper bound is obtained at the root node using the heuristic de-
scribed in [10]. At each node of the branch and bound (B&B) tree, the branching
variable is chosen in the following way:

1. If the solution of the LP relaxation has a conflicting triplet then the task
j which is most split (i.e. has the greatest number of positive xjw values)
and has a conflicting triplet is chosen. For the chosen task j we choose the
worker w for which x̄jw has the largest value and is a member of a conflicting
triplet. We create two branches xjw = 0 and xjw = 1.
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2. If the solution of the LP relaxation is triplet free then an integer solution is
obtained as described above. If the objective value is worse than the objective
value of the LP relaxation, then for each ỹw = 1 we add a branch yw = 0
(unless one of the variables xjw is fixed to 1).

The node selection of the B&B algorithm uses the following hierarchical com-
parison to determine the next node. Node A is processed before node B if

1. the lower bound at node A is strictly smaller than the one at node B;
2. node A is branching on a y variable and node B is on an x variable;
3. both of them branch on y variables but (a) A is in a deeper position (in

terms of level); or in case of ties (b) A has larger node number;
4. node A has branched xj1w1 = 1 and node B has xj2w2 = 0;
5. A is in a deeper position;
6. A has larger node number (was generated later) in the case of ties.

From our numerical tests we have observed that LP provides a tight lower
bound. Thus, we always pursue the node with lowest lower bound. If there are
several nodes with an identical lower bound then a node branching on variable
y is chosen. That gives us a chance to make the upper bound tighter quickly.
If there is no node branching on variable y then we consider branches with
xjw = 1, which yields LP with a smaller number of variables than the branch
with xjw = 0. Moreover it increases the chance of getting a fractional solution
with a smaller number of conflicting triplets. If there are several candidates we
choose the node which is deeper in the branch and bound tree. Overall this
processing order is designed to maximise the chance of finding a good integer
solution as early as possible in the tree search.

As described above, the B&B method is used to explore triplet free solutions
that could lead to an optimal solution of the problem P. We refer to this approach
as triplet based branching. We also tried different branching strategies to solve P
such as branching on the xjw variables where j is the task split across the most
workers and w is the worker with largest fractional value. We implemented and
tested this branching strategy, only to find out that with this approach we can
solve only small sized problem instances. Moreover, the computation times were
much worse than using the triplet based branching.

5 Column Generation Approaches

In the B&B approach we solve the LP relaxation LP at each node of the tree.
As the problem size increases solving the underlying linear programs consumes
most of the computation time (especially at root node) and reduces the ability
to explore enough nodes in the B&B procedure to get the exact optimal solution
within a fixed time limit. This motivated us to consider a column generation
approach to P (see [2] for an introduction to column generation concepts).

A typical approach for column generation would be to use a Dantzig-Wolfe
decomposition where variables zwP represent a pattern (or complete schedule)
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P ⊆ Tw for worker w. This means that the problem can be written as a set-
partitioning formulation one pattern per worker, and each task covered by one of
these patterns (or assigned to uj). Here Pack(π, Tw) solves the pricing problem.

However we only had limited success with this formulation as the solutions
are often highly fractional. We can apply column generation directly to the IP
formulation P. This approach is based on C1’s property of the matrices Aw

and hence will be referred to as CG–C1. Recall, that in each column of Aw 1’s
occur in a block. In other words, for each variable xjw the non–zero coefficients
corresponding to the constraints (2) occur in a single block. That can be achieved
since, as we mentioned before, the Maximum Clique Algorithm extracts the
maximal cliques by the order of their occurrence. Therefore, while extracting
the maximal cliques we can get the start and end positions of the consecutive
1’s block for each variable xjw . We denote the start and end positions by �jw
and rjw , respectively. Since we know the start and end positions for 1’s blocks
the generation of a single column with negative reduced cost is quite straight
forward.

However, to add a single column for each worker in each iteration is not
efficient from computational point of view. Therefore, for each worker we added
several columns, with negative reduced costs and non-overlapping tasks, at the
same time. Recall, that if two tasks are not overlapping then there is no maximal
clique that contains both of them. Therefore, one can interpret this column
generation procedure as a packing problem of the tasks in Tw with new start
and end times i.e.

max
∑

j∈Tw

πjxj s.t.
∑

j∈K

xj ≤ 1 ∀ K ∈ C̃w, and xj ∈ {0, 1} ∀ j ∈ J.

Here the maximal clique set C̃w is defined with respect to the set of tasks Tw,
where each task j has start and end times �jw and rjw , respectively, which rep-
resent the start and end position of the consecutive 1’s. Therefore, new columns
can be generated by solving the packing problem.

6 Computational Results

We implemented the algorithms using CPLEX 12.5 embedded in a C++ code.
The algorithms are tested on benchmark data previously generated by the au-
thors which are available from ORLIB1. The benchmark data pool contains 137
problem instances. However many of the small instances are too easy to solve on
recent computers so we only provide results for larger instances. We also tested
our method on ten instances created by [18]2. We used M = 1000 in all tests.
Tests were run on a cluster with nodes that have dual Intel Xeon E5-2680 CPUs
(20 cores total) running at 2.8GHz.

Preliminary tests indicated that the C1’s based column generation (CG–C1)
is more efficient than the pattern formulation. Note that this is somewhat solver

1 http://people.brunel.ac.uk/~mastjjb/jeb/orlib/ptaskinfo.html
2 http://allserv.kahosl.be/~pieter/smptsp.zip

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/ptaskinfo.html
http://allserv.kahosl.be/~pieter/smptsp.zip
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Table 1. Comparison of our triplet based branching scheme with column generation
CG–C1 against CPLEX 12.5 and the heuristic in [13] on data sets from [10] with a time
limit of 1800 seconds. * indicates that CPLEX failed to solve the root node, otherwise
lower bounds for CPLEX and the triplet method are identical. For large instances
CPLEX produced no solution in 1800sec (UB=—).

Dataset CPLEX Triplet [13] Dataset Triplet [13]
No. |W | |J | LB UB secs UB secs UB No. |W | |J | LB UB secs UB

080 112 691 99 99 714 99 487 99 109 205 1115 157 161 1809 159
081 97 692 80 80 909 80 6 80 110 183 1143 155 159 1800 157
082 89 697 80 80 941 80 1345 81 111 155 1211 139 143 1802 142
083 222 700 180 — 1801 180 17 180 112 200 1213 169 169 21 171
084 136 718 120 120 1356 120 4 120 113 141 1221 110 110 25 110
085 217 720 180 180 1053 180 15 180 114 157 1227 138 138 22 141
086 178 721 140 140 371 140 6 140 115 228 1257 177 177 26 178
087 203 735 170 170 392 170 254 170 116 205 1262 176 176 64 176
088 137 777 120 — 1800 120 10 120 117 192 1285 149 149 14 150
089 88 788 70 70 963 70 15 70 118 180 1302 147 147 34 150
090 157 791 139 — 1800 139 13 139 119 236 1335 188 188 31 189
091 147 851 118 — 1800 118 22 118 120 228 1341 187 187 30 190
092 126 856 98 — 1800 98 24 99 121 147 1345 120 120 16 123
093 141 856 119 — 1800 119 15 120 122 422 1358 348 348 93 348
094 93 881 80 — 1800 80 372 82 123 187 1376 159 159 23 160
095 204 882 170 — 1800 170 7 170 124 198 1383 158 158 30 161
096 98 886 80 — 1800 80 10 80 125 157 1448 130 130 21 132
097 383 895 300 300 952 300 7 300 126 193 1462 167 167 38 170
098 91 896 80 — 1801 80 283 82 127 192 1472 170* 170 55 170
099 176 956 160 — 1801 160 16 160 128 207 1542 178 178 91 178
100 194 956 160 — 1801 160 16 160 129 233 1546 178 178 1271 180
101 166 997 140 — 1800 140 22 140 130 176 1562 140 140 49 140
102 179 997 138 — 1800 139 1809 139 131 415 1610 348 348 60 348
103 348 1024 300 — 1801 300 21 300 132 216 1645 186 186 206 189
104 181 1057 146 — 1801 146 111 150 133 211 1647 185 185 89 189
105 173 1075 150 — 1800 150 28 151 134 184 1776 160 160 62 160
106 121 1096 100 — 1800 102 1801 104 135 213 1988 179 182 1800 180
107 114 1112 100 — 1800 103 1801 103 136 216 2000 179* 179 100 179
108 162 1115 128 — 1800 128 21 132 137 245 2105 190 190 60 191

dependent – earlier experiments with an older versions of CPLEX concluded that
the pattern formulation is useful as a method for the root node to give solutions
more quickly. However in the results reported here we only use CG–C1.

Tests were run with a time limit of 1800 seconds. Note that the CPLEX
implementation has an advantage on the parallel computing architecture used
as it uses a fairly sophisticated parallel B&B implementation, while we only run
the heuristic used for the initial solution in parallel, while the main triple based
B&B algorithm and column generation are single threaded.
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Fig. 1. Cumulative results for instances with a 5000 second elapsed time limit. Shows
percentage of instances that could be solved with the indicated gap or elapsed time.

In Table 1, LB is the final lower bound obtained when terminating the B&B,
UB is the best upper bound found, and secs the total computational elapsed
time in seconds We also compare against heuristic methods from the literature.
Results for the three phase heuristic method in [13] were taken as reported in
the paper for runs of 1800 seconds. Clearly our exact approach outperforms [13]
producing equal or better solutions in all but 4 of the 58 instance reported.

The cumulative performance of both CPLEX and our approach for the in-
stances in both tables is summarized in Figure 1 where we also included the
computational time when running the branch and bound for 5000 seconds. This
clearly shows that the superior performance of our method is not dependent on
the time limit. There are only a few instances that cannot be solved with the
longer computational times and in all cases the upper bound is very close to
the lower bound. By contrast there are many instances where CPLEX cannot
find any integer solution (instances where UB =—). There are also two rare
instances where CPLEX fails to complete solving the root node in 1800 seconds
(marked with ∗) demonstrating the value of the column generation approach in
producing good lower bounds quickly.

The much smaller collection of instances presented in Table 2 were specifically
designed by the authors to be more challenging. In this table we have also in-
cluded the results from the heuristic presented in [18]. Note that this is indicative
only as the results are simply quoted from the paper and were run on a different
machine. It is interesting that while these tend to be harder for both methods
than equivalent sized problems in Table 1, this trend is not universal and de-
pends on the method. For example smet01 is “easy” for CPLEX but “hard” for
our method. Conversely smet07 and smet08 cannot be solved by CPLEX but
are not too challenging for our method. While there are no clear winners the



A Triplet-Based Exact Method for the Shift Minimisation 69

Table 2. Results on datasets by Smet & van der Berghe [18]

1800 sec limit 5000 sec limit

Dataset CPLEX Triplet Heur. [18] CPLEX Triplet
|W | |J | LB UB secs LB UB secs UBavg secs UB secs UB secs

smet01 50 258 40 40 5 40 41 1800 40.8 641 40 5 41 5000
smet02 44 510 40 40 54 40 40 61 41.2 683 40 53 40 63
smet03 102 525 77 77 492 77 77 198 77.4 939 77 474 77 180
smet04 113 647 98 98 439 98 98 324 98.0 163 98 435 98 340
smet05 77 777 59 59 1694 59 59 495 59.8 1615 59 1709 59 474
smet06 135 777 116 117 1801 116 121 1801 116.9 1800 116 3210 117 5000
smet07 70 781 59 61 1801 59 59 147 61.5 1800 61 5009 59 150
smet08 88 1022 79 81 1800 79 79 1286 80.5 1800 80 5001 79 1014
smet09 125 1308 98 — 1800 98 106 1801 101.9 1800 — 5000 106 5002
smet10 153 1577 116 — 1813 116 128 1806 123.2 1800 — 5000 126 5004

exact methods of CPLEX and CG–C1 appear to be competitive with the heuris-
tic approach from [18]. Where both exact methods solve instances our approach
tends to be faster, in some cases significantly so.

7 Conclusions

In this paper we have developed a comprehensive approach for a fixed job
scheduling problem in which machines have fixed start and end times and qualifi-
cations; jobs require start times, end times and require qualifications to perform
these. The particular version of the problem of interest to us was one in which
the jobs are allocated to machines and number of machines that are used is
minimised. The effectiveness of our approach relies on the combination of:

(a) A novel branching scheme that exploits mathematical properties of our prob-
lem and steers the tree search towards areas where the LP relaxation will
produce integer solutions.

(b) An alternative column generation approach formulation that solves more
efficiently than the naive pattern formulation.

We also use an existing heuristic to ensure we obtain upper bounds in parallel
to the branch and bound search.

Computational results demonstrate that our approach performs better than
just using a standard commercial MILP solver (CPLEX). While the proposed
method is significantly better than the standard solver, we also found that it
starts to fail for some larger instances. However there is no clear pattern to this,
with many large instances with well over 1000 (and in fact even over 2000) tasks
being solved relatively easily, while the smallest unsolved instance for our method
has only 258 tasks. Further research will need to concentrate on solving these
much larger instances much more effectively, perhaps by concentrating more on
the heuristic search as the lower bounds produced by our method are tight and
produced very quickly.
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Abstract. We present an efficient algorithm that computes the Min-
kowski sum of two polygons, which may have holes. The new algorithm
is based on the convolution approach. Its efficiency stems in part from a
property for Minkowski sums of polygons with holes, which in fact holds
in any dimension: Given two polygons with holes, for each input polygon
we can fill up the holes that are relatively small compared to the other
polygon. Specifically, we can always fill up all the holes of at least one
polygon, transforming it into a simple polygon, and still obtain exactly
the same Minkowski sum. Obliterating holes in the input summands
speeds up the computation of Minkowski sums.

We introduce a robust implementation of the new algorithm, which
follows the Exact Geometric Computation paradigm and thus guaran-
tees exact results. We also present an empirical comparison of the perfor-
mance of Minkowski sum construction of various input examples, where
we show that the implementation of the new algorithm exhibits better
performance than several other implementations in many cases.

The software is available as part of the 2D Minkowski Sums pack-
age of Cgal (Computational Geometry Algorithms Library), starting
from Release 4.7. Additional information and supplementary material is
available at our project page http://acg.cs.tau.ac.il/projects/rc.

1 Introduction

Let P and Q be two point sets in R
d. The Minkowski sum of P and Q is defined

as P ⊕Q = {p+ q | p ∈ P, q ∈ Q}. In this paper we focus on the computation of
Minkowski sums of general polygons in the plane, that is, polygons that may have
holes. However, some of our results also apply to higher dimensions. Minkowski
sums are ubiquitous in many fields and applications including robot motion
planning [16], assembly planning [7], computer aided design [5], and collision
detection in general [19].
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Fig. 1. The convolution of a convex polygon and a non-convex polygon; winding num-
bers are indicated in brackets; dotted edges are left out for the reduced convolution.

1.1 Terminology and Related Work

During the last four decades many algorithms to compute the Minkowski sum
of polygons or polyhedra were introduced. For exact two-dimensional solutions
see, e.g., [8]. For approximate solutions see, e.g., [13] and [15]. For exact and
approximate three-dimensional solutions see, e.g., [11], [17], [18], and [24].

Computing the Minkowski sum of two convex polygons P and Q is rather
easy. As P ⊕Q is a convex polygon bounded by copies of the edges of P and Q
ordered according to their slope, the Minkowski sum can be computed using an
operation similar to merging two sorted lists of numbers. If the polygons are not
convex, it is possible to use one of the two following general approaches:

Decomposition. Algorithms that follow the decomposition approach decompose
P and Q into two sets of convex sub-polygons. Then, they compute the pair-
wise sums using the simple procedure described above. Finally, they compute
the union of the pairwise sums. This approach was first proposed by Lozano-
Pérez [20]. The performance of this approach heavily depends on the method
that computes the convex decomposition of the input polygons. Flato et al. [1]
described an implementation of the first exact and robust version of the decom-
position approach, which handles degeneracies. They also tried different decom-
position methods, but none of them handles polygons with holes.

Ghosh [9] introduced slope diagrams—a data structure that was used later
on by some of us to construct Minkowski sums of bounded convex polyhedra
in 3D [6]. Hachenberger [11] constructed Minkowski sums of general polyhedra
in 3D. Both implementations are based on the Computational Geometry Algo-
rithms Library (Cgal) and follow the Exact Geometric Computation (EGC)
paradigm.

Convolution. Let VP = (p0, . . . , pm−1) and VQ = (q0, . . . , qn−1) denote the se-
quence of vertices in counter-clockwise order along the boundaries of the input
polygons P and Q, respectively. Assume that their boundaries wind in a coun-
terclockwise order around their interiors. The convolution of these two polygons,
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denoted P ∗Q, is a collection of line segments of the form3 [pi + qj , pi+1 + qj ],
where the vector −−−−→pipi+1 lies counterclockwise in between −−−−→qj−1qj and −−−−→qjqj+1 and,
symmetrically, of segments of the form [pi+qj, pi+qj+1], where the vector −−−−→qjqj+1

lies counterclockwise in between −−−−→pi−1pi and −−−−→pipi+1.
According to the Convolution Theorem stated in 1983 by Guibas et al. [10],

the convolution P ∗Q of two polygons P and Q is a superset of the boundary of
the Minkowski sum P ⊕Q. The segments of the convolution form a number of
closed (possibly self-intersecting) polygonal curves called convolution cycles. The
set of points having a nonzero winding number with respect to the convolution
cycles comprise the Minkowski sum P ⊕Q.4 However, this theorem has not been
completely proven. Though, in the introduction of the thesis of Ramkumar [22],
there are some statements about the correctness of the Convolution Theorem.

Wein [25] implemented the standard convolution algorithms for simple poly-
gons. He computed the winding number for each face in the arrangement induced
by the convolution cycles and used it to determine whether the face is part of
the Minkowski sum or not; see Figure 1. Wein’s implementation is available in
Cgal [26], and as such, it follows the EGC paradigm.

Kaul et al. [14] observed that a segment [pi+ qj, pi+1 + qj ] (resp. [pi+ qj , pi+
qj+1]) cannot possibly contribute to the boundary of the Minkowski sum if qj
(resp. pi) is a reflex vertex (see dotted edges in Figure 1). The remaining subset of
convolution segments, the reduced convolution, is still a superset of the Minkowski
sum boundary, but the idea of winding numbers can not be applied any longer
as there are no closed cycles anymore. Instead, Behar and Lien [2], first identify
faces in the arrangement of the reduced convolution that may represent holes
(based on proper orientation of all boundary edges of the face). Thereafter, they
check whether such a face is indeed a proper hole by selecting a point x inside the
face and performing a collision detection of P and x⊕−Q. Their implementation
exhibits faster running time than Wein’s implementation. However, although it
uses advanced multi-precision arithmetic, it does not handle some degenerate
cases. The method was also extended to three dimensions [18].

Milenkovic and Sacks [21] defined the Monotonic Convolution, which is an-
other superset of the Minkowski sum boundary. They show that this set defines
cycles and induces winding numbers, which are positive only in the interior of
the Minkowski sum.

1.2 Our Results

We present an efficient algorithm that computes the Minkowski sum of two
polygons, which may have holes. The new algorithm is a variant of the algorithm
proposed by Behar and Lien [2], which computes the reduced convolution set.
In our new algorithm, the initial set of filters proposed in [2] is enhanced by

3 Addition of vertex indices is carried out modulo m for P and modulo n for Q.
4 Informally, the winding number of a point p ∈ R

2 with respect to some planar curve
γ is an integer number counting how many times does γ wind in a counterclockwise
orientation around p.
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the removal of complete holes in the input. This enhancement reduces the size
of the reduced convolution set even further. The enhancement is backed up by
a theorem, the proof of which is also presented; see Section 2. Moreover, we
show that at least one of the input polygons can always be made simple (before
applying the convolution). These latter results are applicable to any dimension
and are independent of the used approach. In addition, roughly speaking, we
show that every boundary cycle of the Minkowski sum is induced by exactly one
boundary cycle of each summand; see Section 2. It implies that we can compute
the convolution of each pair of boundary cycles of the summands separately in
order to obtain the correct boundary cycles of the final Minkowski sum. This
result is also applicable to any dimension and it is independent of the used
approach.

We introduce an implementation of the new algorithm. We also introduce im-
plementations of two new convex decomposition methods that handle polygons
with holes as input—one is based on vertical decomposition and the other is
based on triangulation. These two methods can be directly applied to compute
the Minkowski sum of polygons with holes via decomposition. All our implemen-
tations are robust and handle degenerate cases.

We present an empirical comparison of all the implementations above and
existing implementations; see Section 4. We show that the implementation of
our new algorithm that computes the reduced convolution after filling up some
holes in the input exhibits better performance than all other implementations
in many cases.

2 Filtering Out Holes

The fundamental observation of the convolution theorem is that only points on
the boundary of P and Q can contribute to the boundary of P ⊕Q. Specifically,
the union of the segments in the convolution P ∗Q, as a point set, is a super-set
of the union of the segments of the boundary of P ⊕Q.

The idea behind the reduced convolution method is to filter out segments
of P ∗ Q that can not possibly contribute to the boundary of P ⊕ Q using a
local criterion; see Section 1.1. In this section we introduce a global criterion.
We show that if a hole in one polygon is relatively small compared to the other
polygon, the hole is irrelevant for the computation of P ⊕Q; see Figure 2 for an
illustration. Thus, we can ignore all segments in P ∗Q that are induced by the
hole when computing P ⊕ Q. It implies that the hole can be removed (that is,
filled up) before the main computation starts, regardless of the approach that
one uses to compute the Minkowski sum.

Definition 1. A hole H of polygon P leaves a trace in P ⊕Q, if there exists a
point r = p+ q ∈ ∂(P ⊕Q), such that p ∈ ∂H and q ∈ ∂Q. We say that r is a
trace of H. Conversely, we say that a hole H is irrelevant for the computation
of P ⊕Q if it does not leave a trace at all.
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P Q

γ

∂H ⊕ γ

H
P ⊕Q

Fig. 2. A small hole H is irrelevant for the computation of P ⊕ Q as adding ∂H and
γ ⊂ Q fills up any potential hole in P ⊕Q related to H

Lemma 1. If H leaves a trace in P ⊕Q at a point r, then r is on the boundary
of a hole H̃ in P ⊕Q.

Proof. Consider the point r = p + q, which is on the boundary of P ⊕Q, such
that p ∈ ∂H and q ∈ ∂Q. Since the polygons are closed, for every neighborhood
of r there exists a point r′ �∈ P⊕Q, see Figure 3. Consequently, its corresponding
point p′ = r′ − q, which is in the neighborhood of p must be in H . Thus, r′ must
be enclosed by ∂H ⊕ q, implying that r′ is inside a hole of P ⊕Q. ��

Q

p
q

r = p+ q P ⊕Q

P

r′
H

∂H ⊕ q

H̃

p′ r

r′

Fig. 3. Hole H leaves a trace in P ⊕Q at point r, which must be on the boundary of
some hole H̃ in P ⊕Q; see Lemma 1

Lemma 2. Let H̃ be a hole in P ⊕Q that contains a point r = p+q ∈ ∂H̃, such
that p ∈ ∂H and q ∈ ∂Q; that is, r is a trace of H. Then ∀z ∈ H̃ and ∀y ∈ Q,
it must hold that z ∈ H ⊕ y. In other words, H̃ ⊆ ⋂

∀y∈QH ⊕ y.

Proof. As in Lemma 1, there is a point r′ in the neighborhood of r, which is
enclosed by ∂H ⊕ q. Furthermore, there exists a continuous path from r′ ∈ H̃
to any z ∈ H̃ , which means that every z ∈ H̃ is also enclosed by ∂H ⊕ q, or in
other words: z ∈ H ⊕ q.

Now, assume for contradiction that there is a point y0 ∈ Q, for which z is
not in H ⊕ y0. Consider the continuous path γ that connects q and y0 within
Q. Observe that z ∈ H ⊕ q and z /∈ H ⊕ y0 are equivalent to z − q ∈ H and
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z− y0 /∈ H , respectively. This means that z− y0 is either in the unbounded face,
or in some other hole in P . Now observe that the path z ⊕ (−γ) connects z − q
and z − y0. Thus, since γ is continuous, there must be a point y′0 ∈ γ ⊂ Q, for
which z− y′0 ∈ P . Hence, z ∈ P ⊕ y′0, which implies z ∈ P ⊕Q—a contradiction.

��
Corollary 1. Let H̃ be a hole in P ⊕Q with r ∈ ∂H̃ being a trace of H. Then
∀s ∈ ∂H̃ it holds that s is a trace of H.

Proof. Consider an arbitrary point s ∈ ∂H̃ , and assume by contradiction that
s = x+ y, where y ∈ ∂Q and x ∈ ∂H ′ is on a boundary cycle of P different than
∂H . By Lemma 2, H̃ ⊆ ⋂

∀y∈QH ⊕ y, it also holds that s = x+ y, where x ∈ H ,
which implies that x is in two different holes—a contracdiction. ��
Theorem 1. Let H be a closed hole in polygon P . H is irrelevant for the com-
putation of P ⊕ Q iff there is a path contained in polygon Q that does not fit
under any translation in −H.

Proof. We first show that H is irrelevant for the computation of P ⊕Q if there
is a path γ ⊂ Q that does not fit under any translation in −H . Assume for
contradiction that H leaves a trace in P ⊕ Q; that is, there is an r = p + q ∈
∂(P ⊕ Q), such that p ∈ ∂H and q ∈ ∂Q. By Lemma 1, the point r is on the
boundary of a hole H̃ in P ⊕ Q. By Lemma 2, for any point x ∈ H̃ it must
hold that x ∈ H ⊕ y ∀y ∈ Q. Specifically, it must hold ∀y ∈ γ ⊂ Q. This is
equivalent to y ∈ (x⊕−H) for all y ∈ γ, stating that γ fits into −H under some
translation—a contradiction.

Conversely, if there is no path that does not fit into −H then all paths contained
in Q fit in −H . Thus, also Q itself fits in −H under some translation x with
x⊕Q ⊆ −H . In this case x+ q ∈ −H for all q ∈ Q, which is equivalent to −x ∈
H ⊕ q for all q ∈ Q. This implies that −x /∈ P ⊕Q, whereas −x ∈ (P ∪H)⊕Q,
that is, H is relevant for P ⊕Q. ��
Corollary 2. If the closed axis-aligned bounding box BQ of Q does not fit under
any translation in the open axis-aligned bounding box B̊H of a hole H in P , then
H does not have a trace in P ⊕Q.

Proof. W. l. o. g. assume that BQ does not fit into B̊H with respect to the x-
direction. Consider the two extreme points on ∂Q in that direction and connect
them by a closed path γ, which obviously does not fit into −H , as it does not
fit into B̊H . ��

Theorem 2. Let P and Q be two polygons with holes and let P ′ and Q′ be
their filtered versions, that is, with holes filled up according to Corollary 2 with
P ⊕Q = P ′ ⊕Q′. Then, at least P ′ or Q′ is a simple polygon.

Proof. Note that if BQ does not fit in the open axis-aligned bounding box B̊P of
P , it cannot fit in the bounding box of any hole in P , implying that all holes of P
can be ignored. Since for any two bounding boxes either BQ �⊂ B̊P or BP �⊂ B̊Q

holds, we need to consider the holes of at most one polygon. ��
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Consequently, we can remove all holes in one polygon whose bounding boxes
are, in x- or y-direction, smaller than, or as large as, the bounding box of the
other polygon, as an initial phase of all methods. With fewer holes, convex
decomposition results in fewer pieces. Moreover, when all holes of a polygon
become irrelevant, one can choose a decomposition method that handles only
simple polygons instead of a decomposition method that handles polygons with
holes, which is typically more costly. As for the convolution approach, the inter-
mediate arrangements become smaller, speeding up the computation.

3 Implementation

The software has been developed as part of the 2D Minkowski Sums package of
Cgal [26], and it uses other components of Cgal [23]. As such, it is written
in C++ and rigorously adheres to the generic-programming paradigm and the
EGC paradigm. In the following we provide some details about each one of the
new implementations.

3.1 Reduced Convolution

We compute the reduced convolution set of segments filtering out features that
cannot possibly contribute to the boundary of the Minkowski sum (see Sec-
tion 1.1) and in particular complete holes (see Section 2). Then, we construct
the arrangement induced by the reduced convolution set.5 Finally, we traverse
the arrangement and extract the boundary of the Minkowski sum. We apply
two different filters to identify valid holes in the Minkowski sum: (i) We ignore
any face in the arrangement the outer boundary of which forms a cycle that is
not properly oriented, as suggested in [2]. (ii) We ignore any face f , such that
(−P ⊕ x) and Q collide, where x ∈ f is a sampled point inside f , as suggested
in [14]. We use axis-aligned bounding box trees to expedite the collision tests.
After applying these two filters, only segments that constitute the Minkowski
sum boundary remain.

3.2 Decomposition

Vertical decomposition [12] (a.k.a. trapezoidal decomposition) and triangula-
tion [3] have been extensively used ever since they have been independently
introduced a long time ago. We provide a brief overview of these two structures
for completeness and explain how they are used in our implementations.

Vertical decomposition for a planar subdivisions is the partition of the (al-
ready subdivided) plane into a finite collection of pseudo trapezoids. Each pseudo
trapezoid is either a trapezoid that has vertical sides, or a triangle (which is a

5 Currently, we use a single arrangement and do not separate segments that originate
from different boundary cycles in the summands (exploiting Corollary 1). We plan
to apply this enhancement in the near future.



78 A. Baram et al.

(a) (b) (c)

Fig. 4. Convex decomposition. (a) A polygon with holes. (b) Vertical decomposition
of the polygon in (a). (c) Triangulation of the polygon in (a).

degenerate trapezoid). Given a polygon with holes, we obtain the decomposition
as follows: At every vertex of the polygon, we extend a ray upward if it does
not escape the polygon, until either another vertex or an edge is hit. Similarly,
we extend a ray downward; see Figure 4b. In our implementation we exploit the
vertical decomposition functionality provided by the Cgal package 2D Arrange-
ments [27].

A Delaunay triangulation for a set of points in a plane is the partition of
the plane into triangles, such that no point in the input is inside the circumcir-
cle of any triangle in the triangulation. A constrained Delaunay triangulation
is a generalization of the Delaunay triangulation that forces certain required
segments into the triangulation. Given a polygon with holes we obtain the con-
strained Delaunay triangulation confined to the given polygon and provide the
polygon edges as constraints; see Figure 4c. In our implementation, we use the
2D Triangulations [28] Cgal package.

4 Experiments

We have conducted our experiments on families of randomly generated simple
and general polygons from AGPLib [4]; these polygons are depicted in Figure 5a
and 5b, respectively. All experiments were run on an Intel Core i7-4770 CPU
clocked at 3.4 GHz with 16 GB of RAM, a high-class desktop CPU which would
be a good fit for CAD applications. For each instance size the diagrams in the
figures show an average over 30 runs on different input. Every run was allowed
20 minutes of CPU time and aborted when it did not finish within this limit.

First, we compared the running time of the implementations of all methods
for simple polygons available in Cgal (for details, see [8, Section 9.1.2]), the
new implementations, and Behar and Lien’s implementation; see Figure 7a. The
reduced convolution method consumed about ten times less time than the full
convolution method for large instances, whereas the decomposition methods were
the fastest for instances larger than 225 vertices.

Secondly, we compared the running time of the implementations of the three
new methods (i.e., the reduced convolution method (RC), the triangular based
decomposition method (TD), and the vertical decomposition based method (VD))
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(a) (b)

Fig. 5. Randomly generated polygons: (a) simple polygon with 200 vertices, and (b)
general with 200 vertices and 20 holes

and Behar and Lien’s implementation on instances of general polygons with n
vertices and n/10 holes; see Figure 7b. For each pair of polygons, one was scaled
down by a factor of 1000, to avoid the effect of the hole filter in this experiment.
For all executions, the reduced convolution method consumed significantly less
time than the two decomposition methods. Behar and Lien’s implementation
generally performs worse than our reduced convolution method.

In order to demonstrate the effect of the hole filter, we compared the running
time of the implementations above fed with a circle with 32 vertices of varying
size (see the horizontal axis in Figure 7c and 7d) and with randomly generated
polygons having 2000 vertices and 200 holes. Without the hole filter the run-
ning time of the reduced convolution method increases as the circle grows due
to an increase of the complexity of the intermediate arrangement. Behar and
Lien’s implementation exhibited constant running time, as it performs pairwise
intersection testing. When applying the hole filter to our methods, the reduced
convolution method consumed less time than all other methods. The two dia-
grams clearly show the impact of filtering holes.

(a) (b)

Fig. 6. Letters from the font Tangerine used for the real-world benchmark, displayed
with their offset versions. (a) Lowest-resolution “M” with 75 vertices (b) Highest-
resolution “A” with 8319 vertices.
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(c) MS of general polygon (200 holes,
2000 vertices) and growing circle (x-
axis)—without hole filter
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(d) MS of general polygon (200 holes,
2000 vertices) and growing circle (x-
axis)—with hole filter

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 100  1000  10000

RC
FC
OD
SD
HD
BL

(e) MS of a fixed-size circle and an
“M” with varying vertex count (x-
axis).
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(f) MS of a fixed-size circle and an
“A” with varying vertex count (x-
axis).

Fig. 7. Time consumption of Minkowski sum construction using various methods. The
y-axis indicates the time measured in seconds; the x-axis indicates the number of ver-
tices of each input polygon, unless otherwise stated. Legend: (RC) reduced convolution;
(FC) full convolution; (TD) constrained triangulation decomposition; (VD) vertical de-
composition; (SD) small-side angle-bisector decomposition; (OD) optimal convex de-
composition; (HD) Hertel-Mehlhorn decomposition; (GD) Greene decomposition; (BL)
Behar and Lien’s reduced convolution.
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Note that the polygons used for the benchmarks above do not represent a real-
world case. Instead, the complex shapes essentially constitute the worst-case, as
most segments intersections are inside the Minkowski sum anyway. For a more
realistic scenario, consider a text, which we would like to offset (for example,
for printing stickers). In Figure 7e, we show the running times of the methods
available for simple polygons when calculating the Minkowski sum of a glyph of
the letter “M” (Figure 6) with a varying amount of vertices and a circle with 128
vertices. In Figure 7f, we show the running times of the methods available for
general polygons when calculating the Minkowski sum of a glyph of the letter
“A” and the same circle. For both letters, our implementation of the reduced
convolution is faster than all other methods for large n.

5 Conclusion

All implementations introduced in this work are available as part of the 2D
Minkowski Sums package of Cgal, which now also supports polygons with holes.
The decomposition approaches that handle only simple polygons outperform the
new reduced convolution method (which, naturally handles also simple polygons)
for instances of random simple polygons with more than 150 vertices. However,
these rather chaotic polygons somewhat constitute the worst case scenario for
the reduced convolution method. In all other scenarios, the reduced convolution
method with hole filter outperforms all other methods by a factor of at least 5.
Consequently, starting with Cgal version 4.7, this is the new default method to
compute Minkowski sums for simple polygons as well as polygons with holes.
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Abstract. A polyomino (“lattice animal”) is an edge-connected set of
squares on the two-dimensional square lattice. Counting polyominoes is
an extremely hard problem in enumerative combinatorics, with impor-
tant applications in statistical physics for modeling processes of percola-
tion and collapse of branched polymers. We investigated a fundamental
question related to polyominoes, namely, what is their growth constant,
the asymptotic ratio between A(n + 1) and A(n) when n → ∞, where
A(n) is the number of polyominoes of size n. This value is also known as
“Klarner’s constant” and denoted by λ. So far, the best lower and upper
bounds on λ were roughly 3.98 and 4.65, respectively, and so not even
a single decimal digit of λ was known. Using extremely high computing
resources, we have shown (still rigorously) that λ > 4.00253, thereby
settled a long-standing problem: proving that the leading digit of λ is 4.

Keywords: Polyominoes, lattice animals, growth constant.

1 Introduction

1.1 What Is λ?

The universal constant λ appears in the study of three seemingly completely
unrelated fields: combinatorics, percolation, and branched polymers. In combi-
natorics, the analysis of self-avoiding walks (SAWs, non-self-intersecting lattice
paths starting at the origin, counted by lattice units), simple polygons or self-
avoiding polygons (SAPs, closed SAWs, counted by either perimeter or area), and
polyominoes (SAPs possibly with holes, edge-connected sets of lattice squares,
counted by area), are all related. In statistical physics, SAWs and SAPs play
a significant role in percolation processes and in the collapse transition which
branched polymers undergo when being heated. A recent collection edited by
A. J. Guttmann [11] provides an excellent review of all these topics and the
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connections between them. In this paper we describe our effort to prove that
the growth constant of polyominoes is strictly greater than 4. To this aim we
exploited to the maximum possible computer resources which were available to
us, designing and implementing carefully the algorithm and the required data
structures. Eventually we obtained a computer-generated proof which was ver-
ified by other programs implemented independently. Let us start with a brief
description of the history of λ and the three research areas, then describe the
method and computation of the lower bound on λ.

1.2 Brief History

Determining the exact value of λ (or even setting good bounds on it) is a hard
problem in enumerative combinatorics. In 1967, Klarner [13] showed that the
limit limn→∞ n

√
A(n) exists and denoted it by λ. Since then, λ has been called

“Klarner’s constant.” Only in 1999, Madras [16] proved the stronger statement
that the asymptotic growth rate in the sense of the limit λ = limn→∞ A(n +
1)/A(n) exists.

By using interpolation methods, Sykes and Glen [21] estimated in 1976 that
λ = 4.06 ± 0.02. This estimate was sharpened several times, the most accu-
rate (4.0625696± 0.0000005) given by Jensen [12] in 2003. Before carrying out
this project, the best proven bounds on λ were roughly 3.9801 from below [4]
and 4.6496 from above [14]. Thus, λ has always been an elusive constant, of
which not even a single significant digit was (rigorously) known. Our goal was to
raise the lower bound on λ over the barrier of 4, and thus reveal its first decimal
digit and proving that λ �= 4. The current improvement of the lower bound on
λ to 4.0025 also cuts the difference between the known lower bound and the
estimated value of λ by about 25% (from 0.0825 to 0.0600).

1.3 Enumerative Combinatorics

A polyomino is a connected set of cells on the planar square lattice, where con-
nectivity is along sides but not through corners of the cells. Polyominoes were
made popular by the pioneering book of Golomb [10] and by Martin Gardner’s
columns in Scientific American, and counting polyominoes by size became a pop-
ular fascinating combinatorial problem. The size of a polyomino is the number of
its cells. In this article we consider “fixed” polyominoes; two such polyominoes
are considered identical if one can be obtained from the other by a translation,
while rotations and flipping are not allowed. In the mathematical literature, the
number of polyominoes of size n is usually denoted as A(n), but no formula is
known yet for it. Researchers have suggested efficient back-tracking [19,20] and
transfer-matrix [6,12] algorithms for computing A(n) for a given value of n. The
latter algorithm was adapted in [4] and also in this work for twisted cylinders.
To-date, the sequence A(n) has been determined up to n = 56 by a parallel
computation on an HP server cluster using 64 processors [12]. The exact value
of the growth constant of this sequence, λ = limn→∞ A(n + 1)/A(n), has also
been elusive for many years. It has been interesting to know whether this value
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is smaller or greater than the connective constant of this lattice. This latter con-
stant is simply the number of neighbors each cell of the lattice has, which is, in
this case, 4. In this work we reveal the leading decimal digit of λ: It is 4.

1.4 Percolation Processes

In physics, chemistry, and materials science, percolation theory deals with the
movement and filtering of fluids through porous materials. Giving it a mathe-
matical model, the theory describes the behavior of connected clusters in random
graphs. Suppose that a unit of liquid L is poured on top of some porous ma-
terial M . What is the chance that L makes its way through M and reach the
bottom? An idealized mathematical model of this process is a two- or three-
dimensional grid of vertices (“sites”) connected with edges (“bonds”), where
each bond is independently open (or closed) for liquid flow with some probabil-
ity p. Broadbent and Hammersley [5] asked in 1957, for a fixed value of p and
for the size of the grid tending to infinity, what is the probability that a path
consisting of open bonds exists from the top to the bottom. They essentially
investigated solute diffusing through solvent and molecules penetrating a porous
solid, representing space as a lattice with two distinct types of cells.

In the literature of statistical physics, fixed polyominoes are usually called
“strongly-embedded lattice animals,” and there, the analogue of the growth rate
of polyominoes is the growth constant of lattice animals. The terms high and
low temperature mean high and low density of clusters, respectively, and the
term free energy corresponds to the natural logarithm of the growth constant.
Lattice animals were used for computing the mean cluster density in percolation
processes (Gaunt et al. [9]), in particular those of fluid flow in random media.
Sykes and Glen [21] were the first to observe that A(n), the total number of con-
nected clusters of size n, grows asymptotically like Cλnnθ, where λ is Klarner’s
constant and C, θ are two other fixed values.

1.5 Collapse of Branched Polymers

Another important topic in statistical physics is the existence of a collapse tran-
sition of branched polymers in dilute solution at a high temperature. In physics,
a field is an entity each of whose points has a value which depends on loca-
tion and time. Lubensky and Isaacson [15] developed a field theory of branched
polymers in the dilute limit, using statistics of (bond) lattice animals (which are
important in the theory of percolation) to imply when a solvent is good or bad
for a polymer. Derrida and Herrmann [7] investigated two-dimensional branched
polymers by looking at lattice animals on a square lattice and studying their
free energy. Flesia et al. [8] made the connection between collapse processes to
percolation theory, relating the growth constant of strongly-embedded site an-
imals to the free energy in the processes. Madras et al. [17] considered several
models of branched polymers in dilute solution, proving bounds on the growth
constants for each such model.
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2 Twisted Cylinders

A “twisted cylinder” is a half-infinite wrap-around spiral-like square lattice, as is
shown in Fig. 1. We denote the perimeter (or “width”) of the twisted cylinder by

W=5

1

3
4
5
6

7
8

2

2

Fig. 1. A twisted cylinder of perimeter W = 5

the symbolW . Like in the plane, one can count polyominoes on a twisted cylinder
of width W and study their asymptotic growth constant, λW . It was proven that
the sequence (λW )∞W=1 is monotone increasing [4] and that it converges to λ [2].
Thus, the bigger W is, the better (higher) the lower bound λW on λ is.

It turns out that analyzing the growth rate of polyominoes is more convenient
on a twisted cylinder than in the plane. The reason is that we want to build up
polyominoes incrementally by considering one square at a time. On a twisted
cylinder, this can be done in a uniform way, without having to jump to a new
row from time to time. Imagine that we walk along the spiral order of squares,
and at each square decide whether or not to add it to the polyomino. Naturally,
the size of a polyomino is the number of positive decisions we make on the way.
The crucial observation is that no matter how big polyominoes are, they can be
characterized in a finite number of ways that depends only onW . This is because
all one needs to remember is the structure of the last W squares of the twisted
cylinder (the “boundary”), and how they are inter-connected through cells that
were considered before the boundary. This provides enough information for the
continuation of the process: whenever a new square is considered, and a decision
is taken about whether or not to add it to the polyomino, the boundary is
updated accordingly. Thus, the growth of polyominoes on a twisted cylinder can
be modeled by a finite-state automaton whose states are all possible boundaries.
Every state in this automaton has two outgoing edges that correspond to whether
or not the next square is added to the polyomino.

The number of states in the automaton that models the growth of polyominoes
on a twisted cylinder of perimeter W is large [3,4]: it is the (W+1)st Motzkin
number MW+1. The nth Motzkin number, Mn, counts the number of Motzkin
paths of length n (see Fig. 2 for an illustration): Such a path connects the
integer grid points (0, 0) and (n, 0) with n steps, consisting only of steps taken
from {(1, 1), (1, 0), (1,−1)}, and not going under the x axis. Motzkin numbers
can also be defined in a variety of other ways [1]. Asymptotically, Mn ∼ 3nn−3/2,
thus, MW increases roughly by a factor of 3 when W is incremented by 1.
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The number of polyominoes with n cells

Fig. 2. A Motzkin path of length 7

that have state s as the boundary config-
uration is equal to the number of paths
that the automaton can take from the
starting state to the state s, paths which
involve n transitions in which a cell is
added to the polyomino. We compute these
numbers by using a dynamic-programming
recursion.

See Appendix A for more details about
Motzkin paths, and Appendix B for a small example automaton and more ex-
planations of this topic.

3 Method

In 2004, a sequential program that computes λW for any perimeter was developed
by Ms. Ares Ribó as part of her Ph.D. thesis under the supervision of G. Rote.
The program first computes the endpoints of the outgoing edges from all states
of the automaton and saves them in two long arrays succ0 and succ1, which
correspond to adding an empty or an occupied cell. Both arrays are of length
M := MW+1. Two successive iteration vectors (which contain the number of
polyominoes corresponding to each boundary) are stored as two arrays yold and
ynew of floating point numbers, also of length M . The four arrays are indexed
from 0 to M − 1. After initializing yold := (1, 0, 0, . . . ), each iteration computes
the new version of y by performing the following simple loop.

ynew[0] := 0;
for s := 1, . . . ,M − 1:

(∗) ynew[s] := ynew[succ0[s]] + yold[succ1[s]];

As mentioned, the pointer arrays succ0[ ] and succ1[ ] are computed beforehand.
The pointer succ0[s] may be null, in which case the corresponding zero entry
(ynew[0]) is used.

As explained above, each index s represents a state. The states are encoded
by Motzkin paths, and these paths can be bijectively mapped to numbers s
between 0 and M − 1. In the iteration (∗), the vector ynew depends on itself, but
this does not cause any problem because succ0[s], if it is non-null, is always less
than s. Therefore, there are no circular references and each entry is set before
it is used. In fact, the states can be partitioned into groups G1, G2, . . . , GW :
The group Gi contains the states corresponding to boundaries in which i is the
smallest occupied cell, or, in other words, boundaries that start with i−1 empty
cells. The dependence between the entries of the groups is schematically shown
in Fig. 3: succ0[s] of an entry s ∈ Gi (for 1 ≤ i ≤ W−1), if it is non-null, belongs
to Gi+1. Naturally, succ0 of the single state in GW is null since a boundary with
all cells empty is invalid.
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GWGW−1GW−1Gi+1GiG3G2G1 . . .. . .yold

GWGW−1GW−1Gi+1GiG3G2G1 . . .. . .ynew

succ1 [s] succ0 [s]

Fig. 3. The dependence between the different groups of ynew and yold

At the end, ynew is moved to yold to start the new iteration. It was proven [4]
that after every iteration, we have the following interval for bounding λW :

min
s

ynew[s]

yold[s]
≤ λW ≤ max

s

ynew[s]

yold[s]
(1)

In this procedure, the two bounds converge (by the Perron-Frobenius Theorem)
to λW , and yold converges to a corresponding eigenvector. The vector yold is
normalized after every few iterations in order to prevent overflow. The scale of
the vector is irrelevant to the process. The program terminates when the two
bounds are close enough. The left-hand side of (1) is a lower bound on λW , which
in turn is a lower bound on λ, and this is our real goal.

4 Sequential Runs

In 2004 we obtained good approximations of λW up to W = 22. The program
required extremely high resources in terms of main memory (RAM) by the stan-
dards of that time. The computation of λ22 ≈ 3.9801 (with a single processor)
took about 6 hours on a machine with 32 GB of RAM. (Today, the same pro-
gram runs in 20 minutes on a regular workstation.) We extrapolated the first 22
values of (λW ) (see Fig. 4) and estimated that only when we reach W = 27
we would break the mythical barrier of 4.0. However, as mentioned above, the
required storage is proportional to MW , which increases roughly by a factor of 3
when W is incremented by 1. With this exponential growth of both memory and
running time, the goal of breaking the barrier seemed then to be out of reach.

5 Computing λ27

Environment. The computation of λ27 was performed on a Hewlett Packard
ProLiant DL980 G7 server of HPI (Hasso Plattner Institute) Future SOC Lab
in Potsdam, Germany. It consists of 8 Intel Xeon X7560 nodes (Intel64 archi-
tecture), each having eight physical 2.26 GHz processors (16 virtual cores), for
a total of 64 processors (128 virtual cores). Hyperthreading was used to allow
processes to run on the physical cores of a node while sharing certain resources,
thus yielding twice as many virtual processor cores as physical processors. Each
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Fig. 4. Extrapolating the sequence λW

node was equipped with 256 GiB of RAM (and 24 MiB of cache memory), for
a total of 2 TiB of RAM. Simultaneous access by all processors to the shared
main memory was crucial to the success of the project. Distributed memory
would incur a severe penalty in running time. The machine was run with the
Ubuntu version of Gnu/Linux. Compilation was done using the gcc C compiler
with OpenMP 2.0 directives for parallel processing.

Programming Improvements. Since for W = 27 the finite automaton has M28 ≈
2.1·1011 states, we initially estimated that we would need memory for two 8-byte
arrays (for storing succ0 and succ1) and two 4-byte arrays (for storing yold and
ynew), all of length M28, for a total of 24 · 2.1 · 1011 ≈ 4.6 TiB of RAM, which
was certainly out of reach, even with the available supercomputer. Apparently, a
combination of parallelization, storage-compression techniques, and a few other
enhancements and tricks allowed us to push the lower bound on λ above 4.0.

1. Parallelization. Since the set of states G of the automaton could be par-
titioned into groups G1, . . . , GW , such that succ0[s] for an element s ∈ Gi

belongs to Gi+1, the groups GW , . . . , G1 had to be processed sequentially
(in this order) but all elements in one group could be computed in paral-
lel. The size of the groups is exponentially decreasing; in fact, G1 comprises
more than half of all states, and GW contains only a single state. There-
fore, for the bulk of the work (the iterative computation of ynew), we easily
achieved coarse-grained parallelization and a distribution of the work on all
the 128 available cores, requiring concurrent read but no concurrent write
operations. We also parallelized the preprocessing phase (computing the succ
arrays) and various house-keeping tasks (e.g., rescaling the y vectors after
every 10th iteration). Tests with different numbers of processors revealed
indeed a speed-up close to linear.

2. Elimination of Unreachable States. A considerable portion of the states
of the automaton (about 11% asymptotically) are unreachable, i.e., there
is no binary string leading to these states. This happens because not all
seemingly legal states can be realized by a valid boundary. These states
do not affect the correctness of the computation, and there was no harm
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in leaving them, apart from the effect on the performance of the iteration.
We were able to characterize the unreachable states fairly easily in terms of
their Motzkin paths. After eliminating these states, we had to modify the
bijection between the Motzkin paths representing the remaining states and
the successive integers.

3. Bit-streaming of the succ0/1 Arrays. Instead of storing each entry
of the succ0/1 arrays in a full word (8 bytes, once the number of states
exceeded 232), we allocated to each entry exactly the number of required bits
and stored all entries consecutively in a packed manner. Since the succ0/1
entries were only accessed sequentially, there was only a small overhead in
running time for unpacking the resulting bit sequence. In addition, since we
knew a priori to which group Gi each pointer belonged, we needed only
�log2 |Gi|	 bits per pointer, for all entries in Gi (plus a negligible amount of
bits required to delimit between the different sets Gi). On top of that, the
succ0-pointer was often null because the choice of not adding the next cell
to the polyomino caused a connected component of the polyomino to lose
contact with the boundary. By spending one extra indicator bit per pointer,
we eliminated altogether these illegal pointers, which comprised about 11%
of all succ0 entries.

4. Storing Higher Groups Only Once. For states s not in the group G1,
yold[s] is not needed in the recursion (∗). Thus, we did not need to keep
two separate arrays in memory. The quotient ynew[s]/yold[s] could still be
computed before overwriting yold[s] by ynew[s], and thus the minimum and
maximum of these quotients, which give the bounds (1) on λ, could be ac-
cumulated as we scanned the states.

5. Recomputing succ0. Instead of storing the succ0 array, we computed its
entries on-the-fly whenever they were needed, and thus saved completely the
memory needed to store these pointers. Naturally, this required more run-
ning time. Streamlined computation of the pointers accelerated the successor
computation (see below). This variation has also benefited from paralleliza-
tion since each processor could do the pointer computations independently.
Since the elimination of the succ0 pointers was sufficient to get the program
running with W = 27, we did not pursue the option of eliminating the succ1
array in an analogous way.

6. Streamlining the Conversion from Motzkin Paths to Integers. Orig-
inally, we represented a Motzkin path by a sequence ofW+1 integer numbers
taking values from {−1, 0,+1}. However, we compressed the representation
into a sequence of (W+1) 2-bit items, each one encoding one step of the
path, which we could store in one 8-byte word (since W≤31). This compact
storage opened up the possibility of word-level operations. For converting
paths to numbers, we could process several symbols at a time, using look-up
tables.

Execution. After 120 iterations, the program announced the lower bound 4.00064
on λ27, thus breaking the 4 barrier. We continued to run the program for a
few more days. Then, after 290 iterations, the program reached the stable sit-
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uation (observed in a few successive tens of iterations) 4.002537727 ≤ λ27 ≤
4.002542973, establishing the new record λ > 4.00253. The total running time
for the computations leading to this result was about 36 hours. In total, we used
a few dozens of hours of exclusive use of the server spread over several weeks.

6 Validity and Certification

Our proof depends heavily on computer calculations. This raises two issues about
its validity: (a) Elaborate calculations on a large computer are hard to reproduce,
and in particular when a complicated parallel computer program is involved, one
should be skeptical. (b) We performed the computations with 32-digit floating-
point numbers. We address these issues in turn.

(a) What our program tries to compute is an eigenvalue of a matrix. The
amount and length of the computations are irrelevant to the fact that eventually
we have a witness array of floating-point numbers (the “proof”), about 450 GB
in size, which is a good approximation of the eigenvector corresponding to λ27.
This array provides rigorous bounds on the true eigenvalue λ27, because the
relation (1) holds for any vector yold and its successor vector ynew. To check
the proof and evaluate the bounds (1), one only has to read the approximate
eigenvector yold and carry out one iteration (∗). This approach of providing
simple certificates for the result of complicated computations is the philosophy
of certifying algorithms [18]. We ran two different programs for the checking
task. The code for the only technically challenging part of the algorithm, the
successor computation, was based on programs written independently by two
people who used different state representations. Both programs ran in a purely
sequential manner, and the running time was about 20 hours each.

(b) Regarding the accuracy of the calculations, one can look how the re-
currence (∗) produces ynew from yold. One finds that each term in the lower
bound (1) results from the input data (the approximate eigenvector yold) through
at most 26 additions of positive numbers for computing ynew[s], plus one divi-
sion, all in single-precision float. The final minimization is error-free. Since we
made sure that no denormalized floating-point numbers occurred, the magnitude
of the numerical errors is comparable to the accuracy of floating-point numbers,
and the accumulated error is much smaller than the gap that we opened above 4.
By bounding the floating-point error, we obtain 4.00253176 as a certified lower
bound on λ. Thus, in particular, we now know that the leading digit of λ is 4.

7 Conclusion

In this project we computed λ27 and set a new lower bound on λ, which is
greater than 4. By this we also excluded the possibility that λ = 4. We believe
that with some more effort, it will be feasible to run the program for W = 28.
This would probably require (a) To eliminate also the storage for the succ1-
successors and compute them along with the succ0-successors; (b) To eliminate
all groups G2, . . . , GW and keep only group G1; and (c) To implement a cus-
tomized floating-point storage format for the numbers y. (With a total of 2 TiB
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of RAM, we can only afford 27 bits per entry.) We anticipate that this would
increase the lower bound on λ to about 4.0065.
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Appendix A: Representing Boundaries as Motzkin Paths

B C CA A A AA AA --- -- -
code

0

2

3

1

9 12 162 3 4 5 8 10 11 13 14 15761

Motzkin path

9 12 162 3 4 5 8 10 11 13 14 157610 17

The figure above illustrates the representation of boundaries of polyominoes on
twisted cylinders as Motzkin paths. The figure should be read from bottom to
top. The bottom of the figure shows a partially constructed polyomino on a
twisted cylinder of width 16. The dashed line indicates two adjacent cells which
are connected “around the cylinder,” where this is not immediately apparent.
The boundary cells (top row) are shown darker. The light-gray cells away from
the boundary need not be remembered individually; what matters is the connec-
tivity among the boundary cells that they provide. This is indicated in a symbolic
code -AAA-B-CC-AA--AA. Boundary cells in the same component are represented
by the same letter, and the character ‘-’ denotes an empty cell. However, this
code was not used in our program. Instead, we represented a boundary as a
Motzkin path, as shown in the top part of the figure, because this representation
allows for a convenient bijection to successive integers and therefore for a com-
pact storage of the boundary in a vector. Intuitively, the Motzkin path follows the
movements of a stack when reading the code from left to right. Whenever a new
component starts, like component A in position 2 or component B in position 6,
the path moves up. Whenever a component is temporarily interrupted, such as
component A in position 5, the path also moves up. The path moves down when
an interrupted component is resumed (e.g., component A in positions 11 and 15)
or when a component is completed (positions 7, 10, and 17). The crucial prop-
erty is that components cannot cross, i.e., a pattern like . . . A . . .B . . .A . . .B . . .
cannot occur. As a consequence of these rules, the occupied cells correspond to
odd levels in the path, and the free cells correspond to even levels.



94 G. Barequet, G. Rote, and M. Shalah

Appendix B: Automata for Modeling Polyominoes on
Twisted Cylinders

A finite automaton is a very convenient tool for representing the growth of poly-
ominoes. Below is the automaton for width W = 3. The starting state is A--.
The states A-B and --A have no 0-successors.

--A -A- A-B

A-- AA-

-AAA-A

AAA

1 0

0

0 0

0

1

1

1

1
1

1

0

1

We associate the labels ‘1’ and ‘0’ with the edges, corresponding to whether
or not a cell was added to the polyomino in the corresponding step. The con-
struction of a polyomino is modeled by tracing the path in the automaton while
processing an input word of 1s and 0s, where the number of occurrences of ‘1’
is the size of the polyomino (minus 1, since the starting state contains already
one cell). We want to accept only legal polyominoes, that is, polyominoes that
are composed of connected squares. It is sufficient to consider a single accepting
state for the automaton (--A in the example) because this state can always be
reached by adding enough empty cells. The number of polyominoes on a twisted
cylinder is equal to the number of binary words recognized by the automaton,
that is, whose processing by the automaton terminates in an accepting state.

Automata theory and linear algebra give us strong tools to analyze the behav-
ior of a finite automaton. First, we can represent the automaton as an M ×M
0/1 transfer matrix B, where M is the number of states of the automaton, and
the (ij)th entry of B is 1 if an edge leads from the ith to the jth state of the
automaton. One can derive from B (through its characteristic polynomial) the
generating function of the sequence enumerating polyominoes on the twisted
cylinder, and a linear recurrence formula satisfied by this sequence. This has
been carried out [2] up to width W = 10.

Second, this matrix has a few interesting properties. It is proven [4] that
the largest eigenvalue (in absolute value) of B is exactly the desired growth
constant λW . Moreover, B is a primitive and irreducible matrix, and, hence, λW

is the only positive eigenvalue ofB. Under these conditions, the Perron-Frobenius
theorem provides an effective method for computing this eigenvalue: Start from
any positive vector (e.g., the vector in which all entries are 1) and repeatedly
multiply it by B. In the limit, this process converges to the eigenvector, and
the ratios between successive vectors in this process converge to the desired
eigenvalue, which is the desired growth constant.
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Abstract. We study the problem of selling n items to a single buyer
with an additive valuation function. We consider the valuation of the
items to be correlated, i.e., desirabilities of the buyer for the items are
not drawn independently. Ideally, the goal is to design a mechanism
to maximize the revenue. However, it has been shown that a revenue
optimal mechanism might be very complicated and as a result inappli-
cable to real-world auctions. Therefore, our focus is on designing a sim-
ple mechanism that achieves a constant fraction of the optimal revenue.
Babaioff et al. [3] propose a simple mechanism that achieves a constant
fraction of the optimal revenue for independent setting with a single
additive buyer. However, they leave the following problem as an open
question: “Is there a simple, approximately optimal mechanism for a
single additive buyer whose value for n items is sampled from a com-
mon base-value distribution?” Babaioff et al. show a constant approxi-
mation factor of the optimal revenue can be achieved by either selling
the items separately or as a whole bundle in the independent setting.
We show a similar result for the correlated setting when the desirabili-
ties of the buyer are drawn from a common base-value distribution. It
is worth mentioning that the core decomposition lemma which is mainly
the heart of the proofs for efficiency of the mechanisms does not hold
for correlated settings. Therefore we propose a modified version of this
lemma which is applicable to the correlated settings as well. Although
we apply this technique to show the proposed mechanism can guarantee
a constant fraction of the optimal revenue in a very weak correlation,
this method alone can not directly show the efficiency of the mechanism
in stronger correlations. Therefore, via a combinatorial approach we re-
duce the problem to an auction with a weak correlation to which the
core decomposition technique is applicable. In addition, we introduce a
generalized model of correlation for items and show the proposed mech-
anism achieves an O(log k) approximation factor of the optimal revenue
in that setting.

1 Introduction

Suppose an auctioneer wants to sell n items to a single buyer. The buyer’s
valuation for a particular item comes from a known distribution, and the his
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values are assumed to be additive (i.e., value of a set of items for the buyer
is equal to the summation of the values of the items in the set). The buyer is
considered to be strategic, that is, he is trying to maximize v(S)− p(S), where
S is the set of purchased items, v(S) is the value of these items to the buyer and
p(S) is the price of the set. Knowing that the valuation of the buyer for item
j is drawn from a given distribution Dj, what is a revenue optimal mechanism
for the auctioneer to sell the items? Myerson [19] solves the problem for a very
simple case where we only have a single item and a single buyer. He shows that
in this special case the optimal mechanism is to set a fixed reserved price for
the item. Despite the simplicity of the revenue optimal mechanism for selling a
single item, this problem becomes quite complicated when it comes to selling
two items even when we have only one buyer. Hart and Reny [15] show an
optimal mechanism for selling two independent items is much more subtle and
may involve randomization.

Though there are several attempts to characterize the properties of a revenue
optimal mechanism of an auction, most approaches seem to be too complex and
as a result impractical to real-world auctions [1, 2, 4, 5, 7, 8, 9, 12, 10, 13, 16].
Therefore, a new line of investigation is to design simple mechanisms that are
approximately optimal. In a recent work of Babaioff, Immorlica, Lucier, and
Weinberg [3], it is shown that we can achieve a constant factor approximation
of the optimal revenue by selling items either separately or as a whole bundle in
the independent setting. However, they leave the following important problem
as an open question:

– “Open Problem 3. Is there a simple, approximately optimal mechanism for
a single additive buyer whose value for n items is sampled from a common
base-value distribution? What about other models of limited correlation?”

Hart and Nisan [14] show there are instances with correlated valuations in
which neither selling items separately nor as a whole bundle can achieve any
approximation of the optimal revenue. This holds, even when we have only two
times. Therefore, it is essential to consider limited models of correlation for this
problem. As an example, Babaioff et al. propose to study common base-value
distributions. This model has also been considered by Chawla, Malec, and Sivan
[11] to study optimal mechanisms for selling multiple items in a unit-demand
setting.

In this work we study the problem for the case of correlated valuation functions
and answer the above open question. In addition we also introduce a generalized
model of correlation between items. Suppose we have a set of items and want
to sell them to a single buyer. The buyer has a set of features in his mind
and considers a value for each feature which is randomly drawn from a known
distribution. Furthermore, the buyer formulates his desirability for each item as
a linear combination of the values of the features. More precisely, the buyer has l
distributions F1, F2, . . . , Fl and an l×n matrix M (which are known in advance)
such that the value of feature i, denoted by fi, is drawn from Fi and the value
of item j is calculated by Vf ·Mj where Vf = 〈f1, f2, . . . , fl〉 and Mj is the j-th
row of matrix M .
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This model captures the behavior of the auctions especially when the items
have different features that are of different value to the buyers. Note that every
common base-value distribution is a special case of this general correlation where
we have n + 1 features F1, F2, . . . , Fn, B and the value of item j is determined
by vj + b where vj is drawn from Fj and b is equal for all items which is drawn
from distribution B.

2 Related Work

As mentioned earlier, the problem originates from the seminal work of Myerson
[19] in 1981 which characterizes a revenue optimal mechanism for selling a single
item to a single buyer. This result was important in the sense that it was simple
and practical while promising the maximum possible revenue. In contrast to this
result, it is known that designing an optimal mechanism is much harder for the
case of multiple items. There has been some efforts to find a revenue optimal
mechanism for selling two heterogeneous items [20] but, unfortunately, so far too
little is known about the problem even for this simple case.

Hardness of this problem is even more highlighted when Hart and Reny [15]
observed randomization is necessary for the case of multiple items. This reveals
the fact that even if we knew how to design an optimal mechanism for selling
multiple items, it would be almost impossible to implement the optimal strategy
in a real-world auction. Therefore, so far studies are focused on finding simple
and approximately optimal mechanisms.

Speaking of simple mechanisms, it is very natural to think of selling items
separately or as a whole bundle. The former mechanism is denoted by SRev and
the latter is referred to by BRev. Hart and Nissan [13] show SRev mechanism
achieves at least an Ω(1/ log2 n) approximation of the optimal revenue in the
independent setting and BRev mechanism yields at least an Ω(1/ logn) approxi-
mation for the case of identically independent distributions. Later on, this result
was improved by the work of Li and Yao, that prove an Ω(1/ logn) approxima-
tion factor for SRev and a constant factor approximation for BRev for identically
independent distributions [17]. These bounds are tight up to a constant factor.
Moreover, it is shown BRev can be θ(n) times worse than the revenue of an
optimal mechanism in the independent setting. Therefore in order to achieve a
constant factor approximation mechanism we should think of more non-trivial
strategies.

The seminal work of Babaioff et al. [3] shows despite the fact that both
strategies SRev and BRev may separately result in a bad approximation fac-
tor, max{SRev,BRev} always has a revenue at least 1

6 of an optimal mechanism.
They also show we can determine which of these strategies has more revenue in
polynomial time which yields a deterministic simple mechanism that can be im-
plemented in polynomial time. However, there has been no significant progress
in the case of correlated items, as [3] leave it as an open question.

In addition to this, they posed two more questions which became the subject
of further studies. In the first question, they ask if there exists a simple mech-
anism which is approximately optimal in the case of multiple additive buyers?
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This question is answered by Yao [22] via proposing a reduction from k-item n-
bidder auctions to k-item auctions. They show, as a result of their reduction, a
deterministic mechanism achieves a constant fraction of the optimal revenue by
any randomized mechanism. In the second question, they ask if the same result
can be proved for a mechanism with a single buyer whose valuation is k-demand?
This question is also answered by a recent work of Rubinstein and Weinberg [21]
which presents a positive result. They show the same mechanism that either sells
the items separately or as a whole bundle, achieves a constant fraction of the
optimal revenue even in the sub-additive setting with independent valuations.
They, too, use the core decomposition technique as their main approach. Their
work is very similar in spirit to ours since we both show the same mechanism is
approximately optimal in different settings.

Another line of research investigated optimal mechanism for selling n items
to a single unit-demand buyer. Briest et al. [6] show how complex the optimal
strategies can become by proving that the gap between the revenue of determin-
istic mechanisms and that of non-deterministic mechanisms can be unbounded
even when we have a constant number of items with correlated values. This high-
lights the fact that when it comes to general correlations, there is not much that
can be achieved by deterministic mechanisms. However, Chawla et al. [11] study
the problem with a mild correlation known as the common base-value correlation
and present positive results for deterministic mechanisms in this case.

3 Results and Techniques

We study the mechanism design for selling n items to a single buyer with addi-
tive valuation function when desirabilities of each buyer for items are correlated.
The main result of the paper is max{SRev,BRev}, that is, the revenue we get by
the better of selling items separately or as a whole bundle achieves a constant
approximation of the optimal revenue when we have only one buyer and the dis-
tribution of valuations for this buyer is a common base-value distribution. This
problem was left open in [3]. Our method for proving the effectiveness of the pro-
posed mechanism is consisted of two parts. In the first part, we consider a very
weak correlation between the items, which we call semi-independent correlation,
and show the same mechanism achieves a constant fraction of the optimal rev-
enue in this setting. To this end, we use the core decomposition technique which
has been used by several similar works [17, 3, 21]. The second part, however,
is based on a combinatorial reduction which reduces the problem to an auction
with a semi-independent valuation function.

Theorem 1. For an auction with one seller, one buyer, and a common base-
value distribution of valuations we have max{SRev(D),BRev(D)} ≥ 1

12×Rev(D).

Furthermore, we consider a natural model of correlation in which the buyer has
a number of features and scores each item based on these features. The valuation
of each feature for the buyer is realized from a given distributions which is known
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in advance. The value of each item to the buyer is then determined by a linear
formula in terms of the values of the features. This can also be seen as a general-
ization of the common base-value correlation since a common base-value corre-
lation can be though of as a linear correlation with n+1 features. We show that
if all of the features have the same distribution then max{SRev(D),BRev(D)} is
at least a 1

O(log k) fraction of Rev(D) where k is the maximum number of features

that determine the value of each item.

Theorem 2. In an auction with one seller, one buyer, and a linear correlation
with i.i.d distribution of valuations for the features max{SRev,BRev} ≥ O( Rev

log k )
where the value of each item depends on at most k features.

Our approach is as follows: First we study the problem in a setting which
we call semi-independent. In this setting, the valuation of the items are realized
independently, but each item can have many copies with the same value. More
precisely, each pair of items are either similar or different. In the former case,
they have the same value for the buyer in each realization whereas in the latter
case they have independent valuations.

Inspired by [3], we show max{SRev(D),BRev(D)} ≥ Rev(D)
6 for every semi-

independent distribution D. To do so, we first modify the core decomposition
lemma to make it applicable to the correlated settings. Next, we apply this
lemma to the problem and prove max{SRev(D),BRev(D)} achieves a constant
fraction of the optimal revenue.

Given max{SRev(D),BRev(D)} is optimal up to a constant factor in the semi-
independent setting, we analyze the behavior of max{SRev,BRev} in each of the
settings by creating another auction in which each item of the original auction
is split into several items and the distributions are semi-independent. We show
that the maximum achievable revenue in the secondary auction is no less than
the optimal revenue of the original auction and also selling all items together
has the same revenue in both auctions. Finally, we bound the revenue of SRev
in the original auction by a fraction of the revenue that SRev achieves in the
new auction and by putting all inequalities together we prove an approximation
factor for max{SRev,BRev}. In contrast to the prior methods for analyzing the
efficiency of mechanism, our approach in this part is purely combinatorial.

Although the main contribution of the paper is analyzing max{SRev,BRev}
in common base-value and linear correlations, we show the following as auxiliary
lemmas which might be of independent interest.

– One could consider a variation of independent setting, wherein each item
has a number of copies and the value of all copies of an item to the buyer is
always the same. We show in this setting max{SRev,BRev} is still a constant
fraction of Rev.

– A natural generalization of i.i.d settings, is a setting in which the distribu-
tions of valuations are not exactly the same, but are the same up to scaling.
We show, in the independent setting with such valuation functions BRev is
at least an O( 1

logn ) fraction of Rev.
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Due to the space constraints proofs are omitted in this version. The reader can
find the full version of the paper on arXiv for a formal discussion.

4 Preliminaries

Throughout this paper we study the optimal mechanisms for selling n items
to a risk-neutral, quasi-linear buyer. The items are considered to be indivisible
and not necessarily identical i.e. the buyer can have different distributions of
desirabilities for different items. In our setting, distributions are denoted by
D = 〈D1, D2, . . . , Dn〉 where Dj is the distribution for item j. Moreover, the
buyer has a valuation vector V = 〈v1, v2, . . . , vn〉 which is randomly drawn from
D specifying the values he has for the items. Note that, values may be correlated.
Once a mechanism is set for selling items, the buyer purchases a set SV of the
items that maximizes v(SV ) − p(SV ), where v(SV ) is the desirability of SV

for the buyer and p(SV ) is the price that he pays. The revenue achieved by a
mechanism is equal to

∑
E
[
p(SV )

]
where V is randomly drawn from D. The

following terminology is used in [3] in order to compare the performance of
different mechanisms. In this paper we use similar notations.

– Rev(D): Maximum possible revenue that can be achieved by any truthful
mechanism.

– SRev(D): The revenue that we get when selling items separately using My-
erson’s optimal mechanism for selling each item.

– BRev(D): The revenue that we get when selling all items as a whole bundle
using Myerson’s optimal mechanism.

We refer to the expected value and variance of a one-dimensional distribution
D by Val(D) and Var(D) respectively. We say an n-dimensional distribution D
of the desirabilities of a buyer is independent over the items if for every a �= b,
va and vb are independent variables when V = 〈v1, v2, . . . , vn〉 is drawn from D.
Furthermore, we define the semi-independent distributions as follows.

Definition 1. Let D be a distribution of valuations of a buyer over a set of
items. We say D is semi-independent iff the valuations of every two different
items are either always equal or completely independent. Moreover, we say two
items a and b are similar in a semi-independent distribution D if for every
V ∼ D we have va = vb.

Moreover, we define the common base-value distributions as follows.

Definition 2. We say a distribution D is common base-value, if there exist
independent distributions F1, F2, . . . , Fn, B such that for V = 〈v1, v2, . . . , vn〉 ∼
D and every 1 ≤ j ≤ n, vj = fj + b where fj comes from distribution Fj and b
is drawn from B which is equal for all items.

A natural generalization of common base-value distributions are distributions
in which the valuation of each item is determined by a linear combination of k
independent variables which are the same for all items. More precisely, we define
the linear distributions as follows.
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Definition 3. Let D be a distribution of valuations of a buyer for n items. We
say D is a linear distribution if there exist independent desirability distributions
F1, F2, . . . , Fk and a k×n matrix M with non-negative rational values such that
V = 〈v1, v2, . . . , vn〉 ∼ D, can be written as W ×M where W = 〈w1, w2, . . . , wk〉
is a vector such that wi is drawn from Fi.

5 The Core Decomposition Technique

Most of the results in this area are mainly achieved by the core decomposi-
tion technique which was first introduced in [17]. Using this technique we can
bound the revenue of an optimal mechanism without taking into account the
complexities of the revenue optimal mechanism. The underlying idea is to split
distributions into two parts: the core and the tail. If for each realization of the
values we were to know in advance for which items the valuations in the core
part will be and for which items the valuations in the tail part will be, we would
achieve at least the optimal revenue achievable without such information. This
gives us an intuition which we can bound the optimal revenue by the total sum
of the revenues of 2n auctions where in each auction we know which valuation
is in which part. The tricky part then would be to separate the items whose
valuations are in the core part from the items whose valuations are in the tail
and sum them up separately. We use the same notation which was used in [3]
for formalizing our arguments as follows.

– Di: The distribution of desirabilities of the buyer for item i.
– DA: (A is a subset of items): The distribution of desirabilities of the buyer

for items in A.
– ri: The revenue that we get by selling item i using Myerson’s optimal mech-

anism.
– r: The revenue we get by selling all of the items separately using Myerson’s

optimal mechanism which is equal to
∑

ri.
– ti: A real number separating the core from the tail for the distribution of

item i. we say a valuation vi for item i is in the core if 0 ≤ vi ≤ riti and is
in the tail otherwise.

– pi: A real number equal to the probability that vi > riti when vi is drawn
from Di.

– pA: (A is a subset of items): A real number equal to the probability that
∀i /∈ A, vi ≤ riti and ∀i ∈ A, vi > riti.

– DC
i : A distribution of valuations of the i-th item that is equal to Di condi-

tioned on vi ≤ riti.
– DT

i : A distribution of valuations of the i-th item for the buyer that is equal
to Di conditioned on vi > riti.

– DC
A : (A is a subset of items): A distribution of valuations of the items in

[N ]−A for the buyer that is equal toD[N ]−A conditioned on ∀i /∈ A, vi ≤ riti.
– DT

A: (A is a subset of items): A distribution of valuations of the items in A
for the buyer that is equal to DA conditioned on ∀i ∈ A, vi > riti.
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– DA: A distribution of valuations for all items which is equal toD conditioned
on both ∀i /∈ A, vi ≤ riti and ∀i ∈ A, vi > riti.

In Lemma 2 we provide an upper bound for pi. Next we bound Rev(DC
i ) and

Rev(D) in Lemmas 3 and 4 and finally in Lemma 6 which is known as Core
Decomposition Lemma we prove an upper bound for Rev(D). All these lemmas
are proved in [3] for the case of independent setting.

Lemma 1. For every A ⊂ [N ], if the valuation of items in A are independent
of items in [N ]−A then we have Rev(D) ≤ Rev(DA) + Val(D[N ]−A).

Lemma 2. pi ≤ 1
ti
.

Lemma 3. Rev(DC
i ) ≤ ri.

Lemma 4. Rev(DT
i ) ≤ ri/pi.

Lemma 5. Rev(D) ≤ ∑
A pARev(D

A).

For independent setting we can apply Lemma 1 to Lemma 5 and finally with
application of some algebraic inequalities come up with the following inequality

Rev(D) ≤ Val(DC
∅ ) +

∑

A

pARev(D
T
A).

Unfortunately this does not hold for correlated settings since in Lemma 1 we
assume valuation of items ofA are independent of the items of [N ]−A. Therefore,
we need to slightly modify this lemma such that it becomes applicable to the
correlated settings as well. Thus, we add the following restriction to the valuation
of items: For each subset A such that pA is non-zero, the valuation of items in
A are independent of items of [N ]−A.

Lemma 6. If for every A with pA > 0 the values of items in A are drawn inde-
pendent of the items in [N ]−A we have Rev(D) ≤ Val(DC

∅ ) +
∑

A pARev(D
T
A).

6 Semi-independent Distributions

In this section we show the better of selling items separately and as a whole
bundle is approximately optimal for the semi-independent correlations. To do so,
we first show k · SRev(D) ≥ Rev(D) where we have n items divided into k types
such that items of each type are similar. Next we leverage this lemma in order
to prove max{SRev(D),BRev(D)} achieves a constant-factor approximation of
the revenue of an optimal mechanism. We start by stating the following lemma
which is proved in [18].

Lemma 7. In an auction with one seller, one buyer, and multiple similar items
we have Rev(D) = SRev(D).
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We also need Lemma 8 proved in [13] and [3] which bounds the revenue when
we have a sub-domain S two independent value distributions D and D′ over
disjoint sets of items. Moreover we use Lemma 9 as an auxiliary lemma in the
proof of Lemma 10.

Lemma 8. (“Marginal Mechanism on Sub-Domain [13, 3]”) Let D and
D′ be two independent distributions over disjoint sets of items. Let S be a set of
values of D and D′ and s be the probability that a sample of D and D′ lies in S,
i.e. s = Pr[(v, v′) ∼ D × D′ ∈ S]. sRev(D ×D′|(v, v′) ∈ S) ≤ sVal(D|(v, v′) ∈
S) + Rev(D′).

Lemma 9. In a single-seller mechanism with m buyers and n items with a
semi-independent correlation between the items in which there are at most k
non-similar items we have Rev(D) ≤ mk · SRev(D).

Next, we show max{SRev(D),BRev(D)} ≥ 1
6 · Rev(D). The proof is very simi-

lar in spirit to the proof of Babaioff et al. for showing max{SRev(D),BRev(D)}
achieves a constant approximation factor of the revenue optimal mechanism
in independent setting [3]. In this proof, we first apply the core decomposi-
tion lemma with ti = r/(rini) and break down the problem into two sub-
problems. In the first sub-problem we show

∑
A pARev(D

T
A) ≤ 2SRev(D) and in

the second sub-problem we prove 4max{SRev(D),BRev(D)} ≥ Val(DC
∅ ). Hav-

ing these two bounds together, we apply the core decomposition lemma to imply
max{SRev(D),BRev(D)} ≥ 1

6 · Rev(D).

Lemma 10. Let D be a semi-independent distribution of valuations for n items
in single buyer setting. In this problem we have max{SRev(D),BRev(D)} ≥ 1

6 ·
Rev(D).

7 Common Base-Value Distributions

In this section we study the same problem with a common base-value distri-
bution. Recall that in such distributions desirabilities of the buyer are of the
form vj = fj + bi where fj is drawn from a known distribution Fj and bi is
the same for all items and is drawn from a known distribution B. Again, we
show max{SRev,BRev} achieves a constant factor approximation of Rev when
we have only one buyer. Note that, this result answers an open question raised
by Babaioff et al. in [3].

Theorem 3. For an auction with one seller, one buyer, and a common base-
value distribution of valuations we have max{SRev(D),BRev(D)} ≥ 1

12×Rev(D).

Proof. Let I be an instance of the auction. We create an instance Cor(I) of
an auction with 2n items such that the distribution of valuations is a semi-
independent distribution D′ where D′

i = Fi for 1 ≤ i ≤ n and D′
i = B for

n + 1 ≤ i ≤ 2n. Moreover, the valuations of the items n + 1, n + 2, . . . , 2n are
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always equal and all other valuations are independent. Thus, by the definition,
D′ is a semi-independent distribution of valuations and by Lemma 10 we have

max{SRev(D′),BRev(D′)} ≥ 1

6
× Rev(D′). (1)

Since every mechanism for selling the items of D can be mapped to a mechanism
for selling the items of D′ where items i and n + i are considered as a single
package containing both items, we have

Rev(D) ≤ Rev(D′). (2)

Moreover, since in the bundle mechanism we sell all of the items as a whole
bundle, the revenue achieved by bundle mechanism is the same in both auctions.
Hence,

BRev(D) = BRev(D′). (3)

Note that, we can consider SRev(D) as a mechanism for selling items of Cor(I)
such that items are packed into partitions of size 2 (item i is packed with item
n + i) and each partition is priced with Myerson’s optimal mechanism. Since
for every two independent distributions Fi, Fi+n we have SRev(Fi × Fn+i) ≤
2 · BRev(Fi × Fn+i) we can imply

SRev(D) =

n∑

i=1

BRev(Fi × Fn+i) ≥
n∑

i=1

SRev(Fi × Fi+n)

2
=

SRev(D′)
2

. (4)

According to Inequalities (1),(2), and (3) we have

max{SRev(D),BRev(D)} ≥ max{SRev(D′)/2,BRev(D′)} ≥

max{SRev(D′),BRev(D′)}/2 ≥ Rev(D′)/12 ≥ Rev(D)/12.
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Abstract. Motivated by the observation that FIFO-based push-relabel
algorithms are able to outperform highest label-based variants on mod-
ern, large maximum flow problem instances, we introduce an efficient
implementation of the algorithm that uses coarse-grained parallelism to
avoid the problems of existing parallel approaches. We demonstrate good
relative and absolute speedups of our algorithm on a set of large graph
instances taken from real-world applications. On a modern 40-core ma-
chine, our parallel implementation outperforms existing sequential im-
plementations by up to a factor of 12 and other parallel implementations
by factors of up to 3.

1 Introduction

The problem of computing the maximum flow in a network plays an important
role in many areas of research such as resource scheduling, global optimization
and computer vision. It also arises as a subproblem of other optimization tasks
like graph partitioning. There exist near-linear approximate algorithms for the
problem [20], but exact solutions can in practice be found even for very large
instances using modern algorithms. It is only natural to ask how we can exploit
readily available multi-processor systems to further reduce the computation time.
While a large fraction of the prior work has focused on distributed and parallel
implementations of the algorithms commonly used in computer vision, fewer
publications are dedicated to finding parallel algorithms that solve the problem
for other graph families.

To assess the practicality of existing algorithms, we collected a number of
benchmark instances. Some of them are taken from a common benchmark suite
for maximum flow and others we selected specifically to represent various appli-
cations of maximum flow. Our experiments suggest that Goldberg’s hi pr pro-
gram (a highest label-based push-relabel implementation) which is often used
for comparison in previous publications is not optimal for most of the graphs
that we studied. Instead, push-relabel algorithms processing active vertices in
first-in-first-out (FIFO) order seems to be better suited to these graphs, and
at the same time happen to be amenable for parallelization. We proceeded to
design and implement our own shared memory-based parallel algorithm for the
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DOI: 10.1007/978-3-662-48350-3_10



Efficient Implementation of a Synchronous Parallel Push-Relabel Algorithm 107

maximum flow problem, inspired by an old algorithm and optimized for modern
shared-memory platforms. In contrast to previous parallel implementations we
try to keep the usage of atomic CPU instructions to a minimum. We achieve
this by employing coarse-grained synchronization to rebalance the work and by
using a parallel version of global relabeling instead of running it concurrently
with the rest of the algorithm.

We are able to demonstrate good speedups on the graphs in our bench-
mark suite, both compared to the best sequential competitors, where we achieve
speedups of up to 12 with 40 threads, and to the most recent parallel solver,
which we often outperform by a factor of three or more with 40 threads.

2 Preliminaries and Related Work

We consider a directed graph G with vertices V , together with a designated
source s and sink t, where s �= t ∈ V as well as a capacity function c : V × V →
R≥0. The set of edges is E = {(v, w) ∈ V × V | c(v, w) > 0}. We define n = |V |
and m = |E|. A flow in the graph is a function f : E → R that is bounded
from above by the capacity function and respects the flow conservation and
asymmetry constraints

∀w ∈ V :
∑

(v,w)∈E,v �=w

f(v, w) =
∑

(w,x)∈E,w �=x

f(w, x) (1)

∀v, w ∈ V : f(v, w) = −f(w, v) (2)

We define the residual graph Gf with regard to a specific flow f using the
residual weight function cf (v, w) = c(v, w) − f(v, w). The set of residual edges
is just Ef = {(v, w) ∈ V × V | cf (v, w) > 0}. The reverse residual graph GR

f is
the same graph with each edge inverted.

A maximum flow in G is a flow that maximizes the flow value, i.e. the sum
of flow on edges out of the source. It so happens that a flow is maximum if and
only if there is no path from s to t in the residual graph Gf [9, Corallary 5.2].
The maximum flow problem is the problem of finding such a flow function. It is
closely related to the minimum cut problem, which asks for a disjoint partition
(S ⊂ V, T ⊂ V ) of the graph with s ∈ S, t ∈ T that minimizes the cumulative
capacity of edges that cross from S to T . It can be shown that the value of a
maximum flow is equal to the value of a minimum cut and a minimum cut can be
easily computed from a given maximum flow in linear time as the set of vertices
reachable from the source in the residual graph [9, §5].

2.1 Sequential Max-Flow and Min-Cut Computations

Existing work related to the maximum flow problem is generally split into two
categories: work on algorithms specific to computer vision applications and work
on general-purpose algorithms. Most of the algorithms that work well for the
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type of grid graphs found in computer vision tend to be inferior for other graph
families and vice versa [11, Concluding Remarks]. In this paper we aim to design
a general-purpose algorithm that performs reasonably well on all sorts of graphs.

Traditional algorithms for the maximum flow problem typically fall into one
of two categories: Augmenting path-based algorithms directly apply the Ford–
Fulkerson theorem [9, Corallary 5.2] by incrementally finding augmenting paths
from s to t in the residual graph and increasing the flow along them. They mainly
differ in their methods of finding augmenting paths. Modern algorithms for min-
imum cuts in computer vision applications such as [11] belong to this family.
Preflow-based algorithms do not maintain a valid flow during their execution
and instead allow for vertices to have more incoming than outgoing flow. The
difference in flow on in-edges and out-edges of a vertex is called excess. Vertices
with positive excess are called active. A prominent member of this family is the
classical push-relabel algorithm due to Goldberg and Tarjan [13]. It maintains
vertex labels that estimate the minimal number of edges on a path to the sink.
Excess flow can be pushed from a vertex to a neighbor by increasing the flow
value on the connecting edge. Pushes can only happen along admissible residual
edges to vertices of lower label. When none of the edges out of an active vertex
are admissible for a push, the vertex gets relabeled and to a higher label. It is
crucial for practical performance of push-relabel that the labels estimate the
sink distance as accurately as possible. A simple way to keep them updated is
to regularly run a BFS in the reverse residual graph to set them to the exact
distance. This optimization is called global relabeling.

The more recent pseudoflow algorithm due to Hochbaum [16] does not need
global relabeling and uses specialized data structures that allow for pushes
along more than one edge. Implementations of push-relabel algorithms and
Hochbaum’s algorithm differ mainly in the order in which they process active
vertices. Highest label -based implementations process active vertices in order of
decreasing labels, while FIFO-based implementations select active vertices in
queue order. Goldberg’s hi pr program [10] uses the former technique and is
considered one of the fastest generic maximum flow solvers. It is often used for
comparison purposes in related research. For push-relabel and Hochbaum’s algo-
rithm, it is beneficial to compute merely a maximum preflow that maximizes the
cumulative flow on in-edges of the sink, rather than a complete flow assignment.
In the case where we are looking only for a minimum cut this is already enough.
In all the other cases, computing a valid flow assignment for a given maximum
preflow can be achieved using a greedy decomposition algorithm that tends to
take much less time than the computation of a preflow [6].

2.2 Parallel and Distributed Approaches to the Problem

Parallel algorithms for the maximum flow problem date back to 1982, where
Shiloach et al. propose a work-efficient parallel algorithm in the PRAM model,
based on blocking flows [23]. Most of the more recent work however is based
on the push-relabel family of algorithms. With regard to parallelization, it has
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the fundamental, distinct advantage that its primitive operations are inherently
local and thus largely independent.

As far as we know, Anderson and Setubal give the first implementation of
a practical parallel algorithm for the maximum flow problem [1]. In their algo-
rithm, a global queue of active vertices approximates the FIFO selection order.
A fixed number of threads fetch vertices from the queue for processing and add
newly activated vertices to the queue using locks for synchronization. The au-
thors report speedups over a sequential FIFO push-relabel implementation of
up to a factor of 7 with 16 processors. The authors also describe a concurrent
version of global relabeling that works in parallel to the asynchronous processing
of active vertices. We will refer to this technique as concurrent global relabeling.
Bader and Sachdeva [2] modify the approach by Anderson and Setubal and in-
troduce the first parallel algorithm that approximates the highest-label vertex
selection order used by hi pr.

Hong [17] proposes an asynchronous implementation that completely removes
the need for locking. Instead it makes use of atomic instructions readily available
in modern processors. Hong and He later present an implementation of the al-
gorithm that also incorporates concurrent global relabeling [18]. Good speedups
over a FIFO-based sequential solver and an implementation of Anderson and
Setubal’s algorithm are reported. There is also a GPU-accelerated implementa-
tion of the algorithm [15].

Pmaxflow [25] is a parallel, asynchronous FIFO-based push-relabel implemen-
tation. It does not use the concurrent global relabeling proposed by [1] and in-
stead regularly runs a parallel breadth-first search on all processors. They report
speedups of up to 3 over hi pr with 32 threads.

3 A Synchronous Parallel Implementation of
Push-Relabel

The parallel algorithms mentioned in subsection 2.2 are exclusively implemented
in an asynchronous manner and differ mainly in the load-balancing schemes they
use and in how they resolve conflicts between adjacent vertices that are processed
concurrently. We believe the motivation for using asynchronous methods this is
that in the tested benchmark instances, often there is only a handful of active
vertices available for concurrent processing at a given point in time. In this
work we try to also consider larger instances, where there is an obvious need
for accelerated processing and where it might not be possible to solve multiple
independent instances concurrently, due to memory limitations. With a higher
number of active vertices per iteration a synchronous approach becomes more
attractive because less work is wasted on distributing the load.

From initial experiments with sequential flow push-relabel algorithms, we
learned the following things: As expected, the average number of active ver-
tices increases with the size of the graph for a fixed family of inputs. Also, on
almost all of the graphs we tested, a FIFO-based solver outperformed the highest
label-based hi pr implementation. This is somewhat surprising as hi pr is clearly
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superior on the standard DIMACS benchmark [6]. These observations led us to
an initial design of a simple synchronous parallel algorithm, inspired by an al-
gorithm proposed in the original push-relabel article [13]. After the standard
initialization, where all edges adjacent to the source are saturated, it proceeds
in a series of iterations, each iteration consisting of the following steps:

1. All of the active vertices are processed in parallel. For each such vertex,
its edges are checked sequentially for admissibility. Possible pushes are per-
formed, but the excess changes are only applied to a copy of the old excess
values. The final values are copied back in step 4.

2. New temporary labels are computed in parallel for vertices that have been
processed in step 1 but are still active.

3. The new labels are applied by iterating again over the set of active vertices
in parallel and setting the distance labels to the values computed in step 2.

4. The excess changes from step 1 are applied by iterating over the new set of
active vertices in parallel.

These steps are repeated until there are no more active vertices with a la-
bel smaller than n. The algorithm is deterministic in that it requires the same
amount of work regardless of the number of threads, which is a clear advantage
over other parallel approaches that exhibit a considerable increase in work when
adding more threads [18]. As soon as there are no more active vertices, we have
computed a maximum preflow and can determine a minimum cut immediately
or proceed to reconstruct a maximum flow assignment using a sequential greedy
decomposition.

It is important to note that in step 1 we modify shared memory from mul-
tiple threads concurrently. To ensure correctness, we use atomic fetch-and-add
instructions here to update the excess values of neighbor vertices (or rather,
copies thereof). Contention on these values is typically low, so overhead caused
by cache coherency mechanisms is not a problem. To collect the new set of active
vertices for the next iteration we use atomic test-and-set instructions that re-
solve conflicts when a vertex is activated simultaneously by multiple neighbors, a
situation that occurs only very rarely. We want to point out that synchronization
primitives are kept to a minimum by design, which to our knowledge constitutes
a significant difference to the state-of-the-art.

Instead of running global relabeling concurrently with the rest of the algorithm
as done by [1] and [18], we regularly insert a global relabeling step in between
certain iterations. The work threshold we use to determine when to do this is
the same as the one used by hi pr.1 The global relabeling is implemented as a
simple parallel reverse breadth-first search from the sink. Atomic compare-and-
swap primitives are used during the BFS to test whether adjacent vertices have
already been discovered. Apart from global relabeling, we also experimented with
other heuristics such as gap relabeling, described in [6, Chapter 3], but could not
achieve speedups by applying them to the parallel case.

1 Global relabeling is performed approximately after every 12n+ 2m edge scans.
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3.1 Improving the Algorithm

We implemented the above algorithm in C++ with OpenMP extensions. For
common parallel operations like prefix sums and filter, we used library functions
from our Problem Based Benchmark Suite [24] for parallel algorithms. Even
with this very simple implementation, we could measure promising speedups
compared to sequential solvers. However, we conjectured that the restriction
of doing at most one relabel per vertex in each iteration has some negative
consequences: For one, it hinders the possible parallelism: A low-degree vertex
can only activate so many other vertices before getting relabeled. It would be
preferrable to imitate the sequential algorithms and completely discharge each
active vertex in one iteration by alternating push and relabel operations until
its excess is zero. Also, the per-vertex work is small. As we parallelize on a
vertex level, we want to maximize the work per vertex to improve multi-threaded
performance in the common case that only few vertices are active.

To be able to relabel a vertex more than once during one iteration, we need
to allow for non-determinism and develop a scheme to resolve conflicts between
adjacent vertices when both are active in the same iteration. We experimented
with several options here, including the lock-free vertex discharge routine intro-
duced by Hong and He [18]. Another approach turned out to be more successful
and works without any additional synchronization: In the case where two adja-
cent vertices v and w are both active, a deterministic winning criterion is used to
decide which one of the vertices owns the connecting edges during the current it-
eration. We say that v wins the competition if d(v) < d(w)−1 or d(v) = d(w)+1
or v < w (the latter condition is a tie-breaker in the case where d(v) = d(w)).
In this case, v is allowed to push along the edge (v, w) but w is not allowed to
push along the edge (w, v). The discharge of w is thus aborted if (w, v) is the
last remaining admissible edge. The particular condition is chosen such that one
of the vertices can get relabeled past the other, to ensure progress. There is an
edge case to consider where two adjacent vertices v and w are active, v owns the
connecting edge but w is still relabeled because the residual capacity cf (w, v) is
zero. We allow this scenario, but apply relabels only to a copy of the distance
function d, called d′. The new admissibility condition for an edge (x, y) ∈ Ef

becomes d′(x) = d(y)+ 1, i.e. the old distance of y is considered. The new labels
are applied at the end of the iteration.

By using this approach, we ensure that for each sequence of push and relabel-
ing operations in our algorithm during one iteration, there exists an equivalent
sequence of pushes and relabels that is valid with regard to the original admissi-
bility conditions from [13]. Thus the algorithm is correct as per the correctness
proof for the push-relabel algorithm.

The resulting algorithm works similar to the simple algorithm stated above,
but mixes steps 1 and 2, to enable our changes. We will refer to our own
implementation of this algorithm as prsn in the remainder of this document.
Pseudocode can be found in the longer version of our paper [4].
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4 Evaluation

4.1 A Modern Benchmark Suite for Flow Computations

Traditionally, instance families from the twenty-year-old DIMACS implemen-
tation challenge [19] are used to compare the performance of maximum flow
algorithms. Examples of publications that use primarily these graph families
are [1, 2, 5, 6, 12, 18]. We believe that the instance families from the DIMACS
benchmark suite do not accurately represent the flow and cut problems that are
typically found today. Based on different applications where flow computations
occur as subproblems, we compiled a benchmark suite for our experiments that
we hope will give us better insight into which approaches are the most successful
in practice.

Saito et al. describe how minimum cut techniques can be used for spam detec-
tion on the internet [21]: They observe that generally spam sites link to “good”
(non-spam) sites a lot while the opposite is rarely the case. Thus the sink par-
tition of a minimum cut between a seed set of good and spam sites is likely to
contain mostly spam sites. We used their construction on a graph of pay level
domains provided by a research group at the University of Mannheim with edges
of capacity 1 between domains that have at least one hyperlink.2 A publicly ac-
cessible spam list3 and a list of major internet sites4 helped us build good and
bad seed sets of size 100 each, resulting in the pld spam graph.

Very similar constructions can be used for community detection in social net-
works [8] It is known that social networks, the Web and document graphs like
Wikipedia share a lot of common characteristics, in particular sparsity and low
diameter. Halim et al. include in their article a comprehensive collection of ref-
erences that observe these properties for different classes of graphs [14]. Based
on this we believe that pld spam is representative of a more general class of
applications that involve community detection in such graphs.

Graph partitioning software such as KaHIP due to Sanders and Schulz com-
monly use flow techniques internally [22]. The KaHIP website5 provides an
archive of flow instances for research purposes which we used as part of our
test suite. We included multiple instances from this suite, because the structure
of the flow graphs is very close to the structure of the input graphs and those
cover a wide range of practical applications.

The input graphs for KaHIP are taken from the 10th DIMACS graph parti-
tioning implementation challenge [3]: delaunay is a family of graphs representing
the Delaunay triangulations of randomly generated sets of points in the plane.
rgg is a family of random geometric graphs generated from a set of random points
in the unit square. Points are connected via an edge if their distance is smaller
than 0.55· lnn

n . europe.osm is the largest amongst a set of street map graphs. nlp-
kkt240 is the graph representation of a large sparse matrix arising in non-linear

2 http://webdatacommons.org/hyperlinkgraph/
3 http://www.joewein.de/sw/blacklist.htm
4 https://www.quantcast.com/top-sites
5 http://algo2.iti.kit.edu/documents/kahip/

http://webdatacommons.org/hyperlinkgraph/
http://www.joewein.de/sw/blacklist.htm
https://www.quantcast.com/top-sites
http://algo2.iti.kit.edu/documents/kahip/
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optimization. For the cases where graphs of different sizes are available (delau-
nay and rgg), we included the largest instance whose internal representation fits
into the main memory of our test machine.

As a third application, in computer vision a lot of different problems reduce
to minimum cut: For reference, Fishbain and Hochbaum [7, Section 3.2] describe
various examples of applications. We included BL06-camel-lrg, an instance of
multi-view reconstruction from the vision benchmark suite of the University of
Western Ontario.6

For completeness, we also included instances of two of the harder graph fami-
lies from the DIMACS maximum flow challenge, rmf wide 4 and rlg wide 16,
which are described for example by [6]. Table 1 shows the complete list of
graphs we used in our benchmarks, together with their respective vertex and
edge counts, as well as the maximum edge capacities.

Table 1. Properties of our benchmark graph instances. The maximum edge capacity
is excluding source or sink adjacent edges.

graph name num. vertices num. edges max. edge capacity

rmf wide 4 1,048,576 5,160,960 10000
rlg wide 16 4,194,306 12,517,376 30000
delaunay 28 161,061,274 966,286,764 1
rgg 27 80,530,639 1,431,907,505 1
europe.osm 15,273,606 32,521,077 1
nlpkkt240 8,398,082 222,847,493 1
pld spam 42,889,802 623,056,513 1
BL06-camel-lrg 18,900,002 93,749,846 16000

4.2 Comparison and Testing Methodology

Our aim was to compare the practical efficiency of our algorithm to the sequential
and parallel state-of-the-art on a common Intel architecture. For comparison
with sequential implementations, we selected the publicly available f prf 7, hi pr
and hpf 8 programs, implementing FIFO and highest label-based push-relabel
and Hochbaum’s pseudoflow algorithm, respectively. For hi pr, we did not find
a canonical URL for the most recent 3.7 version of the code and instead used
the copy embedded in a different project.9 Our results show that hpf is the best
sequential solver for our benchmark suite, only outperformed by f prf on the
pld spam graph. The most recent parallel algorithm is the asynchronous lock-
free algorithm by Hong and He [18]. Since it has no public implementation, we
implemented their algorithm based on the pseudocode description. We will refer
to it as hong he in the remainder of this document. Our own implementation of
the algorithm described in subsection 3.1 is called prsn. We also experimented
with a parallel push-relabel implementation that is part of the Galois project.10

6 http://vision.csd.uwo.ca/data/maxflow/
7 http://www.avglab.com/soft.html
8 http://riot.ieor.berkeley.edu/Applications/Pseudoflow/maxflow.html
9 https://code.google.com/p/pmaxflow/source/browse/trunk/goldberg/hipr

10 http://iss.ices.utexas.edu/?p=projects/galois/benchmarks/preflow_push

http://vision.csd.uwo.ca/data/maxflow/
http://www.avglab.com/soft.html
http://riot.ieor.berkeley.edu/Applications/Pseudoflow/maxflow.html
https://code.google.com/p/pmaxflow/source/browse/trunk/goldberg/hipr
http://iss.ices.utexas.edu/?p=projects/galois/benchmarks/preflow_push
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Although their code is competitive on certain small inputs, it did not complete
within a reasonable amount of time on larger instances.

To eliminate differences due to graph representation and initialization over-
head, we modified the algorithms to use the same internal graph representation,
namely adjacency arrays with each edge also storing the residual capacity of its
reverse edge, as described in [2]. For all five algorithms we only measured the
time to compute the maximum preflow, not including the data structure initial-
ization time. The reconstruction of the complete flow function from there is the
same in every case and takes only a negligible fraction (less than 3 percent) of
the total sequential computation time for all of our input graphs. We measured
each combination of algorithm and input at least five times.

We carried out the experiments on a NUMA Intel Nehalem machine. It hosts
four Xeon E7-8870 sockets clocked at 2.4 GHz per core, making for a total of 40
physical and 80 logical cores. Every socket has 64 GiB of RAM associated with
it, making for a total of 256 GiB.

4.3 Results

The longer version of our paper contains comprehensive tables of the absolute
timings we collected in all our experiments [4]. rgg 27, delaunay 28 and nlpkkt240
are examples of graphs where an effective parallel solution is possible: Figure 1
shows that both hong he and prsn outperform hpf in the case of rgg 27 ; fur-
thermore prsn is three times faster than hong he with 32 threads. The speedup
plot for delaunay 28 looks almost identical to the one for rgg 27. In the case of
nlpkkt240, we can tell from Figure 2 that prsn outperforms hpf with four threads
and achieves a speedup of 5.7 over hpf with 32 threads. hong he does not achieve
any absolute speedup even with 40 threads. prsn does remarkably well on our
spam detection instance pld spam: Even with one thread, our implementation
outperforms hpf and hi pr and is on par with f prf. Figure 3 shows that with
40 threads, an absolute speedup of 12 is achieved over the best sequential run.
We noticed here that the algorithm spends most of the time performing a small
number of iterations on a very large number of active vertices, which is very ad-
vantageous for parallelization. Note that hong he did not finish on the pld spam
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benchmark after multiple hours of run time. We conjecture that this is because
the algorithm is simply very inefficient for this particular instance and were able
to confirm that this is the case by reimplementing the same vertex discharge
in the sequential f prf program. Before each push, it scans all the edges of a
vertex to find the neighbor with the lowest label. This is necessary in hong he
because the algorithm does not maintain the label invariant d(x) ≤ d(y) + 1 for
all (x, y) ∈ Ef . The modified f prf also did not finish solving the benchmark
instance within a reasonable time frame.
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BL06-camel-lrg is a benchmark from computer vision. Figure 4 shows that
prsn is able to outperform hpf with 8 threads and achieves a speedup of almost
four with 32 threads. hpf has in turn been shown to perform almost as well as
the specialized BK algorithm on this benchmark [7].

As we can tell from Figure 5, in the case of rlg wide 16, prsn requires eight
threads to outperform hpf and achieves an absolute speedup of about three with
32 threads. europe.osm appears to be a hard instance for the parallel algorithms,
as shown in Figure 6: Only hong he achieves a small speedup with 32 threads.
Both parallel algorithms fail to outperform the best sequential algorithm in the
case of the rmf wide 4 graph. In all cases, making use of hyper-threading by
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running the algorithms with 80 threads did not yield any performance improve-
ments, which we attribute to the fact that the algorithm is mostly memory
bandwidth-bound.

Overall, different graph types lead to different behaviour of the tested algo-
rithms. We have shown that especially for large, sparse graphs of low diameter,
our algorithm can provide significant speedups over existing sequential and par-
allel maximum flow solvers.

5 Conclusion

In this paper, we presented a newparallelmaximumflow implementation and com-
pared it with existing state-of-the-art sequential and parallel implementations on
a variety of graphs. Our implementation uses coarse-grained synchronization to
avoid the overhead of fine-grained locking andhardware-level synchronizationused
by other parallel implementations.We showed experimentally that our implemen-
tation outperforms the fastest existing parallel implementation and achieves good
speedup over existing sequential implementations on different graphs. Therefore,
we believe that our algorithm can considerably accelerate many flow and cut com-
putations that arise in practice. To evaluate the performance of our algorithm, we
identified a new set of benchmark graphs representingmaximum flow problems oc-
curing in practical applications.We believe this contributionwill help in evaluating
maximum flow algorithms in the future.
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Abstract. We show a close connection between structural hardness for
k-partite graphs and tight inapproximability results for scheduling prob-
lems with precedence constraints. Assuming a natural but nontrivial
generalisation of the bipartite structural hardness result of [1], we ob-
tain a hardness of 2 − ε for the problem of minimising the makespan
for scheduling precedence-constrained jobs with preemption on identi-
cal parallel machines. This matches the best approximation guarantee
for this problem [6,4]. Assuming the same hypothesis, we also obtain
a super constant inapproximability result for the problem of schedul-
ing precedence-constrained jobs on related parallel machines, making
progress towards settling an open question in both lists of ten open
questions by Williamson and Shmoys [17], and by Schuurman and
Woeginger [14].

The study of structural hardness of k-partite graphs is of independent
interest, as it captures the intrinsic hardness for a large family of schedul-
ing problems. Other than the ones already mentioned, this generalisation
also implies tight inapproximability to the problem of minimising the
weighted completion time for precedence-constrained jobs on a single
machine, and the problem of minimising the makespan of precedence-
constrained jobs on identical parallel machine, and hence unifying the
results of Bansal and Khot[1] and Svensson [15], respectively.

Keywords: hardness of approximation, scheduling problems, unique
game conjecture.

1 Introduction

The study of scheduling problems is motivated by the natural need to efficiently
allocate limited resources over the course of time. While some scheduling prob-
lems can be solved to optimality in polynomial time, others turn out to be
NP-hard. This difference in computational complexity can be altered by many
factors, from the machines model that we adopt, to the requirements imposed on
the jobs, as well as the optimality criterion of a feasible schedule. For instance, if
we are interested in minimising the completion time of the latest job in a sched-
ule (known as the maximum makespan), then the scheduling problem is NP-hard
to approximate within a factor of 3/2−ε, for any ε > 0, if the machines are unre-
lated, whereas it admits a Polynomial Time Approximation Scheme (PTAS) for
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the case of identical parallel machines [8]. Adopting a model in between the two,
in which the machines run at different speeds, but do so uniformly for all jobs
(known as uniform parallel machines), also leads to a PTAS for the scheduling
problem [9].

Although this somehow suggests a similarity in the complexity of scheduling
problems between identical parallel machines and uniform parallel machines, our
hopes for comparably performing algorithms seem to be shattered as soon as we
add precedence requirements among the jobs. On the one hand, we know how to
obtain a 2-approximation algorithm for the problem where the parallel machines
are identical [6,4] (denoted as P|prec |Cmax in the language of [7]), whereas on
the other hand the best approximation algorithm known to date for the uniform
parallel machines case (denoted as Q|prec |Cmax), gives a log(m)-approximation
guarantee [3,2], m being the number of machines. In fact obtaining a constant
factor approximation algorithm for the latter, or ruling out any such result is a
major open problem in the area of scheduling algorithms. Perhaps as a testament
to that, is the fact that it is listed by Williamson and Shmoys [17] as Open
Problem 8, and by Schuurman and Woeginger [14] as Open Problem 1.

Moreover, our understanding of scheduling problems even on the same model
of machines does not seem to be complete either. On the positive side, it is easy
to see that the maximum makespan of any feasible schedule for P|prec |Cmax is
at least max {L, n/m}, where L is the length of the longest chain of precedence
constraints in our instance, and n and m are the number of jobs and machines
respectively. The same lower bound still holds when we allow preemption, i.e.,
the scheduling problem P|prec, pmtn|Cmax. Given that both 2-approximation
algorithms of [6] and [4] rely in their analysis on the aforementioned lower
bound, then they also yield a 2-approximation algorithm for P|prec, pmtn|Cmax.
However, on the negative side, our understanding for P|prec, pmtn|Cmax is much
less complete. For instance, we know that it is NP-hard to approximate P|prec
|Cmax within any constant factor strictly better than 4/3 [10], and assuming
(a variant of) the unique games Conjecture, the latter lower bound is improved
to 2 [15]. However for P|prec, pmtn|Cmax, only NP-hardness is known. It is
important to note here that the hard instances yielding the (2− ε) hardness for
P|prec |Cmax are easy instances for P|prec, pmtn|Cmax. Informally speaking, the
hard instances for P|prec |Cmax can be thought of as k-partite graphs, where
each partition has n + 1 vertices that correspond to n + 1 jobs, and the edges
from a layer to the layer above it emulate the precedence constraints. The goal is
to schedule these (n+1)k jobs on n machines. If the k-partite graph is complete,
then any feasible schedule has a makespan of at least 2k, whereas if the graph was
a collection of perfect matchings between each two consecutive layers, then there
exists a schedule whose makespan is k+11. However, if we allow preemption, then
it is easy to see that even if the k-partite graph is complete, one can nonetheless
find a feasible schedule whose makespan is k + 1.

1 In fact, the gap is between k-partite graphs that have nice structural properties in
the completeness case, and behave like node expanders in the soundness case.
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The effort of closing the inapproximability gap between the best approxima-
tion guarantee and the best known hardness result for some scheduling problems
was successful in recent years; two of the results that are of particular interest for
us are [1] and [15]. Namely, Bansal and Khot studied in [1] the scheduling prob-
lem 1|prec |∑j wjCj , the problem of scheduling precedence constrained jobs on
a single machine, with the goal of minimsing the weighted sum of completion
time, and proved tight inapproximability results for it, assuming a variant of
the unique games Conjecture. Similarly, Svensson proved in [15] a hardness of
2− ε for P|prec |Cmax, assuming the same conjecture. In fact, both papers relied
on a structural hardness result for bipartite graphs, first introduced in [1], by
reducing a bipartite graph to a scheduling instance which leads to the desired
hardness factor.

Our Results. We propose a natural but non-trivial generalisation of the struc-
tural hardness result of [1] from bipartite to k-partite graphs, that captures
the intrinsic hardness of a large family of scheduling problems. Concretely, this
generalisation yields

1. A super constant hardness for Q|prec |Cmax, making progress towards re-
solving an open question by [17,14]

2. A hardness of 2 − ε for P|prec, pmtn|Cmax, even for the case where the
processing time of each jobs is 1, denote by P|prec, pmtn, pj = 1|Cmax, and
hence closing the gap for this problem.

Also, the results of [1] and [15] will still hold for 1|prec |∑j wjCj and P|prec
|Cmax, respectively, under the same assumption.

On the one hand, our generalisation rules out any constant factor polynomial
time approximation algorithm for the scheduling problem Q|prec |Cmax. On the
other hand, one may speculate that the preemption flexibility when added to
the scheduling problem P|prec |Cmax may render this problem easier, especially
that the hard instances of the latter problem become easy when preemption is
allowed. Contrary to such speculations, our generalisation to k-partite graphs
enables us to prove that it is NP-hard to approximate the scheduling problem
P|prec, pmtn, pj = 1|Cmax within any factor strictly better than 2. Formally, we
prove the following:

Theorem 1. Assuming Hypothesis 5, it is NP-hard to approximate the scheduling
problems P|prec, pmtn, pj = 1|Cmax within any constant factor strictly better than
2, and Q|prec |Cmax within any constant factor.

This suggests that the intrinsic hardness of a large family of scheduling problems
seems to be captured by structural hardness results for k-partite graphs. For the
case of k = 2, our hypothesis coincides with the structure bipartite hardness
result of [1], and yields the following result:

Theorem 2. Assuming a variant of the unique games Conjecture, it is NP-
hard to approximate the scheduling problem P|prec, pmtn, pj = 1|Cmax within
any constant factor strictly less than 3/2.
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In fact, the 3/2 lower bound holds even if we only assume that 1|prec |∑j wjCj is
NP-hard to approximate within any factor strictly better than 2, by noting the
connection between the latter and a certain bipartite ordering problem. This
connection was observed and used by Svensson [15] to prove tight hardness
of approximation lower bounds for P|prec |Cmax, and this yields a somehow
stronger statement; even if the unique games Conjecture turns out to be false,
1|prec |∑j wjCj might still be hard to approximate to within a factor of 2− ε,
and our result for P|prec, pmtn, pj = 1|Cmax will still hold as well. Formally,

Corollary 1. For any ε > 0, and η ≥ η(ε), where η(ε) tends to 0 as ε tends
to 0, if 1|prec |∑j wjCj has no (2 − ε)-approximation algorithm, then P|prec,
pmtn, pj = 1|Cmax has no (3/2− η)-approximation algorithm.

Although we believe that Hypothesis 5 holds, the proof is still eluding us.
Nonetheless, understanding the structure of k-partite graphs seems to be a very
promising direction to understanding the inapproximability of scheduling prob-
lems, due to its manifold implications on the latter problems. As mentioned
earlier, a similar structure for bipartite graphs was proved assuming a variant of
the unique games Conjecture in [1] (see Theorem 4), and we show in the full
version how to extend it to k-partite graphs, while maintaining a somehow sim-
ilar structure. However the resulting structure does not suffice for our purposes,
i.e., does not satisfy the requirement for Hypothesis 5. Informally speaking, a
bipartite graph corresponding to the completeness case of Theorem 4, despite
having a nice structure, contains some noisy components that we cannot fully
control. This follows from the fact that these graphs are derived from unique
games PCP-like tests, where the resulting noise is either intrinsic to the unique
games instance (i.e., from the non-perfect completeness of the unique games
instance), or artificially added by the test. Although we can overcome the latter,
the former prohibits us from replicating the structure of the bipartite graph to
get a k-partite graph with an equally nice structure.

Further Related Work. The scheduling problem P|prec, pmtn, pj = 1|Cmax was
first shown to be NP-hard by Ullman [16]. However, if we drop the precedence
rule, the problem can be solved to optimality in polynomial time [11]. Similarly,
if the precedence constraint graph is a tree[12,13,5] or the number of machines
is 2 [12,13], the problem also becomes solvable in polynomial time. Yet, for an
arbitrary precedence constraints structure, it remains open whether the problem
is polynomial time solvable when the number of machines is a constant greater
than or equal to 3 [17]. A closely related problem to P|prec, pmtn|Cmax is P|prec
|Cmax, in which preemption is not allowed. In fact the best 2-approximation
algorithms known to date for P|prec, pmtn|Cmax were originally designed to ap-
proximateP|prec |Cmax [6,4], by noting the common lower bound for a makespan
to any feasible schedule for both problems. As mentioned earlier, [10] and [15]
prove a 4/3 − ε NP-hardness, and 2 − ε UGC-hardness respectively for P|prec
|Cmax, for any ε > 0. However, to this date, only NP-hardness is known for the
P|prec, pmtn, pj = 1|Cmax scheduling problem. Although one may speculate that
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allowing preemption might enable us to get better approximation guarantees, no
substantial progress has been made in this direction since [6] and [4].

One can easily see that the scheduling problem P|prec |Cmax is a special
case of Q|prec |Cmax, since it corresponds to the case where the speed of ev-
ery machine is equal to 1, and hence the (4/3− ε) NP-hardness of [10] and the
(2 − ε) UGC-hardness of [15] also apply to Q|prec |Cmax. Nonetheless, no con-
stant factor approximation for this problems is known; a log(m)-approximation
algorithm was designed by Chudak and Shmoys [3], and Chekuri and Bender [2]
independently, where m is the number of machines.

Outline. We start in Section 2 by defining the unique games problem, along
with the variant of the unique games Conjecture introduced in [1]. We then
state in Section 3 the structural hardness result for bipartite graphs proved
in [1], and propose our new hypothesis for k-partite graphs (Hypothesis 5)
that will play an essential role in the hardness proofs of Section 4. Namely,
we use it in Section 4.1 to prove a super constant inapproximability result for
the scheduling problem Q|prec |Cmax, and 2 − ε inapproximability for P|prec,
pmtn, pj = 1|Cmax. The reduction for the latter problem can be seen as repli-
cating a certain scheduling instance k − 1 times, and hence we note that if we
settle for one copy of the instance, we can prove an inapproximability of 3/2,
assuming the variant of the unique games Conjecture of [1]. In the full version
of the paper, we prove a structural hardness result for k-partite graphs which is
similar to Hypothesis 5, although not sufficient for our scheduling problems of
interest. We also note in the full version that the integrality gap instances for
the natural Linear Programming (LP) relaxation for P|prec, pmtn, pj = 1|Cmax,
have a very similar structure to the instances yielding the hardness result.

2 Preliminaries

In this section, we start by introducing the unique games problem, along with
a variant of Khot’s unique games conjecture as it appears in [1], and then we
formally define the scheduling problems of interest.

Definition 1. A unique games instance U(G = (V,W,E), [R], Π) is defined
by a bipartite graph G = (V,W,E) with bipartitions V and W respectively, and
edge set E. Every edge (v, w) ∈ E is associated with a bijection map πv,w ∈ Π
such that πv,w : [R] �→ [R], where [R] is the label set. The goal of this problem is
find a labeling Λ : V ∪W �→ [R] that maximises the number of satisfied edges in
E, where an edge (u, v) ∈ E is satisfied by Λ if πv,w(Λ(w)) = Λ(v).

Bansal and Khot [1] proposed the variant of the unique games Conjecture in
Hypothesis 3, and used it to (implicitly) prove the structural hardness result for
bipartite graphs in Theorem 4.

Hypothesis 3. [Variant of the UGC[1]] For arbitrarily small constants η, ζ,
δ > 0, there exists an integer R = R(η, ζ, δ) such that for a unique games
instance U(G = (V,W,E), [R], Π), it is NP-hard to distinguish between:
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– (YES Case: ) There are sets V ′ ⊆ V , W ′ ⊆ W such that |V ′| ≥ (1 − η)|V |
and |W ′| ≥ (1 − η)|W |, and a labeling Λ : V ∪ W �→ [R] such that all the
edges between the sets (V ′,W ′) are satisfied.

– (NO Case: ) No labeling to U satisfies even a ζ fraction of edges. Moreover,
the instance satisfies the following expansion property. For every S ⊆ V ,
T ⊆ W , |S| = δ|V |, |T | = δ|W |, there is an edge between S and T .

Theorem 4. [Section 7.2 in [1]] For every ε, δ > 0, and positive integer Q, the
following problem is NP-hard assuming Hypothesis 3: given an n-by-n bipartite
graph G = (V,W,E), distinguish between the following two cases:

– YES Case: V can be partitioned into V0, . . . , VQ−1 and W can be partitioned
into W0, . . . ,WQ−1, such that
• There is no edge between Vi and Wj for all 0 ≤ j < i < Q.

• |Vi| ≥ (1−ε)
Q n and |Wi| ≥ (1−ε)

Q n, for all i ∈ [Q].

– NO Case: For any S ⊆ V , T ⊆ W , |S| = δn, |T | = δn, there is an edge
between S and T .

In the scheduling problems that we consider, we are given a set M of machines
and a set J of jobs with precedence constraints, and the goal is find a feasible
schedule in a way to minimise the makespan, i.e., the maximum completion time.
We will be interested in the following two variants of this general setting:

P|prec, pmtn |Cmax: In this model, the machines are assumed to be be parallel
and identical, i.e., the processing time of a job Jj ∈ J is the same on any
machine Mi ∈ M (pi,j = pj for all Mi ∈ M). Furthermore, preemption is
allowed, and hence the processing of a job can be paused and resumed at
later stages, not necessarily on the same machine.

Q|prec |Cmax: In this model, the machines are assumed to be parallel and
uniform, i.e., each machine Mi ∈ M has a speed si, and the time it takes to
process job Jj ∈ J on this machine is pj/si.

Before we proceed we give the following notations that will come in handy in
the remaining sections of the paper. For a positive integer Q, [Q] denotes the set
{0, 1, . . . , Q − 1}. In a scheduling context, we say that a job Ji is a predecessor
of a job Jj , and write it Ji ≺ Jj , if in any feasible schedule, Jj cannot start
executing before the completion of job Ji. Similarly, for two sets of jobs Ji and
Jj , Ji ≺ Jj is equivalent to saying that all the jobs in Jj are successors of all
the jobs in Ji.

3 Structured k-partite Problem

We propose in this section a natural but nontrivial generalisation of Theorem 4
to k-partite graphs. Assuming hardness of this problem, we can get the following
hardness of approximation results:

1. It is NP-hard to approximate Q|prec |Cmax within any constant factor.
2. It is NP-hard to approximate P|prec, pmtn, pj = 1|Cmax within a 2 − ε

factor.
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3. It is NP-hard to approximate 1|prec |∑j wjCj within a 2− ε factor.
4. It is NP-hard to approximate P|prec |Cmax within a 2− ε factor.

The first and second result are presented in Section 4.1 and 4.2, respectively.
Moreover, one can see that the reduction presented in [1] for the scheduling
problem 1|prec |∑j wjCj holds using the hypothesis for the case that k = 2.
The same holds for the reduction in [15] for the scheduling problem P|prec |Cmax.
This suggests that this structured hardness result for k-partite graphs somehow
unifies a large family of scheduling problems, and captures their common intrinsic
hard structure.

Hypothesis 5. [k-partite Problem] For every ε, δ > 0, and constant integers
k,Q > 1, the following problem is NP-hard: given a k-partite graph G = (V1, ...,
Vk, E1, ..., Ek−1) with |Vi| = n for all 1 ≤ i ≤ k and Ei being the set of edges
between Vi and Vi+1 for all 1 ≤ i < k, distinguish between following two cases:

– YES Case: every Vi can be partitioned into Vi,0, ..., Vi,Q−1, such that
• There is no edge between Vi,j1 and Vi−1,j2 for all 1 < i ≤ k, j1 < j2 ∈ [Q].

• |Vi,j | ≥ (1−ε)
Q n, for all 1 ≤ i ≤ k, j ∈ [Q].

– NO Case: For any 1 < i ≤ k and any two sets S ⊆ Vi−1, T ⊆ Vi, |S| = δn,
|T | = δn, there is an edge between S and T .

This says that if the k-partite graph G = (V1, ..., Vk, E1, ..., Ek−1) satisfies the
YES Case, then for every 1 ≤ i ≤ k−1, the induced subgraph G̃ = (Vi, Vi+1, Ei)
behaves like the YES Case of Theorem 4, and otherwise, every such induced
subgraph corresponds to the NO case. Moreover, if we think of G as a directed
graph such that the edges are oriented from Vi to Vi−1, then all the partitions
in the YES case are consistent in the sense that a vertex v ∈ Vi,j can only have
paths to vertices v′ ∈ Vi′,j′ if i

′ < i ≤ k and j′ ≤ j ≤ Q− 1.
We can prove that assuming the previously stated variant of the unique

games Conjecture, Hypothesis 5 holds for k = 2. Also we can extend Theorem 4
to a k-partite graph using a perfect matching approach which results in the
following theorem. We delegate its proof to the full version of the paper.

Theorem 6. For every ε, δ > 0, and constant integers k,Q > 1, the following
problem is NP-hard: given a k-partite graph G = (V1, . . . , Vk, E1, . . . , Ek−1) with
|Vi| = n and Ei being the set of edges between Vi and Vi+1 , distinguish between
following two cases:

– YES Case: every Vi can be partitioned in to Vi,0, ..., Vi,Q−1, Vi,err, such that
• There is no edge between Vi,j1 and Vi−1,j2 for all 1 < i ≤ k, j1 
= j2 ∈ [Q].

• |Vi,j | ≥ (1−ε)
Q n for all 1 ≤ i ≤ k, j ∈ [Q].

– NO Case: For any 1 < i ≤ k and any two sets S ⊆ Vi, T ⊆ Vi−1, |S| = δn,
|T | = δn, there is an edge between S and T .

Note that in the YES Case, the induced subgraphs on {Vi,j} for 1 ≤ i ≤ k,
0 ≤ j ≤ Q − 1, have the perfect structure that we need for our reductions to
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scheduling problems. However, we do not get the required structure between the
noise partitions (i.e., {Vi,err} for 1 ≤ i ≤ k), which will prohibit us from getting
the desired gap between the YES and NO Cases when performing a reduction
from this graph to our scheduling instances of interest. The structure of the noise
that we want is that the vertices in the noise partition are only connected to the
vertices in the noise partition of the next layer.

4 Lower Bounds for Scheduling Problems

In this section, we show that, assuming Hypothesis 5, there is no constant factor
approximation algorithm for the scheduling problem Q|prec |Cmax, and there
is no c-approximation algorithm for the scheduling problem P|prec, pmtn, pj =
1|Cmax, for any constant c strictly better than 2. We also show that, assuming
a special case of Hypothesis 5, i.e., k = 2 which is equivalent to (a variant) of
unique games Conjecture (Hypothesis 3), there is no approximation algorithm
better than 3/2− ε for P|prec, pmtn, pj = 1|Cmax, for any ε > 0.

4.1 Q|prec |Cmax

In this section, we reduce a given k-partite graph G to an instance I(k) of the
scheduling problem Q|prec |Cmax, and show that if G corresponds to the YES
Case of Hypothesis 5, then the maximum makespan of I(k) is roughly n, whereas
a graph corresponding to the NO Case leads to a scheduling instance whose
makespan is roughly the number of vertices in the graph, i.e., nk. Formally, we
prove the following theorem.

Theorem 7. Assuming Hypothesis 5, it is NP-hard to approximate the schedul-
ing problem Q|prec |Cmax within any constant factor.

Reduction. We present a reduction from a k-partite graph G = (V1, ...,
Vk, E1, ..., Ek−1) to an instance I(k) of the scheduling problem Q|prec |Cmax.
The reduction is parametrised by a constant k, a constant Q � k such that Q
divides n, and a large enough value m � nk.

– For each vertex in v ∈ Vi, let Jv,i be a set of m2(k−i) jobs with processing
time mi−1, for every 1 ≤ i ≤ k.

– For each edge e = (v, w) ∈ Ei, we have Jv,i ≺ Jw,i+1, for 1 ≤ i < k .
– For each 1 ≤ i ≤ k we create a set Mi of m

2(k−i) machines with speed mi−1.

Completeness. We show that if the given k-partite graph satisfies the proper-
ties of the YES Case, then there exist a schedule with makespan (1 + ε1)n for
some small ε1 > 0. Towards this end, assume that the given k-partite graph satis-
fies the properties of the YES Case and let {Vi,j} for 1 ≤ i ≤ k and 0 ≤ j ≤ Q−1
be the claimed partitioning of Hypothesis 5.
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The partitioning of the vertices naturally induces a partitioning {J̃i,j} for the
jobs for 1 ≤ i ≤ k and 0 ≤ j ≤ Q− 1 in the following way:

J̃i,j =
⋃

v∈Vi,j

Jv,i

Consider the schedule where for each 1 ≤ i ≤ k, all the jobs in a set
J̃i,0, . . . , J̃i,Q−1 are scheduled on the machines in Mi. Moreover, we start the

jobs in J̃i,j after finishing the jobs in both J̃i−1,j and J̃i,j−1 (if such sets exist).
In other words, we schedule the jobs as follows:

– For each 1 ≤ i ≤ k, we first schedule the jobs in J̃i,0, then those in J̃i,1 and

so on up until J̃i,Q−1. The scheduling of the jobs on machines in M0 starts
at time 0 in the previously defined order.

– For each 2 ≤ i ≤ k, we start the scheduling of jobs J̃i,0 right after the

completion of the jobs in J̃i−1,0.
– To respect the remaining precedence requirements, we start scheduling the

jobs in J̃i,j right after the execution of jobs in J̃i,j−1 and as soon as the jobs

in J̃i−1,j have finished executing, for 2 ≤ i ≤ k and 1 ≤ j ≤ Q− 1.

By the aforementioned construction of the schedule, we know that the precedence
constraints are satisfied, and hence the schedule is feasible. That is, since we
are in YES Case, we know that vertices in Vi′,j′ might only have edges to the
vertices in Vi,j for all 1 ≤ i′ < i ≤ k and 1 ≤ j′ ≤ j < Q, which means that the

precedence constraints may only be from the jobs in J̃i′,j′ to jobs in J̃i,j for all
1 ≤ i′ < i ≤ k and 0 ≤ j′ ≤ j < Q. Therefore the precedence constraints are
satisfied.

Moreover, we know that there are at most m2(k−i)n(1 + ε)/Q jobs of length
mi−1 in J̃i,j , andm2(k−i) machines with speedmi−1 in eachMi for all 1 ≤ i ≤ k,

j ∈ [Q]. This gives that it takes (1 + ε)n/Q time to schedule all the jobs in J̃i,j

on the machines in Mi for all 1 ≤ i ≤ k, j ∈ [Q], which in turn implies that we
can schedule all the jobs in a set J̃i,j between time (i + j − 1)(1 + ε)n/Q and
(i + j)(1 + ε)n/Q. This gives that the makespan is at most (k +Q)(1 + ε)n/Q
which is equal to (1 + ε1)n, by the assumption that Q � k.

Soundness. We shall now show that if the k-partite graph G corresponds to
the NO Case of Hypothesis 5, then any feasible schedule for I(k) must have a
makespan of at least cnk, where c := (1− 2δ)(1− k2/m) can be made arbitrary
close to one.

Lemma 1. In a feasible schedule σ for I(k) such that the makespan of σ is at
most nk, the following is true: for every 1 ≤ i ≤ k, at least a (1−k2/m) fraction
of the jobs in Li = ∪v∈ViJv,i are scheduled on machines in Mi.

Proof. We first show that no job in Li can be scheduled on machines in Mj, for
all 1 ≤ j < i ≤ k. This is true, because any job J ∈ Ji has a processing time
of mi−1, whereas the speed of any machine M ∈ Mj is mj−1 by construction,
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and hence scheduling the job J on the machine M would require mi−1/mj−1

≥ m time steps. But since m � nk, this contradicts the assumption that the
makespan is at most nk.

We now show that at most k2/m fraction of the jobs in Li can be scheduled
on the machines in Mj for 1 ≤ i < j ≤ k. Fix any such pair i and j, and assume
that all the machines in Mj process the jobs in Li during all the T ≤ nk time

steps of the schedule. This accounts for a total T m2(k−j)mj−1

mi−1 ≤ m2k−j−ink jobs

processed from Li, which constitutes at most m2k−j−ink
nm2(k−i) ≤ k

m fraction of the
total number of jobs in Li.

Let σ be a schedule whose makespan is at most nk, and fix γ > k2/m to be
a small constant. From Lemma 1 we know that for every 1 ≤ i ≤ k, at least
an (1 − γ) fraction of the jobs in Li is scheduled on machines in Mi. From the
structure of the graph in the NO Case of the k-partite Problem, we know that
we cannot start more than δ fraction of the jobs in Li before finishing (1 − δ)
fraction of the jobs in Li−1, for all 2 ≤ i ≤ k. Hence the maximum makespan of
any such schedule σ is at least (1 − 2δ)(1− γ)nk.

4.2 P|prec, pmtn, pj = 1|Cmax

We present in this section a reduction from a k-partite graph to an instance of
the scheduling problem P|prec, pmtn, pj = 1|Cmax, and prove a tight inapprox-
imability result for the latter, assuming Hypothesis 5. Formally, we prove the
following result:

Theorem 8. Assuming Hypothesis 5, it is NP-hard to approximate the schedul-
ing problem P|prec, pmtn, pj = 1|Cmax within any constant factor strictly better
than 2.

To prove this, we first reduce a k-partite graph G = (V1, ..., Vk, E1, ..., Ek−1) to
a scheduling instance Ĩ(k), and then show that

1. If G satisfies the YES Case of Hypothesis 5, then Ĩ(k) has a feasible schedule
whose makespan is roughly kQ/2.

2. if G satisfies the NO Case of Hypothesis 5, then any schedule for Ĩ(k) must
have a makespan of roughly kQ.

Reduction. The reduction has three parameters: an odd integer k, an integer
Q such that Q � k and n divides Q, and a real ε � 1/Q2 > 0.

Given a k-partite graph G = (V1, ..., Vk, E1, ..., Ek−1), we construct an in-
stance Ĩ(k) of the scheduling problem P|prec, pmtn, pj = 1|Cmax as follows:

– For each vertex v ∈ V2i−1 and every 1 ≤ i ≤ (k + 1)/2, we create a set
J2i−1,v of Qn− (Q − 1) jobs.

– For each vertex v ∈ V2i and every 1 ≤ i < (k + 1)/2, we create a chain of
length Q− 1 of jobs, i.e., a set J2i,v of Q− 1 jobs

J2i,v = {J1
2i,v, J

2
2i,v, . . . , J

Q−1
2i,v }
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where we have J l
2i,v ≺ J l+1

2i,v for all l ∈ {1, 2, . . . , Q− 2}.
– For each edge e = (v, w) ∈ E2i−1 and every 1 ≤ i < (k + 1)/2, we have

J2i−1,v ≺ J1
2i,w.

– For each edge e = (v, w) ∈ E2i and every 1 ≤ i < (k + 1)/2, we have

JQ−1
2i,v ≺ J2i+1,w .

Finally the number of machines is (1 +Qε)n2.
The following lemma concludes the proof of Theorem 8.

Lemma 2. Scheduling instance Ĩ(k) has the following two properties.

1. If G satisfies the YES Case of Hypothesis 5, then Ĩ(k) has a feasible schedule
whose makespan is (1 + ε)kQ/2, where ε can be arbitrary close to zero.

2. if G satisfies the NO Case of Hypothesis 5, then any feasible schedule for
Ĩ(k) must have a makespan of (1 − ε)kQ, where ε can be arbitrary close to
zero.

Although not formally defined, one can devise a similar reduction for the case
of k = 2, and prove a 3/2-inapproximability result for P|prec, pmtn, pj = 1|Cmax,
assuming the variant of the unique games Conjecture in [1]. We illustrate this
in the full version of the paper and prove the following result:

Theorem 9. For any ε > 0, it is NP-hard to approximate P|prec, pmtn, pj =
1|Cmax within a factor of 3/2− ε, assuming (a variant of) the unique games
Conjecture.

5 Discussion

We proposed in this paper a natural but nontrivial generalisation of Theorem 4,
that seems to capture the hardness of a large family of scheduling problems with
precedence constraints. It is interesting to investigate whether this generalisation
also illustrates potential intrinsic hardness of other scheduling problems, for
which the gap between the best known approximation algorithm and the best
known hardness result persists.

On the other hand, a natural direction would be to prove Hypothesis 5; we
show in the full version how to prove a less-structured version of it using the
bipartite graph resulting from the variant of the unique games Conjecture
in [1]. One can also tweak the dictatorship Tε,t of [1], to yield a k-partite graph
instead of a bipartite one. However, composing this test with a unique games
instance adds a noisy component to our k-partite graph, that we do not know
how to control, since it is due to the non-perfect completeness of the unique
games instance. One can also try to impose (a variant of) this dictatorship
test on d-to-1 Games instances, and perhaps prove the hypothesis assuming the
d-to-1 Conjecture, although we expect the size of the partitions to deteriorate
as k increases.
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1-Planar Graphs have Constant Book Thickness
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Abstract. In a book embedding the vertices of a graph are placed on the “spine”
of a book and the edges are assigned to “pages”, so that edges on the same page
do not cross. In this paper, we prove that every 1-planar graph (that is, a graph
that can be drawn on the plane such that no edge is crossed more than once)
admits an embedding in a book with constant number of pages. To the best of
our knowledge, the best non-trivial previous upper-bound was O(

√
n), where n

is the number of vertices of the graph.

1 Introduction

A book embedding is a special type of a graph embedding in which (i) the vertices of
the graph are restricted to a line along the spine of a book and (ii) the edges are assigned
to the pages of the book such that edges of the same page are not in conflict, i.e., they
do not cross. The minimum number of pages required for such an embedding is known
as book thickness or page number of a graph. An upper bound on the page number of
an n-vertex graph is �n/2�, which is tight for complete graphs [4]. Book embeddings
have a long history of research dating back to early seventies [19], see e.g., [5,20].

For the class of planar graphs, a central result is due to M. Yannakakis [22], who
in the late eighties proved that planar graphs have page number at most four. It re-
mains however unanswered whether the known bound of four is tight. Heath [11] for
example proves that all planar 3-trees are 3-page book embeddable. For more restricted
subclasses of planar graphs, Bernhart and Kainen [4] show that the graphs with page
number one are the outerplanar graphs, while the class of two-page embeddable graphs
coincides with the class of subhamiltonian graphs (recall that a graph is subhamiltonian
if and only if it is subgraph of a planar Hamiltonian graph). Testing whether a graph is
subhamiltonian is NP-complete [21]. However, several graph classes are known to be
subhamiltonian (and therefore two-page book embeddable), see e.g., [2,8,12,13,18]

In this paper, we go a step beyond planar graphs. In particular, we prove that 1-
planar graphs can be embedded in 39 pages. Recall that a graph is 1-planar, if it admits
a drawing in which each edge is crossed at most once. To the best of our knowledge, the
only (non-trivial) upper bound on the page number of 1-planar graphs on n vertices is
O(

√
n). This is due to two known results. First, graphs with m edges have page number

O(
√
m) [16]. Second, 1-planar graphs with n vertices have at most 4n − 8 edges [6].

Minor-closed graphs (e.g., graphs of constant treewidth [9] or genus [15]) have constant
page number [17]. However, 1-planar graphs are not closed under minors [17].

c© Springer-Verlag Berlin Heidelberg 2015
N. Bansal and I. Finocchi (Eds.): ESA 2015, LNCS 9294, pp. 130–141, 2015.
DOI: 10.1007/978-3-662-48350-3_12
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In the remainder, we will assume that a simple 1-planar drawing Γ (G) of the input
1-planar graph G is also specified as part of the input. Recall that the problem of deter-
mining whether a graph is 1-planar is NP-hard [10,14], even if the deletion of a single
edge makes the input graph planar [7]. We also assume biconnectivity, as the page num-
ber of a graph equals to the maximum page number of its biconnected components [4].

2 Definitions and Yannakakis’ Algorithm

Let G be a simple topological graph, that is, undirected and drawn in the plane. Unless
otherwise specified, we consider simple drawings, that is, no edge crosses itself, no two
edges meet tangentially and no two edges cross more than once. A drawing uniquely
defines the cyclic order of the edges incident to each vertex and therefore specifies a
combinatorial embedding. A 1-planar topological graph is called planar-maximal or
simply maximal, if the addition of a non-crossed edge is not possible. The following
lemma shows that two crossing edges induce a K4 (see, e.g., Lemma 1 in [1]).

Lemma 1. In a maximal 1-planar topological graph, the endpoints of two crossing
edges are pairwise adjacent, that is, they induce a K4.

The basis of our approach is the simple version of Yannakakis’ algorithm, which
embeds any (internally-triangulated) plane graph in a book of five pages [22] (not four).
This algorithm is based on a “peeling” into levels approach: (i) vertices on the outerface
are at level zero, (ii) vertices that are on the outerface of the graph induced by deleting
all vertices of levels ≤ i − 1 are at level i, (iii) edges between vertices of the same
(different, resp.) level are called level (binding, resp.) edges (see Figure 1).

Let G = (V,E) be a graph consisting of two levels, say L0 and L1 (it is also as-
sumed that L0 has no chords). The vertices, say u1, . . . , uk, of L0 are called outer and
appear in this order along the clockwise traversal of the outerface of G. The remaining
vertices are called inner (and obviously belong to L1). The graph induced by all outer
vertices is biconnected. The biconnected components (or blocks), say B1, . . . , Bm, of
the graph induced by the inner vertices form a tree (in the absence of chords in L0).
It is assumed that the block tree is rooted at block, say w.l.o.g. B1, that contains the
so-called first inner vertex, which is uniquely defined as the third vertex of the bounded
face containing the outer vertices u1 and uk. Given a block Bi, an outer vertex is said
to be adjacent to Bi if it is adjacent to a vertex of it. The set of outer vertices adjacent
to Bi is denoted by N(Bi), i = 1, 2, . . . ,m. Furthermore, a vertex w is said to see an
edge (x, y), if w is adjacent to x and y and the triangle x, y, w is a face. An outer vertex
sees a block if it sees an edge of it.

The leader �(Bi) of a blockBi is the first vertex of Bi that is encountered in any path
in L1 from the first inner vertex to block Bi. An inner vertex that belongs to only one
block is assigned to that block. One that belongs to more than one blocks is assigned to
the “highest block” in the block tree that contains it. Given an inner vertex v ∈ L1, we
denote by B(v) the block that v is assigned to. The dominator of a block B is the first
outer vertex that is adjacent to a vertex assigned to B and is denoted by dom(B).

Let B be a block of level L1 and assume that v0, v1, . . . , vt are the vertices of B
as they appear in a counterclockwise traversal of the boundary of B starting from
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u1 u2

u3
u4

u5

v1 v2

v3v4v5
v7

v6

v9

v8

v10v11
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B4B5

(a) An internally-triangulated graph.

u1 v1 v2 v3 v4 v5 u2 v6 v7 v8 v9 u3 v10 u4 v11 u5

B2

B1 B3 B4

B5

(b) A book embedding in three pages taken from [22].

Fig. 1. (a) Outer (inner) vertices are colored white (gray). Level (binding) edges are solid
(dashed). Blocks are highlighted in gray. The first inner vertex is v1. So, the root of the block
tree is B1. N(B3) = {u2, u3}. Vertex u2 sees (v3, v7) and so sees B2. The leaders of B1, B2,
B3, B4 and B5 are v1, v3, v6, v6 and v2, resp. The dominators of B1, B2, B3, B4 and B5 are
u1, u2, u2, u3 and u4, resp. The red edges indicate that uf (B2) = u2 and ul(B2) = u4. Hence,
P [uf (B2) → ul(B2)] = u2 → u3 → u4. (b) Linear order and assignment of edges to pages.

v0 = �(B). Denote by uf (B) and ul(B) the smallest- and largest-indexed vertices
of level L0 that see edges (v0, vk) and (v0, v1), respectively. Equivalently, uf (B) and
ul(B) are defined as the smallest- and largest-indexed vertices of N(B). Note that
uf(B) = dom(B). The path on level L0 from uf (B) to ul(B) in clockwise direction
along L0 is denoted by P [uf (B) → ul(B)].

The linear order of the vertices along the spine is computed as follows. First, the
outer vertices are embedded in the order u1, u2, . . . , uk. For j = 1, 2, . . . , k, the blocks
dominated by the outer vertex uj are embedded right next to uj one after the other
in the top-to-bottom order of the block tree. The vertices that belong to block Bi are
ordered along the spine in the order that appear in the counterclockwise traversal of the
boundary of Bi starting from �(Bi), i = 1, 2, . . . ,m (which is already placed).

The edges are assigned to pages as follows. All level edges of L0 are assigned to
the first page. Level edges of L1 are assigned either to the second or to the third page
based on whether they belong to a block that is in an odd or even distance from the root
of the block tree, respectively. Binding edges are further classified as forward or back.
A binding edge is forward if the inner vertex precedes the outer vertex. Otherwise it is
back (recall that a binding edge connects an outer and an inner vertex). All back edges
are assigned to the first page. A forward edge incident to a block Bi is assigned to the
second page, if Bi is on the third page. Otherwise to the third page, for i = 1, 2, . . . ,m.

In the case where more than two levers are present, the algorithm is as follows. Pos-
sible chords in level L0 are assigned to the first page. Note however that in the presence
of such chords the blocks of level L1 form a forest in general (i.e., not a single tree).
Therefore, each block tree of the underlying forest must be embedded according to the
rules described above. Graphs with more than two layers are embedded by “recycling”
the remaining available pages. More precisely, consider a block B of level i− 1 and let
B′ be a block of level i that is in the interior of B in the peeling order. Let {p1, . . . , p5}
be a permutation of {1, . . . , 5} and assume w.l.o.g. that the boundary of block B is
assigned to page p1, while the boundary of all blocks in its interior (including B′)
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are assigned to pages p2 and p3. Then, the boundary of all blocks of level i + 1 that
are in the interior of B′ in the peeling order will be assigned to pages p4 and p5. In the
following we present properties that we use in the remainder of the paper.

Lemma 2 (Yannakakis [22]). Let G be a planar graph consisting of two levels L0 and
L1. Let B be a block of level L1 and let v0, . . . , vt be the vertices of B in a counter-
clockwise order along the boundary of B starting from v0 = �(B). Then: (i) Vertices
v1, . . . , vt are consecutive along the spine. (ii) uf(B) �= ul(B). (iii) If ui = uf(B) and
uj = ul(B) for some i < j, then vertices v1, . . . , vt, ui+1, . . . , uj appear in this order
from left to right along the spine. (iv) Let G[B] be the subgraph of G in the interior of
cycle P [uf (B) → ul(B)] → �(B) → uf(B). Then, a block B′ ∈ G[B] if and only if
B is an ancestor of B′, that is, B′ belongs to the block subtree rooted at B.

Lemma 3 (Yannakakis [22]). Let G be a planar graph consisting of two levels L0

and L1 and assume that (ui, uj), i < j, is a chord of L0. Denote by H the subgraph
of G in the interior of the cycle P [ui → uj] → ui. Then: (i) Vertices ui and uj form a
separation pair in G. (ii) All vertices of H lie between ui and uj along the spine. (iii) If
there is a vertex between ui and uj that does not belong to H , then this vertex belongs
to a block B dominated by ui. In addition, all vertices of H , except for ui are to the
right of B along the spine.

3 An Upper Bound on the Page Number of 1-Planar Graphs

Let G = (V,E) be a 1-planar graph and Γ (G) be a 1-planar drawing of G. Initially,
we consider the case where Γ (G) contains no crossings incident to its unbounded face.
To simplify the presentation, we further assume that G satisfies the K4-emptiness prop-
erty, that is, G is internally maximal 1-planar and in Γ (G) the interior of all K4’s of
Lemma 1 are free of vertices and edges. In order to guarantee this property, first we
planarize G by replacing each crossing in Γ (G) with a so-called crossing vertex. The
planarized graph is then triangulated (only in its interior), so that no new edge is in-
cident to a crossing vertex. Note that the latter restriction may lead to a non-simple
graph (containing multiedges), as we will see in Section 3.2. However, if we treat all
crossing vertices as actual crossings, then the implied augmented graph satisfies the
K4-emptiness property (at the cost of non-simplicity).

First, we consider the case where graph G is simple, internally-maximal 1-planar,
satisfies the K4-emptiness property and has no crossings at its unbounded face (i.e., no
multiedges are created during the procedure described above). We prove that if there are
only two levels, then such a graph fits in 16 pages. Otherwise, 39 pages suffice. Finally,
we show how to cope with multiedges and crossings on the unbounded face of Γ (G).

Let G be a simple and internally-maximal 1-planar graph that satisfies the K4-
emptiness property and has no crossings at its unbounded face. Then, (i) vertices on
the outerface of G are at level zero, (ii) vertices that are at distance i from the level
zero vertices are at level i. Similarly to Yannakakis’ naming scheme, edges that connect
vertices of the same (different, resp.) level are called level (binding, resp.) edges.

If we remove one edge from each pair of crossing edges, then the result is an
internally-triangulated plane graph (which we call underlying planar structure). For a
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Fig. 2. Level (binding) edges are solid (dashed). The planar structure GP is colored black. Gray
colored edges do not belong to GP . Edges (u5, u7), (u8, u10) and (u10, u12) are outer crossing
chords that cross a binding edge, a bridge-block and a chord of GP , resp. Edges (v3, v5), (v7, v9)
and (v2, v6) are 2-hops crossing binding edges. Edge (u2, v1) is forward.

pair of binding crossing edges or for a pair of level crossing edges, we choose arbitrarily
one to remove (we will shortly adjust this choice for two special cases). However, for a
pair of crossing edges consisting of a binding edge and a level edge, we always choose
to remove the level edge. This approach allow us to define the blocks, the leaders and
the dominators of the blocks as Yannakakis does. Also observe that if all removed edges
are plugged back to the graph, then a binding edge cannot cross a block.

3.1 The Two-Level Case

We first consider the base case where the given graph consists of two levels L0 and L1.
We also assume that there is no level edge of L1 which by the combinatorial embedding
is strictly in the interior of a block of L1. In addition, G is simple, internally maximal
1-planar satisfies theK4-emptiness property and has no crossings on its unbounded face.
We proceed to obtain a 3-page book embedding of the underlying planar structure GP

using Yannakakis’ algorithm (see Section 2). We argue that we can embed the removed
edges in the linear order implied by the book embedding of GP using 13 more pages.

We first introduce an important notion useful in “eliminating” possible crossing sit-
uations. We say that two edges e1 and e2 of G form a strong pair if (i) they are both
assigned to the same page, say p, and (ii) if an edge e, that is assigned also to page p,
is in conflict with ei, then it is also in conflict with ej , where i �= j ∈ {1, 2}. Suppose
that e1 /∈ E[GP ] and e2 ∈ E[GP ] form a strong pair of edges. If e3 ∈ E[GP ], then
e3 can cross neither e1 nor e2 (due to Yannakakis’ algorithm). On the other hand, if
e3 /∈ E[GP ] and forms a strong pair with another edge e4 ∈ E[GP ], then again e3 can
cross neither e1 nor e2, as otherwise e4 would also be involved in a crossing with e1 or
e2, contradicting the correctness of Yannakakis’ algorithm as e4 ∈ E[GP ].

We now describe six types of crossings that occur when the removed edges are
plugged back to G (see Figure 2). Level edges of L0 that do not belong to the GP are
called outer crossing chords. Such chords may be involved in crossings with (i) other
chords of L0 that belong to GP or (ii) binding edges (between levels L0 and L1), or,
(iii) degenerated blocks (so-called block-bridges) of level L1 that are simple edges.

Level edges of L1 that do not belong to GP are called inner crossing chords or
simply 2-hops (since it can “bypass” only one vertex along the boundary of the block
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tree). We claim that 2-hops do not cross with each other. Assume to the contrary that
e = (u, v) and e′ = (u′, v′) are two 2-hops that cross and say w.l.o.g. that u, u′, v and
v′ appear in this order along the boundary of the block tree of GP . Since G is maximal
1-planar, by Lemma 1 and the K4-emptiness property it follows that (u, v′) belongs to
GP . However, in the presence of this edge both vertices u′ and v are not anymore at
the boundary of the block tree of level L1 of GP , which is a contradiction as e and e′

are both level edges of L1. Hence, 2-hops are involved in crossings only with binding
edges. Since level edges of different levels cannot cross, the only type of crossings that
we have not reported are those between binding edges.

Recall that binding edges are of two types, forward and back. For a pair of crossing
binding edges, say e = (ui, vj) and e′ = (ui′ , vj′ ), where ui, ui′ ∈ L0 and vi, vi′ ∈ L1,
we mentioned that we can arbitrarily choose which one is assigned to GP . Here we
adjust this choice. Edge e is assigned to GP if and only if vertex ui is lower-indexed
than ui′ in L0, that is i < i′. Hence, e′ is always forward and no two back edges cross.

Similarly, for a pair of crossing level edges of level L0 we adjust our initial choice
as follows. If a level edge is incident to u1 ∈ L0, then it is necessarily assigned to GP .

From the above, it follows that for a pair of crossing edges, say e ∈ E[GP ] and
e′ /∈ E[GP ], we have the following crossing situations each of which is separately
treated in the following lemmas (except for the last one which is more demanding).

C.1: e′ is an outer crossing chord and e is a chord of L0 that belongs to GP .
C.2: e′ is an outer crossing chord and e is a binding edge.
C.3: e′ is an outer crossing chord and e is a block-bridge of L1.
C.4: e′ is a forward edge and e is a forward edge.
C.5: e′ is a forward edge and e is a back edge.
C.6: e′ is a 2-hop and e is a binding edge.

Theorem 1. Any simple internally-maximal 1-planar graph G with 2 levels, that sat-
isfies the K4-emptiness property and has no crossings at its unbounded face admits a
book embedding on 16 pages.

Proof. The underlying planar structure can be embedded in three pages. Case C.1 re-
quires one extra page (due to Lemma 5.i). The crossing edges that fall into Cases C.2
and C.3 can be accommodated on the same pages used for the underlying planar struc-
ture (see Lemma 5.ii). Case C.4 requires two extra pages due to Lemma 6. Case C.5
requires three extra pages due to Lemma 7. Finally, Case C.6 requires seven more pages
due to Lemma 8. Summing up the above yields 16 pages in total. 	


We start by investigating the case where e′ is an outer crossing chord of G.

Lemma 4. Let u1, . . . , uk be the vertices of level L0 in clockwise order along its
boundary. Let c = (ui, uj) and c′ = (ui′ , uj′) be two chords of L0, such that i <
i′ < j < j′. Then, exactly one of c and c′ is an outer crossing chord.

Proof. Since c = (ui, uj) and c′ = (ui′ , uj′) are chords of L0 with i < i′ < j < j′,
chords c and c′ cross in the 1-planar drawing Γ (G) of G. So, one of them would belong
to GP and the other one would be an outer crossing chord. 	
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By Lemma 4, outer crossing chords can be placed on one page. However, in order to
achieve more flexibility for the multi-level case, we chose to place some of them on a
separate page (see Lemma 5). We call this particular page universal, because it contains
outer crossing chords from all levels. Recall that we use three pages for GP : p1 (for
level edges of L0 and back edges), p2 and p3 (for level edges of L1 and forward edges).

Lemma 5 (Cases C.1 - C.3). Let e = (u, v) ∈ E(GP ) and e′ = (u′, v′) /∈ E(GP )
be two edges of G that are involved in a crossing, where e′ is an outer crossing chord
of L0. (i) If e is a chord of L0, then e′ is placed on a universal page denoted by upc
(Case C.1). (ii) If e is a binding or a block-bridge of L1, then e′ is assigned to page p1,
that is, the page used for level edges of L0 and back edges of GP (Cases C.2 and C.3).

Proof. (i) Since e is chord of level L0, e is placed on page p1 (recall that e ∈ E(GP ))
and e′ is placed on the universal page upc. Since upc contains only outer crossing chords
of G, by Lemma 4 they do not cross with each other.

(ii) If e is a binding or a block-bridge of level L1, then e′ is assigned to page p1.
Suppose that e′ is in conflict with another edge, say e′′, of page p1. By Lemma 4, edge
e′′ is not an outer crossing chord, that is, e′′ belongs to the underlying planar structure
GP of G. So, e′′ ∈ E[GP ] and it is either: (a) a level edge of level L0 or (b) a back
edge of GP . In the first case, the endpoints of e′′ cannot be consecutive vertices of level
L0, since that would not lead to a crossing situation. Hence, e′′ must be a chord of level
L0. However, if e′ is involved in such a crossing, then e′ is assigned to page upc, a
contradiction. In the second case, e′′ is back edge of GP . So, edge e′′ is nested by a
level edge of level L0 that is not a chord of L0 and therefore if e′ crosses e′′, then e′

must also cross this particular level edge of level L0, which is not possible. 	

Lemma 6 (Case C.4). All forward edges that are involved in crossings with forward
edges of the underlying planar structure can be assigned to 2 new pages.

Proof. Observe that for a pair of crossing forward edges, the choice of the edge that
will be assigned to GP affects neither the decomposition into blocks nor the choice of
dominators and leaders of blocks. Therefore, it does not affect the linear order of the
vertices along the spine. This ensures that two new pages suffice. 	


We proceed with Case C.5, where the back edge e = (u, v) ∈ E[GP ] crosses
the forward edge e′ = (u′, v′) /∈ E[GP ]. Let P be the block containing (v, v′) and
let v0, . . . , vt be the vertices of P in counterclockwise order around P starting from
v0 = �(P ). Since e is back, it follows that u = uf(P ). By definition of uf (P ),
u sees (vi, vi+1), . . . , (vt−1, vt), (vt, v0) of P , for some 1 ≤ i ≤ t. Hence, edges
(u, v0), (u, vt), . . . , (u, vi) exist and are back. This implies that either v = vi and
v′ = v(i+1)modt or v = v0 and v′ = vt. In the latter case and since u′ is to the right of
u on the spine, P is a root-block. In both cases (u′, v) is forward.

Lemma 7 (Case C.5). Let e = (u, v) and e′ = (u′, v′) a back and a forward edge of
G that cross. Let v0, . . . , vt be the vertices of block P in counterclockwise order around
P starting from v0 = �(P ), where P contains (v, v′). Finally, let i be the minimum s.t.
u = uf(P ) sees (vi, vi+1), . . . , (vt−1, vt), (vt, v0). Then, we use three new pages p′1,
p′2 and p′3 as follows. (i) If v = vi and v′ = v(i+1)modt, then edge e′ is placed on a new
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(b)

Fig. 3. (a) Red edges indicate forward edges involved in crossings. (b) Linear order and assign-
ment of edges to pages. The fat edge is assigned to p′1. The dashed-dotted ones to p′2 and p′3.

page p′j if and only if forward edges incident to block B(v′) are assigned to page pj ,
j = 2, 3. (ii) If v = v0 and v′ = vt, then edge e′ is placed on a page p′1.

Proof. (i) We prove that if the forward edges incident to B(v′) are on pj , then e′ can
also be on pj . If this is true, the lemma follows, as one can always split one page into
two. We distinguish two cases based on whether v = vt (i.e., i = t) or v = vi for i < t.

First, assume that v = vt and v′ = v0 (refer to e = (u2, v5) and e′ = (u3, v2)
in Figure 3a). Let B = B(v) and B′ = B(v′). It follows that B = P and B′ is the
parent-block of B. W.l.o.g. assume that the boundary of B′ is on p2. We claim that e′

can be placed on page p3 (together with forward edges of B′). To prove it, we show that
e′ = (u′, v0) and (v0, vt) form a strong pair. First, observe that (v0, vt) is on page p3.
Indeed, B′ is on page p2. So, B is on p3 and (v0, vt) is an edge of B. By Lemma 2.iii,
vertices v1, v2, . . . , vt and u′ appear in the same order from left to right along the spine,
so (v0, vt) is nested by e′. If vt and u′ are consecutive along the spine, then e′ and
(v0, vt) clearly form a strong pair. Otherwise, (u, u′) is chord and by Lemma 3.iii,
again e′ and (v0, vt) form a strong pair.

In the case where v = vi and v′ = vi+1 for some i < t (refer to e = (u1, v2) and
e′ = (u2, v3) in Figure 3a), we have that B = B′ = P . Suppose w.l.o.g. that P is on
p2. We claim that e′ = (u′, vi+1) and (u′, vi) form a strong pair. By Lemma 1 and the
K4-emptiness property, (u′, vi) exists and is forward. So, it is on page p3. Since vertices
vi and vi+1 are consecutive along the spine, edges e′ and (u′, vi) form a strong pair.

(ii) In this case (refer to e = (u1, v1) and e′ = (u5, v3) in Figure 3a), P is a root-
block. Let e′1 = (u′

1, v
′
1) and e′2 = (u′

2, v
′
2) be two edges that are assigned to the new

page p′1. Since P1 = B(v′1) and P2 = B(v′2) are both root blocks, it follows that P1 and
P2 are separated by a chord of L0. So, by Lemma 3, e′1 is not in conflict with e′2. 	


Finally, we consider Case C.6 where e′ = (x, y) is a 2-hop of level L1 and e = (u, z)
is a binding edge of GP , where x, y, z ∈ L1 and u ∈ L0. Let x, z and y be assigned
to blocks Bx, Bz and By , resp., that are not necessarily distinct. By Lemma 1 and the
K4-emptiness property, x → z → y is a path in L1. So, Bx and By are at distance
at most two on the block tree of G. If x and y are assigned to the same block (that is,
Bx = Bz = By), then e is called simple 2-hop (see Figure 4a). Suppose w.l.o.g. that
Bx precedes By in the pre-order traversal of the block tree of G. Then, there exist two
cases depending on whether Bx is an ancestor of By on the block tree. If this is not
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Fig. 4. Different types of 2-hops (drawn in gray).

the case, then Bx and By have the same parent-block, say Bp. In this case, e′ is called
bridging 2-hop (see Figure 4b). Suppose now that Bx is an ancestor of By. Then, the
path x → z → y contains the leader of By , which is either x or z. By Lemma 1 and
the K4-emptiness property, (u, x) (u, z) and (u, y) exist in G. So, u is either ul(By) or
uf(By). In the first subcase, e′ is called forward 2-hop (see Figure 4c). In the second
subcase, since Bx is ancestor of By and the two blocks are at distance at most two, if
Bx is the parent-block of By , then e′ is called backward 2-hop (see Figure 4d). Finally,
if Bx is the grand-parent-block of By , then e′ is called long 2-hop (see Figure 4e).

Lemma 8 (Case C.6). All crossing 2-hops can be assigned to seven pages in total.

Sketch of Proof. In high level description, one can prove that all simple 2-hops can be
embeded in any page that contains 2-hops, all bridging 2-hops can be embedded in two
new pages, forward 2-hops can be embedded in one new page, and finally, backward
and long 2-hops can be embedded in two new pages each. Summing up the above yields
a total of seven pages for all 2-hops. The detailed proof can be found in [3]. 	


3.2 The Multi-Level Case

We now consider the more general case according to which the given 1-planar graph G
consists of more than two levels, say L0, L1, . . . , Lλ, λ ≥ 2.

Lemma 9. Any simple internally-maximal 1-planar graph G with λ ≥ 2 levels, that
satisfies the K4-emptiness property and has no crossings at its unbounded face admits
a book embedding on 34 pages.

Proof. We first embed in 5 pages the underlying planar structure GP of G using the
algorithm of Yannakakis [22]. This implies that all vertices of a block of level i, except
possibly for its leader, are between two consecutive vertices of level i−1, i = 1, . . . , λ.
So, for outer crossing chords that are involved in crossings with level edges of GP

(Case C.1), one universal page (denoted by upc in Lemma 5.i) suffices, since such
chords are not incident to block-leaders.

Next, we consider the outer crossing chords that are involved in crossings with bind-
ing edges or bridge-blocks of G (Cases C.2 and C.3). Such a chord ci,j = (vi, vj) of
a block B is on the same page as the boundary and the non-crossing chords of B. The
path P [vi → vj ] on the boundary of B joins the endpoints of the crossing chord. Hence,
if another edge of the same page crosses with ci,j , then it must also cross with an edge
of B, a contradiction. Therefore, such chords do not require additional pages.
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For binding edges of Case C.4, 5 pages in total suffice (one page for each page of
GP ). For binding edges of Case C.5, we argue differently. Since a binding edge between
levels Li+2 and Li+1 cannot cross with a binding edge between levels Li−1 and Li−2,
i = 2, . . . , λ − 2, it follows that binding edges that bridge pairs of levels at distance at
least 3 are independent. So, for binding edges of Case C.5 we need a total of 9 pages.

Similarly, all blocks of level i + 1 that are in the interior of a certain block of level i
are always between two consecutive vertices of level i− 1, i = 1, 2, . . . , λ− 1. Hence,
2-hops that are by at least two levels apart in the peeling order are independent, which
implies that for 2-hops we need a total of 2 ∗ 7 = 14 pages (Case C.6). Summing up we
need 5 + 1 + 5 + 9 + 14 = 34 pages for G. 	


Coping with Multiedges. At the beginning of the algorithm, one must augment the
input 1-planar graph, in order to guarantee the K4-emptiness property. The augmenta-
tion, however, may introduce multiedges. On the positive side, we can assume that all
multiedges are crossing-free. Indeed, if a multiedge contains an edge that is involved in
a crossing, then this particular edge can be safely removed from the graph, as it can be
“replaced” by any of the corresponding crossing-free ones.

Let (v, w) be a double edge of G. Denote by Gin[(v, w)] the so-called interior sub-
graph of G w.r.t. (v, w) bounded by the double edge (v, w) in Γ (G). By Gext[(v, w)]
we denote the so-called exterior subgraph of G w.r.t. (v, w) derived from G by substi-
tutingGin[(v, w)] by a single edge (see Figure 5). Clearly, Gext[(v, w)] stays internally-
maximal 1-planar, satisfies theK4-emptiness property, has no crossings at its unbounded
face and simultaneously has fewer multiedges than G. So, it can be recursively embed-
ded. The base of the recursion is a graph that can be embedded based on Lemma 9.

On the other hand, we cannot assure that the interior subgraph has fewer multiedges
than G. Our aim is to modify it appropriately, so as to reduce the number of its multi-
edges by one. To do so, we will “remove” the multiedge (v, w) that defines the bound-
ary of Gin[(v, w)], so as to be able to recursively embed it (again we seek to employ
Lemma 9 in the base of the recursion). Let ei(v) (ei(w), resp.) be the i-th edge incident
to vertex v (w, resp.) in clockwise direction and between the two edges that form the
double edge (v, w). We replace vertex v (w, resp.) by a path of d(v) (d(w), resp.) ver-
tices, say v1, v2, . . . , vd(v) (w1, w2, . . . , wd(w), resp.), such that vertex vi (wi, resp.) is
the endpoint of edge ei(v) (ei(w), resp.). Let Gin[(v, w)] be the implied graph. Since
Gin[(v, w)] has no new crossings, it can be augmented to internally-maximal 1-planar,
that satisfies the K4-emptiness property, has no crossings at its unbounded face and has
fewer multiedges than Gin[(v, w)]. So, Gin[(v, w)] can be embedded recursively.

We now describe how to plug the embedding ofGin[(v, w)] to the one ofGext[(v, w)].
Suppose that (v, w) of Gext[(v, w)] is on page p. Clearly, p is one of the pages used to
embed the planar structure of Gext[(v, w)], since (v, w) is not involved in crossings in
Gext[(v, w)]. Let the boundary ofGin[(v, w)] be also on page p. Since (v, w) is present in
the embedding of Gext[(v, w)], it suffices to plug in the embedding of Gext[(v, w)] only
the interior of Gin[(v, w)], which is the same as the one of Gin[(v, w)]. Suppose w.l.o.g.
that in the embedding of Gext[(v, w)] v appears before w. Then, we place the interior
subgraph ofGin[(v, w)] to the right of v. The edges connecting the interior ofGin[(v, w)]
with v (w, resp.) are assigned to page p (a new page p′ which is in correspondence to p,
resp.). In this way, we create 5 new pages.
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Fig. 5. Illustration of the decomposition in case of multiedges.

Next, we prove that no crossings are introduced. Since the boundary of Gin[(v, w)] is
on page p, all edges incident to v towardsGin[(v, w)] become back edges ofGin[(v, w)].
So, edges that join v with vertices in the interior of Gin[(v, w)] do not cross with other
edges in the interior of Gin[(v, w)]. Since Gin[(v, w)] is placed next to v, edges inci-
dent to v do not cross edges of Gext[(v, w)] on page p. Similarly, we argue that edges
incident to w towards the interior of Gin[(v, w)] do not cross other edges in the inte-
rior of Gin[(v, w)] on page p′. It remains to prove that edges incident to w do not cross
edges of Gext[(v, w)] on page p′. Such a crossing can only be in the presence of another
double-edge (v′, w′) also of page p in Gext[(v, w)]. Say w.l.o.g. that v′ is to the left of
w′ (recall that v is to the left of w). First, consider the case where v �= v′. If a conflict
occurs because of Gin[(v, w)] and Gin[(v

′, w′)], then (v, w) and (v′, w′), which belong
to the planar structure, must cross. If on the other hand v = v′ (and w.l.o.g. w to the left
of w′), it suffices to place Gin[(v, w)] before Gin[(v

′, w′)].

Coping with Crossings on Graph’s Unbounded Face. If there exist crossings in-
cident to the unbounded face of G, then, when we augment G in order to ensure the
K4-emptiness property, we must also triangulate the unbounded face of the planarized
graph implied by replacing all crossings of G with crossing vertices (recall the first step
of our algorithm). This procedure may lead to a situation where the unbounded face is a
double edge, say (v, w). In this case, Gext[(v, w)] consists of two vertices and a single
edge between them. Gin[(v, w)] is treated as described above.

Theorem 2. Any 1-planar graph admits a book embedding in a book of 39 pages.

4 Conclusions and Open Problems

In this paper, we proved that 1-planar graphs have constant page number. To keep the
description simple, we decided not to “slightly” reduce the page number by more com-
plicated arguments. A reasonable question is whether the page number can be further
reduced, e.g., to less than 20. This question is of importance even for optimal 1-planar
graphs, i.e., graphs with n vertices and exactly 4n−8 edges. Other classes of non-planar
graphs that fit in books with constant number of pages are also of interest. Finding
1-planar graphs that need a certain number of pages (e.g., ≥ 4) is also important.

Acknowledgement. We thank S. Kobourov and J. Toenniskoetter for useful discus-
sions. We also thank David R. Wood for pointing out an error in the first version of this
paper.
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Abstract. Given a string S of length N on a fixed alphabet of σ sym-
bols, a grammar compressor produces a context-free grammar G of size
n that generates S and only S. In this paper we describe data struc-
tures to support the following operations on a grammar-compressed
string: access(S, i, j) (return substring S[i, j]), rankc(S, i) (return the
number of occurrences of symbol c before position i in S), and selectc(S, i)
(return the position of the ith occurrence of c in S). Our main re-
sult for access is a method that requires O(n logN) bits of space and
O(logN + m/ logσ N) time to extract m = j − i + 1 consecutive sym-
bols from S. Alternatively, we can achieve O(logτ N +m/ logσ N) query
time using O(nτ logτ (N/n) logN) bits of space, matching a lower bound
stated by Verbin and Yu for strings where N is polynomially related to n
when τ = logε N . For rank and select we describe data structures of size
O(nσ logN) bits that support the two operations in O(logN) time. We
also extend our other structure to support both operations in O(logτ N)
time using O(nτσ logτ (N/n) logN) bits of space. When τ = logε N the
query time is O(logN/ log logN) and we provide a hardness result show-
ing that significantly improving this would imply a major breakthrough
on a hard graph-theoretical problem.

1 Introduction

Given a string S of length N , a grammar compressor [5] produces a context-free
grammar G that generates S and only S. The size of the grammar refers to the
total length of the right-hand sides of all rules.
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It is well known that when the data to be compressed has a high degree of
repetition (so called highly repetitive data, see, e.g. [20]), grammar compressors
(and their close relative LZ77 [5]) can achieve compression significantly better
than statistical compressors, whose performance is expressed in terms of Hk(S),
the kth-order empirical entropy [18]. Hk(S) is a lower bound on the bits-per-
symbol compression achievable by any statistical compressor that models each
symbol’s probability as a function of the k symbols preceding it in the S.

In this paper we consider support for three basic operations on grammar-
compressed strings:

access(S, i, j) = return substring S[i, j], the symbols in S between i and j inclusive;

rankc(S, i) = number of occurrences of symbol c ∈ Σ among the first i symbols in S;

selectc(S, j) = position in S of the jth occurrence of symbol c ∈ Σ.

The access operation allows one to process areas of interest in the compressed
string without full decompression of all the symbols prior to S[i, j]. This is
important, for example, in index-directed approximate pattern matching, where
an index data structure first finds “seed” sites at which approximate matches
to a query string may occur, before more expensive alignment of the pattern to
the surrounding text (obtained via the access operation). Bille, Landau, Raman,
Sadakane, Rao, and Weimann [3] show how, given a grammar of size n, it is
possible to build a data structure of size O(n logN) bits that supports access to
any substring S[i, j] in time O(logN + (j − i)).

Operations rank and select are of great importance on regular (uncompressed)
strings, where they serve as building blocks for fast pattern matching indexes [22],
wavelet trees [11], and document retrieval methods [12,21,23]. On binary strings,
efficient rank and select support has been the germ for the now busy field of suc-
cinct data structures [19]. Although many space-efficient data structures sup-
porting rank and select operations have been presented [10,11,24,25], they are
generally not able to compress S beyond its statistical entropy.

In a recent full version of Bille et al.’s [3] paper it has been shown how to
support rank and select in O(logN) time using O(n logN) bits of space for
binary alphabets. Two other related results exist for rank and select in grammar-
compressed strings. Navarro and Ordóñez [23] investigated practical methods
for the rank operation in the context of indexed pattern matching. Their results
pertain to grammars that are height balanced and in Chomsky normal form
(i.e. straight-line programs [17]). Because their grammars are balanced their
rank algorithm takes O(logN) time. The results we describe in this paper are
faster and work for any context-free grammar, balanced or not. Recently, Bille,
Cording, and Gørtz [2], used a weak form of select query, called select-next1 as
part of their compressed subsequence matching algorithm. A select-next(S,i,c)
query returns the smallest j > i such that S[j] = c.

Our Contribution. This paper provides the following results:

1 These queries are referred to as labeled successor queries in [2].
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1. We show how to support access to m consecutive symbols in O(logN +
m/ logσ N) time using O(n logN) bits of space. This is an improvement over
the O(logN +m) time solution of Bille et al., within the same space. Our
result is also significantly more powerful than the scheme of Ferragina and
Venturini [7], which has access time as O(1 +m/ logσ N), but only achieves
kth order entropy compression (for some k = o(logσ N)).

2. We then show that by increasing the space usage slightly, we obtain a data
structure that supports access to m consecutive symbols in O(logτ N +
m/ logσ N) time and O(nτ logτ (N/n) logN) bits of space. When setting τ
to logε N for some constant ε > 0 our upper bound for access matches
the lower bound of Verbin and Yu [27] who have shown that for “not-so-
compressible” strings — those that have a grammar of length n such that
N ≤ n1+ε for some constant ε — the query time cannot be better that
O(log n/ log logn) = O(logN/ log logN) if the used space is not more than
O(n logc n) for some constant c.
Our data structure also easily extends to supporting computing Karp-Rabin
fingerprints [16] of substrings. This improves the time to compute the longest
common common prefix of two suffixes of S from O(logN log �) time (due to
Bille et al. [4]) to O(logτ N log �) time, where � is the length of the longest
common prefix.

3. We describe data structures supporting rank and select operations in
O(logN) time and O(nσ logN) bits of space, or O(logτ N) time and
O(nτσ logτ (N/n) logN) bits of space.

4. The above schemes for rank and select are fairly straightforward augmen-
tations to our access data structures, but our final result suggests that it
is probably difficult to do much better. In particular, we show a reduction
between rank and select operations in grammar compressed strings and the
problem of counting the number of distinct paths between two nodes in a
directed acyclic graph — an old problem in graph theory. No significant
progress has been made so far, even on the seemingly easier problem of
reachability [6] (just returning whether the number of paths is non-zero).

2 Notation and Preliminaries

We consider a string S of total length N over an integer alphabet [1..σ]. The
string S is generated by a grammar that contains exactly n non-terminals
(or variables) and σ terminals (corresponding to each character in the alpha-
bet of S). We assume that the grammar is in Chomsky normal form (CNF).
That is, each grammar rule is either of the form R0 = R1R2, where R1 and R2

are non-terminals, or of the form R0 = c, where c is a terminal. The grammar has
thus exactly σ terminals. We denote by |R| the length of the string generated by
the non-terminal R. In what follows, we only consider grammars in CNF, since
every grammar of size n with σ terminals, can be transformed into a grammar
in CNF of size O(n) with σ terminals.

We will often use a directed acyclic graph (DAG) representation of the gram-
mar with one source (corresponding to the unique non-terminal that generates
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the whole string) and σ sinks (corresponding to the terminals). The height of a
grammar is the maximal distance between the source and one of the sinks. The
grammar is said to be balanced if its height is O(logN). Further, it is said to be
AVL-balanced if the height of R1 and R2 differ by at most one.

Throughout we assume the RAM model with word length at least logN bits,
and all the usual arithmetic and logic operations require constant time each.

3 Improved Access Time with Rank and Select Support

We now extend Bille et al.’s access scheme [3] so that it uses the same space,
O(n logN) bits (for a grammar of length n that is not necessarily smallest pos-
sible), but allows access to m consecutive symbols in time O(logN +m/ logσ N)
instead of O(logN + m). To support rank and select queries we also extend
Bille et al.’s data structure. However, due to lack of space the details of this will
appear in a full version of the paper.

We start by reviewing the method of Bille et al.

3.1 The Method of Bille et al.

The method of Bille et al. uses heavy-weight paths in the DAG to support
the access operation. More precisely, suppose the non-terminal that generates
the whole string is R0. Given a position x, the method of Bille et al. gener-
ates a sequence of triplets (R1, s1, e1),(R2, s2, e2),...,(Rt, st, et), where t ≤ logN ,
(
∑

1≤i≤t (si − 1))+ 1 = x and Rt is a non-terminal that generates a single char-
acter c. Note that we have t ≤ logN because |Ri+1| ≤ |Ri|/2 and R0 ≤ N . Thus
c is the character that is at position x in the substring generated by R0.

Each triplet (Ri, si, ei) indicates that a substring generated by the non-
terminal Ri starts at position si and ends at position ei inside the substring
generated by the non-terminal Ri−1. The non-terminal Ri is found using the
heavy path that starts at the non-terminal Ri−1 (further explained below).

To every non-terminal Ri, there is an associated position pi, which is the rank
of the leaf in the heavy path that starts from Ri among all leaves in the subtree
of Ri. We call pi the center of Ri.

3.2 Heavy Path Decomposition of a DAG

Given a non-terminal R, the heavy path starting from the variable R = P0 is
the sequence of non-terminals P1, P2, . . . , Pt, such that:

1. For all i ∈ [0, t− 1], either Pi = Pi+1Qi+1 or Pi = Qi+1Pi+1

2. |Pi| ≥ |Qi|.
3. The non-terminal Pt generates a single character c.

Informally speaking, the heavy path starting from a non-terminal P0 is the
sequence of non-terminals P1, P2, . . . , Pt such that every non-terminal Pi+1 is
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the heaviest among the two non-terminals in the right-hand side of the non-
terminal Pi and the variable Pt generates a single character. We associate with
each non-terminal R a center point p =

∑
1≤i≤k |Qij | + 1 where the ij is the

sequence of indices in [1..t] such that Pij−1 = Qij+1Pij+1 (that is, Qij is the left
non-terminal in the right-hand side of the non-terminal Pij−1). The character
at position p in the string generated by R is precisely the character generated
by the non-terminal Pt.

p

P0

Q1 P1

P2 Q2

P4

Q3P3

Q5

Q4

P5

Fig. 1. Illustration of the heavy path starting from variable P0 and its center point p.

3.3 Biased Skip Trees

The main data structure used by Bille et al. is a forest of trees built as follows.
Each forest has as a root a node that corresponds to a sink in the DAG repre-
sentation of the grammar. A node x is a child of another node y in the forest
if and only if y is the heavy child of x in the original DAG. Thus the forest
can be thought of as being built by reversing the original DAG (upside-down)
and keeping only the edges that correspond to heavy paths. Then each of the
resulting trees is represented using a biased skip tree. The representation allows
us to find the sequence of triplets (R1, s1, e1), (R2, s2, e2), . . . , (Rt, st, et), given
a position x in the string S. Suppose that we are given a non-terminal R whose
center point is p and heavy path is P1, P2, . . . , Pm. Given a point x �= p inside the
substring generated by R, we wish to find inside the heavy path decomposition
of R the non-terminal Pi such that either:

1. Pi = Pi+1Qi+1 with x − p > |Pi+1| − pi+1, where pi+1 is the center of the
non-terminal Pi+1.

2. Pi = Qi+1Pi+1 with p − x > pi+1 − 1, where pi+1 is the center the non-
terminal Pi+1.

Informally speaking, the non-terminal Pi is the last non-terminal in the heavy
path that contains the point x and the non-terminal Qi+1 hangs from the
heavy-path, either from the right (first case above) of from the left (second
case above). The biased skip tree allows to find the non-terminal Pi in time
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O(log(|R|/|Qi+1|)). Then, the algorithm produces the triplet (R1, s1, e1) by set-
ting R1 = Qi+1, s1 = p − pi + 1 and e1 = s1 + |R1| − 1 and starts the same
procedure above by replacing R by R1, which results in the triplet (R2, s2, e2).
The algorithm continues in this way until it gets the triplet (Rt, st, et). The to-
tal running time of the procedure is O(logN), since |R| = N and the successive
running times O(log(|R|/|R1|)), O(log(|R1|/|R2|)), . . . , O(log(|Rt−1|/|Rt|)) add
up to O(logN) time by a telescoping argument.

3.4 Improved Access Time

The above scheme can be extended to allow decompression of an arbitrary sub-
string that covers positions [x, x′] in time O(m+logN), where m = x′−x+1 is
the length of the decompressed substring. The decompression works as follows.
We first find the sequence of triplets (R1, s1, e1), (R2, s2, e2), . . . , (Rt, st, et) cor-
responding to the point x. We then find the sequence of triplets (R′

1, s
′
1, e

′
1),

(R′
2, s

′
2, e

′
2), . . ., (R

′
t, s

′
t′ , e

′
t′) corresponding to the point x′. We let (Ri, si, ei) =

(R′
i, s

′
i, e

′
i) be the last common triplet between the two sequences. Without loss

of generality, assume that Ri+1 hangs at a higher point than R′
i+1 and that Pi is

the last non-terminal on the heavy path of Ri that contains point x (note that
Pi = Ri+1Pi+1). Then the non-terminal Pi+1 still contains the point x′ and we
need to decompress all the non-terminals that hang on the left of the heavy path
that starts at Pi+1 down to the non-terminal from which the non-terminal R′

i+1

hangs. Afterwards, we just need to 1) decompress all the non-terminals that hang
on the right of the heavy path that starts at Rj down to the non-terminal from
which Rj+1 hangs for all j ∈ [i+1, t− 1], and then 2) symmetrically decompress
all the non-terminals that hang on the left of the heavy path that starts at R′

j

down to the non-terminal from which R′
j+1 hangs for all j ∈ [i+1, t′− 1] 2. This

whole procedure takes O(m + logN) time. The main point of the procedure is
to be able to decompress all the non-terminals that hang on the right or on the
left of the portion of some heavy path that starts at some non-terminal Pi down
to some non-terminal Pi+1 inside that heavy path.

In what follows, we show how to reduce the time to just O(m/ logσ N+logN).
For every non-terminal X , we will store the following additional fields, which
occupy O(logN) bits:

1. The logN/ logσ leftmost and logN/ logσ rightmost characters in the sub-
string generated by X .

2. Three jump pointers. Each jump pointer is a pair of the form (R, p), where
R is non-terminal and p is a position inside the substring generated by X .

The three jump pointers are called left, right and central (any of them may be
empty). The jump pointers will allow us to accelerate the extraction of charac-
ters. The central jump pointer allows to fully decompress any given non-terminal
that generates a string of length m in time O(1 +m/ logσ N).

2 In addition if Rj+1 (R′
j+1) hangs on the left (right) of Rj(R

′
j), we will need to

decompress the right (left) child of the node from which Rj+1 (R′
j+1) hangs
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Lemma 1. Suppose that we are given a grammar of size n that generates a
string S of length N over an alphabet of size σ is of size n. Then we can build
a data structure that uses O(n logN) bits so that decompressing the string gen-
erated by any non-terminal takes O(logN + m/ logσ N) time, where m is the
length of the string generated by the non-terminal.

The proof will appear in the full version of the paper. The right and left jump
pointers will allow us to jump along the heavy paths, avoiding the traversal of
all the non-terminals in the heavy path. Their use is shown next.

Decompression of Arbitrary Substrings. We now show how to decompress
an arbitrary substring that is not necessarily aligned on a non-terminal.

Recall that the core procedure for decompression is as follows. We are given
a non-terminal R and another non-terminal Q that hangs from the heavy path
down from R and we want to decompress what hangs from the left (respectively
right) of the heavy path down to the point where Q hangs from the heavy path.
To accelerate the decompression we will use the right and left jump pointers.
Since right and left decompression are symmetric, we only describe the left case.

Before describing the decompression itself, we first describe how the left jump
pointer for non-terminal R is set. We will keep a counter C (initially set to
zero), assume P0 = R and inspect the sequence P1, P2, . . . , Pt. For increasing
i starting from 1 such that Pi−1 = QiPi, we increment C by |Qi| and stop
when C + |Qi| > logN/ logσ. Then the left jump pointer will point to the non-
terminal Pi−1 = L along with its starting point pL inside R. If P0 = Q1P1 and
|Q1| > logN/ logσ or C + |Qi| never exceeds logN/ log σ, then we do not store
a left jump pointer at all.

The decompression of the left of a heavy path is done as follows. We are given
the non-terminal Q and its starting position pQ inside P . We first check whether
pQ ≤ logN/ log σ, in which case everything to the left of Q inside P is already
in the left substring of P and it can be decompressed in time O(1 + pQ/ logσ N)
and we are done.

If pQ > logN/ log σ, then we have two cases:

1. If P has a left jump pointer (L, pL) then pQ ≥ pL and we decompress the
first pL ≤ logN/ logσ characters of the string generated by P (from the left
substring of P ), then replace P by L and recurse on L and Q.

2. If P does not have a left jump pointer, then we necessarily have that P =
Q1P1 with |Q1| > logN/ logσ and pQ > |Q1|, we just decompress Q1 (us-
ing the procedure shown above for fully decompressing non-terminals using
central jump pointers). replace P by P1 and recurse on P1 and Q.

It remains to show that the bound for the procedure is O(1 + y/ logσ N), where
y is the total length of the decompressed string. Analyzing the recursion, it can
easily be seen that when we follow two successive left jump pointers, we are
decompressing at least logσ N characters from left substrings.

Otherwise, if we do not follow a jump pointer, then we are either decompressing
a non-terminal of length at least logσ N characters in optimal time or we terminate
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by decompressing at most logσ N characters. We thus have shown the following
theorem.

Theorem 1. Suppose that we are given a grammar of size n that generates a
string S of length N over an alphabet of size σ is of size n. Then we can build a
data structure that uses O(n logN) bits that supports the access to m consecutive
characters in time O(logN +m/ logσ N) time.

4 Optimal Access Time for Not-so-compressible Strings

Theorem 2. Given a balanced grammar of size n generating a string S
of length N over an alphabet of size σ, we can build a data structure of
O(n log1+εN) bits (for any constant ε), that supports random access to any char-
acter of S in O(logN/ log logN) time, and access to m consecutive characters in
O(logN/ log logN +m/ logσ N) time. Furthermore, we can build a data struc-
ture of O(nσ log1+ε N) bits that supports rank and select in O(logN/ log logN)
time.

For every variable R we generate a new right-hand side that contains at
most logε N variables by iteratively expanding the right-hand side of R down
ε log logN levels (or less if we reach a terminal). We then store in a fusion
tree [8,9] the prefix-sum of the lengths of the strings generated by each variable
in the right-hand side. More precisely, assuming that the expanded right-hand
side of R is R1R2 . . . Rt with t ≤ 2ε log log n, the prefix sums are s1, s2 . . . st, where
si =

∑i
j=1 |Rj |. The height of the resulting grammar is O(logN/ log logN) since

the original grammar is balanced and thus have height O(logN) [5,26]. Every
fusion tree uses O(log1+ε N) bits of space and the expanded grammar has O(n)
nodes, so we use O(n log1+εN) bits of space.

To access a specific character S[i] we traverse the grammar top-down and use
the prefix-sums for navigation. Suppose we have reached a rule R producing the
string S[i′, j′] (where i′ ≤ i ≤ j′). To find the child of R to continue the search
from, we ask for the predecessor of i − i′ among the prefix-sums stored in R.
The values for i′ and j′ are not unique to a node, so we must keep a counter
indicating what i′ is at every step. The counter is initially zero and when the
search exits a node R in child Rk, we add sk−1 to the counter (or 0 if k = 1).

The fusion tree allows predecessor searches on a set of t integers of w bits in
O(log t/ logw). Since in our case, we have t = logεN and w ≥ logN , the query
time is constant. The traversal therefore takes O(logN/ log logN) time.

The data structure can be extended to support access(i, j) queries inO(logN+
m/ logσ N) time, and rank/select queries in O(logN/ log logN) time (multiply-
ing the space by a factor σ). For lack of space the details are deferred to the full
version of the paper.

4.1 Fast Queries for Unbalanced Grammars

For unbalanced grammars we may use the results of Charikar et al. [5] or Ryt-
ter [26] to generate a balanced grammar that produces the same string as the
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unbalanced, but is of size larger by a factor O(log(N/n)). This immediately gives
a data structure that uses O(n log(N/n) log1+ε N) bits (for any constant ε) sup-
porting access to m consecutive characters in O(logN/ log logN + m/ logσ N)
time, and a data structure using O(nσ log(N/n) log1+ε N) bits of space that sup-
ports rank and select in O(logN/ log logN) time. In this section we show the
following theorem.

Theorem 3. Given any grammar of size n generating a string S of length N over
an alphabet of size σ, we can build a data structure that usesO(nτ logτ

N
n logN) bits

that supports random access to any character of S in O(logτ N) time, and access
tom consecutive characters in O(logτ N +m/ logσ N) time. Furthermore, we can
build a data structure of O(nτσ logτ

N
n logN) bits that supports rank and select in

O(logτ N) time. τ can be any value between 2 and logε N for some constant ε.

Our data structure uses Rytter’s algorithm to generate a balanced grammar
and then uses the data structure that we described in the previous section. One
of the key observations in the analysis of Rytter’s algorithm is that when joining
two AVL-balanced grammars we add only a number of new rules proportional to
the difference in their heights. Taking a closer look at the algorithm will reveal
the following useful property. The proof is omitted due to lack of space.

Lemma 2. Let S be an arbitrary grammar of size n and S ′ an AVL-balanced
grammar generated by Rytter’s algorithm producing the same string as S. The
number of non-terminals with height h in S ′ is O(n) for any h.

Suppose we are given a grammar balanced by Rytter’s algorithm. We want to
expand the right-hand sides of rules to be of size O(τ). Because the grammar is
AVL-balanced, we may find a set of rules where each rule has height h− 1 or h

for some h such that S can be partitioned into substrings of size 1.6h−1√
5

< τ ≤ 2h

produced by these rules. We expand the right-hand sides of these rules and
proceed to a higher level. We then have the following corollary.

Corollary 1. Given a string of size N compressed by a grammar of size n.
After applying Rytter’s algorithm to balance the grammar and expanding the

right-hand sides of rules to size 1.6h−1√
5

< τ ≤ 2h for some h, the resulting

grammar has O(n logτ N) rules.

Proof. The grammar is balanced by Rytter’s algorithm so after it is expanded
its height is O(logN/(h− 1)) which in terms of τ is O(logτ N). We select rules
with a height difference of at most one in every iteration, so from Lemma 2 we
know that O(n) rules is selected at each level. Therefore the resulting grammar
has O(n logτ N) rules. ��

We now have seen how to obtain an expanded, balanced grammar with
O(n logτ N) rules. To get Theorem 3 we build a fusion tree in each node
using O(τ logN) bits of space each totalling to O(nτ logτ N logN) bits of space.
A full proof of Theorem 3 that also shows how to get the logτ (N/n)-factor
instead of logτ N will appear in a full version of the paper.
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This scheme also extends to computing the Karp-Rabin fingerprint [16] of a
substring of S in the same time as it takes to access a single character.

Corollary 2. Given a grammar of size n generating a string S of length N , we
can build a data structure using O(nτ logτ N logN) bits of space that supports
finding the fingerprint of a substring S[i, j] in O(logτ N) time.

This improves upon the O(logN) query time of [4]. By adapting the exponen-
tial search algorithm from [4] it further follows that we can compute the longest
common prefix of two suffixes of S in O(logN log �/ log logN) time, where � is
the length of the longest common prefix.

5 Hardness of Rank/Select in Grammar-compressed
Strings

We will now show a reduction from the problem of path counting in DAGs to
rank and select in grammar-compressed strings.

Suppose that we are given a DAG with m nodes and n edges that has β nodes
with indegree 0 (sources) and σ nodes with outdegree 0 (sinks) and later for any
node u and any sink v we want to be able to compute the number of distinct
paths that connect u to v. We allow multi-edges. Let N be the total number of
distinct paths that connect the β sources to the σ sinks. We can show that we
can construct a grammar-compressed string of (uncompressed) length N having
O(n) non-terminals and σ terminals and such that answering the above queries
on the DAG reduces to answering rank queries on the compressed string.

We modifiy the DAG such that it contains a single source and all nodes it
contains have outdegree either 0 or 2:

1. For every node v of outdegree 1 do the following. If the successor of v is w,
then for every edge uv create a new edge uw and remove edge uv. Node v
now has indegree 0. We remove v and keep a structure mapping v to w. Since
any path starting at v must pass through w, we will know that counting the
number of paths starting at v and ending at a node x is the same as the
number starting at w and ending at x. Note that all paths that went through
v are preserved. Thus the count of the number of paths is unchanged.

2. If the number of nodes having indegree 0 is t ≥ 2, then create a new root and
connect the root to all the nodes of indegree 0 by creating t− 2 intermediate
nodes. The root and the newly created nodes will have outdegree 2.

3. For every node v of outdegree d ≥ 3, we will add exactly d− 2 intermediate
nodes of outdegree 2 that connect the original nodes with the destination
and modify v so that it has outdegree 2.

Clearly, the constructed DAG will have O(m) nodes and will generate a string
of length exactly N , where N is the total number of distinct paths between one
of the original β sources and one of the original σ sinks.

For every non-terminal, we will store two pointers that delimit the leftmost
occurrence of the rule in the text. This array occupies O(n) words of space. Then,



152 D. Belazzougui et al.

in time T (n, σ,N), we build a data structure of size S(n, σ,N) that answers rank
queries on the string generated by the grammar in time t(n, σ,N). To answer a
query that counts the number of paths between a node u and a designated sink
v, we will find the non-terminal R that corresponds to u and the terminal c that
corresponds to v. We then find (using the array of pointers) the two positions i
and j that correspond to the leftmost occurrences of R in the text. Finally, the
count is returned by doing two rank queries for symbol c at positions i and j.

We have proved the following.

Theorem 4. Suppose there exists a scheme that can preprocess a grammar of
size n with σ non-terminals that generates a string of length N in T (n, σ,N)
time and produces a data structure of size S(n, σ,N) that answers to rank queries
on the string generated by the grammar in time t(n, σ,N). Then given a DAG
with m nodes, n edges (possibly with multiedges), β sources and α sinks, we
can, after preprocessing time O(n+T (n, σ,N)), produce a data structure of size
O(n+ S(n, σ,N)) that can count the number of distinct paths from any node of
the DAG to one of the σ sinks in time O(t(n, σ,N)), where N is the number of
distinct paths that connect the β sources to the α sinks.

6 Concluding Remarks

Perhaps the most interesting open question we raise is whether our results for
rank and select are optimal. As we have shown, proving this one way or the other
would lead to progress on path counting and reachability in DAGs, an old and
interesting problem in graph theory. Perhaps similar approaches will be fruitful
in judging the hardness of other problems on grammar-compressed strings, many
solutions to which currently seem to be loose upperbounds [2,1,15,13,14].

Our result for access closes the gap between Bille et al.’s random access re-
sult [3] and the lowerbound of Verbin and Yu [27] for the (large) set of strings
whose grammar-compressed size n is polynomially related to N . We leave closing
the gap for the remaining strings as an open problem.
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Abstract. Betweenness is a well-known centrality measure that ranks
the nodes of a network according to their participation in shortest paths.
Since an exact computation is prohibitive in large networks, several ap-
proximation algorithms have been proposed. Besides that, recent years
have seen the publication of dynamic algorithms for efficient recomputa-
tion of betweenness in evolving networks. In previous work we proposed
the first semi-dynamic algorithms that recompute an approximation of
betweenness in connected graphs after batches of edge insertions.

In this paper we propose the first fully-dynamic approximation algo-
rithms (for weighted and unweighted undirected graphs that need not to
be connected) with a provable guarantee on the maximum approxima-
tion error. The transfer to fully-dynamic and disconnected graphs implies
additional algorithmic problems that could be of independent interest.
In particular, we propose a new upper bound on the vertex diameter for
weighted undirected graphs. For both weighted and unweighted graphs,
we also propose the first fully-dynamic algorithms that keep track of
this upper bound. In addition, we extend our former algorithm for semi-
dynamic BFS to batches of both edge insertions and deletions.

Using approximation, our algorithms are the first to make in-memory
computation of betweenness in fully-dynamic networks with millions of
edges feasible. Our experiments show that they can achieve substantial
speedups compared to recomputation, up to several orders of magnitude.

Keywords: betweenness centrality, algorithmic network analysis, fully-
dynamic graph algorithms, approximation algorithms, shortest paths.

1 Introduction

The identification of the most central nodes of a network is a fundamental
problem in network analysis. Betweenness centrality (BC) is a well-known in-
dex that ranks the importance of nodes according to their participation in
shortest paths. Intuitively, a node has high BC when it lies on many shortest
paths between pairs of other nodes. Formally, BC of a node v is defined as
cB(v) =

1
n(n−1)

∑
s�=v �=t

σst(v)
σst

, where n is the number of nodes, σst is the num-
ber of shortest paths between two nodes s and t and σst(v) is the number of these
paths that go through node v. Since it depends on all shortest paths, the exact
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computation of BC is expensive: the best known algorithm [5] is quadratic in the
number of nodes for sparse networks and cubic for dense networks, prohibitive
for networks with hundreds of thousands of nodes. Many graphs of interest,
however, such as web graphs or social networks, have millions or even billions
of nodes and edges. For this reason, approximation algorithms [6,9,1] must be
used in practice. In addition, many large graphs of interest evolve continuously,
making the efficient recomputation of BC a necessity. In a previous work, we
proposed the first two approximation algorithms [4] (IA for unweighted and IAW
for weighted graphs) that can efficiently recompute the approximate BC scores
after batches of edge insertions or weight decreases. IA and IAW are the only
semi-dynamic algorithms that can actually be applied to large networks. The
algorithms build on RK [19], a static algorithm with a theoretical guarantee on
the quality of the approximation, and inherit this guarantee from RK. However,
IA and IAW target a relatively restricted configuration: only connected graphs
and edge insertions/weight decreases.

Our Contributions. In this paper we present the first fully-dynamic algorithms
(handling edge insertions, deletions and arbitrary weight updates) for BC ap-
proximation in weighted and unweighted undirected graphs. Our algorithms ex-
tend the semi-dynamic ones we presented in [4], while keeping the theoretical
guarantee on the maximum approximation error. The transfer to fully-dynamic
and disconnected graphs implies several additional problems compared to the re-
stricted case we considered previously [4]. Consequently, we present the following
intermediate results, all of which could be of independent interest. (i) We pro-
pose a new upper bound on the vertex diameter VD (i. e. number of nodes in the
shortest path(s) with the maximum number of nodes) for weighted undirected
graphs. This can improve significantly the one used in the RK algorithm [19] if
the network’s weights vary in relatively small ranges (from the size of the largest
connected component to at most twice the vertex diameter times the ratio be-
tween the maximum and the minimum edge weights). (ii) For both weighted
and unweighted graphs, we present the first fully-dynamic algorithm for updat-
ing an approximation of VD , which is equivalent to the diameter in unweighted
graphs. (iii) We extend our previous semi-dynamic BFS algorithm [4] to batches
of both edge insertions and deletions. In our experiments, we compare our algo-
rithms to recomputation with RK on both synthetic and real dynamic networks.
Our results show that our algorithms can achieve substantial speedups, often
several orders of magnitude on single-edge updates and are always faster than
recomputation on batches of more than 1000 edges.

2 Related Work

2.1 Overview of Algorithms for Computing BC

The best static exact algorithm for BC (BA) is due to Brandes [5] and requires
Θ(nm) operations for unweighted graphs and Θ(nm+ n2 logn) for graphs with
positive edge weights. The algorithm computes a single-source shortest path
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(SSSP) search from every node s in the graph and adds to the BC score of
each node v �= s the fraction of shortest paths that go through v. Several static
approximation algorithms have been proposed that compute an SSSP search
from a set of randomly chosen nodes and extrapolate the BC scores of the other
nodes [6,9,1]. The static approximation algorithm by Riondato and Kornaropou-
los (RK) [19] samples a set of shortest paths and adds a contribution to each
node in the sampled paths. This approach allows a theoretical guarantee on the
quality of the approximation and will be described in Section 2.2. Recent years
have seen the publication of a few dynamic exact algorithms [15,11,13,12,17,10].
Most of them store the previously calculated BC values and additional infor-
mation, like the distance of each node from every source, and try to limit the
recomputation to the nodes whose BC has actually been affected. All the dy-
namic algorithms perform better than recomputation on certain inputs. Yet,
none of them is in general better than BA. In fact, they all require updating
an all-pairs shortest paths (APSP) search, for which no algorithm has an im-
proved worst-case complexity compared to the best static algorithm [20]. Also,
the scalability of the dynamic exact BC algorithms is strongly compromised by
their memory requirement of Ω(n2). To overcome these problems, we presented
two algorithms that efficiently recompute an approximation of the BC scores
instead of their exact values [4]. The algorithms have shown significantly high
speedups compared to recomputation with RK and a good scalability, but they
are limited to connected graphs and batches of edge insertions/weight decreases
(see Section 2.3).

2.2 RK Algorithm

The static approximation algorithm RK [19] is the foundation for the incremental
approach we presented in [4] and our new fully-dynamic approach. RK samples
a set S = {p(1), ..., p(r)} of r shortest paths between randomly-chosen source-
target pairs (s, t). Then, RK computes the approximated betweenness c̃B(v) of
a node v as the fraction of sampled paths p(k) ∈ S that go through v, by adding
1
r to v’s score for each of these paths. In each of the r iterations, the probability
of a shortest path pst to be sampled is πG(pst) =

1
n(n−1) · 1

σst
. The number r of

samples required to approximate the BC scores with the given error guarantee
is r = c

ε2

(�log2 (VD − 2)�+ 1 + ln 1
δ

)
, where ε and δ are constants in (0, 1) and

c ≈ 0.5. Then, if r shortest paths are sampled according to πG, with probability
at least 1 − δ the approximations c̃B(v) are within ε from their exact value:
Pr(∃v ∈ V s.t. |cB(v)− c̃B(v)| > ε) < δ. To sample the shortest paths according
to πG, RK first chooses a source-target node pair (s, t) uniformly at random
and performs a shortest-path search (Dijkstra or BFS) from s to t, keeping also
track of the number σsv of shortest paths between s and v and of the list of
predecessors Ps(v) (i. e. the nodes that immediately precede v in the shortest
paths between s and v) for any node v between s and t. Then one shortest path
is selected: starting from t, a predecessor z ∈ Ps(t) is selected with probability
σsz/

∑
w∈Ps(t)

σsw = σsz/σst. The sampling is repeated iteratively until node s
is reached.
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Approximating the Vertex Diameter. RK uses two upper bounds on VD that can
be both computed in O(n +m). For unweighted undirected graphs, it samples
a source node si for each connected component of G, computes a BFS from
each si and sums the two shortest paths with maximum length starting in si.
The VD approximation is the maximum of these sums over all components. For
weighted graphs, RK approximates VD with the size of the largest connected
component, which can be a significant overestimation for complex networks,
possibly of orders of magnitude. In this paper, we present a new approximation
for weighted graphs, described in Section 3.

2.3 IA and IAW Algorithms

IA and IAW are the incremental approximation algorithms (for unweighted and
weighted graphs, respectively) that we presented previously [4]. The algorithms
are based on the observation that if only edge insertions are allowed and the
graph is connected, VD cannot increase, and therefore also the number r of
samples required by RK for the theoretical guarantee. Instead of recomputing r
new shortest paths after a batch of edge insertions, IA and IAW replace each old
shortest path ps,t with a new shortest path between the same node pair (s, t).
In IAW the paths are recomputed with a slightly-modified T-SWSF [2], whereas
IA uses a new semi-dynamic BFS algorithm. The BC scores are updated by
subtracting 1/r to the BC of the nodes in the old path and adding 1/r to the
BC of nodes in the new shortest path.

2.4 Batch Dynamic SSSP Algorithms

Dynamic SSSP algorithms recompute distances from a source node after a single
edge update or a batch of edge updates. Algorithms for the batch problem have
been published [18,8,2] and compared in experimental studies [2,7]. The exper-
iments show that the tuned algorithm T-SWSF presented in [2] performs well
on many types of graphs and edge updates. For batches of only edge insertions
in unweighted graphs, we developed an algorithm asymptotically faster than T-
SWSF [4]. The algorithm is in principle similar to T-SWSF, but has an improved
complexity thanks to different data structures.

3 New VD Approximation for Weighted Graphs

Let G be an undirected graph. For simplicity, let G be connected for now. If it
is not, we compute an approximation for each connected component and take
the maximum over all the approximations. Let T ⊆ G be an SSSP tree from
any source node s ∈ V . Let pxy denote a shortest path between x and y in
G and let pTxy denote a shortest path between x and y in T . Let |pxy| be the
number of nodes in pxy and d(x, y) be the distance between x and y in G, and
analogously for |pTxy| and dT (x, y). Let ω and ω be the maximum and minimum
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edge weights, respectively. Let u and v be the nodes with maximum distance
from s, i. e. d(s, u) ≥ d(s, v) ≥ d(s, x) ∀x ∈ V, x �= u.

We define the VD approximation ṼD := 1 + d(s,u)+d(s,v)
ω . Then:

Proposition 1. VD ≤ ṼD < 2 · ω
ωVD. (Proof in extended version [3])

To obtain the upper bound ṼD , we can simply compute an SSSP search from
any node s, find the two nodes with maximum distance and perform the remain-
ing calculations. Notice that ṼD extends the upper bound proposed for RK [19]
for unweighted graphs: When the graph is unweighted and thus ω = ω, ṼD
becomes equal to the approximation used by RK. Complex networks are often
characterized by a small diameter and in networks like coauthorship, friendship,
communication networks, VD and ω

ω can be several order of magnitude smaller
than the size of the largest component. This translates into a substantially im-
proved VD approximation.

4 New Fully-Dynamic Algorithms

Overview. We propose two fully-dynamic algorithms, one for unweighted (DA,
dynamic approximation) and one for weighted (DAW, dynamic approximation
weighted) graphs. Similarly to IA and IAW, our new fully-dynamic algorithms
keep track of the old shortest paths and substitute them only when necessary.
However, if G is not connected or edge deletions occur, VD can grow and a simple
substitution of the paths is not sufficient anymore. Although many real-world
networks exhibit a shrinking-diameter behavior [16], to ensure our theoretical
guarantee, we need to keep track of ṼD over time and sample new paths in
case ṼD increases. The need for an efficient update of ṼD augments signifi-
cantly the difficulty of the fully-dynamic problem, as well as the necessity to
recompute the SSSPs after batches of both edge insertions and deletions. The
building block for the BC update are basically two: a fully-dynamic algorithm
that updates distances and number of shortest paths from a certain source node
(SSSP update) and an algorithm that keeps track of a VD approximation for
each connected component of G. The following paragraphs give an overview of
such building blocks, which could be of independent interest. The last paragraph
outlines the dynamic BC approximation algorithm. Due to space constraints,
a detailed description of the algorithms as well as the pseudocodes and
the omitted proofs can be found in the full version of this paper [3].

SSSP Update in Weighted Graphs. Our SSSP update is based on T-SWSF [2],
which recomputes distances from a source node s after a batch β of weight
updates (or edge insertions/deletions). For our BC algorithm, we need two ex-
tensions of T-SWSF: an algorithm that also recomputes the number of shortest
paths between s and the other nodes (updateSSSP-W) and one that also updates
a VD approximation for the connected component of s (updateApprVD-W). The
VD approximation is computed as described in Section 3. Thus, updateApprVD-
W keeps track of the two maximum distances d′ and d′′ from s and the minimum
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edge weight ω. We call affected nodes the nodes whose distance (or also whose
number of shortest paths, in updateSSSP-W) from s has changed as a conse-
quence of β. Basically, the idea is to put the set A of affected nodes w into a
priority queue Q with priority p(w) equal to the candidate distance of w. When
w is extracted, if there is actually a path of length p(w) from s to w, the new
distance of w is set to p(w), otherwise w is reinserted into Q with a higher can-
didate distance. In both cases, the affected neighbors of w are inserted into Q. In
updateApprVD-W, d′ and d′′ are recomputed while updating the distances and
ω is updated while scanning β. In updateSSSP-W, the number σsw of shortest
paths of w is recomputed as the sum of the σsz of the new predecessors z of w.

Let |β| represent the cardinality of β and let ||A|| represent the sum of
the nodes in A and of the edges that have at least one endpoint in A. Then,
the following complexity derives from feeding Q with the batch and inserting
into/extracting from Q the affected nodes and their neighbors.

Lemma 1. The time required by updateApprVD-W (updateSSSP-W) to update the
distances and ṼD (the number of shortest paths) is O(|β| log |β|+ ||A|| log ||A||).

SSSP update in unweighted graphs. For unweighted graphs, we basically re-
place the priority queue Q of updateApprVD-W and updateSSSP-W with a list of
queues, as the one we used in [4] for the incremental BFS. Each queue represents
a level from 0 (which only the source belongs to) to the maximum distance d′.
The levels replace the priorities and also in this case represent the candidate
distances for the nodes. In order not to visit a node multiple times, we use col-
ors to distinguish the unvisited nodes from the visited ones. The replacement
of the priority queue with the list of queues decreases the complexity of the
SSSP update algorithms for unweighted graphs, that we call updateApprVD-U
and updateSSSP-U, in analogy with the ones for weighted graphs.

Lemma 2. The time required by updateApprVD-U (updateSSSP-U) to update
the distances and ṼD (the number of shortest paths) is O(|β| + ||A|| + dmax),
where dmax is the maximum distance from s reached during the update.

Fully-dynamic VD approximation. The algorithm keeps track of a VD approx-
imation for the whole graph G, i. e. for each connected component of G. It is
composed of two phases. In the initialization, we compute an SSSP from a source
node si for each connected component Ci. During the SSSP search from si, we
also compute a VD approximation ˜VD i for Ci, as described in Sections 2.2
and 3. In the update, we recompute the SSSPs and the VD approximations with
updateApprVD-W (or updateApprVD-U). Since components might split or merge,
we might need to compute new approximations, in addition to update the old
ones. To do this, for each node, we keep track of the number of times it has been
visited. This way we discard source nodes that have already been visited and
compute a new approximation for components that have become unvisited. The
complexity of the update of the VD approximation derives from the ṼD update
in the single components, using updateApprVD-W and updateApprVD-U.
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Theorem 1. The time required to update the VD approximation is O(nc · |β| log
|β|+∑nc

i=1 ||A(i)|| log ||A(i)||) in weighted graphs and O(nc · |β|+
∑nc

i=1 ||A(i)||+
d
(i)
max) in unweighted graphs, where nc is the number of components in G before

the update and A(i) is the sum of affected nodes in Ci and their incident edges.

Dynamic BC approximation. Let G be an undirected graph with nc connected
components. Now that we have defined our building blocks, we can outline a
fully-dynamic BC algorithm: we use the fully dynamic VD approximation to
recompute ṼD after a batch, we update the r sampled paths with updateSSSP
and, if ṼD (and therefore r) increases, we sample new paths. However, since
updateSSSP and updateApprVD share most of the operations, we can “merge”
them and update at the same time the shortest paths from a source node s and
the VD approximation for the component of s. We call such hybrid function
updateSSSPVD. Instead of storing and updating nc SSSPs for the VD approxi-
mation and r SSSPs for the BC scores, we recompute a VD approximation for
each of the r samples while recomputing the shortest paths with updateSSSPVD.
This way we do not need to compute an additional SSSP for the components
covered by r sampled paths (i. e. in which the paths lie), saving time and mem-
ory. Only for components that are not covered by any of them (if they exist),
we compute and store a separate VD approximation. We refer to such compo-
nents as R′ (and to |R′| as r′). The high-level description of the update after
a batch β is shown as Algorithm 1. After changing the graph according to β
(Line 1), we recompute the previous r samples and the VD approximations for
their components (Lines 2 - 5). Then, similarly to IA and IAW, we update the
BC scores of the nodes in the old and in the new shortest paths. Thus, we
update a VD approximation for the components in R′ (Lines 6 - 8) and com-
pute a new approximation for new components that have formed applying the
batch (Lines 9 - 12). Then, we use the results to update the number of samples
(Lines 13 - 14). If necessary, we sample additional paths and normalize the BC
scores (Lines 15 - 21). The difference between DA and DAW is the way the SSSPs
and the VD approximation are updated: in DA we use updateApprVD-U and in
DAW updateApprVD-W. Differently from RK and our previous algorithms IA and
IAW, in DA and DAW we scan the neighbors every time we need the predecessors
instead of storing them. This allows us to use Θ(n) memory per sample (i. e.,
Θ((r + r′)n) in total) instead of Θ(m) per sample, while our experiments show
that the running time is hardly influenced. The number of samples depends on
ε, so in theory this can be as large as |V |. However, the experiments conducted
in [4] show that relatively large values of ε (e. g. ε = 0.05) lead to good ranking
of nodes with high BC and for such values the number of samples is typically
much smaller than |V |, making the memory requirements of our algorithms sig-
nificantly less demanding than those of the dynamic exact algorithms (Ω(n2))
for many applications.

Theorem 2. Algorithm 1 preserves the guarantee on the maximum absolute
error, i. e. naming c′B(v) and c̃′B(v) the new exact and approximated BC values,
respectively, Pr(∃v ∈ V s.t. |c′B(v)− c̃′B(v)| > ε) < δ.
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Algorithm 1. BC update after a batch β of edge updates
1 applyBatch(G, β);
2 for i ← 1 to r do
3 ṼD i ← updateSSSPVD(si , β);
4 replacePath(si , ti) ; /* update of BC scores */
5 end
6 foreach Ci ∈ R′ do
7 ṼD i ← updateApprVD(Ci , β);
8 end
9 foreach unvisited Cj do

10 add Cj to R′;
11 ṼDj ← initApprVD(Cj);
12 end
13 ṼD ← maxCi∈R∪R′ ṼD i;
14 rnew ← (c/ε2)(�log2(ṼD − 2)� + ln(1/δ));
15 if rnew > r then
16 sampleNewPaths() ; /* update of BC scores */
17 foreach v ∈ V do
18 c̃B(v) ← c̃B(v) · r/rnew ; /* renormalization of BC scores */
19 end
20 r ← rnew;
21 end
22 return {(v, c̃B(v)) : v ∈ V }

Theorem 3. Let Δr be the difference between the value of r before and after
the batch and let ||A(i)|| be the sum of affected nodes and their incident edges
in the i-th SSSP. The time required for the BC update in unweighted graphs is
O((r+ r′)|β|+∑r+r′

i=1 (||A(i)||+ d
(i)
max) +Δr(|V |+ |E|)). In weighted graphs, it is

O((r + r′)|β| log |β|+∑r+r′

i=1 ||A(i)|| log ||A(i)||+Δr(|V | log |V |+ |E|)).

Notice that, if ṼD does not increase, Δr = 0 and the complexities are the
same as the only-incremental algorithms IA and IAW we proposed in [4]. Also,
notice that in the worst case the complexity can be as bad as recomputing from
scratch. However, no dynamic SSSP (and so probably also no BC approximation)
algorithm exists that is faster than recomputation.

5 Experiments

Implementation and settings. We implement our two dynamic approaches DA
and DAW in C++, building on the open-source NetworKit framework [22], which
also contains the static approximation RK. In all experiments we fix δ to 0.1 and
ε to 0.05, as a good tradeoff between running time and accuracy [4]. This means
that, with a probability of at least 90%, the computed BC values deviate at most
0.05 from the exact ones. In our previous experimental study [4], we showed that
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Table 1. Overview of real dynamic graphs used in the experiments.

Graph Type Nodes Edges Type
repliesDigg communication 30,398 85,155 Weighted
emailSlashdot communication 51,083 116,573 Weighted
emailLinux communication 63,399 159,996 Weighted
facebookPosts communication 46,952 183,412 Weighted
emailEnron communication 87,273 297,456 Weighted
facebookFriends friendship 63,731 817,035 Unweighted
arXivCitations coauthorship 28,093 3,148,447 Unweighted
englishWikipedia hyperlink 1,870,709 36,532,531 Unweighted

for such values of ε and δ, the ranking error (how much the ranking computed
by the approximation algorithm differs from the rank of the exact algorithm)
is low for nodes with high betweenness. Since our algorithms simply update
the approximation of RK, our accuracy in terms or ranking error does not differ
from that of RK (see [4] for details). Also, our experiments in [4] have shown that
dynamic exact algorithms are not scalable, because of both time and memory
requirements, so we do not include them in our tests. The machine used has 2
x 8 Intel(R) Xeon(R) E5-2680 cores at 2.7 GHz, of which we use only one core,
and 256 GB RAM.

Data sets and experiments. We concentrate on two types of graphs: synthetic and
real-world graphs with real edge dynamics. The real-world networks are taken
from The Koblenz Network Collection (KONECT) [14] and are summarized in
Table 1. All the edges of the KONECT graphs are characterized by a time of
arrival. In case of multiple edges between two nodes, we extract two versions of
the graph: one unweighted, where we ignore additional edges, and one weighted,
where we replace the set Est of edges between two nodes with an edge of weight
1/|Est|. In our experiments, we let the batch size vary from 1 to 1024 and for
each batch size, we average the running times over 10 runs. Since the networks
do not include edge deletions, we implement additional simulated dynamics. In
particular, we consider the following experiments. (i) Real dynamics. We remove
the x edges with the highest timestamp from the network and we insert them
back in batches, in the order of timestamps. (ii) Random insertions and deletions.
We remove x edges from the graph, chosen uniformly at random. To create
batches of both edge insertions and deletions, we add back the deleted edges
with probability 1/2 and delete other random edges with probability 1/2. (iii)
Random weight changes. In weighted networks, we choose x edges uniformly at
random and we multiply their weight by a random value in the interval (0, 2).

For synthetic graphs we use a generator based on a unit-disk graph model
in hyperbolic geometry [21], where edge insertions and deletions are obtained
by moving the nodes in the hyperbolic plane. The networks produced by the
model were shown to have many properties of real complex networks, like small
diameter and power-law degree distribution (see [21] and the references therein).
We generate seven networks, with |E| ranging from about 2 ·104 to about 2 ·107
and |V | approximately equal to |E|/10.
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Fig. 1. Speedups of DA on RK in real unweighted networks using real dynamics.

Table 2. Times and speedups of DA on RK in unweighted real graphs under real
dynamics and random updates, for batch sizes of 1 and 1024.

Real Random
Time [s] Speedups Time [s] Speedups

Graph |β| = 1 |β| = 1024 |β| = 1 |β| = 1024 |β| = 1 |β| = 1024 |β| = 1 |β| = 1024
repliesDigg 0.078 1.028 76.11 5.42 0.008 0.832 94.00 4.76
emailSlashdot 0.043 1.055 219.02 9.91 0.038 1.151 263.89 28.81
emailLinux 0.049 1.412 108.28 3.59 0.051 2.144 72.73 1.33
facebookPosts 0.023 1.416 527.04 9.86 0.015 1.520 745.86 8.21
emailEnron 0.368 1.279 83.59 13.66 0.203 1.640 99.45 9.39
facebookFriends 0.447 1.946 94.23 18.70 0.448 2.184 95.91 18.24
arXivCitations 0.038 0.186 2287.84 400.45 0.025 1.520 2188.70 28.81
englishWikipedia 1.078 6.735 3226.11 617.47 0.877 5.937 2833.57 703.18

Speedups. Figure 1 reports the speedups of DA on RK in real graphs using real
dynamics. Although some fluctuations can be noticed, the speedups tend to de-
crease as the batch size increases. We can attribute fluctuations to two main
factors: First, different batches can affect areas of G of varying sizes, influencing
also the time required to update the SSSPs. Second, changes in the VD approxi-
mation can require to sample new paths and therefore increase the running time
of DA (and DAW). Nevertheless, DA is significantly faster than recomputation
on all networks and for every tested batch size. The tests with random dynam-
ics lead to similar results, reported in our full version [3]. Table 2 summarizes
the running times of DA and its speedups on RK with batches of size 1 and
1024 in unweighted graphs, under both real and random dynamics. Even on the
larger graphs (arXivCitations and englishWikipedia) and on large batches,
DA requires at most a few seconds to recompute the BC scores, whereas RK
requires about one hour for englishWikipedia. The results for weighted graphs
are shown in [3]. In both real dynamics and random updates, the speedups vary
between ≈ 50 and ≈ 6 ·103 for single-edge updates and between ≈ 5 and ≈ 75 for
batches of size 1024. In hyperbolic graphs, the speedups of DA on RK increase
with the size of the graph, varying between ≈ 100 and ≈ 3 · 105 for single-edge
updates and between ≈ 3 and ≈ 5 · 103 for batches of 1024 edges (see [3] for
details). The results show that DA and DAW are faster than recomputation with
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RK in all the tested instances, even when large batches of 1024 edges are applied
to the graph. With small batches, the algorithms are always orders of magni-
tude faster than RK, often with running times of fraction of seconds or seconds
compared to minutes or hours. Such high speedups are made possible by the
efficient update of the sampled shortest paths, which limit the recomputation to
the nodes that are actually affected by the batch. Also, processing the edges in
batches, we avoid to update multiple times nodes that are affected by several
edges of the batch.

6 Conclusions

Betweenness is a widely used centrality measure, yet expensive if computed ex-
actly. In this paper we have presented the first fully-dynamic algorithms for be-
tweenness approximation (for weighted and for unweighted undirected graphs).
The consideration of edge deletions and disconnected graphs is made possible by
the efficient solution of several algorithmic subproblems (some of which may be
of independent interest). Now BC can be approximated with an error guarantee
for a much wider set of dynamic real graphs compared to previous work.

Our experiments show significant speedups over the static algorithm RK. In
this context it is interesting to remark that dynamic algorithms require to store
additional memory and that this can be a limit to the size of the graphs they can
be applied to. By not storing the predecessors in the shortest paths, we reduce
the memory requirement from Θ(|E|) per sampled path to Θ(|V |) – and are still
often more than 100 times faster than RK despite rebuilding the paths.

Future work may include the transfer of our concepts to approximating other
centrality measures in a fully-dynamic manner, e. g. closeness, and the extension
to directed graphs, for which a good VD approximation is the only obstacle.
Moreover, making the betweenness code run in parallel will further accelerate
the computations in practice. Our implementation will be made available as part
of a future release of the network analysis tool suite NetworKit [22].
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Abstract. Let G be an unweighted n-node undirected graph. A β-
additive spanner of G is a spanning subgraph H of G such that distances
in H are stretched at most by an additive term β w.r.t. the correspond-
ing distances in G. A natural research goal related with spanners is that
of designing sparse spanners with low stretch.

In this paper, we focus on fault-tolerant additive spanners, namely
additive spanners which are able to preserve their additive stretch even
when one edge fails. We are able to improve all known such spanners, in
terms of either sparsity or stretch. In particular, we consider the sparsest
known spanners with stretch 6, 28, and 38, and reduce the stretch to 4,
10, and 14, respectively (while keeping the same sparsity).

Our results are based on two different constructions. On one hand,
we show how to augment (by adding a small number of edges) a fault-
tolerant additive sourcewise spanner (that approximately preserves dis-
tances only from a given set of source nodes) into one such spanner that
preserves all pairwise distances. On the other hand, we show how to
augment some known fault-tolerant additive spanners, based on cluster-
ing techniques. This way we decrease the additive stretch without any
asymptotic increase in their size. We also obtain improved fault-tolerant
additive spanners for the case of one vertex failure, and for the case of f
edge failures.

1 Introduction

We are given an unweighted, undirected n-node graph G = (V (G), E(G)). Let
dG(s, t) denote the shortest path distance between nodes s and t in G. A spanner
H of G is a spanning subgraph such that dH(s, t) ≤ ϕ(dG(s, t)) for all s, t ∈
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V (G), where ϕ is the so-called stretch or distortion function of the spanner. In
particular, when ϕ(x) = αx + β, for constants α, β, the spanner is named an
(α,β) spanner. If α = 1, the spanner is called (purely) additive or also β-additive.
If β = 0, the spanner is called α-multiplicative.

Finding sparse (i.e., with a small number of edges) spanners is a key task in
many network applications, since they allow for a small-size infrastructure onto
which an efficient (in terms of paths’ length) point-to-point communication can
be performed. Due to this important feature, spanners were the subject of an
intensive research effort, aiming at designing increasingly sparser spanners with
lower stretch.

However, as any sparse structure, a spanner is very sensitive to possible fail-
ures of components (i.e., edges or nodes), which may drastically affect its perfor-
mances, or even disconnect it! Thus, to deal with this drawback, a more robust
concept of fault-tolerant spanner is naturally conceivable, in which the distortion
must be guaranteed even after a subset of components of G fails.

More formally, for a subset F of edges (resp., vertices) of G, let G − F be
the graph obtained by removing from G the edges (resp., vertices and incident
edges) in F . When F = {x}, we will simply write G − x. Then, an f -edge fault-
tolerant (f -EFT) spanner with distortion (α, β), is a subgraph H of G such that,
for every set F ⊆ E(G) of at most f failed edges, we have1

dH−F (s, t) ≤ α · dG−F (s, t) + β ∀s, t ∈ V (G).

We define similarly an f -vertex fault-tolerant (f -VFT) spanner. For f = 1, we
simply call the spanner edge/vertex fault-tolerant (EFT/VFT).

Chechik et al. [10] show how to construct a (2k−1)-multiplicative f -EFT span-
ner of size O(f · n1+1/k), for any integer k ≥ 1. Their approach also works for
weighted graphs and for vertex-failures, returning a (2k−1)-multiplicative f -VFT
spanner of size ˜O(f2 · kf+1 · n1+1/k).2 This latter result has been finally improved
through a randomized construction in [14], where the expected size was reduced to
˜O(f2−1/k · n1+1/k). For a comparison, the sparsest known (2k − 1)-multiplicative
standard (non fault-tolerant) spanners have size O(n1+ 1

k ) [2], and this is believed
to be asymptotically tight due to the girth conjecture of Erdős [15].

Additive fault-tolerant spanners can be constructed with the following ap-
proach by Braunshvig et al [8]. Let M be an α-multiplicative f -EFT spanner, and
A be a β-additive standard spanner. Then H = M ∪ A is a (2f(2β + α − 1) + β)-
additive f -EFT spanner. One can exploit this approach to construct concrete
EFT spanners as follows. We know how to construct 6-additive spanners of size
O(n4/3) [4], randomized spanners that, w.h.p., have size ˜O(n7/5) and additive
distortion 4 [9], and 2-additive spanners of size O(n3/2) [1]. By setting f = 1
and choosing k properly, this leads to EFT spanners of size O(n4/3) with ad-
ditive distortion 38, size ˜O(n7/5) with additive distortion 28 (w.h.p.), and size
1 Note that in this definition we allow dG−F (s, t) to become infinite (if the removal

of F disconnects s from t). In that case we assume the inequality to be trivially
satisfied.

2 The ˜O notation hides poly-logarithmic factors in n.
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Table 1. State of the art and new results on additive EFT spanners. Distortions and
sizes marked with “*” hold w.h.p.

State of the art Our results
Size Additive

distortion Size Additive
distortion

˜O(n5/3) 2 [17] O(n5/3) 2
˜O(n3/2) 6 [17] O(n3/2) 4
˜O(n

7
5 )* 28* [8,9] ˜O(n

7
5 )* 10*

O(n
4
3 ) 38 [4,8] O(n

4
3 ) 14

O(n3/2) with additive distortion 14. Finally, using a different approach, Parter
[17] recently presented 2- and 6-additive EFT/VFT spanners of size ˜O(n5/3) and
˜O(n3/2), respectively.

1.1 Our Results

In this paper, we focus on additive EFT spanners, and we improve all the known
such spanners in terms of sparsity or stretch (see Table 1). We also present some
better results for additive VFT and f -EFT spanners.

In more detail, our improved EFT spanners exploit the following two novel
approaches. Our first technique (see Section 2), assumes that we are given an
additive sourcewise fault-tolerant spanner AS , i.e., a fault-tolerant spanner that
guarantees low distortion only for the distances from a given set S of source nodes.
We show that, by carefully choosing S and by augmenting AS with a conveniently
selected small subset of edges, it is possible to construct a fault-tolerant spanner
(approximately preserving all pairwise distances) with a moderate increase of
the stretch. This, combined with the sourcewise EFT spanners in [7,18], leads to
the first two results in the table. In particular, we reduce the additive stretch of
the best-known spanner of size Õ(n3/2) from 6 [17] to 4 (actually, we also save
a polylogarithmic factor in the size here). For the case of stretch 2, we slightly
decrease the size from ˜O(n5/3) [17] to O(n5/3). This technique also applies to
VFT spanners. In particular, we achieve a 2-additive VFT spanner of size O(n5/3)
rather than ˜O(n5/3) [17], and a 4-additive VFT spanner of size O(n3/2√

log n),
improving on the 6-additive VFT spanner of size ˜O(n3/2) in [17].

Our second technique (see Section 3) relies on some properties of known ad-
ditive spanners. We observe that some known additive spanners are based on
clustering techniques that construct a small-enough number of clusters. Further-
more, the worst-case stretch of these spanners is achieved only in some specific
cases. We exploit these facts to augment the spanner H = M ∪ A based on
the already mentioned construction of [8] with a small number of inter and
intra-cluster edges. This allows us to reduce the additive stretch without any
asymptotic increase in the number of edges.
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Finally, for the case of multiple edge failures, we are able to prove that the
construction in [8] has in fact an additive stretch of only 2f(β+α−1)+β (rather
than 2f(2β + α − 1) + β).

Theorem 1. Let A be a β-additive spanner of G, and let M be an α-multiplicative
f -EFT spanner of G. The graph H = (V (G), E(A)∪E(M)) is a (2f(β+α−1)+β)-
additive f -EFT spanner of G. In the special case f = 1, the additive stretch is at
most 2β + α − 1.

We see this as an interesting result since, to the best of our knowledge, the
construction of [8] is the only known approach for building additive spanners
withstanding more than a single edge fault. At a high-level, in [8] the shortest
path in G − F between two vertices is decomposed into (roughly 2f) subpaths
called blocks. The authors then show that it is possible to build a bypass (i.e., a
fault-free path) in H between the endpoints of each block such that the additive
error incurred by using this path is at most β + α − 1. Actually, in addition to
those intra-block bypasses, the spanner H contains some inter-block shortcuts,
that are exploited in order to prove a better distortion. Due to space limitations,
the proof of this result will be given in the full version of the paper.

1.2 Related Work

A notion closely relate to fault-tolerant spanners is the one of Distance Sensi-
tivity Oracles (DSO). The goal here is to compute, with a low preprocessing
time, a compact data structure which is able to quickly answer distance queries
following some component failures (possibly in an approximate way). For recent
achievements on DSO, we refer the reader to [5, 6, 11, 16].

Another setting which is very close in spirit to fault-tolerant spanners is
the recent work on fault-tolerant approximate shortest-path trees, both for un-
weighted [19] and for weighted [5, 7] graphs. In [3] it was introduced the resem-
bling concept of resilient spanners, i.e., spanners that approximately preserve
the relative increase of distances due to an edge failure.

There was also some research (see for example [12, 13]) on spanners approxi-
mately preserving the distance from a given set of nodes (sourcewise spanners),
among a given set of nodes (subsetwise spanners), or between given pairs of nodes
(pairwise spanners). In this framework a spanner is called a preserver if distances
are preserved (in other words, the stretch function is the identity function). In
particular, in one of our constructions we exploit a fault-tolerant version of a
sourcewise preserver.

1.3 Notation

Given an unweighted, undirected graph G, let us denote by πG(u, v) a shortest
path) between u and v in G. When the graph G is clear from the context we might
omit the subscript. Given a simple path π in G and two vertices s, t ∈ V (π), we
define π[s, t] to be the subpath of π connecting s and t. Moreover, we denote
by |π| the length of π, i.e., the number of its edges. When dealing with one or



Improved Purely Additive Fault-Tolerant Spanners 171

Algorithm 1: Algorithm for computing a fault-tolerant additive spanner
of G from a β-additive f -EFT/VFT sourcewise spanner. The parameter p
affects the size of the returned spanner and it will be suitably chosen.
1 color(v) ← white ∀v ∈ V ; counter(v) ← f + 1 ∀v ∈ V
2 S ← ∅; E′ ← ∅
3 while ∃s ∈ V \ S : δwhite(s) ≥ p do
4 S ← S ∪ {s} /* Add a new source s */
5 color(s) ← red
6 foreach u ∈ Nwhite(s) do
7 counter(u) ← counter(u) − 1
8 E′ ← E′ ∪ {(s, u)}
9 if counter(u) = 0 then

10 color(u) ← black

11 E′ ← E′ ∪ {(u, v) ∈ E : color(u) = white}
12 AS ← β-additive f-EFT/VFT sourcewise spanner w.r.t. sources in S
13 return H ← (V (G), E′ ∪ E(AS))

multiple failed edges, we say that a path π is fault-free if it does not contain any
of such edges. Finally, if two paths π and π′ are such that the last vertex of π
coincides with the first vertex of π′, we will denote by π ◦ π′ the path obtained
by concatenating π with π′.

2 Augmenting Sourcewise Fault-Tolerant Spanners

We next describe a general procedure (see Algorithm 1) to derive purely additive
fault-tolerant spanners from sourcewise spanners of the same type.

The main idea of the algorithm is to select a small subset S of source vertices of
G, which we call red. These vertices are used to build a fault-tolerant sourcewise
spanner of the graph. The remaining vertices are either black or white. The
former ones are always adjacent to a source, even in the event of f edge/vertex
failures. Finally, edges incident to white vertices are added to the sought spanner,
as their overall number is provably small.

During the execution of the algorithm, we let color(u) ∈ {white, black, red}
denote the current color of vertex u. We define Nwhite(u) to be the set of neigh-
bors of u which are colored white, and we let δwhite(u) = |Nwhite(u)|. We will
also assign a non-negative counter counter(u) to each vertex. Initially all these
counters will be positive, and then they will only be decremented. A vertex u
is colored black only when counter(u) reaches 0, and once a white vertex is
colored either black or red it will never be recolored white again. Therefore,
we have that color(u) = black implies counter(u) = 0.

We first bound the size of the spanner H .

Lemma 1. Algorithm1computes a spannerof sizeO
(

np+nf +γ
(

n,
⌊

(f+1)n
p

⌋))

,
where γ(n, �) is the size of the spanner AS for |S| = �.
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s tu

v

πG−F (s, t)

︷ ︸︸ ︷
f + 1

Fig. 1. A case of the proof of Theorem 2. Bold edges are in H − F . The black vertex
u is adjacent to at least f + 1 vertices in S.

Proof. The edges added to E′ by line 8 are at most (f + 1)n, since each time an
edge (s, u) is added to H the counter counter(u) is decremented, and at most
(f + 1)n counter decrements can occur.

To bound the edges added to E′ by line 11, observe that all the edges in
{(u, v) ∈ E : color(u) = white} which are incident to a red vertex, have
already been added to H by line 8, hence we only consider vertices v which are
either white or black. Let v be such a vertex and notice that, before line 11 is
executed, we must have δwhite(v) < p, as otherwise v would have been selected
as a source and colored red. This immediately implies that line 11 causes the
addition of at most np edges to H .

It remains to bound the size of AS . It is sufficient to show that |S| ≤
⌊

(f+1)n
p

⌋

at the end of the algorithm. Each time a source s is selected, s has at least p
white neighbors in G, hence the quantity

∑

u∈V (G) counter(u) decreases by at
least p. The claim follows by noticing that

∑

u∈V (G) counter(u) = n(f + 1) at
the beginning of the algorithm and, when the algorithm terminates, it must be
non-negative. 
�

We next bound the distortion of H .

Theorem 2. Algorithm 1 computes a (β + 2)-additive f -EFT/VFT spanner.

Proof. Consider two vertices s, t ∈ V (G) and a set F of at most f failed
edges/vertices of G, we will show that dH−F (s, t) ≤ dG−F (s, t) + β + 2. We
assume, w.l.o.g., that s and t are connected in G − F , as otherwise the claim
trivially holds.

If all the vertices in π = πG−F (s, t) are white, then all their incident edges
have been added to H (see line 11 of Algorithm 1), hence dH−F (s, t) = dG−F (s, t).

Otherwise, let u ∈ V (π) be the closest vertex to s such that color(u) �=
white. Notice that, by the choice of u, H − F contains all the edges of π[s, u]. If
color(u) = red then:

dH−F (s, t) ≤ dH−F (s, u) + dH−F (u, t) ≤ dG−F (s, u) + dAS−F (u, t)
≤ dG−F (s, u) + dG−F (u, t) + β = dG−F (s, t) + β

where we used the fact that u ∈ πG−F (s, t).
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Finally, if color(u) = black then counter(u) = 0, hence u has at least f + 1
red neighbors in H (see Figure 1). As a consequence, there is at least one red
vertex v such that (u, v) ∈ H − F (and hence (u, v) ∈ G − F ), therefore:

dH−F (s, t) ≤ dH−F (s, u) + dH−F (u, v) + dH−F (v, t)
≤ dG−F (s, u) + 1 + dAS−F (v, t) ≤ dG−F (s, u) + 1 + dG−F (v, t) + β

≤ dG−F (s, u) + 1 + dG−F (v, u) + dG−F (u, t) + β

= dG−F (s, t) + β + 2.


�
Let S′ ⊂ V (G) be a set of sources. In [18] it is shown that a sourcewise

EFT/VFT preserver (i.e, a (1, 0) EFT/VFT sourcewise spanner) of G having
size γ(n, |S′|) = O(n

√

n|S′|) can be built in polynomial time. Combining this
preserver and Algorithm 1 with p = n

2
3 , we obtain the following:

Corollary 1. There exists a polynomial time algorithm to compute a 2-additive
EFT/VFT spanner of size O(n 5

3 ).

Furthermore, we can exploit the following result in [7].3

Lemma 2 ([7]). Given an (α, β)-spanner A and a subset S′ of vertices, it is
possible to compute in polynomial time a subset of O(|S′| · n) edges E′, so that
A ∪ E′ is an (α, β) EFT sourcewise spanner w.r.t. S′. The same result holds for
VFT spanners, with E′ of size O(|S′| · n log n).

Combining the above result with the 2-additive spanner of size O(n3/2) in [1],
we obtain 2-additive EFT and VFT sourcewise spanners of size γ(n, |S′|) =
O(n

√
n + |S′| · n) and γ(n, |S′|) = O(n

√
n + |S′| · n log n), respectively. By using

these spanners in Algorithm 1, with p =
√

n and p =
√

n log n respectively, we
obtain the following result.

Corollary 2. There exists a polynomial time algorithm to compute a 4-additive
EFT spanner of size O(n3/2), and a 4-additive VFT spanner of size O(n3/2√

log n).

3 Augmenting Clustering-Based Additive Spanners

Most additive spanners in the literature are based on a clustering technique. A
subset of the vertices of the graph G is partitioned into clusters, each containing
a special center vertex along with some of its neighbors. The distances between
these clusters is then reduced by adding a suitable set of edges to the spanner.
This technique is used, for example, in [4,9]. We now describe a general technique
which can be used to augment such spanners in order to obtain a fault-tolerant
additive spanner.
3 Actually, the result in [7] is claimed for the single source case only, but it immediately

extends to multiple sources.
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Algorithm 2: Algorithm for computing a fault-tolerant additive spanner
from multiplicative and clustering-based additive spanners. Here {C, cnt(·)}
denotes the clustering of G while δ(C, C′) is the set of the edges in E(G)
with one endpoint in C and the other in C′.
1 E′ ← ∅; M ← (α, 0) EFT spanner; A ← (1, β) clustering-based spanner
2 foreach C ∈ C do
3 foreach v ∈ C do
4 if ∃(v, x) ∈ E(G) : x ∈ C \ {cnt(v)} then
5 E′ ← E′ ∪ {(v, x)}.

6 foreach C, C′ ∈ C : C 	= C′ do
7 if ∃e, e′ ∈ δ(C, C′) : e and e′ are vertex-disjoint then
8 E′ ← E′ ∪ {e, e′}.
9 else if ∃e, e′ ∈ δ(C, C′) : e 	= e′ then

10 E′ ← E′ ∪ {e, e′}.
11 else
12 E′ ← E′ ∪ δ(C, C′) /* δ(C, C′) contains at most one edge */

13 return H ← (V (G), E′ ∪ E(M) ∪ E(A))

More formally, a clustering of G is a partition C of a subset of V (G). We call
each element C ∈ C a cluster. We say that a vertex v is clustered if it belongs
to a cluster, and unclustered otherwise. Each cluster C ∈ C is associated with a
vertex u ∈ C which is the center of C. For each clustered vertex v, we denote by
cnt(v) the center of the cluster containing v.

We say that a β-additive spanner A is clustering-based if there exists a cluster-
ing C of G such that: (i) A contains all the edges incident to unclustered vertices,
(ii) A contains all the edges between every clustered vertex v and cnt(v), and
(iii) the following property holds:

Property 1. For every u, v ∈ V (G) such that v is a clustered vertex, there exists
a path π̃(u, v) in A such that one of the following conditions holds:

(P1) |π̃(u, v)| ≤ dG(u, v) + β − 2;
(P2) |π̃(u, v)| = dG(u, v) + β − 1 and either (i) v = cnt(v), or (ii) the last edge

of π̃(u, v) is (cnt(v), v).
(P3) |π̃(u, v)| = dG(u, v)+β, v �= cnt(v), and the last edge of π̃(u, v) is (cnt(v), v).

Our algorithm works as follows (see Algorithm 2). We add to our spanner H a
β-additive clustering-based spanner A, and a α-multiplicative EFT spanner M .
Note that so far our construction is the same as in [8], with the extra constraint
that A is clustering-based. We then augment H by adding a carefully chosen
subset E′ of inter and intra-cluster edges.

Let {C, cnt(·)} be the clustering of A. It is easy to see that E′ contains at
most O(n + |C|2) edges and hence |E(H)| = O(|E(A)| + |E(M)| + |C|2). We now
prove an useful lemma which is then used to upper-bound the distortion of the
spanner H .
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s tz z′πG−e(s, t)

ex y

Fig. 2. Decomposition of πG−e(s, t) so that all shortest paths from s to z (resp. from
z′ to t) in A are fault-free. Bold lines denote shortest paths in A.

Lemma 3. Let A be a spanning subgraph of G, let e ∈ E(G) be a failed edge and
s, t ∈ V (G) be two vertices satisfying dA(s, t) < dA−e(s, t) �= ∞. There exist two
consecutive vertices z, z′ in V (πG−e(s, t)), with dG−e(s, z) < dG−e(s, z′), such
that every shortest path in A between s and z (resp. t and z′) is fault-free.

Proof. First of all, notice that e = (x, y) belongs to every shortest path between
s and t in A, therefore let πA(s, t) = 〈s, . . . , x, y, . . . , t〉. Consider the vertices of
πG−e(s, t) from s to t, let z ∈ V (π) be the last vertex such that there exists a
shortest path π between z and t in A that contains e (z can possibly coincide
with s), and call z′ the vertex following z in π (see Figure 2). By the choice of
z, we have that no shortest path between z′ and t in A can contain e. Moreover,
π must traverse e in the same direction as πA(s, t), i.e., π = 〈z, . . . , x, y, . . . , t〉.
This is true since otherwise we would have π = 〈z, . . . , y, x, . . . , t〉 and hence
πA(s, t)[s, x] ◦ π[x, t] would be a fault-free shortest path between s and t in A, a
contradiction.

It remains to show that no shortest path between s and z in A can contain e.
Suppose this is not the case, then:

dA(s, z) = dA(s, y) + dA(y, z) = dA(s, x) + 1 + 1 + dA(z, x) = dA(s, z) + 2

which is again a contradiction. 
�
We are now ready to prove the main theorem of this section.

Theorem 3. Algorithm 2 computes a (2β+max{2, α−3})-additive EFT-spanner.

Proof. Choose any two vertices s, t ∈ V (G) and a failed edge e ∈ E(G). Suppose
that s, t are connected in G − e, and that every shortest path between s and t
in A contains e (as otherwise the claim trivially holds). We partition πG−e(s, t)
by finding z, z′ ∈ V (πG−e(s, t)) as shown by Lemma 3.

The edge (z, z′) is in πG−e(s, t) and hence cannot coincide with e. Moreover,
we suppose (z, z′) �∈ E(H), as otherwise we would immediately have:

dH−e(s, t) ≤ dA(s, z) + dH−e(z, z′) + dA(z′, t)
≤ dG−e(s, z) + β + 1 + dG−e(z′, t) + β + (dG−e(z, z′) − 1)
= dG−e(s, t) + 2β − 1.
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πA(t, z
′)

z

x

z′
C

ts

π̃(s, z)

(a)

C C ′

z
z′

v v′

u′u

s

π̃(s, z)

πA(t, z
′)
t

(b)

π̃A(t, z
′)

Fig. 3. Cases considered in the proof of Theorem 3 to build a fault-free path between
s and t with small additive distortion. Bold lines represent shortest paths/edges in A.
Solid lines represent paths/edges in H while the dashed edge (z, z′) does not belong to
E(H) and cannot coincide with e.

This means that both z and z′ must be clustered. Let C (resp. C′) be the (unique)
cluster that contains z (resp. z′).4

Let γ := dA(s, z) − dG−e(s, z) and γ′ := dA(t, z′) − dG−e(z′, t). Clearly 0 ≤
γ, γ′ ≤ β. If γ + γ′ ≤ 2β − 2 then we are done as:

dH−e(s, t) ≤ dA(s, z) + dB−e(z, z′) + dA(z′, t)
≤ dG−e(s, z) + dG−e(z′, t) + 2β − 2 + αdG−e(z, z′) + (dG−e(z, z′) −1)
≤ dG−e(s, t) + 2β + α − 3.

Next we assume that γ + γ′ ≥ 2β − 1. This means that either (i) γ and γ′ are
both equal to β, or (ii) exactly one of them is β while the other equals β − 1.
Assume w.l.o.g. that γ = β. This implies that dA(s, z) = |π̃(s, z)|, hence π̃(s, z)
is a shortest path between s and z in A, and by Lemma 3, it is fault-free.

In the rest of the proof we separately consider the cases C = C′ and C �= C′.
In the former case, since (z, z′) �∈ E(H), we know that, during the execution of
the loop in line 2 of Algorithm 2, an edge (z′, x) such that x ∈ C \{z, cnt(z)} has
been added to E (see Figure 3 (a)). Since the paths 〈cnt(z), z′〉 and 〈cnt(z), x, z′〉
are edge-disjoint, at least one of them is fault free, hence: dH−e(cnt(z), z′) ≤ 2 =
dG−e(z, z′) + 1. Thus, by (P3) of Property 1:

dH−e(s, t) ≤ dA(s, cnt(z)) + dH−e(cnt(z), z′) + dA(z′, t)
≤ dG−e(s, z) + β − 1 + dG−e(z, z′) + 1 + dG−e(z′, t) + β

≤ dG−e(s, t) + 2β.

We now consider the remaining case, namely C �= C′. We have that (z, z′) �∈
E(H), therefore during the execution of the loop in line 6 of Algoritm 2, two
distinct edges (u, u′), (v, v′) so that u, v ∈ C and u′, v′ ∈ C′ must have been
added to E (see Figure 3 (b)).

Notice that u′ and v′ might coincide, but this would imply that u �= v and
hence u′ = v′ = z′. This, in turn, implies the existence of two edge-disjoint paths

4 Notice that C and C′ may coincide.
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of length 2 between cnt(z) and z′ in H , namely 〈cnt(z), u, z′〉 and 〈cnt(z), v, z′〉.
As at least one of them must be fault-free. Therefore:

dH−e(s, t) ≤ dA(s, cnt(z)) + dH−e(cnt(z), z′) + dA(z′, t)
≤ dG−e(s, z) + β − 1 + dG−e(z, z′) + 1 + dG−e(z′, t) + β

= dG−e(s, t) + 2β.

On the other hand, if u′ �= v′, we consider the two paths π′ = 〈cnt(z), u, u′,
cnt(z′)〉 and π′′ = 〈cnt(z), v, v′, cnt(z′)〉.5 Notice that π′ and π′′ can share at
most a single edge, namely (cnt(z), z) (when u = v = z), and that this edge
cannot coincide with e as it belongs to π̃(s, z) which is a fault-free shortest path
between s and z in A. This implies that at least one of π′ and π′′ is fault-free
and hence dH−e(cnt(z), cnt(z′)) ≤ 3 = dG−e(z, z′) + 2. If e = (cnt(z′), z′) then,
since |π̃(t, z′)| ≥ dA(z′, t) ≥ dG−e(z′, t) + β − 1, either (P2) or (P3) of Property 1
must hold, so we know that π̃(t, z′)[t, cnt(z′)] is fault-free and has a length of at
most dG−e(z′, t) + β − 1. We have:

dH−e(s, t) ≤ dA(s, cnt(z)) + dH−e(cnt(z), cnt(z′)) + dA(cnt(z′), t)
≤ dG−e(s, z) + β − 1 + dG−e(z, z′) + 2 + dG−e(z′, t) + β − 1
≤ dG−e(s, t) + 2β.

Finally, when e �= (cnt(z′), z′), we have:

dH−e(s, t) ≤ dA(s, cnt(z)) + dH−e(cnt(z), cnt(z′)) + dH−e(cnt(z′), z′) + dA(z′, t)
≤ dG−e(s, z) + β − 1 + dG−e(z, z′) + 2 + 1 + dG−e(z′, t) + β

≤ dG(s, t) + 2β + 2.

This concludes the proof. 
�

This result can immediately be applied to the 6-additive spanner of size
O(n 4

3 ) in [4], which is clustering-based and uses O(n 2
3 ) clusters. Using the 5-

multiplicative EFT spanner M of size O(n4/3) from [10], we obtain:

Corollary 3. There exists a polynomial time algorithm to compute a 14-additive
EFT spanner of size O(n 4

3 ).

We can similarly exploit the clustering-based spanner of [9] which provides,
w.h.p., an additive stretch of 4 and a size of ˜O(n 7

5 ) by using O(n 3
5 ) clusters.

Corollary 4. There exists a polynomial time randomized algorithm that com-
putes w.h.p. a 10-additive EFT spanner of G of size ˜O(n 7

5 ).

5 Some consecutive vertices of π′ (resp. π′′) might actually coincide. In this case, we
ignore all but the first of such vertices and define π′ (resp. π′′) accordingly.



178 D. Bilò et al.

References

1. Aingworth, D., Chekuri, C., Indyk, P., Motwani, R.: Fast estimation of diameter and
shortest paths (without matrix multiplication). SIAM J. Comput. 28(4), 1167–1181
(1999)

2. Althöfer, I., Das, G., Dobkin, D.P., Joseph, D., Soares, J.: On sparse spanners of
weighted graphs. Discrete & Computational Geometry 9, 81–100 (1993)

3. Ausiello, G., Franciosa, P.G., Italiano, G.F., Ribichini, A.: On resilient graph
spanners. In: Bodlaender, H.L., Italiano, G.F. (eds.) ESA 2013. LNCS, vol. 8125,
pp. 85–96. Springer, Heidelberg (2013)

4. Baswana, S., Kavitha, T., Mehlhorn, K., Pettie, S.: Additive spanners and (alpha,
beta)-spanners. ACM Transactions on Algorithms 7(1), 5 (2010)

5. Baswana, S., Khanna, N.: Approximate shortest paths avoiding a failed vertex:
Near optimal data structures for undirected unweighted graphs. Algorithmica 66(1),
18–50 (2013)

6. Bernstein, A., Karger, D.R.: A nearly optimal oracle for avoiding failed vertices
and edges. In: STOC, pp. 101–110 (2009)

7. Bilò, D., Gualà, L., Leucci, S., Proietti, G.: Fault-tolerant approximate shortest-
path trees. In: Schulz, A.S., Wagner, D. (eds.) ESA 2014. LNCS, vol. 8737,
pp. 137–148. Springer, Heidelberg (2014)

8. Braunschvig, G., Chechik, S., Peleg, D.: Fault tolerant additive spanners. In:
Golumbic, M.C., Stern, M., Levy, A., Morgenstern, G. (eds.) WG 2012. LNCS,
vol. 7551, pp. 206–214. Springer, Heidelberg (2012)

9. Chechik, S.: New additive spanners. In: SODA, pp. 498–512 (2013)
10. Chechik, S., Langberg, M., Peleg, D., Roditty, L.: Fault-tolerant spanners for gen-

eral graphs. In: STOC, pp. 435–444 (2009)
11. Chechik, S., Langberg, M., Peleg, D., Roditty, L.: f-sensitivity distance oracles

and routing schemes. In: de Berg, M., Meyer, U. (eds.) ESA 2010, Part I. LNCS,
vol. 6346, pp. 84–96. Springer, Heidelberg (2010)

12. Coppersmith, D., Elkin, M.: Sparse sourcewise and pairwise distance preservers.
SIAM J. Discrete Math. 20(2), 463–501 (2006)

13. Cygan, M., Grandoni, F., Kavitha, T.: On pairwise spanners. In: STACS,
pp. 209–220 (2013)

14. Dinitz, M., Krauthgamer, R.: Fault-tolerant spanners: better and simpler. In:
PODC, pp. 169–178 (2011)

15. Erdős, P.: Extremal problems in graph theory. In: Theory of Graphs and its Appli-
cations, pp. 29–36 (1964)

16. Grandoni, F., Williams, V.V.: Improved distance sensitivity oracles via fast single-
source replacement paths. In: FOCS, pp. 748–757 (2012)

17. Parter, M.: Vertex fault tolerant additive spanners. In: Kuhn, F. (ed.) DISC 2014.
LNCS, vol. 8784, pp. 167–181. Springer, Heidelberg (2014)

18. Parter, M., Peleg, D.: Sparse fault-tolerant BFS trees. In: Bodlaender, H.L.,
Italiano, G.F. (eds.) ESA 2013. LNCS, vol. 8125, pp. 779–790. Springer, Heidel-
berg (2013)

19. Parter, M., Peleg, D.: Fault tolerant approximate BFS structures. In: SODA,
pp. 1073–1092 (2014)



Subexponential Time Algorithms for Finding

Small Tree and Path Decompositions

Hans L. Bodlaender1,� and Jesper Nederlof2,��

1 Utrecht University and Technical University Eindhoven, The Netherlands
H.L.Bodlaender@uu.nl

2 Technical University Eindhoven, The Netherlands
j.nederlof@tue.nl

Abstract. The Minimum Size Tree Decomposition (MSTD) and Min-
imum Size Path Decomposition (MSPD) problems ask for a given n-
vertex graph G and integer k, what is the minimum number of bags of a
tree decomposition (respectively, path decomposition) of width at most
k. The problems are known to be NP-complete for each fixed k ≥ 4. In
this paper we present algorithms that solve both problems for fixed k in
2O(n/ log n) time and show that they cannot be solved in 2o(n/ log n) time,
assuming the Exponential Time Hypothesis.

1 Introduction

In this paper, we consider two bicriteria problems concerning path and tree de-
compositions, namely, for an integer k, find for a given graph G a path or tree
decomposition with the minimum number of bags. For both problems, we give
exact algorithms that use 2O(n/ logn) time and give a matching lower bound,
assuming the Exponential Time Hypothesis. The results have a number of inter-
esting features. To our knowledge, this is the first problem for which a matching
upper and lower bound (assuming the ETH) with the running time 2Θ(n/ log n)

is known. The algorithmic technique is to improve the analysis of a simple idea
by van Bodlaender and van Rooij [3]: a branching algorithm with memorization
would use 2O(n) time, but combining this with the easy observation that iso-
morphic subgraphs ‘behave’ the same, by adding isomorphism tests on the right
locations in the algorithm, the savings in time is achieved. Our lower bound
proofs use a series of reductions; the intermediate problems in the reductions
seem quite useful for showing hardness for other problems.

Bicriteria problems are in many cases more difficult than problems with one
criterion that must be optimized. For the problems that we consider in this
paper, this is not different: if we just ask for a tree or path decomposition with
the minimum number of bags, then the problem is trivial as there always is a
tree or path decomposition with one bag. Also, it is well known that the problem
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to decide if the treewidth or pathwidth of a graph is bounded by a given number
k is fixed parameter tractable. However, recent results show that if we ask to
minimize the number of bags of the tree or path decomposition of width at most
k, then the problem becomes para-NP-complete (i.e., NP-complete for some fixed
k) [4,7].

The problem to find path decompositions with a bound on the width and a
minimum number of bags was first studied by Dereniowski et al. [4]. Formulated
as a decision problem, the problem MSPDk is to determine, given a graph G =
(V,E) and integer s, whether G has a path decomposition of width at most k and
with at most s bags. Dereniowski et al. [4] mention a number of applications of
this problem and study the complexity of the problem for small values of k. They
show that for k ≥ 4, the problem is NP-complete, and for k ≥ 5, the problem is
NP-complete for connected graphs. They also give polynomial time algorithms
for the MSPDk problem for k ≤ 3 and discuss a number of applications of the
problem, including the Partner Units problem, problems in scheduling, and in
graph searching.

Li et al. [7] introduced the MSTDk problem: given a graph G and integer �,
does G have a tree decomposition of width at most k and with at most � bags.
They show the problem to be NP-complete for k ≥ 4 and for k ≥ 5 for connected
graphs, with a proof similar to that of Dereniowski et al. [4] for the pathwidth
case, and show that the problem can be solved in polynomial time when k ≤ 2.

In this paper, we look at exact algorithms for the MSPDk and MSTDk prob-
lems. Interestingly, these problems (for fixed values of k) allow for subexponential
time algorithms. The running time of our algorithm is of a form that is not fre-
quently seen in the field: for each fixed k, we give algorithms for MSPD and
MSTD that use 2O(n/ log n) time. Moreover, we show that these results are tight
in the sense that there are no 2o(n/ log n) time algorithms for MSPDk and MSTDk

for some large enough k, assuming the Exponential Time Hypothesis.
Our algorithmic technique is a variation and extension of the technique used

by Bodlaender and van Rooij [3] for subexponential time algorithms for Inter-
valizing k-Colored Graphs. That algorithm has the same running time as
ours; we conjecture a matching lower bound (assuming the ETH) for Interval-
izing 6-Colored Graphs.

2 Preliminaries

Notation In this paper, we interpret vectors as strings and vice versa whenever
convenient, and for clarity use boldface notation for both. When a,b ∈ Σ� are
strings, we denote a||b for the string obtained by concatenating a and b. We
let s� denote the string repeating symbol s � times. Also, we denote a � b to
denote that ai ≤ bi for every 1 ≤ i ≤ n and use 1 to denote the vector with each
entry equal to 1 (the dimension of 1 will always be clear from the context). We
also add vectors, referring to component-wise addition.

Tree and Path decompositions. Unless stated otherwise, the graphs we consider
in this paper are simple and undirected. We let n = |V | denote the number of
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vertices of the graph G = (V,E). A path decomposition of a graph G = (V,E) is
a sequence of subsets of V : (X1, . . . , Xs) such that

–
⋃

1≤i≤s Xi = V ,
– For all edges {v, w} ∈ E: there is an i, 1 ≤ i ≤ s, with v, w ∈ Xi,
– For all vertices v ∈ V : there are iv, jv, such that i ∈ [iv, jv] ⇔ v ∈ Xi.

The width of a path decomposition (X1, . . . , Xs) is max1≤i≤s |Xi| − 1; its size is
s. The pathwidth of a graph G is the minimum width of a path decomposition
of G. We will refer to Xs as the last bag of (X1, . . . , Xs). A tree decomposition
of a graph G = (V,E) is a pair ({Xi | i ∈ I}, T = (I, F )) with {Xi | i ∈ I} a
family of subsets of V , and T a rooted tree, such that

–
⋃

i∈I Xi = V .
– For all edges {v, w} ∈ E: there is an i ∈ I with v, w ∈ Xi.
– For all vertices v ∈ V : the set Iv = {i ∈ I | v ∈ Xi} induces a subtree of T

(i.e., is connected.)

The width of a tree decomposition ({Xi | i ∈ I}, T = (I, F )) is maxi∈I |Xi| −
1; its size is |I|. The treewidth of a graph G is the minimum width of a tree
decomposition of G. In the definition above, we assume that T is rooted: this
does not change the minimum width or size, but makes proofs slightly easier.
Elements of I and numbers in {1, 2, . . . , s} and their corresponding sets Xi are
called bags.

In the full version of this paper, we show the following (loose) estimate. The
proof is not very complicated, but generalizes a result by Bodlaender and van
Rooij [3].

Lemma 1. The number of non-isomorphic graphs with n vertices of treewidth
at most k is at most 210k

2n.

A sketch of the proof is as follows. It is known that a graph of treewidth at
most k has a ‘nice tree decomposition’1 of size at most 4n [6]. For each bag in

the nice tree decomposition, there are at most 2k
2

+ 2k + k + 1 ‘non-isomorphic
possibilities’, the number of unlabeled trees on n vertices is at most O(3n) [9],
and a nice tree decomposition can be described by an unlabeled tree and along
with one of the ‘non-isomorphic possibilities’ for each bag.

Usually, nice tree and path decompositions have more than the minimum
number of bags. The notions are still very useful for our analysis; in particu-
lar, they help to count the number of non-isomorphic graphs of treewidth or
pathwidth at most k.

3 Path and Tree Decompositions with Few Bags

3.1 Finding Path Decompositions with Memorization
and Isomorphism Tests

In this section, we describe our algorithm for the MSPD problem. Throughout
the section, we assume that k is a fixed positive integer and that G has treewidth

1 Some normalized treedecomposition in which each bag behaves in a restricted way.
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at most k (note that we can determine this in linear time for fixed k (cf. [2])
and return NO if the treewidth is higher than k). Our branching algorithm is
parameterized by ‘a good pair’, formalized as follows:

Definition 1. A good pair is a pair of vertex sets (X,W ), such that

– |X | ≤ k + 1,

– X ∩W = ∅, and
– for all v ∈ W , N(v) ⊆ W ∪ X. Equivalently, W is the union of the vertex

sets of zero or more connected components of G[V \X ].

For a good pair (X,W ), let mstdk(X,W ) (mspdk(X,W )) be the minimum s
such that there is a tree (path) decomposition of G[X ∪W ] of width at most k,
where X is the root bag (last bag) of the tree (path) decomposition.

A recursive formulation for path decompositions. The following lemma gives a
recursive formulation for mspdk. The formulation is the starting point for our
algorithm, but we will in addition exploit graph isomorphisms, see below.

Lemma 2. If |X | ≤ k + 1, then mspdk(X, ∅) = 1. Otherwise, let (X,W ) be a
good pair, and W �= ∅. Then

mspdk(X,W ) = min
Y ⊆X∪W

X �=Y
W∩N(X\Y )=∅

1 +mspdk(Y,W \ Y ). (1)

Proof. The first part with |X | ≤ k+1 is trivial: take the only path decomposition
with one bag X .

Otherwise, suppose Y fulfills W ∩N(X \Y ) = ∅. Let PD = (X1, . . . , Xs) be a
path decomposition of width at most k of G[Y ∪W ] with Xs = Y . Now we verify
that (X1, . . . , Xs, X) is a path decomposition of width at most k of G[X ∪W ].
Since there can be no edges between X \ Y and W , all the edges incident to
X \ Y are covered in the bag X and all other edges are covered in PD since it
is a path decomposition of G[Y ∪W ]. Also, a vertex v ∈ X \ Y cannot occur in
PD so the bags containing a particular vertex will still induce a connected part
in the path decomposition.

Conversely, suppose (X1, . . . , Xs, X) is a minimal size path decomposition
of width at most k of G[X ∪ W ]. Note that X = Xs contradicts this path
decomposition being of minimal size, so we may assume X �= Xs. Vertices in
X \Xs do not belong to

⋃
1≤i≤s−1 Xi, by the definition of path decomposition,

so we must have that W ∩N(X \Xs) = ∅ since otherwise not all edges incident
to X are covered in the path decomposition. Hence, Xs fulfills all the conditions
of the minimization in the recurrence.

We have that, (X1, . . . , Xs) is a path decomposition of G[Xs ∪ (W \ Xs)],
which has at least mspdk(Xs−1,W \Xs−1) bags and hence taking Y = Xs shows
that mspdk(X,W ) ≤ s+ 1. �
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Isomorphism. The following notion will be needed for presenting the used recur-
rence for tree decompositions and essential for quickly evaluating (1). Intuitively,
it indicates G[X ∪W ] being isomorphic to G[Y ∪ Z] with an isomorphism that
maps X to Y . More formally,

Definition 2. Good pairs (X,W ) and (X,Z) are isomorphic if there is a bijec-
tion f : X ∪W ↔ X ∪ Z, such that

1. For all v, w ∈ X ∪W : {v, w} ∈ E ⇔ {f(v), f(w)} ∈ E, and
2. f(v) = v for all v ∈ X.

We will use the following obvious fact:

Observation 1. Suppose good pair (X,W ) is isomorphic to good pair (X,Z).
Then mspdk(X,W ) = mspdk(X,Z) and mstdk(X,W ) = mstdk(X,Z)

In our algorithm we use a result by Loksthanov et al. [8] which gives an
algorithm that for fixed k maps each graph G of treewidth at most k to a string
can(G) (called its canonical form), such that two graphs G and H are isomorphic
if and only if can(G) = can(H). The result also holds for graphs where vertices (or
edges) are labeled with labels from a finite set and the isomorphism should map
vertices to vertices of the same label. We can use this result to make canonical
forms for good pairs:

Observation 2. An isomorphism class of the good pairs (X,W ) can be de-
scribed by the triple can(X,W ) := (X, can(G[X ∪W ], f) where f is a bijection
from X to |X |.

Here, f : X ↔ X can be (for example) be defined as the restriction of π onto
X of the lexicographically smallest (with respect to some arbitrary ordering)
isomorphism π of G[X ∪W ].

A recursive algorithm with memorization. We now give a recursive algorithm PDk
to compute for a given good pair (X,W ) the value mspdk(X,W ). The algorithm
uses memorization. In a dynamic map datastructure D, we store values that we
have computed. We can use e.g., a balanced tree or a hash table for D, that is
initially assumed empty. Confer Algorithm 1.

Algorithm PDk(X,W )
1: if |X| ≤ k + 1 and W = ∅ then return 1
2: if D(can(X,W )) is stored then return D(can(X,W ))
3: m ← ∞.
4: for all Y ⊆ X ∪W such that Y 	= X and N(X \ Y ) ⊆ X do
5: m ← min{m, 1 + PDk(Y,W \ Y )}.
6: Store D(can(X,W )) ← m.
7: return m.

Algorithm 1. Finding a small path decompositions of width at most k.
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The correctness of this method follows directly from Lemma 2 and Observa-
tion 1. The main difference with a traditional evaluation (with memorization)
of the recursive formulation of mspd is that we store and lookup values under
their canonical form under isomorphism — this simple change is essential for
obtaining a subexponential running time. The fact that we work with graphs
of bounded treewidth and for these, Graph Isomorphism is polynomial [1,8]
makes that we can perform this step sufficiently fast.

Equipped with the PDk algorithm, we solve the MSPD problem as follows: for
all X ⊆ V with |X | ≤ k + 1, run PDk(X,V \X); report the smallest value over
all choices of X .

3.2 The Number of Good Pairs

We now will analyze the number of good pairs. This is the main ingredient of
the analysis of the running time of the algorithm given above.

Theorem 1. Let k be a constant. Let G be a graph with n vertices and treewidth
at most k. Then G has 2O(n/ logn) non-isomorphic good pairs.

Proof. Let us define a basic good pair as a good pair (X,W ) where G[W ] is
connected. The isomorphism classes (with respect to the notion of isomorphism
from Definition 2) of good pairs can be described as follows: let X be a set
of size at most k. Let C1, . . . , C� be a partition of the connected components
of G[V \ X ] into basic good pair isomorphism classes, e.g.: we have for two
connected components Ca, Cb that Ca, Cb ∈ C〉 for some i if and only if there
exists a bijection X∪Ca ↔ X∪Ca such that for all v ∈ X we have f(v) = v and
for all v, w ∈ X∪Ca: {v, w} ∈ E ⇔ {f(v), f(w)} ∈ E. We order the isomorphism
classes arbitrarily (e.g., in some lexicographical order).

Then an isomorphism class of all good pairs can be described by a triple
(X, s = {c1, . . . , cs}, f) where ci is the number of connected components of
G[V \X ] in basic pair isomorphism class Ci. Then we have the following bound:

Claim. For a constant k, the number of isomorphism classes of basic good pairs
(X,W ) with |W |+ |X | ≤ 1

22k2 log n is at most
√
n.

Proof. By Lemma 1, the number of graph isomorphism classes of G[X ∪W ] is

at most 2
10k2

22k2 logn since we assumed the treewidth to be at most k (as stated in
the beginning of this section).

The isomorphism class of a basic good pair is described by the set X , the
permutation of X and the graph isomorphism class of G[W ∪X ], thus we have

that the number of basic good pair isomorphism classes is at most k!2
10k2

22k2 logn ≤
2k

2+
10k2

22k2 logn which is
√
n for large enough n. �

Say an isomorphism class Ci is small if (X,W ) ∈ Ci implies |X |+|W | ≤ 1
22k2 logn,

and it is large otherwise. Assume C1, . . . , Cz are small. By the above Claim, z is
at most

√
n. Thus, since we know ci ≤ n, the number of possibilities of s on the
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small isomorphism classes is at most nO(
√
n). For the remaining �−z isomorphism

classes of large connected components, we have that
∑�

j=z+1 ci ≤ 22k2n/ logn =

O(n/ logn). Thus, there are only 2O(n/ logn) subsets of the large connected com-
ponents that can be in W . Combining both bounds gives the upper bound of
2O(n/ logn) for the number of non-isomorphic good pairs, as desired. �

3.3 Analysis of the Algorithm

In this section, we analyze the running time of Algorithm 1. First, we note
that we have O(nk+1) calls of the form PDk(X,V \ X). Observe that each call
to PDk is with a good pair as parameters, and these good pairs on Line 4 can
be enumerated with linear delay. Thus, by Theorem 1, there are 2O(n/ log n)

calls to PDk that make recursive calls to PDk. Within each single call, we have
O(nk+1) choices for a set Y ; computing s = can(X,W ) can be done in O(n5)
time (confer [8]), and thus, the overhead of a single recursive call is bounded by
O(nmax{k+1,5}). Putting all ingredients together shows that the algorithm uses
2O(n/ logn) time.

Theorem 2. For fixed k, the MSPD problem can be solved in 2O(n/ log n) time.

3.4 Extension to Finding Tree Decompositions

Now we discuss how to extend the algorithm for solving the MSTD problem. Note
that, like usual, dealing with tree decompositions instead of path decompositions
amounts to dealing with join bags. We have the following analogue of Lemma 2.

Lemma 3. If |X | ≤ k + 1, then mstdk(X, ∅) = 1. Otherwise, let (X,W ) be a
good pair, and W �= ∅. Then mstdk(X,W ) = min{extend, branch} where

extend = min
Y ⊆X∪W

X �=Y
W∩N(X\Y )=∅

1 +mstdk(Y,W \ Y ).

branch = min
W1⊆W

N(W1)⊆W1∪X

mstd(X,W1) +mstd(X,W \W1)− 1.
(2)

Proof. The cases extend and branch refer to whether the root bag r with vertex
set X has exactly one child, or at least two children. If r has one child, then
the same arguments that show (1) can be used to show correctness of the extend
case. If r has two or more children, then we can guess the set of verticesW1 ⊆ W
that appear in bags in the subtree rooted by the first child of r. We must have
that W1 is a union of connected components of G[W ] by the definition of tree
decompositions. Thus, the tree decomposition can be obtained by taking a tree
decomposition of G[X ∪W1] and a tree decomposition of G[X ∪ (W \W1)], both
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with X as the vertex set of the root bag, and then taking the union, identifying
the two root bags. The number of bags thus equals the minimum number of bags
for the first tree decomposition (which equals mstd(X,W1)), plus the minimum
number of bags for the second (equally mstd(X,W \W1)), subtracting one as we
counted the bag with vertex set X twice. �

Given Algorithm 1 and (2), the algorithm for computing mstd suggests itself
since it is easy to see that again we only need to evaluate mstdk(X,W ) for good
pairs (X,W ). This is indeed our approach but there is one small complication,
since we cannot compute branch in a naive way because the number of connected
components of G[W ] could be Ω(n). We deal with this by even further restricting
the set of subsets of W we iterate over, again based on Observation 1.

Algorithm TDk(X,W )
1: if |X| ≤ k + 1 and W = ∅ then return 1
2: if D(can(X,W )) is stored then return D(can(X,W ))
3: m ← ∞
4: for all Y ⊆ X ∪W such that Y 	= X and N(X \ Y ) ⊆ X do
5: m ← min{m, 1 + TDk(Y,W \ Y )}
6: Let C1, . . . , C� be the isomorphism classes of the basic good pairs (X,W ′),

where W ′ is a connected component of W
7: For 1 ≤ i ≤ �, let ci be the number of (X,W ′) ∈ Ci where W ′ is a connected

component of W
8: For 1 ≤ i ≤ � and 0 ≤ j ≤ ci, let W

i
j be the union of the j lexicographically

first connected components W ′ such that (X,W ′) ∈ Ci

9: for all vectors y � (c1, . . . , c�) do
10: W1 ← ⋃�

i=1 W
i
yi

11: W2 ← W \W1

12: m ← min{m, TDk(X,W1) + TDk(X,W2)− 1}
13: Store D(can(X,W )) ← m
14: return m.

Algorithm 2. Extension of Algorithm 1 to find small tree decompositions
of width at most k.

We solve the mstd problem in Algorithm 2. Let us first discuss the correct-
ness of this algorithm. Note that similarly as in Algorithm 1, it implements the
memorization with the datastructure D. It is easy to see that after Line 5, m
equals the quantity extend from (2). By Lemma 3, it remains to show that at
Line 13, m equals min{extend, branch}.

To see this, note that by construction we iterate over a subset of 2W generating
all isomorphism classes that (X,W1) subject to N(W1) ⊆ W1 ∪X can generate,
and by Observation 1 this is sufficient to find any optimal partition of W into
W1,W2.
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4 Lower Bound

This section is devoted to the proof of the following theorem:

Theorem 3. Suppose the Exponential Time Hypothesis holds, then there is no
algorithm for MSPD or MSTD for fixed k ≥ 39 using 2o(n/ logn) time.

We will use a reduction from the following problem:

String 3-Groups

Given: Sets A,B,C ⊆ {0, 1}O(logn), with |A| = |B| = |C| = n
Question: Choose n elements from A×B ×C, such that each element

in A, B, and C appears exactly once in a triple, and if (a,b, c) is a
chosen triple, then a+ b+ c � 1.

This is sufficient to show hardness of the MSPD and MSTD problems by
virtue of the following theorem:

Theorem 4. Suppose the Exponential Time Hypothesis holds. Then there is no
algorithm for String 3-Groups using 2o(n) time.

A proof of Theorem 4 appears in the full version of this paper. The result is
obtained by a series of reductions, starting a variation of a result on Partition

into Triangles for 4-regular graphs by van Rooij et al [11]. An interesting
intermediate result is that 3-Dimensional Matching where each element ap-
pears in at most three triples cannot be solved in 2o(n) time, unless the Expo-
nential Time Hypothesis does not hold.

Vector gadgets. We will use the following notions extensively:

Definition 3. The fingerprint of a path decomposition (X1, . . . , Xr) is the vec-
tor (|X1|, . . . , |Xr|). A path decomposition is minimal if (i) for all path decom-
positions (X ′

1, . . . , X
′
r′) of G we have r′ > r or if r′ = r, then (|X1|, . . . , |Xr|) �

(|X ′
1|, . . . , |X ′

r|). Graph G k-implements w ∈ N
�
>0 if (i) every tree decomposition

of G of size r and width k + 1 is a path decomposition, (ii) all minimal path
decompositions of size r have fingerprint w.

A palindrome is a vector w ∈ N
r such that (w1, . . . , wr) = (wr , . . . , w1). The

most important part of our reduction is the gadget summarized by the following
lemma:

Lemma 4. For every integer k ≥ 3 and palindrome w ∈ N
r
>0 such that �2k/3� <

wi ≤ k for all i ≤ r, we can in polynomial time construct a graph G that k-
implements w.

Proof. Construct G as follows:

– Construct disjoint cliques C0, . . . , Cr all of size �k/3� and for i = 1, . . . , r
make all vertices from Ci−1 and Ci adjacent,

– Construct disjoint cliques Cp
1 , . . . , C

p
r where |Cp

i | = wi − 2�k/3� for all i =
1, . . . , r and for all i, make all vertices of Cp

i adjacent with all vertices of
Ci−1 and Ci.
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For i = 1, . . . , r, let us denote Mi = Ci−1 ∪ Ci ∪ Cp
i for the maximal cliques

of G. Since any clique must be contained in a bag of any tree decomposition
we have that for every i = 1, . . . , r some bag must contain a Mi. Since all bags
must be of width at most k, the maximal cliques of G are of size wi for some i
and the maximal cliques intersect in only �k/3� vertices, one bag cannot contain
two maximal cliques. Hence in a path decomposition of width at most k and
size r each bag contains exactly one maximal clique. Let ({Xi}, T ) be a tree
decomposition of width at most k and size at most r, and suppose that Xi is the
bag containing Mi. Note that in T , bags Xi and Xi+1 must be adjacent since
they are the only bags that can contain all of Ci. Therefore, we know that T
must be a path X1, . . . , Xr or the path Xr, . . . , X1. Also notice that using such
a T and setting Xi = Mi gives us two valid tree decompositions that are path
decompositions and both have w as fingerprint since w is a palindrome. Also,
these are the only minimal ones since Xi must contain Mi. �
Construction. Let A,B,C be an instance of String 3-Groups. Note that with-
out loss of generality, we way assume that all elements of A,B,C are palin-

dromes: if we change all strings x ∈ A ∪ B ∪ C to x|| ←
x , where

←
x denotes

the reverse of x, we obtain a clearly equivalent instance where all strings are
palindromes. Also, by padding zero’s we may assume that for the length � of all
vectors, we have � = 12�logn�+ 2.

Let us now construct a graph G such that G has no tree decomposition with
maximum bag size k = 53 and size s = n(� + 1) if (A,B,C) is a no-instance of
String 3-Groups, and G has a path decomposition with maximum bag size k
and size s otherwise.

Let us denote A = {a1, . . . , an}, B = {b1, . . . ,bn}, C = {c1, . . . , cn} for the
binary strings in A, B, C. Set k = 53, � = (n − 1) + 6n logn, and construct G
as follows

1. Add one graph G(A) 40-implementing a1+27||40||a2+27||40|| . . . ||40||an+
27||40,

2. For every bi ∈ B, add a graph G(bi) that 13-implements bi + 9,
3. For every ci ∈ C, add a graph G(ci) that 4-implements ci + 3.

Applying Lemma 4 we see that all graphs G(A), G(b) and G(c) exist and can
be found in polynomial time since respectively 27 > 2

340, 9 > 2
313, 3 > 2

34.
Figure 1 gives a schematic intuitive illustration of the construction, and its

correctness.
Suppose that the instance of String 3-Groups is a yes-instance and without

loss of generality assume that ai+bi+ci � 1 for all 1 ≤ i ≤ n. Let (A1, . . . , As)
be a minimal path decomposition of G(A), for i = 1, . . . , n let (Bi

1, . . . , B
i
�) be

a minimal path decompositions of G(bi) and (Ci
1, . . . , C

i
�) be a minimal path

decompositions of G(ci). Then it is easy to see that

(A1 ∪B1
1 ∪C1

1 , . . . , A� ∪B1
� ∪C1

� , A�+1, A�+2 ∪B2
1 ∪C2

1 , . . . , As−1 ∪Bn
� ∪Cn

� , As),

is a valid path decomposition of G of size s. Moreover, all bags have size at most
40: for j being a positive multiple of (� + 1) we have |Aj | = 40 and otherwise if
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a1 a2 a3 a4

B

C

Fig. 1. Schematic illustration for the proof of Theorem 3. The larger object represents
all elements in A; the smaller objects each represent one element from B or C. In each
‘gap’ between two towers, we must fit an element from B and an element from C; bi1

and ci2 fit in the gap with ai3 , iff ai3+bi1+ci2 � 1 — the one by one protruding blocks
each represent one vertex, and we can fit at most one such vertex in the respective bag.

j = g(�+1)+i for 1 ≤ i ≤ �+1 then the size of the j’th bag equals 39+agi+bgi +cgi
which is at most 40 by the assumption ai + bi + ci � 1 for all 1 ≤ i ≤ n.

Suppose that G has a tree decomposition T of width at most k and size s.
Restricted to the vertices of G(A) we see that by the construction of G(A), T
has to be a path decomposition P1, . . . , Ps where Ai ⊆ Pi for all i or Ai ⊆ Ps−i.
These cases are effectively the same, so let us assume the first case holds. We
have that there are n sets of � consecutive bags that are of size 12 or 13, separated
with bags of size 40.

Then, for t being a positive multiple of �+1 we have that Pt∩Bj
i = ∅ for any

i, j, and therefore for each j, the bags of T containing elements of G(bj) must be
a consecutive interval of length at most �. Moreover, since all bags of T contain at
least 27 vertices from G(A), we see that the partial path decomposition induced
by G(b) is of size at most � and width at most 13 and hence by construction
it must have fingerprint b. Since we have n intervals of consecutive bags in
G(A) and n graphs G(b) and no two graphs can be put into the same interval
we see that we can reorder B = {b1, . . . ,bn} such that if (Bj

1, . . . , B
j
� ) is a

minimal path decomposition of G(bj) then either Bj
i ⊆ Pj(�+1)+i for each i or

Bj
i ⊆ Pj(�+1)+1−i for each i. Note that in both cases the fingerprint of T induced

by the vertices from G(A) and G(b) for each b is the same.
Focusing on the vertices from G(c), we have that since all bags of T contain

at least 36 vertices of G(A) and G(b) for some b that the path decomposition of
G(c) must be of width at most 4, and by construction thus of length at least �.
By similar arguments as in the preceding paragraph, we see we may assume that
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C = {c1, . . . , cn} such that either Cj
i ⊆ Pj(�+1)+i for each i or Cj

i ⊆ Pj(�+1)+1−i

for each i.
By the definitions of G(A), G(b), G(c) and the assumption that T has width

at most 53 we then see that ai + bi + ci � 1 for every 1 ≤ i ≤ n, as desired.
For the efficiency of the reduction: notice that the graph G has at most 40s =

40((�+1)n) ≤ 40((�12 logn�+3)n) = O(n logn) vertices. Hence, an 2o(n/ log n) al-
gorithm solvingmspd ormstd implies by the reduction a 2o((n logn)/(logn−log log n))

= 2o(n) algorithm for String 3-Groups, which violates the ETH by Theorem 4.

Acknowledgements. We thank the anonymous referees for their detailed and
helpful comments.

References

1. Bodlaender, H.L.: Polynomial algorithms for graph isomorphism and chromatic
index on partial k-trees. Journal of Algorithms 11, 631–643 (1990)

2. Bodlaender, H.L.: A linear time algorithm for finding tree-decompositions of small
treewidth. SIAM Journal on Computing 25, 1305–1317 (1996)

3. Bodlaender, H.L., van Rooij, J.M.M.: Exact algorithms for intervalizing colored
graphs. In: Marchetti-Spaccamela, A., Segal, M. (eds.) TAPAS 2011. LNCS,
vol. 6595, pp. 45–56. Springer, Heidelberg (2011)

4. Dereniowski, D., Kubiak, W., Zwols, Y.: Minimum length path decompositions.
ArXiv e-prints 1302.2788 (2013)

5. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential
complexity? Journal of Computer and System Sciences 63, 512–530 (2001)

6. Kloks, T.: Treewidth. LNCS, vol. 842. Springer, Heidelberg (1994)
7. Li, B., Moataz, F.Z., Nisse, N.: Minimum size tree-decompositions. In: 9th Inter-

national Colloquium on Graph Theory and Combinatorics, ICGT, number hal-
01023904, Grenoble, France (2013)

8. Lokshtanov, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Fixed-parameter
tractable canonization and isomorphism test for graphs of bounded treewidth. In:
Proceedings of the 55th Annual Symposium on Foundations of Computer Science,
FOCS 2014, pp. 186–195 (2014)

9. Otter, R.: The number of trees. Annals of Mathematics 49(3), 583–599 (1948)
10. Schaefer, T.J.: The complexity of satisfiability problems. In: Proceedings of the

10th Annual Symposium on Theory of Computing, STOC 1978, pp. 216–226 (1978)
11. van Rooij, J.M.M., van Kooten Niekerk, M.E., Bodlaender, H.L.: Partition into

triangles on bounded degree graphs. Theory Comput. Syst. 52(4), 687–718 (2013)



Enumeration of 2-Level Polytopes

Adam Bohn1, Yuri Faenza2, Samuel Fiorini1, Vissarion Fisikopoulos1,
Marco Macchia1, and Kanstantsin Pashkovich3
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Abstract. We propose the first algorithm for enumerating all combi-
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some convex hull computations and isomorphism tests.

Keywords: Polyhedral computation, Optimization, Formal concept
analysis

1 Introduction

A (convex) polytope P ⊆ R
d is said to be 2-level if for every facet-defining

hyperplane H , there exists another hyperplane H ′ parallel to H which contains
all the vertices of P that are not contained in H .

There are a number of alternative ways to define 2-level polytopes. For ex-
ample, a polytope P is said to be compressed if every pulling triangulation of
P is unimodular with respect to the lattice generated by its vertices [18,11,5].
In [20] this property is shown to be equivalent to 2-levelness. Given a finite set
V ⊆ R

d and a positive integer k, the k-th theta body of V is a tractable convex
relaxation of the convex hull of V . The theta rank of V is defined as the smallest
k such that this relaxation is exact. These notions were introduced in [8] in a
more general context in which V can be the set of real solutions of any finite
system of real polynomials. The authors of [8] show that a finite set has theta
rank 1 if and only if it is the vertex set of a 2-level polytope.

Families of 2-level polytopes appear in a number of different combinatorial
contexts: Birkhoff polytopes, Hanner polytopes [12], stable set polytopes of per-
fect graphs [4], Hansen polytopes [13], order polytopes [19] and spanning tree
polytopes of series-parallel graphs [10] all have the 2-level property. Because
they appear in such a wide variety of contexts, 2-level polytopes are interesting
objects. However, our understanding of them remains relatively poor. In this
paper we study the problem of enumerating all combinatorial types of 2-level
polytopes of a fixed dimension.
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Since every 2-level polytope is affinely equivalent to a 0/1-polytope, one might
think to compute all those of a given dimension simply by enumerating all 0/1-
polytopes of that dimension and discarding those which are not 2-level poly-
topes. However, the complete enumeration of d-dimensional 0/1-polytopes has
been implemented only for d � 5 [1]. The same author has enumerated all those
6-dimensional 0/1-polytopes having up to 12 vertices, but the complete enumer-
ation even for this low dimension is not expected to be feasible: the output of
the combinatorial types alone is so huge that it is not currently possible to store
it or search it efficiently [22]. Thus for all but the lowest dimensions, there is no
hope of working with a pre-existing list of 0/1-polytopes, and it is desirable to
find an efficient algorithm which computes 2-level polytopes from scratch.

1.1 Contribution and Outline

We present the first algorithm to enumerate all combinatorial types of 2-level
polytopes of a given dimension d. The algorithm uses new structural results on
2-level polytopes which we develop here.

Our starting point is a pair of full-dimensional embeddings of a given 2-level
d-polytope that are related to each other via some d × d unimodular, lower-
triangular 0/1-matrix. This is explained in Section 3. In one embedding, which
we refer to as the H-embedding, the facets have 0/1-coefficients. In the other –
the V-embedding – the vertices have 0/1-coordinates. The H- and V-embeddings
are determined by a structure, which we call a simplicial core (see Section 3.2)

Our algorithm is described in detail in Section 4. It computes a complete
list Ld of non-isomorphic 2-level d-polytopes, from a similar list Ld−1 of 2-level
(d− 1)-polytopes. In these lists, each polytope is stored via its slack matrix (see
Section 3.1).

For some polytope P0 ∈ Ld−1, define L(P0) to be the collection of all 2-level
polytopes that have P0 as a facet. Then the union of these collections L(P0) over
all polytopes P0 ∈ Ld−1 is our desired set Ld, because every facet of a 2-level
polytope is 2-level. We proceed as follows: given some P0 ∈ Ld−1, we realize
it in the hyperplane {x ∈ R

d |x1 = 0} � R
d−1. We compute a collection A ⊆

{x ∈ R
d |x1 = 1} of point sets, such that for each 2-level polytope P ∈ L(P0),

there exists A ∈ A with P � conv(P0 ∪ {e1} ∪A). For each A ∈ A, we compute
P = conv(P0 ∪ {e1} ∪ A) and, in case it is 2-level and not isomorphic to any of
the polytopes already generated by the algorithm, we add P to the list Ld. The
efficiency of this approach depends greatly on how the collection A is chosen.
Here, we exploit the pair of embeddings to define a proxy for the notion of 2-
level polytopes in terms of closed sets with respect to a certain discrete closure
operator, and use this proxy to construct a suitable collection A. This turns out
to provide a significative speedup in the computations.

We implemented this algorithm and ran it to obtain Ld for d � 6. The out-
come of our experiments is discussed in Section 5. We found that the number
of combinatorial types of 2-level d-polytopes is surprisingly small for low di-
mensions d. Moreover, low-dimensional 2-level polytopes can be used to under-
stand the structure of higher-dimensional 2-level polytopes. For instance, they
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show which polytopes can appear as low-dimensional faces of higher-dimensional
2-level polytopes.

We conclude the paper by discussing one conjecture inspired by our experi-
ments, and some ideas for future work (see Section 6).

1.2 Previous Work

The problem closest to the one which we study here is that of enumerating 0/1-
polytopes, see [1,22]. In our approach, we use techniques from formal concept
analysis, in particular we use a previously existing algorithm to enumerate all
concepts of a relation, see [6,15]. Some general properties of 2-level polytopes
are established e.g., in [20] and [8].

2 Preliminaries

We list here a number of definitions and properties used throughout the paper.
For basic notions on polytopes that do not appear here, we refer the reader
to [21]. Given a positive integer d, we set [d] := {1, . . . , d}. A d-polytope is a
polytope of dimension d. For x ∈ R

d and E ⊆ [d], we let x(E) :=
∑

i∈E xi.
While in general two polytopes can be combinatorially isomorphic without

being affinely isomorphic, for 2-level polytopes these two notions coincide. This
is not difficult to see but requires some definitions, so we defer it to Section 3.1
(see Lemma 1). We then say that two 2-level polytopes are isomorphic if and only
if they are combinatorially isomorphic. A condition stronger than isomorphism
is congruency: two polytopes are congruent if there is an isometry mapping one
to the other.

The f -vector of a d-polytope P is the d-dimensional vector whose i-th entry
is the number of (i− 1)-dimensional faces of P . Thus f0(P ) gives the number of
vertices of P , and fd−1(P ) the number of facets of P . We use vert(P ) to denote
the vertex set of polytope P .

3 Embeddings

3.1 Slack Matrices and Slack Embeddings

The slack matrix of a polytope P ⊆ R
d with m facets F1, . . . , Fm and n vertices

v1, . . . , vn is the m×n nonnegative matrix S = S(P ) such that Sij is the slack of
the vertex vj with respect to the facet Fi, that is, Sij = gi(vj) where gi : R

d → R

is any affine form such that gi(x) � 0 is valid for P and Fi = {x ∈ P | gi(x) = 0}.
The slack matrix of a polytope is defined up to scaling its rows by positive reals.

The slack matrix provides a canonical way to embed any polytope, which we
call the slack embedding. This embedding maps every vertex vj to the corre-
sponding column Sj ∈ R

m
+ of the slack matrix S = S(P ). Every polytope is

affinely isomorphic to the convex hull of the columns of its slack matrix.
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Due to definition a polytope P is 2-level if and only if S(P ) can be scaled to be
0/1. Given a 2-level polytope, we henceforth always assume that its facet-defining
inequalities are scaled so that the slacks are 0/1. Thus, the slack embedding
of a 2-level polytope depends only on the support of its slack matrix, which
only depends on its combinatorial structure. The next lemma follows from this
observation.

Lemma 1. Two 2-level polytopes are affinely isomorphic if and only if they have
the same combinatorial type.

3.2 Simplicial Cores

A simplicial core for a d-polytope P is a (2d+2)-tuple (F1, . . . , Fd+1; v1, . . . , vd+1)
of facets and vertices of P such that each facet Fi does not contain vertex vi but
contains vertices vi+1, . . . , vd+1.

Every d-polytope P admits a simplicial core and this fact can be proved by
a simple induction on the dimension, see, e.g., [9, Proposition 3.2]. Actually,
simplicial cores for P correspond to (d+ 1)× (d + 1) submatrices of S(P ) that
are invertible and lower-triangular, for some ordering of rows and columns.

Notice that, for each i, the affine hull of Fi contains vj for j > i, but does not
contain vi; thus the vertices of a simplicial core are affinely independent. That
is, v1, . . . , vd+1 form the vertices of a d-simplex contained in P .

3.3 H- and V-Embeddings

Although canonical, the slack embedding is never full-dimensional, which can
be a disadvantage. To remedy this, we use simplicial cores to define two types
of embeddings that are full-dimensional. Let P be a 2-level d-polytope with m
facets and n vertices, and let Γ := (F1, . . . , Fd+1; v1, . . . , vd+1) be a simplicial
core for P .

From now on, we assume that the rows and columns of the slack matrix S(P )
are ordered compatibly with the simplicial core, so that the i-th row of S(P )
corresponds to facet Fi for 1 � i � d+1 and the j-th column of S(P ) corresponds
to vertex vj for 1 � j � d+ 1.

The H-embedding with respect to Γ is defined by mapping each vj to the unit
vector ej of Rd for 1 � j � d, and vd+1 to the origin. In the H-embedding of
P , facet Fi for 1 � i � m is defined by the inequality

∑
j∈[d],Sij=1 xj � 0 if

vd+1 ∈ Fi and by
∑

j∈[d],Sij=0 xj � 1 if vd+1 �∈ Fi.

In the V-embedding of P with respect to Γ , vertex vj is the point of R
d whose i-

th coordinate is Sij , for 1 � j � n and 1 � i � d. Equivalently, the V-embedding
can be defined via the transformation x �→ Mx, where M = M(Γ ) is the top
left d × d submatrix of S(P ) and x ∈ R

d is a point in the H-embedding. We
stick to this convention for the rest of the paper. The next lemma summarizes
the discussion.
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Lemma 2. Let P be a 2-level d-polytope and let (F1, . . . , Fd+1; v1, . . . , vd+1) be
a simplicial core for P . In the corresponding H-embedding, all the facets of P
are of the form x(E) � 1 or x(E) � 0 for some nonempty E ⊆ [d]. Moreover, in
the corresponding V-embedding i-th coordinate is the slack with respect to facet
Fi. In particular, in the V-embedding, all the vertices of P have 0/1-coordinates.

We call the submatrix M := M(Γ ) of S(P ) the embedding matrix of Γ .
Note that every embedding matrix M is unimodular. Indeed, M is an invertible,
lower-triangular, 0/1-matrix. Thus det(M) = 1. The next lemma is the key to
our approach.

Lemma 3. In the H-embedding P of a 2-level d-polytope with respect to any
simplicial core Γ , the vertex set of P equals P ∩ M−1 · {0, 1}d ⊆ Z

d, where
M = M(Γ ) is the embedding matrix of Γ .

For a hypergraph H = (V, E) with V = [d], let P (H) := {x ∈ R
d | 0 � x(E) �

1 for each E ∈ E}. We refer to a pair of inequalities 0 � x(E) � 1 as a pair of
hyperedge constraints where E is a hyperedge. It follows from Lemma 2 that any
H-embedding of a 2-level d-polytope is of the form P (H) for some hypergraph
H such that P (H) is integral. Conversely, each P (H) that is integral is a 2-level
polytope.

4 Algorithm

4.1 Closed Sets

An operator cl : 2X → 2X over a ground set X is a closure operator if it is
idempotent, cl(cl(A)) = cl(A); extensive, A ⊆ cl(A); and monotone, A ⊆ B =⇒
cl(A) ⊆ cl(B). A set A ⊆ X is said to be closed with respect to cl if cl(A) = A.
In [6], Ganter and Reuter provided a polynomial delay algorithm for enumerating
all the closed sets of a given closure operator.

Below, the ground set X will be a finite subset of points in R
d. Let F ⊆ R

d

be another finite set of points that is disjoint from X . For A ⊆ X , define EF(A)
to be the set of all hyperedges whose pair of hyperedge constraints is verified by
A ∪ F :

EF (A) := {E ⊆ [d] | 0 � x(E) � 1 for every x ∈ A ∪ F} .
Our first closure operator is parametrized by (X ,F) and is defined as:

cl(X ,F)(A) := {x ∈ X | 0 � x(E) � 1 for every E ∈ EF (A)}

for A ⊆ X . In other words, cl(X ,F)(A) is the subset of X verifying all hyperedge
inequalities that are satisfied by A ∪ F .

To obtain a 2-level d-polytope P , we fix one of its possible facets, i.e. we choose
a 2-level (d− 1)-polytope P0 and an embedding matrix Md−1 of P0. Afterwards,
we extend Md−1 to an embedding matrix Md of P so that P0 is embedded in
{x ∈ R

d | x1 = 0} � R
d−1 via the corresponding H-embedding.
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Then the algorithm enumerates all 2-level d-polytopes P such that Md is an
embedding matrix and P0 is the facet defined by x1 � 0 in the H-embedding
of P .

A first insight to achieve this goal is that A := vert(P ) ∩ X is closed with
respect to cl(X ,F), where X :=

(
M−1

d · ({1} × {0, 1}d−1)
)
� {e1} and F :=

vert(P0) ∪ {e1}. Hence, to enumerate the possible 2-level d-polytopes P with
a prescribed facet P0 and embedding matrix Md, it suffices to enumerate the
closed sets A ⊆ X with respect to cl(X ,F).

A second insight is that the closure operator cl(X ,F) can be improved by

recalling that each facet of P0 ⊆ {x ∈ R
d | x1 = 0} extends uniquely to a facet

of P distinct from P0. Since each facet of P should satisfy the 2-level property,
certain choices of pairs of points of X are forbidden. To model this, we introduce
an incompatibility graph G = G(P0,Md) on X . We declare two points u, v ∈ X
incompatible whenever there exists a facet F0 of P0 such that u, v and e1 lie on
three different translates of aff(F0). The nodes u, v ∈ X of G are connected by
an edge if and only if they are incompatible.

Next, we define the closure operator clG on X such that, for every A ⊆ X ,
clG(A) := A if A is a stable set in G and clG(A) := X otherwise. It can be easily
checked that the composed operator clG ◦ cl(X ,F) is a closure operator over X .
This is the closure operator that we use in our enumeration algorithm.

4.2 The Enumeration Algorithm

We now provide a detailed description of our algorithm. We start with the list
Ld−1 of combinatorial types of 2-level (d−1)-polytopes. Each combinatorial type
is stored as a slack matrix together with a simplicial core. As before, we may
assume that the simplicial core is formed by the facets and vertices indexing the
first (d−1)+1 rows and columns of the slack matrix, respectively. The algorithm
below then generates the list Ld of all combinatorial types of 2-level d-polytopes,
each with a simplicial core.

Theorem 1. Algorithm 1 outputs the list of all combinatorial types of 2-level
d-polytopes, each with a simplicial core.

Proof. Consider a 2-level d-polytope P . In the rest of the proof, we consider P
only as a combinatorial structure. Later on, P will be embedded in R

d via a H-
embedding. To simplify notation, we use the same letters for both the abstract
polytope P and its realization in R

d. We use also this convention for facets of P .
We prove that a H-embedding of P is obtained at some point by the algorithm
and is added to the list Ld.

Let P0 be any facet of P . Thus P0 is a 2-level (d−1)-polytope, and hence P0 is
stored in Ld−1 together with a simplicial core Γ0 := (F ′

2, . . . , F
′
d+1; v2, . . . , vd+1).

Extend Γ0 to a simplicial core Γ = (F1, . . . , Fd+1; v1, . . . , vd+1) for P by defining
v1 to be a vertex of F2 not contained in F1, and defining F1 to be P0 and Fi for
2 � i � d+1 to be a unique facet of P such that F ′

i = Fi ∩P0. Observe that the
embedding matrix Md := M(Γ ) is of the form (1) for some b = (b1, . . . , bd−2) ∈
{0, 1}d−2 and for Md−1 := M(Γ0).
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Algorithm 1: Enumeration algorithm

1 Set Ld := ∅;
2 foreach P0 ∈ Ld−1 with simplicial core Γ0 := (F ′

2, . . . , F
′
d+1; v2, . . . , vd+1) do

3 Construct the H-embedding of P0 in {0} × R
d−1 � R

d−1 w.r.t. Γ0;
4 Let Md−1 := M(Γ0);

5 foreach bit vector b ∈ {0, 1}d−2 do
6 Complete Md−1 to a d× d matrix in the following way:

Md :=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 0 · · · 0
0
b1
...

bd−2

Md−1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

(1)

7 Let F := vert(P0) ∪ {e1} and X := M−1
d · ({1} × {0, 1}d−1)� {e1};

8 Let G be the incompatibility graph on X w.r.t. P0 and Md;
9 Using the Ganter-Reuter algorithm [6], compute the list A of closed sets

of the closure operator clG ◦ cl(X ,F);
10 foreach A ∈ A do
11 Let P := conv(A ∪ F);
12 if P is 2-level and not isomorphic to any polytope in Ld then
13 Let F1 := P0 and v1 := e1;
14 for i = 2, . . . , d+ 1 do
15 Let Fi be the facet of P distinct from F1 s.t. Fi ⊇ F ′

i ;
16 end
17 Add P to Ld with Γ := (F1, . . . , Fd+1; v1, . . . , vd+1);

18 end

19 end

20 end

21 end

Now, consider the H-embedding of P defined by Γ . The vertices v2, . . . ,
vd+1 are mapped to e2, . . . , ed and the origin, and v1 is mapped to e1. In this
realization of P , the facet P0 is embedded in {x ∈ R

d | x1 = 0}. In fact, P0 is
the facet of P defined by x1 � 0.

As in the algorithm, take F := vert(P0) ∪ {e1} and X := M−1
d · ({1} ×

{0, 1}d−1) � {e1}. Let A := vert(P ) � (vert(P0) ∪ {e1}). We claim that A is
closed for cl(X ,F).

By Lemma 3, A = vert(P )∩X , thus A ⊆ X . By Lemma 2, P can be described
by the linear system {x ∈ R

d | 0 � x(E) � 1 for every E ∈ EF (A)}. Hence
vert(P ) = F ∪ {x ∈ X | 0 � x(E) � 1 for every E ∈ EF (A)}. Since A =
vert(P )∩X and X ∩F = ∅, we see that A = cl(X ,F)(A). This proves the claim.

Finally, consider the incompatibility graph G = G(P0,Md). If A were not a
stable set of G then, among the facets of P adjacent to P0, there would exist
a facet that violates the 2-level property. Thus clG(cl(X ,F)(A)) = A, i.e. A is



198 A. Bohn et al.

closed also with respect to clG ◦ cl(X ,F). It follows that the combinatorial type
of P is added at some point by the algorithm to the list Ld.

Clearly, Ld contains at most one member for each combinatorial type of 2-level
d-polytope, because a 2-level polytope is added to Ld only if it is not isomorphic
to any other polytope in the list. �

4.3 Implementation

We implement the algorithmpresented in Section 4.2 in Perl.We use polymake [7]
for the geometric computations, such as congruence and isomorphism tests, con-
vex hull and f -vector computations, and general linear algebra operations.

Isomorphism testing is in general a harder problem than congruence testing
for polytopes given by sets of vertices, as it involves a convex hull computation.
For this reason, before computing the convex hull in Step 11, we first ascertain
whether or not there is an existing congruent polytope in Ld by testing the
corresponding sets of vertices. For congruence tests, polymake uses the reduction
of the congruence problem for arbitrary point sets to the graph isomorphism
problem [2]. For isomorphism tests, the problem is reduced to graph isomorphism
of the vertex-facet incidence graphs. For the 2-level test in Step 12 we check if
every facet inequality of P computed by a convex hull algorithm in Step 11
attains two values when evaluated on vertices of P .

As part of our code, we implement the Ganter-Reuter algorithm [6]. The sets
are represented by bit vectors and all the operations we need—such as order
test between two sets, and closed set computations—are implemented by bit
operations. For these we use the Perl library Bit::Vector [3].

The choice of the closed sets enumeration algorithm is not crucial for our
problem: experiments indicate that more than 99% of the enumeration time is
spent in geometric computation (i.e. convex hull and isomorphism tests) and the
rest is spent computing the next closed set from the current one.

Since convex hull computation is crucial for our enumeration algorithm, we
perform experiments on the performance of 4 state-of-the-art convex hull imple-
mentations: beneath beyond (bb), which implements the incremental beneath
and beyond algorithm; lrs, which implements the reverse search algorithm; and
cdd, ppl, which implement the double description method. In d = 6 without
redundancy removal the fastest implementation is bb, cdd, lrs, ppl for 224,
23, 3, 879 polytopes respectively and with redundancy removal for 28, 45, 376,

Table 1. Numbers of non-isomorphic 2-level polytopes, equivalence classes (isomorphic
and congruent) and closed sets computed by the algorithm.

d closed sets 2-level isomorphic congruent closed sets/2-level

4 277 19 203 42 0.95
5 10963 106 7669 621 0.77
6 1908641 1150 414714 42076 0.24
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Table 2. Numbers of combinatorially equivalent 0/1 polytopes, 2-level polytopes and
sub-classes; 2L: 2-level polytopes, Δ-f: with one simplicial facet, STAB: stable sets of
perfect graphs, polar: 2-level polytopes whose polar is 2-level, CS: centrally symmetric,
Birk: Birkhoff polytope faces from [16], ’-’: exact numbers are unknown.

d 2L Δ-f STAB polar CS Birk 0/1

3 5 4 4 4 2 4 8
4 19 12 11 12 4 11 192
5 106 41 33 42 13 33 1,048,576
6 1150 248 148 276 45 129 -
7 - - - - 238 661 -

700 polytopes respectively. Interestingly, lrs and bb exchange roles in these two
cases. We conclude that ppl is the most efficient implementation in most of the
cases and thus the one we choose for our implementation. Note that since we
know that the input points are always in convex position we can avoid redun-
dancy removal thus earn a 5× speed-up in dimension 6.

5 Experimental Results

5.1 Outcome of the Experiments

In dimension 4, the set of 2-level polytopes is computed by our algorithm in 20
seconds, while for d = 5 it takes 12 minutes to enumerate 106 2-level polytopes
on an Intel(R) Core(TM) i7-4700HQ CPU @ 2.40GHz. For d = 6 we exploited
one property of our algorithm: its straightforward parallelization. We created
one job for each branch of commands in the two outer for loops of the algorithm
and submitted these jobs to a cluster1. In particular, we created one job for each
2-level 5-polytope and each b vector, i.e. 1696 jobs. The total computation lasted
1 day (the sequential time is estimated in 4.5 days).

We illustrate the attained speed-up gained by using clG ◦ cl(X ,F) instead of
cl(X ,F). In d = 6 the use of the first leads to ∼ 1.9 ·106 closed sets while the later
to ∼ 108 closed sets.

Not surprisingly, as the dimension increases, more computation time is con-
sumed in testing polytopes that are not 2-level as depicted in Table 1.

To understand the current limits of computation note that in d = 7 we have
to create 36800 jobs, while experiments show there are jobs that need more than
5 days to terminate.

Table 2 summarizes our results regarding the number of 2-level polytopes and
interesting subclasses. Our main result is the number of isomorphism classes of
2-level polytopes in d = 6. Additionally, we make use of properties of 2-level
centrally symmetric polytopes to enumerate all of them in d = 7.

1 Hydra balanced cluster: https://cc.ulb.ac.be/hpc/hydra.php
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Fig. 1. (a) The relation between the number of facets and the number of vertices of
2-level 6-polytopes; (b) the number of 2-level 6-polytopes and the class with the ones
with a simplicial facet as a function of the number of vertices.

The computed polytopes in polymake format as well as more information on
the experiments and data are available online2. Taking advantage of the computed
data we perform a number of statistical tests to understand the structure and
properties of 2-level polytopes.

We experimentally study the number of 2-level polytopes as a function of
the number of vertices in dimension 6 (see Fig. 1(b)). Interestingly, most of the
polytopes, namely 1048 (i.e. more than 90%) have 10 to 24 vertices. The number
of polytopes with a simplicial facet is maximum when the number of vertices
is 12 and the extreme cases are the simplex (7 vertices) and the hypersimplex
Δ6(2) (21 vertices) [21].

The relation between the number of vertices and the number of facets in d = 6
is depicted in Fig. 1(a). Experiments show that the bound f0(P )fd−1(P ) � d2d+1

holds for all 2-level d-polytopes up to d = 6 and for the centrally symmetric
2-level polytopes in d = 7. Note that f0(P )fd−1(P ) = d2d+1 when P is the cube
or its polar.

Our experiments show that all 2-level centrally symmetric polytopes, up to
dimension 7, validate Kalai’s 3d conjecture [14] (note that for general centrally
symmetric polytopes, Kalai’s conjecture is known to be true only up to dimen-
sion 4 [17]). Dimension 5 is the lowest dimension in which we found centrally
symmetric polytopes that are not Hanner nor Hansen (e.g. one with f -vector
(12, 60, 120, 90, 20)). In dimension 6 we found a 2-level centrally symmetric poly-
tope with f -vector (20, 120, 290, 310, 144, 24), for which therefore f0 + f4 = 44;
this offers a stronger counterexample to the conjecture B of [14] than the one
presented in [17] having f0 + f4 = 48.

2 http://homepages.ulb.ac.be/~vfisikop/data/2-level.html
Note that the stored polytopes are in a slightly different format than described in the
algorithm, i.e. we store an H-embedding without the slack matrix and the simplicial
core.
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6 Discussion

We think that the experimental evidence we gathered will lead to interesting
research questions. As a sample, we propose the following question motivated
by Fig. 1(a): is it true that f0(P )fd−1(P ) � d2d+1 for all 2-level d-polytopes P?
And if yes, is equality attained only by the cube and cross-polytope? It is known
that f0(P ) � 2d with equality if and only if P is a cube and fd−1(P ) � 2d with
equality if and only if P is a cross-polytope [8]. In these cases, f0(P )fd−1(P ) =
d2d+1.

One way to decrease the computation time of the algorithm is to exploit the
symmetries of the embeddingmatrixMd and reduce the possible choices for the bit
vector b. GivenMd−1 two vectors b are equivalent if the resulting matricesMd can
be transformed from one to the other by swapping columns and rows. Therefore,
only one b for each equivalent class should be considered by the algorithm.
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Birkhäuser (2000)

2. Akutsu, T.: On determining the congruence of point sets in d dimensions. Compu-
tational Geometry 9(4), 247–256 (1998)

3. Beyer, S.: Comprehensive perl archive network: Bit-vector-7.4 (2014).
http://search.cpan.org/~stbey/Bit-Vector-7.4
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Abstract. Consider a weighted graph G whose vertices are points in the
plane and edges are line segments between pairs of points whose weight
is the Euclidean distance between its endpoints. A routing algorithm
on G sends a message from any vertex s to any vertex t in G. The
algorithm has a competitive ratio of c if the length of the path taken
by the message is at most c times the length of the shortest path from
s to t in G. It has a routing ratio of c if the length of the path is at
most c times the Euclidean distance from s to t. The algorithm is online
if it makes forwarding decisions based on (1) the k-neighborhood in G
of the message’s current position (for constant k > 0) and (2) limited
information stored in the message header.

We present an online routing algorithm on the Delaunay triangula-
tion with routing ratio less than 5.90, improving the best known routing
ratio of 15.48. Our algorithm makes forwarding decisions based on the
1-neighborhood of the current position of the message and the positions
of the message source and destination only.

We present a lower bound of 5.7282 on the routing ratio of our algo-
rithm, so the 5.90 upper bound is close to the best possible. We also show
that the routing (resp., competitive) ratio of any deterministic k-local al-
gorithm is at least 1.70 (resp., 1.23) for the Delaunay triangulation and
2.70 (resp. 1.23) for the L1-Delaunay triangulation. In the case of the
L1-Delaunay triangulation, this implies that even though there always
exists a path between s and t whose length is at most 2.61|[st]|, it is
not always possible to route a message along a path of length less than
2.70|[st]| using only local information.
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1 Introduction

Navigation is a fundamental problem with a long history [13]. Navigation is
encountered in many forms and in a variety of fields including geographic infor-
mation systems [17], architecture and urban planning [14], robotics [7], and com-
munication networks [16], to name a few. Navigation often occurs in a geometric
setting that can be modeled using a geometric graph, defined as a weighted graph
G whose vertices are points in the plane and whose edges are line segments. The
weight of each edge is the Euclidean distance between its endpoints. Navigation
is then the problem of finding a path in G–preferably short–from source vertex
s to target vertex t. When complete information about the graph is available,
classic shortest path algorithms can be applied (e.g., Dijkstra’s algorithm [11]).
The problem is more challenging when navigation decisions can only use infor-
mation available locally. To illustrate this, we consider a particular navigation
application: the problem of routing a message from a source s to destination t.
The goal of a routing algorithm is to select a path for the message.

A routing algorithm on a geometric graph G has a competitive ratio of c if the
length of the path produced by the algorithm from any vertex s to any vertex t
is at most c times the length of the shortest path from s to t in G. If the length
of the path is at most c times the Euclidean distance from s to t, we say that
the routing algorithm has a routing ratio of c. The routing algorithm is online
(or k-local) if it makes forwarding decisions based on (1) the k-neighborhood in
G (for some integer constant k > 0) of the current position of the message and
(2) limited information stored in the message header.

In this paper we consider online routing on Delaunay triangulations. The
(classic) Delaunay triangulation on a set of points P is a geometric graph G
such that there is an edge between two vertices u and v if and only if there
exists a circle with u and v on its boundary that contains no other vertex of P
in its interior.1 If we replace circle with square in the definition then a different
triangulation is defined: the L1- or the L∞-Delaunay triangulation, depending on
the orientation of the square. If circle is replaced with equilateral triangle, then
yet another triangulation is defined: the TD-Delaunay triangulation. Related
previous work on online routing in Delaunay triangulations include [4,5,6,8].

Delaunay triangulations are known to be geometric spanners. A geometric
graph G on a set of points P in the plane is a κ-spanner for some constant κ
(or has a spanning ratio of κ) if for any pair of vertices s and t of P , there exists
a path in G from s to t with length at most κ times the Euclidean distance
between s and t (see [3,15]).

In the mid-1980s, it was not known that Delaunay triangulations were actually
spanners. In his seminal 1986 paper, Chew [9] showed that the L1-Delaunay
triangulation is a

√
10-spanner. In fact, he did something stronger: he found a

1-local, online routing algorithm with competitive and routing ratios of
√
10 ≈

3.162. In a recent development, Bonichon et al. [1] proved that the L1- and

1 This definition assumes that points are in general position; we discuss this restriction
further in Section 2.
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the L∞-Delaunay triangulations are
√
4 + 2

√
2 ≈ 2.61-spanners and that the

constant is also tight. This result opens up the question of whether there exists
an online routing algorithm with routing ratio of 2.61.

In another significant result, Chew proved that the TD-Delaunay triangula-
tion is a 2-spanner and that the constant 2 is tight [10]. Chew’s construction does
not lead to an online routing algorithm. In fact, an algorithm with routing ratio
of 2 is not even possible: Bose et al. [5] recently showed surprising lower bounds
of 5√

3
on the routing ratio and 5

3 on the competitive ratio of online routing on

TD-Delaunay triangulations. They also found an online routing algorithm that
has competitive and routing ratios of 5√

3
.

The results on TD-Delaunay triangulations show that an online routing algo-
rithm cannot provide the same guarantees as an algorithm that selects the rout-
ing path based on full knowledge of the graph. A natural, fundamental question
is to analyze whether similar gaps exist for Delaunay triangulations other than
the TD-Delaunay triangulation.

The (classic) Delaunay triangulation was first shown to be a constant spanner
by Dobkin et al. [12]. The current best known upper bound on its spanning ratio
is 1.998 by Xia [18] and the best lower bound, by Xia et al. [19], is 1.593.
Very recently, Bose et al. developed an online routing algorithm on Delaunay
triangulations that has competitive and routing ratios of 15.48 [4].

Our Results. We present an online routing algorithm on Delaunay triangula-
tions that has competitive and routing ratios of 5.90 (Theorem 1). We also show
our algorithm has a routing ratio greater than 5.7282 (Theorem 2) so the 5.90
upper bound is close to best possible. The algorithm is a generalization of the
deterministic 1-local routing algorithm by Chew on the L1-Delaunay triangula-
tion [9]. Our algorithm makes forwarding decisions based on the 1-neighborhood
of the current position of the message and the positions of the message source
and destination. This last requirement is an improvement over the best known
online routing algorithms on the Delaunay triangulation [2,4] which require the
header of a message to also contain partial sums of distances along the rout-
ing path. Although the generalization of Chew’s routing algorithm to Delaunay
triangulation is natural, the analysis of its routing ratio is non-trivial.

We also show that the routing (resp., competitive) ratios of any deterministic
k-local algorithm is at least 1.70 (resp., 1.23) for the Delaunay triangulation
and 2.70 (resp. 1.23) for the L1-Delaunay triangulation (Theorems 3 and 4). In
the case of the L1-Delaunay triangulations, this implies the existence of a gap
between the spanning ratio (2.61) and the routing ratio (2.70). See Table 1 for
a summary of these results.

2 A Generalization of Chew’s Routing Algorithm

In this section we present our online routing algorithm which is a natural adapta-
tion to Delaunay triangulations of Chew’s routing algorithm originally designed
for L1-Delaunay triangulations [9] and subsequently adapted for TD-Delaunay
triangulations [10].
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Table 1. Upper and lower bounds on the spanning and routing ratios on Delaunay
triangulations defined using different shapes. We also provide lower bounds on the
competitiveness of k-local deterministic routing algorithms on Delaunay triangulations.

Shape triangle square circle

spanning ratio UB 2 [10] 2.61 [1] 1.998 [18]

spanning ratio LB 2 [10] 2.61 [1] 1.593 [19]

routing ratio UB 5/
√
3 ≈ 2.89 [5]

√
10 ≈ 3.16 [9] 1.185 + 3π/2 ≈ 5.90 (Thm 1)

routing ratio LB 5/
√
3 ≈ 2.89 [5] 2.707 (Thm 4) 1.701 (Thm 3)

competitiveness LB 5/3 ≈ 1.66 [5] 1.1213 (Thm 4) 1.2327 (Thm 3)

We consider the Delaunay triangulation defined on a finite set of points P in
the plane. We assume that the points in P are not all collinear (otherwise the
Delaunay triangulation would not be well-defined). To simplify our arguments,
we also assume that the points are in general position which for us means that
no four points of P are cocircular.

In this paper, we denote the source of the routing path by s ∈ P and its desti-
nation by t ∈ P . We assume an orthogonal coordinate system consisting of a hori-
zontal x-axis and a vertical y-axis and we denote by
x(p) and y(p) the x- and y-coordinates of any point p in the plane. We denote the
line supported by two points p and q by pq, and the line segment with endpoints
p and q by [pq]. Without loss of generality, we assume that y(s) = y(t) = 0 and
x(s) < x(t).

When routing from s to t, we consider only (the vertices and edges of) the
triangles of the Delaunay triangulation that intersect [st]. Without loss of gener-
ality, if a vertex (other than s and t) is on [st], we consider it to be slightly above
st. Therefore, the triangles that intersect [st] and do not have t as a vertex can
be ordered from left to right. Notice that all vertices (other than s and t) from
this ordered set of triangles belong to at least 2 of these triangles.

Our Online Routing Algorithm. When the message is at vertex pi (initially
p0 = s), if there is an edge from pi to t, forward the message to t. Otherwise,
let Ti be the rightmost triangle that has pi as a vertex. Let Ci be the circle
circumscribing Ti. Let Oi be the center of Ci, let wi (w as in west) be the
leftmost point of Ci, and let ri be the rightmost intersection of Ci with [st] (see,
for example, circle C3 of Fig. 1). The line segment [wiri] splits Ci into two arcs:
the upper one, defined by the clockwise walk along Ci from wi to ri and the
lower one, defined by the counterclockwise walk along Ci from wi to ri. Both
arcs include points wi and ri. The forwarding decision at pi is made as follows:

– If pi belongs to the upper arc, forward the message to the first vertex of
Ti encountered on a clockwise walk along Ci starting at pi. In Fig. 1, this
forwarding decision is made at s, p2, p3, and p4.

– Otherwise, forward the message to the first vertex of Ti encountered on a
counter-clockwise walk along Ci starting at pi. In Fig. 1, this forwarding
decision is made at p1.
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C0

C1

C2

C3

C4

s

t

p1

p2

p3
p4

q′1

q1

q2

q3
q4

q5
w3

r3

Fig. 1. Illustration of our routing algorithm. The triangles of the Delaunay triangula-
tion that intersect segment [st] are shown using solid and dashed segments; the edges
of the rightmost triangles are solid and the remaining edges are dashed. Only circles
circumscribing the rightmost triangles are shown. The edges of the routing path and
the associated arcs are also shown in bold.

Once we reach pi+1, unless pi+1 = t we repeat the process. Fig. 1 shows an exam-
ple of a route computed by this algorithm. We can conclude that the following
results by Chew from [9] extend to Delaunay triangulations:

Lemma 1. The triangles used (T0, T1 . . . , Tk) are ordered along [st]. Although
not all Delaunay triangulation triangles intersecting [st] are used, those used
appear in their order along [st].

Corollary 1. The algorithm terminates, producing a path from s to t.

3 Routing Ratio

In this section, we prove the main theorem of this paper.

Theorem 1. Our routing algorithm on the Delaunay triangulation has a routing
ratio of at most (1.185043874+ 3π/2) ≈ 5.89743256.

The bound on the routing ratio of our algorithm is close to best possible
because, as we show in Sect. 4 and illustrate in Fig. 2, our algorithm has a
routing ratio of at least 5.7282.

3.1 Preliminaries

We start by introducing additional definitions, notation, and structural results
about our routing algorithm. We denote by |[pq]| the Euclidean length of the
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C0
C1

s

t′ t
C0C1

p2

s

p1

Fig. 2. The lower bound on the routing ratio of our algorithm (left). The right image
zooms in on the situation around point s. These images illustrate how the routing ratio
of the algorithm must be a bit larger than 1 + 3π/2.

line segment [pq], and by |P| the length of a path P in the plane. Given a path
P from p to q and a path Q from q to r, P +Q denotes the concatenation of P
and Q. We say that the path P from p to q is inside a path Q that also goes
from p to q if the path P is inside the bounded region delimited by Q + [qp].
Note that if P is convex and inside Q then |P| ≤ |Q|. Given a path P and two
points p and q on P , we denote by P〈p, q〉 the sub-path of P from p to q.

Let s = p0, p1, . . . , pk = t be the sequence of vertices visited by our routing
algorithm. If some pi other than s or t lies on the segment [st], we can separately
analyze the routing ratio of the paths from s to pi and from pi to t. We assume,
therefore, that no pi, other than s = p0 and t = pk, lies on segment [st].

For every edge (pi, pi+1), there is a corresponding oriented arc of Ci used by
the algorithm which we refer to as Ai〈pi, pi+1〉: the orientation of Ai〈pi, pi+1〉 is
clockwise if pi belongs to the upper arc of Ci and counterclockwise if pi belongs
to the lower arc. The arcs are shown in Fig. 1 and Fig. 3. Let A be the union
of these arcs. We call A the routing path from s to t. The length of the path
s = p0, p1, . . . , pk−1, pk = t along the edges of the Delaunay triangulation is
smaller than the length of A.

In order to bound the length of A, we will work with worst case circles C′
i

defined, for i = 0, 1, . . . , k− 1, as follows. C′
i is a circle that goes through pi and

pi+1 and whose center O′
i is obtained by starting at Oi and moving it along the

perpendicular bisector of [pipi+1] in the direction of arc Ai〈pi, pi+1〉 until either
(1) C′

i is tangent to line st or (2) pi is the leftmost point of C′
i, whichever occurs

first. Figure 3 shows the circles C′
i on the example of Fig. 1. Note that (2) holds

for C′
1 (and so w′

1 = p1) and (1) holds for C′
3 (and w′

3 �= p3).
By the construction, the circles C′

i intersect st. Let w
′
i be the leftmost point

of C′
i; if [pipi+1] crosses [st], then C′

i must satisfy condition (2), i.e., pi = w′
i. We

find it useful to categorize the circles C′
i into three mutually exclusive types:
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– Type A1: pi �= w′
i, [pipi+1] does not cross [st], and C′

i is tangent to [st].
– Type A2: pi = w′

i and [pipi+1] does not cross [st].
– Type B: pi = w′

i and [pipi+1] crosses [st].

In Fig. 3, C′
0, C

′
1 . . . C

′
4 are respectively of type A2, B, B, A1, A2. We use the

expression “type A” instead of “type A1 or A2”.
Given two points p, q on C′

i, let A′
i〈p, q〉 be the arc on C′

i from p to q whose
orientation (clockwise or counterclockwise) is the same as the orientation of
Ai〈pi, pi+1〉 around Ci. Note that |Ai〈pi, pi+1〉| ≤ |A′

i〈pi, pi+1〉|. In fact, C′
i is

defined so that A′
i〈pi, pi+1〉 is the longest possible arc between pi and pi+1 in a

route computed by our algorithm if only the points s, t, pi, pi+1 are known. This
restriction, in turn, provides enough structure to enable us to bound the length
of the union of the arcs A′

i〈pi, pi+1〉 for i = 0, . . . , k− 1 and, in turn, the length
of the routing path A.

By the definition of Delaunay triangulations, no point of P is contained inside
the circles Ci. This property does not hold for circles C′

i, but the following weaker
property does:

Lemma 2. No point of P lies inside the region bounded by the closed curve
[pipi+1] +A′

i〈pi+1, pi〉, for every i = 0, . . . , k − 1.

Proof. The region is part of the region inside circle Ci. 	

Lemma 3. Let ∠w′

i−1O
′
i−1pi and ∠w′

iO
′
ipi be the angles defined using the ori-

entations of arcs A′
i−1〈pi−1, pi〉 and A′

i〈pi, pi+1〉, respectively. Then, for every
i = 1, . . . , k − 1:

0 ≤ ∠w′
iO

′
ipi ≤ ∠w′

i−1O
′
i−1pi ≤ 3π/2.

Let fi be the first point pj after pi such that [pipj ] intersects st. Notice that
fk−1 = t. We also set fk = t. In Fig. 3, f0 = p1, f1 = p2, f2 = p3 and
f3 = f4 = f5 = t.

Lemma 4. For all 0 < i ≤ k:

x(w′
i−1) ≤ x(w′

i) ≤ x(fi−1) ≤ x(fi). (1)

3.2 Proof of Theorem 1

In this subsection, we introduce a key lemma and use it to prove our main
theorem. Given two points p and q such that x(p) < x(q) and y(p) = y(q), we
define the path Sp,q as follows. Let C be the circle above pq that is tangent
to pq at q and tangent to the line x = x(p) at a point that we denote by
p′. The path Sp,q consists of line segment [pp′] together with the clockwise arc
from p′ to q on C. We call Sp,q the snail curve from p to q. Note that |Sp,q| =
(1 + 3π/2)(x(q)− x(p)).

Let points f i = (x(fi), 0) and w′
i = (x(w′

i), 0) be the orthogonal projections
of points fi and w′

i onto line st. Finally, we define the path Pi to be [w′
iw

′
i] +

A′
i〈w′

i, pi〉, for 0 ≤ i ≤ k − 1 (see Fig. 3).
We start with a simple lemma that motivates these definitions.
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C′
0

C′
1

C′
2

C′
3

p1

p2

p3
p4

w′
3

w′
1 = f0

w′
2 = f1s

tw′
3 f2

Fig. 3. Illustration of our notation and Lemma 6 on the example of Fig. 1. The un-
labeled circles are the empty circles of the Delaunay triangulation and the thick arcs
on those circles form the routing path A. Circles C′

i, the paths Pi, arcs A′
i〈pi, pi+1〉,

and segments of height |y(fi)| are shown in a darker shade. Lengths |[f i−1f i]| are
represented by dashed horizontal segments.

Lemma 5. |A′
k−1〈pk−1, t〉| ≤ |Sw′

k−1,t
| − |Pk−1|.

Proof. This follows from the fact that path Pk−1 +A′
k−1〈pk−1, t〉 from w′

k−1 to
t is convex and inside Sw′

k−1
,t. 	


The following lemma is the key to proving Theorem 1.

Lemma 6. For all 0 < i < k and δ = 0.185043874,

|A′
i−1〈pi−1, pi〉| ≤ |Pi|−|Pi−1|+ |Sw′

i−1,w
′
i
|+ |y(fi)|−|y(fi−1)|+δ|[f i−1f i]|. (2)

This lemma is illustrated in Fig. 3. We first show how to use Lemma 6 to prove
Theorem 1, and then we prove Lemma 6.

Proof of Theorem 1. ByLemma4,
∑k−1

i=1 |[f i−1f i]| < |[st]| and∑k
i=1 |Sw′

i−1,w
′
i
| =

|Ss,t|. Since fk−1 = t, y(fk−1) = 0. Therefore, by summing the k − 1 inequalities
from Lemma 6 and the inequality from Lemma 5, we get

|A| ≤
k∑

i=1

A′
i−1〈pi−1pi〉 < |Ss,t|+ δ|[st]| ≤ (1.185043874+ 3π/2)|[st]|,

which completes the proof. 	


3.3 Proof of the Key Lemma

In this subsection, we prove Lemma 6.
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Proof of Lemma 6. We consider three cases depending on the types of circles
C′

i−1 and C′
i. Note that if C′

i−1 is of type A, then fi−1 = fi. Hence, in this case,
it is sufficient to prove

|A′
i−1〈pi−1, pi〉| ≤ |Pi| − |Pi−1|+ |Sw′

i−1,w
′
i
|

or
|Pi−1 +A′

i−1〈pi−1, pi〉| ≤ |Sw′
i−1,w

′
i
+ Pi|. (3)

This inequality is what we will show in the first two cases of the proof.
• C′

i−1 is of type A and C′
i is of type A2 or B. (omitted due to space

constraints)
• C′

i−1 is of type A and C′
i is of type A1. We first observe that with the

position of pi and w′
i−1 fixed, Pi−1 +A′

i−1〈pi−1, pi〉 is longest if C′
i−1 is of type

A1 (see Fig. 4).
Hence, we assume that C′

i−1 is of type A1. Let bi−1 and bi be the intersections
of st with C′

i−1 and C′
i, respectively. Then

|Pi−1 +A′
i−1〈pi−1, pi〉|+ |A′

i〈pi, bi〉| =
|Sw′

i−1,bi−1
|+ |Sw′

i,bi
| − |A′

i−1〈pi, bi−1〉| − |Pi|. (4)

If x(bi−1) ≤ x(w′
i), the right-hand side of (4) is at most |Sw′

i−1,bi−1
|+ |Sw′

i,bi
| ≤

|Sw′
i−1,bi

|. If, however, x(bi−1) > x(w′
i) (as is the case in Fig. 4), because the

curve Sw′
i,bi−1

is convex and inside Pi+A′
i−1〈pi, bi−1〉, it follows that the right-

hand side of (4) is at most |Sw′
i−1,bi−1

|+ |Sw′
i,bi

| − |Sw′
i,bi−1

| = |Sw′
i−1,bi

|. Either
way, we have that

|Pi−1|+ |A′
i−1〈pi−1, pi〉|+ |A′

i〈pi, bi〉| ≤ |Sw′
i−1,bi

| = |Sw′
i−1,w

′
i
|+ |Sw′

i,bi
|.

C′
i−1

C′
i

SSwSS ′
i−1,bi

1

w′
i−1

bi−1w′
i−1

w′
i

bi

pi

w′
i

Fig. 4. Illustration of the case when C′
i−1 is of type A and C′

i is of type A1. Curve
Pi−1 +A′

i−1〈pi−1, pi〉 +A′
i〈pi, bi〉 is shown in dark gray whereas curves Sw′

i−1,bi
,Pi,

and A′
i−1〈pi, bi−1〉 are shown in light gray. Curve Sw′

i
,bi−1

is shown in black.
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C′
i−1

C′
i

θ

α

w′
i−1

f i−1
w′

i−1

O′
i−1

w′
i

pi = fi−1

w′
i

O′
i

p′i

Fig. 5. Illustration of the case of when C′
i−1 is of type B and |y(pi−1) − y(pi)| ≥

|y(pi−1) − y(fi)|. The dark gray path represents the sum |Pi−1| + |A′
i−1〈pi−1pi〉| +

|y(fi−1)|. The light gray path represents the sum |Sw′
i−1

,w′
i
| + |Pi| + δ|[f i−1f i]| (the

last term is represented by the dashed line).

If we subtract |A′
i〈pi, bi〉| from both sides, we get (3).

• C′
i−1 is of type B and C′

i is of type A or B. In this case, w′
i−1 = pi−1 and

fi−1 = pi �= fi. We consider two subcases.
• subcase |y(pi−1) − y(pi)| < |y(pi−1) − y(fi)| (omitted due to space con-

straints)
• subcase |y(pi−1)− y(pi)| ≥ |y(pi−1)− y(fi)| (refer to Fig. 5) If we assume

that pi lies above st, then fi must lie below st. By Lemma 4, x(pi) = x(fi−1) ≤
x(fi), and by Lemma 2, the region inside C′

i−1 and to the right of line x = x(pi)
contains no point of P . Therefore, fi is outside of C′

i−1.
Recall that by Lemma 3, if θ = ∠w′

i−1O
′
i−1pi and α = ∠w′

iO
′
ipi, then 0 ≤ α ≤

θ ≤ 3π/2. Without loss of generality, assume that the radius of C′
i−1 is 1. Let

R = y(w′
i). If C

′
i is of type A1, then its radius is R and we have |Pi| = (1 +α)R

and [w′
if i−1] = (1− cos(α))R. If C′

i is of type A2 or B then α = 0, pi = w′
i, and

w′
i = f i−1, and we also have that |Pi| = (1+α)R and [w′

if i−1] = (1− cos(α))R.
Let D be the difference between the right-hand side and the left-hand side of

inequality (2). Then
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D = |Sw′
i−1,w

′
i
|+ |Pi|

+ δ|[f i−1f i]|+ |y(fi)| − |Pi−1| − |A′
i−1〈pi−1pi〉| − |y(fi−1)|

= (1 + 3π/2)(1− cos(θ)− (1− cos(α))R) + (1 + α)R

+ δ|[f i−1f i]|+ |y(fi)| − θ − sin(θ)

= R[1 + α− (1 + 3π/2)(1− cos(α))] + (1 + 3π/2)(1− cos(θ))

+ δ|[f i−1f i]|+ |y(fi)| − θ − sin(θ).

(5)

It remains to prove that D ≥ 0.
We first consider the case when θ ≤ π/4, which, by Lemma 3, implies that

α < π/4 as well. Let p′i be the intersection, other than pi, of circle C′
i−1 with

the horizontal line through pi. Since θ ≤ π/4, we have x(p′i) > x(O′
i).

Since |y(pi−1) − y(pi)| < |y(pi−1) − y(p)| for all points p outside of C′
i−1

such that x(pi) ≤ x(p) ≤ x(p′i), it follows that x(fi) ≥ x(p′i). Note that
∠w′

i−1O
′
i−1p

′
i = π − θ. Since |[f i−1f i]| ≥ |[fi−1p

′
i]| = 2 cos(θ) (recall that

pi = fi−1), we have

D ≥ R[1 + α− (1 + 3π/2)(1− cos(α))] + (1 + 3π/2)(1− cos(θ))

+ 2δ cos(θ) − θ − sin(θ).

Let g(α) = 1 + α− (1 + 3π/2)(1− cos(α)). There exists an α0 > π/4 such that
g(α0) = 0 and g(α0) ≥ 0 for all α ∈ [0, α0]. Therefore, to prove that D ≥ 0 (and
therefore that inequality (2) holds), it is sufficient to prove that

(1 + 3π/2)(1− cos(θ)) + 2δ cos(θ)− θ − sin(θ) ≥ 0.

If we take δ = 0.185043874, we can show that this inequality is true using
elementary calculus arguments.

To complete the proof, it remains to consider the case when θ ∈ [π/4, π]. If
α ≤ α0, from (5) we have that D ≥ (1 + 3π/2)(1− cos(θ))− θ− sin(θ), which is
positive for all θ ∈ [π/4, π]. If α ∈ (α0, π], g(α) is negative and decreasing. Thus,
since α ≤ θ and R < 1, we obtain

D ≥ 1 + θ − (1 + 3π/2)(1− cos(θ)) + (1 + 3π/2)(1− cos(θ))

+ δ|[f i−1f i]|+ |y(fi)| − θ − sin(θ)

≥ 1− sin(θ) + δ|[f i−1f i]|+ |y(fi)|.
This lower bound is trivially positive, hence inequality (2) holds in all cases. 	


4 Lower Bounds

In this section, we provide several lower bounds on the routing and competitive
ratios of online routing on Delaunay triangulations. Due to space limitation,
proofs have been skipped.

Theorem 2. The routing ratio of our routing algorithm on a Delaunay trian-
gulation can be greater than 5.7282.
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Theorem 3. There exists no deterministic k-local routing algorithm on Delaunay
triangulations with routing ratio at most 1.7018 or that is 1.2327-competitive.

Theorem 4. Thereexistsnodeterministick-local routingalgorithmfor theL1-and
L∞-Delaunay triangulations that has a routing ratio less than (2+

√
2/2) ≈ 2.7071

or that is 2+
√
2/2

1+
√
2

≈ 1.1213-competitive.
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Abstract. The (Gromov) hyperbolicity is a topological property of a
graph, which has been recently applied in several different contexts, such
as the design of routing schemes, network security, computational biol-
ogy, the analysis of graph algorithms, and the classification of complex
networks. Computing the hyperbolicity of a graph can be very time con-
suming: indeed, the best available algorithm has running-time O(n3.69),
which is clearly prohibitive for big graphs. In this paper, we provide
a new and more efficient algorithm: although its worst-case complexity
is O(n4), in practice it is much faster, allowing, for the first time, the
computation of the hyperbolicity of graphs with up to 200,000 nodes.
We experimentally show that our new algorithm drastically outperforms
the best previously available algorithms, by analyzing a big dataset of
real-world networks. Finally, we apply the new algorithm to compute the
hyperbolicity of random graphs generated with the Erdös-Renyi model,
the Chung-Lu model, and the Configuration Model.

1 Introduction

In recent years, the analysis of complex networks has provided several significant
results, with a huge amount of applications in sociology, biology, economics, sta-
tistical physics, electrical engineering, and so on. These results are based on the
analysis of very big real-world networks, now made available by improvements in
computer technology and by Internet. One of the major challenges in this field
is to understand which properties distinguish these networks from other kinds
of graphs, like random graphs [25], and which properties distinguish networks of
different kinds [16], in order to classify general and particular behavior.

In this context, a significant role is played by the hyperbolic structure under-
lying a complex network, that is usually not present in random graphs [24,6]. For
instance, if we draw points from a hyperbolic space and we connect nearby points,
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we obtain a graph that shares many properties with real-world networks [21].
Furthermore, the Internet graph can be embedded in the hyperbolic space, pre-
serving some metric properties [26,4].

Consequently, researchers have tried to measure this hyperbolic structure of
complex networks, using Gromov’s definitions of hyperbolicity [15], which works
in any metric space, and does not rely on complicated structures not available
in graphs (geodesics, connections, and so on). Intuitively, this parameter reflects
how the metric space (distances) of a graph is close to the metric space of a tree.
In particular, given an undirected graph G = (V,E) (in this paper, all graphs will
be undirected), the Gromov hyperbolicity of a quadruple of nodes δ(x, y, v, w) is
defined as half the difference between the biggest two of the three sums d(x, y)+
d(v, w), d(x, v)+d(y, w), and d(x,w)+d(y, v), where d(·, ·) denotes the distance
function between two nodes, that is, the lenght of the shortest path connecting
the two nodes. The hyperbolicity of G is δ(G) = maxx,y,v,w∈V δ(x, y, v, w) (the
smaller this value, the more hyperbolic the space is).

Several network properties are connected to the value of the hyperbolicity:
here we will just recall some of them. In [8], it is shown that a small hyper-
bolicity implies the existence of efficient distance and routing labeling schemes.
In [23], the authors observe that a small hyperbolicity, that is, a negative curva-
ture of an interconnection network, implies a faster congestion within the core
of the network itself, and in [18] it is suggested that this property is significant
in the context of network security and can, for example, mitigate the effect of
distributed denial of service attacks. In [12], instead, the hyperbolicity is used
to implement a distance between trees, successively applied to the estimation of
phylogenetic trees. From a more algorithmic point of view, it has been shown
that several approximation algorithms for problems related to distances in graphs
(such as diameter and radius computation [7], and minimum ball covering [9])
have an approximation ratio which depends on the hyperbolicity of the input
graph. Moreover, some approximation algorithms with constant approximation
factor rely on a data-structure whose size is proportional to the hyperbolicity of
the input graph [20]. More in general, the hyperbolicity is connected to other im-
portant graph quantities, like treelength [7] and chordality [29]. In the field of the
analysis of complex networks, the hyperbolicity and its connection with the size
and the diameter of a network has been used in [2] in order to classify networks
into three different classes, that is, strongly hyperbolic, hyperbolic, and non-
hyperbolic, and to apply this classification to a small dataset of small biological
networks (a more extensive analysis of the hyperbolicity of real-world networks
has been also recently done in [5]). In general, it is still not clear whether the
hyperbolicity value is small in all real-world networks (as it seems from [19,2]),
or it is a characteristic of specific networks (as it seems from [1]). Finally, the
hyperbolicity of random graphs has been analyzed in the case of several random
graph models, such as the Erdös-Renyi model [24] and the Kleinberg model [6].
Moreover, in this latter paper, it is stated that the design of more efficient exact
algorithms for the computation of the hyperbolicity would be of interest.
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Indeed, it is clear that the hyperbolicity computation problem is polynomial-
time solvable by the trivial algorithm that computes δ(x, y, v, w) for each quadru-
ple of nodes. However, the running-time is O(n4), where n is the number of
nodes, which is prohibitive for real-world networks. The best known algorithm
uses fast (max,min)-matrix multiplication algorithm to obtain a running time
O(n3.69) [14], and it has been shown that hyperbolicity cannot be computed in
O(n3.05) time, unless there exists a faster algorithm for (max,min)-matrix multi-
plication than currently known. Such running times are prohibitive for analysing
large-scale graphs with more than 10,000 nodes.

Recently, new algorithms have been developed [11,10]. Although these algo-
rithms have worst-case running time O(n4), they perform well in practice, making
it possible to compute the hyperbolicity of graphs with up to 50,000 nodes.

In this paper, we propose a new algorithm to compute the hyperbolicity
of a graph, taking some ideas from the algorithm in [11]. The new algorithm
heavily improves the performances through significant speed-ups in the most
time-consuming part. The speed-ups will be so efficient that the running-time
of the new algorithm will be dominated by the pre-processing part, which needs
time O(mn), where m is the number of edges (we assume the input graph to be
connected, and consequently m + n = O(m)). This way, the O(n4) bottleneck
is almost removed, at least in practical instances. For this reason, we will be
able for the first time to compute the hyperbolicity of graphs with up to 200,000
nodes. We will experimentally show these claims by analyzing a big dataset of
real-world networks of different kinds. Finally, we apply our algorithm to the
computation of the hyperbolicity of random graphs. In particular, in the Chung-
Lu model, we compute the hyperbolicity of graphs with up to 200,000 nodes,
improving previous experiments that stop at 1,100 nodes [13].

In Section 2, we will sketch the main features of the algorithm in [11], in order
to make the paper self-contained. Section 3 will explain how to modify that
algorithm, in order to obtain significant improvements, and Section 4 contains
our experimental results. Finally, in Section 5, we apply our algorithm to the
analysis of the hyperbolicity of random graphs, as suggested in [6], and Section 6
concludes the paper.

2 CCL: The Currently Best Available Algorithm

In this section, we will sketch the algorithm proposed in [11], whose main ideas
and lemmas will also be used in the next section. This algorithm improves the
trivial algorithm by analyzing quadruples in a specific order, and by cutting the
exploration of the quadruples as soon as some conditions are satisfied. We will
name this algorithm ccl, from the initials of the surnames of the authors. In
particular, for each quadruple (p, q, r, s) of nodes, ccl computes τ(p, q; r, s) as
defined below, instead of computing δ(p, q, r, s).

τ(p, q; r, s) =
d(p, q) + d(r, s) −max{d(p, r) + d(q, s), d(p, s) + d(q, r)}

2
.
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Algorithm 1: Hyperbolicity algorithm proposed in [11], ccl.
Let P = ({x1, y1}, . . . , {xN , yN}) be the list of far apart pairs, in decreasing
order of distance.
δL ← 0;
for i ∈ [1, N ] do

if d(xi, yi) ≤ 2δL then
return δL;

for j ∈ [1, i− 1] do
δL ← max(δL, τ (xi, yi;xj , yj));

return δL;

Note that δ(G) = maxp,q,r,s∈V τ(p, q; r, s), because if d(p, q)+ d(r, s) is the max-
imum sum, then τ(p, q; r, s) = δ(p, q, r, s), otherwise τ(p, q; r, s) < 0.

Lemma 1 (Lemma 3.2 of [11]). For any quadruple (p, q, r, s) of nodes,
2τ(p, q; r, s) ≤ min(d(p, q), d(r, s)).

In order to exploit this lemma, ccl stores all the N = n(n−1)
2 pairs of nodes

inside a sequence P = ({x1, y1}, . . . , {xN , yN}), in decreasing order of distance
(that is, if d(xi, yi) > d(xj , yj), then i < j). For each i, ccl iterates over all pairs
{xj , yj} with j < i, and computes τ(xi, yi;xj , yj), storing the maximum value
found in a variable δL (clearly, δL is a lower bound for δ(G)). Even if iterating
over the whole sequence P would lead us to the trivial algorithm, by applying
Lemma 1 we may cut the exploration as soon as d(xi, yi) ≤ 2δL, because the τ
value of all remaining quadruples is at most d(xi, yi).

A further improvement is provided by the following lemma.

Lemma 2 ([28]). Let x, y, v, w be four nodes, and let us assume that there exists
an edge (x, x′) such that d(x′, y) = d(x, y)+1. Then, τ(x, y; v, w) ≤ τ(x′, y; v, w).

Definition 1. A pair {x, y} is far apart if there is no edge (x, x′) such that
d(x′, y) = d(x, y) + 1 and no edge (y, y′) such that d(x, y′) = d(x, y) + 1.

By Lemma 2, ccl only needs to analyze far apart pairs, and, hence, in the
following we will denote by P (respectively, N) the list (number) of far apart
pairs. The pseudo-code of ccl is provided in Algorithm 1.

Other improvements of this algorithm involve pre-processing the graph: first
of all, we may analyze each biconnected component separately [11, Section 2],
then, we may decompose the graph by modular decomposition, split decompo-
sition [28], and clique decomposition [10].

3 HYP: The New Algorithm

In this section, we propose a new algorithm, that we will call hyp, that improves
upon Algorithm 1 by further reducing the number of quadruples to consider.
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Algorithm 2: The new algorithm, hyp
Let P = ({x1, y1}, . . . , {xN , yN}) be the ordered list of far apart pairs.
δL ← 0;
mate[v]← ∅ for each v;
for i ∈ [1, N ] do

if d(xi, yi) ≤ 2δL then
return δL;

(acceptable , valuable ) ← computeAccVal ();
for v ∈ valuable do

for w ∈ mate[v] do
if w ∈ acceptable then

δL ← max(δL, τ (xi, yi; v, w));

add yi to mate[xi];
add xi to mate[yi];

return δL

3.1 Overview

The new algorithm hyp speeds-up the inner for loop in Algorithm 1, by decreas-
ing the number of pairs to be analyzed. In particular, let us fix a pair (xi, yi) in
the outer for loop and a lower bound δL: a node v is (i, δL)-skippable or simply
skippable if, for any w, τ(xi, yi; v, w) ≤ δL. It is clear that if a node v is skip-
pable, the algorithm could skip the analysis of all quadruples containing xi, yi,
and v. Even if it is not easy to compute the set of skippable nodes, we will define
easy-to-verify conditions that imply that a node v is skippable (Section 3.2): a
node not satisfying any of these conditions will be named (i, δL)-acceptable or
acceptable . Our algorithm will then discard all quadruples (xi, yi, v, w) where
either v or w is not acceptable.

Furthermore, we will define another condition such that if τ(xi, yi; v, w) > δL,
then either v or w must satisfy this condition (an acceptable node also satisfying
this condition will be defined (i, δL)-valuable or valuable ). Hence, our algorithm
will not only discard all quadruples (xi, yi, v, w) where either v or w is not
acceptable, but also all quadruples where both v and w are not valuable.

In order to apply these conditions, when analyzing a pair (xi, yi), hyp com-
putes the set of acceptable and valuable nodes in time O(n) (actually, several
nodes are skipped, thanks to implementation tricks, so that the time might be
much smaller). Then, for each valuable node v, it analyzes pairs (v, w) preceding
(xi, yi) such that w is acceptable. For this latter loop, we record for each node
v the list mate[v] of previously seen pairs (v, w), and then test each time if w is
acceptable. The pseudo-code for hyp is provided by Algorithm 2.

Lemma 3. The algorithm is correct.

Proof. First of all, δL ≤ δ(G) during the whole algorithm, so we only have to rule
out the possibility that the output is strictly smaller than δ(G). Let x, y, v, w be
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a quadruple such that τ(x, y; v, w) = δ(G). We may assume without loss of gen-
erality that {x, y} and {v, w} are far-apart (otherwise, we change the pairs using
Lemma 2), and that {v, w} is before {x, y} in the ordering of pairs (otherwise, we
swap the pairs). By Lemma 1, d(x, y) ≥ 2δ(G) ≥ 2δL at any step of the algo-
rithm: if 2δL = d(x, y) ≥ 2δ(G) at some step, the algorithm is correct because
δL never decreases. Otherwise, the pair {x, y} is analyzed at some step i, v and w
will be (i, δL)-acceptable, and either v orw will be (i, δL)-valuable (by definition of
acceptable and valuable). Hence, in the inner loop, τ(x, y; v, w) is computed, and
afterwards δL = τ(x, y; v, w) = δ(G). ��

It remains to define which nodes are acceptable and which nodes are valuable,
which is the topic of the following section.

3.2 Acceptable and Valuable Nodes

First of all, let us fix i and δL, since in this section they play the role of pa-
rameters. Moreover, for the sake of clarity, we will denote xi and yi simply by
x and y. The following lemmas will provide conditions implying that v is skip-
pable, that is, there is no pair {v, w} appearing in P before {x, y} such that
τ(x, y; v, w) > δL. An acceptable node must not satisfy these conditions. The
first lemma holds by definition of skippable.

Lemma 4. If v does not belong to any (far-apart) pair {v, w} before {x, y} in
P, then v is skippable.

A second possibility to prove that a node is skippable is given by a simple
corollary of the following lemma.

Lemma 5 ([11]). For each quadruple of nodes (x, y, v, w), τ(x, y; v, w) ≤
mina,b∈{x,y,v,w} d(a, b).

Corollary 1. If d(x, v) ≤ δL or d(y, v) ≤ δL, then v is skippable.

Proof. If the assumptions are satisfied, for each w, τ(x, y; v, w) ≤ d(x, v) ≤ δL,
or τ(x, y; v, w) ≤ d(y, v) ≤ δL.

The next lemmas make use of the notion of the eccentricity e(v) of a node,
defined as maxw∈V d(v, w).

Lemma 6. If 2e(v)− d(x, v)− d(y, v) < 4δL + 2− d(x, y), then v is skippable.

Proof. By contradiction, let us suppose that there exists a node w such that δL <
τ(x, y; v, w). Then, 2δL + 1 ≤ 2τ(x, y; v, w) = d(x, y) + d(v, w) −max(d(x, v) +
d(y, w), d(x,w) + d(y, v)) ≤ d(x, y) + d(v, w) − 1

2 (d(x, v) + d(y, w) + d(x,w) +
d(y, v)) ≤ d(x, y) + e(v) − 1

2 (d(x, v) + d(y, v)) − 1
2d(x, y). By rearranging this

inequality, we would contradict the hypothesis. ��
Lemma 7. If e(v)+d(x, y)−3δL− 3

2 < max{d(x, v), d(y, v)}, then v is skippable.



On Computing the Hyperbolicity of Real-World Graphs 221

Proof. By contradiction, let us suppose that there exists a node w such that
δL < τ(x, y; v, w). By Corollary 1, d(y, w) > δL, that is, d(y, w) ≥ δL + 1

2 .
Consequently, 2δL + 1 ≤ 2τ(x, y; v, w) = d(x, y) + d(v, w) − max(d(x, v) +
d(y, w), d(x,w) + d(y, v)) ≤ d(x, y) + d(v, w) − d(x, v) − d(y, w) ≤ d(x, y) +
e(v) − d(x, v) − δL − 1/2. By exchanging the roles of x and y, we obtain
2δL+1 ≤ d(x, y) + e(v)− d(y, v)− δL − 1

2 . These two inequalities contradict the
hypothesis. ��
Definition 2. A node is acceptable if it does not satisfy the assumptions of
Lemmas 4, 6 and 7 and Corollary 1.

Remark 1. Lemma 4 can be verified “on the fly”, by keeping track of already-seen
nodes. The other items are clearly verifiable in time O(1) for each node, and con-
sequently the running-time of this operation is O (|{v ∈ V : ∃{v, w} < {x, y}}|),
which is less than or equal to O(n).

Remark 2. A variation of hyp verifies on the fly Lemma 7 and not Lemma 4.
At the beginning of the algorithm, for each node x, we pre-compute a list
of all nodes v in decreasing order of e(v) − d(x, v) (in time O(n2 logn)).
Then, when computing acceptable nodes, we scan the list corresponding to
x, and we stop as soon as we find a node v such that e(v) + d(x, y) −
3δL − 3

2 < d(x, v). In this case, the running-time of this operation is
O (|{v ∈ V : e(v) + d(x, y) − 3δL − 3

2 ≥ d(x, v)}|). Since we may swap the roles
of x and y, at each step, our algorithm chooses between x and y the less central
node, according to closeness centrality measure [3].

The two remarks above correspond to two versions of our algorithm hyp, that
we will call hyp1 and hyp2, respectively. Now we need to define valuable nodes,
using the following lemma, which involves a given node c (formally, we would
need to write c-valuable instead of valuable). All choices of c are feasible, but if c
is “central”, the running-time improves. We decided to set c as the most central
node according to closeness centrality measure [3].

Lemma 8. Let c be any fixed node, and, for any node z, let fc(z) :=
1
2 (d(x, y) − d(x, z) − d(z, y)) + d(z, c). Then, for any two nodes v and w, we
have 2τ(x, y; v, w) ≤ fc(v) + fc(w).

Proof. We have that, 2τ(x, y; v, w) = d(x, y) + d(v, w) − max(d(x, v) +
d(y, w), d(x,w)+d(y, v)) ≤ d(x, y)+d(v, c)+d(c, w)−(d(x, v)+d(y, w)+d(x,w)+
d(y, v))/2 = fc(v) + fc(w). The lemma is thus proved. ��
As a consequence, if 2τ(x, y; v, w) > 2δL, either fc(v) > δL or fc(w) > δL. This
justifies the following definition.

Definition 3. An acceptable node v is c-valuable or valuable if fc(v) > δL.

Hence, if τ(x, y; v, w) > δL, then at least one of v and w must be valuable.

Remark 3. It is possible to compute if an acceptable node is valuable in time
O(1), so there is no time overhead for the computation of valuable nodes.
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4 Experimental Results

In this section, we compare the best algorithm available until now [11] (ccl,
whose pseudo-code is Algorithm 1), with the two versions of our new algorithm,
denoted as hyp1 and hyp2 (using Remark 1 and Remark 2, respectively). Other
available algorithms are the trivial algorithm, which is significantly outperformed
by ccl in [11], and the algorithm in [14]. This latter is not practical, because it
is based on fast matrix multiplication: indeed using O(n3) matrix multiplication
implementation we get the same time of the trivial algorithm. As far as we know,
no other competitors are available.

Both ccl and our algorithm, in both versions hyp1 and hyp2, share the
following preprocessing (see [11]):

– compute biconnected components to treat them separately;
– computing the distances between all pairs of nodes;
– computing and sorting the list P of all far-apart pairs.

All the operations above need time O(m·n) and they will be not part of the com-
parison since they are common to all three algorithms. Our tests were performed
on an AMD Opteron(TM) Processor 6276, running Fedora release 21. Our source
code has been written in C and compiled with gcc 4.9.2 with optimization level
3. The code is available at piluc.dsi.unifi.it/lasagne.

We have collected a dataset composed by 62 graphs (available with the code)
of different kinds: social, peer-to-peer, autonomous systems, citation networks,
and so on. The networks were selected from the well-known SNAP dataset
(http://snap.stanford.edu/), and from CAIDA (http://www.caida.org).
The number of nodes varies between 4,039 and 265,009 (1,396 and 50,219 af-
ter the preprocessing).
Number of quadruples. The first comparison analyzes how many quadruples are
processed before the hyperbolicity is computed - note that hyp1 and hyp2 an-
alyze the same number of quadruples, since the only difference between them
is how acceptable and valuable nodes are computed. The results are summa-
rized in Figure 1a, which plots the number of quadruples processed by the new
algorithms with respect to ccl. More precisely, for each graph G, we draw a
point in position (x, y) if ccl analyzed x quadruples and both hyp1 and hyp2
analyzed y quadruples to compute the hyperbolicity of G. We observe that the
new algorithm analyzes a much smaller number of quadruples, ranging from one
hundred to few millions, drastically outperforming ccl, which often analyzes
millions of millions of quadruples, and even billions of millions. Of course, the
new algorithm is never outperformed, because the quadruples analyzed by hyp1
and hyp2 are always a subset of the quadruples analyzed by ccl.
Running time. Since the computation of acceptable and valuable nodes has a
non-negligible impact on the total running time, for a more fair comparison,
we have also considered the running time of the algorithms. In Figure 1b we
report the time used by hyp1 and hyp2 with respect to the time used by ccl.
Also in this case, both hyp1 and hyp2 drastically outperform ccl: the running-
time is lower in most of the graphs, and the only cases where ccl is faster

piluc.dsi.unifi.it/lasagne
http://snap.stanford.edu/
http://www.caida.org
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Fig. 1. Comparisons of quadruples analyzed and running-time of hyp1, hyp2, and
ccl. The line y = x separates the region where ccl is better (above) from the region
where hyp1 and hyp2 are better (below).

need a very small amount of time (a few seconds at most). On the other hand,
the new algorithms are much faster when the total time is big: for instance,
on input as-20120601.caida, ccl needs at least one week (this lower bound
was computed from the actual hyperbolicity and all the distances between the
nodes), while hyp1 is 367 times faster, needing less than half an hour, and hyp2
is more than 5,000 times faster, needing less than two minutes. Similar results
hold in all graphs where the total running-time is big. This does not only mean
that we have improved upon ccl, but also that the improvement is concentrated
on inputs where the running-time is high. Furthermore, we observe that on all
graphs the total running time of algorithm hyp2 is less than half an hour: this
means that, even if the worst-case complexity of this algorithm is O(n4), in
practice, the time used by the second part is comparable to the preprocessing
time, which is O(m · n). Hence, from a practical point of view, since real-world
graphs are usually sparse, the algorithm may be considered quadratic.

5 Synthetic Graphs

Recently, a different line of research has tried to compute asymptotic values
for the hyperbolicity of random graphs, when the number of nodes n tends to
infinity. The simplest model considered is the Erdös-Renyi random graph Gn,m,
that is, we choose a graph with n nodes and m edges uniformly at random. In
this model, it has been proved that the hyperbolicity tends to infinity [24], and,
if m is “much bigger than n”, exact asymptotics for δ have been computed [22].
Instead, the hyperbolicity of sparse Erdös-Renyi graphs is not known, and it is
mentioned as an open problem in [22]. Among the other possible models, the
Chung-Lu model and the Configuration Model stand out for their simplicity
(for more background, we refer to [17]). On these models, as far as we know, it
was only proved [27] that the hyperbolicity of a graph generated through the
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Fig. 2. Mean and Standard Deviation of the ratio 2δ
D

at growing values of n.

Chung-Lu model tends to infinity if the maximum and minimum degree are
“close to each other” (meaning that their ratio is smaller than 2

1
3 ). Other models

were analyzed in [6]: also in that paper, the estimation of the hyperbolicity of
random graphs of different kind is mentioned as an open problem.

Following [6], we use our algorithm to shed some light on the behavior of
these random graphs, at least experimentally, in order to help formulating sen-
sible conjectures on possible asymptotics. In particular, we have restricted our
attention to four examples, chosen among the models where exact asymptotics
have not been proved: Erdös-Renyi random graphs with m = 3n and m = 5n,
and graphs generated through the Chung-Lu and the Configuration Model, with
power-law degree distribution with exponent 2.5 (similar to the degree distribu-
tion of several real-world networks [25]). For each number of nodes n = k · 10i
where k < 10 and i ≥ 2, we have generated 10 graphs and we have computed
their hyperbolicity. More precisely, we have computed the value 2δ

D , where D is
the diameter, which is always between 0 and 1 because of Lemma 1: this value
might be more interesting than the plain hyperbolicity value, since, for most
models, asymptotics for the diameter are known. We believe that this ratio can
then be used to formulate sensible conjectures. Figure 2 shows the average value
of 2δ

D and the corresponding standard error over the 10 measures performed.
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We have been able to compute the hyperbolicity of Erdös-Renyi graphs with
up to 60, 000 nodes, and graphs generated with the Configuration Model or
the Chung-Lu model with up to 200, 000 nodes. In all models considered, it is
quite evident that the ratio 2δ

D does not tend to 0, and consequently δ = Θ(D).
Furthermore, the ratio in Erdös-Renyi graphs is not very far from 1, even if the
results are not precise enough to discriminate between δ = D

2 or δ = cD for
some c < 1

2 . Instead, in graphs generated through the Configuration Model or
the Chung-Lu model, this ratio seems to tend to a value between 0.5 and 0.7.

6 Conclusion and Open Problems

In this paper, we have provided a new and more efficient algorithm to compute
the hyperbolicity of a graph: even if the running time is O(n4) in the worst
case, it turns out to be O(m · n) in practice. As an example of application,
we have studied the hyperbolicity of random graphs. The space requirement
of the algorithm, as well as of its predecessors, is O(n2): in our case this is
needed to store all distances and the list of far-apart pairs. It would be nice to
better deal with memory usage (for instance, working on the disk) or avoiding
the computation and storage of all pairwise distances by using lower and upper
bounds instead. Furthermore, this algorithm may be parallelized, by analyzing
at the same time different nodes v, or different pairs (x, y). An open issue is
determining how parallelization can improve performances. The algorithm can
be adapted to deal with weighted graphs. On the other hand, a widely accepted
definition of hyperbolicity for directed graphs is still missing. Finally, it would be
nice to prove more precise asymptotics for the hyperbolicity of random graphs.
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Abstract. Given k pairs of terminals {(s1, t1), . . . , (sk, tk)} in a graph
G, the min-sum k vertex-disjoint paths problem is to find a collection
{Q1, Q2, . . . , Qk} of vertex-disjoint paths with minimum total length,
where Qi is an si-to-ti path between si and ti. We consider the problem
in planar graphs, where little is known about computational tractability,
even in restricted cases. Kobayashi and Sommer propose a polynomial-
time algorithm for k ≤ 3 in undirected planar graphs assuming all ter-
minals are adjacent to at most two faces. Colin de Verdière and Schrijver
give a polynomial-time algorithm when all the sources are on the bound-
ary of one face and all the sinks are on the boundary of another face
and ask about the existence of a polynomial-time algorithm provided all
terminals are on a common face.

We make progress toward Colin de Verdière and Schrijver’s open ques-
tion by giving an O(kn5) time algorithm for undirected planar graphs
when {(s1, t1), . . . , (sk, tk)} are in counter-clockwise order on a common
face.

1 Introduction

Given k pairs of terminals {(s1, t1), . . . , (sk, tk)}, the k vertex-disjoint paths
problem asks for a set of k disjoint paths {Q1, Q2, . . . , Qk}, in which Qi is a path
between si and ti for all 1 ≤ i ≤ k. As a special case of the multi-commodity
flow problem, computing vertex disjoint paths has found several applications,
for example in VLSI design [KvL84], or network routing [ORS93, SM05]. It is
one of Karp’s NP-hard problems [Kar74] even for undirected planar graphs if k
is part of the input [MP93]. However, there are polynomial time algorithms if
k is a constant for general undirected graphs [RS95,KW10]. In general directed
graphs, the k-vertex-disjoint paths problem is NP-hard even for k = 2 [FHW80]
but is fixed parameter tractable with respect to parameter k in directed planar
graphs [Sch94,CMPP13].

Surprisingly, much less is known for the optimization variant of the prob-
lem, minimum-sum k vertex-disjoint paths problem (k-min-sum), where a set of
disjoint paths with minimum total length is desired. For example, the 2-min-
sum problem and the 4-min-sum problem are open in directed and undirected
planar graphs, respectively, even when the terminals are on a common face;

c© Springer-Verlag Berlin Heidelberg 2015
N. Bansal and I. Finocchi (Eds.): ESA 2015, LNCS 9294, pp. 227–238, 2015.
DOI: 10.1007/978-3-662-48350-3_20
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neither polynomial-time algorithms nor hardness results are known for these
problems [KS10]. Bjorklund and Husfeldt gave a randomized polynomial time
algorithm for the min-sum two vertex-disjoint paths problem in general undi-
rected graphs [BH14]. Kobayashi and Sommer provide a comprehensive list of
similar open problems (Table 2 [KS10]).

One of a few results in this context is due to Colin de Verdière and
Schrijver [VS11]: a polynomial time algorithm for the k-min-sum problem in
a (directed or undirected) planar graph, given all sources are on one face and
all sinks are on another face [VS11]. In the same paper, they ask about the ex-
istence of a polynomial time algorithm provided all the terminals (sources and
sinks) are on a common face. If the sources and sinks are ordered so that they
are in the order s1, s2, . . . , sk, tk, tk−1, . . . , t1 around the boundary, then the k-
min-sum problem can be solved by finding a min-cost flow from s1, s2, . . . , sk
to tk, tk−1, . . . , t1. For k ≤ 3 in undirected planar graphs with the terminals
in arbitrary order around the common face, Kobayashi and Sommer give an
O(n4 logn) algorithm [KS10]1. In this paper, we give the first polynomial-time
algorithm for an arbitrary number of terminals on the boundary of a common
face, which we call F , so long as the terminals alternate along the boundary.
Formally, we prove:

Theorem 1. There exists anO(kn5) time algorithm to solve the k-min-sum prob-
lem, provided that the terminals s1, t1, s2, t2, . . . , sk, tk are in counter-clockwise
order on the boundary of the graph.

Definitions and assumptions. We use standard notation for graphs and planar
graphs; see full version for details. For simplicity, we assume that the terminal
vertices are distinct. One could imagine allowing ti = si+1; our algorithm can
be easily modified to handle this case. We also assume that the shortest path
between any two vertices of the input graph is unique as it significantly sim-
plifies the presentation of our result; this assumption can be enforced using a
perturbation technique [MVV87].

2 Structural Properties

In this section, we present fundamental properties of the optimum solution that
we exploit in our algorithm. To simplify the exposition, we search for pairwise
disjoint walks rather than simple paths and refer to a set of pairwise disjoint
walks connecting corresponding pair of terminals as a feasible solution. Indeed,
in an optimal solution, the walks are simple paths.

Let {Q1, Q2, . . . , Qk} be an optimal solution, where Qi is a si-to-ti path and
let {P1, P2, . . . , Pk} be the set of shortest paths, where Pi is the si-to-ti shortest
path. These shortest paths together with the boundary of the graph, ∂G, define
internally disjoint regions of the plane. Specifically, we define Ri to be the subset

1 Kobayashi and Sommer also describe algorithms for the case where terminals are on
two different faces, and k = 3.
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of the plane bounded by the cycle Pi∪Ci, where Ci is the si-to-ti subpath of ∂G
that does not contain other terminal vertices. The following lemmas constrain
the behavior of the optimal paths. In the interest of space, the proofs of these
lemmas are in the full version of our paper.

Lemma 1. For all 1 ≤ i ≤ k, the path Qi is inside Ri.

We take the vertices of Pi and Qi to be ordered along these paths from si to ti.

Lemma 2. For u, v ∈ Qi ∩Pi, u precedes v in Pi if and only if u precedes v in Qi.

Fig. 1. (left) A 4-min sum instance; regions are shaded and borders are green. (right)
A feasible solution; Type I and Type II subpaths are blue and red, respectively.

We call Ri ∩ Rj the border of Ri and Rj and denote it Bi,j . Note that a
border can be a single vertex. Since we assume shortest paths are unique, Bi,j

is a single (shortest) path. Figure 1 illustrates borders for a 4-min-sum instance.
The following lemma bounds the total number of borders.

Lemma 3. There are O(k) border paths.

Consider a region Ri and consider the borders along Pi, Bi,i1 , Bi,i2 , . . . , Bi,it .
Observe that the intersections of the regions Ri1 , Ri2 , . . . , Rit with ∂G must be
in a clockwise order. Let ι1, . . . , ι� be the subsequence of i1, . . . , it of indices to
regions that intersect Qi. For j ∈ {ι1, . . . , ι�}, let xj and yj be the first and last
vertex of Qi in Bi,j . Additionally, define y0 = si and x�+1 = ti. We partition Qi

into a collection of subpaths of two types as follows.

Type I : For h = 0, . . . , �, Qi[yh, xh+1] is a Type I subpath in region Ri.
Type II : For h = 1, . . . , �−1, Qi[xh, yh] is a Type II subpath in region Ri. We

say that Qi[xh, yh] is on the border Bi,j containing xh and yh.

By this definition, all Type I paths are internally disjoint from all borders. By
Lemma 2, each Type II path is internally disjoint from all borders except pos-
sibly the border that contains its endpoints, with which it may have several
intersecting points. See Figure 1 for an illustration of Type I and II paths.

The following lemma demonstrates a key property of Type I paths, implying
that (given their endpoints) they can be computed efficiently via a shortest path
computation:
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Lemma 4. Let α be a Type I subpath in region Ri. Then α is the shortest path
between its endpoints in Ri that is internally disjoint from all borders.

A Type II path has a similar property if it is the only Type II path on the
border that contains its endpoints.

Lemma 5. Let β be a Type II subpath in region Ri on border Bi,j. Suppose
there is no Type II path on Bi,j inside Rj. Then β is the subpath of Bi,j between
its endpoints.

The following lemma reveals a relatively more sophisticated structural prop-
erty of Type II paths on shared borders.

Lemma 6. Let β and γ be Type II subpaths in Ri and Rj on Bi,j, respectively,
let xi and yi be the endpoints of β, and let xj and yj be the endpoints of γ.
Then, {β, γ} is the pair of paths with minimum total length with the following
properties:

(1) β is an xi-to-yi path inside Ri, and it is internally disjoint from all borders
except possibly Bi,j [xi, yi].

(2) γ is an xj-to-yj path inside Rj, and it is internally disjoint from all borders
except possibly Bi,j [xj , yj ].

3 Algorithmic Toolbox

In this section, we describe algorithms to compute paths of Type I and II for
given endpoints. These algorithms are key ingredients of our strongly polynomial
time algorithm described in the next section. More directly, they imply an nO(k)

time algorithm via enumerating the endpoints, which is sketched at the end of
this section.

Each Type I path can be computed in linear time using the algorithms of Hen-
zinger et al. [HKRS97]; they can also be computed in bulk in O(n log n) time
using the multiple-source shortest path algorithm of Klein [Kle05] (although
other parts of our algorithms dominate the shortest path computation). Simi-
larly, a Type II path on a border Bi,j can be computed in linear time provided
it is the only path on Bi,j . Computing pairs of Type II paths on a shared border
is slightly more challenging. To achieve this, our algorithm reduces this problem
into a 2-min sum problem that can be solved in linear time via a reduction to
the minimum-cost flow problem. The following lemma is implicit in the paper of
Kobayashi and Sommer [KS10].

Lemma 7. There exists a linear time algorithm to solve the 2-min sum problem
on an undirected planar graph, provided the terminals are on the outer face.

We reduce the computation of Type II paths to 2-min sum. The following lemma
is a slightly stronger form of this reduction, which finds application in our
strongly polynomial time algorithm.
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Lemma 8. Let Ri and Rj be two regions with border Bi,j and let xi, yi ∈ Pi

and xj , yj ∈ Pj. A pair of paths (β, γ) with total minimum length and with the
following properties can be computed in linear time.

1. β is an xi-to-yi path inside Ri, and it is internally disjoint from all borders
except possibly Pi[xi, yi] ∩Bi,j.

2. γ is an xj-to-yj path inside Rj, and it is internally disjoint from all borders
except possibly Pj [xj , yj] ∩Bi,j.

3.1 An nO(k) Time Algorithm

The properties of Type I and II paths imply a näıve nO(k) time algorithm,
which we sketch here. An optimal solution defines the endpoints of Type I and
Type II paths, so we can simply enumerate over which borders contain endpoints
of Type I and II paths and then enumerate over the choices of the endpoints.
Consequently, there are zero, two, or four (not necessarily distinct) endpoints of
Type I and II paths on Bi,j , or

1 +

(
�(Bi,j)

2

)
+

(
�(Bi,j)

4

)

possibilities, which is O(n4) since �(Bi,j) = O(n). Since there are O(k) borders
(Lemma 3), there are nO(k) endpoints to guess. Given the set of endpoints,
we compute a feasible solution composed of the described Type I and II paths
or determines that no such solution exists. Since Type I and II paths can be
computed in polynomial time, the overall algorithm runs in nO(k) time.

4 A Fully Polynomial Time Algorithm

We give an O(kn5)-time algorithm via dynamic programming over the regions.
For two regions Ri and Rj that have a shared border Bi,j , Ri and Rj separate
the terminal pairs into two sets: those terminals s�, t� for � = i + 1, . . . , j − 1
and sm, tm for m = j + 1, . . . , k, 1, . . . , i − 1 (for i < j). Any s�-to-t� path that
is in region R� cannot touch any sm-to-tm path that is in region Rm since R�

and Rm are vertex disjoint. Therefore any influence the s�-to-t� path has on
the sm-to-tm path occurs indirectly through the si-to-ti and sj-to-tj paths. Our
dynamic program is indexed by the shared borders Bi,j and pairs of vertices on
(a subpath of) Pi and (a subpath of) Pj ; the vertices on Pi and Pj will indicate
a last point on the boundary of Ri and Rj that a (partial) feasible solution uses.

We use a tree to order the shared borders for processing by the dynamic
program. Since there are O(k) borders (Lemma 3), the dynamic programming
table has O(kn2) entries. We formally define the dynamic programming table
below and show how to compute each entry in O(n3) time.
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4.1 Dynamic Programming Tree

Let R = {Ri}ki=1 and B be the set of all borders between all pairs of regions.
We assume, without loss of generality, that R is connected, otherwise we split
the problem into independent subproblems, one for each connected component
of R.

We define a graph T (that we will argue is a tree) whose edges are the shared
borders B between the regionsR. Two distinct borders Bi,j and Bh,� are incident
in this graph if there is an endpoint x of Bi,j and y of Bh,� that are connected
by an x-to-y curve in R

2 \ F that does not touch any region R except at its
endpoints x and y; see Figure 2. Note that this curve may be trivial (i.e. x = y).
The vertices of T (in a non-degenerate instance) correspond one-to-one with
components of R2 \ (F ∪R) (plus some additional trivial components if three or
more regions intersect at a point), or non-regions. The edges of T cannot form a
cycle, since by the Jordan Curve Theorem this would define a disk that is disjoint
from ∂F ; an edge Bi,j in the cycle bounds two regions, one of which would be
contained by the disk, contradicting that each region shares a boundary with
∂F . Therefore T is indeed a tree. We use an embedding of T that is derived
naturally from the embedding of G according to this construction. We use this
tree to guide the dynamic program.

Fig. 2. (left) Thick green segments are borders, thin green curves are in R
2 \ (F ∪ R)

connecting borders that are incident in T . (right) The directed tree T used for dynamic
programming.

By the correspondence of the vertices of T to non-regions, we have:

Observation 2. The borders Bi,j , Bi,�, . . . along a given region Ri form a path
in T . The order of the borders from si to ti along Pi is the same as in the path
in T .

Consider two edges Bi,j and Bh,� that are incident to the same vertex v of T and
that are consecutive in a cyclic order of the edges incident to v in T ’s embedding.
By Observation 2 and the embedding of T , there is a labeling of i, j, h, � such
that:

Observation 3. Either j = h or Bi,j is the last border of Rj along Pj and Bh,�

is the first border of Rh along Ph.
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Root T at an arbitrary leaf. Since R is connected, the leaf of T is non-trivial;
that is, it has an edge Bi,j incident to it. By Observation 2, Bi,j is (w.l.o.g.)
the last border of Ri along Pi and the first border of Rj along Pj . By the
correspondence of the vertices of T to non-regions, and the connectivity of R,
either j = i + 1 or i = 1 and j = k. For ease of notation, we assume that the
terminals are numbered so that i = 1 and j = k. We get:

Observation 4. Every non-root leaf edge of T corresponds to a border Bi,i+1.

We consider the borders to be both paths in G and edges in T . In T we
orient the borders toward the root. In G, this gives a well defined start ai,j and
endpoint bi,j of the corresponding path Bi,j (note that ai,j = bi,j is possible).
By our choice of terminal numbering and orientation of the edges of T , from si
to ti along Pi, bi,j is visited before ai,j , and from sj to tj along Pj , ai,j is visited
before bi,j .

4.2 Dynamic Programming Table

We populate a dynamic programming table Di,j for each border Bi,j . Di,j is
indexed by two vertices x and y: x is a vertex of Pi[bi,j , ti] and y is a vertex
of Pj [sj , bi,j ]. Di,j[x, y] is defined to be the minimum length of a set of vertex-
disjoint paths that connect:

x to ti, sj to y, and sh to th for every h = i+ 1, . . . , j − 1

These paths are illustrated in Figure 3. We interpret y as the last vertex of
Pj [sj , bi,j ] that is used in this sub-solution and we interpret x as the first vertex
of Pi[bi,j , ti] that can be used in this sub-solution (or, more intuitively, the last
vertex of the reverse of Pi[bi,j , ti]). By Lemma 1, each of the paths defining
Di,j [x, y] are contained by their respective region.

Fig. 3. An illustration of the paths defined by Dij [x, y].
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Optimal solution. Given D1,k, we can compute the value of the optimal solution.
By Lemma 4, Q1 and Qk contain a shortest (possibly trivial) path from s1
to a vertex x on P1, and from a vertex y on Pk to tk, respectively. Let y be
the last vertex of Pk[sk, b1,k] that Qk contains and let x be the first vertex of
P1[b1,k, t1] that Q1 contains. Then, by Lemma 4, the optimal solution has length
D1,k[x, y] + �(α(s1, x)) + �(α(y, tk)) where α is a Type I path between the given
vertices. The optimal solution can be computed in O(n2) time by enumerating
over all choices of x and y. Computing all such Type I paths takes O(n2) since
there are O(n) such paths to compute, and each path can be found using the
linear-time shortest paths algorithm for planar graphs [HKRS97].

Base case: Leaf edges of T. Consider a non-root leaf edge of T , which, by Obser-
vation 4, is Bi,i+1 for some i. Then Di,i+1[x, y] is the length of minimum vertex
disjoint x-to-ti and si+1-to-y paths in Ri ∪ Ri+1. By Lemma 8, Di,i+1[x, y] can
be computed in O(n) time for any x and y and so Di,i+1 can be populated in
O(n2) time.

4.3 Non-base Case of the Dynamic Program

Consider a borderBi,j and consider the edges of T that are children ofBi,j . These
edges considered counter-clockwise around their common node of T correspond
to borders Bi1,j1 , Bi2,j2 , . . . , Bit,jt where i ≤ i1 ≤ j1 ≤ · · · ≤ it ≤ jt ≤ j.
For simplicity of notation, we additionally let j0 = i and it+1 = j. Then, by
Observation 3, either j� = i�+1 or Bi�,j� is the last border on Pj� and Bi�+1,j�+1

is the first border on Pi�+1
for � = 0, . . . , t.

An acyclic graph H to piece together sub-solutions. To populate Di,j we create
a directed acyclic graph H with sources corresponding to vertices of Pi[bi,j , ti]
and sinks corresponding to Pj [sj , bi,j ]. A source-to-sink (u-to-v) path in H will
correspond one-to-one with vertex disjoint paths from:

u to ti, sj to v, and sh to th for every h = i+ 1, . . . , j − 1

Here u and v do not correspond to the vertices x and y that index Di,j ; to
these vertex disjoint paths, we will need to append vertex disjoint x-to-u and
v-to-y paths (which can be found using a minimum cost flow computation by
Lemma 8).

The arcs of H are of two types: (a) Type I arcs and (b) sub-problem arcs.
Directed paths in H alternate between these two types of arcs. The Type I arcs
correspond to Type I paths and the endpoints of the Type I arcs correspond
to the endpoints of the Type I paths. Sub-problem arcs correspond to the sub-
solutions from the dynamic programming table and the endpoints of the sub-
problem arcs correspond to the indices of the dynamic programming table (and
so are the endpoints of the incomplete paths represented by the table). Note
that vertices of a border may appear as either the first or second index to the
dynamic programming table; in H , two copies of the border vertices are included
so the endpoints of the resulting sub-solution arcs are distinct. Formally:
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– Type I arcs go from vertices of Pj� to vertices of Pi�+1
for � = 0, . . . , t.

Consider regions Rj� and Ri�+1
. There are two cases depending on whether

or not Rj� = Ri�+1
.

• If Rj� = Ri�+1
, then for every vertex x of Pj� [sj� , bi�,j� ] and every vertex

y of Pj� [bi�+1,j�+1
, tj� ], we define a Type I arc from x to y with length

equal to the length of the x-to-y Type I path.
• If Rj� �= Ri�+1

, then for every vertex x of Pj� [sj� , bi�,j� ] and every vertex
y of Pi�+1

[bi�+1,j�+1
, tj� ], we define a Type I arc from x to y with length

equal to the sum of the lengths of the x-to-tj� and si�+1
-to-y Type I

paths.
– Sub-problem arcs go from vertices of Pi� to vertices of Pj� for � = 1, . . . , t.

For every � = 1, . . . , t and every vertex x of Pi� and vertex y of Pj� (that are
not duplicates of each other), we define a sub-problem arc from x to y with
length equal to Di�,j� [x, y].

Shortest paths in H. By construction of H and the definition of Di�,j� , for a
source u and sink v, we have:

Observation 5. There is a u-to-v path in H with length L if and only if there
are vertex disjoint paths of total length L from u to ti, sj to v, and sh to th for
every h = i+ 1, . . . , j − 1.

See Figure 4 for an illustration of the paths in G that correspond to a source-to-
sink path in H . Let H [u, v] denote the shortest u-to-v path in H (for a source
u and a sink v). We will need to compute H [u, v] for every pair of sources and
sinks. Since every vertex in G appears at most twice in H , the size of H is O(n2)
and for a given sink and for all sources, the shortest source-to-sink paths can be
found in time linear in the size of H using dynamic programming. Repeating for
all sinks results in an O(n3) running time to compute H [u, v] for every pair of
sources and sinks.2

Handling vertices that appear in more than two regions. As indicated, a vertex
c may appear in more than two regions; this occurs when two or more borders
share an endpoint. In the construction above, if c appears in only two regions,
then, c can only be used as the endpoint of two sub-paths (whose endpoints meet
to form a part of an si-to-ti path in the global solution). However, suppose for
example that c appears as an endpoint of both Bi,j and Bi′,j′ and so 4 copies of
c are included in H (two copies for each of these borders). On the other hand,
one need only guess which si-to-ti path c should belong to first and construct H
accordingly. There are only k possibilities to try.

Unfortunately, there may be O(k) shared vertices among the borders Bi1,j2 ,
Bi2,j2 , . . . , Bit,jt involved in populating Di,j . It seems that for each of these
O(k) shared vertices, one would need to guess which si-to-ti path it belongs to,
resulting in an exponential dependence on k.

2 Computing the length of the Type I paths is dominated by O(n3), but can be
improved to O(n log n) time by running Klein’s boundary shortest path algo-
rithm [Kle05] in all regions, resulting in an O(n2) time to construct H .
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Fig. 4. Mutually disjoint walks represented by a directed path in H for a set of incident
borders (green). The blue arcs correspond to the walks represented in sub-problems
and the solid red paths correspond to the Type I paths represented by Type I arcs. The
dotted red paths represent vertex disjoint u-to-x and v-to-y paths that will be added
via a min-cost flow computation.

Here we recall the structure of T : the nodes of T correspond to non-regions:
disks (or points) surrounded by regions. If there are several shared vertices among
the borders, then there is an order of these vertices around the boundary of the
non-region. That is, for a vertex shared by a set of borders, these borders must
be contiguous subsets of Bi1,j2 , Bi2,j2 , . . . , Bit,jt . In terms of the construction of
H , there is a contiguous set of levels that a given shared vertex appears in and
distinct shared vertices participate in non-overlapping sets of levels. For one set
of these levels, we can create different copies of the corresponding section of H .
In each copy we modify the directed graph to reflect which si-to-ti path the
corresponding shared vertex may belong to (see Figure 5). As we have argued,
since distinct shared vertices participate in non-overlapping sets of levels, this
may safely be repeated for every shared vertex. The resulting graph has size
O(kn2) since there are O(k) borders and shared vertices are shared by borders.
The resulting running time for computing all source-to-sink shortest paths in
the resulting graph is then O(kn3).

Computing Di,j from H. To compute Di,j [x, y], we consider all possible u on
Pi[x, ti] and v on Pj [sj , y] and compute the minimum-length vertex disjoint u-
to-x path and v-to-y path that only use vertices that are interior to Ri∪Rj (that
is vertices of Bi,j may be used); by Lemma 8, these paths can be computed in
linear time. Let M [u, v] be the cost of these paths. Then

Di,j [x, y] = min
u∈Pi[x,ti], v∈Pj [sj ,y]

M [u, v] +H [u, v].

As there are O(n2) choices for u and v and M [u, v] can be computed in linear
time, Di,j [x, y] can be computed in O(n3) time given that distances in H have
been computed.
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Fig. 5. (left) H constructed without handling the fact that vertices c1 and c2 (black)
may appear more than twice. The arcs are all directed upwards (arrows are not shown);
green arcs are sub-problem arcs and red arcs are Type I arcs. (right) The levels that
c1 appears in are duplicated, and only one pair of copies of c is kept in each copy of
these levels. The vertex c1 may only be visited twice now on a source to sink path.

Overall running time. For each borderBi,j ,H is constructed and shortest source-
to-sink paths are computed in O(kn3) time. For each x, y ∈ Bi,j , Di,j [x, y] is
computed in O(n3) time. Since there are O(n2) pairs of vertices in Bi,j , Di,j is
computed in O(n5) time (dominating the time to construct and compute shortest
paths in H). Since there are O(k) borders (Lemma 3), the overall time for the
dynamic program is O(kn5).
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Abstract. Given n length-L strings S = {s1, . . . , sn} over a constant
size alphabet Σ together with an integer �, where � ≤ L, the objective
of Consensus Patterns is to find a length-� string s, a substring ti of
each si in S such that

∑
∀i d(ti, s) is minimized. Here d(x, y) denotes the

Hamming distance between the two strings x and y. Consensus Patterns
admits a PTAS [Li et al., JCSS 2002] is fixed parameter tractable when
parameterized by the objective function value [Marx, SICOMP 2008],
and although it is a well-studied problem, improvement of the PTAS
to an EPTAS seemed elusive. We prove that Consensus Patterns does
not admit an EPTAS unless FPT=W[1], answering an open problem
from [Fellows et al., STACS 2002, Combinatorica 2006]. To the best
of our knowledge, Consensus Patterns is the first problem that admits a
PTAS, and is fixed parameter tractable when parameterized by the value
of the objective function but does not admit an EPTAS under plausible
complexity assumptions. The proof of our hardness of approximation
result combines parameterized reductions and gap preserving reductions
in a novel manner.

1 Introduction

Lanctot et al. [16] initiated the study of distinguishing string selection problems
in bioinformatics, where we seek a representative string satisfying some distance
constraints from each of the input strings. The Consensus Patterns problem falls
within this broad class of stringology problems. Given n length-L strings S =
{s1, . . . , sn} over a constant size alphabet Σ together with an integer �, where
� ≤ L, the objective of Consensus Patterns is to find a length-� string s, a length-
� substring ti of each si in S such that

∑
∀i d(ti, s) is minimized. Here d(x, y)

denotes the Hamming distance between the two strings x and y. One specific
application of Consensus Patterns in bioinformatics is the problem of finding
transcription factor binding sites [16,23]. Transcription factors are proteins that
bind to promoter regions in the genome and have the effect of regulating the
expression of one or more genes. Hence, the region where a transcription factor

c© Springer-Verlag Berlin Heidelberg 2015
N. Bansal and I. Finocchi (Eds.): ESA 2015, LNCS 9294, pp. 239–250, 2015.
DOI: 10.1007/978-3-662-48350-3�21
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binds is very well-conserved, and the problem of detecting such regions can be
extrapolated to the problem of finding the substrings {t1, . . . , tn}.

Consensus Patterns is NP-hard even when the alphabet is binary [17], so we
do not expect a polynomial-time algorithm for the problem. On the other hand,
the problem admits a polynomial time approximation scheme (PTAS), which
finds a solution that is at most a factor (1 + ε) worse than the optimum [17]

in nO( 1
ε2

log 1
ε )-time. While a superpolynomial dependence of the running time

on 1
ε is implied by the NP-hardness of Consensus Patterns, there is still room

for faster approximation schemes for the problem and so a significant effort has
been invested in attempting on proving tighter bounds on the running time of the
PTAS [5,6]. If the exponent of the polynomial in the running time of a PTAS
is independent of ε then the PTAS is called an efficient PTAS (EPTAS). An
interesting question, posed by Fellows et al. [10] is whether Consensus Patterns
admits an EPTAS.

The difference in running time of a PTAS and an EPTAS can be quite dra-
matic. For instance, running a O(21/εn)-time algorithm is reasonable for ε = 1

10

and n = 1000, whereas running a O(n1/ε)-time algorithm is infeasible on this
same input. Hence, considerable effort has been devoted to improving PTASs to
EPTASs, and showing that such an improvement is unlikely for some problems.
For example, Arora [2] gave a nO(1/ε)-time PTAS for Euclidean TSP, which

was then improved to a O(2O(1/ε2)n2)-time algorithm in the journal version of
the paper [3]. On the other hand Independent Set admits a PTAS on unit disk
graphs [15] but Marx [19] showed that it does not admit an EPTAS assum-
ing FPT �=W[1]—a widely believed assumption from parameterized complexity.
Many more examples of PTASs that have been improved to EPTASs, and prob-
lems for which there exists a PTAS but the existence of an EPTAS has been
ruled out under the assumption that FPT �=W[1] can be found in the survey of
Marx [20]. In this paper we show that assuming FPT �=W[1], Consensus Patterns
does not admit an EPTAS, resolving the open problem of Fellows et al. [10]. Since
Consensus Patterns has a PTAS and is FPT, standard methods for ruling out
an EPTAS cannot be applied. We discuss this in more details in Section 1.1.
Our proof avoids this obstacle by combining gap preseving reductions and pa-
rameterized reductions in a novel manner.

1.1 Methods

Our lower bounds are proved under the assumption FPT �=W[1], a standard as-
sumption in parameterized complexity that we will briefly discuss here. In a
parameterized problem every instance I comes with a parameter k. A param-
eterized problem is said to be fixed parameter tractable (FPT) if there is an
algorithm solving instances of the problem in time f(k)|I|O(1) for some function
f depending only on k and not on |I|. The class of all fixed parameter tractable
problems is denoted by FPT. The class W[1] of parameterized problems is the
basic class for fixed parameter intractability, FPT ⊆ W[1] and the containment
is believed to be proper. A parameterized problem Π with the property that an
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FPT algorithm for Π would imply that FPT=W[1] is called W[1]-hard. Thus
demonstrating W[1]-hardness of a parameterized problem implies that it is un-
likely that the problem is FPT. We refer the reader to the textbooks [7,9,12,22]
for a more thorough discussion of parameterized complexity.

W[1]-hardness is frequently used to rule out EPTAS’s for optimization prob-
lems, since an EPTAS for an optimization problem automatically yields a FPT
algorithm for the corresponding decision problem parameterized by the value
of the objective function [4,20]. More specifically, if we set ε = 1

2α , where α
is the value of the objective function, then a (1 + ε)-approximation algorithm
would distinguish between “yes” and “no” instances of the problem. Hence, an
EPTAS could be used to solve the problem in O(f(ε)nO(1)) = O(g(α)nO(1))-
time. Hence, if a problem is W[1]-hard when parameterized by the value of the
objective function then the corresponding optimization problem does not admit
an EPTAS unless FPT=W[1]. To the best of our knowledge, all known results
ruling out EPTASs for problems for which a PTAS is known use this approach.
However, this approach cannot be used to rule out an EPTAS for Consensus
Patterns because Consensus Patterns parameterized by d has been shown to be
FPT by Marx [18]. Thus, different methods are required to rule out an EPTAS
for Consensus Patterns.

In his survey, Marx [20] introduces a hybrid of FPT reductions and gap pre-
serving reductions and argues that it is conceivable that such a reduction could
be used to prove that a problem that has a PTAS and is FPT parameterized by
the value of the objective function does not admit an EPTAS unless FPT=W[1].
We show that Consensus Patterns does not admit an EPTAS unless FPT=W[1],
giving the first example of this phenomenon.

Preliminaries

A PTAS for a minimization problem finds a (1+ ε)-approximate solution in time
|I|f(1/ε) for some function f . An approximation scheme where the exponent of
|I| in the running time is independent of ε is called an efficient polynomial time
approximation scheme (EPTAS). Formally, an EPTAS is a PTAS whose running
time is f(1/ε)O(1)|I|O(1).

Let L,L′ ⊆ ∑∗ ×N be two parameterized problems. We say that L fpt-reduces
to L′ if there are functions f, g : N → N, and an algorithm that given an instance
(I, k) runs in time f(k)|I|f(k) and outputs an instance (I ′, k′) such that k′ ≤ g(k)
and (I, k) ∈ L ⇐⇒ (I ′, k′) ∈ L′. These reductions work as expected; if L fpt-
reduces to L′ and L′ is FPT then so is L′. Furthermore, if L fpt-reduces to L′

and L is W[1]-hard then so is L′.
Let s be a string over the alphabet Σ. We denote the length of s as |s|, and

the jth character of s as s[j]. Hence, s = s[1]s[2] . . . s[|s|]. For a set S of strings of
the same length we denote by S[i] as {s[i] : s ∈ S}. Thus, if the same character
appears at position i in several strings it is counted several times in S[i]. For an
interval P = {i, i + 1, . . . , j − 1, j} of integers, define s[P ] to be the substring
s[i]s[i+1] . . . s[j] of s. For a set S of strings and interval P define S[P ] to be the
(multi)set {s[P ] : s ∈ S}. For a set S of length-� strings we define the consensus
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string of S, denoted as c(S), as the sequence where c(S)[i] is the most-frequent
character in S[i] for all i ≤ �. Ties are broken by selecting the lexicographically
first such character, however, we note that the tie-breaking will not affect our
arguments.

We denote the sum Hamming distance between a string, s, and a set of strings,
S, as d(S, s). Observe that the consensus string c(S) minimizes d(S, c(S))—
implying that no other string x is closer to S than c(S). However, some x �= c(S)
could achieve d(S, x) = d(S, c(S)) and we refer to such strings as majority strings
because they are obtained by picking a most-frequent character at every position
with ties broken arbitrarily.

We will use standard concentration bounds for sums of independent random
variables. In particular, the following variant of the Hoeffding’s bound [14] given
by Grimmett and Stirzaker [13, p. 476] will be needed.

Proposition 1 (Hoeffding’s bound). Let X1, X2, ...Xn be independent ran-
dom variables such that ai ≤ Xi ≤ bi for all i. Let X = ΣiXi and the expected

value of X be E[X ] then it follows that: Pr[X−E[X ] ≥ t] ≤ exp
(

−2t2

Σn
i=1(bi−ai)

2

)
.

2 Hardness of Approximating Colored Consensus String
with Outliers

To show that Consensus Patterns does not admit an EPTAS we will first demon-
strate hardness the following problem, that we call Colored Gap-Consensus
String with Outliers. When defining parameterized gap problems, we follow the
notation of Marx [20].

In the Colored Gap-Consensus String with Outliers (CCWSO) problem the
input consists of a (multi)set of n length-L strings S = {s1, . . . , sn} over a finite
alphabetΣ, an integer n∗ ≤ n, a partitioning of S into n∗ sets S = S1∪S2 . . . Sn∗ ,
a rational ε and two integers Dyes and Dno with Dno ≥ Dyes(1 + ε) with the
following property. Either (a) there exists a set S∗ such that |S∗ ∩ Si| = 1 for
every i and d(S∗, c(S∗)) ≤ Dyes or (b) for every S∗ such that |S∗ ∩ Si| = 1 for
every i we have d(S∗, c(S∗)) ≥ Dno. The task is to determine which one of the
two cases holds. In particular, the task is to determine whether there is an S∗

such that |S∗∩Si| = 1 for every i ≤ n∗ and d(S∗, c(S∗)) ≤ Dyes. The parameter
of this instance is �1/ε. Therefore, algorithms with running time f(ε)(nL)O(1)

are considered fixed parameter tractable. The aim of this section is to prove the
following lemma.

Lemma 1. Gap-Colored Consensus String with Outliers is W[1]-hard.

The proof of Lemma 1 is by reduction from the MultiColored Clique (MCC)
problem. Here input is a graph G, an integer k and a partition of V (G) into
V1 � V2 . . . � Vk such that for each i, G[Vi] is an independent set. The task is to
determine whether G contains a clique C of size k. Observe that such a clique
must contain exactly one vertex from each Vi, since for each i we have C∩Vi ≤ 1.
It is well-known that MCC is W[1]-hard [11].
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Given an instance (G, k) of MCC we produce in f(k)nO(1)-time an instance
(S1, S2, . . . Sn∗) of Colored Gap-Consensus String with Outliers. We will say that
a subset S∗ of S such that |S∗ ∩ Si| = 1 for every i ≤ n∗ is a potential solu-
tion to the CCWSO instance. Our constructed instance will have the following
property. If G has a k-clique then there exists a potential solution S∗ such that
d(S∗, c(S∗)) ≤ Dyes. On the other hand, if no k-clique exists in G then for each
potential solution S∗ we have d(S∗, c(S∗)) ≥ Dno. The values of Dyes and Dno

will be chosen later in the proof, however, we note that the crucial point of the

construction is that Dno ≥
(
1 + 1

h(k)

)
Dyes. Hence, a f(ε)(nL)O(1)-time algo-

rithm for Gap-Consensus String with Outliers could be used to solve to solve the
MCC problem in time g(k)nO(1) by setting ε = 1

2h(k) . Thus, the reduction is a

parameterized, gap-creating reduction where the size of the gap decreases as k
increases but the decrease is a function of k only.

Construction. We describe how the instance (S1, S2, . . . , Sn∗ , Dyes, Dno) is con-
structed from (G, k). Our construction is randomized, and will succeed with
probability 2

3 . To prove Lemma 1 we have to change the construction to make
it deterministic but for now let us not worry about that.

We start by considering the instance (G, k) and let E(G) = {e1, e2, . . . em}. In
the reduction we will create one string si for every edge ei ∈ E(G). We partition
the edge set E(G) into sets

(
k
2

)
sets E{p,q} where 1 ≤ p, q ≤ k as follows; ei ∈ Ep,q

if ei has one endpoint in Vp and the other in Vq. The edge ei ∈ Ep,q has two
endpoints, one in Vp and the other in Vq. The string si is inserted into the set
S{p,q} and the set S of strings in the instance of Gap-Colored Consensus String
with Outliers will be exactly S =

⋃
p�=q S{p,q}.

We set n∗ =
(
k
2

)
, and use exactly the partition of S into the sets S{p,q} as

the partition into n∗ sets in the instance. Thus, picking a potential solution S∗

corresponds to picking a set of edges with exactly one edge from each of the
sets E{p,q}.

There are K = k · (k − 1) · (k − 2) ordered triples of integers from 1 to k.
Consider the lexicographic ordering of such triples. As an example, if k = 3 this
ordering is (1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1).

For each i from 1 to K, let σ(i) be the i’th triple in this ordering. Thus, for
k = 3, we have that σ(4) = (2, 3, 1). The functions σ1, σ2 and σ3 return the first,
second and third entry of the triple returned by σ. Continuing our example for
the case that k = 3, we have σ1(4) = 2, σ2(4) = 3 and σ3(4) = 1.

Based on G and k, we select an integer �. The exact value of � will be discussed
later in the proof, for now the reader may think of � as some function of k times
logn. We construct a set Z = z1, z2, . . . zm of strings, Z will act as a “pool of
random bits” in our construction. For each edge ei ∈ E(G) we make a string zi
as follows.

zi = a
σ(1)
i ◦ aσ(2)i . . . ◦ aσ(K)

i
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For every i ≤ m and p ≤ K, the strings ãi, ã
′
i and a

σ(p)
i are random binary

strings of length �. For each p ≤ K and vertex u ∈ Vσ1(p) we make an identifi-
cation string idp(u) of length �. Let i be the smallest integer such that the edge

ei is incident to u. We set idp(u) = a
σ(p)
i . Notice that the other endpoint of ei

is a vertex not in Vp. Thus, for any other vertex v ∈ Vp distinct from u we have

that idp(v) = a
σ(p)
j for some integer j �= i.

We now make the set S of strings in our instance. For each edge ei ∈ E(G)
we make a string si as follows.

si = a
σ(1)
i ◦ aσ(2)i . . . ◦ aσ(K)

i

For each x ≤ K we define axi using the following rules. Let ei = uv with u ∈ Vp

and v ∈ Vq. If σ
1(x) = p and σ2(x) = q or σ1(x) = p and σ3(x) = q, we set

a
σ(x)
i = idx(u). If σ1(x) = q and σ2(x) = p or σ1(x) = q and σ3(x) = p, we set

a
σ(x)
i = idx(v). Otherwise we set a

σ(x)
i = a

σ(x)
i .

For 1 ≤ p ≤ K we define Bp = {(p− 1)�+1, (p− 1)�+2, . . .(p− 1)�+ �}, and
will refer to Bp as the p’th block of the instance. Notice that for every i ≤ m

and p ≤ K we have si[Bp] = a
σ(p)
i . We set L = K · � and N = |S| = m, this

concludes the construction. Recall that n∗ is the size of the solution S∗ sought
for and observe that L is the length of the constructed strings in S.

Analysis. We consider the constructed strings si as random variables, and for
every j the character si[j] is also a random variable which takes value 1 with
probability 1/2 and 0 with probability 1/2. Observe that for any two positions j
and j′ such that j �= j′ and any i and i′ the random variables si[j] and si′ [j

′] are
independent. On the other hand si[j] and si′ [j] could be dependent. However, if
si[j] and si′ [j] are dependent then, by construction si[j] = si′ [j].

Let S∗ ⊆ S be a potential solution. Here we consider S∗ as a set of ran-
dom string variables, rather than a set of strings. We are interested in studying
d(S∗, c(S∗)) for different choices of the set S∗. We can write out d(S∗, c(S∗)) as

d(S∗, c(S∗)) =
K∑

p=1

d(S∗[Bp], c(S
∗)[Bp]) (1)

and
d(S∗[Bp], c(S

∗)[Bp]) =
∑

j∈Bp

d(S∗[j], c(S∗)[j]).

Thus, for each p ≤ K we have that d(S∗[Bp], c(S
∗)[Bp]) is a sum of � independent

random variables, each taking values from 0 to n∗. Hence, when � is large enough
d(S∗[Bp], c(S

∗)[Bp]) is sharply concentrated around its expected value. Using a
union bound (over the choices of p) we can show that d(S∗, c(S∗)) is sharply
concentrated around its expectation as well.

We turn our attention to E[d(S∗, c(S∗))] for different choices of S∗. The two
main cases that we distinguish between is whether S∗ corresponds to the set of
edges of a clique in G or not. Note that a potential solution S∗ corresponds to a
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set E∗ of edges with exactly one edge e{p,q} ∈ E{p,q} for every (unordered) pair
p,q. In the remainder of this section S∗ is a potential solution and E∗ is the edge
set corresponding to S∗. For each pair p,q of integers, e{p,q} is the unique edge
in E∗∩ ∈ E{p,q}. We will determine whether E∗ is the set of edges of a clique
using the following observation, whose proof is obvious and hence omitted.

Observation 1. E∗ is the edge set of a clique in G if and only if for every
ordered triple (a, b, c) of distinct integers between 1 and k the edge e{a,b} and the
edge e{a,c} are incident to the same vertex in Va.

In the constructed instance the block Bp such that σ(p) = (a, b, c) is responsible
for performing the check for the triple (a, b, c).

Before proceeding we need to define a class of variables relating to random
walks. For two integers i and r consider a random walk starting at x = i and
doing r steps. In each step the walk either changes x to x+1 or to x−1, uniformly
at random. We define X i

r,0 as the final value of x of such a walk. Now, for an
integer t ≤ r/2 we modify the walk such that in t of the steps the walk either
changes x to x+2 or to x− 2, and in r− 2t of the steps the walk either changes
x to x+ 1 or to x− 1. The random variable distributed as the final position of
x after such a walk is denoted by X i

r,t. We set xi
r,t = E[|X i

r,t|].
The next lemma characterizes the expectation of d(S∗[Bp], c(S

∗)[Bp]), subject
to the case distinction on whether the solution S∗ passes or fails the test of
Observation 1 for the triple σ(p).

Lemma 2. [�]1 Let p ≤ K and let σ(p) = (a, b, c). If e{a,b} and e{a,c} are
incident to the same vertex in Va, then E[d(S∗[Bp], c(S

∗)[Bp])] = � · (n∗/2 −
x0
n∗,1). If e{a,b} and e{a,c} are not incident to the same vertex in Va, then

E[d(S∗[Bp], c(S
∗)[Bp])] = � · (n∗/2− x0

n∗,0).

We now define Eyes as follows.

Eyes = K · � · (n∗/2− x0
n∗,1) (2)

Observe that Equation 1, Lemma 2 and linearity of expectation immedeately
implies that if E∗ is the set of edges of a clique then E[d(S∗, c(S∗))] = Eyes.
Furthermore, By Lemma 2 each triple (a, b, c) of distinct integers from 1 to k
such that the edge e{a,b} and e{a,c} are not incident to the same vertex in Va will
contribute exactly � ·(n∗/2−x0

n∗,0) instead of � ·(n∗/2−x0
n∗,1) to the expectation

E[d(S∗, c(S∗))]. This proves the following lemma.

Lemma 3. Let t be the number of ordered triples (a, b, c) of distinct integers
from 1 to k such that the edge e{a,b} and e{a,c} are not incident to the same
vertex in Va. Then E[d(S∗, c(S∗))] = Eyes + t · � · (x0

n∗,1 − x0
n∗,0)

To conclude the analysis we need to show that as the number of triples t that
fail the test of Observation 1 increases, so does the expected value of d(S∗, c(S∗)).
To that end, all we need to prove is that x0

n∗,1 − x0
n∗,0 > 0. We will prove this

by “differentiating” x0
n∗,t with respect to t.

1 Proofs of statements labelled with � are omitted and may be found in the full version.
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Lemma 4. [�] x0
n∗,0 < x0

n∗,1. Furthermore we can compute x0
n∗,0 and x0

n∗,1 in
time polynomial in n∗.

We now define Δ as follows Δ = x0
n∗,1 − x0

n∗,0, and note that Lemma 4

implies that Δ > 0. Furthermore, note that Δ depends only on n∗ =
(
k
2

)
, so Δ

is a computable function of k. Define

Eno = Eyes +Δ · � (3)

Observe that Eno/Eyes ≥ 1 + 2Δ
K·n∗ , and that therefore Eno/Eyes ≥ 1 + 1/h(k)

for a function h depending only on k. Lemma 3, Lemma 4 and the definition of
Eno implies the following lemma, which summarizes the analysis up until now.

Lemma 5. If E∗ is the edge set of a clique in G, then E[d(S∗[Bp], c(S
∗)[Bp])] =

Eyes. Otherwise E[d(S∗[Bp], c(S
∗)[Bp])] ≥ Eno.

From the definitions of Eyes and Eno it follows that there exist constants
κyes and κno depending only on k such that Eyes = κyes� and Eno = κno�.
Furthermore, κyes < κno and the value of κyes and κno can be computed in time
f(k) for some function f . Set κ′

yes = (2κyes+κno)/3 and κ′
no = (κyes+2κno)/3.

Then κyes < κ′
yes < κ′

no < κno. We set Dyes = κ′
yes� and Dno = κ′

no�. Notice
that

κ′
yes − κyes = κno − κ′

no.

In the full version of the paper we give a proof of a randomized analogue
of Lemma 1 before proceeding to the proof of Lemma 1. This provides useful
insights on how the construction works, but is not strictly necessary to obtain
Lemma 1, and is therefore omitted in this short version.

A Deterministic Construction. In order to prove Lemma 1 we need to make the
construction deterministic. We only used randomness to construct the set Z, all
other steps are deterministic. We now show how Z can be computed determin-
istically instead of being selected at random, preserving the properties of the
reduction. For this, we need the concept of near p-wise independence defined by
Naor and Naor [21]. The original definition of near p-wise independence is in
terms of sample spaces, we define near p-wise independence in terms of collec-
tions of binary strings. This is only a notational difference, and one may freely
translate between the two variants.

Definition 1 ([21]). A set C = {c1, c2, . . . ct} of length � binary strings is (ε, p)-
independent if for any subset C′ of C of size p, if a position i ≤ t is selected
uniformly at random, then

∑
α∈{0,1}p |P [C′[i] = α]− 2−p| ≤ ε.

Naor and Naor [21] and Alon et al. [1] give determinsitic constructions of small
nearly k-wise independent sample spaces. Reformulated in our terminology, Alon
et al. [1] prove a slightly stronger version of the following theorem.

Theorem 1 ([1]). For every t, p, and ε there is a (ε, p)-independent set C =

{c1, c2, . . . ct} of binary strings of length �, where � = O(2
k·k log t

ε ). Furthermore,

C can be computed in time O(|C|O(1)).
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We use Theorem 1 to construct the set Z. We set ε =
κ′
yes−κyes

K·n∗ and construct an
(ε, n∗)-independent set C of 2m strings. These strings have length � = f · log(n)
for some f depending only on k, and C can be constructed in time O(gnO(1))
for some g depending only on k. i we set

zi = ci ◦ ci ◦ . . . ◦ ci,

where we used K copies of ci such that zi is a string of length L. That is, in the

construction of zi we set a
σ(p)
i = ci for all p ≤ K. The remaining part of the

construction, i.e the construction of S from Z remains unchanged. To distinguish
between the deterministically constructed S and the randomized construction,
we refer to the deterministically constructed S as Sdet. We now prove that for
every potential solution S∗

det ⊆ Sdet, if S
∗ is the set of strings in the randomized

construction that corresponds to the same edges as S∗
det, then d(S∗

det, c(S
∗
det)) is

almost equal to E[d(S∗, c(S∗))]. When considering E[d(S∗, c(S∗))] we consider
the randomized construction, but with the same choice of � as in the construction
of Sdet, so that the strings in S and Sdet have the same length.

For a subset I of {1, 2, . . . ,m} define S∗(I) = {si ∈ S : i ∈ I} and S∗
det(I) =

{si ∈ Sdet : i ∈ I}. The construction of Sdet (and S) from Z implies that
for every x ≤ K, there exists a function fx : N → N such that for any i ≤ m,
si[Bx] = zf(i)[Bx]. For any I ⊆ {1, 2, . . . ,m} and x ≤ K we define Z∗(I, x) to
be an arbitrarily chosen subset of Z of size n∗ such that {zfx(i) : i ∈ I} ⊆
Z∗(I, x). The reason we did not define Z∗(I, x) as exactly {zfx(i) : i ∈ I} is
that the function fx is not injective, and we want to ensure |Z∗(I, x)| = n∗.
The definition of Z∗(I, x) ensures that for every I ⊆ {1, 2, . . . ,m} of size n∗,
the string sets S∗(I)[Bx] and S∗

det(I)[Bx] are functions of Z∗(I, x)[Bx]. Even
stronger, for every j ∈ Bx we have that the strings S∗(I)[j] and S∗

det(I)[j] are
functions of Z∗(I, x)[j]. Strictly speaking S∗(I)[j], S∗

det(I)[j] and Z∗(I, x)[j] are
multi-sets of characters, but we can think of them as strings by, for example,
reading the characters in S∗(I)[j] as si[j] for all i ∈ I in increasing order. Since
the deterministic and randomized constructions are identical (except for the
construction of Z) the strings S∗(I)[j] and S∗

det(I)[j] depend on Z∗(I, x)[j] in
exactly the same way.

An immediate implication of the fact that S∗(I)[Bx] and S∗
det(I)[Bx] are

functions of Z∗(I, x)[Bx], is that the distances d(S∗(I)[j], c(S∗(I)[j])) and
d(S∗

det(I)[j], c(S
∗
det(I)[j])) are also functions of Z∗(I, x)[j]. We now give these

functions a name. For every set I ⊆ {1, 2, . . . ,m} of size n∗ and integer
x < K define dIx : {0, 1}n∗ → {0, 1, . . . , n∗} to be a function such that
for any j ∈ Bx, if Z∗(I)[j] = α then d(S∗(I)[j], c(S∗(I)[j])) = dIx(α) and
d(S∗

det(I)[j], c(S
∗
det(I)[j])) = dIx(α).

For every set I ⊆ {1, 2, . . . ,m} of size n∗ and integer x ≤ K we have the
following expression for d(S∗(I)det[Bx], c(S

∗(I)det[Bx])).

d (S∗
det(I)[Bx], c(S

∗
det(I)[Bx])) = � ·

∑

α∈{0,1}n∗
P [Z∗(I)[j] = α] · dIj (α) (4)
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Here the probability P [Z∗(I)[j] = α] is taken over random selections of j
from Bx. For the randomized construction we have that P [Z∗(I)[j] = α] = 1

2n∗ ,
which yields the following expression.

E [d (S∗(I)[Bx], c(S
∗(I)[Bx]))] = � ·

∑

α∈{0,1}n∗

1

2n∗ · dIj (α) (5)

Combining Equations 4 and 5 yields the following bound.
∣∣∣d (S∗

det(I)[Bx], c(S
∗
det(I)[Bx]))− E[d(S∗(I)[Bx], c(S

∗(I)[Bx]))]
∣∣∣

= � ·
∣∣∣∣∣∣

∑

α∈{0,1}n∗

(
P [Z∗(I)[p] = α]− 1

2n∗

)
· dIj (α)

∣∣∣∣∣∣
≤ � · ε · n∗ (6)

Summing Equation 6 over 1 ≤ x ≤ K yields the desired bound for every I ⊆
{1, 2, . . . , 2m} of size n∗.
∣∣∣d (S∗

det(I), c(S
∗
det(I))) − E[d(S∗(I), c(S∗(I)))]

∣∣∣ ≤ � ·K · ε · n∗ ≤ � · (κyes′ − κyes)

(7)

Equation 7 allows us to finish the proof of Lemma 1. For any potential solution
S∗ that corresponds to a clique in G, we have that E[d(S∗(I), c(S∗(I)))] =
Eyes = �κyes, and so by Equation 7, d (S∗

det(I), c(S
∗
det(I))) ≤ �κ′

yes = Dyes.
For any potential solution S∗ of size n∗ that does not correspond to a clique
in G, we have that E[d(S∗(I), c(S∗(I)))] ≥ Eno = �κno, and so by Equation 7,
d (S∗

det(I), c(S
∗
det(I))) ≥ �κ′

no = Dno. Since
Dno

Dyes
≥ 1 + δ for some δ depending

only on k, the construction is an fpt-reduction from MCC to Gap-Consensus
String With Outliers, completing the proof of Lemma 1. �

3 Hardness of Approximating Consensus Patterns

To show that Consensus Patterns does not have an EPTAS unless FPT = W [1]
we introduce the following gap variant of the problem. In the Gap-Consensus
Patterns problem, input consists of a set S = {s1, . . . , sn} of length-L strings over
a constant size alphabet Σ, an integer �, where � ≤ L, a rational ε and intgers
Dyes and Dno with Dno ≥ Dyes(1 + ε) such that the following holds. Either
there is a length-� substring ti of each si in S such that

∑
∀i d(ti, s) ≤ Dyes

or for every collection t1, . . . tn such that ti is a length-� substring si we have∑
∀i d(ti, s) ≥ Dno. The task is to determine whether there is a length-� substring

ti of each si in S such that
∑

∀i d(ti, s) ≤ Dyes. The parameter of the instance
is �1/ε, and so algorithms with running time f(ε)(nL)O(1) are considered FPT.

We will now give a fpt-reduction from Gap-Colored Consensus String with
Outliers to gap-Consensus Patterns. The main ingredient in our reduction is a
gadget string w. The string w has length L1 (to be determined later), and for
every i ≥ 1, w[i] = 1 if i = j2 for an integer j and w[i] = 0 otherwise. We will
say that an integer i is a square if i = j2 for some integer j. Thus w[i] is 1 if and
only if i is a square.
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Lemma 6. [�] For positive integers x, y and z such that z ≥ L1

4 , x < y and

y + z ≤ L1 we have d(w[{x, x + 1, . . . , x+ z}], w[{y, y+ 1, . . . , y + z}]) ≥ �
√
L1

16 �

Given an instance n∗, S = S1�S2�. . .�Sn∗ of Gap-Colored Consensus String
with Outliers we construct an instance ofGap-Cosensus Patterns as follows. First
we ensure that all of the (multi) sets Si contain the same number of strings; if
|Si| < |Sj | for some i, j we can make duplicates of strings in Si until equality is
obtained. This does not affect any other aspects of the instance, since a solution
S∗ has to pick one string from each Si.

Let � be the length of all the strings in S. We choose L1 such that �
√
L1

16 � > n∗·�
and construct a gadget string w of length L1. For every i ≤ n∗ we make a string
ŝi from the set Si. Let Si = s1i , s

2
i , . . . , s

t
i. We define

ŝi = w ◦ s1i ◦ w ◦ s2i ◦ w . . . ◦ w ◦ sti.

and set L = L1 + �. We keep the values of Dyes and Dno. This concludes the
construction.

Lemma 7. For every S∗ = {s∗1, . . . , s∗n∗} ⊂ S such that s∗i ∈ Si for all i there
is a collection T ∗ = t∗1, . . . t

∗
n∗ such that t∗i is a length L substring of ŝi and

d(c(T ∗), T ∗) ≤ d(C(S∗), S∗).

Proof. For every i, set t∗1 = w ◦ s∗i . Since s∗i ∈ Si we have that t∗1 is a length
L substring of ŝi. Set c = w ◦ c(S∗), we have that d(c(T ∗), T ∗) ≤ d(c, T ∗) ≤
d(C(S∗), S∗).

Lemma 8. [�] For every collection T ∗ = t∗1, . . . t
∗
n∗ such that t∗i is a length L

substring of ŝi and d(c(T ∗), T ∗) ≤ n∗ · � there is a subset S∗ = {s∗1, . . . , s∗n∗} ⊆ S
such that s∗i ∈ Si for all i and d(C(S∗), S∗) ≤ d(c(T ∗), T ∗).

The construction, together with Lemmata 1, 7 and 8 yield thatGap-Consensus
Patterns is W[1]-hard. Since an EPTAS for Consensus Patterns could be used to
solve Gap-Consensus Patterns in time f(ε)(nL)O(1), this yields our main result.

Theorem 2. Consensus Patterns does not have an EPTAS unless FPT=W[1].

4 Conclusions and Future Work

We have shown that Consensus Patterns does not admit an EPTAS unless
FPT=W[1]. Our result rules out the possibility of a (1 + ε) approximation al-
gorithms with running time f(1/ε)nO(1), while the best PTAS for Consensus

Patterns has running time nO(1/ε4). Hence there is still a significant gap between
the known upper and lower bounds, and obtaining tighter bounds warrants fur-
ther investigation.
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Abstract. We introduce Quasi-Threshold Mover (QTM), an algorithm
to solve the quasi-threshold (also called trivially perfect) graph editing
problem with a minimum number of edge insertions and deletions. Given
a graph it computes a quasi-threshold graph which is close in terms of
edit count, but not necessarily closest as this edit problem is NP-hard.
We present an extensive experimental study, in which we show that QTM
performs well in practice and is the first heuristic that is able to scale to
large real-world graphs in practice. As a side result we further present a
simple linear-time algorithm for the quasi-threshold recognition problem.

1 Introduction

Fig. 1. Quasi-thres.
graph with thick
skeleton, grey root
and dashed transitive
closure.

Quasi-Threshold graphs, also known as trivially perfect
graphs, are defined as the P4- and C4-free graphs, i.e., the
graphs that do not contain a path or cycle of length 4 as
node-induced subgraph [20]. They can also be character-
ized as the transitive closure of rooted forests [19], as illus-
trated in Fig. 1. These forests can be seen as skeletons of
quasi-threshold graphs. Further a constructive character-
ization exists: Quasi-threshold graphs are the graphs that
are closed under disjoint union and the addition of isolated
nodes and nodes connected to every existing node [20].

Linear time quasi-threshold recognition algorithms
were proposed in [20] and in [9]. Both construct a skeleton
if the graph is a quasi-threshold graph. Further, [9] also
finds a C4 or P4 if the graph is no quasi-threshold graph.

Nastos and Gao [14] observed that components of quasi-threshold graphs have
many features in common with the informally defined notion of communities in
social networks. They propose to find a quasi-threshold graph that is close to a
given graph in terms of edge edit distance in order to detect the communities
of that graph. Motivated by their insights we study the quasi-threshold graph
editing problem in this paper. Given a graph G = (V,E) we want to find a quasi-
threshold graph G′ = (V,E′) which is closest to G, i.e., we want to minimize the
number k of edges in the symmetric difference of E and E′. Figure 2 illustrates
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BR 2158/11-1.
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Fig. 2. Edit example with
solid input edges, dashed in-
serted edges, a crossed deleted
edge, a thick skeleton with
grey root.

an edit example. Unfortunately, the quasi-
threshold graph editing problem is NP-hard [14].
However, the problem is fixed parameter tractable
(FPT) in k as it is defined using forbidden sub-
graphs [7]. A basic bounded search tree algo-
rithm which tries every of the 6 possible edits
of a forbidden subgraph has a running time in
O(6k · (|V | + |E|)). In [11] a polynomial kernel
of size O(k7) was introduced. Unfortunately, our
experiments show that real-world social networks
have a prohibitively large amount of edits. We
prove lower bounds on real-world graphs for k on
the scale of 104 and 105. A purely FPT-based al-
gorithm with the number of edits as parameter
can thus not scale in practice. The only heuristic

we are aware of was introduced by Nastos and Gao [14]. It greedily picks edits
that result in the largest decrease in the number of induced C4 and P4 in the
graph. Unfortunately, it examines all Θ(|V |2) possible edits in each step and thus
needs Ω(k · |V |2) running time. Even though this running time is polynomial it
is still prohibitive for large graphs. In this paper we fill this gap by introducing
Quasi-Threshold Mover (QTM), the first scalable quasi-threshold editing heuris-
tic. The final aim of our research is to determine whether quasi-threshold editing
is a useful community detection algorithm. Designing an algorithm able to solve
the quasi-threshold editing problem on large real-world graphs is a first step in
this direction.

1.1 Our Contribution

Our main contribution is Quasi-Threshold Mover (QTM), a scalable quasi-
threshold editing algorithm. We provide an extensive experimental evaluation
on synthetic as well as a variety of real-world graphs. We further propose a
simplified certifying quasi-threshold recognition algorithm. QTM works in two
phases: An initial skeleton forest is constructed by a variant of our recognition
algorithm, and then refined by moving one node at a time to reduce the num-
ber of edits required. The running time of the first phase is dominated by the
time needed to count the number of triangles per edge. The best current triangle
counting algorithms run in O(|E|α(G)) [8,15] time, where α(G) is the arboricity.
These algorithms are efficient and scalable in practice on the considered graphs.
One round of the second phase needs O(|V | + |E| logΔ) time, where Δ is the
maximum degree. We show that four rounds are enough to achieve good results.

1.2 Outline

Our paper is organized as follows: We begin by describing how we compute lower
bounds on the number of edits. We then introduce the simplified recognition
algorithm and the computation of the initial skeleton. The main algorithm is
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described in Sect. 4. The remainder of the paper is dedicated to the experimental
evaluation. An extended version of this paper is available on arXiv [6].

1.3 Preliminaries

We consider simple, undirected graphs G = (V,E) with n = |V | nodes and
m = |E| edges. For v ∈ V let N(v) be the adjacent nodes of v. Let d(v) := |N(v)|
for v ∈ V be the degree of v and Δ the maximum degree in G. Whenever we
consider a skeleton forest, we denote by p(u) the parent of a node u.

2 Lower Bounds

A lot of previous research has focused on FPT-based algorithms. To show that no
purely FPT-based algorithm parameterized in the number of edits can solve the
problem we compute lower bounds on the number of edits required for real-world
graphs. The lower bounds used by us are far from tight. However, the bounds are
large enough to show that any algorithm with a running time superpolynomial
in k can not scale.

To edit a graph we must destroy all forbidden subgraphs H . For quasi-
threshold editing H is either a P4 or a C4. This leads to the following basic
algorithm: Find forbidden subgraph H , increase the lower bound, remove all
nodes of H , repeat. This is correct as at least one edit incident to H is neces-
sary. If multiple edits are needed then accounting only for one is a lower bound.
We can optimize this algorithm by observing that not all nodes of H have to be
removed. If H is a P4 with the structure A−B −C −D it is enough to remove
the two central nodes B and C. If H is a C4 with nodes A, B, C, and D then it
is enough to remove two adjacent nodes. Denote by B and C the removed nodes.
This optimization is correct if at least one edit incident to B or C is needed.
Regardless of whether H is a P4 or a C4 the only edit not incident to B or C is
inserting or deleting {A,D}. However, this edit only transforms a P4 into a C4

or vice versa. A subsequent edit incident to B or C is thus necessary.
H can be found using the recognition algorithm. However, the resulting run-

ning time of O(k(n + m)) does not scale to the large graphs. In the extended
version [6] we describe a running time optimization to accelerate computations.

3 Linear Recognition and Initial Editing

The first linear time recognition algorithm for quasi-threshold graphs was pro-
posed in [20]. In [9], a linear time certifying recognition algorithm based on
lexicographic breadth first search was presented. However, as the authors note,
sorted node partitions and linked lists are needed, which result in large con-
stants behind the big-O. We simplify their algorithm to only require arrays but
still provide negative and positive certificates. Further we only need to sort the
nodes once to iterate over them by decreasing degree. Our algorithm constructs



254 U. Brandes et al.

the forest skeleton of a graph G. If it succeeds G is a quasi-threshold graph and
outputs for each node v a parent node p(v). If it fails it outputs a forbidden
subgraph H .

To simplify our algorithm we start by adding a super node r to G that is
connected to every node and obtain G′. G is a quasi-threshold graph if and
only if G′ is one. As G′ is connected its skeleton is a tree. A core observation is
that higher nodes in the tree must have higher degrees, i.e., d(v) ≤ d(p(v)). We
therefore know that r must be the root of the tree. Initially we set p(u) = r for
every node u. We process all remaining nodes ordered decreasingly by degree.
Once a node is processed its position in the tree is fixed. Denote by u the node
that should be processed next. We iterate over all non-processed neighbors v of u
and check whether p(u) = p(v) holds and afterwards set p(v) to u. If p(u) = p(v)
never fails then G is a quasi-threshold graph as for every node x (except r) we
have that by construction that the neighborhood of x is a subset of the one of
p(x). If p(u) �= p(v) holds at some point then a forbidden subgraph H exists.
Either p(u) or p(v) was processed first. Assume without lose of generality that it
was p(v). We know that no edge (v, p(u)) can exist because otherwise p(u) would
have assigned itself as parent of v when it was processed. Further we know that
p(u)’s degree can not be smaller than u’s degree as p(u) was processed before
u. As v is a neighbor of u we know that another node x must exist that is a
neighbor of p(u) but not of u, i.e., (u, x) does not exist. The subgraph H induced
by the 4-chain v−u−p(u)−x is thus a P4 or C4 depending on whether the edge
(v, x) exists. We have that u, v and p(u) are not r as p(v) was processed before
them and r was processed first. As x has been chosen such that (u, x) does not
exist but (u, r) exist x �= r. H therefore does not use r and is contained in G.

From Recognition to Editing. We modify the recognition algorithm to construct
a skeleton for arbitrary graphs. This skeleton induces a quasi-threshold graph
Q. We want to minimize Q’s distance to G. Note that all edits are performed
implicitly, we do not actually modify the input graph for efficiency reasons.
The only difference between our recognition and our editing algorithm is what
happens when we process a node u that has a non-processed neighbor v with
p(u) �= p(v). The recognition algorithm constructs a forbidden subgraph H ,
while the editing algorithm tries to resolve the problem. We have three options
for resolving the problem: we ignore the edge {u, v}, we set p(v) to p(u), or we set
p(u) to p(v). The last option differs from the first two as it affects all neighbors
of u. The first two options are the decision if we want to make v a child of u
even though p(u) �= p(v) or if we want to ignore this potential child. We start
by determining a preliminary set of children by deciding for each non-processed
neighbor of u whether we want to keep or discard it. These preliminary children
elect a new parent by majority. We set p(u) to this new parent. Changing u’s
parent can change which neighbors are kept. We therefore reevaluate all the
decisions and obtain a final set of children for which we set u as parent. Then
the algorithm simply continues with the next node.

What remains to describe is when our algorithm keeps a potential child. It
does this using two edge measures: The number of triangles t(e) in which an edge



Fast Quasi-Threshold Editing 255

1 foreach vm-neighbor u do
2 push u;

3 while queue not empty do
4 u ← pop;
5 determine childclose(u) by DFS;
6 x ← max over scoremax of reported u-children;
7 y ← ∑

over childclose of close u-children;
8 if u is vm-neighbor then
9 scoremax(u) ← max{x, y}+ 1;

10 else
11 scoremax(u) ← max{x, y} − 1;

12 if childclose(u) > 0 or scoremax(u) > 0 then
13 report u to p(u);
14 push p(u);

15 Best vm-parent corresponds to scoremax(r);

(a) Pseudo-Code for moving vm

vm

vm

a b

(b) Moving vm example

Fig. 3. In Fig. 3b the drawn edges are in the skeleton. By moving vm, crossed edges
are removed and thick blue edges are inserted. a is not adopted while b is.

e participates and a pseudo-C4-P4-counter pc(e), which is the sum of the number
of C4 in which e participates and the number of P4 in which e participates as
central edge. Computing pc(x, y) is easy given the number of triangles and the
degrees of x and y as pc({x, y}) = (d(x) − 1 − t({x, y})) · (d(y) − 1 − t({x, y}))
holds. Having a high pc(e) makes it likely that e should be deleted. We keep a
potential child only if two conditions hold. The first is based on triangles. We
know by construction that both u and v have many edges in G towards their
current ancestors. Keeping v is thus only useful if u and v share a large number
of ancestors as otherwise the number of induced edits is too high. Each common
ancestor of u and v results in a triangle involving the edge {u, v} in Q. Many of
these triangles should also be contained in G. We therefore count the triangles
of {u, v} in G and check whether there are at least as many triangles as v has
ancestors. The other condition uses pc(e). The decision whether we keep v is
in essence the question of whether {u, v} or {v, p(v)} should be in Q. We only
keep v if pc({u, v}) is not higher than pc({v, p(v)}). The details of the algorithm
can be found in the extended version [6]. The time complexity of this editing
heuristic is dominated by the triangle counting algorithm as the rest is linear.

4 The Quasi-Threshold Mover Algorithm

The Quasi-Threshold Mover (QTM) algorithm iteratively increases the quality
of a skeleton T using an algorithm based on local moving. Local moving is a
technique that is successfully employed in many heuristic community detection
algorithms [2,12,16]. As in most algorithm based on this principle, our algorithm
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works in rounds. In each round it iterates over all nodes vm in random order
and tries to move vm. In the context of community detection, a node is moved
to a neighboring community such that a certain objective function is increased.
In our setting we want to minimize the number of edits needed to transform
the input graph G into the quasi-threshold graph Q implicitly defined by T . We
need to define the set of allowed moves for vm in our setting. Moving vm consists
of moving vm to a different position within T and is illustrated in Fig. 3b. We
need to chose a new parent u for vm. The new parent of vm’s old children is
vm’s old parent. Besides choosing the new parent u we select a set of children
of u that are adopted by vm, i.e., their new parent becomes vm. Among all
allowed moves for vm we chose the move that reduces the number of edits as
much as possible. Doing this in sub-quadratic running time is difficult as vm
might be moved anywhere in G. By only considering the neighbors of vm in G
and a few more nodes per neighbor in a bottom-up scan in the skeleton, our
algorithm has a running time in O(n+m logΔ) per round. While our algorithm
is not guaranteed to be optimal as a whole we can prove that for each node vm
we choose a move that reduces the number of edits as much as possible. Our
experiments show that given the result of the initialization heuristic our moving
algorithm performs well in practice. They further show that in practice four
rounds are good enough which results in a near-linear total running time.

Basic Idea. Our algorithm starts by isolating vm, i.e., removing all incident
edges in Q. It then finds a position at which vm should be inserted in T . If vm’s
original position was optimal then it will find this position again. For simplicity
we will assume again that we add a virtual root r that is connected to all nodes.
Isolating vm thus means that we move vm below the root r and do not adopt
any children. Choosing u as parent of vm requires Q to contain edges from all
ancestors of u to vm. Further if vm adopts a child w of u then Q must have an
edge from every descendant of w to vm. How good a move is depends on how
many of these edges already exist in G and how many edges incident to vm in
G are not covered. To simplify notation we will refer to the nodes incident to
vm in G as vm-neighbors. We start by identifying which children a node should
adopt. For this we define the child closeness childclose(u) of u as the number
of vm-neighbors in the subtree of u minus the non-vm-neighbors. A node u is
a close child if childclose(u) > 0. If vm chooses a node u as new parent then
it should adopt all close children. A node can only be a close child if it is a
neighbor of vm or when it has a close child. Our algorithm starts by computing
all close children and their closeness using many short DFS searches in a bottom
up fashion. Knowing which nodes are good children we can identify which nodes
are good parents for vm. A potential parent must have a close child or must
be a neighbor of vm. Using the set of close children we can easily derive a set
of parent candidates and an optimal selection of adopted children for every
potential parent. We need to determine the candidate with the fewest edits. We
do this in a bottom-up fashion.To implement the described moving algorithm
we need to put O(dG(vm)) elements into a priority queue. The running time is
thus amortized O(dG(vm) log dG(vm)) per move or O(n + m logΔ) per round.
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We analyze the running time complexity using tokens. Initially only the vm-
neighbors have tokens. The tokens are consumed by the short DFS searches and
the processing of parent nodes. The details of the analysis are complex and are
described in the extended version [6].

Close Children. To find all close children we attach to each node u a DFS instance
that explores the subtree of u. Note that every DFS instance has a constant state
size and thus the memory consumption is still linear. u is close if this DFS finds
more vm-neighbors than non-vm-neighbors. Unfortunately we can not fully run all
these searches as this requires too much running time. Therefore a DFS is aborted
if it finds more non-vm-neighbors than vm-neighbors. We exploit that close chil-
dren are vm-neighbors or have themselves close children. Initially we fill a queue
of potential close children with the neighbors of vm and when a new close child is
found we add its parent to the queue. Let u denote the current node removed from
the queue. We run u’s DFS and if it explores the whole subtree then u is a close
child. We need to take special care that every node is visited only by one DFS. A
DFS therefore looks at the states of the DFS of the nodes it visits. If one of these
other DFS has run then it uses their state information to skip the already explored
part of the subtree. To avoid that a DFS is run after its state was inspected we or-
ganize the queue as priority queue ordered by tree depth. If the DFS of u starts by
first inspecting the wrong children then it can get stuck because it would see the
vm-neighbors too late. The DFS must first visit the close children of u. To assure
that u knows which children are close every close child must report itself to its
parent when it is detected. As all children have a greater depth they are detected
before the DFS of their parent starts.

Potential Parents. Consider the subtree Tu of u and a potential parent w in Tu.
Let Xw be the set of nodes given by w, the ancestors of w, the close children of
w and the descendants of the close children of w. Moving vm below w requires
us to insert an edge from vm to every non-vm-neighbor in Xw. Likewise, not
including vm-neighbors in Xw requires us to delete an edge for each of them. We
therefore want Xw to maximize the number of vm-neighbors minus the number
of non-vm-neighbors. This value gives us a score for each potential parent in
Tu. We denote by scoremax(u) the maximum score over all potential parents in
Tu. Note that scoremax(u) is always at least -1 as we can move vm below u and
not adopt any children. We determine in a bottom-up fashion all scoremax(u)
that are greater than 0. Whether scoremax(u) is -1 or 0 is irrelevant because
isolating vm is never worse. The final solution will be in scoremax(r) of the root
r as its “subtree” encompasses the whole graph. scoremax(u) can be computed
recursively. If u is a best parent then the value of scoremax(u) is the sum over
the closenesses of all of u’s close children ±1. If the subtree Tw of a child w of u
contains a best parent then scoremax(u) = scoremax(w)± 1. The ±1 depends on
whether w is a vm-neighbor. Unfortunately not only potential parents u have a
scoremax(u) > 0. However, we know that every node u with scoremax(u) > 0 is a
vm-neighbor or has a child w with scoremax(w) > 0. We can therefore process all
scoremax values in a similar bottom-up way using a tree-depth ordered priority
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queue as we used to compute childclose. As both bottom-up procedures have the
same structure we can interweave them as optimization and use only a single
queue. The algorithm is illustrated in Fig. 3a in pseudo-code form.

5 Experimental Evaluation

We evaluated the QTM algorithm on the small instances used by Nastos and
Gao [14], on larger synthetic graphs and large real-world social networks and
web graphs. We measured both the number of edits needed and the required
running time. For each graph we also report the lower bound b of necessary
edits that we obtained using our lower bound algorithm. We implemented the
algorithms in C++ using NetworKit [17]. All experiments were performed on
an Intel Core i7-2600K CPU with 32GB RAM. We ran all algorithms ten times
with ten different random node id permutations.

Comparison with Nastos and Gao’s Results. Nastos and Gao [14] did not report
any running times, we therefore re-implemented their algorithm. Our implemen-
tation of their algorithm has a complexity of O(m2 + k · n2 ·m), the details can
be found in the extended version [6]. Similar to their implementation we used
a simple exact bounded search tree (BST) algorithm for the last 10 edits. In
Table 1 we report the minimum and average number of edits over ten runs. Our
implementation of their algorithm never needs more edits than they reported1.
For two of the graphs (dolphins and lesmis) our implementation needs slightly
less edits due to different tie-breaking rules.

For all but one graph QTM is at least as good as the algorithm of Nastos and
Gao in terms of edits. QTM needs only one more edit than Nastos and Gao for
the grass web graph. The QTM algorithm is much faster than their algorithm,
it needs at most 2.5 milliseconds while the heuristic of Nastos and Gao needs up
to 6 seconds without bounded search tree and almost 17 seconds with bounded
search tree. The number of iterations necessary is at most 5. As the last round
only checks whether we are finished four iterations would be enough.

Large Graphs. For the results in Table 2 we used two Facebook graphs [18]
and five SNAP graphs [13] as social networks and four web graphs from the
10th DIMACS Implementation Challenge [1,3,4,5]. We evaluate two variants of
QTM. The first is the standard variant which starts with a non-trivial skeleton
obtained by the heuristic described in Section 3. The second variant starts with
a trivial skeleton where every node is a root. We chose these two variants to
determine which part of our algorithm has which influence on the final result.
For the standard variant we report the number of edits needed before any node
is moved. With a trivial skeleton this number is meaningless and thus we report
the number of edits after one round. All other measures are straightforward and
are explained in the table’s caption.

1 Except on Karate, where they report 20 due to a typo. They also need 21 edits.
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Table 1. Comparison of QTM and [14]. We report n and m, the lower bound b, the
number of edits (as minimum, mean and standard deviation), the mean and maximum
of number of QTM iterations, and running times in ms.

Name n m b Algorithm Edits Iterations Time [ms]
min mean std mean max mean std

dolphins 62 159 24
QTM 72 74.1 1.1 2.7 4.0 0.6 0.1
NG w/ BST 73 74.7 0.9 - - 15 594.0 2 019.0
NG w/o BST 73 74.8 0.8 - - 301.3 4.0

football 115 613 52
QTM 251 254.3 2.7 3.5 4.0 2.5 0.4
NG w/ BST 255 255.0 0.0 - - 16 623.3 3 640.6
NG w/o BST 255 255.0 0.0 - - 6 234.6 37.7

grass web 86 113 10
QTM 35 35.2 0.4 2.0 2.0 0.5 0.1
NG w/ BST 34 34.6 0.5 - - 13 020.0 3 909.8
NG w/o BST 38 38.0 0.0 - - 184.6 1.2

karate 34 78 8
QTM 21 21.2 0.4 2.0 2.0 0.4 0.1
NG w/ BST 21 21.0 0.0 - - 9 676.6 607.4
NG w/o BST 21 21.0 0.0 - - 28.1 0.3

lesmis 77 254 13
QTM 60 60.5 0.5 3.3 5.0 1.4 0.3
NG w/ BST 60 60.8 1.0 - - 16 919.1 3 487.7
NG w/o BST 60 77.1 32.4 - - 625.0 226.4

Even though for some of the graphs the mover needs more than 20 iterations
to terminate, the results do not change significantly compared to the results
after round 4. In practice we can thus stop after 4 rounds without incurring a
significant quality penalty. It is interesting to see that for the social networks the
initialization algorithm sometimes produces a skeleton that induces more thanm
edits (e.g. in the case of the “Penn” graph) but still the results are always slightly
better than with a trivial initial skeleton. This is even true when we do not abort
moving after 4 rounds. For the web graphs, the non-trivial initial skeleton does
not seem to be useful for some graphs. It is not only that the initial number of
edits is much higher than the finally needed number of edits, also the number of
edits needed in the end is slightly higher than if a trivial initial skeleton was used.
This might be explained by the fact that we designed the initialization algorithm
with social networks in mind. Initial skeleton heuristics built specifically for web
graphs could perform better. While the QTM algorithm needs to edit between
approximately 50 and 80% of the edges of the social networks, the edits of the
web graphs are only between 10 and 25% of the edges. This suggests that quasi-
threshold graphs might be a good model for web graphs while for social networks
they represent only a core of the graph that is hidden by a lot of noise. Concerning
the running time one can clearly see that QTM is scalable and suitable for large
real-world networks.

As we cannot show for our real-world networks that the edit distance that we
get is close to the optimum we generated synthetic graphs by generating quasi-
threshold graphs and applying random edits to these graphs. The details of the
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Table 2. Results for large real-world and synthetic graphs. Number of nodes n and
edges m, the lower bound b and the number of edits are reported in thousands. Column
“I” indicates whether we start with a trivial skeleton or not. • indicates an initial
skeleton as described in Section 3 and ◦ indicates a trivial skeleton. Edits and running
time are reported for a maximum number of 0 (respectively 1 for a trivial initial
skeleton), 4 and ∞ iterations. For the latter, the number of actually needed iterations
is reported as “It”. Edits, iterations and running time are the average over the ten
runs.

Name n [K] b [K] I Edits [K] It Time [s]
m [K] 0/1 4 ∞ ∞ 0/1 4 ∞

S
o
ci
a
l
N
et
w
o
rk
s

Caltech
0.77

0.35
• 15.8 11.6 11.6 8.5 0.0 0.0 0.1

16.66 ◦ 12.6 11.7 11.6 9.4 0.0 0.0 0.1

amazon
335

99.4
• 495 392 392 7.2 0.3 5.5 9.3

926 ◦ 433 403 403 8.9 1.3 4.9 10.7

dblp
317

53.7
• 478 415 415 7.2 0.4 5.8 9.9

1 050 ◦ 444 424 423 9.0 1.4 5.2 11.5

Penn
41.6

19.9
• 1 499 1 129 1 127 14.4 0.6 4.2 13.5

1 362 ◦ 1 174 1 133 1 129 16.2 1.0 3.7 14.4

youtube
1 135

139
• 2 169 1 961 1 961 9.8 1.4 31.3 73.6

2 988 ◦ 2 007 1 983 1 983 10.0 7.1 28.9 72.7

lj
3 998

1 335
• 32 451 25 607 25 577 18.8 23.5 241.9 1 036.0

34 681 ◦ 26 794 25 803 25 749 19.9 58.3 225.9 1 101.3

orkut
3 072

1 480
• 133 086 103 426 103 278 24.2 115.2 866.4 4 601.3

117 185 ◦ 106 367 103 786 103 507 30.2 187.9 738.4 5 538.5

W
eb

G
ra
p
h
s

cnr-2000
326

48.7
• 1 028 409 407 11.2 0.8 12.8 33.8

2 739 ◦ 502 410 409 10.7 3.2 11.8 30.8

in-2004
1 383

195
• 2 700 1 402 1 401 11.0 7.9 72.4 182.3

13 591 ◦ 1 909 1 392 1 389 13.5 16.6 65.0 217.6

eu-2005
863

229
• 7 613 3 917 3 906 13.7 6.9 90.7 287.7

16 139 ◦ 4 690 3 919 3 910 14.5 22.6 85.6 303.5

uk-2002
18 520

2 966
• 68 969 31 218 31 178 19.1 200.6 1 638.0 6 875.5

261 787 ◦ 42 193 31 092 31 042 22.3 399.8 1 609.6 8 651.8

S
y
n
th
et
ic Gen. 100

42
• 200 158 158 4.6 0.2 3.5 4.1

160K 930 ◦ 193 158 158 6.1 1.0 3.3 4.9

Gen. 1 000
0.391

• 1.161 0.395 0.395 3.0 3.3 43.8 43.8
0.4K 10 649 ◦ 182 5.52 5.52 6.1 15.9 52.9 78.8

generation process are described in the extended version [6]. In Table 2 we report
the results of two of these graphs with 400 and 160 000 random edits. In both cases
the number of edits the QTM algorithm finds is below or equal to the generated
editing distance. If we start with a trivial skeleton, the resulting edit distance is
sometimes very high, as can be seen for the graph with 400 edits. This shows that
the initialization algorithm from Section 3 is necessary to achieve good quality on
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Fig. 4. Edited Caltech network,
edges colored by dormitories of
endpoints.

graphs that need only few edits. As it seems to
be beneficial for most graphs and not very bad
for the rest, we suggest to use the initialization
algorithm for all graphs.

Case Study: Caltech. The main application
of our work is community detection. While a
thorough experimental evaluation of its use-
fulness in this context is future work we want
to give a promising outlook. Figure 4 de-
picts the edited Caltech university Facebook
network from [18]. Nodes are students and
edges are Facebook-friendships. The dormito-
ries of most students are known. We colored
the graph accordingly. The picture clearly
shows that our algorithm succeeds at identi-
fying most of this structure.

6 Conclusion

We have introduced Quasi-Threshold Mover (QTM), the first heuristic algorithm
to solve the quasi-threshold editing problem in practice for large graphs. As a side
result we have presented a simple certifying linear-time algorithm for the quasi-
threshold recognition problem. A variant of our recognition algorithm is also used
as initialization for the QTM algorithm. In an extensive experimental study with
large real world networks we have shown that it scales very well in practice. We
generated graphs by applying random edits to quasi-threshold graphs. QTM
succeeds on these random graphs and often even finds other quasi-threshold
graphs that are closer to the edited graph than the original quasi-threshold
graph. A surprising result is that web graphs are much closer to quasi-threshold
graphs than social networks, for which quasi-threshold graphs were introduced
as community detection method. A logical next step is a closer examination of
the detected quasi-threshold graphs and the community structure they induce.
Further our QTM algorithm might be adapted for the more restricted problem
of threshold editing which is NP-hard as well [10] or extended with an improved
initialization algorithm, especially for web graphs.

Acknowledgment. We thank James Nastos for helpful discussions.
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Abstract. This paper presents an algorithm for estimating the weight
of a maximum weighted matching by augmenting any estimation routine
for the size of an unweighted matching. The algorithm is implementable
in any streaming model including dynamic graph streams. We also give
the first constant estimation for the maximummatching size in a dynamic
graph stream for planar graphs (or any graph with bounded arboricity)
using Õ(n4/5) space which also extends to weighted matching. Using
previous results by Kapralov, Khanna, and Sudan (2014) we obtain a
polylog(n) approximation for general graphs using polylog(n) space in
random order streams, respectively. In addition, we give a space lower
bound of Ω(n1−ε) for any randomized algorithm estimating the size of a
maximum matching up to a 1 +O(ε) factor for adversarial streams.

1 Introduction

Large graph structures encountered in social networks or the web-graph have
become focus of analysis both from theory and practice. To process such large
input, conventional algorithms often require an infeasible amount of running
time, space or both, giving rise to other models of computation. Much theo-
retical research focuses on the streaming model where the input arrives one by
one with the goal of storing as much information as possible in small, prefer-
ably polylogarithmic, space. Streaming algorithms on graphs were first studied
by Henzinger et al. [17], who showed that even simple problems often admit
no solution with such small space requirements. The semi-streaming model [14]
where the stream consists of the edges of a graph and the algorithm is allowed
O(n · polylog(n)) space and allows few (ideally just one) passes over the data
relaxes these requirements and has received considerable attention. Problems
studied in the semi-streaming model include sparsification, spanners, connectiv-
ity, minimum spanning trees, counting triangles and matching, for an overview
we refer to a recent survey by McGregor [27]. Due to the fact that graphs mo-
tivating this research are dynamic structures that change over time there has
recently been research on streaming algorithms supporting deletions. We now re-
view the literature on streaming algorithms for matching and dynamic streams.
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Matching. Maintaining a 2 approximation to the maximum matching (MM) in
an insertion-only stream can be straightforwardly done by greedily maintaining
a maximal matching [14]. Improving on this algorithm turns out to be difficult
as Goel et al. [16] showed that no algorithm using Õ(n) space can achieve an
approximation ratio better than 3

2 which was improved by Kapralov to e
e−1 [19].

Konrad et al. [22] gave an algorithm using Õ(n) space with an approximation
factor of 1.989 if the edges are assumed to arrive in random order. For weighted
matching (MWM), a series of results have been published [14,26,11,32,12] with
the current best bound of 4 + ε being due to Crouch and Stubbs [10].

To bypass the natural Ω(n) bound required by any algorithm maintaining
an approximate matching, recent research has begun to focus on estimating
the size of the maximum matching. Kapralov et al. [20] gave a polylogrithmic
approximate estimate using polylogarithmic space for random order streams.
For certain sparse graphs including planar graphs, Esfandiari et al. [13] describe
how to obtain a constant factor estimation using Õ(n2/3) space in a single pass
and Õ(

√
n) space using two passes or assuming randomly ordered streams. The

authors also gave a lower bound of Ω(
√
n) for any approximation better than 3

2 .

Dynamic Streams. In the turnstile model, the stream consists of a sequence
of additive updates to a vector. Problems studied in this model include numeri-
cal linear algebra problems such as regression and low-rank approximation, and
maintaining certain statistics of a vector like frequency moments, heavy hitters or
entropy. Linear sketches have proven to be the algorithmic technique of choice and
might as well be the only algorithmic tool able to efficiently do so, see Li, Nguyen
andWoodruff [24]. Dynamic graphs as introduced and studied by Ahn, Guha and
McGregor [1,2,3,4] are similar to, but weaker than turnstile updates. Though both
streaming models assume update to the input matrix, there usually exists a con-
sistency assumption for streams, i.e. at any given time the multiplicity of an edge
is either 0 or 1 and edge weights cannot change arbitrarily but are first set to 0
and then reinserted with the desired weight. The authors extend some of the afore-
mentioned problems such as connectivity, sparsification and minimum spanning
trees to this setting. Recent results by Assadi et al. [5] showed that approximat-
ing matchings in dynamic streams is hard by providing a space lower bound of
Ω(n2−3ε) for approximating the maximum matching within a factor of Õ(nε). Si-
multaneously, Konrad [21] showed a similar but slightly weaker lower bound of
Ω(n3/2−4ε). Both works presented an algorithm with an almost matching upper
bound on the space complexity of Õ(n2−2ε) [21] and Õ(n2−3ε) [5]. Chitnis et al. [7]
gave a streaming algorithm using Õ(k2) space that returns an exact maximum
matching under the assumption that the size is at most k. It is important to note
that all these results actually compute a matching. In terms of estimating the size
of the maximum matching, Chitnis et al. [7] extended the estimation algorithms
for sparse graphs from [13] to the settings of dynamic streams using Õ(n4/5) space.
A bridge between dynamic graphs and the insertion-only streaming model is the
sliding window model studied by Crouch et al. [9]. The authors give a (3 + ε)-
approximation algorithm for maximum matching.



Sublinear Estimation of Weighted Matchings in Dynamic Data Streams 265

The p-Schatten norm of a matrix A is defined as the �p-norm of the vector of
singular values. It is well known that computing the maximum matching size is
equivalent to computing the rank of the Tutte matrix [29,25] (see also Section
2.1). Estimating the maximum matching size therefore is a special case of esti-
mating the rank or 0-Schatten norm of a matrix. Li, Nguyen and Woodruff gave
strong lower bounds on the space requirement for estimating Schatten norms in
dynamic streams [23]. Any estimation of the rank within any constant factor is
shown to require Ω(n2) space when using bi-linear sketches and Ω(

√
n) space

for general linear sketches.

Table 1. Results for estimating the size (weight) of a maximum (weighted) matching
in data streams.

Reference Graph class Streaming model Approx. factor Space

MM: Greedy General Adversarial 2 O(n)
[20] General Random polylog(n) polylog(n)

[13] Trees Adversarial 2 + ε Õ(
√
n)

[13] Bounded arboricity Adversarial O(1) Õ(n2/3)

here Trees Dynamic 2 + ε O( log
2 n

ε2
)

here Bounded arboricity Dynamic O(1) Õ(n4/5)

[13] Forests Adversarial 3
2
− ε Ω(

√
n)

here General Adversarial 1 +O(ε) Ω
(
n1−ε

)

MWM: [10] General Adversarial 4 + ε O(n log2 n)
here General Random polylog(n) polylog(n)

here Bounded arboricity Dynamic O(1) Õ(n4/5)

Techniques and Contribution. Table 1 gives an overview of our results in
comparison to previously known algorithms and lower bounds. Our first main re-
sult (Section 2) is an approximate estimation algorithm for the maximum weight
of a matching. We give a generic procedure using any unweighted estimation as
black box. In particular:

Theorem 1 (informal version).Given a λ-approximate estimation usingS space,
there exists an O(λ4)-approximate estimation algorithm for the weighted matching
problem using O(S · logn) space.

The previous algorithms for weighted matchings in insertion only streams an-
alyzed in [14,26,11,32] extend the greedy approach by a charging scheme. If edges
are mutually exclusive, the new edge will be added if the weight of the matching
increases by a given threshold, implicitly partitioning the edges into sets of geo-
metrically increasing weights. We use a similar scheme, but with a twist: Single
edge weights cannot be charged to an edge with larger weight as estimation rou-
tines do not necessarily give information on distinct edges. However, entire match-
ings can be charged as the contribution of a specific range of weights r can only
be large if these edges take up a significant part of any maximum matching in the
subgraph containing only the edges of weight at least r. For analysis, we use a
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result on parallel algorithms by Uehara and Chen [30]. We show that the weight
outputted by our algorithm is close to the weight of the matching computed by
the authors, implying an approximation to the maximum weight.

We can implement this algorithm in dynamic streams although at submission,
we were unaware of any estimations for dynamic streams. Building on the work
by Esfandiari et al. [13], we give a constant estimation on the matching size
in bounded arboricity graphs. The main obstacle to adapt their algorithms for
bounded arboricity graphs is that they maintain a small size matching using the
greedy algorithm which is hard for dynamic streams. Instead of maintaining a
matching, we use the Tutte matrix to get a 1-pass streaming algorithm using
Õ(n4/5) space, which immediately extends to weighted matching. Similar bounds
have been obtained independently by Chitnis et al. [7].

Our lower bound (Section 3) is proven via reduction from the Boolean Hid-
den Hypermatching problem introduced by Verbin and Yu [31]. In this set-
ting, two players Alice and Bob are given a binary n-bit string and a perfect
t-hypermatching on n nodes, respectively. Bob also gets a binary string w. The
players are promised that the parity of bits corresponding to the nodes of the
i-th hypermatching either are equal to wi for all i or equal to 1 − wi for all i
and the task is to find out which case holds using only a single round of com-
munication. We construct a graph consisting of a t-clique for each hyperedge of
Bob’s matching and a single edge for each bit of Alice’s input that has one node
in common with the t-cliques. Then we show that approximating the matching
size within a factor better than 1 + O(1/t) can also solve the Boolean Hidden
Hypermatching instance. Using the lower bound of Ω(n1−1/t) from [31] we have

Theorem 2 (informal version). Any 1-pass streaming algorithm approximating
the size of the maximum matching matching up to an (1 +O(ε)) factor requires
Ω(n1−ε) bits of space.

This lower bound also implies an Ω(n1−ε) space bound for 1+O(ε) approximat-
ing the rank of a matrix in data streams which also improves the Ω(

√
n) bound

by Li, Nguyen, and Woodruff [23] for linear sketches.

1.1 Preliminaries

We use Õ(f(n)) to hide factors polylogarithmic in f(n). Any randomized algo-
rithm succeeding with high probability has at least 1 − 1/n chance of success.
Graphs are denoted by G(V,E,w) where V is the set of n nodes, E is the set

of edges and w : E → R
+ is a weight function. Our estimated value M̂ is a

λ-approximation to the size of the maximum matching M if M̂ ≤ |M | ≤ λM̂ .

2 Weighted Matching

We start by describing the parallel algorithm by Uehara and Chen [30] which
we call the partitioning algorithm. Let γ > 1 and k > 0 be constant. We par-
tition the edge set by t ranks where all edges e in rank i ∈ {1, . . . , t} have a
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weight w(e) ∈ (
γi−1 · wmax

kN , γi · wmax

kN

]
where wmax is the maximal weight in G.

Let G′ = (V,E,w) be equal to G but each edge e in rank i has weight ri := γi for
all i = 1, . . . , t. Starting with i = t, we compute an unweighted maximal match-
ing Mi considering only edges in rank i (in G′) and remove all edges incident to
a matched node. Continue with i − 1. The weight of the matching M =

⋃
Mi is

w(M) =
∑t

i=1 ri ·|Mi| and satisfieswG(M
∗) ≥ wG′(M) ≥ 1

2γ ·wG(M
∗) whereM∗

is an optimal weighted matching in G. The previous algorithms [14,26,11,32,10]
for insertion-only streams use a similar partitioning of edge weights. Since these
algorithms are limited to storing one maximal matching (in case of [10] one max-
imal matching per rank), they cannot compute residual maximal matchings in
each rank. However, by charging the smaller edge weights into the higher ones,
the resulting approximation factor can be made reasonably close to that of Uehara
and Chen. Since these algorithmsmaintain matchings, they cannot have sublinear
space in an insertion-only stream and they need at least Ω(n2−3ε) in a dynamic
stream even when the maintained matching is only a O(nε) approximation ([5]).
Though the complexity for unweighted estimating unweighted matchings is not
settled for any streaming model, there exist graph classes for which one can im-
prove on these algorithms wrt space requirement. Therefore, we assume the exis-
tence of a black box λ-approximate matching estimation algorithm.

Algorithm and Analysis. The partitioning of Uehara and Chen can be con-
structed almost obliviously in a stream. Let (e0, w(e0)) be the first inserted edge.
Then an edge e belongs to rank i iff 2i−1 ·w(e0) < w(e) ≤ 2i ·w(e0) for some i ∈ N.
Note that we can assume that the weights are greater than 0. Then the number
of sets is O(log wmax

wmin
). For the sake of simplicity, we assume that the edge weights

are in [1,W ]. Further details can be found in the full version of the paper.
We now introduce a bit of notation we will use in the algorithm and through-

out the proof. We partition the edge set E =
⋃t

i=0 Ei by t+1 = O(logW ) ranks
where the set Ei contains all edges e with weight w(e) ∈ [

2i, 2i+1
)
. Wlog we as-

sume Et �= ∅ (otherwise let t be the largest rank with Et �= ∅). LetG′ = (V,E,w′)
be equal to G but each edge e ∈ Ei has weight w

′(e) = ri := 2i for all i = 0, . . . , t.
Let M =

⋃t
i=0 Mi be the matching computed by the partitioning algorithm and

S be a (t+ 1)-dimensional vector with Si =
∑t

j=i |Mi|.
Algorithm 1 now proceeds as follows: For every i ∈ {0, . . . t} the size of a

maximum matching in (V,
⋃t

j=i Ej) and Si differ by only a constant factor. Con-

ceptually, we set our estimator Ŝi of Si to be the approximation of the size of
the maximum matching of (V,

⋃t
j=i Ei) and the estimator of the contribution of

the edges in Ei to the weight of an optimal weighted matching is R̂i = Ŝi− Ŝi+1.

The estimator R̂i is crude and generally not a good approximation to |Mi|. What
helps us is that if the edges Mi have a significant contribution to w(M), then
|Mi| 	

∑t
j=i+1 |Mj | = Si+1. In order to detect whether the matching Mi has a

significant contribution to the objective value, we introduce two parameters T
and c. The first matching Mt is always significant (and the simplest to approxi-

mate by setting R̂t = Ŝt). For all subsequent matchings i < t, let j be the most
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Algorithm 1. Weighted Matching Approximation

Require: Graph G = (V,
⋃t

i=0 Ei) with weights ri for edges in Ei

Ensure: Estimator of the weighted matching

for i = t to 0 do
Ŝi = R̂i = 0

weight = 0, last = t
R̂t = Ŝt = Unweighted Matching Estimation(V,Et)
for i = t− 1 to 0 do

Ŝi = Unweighted Matching Estimation(V,
⋃t

j=i Ej)

if Ŝi > Ŝlast · T then � Add current index i to Igood

if Ŝi − Ŝlast ≥ c · R̂last then � Add current index i to Isign

R̂i = Ŝi − Ŝlast

last = i
else

Ŝi = 0

return 2
5

t∑

i=0

ri · R̂i

recent matching which we deemed to be significant. We require Ŝi ≥ T · Ŝj and

R̂i ≥ c · R̂j . If both criteria are satisfied, we use the estimator R̂i = Ŝi − Ŝj and

set i to be the now most recent, significant matching, otherwise we set R̂i = 0.
The final estimator of the weight is

∑t
i=0 ri · R̂i. The next definition gives a

more detailed description of the two sets of ranks which are important for the
analysis.

Definition 1 (Good and Significant Ranks). Let Ŝ and R̂ be the vectors at

the end of Algorithm 1. An index i is called to be a good rank if Ŝi �= 0 and
i is a significant rank if R̂i �= 0. We denote the set of good ranks by Igood and

the set of significant ranks by Isign, i. e., Igood :=
{
i ⊆ {0, . . . t} |Ŝi �= 0

}
and

Isign :=
{
i ⊆ {0, . . . t} |R̂i �= 0

}
. We define Igood and Isign to be in descending

order and we will refer to the �-th element of Igood and Isign by Igood(�) and
Isign(�), respectively. That means Igood(1) > Igood(2) > . . . > Igood(|Igood|) and
Isign(1) > Isign(2) > . . . > Isign(|Isign|). We slightly abuse the notation and set
Isign(|Isign| + 1) = 0. Let D1 := |Mt| and for � ∈ {2, . . . , |Isign|} we define the
sum of the matching sizes between two significant ranks Isign(�) and Isign(�− 1)

where the smaller significant rank is included by D� :=
∑Isign(�−1)−1

i=Isign(�) |Mi|.
In the following, we subscript indices of significant ranks by s and of good

ranks by g. We state a simple property of Igood and Isign.

Fact 1. Igood(1) = Isign(1) = t and Isign ⊆ Igood.

Now, we have the necessary notations and properties of good and significant
ranks to proof our main theorem.
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Theorem 1. Let G = (V,E,w) be a weighted graph where the weights are from

[1,W ]. Let A be an algorithm that returns an λ-estimator M̂ for the size of a

maximum matching M of a graph with 1/λ·|M | ≤ M̂ ≤ |M | with failure probabil-
ity at most δ and needs space S. If we partition the edge set into sets E0, . . . , Et

with t = �logW � where Ei consists of all edges with weight in [2i, 2i+1), set
ri = 2i, and use A as the unweighted matching estimator in Algorithm 1, then
there are parameters T and c depending on λ such that the algorithm returns
an O(λ4)-estimator Ŵ for the weight of the maximum weighted matching with
failure probability at most δ · (t + 1) using O(S · t) space, i.e. there is a con-

stant c such that 1
cλ4 · w(M∗) ≤ Ŵ ≤ w(M∗) where M∗ is an optimal weighted

matching.

Proof (sketch). In the following we condition on the event that all calls to
the unweighted estimation routine succeed, which happens with probability at
least 1 − δ · (t + 1). The estimator returned by Algorithm 1 can be written as∑|Isign|

�=1 rIsign(�) · R̂Isign(�). Using similar arguments as found in Lemma 4 of [30],

we have 1
8 · w(M∗) ≤

t∑
i=0

ri|Mi| ≤ w(M∗). Thus, it is sufficient to show that

∑|Isign|
�=1 rIsgin(�) · R̂Isign(�) is a good estimator for

t∑
i=0

ri|Mi|. We first consider

the problem of estimating D�, and then how to charge the matching sizes.

(1) Estimation of D�. Since
⋃t

j=i Mj is a maximal matching in
⋃t

j=i Ej , Ŝi

is a good estimator for Si:

Lemma 1. For all i ∈ {0, . . . , t} we have
1

λ
· Si ≤ Ŝi ≤ 2 · Si.

Next, we show that for an index ig ∈ Igood the difference Ŝig − ̂SIsign(�) to the

last significant rank is a good estimator for
∑Isign(�)−1

i=ig
|Mi|.

Lemma 2. For all ig ∈ Igood with Isign(� + 1) ≤ ig < Isign(�) for some � ∈
{1, . . . , |Isign|} and T = 8λ2 − 2λ,

1

2λ
·
Isign(�)−1∑

i=ig

|Mi| < Ŝig − ̂SIsign(�) <
5

2
·
Isign(�)−1∑

i=ig

|Mi|

and 1
λ |Mt| ≤ Ŝt ≤ 2|Mt|.

From Fact 1 we know that Isign ⊆ Igood which together with the last Lemma 2

implies that R̂Isign(�) is a good estimator for D�.

Corollary 1. For � ∈ {1, . . . , |Isign|}, 1
2λ ·D� ≤ R̂J(�) ≤ 5

2 ·D�. Furthermore, if
c > 5λ then the values of the D� are exponentially increasing:

D1 ≤ 5λ

c
D2 ≤ . . . ≤

(
5λ

c

)|Isign|−1

D|Isign|−1.
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(2) The Charging Argument. We show that the sum of the matching sizes
between two significant ranks Isign(�+1) and Isign(�) is bounded byO(λ·T ·D�) =

O
(
λ · T ·∑Isign(�−1)+1

i=Isign(�) |Mi|
)
.

Lemma 3. Setting c = 2
5 ·T+5λ in Algorithm 1. Then for � ∈ {1, . . . , |Isign|−1},

Isign(�)−1∑

i=Isign(�+1)+1

|Mi| ≤ (2λ ·T +25λ2) ·D� and

Isign(|Isign|)−1∑

i=0

|Mi| ≤ (2λ ·T +25λ2) ·

D|Isign| if 0 �∈ Isign.

Proof. For the proof of the first inequality, let ig ∈ Igood be minimal such that
Isign(� + 1) < ig < Isign(�) for � ∈ {1, . . . , |Isign| − 1}. If such a good rank
does not exist, set ig = −1. We distinguish between two cases. Note that c =
5
2 · T + 5λ > 5λ.

Case 1: ig = Isign(� + 1) + 1. For the sake of simplicity, we abuse the notation

and set ̂SIsign(0) = 0 such that R̂Isign(�) = ̂SIsign(�) − ̂SIsign(�−1) also holds
for � = 1. Using Lemma 2 we have

Isign(�)−1∑

i=Isign(�+1)+1

|Mi| =

Isign(�)−1∑

i=ig

|Mi| ≤
Lem. 2

2λ ·
(
Ŝig − ̂SIsign(�)

)

≤
ig �∈Isign

2λc · R̂Isign(�) = 2λ · c ·
(

̂SIsign(�) − ̂SIsign(�−1)

)

≤
Lem. 2

5λ · c ·
Isign(�−1)−1∑

i=Isign(�)

|Mi| = 5 · c ·D� (1)

Case 2: ig �= Isign(� + 1) + 1. In this case ̂SIsign(�+1)+1 ≤ T · ̂SIsign(�). Thus

Isign(�)−1∑

i=Isign(�+1)+1

|Mi| ≤ SIsign(�+1)+1 ≤
Lem. 1

λ · ̂SIsign(�+1)+1

≤ λ · T · ̂SIsign(�) ≤
Lem. 1

2λ · T · SIsign(�)=2λ · T ·
�∑

i=1

Di

≤
Cor. 1

2λ · T ·D� ·
�∑

i=1

(
5λ

c

)i

≤ 2λ · T ·D� · 1

1− 5λ
c

(2)

Combining the inequalities 1 and 2, we have
∑Isign(�)−1

i=Isign(�+1)+1 |Mi| ≤
max

{
5λ · c, 2λ·T

1− 5λ
c

}
·D� which simplifies to

Isign(�)−1∑

i=Isign(�+1)+1

|Mi| ≤ (2λ · T + 25λ2) ·D� for � ∈ {1, . . . , |Isign| − 1}.
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If 0 �∈ Isign we can do the same arguments to bound
∑Isign(|Isign|)−1

i=0 |Mi| by
(2λ · T + 25λ2) ·D|Isign|. �

We use Lemma 3 to show that w(M) is bounded in terms of
∑|Isign|

�=1 rIsign(�) ·D�:

t∑

i=0

ri · |Mi| ≥
|Isign|∑

�=1

rIsign(�) ·D� (3)

t∑

i=0

ri · |Mi| ≤ (1 + 2λ · T + 25λ2) ·
|Isign|∑

�=1

rIsign(�) ·D�. (4)

PuttingEverythingTogether. Using Corollary 1 we have 1
2λ ·D� ≤ R̂Isign(�) ≤

5
2 · D� for all � ∈ {1, . . . , |Isign|} which with (3) and (4) gives 1

2λ·(1+2λ·T+25λ2) ·
w(M) ≤ ∑|Isign|

�=1 rIsign(�) · R̂Isign(�) ≤ 5
2 ·w(M). Recall that we set T = 8λ2 − 2λ.

Now, folding in the factor of 1
8 from the partitioning and rescaling the estimator

gives an O(λ4)-estimation on the weight of an optimal weighted matching.

2.1 Applications

Since every edge insertion and deletion supplies the edge weight, it is straightfor-
ward to determine the rank for each edge upon every update. Using the following
results for unweighted matching, we can obtain estimates with similar approxi-
mation guarantee and space bounds for weighted matching.

Random Order Streams. For an arbitrary graph whose edges are streamed
in random order, Kapralov, Khanna and Sudan [20] gave an algorithm with
polylog n approximation guarantee using polylog n space with failure probabil-
ity δ = 1/polylog n. Since this probability takes the randomness of the input
permutation into account, we cannot easily amplify it, though for logW ≤ δ, the
extension to weighted matching still succeeds with at least constant probability.

Adversarial Streams. The arboricity of a graph G is defined as max
U⊆V

⌈
|E(U)|
|U|−1

⌉
.

Examples of graphs with constant arboricity include planar graphs and graphs
with constant degree. For graphs of bounded arboricity ν, Esfandiari et al. [13]
gave an algorithm with an O(ν) approximation guarantee using Õ(ν ·n2/3) space.

Dynamic Streams. Matching in trees can be easily sketched by counting the
number of distinct elements of the degree vector initialized to −1n. We briefly
sketch how to extend the algorithm by Esfandiari et al. [13] to dynamic streams:
The only part that is not straightforwardly adapted is the small matching up to
some threshold k maintained by the greedy algorithm in insertion-only streams.
For this, we summarize entries of the adjacency matrix as well as entries of the
Tutte-matrix [29], where each non-zero entry (i, j) of the adjacency matrix is
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replaced by the variable xij if i < j and −xij if i > j. Lovász [25] showed that
the maximum rank of T over all choices of the indeterminates is twice the size of
the maximum matching. Furthermore, Lovász also noted that T has maximum
rank with high probability if the indeterminates are chosen independently and
uniformly at random from {1, . . . , poly(n)}. This shows that computing the size
of the maximum matching is a special case of computing the rank of a matrix; we
simply maintain the Tutte-matrix with randomly chosen values for each entry.
Uniformly random bits would require O(n2) space, which can be averted by using
Nisan’s pseudorandom generator for bounded space computation [28,18].

Given a positive integer k and a stream over updates to a matrix A, an
algorithm for the rank decision problem outputs 1 if rank(A) ≥ k and 0 otherwise.
Clarkson and Woodruff [8] proposed an algorithm operating in fully dynamic
streams using O(k2 logn) space. Setting k = n2/5 then gives us the following.

Theorem 3. Let G be a graph with bounded arboricity ν. Then there exists an
algorithm estimating the size of the maximum matching in G within an O(ν)-
factor in the dynamic streaming model using a single pass over the data and
Õ(ν · n4/5) space or two passes over the data and Õ(ν · n2/3) space.

3 Lower Bound

Esfandiari et al. [13] showed a space lower bound of Ω(
√
n) for any estimation

better than 3/2. Their reduction (see below) uses the Boolean Hidden Matching
Problem introduced by Bar-Yossef et al. [6], and further studied by Gavinsky et
al. [15]. We will use the following generalization due to Verbin and Yu [31].

Definition 2 (Boolean Hidden Hypermatching Problem [31]). In the
Boolean Hidden Hypermatching Problem BHHt,n Alice gets a vector x ∈ {0, 1}n
with n = 2kt and k ∈ N and Bob gets a perfect t-hypermatching M on the n coor-
dinates of x, i. e., each edge has exactly t coordinates, and a string w ∈ {0, 1}n/t.
We denote the vector of length n/t given by (

⊕
1≤i≤t xM1,i , . . . ,

⊕
1≤i≤t xMn/t,i

)
by Mx where (M1,1, . . . ,M1,t), . . . , (Mn/t,1, . . . ,Mn/t,t) are the edges of M . The

problem is to return 1 if Mx⊕w = 1n/t and 0 if Mx⊕w = 0n/t, otherwise the
algorithm may answer arbitrarily.

Verbin and Yu [31] showed a lower bound of Ω(n1−1/t) for the randomized
one-way communication complexity for BHHt,n. For our reduction we require
w = 0n/t and thus Mx = 1n/t or Mx = 0n/t. We denote this problem by
BHH0

t,n. We can show that this does not reduce the communication complexity.

Lemma 4. The communication complexity of BHH0
t,4n is lower bounded by the

communication complexity of BHHt,n.

Let us now sketch the reduction from BHH0
2,n to approximate maximum match-

ing to get the idea how to extend it to the general bound. Let x,M be the input
for Alice and Bob. They construct a graph consisting of 2n nodes denoted by
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v1,i and v2,i, for i ∈ {1, . . . , n}. For each bit xi of x ∈ {0, 1}n, Alice adds an edge
{v1,i, v2,i} iff xi = 1 and sends a message to Bob. Bob adds an edge between v2,i
and v2,j for each edge {xi, xj} ∈ M and approximates the size of the matching.
If all parities are 1 then the size of the maximum matching is n/2. If the parities
are all 0 then the size is 3n/4. Every streaming algorithm that approximates
better than 3/2 can distinguish between these two cases. The first observation
is that the size of the matching is lower bounded by the number of ones in x.
The second observation is that the added edges by Bob increase the matching iff
the parities of all pairs are 0 and only the edges between the two 0 input bits of
Alice increase the matching. Since it is promised that all parities are equal and
the number of ones is exactly n/2 we can calculate the number of (0, 0) pairs.
For our lower bound we show that this calculation is still possible if Bob adds a
t-clique between the corresponding nodes of the hyperedge.

Theorem 2. Any randomized streaming algorithm that approximates the max-
imum matching size within a 1 + 1

3t/2−1 factor for t ≥ 2 needs Ω(n1−1/t) space.

Finally, constructing the Tutte-matrix with randomly chosen entries gives us

Corollary 2. Any randomized streaming algorithm that approximates rank(A)
of A ∈ R

n×n within a 1 + 1
3t/2−1 factor for t ≥ 2 requires Ω(n1−1/t) space.
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Abstract. Knapsack median is a generalization of the classic k-median problem
in which we replace the cardinality constraint with a knapsack constraint. It is cur-
rently known to be 32-approximable. We improve on the best known algorithms
in several ways, including adding randomization and applying sparsification as a
preprocessing step. The latter improvement produces the first LP for this problem
with bounded integrality gap. The new algorithm obtains an approximation factor
of 17.46. We also give a 3.05 approximation with small budget violation.

Keywords: approximation algorithm, combinatorial optimization, randomized
algorithm, facility-location problems.

1 Introduction

k-MEDIAN is a classic problem in combinatorial optimization. Herein, we are given a
set of clients C, facilities F , and a symmetric distance metric c on C ∪ F . The goal is
to open k facilities such that we minimize the total connection cost (distance to near-
est open facility) of all clients. A natural generalization of k-MEDIAN is KNAPSACK

MEDIAN (KM), in which we assign nonnegative weight wi to each facility i ∈ F , and
instead of opening k facilities, we require that the sum of the open facility weights be
within some budget B.

While KM is not known to be harder than k-MEDIAN, it has thus far proved more
difficult to approximate. k-MEDIAN was first approximated within constant factor 6 2

3
in 1999 [2], with a series of improvements leading to the current best-known factor
of 2.674 [1]1. KM was first studied in 2011 by Krishnaswamy et. al. [4], who gave a
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bicriteria 16 + ε approximation which slightly violated the budget. Then Kumar gave
the first true constant factor approximation for KM with factor 2700 [5], subsequently
reduced to 34 by Charikar&Li [3] and then to 32 by Swamy [8].

This paper’s algorithm has a flow similar to Swamy’s: we first get a half-integral so-
lution (except for a few ‘bad’ facilities), and then create pairs of half-facilities, opening
one facility in each pair. By making several improvements, we reduce the approxima-
tion ratio to 17.46. The first improvement is a simple modification to the pairing process
so that every half-facility is guaranteed either itself or its closest neighbor to be open
(versus having to go through two ‘jumps’ to get to an open facility). The second im-
provement is to randomly sample the half-integral solution, and condition on the prob-
ability that any given facility is ‘bad’. The algorithm can be derandomized with linear
loss in the runtime.

The third improvement deals with the bad facilities which inevitabley arise due to the
knapsack constraint. All previous algorithms used Kumar’s bound from [5] to bound
the cost of nearby clients when bad facilities must be closed. However, we show that by
using a sparsification technique similar in spirit to - but distinct from - that used in [6],
we can focus on a subinstance in which the connection costs of clients are guaranteed
to be evenly distributed throughout the instance. This allows for a much stronger bound
than Kumar’s, and also results in an LP with bounded integrality gap, unlike previous
algorithms.

Another alternative is to just open the few bad facilities and violate the budget by
some small amount, as Krishnaswamy et. al. did when first introducing KM. By pre-
processing, we can ensure this violates the budget by at most εB. We show that the bi-
point solution based method from [6] can be adapted for KM using this budget-violating
technique to get a 3.05 approximation.

1.1 Preliminaries

Let n = |F| + |C| be the size of the instance. For the ease of analysis, we assume that
each client has unit demand. (Indeed, our algorithm easily extends to the general case.)
For a client j, the connection cost of j, denoted as cost (j), is the distance from j to the
nearest open facility in our solution. The goal is to open a subset S ⊆ F of facilities
such that the total connection cost is minimized, subject to the knapsack constraint∑

i∈S wi ≤ B.
The natural LP relaxation of this problem is as follows.

minimize
∑

i∈F ,j∈C
cijxij

subject to
∑

i∈F
xij = 1 ∀j ∈ C

xij ≤ yi ∀i ∈ F , j ∈ C
∑

i∈F
wiyi ≤ B

0 ≤ xij , yi ≤ 1 ∀i ∈ F , j ∈ C
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In this LP, xij and yi are indicator variables for the event client j is connected to
facility i and facility i is open, respectively. The first constraint guarantees that each
client is connected to some facility. The second constraint says that client j can only
connect to facility i if it is open. The third one is the knapsack constraint.

In this paper, given a KM instance I = (B,F , C, c, w), let OPTI and OPTf be
the cost of an optimal integral solution and the optimal value of the LP relaxation,
respectively. SupposeS ⊆ F is a solution to I, let cost I(S) denote cost of S. Let (x, y)
denote the optimal (fractional) solution of the LP relaxation. Let Cj :=

∑
i∈F cijxij

be the fractional connection cost of j. Given S ⊆ F and a vector v ∈ R
|F|, let v(S) :=∑

i∈S vi. From now on, let us fix any optimal integral solution of the instance for the
analysis.

2 An Improved Approximation Algorithm for Knapsack Median

2.1 Kumar’s Bound

The main technical difficulty of KM is related to the unbounded integrality gap of the
LP relaxation. It is known that this gap remains unbounded even when we strengthen
the LP with knapsack cover inequalities [4]. All previous constant-factor approximation
algorithms for KM rely on Kumar’s bound from [5] to get around the gap. Specifically,
Kumar’s bound is useful to bound the connection cost of a group of clients via some
cluster center in terms of OPTI instead of OPTf . We now review this bound, and will
improve it later.

Lemma 1. For each client j, we can compute (in polynomial time) an upper-bound Uj

on the connection cost of j in the optimal integral solution (i.e. cost (j) ≤ Uj) such
that ∑

j′∈C
max{0, Uj − cjj′} ≤ OPTI .

We can slightly strengthen the LP relaxation by adding the constraints: xij = 0 for
all cij > Uj . (Unfortunately, the integrality gap is still unbounded after this step.) Thus
we may assume that (x, y) satisfies all these constraints.

Lemma 2 (Kumar’s bound). Let S be a set of clients and s ∈ S, where cjs ≤ βCj

for all j ∈ S and some constant β ≥ 1, then

|S|Us ≤ OPTI + β
∑

j∈S
Cj .

Proof.

|S|Us =
∑

j∈S
Us =

∑

j∈S
(Us − cjs) +

∑

j∈S
cjs ≤ OPTI + β

∑

j∈S
Cj ,

where we use the property of Us from Lemma 1 for the last inequality. �	
This bound allows one to bound the cost of clients which rely on the bad facility.
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2.2 Sparse Instances

Kumar’s bound can only be tight when the connection cost in the optimal solution is
highly concentrated around a single client. However, if this were the case, we could
guess the client for which this occurs, along with its optimal facility, which would give
us a large advantage. On the other hand, if the connection cost is evenly distributed, we
can greatly strengthen Kumar’s bound. This is the idea behind our definition of sparse
instances below.

Let CBall(j, r) := {k ∈ C : cjk ≤ r} denote the set of clients within radius of r
from client j. Let λj be the connection cost of j in the optimal integral solution. Also,
let i(j) denote the facility serving j in the optimal solution.

Definition 1. Given some constants 0 < δ, ε < 1, we say that a knapsack median
instance I = {B,F , C, c, w} is (δ, ε)-sparse if, for all j ∈ C,

∑

k∈CBall(j,δλj)

(λj − cjk) ≤ εOPTI .

We will show that the integrality gap is bounded on these sparse instances. We also
give a polynomial-time algorithm to sparsify any knapsack median instance. Moreover,
the solution of a sparse instance can be used as a solution of the original instance with
only a small loss in the total cost.

Lemma 3. Given some knapsack median instance I0 = (B,F , C0, c, w) and 0 <
δ, ε < 1, there is an efficient algorithm that outputs O(n2/ε) pairs of (I,F ′), where
I = (B,F , C, c, w) is a new instance with C ⊆ C0, and F ′ ⊆ F is a partial solution,
such that at least one of these instances is (δ, ε)-sparse.

The following theorem says that if we have an approximate solution to a sparse
instance, then its cost on the original instance can be blown up by a small constant
factor.

Theorem 1. Let I = (B,F , C, c, w) be a (δ, ε)-sparse instance obtained from I0 =
(B,F , C0, c, w) and F ′ be the corresponding partial solution. If S ⊇ F ′ is any approx-
imate solution to I (including those open facilities in F ′) such that

cost I(S) ≤ αOPTI ,

then

cost I0(S) ≤ max

{
1 + δ

1− δ
, α

}
OPTI0 .

Note that our notion of sparsity differs from that of Li and Svensson in several ways. It
is client-centric, and removes clients instead of facilities from the instance. On the neg-
ative side, removed clients’ costs blow up by 1+δ

1−δ , so our final approximation cannot
guarantee better. From now on, assume that we are given some arbitrary knapsack me-
dian instance I0 = (B,F , C0, c, w). We will transform I0 into a (δ, ε)-sparse instance
I and use Theorem 1 to bound the real cost at the end.
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2.3 Improving Kumar’s Bound and Modifying the LP Relaxation

We will show how to improve Kumar’s bound in sparse instances. Recall that, for all
j ∈ C, we have ∑

k∈CBall(j,δλj)

(λj − cjk) ≤ εOPTI .

Then, as before, we can guess OPTI and take the maximum Uj such that

∑

k∈CBall(j,δUj)

(Uj − cjk) ≤ εOPTI .

(Observe that the LHS is an increasing function of Uj .) Now the constraints xij = 0 for
all i ∈ F , j ∈ C : cij > Uj are valid and we can add these into the LP. We also add the
following constraints: yi = 1 for all facilities i ∈ F ′. From now on, assume that (x, y)
is the solution of this new LP, satisfying all the mentioned constraints.

Lemma 4. Let s be any client in sparse instance I and S be a set of clients such that
cjs ≤ βCj for all j ∈ S and some constant β ≥ 1. Then

|S|Us ≤ εOPTI +
β

δ

∑

j∈S
Cj .

2.4 Filtering Phase

We will apply the standard filtering method for facility-location problems (see [3, 8]).
Basically, we choose a subset C′ ⊆ C such that clients in C′ are far from each other.
After assigning each facility to the closest client in C′, it is possible to lower-bound the
opening volume of each cluster. Each client in C′ is called a cluster center.

Filtering Algorithm: Initialize C′ := C. For each client j ∈ C′ in increasing order of
Cj , we remove all other clients j′ such that cjj′ ≤ 4Cj′ = 4max{Cj′ , Cj} from C′.

For each j ∈ C′, define Fj = {i ∈ F : cij = mink∈C′ cik}, breaking ties arbitrarily.
Let F ′

j = {i ∈ Fj : cij ≤ 2Cj} and γj = mini/∈Fj
cij . Then define Gj = {i ∈ Fj :

cij ≤ γj}. We also reassign yi := xij for i ∈ Gj and yi := 0 otherwise. For j ∈ C′, let
Mj be the set containing j and all clients removed by j in the filtering process.

Lemma 5. We have the following properties:

– All sets Gj are disjoint,
– 1/2 ≤ y(F ′

j) and y(Gj) ≤ 1 for all j ∈ C′.
– F ′

j ⊆ Gj for all j ∈ C′.

It is clear that for all j, j′ ∈ C′, cjj′ ≥ 4max{Cj′ , Cj}. Moreover, for each j ∈ C \ C′,
we can find j′ ∈ C′, where j′ causes the removal of j, or, in other words, Cj′ ≤ Cj and
cjj′ ≤ 4Cj . Assuming that we have a solution S for the instance I ′ = (B,F , C′, c, w)
where each client j in C′ has demand dj = |Mj | (i.e. there are |Mj| copies of j), we
can transform it into a solution for I as follows. Each client j ∈ C \ C′ will be served
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by the facility of j′ that removed j. Then cost (j) = cjj′ + cost (j′) ≤ cost (j′)+4Cj .
Therefore,

cost I(S) =
∑

j∈C′
cost (j) +

∑

j∈C\C′
cost (j)

≤
∑

j∈C′
cost (j) +

∑

j∈C\C′
( cost (j′(j)) + 4Cj)

≤ cost I′(S) + 4OPTf .

where, in the second line, j′(j) is the center in C′ that removed j.

2.5 A Basic (23.09 + ε)-Approximation Algorithm

In this section, we describe a simple randomized (23.09+ ε)-approximation algorithm.
In the next section, we will derandomize it and give more insights to further improve
the approximation ratio to 17.46 + ε.

High-Level Ideas: We reuse Swamy’s idea from [8] to first obtain an almost half in-
tegral solution ŷ. This solution ŷ has a very nice structure. For example, each client j
only (fractionally) connects to at most 2 facilities, and there is at least a half-opened
facility in each Gj . We shall refer to this set of 2 facilities as a bundle. In [8], the author
applies a standard clustering process to get disjoint bundles and round ŷ by opening at
least one facility per bundle. The drawback of this method is that we have to pay extra
cost for bundles removed in the clustering step. In fact, it is possible to open at least
one facility per bundle without filtering out any bundle. The idea here is inspired by the
work of Charikar et. al [2]. In addition, instead of picking ŷ deterministically, sampling
such a half integral extreme point will be very helpful for the analysis.

We consider the following polytope.

P = {v ∈ [0, 1]|F| : v(F ′
j) ≥ 1/2, v(Gj) ≤ 1, ∀j ∈ C′;

∑

i∈F
wivi ≤ B}.

Lemma 6 ( [8]). Any extreme point of P is almost half-integral: there exists at most 1
cluster center s ∈ C′ such that Gs contains variables /∈ {0, 12 , 1}. We call s a fractional
client.

Notice by Lemma 5 that y ∈ P . By Carathéodory’s theorem, y is a convex com-
bination of at most t = |F| + 1 extreme points of P . Moreover, there is an efficient
algorithm based on the ellipsoid method to find such a decomposition (e.g., see [7]).
We apply this algorithm to get extreme points y(1), y(2), . . . , y(t) ∈ P and coefficients
0 ≤ p1, . . . , pt ≤ 1,

∑t
i=1 pi = 1, such that

y = p1y
(1) + p2y

(2) + . . .+ pty
(t).

This representation defines a distribution on t extreme points of P . Let Y ∈ [0, 1]F

be a random vector where Pr[Y = y(i)] = pi for i = 1, . . . , t. Observe that Y is almost
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half-integral. Let s be the fractional client in Y . (We assume that s exists; otherwise,
the cost will only be smaller.)

Defining primary and secondary facilities: For each j ∈ C′,

– If j �= s, let i1(j) be the half-integral facility in F ′
j . Else (j = s), let i1(j) be the

smallest-weight facility in F ′
j with Yi1(j) > 0.

– If Y (i1(j)) = 1, let i2(j) = i1(j).
– If Y (Gj) < 1, then let σ(j) be the nearest client to j in C′. Define i2(j) = i1(σ(j)).
– If Y (Gj) = 1, then

• If j �= s, let i2(j) be the other half-integral facility in Gj .
• Else (j = s), let i2(j) be the smallest-weight facility in Gj with Yi2(j) > 0.

– We call i1(j), i2(j) the primary facility and the secondary facility of j, respectively.

Constructing the neighborhood graph: Initially, construct the directed graph G on
clients in C′ such that there is an edge j → σ(j) for each j ∈ C′ : Y (Gj) < 1. Note
that all vertices in G have outdegree ≤ 1. If Y (Gj) = 1, then vertex j has no outgoing
edge. In this case, we replace j by the edge i1(j) → i2(j), instead. Finally, we relabel
all other nodes in G by its primary facility. Now we can think of each client j ∈ C′ as
an edge from i1(j) to i2(j) in G.

Lemma 7. Without loss of generality, we can assume that all cycles of G (if any) are
of size 2. This means that G is bipartite.

We are now ready to describe the main algorithm.

Algorithm 1. ROUND(Y )

1: Construct the neighborhood graph G based on Y
2: Let C1, C2 be independent sets which partition G.
3: Let W1,W2 be the total weight of the facilities in C1, C2 respectively.
4: if W1 ≤ W2 then
5: return C1

6: else
7: return C2

Theorem 2. Algorithm 2 returns a feasible solution S where

E[ cost I0(S)] ≤ max

{
1 + δ

1− δ
, 10 + 12/δ + 3ε

}
OPTI0 .

In particular, the approximation ratio is at most (23.087 + 3ε) when setting δ :=
0.916966.
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Algorithm 2. BASICALGORITHM(δ, ε, I0)

1: Generate O(n2/ε) pairs (I,F ′) using the algorithm in the proof of Lemma 3.
2: S ← ∅
3: for each pair (I,F ′) do
4: Let (x, y) be the optimal solution of the modified LP relaxation in Section 2.3.
5: Apply the filtering algorithm to get I′.
6: Use F , C′ to define the polytope P .
7: Sample a random extreme point Y of P as described above.
8: Let S ′ ←ROUND(Y )
9: If S ′ is feasible and its cost is smaller than the cost of S then S ← S ′.

10: return S

2.6 A (17.46+ε)-Approximation Algorithm via Conditioning on the Fractional
Cluster Center

Recall that the improved Kumar’s bound for the fractional client s is

|Ms|Us ≤ εOPTI + (4/δ)
∑

j∈Ms

Cj .

In Theorem 2, we upper-bound the term
∑

j∈Ms
Cj by OPTf . However, if this is tight,

then the fractional cost of all other clients not in Ms must be zero and we should get an
improved ratio.

To formalize this idea, let u ∈ C′ be the client such that
∑

j∈Mu
Cj is maximum. Let

α ∈ [0, 1] such that
∑

j∈Mu
Cj = αOPTf , then

|Ms|Us ≤ εOPTI + (4/δ)αOPTf . (1)

The following bound follows immediately by replacing the Kumar’s bound by (1) in
the proof of Theorem 2.

E[ cost I(S)] ≤ (10 + 12α/δ + 3ε)OPTI . (2)

In fact, this bound is only tight when u happens to be the fractional client after sampling
Y . If u is not “fractional”, the second term in the RHS of (1) should be at most (1 −
α)OPTf . Indeed, if u is rarely a fractional client, we should obtain a strictly better
bound. To this end, let E be the event that u is the fractional client after the sampling
phase. Let p = Pr[E ]. We get the following lemma.

Lemma 8. Algorithm 2 returns a solution S with

E[ cost I(S)] ≤ (10 + min{12α/δ, (12/δ)(pα+ (1− p)(1− α))} + 3ε)OPTI .

Finally, conditioning on the event E , we are able to combine certain terms and get
the following improved bound.

Lemma 9. Algorithm 2 returns a solution S with

E[ cost I(S)|E ] ≤ (max{6/p, 12/δ}+ 4 + 3ε)OPTI .
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Algorithm 3. DETERMINISTICALGORITHM(δ, ε, I0)

1: Generate O(n2/ε) pairs (I,F ′) using the algorithm in the proof of Lemma 3.
2: S ← ∅
3: for each pair (I,F ′) do
4: Let (x, y) be the optimal solution of the modified LP relaxation in Section 2.3.
5: Apply the filtering algorithm to get I′.
6: Use F , C′ to define the polytope P .
7: Decompose y into a convex combination of extreme points y(1), y(2), . . . , y(t) of P .
8: for each Y ∈ {y(1), y(2), . . . , y(t)} do
9: Let S ′ ←ROUND(Y )

10: If S ′ is feasible and its cost is smaller than the cost of S then S ← S ′.
11: return S

Now we have all the required ingredients to get an improved approximation ratio.
Algorithm 3 is a derandomized version of Algorithm 2.

Theorem 3. Algorithm 3 returns a feasible solution S where

cost I0(S) ≤ (17.46 + 3ε)OPTI0 ,

when setting δ = 0.891647.

Note that in [8], Swamy considered a slightly more general version of KM where
each facility also has an opening cost. It can be shown that Theorem 3 also extends to
this variant.

3 A Bi-Factor 3.05-Approximation Algorithm for Knapsack
Median

In this section, we develop a bi-factor approximation algorithm for KM that outputs
a pseudo-solution of cost at most 3.05OPTI and of weight bounded by (1 + ε)B.
This is a substantial improvement upon the previous comparable result, which achieved
a factor of 16 + ε and violated the budget additively by the largest weight wmax of
a facility. It is not hard to observe that one can also use Swamy’s algorithm [8] to
obtain an 8-approximation that opens a constant number of extra facilities (exceeding
the budget B). Our algorithm works for the original problem formulation of KM where
all facility costs are zero. Our algorithm is inspired by a recent algorithm of Li and
Svensson [6] for the k-median problem, which beat the long standing best bound of
3 + ε. The overall approach consists in computing a so-called bi-point solution, which
is a convex combination aF1 + bF2 of two integral pseudo solutions F1 and F2 for
appropriate factors a, b ≥ 0 with a+ b = 1, and then rounding this bi-point solution to
an integral one.

Depending on the value of a, Li and Svensson apply three different bi-point rounding
procedures. We extend two of them to the case of KM. The rounding procedures of
Li and Svensson have the inherent property of opening k + c facilities where c is a
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constant. Li and Svensson find a way to preprocess the instance such that any pseudo
approximation algorithm for k-median that opens k + c facilities can be turned into a
(proper) approximation algorithm by paying only an additional ε in the approximation
ratio. We did not find a way to prove a similar result also for KM and therefore our
algorithms violate the facility budget by a factor of 1 + ε.

3.1 Pruning the Instance

The bi-factor approximation algorithm that we will describe in Section 3.2 has the
following property. It outputs a (possibly infeasible) pseudo-solution of cost at most
αOPTI such that the budget B is respected when we remove the two heaviest facilities
from this solution. This can be combined with a simple reduction to the case where the
weight of any facility is at most εB. This ensures that our approximate solution violates
the budget by a factor at most 1 + 2ε while maintaining the approximation factor α.

Lemma 10. Let I = (B,F , C, c, w) be any KM instance. Assume there exists an al-
gorithm A which computes for instance I a solution S which consists of a feasible
solution and two additional facilities, and which has cost at most αOPTI . Then there
exists for any ε > 0 a bi-factor approximation algorithm A′ which computes a solution
of weight (1 + ε)B and of cost at most αOPTI .

3.2 Computing and Rounding a Bi-Point Solution

Extending a similar result for the k-median [9], we can compute a bi-point solution,
which is a convex combination of two integral pseudo-solutions. See Appendix for
more details.

Theorem 4. We can compute in polynomial time two sets F1 and F2 of facilities and
factors a, b ≥ 0 such that a+b = 1, w(F1) ≤ B ≤ w(F2), a ·w(F1)+b ·w(F2) ≤ B,
and a · costI(F1) + b · costI(F2) ≤ 2 ·OPTI .

We will now give an algorithm which for a given KM instance I = (B,F , C, d, w)
returns a pseudo-solution as in Lemma 10 with cost 3.05OPTI.

We use Theorem 4 to obtain a bi-point solution of cost 2 OPTI . We will convert it
into a pseudo-solution of cost 1.523 times bigger than the bi-point solution. Let aF1 +
bF2 be the bi-point solution where a + b = 1, w(F1) ≤ B < w(F2) and aw(F1) +
bw(F2) = B. For each client j ∈ C the closest elements in sets F1 and F2 are denoted
by i1(j) and i2(j), respectively. Moreover, let d1(j) = ci1(j)j and d2(j) = ci2(j)j .
Then the (fractional) connection cost of j in our bi-point solution is ad1(j)+ bd2(j). In
a similar way let d1 =

∑
j∈C d1(j) and d2 =

∑
j∈C d2(j). Then the bi-point solution

has cost ad1 + bd2.
We consider two candidate solutions. In the first we just pick F1 which has cost

bounded by d1

ad1+bd2
≤ 1

a+brD
, where rD = d2

d1
. This, multiplied by 2, gives our ap-

proximation factor.
To obtain the second candidate solution we use the concept of stars. For each facility

i ∈ F2 define π(i) to be the facility from set F1 which is closest to i. For a facility
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i ∈ F1 define star Si with root i and leafs Si = {i′ ∈ F2|π(i′) = i}. Note that by the
definition of stars, we have that any client j with i2(j) ∈ Si has ci2(j)i ≤ ci2(j)i1(j) =
d2(j) + d1(j) and therefore cji ≤ cji2(j) + ci2(j)i ≤ 2d2(j) + d1(j).

The idea of the algorithm is to open for each star either its root or all of its leaves
so that in total the budget is respected. We formulate this subproblem by means of
an auxiliary LP. For any star Si let δ(Si) = { j ∈ C | i2(j) ∈ Si }. Consider a
client j ∈ δ(Si). If we open the root of Si the connection cost of j is bounded by
2d2(j) + d1(j), but if we open the leaf i2(j) ∈ Si we pay only d2(j) for connecting j.
Thus, we save in total an amount of

∑
j∈δ(Si)

d2(j) + d1(j) when we open all leaves
of S in comparison to opening just the root i. This leads us to the following linear
programming relaxation where we introduce for each star Si a variable xi indicating
whether we open the leaves of this star (xi = 1) or its root

max
∑

i∈F1

∑

j∈δ(Si)

(d1(j) + d2(j))xi subject to (3)

∑

i∈F1

(w(Si)− wi)xi ≤ B − w(F1)

0 ≤ xi ≤ 1 ∀i ∈ F1 .

Now observe that this is a knapsack LP. Therefore, any optimum extreme point x
solution to this LP has at most one fractional variable. Note that if we set xi = b for all
i ∈ F1 we obtain a feasible solution to the above LP. Therefore the objective value of
the above LP is lower bounded by b(d1+d2). We now open for all stars Si with integral
xi either its root (xi = 0) or all of its leaves (xi = 1) according to the value of xi. For
the (single) star Si where xi is fractional we apply the following rounding procedure.

We always open i, the root of Si. To round the leaf set Si, we set up another auxiliary
knapsack LP similar to LP (3). In this LP, each leaf i′ ∈ Si has a variable x̂i′ indicating
if the facility is open (x̂i′ = 1) or not (x̂i′ = 0). The details of this LP can be found
in the appendix. As a result of solving this LP, all leaves except possibly one obtain an
integral value x̂i′ . We open all i′ ∈ Si with x̂i′ = 1 and also the only fractional leaf.
As a result, the overall set of opened facilities consists of a feasible solution and two
additional facilities (namely the root i and the fractional leaf in Si).

We will now analyze the cost of this solution. Both of the above knapsack LPs only
reduce the connection cost in comparison to the original bipoint solution (or equiva-
lently increase the saving with respect to the quantity d1 + 2d2), the total connection
cost of the solution can be upper bounded by d1+2d2− b(d1+d2) = (1+a)d2+ad1.

The cost increase of the second algorithm with respect to the bi-point solution is at
most

(1 + a)d2 + ad1
(1− a)d2 + ad1

=
(1 + a)rD + a

(1 − a)rD + a
,

We always choose the better of the solutions of the two algorithms described above.
Our approximation ratio is upper bounded by

max
rD≥0
a∈[0,1]

min

{
(1 + a)rD + a

(1− a)rD + a
,

1

a+ rD(1− a)

}
≤ 1.523
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This, multiplied by 2 gives our overall approximation ratio of 3.05.

Theorem 5. For any ε > 0, there is a bi-factor approximation algorithm for KM that
computes a solution of weight (1 + ε)B and has a cost 3.05OPTI.

Proof. As argued above our algorithm computes a pseudo solution S of cost at most
3.05OPTI. Moreover, S consists of a feasible solution and two additional facilities.
Hence, Lemma 10 implies the theorem. �	

4 Discussion

The proof of Theorem 3 implies that for every (ε, δ)-sparse instance I, there exists a
solution S such that cost I(S) ≤ (4+12/δ)OPTf +3εOPTI. Therefore, the integral-

ity gap of I is at most 4+12/δ
1−3ε . Unfortunately, our client-centric sparsification process

inflates the approximation factor to at least 1+δ
1−δ , so we must choose some δ < 1 which

balances this factor with that of Algorithm 3. In contrast, the facility-centric sparsifica-
tion used in [6] incurs only a 1+ ε factor in cost. We leave it as a open question whether
the facility-centric version could also be used to get around the integrality gap of KM.

Our bi-factor approximation algorithm achieves a substantially smaller approxima-
tion ratio at the expense of slightly violating the budget by opening two extra facilities.
We leave it as an open question, to obtain a pre- and postprocessing in the flavor of Li
and Svensson to turn this into an approximation algorithm. It seems even interesting to
turn any bi-factor approximation into an approximation algorithm by losing only a con-
stant factor in the approximation ratio. We also leave it as an open question to extend
the third bi-point rounding procedure of Li and Svensson to knapsack median, which
would give an improved result.
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Abstract. This paper studies output-sensitive algorithms for enumer-
ation problems in multiobjective combinatorial optimization (MOCO).
We develop two methods for enumerating the extreme points of the
Pareto-frontier of MOCO problems. The first method is based on a dual
variant of Benson’s algorithm, which has been originally proposed for
multiobjective linear optimization problems. We prove that the algorithm
runs in output polynomial time for every fixed number of objectives if
the weighted-sum scalarization can be solved in polynomial time. Hence,
we propose the first algorithm which solves this general problem in out-
put polynomial time. We also propose a new lexicographic version of the
dual Benson algorithm that runs in incremental polynomial time in the
case that the lexicographic optimization variant can be solved in polyno-
mial time. As a consequence, the extreme points of the Pareto-frontier of
the multiobjective spanning tree problem as well as the multiobjective
global min-cut problem can be computed in polynomial time for a fixed
number of objectives. Our computational experiments show the practi-
cability of our improved algorithm: We present the first computational
study for computing the extreme points of the multiobjective version
of the assignment problem with five and more objectives. We also em-
pirically investigate the running time behavior of our new lexicographic
version compared to the original algorithm.

1 Introduction

In practical optimization, we often deal with problems having more than one
objective. Unlike in single objective optimization, there usually does not exist a
single optimal value and we usually have many solutions which are incomparable.
If we agree that we will always prefer a solution over all solutions that are worse
in all objectives then we can use this relation as a partial order on the solutions,
called the Pareto-dominance. More precisely, we say a vector a ∈ R

d dominates
a vector b ∈ R

d or a � b if a ≤ b (componentwise) and a �= b. Analogously, for
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two solutions x, y ∈ X and an objective function c : X → R
d we say x � y if

c(x) � c(y). The set of all minimal solutions with respect to this partial order is
called the set of efficient or Pareto-optimal solutions; the corresponding image
under the objective function is called the set of nondominated points or Pareto-
frontier.

In this spirit, we can define multiobjective combinatorial optimization (MOCO)
problems consisting of a base set A, a set of feasible solutions S ⊆ 2A and
an objective function c : A → Q

d. The cost of a solution x ∈ S thus is
c(x) :=

∑
a∈x c(a). The goal is to find for all points y of the Pareto-frontier

one solution x such that c(x) = y. This notion is motivated by the multicriteria
decision making community: Two solutions which are mapped to the same image
by the objective function are supposed to be essentially the same object.

One serious computational issue of many MOCO problems is that the size
of the Pareto-frontier can be large in the worst case, i.e., exponential in the in-
put size. Then again, the output being exponential is also true for many other
enumeration problems and has been addressed by the theory of output-sensitive
complexity. Johnson, Papadimitriou and Yannakakis [13] provide a summary of
these complexity notions: An algorithm runs in output polynomial time (origi-
nally referred to as polynomial total time) if its running time can be bounded by
a polynomial in the input and the output size. Besides the total running time, a
usually more interesting property is the delay of an enumeration algorithm. Let
N be the number of elements to output. We say the 0-th delay is the running
time prior to the first output of a solution, the k-th delay is the running time
between the output of the k-th and (k + 1)-th solution, and the N -th delay is
the running time after the last output until the termination of the algorithm. An
enumeration algorithm runs in polynomial (time) delay if all delays are bounded
by a polynomial in the input size. To relax this notion a bit, an algorithm runs in
incremental polynomial time, if the k-th delay is bounded by a polynomial in the
input and k. One purpose of this paper is to encourage a line of research which
applies these complexity notions to multiobjective optimization problems and—
surprisingly enough—there is only one other paper which considers this [14].

Moreover, in a recent work by Röglin and Brunsch [5], it is shown that in a
smoothed analysis setting, the expected size of the Pareto-frontier of a MOCO
problem of n variables and d objectives is O(n2dΦd) for every perturbation pa-
rameter Φ ≥ 1. This result gives reason to believe that pursuing the goal to
find the entire Pareto-frontier might still be practical as long as the number of
objectives is not too large.

A very promising approach to solve MOCO problems is the two-phase method
(cf. e.g., [7]). In this method, the Pareto-frontier is partitioned into two sets:
extreme nondominated and nonextreme nondominated points. (Exact definitions
of these sets will be given later.) In a first phase, we compute the extreme
nondominated points. In the second phase we can exploit this knowledge to
find the remaining nondominated points. The two-phase method is motivated
by the observation that it is often NP-hard even to decide if there exists a
solution which dominates a given point y ∈ Q

d. But at least in the biobjective
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case, if the lexicographic variant can be solved in polynomial time, then we can
enumerate the set of extreme nondominated points in incremental polynomial
time by using standard methods like the dichotomic approach [3]. Although the
problem of finding the extreme nondominated points of a MOCO problem seems
to be solved in the biobjective case, it is an open problem to enumerate these
points and corresponding solutions for problems with an arbitrary number of
objectives in reasonable time. Ehrgott and Gandibleux address this problem in
their survey paper from 2005 [7] as a “first step to an application of the two phases
method in three or more criteria MOCO”. The main concern of this paper will be
how to compute the set of extreme nondominated points in output polynomial
running time in theory and practice.

For d = 2, finding the extreme points of the Pareto-frontier is equivalent to the
combinatorial parametric optimization problem. See, e.g., [1] for a parametric
version of the minimum spanning tree problem. Thus, the problem we consider
here is a natural generalization of this very well known class of problems.

Previous Work. There exist only a few other methods to enumerate the extreme
nondominated points for MOCO problems with more than two objectives. Przy-
bylski, Gandibleux and Ehrgott [17] propose a method to find these points for
general multiobjective integer linear programming problems for which the ideal
point exists. The algorithm is theoretically capable of computing the extreme
nondominated points for an arbitrary number of objectives and the authors pro-
vide deep improvements in the case of three objectives. They also conducted a
set of experiments on three-objective assignment and knapsack problems show-
ing a very decent running time. Özpeynirci and Köksalan [15] suggest a method
to compute the set of extreme nondominated points based on the dichotomic ap-
proach which is usually utilized in the biobjective case. The authors also present
experiments on several MOCO problems with three and four objectives. Both of
the above works do not provide running time guarantees for their algorithms.

In [14], the authors propose an algorithm that enumerates all efficient span-
ning trees which are a solution to a weighted-sum of the objectives with polyno-
mial delay. The algorithm bases on the reverse search by Avis and Fukuda [4] to
output the efficient vertices of the spanning tree polytope. A note is here in order,
because the algorithm follows a different model where all efficient solutions are
sought. It is possible that there exist many spanning trees which are mapped to
the same point in the objective space. Consider a complete graph with n vertices
where all edges are mapped to the 1-vector in R

2 by the objective function. Then
each of the nn−2 spanning trees is efficient, but the Pareto-frontier consists of
only one point.

Another branch of research which tackles the problem of an exponential sized
Pareto-frontier of MOCO problems was raised by a paper by Papadimitriou and
Yannakakis [16]. In this work and in many papers that followed, an ε-Pareto set,
i.e., a subset S of the solution set such that for each point y of the Pareto-frontier
there is one solution x ∈ S such that c(x) ≤ (1 + ε)y, is computed. In [16], it is
also proven that for each ε > 0 and fixed number of objectives there exist such
an ε-Pareto set of size polynomial in the input size and 1

ε .
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Our Contributions. A well known method to find extreme nondominated points
(or more general supported points, see below) in the first phase of the two-
phase method for a MOCO problem (A,S, c) is to optimize the weighted-sum
scalarization: (P1(�)) : min{�T c(x) | x ∈ S} for some � ∈ Q

d, � > 0. On one hand,
this problem is as easy as the single objective version of the problem, as long as
the encoding lengths of the components of � are not too large. (Considering that
� is not part of the original input.) On the other hand, we do not easily know
how these � need to be chosen to find all obtainable points of the Pareto-frontier.

The set of solutions which can be obtained by this weighted-sum method
are called supported (efficient) solutions. A point of the Pareto-frontier which
corresponds to a supported solution is called a supported (nondominated) point.
A geometric view on the supported part of the Pareto-frontier can be acquired
by looking at the convex hull of Y := c(S). A point y of the Pareto-frontier is
thus supported iff y is a point on the boundary of convY. Moreover, we call a
supported point y an extreme (nondominated) point, if y is an extreme point of
convY. The set of extreme nondominated points will be denoted as YX . Our
concern in this paper will thus be to enumerate the set YX .

In general, we can compute the extreme nondominated points of convY
by enumerating the extreme nondominated points of the multiobjective linear
program

(MOLP) : min{c(x) | x ∈ conv(χ(S))}, (1)

where χ(S) denotes the characteristic vectors of the solutions of our MOCO
problem for a fixed ordering of the variables. In Sec. 3, we will conduct a running
time analysis of a recently proposed algorithm for MOLP. We will prove that
it can efficiently find the extreme points of the Pareto-frontier of an MOLP if
the ideal point exists. Luckily, in the case in which we derive an MOLP from a
MOCO problem, the ideal point exists iff the problem has a solution. But indeed,
it might be hard to construct the MOLP, the number of facets of the feasible
set might be large or it might have a large encoding length. We will also show
that it suffices to have a polynomial time algorithm for problem (P1(�)) without
constructing the MOLP explicitly.

Theorem 1. For every MOCO problem P with a fixed number of objectives, the
set of extreme nondominated points of P can be enumerated in output polynomial
time if we can solve the weighted-sum scalarization of P in polynomial time.

Subsequently in Sec. 4, we will also suggest an improvement of this algorithm to
get a better running time at the expense of needing to solve the lexicographic
version of the MOCO problem (lex-P1(�)) : lexmin{(�T c(x), c1(x), . . . , cd(x))
| x ∈ S}:
Theorem 2. For every MOCO problem P with a fixed number of objectives,
the set of extreme nondominated points of P can be enumerated in incremental
polynomial time if we can solve the lexicographic version of P in polynomial
time.
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For many classical problems in combinatorial optimization this is not a restric-
tion. For example in the case of shortest path, minimum spanning tree or the
assignment problems the lexicographic variant can be solved in polynomial time.
In general, if we have a compact LP formulation for a weighted-sum scalariza-
tion, then we can solve the lexicographic variant in polynomial time. This is a
direct consequence of Lemma 6 in Sec. 4.

If we apply Theorem 1 to the multiobjective spanning tree problem, we imme-
diately obtain an algorithm with a polynomial upper bound on the running time
with respect only to the input size to find the extreme nondominated points
for each fixed number of objectives. This is well known in the biobjective (or
parametric) case, but it is a new result for the general case. It bases on the well
known fact that for this problem there exists at most O(m2(d−1)) extreme non-
dominated points [10]. We obtain a similar result for the multiobjective global
min-cut problem, as it has been shown in [2] that the parametric complexity is
polynomial in the input size for any fixed number of objectives. To show that
these results are not mere theoretical, we implemented the algorithm and a lex-
icographic oracle for the multiobjective version of the assignment (or minimum
weight bipartite matching) problem. The results of this study and a comparison
to the method from [15] are presented in Sec. 5. They show that our algorithm
is capable of finding the extreme nondominated points of moderately sized in-
stances with up to six objectives. To the best of our knowledge this is the first
computational study for five and six objectives.

Moreover, we compare the lexicographic variant of the algorithm to the orig-
inal algorithm. Since in theory we are able to improve the running time bound,
we investigate if this is also true in practice.

2 Theoretical Preliminaries

By [n] we denote the set {1, . . . , n} and ||x||1 will be the 1-norm of x ∈ R
d,

i.e., ||x||1 :=
∑d

i=1 |xi|. The nondominated subset of a set of points M ⊆ R
d is

minM := {x ∈ M | x is nondominated in M}. The Minkowski sum (product) of
two sets A,B ⊆ R

d is the set A + B := {a+ b | a ∈ A, b ∈ B} (A · B := {a · b |
a ∈ A, b ∈ B}).

The multiobjective linear programming problem (MOLP) is the problem to
find for matrices A ∈ Q

m×n, C ∈ Q
d×n and a vector b ∈ Q

m an extreme point
representation of the Pareto-frontier min{Cx | Ax ≥ b}. To work on MOLP, it
is convenient to define the feasible set P := {x ∈ R

n | Ax ≥ b} and the upper
image P := C ·P +R

d
≥, where R

d
≥ := {x ∈ R

d | x ≥ 0}. It is well known that the
extreme points of P are exactly the extreme points of the Pareto-frontier of the
corresponding MOLP (cf. [8]). We will write vertM to denote the set of extreme
points of a polyhedral set M and thus, our concern will be to enumerate vertP ,
i.e., the extreme points of P .

We define the normalized weighting vectors to be the set W 0
d := {� ∈ R

d
≥ |

||�||1 = 1}. The weighted-sum linear program w.r.t. � ∈ W 0
d of a given MOLP

is the parametric linear program P1(�) : min{�TCx | Ax ≥ b}. The ideal point



Output-Sensitive Algorithms for MOCO Problems 293

of an MOLP is then defined as being the point yI := (minP1(ei))i∈[d], where ei
denotes the i-th unit vector in R

d. Note that an ideal point does not exist for
every MOLP.

3 Dual Variant of Benson’s Algorithm

The dual variant of Benson’s algorithm solves MOLP in the sense that it com-
putes the extreme points of a polyhedron which is a geometric dual polyhedron
to P . The algorithm in its original version requires the existence of an ideal
point, which we will assume in the following and is always the case in MOCO
problems. It was only recently proposed in [8] and got its background theory
from [12]. In the next section, we will consider the algorithm as it was given
in [8, 11]. We will first give some background theory about the geometric dual
polyhedron the algorithm computes and subsequently, describe the algorithm in
two levels of detail. The section concludes with its running time analysis in the
sense of output-sensitive complexity.

The Geometric Dual Polyhedron. In [12], Heyde and Löhne define a dual polyhe-
dron, or lower image, D to the upper image P of an MOLP which we will define
now.

Since our weight vectors � of the weighted-sum problem are always normalized,
i.e., ||�||1 = 1, it suffices to consider �1, . . . , �d−1 and calculate �d when needed.
For ease of notation we define for v ∈ R

d : λ(v) := (v1, . . . , vd−1, 1 −
∑d−1

i=1 vi).
Then, we consider the dual problem of the weighted-sum LP, which is (D1(�)) :
max{bTu | u ∈ R

m
≥ , ATu = CT �}. The dual polyhedron D now consists for all

possible vectors � ∈ W 0
d and solutions u to D1(�) of the vectors (�1, . . . , �d−1, b

Tu).
Thus, D := {(�1, . . . , �d−1, b

Tu) ∈ R
d | � ∈ W 0

d , u ∈ R
m
≥ , ATu = CT �}. Following

LP duality theory, for each point y on the upper boundary of this polyhedron yd
is also the optimal value of P1(λ(y)). To take the notion of the upper boundary
to a more formal level, we define the Kd-maximal subset of a set M ⊆ R

d, where
Kd := {(0, . . . , 0, y) ∈ R

d | y ≥ 0}: A point y ∈ M is said to be Kd-maximal in
M if (y +Kd) ∩M = {y}. The subset of Kd-maximal points of M is written as
maxKd

M .
In [12], it is proven, that the dual polyhedron can be characterized by D =

{x ∈ R
d | ∀y ∈ vertP : ψ(y)Tx ≥ −yd, λ(x) ≥ 0}, where ψ(y) := (v1 −

vd, . . . , vd−1 − vd,−1). In other words, apart from the inequalities λ(x) ≥ 0, we
can describe the polyhedron as an intersection of halfspaces {x ∈ R

d | ψ(y)Tx ≥
−yd} for each extreme point y of the upper image P . Further, Heyde and Löhne
also prove that each of these inequalities defines a facet. Thus, we can solve the
original MOLP by enumerating the facets of D. While the dual algorithm origi-
nally enumerates the extreme points of D, we change the exposition accordingly.

Algorithm Description. We will follow [8] in describing the geometric dual al-
gorithm and use ideas of [11]. Proofs of correctness and finiteness can be found
in both places. A formal description of the entire algorithm can be found in
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Algorithm 1. Dual Variant of Benson’s Outer Approximation Algorithm

Require: Matrices A,C, and vector b : P �= ∅ and ∃y ∈ R
d : y +C · P ⊆ R

d
≥

Ensure: List R of pairs (x, y) for all y ∈ vertP and some x ∈ P such that Cx = y
1: Find solution x of P1(e1) and set y ← Cx
2: L ← {x ∈ R

d | λ(x) ≥ 0, ψ(y)Tx ≥ −yd} � Initial polyhedron
3: M ← Extreme points of L � Perform a vertex enumeration
4: while M �= ∅ do
5: pick one v ∈ M , M ← M\{v}
6: x ← optimal solution to P1(λ(v)) and y ← Cx � Shoot ray straight down
7: if λ(v)T y < vd then � Not an extreme point of D
8: L ← L ∩ {x ∈ R

d | ψ(y)Tx ≥ −yd} � Add new inequality
9: M ←Extreme points of L � Perform a vertex enumeration

10: R ← L ∪ {(x, y)} � Add new candidate extreme point of P
11: Remove redundant entries from R

Alg. 1. From a high-level perspective, the algorithm works as follows: First, the
algorithm constructs a polyhedron containing D (lines 1 to 3). Then, in each
iteration, it picks one new extreme point v of the current intermediate polyhe-
dron and shoots a ray into the polyhedron D (lines 5 and 6). We can shoot a
ray in the direction of −Kd by finding an optimal solution x of P1(λ(v)) with
value vector y = Cx. Either, we discover that v is an extreme point of D, if
λ(v)T y = vd and we proceed to the next iteration. Or, v is not an extreme point,
which we see if λ(v)T y < vd or in other words, the weighted optimal value is
smaller than the value represented by v. Then, the algorithm computes a face
defining inequality which separates v from D. Because of geometric duality, we
can use the new inequality ψ(y)Tx ≥ −yd. In lines 8 and 9, the algorithm inter-
sects the current polyhedron with the halfspace corresponding to this inequality.
Additionally, it saves y as a candidate for an extreme nondominated point in
line 10. This repeats until all extreme points have been confirmed to be part of
D. In the end, we still have to remove redundant pairs from the set of candidate
extreme nondominated points (see line 11).

Running Time Analysis. The key insight to the running time of the algorithm is
that the vertex enumeration steps are performed in the ordinarily much smaller
domain of the polyhedron D, which is of dimension d. Additionally, the number of
inequalities we enumerate in the process of the algorithm is at most the number
of K-maximal faces of D which—by the geometric duality theorem of [12]—is
exactly the number of faces of P . The number of faces of P can be bounded by
reducing the polyhedron to a polytope and using the asymptotic upper bound
theorem [18]. Let thus ve be the number of extreme points of P .

Lemma 3. Let d be fixed, the number of faces of P is at most O(ve
� d

2 �).

This shows that the number of faces of D and thus the number of inequalities the
algorithm computes does not exceed O(ve

� d
2 �). To compute the extreme points

of the intermediate polyhedra, we can use the asymptotic optimal algorithm for
fixed d by Chazelle [6].
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Regarding encoding length, there is a subtle problem we need to address. The
running times of the known polynomial-time algorithms to compute a solution
to the weighted-sum LPs, e.g., the ellipsoid method, depend on the largest num-
ber in the input. One potential problem is that the weighted-sum LP not only
consists of numbers of the input MOLP, but also of the weight vector � which is
recomputed in the process of the algorithm. We can prove that these lengths are
not too large by using the fact that the weights are computed from the interme-
diate extreme points we get. These points are solutions to linear systems of the
face defining inequalities we find, which in turn are computed from the extreme
points of the upper image P . These extreme points of P are again linear images
of extreme points in the decision space and it is well known that the encoding
length of these extreme points can be bounded by O(poly(n, L)), where L is the
encoding length of the largest number in A and thus independent of �.

Lemma 4. The encoding length of an intermediate extreme point is bounded by
O(poly(d, n, L)).

This concludes the running time analysis and we can give the running time in
the following theorem. We will be able to significantly improve on the d2 in the
exponent in the next section.

Theorem 5. Let ve be the number of vertices of P and d be fixed. Then, Al-
gorithm 1 has a running time bounded by O(ve

� d
2 �(poly(n,m,L) + ve

d2

4 log ve) +
poly(n, ve, L)).

To arrive at Theorem 1, we can solve problem (1). Problem (P1(�)) is then
equivalent to solving a single linear objective over the feasible set. Instead of
constructing the LP explicitly, we can solve the weighted-sum scalarization of the
combinatorial optimization problem. Since the encoding length of the weights we
use can be bounded by a polynomial in the original input, an algorithm running
in weakly polynomial time also suffices to prove the claim.

4 Lexicographic Dual Benson

One serious drawback of the algorithm is that we might enumerate many redun-
dant supporting hyperplanes. This is especially a problem since the number of
vertex enumeration steps depends on the number of supporting inequalities we
find. Also the number of redundant extreme points we compute depends heavily
on this quantity. Hence, it is very much desirable to enumerate facet supporting
hyperplanes only. This is the motivation to propose a lexicographic variant of the
dual Benson algorithm which we call the lexicographic dual Benson algorithm
and will be the subject of this section.

As already stated, in [12], Heyde and Löhne prove that every inequality
ψ(y)Tx ≥ −yd is facet defining iff y is an extreme point of P . So it suffices
to find only extreme points of P in lines 1 and 6. We observe that this can be
accomplished by computing an optimal solution x of P1(λ(v)) with lexicographic
minimal y := Cx: The set of optimal solutions M of P1(λ(v)) is mapped by the
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objective function to a face F of P such that C · M = F . If we search for a
lexicographic minimal Cx for x ∈ M , we will find a lexicographic minimal point
of F . Since F is a polyhedron and assuming the ideal point of the MOLP exists,
we will always arrive at an extreme point of F and thus of P .

We define lex-P1(�) : lexmin{(�TCx, c1x, . . . , cdx) | Ax ≥ b}, where c1, . . . , cd
are the rows of C and change lines 1 and 6 accordingly. Moreover, the points
we add in line 10 are already vertices of P and we can skip line 11 and do not
need to remove redundant entries anymore. We still have to prove that we can
solve this lexicographic LP in polynomial time, but we omit the proof because
of space restrictions.

Lemma 6. A solution to a lexicographic LP can be computed in polynomial
time.

Both of these observations are a game changer in this running time analysis and
we arrive at the following theorem.

Theorem 7. Let ve be the number of vertices of P and d be fixed. The lexico-
graphic dual Benson algorithm has a running time of O(ve

� d
2 �(poly(n,m,L) +

ve log ve)).

This is a significant improvement over Theorem 5, since we eliminate the term
having d2 in the exponent. Moreover, we are now able to bound the delay of the
algorithm. In the original algorithm this was not possible since it could take a
large number of iterations until the (d+ 1)-th extreme point is found.

Theorem 8. Let d be fixed. For the lexicographic dual Benson algorithm the
k-th delay is in O(k�

d
2 � poly(n,m,L)).

Analogously to Theorem 1, we want to use this algorithm to find extreme non-
dominated points of MOCO problems. Instead of constructing the corresponding
lexicographic LP, which is equivalent to solving a lexicographic objective func-
tion over the set of feasible points of problem (1), we can solve the lexicographic
version of the MOCO problem. Hence, exchanging the lexicographic LP oracle
by an algorithm which computes a lexicographic optimal solution of the MOCO
problem suffices to prove Theorem 2.

5 Computational Study

We investigated the practical aspects of the lexicographic dual Benson algorithm.
To achieve this, we conducted a comparison with the method from [15], which is
to the best of our knowledge the only practical method to compute the extreme
points of MOCO problems with four and more objectives. Both implementations
were tested on instances of the multiobjective assignment (or minimum weight
bipartite matching) (MO-A) problem. The MO-A problem is often used as a
benchmark problem in the biobjective case, but is also used in the computational
studies of the approaches existing for three and four objectives [15, 17].



Output-Sensitive Algorithms for MOCO Problems 297

Table 1. Computational results on multiobjective assignment instances with d objec-
tives and n resources. Instances with an * were taken from [15].

Lexicographic Dual Benson OK10 implementation
Running Time [s] |YX | Running Time [s] |YX | no. solved

d n Median MAD Median MAD Median MAD Median MAD #
3 10* 0.01 0.002 31.5 4.448 0.03 0.010 31.5 4.448 20

20* 0.11 0.014 150.5 17.050 6.31 1.491 150.5 17.050 20
30* 0.70 0.120 368.5 51.150 160.24 57.858 368.5 51.150 20
40 2.57 0.195 709.0 51.150 1660.63 542.646 709.0 51.150 20
80 67.22 4.442 2819.0 185.325 — — — — 0 (0/20)
150 1350.28 87.874 9626.0 374.357 — — — — 0 (20/0)

4 10* 0.06 0.019 102.5 26.687 3.29 2.447 102.5 26.687 20
15 0.33 0.079 453.5 97.852 (253.35) (105.681) (347.0) (14.826) 7 (13/0)
30 12.97 1.824 3646.0 444.039 — — — — 0 (20/0)
70 1978.68 269.907 48667.0 5777.692 — — — — 0 (20/0)

5 8 0.22 0.131 125.5 34.100 (29.91) (36.378) (124.0) (31.876 ) 18 (2/0)
14 33.30 16.416 1228.0 313.570 — — — — 0 (20/0)
20 1055.82 252.966 5052.5 699.787 — — — — 0 (20/0)

6 6 0.16 0.094 75.0 20.015 (39.01) (50.977) (73.0) (17.791) 18 (2/0)
8 1.73 1.096 228.0 54.856 (159.25) (45.658) (164.5) (20.015) 2 (18/0)
12 213.95 159.990 1798.0 549.303 — — — — 0 (20/0)

Though, the algorithm in [15], to which we will refer to as OK10 algorithm,
is not easily implemented efficiently. Instead of using points with large encoding
length on the axes, we use projective points at infinity to reduce the numerical
inconsistencies which occurred in the experimental setting in [15]. Nevertheless,
the implementation still misses some extreme nondominated points, but does
find more than the original implementation. To compute optimal assignment
solutions in the OK10 algorithm, we use an implementation of the Hungarian
method.

The experiments were performed on an Intel Core i7-3770, 3.4 GHz and 16
GB of memory running Ubuntu Linux 12.04. The algorithms were implemented
in C++ using double precision arithmetic and compiled using LLVM 3.3. To
compute the extreme points of the intermediate polyhedra, we implemented a
version of the Double Description method with full adjacency information in
the case of d ∈ {3, 4} and for d > 4, we used the CDD library [9]. To find
lexicographic minimal assignments for the lexicographic dual Benson algorithm,
we implemented a lexicographic version of the Hungarian method.

The computational study for computing the set of all extreme nondominated
points of MO-A instances in [15] uses a series of 20 randomly generated instances.
The sizes of the instances vary from 10 up to 30 resources and the integer objec-
tive function coefficients were uniformly drawn in [1, 20]. For our experiments,
we have taken the instances from [15] for d ∈ {3, 4} and additionally generated
similar instances with more resources and objectives.1 We enforced two kinds of
limits on the computational experiments. That is, a memory limit of 16 GB and
a computation time limit of one hour should not be exceeded.

1 All instances are available at https://ls11-www.cs.tu-dortmund.de/staff/
boekler/moco-instances
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Table 2. Comparison of the dual Benson implementation with and without lexico-
graphic oracle on multiobjective assignment instances with d = 5

Running Times Tlex/T Points found
Hungarian algorithm VE Total lex / no lex

n Median MAD Median MAD Median MAD Mean σ

20 1.114 0.0301 1.000 0.0091 1.002 0.0086 1.000 0.0003
22 1.118 0.0221 1.000 0.0046 1.000 0.0045 1.000 0.0002
24 1.130 0.0110 0.999 0.0055 1.000 0.0055 1.000 <0.0001
26 1.126 0.0170 0.999 0.0044 0.999 0.0045 1.000 <0.0001

In Table 1 we can see some selected results including the median and median
absolute deviation (MAD) of the running times and numbers of extreme points
found. We observe that the lexicographic dual Benson implementation is able to
solve all instances in the given limits. The implementation of the OK10 algorithm
is only able to solve very small instances with three and four objectives. In all
other cases there are instance classes where the implementation can not solve
all of the instances, prohibiting a statistical analysis. Nevertheless, we give the
median and MAD in parentheses if the OK10 implementation was not able to
solve all instances.

In the last column of Table 1, we can see the number of instances the OK10
implementation was able to solve. In parentheses we see the number of instances
that could not be solved due to the memory and time limit, respectively. We see
that in most cases memory was the limiting factor. This is not surprising, since
for every new point d new states are introduced and many survive the pruning
steps. In the cases where the OK10 implementation is able to solve all instances,
we see that the lexicographic dual Benson implementation is up to a factor of
640 times faster.

In the second set of experiments, we compare the practical performance of
the dual Benson algorithm when using our theoretical improvements from Sec.
4 to the original variant. The same instances as in the previous experiments
were used; we present the experiments with five objectives. Table 2 displays the
medians and MADs of the quotients of the lexicographic variant over the non-
lexicographic variant. The table shows these statistics for the cumulated running
time of the Hungarian algorithm, the vertex enumeration (VE) and the total time.
In addition, the last column of Table 2 displays the mean and standard deviation
of the quotient of the number of points found by both algorithms. Median and
MAD are in all cases 1 and 0, respectively.

We observe that the running times are very similar. The quotients of the total
running time medians are very close to 1. On one hand, the vertex enumeration
is only slightly faster when using a lexicographic oracle. On the other hand, the
cumulated time of the lexicographic oracle is always slower than the time of the
original Hungarian method. Of course, the vertex enumeration dominates the
total running time, but we also observe that it does not happen too often that
redundant inequalities are found.

We can also observe that the medians of the total running time quotients
seem to shrink when increasing the number of ressources. In order to observe if
this trend continues, we need to test much larger instances which is not possible
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with the current implementation, because of running times of already more than
12 hours on instances with 26 ressources.
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Abstract. Splay trees (Sleator and Tarjan [11]) satisfy the so-called access
lemma. Many of the nice properties of splay trees follow from it. What makes
self-adjusting binary search trees (BSTs) satisfy the access lemma? After each
access, self-adjusting BSTs replace the search path by a tree on the same set
of nodes (the after-tree). We identify two simple combinatorial properties of the
search path and the after-tree that imply the access lemma. Our main result

(i) implies the access lemma for all minimally self-adjusting BST algorithms
for which it was known to hold: splay trees and their generalization to
the class of local algorithms (Subramanian [12], Georgakopoulos and Mc-
Clurkin [7]), as well as Greedy BST, introduced by Demaine et al. [5] and
shown to satisfy the access lemma by Fox [6],

(ii) implies that BST algorithms based on “strict” depth-halving satisfy the ac-
cess lemma, addressing an open question that was raised several times since
1985, and

(iii) yields an extremely short proof for the O(log n log log n) amortized access
cost for the path-balance heuristic (proposed by Sleator), matching the best
known bound (Balasubramanian and Raman [2]) to a lower-order factor.

One of our combinatorial properties is locality. We show that any BST-algorithm
that satisfies the access lemma via the sum-of-log (SOL) potential is necessarily
local. The other property states that the sum of the number of leaves of the after-
tree plus the number of side alternations in the search path must be at least a
constant fraction of the length of the search path. We show that a weak form of
this property is necessary for sequential access to be linear.

1 Introduction

The binary search tree (BST) is a fundamental data structure for the dictionary problem.
Self-adjusting BSTs rearrange the tree in response to data accesses, and are thus able
to adapt to the distribution of queries. We consider the class of minimally self-adjusting
BSTs: algorithms that rearrange only the search path during each access and make the
accessed element the root of the tree. Let s be the element accessed and let P be the
search path to s. Such an algorithm can be seen as a mapping from the search path P

� Work done while at Saarland University.

c© Springer-Verlag Berlin Heidelberg 2015
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Fig. 1. The search path to s is shown on the left, and
the after-tree is shown on the right. The search path
consists of 12 nodes and contains four edges that con-
nect nodes on different sides of s (z = 4 in the lan-
guage of Theorem 1). The after-tree has five leaves.
The left-depth of a in the after-tree is three (the path
from the root to a goes left three times) and the right-
depth of y is two. The set {a, c, f, v, y} is subtree-
disjoint. The sets {d, e, g}, {b, f}, {x, y}, {w} are
monotone.

(called “before-path” in the sequel)
to a tree A with root s on the same
set of nodes (called “after-tree” in
the sequel). Observe that all subtrees
that are disjoint from the before-path
can be reattached to the after-tree in
a unique way governed by the or-
dering of the elements. In the BST
model, the cost of the access plus the
cost of rearranging is |P |, see Fig-
ure 1 for an example.

Let T be a binary search tree
on [n]. Let w : [n] → R>0 be
a positive weight function, and for
any set S ⊆ [n], let w(S) =∑

a∈S w(a). Sleator and Tarjan de-
fined the sum-of-log (SOL) potential
function ΦT =

∑
a∈[n] logw(Ta),

where Ta is the subtree of T rooted at a. We say that an algorithm A satisfies the
access lemma (via the SOL potential function) if for all T ′ that can be obtained as a
rearrangement done by algorithm A after some element s is accessed, we have

|P | ≤ ΦT − ΦT ′ +O(1 + log
W

w(s)
),

where P is the search path when accessing s in T and W = w(T ). The access lemma is
known to hold for the splay trees of Sleator and Tarjan [11], for their generalizations to
local algorithms by Subramanian [12] and Georgakopoulos and McClurkin [7], as well
as for Greedy BST, an online algorithm introduced by Demaine et al. [5] and shown
to satisfy the access lemma by Fox [6]. For minimally self-adjusting BSTs, the access
lemma implies logarithmic amortized cost, static optimality, and the static finger and
working set properties.

Theorem 1. Let A be a minimally self-adjusting BST algorithm. If (i) the number of
leaves of the after-tree is Ω(|P | − z) where P is the search path and z is the number of
“side alternations1” in P and (ii) for any element t > s (resp. t < s), the right-depth
of t (left-depth of t) in the after-tree is O(1), then A satisfies the access lemma.

Note that the conditions in Theorem 1 are purely combinatorial conditions on the
before-paths and after-trees. In particular, the potential function is completely hidden.
The theorem directly implies the access lemma for all BST algorithms mentioned above
and some new ones.

Corollary 2. The following BST algorithms satisfy the access lemma: (i) Splay tree, as
well as its generalizations to local algorithms (ii) Greedy BST, and (iii) new heuristics
based on “strict” depth-halving.

1 z is the number of edges on the search path connecting nodes on different sides of s. The
right-depth of a node is the number of right-going edges on the path from the root to the node.
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The third part of the corollary addresses an open question raised by several au-
thors [12,2,7] about whether some form of depth reduction is sufficient to guarantee
the access lemma. We show that a strict depth-halving suffices.

For the first part, we formulate a global view of splay trees. We find this new descrip-
tion intuitive and of independent interest. The proof of (i) is only a few lines.

We also prove a partial converse of Theorem 1.

Theorem 3 (Partial Converse). If a BST algorithm satisfies the access lemma via the
SOL-potential function, the after-trees must satisfy condition (ii) of Theorem 1.

We call a BST algorithm local if the transformation from before-path to after-tree can
be performed in a bottom-up traversal of the path with a buffer of constant size. Nodes
outside the buffer are already arranged into subtrees of the after-tree. We use Theorem 3
to show that BST-algorithms satisfying the access lemma (via the SOL-potential) are
necessarily local.

Theorem 4 (Characterization Theorem). If a minimally self-adjusting BST algorithm
satisfies the access lemma via the SOL-potential, then it is local.

The theorem clarifies, why the access lemma was shown only for local BST algo-
rithms.

In the following, we introduce our main technical tools: subtree-disjoint and mono-
tone sets in § 2, and zigzag sets in § 3. Bounding the potential change over these sets
leads to the proof of Theorem 1 in § 3. Corollary 2(i) is also proved in § 3. Corol-
lary 2(iii) is the subject of § 4. In § 5.1 we show that condition (ii) of Theorem 1 is nec-
essary (Theorem 3), and in § 5.2 we argue that a weaker form of condition (i) must also
be fulfilled by any reasonably efficient algorithm. We prove Theorem 4 in § 6. For lack
of space, in this version of the paper we omit some of the proofs (e.g. Corollary 2(ii)).
We refer the reader to the preprint version [3] for full details.

Notation: We use Ta or T (a) to denote the subtree of T rooted at a. We use the same
notation to denote the set of elements stored in the subtree. The set of elements stored
in a subtree is an interval of elements. If c and d are the smallest and largest elements
in T (a), we write T (a) = [c, d]. We also use open and half-open intervals to denote
subsets of [n], for example [3, 7) is equal to {3, 4, 5, 6}. We frequently write Φ instead
of ΦT and Φ′ instead of ΦT ′ .

2 Disjoint and Monotone Sets

Let A be any BST algorithm. Consider an access to s and let T and T ′ be the search
trees before and after the access. The main task in proving the access lemma is to relate
the potential difference ΦT − ΦT ′ to the length of the search path. For our arguments,
it is convenient to split the potential into parts that we can argue about separately. For a
subset X of the nodes, define a partial potential on X as ΦT (X) =

∑
a∈X logw(T (a)).

We start with the observation that the potential change is determined only by the
nodes on the search path and that we can argue about disjoint sets of nodes separately.
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Proposition 5. Let P be the search path to s. For a �∈ P , T (a) = T ′(a). Therefore,

ΦT − ΦT ′ = ΦT (P ) − ΦT ′(P ). Let X =
⋃̇k

i=1Xi where the sets Xi are pairwise

disjoint. Then ΦT (X)− ΦT ′(X) =
∑k

i=1(ΦT (Xi)− ΦT ′(Xi)).

We introduce three kinds of sets of nodes, namely subtree-disjoint, monotone, and
zigzag sets, and derive bounds for the potential change for each one of them. A subset
X of the search path is subtree-disjoint if T ′(a) ∩ T ′(a′) = ∅ for all pairs a �= a′ ∈
X ; remark that subtree-disjointness is defined w.r.t. the subtrees after the access. We
bound the change of partial potential for subtree-disjoint sets. The proof of the following
lemma was inspired by the proof of the access lemma for Greedy BST by Fox [6].

Lemma 6. Let X be a subtree-disjoint set of nodes. Then

|X | ≤ 2 + 8 · log W

w(T (s))
+ ΦT (X)− ΦT ′(X).

Proof: We consider the nodes smaller than s and greater or equal to s separately, i.e.
X = X<s∪̇X≥s. We show |X≥s| ≤ 1 + ΦT (X≥s) − ΦT ′ (X≥s) + 4 log W

w(T (s)) , and
the same holds for X<s. We only give the proof for X≥s.

Denote X≥s by Y = {a0, a1, . . . , aq} where s ≤ a0 < . . . < aq . Before the access,
s is a descendant of a0, a0 is a descendant of a1, and so on. Let T (a0) = [c, d]. Then
[s, a0] ⊆ [c, d] and d < a1. Let w0 = w(T (a0)). For j ≥ 0, define σj as the largest
index � such that w([c, a�]) ≤ 2jw0. Then σ0 = 0 since weights are positive and [c, d]
is a proper subset of [c, a1]. The set {σ0, . . .} contains at most �log(W/w0)� distinct
elements. It contains 0 and q.

Now we upper bound the number of i with σj ≤ i < σj+1. We call such an element
ai heavy if w(T ′(ai)) > 2j−1w0. There can be at most 3 heavy elements as otherwise
w([c, aj+1]) ≥

∑
σj≤k<σj+1

w(T ′(ak)) > 4 · 2j−1w0, a contradiction.
Next we count the number of light (= non-heavy) elements. For each such light

element ai, we have w(T ′(ai)) ≤ 2j−1w0. We also have w(T (ai+1)) ≥ w([c, ai+1]) >
w([c, aσj ]) and thus w(T (ai+1)) > 2jw0 by the definition of σj . Thus the ratio ri =
w(T (ai+1))/w(T

′(ai)) ≥ 2 whenever ai is a light element. Moreover, for any i =
0, . . . , q − 1 (for which ai is not necessarily light), we have ri ≥ 1. Thus,

2number of light elements ≤
∏

0≤i≤q−1

ri =

⎛

⎝
∏

0≤i≤q

w(T (ai))

w(T ′(ai))

⎞

⎠ · w(T
′(aq))
w0

.

So the number of light elements is at most ΦT (Y )− ΦT ′(Y ) + log(W/w0).
Putting the bounds together, we obtain, writing L for log(W/w0):

|Y | ≤ 1 + 3(�L� − 1) + ΦT (Y )− ΦT ′(Y ) + L ≤ 1 + 4L+ ΦT (Y )− ΦT ′(Y ).

�
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Now we proceed to analyze our second type of subsets, that we call monotone sets.
A subset X of the search path is monotone if all elements in X are larger (smaller) than
s and have the same right-depth (left-depth) in the after-tree.

Lemma 7. Assume s < a < b and that a is a proper descendant of b in P . If {a, b} is
monotone, T ′(a) ⊆ T (b).

Proof: Clearly [s, b] ⊆ T (b). The smallest item in T ′(a) is larger than s, and, since a
and b have the same right-depth, b is larger than all elements in T ′(a). �

Lemma 8. Let X be a monotone set of nodes. Then

Φ(X)− Φ′(X) + log
W

w(s)
≥ 0.

Proof: We order the elements in X = {a1, . . . , aq} such that ai is a proper descendant
of ai+1 in the search path for all i. Then T ′(ai) ⊆ T (ai+1) by monotonicity, and hence

Φ(X)− Φ′(X) = log

∏
a∈X w(T (a))∏
a∈X w(T ′(a))

= log
w(T (a1))

w(T ′(aq))
+

q−1∑

i=1

log
w(T (ai+1))

w(T ′(ai))
.

The second sum is nonnegative. Thus Φ(X)−Φ′(X) ≥ log w(T (a1))
w(T ′(aq))

≥ log w(s)
W . �

Theorem 9. Suppose that, for every access to an element s, we can partition the ele-
ments on the search path P into at most k subtree-disjoint sets D1 to Dk and at most �
monotone sets M1 to M�. Then

∑

i≤k

|Di| ≤ ΦT (S)− ΦT ′(S) + 2k + (8k + �) log
W

w(s)
.

The proof of Theorem 9 follows immediately from Lemma 6 and 8. We next give
some easy applications.

Path-Balance: The path-balance algorithm maps the search path P to a balanced BST
of depth c = �log2(1 + |P |)� rooted at s. Then

Lemma 10. |P | ≤ Φ(P )− Φ′(P ) +O((1 + log |P |)(1 + log(W/w(s)))).

Proof: We decompose P into sets P0 to Pc, where Pk contains the nodes of depth k in
the after-tree. Each Pk is subtree-disjoint. An application of Theorem 9 completes the
proof. �

Theorem 11. Path-Balance has amortized cost at most O(log n log logn).

Proof: We choose the uniform weight function: w(a) = 1 for all a. Let ci be the cost of
the i-th access, 1 ≤ i ≤ m, and let C =

∑
1≤i≤m ci be the total cost of the accesses.

Note that
∏

i ci ≤ (C/m)m. The potential of a tree with n items is at most n logn.
Thus C ≤ n logn +

∑
1≤i≤m O((1 + log ci)(1 + logn)) = O((n + m) logn) +

O(m log n) · log(C/m) by Lemma 10. Assume C = K(n + m) logn for some K .
Then K = O(1) +O(1) · log(K logn) and hence K = O(log logn). �
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Greedy BST: The Greedy BST algorithm was introduced by Demaine et al. [5]. It is
an online version of the offline greedy algorithm proposed independently by Lucas and
Munro [9,8]. The definition of Greedy BST requires a geometric view of BSTs. Our
notions of subtree-disjoint and monotone sets translate naturally into geometry, and
this allows us to derive the following theorem.

Theorem 12. Greedy BST satisfies the (geometric) access lemma.

The geometric view of BSTs and the proof of Theorem 12 are omitted here. We
refer to the preprint version [3] for details. We remark that once the correspondences to
geometric view are defined, the proof of Theorem 12 is almost immediate.

3 Zigzag Sets

Let s be the accessed element and let a1, . . . , a|P |−1 be the reversed search path without
s. For each i, define the set Zi = {ai, ai+1} if ai and ai+1 lie on different sides of s,
and let Zi = ∅ otherwise. The zigzag set ZP is defined as ZP =

⋃
i Zi. In words, the

number of non-empty sets Zi is exactly the number of “side alternations” in the search
path, and the cardinality of ZP is the number of elements involved in such alternations.

Rotate to Root: We first analyze the rotate-to-root algorithm (Allen, Munro [1]), that
brings the accessed element s to the root and arranges the elements smaller (larger) than
s so the ancestor relationship is maintained, see Figure 2 for an illustration.

Lemma 13. |Z| ≤ Φ(ZP )− Φ′(ZP ) +O(1 + log W
w(T (s)) ).

Proof: Because s is made the root and ancestor relationships are preserved otherwise,
T ′(a) = T (a) ∩ (−∞, s) if a < s and T ′(a) = T (a) ∩ (s,∞) if a > s. We first deal
with a single side alternation.

Claim. 2 ≤ Φ(Zi)− Φ′(Zi) + log w(T (ai+1))
w(T (ai))

.

Proof: This proof is essentially the proof of the zig-zag step for splay trees. We give
the proof for the case where ai > s and ai+1 < s; the other case is symmetric. Let
a′ be the left ancestor of ai+1 in P and let a′′ be the right ancestor of ai in P . If
these elements do not exist, they are −∞ and +∞, respectively. Let W1 = w((a′, 0)),
W2 = w((0, a′′)), and W ′ = w((ai+1, 0)). In T , we havew(T (ai)) = W ′+w(s)+W2

and w(T (ai+1)) = W1 + w(s) + W2, and in T ′, we have w(T ′(ai)) = W2 and
w(T ′(ai+1)) = W1.

Thus Φ(Zi) − Φ′(Zi) + log W1+w(s)+W2

W ′+w(s)+W2
≥ log(W1 + w(s) + W2) − logW1 +

log(W2 + w(s) +W ′) − logW2 + log W1+w(s)+W2

W ′+w(s)+W2
≥ 2 log(W1 +W2)− logW1 −

logW2 ≥ 2, since (W1 +W2)
2 ≥ 4W1W2 for all positive numbers W1 and W2. �

Let Zeven (Zodd) be the union of the Zi with even (odd) indices. One of the two sets
has cardinality at least |ZP | /2. Assume that it is the former; the other case is symmetric.
We sum the statement of the claim over all i in Zeven and obtain

∑

i∈Zeven

(
Φ(Zi)− Φ′(Zi) + log

w(T (ai+1))

w(T (ai))

)
≥ 2 |Zeven| ≥ |ZP | .
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The elements in ZP \Zeven form two monotone sets and hence Φ(ZP \Zeven)−Φ′(ZP \
Zeven) + 2 log(W/w(s)) ≥ 0. This completes the proof. �

The following theorem combines all three tools we have introduced: subtree-disjoint,
monotone, and zigzag sets.

Theorem 14. Suppose that, for every access we can partition P \ s into at most k
subtree-disjoint sets D1 to Dk and at most � monotone sets M1 to M�. Then

∑

i≤k

|Di|+ |ZP | ≤ Φ(P )− Φ′(P ) +O((k + �)(1 + log
W

w(s)
)).

Proof: We view the transformation as a two-step process, i.e., we first rotate s to the
root and then transform the left and right subtrees of s. Let Φ′′ be the potential of the
intermediate tree. By Lemma 13, |ZP | ≤ Φ(P ) − Φ′′(P ) + O(1 + log W

w(T (s))). By

Theorem 9,
∑

i≤k |Di| ≤ Φ′′(P )− Φ′(P ) +O((k + �)(1 + log W
w(T (s)) )). �

We next derive an easy to apply corollary from this theorem. For the statement, we
need the following proposition that follows directly from the definition of monotone
set.

Proposition 15. Let S be a subset of the search path consisting only of elements larger
than s. Then S can be decomposed into � monotone sets if and only if the elements of S
have only � different right-depths in the after-tree.

Theorem 16 (Restatement of Theorem 1). Suppose the BST algorithm A rearranges
a search path P that contains z side alternations, into a tree A such that (i) s, the
element accessed, is the root of A, (ii) the number of leaves of A is Ω(|P | − z), (iii)
for every element x larger (smaller) than s, the right-depth (left-depth) of x in A is
bounded by a constant. Then A satisfies the access lemma.

Proof: Let B be the set of leaves of T and let b = |B|. By assumption (ii), there is
a positive constant c such that b ≥ (|T | − z)/c. Then |T | ≤ cb + z. We decompose
P \ s into B and � monotone sets. By assumption (iii), � = O(1). An application of
Theorem 14 with k = 1 and � = O(1) completes the proof. �

Fig. 2. A global view of splay trees. The transformation from the
left to the middle illustrates rotate-to-root. The transformation from
the left to the right illustrates splay trees.

Splay: Splay extends
rotate-to-root: Let s =
v0, v1, . . . vk be the re-
versed search path. We
view splaying as a two
step process, see Fig-
ure 2. We first make s
the root and split the
search path into two
paths, the path of el-
ements smaller than s
and the path of ele-
ments larger than s. If

v2i+1 and v2i+2 are on the same side of s, we rotate them, i.e., we remove v2i+2 from
the path and make it a child of v2i+1.
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Proposition 17. The above description of splay is equivalent to the Sleator-Tarjan
description.

Theorem 18. Splay satisfies the access lemma.

Proof: There are |P | /2 − 1 odd-even pairs. For each pair, if there is no side change,
then splay creates a new leaf in the after-tree. Thus

# of leaves ≥ |P | /2− 1− # of side changes.

Since right-depth (left-depth) of elements in the after-tree of splay is at most 2, an
application of Theorem 16 finishes the proof. �

4 New Heuristics: Depth Reduction

Already Sleator and Tarjan [11] formulated the belief that depth-halving is the property
that makes splaying efficient, i.e. the fact that every element on the access path reduces
its distance to the root by a factor of approximately two. Later authors [12,2,7] raised the
question, whether a suitable global depth-reduction property is sufficient to guarantee
the access lemma. Based on Theorem 16, we show that a strict form of depth-halving
suffices to guarantee the access lemma.

Let x and y be two arbitrary nodes on the search path. If y is an ancestor of x in the
search path, but not in the after-tree, then we say that x has lost the ancestor y, and y
has lost the descendant x. Similarly we define gaining an ancestor or a descendant. We
stress that only nodes on the search path (resp. the after-tree) are counted as descen-
dants, and not the nodes of the pendent trees. Let d(x) denote the depth (number of
ancestors) of x in the search path. We give a sufficient condition for a good heuristic,
stated below. The proof is omitted.

Theorem 19. Let A be a minimally self-adjusting BST algorithm that satisfies the fol-
lowing conditions: (i) Every node x on the search path loses at least (12 + ε) · d(x)− c
ancestors, for fixed constants ε > 0, c > 0, and (ii) every node on the search path, ex-
cept the accessed element, gains at most d new descendants, for a fixed constant d > 0.
Then A satisfies the access lemma.

We remark that in general, splay trees do not satisfy condition (i) of Theorem 19.
One may ask how tight are the conditions of Theorem 19. If we relax the constant in
condition (i) from (12 + ε) to 1

2 , the conditions of Theorem 16 are no longer implied.
There exist rearrangements in which every node loses a 1

2 -fraction of its ancestors, gains
at most two ancestors or descendants, yet both the number of side alternations and the
number of leaves created areO(

√|P |), whereP is the before-path (details can be found
in [3]). If we further relax the ratio to (12 − ε), we can construct an example where the
number of alternations and the number of leaves created are only O(log |P |/ε).

Allowing more gained descendants and limiting instead the number of gained ances-
tors is also beyond the strength of Theorem 16. It is possible to construct an example [3]
in which every node loses an (1− o(1))-fraction of ancestors, yet the number of leaves
created is only O(

√|P |) (while having no alternations in the before-path).
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Finally, we observe that depth-reduction alone is likely not sufficient: one can re-
structure the access path in such a way that every node reduces its depth by a constant
factor, yet the resulting after-tree has an anti-monotone path of linear size [3]. Based on
Theorem 20, this means that if such a restructuring were to satisfy the access lemma in
its full generality, the SOL potential would not be able to show it.

5 Necessary Conditions

5.1 Necessity of O(1) Monotone Sets

In this section we show that condition (ii) of Theorem 1 is necessary for any minimally
self-adjusting BST algorithm that satisfies the access lemma via the SOL potential
function.

Theorem 20. Consider the transformations from before-path P to after-tree A by al-
gorithm A. If A \ s cannot be decomposed into constantly many monotone sets, then A
does not satisfy the access lemma with the SOL potential.

Proof: We may assume that the right subtree of A cannot be decomposed into constantly
many monotone sets. Let x > s be a node of maximum right depth in A. By Lemma 15,
we may assume that the right depth is k = ω(1). Let ai1 , . . . , aik be the elements on
the path to x where the right child pointer is used. All these nodes are descendants of x
in the before-path P .

We now define a weight assignment to the elements of P and the pendent trees for
which the access lemma does not hold with the SOL potential. We assign weight zero
to all pendent trees, weight one to all proper descendants of x in P and weight K to all
ancestors of x in P . Here K is a big number. The total weight W then lies between K
and |P |K .

We next bound the potential change. Let r(ai) = w(T ′(ai))/w(T (ai)) be the ratio
of the weight of the subtree rooted at ai in the after-tree and in the before-path. For any
element aij at which a right turn occurs, we have w(T (aij )) ≤ |P | and w(T ′(aij )) ≥
K . So r(aij ) ≥ K/|P |. Consider now any other ai. If it is an ancestor of x in the
before-path, then w(T (ai)) ≤ W and w(T ′(ai)) ≥ K . If it is a descendant of x, then
w(T (ai)) ≤ |P | and w(T ′(ai)) ≥ 1. Thus r(ai) ≥ 1/ |P | for every ai. We conclude

Φ′(T )− Φ(T ) ≥ k · log K

|P | − |P | log |P |.
If A satisfies the access lemma with the SOL potential function, then we must have

Φ′(T )− Φ(T ) ≤ O(log W
w(s) − |P |) = O(log(K |P |)). However, if K is large enough

and k = ω(1), then k · lg K
|P | − |P | lg |P | � O(log(K |P |)). �

5.2 Necessity of Many Leaves

In this section we study condition (i) of Theorem 1. We show that some such condition
is necessary for an efficient BST algorithm: if a local algorithm consistently creates
only few leaves, it cannot satisfy the sequential access theorem, a natural efficiency
condition known to hold for several BST algorithms [13,6].



Self-Adjusting Binary Search Trees 309

Definition 21. A self-adjusting BST algorithmA satisfies the sequential access theorem
if starting from an arbitrary initial tree T , it can access the elements of T in increasing
order with total cost O(|T |).

Theorem 22. If for all after-trees A created by algorithm A executed on T , it holds
that (i) A can be decomposed into O(1) monotone sets, and (ii) the number of leaves of
A is at most |T |o(1), then A does not satisfy the sequential access theorem.

The rest of the section is devoted to the proof of Theorem 22.
Let R be a BST over [n]. We call a maximal left-leaning path of R a wing of R.

More precisely, a wing of R is a set {x1, . . . , xk} ⊆ [n], with x1 < · · · < xk, and such
that x1 has no left child, xk is either the root of R, or the right child of its parent, and
xi is the left child of xi+1 for all 1 ≤ i < k. A wing might consist of a single element.
Observe that the wings of R partition [n] in a unique way, and we call the set of wings
of R the wing partition of R, denoted as wp(R). We define a potential function φ over
a BST R as follows: φ(R) =

∑
w∈wp(R) |w| log(|w|).

Let T0 be a left-leaning path over [n] (i.e. n is the root and 1 is the leaf). Consider
a minimally self-adjusting BST algorithm A, accessing elements of [n] in sequential
order, starting with T0 as initial tree. Let Ti denote the BST after accessing element i.
Then Ti has i as the root, and the elements yet to be accessed (i.e. [i + 1, n]) form the
right subtree of the root, denoted Ri. To avoid treating T0 separately, we augment it
with a “virtual root” 0. This node plays no role in subsequent accesses, and it only adds
a constant one to the overall access cost.

Using the previously defined potential function, we denote φi = φ(Ri). We make
the following easy observations: φ0 = n logn, and φn = 0.

Next, we look at the change in potential due to the restructuring after accessing
element i. Let Pi = (x1, x2, . . . , xni) be the access path when accessing i in Ti−1, and
let ni denote its length, i.e. x1 = i−1, and xni = i. Observe that the set P ′

i = Pi\{x1},
is a wing of Ti−1.

Let us denote the after-tree resulting from rearranging the path Pi as Ai. Observe that
the root of Ai is i, and the left child of i in Ai is i− 1. We denote the tree Ai \ {i− 1}
as A′

i, and the tree A′
i \ {i}, i.e. the right subtree of i in Ai, as A′′

i .
The crucial observation of the proof is that for an arbitrary wing w ∈ wp(Ti), the

following holds: (i) either w was not changed when accessing i, i.e. w ∈ wp(Ti−1),
or (ii) w contains a portion of P ′

i , possibly concatenated with an earlier wing, i.e. there
exists some w′ ∈ wp(A′

i), such that w′ ⊆ w. In this case, we denote ext(w′) the
extension of w′ to a wing of wp(Ti), i.e. ext(w′) = w \ w′, and either ext(w′) = ∅, or
ext(w′) ∈ wp(Ti−1).

Now we bound the change in potential φi − φi−1. Wings that did not change during
the restructuring (i.e. those of type (i)) do not contribute to the potential difference. Also
note, that i contributes to φi−1, but not to φi. Thus, we have for 1 ≤ i ≤ n, assuming
that 0 log 0 = 0, and denoting f(x) = x log(x):

φi − φi−1 =
∑

w′∈wp(A′′
i )

(
f(|w′|+ |ext(w′)|)− f(|ext(w′)|)) − f(ni − 1).
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By simple manipulation, for 1 ≤ i ≤ n:

φi − φi−1 ≥
∑

w′∈wp(A′′
i )

f(|w′|)− f(ni − 1).

By convexity of f , and observing that |A′′
i | = ni − 2, we have

φi−φi−1 ≥ |wp(A′′
i )|·f

(
ni − 2

|wp(A′′
i )|

)
−f(ni−1) = (ni−2)·log ni − 2

|wp(A′′
i )|

−f(ni−1).

Lemma 23. If R has right-depth m, and k leaves, then |wp(R)| ≤ mk.

Proof: For a wing w, let �(w) be any leaf in the subtree rooted at the node of maximum
depth in the wing. Clearly, for any leaf � there can be at most m wings w with �(w) = �.
The claim follows. �

Thus, |wp(A′′
i )| ≤ no(1). Summing the potential differences over i, we get φn−φ0 =

−n logn ≥ −∑n
i=1 ni log (n

o(1)) − O(n). Denoting the total cost of algorithm A on
the sequential access sequence as C, we obtain C =

∑n
i=1 ni = n · ω(1).

This shows that A does not satisfy the sequential access theorem.

6 Small Monotonicity-Depth and Local Algorithms

In this section we define a class of minimally self-adjusting BST algorithms that we
call local. We show that an algorithm is local exactly if all after-trees it creates can
be decomposed into constantly many monotone sets. Our definition of local algorithm
is inspired by similar definitions by Subramanian [12] and Georgakopoulos and Mc-
Clurkin [7]. Our locality criterion subsumes both previous definitions, apart from a
technical condition not needed in these works: we require the transformation to bring
the accessed element to the root. We require this (rather natural) condition in order to
simplify the proofs. We mention that it can be removed at considerable expense in tech-
nicalities. Apart from this point, our definition of locality is more general: while existing
local algorithms are oblivious to the global structure of the after-tree, our definition of
local algorithm allows external global advice, as well as non-determinism.

Consider the before-path P and the after-tree A. A decomposition of the transforma-

tion P → A is a sequence of BSTs (P = Q0
P0−→ Q1

P1−→ . . .
Pk−1−−−→ Qk = A), such

that for all i, the tree Qi+1 can be obtained from the tree Qi, by rearranging a path Pi

contained in Qi into a tree Ti, and linking all the attached subtrees in the unique way
given by the element ordering. Clearly, every transformation has such a decomposition,
since a sequence of rotations fulfills the requirement. The decomposition is local with
window-size w, if it satisfies the following conditions:

(i) (start) s ∈ P0, where s is the accessed element in P ,
(ii) (progress) Pi+1 \ Pi �= ∅, for all i,

(iii) (overlap) Pi+1 ∩ Pi �= ∅, for all i,
(iv) (no-revisit) (Pi − Pi+1) ∩ Pj = ∅, for all j > i+ 1,
(v) (window-size) |Pi| ≤ w, for some constant w > 0.
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We call a minimally self-adjusting algorithm A local, if all the before-path → after-
tree transformations performed by A have a local decomposition with constant-size
window. The following theorem shows that local algorithms are exactly those that re-
spect condition (ii) of Theorem 1 (proof omitted).

Theorem 24. Let A be a minimally self-adjusting algorithm. (i) If A is local with win-
dow size w, then all the after-trees created by A can be partitioned into 2w monotone
sets. (ii) If all the after-trees created by A can be partitioned into w monotone sets, then
A is local with window-size w.

Due to the relationship between monotone sets and locality of algorithms, we have

Theorem 25. If a minimally self-adjusting BST algorithm A satisfies the access lemma
with the SOL potential, then A can be made local.

Open Questions: Does the family of algorithms described by Theorem 16 satisfy other
efficiency-properties not captured by the access lemma? Properties studied in the liter-
ature include sequential access [13], deque [13,10], dynamic finger [4], or the elusive
dynamic optimality [11].

One may ask whether locality is a necessary feature of all efficient BST algorithms.
We have shown that some natural heuristics (e.g. path-balance or depth reduction) do
not share this property, and thus do not satisfy the access lemma with the (rather nat-
ural) sum-of-logs potential function. It remains an open question, whether such “truly
nonlocal” heuristics are necessarily bad, or if a different potential function could show
that they are good.

Acknowledgement. The authors thank Raimund Seidel for suggesting the study of
depth-reducing heuristics and for useful insights about BSTs and splay trees.
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Abstract. The notion of element-connectivity has found several important appli-
cations in network design and routing problems. We focus on a reduction step
that preserves the element-connectivity [18,4,3], which when applied repeatedly
allows one to reduce the original graph to a simpler one. This pre-processing step
is a crucial ingredient in several applications. In this paper we revisit this reduc-
tion step and provide a new proof via the use of setpairs. Our main contribution
is algorithmic results for several basic problems on element-connectivity includ-
ing the problem of achieving the aforementioned graph simplification. We utilize
the underlying submodularity properties of element-connectivity to derive faster
algorithms.

Keywords: Element-connectivity, Gomory-Hu tree, reduction, bisubmodular.

1 Introduction

Let G = (V,E) be an undirected simple graph. The edge-connectivity between two dis-
tinct nodes u, v, denoted by λG(u, v), is the maximum number of edge-disjoint paths
between u and v in G. The vertex-connectivity between u and v, denoted by κG(u, v)
is the maximum number of internally vertex-disjoint paths between u and v. These two
connectivity measures are classical and extensively studied in graph theory, combinato-
rial optimization and algorithms. The notion of element-connectivity is more recent and
is defined as follows. Let T ⊆ V be a set of terminals; vertices in V \T are referred to as
non-terminals. For any two distinct terminals u, v ∈ T , element-connectivity between
u and v is the maximum number of u-v paths in G that are pairwise “element”-disjoint
where elements consist of edges and non-terminals. Note that element-disjoint paths
need not be disjoint in terminals. We use κ′

G(u, v) to denote the element-connectivity
between u and v. Via Menger’s theorem one can characterize edge, vertex and element
connectivity in an equivalent way via cuts. We use κ′

G(T ) = minu,v∈T κ′
G(u, v) to de-

note the global element-connectivity, the minimum number of elements whose deletion
separates some pair of terminals. See Fig. 1 for example.

Element-connectivity can be seen to generalize edge-connectivity by letting T = V .
At the same time, element-connectivity is also closely related to vertex-connectivity.
If T is an independent set then κ′

G(u, v) is the maximum number of paths from u to
v that are disjoint in non-terminals. In particular, if T contains exactly two vertices s

c© Springer-Verlag Berlin Heidelberg 2015
N. Bansal and I. Finocchi (Eds.): ESA 2015, LNCS 9294, pp. 313–324, 2015.
DOI: 10.1007/978-3-662-48350-3�27
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Fig. 1. The black vertices are the terminals. The left image shows 4 element-disjoint st-paths.
The right image shows removing 4 elements disconnects s and t. κ′(s, t) = 4

and t, then κG(s, t) = κ′
G(s, t). Element-connectivity has found several applications

in network design, routing and related problems, some of which we will discuss later.
Several of these applications rely on an interesting graph reduction operation shown
first by Hind and Oellermann [18]. To describe their result we use the notation G/pq to
denote the graph obtained from G by contracting the edge pq, and G− pq to denote the
graph with edge pq deleted.

Theorem 1 (Hind & Oellermann [18]). Let G = (V,E) be an undirected graph and
T ⊆ V be a terminal-set such that κ′

G(T ) ≥ k. Let pq be any edge where p, q ∈ V \ T .
Then κ′

G1
(T ) ≥ k or κ′

G2
(T ) ≥ k where G1 = G− pq and G2 = G/pq.

Chekuri and Korula generalized the theorem to show that the same reduction opera-
tion also preserves the local element-connectivity of every pair of terminals.

Theorem 2 (Chekuri & Korula [3]). Let G = (V,E) be an undirected graph and
T ⊆ V be a terminal-set. Let pq be any edge where p, q ∈ V \ T and let G1 = G− pq
and G2 = G/pq. Then one of the following holds: (i) ∀u, v ∈ T , κ′

G1
(u, v) = κ′

G(u, v)
(ii) ∀u, v ∈ T , κ′

G2
(u, v) = κ′

G(u, v).

We refer to the preceding theorem as the reduction lemma following the usage from
[3]. By repeatedly applying the reduction lemma, as observed in prior work, we obtain
the following corollary.

Corollary 1. Given a graph G = (V,E) and a terminal set T ⊆ V there is a minor
H = (V ′, E′) of G such that (i) T ⊆ V ′ and (ii) V ′ \T is an independent set in H and
(iii) κ′

H(u, v) = κ′
G(u, v) for all u, v ∈ T . In particular, if T is an independent set in

G then H is a bipartite graph with bipartition (T, V ′ \ T ).
The minor H in the previous corollary is called a reduced graph of G. A graph is

reduced if there are no edges between non-terminals.

Remark 1. A reduced graph G = (V,E) where the terminals T form an independent
set can be interpreted as a hypergraph H = (T,E′). H contains an edge ev for every
non-terminal v in G, where ev is the set of neighbors of v in G. Element-connectivity
of terminals T in G is equivalent to hypergraph edge-connectivity in H . st-edge con-
nectivity on hypergraphs are defined the same way as graphs : the maximum number of
edge disjoint st-paths.
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Min Cut Min Cut(WHP) All-pair All-pair (WHP) Reduce
λ Õ(m)[21] Õ(m)[21] Õ(n27/8)[7] Õ(nm)[16] -
κ′ O(|T | MF(n,m)) same as all-pair O(|T | MF(n,m)) Õ(|T |nω)[14],O(mω)[6] O(|T |nm)

κ O(n7/4m)[12] Õ(nm)[17] O(n9/2)[8] Õ(n2+ω)[14] -

Fig. 2. The running time for various algorithms for a graph with n vertices and m edges and
terminal vertices |T |. The row for κ′ is our result. MF(n,m) is the running time for a maxi-
mum flow on unit capacity directed graph with n vertices and m edges, which is known to be
O(

√
nm)[8]. WHP indicates with high probability bounds for randomized algorithms. ω is the

matrix multiplication constant. Õ notation suppresses poly-logarithmic factors.

Our Results: In this paper we revisit Theorem 2 and Corollary 1 from two related view
points. The proofs of Theorems 1 and 2 use elementary arguments on flows and cuts
in graphs. We obtain an alternative proof of Theorem 2 using submodularity and super-
modularity property of setpairs. Although these properties have been used routinely in
network design papers that deal with element-connectivity, they have not been applied
in the context of the reduction lemma itself. Second, we examine algorithmic aspects of
element-connectivity, and this is our main contribution. Very basic questions have not
been explored in contrast to substantial literature on edge and vertex connectivity. For
instance, how fast can κ′

G(T ) be computed? How fast can the graph H promised by
Corollary 1 be computed? We obtain several results which are summarized in Fig. 2. In
particular, given a graph on n nodes with m edges we obtain an algorithm that outputs
the reduced graph for a given set of terminals T in O(|T |nm) time. The key observation
that underlies the algorithms is that a symmetric submodular function can be defined
over the terminal set T that corresponds to the element-connectivity between then. This
in turn allows us to compute and exploit a Gomory-Hu tree for this function.

Applications: Element-connectivity has found important applications in three areas:
network design, packing element-disjoint Steiner trees and forests, and more recently
in routing for node-disjoint paths and related applications (we omit detailed references
due to lack of space). Our algorithmic improvements most directly affect the second
application, namely the problem of packing element-disjoint Steiner trees and forests.
We briefly describe the simpler case of packing element-disjoint Steiner trees which
was the original motivation for the graph reduction step [18]. Here we are given a graph
G = (V,E) and terminal set T and the goal is to find the maximum number of Steiner
trees for T that are pairwise element-disjoint. It is known that in general graphs one can
find Ω(k/ log |T |) trees where k = κ′

G(T ) and there are examples where this bound is
tight [4]. In planar graphs one can find Ω(k) trees [1,3]. Algorithms for these first need
to compute k, and then work with the reduced graph. Computing the reduced graph
is the bottleneck and our result thus implies an O(|T |nm)-time algorithm for these
packing problems; the previous bounds is O(k|T |2m2).

Discussion: There is a vast amount of literature on algorithms for computing edge and
vertex connectivity in graphs, and related problems on flows and cuts. As the table in
Fig 2 shows, the edge connectivity versions have faster algorithms and are much bet-
ter understood. This is not surprising since edge-connectivity has additional structure
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that can be exploited, including the existence of a Gomory-Hu tree. In contrast, vertex-
connectivity does not admit even a weaker notion of flow-trees [2]. Element-connectivity
is an interesting notion that has helped bridge edge and vertex connectivity in various
applications, and we believe that studying its computational aspects in more depth is
an fruitful direction of research. Our work here can be seen as a first step in exploiting
the basic properties of element-connectivity to obtain faster algorithms. In this context
we mention the the splitting-off operation to preserve edge-connectivity introduced by
Lovász [24] and strengthened by Mader [25]. The algorithmic aspects of splitting-off
have been exploited in several papers on edge-connectivity including some recent ones
[16,23] and we hope similar ideas may bear fruit for element-connectivity.

2 Preliminaries

A set function f : 2V → R is submodular if for all A,B ⊆ V, f(A) + f(B) ≥
f(A∩B) + f(A ∪B). f is non-negative if f(A) ≥ 0 for all A ⊂ V . f is symmetric if
f(A) = f(V − A) for all A ⊂ V . For a non-negative symmetric submodular function
f : 2V → R, we define the f -connectivity between s, t ∈ V as:

αf (s, t) = min
U⊂V,|U∩{s,t}|=1

f(U). (1)

Note that αf (s, t) = αf (t, s) for symmetric f . A capacitated spanning tree (R, c) on
V is called a Gomory-Hu tree (cut tree) of f if for all st ∈ E(R), f(A) = αf (s, t) =
c(st), where A is a component of R − st. αf (s, t) for all s, t ∈ V can be read off
from the Gomory-Hu tree as the smallest capacity on the unique path between s and t.
A Gomory-Hu tree always exists when f is non-negative, symmetric, and submodular
(see [26]).

Given an undirected graph G = (V,E), for any W ⊆ V , we denote by δG(W ) the
set of edges with exactly one end point in W . The cut function f , defined by f(A) =
|δG(A)|, is a symmetric submodular function. For A,B ⊆ V , E(A,B) denotes the set
of edges with one end point in A and the other in B.

Set Pairs, Bisubmodularity and Bisupermodularity: Given a finite ground set V , a
setpair W = (Wt,Wh) is an ordered pair of disjoint subsets of V ; Wt or Wh may be
empty. Let S be the set of all setpairs of V and denote the set of edges with one endpoint
in Wt and the other in Wh by δ(W ) = E(Wt,Wh). Given two setpairs W = (Wt,Wh)
and Y = (Yt, Yh), let W ⊗ Y denote the setpair (Wt ∪ Yt,Wh ∩ Yh), and let W ⊕ Y
denote the setpair (Wt ∩Yt,Wh∪Yh). Additionally, we define (Wt,Wh) = (Wh,Wt).
Note that δ(W ) = δ(W ) for an undirected graph and W ⊗ Y = W ⊕ Y .

A function f : S → R is called bisubmodular if f(W ) + f(Y ) ≥ f(W ⊗ Y ) +
f(W⊕Y ) for any two setpairs W and Y . For bisupermodular and bimodular functions,
we change ≥ to ≤ and = respectively. f is symmetric if f(W ) = f(W ) for all W ∈ S.

Definition 1. Given a ground set V , a non-negative function g on S is called skew-
bisupermodular if for any two setpairs W and Y , one of the following holds:

g(W ) + g(Y ) ≤ g(W ⊗ Y ) + g(W ⊕ Y ) (2)

g(W ) + g(Y ) ≤ g(W ⊗ Y ) + g(W ⊕ Y ) (3)
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3 Element-Connectivity and Connections to Submodularity

It is natural to work with cut-functions that capture element-connectivity. We define a
cut function CG : 2T → R+ over the terminals as follows: for U ⊂ T , CG(U) is
the minimum number of elements whose removal disconnects U from T \ U in G. To
formally define CG(U) we consider vertex tri-partitions (A,Z,B) where U ⊆ A and
(T \ U) ⊆ B; among all such tri-partitions the one with minimum |Z| + |E(A,B)|
defines CG(U). Z ∪ E(A,B) is called a cut-set.

Theorem 3 (Menger’s theorem for element-connectivity). For a graph G with ter-
minal vertices T , for all s, t ∈ T , κ′

G(s, t) = min{CG(U) : U ⊂ T, |U ∩ {s, t}| = 1}.

If T is a independent set in the previous theorem, then the cut-set can be taken to
contain no edges.

For our purposes a crucial observation is that CG is a non-negative symmetric sub-
modular function.

Theorem 4. Let G be a graph with terminal vertices T . CG is a non-negative symmet-
ric submodular function over T .

The preceding theorem implies that CG admits a Gomory-Hu tree.

4 Algorithmic Aspects of Element-Connectivity

In this section we describe our algorithmic contributions to element-connectivity. In
particular we describe how the running times in the second row of the table in Fig. 2
can be realized. Our main contribution is a faster algorithm for graph reduction. In the
entire section, we are always working with a graph G = (V,E) with n vertices, m
edges and terminal vertices T .

Equivalent Directed Graph: One view of element-connectivity that greatly helps with
computation is to define a flow problem. One can see that κ′

G(s, t) is the maximum s-t-
flow in G with unit capacities on the edges and non-terminal vertices (terminal vertices
have no capacity constraint). This prompts us to define a equivalent directed graph,
which we get from applying the standard vertex split operation for a graph when there
are vertex capacities.

Let N = V \ T be the set of non-terminals. Let N− = {v−|v ∈ N} and N+ =
{v+|v ∈ N}. The equivalent directed graph of G, denoted by G̃ = (Ṽ , Ẽ), where
Ṽ = N− ∪N+ ∪ T and the arc set Ẽ is obtained from G as follows:

1. For every v ∈ N , (v−, v+) ∈ Ẽ.
2. For every uv ∈ E where u, v ∈ N , (u+, v−), (v+, u−) ∈ Ẽ.
3. For every uv ∈ E where u ∈ T, v ∈ N , (u, v−), (v+, u) ∈ Ẽ.
4. For every uv ∈ E where u, v ∈ T , (u, v), (v, u) ∈ Ẽ.

All the arcs in G̃ implicitly have unit capacity. Any maximum integral acyclic s-t-
flow fst in G̃ corresponds to a set of maximum element-disjoint s-t-paths in G. Hence
we do not distinguish between maximum flows in G̃ and maximum element-disjoint
paths in G. A flow in G̃ contains a vertex v (edge e) in G to mean the corresponding
element-disjoint path contains vertex v (edge e).
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Lemma 1. λG̃(s, t) = κ′
G(s, t) for all s, t ∈ T .

4.1 Computing Element-Connectivity

Single pair element-connectivity The equivalent directed graph allows us to compute
local element-connectivity by running a single maximum flow on a unit capacity di-
rected graph.

Lemma 2. κ′
G(s, t) can be computed in O(MF(n,m)) time.

Note that if T = {s, t} then κ′
G(s, t) = κG(s, t) and moreover maximum bipartite

matching can be reduced to κG(s, t). Thus, improving the time to compute κ′
G(s, t) is

not feasible without corresponding improvements to other classical problems.

All-Pair Element Connectivity. To compute κ′
G(s, t) for all pairs s, t ∈ T , we can

compute the Gomory-Hu tree that we know exists from Theorem 4. Unlike the single-
pair case where element-connectivity behaves like vertex-connectivity, in the all-pair
case it is closer to edge-connectivity, and in particular there are at most |T | − 1 dis-
tinct element-connectivity values. A Gomory-Hu tree (R, c) representing the all-pair
element-connectivities can be built recursively by solving |T | − 1 minimum element
cut computations, which correspond to maximum flow computations in the equiva-
lent directed graph. Hence all-pair element-connectivity takes |T | − 1 maximum flows.
For dense graphs, if we allow randomization, maximum flow can be solved in Õ(nω)
time[14], where ω is the matrix multiplication constant.

There is an alternative approach for sparse graphs using network coding. Cheung et
al. describe a randomized algorithm that computes the edge-connectivity in a directed
graph between every pair of vertices in O(mω) time with high probability [6]. Since
κ′
G(s, t) = λG̃(s, t) for all s, t ∈ T , all-pair element-connectivity can also be computed

in O(mω) time with high probability.

Global Element Connectivity. The global element-connectivity κ′
G(T ) can be easily

obtained from the all-pair problem.

Theorem 5. κ′
G(T ) can be computed in O(|T | MF(n,m)) time.

A different algorithm that results |T | − 1 maximum flows computations can be ob-
tained via an approach similar to that of Hao-Orlin’s algorithm [15]. We defer the details
to full version of the paper. It is a very interesting open problem to improve the run-
ning time for computing κ′

G(T ). Global edge-connectivity admits a near-linear time
algorithm [20,21], but global vertex connectivity algorithms are much slower.

Remark 2. For the special case when G is already a reduced graph, an O(mn) time
algorithm exists via the problem of computing a minimum cut in a hypergraph [22].

4.2 Computing a Reduced Graph

This section highlights the main result of the paper, an O(|T |nm) time algorithm to
find a reduced graph. For G a graph with terminals T , H is called a reduction of G if it
can be obtained from G by a sequence of reduction operations.
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The reduction lemma suggests a simple algorithm: pick any edge incident to
two nonterminal vertices, check which one of the two operations preserves element-
connectivity, reduce and repeat. For a graph on n vertices and m edges, compute all-pair
element-connectivity from scratch. The naive scheme when combined with the non-
obvious O(|T | MF(n,m)) algorithm for all-pair case would take O(|T |m MF(n,m))
time. Cheriyan and Salavatipour [4] described exactly this algorithm where they in fact
computed all-pair connectivity using |T |2 max-flow computations; their focus was not
in improving the running time. We obtain the following

Theorem 6. For a graph G with n vertices, m edges and terminals T , a reduced graph
of G can be computed in O(|T |nm) time.

The two high-level ideas to obtain an improved run-time are the following.

1. The algorithm initially computes and then maintains a Gomory-Hu tree (R, c) for
the element-connectivity of T . For each edge st ∈ E(R) it maintains a correspond-
ing maximum flow between s and t in G̃ as it evolves with reduction operations.

2. Instead of considering reduction operations on an edge by edge basis in an ad-hoc
manner we consider all edges incident to a non-terminal vertex v and process them
as a batch.

The first idea alone would give us a run-time of O(|T |m2). The second idea gives a
further improvement to O(|T |nm).

Reduction by Vertex Elimination: We call an edge pq between two non-terminals
a reducible edge. For a given non-terminal v let D(v) be the set of all reducible edges
incident to v. We say v is active if D(v) = ∅. An elimination operation on an active ver-
tex v either contracts an edge in D(v) or removes all edges in D(v). If the graph is not
reduced, there is always an elimination operation that preserves element-connectivity.
Indeed, if D(v) cannot be removed, then consider the edges in D(v) in an arbitrary
but fixed sequence and apply the reduction operation. At some point there is an edge
e such that removing it reduces the element-connectivity. By reduction lemma, we can
contract e. An elimination reduces the number of active vertices by at least 1. There can
only be O(n) eliminations. Moreover, crucially, we can implement a vertex elimination
operation in the same amount of time as an edge reduction operation.

Our goal is to decide quickly whether an active vertex v can be eliminated (that is,
D(v) can be removed) and if not which of the edges in D(v) can be contracted. For
this purpose we define a weighting of edges of E as follows. First we order the edges
in D(v) arbitrarily as e1, e2, . . . , eh where h = |D(v)|. We define a weight function
w : E → {1, 2, . . . , h+ 1} where w(ei) = i and w(e) = h+ 1 for all e ∈ E \D(v).

Given a set of weights ρ on the edges, for each pair (s, t) of terminals we define
βρ(s, t) as the maximum weight a such that the element-connectivity between s and t
remains the same even if we remove all edges with weight less than a. We call βρ(s, t) as
the bottleneck weight for (s, t). Suppose we used the weight function as defined above
based on the numbering for D(v) then v can be eliminated iff βw(s, t) > h for all pairs
of terminals (s, t). In fact we can also obtain information on which of the edges in D(v)
can be contracted if v cannot be eliminated. Even further, we need to check only the ter-
minal pairs that correspond to edges of a Gomory-Hu tree for the element-connectivity
of T . This is captured in the following theorem which forms the crux of our algorithm.
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Theorem 7. Let (R, c) be a Gomory-Hu tree for the element-connectivity of terminal
set T in G. Consider an active non-terminal v and the weight function w and let 
 =
maxst∈E(R) βw(s, t). Define G′ as G/e� if 
 < |D(v)| + 1 and G −D(v) otherwise.
Then κ′

G′(u, v) = κ′
G(u, v) for all terminal pairs (u, v).

Proof. Recall that D(v) = {e1, e2, . . . , eh} where h = |D(v)|. Let S =
{e1, . . . , e�−1}. Since βw(s, t) ≥ 
 for all st ∈ E(R) it follows that the element-
connectivity does not change for any pair st ∈ E(R) if we delete the edges in S from
G. From Lemma 5 it follows in fact that the element-connectivity of all pairs remains
the same in G−S as in G. Thus all edges in S are deletable. If 
 = h+1 then S = D(v)
and G′ = G − S and we have the desired property. If 
 ≤ h then there is at least one
st ∈ E(R) such that κ′

G−S(s, t) = κ′
G(s, t) but κ′

G−S−e�
(s, t) < κ′

G(s, t). From the
reduction lemma applied to G − S we see that e� is not deletable, and hence by the
reduction lemma (G− S)/e� preserves all the element-connectivities of the terminals.
This also implies that G/e� preserves all element-connectivities.

Computing βw(s, t) is relatively fast if we already have an existing maximum flow
from s to t. This is captured by the lemma below.

Lemma 3. Given a maximum s-t-flow fst in G̃, an active non-terminal v and a weight-
ing w, we can find βw(s, t) and a corresponding flow in O(m) time.

Proof. Consider a maximum s-t flow fst in G̃. In a flow decomposition of fst there
is at most one flow path that uses the non-terminal v. We can find such a flow path in
O(m) time and reduce the flow by at most one unit to obtain a new flow f ′

st which does
not have any flow through v. Not that f ′

st is non-zero only on edges e with w(e) =
|D(v)|+1. If the value of f ′

st is the same as that of fst then βw(s, t) = |D(v)|+1 and
we are done. Otherwise, we claim that βw(s, t) = 
 iff the maximum bottleneck weight
for a path from s to t in the residual graph of f ′

st in G̃ is 
. Assuming that the claim
is true we can find βw(s, t) by a maximum bottleneck path computation in the residual
graph in O(m) time since the edges are sorted by weight (the algorithm is quite simple
but we refer the reader to [13]).

Now we prove the claim. If there is a path of maximum bottleneck weight 
 in the
residual graph we can augment f ′

st by one unit to obtain a maximum flow f ′′
st that uses

only edges with weight 
 or greater and hence βw(s, t) ≥ 
. Suppose βw(s, t) = 
′.
Remove the edges {e1, . . . , e�′−1} from G and their corresponding arcs from G̃. There
is a maximum s-t flow of value κ′

G(s, t) in this new graph H . f ′
st is a flow of value

κ′
G(s, t)− 1 in H and hence there must be an augmenting path in the residual graph of

f ′
st in H and this augmenting path has bottleneck weight at least 
′ and is also a valid

path in residual graph of f ′
st in G̃. Thus 
 ≥ 
′. Thus βw(s, t) = 
 as desired.

Theorem 7 and Lemma 3 lead to an algorithm as follows. We initially compute and
then maintain a Gomory-Hu tree (R, c) for CG on the terminals. For each edge st ∈
E(R) we also maintain a maximum flow fst in the current graph G̃. In each iteration we
do an elimination procedure on an active vertex using Theorem 7. Each iteration either
reduces the number of active vertices by one or contracts an edge. Thus the number
of iterations is O(n). Algorithm 1 gives a formal description. Note that the tree (R, c)
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Algorithm 1: Reduce a graph G with terminal vertices T
Input: undirected graph G, terminals T
// Preprocessing

1 (R, c) ← Gomory-Hu tree of CG

2 foreach st ∈ E(R) do
3 fst ← maximum st-flow in G̃
// Sequence of eliminations

4 while there exists an active non-terminal vertex v do
5 w ← assign weights to D(v)
6 foreach st ∈ E(R) do
7 compute βw(s, t) in O(m) time using fst
8 � ← min{βw(s, t) | st ∈ E(R)}
9 if � > |D(v)| then

10 G ← G−D(v)
11 else
12 G ← G/e�
13 foreach st ∈ E(R) do
14 update fst in O(m) time
15 return G

does not change throughout the algorithm but the flows fst for each st ∈ E(R) get
updated in each iteration. We need to clarify how we update these flows, analyze the
overall running time, and argue about the correctness of the algorithm.

Updating the Flows: Each elimination changes the graph. The algorithm updates the
maximum flows fst for each st ∈ E(R) to reflect this change. If the new graph is
G−D(v), then no flow need updating since the computation of βw(s, t) already finds a
new flow that avoids all edges in D(v). We address the case when we contract an edge
from D(v).

Lemma 4. Let G be a graph with m edges with terminals T . Let H = G/e for some
reducible edge e. If fst is a maximum s-t flow in G̃, then we can find f ′

st, a maximum
s-t-flow in H̃ in O(m) time.

Proof. Let e = pq. We delete flow paths in fst that use p or q. This removes at most 2
unit of flow (since each non-terminal has unit capacity) and the reduced flow is a valid
flow in H̃ . In two augmentations we can find a maximum flow in H̃. Each step can be
easily implemented in O(m) time.

Analysis of Running Time: The time spent to build the Gomory-Hu tree (R, c) and
the initial maximum flows for each edge st ∈ E(R) take |T | − 1 maximum flow com-
putations. Thus the time for this is O(|T | MF(n,m))

As we argued there are O(n) iterations of the while loop. In each iteration we need to
compute βw(st) for each st ∈ E(R). Lemma 3 shows that each such computation can
be done in O(m) time using the stored maximum flow; thus the total time is O(|T |m).
Updating the maximum flows also takesO(|T |m) time using Lemma 4. Thus the overall
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running time for all the iterations of the while loop is O(|T |nm) which dominates the
time to compute the initial Gomory-Hu tree.

Correctness: Theorem 7 shows the correctness of the elimination procedure. It remains
to argue that the Gomory-Hu tree (R, c) computed in the preprocessing step remains
valid throughout the algorithm as the graph G changes and gets simplified. A similar
idea is used implicitly by Gabow for preserving local edge-connectivity while applying
split-off operations [11]. The following simple lemma gives a justification.

Lemma 5. Let (R, c) be a Gomory-Hu tree for CG with terminal vertices T in G. Let
H be a reduction of G. If κ′

G(s, t) = κ′
H(s, t) for all st ∈ E(R) then (R, c) is also a

Gomory-Hu tree for CH .

5 Proof of Reduction Lemma via Setpairs

In this section we give a new proof of Theorem 2 via the use of setpairs. We will
assume without loss of generality that T is an independent set by sub-dividing each
edge between terminals. First we introduce some functions over setpairs over the vertex
set V . These functions and their properties have been explored in papers on network
design for element connectivity [19,9,5] and in particular we refer the reader to [5] for
relevant proofs.

Let S be set of all setpairs over vertex set V of the given graph G. Recall that T is
the set of terminals. We define g, 
, f on S as follows. For a set pair W = (Wt,Wh),

g(W ) = max{κ′
G(u, v) : u ∈ Wt ∩ T, v ∈ Wh ∩ T }

Here the max follows the convention max ∅ = 0.


(W ) = |V −Wt −Wh|
f(W ) = g(W )− 
(W )

The lemmas below are known from prior work; see [9,5].

Lemma 6. The following properties hold: (i) g is symmetric skew-bisupermodular, (ii)

 is symmetric bimodular, (iii) f is symmetric skew-bisupermodular, and (iv) |δ(W )| is
symmetric bi-submodular.

A setpair W is tight if f(W ) = |δ(W )|. The lemma below follows from skew-
bisupermodularity of f and symmetric bi-submodularity of |δ()|.
Lemma 7 (Lemma 3.1 [5]). If W and Y are tight, then one of the following holds:

1. W ⊕ Y and W ⊗ Y are tight.
2. W ⊕ Y and W ⊗ Y are tight.

We are now ready to prove the Reduction Lemma.

Proof. Consider any edge pq between non-terminals and graphs G1 = G − pq and
G2 = G \ pq. Suppose the lemma is false. There must be distinct1 terminal pairs (s, t)
and (x, y) such that κ′

G1
(s, t) < κ′

G(s, t) and κ′
G2

(x, y) < κ′
G(x, y).

1 It is not hard to see that for any (s, t), κ′
G(s, t) = κ′

G1
(s, t) or κ′

G(s, t) = κ′
G2

(s, t).
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Fig. 3. (left) κ′
G1

(s, t) = κ′
G(s, t) when pq is removed. (right) κ′

G2
(x, y) = κ′

G(x, y)− 1 when
pq is contracted. Recall that T is an independent set.

For the pair (s, t), since the connectivity decreased when pq was deleted, there exists
a setpairW such that s, p ∈ Wt, t, q ∈ Wh, 
(W ) = κ′

G(s, t)−1 and δ(W ) = {pq}; see
Fig. 3. If we delete pq, then V −Wt−Wh becomes a valid cut-set that separates s and t
with smaller value. The cut sets contain only non-terminals because T is an independent
set. For the pair (x, y), since connectivity decreased when pq was contracted, there
exists a setpair Y such that x ∈ Yt, y ∈ Yh, p, q ∈ V − Yt − Yh, 
(Y ) = κ′

G(x, y) and
δ(Y ) = ∅; see Fig. 3. If we contract pq to form p′, V −Yt − Yh − p′ becomes a smaller
cut-set.

We have f(W ) = g(W ) − 
(W ) = κ′
G(s, t) − (κ′

G(s, t) − 1) = 1, and f(Y ) =
g(Y ) − 
(Y ) = κ′

G(x, y) − κ′
G(x, y) = 0. Because |δ(W )| = 1 and |δ(Y )| = 0, W

and Y are tight. We now use Lemma 7 to consider two cases.
Suppose W⊕Y and W⊗Y are tight. We have f(W⊕Y ) = |δ(W⊕Y )| and f(W⊗

Y ) = |δ(W⊗Y )|. If δ(W⊕Y ) is not empty, then either δ(W )−{pq} or δ(Y ) must not
be empty, which cannot be since |δ(W )−pq| = 0 and |δ(Y )| = 0. (We exclude pq from
δ(W ) because pq /∈ δ(W ⊕ Y ).) Therefore, δ(W ⊕ Y ) is empty. Similarly, δ(W ⊗ Y )
must be empty. Therefore, f(W )+ f(Y ) = 1+0 > 0+0 = f(W ⊕Y )+ f(W ⊗Y ),
which is a contradiction since f is bisupermodular. A similar argument can be applied
to the case when W ⊕ Y and W ⊗ Y are tight by exchanging W with W .
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Abstract. We investigate the power of randomized algorithms for the
maximum cardinality matching (MCM) and the maximum weight match-
ing (MWM) problems in the online preemptive model. In this model, the
edges of a graph are revealed one by one and the algorithm is required to
always maintain a valid matching. On seeing an edge, the algorithm has
to either accept or reject the edge. If accepted, then the adjacent edges
are discarded. The complexity of the problem is settled for deterministic
algorithms [7,9].

Almost nothing is known for randomized algorithms. A lower bound
of 1.693 is known for MCM with a trivial upper bound of two. An upper
bound of 5.356 is known for MWM. We initiate a systematic study of the
same in this paper with an aim to isolate and understand the difficulty.
We begin with a primal-dual analysis of the deterministic algorithm due
to [7]. All deterministic lower bounds are on instances which are trees at
every step. For this class of (unweighted) graphs we present a randomized
algorithm which is 28

15 -competitive. The analysis is a considerable exten-
sion of the (simple) primal-dual analysis for the deterministic case. The
key new technique is that the distribution of primal charge to dual vari-
ables depends on the “neighborhood” and needs to be done after having
seen the entire input. The assignment is asymmetric: in that edges may
assign different charges to the two end-points. Also the proof depends on
a non-trivial structural statement on the performance of the algorithm
on the input tree.

The other main result of this paper is an extension of the deterministic
lower bound of Varadaraja [9] to a natural class of randomized algorithms
which decide whether to accept a new edge or not using independent
random choices. This indicates that randomized algorithms will have to
use dependent coin tosses to succeed. Indeed, the few known randomized
algorithms, even in very restricted models follow this.

We also present the best possible 4
3 -competitive randomized algorithm

for MCM on paths.
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1 Introduction

Matching has been a central problem in combinatorial optimization. Indeed, al-
gorithm design in various models of computations, sequential, parallel, stream-
ing, etc., have been influenced by techniques used for matching. We study the
maximum cardinality matching (MCM) and the maximum weight matching
(MWM) problems in the online preemptive model. In this model, edges e1, . . . ,
em of a graph, possibly weighted, are presented one by one. An algorithm is
required to output a matching Mi after the arrival of each edge ei. This model
constrains an algorithm to accept/reject an edge as soon as it is revealed. If
accepted, the adjacent edges, if any, have to be discarded from Mi.

An algorithm is said to have a competitive ratio α if the cost of the matching
maintained by the algorithm is at least 1

α times the cost of the offline optimum
over all inputs. The deterministic complexity of this problem is settled. For
maximum cardinality matching (MCM), it is an easy exercise to prove a tight
bound of two.

The weighted version (MWM) is more difficult. Improving an earlier result
of Feigenbaum et al. [5], McGregor [7] gave a deterministic algorithm together
with an ingenious analysis to get a competitive ratio of 3 + 2

√
2 ≈ 5.828. Later,

this was proved to be optimal by Varadaraja [9].
Very little is known on the power of randomness for this problem. Recently,

Epstein et al. [4] proved a lower bound of 1+ln 2 ≈ 1.693 on the competitive ratio
of randomized algorithms for MCM. This is the best lower bound known even
for MWM. Epstein et al. [4] also give a 5.356-competitive randomized algorithm
for MWM.

In this paper, we initiate a systematic study of the power of randomness for this
problem. Our main contribution is perhaps to throw some light on where lies the
difficulty. We first give an analysis of McGregor’s algorithm using the traditional
Primal-Dual framework (see Appendix A in [3]). All lower bounds for determin-
istic algorithms (both for MCM and MWM) employ growing trees. That is, the
input graph is a tree at every stage. It is then natural to start our investigation
for this class of inputs. For this class, we give a randomized algorithm (that uses
two bits of randomness) that is 28

15 competitive. While this result is modest, already
the analysis is considerably more involved than the traditional primal dual anal-
ysis. In the traditional primal dual analysis of the matching problem, the primal
charge (every selected edge contributes one to the charge) is distributed (perhaps
equally) to the two end-points. In the online case, this is usually done as the al-
gorithm proceeds. Our assignment depends on the structure of the final tree, so
this assignment happens at the end. Our charge distribution is not symmetric. It
depends on the position of the edge in the tree (we make this clear in the analysis)
as also the behavior of neighboring edges. The main technical lemma shows that
the charge distribution will depend on a neighborhood of distance at most four.
We also note that these algorithms are (restricted versions of) randomized greedy
algorithms even in the offline setting. Obtaining an approximation ratio less than
two for general graphs, even in the offline setting is a notorious problem. See [8,2]
for a glimpse of the difficulty.
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The optimal maximal matching algorithm for MCM, and McGregor’s [7] op-
timal deterministic algorithm for MWM are both local algorithms. The choice
of whether a new edge should accepted or rejected is based only on the weight
of the new edge and the weight of the conflicting edges, if any, in the current
matching.

It is natural to add randomness to such local algorithms, and to ask whether
they do better than the known deterministic lower bounds. An obvious way to
add randomness is to accept/reject the new edge with certain probability, which
is only dependent on the new edge and the conflicting edges in the current match-
ing. The choice of adding a new edge is independent of the previous coin tosses
used by the algorithm. We call such algorithms randomized local algorithms. We
show that randomized local algorithms cannot do better than optimal deter-
ministic algorithms. This indicates that randomized algorithms may have to use
dependent coin tosses to get better approximation ratios. Indeed, the algorithm
by Epstein et al. does this. So do our randomized algorithms.

The randomized algorithm of Epstein et al. [4] works as follows. For a pa-
rameter θ, they round the weights of the edges to powers of θ randomly, and
then they update the matching using a deterministic algorithm. The weights get
distorted by a factor θ ln θ

θ−1 in the rounding step, and the deterministic algorithm
has a competitive ratio of 2 + 2

θ−2 on θ-structured graphs, i.e., graphs with edge
weights being powers of θ. The overall competitive ratio of the randomized algo-
rithm is θ ln θ

θ−1 ·
(

2 + 2
θ−2

)

which is minimized at θ ≈ 5.356. A natural approach
to reducing this competitive ratio is to improve the approximation ratio for θ
structured graphs. However, we prove that the competitive ratio 2 + 2

θ−2 is tight
for θ-structured graphs, as long as θ ≥ 4, for deterministic algorithms.

One (minor) contribution of this paper is a randomized algorithms for MCM
on paths, that achieves a competitive ratio of 4

3 , with a matching lower bound.

2 Barely Random Algorithms for MCM

In this section, we present barely random algorithms, that is, algorithms that
use a constant number of random bits, for MCM on growing trees.

The ideal way to read the paper, for a reader of leisure, is to first read our
analysis of McGregor’s algorithm (presented in Appendix A in [3], then the
analysis of the algorithm for trees with maximum vertex degree three (presented
in Appendix B.2 in [3]) and then this section. The dual variable management
which is the key contribution gets progressively more complicated. It is local in
the first two cases. Here are the well known Primal and Dual formulations of the
matching problem.

Primal LP Dual LP
max

∑

e xe min
∑

v yv

∀v :
∑

v∈e xe ≤ 1 ∀e : yu + yv ≥ 1
xe ≥ 0 yv ≥ 0



328 A. Chiplunkar, S. Tirodkar, and S. Vishwanathan

2.1 Randomized Algorithm for MCM on Growing Trees

In this section, by using only two bits of randomness, we beat the deterministic
lower bound of 2 for MCM on growing trees.

Algorithm 1. Randomized Algorithm for Growing Trees
1. The algorithm maintains four matchings: M1,M2,M3, and M4.
2. On receipt of an edge e, the processing happens in two phases.

(a) The augment phase. The new edge e is added to each Mi in which there
are no edges adjacent to e.

(b) The switching phase. For i = 2, 3, 4, in order, e is added to Mi (if it was not
added in the previous phase) and the conflicting edge is discarded, provided it
decreases the quantity

∑

i,j∈[4],i�=j
|Mi ∩ Mj |.

3. Output matching Mi with probability 1
4 .

We begin by assuming (we justify this below) that all edges that do not belong
to any matching are leaf edges. This helps in simplifying the analysis. Suppose
that there is an edge e which does not belong to any matching, but is not a
leaf edge. By removing e, the tree is partitioned into two subtrees. The edge e
is added to the tree in which it has 4 neighboring edges. (There must be such a
subtree, see next para.) Each tree is analysed separately.

We will say that a vertex(/an edge) is covered by a matching Mi if there is
an edge in Mi which is incident on(/adjacent to) the vertex(/edge). We also say
that an edge is covered by a matching Mi if it belongs to Mi. We begin with
the following observations.

– After an edge is revealed, its end points are covered by all 4 matchings.
– An edge e that does not belong to any matching has 4 edges incident on one

of its end points such that each of these edges belong to a distinct matching.
This holds when the edge is revealed, and does not change subsequently.

An edge is called internal if there are edges incident on both its end points. An
edge is called bad if its end points are covered by only 3 matchings.

We begin by proving some properties about the algorithm. The key struc-
tural lemma that keeps “influences” of bad edges local is given below. The two
assertions in the Lemma have to be proved together by induction.

Lemma 1. 1. An internal edge is covered by at least four matchings (counted
with multiplicities). It is not necessary that these four edges be in distinct
matchings.

2. If p, q and r are three consecutive vertices on a path, then bad edges cannot
be incident on all 3 of these vertices, (as in figure 1).

The proof of this lemma is in the Appendix B.4 in [3].
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p q r

“bad” “bad” “bad”

Fig. 1. Forbidden Configuration

Theorem 1. The randomized algorithm for finding MCM on growing trees is
28
15 -competitive.

A local analysis like the one in Appendix B.2 in [3] will not work here. For
a reason, see Appendix B.3 in [3]. The analysis of this algorithm proceeds in
two steps. Once all edges have been seen, we impose a partial order on the
vertices of the tree and then with the help of this partial order, we distribute the
primal charge to the dual variables, and use the primal-dual framework to infer
the competitive ratio. If every edge had four adjacent edges in some matching
(counted with multiplicities) then the distribution of dual charge is easy. However
we do have edges which have only three adjacent edges in matchings. We would
like the edges in matchings to contribute more to the end-points of these edges.
Then, the charge on the other end-point would be less and we need to balance
this through other edges. Details follow.
Ranks: Consider a vertex v. Let v1, . . . , vk be the neighbors of v. For each i, let
di denote the maximum distance from v to any leaf if there was no edge between
v and vi.The rank of v is defined as the minimum of all the di. Observe that the
rank of v is one plus the second highest rank among the neighbors of v. Thus
there can be at most one neighbor of vertex v which has rank at least the rank
of v. All leaves have rank 0. Rank 1 vertices have at most one non-leaf neighbor.

Lemma 2. There exists an assignment of the primal charge amongst the dual
variables such that the dual constraint for each edge e ≡ (u, v) is satisfied at least
15
28 in expectation, i.e. E[yu + yv] ≥ 15

28 .

Proof. Consider an edge e ≡ (u, v) where rank of u is i and rank of v is j. We will
show that yu+yv ≥ 2+ε for such an edge, when summed over all four matchings.
The value of ε is chosen later. The proof is by induction on the lexicographic
order of < j, i >, j ≥ i.
Dual Variable Management: Consider an edge e from a vertex of rank i to
a vertex of rank j, such that i ≤ j. This edge will distribute its primal weight
between its end-points. The exact values are discussed in the proof of the claim
below. In general, we look to transfer all of the primal charge to the higher
ranked vertex. But this does not work and we need a finer strategy. This is
detailed below.
– If e does not belong to any matching, then it does not contribute to the value

of dual variables.
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– If e belongs to a single matching then, depending on the situation, one of 0,
ε or 2ε of its primal charge will be assigned to the rank i vertex and rest will
be assigned to the rank j vertex. The small constant ε is determined later.

– If e belongs to two matchings, then at most 3ε of its primal charge will be
assigned to the rank i vertex as required. The rest is assigned to the rank j
vertex.

– If e belongs to three or four matchings, then its entire primal charge is
assigned to the rank j vertex.

The analysis breaks up into six cases.

Case 1. Suppose e does not belong to any matching. Then it must be a leaf edge.
Hence, i = 0. There must be 4 edges incident on v besides e, each belonging to
a distinct matching. Of these 4, at least 3 say e1, e2, and e3, must be from lower
ranked vertices to the rank j vertex v. The edges e1, e2, and e3, each assign a
charge of 1 − 2ε to yv. Therefore, yu + yv ≥ 3 − 6ε ≥ 2 + ε.

Case 2. Suppose e is a bad edge that belongs to a single matching. Since no
internal edge can be a bad edge, i = 0. This implies (Lemma 1) that, there is an
edge e1 from a rank j − 1 vertex to v, which belongs to a single matching. Also,
there is an edge e2, from v to a higher ranked vertex, which also belongs to a
single matching. The edge e assigns a charge of 1 to yv. If e1 assigns a charge
of 1 (or 1 − ε) to yv, then e2 assigns ε (or 2ε respectively) to yv. In either case,
yu + yv = 2 + ε. The key fact is that e1 could not have assigned 2ε to a lower
ranked vertex. Since, then, by Lemma 1, e cannot be a bad edge.

Case 3. Suppose e is not a bad edge, and it belongs to a single matching.
Case 3(a). i = 0. There are two sub cases.

– There is an edge e1 from some rank j − 1 vertex to v which belongs to 2
matchings, or there are two other edges e2 and e3 from some lower ranked
vertices to v, each belonging to separate matchings. The edge e assigns a
charge of 1 to yv. Either e1 assigns a charge of at least 2 − 3ε to yv, or
e2 and e3 assign a charge of at least 1 − 2ε each, to yv. In either case,
yu + yv ≥ 3 − 4ε ≥ 2 + ε.

– There is one edge e1, from a rank j − 1 vertex to v, which belongs to a
single matching, and there is one edge e2, from v to a higher ranked vertex,
which belongs to 2 matchings. The edge e assigns a charge of 1 to yv. If e1
assigns a charge of 1 (or 1 − ε or 1 − 2ε) to yv, then e2 assigns ε (or 2ε or 3ε
respectively) to yv. In either case, yu + yv = 2 + ε.

Case 3(b). i > 0. There are two sub cases.

– There are at least two edges e1 and e2 from lower ranked vertices to u, and
one edge e3 from v to a higher ranked vertex. Each of these edges are in one
matching only (not necessarily the same matching).

– There is one edge e4 from a vertex of lower rank to u, at least one edge e5
from a lower ranked vertex to v, and one edge e6 from v to a vertex of higher
rank. All these edges belong to a single matching (not necessarily the same).
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The edge e assigns a charge of 1 among yu and yv. If e1 and e2 assign a charge of
at least 1 − 2ε each, to yu, then yu + yv ≥ 3 − 4ε ≥ 2 + ε. Similarly, if e4 assigns
a charge of at least 1 − 2ε to yu, and e5 assigns a charge of at least 1 − 2ε to yv,
then yu + yv ≥ 3 − 4ε ≥ 2 + ε.

Case 4. Suppose e is a bad edge that belongs to two matchings. Then i = 0.
This implies that there is an edge e1, from v to a vertex of higher rank which
belongs to a single matching. The edge e assigns a charge of 2 to yv, and the
edge e1 assigns a charge of ε to yv. Thus, yu + yv = 2 + ε.

Case 5. Suppose e is not a bad edge and it belongs to two matchings. This
means that either there is an edge e1 from a lower ranked vertex to u, which
belongs to at least one matching, or there is an edge from some lower ranked
vertex to v that belongs to at least one matching, or there is an edge from v to
some higher ranked vertex which belongs to two matchings. The edge e assigns
a charge of 2 among yu and yv. The neighboring edges assign a charge of ε to yu

or yv (depending on which vertex it is incident), to give yu + yv ≥ 2 + ε.

Case 6. Suppose, e belongs to 3 or 4 matchings, then trivially yu + yv ≥ 2 + ε.
From the above conditions, the best value for the competitive ratio is obtained
when ε = 1

7 , yielding E[yu + yv] ≥ 15
28 . �	

Lemma 2 implies that the competitive ratio of the algorithm is at most 28
15 .

3 Lower Bounds

3.1 Lower Bound for MWM

In this section, we prove a lower bound on the competitive ratio of a natural
class of randomized algorithms in the online preemptive model for MWM. The
algorithms in this class, which we call local algorithms, have the property that
their decision to accept or to reject a new edge is completely determined by the
weights of the new edge and the conflicting edges in the matching maintained
by the algorithm. Indeed, the optimal deterministic algorithm by McGregor [7]
is a local algorithm. The notion of locality can be extended to randomized algo-
rithms as well. In case of randomized local algorithms, the event that a new edge
is accepted is independent of all such previous events, given the current match-
ing maintained by the algorithm. Furthermore, the probability of this event is
completely determined by the weight of the new edge and the conflicting edges
in the matching maintained by the algorithm. Given that the optimal (3+2

√
2)-

competitive deterministic algorithm for MWM is a local algorithm, it is natural
to ask whether randomized local algorithms can beat the deterministic lower
bound of (3 + 2

√
2) by Varadaraja [9]. We answer this question in the negative,

and prove the following theorem.

Theorem 2. No randomized local algorithm for the MWM problem can have a
competitive ratio less than α = 3 + 2

√
2 ≈ 5.828.
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Note that the randomized algorithm by Epstein et al. [4] does not fall in this
category, since the decision of accepting or rejecting a new edge is also dependent
on the outcome of the coins tossed at the beginning of the run of the algorithm.
(For details, see Section 3 of [4].) In order to prove Theorem 2, we will crucially
use the following lemma, which is a consequence of Section 4 of [9].

Lemma 3. If there exists an infinite sequence (xn)n∈N of positive real numbers
such that for all n, βxn ≥ ∑n+1

i=1 xi + xn+1, then β ≥ 3 + 2
√

2.

Characterization of Local Randomized Algorithms. Suppose, for a con-
tradiction, that there exists a randomized local algorithm A with a competitive
ratio β < α = 3 + 2

√
2, β ≥ 1. Define the constant γ to be

γ =
β

(

1 − 1
α

)

(

1 − β
α

) = β(α − 1)
α − β

≥ 1 >
1
α

For i = 0, 1, 2, if w is the weight of a new edge and it has i conflicting edges,
in the current matching, of weights w1, . . . , wi, then fi(w1, . . . , wi, w) gives the
probability of switching to the new edge. The behavior of A is completely de-
scribed by these three functions. We need the following key lemma to state our
construction of the adversarial input.

The lemma states (informally) that given an edge of weight w1, there exists
weights x and y, close to each other such that if an edge of weight x (respective
y) is adjacent to an edge of weight w1, the probability of switching is at most
(respectively at least) δ.

Lemma 4. For every δ ∈ (0, 1/α), ε > 0, and w1, there exist x and y such that
f1(w1, x) ≥ δ, f1(w1, y) ≤ δ, x − y ≤ ε, and w1/α ≤ y ≤ x ≤ γw1.

The proof of this lemma can be found in Appendix C in [3].

The Adversarial Input. The adversarial input is parameterized by four pa-
rameters: δ ∈ (0, 1/α), ε > 0, m, and n, where m and n determine the graph
and δ and ε determine the weights of its edges.

Define the infinite sequences (xi)i∈N and (yi)i∈N, as functions of ε and δ, as
follows. x1 = 1, and for all i, having defined xi, let xi+1 and yi be such that
f1(xi, xi+1) ≥ δ, f1(xi, yi) ≤ δ, xi+1 − yi ≤ ε, and xi/α ≤ yi ≤ xi+1 ≤ γxi.
Lemma 4 ensures that such xi+1 and yi exist. Furthermore, by induction on i,
it is easy to see that for all i,

1/αi ≤ yi ≤ xi+1 ≤ γi (1)

These sequences will be the weights of the edges in the input graph.
Given m and n, the input graph contains several layers of vertices, namely

A1, A2, . . . , An+1, An+2 and B1, B2, . . . , Bn+1; each layer containing m vertices.
The vertices in the layer Ai are named ai

1, ai
2, . . . , ai

m, and those in layer Bi are
named analogously. We have a complete bipartite graph Ji between layer Ai
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and Ai+1 and an edge between ai
j and bi

j for every i, j (that is, a matching Mi

between Ai and Bi).
For i = 1 to n, the edges {(ai

j, ai+1
j′ )|1 ≤ j, j′ ≤ m}, in the complete bipartite

graph between Ai and Ai+1, have weight xi, and the edges {(ai
j , bi

j)|1 ≤ j ≤ m},
in the matching between Ai and Bi, have weight yi. The edges in the complete
graph Jn+1 have weight xn, and those in the matching Mn+1 have weight yn.
Note that weights xi and yi depend on ε and δ, but are independent of m and n.
Clearly, the weight of the maximum weight matching in this graph is bounded
from below by the weight of the matching

⋃n+1
i=1 Mi. Since yi ≥ xi+1 −ε, we have

OPT ≥ m

(

n
∑

i=1
yi + yn

)

≥ m

(

n+1
∑

i=2
xi + xn+1 − (n + 1)ε

)

(2)

The edges of the graph are revealed in n+1 phases. In the ith phase, the edges
in Ji ∪ Mi are revealed as follows. The phase is divided into m sub phases. In
the jth sub phase of the ith phase, edges incident on ai

j are revealed, in the order
(ai

j , ai+1
1 ), (ai

j , ai+1
2 ), . . . , (ai

j , ai+1
m ), (ai

j , bi
j).

Analysis of the Lower Bound. The overall idea of bounding the weight of
the algorithm’s matching is as follows. In each phase i, we will prove that as
many as m − O(1) edges of Ji and only δm + O(1) edges of Mi are picked by the
algorithm. Furthermore, in the i + 1th phase, since m − O(1) edges from Ji+1
are picked, all but O(1) edges of the edges picked from Ji are discarded. Thus,
the algorithm ends up with δm+O(1) edges from each Mi, and O(1) edges from
each Ji, except possibly Jn and Jn+1. The algorithm can end up with at most
m edges from Jn ∪Jn+1, since the size of the maximum matching in Jn ∪Jn+1 is
m. Thus, the weight of the algorithm’s matching is at most mxn plus a quantity
that can be neglected for large m and small δ.

Let Xi (resp. Yi) be the set of edges of Ji (resp. Mi) held by the algorithm at
the end of input. Then we have,

Lemma 5. For all i = 1 to n

E[|Yi|] ≤ δm + 1 − δ

δ

Lemma 6. For all i = 1 to n − 1

E[|Xi|] ≤ 1 − δ

δ

Lemma 7.
E[|Yn+1|] ≤ δm + 1 − δ

δ

The proof of the above lemmas can be found in Appendix C in [3].
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We are now ready to prove Theorem 2. The expected weight of the matching
held by A is

E[ALG] ≤
n

∑

i=1
yiE[|Yi|] + ynE[|Yn+1|] +

n−1
∑

i=1
xiE[|Xi|] + xnE[|Xn ∪ Xn+1|]

Using Lemmas 5, 7, 6, and the facts that yi ≤ xi+1 for all i and E[|Xn ∪Xn+1|] ≤
m (since Xn ∪ Xn+1 is a matching in Jn ∪ Jn+1), we have

E[ALG] ≤
(

δm + 1 − δ

δ

)

(

n+1
∑

i=2
xi + xn+1

)

+ 1 − δ

δ

n−1
∑

i=1
xi + mxn

Since the algorithm is β-competitive, for all n, m, δ and ε we must have E[ALG]
≥ OPT /β. From the above and equation (2), we must have

(

δm + 1−δ
δ

)

(

∑n+1
i=2 xi + xn+1

)

≥ m
β

(

∑n+1
i=2 xi + xn+1 − (n + 1)ε

)

+ 1−δ
δ

∑n−1
i=1 xi + mxn

Since the above holds for arbitrarily large m, ignoring the terms independent of
m (recall that xi’s are functions of ε and δ only), we have for all δ and ε,

δ

(

n+1
∑

i=2
xi + xn+1

)

+ xn ≥ 1
β

(

n+1
∑

i=2
xi + xn+1 − (n + 1)ε

)

that is,

xn ≥ 1
β

(

n+1
∑

i=2
xi + xn+1 − (n + 1)ε

)

− δ

(

n+1
∑

i=2
xi + xn+1

)

Taking limit inferior as δ → 0 in the above inequality, and noting that limit
inferior is super-additive we get for all ε,

lim infδ→0 xn ≥
1
β

(

∑n+1
i=2 lim infδ→0 xi + lim infδ→0 xn+1 − (n + 1)ε

)

− lim supδ→0 δ
(

∑n+1
i=2 xi + xn+1

)

Recall that xi’s are functions of ε and δ, and that from equation (1), 1/αi ≤
xi+1 ≤ γi, where the bounds are independent of δ. Thus, all the limits in the
above inequality exist. Moreover, limδ→0 δ

(

∑n+1
i=2 xi + xn+1

)

exists and is 0, for

all ε. This implies lim supδ→0 δ
(

∑n+1
i=2 xi + xn+1

)

= 0 and we get for all ε,

lim inf
δ→0

xn ≥ 1
β

(

n+1
∑

i=2
lim inf

δ→0
xi + lim inf

δ→0
xn+1 − (n + 1)ε

)

Again, taking limit inferior as ε → 0, and using super-additivity,

lim inf
ε→0

lim inf
δ→0

xn ≥ 1
β

(

n+1
∑

i=2
lim inf

ε→0
lim inf

δ→0
xi + lim inf

ε→0
lim inf

δ→0
xn+1

)
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Note that the above holds for all n. Finally, let xn = lim infε→0 lim infδ→0 xn+1.
Then we have the infinite sequence (xn)n∈N such that for all n, βxn ≥ ∑n+1

i=1 xi +
xn+1. Thus, by Lemma 3, we have β ≥ 3 + 2

√
2.

3.2 Lower Bound for θ Structured Graphs

Recall that an edge weighted graph is said to be θ-structured if the weights
of the edges are powers of θ. The following bound applies to any deterministic
algorithm for MWM on θ-structured graphs.

Theorem 3. No deterministic algorithm can have a competitive ratio less than
2 + 2

θ−2 for MWM on θ-structured graphs, for θ ≥ 4.

The proof of the above theorem can be found in Appendix D in [3].

4 Randomized Algorithm for Paths

When the input graph is restricted to be a collection of paths, then every new
edge that arrives connects two (possibly empty) paths. Our algorithm consists
of several cases, depending on the lengths of the two paths.

Algorithm 2. Randomized Algorithm for Paths
1: M = ∅. {M is the matching stored by the algorithm.}
2: for each new edge e do
3: Let L1 ≥ L2 be the lengths of the two (possibly empty) paths P1, P2 that e

connects.
4: If L1 > 0 (resp. L2 > 0), let e1 (resp. e2) be the edge on P1 (resp. P2) adjacent

to e.
5: if e is a disjoint edge {L1 = L2 = 0 } then
6: M = M ∪ {e}.
7: else if e is revealed on a disjoint edge e1 {L1 = 1, L2 = 0. e1 ∈ M} then
8: with probability 1

2 , M = M \ {e1} ∪ {e}.
9: else if e is revealed on a end point of path of length > 1 {L1 > 1, L2 = 0} then

10: if e1 /∈ M , M = M ∪ {e} .
11: else if e joins two disjoint edges {L1 = L2 = 1. e1, e2 ∈ M} then
12: with probability 1

2 , M = M \ {e1, e2} ∪ {e}.
13: else if e joins a path and a disjoint edge {L1 > 1, L2 = 1. e2 ∈ M} then
14: if e1 /∈ M , M = M \ {e2} ∪ {e}.
15: else if e joins two paths of length > 1{L1 > 1, L2 > 1} then
16: if e1 /∈ M and e2 /∈ M , M = M ∪ {e}.
17: end if
18: Output M .
19: end for

The following simple observations can be made by looking at the algorithm:
– All isolated edges belong to M with probability one.
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– The end vertex of any path of length > 1 is covered by M with probability 1
2 ,

and this is independent of the end vertex of any other path being covered.
– For a path of length 2, 3, or 4, each maximal matching is present in M with
probability 1

2 .

Theorem 4. The randomized algorithm for finding MCM on path graphs is
4
3 -competitive.

The proof of above theorem can be found in Appendix E in [3].
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Abstract. Our concern is the digitalization of line segments in Z
2 as

considered by Chun et al. [5] and Christ et al. [4]. The key property
that differentiates the research of Chun et al. and Christ et al. from
other research in digital line segment construction is that the intersection
of any two segments must be connected. Such a system of segments is
called a consistent digital line segments system (CDS). Chun et al. give
a construction for all segments in Z

d that share a common endpoint
(called consistent digital rays (CDR)) that has asymptotically optimal
Hausdorff distance, and Christ et al. give a complete CDS in Z

2 with
optimal Hausdorff distance. Christ et al. also give a characterization of
CDRs in Z

2, and they leave open the question on how to characterize
CDSes in Z

2. In this paper, we answer one of the most important open
question regarding CDSes in Z

2 by giving the characterization asked
for by Christ et al. We obtain the characterization by giving a set of
necessary and sufficient conditions that a CDS must satisfy.

1 Introduction

This paper explores families of digital line segments as considered by Chun et
al. [5] and Christ et al. [4]. Consider the unit grid Z

2, and in particular the unit
grid graph: for any two points p = (px, py) and q = (qx, qy) in Z

2, p and q are
neighbors if and only if |px − qx|+ |py − qy| = 1. For any pair of grid vertices p
and q, we’d like to define a digital line segment Rp(q) from p to q. The collection
of digital segments must satisfy the following five properties.

(S1) Grid path property: For all p, q ∈ Z
2, Rp(q) is the points of a path from p

to q in the grid topology.
(S2) Symmetry property: For all p, q ∈ Z

2, we have Rp(q) = Rq(p).
(S3) Subsegment property: For all p, q ∈ Z

2 and every r, s ∈ Rp(q), we have
Rr(s) ⊆ Rp(q).

Properties (S2) and (S3) are quite natural to ask for; the subsegment property
(S3) is motivated by the fact that the intersection of any two Euclidean line
segments is connected. See Fig. 1 (a) for an illustration of a violation of (S3).

c© Springer-Verlag Berlin Heidelberg 2015
N. Bansal and I. Finocchi (Eds.): ESA 2015, LNCS 9294, pp. 337–348, 2015.
DOI: 10.1007/978-3-662-48350-3�29
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Note that a simple “rounding” scheme of a Euclidean segment commonly used
in computer vision produces a good digitalization in isolation, but unfortunately
it will not satisfy (S3) when combined with other digital segments, see Fig. 1 (b)
and (c).

(S4) Prolongation property: For all p, q ∈ Z
2, there exists r ∈ Z

2, such that
r /∈ Rp(q) and Rp(q) ⊆ Rp(r).

The prolongation property (S4) is also a quite natural property to desire with
respect to Euclidean line segments. Any Euclidean line segment can be extended
to an infinite line, and we would like a similar property to hold for our digital
line segments. While (S1)-(S4) form a natural set of axioms for digital segments,
there are pathological examples of segments that satisfy these properties which
we would like to rule out. For example, Christ et al. [4] describe a CDS where a
double spiral is centered at some point in Z

2, traversing all points of Z2. A CDS
is obtained by defining Rp(q) to be the subsegment of this spiral connecting p
and q. To rule out these CDSes, the following property was added.

(S5) Monotonicity property: For all p, q ∈ Z
2, if px = qx = c1 for any c1 (resp.

py = qy = c2 for any c2), then every point r ∈ Rp(q) has rx = c1 (resp.
ry = c2).

p

q

r

s

t1
t2

(a) (b) (c)

Fig. 1. (a) An illustration of the violation of (S3). The solid segment is Rp(q), and the
dashed segment is Rr(s). (b) The dashed line and the solid line denote two different
Euclidean line segments. (c) The corresponding digital line segments via a rounding
approach.

If a system of digital line segments satisfies the axioms (S1) − (S5), then it
is called a consistent digital line segments system (CDS). Given such a system,
one can easily define digital analogs of various Euclidean objects. For example,
a Euclidean object O is convex if for any two points p, q ∈ O we have that
the Euclidean line segment pq does not contain any points outside of O. Given
a CDS, the natural definition of a digital convex object will satisfy some nice
properties. For example, one can see that a digital convex object with respect to
a CDS cannot contain any holes (as a result of the prolongation property (S4)).
Similarly, one can easily obtain the digital analog of a star-shaped object with
a CDS. A Euclidean object S is star-shaped if there is a point u ∈ S such that
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for every point v ∈ S we have the Euclidean line segment uv does not contain
any points outside of S, and the natural digital generalization easily follows.

Previous Works. Unknown to Chun et al. and Christ et al. when publishing
their papers, in 1988 Luby [13] considered grid geometries which are equivalent
to systems of digital line segments satisfying (S1), (S2), (S5) described in this
paper. Let p, q ∈ Z

2 be such that px ≤ qx. We say the segment Rp(q) has
nonnegative slope if py ≤ qy and otherwise has negative slope. Luby investigates
a property called smoothness which uses the following notion of distance between
two digital line segments. Consider two digital segments Rp(q) and Rp′(q′) with
nonnegative slope and any point r ∈ Rp(q). If there is a s ∈ Rp′(q′) such that
rx + ry = sx + sy, then dist(Rp(q), Rp′ (q′), r) is defined to be rx − sx. If there
is no such s then we say that dist(Rp(q), Rp′(q′), r) is undefined. See Fig. 2
(a). The segments are smooth if dist(Rp(q), Rp′(q′), r) is either monotonically
increasing or monotonically decreasing varying r over its defined domain. See
Fig. 2 (b). There is also a symmetric definition of smoothness for pairs of digital
segments with negative slope. A grid geometry is said to be smooth if every pair
of nonnegative sloped segments and every pair of negative sloped segments are
smooth. Luby shows that if a grid geometry is smooth, then it satisfies properties
(S3) and (S4) (and therefore is a CDS).

p

q

p′

q′

r1

r2

s2

r3

s3

p

q

p′

q′
a

b
(a) (b)

Fig. 2. (a) dist(Rp(q), Rp′(q
′), r1) is undefined. dist(Rp(q), Rp′(q

′), r2) = −1 (us-
ing s2 ∈ Rp′(q

′)), dist(Rp(q), Rp′(q
′), r3) = 1. (b) An example of segments that

are not smooth: dist(Rp(q),Rp′(q
′), p) = −1, dist(Rp(q), Rp′(q

′), a) = −2, and
dist(Rp(q), Rp′(q

′), q) = −1.

Chun et al. [5] give an Ω(log n) lower bound on the Hausdorff Distance of
a CDS where n is the number of points in the segment, and the result even
applies to consistent digital rays or CDRs (i.e., all segments share a common
endpoint). Note that this lower bound is due to property (S3), as it is easy
to see that if the requirement of (S3) is removed then digital segments with
O(1) Hausdorff distance are easily obtained, for example the trivial “rounding”
scheme used in Fig. 1 (c). Chun et al. give a construction of CDRs that satisfy
the desired properties (S1)-(S5) with a tight upper bound of O(log n) on the
Hausdorff distance. Christ et al. [4] extend the result to get an optimal O(log n)
upper bound on Hausdorff distance for a CDS in Z

2.
After giving the optimal CDS in Z

2, Christ et al. [4] investigate common
patterns in CDSes in an effort to obtain a characterization of CDSes. As a
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starting point, they are able to give a characterization of CDRs. In their effort to
give a characterization, they proved a sufficient condition on the construction of
the CDSes but then they give an example of a CDS that demonstrates that their
sufficient condition is not necessary. They ask if there are any other interesting
examples of CDSes that do not follow their sufficient condition and left open the
question on how to characterize the CDSes in Z

2.

Our Contributions. In this paper, we answer one of the most important open
question regarding CDSes in Z

2 by giving the characterization asked for by
Christ et al. Since Christ et al. have given a characterization of CDRs, we view
the construction of a CDS as the assignment of a CDR system to each point in
Z
2 such that the union of these CDRs satisfies properties (S1)-(S5). We obtain

the characterization by giving a set of necessary and sufficient conditions that
the CDRs must satisfy in order to be combined into a CDS. Then to tie together
our work with the previous work in CDSes, we analyze the work of Christ et
al. and Luby in the context of our characterization.

Motivation and Related Works. Digital geometry plays a fundamental and
substantial role in many computer vision applications, for example image seg-
mentation, image processing, facial recognition, fingerprint recognition, and some
medical applications. One of the key challenges in digital geometry is to repre-
sent Euclidean objects in a digital space so that the digital objects have a similar
visual appearance as their Euclidean counterparts. Representation of Euclidean
objects in a digital space has been a focus in research for over 25 years, see for
example [8,10,15,16,7,2,1].

Digital line segments are particularly important to model accurately, as other
digital objects depend on them for their own definitions (e.g. convex and star-
shaped objects). In 1986, Greene and Yao [10] gave an interface between the
continuous domain of Euclidean line segments and the discrete domain of digital
line segments. Goodrich et al. [9] focused on rounding the Euclidean geometric
objects to a specific resolution for better computer representation. They gave
an efficient algorithm for R

2 and R
3 in the “snap rounding paradigm” where

the endpoints or the intersection points of several different line segments are
the main concerns. Later, Sivignon et al. [14] also gave some results on the
intersection of two digital line segments. In their review paper, Klette et al. [11]
discussed the straightness of digital line segments. The characteristics of the
subsegment of digital straight line was computed in [12]. Cohen et al. [6] gave
a method of converting 3D continuous line segments to discrete line segments
based on a voxelization algorithm, but they did not have the requirement that
the intersection of two digital line segments should be connected.

2 Preliminaries

Before we describe our characterization, we first need to give some details of the
Christ et al. characterization of CDRs. For any point p ∈ Z

2, let Q1
p, Q

2
p, Q

3
p, Q

4
p

denote the first, second, third, and fourth quadrants of p respectively. Christ et
al. show how to construct Rp(q) for q ∈ Q1

p from any total order of Z, which we
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denote ≺1
p. We describe Rp(q) by “walking” from p to q. Starting from p, the

segment will repeatedly move either “up” or “right” until it reaches q. Suppose
on the walk we are currently at a point r = (rx, ry). Then it needs to move to
either (rx + 1, ry) or (rx, ry + 1). Either way, the sum of the two coordinates
of the current point is increased by 1 in each step. The segment will move up
qy − py times, and it will move right qx − px times. If the line segment is at a
point r for which rx + ry is among the qy − py greatest integers in the interval
I(p, q) := [px + py, qx + qy − 1] according to ≺1

p, the line segment will move up.
Otherwise, it will move right. See Fig. 3 (a) for an example. Throughout the
paper, when we say that a < b, we mean that a is less than b in natural total
order and when we say that a ≺ b, we mean that a is less than b according to
total order ≺.

Property (S3) is generally the most difficult property to deal with, and we will
argue that the segments Rp(q) and Rp(q

′) will not violate (S3) for any points
q and q′ in the first quadrant of p. As shown in [4], (S3) is violated if and
only if two segments intersect at a point t1, one segment moves vertically from
t1 while the other moves horizontally from t1, and the segments later intersect
again. Consider two digital segments that “break apart” at some point t1 in this
manner, and suppose they do intersect again. Let t2 be the first point at which
they intersect after “splitting apart”. Then we say that (t1, t2) is witness to the
violation of (S3) or a witness for short. Therefore, one can show that any two
segments satisfy (S3) by showing that they do not have witnesses, and this is how
we will prove the segments satisfy (S3) now (and also in our characterization).
Consider the segments Rp(q) and Rp(q

′) generated according to the Christ et
al. definition, and suppose for the sake of contradiction that they have a witness
(t1, t2) as in Fig. 1 (a). One segment moves up at point t1 and moves right into
the point t2 which implies (tx2 + ty2 − 1) ≺1

p (tx1 + ty1), and the other segment
moves right at point t1 and moves up into the point t2 which implies (tx1 +
ty1) ≺1

p (tx2 + ty2−1), a contradiction. Therefore Rp(q) and Rp(q
′) do not have any

witnesses and therefore satisfy (S3). Christ et al. [4] show that digital segments
in quadrants Q2

p, Q
3
p, and Q4

p can also be generated with total orders ≺2
p,≺3

p,
and ≺4

p (described formally below), and moreover they establish a one-to-one
correspondence between CDRs and total orders. That is, (1) given any total
order of Z, one can generate all digital rays in any quadrant of p, and (2) for
any set of digital rays R in some quadrant of p, there is a total order that will
generate R. This provides a characterization of CDRs.

Given the characterization of CDRs, the problem of constructing a complete
CDS can be viewed as assigning total orders to all points in Z

2 so that the
segments obtained using these total orders are collectively a CDS. Suppose that
for every point p ∈ Z

2, we assign to p a total order ≺1
p to generate segments to

all points in Q1
p. Now suppose that we want to define a “third-quadrant segment”

Rp(q) to some point q ∈ Q3
p. Note that q ∈ Q3

p implies that p ∈ Q1
q. Since all

first-quadrant segments have been defined, this means Rq(p) has been defined,
and the symmetry property (S2) states that Rp(q) = Rq(p). Therefore we do not
need to use a total order to generate these third-quadrant segments; we simply
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3 ≺ 7 ≺ 5 ≺ 1 ≺ 6 ≺ 2 ≺ 4 ≺ 0

horizontal vertical

p=(0,0)

q=(3,5)

Total order

horizontal vertical

3 ≺ 7 ≺ 1 ≺ 6 ≺ 4 ≺ 2 ≺ 5 ≺ 0 ≺ −1 ≺ 8

vertical

q(4, 4)

horizontal

3 ≺ 7 ≺ 1 ≺ 4 ≺ 6 ≺ 2 ≺ 5 ≺ 0
≺1

p′:

≺1
p:

p(0, 0)

p′(1,−2)

q′(4, 5)
horizontal vertical

6 ≺ 8 ≺ 1 ≺ 3 ≺ 4 ≺ 2 ≺ 5 ≺ 0 ≺ −1 ≺ 7

vertical

q(4, 4)

horizontal

3 ≺ 7 ≺ 1 ≺ 4 ≺ 6 ≺ 2 ≺ 5 ≺ 0
≺1

p′:

≺1
p:

p(0, 0)

p′(1,−2)

q′(4, 5)

(a) (b) (c)

Fig. 3. (a) The digital line segment between p = (0, 0) and q = (3, 5). According to
≺p, the qx − px = 3 smallest integers in [0, 7] correspond to the horizontal movements,
and the qy − py = 5 largest integers in [0, 7] correspond to the vertical movements. (b)
A choice of ≺1

p and ≺1
p′ that satisfies (S3). (c) A choice of ≺1

p and ≺1
p′ that does not

satisfy (S3).

use the corresponding first-quadrant segments which have already been defined.
In order to be part of a CDS,

⋃
q∈Q3

p
Rq(p) must be a system of rays in Q3

p that

satisfies (S1)-(S5). From the characterization of rays, we know that there is an
implicit third-quadrant total order ≺3

p on the integers in the range (−∞, px+py]
that can be used to generate these rays. This generation is done in a very similar
manner as in first quadrant rays. The key differences are: (1) the first quadrant
segment Rq(p) uses the interval [qx + qy, px + py − 1] and the third quadrant
segment Rp(q) uses the interval [qx + qy + 1, px + py], and (2) the sum of the
coordinates of our “current point” decreases by 1 each time as we walk from p to
q. Note that when considering first-quadrant segments, a horizontal movement
(resp. vertical movement) is determined by the sum of the coordinates of the
“left” endpoint (resp. “bottom” endpoint), whereas in a third quadrant segment
a horizontal movement (resp. vertical movement) is determined by the sum of
the coordinates of the “right” endpoint (resp. “top” endpoint). This implies
that if the first-quadrant segment made a horizontal (resp. vertical) movement
at a point where the sum of the coordinates is a, then the corresponding third-
quadrant segment should make a horizontal (resp. vertical) movement at (a+1).
For example consider Fig. 3 (a). Since the horizontal movements of this first
quadrant segment are at 3, 7, and 5, then the third quadrant segment should
make horizontal movements at 4, 8, and 6. Similarly, the third quadrant segment
should make vertical movements at 2, 7, 3, 5, and 1. We again state that we do
not explicitly construct third quadrant segments using this technique and instead
obtain them directly from the corresponding first quadrant segments. But note
that if there is no total order ≺3

p which can be used to generate these third-
quadrant segments then the segments necessarily must not satisfy at least one
of (S1)-(S5). These implicit third-quadrant total orders will play an important
role in the proof of our characterization.

Now consider the definition of segments Rp(q) with negative slope, that is,
Rp(q) for which q ∈ Q2

p or q ∈ Q4
p. We “mirror” p and q by multiplying both

x-coordinates by −1. Let m(p) = (−px, py) and m(q) = (−qx, qy) denote the



A Characterization of Consistent Digital Line Segments in Z
2 343

mirrored points. Note that if q ∈ Q2
p, then m(q) ∈ Q1

m(p), and if q ∈ Q4
p, then

m(q) ∈ Q3
m(p). Therefore Rm(p)(m(q)) is a segment with nonnegative slope and

can be defined as described above. We compute a second-quadrant segmentRp(q)
by making the same sequence of horizontal/vertical movements as Rm(p)(m(q))
when generated by a second-quadrant total order ≺2

p on the integers in the range
[−px + py,∞). Similarly to third quadrant segments, fourth-quadrant segments
Rp(q) are set to be the same as Rq(p) and there is an implicit fourth-quadrant
total order ≺4

p on the integers in the range (−∞,−px + py].

3 A Characterization of CDSes in Z2

In a complete CDS, the segments that are adjacent to any point p ∈ Z
2 can be

viewed as a system of CDRs emanating from p, and therefore there is a total
order that can be used to generate these segments. Christ et al. show that if the
same total order is used by every point in Z

2 to generate its adjacent segments,
then the result is a CDS (the analysis follows very closely to the analysis for
CDRs shown in the previous section). However, there are some situations in
which points can be assigned different total orders and we still get a CDS. To
illustrate this, consider Fig. 3 (b). Note that ≺1

p and ≺1
p′ disagree on the relative

ordering of 4 and 6, yet the resulting segments Rp(q) and Rp′(q′) satisfy property
(S3). But if we instead use the total orders as shown in Fig. 3 (c), they once
again disagree on the ordering of 4 and 6 but this time Rp(q) and Rp′(q′) do
not satisfy property (S3). The issue is then to identify a set of necessary and
sufficient properties of the total orders in a CDS.

We are now ready to give our characterization. We assume that we are con-
sidering segments Rp(q) with nonnegative slope for the majority of this section,
and we give set of necessary and sufficient conditions which ≺1

p must satisfy
for each p in Z

2. To help explain what must happen we first look at the inter-
action between first quadrant rays and third quadrant rays. Even though our
conditions are only with respect to first-quadrant total orders, it will be useful
to describe that our condition is necessary by showing that if the condition is
not satisfied then there is some point q such that any definition of ≺3

q would
generate third-quadrant segments that violate (S3).

Suppose, we have the total order ≺1
p1

for some point p1 ∈ Z
2, and let p2 ∈ Q1

p1

and recall that we must have Rp2(p1) = Rp1(p2) by property (S2). Now consider
how ≺3

p2
must be defined so that Rp2(p1) = Rp1(p2). Any integer on which

Rp2(p1) moves horizontally should be smaller than any integer on which the path
moves vertically with respect to ≺3

p2
, otherwise Rp2(p1) �= Rp1(p2). Motivated

by this, we say that an integer on which Rp2(p1) moves vertically has priority
over an integer on which it moves horizontally. So, for any two integers a and b
such that a has priority over b, (a+ 1) must be larger than (b+ 1) with respect
to ≺3

p2
.

Now, suppose we have three points p1, p2, p3, where p1, p2 ∈ Q3
p3
. ≺3

p3
has

a set of priorities induced by Rp1(p3) and another set of priorities induced by
Rp2(p3). Let a and b be two integers in I(p1, p3) ∩ I(p2, p3). If a has priority
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over b in ≺1
p1

and b has priority over a in ≺1
p2
, then we call this a conflicting

priority. If we have a conflicting priority then any definition of ≺3
p3

will violate
(S2). Indeed, if (b + 1) ≺3

p3
(a + 1) then this would imply Rp3(p2) �= Rp2(p3),

and if (a + 1) ≺3
p3

(b + 1) then this would imply Rp3(p1) �= Rp1(p3). Therefore
it is necessary to define ≺1

p1
and ≺1

p2
so that there will not be any conflicting

priorities for any choice of p3 ∈ Q1
p1

∩Q1
p2
.

(0, 0)
p1

p2

p4
p3

p5

d8

I(p1, p3) : 3 5 7 2 4 6

I(p2, p3) : 5 7 6

px2 − px1

p3 = (3, 5)

I(p1, p4) : 3 5 7 2 4 6

I(p2, p4) : 5 7 6

p4 = (4, 4)

px2 − px1

I(p1, p5) : 3 5 7 2 4 6

I(p2, p5) : 5 7 6

p5 = (5, 3)

px2 − px1

(a) (b) (c) (d)

Fig. 4. The layout view of the intervals with p1 = (1, 1) and p2 = (3, 2). (a) The points
in the grid. (b) Dividing line for p3. (c) Dividing line for p4. (d) Dividing line for p5.

To help visualize what must happen to avoid these conflicting priorities, we
describe a “layout” of the integers in the interval. Consider a point p3 ∈ Q1

p1
∩Q1

p2

and the intervals I(p1, p3) and I(p2, p3) that are used to define the segments
Rp1(p3) and Rp2(p3) respectively, and without loss of generality assume that
px1 ≤ px2 . We write the intervals in increasing order in a matrix with two rows
with I(p1, p3) in the top row and I(p2, p3) in the bottom row. The first element
of I(p2, p3) is “shifted” to the right (px2 − px1) positions after the first element
of I(p1, p3). Note that the integers in I(p1, p3) and I(p2, p3) are determined
by the natural total order on the integers, but then are sorted by the total
orders ≺1

p1
and ≺1

p2
respectively. The advantage of the layout view is that a

single vertical line can break both of the intervals into the horizontal movements
portion and vertical movements portion. We call such a line a dividing line.
The left parts consist of the integers on which the segments make horizontal
movements and the right parts consist of the integers on which the segments
make vertical movements. We define the antidiagonal dC to be the set of all of
the points p = (px, py) in Z

2 such that (px + py) = C. Note that for any two
points q, q′ ∈ Q1

p ∩ dC , we have I(p, q) = I(p, q′), and if we “slide” q up (resp.
down) that antidiagonal dC , then the dividing line that corresponds to q moves
to the left (resp. to the right). See Fig. 4. Now, let a and b be two integers in
I(p1, p3) ∩ I(p2, p3), and consider these intervals in layout view. Suppose there
exists some dividing line � such that in I(p1, p3) we have a on the left side of
� and b on the right side of �, and simultaneously in I(p2, p3) we have b on the
left side of � and a on the right side of �. Then we call {a, b} a bad pair, and we
say that � splits the bad pair. See Fig. 5 (a). We say total orders ≺1

p1
and ≺1

p2

have a bad pair if there is a C satisfying C ≥ (px1 + py1) and C ≥ (px2 + py2) such
that the interval [px1 + py1 , C] sorted by ≺1

p1
and the interval [px2 + py2, C] sorted

by ≺1
p2

in the layout view have a bad pair. Now we have the following lemma.
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I(p1, p3) ....a ............... b....
I(p2, p3) ..b......... a .....

� da
da+1

db+1
db

y = 0

d0

d2
d4

(a) (b) (c)

Fig. 5. (a) An illustration of a bad pair. (b) An illustration of conflicting priority. (c)
An illustration of that the waterline example is not smooth.

Lemma 1. If ≺1
p1

and ≺1
p2

have a bad pair, then there exists a p3 ∈ Q1
p1

∩Q1
p2

such that I(p1, p3) and I(p2, p3) have a bad pair and the dividing line correspond-
ing to p3 splits this bad pair.

Proof. Suppose that ≺1
p1

and ≺1
p2

have a bad pair. Let C where C ≥ (px1 + py1)
and C ≥ (px2 +py2) be such that there is a bad pair in [px1 +py1, C] and [px2 +py2 , C]
in layout view. Let {a, b} denote the bad pair in the intervals, and let � denote a
dividing line that splits that bad pair. Let p3 be a point where px3 + py3 = C and
� is the dividing line corresponding with p3. We complete the proof by showing
that p3 ∈ Q1

p1
∩Q1

p2
.

Because {a, b} is a bad pair, we can assume without loss of generality that a
is to the left of � and b is to the right of � in I(p1, p3). This implies that there
is at least one horizontal movement and at least one vertical movement to get
from p1 to p3 (i.e., px3 > px1 and py3 > py1). On the other hand, a is to the right of
� and b is to the left of � in I(p2, p3). So we similarly have px3 > px2 and py3 > py2 .
So, p3 ∈ Q1

p1
∩Q1

p2
, completing the proof. ��

The following lemma implies that it is necessary that any pair of first quadrant
total orders do not have any bad pairs.

Lemma 2. There is a point p3 ∈ Q1
p1

∩Q1
p2 that has a conflicting priority with

respect to ≺1
p1

and ≺1
p2

if and only if there is a bad pair in ≺1
p1

and ≺1
p2
.

Proof. Assume ≺1
p1

and ≺1
p2

have a bad pair. We will show that there is a point
p3 ∈ Q1

p1
∩Q1

p2
that has a conflicting priority.

Let p3 be a point as described in Lemma 1, and let {a, b} denote the bad pair
that p3’s dividing line splits. Without loss of generality, ≺3

p3
must give (a + 1)

priority over (b+ 1) with respect to Rp1(p3) and must give (b+ 1) priority over
(a + 1) with respect to Rp2(p3). Therefore we have a conflicting priority. See
Fig. 5 (b).

Now assume that there is a conflicting priority for p3 with respect to ≺1
p1

and
≺1

p2
. We will complete the proof by showing that I(p1, p3) and I(p2, p3) must

have a bad pair. Let a and b denote the integers in the conflicting priority, and
let � denote the dividing line with respect to p3 for I(p1, p3) and I(p2, p3) in
layout view. Then by the definition of conflicting priority we must have a to the
left of � and b to the right of � in one interval, and simultaneously we have b
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to the left of � and a to the right of � in the other interval, forming a bad pair.
Since I(p1, p3) and I(p2, p3) have a bad pair, we have that ≺1

p1
and ≺1

p2
have a

bad pair. ��
Lemma 2 implies that it is necessary for any two points pi and pj that ≺1

pi
and

≺1
pj

do not have a bad pair. We now show that this condition is also sufficient.

Lemma 3. If all pairs of total orders have no bad pairs, then the line segments
will satisfy properties (S1)-(S5).

Proof. It is easy to see that (S1), (S2), (S4) and (S5) are automatically satisfied
by construction, and it is only (S3) that we need to prove. We first will show
that a segment with nonnegative slope and a segment with non-positive slope
will always satisfy (S3). To see this, consider a nonnegative line segment Rp′(q′)
and a non-positive line segment Rp(q). If they violate (S3) then there must be a
witness (t1, t2) in Rp(q)∩Rp′(q′) for two points t1 = (tx1 , t

y
1) and t2 = (tx2 , t

y
2) such

that tx1 �= tx2 and ty1 �= ty2 . But we will show that for any two points r1 and r2 that
satisfy rx1 �= rx2 and ry1 �= ry2 , it cannot be that r1 and r2 are in both segments.
Without loss of generality, assume that rx1 < rx2 and r1 ∈ Rp′(q′) ∩Rp(q).

All points after r1 in Rp′(q′) have y-coordinate at least ry1 , and all points after
r1 in Rp(q) have y-coordinate at most ry1 . Therefore if there is a point z that
comes after r1 in Rp′(q′) ∩Rp(q) then it must satisfy zy = ry1 . This implies that
if both segments contain r1 and Rp(q) contains r2 then Rp′(q′) cannot contain
r2. Thus Rp(q) and Rp′(q′) do not have a witness and do not violate (S3).

Now without loss of generality, consider segments Rp1(q1) and Rp2(q2) with
nonnegative slope. In order to violate (S3), there must be a witness (t1, t2) to the
violation of (S3). Suppose we have such a witness, and consider the subsegments
Rp1(t2) and Rp2(t2). If we consider the intervals I(p1, t2) and I(p2, t2) in layout
view, we can see that the dividing line corresponding to t2 will split the bad pair
{tx1 + ty1 , t

x
2 + ty2 − 1}. Therefore if there are no bad pairs, then there cannot be

a witness to the violation of (S3), and therefore the segments satisfy (S3). ��
Combining Lemma 2 and 3, we get our characterization.

Theorem 1. A system of nonnegative sloped line segments in Z
2 is a CDS if

and only if we have a total order for the first quadrants for each point such that
each pair of total orders have no bad pairs and the third quadrant segments are
induced by the corresponding first quadrant segments.

4 Luby and Christ et al. in the Context of Our
Characterization

In an attempt to tie together some of the previous works on CDSes, we now
analyze the work of Luby [13] and Christ et al. [4] in the context of our char-
acterization. Chun et al. and Christ et al. were not aware of Luby’s work when
publishing [4] and [5], although Christ gives a comparison of his work with that
of Luby in his thesis [3].
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We will first provide an analysis relating smooth grid geometries given by
Luby [13]. To do so, we need the following definition. Consider any two points
p1 and p2 with first quadrant total orders ≺1

p1
and ≺1

p2
. We say that ≺1

p1
and

≺1
p2

are in agreement if a ≺1
p1

b if and only if a ≺1
p2

b for every pair of integers a
and b such that antidiagonals da and db intersect Q

1
p1
∩Q1

p2
. Intuitively, ≺1

p1
and

≺1
p2

are in agreement if they are the same ordering when considering antidiago-
nals intersecting both first quadrants. We now prove the following lemma about
smooth grid geometries. An equivalent lemma was proved by Christ [3] using a
different proof technique. We prove the lemma for segments with nonnegative
slope, but a symmetric argument holds for segments with negative slope.

Lemma 4. A CDS is a smooth grid geometry if and only if ≺1
p and ≺1

q are in
agreement for any pair of points p, q ∈ Z

2.

We now turn our attention to analyzing the work of Christ et al. [4] in the
context of bad pairs. They give two methods for choosing total orders to con-
struct a CDS. The first method is to assign total orders to points so that all
pairs of total orders are in agreement (e.g., assigning the same total order to all
points). Note that if two total orders have a bad pair, then there necessarily has
to be two integers a and b such that one total order has a ≺ b while another
has b ≺ a. But this clearly cannot happen if all total orders are in agreement.
Therefore there are no bad pairs and by Theorem 1 it is a CDS.

They also give an example of a CDS constructed using total orders that are
not in agreement. Specifically, a point’s total order depends on if it is above or
below the x-axis. Because of the special role of the x-axis, this example is called
the waterline example. In the waterline example, every point p such that py ≥ 0
uses the natural total order, that is ≺1

p= (px+py) ≺ (px+py+1) ≺ · · · ≺ (+∞).
For points p such that py < 0, the total order is a function of its x-coordinate
px. Specifically, we have ≺1

p= (px) ≺ (px + 1) ≺ · · · ≺ (+∞) ≺ (px − 1) ≺
(px − 2) ≺ · · · ≺ (−∞). After giving this definition, Christ et al. point out that
it is easy to see that the segments form a CDS. We give a formal proof using our
characterization.

Lemma 5. The waterline example is a CDS.

Note that the waterline example is a CDS that is not smooth. See Fig. 5
(c). The dashed segment is Rp(q) with p = (0, 0) and q = (4, 3) and the dot-
ted segment is Rp′(q′) with p′ = (3,−3) and q′ = (6, 3). If we let z = (3, 0),
then we have that dist(Rp(q), Rp′ (q′), p) = −3, dist(Rp(q), Rp′ (q′), z) = 0, and
dist(Rp(q), Rp′(q′), q) = −2. By definition, these segments are not smooth and
therefore the waterline example is not a smooth grid geometry.
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discussions.



348 I. Chowdhury and M. Gibson

References

1. Andres, E.: Discrete linear objects in dimension n: the standard model. Graphical
Models 65(1-3), 92–111 (2003)
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5. Chun, J., Korman, M., Nöllenburg, M., Tokuyama, T.: Consistent digital rays.

Discrete & Computational Geometry 42(3), 359–378 (2009)
6. Cohen-Or, D., Kaufman, A.E.: 3d line voxelization and connectivity control. IEEE

Computer Graphics and Applications 17(6), 80–87 (1997)
7. Eckhardt, U.: Digital lines and digital convexity. In: Bertrand, G., Imiya, A., Klette,

R. (eds.) Digital and Image Geometry. LNCS, vol. 2243, pp. 209–228. Springer,
Heidelberg (2002)

8. Franklin, W.R.: Problems with raster graphics algorithm. In: Peters, F.J., Kessener,
L.R.A., van Lierop, M.L.P. (eds.) Data Structures for Raster Graphics, Steensel,
Netherlands (1985)

9. Goodrich, M.T., Guibas, L.J., Hershberger, J., Tanenbaum, P.J.: Snap rounding
line segments efficiently in two and three dimensions. In: Symposium on Compu-
tational Geometry, pp. 284–293 (1997)

10. Greene, D.H., Yao, F.F.: Finite-resolution computational geometry. In: 27th
Annual Symposium on Foundations of Computer Science, Toronto, Canada,
October 27-29, pp. 143–152. IEEE Computer Society (1986)

11. Klette, R., Rosenfeld, A.: Digital straightness - a review. Discrete Applied
Mathematics 139(1-3), 197–230 (2004)

12. Lachaud, J.-O., Said, M.: Two efficient algorithms for computing the characteristics
of a subsegment of a digital straight line. Discrete Applied Mathematics 161(15),
2293–2315 (2013)

13. Luby, M.G.: Grid geometries which preserve properties of euclidean geometry: A
study of graphics line drawing algorithms. In: Earnshaw, R.A. (ed.) Theoretical
Foundations of Computer Graphics and CAD, vol. 40, pp. 397–432 (1988)

14. Sivignon, I., Dupont, F., Chassery, J.-M.: Digital intersections: minimal carrier,
connectivity, and periodicity properties. Graphical Models 66(4), 226–244 (2004)

15. Sugihara, K.: Robust geometric computation based on topological consistency. In:
International Conference on Computational Science (1), pp. 12–26 (2001)

16. van Lierop, M.L.P., van Overveld, C.W.A.M., van de Wetering, H.M.M.: Line
rasterization algorithms that satisfy the subset line property. Computer Vision,
Graphics, and Image Processing 41(2), 210–228 (1988)



On the Efficiency of All-Pay Mechanisms

George Christodoulou�, Alkmini Sgouritsa, and Bo Tang
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Abstract. We study the inefficiency of mixed equilibria, expressed as
the price of anarchy, of all-pay auctions in three different environments:
combinatorial, multi-unit and single-item auctions. First, we consider
item-bidding combinatorial auctions where m all-pay auctions run in
parallel, one for each good. For fractionally subadditive valuations, we
strengthen the upper bound from 2 [22] to 1.82 by proving some struc-
tural properties that characterize the mixed Nash equilibria of the game.
Next, we design an all-pay mechanism with a randomized allocation rule
for the multi-unit auction. We show that, for bidders with submodular
valuations, the mechanism admits a unique, 75% efficient, pure Nash
equilibrium. The efficiency of this mechanism outperforms all the known
bounds on the price of anarchy of mechanisms used for multi-unit auc-
tions. Finally, we analyze single-item all-pay auctions motivated by their
connection to contests and show tight bounds on the price of anarchy of
social welfare, revenue and maximum bid.

1 Introduction

It is a common economic phenomenon in competitions that agents make irre-
versible investments without knowing the outcome. All-pay auctions are widely
used in economics to capture such situations, where all players, even the losers,
pay their bids. For example, a lobbyist can make a monetary contribution in or-
der to influence decisions made by the government. Usually the group invested
the most increases their winning chances, but all groups have to pay regardless of
the outcome. In addition, all-pay auctions have been shown useful to model rent
seeking, political campaigns and R&D races. There is a well-known connection
between all-pay auctions and contests [20]. In particular, the all-pay auction can
be viewed as a single-prize contest, where the payments correspond to the effort
that players make in order to win the competition.

In this paper, we study the efficiency of mixed Nash equilibria in all-pay auc-
tions with complete information, from a worst-case analysis perspective, using
the price of anarchy [16] as a measure. As social objective, we consider the
social welfare, i.e. the sum of the bidders’ valuations. We study the equilibria
induced from all-pay mechanisms in three fundamental resource allocation sce-
narios; combinatorial auctions, multi-unit auctions and single-item auctions.

In a combinatorial auction a set of items are allocated to a group of selfish
individuals. Each player has different preferences for different subsets of items
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and this is expressed via a valuation set function. A multi-unit auction can
be considered as an important special case, where there are multiple copies of a
single good. Hence the valuations of the players are not set functions, but depend
only on the number of copies received. Multi-unit auctions have been extensively
studied since the seminal work by Vickrey [23]. As already mentioned, all-pay
auctions have received a lot of attention for the case of a single item, as they
model all-pay contests and procurements via contests.

1.1 Contribution

Combinatorial Auctions. Our first result is on the price of anarchy of simultane-
ous all-pay auctions with item-bidding that was previously studied by Syrgkanis
and Tardos [22]. For fractionally subadditive valuations, it was previously shown
that the price of anarchy was at most 2 [22] and at least e/(e − 1) ≈ 1.58 [8].
We narrow further this gap, by improving the upper bound to 1.82. In order to
obtain the bound, we come up with several structural theorems that characterize
mixed Nash equilibria in simultaneous all-pay auctions.

Multi-unit Auctions. Our next result shows a novel use of all-pay mechanisms to
the multi-unit setting. We propose an all-pay mechanism with a randomized al-
location rule inspired by Kelly’s seminal proportional allocation mechanism [15].
We show that this mechanism admits a unique, 75% efficient pure Nash equilib-
rium and no other mixed Nash equilibria exist, when bidders’ valuations are sub-
modular. As a consequence, the price of anarchy of our mechanism outperforms
all current price of anarchy bounds of prevalent multi-unit auctions including
uniform price [18] and discriminatory [14] auctions, with bound e/(e− 1).

Single-item Auctions. Finally, we study the efficiency of a single-prize contest
that can be modeled as a single-item all-pay auction. We show a tight bound on
the price of anarchy for mixed equilibria which is approximately 1.185. By follow-
ing previous study on the procurement via contest, we further study two other
standard objectives, revenue and maximum bid. We evaluate the performance of
all-pay auctions in the prior-free setting, i.e. no distribution over bidders’ val-
uation is assumed. We show that both the revenue and the maximum bid of
any mixed Nash equilibrium are at least as high as v2/2, where v2 is the second
highest valuation. In contrast, the revenue and the maximum bid in some mixed
Nash equilibrium may be less than v2/2 when using reward structure other than
allocating the entire reward to the highest bidder. This result coincides with the
optimal crowdsourcing contest developed in [6] for the setting with prior distri-
butions. We also show that in conventional procurements (modeled by first-price
auctions), v2 is exactly the revenue and maximum bid in the worst equilibrium.
So procurement via all-pay contests is a 2-approximation to the conventional
procurement in the context of worst-case equilibria.

1.2 Related Work

The inefficiency of Nash equilibria in auctions has been a well-known fact (see
e.g. [17]). Existence of efficient equilibria of simultaneous sealed bid auctions in
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full information settings was first studied by Bikhchandani [3]. Christodoulou,
Kovács and Schapira [7] initiated the study of the (Bayesian) price of anarchy
of simultaneous auctions with item-bidding. Several variants have been studied
since then [2,12,11], as well as multi-unit auctions [14,18].

Syrgkanis and Tardos [22] proposed a general smoothness framework for sev-
eral types of mechanisms and applied it to settings with fractionally subadditive
bidders obtaining several upper bounds (e.g., first price auction, all-pay auc-
tion, and multi-unit auction). Christodoulou et al. [8] constructed tight lower
bounds for first-price auctions and showed a tight price of anarchy bound of 2
for all-pay auctions with subadditive valuations. Roughgarden [19] presented an
elegant methodology to provide price of anarchy lower bounds via a reduction
from the hardness of the underlying optimization problems.

All-pay auctions and contests have been studied extensively in economic the-
ory. Baye, Kovenock and de Vries [1], fully characterized the Nash equilibria
in single-item all-pay auction with complete information. The connection be-
tween all-pay auctions and crowdsourcing contests was proposed in [9]. Chawla
et al. [6] studied the design of optimal crowdsourcing contest when agents’ value
are drawn independently from a specific distribution.

2 Preliminaries

In a combinatorial auction, n players compete on m items. Every player (or
bidder) i ∈ [n] has a valuation function vi : {0, 1}m → R

+ which is monotone and
normalized, that is, ∀S ⊆ T ⊆ [m], vi(S) ≤ vi(T ), and vi(∅) = 0. The outcome
of the auction is represented by a tuple of (X,p) where X = (X1, . . . , Xn)
specifies the allocation of items (Xi is the set of items allocated to player i)
and p = (p1, . . . , pn) specifies the buyers’ payments (pi is the payment of player
i for the allocation X). In the simultaneous item-bidding auction, every player
i ∈ [n] submits a non-negative bid bij for each item j ∈ [m]. The items are
then allocated by independent auctions, i.e. the allocation and payment rule for
item j only depend on the players’ bids on item j. In a simultaneous all-pay
auction the allocation and payment for each player is determined as follows:
each item j ∈ [m] is allocated to the bidder i∗ with the highest bid for that
item, i.e. i∗ = argmaxi bij , and each bidder i is charged an amount equal to
pi =

∑
j∈[m] bij . It is worth mentioning that, for any bidder profile, there always

exists a tie-breaking rule such that mixed equilibria exist [21]. Actually, our
results hold for arbitrary tie-breaking rule. For completeness, we specify a tie-
breaking rule where the mechanism will allocate the item to a winner picked
uniformly from all highest bidders as in [1].

Definition 1 (Valuations). Let v : 2[m] → R be a valuation function. Then v is
called a) additive, if v(S) =

∑
j∈S v({j}); b) submodular, if v(S∪T )+v(S∩T ) ≤

v(S) + v(T ); c) fractionally subadditive or XOS, if v is determined by a finite
set of additive valuations ξk such that v(S) = maxk ξk(S).

The classes of the above valuations are in increasing order of inclusion.
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Multi-unit Auction. In a multi-unit auction, m copies of an item are sold to n
bidders. Here, bidder i ’s valuation is a function that depends on the number
of copies he gets. That is vi : {0, 1, . . . ,m} → R

+ and it is non-decreasing and
normalized, with vi(0) = 0. We say a valuation vi is submodular, if it has non-
increasing marginal values, i.e. vi(s+ 1)− vi(s) ≥ vi(t+ 1)− vi(t) for all s ≤ t.

Nash equilibrium and price of anarchy. We use bi to denote a pure strategy of
player i which might be a single value or a vector, depending on the auction.
So, for the case of m simultaneous auctions, bi = (bi1, . . . , bim). We denote by
b−i = (b1, . . . , bi−1, bi+1, . . . , bn) the strategies of all players except for i. Any
mixed strategy Bi of player i is a probability distribution over pure strategies.

For any profile of strategies, b = (b1, . . . , bn), X(b) denotes the allocation
under the strategy profile b. The valuation of player i for the allocation X(b) is
denoted by vi(X(b)) = vi(b). The utility ui of player i is defined as the difference
between her valuation and payment: ui(X(b)) = ui(b) = vi(b)− pi(b).

Definition 2 (Nash equilibria). A bidding profile b = (b1, . . . , bn) forms a
pure Nash equilibrium if for every player i and all bids b′i, ui(b) ≥ ui(b

′
i,b−i).

Similarly, a mixed bidding profile B = ×iBi is a mixed Nash equilibrium if for
all bids b′i and every player i, Eb∼B[ui(b)] ≥ Eb−i∼B−i [ui(b

′
i,b−i)]. Clearly, any

pure Nash equilibrium is also a mixed Nash equilibrium.

Our global objective is to maximize the sum of the valuations of the players
for their received allocations, i.e., to maximize the social welfare SW (X) =∑

i∈[n] vi(Xi). So O(v) = O = (O1, . . . , On) is an optimal allocation if SW (O) =

maxX SW (X). In Sect. 5, we also study two other objectives: the revenue, which
equals the sum of the payments,

∑
i pi, and the maximum payment, maxi bi. We

also refer to the maximum payment as the maximum bid.

Definition 3 (Price of anarchy). Let I([n], [m],v) be the set of all instances,
i.e. I([n], [m],v) includes the instances for every set of bidders and items and any
possible valuation functions. The mixed price of anarchy, PoA, of a mechanism
is defined as

PoA = max
I∈I

max
B∈E(I)

SW (O)

Eb∼B[SW (X(b))]
,

where E(I) is the class of mixed Nash equilibria for the instance I ∈ I. The pure
PoA is defined as above but restricted in the class of pure Nash equilibria.

Let B = (B1, . . . , Bn) be a profile of mixed strategies. Given the profile B, we
fix the notation for the following cumulative distribution functions (CDF): Gij is
the CDF of the bid of player i for item j; Fj is the CDF of the highest bid for item
j and Fij is the CDF of the highest bid for item j if we exclude the bid of player i.
Observe that Fj =

∏
k Gkj and Fij =

∏
k �=i Gkj .We also use ϕij(x) to denote the

probability that player i gets item j by bidding x. Then, ϕij(x) ≤ Fij(x). When
we refer to a single item, we may drop the index j. Whenever it is clear from
the context, we will use shorter notation for expectations, e.g. we use E[ui(b)]
instead of Eb∼B[ui(b)], or even SW (B) to denote Eb∼B[SW (X(b))].
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3 Combinatorial Auctions

In this section we prove an upper bound of 1.82 for the mixed price of anarchy
of simultaneous all-pay auctions when bidders’ valuations are fractionally sub-
additive (XOS). This result improves over the previously known bound of 2 due
to [22]. We first state our main theorem and present the key ingredients. Then
we prove these ingredients in the following subsections. Due to space limitation,
we give proofs of the lemmas and theorems in the full version.

Theorem 4. The mixed price of anarchy for simultaneous all-pay auctions with
fractionally subadditive (XOS) bidders is at most 1.82.

Proof. Given a valuation profile v = (v1, . . . , vn), let O = (O1, . . . , On) be a
fixed optimal solution, that maximizes the social welfare. We can safely assume
that O is a partition of the items. Since vi is an XOS valuation, let ξOi

i be a
maximizing additive function with respect to Oi. For every item j we denote by
oj item j’s contribution to the optimal social welfare, that is, oj = ξOi

i (j), where
i is such that j ∈ Oi. The optimal social welfare is thus SW (O) =

∑
j oj . In

order to bound the price of anarchy, we consider only items with oj > 0, as it is
without loss of generality to omit items with oj = 0.

For a fixed mixed Nash equilibrium B, recall that by Fj and Fij we denote the
CDFs of the maximum bid on item j among all bidders, with and without the bid
of bidder i, respectively. For any item j ∈ Oi, let Aj = maxx≥0 {Fij(x)oj − x}.

As a key part of the proof we use the following two inequalities that bound
from below the social welfare in any mixed Nash equilibrium B.

SW (B) ≥
∑

j∈[m]

(
Aj +

∫ oj−Aj

0

(1− Fj(x))dx

)
, (1)

SW (B) ≥
∑

j∈[m]

∫ oj−Aj

0

√
Fj(x)dx . (2)

Inequality (1) suffices to provide a weaker upper bound of 2 (see [8]). The proof of
(2) is much more involved, and requires a deeper understanding of the equilibria
properties of the induced game. We postpone their proofs in Sect. 3.1 (Lemma 5)
and Sect. 3.2 (Lemma 6), respectively. By combining (1) and (2),

SW (B) ≥ 1

1 + λ
·
∑

j

(
Aj +

∫ oj−Aj

0

(
1− Fj(x) + λ ·

√
Fj(x)

)
dx

)
, (3)

for every λ ≥ 0. It suffices to bound from below the right-hand side of (3) with
respect to the optimal social welfare. For any cumulative distribution function
F , and any positive real number v, let

R(F, v)
def
= A+

∫ v−A

0

(1 − F (x))dx + λ ·
∫ v−A

0

√
F (x)dx ,
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where A = maxx≥0{F (x) · v − x}. Inequality (3) can then be rewritten as
SW (B) ≥ 1

1+λ

∑
j R(Fj , oj). Finally, we show a lower bound of R(F, v) that

holds for any CDF F and any positive real v.

R(F, v) ≥ 3 + 4λ− λ4

6
· v . (4)

The proof of (4) is given in Sect. 3.3 (Lemma 9). Finally, we obtain that for any
λ > 0,

SW (B) ≥ 1

1 + λ

∑

j

R(Fj , oj) ≥ 3 + 4λ− λ4

6λ+ 6
·
∑

j

oj =
3 + 4λ− λ4

6λ+ 6
· SW (O) .

By taking λ = 0.56, we conclude that the price of anarchy is at most 1.82. �

3.1 Proof of Inequality (1)

This section is devoted to the proof of the following lower bound. Recall that
the definition oj is from the definition of XOS functions.

Lemma 5. SW (B) ≥ ∑
j∈[m](Aj +

∫ oj−Aj

0
(1− Fj(x))dx).

Proof. Recall that Aj = maxxj≥0 {Fij(x)oj − xj}. We can bound bidder i’s
utility in the Nash equilibrium B by ui(B) ≥ ∑

j∈Oi
Aj . To see this, consider

the deviation for bidder i, where he bids only for items in Oi, namely, for each
item j, he bids the value xj that maximizes the expression Fij(xj)oj − xj . Since
for any obtained subset T ⊆ Oi, he has value vi(T ) ≥ ∑

j∈T oj , and the bids
xj must be paid in any case, the expected utility with these bids is at least∑

j∈Oi
maxxj≥0 (Fij(x)oj − xj) =

∑
j∈Oi

Aj . With B being an equilibrium, we
infer that ui(B) ≥ ∑

j∈Oi
Aj . By summing up over all bidders,

SW (B) =
∑

i∈[n]

ui(B) +
∑

i∈[n]

∑

j∈[m]

E[bij ] ≥
∑

j∈[m]

Aj +
∑

j∈[m]

∑

i∈[n]

E[bij ]

≥
∑

j∈[m]

(Aj + E[max
i∈[n]

{bij}]) ≥
∑

j∈[m]

(
Aj +

∫ oj−Aj

0

(1− Fj(x))dx

)
.

The first equality holds because
∑

i Eb[vi(b)] =
∑

i Eb[ui(b) +
∑

j∈[m] bij ]. The

second inequality follows because
∑

i bij ≥ maxi bij and the last one is implied
by the definition of the expected value of any positive random variable. �

3.2 Proof of Inequality (2)

Here, we prove the following lemma for any mixed Nash equilibrium B.

Lemma 6. SW (B) ≥ ∑
j∈[m]

∫ oj−Aj

0

√
Fj(x)dx.

First we show a useful lemma that holds for XOS valuations. We will further
use the technical Proposition 8.
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Lemma 7. For any fractionally subadditive (XOS) valuation function v,

v(S) ≥
∑

j∈[m]

(v(S)− v(S \ {j})) .

Proof. Let ξ be a maximizing additive function of S for the XOS valuation v.
By definition, v(S) = ξ(S) and for every j, v(S \ {j}) ≥ ξ(S \ {j}). Then,∑

j∈[m] (v(S)− v(S \ {j})) ≤ ∑
j∈S(ξ(S)− ξ(S \ {j})) = ∑

j∈S ξ(j) = v(S). �
Proposition 8. For any integer n ≥ 2, any positive reals Gi ≤ 1 and positive
reals gi, for 1 ≤ i ≤ n,

n∑

i=1

gi∑
k �=i

gk
Gk

≥
√√√√

n∏

i=1

Gi .

We are now ready to prove Lemma 6. We only state a proof sketch here to
illustrate the main ideas.

Proof (Sketch of Lemma 6). Recall that Gij is the CDF of the bid of player i for
item j. For simplicity, we assume Gij(x) is continuous and differentiable, with
gij(x) being the PDF of player i’s bid for item j. First, we define the expected
marginal valuation of item j w.r.t player i,

vij(x)
def
= E

b∼B
[vi(Xi(b) ∪ {j})− vi(Xi(b) \ {j})|bij = x] .

Given the above definition and a careful characterization of mixed Nash equilib-
ria, we are able to show Fij(x) · vij(x) = E[vi(Xi(b)) − vi(Xi(b) \ {j})|bij = x]

and 1
vij(x)

=
dFij(x)

dx for any x in the support of Gij . Let gij(x) be the derivative

of Gij(x). Using Lemma 7, we have

SW (B) =
∑

i

E[vi(Xi(b))] ≥
∑

i

∑

j

E[vi(Xi(b)) − vi(Xi(b) \ {j})]

≥
∑

i

∑

j

∫ oj−Aj

0

E[vi(Xi(b))− vi(Xi(b) \ {j})|bij = x] · gij(x)dx

≥
∑

i

∑

j

∫ oj−Aj

0

Fij(x) · vij(x) · gij(x)dx ,

where the second inequality follows by the law of total probability. By using the

facts that Fij(x) =
∏

k �=i Gkj(x) and 1
vij(x)

=
dFij(x)

dx , for any x > 0 such that

gij(x) > 0 (x is in the support of player i) and Fj(x) > 0, we obtain

Fij(x)·vij(x)·gij(x)=Fij(x)·gij(x)
dFij

dx
(x)

=

∏
k �=i Gkj(x)·gij(x)

∑
k �=i

(
gkj ·

∏
s�=k∧s�=i Gsj

) =
gij(x)

∑
k �=i

gkj(x)

Gkj (x)

.
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For every x > 0, we use Proposition 8 only over the set S of players with
gij(x) > 0. After summing over all bidders we get,

∑

i∈[n]

Fij(x) · vij(x) · gij(x) ≥
∑

i∈S

gij(x)∑
k �=i,k∈S

gkj

Gkj

≥
√∏

i∈S

Gij(x) ≥
√
Fj(x) .

The above inequality also holds for Fj(x) = 0. Finally, by merging the above

inequalities, we conclude that SW (B) ≥ ∑
j∈[m]

∫ oj−Aj

0

√
Fj(x)dx. �

3.3 Proof of Inequality (4)

In this section we prove the following technical lemma.

Lemma 9. For any CDF F and any real v > 0, R(F, v) ≥ 3+4λ−λ4

6 v.

In order to obtain a lower bound for R(F, v) as stated in the lemma, we
show first that we can restrict attention to cumulative distribution functions of
a simple special form, since these constitute worst cases for R(F, v). In the next
lemma, for an arbitrary CDF F we will define a simple piecewise linear function
F̂ that satisfies the following two properties:
∫ v−A

0

(1−F̂ (x))dx =

∫ v−A

0

(1−F (x))dx ;

∫ v−A

0

√
F̂ (x)dx ≤

∫ v−A

0

√
F (x)dx .

Once we establish this, it is convenient to lower bound R(F̂ , v) for the given
type of piecewise linear functions F̂ .

Lemma 10. For any CDF F and real v > 0, there always exists another CDF
F̂ such that R(F, v) ≥ R(F̂ , v) that, for A = maxx≥0{F (x) · v−x}, is defined by

F̂ (x) =

{
0 , if x ∈ [0, x0]

x+A
v , if x ∈ (x0, v −A] .

Now we are ready to proceed with the proof of Lemma 9.

Proof (of Lemma 9). By Lemma 10, for any fixed v > 0, we only need to consider
the CDF’s in the following form: for any positive A and x0 such that x0+A ≤ v,

F (x) =

{
0 , if x ∈ [0, x0]

x+A
v , if x ∈ (x0, v −A] .

Clearly, maxx≥0{F (x) · v − x} = A. Let t = A+x0

v . Then

R(F, v) = A+

∫ v−A

0

(1− F (x))dx + λ ·
∫ v−A

0

√
F (x)dx

= A+ v −A− v

2
·
(
x+A

v

)2 ∣∣∣∣
v−A

x0

+ λ · 2v
3

·
(
x+A

v

) 3
2
∣∣∣∣
v−A

x0

= v − v

2
· (1− t2) + λ · 2v

3
· (1− t

3
2 ) = v ·

(
1

2
(1 + t2) +

2λ

3
(1 − t

3
2 )

)
.
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By optimizing over t, the above formula is minimized when t = λ2 ≤ 1. That is,

R(F, v) ≥ v·
(
1

2
(1 + λ4) +

2λ

3
(1− λ3)

)
=

3 + 4λ− λ4

6
·v . �

4 Multi-unit Auctions

In this section, we propose a randomized all-pay mechanism for the multi-unit
setting, where m identical items are to be allocated to n bidders. Markakis and
Telelis [18] and de Keijzer et al. [14] have studied the price of anarchy for several
multi-unit auction formats. The current best upper bound obtained was 1.58 for
both pure and mixed Nash equilibria.

We propose a randomized all-pay mechanism that induces a unique pure Nash
equilibrium, with an improved price of anarchy bound of 4/3. We call the mech-
anism Random proportional-share allocation mechanism (PSAM), as it is a ran-
domized version of Kelly’s celebrated proportional-share allocation mechanism
for divisible resources [15]. The mechanism works as follows (illustrated as Mech-
anism 1).

Each bidder submits a non-negative real bi to the auctioneer. After soliciting
all the bids from the bidders, the auctioneer associates a real number xi with
bidder i that is equal to xi =

m·bi∑
i∈[n] bi

. Each player pays their bid, pi = bi. In

the degenerate case, where
∑

i bi = 0, then xi = 0 and pi = 0 for all i.
We turn the xi’s to a random allocation as follows. Each bidder i secures

�xi� items and gets one more item with probability xi − �xi�. An application
of the Birkhoff-von Neumann decomposition theorem guarantees that given an
allocation vector (x1, x2, . . . , xn) with

∑
i xi = m, one can always find a ran-

domized allocation1 with random variables X1, X2, . . . , Xn such that E[Xi] = xi

and Pr[�xi� ≤ Xi ≤ �xi�] = 1 (see for example [10,4]).
We next show that the game induced by the Random PSAM when the bid-

ders have submodular valuations is isomorphic to the game induced by Kelly’s
mechanism for a single divisible resource when bidders have piece-wise linear
concave valuations.

Theorem 11. Any game induced by the Random PSAM applied to the multi-
unit setting with submodular bidders is isomorphic to a game induced from
Kelly’s mechanism applied to a single divisible resource with piece-wise linear
concave functions.

Proof. For each bidder i’s submodular valuation function fi : {0, 1, . . . ,m} →
R+, we associate a concave function gi : [0, 1] → R+ such that,

∀x ∈ [0,m], gi(x/m) = fi(�x�) + (x− �x�) · (fi(�x�+ 1)− fi(�x�)) . (5)

1 As an example, assume x1 = 2.5, x2 = 1.6, x3 = 1.9. One can define a random allo-
cation such that assignments (3, 2, 1), (3, 1, 2) and (2, 2, 2) occur with probabilities
0.1, 0.4, and 0.5 respectively.



358 G. Christodoulou, A. Sgouritsa, and B. Tang

Mechanism 1. Random PSAM
Input: Total number of items m and all bidders’ bid b1, b2, . . . , bn
Output: Ex-post allocations X1, X2, . . . , Xn and payments p1, p2, . . . , pn
if

∑
i∈[n] bi > 0 then

foreach bidder i = 1, 2, . . . , n do

xi ← m·bi∑
i∈[n] bi

;

pi ← bi;

Sample {Xi}i∈[n] from {xi}i∈[n] by using Birkhoff-von Neumann decomposition
theorem such that �xi� ≤ X ≤ �xi� and the expectation of sampling Xi is xi;

else Set X = 0 and p = 0;
Return Xi and pi for all i ∈ [n];

Essentially, gi is the piecewise linear function that comprises the line segments
that connect fi(k) with fi(k+1), for all nonnegative integers k. It is easy to see
that gi is concave if fi is submodular. We use identity functions as the bijections
φi in the definition of game isomorphism. Therefore, it suffices to show that, for
any pure strategy profile b, ui(b) = u′

i(b), where ui and u′
i are the bidder i’s

utility functions in the first and second game, respectively. Let xi =
m·bi∑

i bi
, then

ui(b) = (xi − �xi�)fi(�xi�+ 1) + (1− xi + �xi�)fi(�xi�)− bi

= fi(�xi�) + (xi − �xi�)(fi(�xi�+ 1)− fi(�xi�))− bi

= gi

(xi

m

)
− bi = gi

(
bi∑
i bi

)
− bi = u′

i(b) .

Note that gi

(
bi∑
i bi

)
− bi is player i’s utility, under b, in Kelly’s mechanism. �

We next show an equivalence between the optimal welfare.

Lemma 12. The optimum social welfare in the multi-unit setting, with sub-
modular valuations f = (f1, . . . , fn), is equal to the optimal social welfare in
the divisible resource allocation setting with concave valuations g = (g1, . . . gn),
where gi(x/m) = fi(�x�) + (x− �x�) · (fi(�x�+ 1)− fi(�x�)).

Theorem 11 and Lemma 12, allow us to obtain the existence and uniqueness
of the pure Nash equilibrium, as well as the price of anarchy bounds of Random
PSAM by the corresponing results on Kelly’s mechanism for a single divisible
resource [13]. Moreover, it can be shown that there are no other mixed equilibria
by adopting the arguments of [5] for Kelly’s mechanism. The main conclusion of
this section is summarized in the following Corollary.

Corollary 13. Random PSAM induces a unique pure Nash equilibrium when
applied to the multi-unit setting with submodular bidders. Moreover, the price of
anarchy of the mechanism is exactly 4/3.
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5 Single Item Auctions

In this section, we study mixed Nash equilibria in the single item all-pay auction.
First, we measure the inefficiency of mixed Nash equilibria, showing tight results
for the price of anarchy. En route, we also show that the price of anarchy is 8/7
for two players. Then we analyze the quality of two other important criteria,
the expected revenue (the sum of bids) and the quality of the expected highest
submission (the maximum bid), which is a standard objective in crowdsourcing
contests [6]. For these objectives, we show a tight lower bound of v2/2, where v2
is the second highest value among all bidders’ valuations. In the following, we
drop the word expected while referring to the revenue or to the maximum bid.

We quantify the loss of revenue and the highest submission in the worst-
case equilibria. We show that the all-pay auction achieves a 2-approximation
comparing to the conventional procurement (modeled as the first price auction),
when considering worst-case mixed Nash equilibria; we show that the revenue
and the maximum bid of the conventional procurement equals v2 in the worst
case. We also consider other structures of rewards allocation and conclude that
allocating the entire reward to the highest bidder is the only way to guarantee
the approximation factor of 2. Roughly speaking, allocating all the reward to the
top prize is the optimal way to maximize the maximum bid and revenue among
all the prior-free all-pay mechanisms where the designer has no prior information
about the participants.

Due to the lack of space we give the proofs of theorems and lemmas in the
full version.

Theorem 14. The mixed price of anarchy of the single item all-pay auction is
1.185.

Theorem 15. In any mixed Nash equilibrium of the single-item all-pay auction,
the revenue and the maximum bid are at least half of the second highest valuation.

Lemma 16. For any ε > 0, there exists a valuation vector v = (v1, . . . , vn),
such that in a mixed Nash equilibrium of the induced single-item all-pay auction,
the revenue and the maximum bid is at most v2/2 + ε.

Finally, the next theorem indicates that allocating the entire reward to the
highest bidder is the best choice. In particular a prior-free all-pay mechanism is
presented by a probability vector q = (qi)i∈[n], with

∑
i∈[n] qi = 1, where qi is

the probability that the ith highest bidder is allocated the item, for every i ≤ n.
Note that the reward structure considered here does not depend on the index of
the bidder, i.e. the mechanisms are anonymous.

Theorem 17. For any prior-free all-pay mechanism that assigns the item to
the highest bidder with probability strictly less than 1, i.e. q1 < 1, there exists
a valuation profile and mixed Nash equilibrium such that the revenue and the
maximum bid are strictly less than v2/2.
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Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 820–832. Springer,
Heidelberg (2008)
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Abstract. We consider the problem of dictionary matching in a stream.
Given a set of strings, known as a dictionary, and a stream of charac-
ters arriving one at a time, the task is to report each time some string
in our dictionary occurs in the stream. We present a randomised al-
gorithm which takes O(log log(k +m)) time per arriving character and
uses O(k logm) words of space, where k is the number of strings in the
dictionary and m is the length of the longest string in the dictionary.

1 Introduction

We consider the problem of dictionary matching in a stream. Given a set of
strings, known as a dictionary, and a stream of characters arriving one at a
time, the task is to determine when some string in our dictionary matches a suffix
of the growing stream. The dictionary matching problem models the common
situation where we are interested in not only a single pattern that may occur
but in fact a whole set of them.

The solutions we present will be analysed under a particularly strong model
of space usage. We will account for all the space used by our algorithm and will
not, for example, even allow ourselves to store a complete version of the input.
In particular, we will neither be able to store the whole of the dictionary nor
the streaming text. We now define the problem which will be the main object of
study for this paper more formally.

Problem 1. In the dictionary-matching problem we have a set of patterns P
and a streaming text T = t1 . . . tn which arrives one character at a time. We
must report all positions in T where there exists a pattern in P which matches
exactly. More formally, we output all the positions x such that there exists a
pattern Pi ∈ P with tx−|Pi|+1 . . . tx = Pi. We must report an occurrence of some
pattern in P as soon as it occurs and before we can process the subsequent
arriving character.

If each of the k patterns in the dictionary had the same length m then we
could straightforwardly deploy the fingerprinting method of Karp and Rabin [13]
to maintain a fingerprint of a window of length m successive characters of the
text. We can then compare this for each new character that arrives to a hash
table of stored fingerprints of the patterns in the dictionary. In our notation this
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N. Bansal and I. Finocchi (Eds.): ESA 2015, LNCS 9294, pp. 361–372, 2015.
DOI: 10.1007/978-3-662-48350-3_31



362 R. Clifford et al.

approach would require O(k +m) words of space and constant time per arrival.
However if the patterns are not all the same length this technique no longer
works.

For a single pattern, Porat and Porat [17] showed that it is possible to perform
exact matching in a stream quickly using very little space. To do this they intro-
duced a clever combination of the randomised fingerprinting method of Karp and
Rabin and the deterministic and classical KMP algorithm [14]. Their method
uses O(logm) words of space and takes O(logm) time per arriving character
where m is the length of the single pattern. Breslauer and Galil subsequently
made two improvements to this method. First, they sped up the method to only
require O(1) time per arriving character and they also showed that it was pos-
sible to eliminate the possibility of false negatives, which could occur using the
previous approach [3].

Our solution takes the single-pattern streaming algorithm of Breslauer and
Galil [3] as its starting point. If we were to run this algorithm independently in
parallel for each separate string in the dictionary, this would take O(k) time per
arriving character and O(k logm) words of space. Our goal in this paper is to
reduce the running time to as close to constant as possible without increasing
the total space. Achieving this presents a number of technical difficulties which
we have to overcome.

The first such hurdle is how to process patterns of different lengths efficiently.
In the method of Breslauer and Galil prefixes of power of two lengths are found
until either we encounter a mismatch or a match is found for a prefix of length
at least half of the total pattern size. Exact matches for such long prefixes can
only occur rarely and so they can afford to check each one of these potential
matches to see if it can be extended to a full match of the pattern. However
when the number of patterns is large we can no longer afford to inspect each
pattern every time a new character arrives.

Our solution breaks down the patterns in the dictionary into three cases: short
patterns, long patterns with short periods, long patterns with long periods. A
key conceptual innovation that we make is a method to split the patterns into
parts in such a way that matches for all of these parts can be found and stitched
together at exactly the time they are needed. We achieve this while minimising
the total space and taking only O(log log(k +m)) time per arriving symbol.

A straightforward counting argument tells us that any randomised algorithm
with inverse polynomial probability of error requires at least Ω(k logn) bits of
space, see for example [5]. Our space requirements are therefore within a log-
arithmic factor of being optimal. However, unlike the single-pattern algorithm
of Breslauer and Galil, our dictionary matching algorithm can give both false
positives and false negatives with small probability.

Throughout the rest of this paper, we will refer to the arriving text character
as the arrival. We can now give our main new result which will be proven in the
remaining parts of this paper.

Theorem 1. Consider a dictionary P of k patterns of size at most m and a
streaming text T . The streaming dictionary matching problem can be solved in
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O(log log(k +m)) time per arrival and O(k logm) words of space. The probability
of error is O(1/n) where n is the length of the streaming text.

1.1 Related Work

The now standard offline solution for dictionary matching is based on the Aho-
Corasick algorithm [1]. Given a dictionary P = {P1, P2, . . . , Pk}, and a text
T = t1 . . . tn, let occ denote the number of matches and M denote the sum
of the lengths of the patterns in P , that is M =

∑k
i=1 |Pi|. The Aho-Corasick

algorithm finds all occurrences of elements in P in the text T in O(M +n+occ)
time and O(M) space. Where the dictionary is large, the space required by the
Aho-Corasick approach may however be excessive.

There is now an extensive literature in the streaming model. Focusing nar-
rowly on results related to the streaming algorithm of Porat and Porat [17],
this has included a form of approximate matching called parameterised match-
ing [12], efficient algorithms for detecting periodicity in streams [11] as well as
identifying periodic trends [10]. Fast deterministic streaming algorithms have
also been given which provided guaranteed worst case performance for a num-
ber of different approximate pattern matching problems [7,8] as well as pattern
matching in multiple streams [6].

The streaming dictionary matching problem has also been considered in a
weaker model where the algorithm is allowed to store a complete read-only copy
of the pattern and text but only a constant number of extra words in working
space. Breslauer, Grossi and Mignosi [4] developed a real-time string match-
ing algorithm in this model by building on previous work of Crochemore and
Perrin [9]. The algorithm is based on the computation of periods and critical
factorisations allowing at the same time a forward and a backward scan of the
text.

1.2 Definitions

We will make extensive use of Karp-Rabin fingerprints [13] which we now define
along with some useful properties.

Definition 1. Karp-Rabin fingerprint function φ. Let p be a prime and r a
random integer in Fp. We define the fingerprint function φ for a string S =
s1 . . . s� such that:

φ(S) =
∑�

i=1 sir
i mod p.

The most important property is that for any two equal length strings U and V
with U �= V , the probability that φ(U) = φ(V ) is at most 1/n2 if p > n3. We will
also exploit several well known arithmetic properties of Karp-Rabin fingerprints
which we give in Lemma 1. All operations will be performed in the word-RAM
model with word size Θ(log n).

Lemma 1. Let U be a string of size � and V another string, then:
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– φ(UV ) = φ(U) + r�φ(V ) mod p,
– φ(U) = φ(UV )− r�φ(V ) mod p,
– φ(V ) = r−�(φ(UV )− φ(U)) mod p.

For a non-empty string x, an integer p with 0 < p ≤ |x| is called a period of
x if xi = xi+p for all i ∈ {1, . . . , |x| − p}. The period of a non-empty string x is
simply the smallest of its periods. We will also assume that all logarithms are
base 2 and are rounded to the nearest integer.

We describe three algorithms: A1 in Section 2 which handles short patterns in
the dictionary, and A2a and A2b in Section 3 which deal with the long patterns.
Theorem 1 is obtained by running all three algorithms simultaneously.

2 Short Patterns

Lemma 2. There exists an algorithm A1 which solves the streaming dictio-
nary matching problem and runs in O(log log(k+m)) time per arrival and uses
O(k logm) space on a dictionary of k patterns whose maximum length is at most
2k logm.

For very short patterns, shorter than 2 logm, we can straightforwardly con-
struct an Aho-Corasick automaton [1]. The automaton occupies O(k logm) space
and reports occurrences of short patterns in constant time per arrival. As the
input alphabet may not be constant, at each node of the automaton we store
the transition function using a static perfect hash table allowing constant time
transitions. From now on, we continue under the assumption that all patterns
are longer than 2 logm.

Our solution partitions each of the patterns into prefix/suffix pairs in multiple
ways. For each pattern there is one partition for each � ∈ [logm, 2 logm]. Each
suffix has length � and is referred to as the tail. The prefix makes up the rest
of the pattern and is referred to as the head. We partition each pattern into at
most logm head/tail pairs, making a total of at most k logm heads overall.

The overall idea is to insert all heads into a data structure so that we can
find potential matches in the stream efficiently. We will only look for potential
matches every logm arrivals. We use the remaining at least logm arrivals before
a full match can occur both to de-amortise the cost of finding head matches as
well as to check whether the relevant tails match as well.

In order to look for matches with heads of patterns efficiently we put them
into a compacted trie. To make use of the compacted trie that we build, we
will need to be able to find the exit node of any string x efficiently. This is
the deepest node in the trie which represents a prefix of x. Given a string x
and the fingerprints of all its prefixes, the exit node of x can be found using a
variant of binary search in O(logm) time. This variant of binary search is called
2-fattest binary search and was introduced by Djamal Bellazougui et al. [2] for
this purpose.

The basic idea is to perform binary search on the length of the longest prefix of
x which matches a string in the set using fingerprint comparisons. The problem
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with this approach is that traditional binary search would require us to store
the fingerprint of every prefix of every string corresponding to a node in the trie.
The 2-fattest binary search preprocessing avoids this by carefully selecting a
single prefix length for each node. These are chosen in such a way that for any x
the binary search only makes comparisons with these preselected prefix lengths.
Therefore we only store O(k logm) fingerprints. The details of 2-fattest binary
search can be found in Section 4.1 of [2]. In their work a general ‘signature
function’ is supported which in our work is implemented as the Karp-Rabin
fingerprint function.

We can now describe Algorithm A1 assuming that all patterns are longer
than 2 logm but no longer than 2k logm. As a preprocessing step, we build the
compacted trie for the reverse of the at most k logm heads and preprocess it
to allow efficient computation of exit nodes. For regularly spaced indices of the
text, we will use the compacted trie to find the longest head that matches at
each of these locations.

We will also augment the compacted trie during preprocessing so that we can
support a second operation which will allow us to extend head matches into full
matches. We mark each node labelled by a head with a colour representing the
fingerprint of the corresponding tail. In the end, each node may be marked by
several colours, and the total number of colours will be k logm. On top of the
trie we build a coloured-ancestor data structure [16]. This occupies O(k logm)
space and supports Find(u, c) queries in O(log log

(
k logm

)
) = O(log log(k+m))

time, where Find(u, c) is the lowest ancestor of a node u marked with colour c.
We will use the coloured-ancestor queries to extend a matching head into the
longest possible match with a whole pattern by using the fingerprints of different
tails as queries.

At all times we maintain a circular buffer of size 2k logm which holds the
fingerprints of the most recent 2k logm prefixes of the text. Let i be an in-
teger multiple of logm. For each such i, we query the trie with a string x =
ti . . . ti−2k logm+1. Note that for each prefix of x we can compute its finger-
print in O(1) time with the help of the buffer. The query returns the exit node
e(x) of x in O(logm) time, which is used to analyse arrivals in the interval
[i + logm, i + 2 logm]. This exit node corresponds to the longest head that
matches ending at index i. The O(logm) cost of performing the query is de-
amortised during the interval (i, i+ logm].

For each arrival t�, � ∈ (i + logm, i + 2 logm] we compute the fingerprint φ
of ti+1 . . . t�. This can be done in constant time as we store the last 2k logm ≥
2 logm fingerprints. If Find(e(x), φ) is defined, � is an endpoint of a whole pattern
match and we report it. Otherwise, we proceed to the next arrival. The overall
time per arrival is therefore dominated by the time to perform the coloured-
ancestor queries which is O(log log(k +m)).

We remark that the algorithm can be extended to permit patterns of length
at most 4k logm (instead of 2k logm) without affecting the time or space com-
plexity. Moreover, if there are several possible patterns that match for a given
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arrival, the algorithm reports the longest such pattern. These two properties will
be needed when we describe Algorithm A2b in Section 3.2.

3 Long Patterns

We now assume that all the patterns have length greater than 2k logm. We
distinguish two cases according to the periodicity of those patterns: those with
short period and those with long period. Hereafter, to distinguish the cases, we
use the following notation. Let mi = |Pi| and Qi be the prefix of Pi such that
|Qi| = mi − k logm. Let ρQi be the period of Qi. The remaining patterns are
then partitioned in two disjoint groups of patterns, those with ρQi < k logm
and those with ρQi ≥ k logm. We describe two algorithms: A2a and A2b, one
for each case respectively. Finally, the overall solution is then to run all three
algorithms A1, A2a, A2b simultaneously to obtain Theorem 1.

3.1 Algorithm A2a: Patterns with Short Periods

This section gives an algorithm for a dictionary of patterns P = P1, . . . , Pk such
that mi ≥ 2k logm and ρQi < k logm. Recall that Qi is the prefix of Pi of length
mi − k logm and ρQi is the period of Qi. The overall idea for this case is that
if we can find enough repeated occurrences of the period of a pattern then we
know we have almost found a full pattern match. As the pattern may end with
a partial copy of its period we will have to handle this part separately. The main
technical hurdle we overcome is how to process different patterns with different
length periods in an efficient manner.

We define the tail of a pattern Pi to be its suffix of length 2k logm. Observe
that a Pi match occurs if and only if there is a match of Qi followed by a match
with the tail of Pi.

Let Ki be the prefix of Qi of length k logm. Further observe that Qi can only

match if there is a sequence of
⌊
|Qi|−|Ki|

ρQi
+ 1

⌋
occurrences of Ki in the text,

each occurring exactly ρQi characters after the last. This follows immediately
from the fact that Ki has length k logm and Qi has period ρQi < k logm.

We now describe algorithm A2a which solves this case. At all times we main-
tain a circular buffer of size 2k logm which holds the fingerprints of the most
recent 2k logm prefixes of the text. That is, if the last arrival is t�, then the
buffer contains the fingerprints φ(t1 . . . t�−2k logm+1), . . . , φ(t1 . . . t�).

To find Ki matches, we store the fingerprint φ(Ki) of each distinct Ki in a
static perfect hash table. By looking up φ(t�−k logm+1 . . . t�) we can find whether
some Ki matches in O(1) time. For each distinct Ki we maintain a list of recent
matches stored as an arithmetic progression. Each time we find a new match
with Ki we check whether it is exactly ρQi characters from the last match. If
so we include it in the current arithmetic progression. If not, then we delete
the current progression and start a new progression containing only the latest
match. Note that Ki = Kj implies that ρQi = ρQj and therefore there is no
ambiguity in the description.
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We store the fingerprint of each tail in another static perfect hash table. For
each arrival t� we use this hash table to check whether φ(t�−2k logm+1 . . . t�)
matches the fingerprint of some tail. This takes O(1) time per arrival.

Assume that the tail of some Pi matched. We will justify below that we
can assume that each tail corresponds to a unique Pi. It remains to decide
whether this is in-fact a full match with Pi. This is determined by a simple
check, that is whether the current arithmetic progression for Ki contains at

least
⌊
|Qi|−|Ki|

ρQi
+ 1

⌋
occurrences.

Lemma 3. Algorithm A2a takes O(1) time per character and uses O(k logm)
space.

Proof. The algorithm stores two hash tables, each containing O(k logm) fin-
gerprints as well as O(k) arithmetic progressions. The total space is therefore
O(k logm) as claimed. The time complexity of O(1) per character follows by the
use of static perfect hash tables (which are precomputed and depend only on P).

We first prove the claim that each tail corresponds to a unique Pi. To this
end, we assume in this section that no pattern contains another pattern as a
suffix. In particular, any such pattern can be deleted from the dictionary during
the preprocessing stage as it does not change the output. This implies the claim
that each Pi has a distinct tail because the tail contains a full period of Pi.

The correctness follows almost immediately from the algorithm description

via the observation that each Qi is formed from
⌊
|Qi|−|Ki|

ρQi
+ 1

⌋
repeats of Ki

followed by a prefix ofKi. We check explicitly whether there are sufficient repeats
of Ki in the text stream to imply a Qi match. While we do not check explicitly
that either final prefix ofKi is a match or that the full Pi matches, this is implied
by the tail match. This is because the tail has length 2k logm and hence includes
the final prefix of Ki and the last k logm characters of Pi (those in Pi but not
in Qi). ��

3.2 Algorithm A2b: Patterns with Long Periods

Consider a dictionary P in which the patterns are such that mi ≥ 2k logm
and ρQi ≥ k logm. Let us define k to be number strings in this dictionary.
We can now describe Algorithm A2b. Recall that Qi is the prefix of Pi s.t.
|Qi| = mi − k logm. For each pattern Pi, we define Pi,j to be the prefix of Pi

with length 2j, 1 ≤ 2j ≤ mi − 2k logm.
We will first give an overview of an algorithm that identifies Pi,j matches in

O(logm) time per arrival. With the help of A1 and A2a we will speed it up to
achieve an algorithm with O(log log(k+m)) time per arrival. The algorithm will
identify the matches with a small delay up to k logm arrivals. We then show how
to extend Pi,j to Qi matches. This stage will still report the matches after they
occur. Finally we show how to find whole pattern matches in the stream using
the Qi matches while also completely eliminating the delay in the reporting of
these matches. In other words, any matches for whole patterns will be reported
as soon as they occur and before the next arrival in the stream as desired.
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O(logm)-time Algorithm. We define a logarithmic number of levels. Level
j will represent all the matches for prefixes Pi,j . We store only active prefix
matches, that still have the potential to indicate the start of full matches of a
pattern in the dictionary. This means that any match at level j whose position
is more than 2j+1 from the current position of an arrival is simply removed. We
will use the following well-known fact.

Fact 2 (Lemma 3.2[3]). If there are at least three matches of a string U of
length 2j in a string V of length 2j+1, then positions of all matches of U in V
form an arithmetic progression. The difference of the progression is equal to the
length of the period of U .

It follows that if there are at least three active matches for the same prefix at
the same level, we can compactly store them as a progression in constant space.
Consider a set of distinct prefixes of length 2j of the patterns in P . For each of
them we store a progression that contains:

(1) The position fp of the first match;
(2) The fingerprint of t1 . . . tfp;
(3) The fingerprint of the period ρ of the prefix;
(4) The length of the period ρ of the prefix;
(5) The position lp of the last match.

With this information, we can deduce the position and the fingerprint of the
text from the start to the position of any active match of the prefix. Moreover,
we can add a new match or delete the first match in a progression in O(1) time.

We make use of a perfect hash table H that stores the fingerprints of all the
prefixes of the patterns in P . The keys of H correspond to the fingerprints of
all the prefixes and the associated value indicates whether the prefix from which
the key was obtained is a proper prefix of some pattern, a whole pattern itself,
or both. Using the construction of [18], for example, the total space needed to
store all the fingerprints and their corresponding values is O(k logm).

When a character t� of the text arrives, we update the current position and the
fingerprint of the current text. The algorithm then proceeds by the progressions
over logm levels. We start at level 0. If the fingerprint φ(t�) is in H, we insert a
new match to the corresponding progression at level 0.

For each level j from 0 to logm, we retrieve the position p of the first match
at level j. If p is at distance 2j+1 from t�, we delete the match and check if the
fingerprint φ(tp . . . t�) is in H. If it is and the fingerprint is a fingerprint of one of
the patterns, we report a match (ending at t�, the current position of the text).
If the fingerprint is in H and if it is a fingerprint of a proper prefix, then p is
a plausible position of a match of a prefix of length 2j+1. We check if it fits in
the appropriate progression π at level j + 1. (Which might not be true if the
fingerprints collided). If it does, we insert p to π. If p does not match in π, we
discard it and proceed to the next level.

As updating progressions at each level only takes O(1) time, and there are
logm levels, the time complexity of the algorithm is O(logm) per arrival. The
space complexity is O(k logm).
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O(log log(k+m))-time Algorithm. We will follow the same level-based idea.
To speed up the algorithm, we will consider prefixes Pi,j with short and long
periods separately. The number of matches of the prefixes with short periods
can be big, but we will be able to compute them fast with the help of A1 and
A2a. On the other hand, matches of the prefixes with long periods are rare, and
we will be able to compute them in a round robin fashion.

Let ρi,j be the period of Pi,j . We first build a dictionaryD1 containing at most
one prefix for each Pi. Specifically, containing the largest Pi,j with the period
ρi,j < k logm and 2k logm ≤ |Pi,j | ≤ mi − 2k logm. If no such Pi,j exists we do
not insert a prefix for Pi. This dictionary is processed using a modification of
algorithmA2a which we described in Section 3.1. The modification is that when a
text character t� arrives, the output of the algorithm identifies the longest pattern
in D1 which matches ending at t� or ‘no match’ if no pattern matches. This is in
contrast to A2a as described previously where we only outputted whether some
pattern matches. The modification takes advantage of the fact that prefixes in
D1 all have power-of-two lengths and uses a simple binary search approach over
the O(logm) distinct pattern lengths. This increases the run-time of A2a to
O(log logm) time per arrival.

Whenever a match is found with some pattern in D1, we update the match
progression of the reported pattern (but not of any of its suffixes that might be
in D1). Importantly, we will still have at most two progressions of active matches
per prefix because of the following lemma and corollary.

Lemma 4. Let Pi,j , Pi′,j′ be two prefixes in D1 and suppose that Pi,j is a suffix
of Pi′,j′ . The periods of Pi,j , Pi′,j′ are equal.

Proof. Assume the contrary. Then Pi,j has two periods: ρi,j and ρi′,j′ (because
it is a suffix of Pi′,j′). We have ρi,j +ρi′,j′ < 2k logm ≤ |Pi,j |. By the periodicity
lemma (see, e.g., [15]), ρi,j is a multiple of ρi′,j′ . But then Pi,j is periodic with
period ρi′,j′ < ρi,j , a contradiction. ��
Corollary 1. Let Pi,j , Pi′,j′ , and Pi′′,j′′ be prefixes in D1. Suppose that Pi,j is
a suffix of Pi′,j′ and simultaneously is a suffix of Pi′′,j′′ . Then Pi′,j′ is a suffix
of Pi′′,j′′ (or vice versa).

We now consider any Pi for which we did not find a suitable small period
prefix. In this case it is guaranteed that there is a prefix Pi,j with period longer
than k logm but length at most 4k logm. We build another dictionary D2 for
each of these prefixes. We apply algorithm A1 and for each arrival t� return the
longest prefix Pi,j in D2 that matches at it in O(log log(k +m)) time. We then
need to update the match progression of Pi,j as well as the match progressions
of all Pi′,j′ ∈ D2 that are suffixes of Pi,j . Fortunately, each of the prefixes in D2

can match at most once in every k logm arrivals, because the period of each of
them is long, meaning that we can schedule the updates in a round robin fashion
to take O(1) time per arrival.

We denote a set of all Pi,j such that ρi,j ≥ k logm by S. Any of these prefixes
can have at most one match in k logm arrivals. Because of that and because
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|S| ≤ k logm, we will be able to afford to update the matches in a round robin
fashion.

We will have two update processes running in parallel. The first process
will be updating matches of prefixes Pi,j ∈ S such that Pi,j−1 ∈ S ∪ D2.
We consider one of these prefixes per arrival. If there is a match with Pi,j in
[t� − k logm, t�] then there must be a corresponding match with Pi,j−1 ending
in [t�−2j−1−k logm, t�−2j−1 ]. As Pi,j−1 ∈ S, ρi,j ≥ k logm so there is at most
one match. We can determine whether this match can be extended into a Pi,j

match using a single fingerprint comparison as described in the O(logm)-time
algorithm. This is facilitated by storing a circular buffer of the fingerprints of
the most recent k logm text prefixes.

The second process will be updating matches of prefixes Pi,j ∈ S such that
Pi,j−1 ∈ D1. Again, if there is a match with Pi,j in [t� − k logm, t�] then there
must be a corresponding match with Pi,j−1 ending in [t�−2j−1−k logm, t�−2j−1 ].
However, the second process will be more complicated for two reasons. First,
Pi,j−1 has a small period so there could be many Pi,j−1 matches ending in
this interval. Second, the information about Pi,j−1 matches can be stored not
only in the progressions corresponding to Pi,j−1, but also in the progressions
corresponding to prefixes that have Pi,j−1 as a suffix. The first difficulty can be
overcome because of the following lemma.

Lemma 5. Consider any Pi,j such that ρi,j−1 < k logm ≤ ρi,j . Given a match
progression for Pi,j−1, only one match could also correspond to a match with
Pi,j.

Proof. Let U be the prefix of Pi,j−1 of length ρi,j−1. That is, the substrings
bounded by consecutive matches in the match progression for Pi,j−1 are equal to
U . Suppose that Pi,j starts with exactly r copies of U . Then we have Pi,j = U rV
for some string V . Note that as ρi,j−1 < k logm ≤ ρi,j , the string V cannot be
a prefix of U . Then the only match in the progression which could match with
Pi,j is the r-th last one. ��

To overcome the second difficulty, we use Corollary 1. It implies that prefixes
in D1 can be organized in chains based on the “being-a-suffix” relationship.
We consider prefixes in each chain in a round robin fashion again. We start
at the longest prefix, let it be Pi,j . At each moment we store exactly one pro-
gression initialized to the progression of Pi,j . If the progression intersects with
[t�−2j−1−k logm, t�−2j−1 ], we identify the ‘interesting’ match in O(1) time with
the help of Lemma 5 and try to extend it as in the first process. We then pro-
ceed to the second longest prefix Pi′,j′ . If the stored progression intersects with
[t�−2j′−1−k logm, t�−2j′−1 ], we proceed as for Pi,j . Otherwise, we update the pro-
gression to be the progression of Pi′,j′ and repeat the previous steps for it. We
continue this process for all prefixes in the chain.

From the description of the processes it follows that the matches for each Pi,j

(in particular, for the longest Pi,j for each i) are outputted in O(log log(k+m))
time per arrival with a delay of up to k logm characters (i.e. at most k logm
characters after they occur).
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FindingQi Matches. We now show how to findQi matches using Pi,j matches.
If there is a match with Qi in [t� − k logm, t�], there must be a match with the
longest Pi,j in [t�−2j−k logm, t�−2j ]. Because |Pi,j | ≤ mi−2k logm, this match
has been identified by the algorithm and it is the first match in the progressions.
We can determine whether this match can be extended into a Qi match using a
single fingerprint comparison.

Therefore the Qi matches are outputted in O(log log(k+m)) time with a delay
of up to k logm characters (i.e. at most k logm characters after they occur). We
can then remove this delay using coloured ancestor queries in a similar manner
to algorithm A1 as described below.

Finding Whole Pattern Matches and Removing the Delay. Up to this
point, we have shown that we can find each Qi match in O(log log(k+m)) time
per arrival with a delay of at most k logm characters. Further we only report
one Qi match at each time. We will show how to extend these Qi matches into
Pi matches using coloured ancestor queries in O(log log(k+m)) time per arrival.

Build a compacted trie of the reverse of each string Qi. The edges labels are
not stored. The space used is O(k). For each i we can find the reverse of Qi in
the trie in O(1) time (by storing an O(k) space look-up table).

The tail of each Pi is its (k logm)-length suffix, i.e. the portion of Pi which
is not in Qi. Each distinct tail is associated with a colour. As there are at most
k logm patterns, there are at most k logm colours. Computing the colour from
the tail is achieved using a standard combination of fingerprinting and static
perfect hashing. For each node in the tree which represents some Qi we colour
the node with the colour of the tail of Pi.

Whenever we find a Qi match, we identify the place in the tree where the
reverse of Qi occurs. Recall that these matches may be found after a delay of
at most k logm characters. A Qi match ending at position � − k logm implies
a possible Pi match at position �. We remember this potential match until t�
arrives.

More specifically when t� arrives we determine the node u in the trie repre-
senting the reverse of the longest Qi which has a match at position �− k logm.
This can be done in O(1) time by storing a circular buffer of fingerprints.

We now need to decide whether Qi implies the existence of some Pj match.
It is important to observe that as we discarded all but the longest such Qi, we
might find a Pj with j �= i.

For each arrival t�, we compute the fingerprint φ of t�−k logm+1 . . . t�. This can
be done in constant time as we store the last k logm fingerprints. If Find(u, φ)
is defined, t� is an endpoint of a pattern match and we report it. Otherwise, we
proceed to the next arrival.

Lemma 6. Algorithm A2b takes O(log log(k+m)) time per character. The space
complexity of the algorithm is O(k logm).
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Abstract. Given an undirected, edge-weighted graph G together with
pairs of vertices, called pairs of terminals, the minimum multicut prob-
lem asks for a minimum-weight set of edges such that, after deleting
these edges, the two terminals of each pair belong to different connected
components of the graph. Relying on topological techniques, we provide
a polynomial-time algorithm for this problem in the case where G is
embedded on a fixed surface of genus g (e.g., when G is planar) and
has a fixed number t of terminals. The running time is a polynomial of
degree O

(√
g2 + gt

)
in the input size.

In the planar case, our result corrects an error in an extended abstract
by Bentz [Int. Workshop on Parameterized and Exact Computation, 109–
119, 2012]. The minimum multicut problem is also a generalization of
the multiway cut problem, also known as the multiterminal cut problem;
even for this special case, no dedicated algorithm was known for graphs
embedded on surfaces.

1 Introduction

The minimum cut problem is one of the most fundamental problems in combi-
natorial optimization, originally introduced in relation to railway transshipment
problems during the cold war (see Schrijver [20] for a fascinating historical ac-
count). In this context, the railway network is modeled by a planar graph, each
edge having a weight (its capacity), and the goal is to compute the minimum-
weight set of edges that need to be removed to disconnect two given vertices of
the network, the source and destination for a given commodity. While countless
generalizations of this problem have been studied, we are interested here in two
natural extensions:

1. What if there are several commodities, corresponding to different source
and destination pairs? In other words, we are studying an instance of the
minimum multicut problem: Given several pairs of source and destination
vertices, how to find a minimum-weight set of edges to disconnect every
destination vertex from its corresponding source?

2. What if the network is not planar, but includes a few tunnels and bridges?
In other words, what happens if the graph is embedded, not in the plane,
but on some fixed surface?
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More formally, let G = (V,E) be an undirected graph. Furthermore, let T be
a subset of vertices of G, called terminals, and let R be a set of unordered pairs
of vertices in T , called terminal pairs. A subset E′ of E is a multicut (with
respect to (T,R)) if for every terminal pair {t1, t2} ∈ R, the vertices t1 and t2
are in different connected components of the graph (V,E\E′). In the minimum
multicut problem (also known as the minimum multiterminal cut problem),
we assume in addition that G is positively edge-weighted, and the goal is to find
a multicut of minimum weight. We prove that this problem is polynomial-time
solvable if G is embedded on a fixed surface and the number t of terminals is
fixed:

Theorem 1.1. Assume that G is cellularly embedded on a surface (orientable
or not) of Euler genus g. Then the minimum multicut problem can be solved

in O(m logm) + (g + t)O(g+t)nO
(√

g2+gt
)
time, where t = |T | is the number of

terminals, m is the number of edges of G, and n is the number of faces of G.

This is the first polynomial-time algorithm for this purpose, even when specialized
to either the multiway cut problem (see below for details) or the planar version.

Moreover, the nO(
√
t) dependence in the number of terminals is unavoidable, as-

suming the Exponential Time Hypothesis [17], even in these two special cases.

Comparison with Former Work

Many instances of the minimum multicut problem are hard, even in very
restricted cases. In particular, it is NP-hard, and even APX-hard, in unweighted
stars [14, Theorem 3.1]. In the case where the number of pairs of terminals is
fixed and at least three, Dahlhaus et al. [10] have proved that the problem is
APX-hard in general graphs; nonetheless, it becomes polynomial-time solvable
for bounded-treewidth graphs, as proved by Bentz [2, Theorem 1].

In the case where the graph is planar, the number of terminals is fixed, and
they all lie on the outer face, Bentz [3] has given a polynomial-time algorithm
for the minimum multicut problem. More recently [4], he has announced an
algorithm for the same case, but removing the condition that the terminals lie
on the outer face. Unfortunately, his proof has several flaws, leaving little hope
for repair. We give a faster algorithm that also works on arbitrary surfaces.

A special case that is somewhat more tractable is themultiway cut problem
(also known as the multiterminal cut problem); this is the case where each pair
of distinct vertices of the set of terminals T ⊂ V is a terminal pair. In the planar
case, Dahlhaus et al. [10] have proved that it is still NP-hard, but Bateni et
al. [1] have given a polynomial-time approximation scheme. Again in the planar
case, the problem is also polynomial-time solvable if the number of terminals
is fixed, as proved in the early 1990s [10]. In stark contrast, the complexity of
the multicut problem has remained open until now, although it is a natural
generalization of the multiway cut problem (the multicut problem is “dual” to
the multicommodity flow problem, largely studied [19, Chapters 70–76]).

More recently, Klein and Marx have shown that the planar multiway cut
problem can be solved in 2O(t)nO(

√
t) time (where n is the complexity of the



Multicuts in Planar and Bounded-Genus Graphs 375

graph) [16]; Marx has proved that the nO(
√
t)-dependence is the best one could

hope for, assuming the Exponential Time Hypothesis (ETH) [17]. Our algorithm
is more general since it deals with multicut, not multiway cut, and works on
arbitrary surfaces; its running time, for fixed genus, is tO(t)nO(

√
t); while the

tO(t) factor is slightly worse than the 2O(t) of Klein and Marx, the second factor
is the same, and optimal unless ETH is false. Since approximability in the planar
case is very different for multicut and multiway cut, our result is surprising, since
it shows that, for exact computations, both are (essentially) equally hard.

On the other hand, graph algorithms dedicated to graphs embedded on a
fixed surface have flourished during the last decade. One reason is that many
graphs arising in geometric settings are naturally embedded on a surface; another
one is that the family of graphs embeddable on a fixed surface is closed under
minor, and such studies can be seen as a first step towards efficient algorithms
for minor-closed families. Testing whether a graph of complexity n embeds on
a surface of genus g can be done in 2O(g)n time [18]. Flows and cuts can be
computed more efficiently for graphs embeddable on a fixed surface [6,12,7]; the
main tool is homology, which is the appropriate algebraic formalism for dealing
with graphs separating two given vertices, but it appears to be insufficient alone
in the multicommodity case. Hence, to our knowledge, we present here the first
algorithm for the minimum multicut problem (or even the multiway cut problem)
for surface-embedded graphs.

Overview and Discussion of Proof Techniques

The strategy for proving Theorem 1.1 is the following. In Section 3, we first
show that a multicut corresponds, in a dual sense, to a graph drawn on S that
separates all pairs of terminals; such a graph will be called a multicut dual.
Moreover, if the multicut is minimum, then this multicut dual is as short as
possible, when distances on S are measured using the cross-metric: namely, the
sum of the weights of the edges of G crossed by the multicut dual is minimum.
The topological structure of the multicut dual can be described suitably after we
cut the surface open into a disk with all terminals on its boundary. We then show
that this structure is constrained (Section 4), that we can enumerate its various
possibilities (Section 5), and (roughly) that, for each of these topologies, we can
compute a shortest multicut dual with that topology efficiently (Section 6).

At a high level, our approach follows a similar pattern to Klein and Marx [16],
since they also rely on enumerating the various candidate topologies for the
dual solution, and find the optimum solution for each topology separately. This
strategy is also present in Dahlhaus et al. [10] and, in a different context, in
Chambers et al. [5], which was our initial source of inspiration. The details are,
however, rather different.

Indeed, Klein and Marx [16] need a reduction to the biconnected case [16,
Section 3], which is shortcut in our approach. Also, the structural properties
that we develop for the minimum multicut problem are more involved than the
known ones for the multiway cut problem; indeed, the solution, viewed in the
dual graph, has less structure in the multicut problem than in the multiway cut
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problem: in the multiway cut case, it has as many faces as terminals, and thus
many cycles, whereas for the minimum multicut problem, the possible topologies
are more diverse (e.g., an optimal solution could be a single cycle).

Chambers et al. [5] have developed related techniques for computing a shortest
splitting cycle, subsequently reused [13,6]. A key difference, however, is that we
extend the method to work with graphs instead of paths or cycles, which makes
the arguments more complicated. We need to encode precisely the locations of
the vertices and edges of the multicut dual with respect to the cut graph; the
cross-metric setting is very convenient for this purpose.

Our approach also requires other techniques from computational topology, in
particular, homology techniques developed for the single commodity minimum
cut problem [6], homotopy techniques for shortest homotopic paths [9], and
treewidth techniques for the surface case [11]. Finally, we remark that we are
not aware of any significantly simpler proof for the planar case.

2 Preliminaries

We recall here standard definitions on the topology of surfaces; for more details,
we refer to a book [21], a survey [8], or an article [9]. In this article, S is a compact,
connected surface without boundary; g denotes its Euler genus. For simplicity
of exposition, we only consider orientable surfaces in this extended abstract, but
the arguments extend almost directly to the non-orientable case. Thus, g ≥ 0
is even, and S is (homeomorphic to) a sphere with g/2 handles attached. We
consider paths drawn on S. A path p is a continuous map from [0, 1] to S; a
loop is a path p such that its two endpoints coincide: p(0) = p(1). A path is
simple if it is one-to-one (except, of course, that its endpoints p(0) and p(1)
may coincide). We thus emphasize that, contrary to the standard terminology
in graph theory, paths may self-intersect.

All the graphs considered in this article may have loops and multiple edges.
A drawing of a graph G on S maps the vertices of G to points on S and the
edges of G to paths on S whose endpoints are the images of the incident vertices.
An embedding of G is a “crossing-free” drawing: The images of the vertices are
pairwise distinct, and the image of each edge is a simple path intersecting the
image of no other vertex or edge, except possibly at its endpoints. A face of an
embedding of G on S is a connected component of S minus (the image of) G. A
graph is cellularly embedded on S if every face of the graph is an open disk. In
particular, a cut graph of S is a graph G embedded on S whose unique face is
a disk. Euler’s formula states that, if G is a graph cellularly embedded on S
with v vertices, e edges, and f faces, then v − e+ f = 2− g.

Algorithmically, we can store graphs cellularly embedded on S by their com-
binatorial map, which essentially records the cyclic ordering of the edges around
each vertex; there are efficient data structures for this purpose [11].
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3 The Cross-Metric Setting

We will first prove that a minimum multicut corresponds, in an appropriate
sense, to a shortest graph satisfying certain properties.

We say that a graph H embedded on S is in general position with respect
to our input graph G if there are finitely many intersection points between G
and H , and each such point corresponds to a crossing between an edge of G
and an edge of H . The length of H is the sum, over all crossing points between
G and H , of the weight of the corresponding edge of G. In other words, G is
now seen as a graph that provides a discrete (or cross-metric) distance function
on S [9]. Algorithmically, we can store a graphH in general position with respect
to G by recording the combinatorial map of the overlay of G and H , obtained
by adding vertices at each intersection point between G and H and subdividing
edges of G and H .

In the following, unless noted otherwise, all graphs drawn on S will be
in general position with respect to G. Moreover, whenever we consider
distances between two points in S (not lying on G) or lengths of paths in S,
we implicitly consider them in the above cross-metric sense. In some clearly
mentioned cases below (see Proposition 3.2), we will need to consider paths p
that are in general position with respect to G, except that some of their endpoints
may lie on G. In such cases, the endpoints of p are not taken into account for
determining the length of p.

A multicut dual is a graph C embedded on S such that, for every pair
{t1, t2} ∈ R, the vertices t1 and t2 are in different faces of C. As the terminology
suggests, we have the following easy proposition, which will guide our approach.

Proposition 3.1. Let C be a shortest multicut dual. Then the set E′ of edges
of G crossed at least once by C is a minimum multicut.

As a side remark, it follows that the minimum multicut problem can be seen as
a discrete version of the following topological problem: Given a metric surface S
with boundary, and a set R of pairs of boundary components, compute a shortest
graph on S that separates every pair of boundaries in R. We are exactly solving
this problem in the realm of cross-metric surfaces.

Our algorithm starts by computing a particular cut graph K of S passing
through all the terminals. If S is the sphere (equivalently, if G is planar), we
could take for K a shortest spanning tree of T (with respect to the cross-metric
setting), which can be obtained using a simple modification of any algorithm for
computing minimum spanning trees in graphs. For the general case, we use a
known construction, a so-called greedy system of arcs [5]:

Proposition 3.2. In O(m logm+(g+t)n) time, we can compute a cut graph K
on S, whose O(g+ t) vertices contain T , and with O(g+ t) edges, each of which
is a shortest path on S. Some vertices of K may lie on G (either on vertices or
on edges).

At a high level, the algorithm consists in (1) enumerating all possible “topolo-
gies” of the multicut dual with respect to K, (2) for each of these possible topolo-



378 É. Colin de Verdière

gies, computing a shortest multicut dual with that topology, and (3) returning
the overall shortest multicut dual.

4 Structural Properties of a Shortest Multicut Dual

In this section, we prove some structural properties of a shortest multicut dual.
Consider all shortest multicut duals in general position with respect to K∪G.

Among all these, let C0 be one that crosses K a minimum number of times. We
can, without loss of generality, assume that C0 is inclusionwise minimal, in the
sense that no edge can be removed from C0 without violating the fact that it
is a multicut dual. Of course, we can assume that C0 has no isolated vertex. If
C0 has a degree-one vertex, we can “prune” it, by removing it together with its
incident edge. If C0 has a degree-two vertex that is not a loop, we can “dissolve”
it, by removing it and identifying the two incident edges. Thus, we can assume
that C0 has minimum degree at least two, and that every degree-two vertex is
the vertex of a connected component that is a loop.

4.1 Crossing Bound

We start with an easy consequence of Euler’s formula.

Lemma 4.1. C0 has O(g + t) vertices and edges.

The main structural property of C0 is isolated in the following lemma:

Lemma 4.2. There are O(g + t) crossings between C0 and each edge of K.

As in algorithms for other problems using the same approach [16,5,13,6], the
proof of this lemma consists of an exchange argument: If C0 crosses an edge
of K too many times, we can replace C0 with a no longer multicut dual that
crosses K fewer times, contradicting the choice of C0. The proof ultimately boils
down to topological considerations. Let us also mention that the only property
that we are using on the edges of K is that they are disjoint shortest paths
(except possibly at their endpoints).

Proof of Lemma 4.2. We focus on a specific edge e ofK crossed by C0, forgetting
about the others. It is convenient to put an obstacle close to each of the two
endpoints of e (since e is a shortest path, its endpoints are distinct). It is also
convenient to temporarily look at the situation differently, by forgetting about G
and by modifying C0 in the vicinity of e by pushing all crossings of C0 with e to
a single point p on e (Figure 1(a, b)). This transforms C0 into another graph C′

0

that has p as a new vertex. To prove the lemma, it suffices to prove that the
degree of p in C′

0 is O(g + t). Moreover, every non-loop edge of C′
0 corresponds

to one of the two endpoints of an edge of C0, and there are O(g + t) of these
by Lemma 4.1. Hence, if we let L be the one-vertex subgraph of C′

0 made of
the loops of C′

0 based at p, it suffices to prove that the number of loops in L is
O(g + t).
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(a)

p

(b) (c) (d) (e)

Fig. 1. (a): The part of the multicut dual C0 close to e (depicted as a horizontal
line). (b): its modified version C′

0 obtained by pushing all crossings with e to a single
point p. The black lines are the loops in L, the grey ones are the other edges of C′

0.
(c): The configuration corresponding to a monogon. The disk is shaded. (d): The new
configuration to replace (c). (e): This configuration is not a monogon, because of the
presence of an obstacle (shown as a star).

(a) (b) (c) (d) (e)

Fig. 2. The exchange argument. The horizontal segment represents edge e of K. The
strips are shaded; they represent disks with no terminal, no obstacle, and no piece of C0

in their interior.

If the sides of the strips are all on the same side of e, there is a single case (a).
Replacing the top configuration of C0 with the bottom configuration (creating two new
vertices) still yields a multicut dual (as all pairs of faces that were separated in the top
configuration are still separated in the bottom configuration, except possibly for the
strips, but these contain no terminal), which is no longer than the original (because
e is a shortest path) and has less crossings with K. This is a contradiction with the
choice of C0.

If the sides of the strips are on different sides of e, we need to distinguish according
to four cases (b–e), depending on how the sides of the strips overlap. In all cases, the
same argument shows that we could find a no longer multicut dual with fewer crossings
with K, a contradiction. (We could also remark that case (e) is impossible because it
involves closed curves in C0 without vertex.)
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A monogon, resp. a bigon, is a face of L that is, topologically, an open disk
with one, resp. two, copies of p on its boundary and containing in its interior
no obstacle, no vertex of C0, and no terminal. We first claim that no face of L
can be a monogon. Otherwise (Figure 1(c)), some edge e′ of C0 crosses e twice
consecutively, at points x and y say, such that the pieces of e and e′ between
x and y bound a disk containing in its interior no obstacle, no vertex of C0,
and no terminal. Since the disk contains no obstacle, the boundary of the disk
lies entirely on one side of e, as in Figure 1(c), and other cases such as the one
shown in Figure 1(e) cannot occur. Since the disk contains no vertex of C0, it
contains no piece of C0 in its interior. We can thus replace the piece of e′ between
x and y with a path that runs along e (Figure 1(d)). This operation does not
make e′ longer, since e is a shortest path; it removes the two intersection points
with e and does not introduce other crossings with K. Moreover, since the disk
contains no terminal in its interior, the resulting graph is also a multicut dual.
This contradiction with the choice of C0 proves the claim.

We will prove below that no loop in L can be incident to two bigons. Taking
this fact for granted for now, whenever one face of L is a bigon, we remove one of
the two incident loops, and iterate until there is no bigon any more. The previous
fact implies that these iterations remove at most half of the loops: If L′ is the
remaining set of loops, we have |L| ≤ 2|L′|. Furthermore, L′ has no monogon
or bigon. This latter fact, together with arguments based on Euler’s formula,
implies that the number of loops in L′ is O(g+ t) [5, Lemma 2.1], because S has
Euler genus g, and the total number of obstacles, vertices of C0, and terminals
(which are the points that prevent a face that is a disk of degree one or two to be
a monogon or bigon) is O(g + t) (Lemma 4.1). This implies that |L| = O(g + t),
which concludes the lemma.

So there only remains to prove that no loop in L can be incident to two bigons.
Assume that such a loop exists. On the original surface S, this corresponds to
two “strips” glued together, see Figure 2, top: Each strip is bounded by two
pieces of e and two pieces of edges of C0, and these two strips share a common
piece of edge of C0. Since a bigon contains no obstacle, the sides of the strips
contain none of the endpoints of e. Since the interiors of these strips contain no
vertex of C0, they contain no piece of C0.

Since S is assumed to be orientable, there are five possible cases up to symme-
try, see Figure 2, top: (a) is the case where each strip has its two sides on the same
side of e, (b–e) are the various cases where each strip has its two sides on oppo-
site sides of e. In each case, we change C0 by modifying some edges and possibly
by adding vertices (see Figure 2, bottom). Since e is a shortest path and the new
pieces “run along” e, one can check that the resulting graph is no longer than C0;
moreover, it crosses K fewer times. Also, each replacement may split some faces
of the original graph and attach each of the strips to some of the resulting faces,
but pairs of terminals that were initially separated by C0 are still separated by
the new graph, which is thus also a multicut dual. This contradicts the choice
ofC0.
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4.2 Some Shortest Multicut Dual is Good

We now give a more precise description of the intersection pattern between C0

and K, using the properties proved in the previous section. Cutting the surface S
along K yields a topological disk D. The boundary ∂D of D corresponds to
copies of vertices and edges of K; there are O(g + t) of these. The copies of
the vertices of K on ∂D are called the corners of D, while the copies of the
edges of K are called the sides of D. The sides of D can be reglued pairwise to
obtain S.

a
b

c

c

b

d

d

e

e

a

Fig. 3. A view of the graph C
after cutting S along K

Let C be a graph on S in general position with
respect to K∪G. In particular, C0 is such a graph.
Cutting S along K transforms the overlay of K
and C into a graph U drawn in D (Figure 3):
Each edge of that graph corresponds to a piece of
an edge of K or of C; each vertex of that graph
corresponds to a vertex of K, a vertex of C, or
a (four-valent) intersection point between an edge
of K and an edge of C. We denote by C̄ the sub-
graph of U made of the edges corresponding to
pieces of edges of C (thus, C̄ lies in the interior
of D except possibly for some of its leaves), and
by K̄ the subgraph of U made of the edges corre-
sponding to pieces of edges of K (thus, the image
of K̄ is the boundary of D).

Definition 4.3. (See Figure 3) We say that C is good if C̄ is the disjoint union
of trees with at least one vertex of degree at least two, with all their leaves on ∂D
(drawn in thick lines), and arcs, namely, edges with both endpoints on ∂D, on
different sides of ∂D (drawn lin thin lines), and, moreover: there are O(g + t)
intersection points between C and each side of ∂D, and the total number of edges
of the trees is O(g + t).

Here is the main result of this section, which follows from Lemmas 4.1 and 4.2:

Proposition 4.4. Some shortest multicut dual is good.

5 Enumerating Topologies

Let C be a good graph on S; recall that the union of K̄ and C̄ forms a connected
planar graph U . The topology of C is the data of the combinatorial map of U ,
where the outer face is distinguished, and the sides are paired. Intuitively, it
describes combinatorially the relative positions of C and K. More generally, a
topology is the combinatorial map of a connected, planar graph with a distin-
guished outer face and a pairing of the sides (these are the subpaths of the outer
cycle connecting consecutive degree-two vertices).

Whether C is a multicut dual or not is completely determined by its topology.
Hence the following terminology: A topology is valid if it is the topology of a
good graph that is a multicut dual.
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Proposition 5.1. The number of valid topologies is (g + t)
O(g+t)

; these topolo-
gies can be enumerated within the same time bound.

6 Dealing With Each Valid Topology

The strategy for our algorithm is roughly as follows: For each valid topology, we
compute a shortest graph C with that topology; then we return the set of edges
ofG crossed by the overall shortest graph C. Actually, we do not exactly compute
an embedding of a shortest graph C; instead, we compute a shortest drawing
(possibly with crossings) of the same graph, with some homotopy constraints;
that drawing is no longer than the shortest embedding, and we prove that it also
corresponds to a minimum multicut. We shall prove:

Proposition 6.1. Given a valid topology, we can compute, in (g + t)O(1) ×
nO

(√
g2+gt

)
time, some multicut whose weight is at most the length of each

multicut dual with that topology.

Let C be a good graph. The crossing sequence of an edge e of C is the
ordered sequence of edges in K crossed by e, together with the indication of the
orientation of the crossing (i.e., whether e crosses the edge of K from left to right
or from right to left). Given the topology of C, one can determine the crossing
sequence of every edge of C. We say that a drawing C′ of the (abstract) graph C
has the same topology as C if each edge of C′ has the same crossing sequence
as the corresponding edge of C.

Lemma 6.2. Let C′ be a drawing of a multicut dual C with the same topology
as C. Then, the set of edges of G crossed by C′ is a multicut.

Proof. Let {t1, t2} ∈ R be a pair of terminals, and let f be the face of C
containing t1. The set of edges of C that are incident exactly once to the face
of C containing t1 forms an even subgraph C1 of C, in which every vertex has
even degree. Moreover,C1 separates t1 from t2. Let C

′
1 be the drawing of the same

subgraph in C′. To prove our result, it suffices to prove that C′
1 also separates t1

from t2, using the fact that the crossing sequences are the same in C1 and C′
1.

We can assume that C′ has a finite number of self-intersection points, each
of which is a crossing. Therefore, C′

1 can be seen as an even graph embedded
on S (by adding a new vertex at each crossing between two edges of C′

1). Our
lemma is implied by two results by Chambers et al. [6], reformulated here in our
setting:

– if, for every edge e of K, the even graphs C1 and C′
1 cross e with the same

parity, then they are homologous (over Z/2Z) [6, Lemma 3.4]. In our case,
since the crossing sequences are equal, C1 and C′

1 are homologous;
– an even graph separates t1 from t2 if and only if it is homologous, on the

surface S \ {t1, t2}, to a small circle around t1 [6, Lemma 3.1]. Thus, since
C1 separates t1 from t2, it is also the case for C′

1.
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Proof of Proposition 6.1. Lemma 6.2 implies that it suffices to compute (the set
of edges of G crossed by) a shortest drawing with the given topology.

Let us first explain how to achieve this, assuming that the locations of the
vertices are prescribed. Let C be any multicut dual with that topology and these
vertex locations; we do not know C, but know the crossing sequence of its edges
(they are determined by the topology). To achieve our goal, it suffices, for each
edge e of C, to compute a shortest path with the same crossing sequence as e
and the same endpoints. We remark that algorithms for computing a shortest
homotopic path in S minus the vertex set of K precisely achieve this goal [9]: In
short, we glue copies of the disk D according to the specified crossing sequence,
in such a way that edge e “lifts” to that space Ŝe; then we compute a shortest
path in Ŝe connecting the same endpoints as that lift, and “project” back to S.
(We can assign infinitesimal crossing weights to the edges of K to ensure that
the crossing sequences of e and e′ are the same.) The complexity of D (with its
internal structure defined by the edges of G) is O((g + t)n), and the crossing
sequences have total length O(g + t)2, so the total complexity of the spaces Ŝe

is O((g + t)3n). Since Ŝe is planar, and since shortest paths can be computed in
linear time in planar graphs [15], this is also the complexity of computing (the
set of edges of G crossed by) a shortest graph drawing with a given topology
and specified vertex locations.

To compute a shortest drawing with the given topology, over all choices of
vertex locations, we can näıvely enumerate all possible locations of the O(g + t)
vertices. Note that it is only relevant to consider which face of the overlay of
G and K each vertex belongs to, and there are O((g + t)n) such faces. To get
a better running time, we use treewidth techniques, also used by Klein and
Marx in the planar multiway cut case [16]. The (abstract) graph C defined
by the specified topology has O(g + t) vertices and is embedded on a surface
with genus g. We can thus, in (g + t)O(1) time, compute a tree decomposition

of C of width O
(√

g2 + gt
)
. We use standard dynamic programming on the tree

decomposition: At each node N of the path, we have a table that indicates,
for every choice of the locations of the vertices in N , the length of the shortest
drawing of the subgraph of C induced by the vertices in N and its descendents,
among those that respect the crossing sequence constraints. We can fill in the
tables by a bottom-up traversal of the tree decomposition. The claimed running
time follows, since each node contains O

(√
g2 + gt

)
vertices.

We can now conclude the proof of Theorem 1.1:

Proof of Theorem 1.1. We compute the cut graph K in O(m logm + gn) time
(Proposition 3.2), and enumerate all valid topologies in (g+t)O(g+t) time (Propo-
sition 5.1). For each valid topology, we apply the algorithm of Proposition 6.1 in

O(g+t)O(1)nO
(√

g2+gt
)
time, and return a shortest multicut found. This implies

the claimed running time. The correctness is easy: By Proposition 3.1, it suffices
to compute a multicut whose weight is at most the length of any multicut dual.
By Proposition 4.4, some shortest multicut dual has a valid topology; when this
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topology is chosen, Proposition 6.1 guarantees that we have computed a shortest
multicut.

Acknowledgments. Thanks to Cédric Bentz and Claire Mathieu for inspiring
discussions, and to the referees of a previous version, one of them suggesting that
an improvement might be possible using treewidth, as in Klein and Marx [16].
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Abstract. Given a graph G cellularly embedded on a surface Σ of genus
g, a cut graph is a subgraph of G such that cutting Σ along G yields a
topological disk. We provide a fixed parameter tractable approximation
scheme for the problem of computing the shortest cut graph, that is,
for any ε > 0, we show how to compute a (1 + ε) approximation of the
shortest cut graph in time f(ε, g)n3.

Our techniques first rely on the computation of a spanner for the prob-
lem using the technique of brick decompositions, to reduce the problem
to the case of bounded tree-width. Then, to solve the bounded tree-width
case, we introduce a variant of the surface-cut decomposition of Rué, Sau
and Thilikos, which may be of independent interest.

1 Introduction

Embedded graphs are commonly used to model a wide array of discrete struc-
tures, and in many cases it is necessary to consider embeddings into surfaces
instead of the plane or the sphere. For example, many instances of network de-
sign actually feature some crossings, coming from tunnels or overpasses, which
are appropriately modeled by a surface of small genus. In other settings, such
as in computer graphics or computer-aided design, we are looking for a discrete
model for objects which inherently display a non-trivial topology (e.g., holes),
and graphs embedded on surfaces are the natural tool for that. From a more the-
oretical point of view, the graph structure theorem of Robertson and Seymour
showcases a very strong connection between graphs embedded on surfaces and
minor-closed families of graphs.

When dealing with embedded graphs, a classical problem, to which a lot of
effort has been devoted in the past decade, is to find a topological decomposition
of the underlying surface, i.e., to cut the surface into simpler pieces so as to
simplify its topology, or equivalently to cut the embedded graph into a planar
graph, see the recent surveys [19,7]. This is a fundamental operation in algorithm
design for surface-embedded graphs, as it allows to apply the vast number of tools
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available for planar graphs to this more general setting. Furthermore, making
a graph planar is useful for various purposes in computer graphics and mesh
processing, see for example [20]. No matter the application, a crucial parameter
is always the length of the topological decomposition: having good control on
it ensures that the meaningful features of the embedded graphs did not get too
much distorted during the cutting.

In this article, we are interested in the problem of computing a short cut
graph: For a graph G with n vertices embedded on a surface Σ of genus g, a cut
graph of G is a subgraph C ⊆ G such that cutting Σ along C gives a topological
disk. The problem of computing the shortest possible cut graph of an embedded
graph was introduced by Erickson and Har-Peled [8], who showed that it is NP-
hard, provided an nO(g) algorithm to compute it, as well as an O(g2n logn)
algorithm to compute a O(log2 g) approximation. Now, since in most practical
applications, the genus of the embedded graph tends to be quite small compared
to the complexity of the graph, it is natural to also investigate this problem
through the lens of parametrized complexity, which provides a natural framework
to study the dependency of cutting algorithms with respect to the genus. In this
direction, Erickson and Har-Peled asked whether computing the shortest cut
graph is fixed-parameter tractable, i.e. whether it can be solved in time f(g)nO(1)

for some function f . This question is, up to our knowledge, still open, and we
address here the neighborly problem of devising a good approximation algorithm
working in time fixed parameter tractable with respect to the genus; we refer
to the survey of Marx [12] for more background on these algorithms at the
intersection of approximation algorithms and parametrized complexity.

Our results. In this article, we provide a fixed-parameter tractable approximation
scheme for the problem of computing the shortest cut graph of an embedded
graph.

Theorem 1. Let G be a weighted graph cellularly embedded on a surface Σ
of genus g. For any ε > 0, there exists an algorithm computing a (1 + ε)-
approximation of the shortest cut graph of G, which runs in time f(ε, g)n3 for
some function f .

Our techniques. Our algorithm uses the brick decompositions of Borradaile,
Klein and Mathieu [3] for subset-connectivity problems in planar graphs, which
have been extended to bounded genus graphs by Borradaile, Demaine and Tazari
[2]. Although brick decompositions are now a common tool for optimization
problems for embedded graphs, it is to our knowledge the first time they are
applied to compute topological decompositions. In a nutshell, the idea is the
following:
1. We first compute a spanner Gspan for our problem, namely a subgraph of

the input graph containing a (1+ε)-approximation of the optimal cut graph,
and having total length bounded by f(g, ε) times the length of the optimal
cut graph, for some function f . This is achieved via brick decompositions.
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2. Using a result of contraction-decomposition of Demaine, Hajiaghayi and Mo-
har [6], we contract a set of edges of controlled length in Gspan, obtaining a
graph Gtw of bounded tree-width.

3. We use dynamic programming on Gtw to compute its optimal cut graph.
4. We incorporate back the contracted edges, which gives us a subgraph of

G cutting the surface into one or more disks. Removing edges so that the
complement is a single disk gives our final cut graph.

The first steps of this framework mostly follow from the same techniques as
in the article of Borradaile et al. [2], the only difference being that we need a
specific structure theorem to show that the obtained graph is indeed a spanner
for our problem. However, as the restriction of a cut graph to a brick, i.e., a
small disk on the surface, is a forest, this structure theorem is a variation of an
existing theorem for the Steiner tree problem [3].

The main difficulty of this approach lies instead in the third step. Since a cut
graph is inherently a topological notion, it is key for a dynamic programming
approach to work with a tree-decomposition having nice topological properties.
An appealing concept has been developed by Rué, Sau and Thilikos [17] for the
neighborly (and for our purpose, equivalent) notion of branch-decomposition:
they introduced surface-cut decompositions with this exact goal of giving a nice
topological structure to work with when designing dynamic programs for graph
on surfaces (see also Bonsma [1] for a related concept). However, their approach
is cumbersome for our purpose when the graph embeddings are not polyhedral
(we refer to the introduction for precise definitions), as it first relies on computing
a polyhedral decomposition of the input graph. While dynamic programming over
these polyhedral decompositions can be achieved for the class of problems that
they consider, it seems unclear how to do it for the problem of computing a
shortest cut graph.

We propose two ways to circumvent this issue. In the first one, we observe
that the need for polyhedral embeddings in surface-cut decompositions can be
traced back exclusively to a theorem of Fomin and Thilikos [17, Lemma 5.1][10,
Theorem 1] relating the branch-width of an embedded graph and the carving-
width of its medial graph, the proof of which uses crucially that the graph
embedding is polyhedral. But another proof of this theorem which does not rely
on this assumption was obtained by Inkmann [11, Theorem 3.6.1]. Therefore,
the full strength of surface cut decompositions can be used without first relying
on polyhedral decompositions.

However, since Inkmann’s proof is intricate and has never been published we
also propose an alternative, self-contained, solution tailored to our problem. For
our purpose, it is enough to make the graph polyhedral at the end of the second
step of the framework while preserving a strong bound on the branch-width of
the graph, we show that this can be achieved by superposing medial graphs and
triangulating with care. With appropriate heavy weights on the new edges, we
can ensure that they do not impact the length of the optimal cut graph and that
we still obtain a valid solution to our problem.
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Finally, both approaches allow us to work with a branch decomposition that
possesses a nice topological structure. We then show how to exploit it to write a
dynamic program to compute the shortest cut graph in fixed parameter tractable
time for graphs of bounded tree-width.

Open problems. One of the main challenges is whether the problem of computing
the shortest cut graph can be solved exactly in FPT complexity – the recent
application of brick decompositions to exact solutions for Steiner problems [15]
might help in this direction. In the approximability direction, it is also unknown
whether there exists a polynomial time constant factor approximation to this
problem, or even a PTAS.

Organization of the paper. We start by introducing the main notions surround-
ing embedded graphs and brick decompositions in Section 2. We then prove the
structure theorem in Section 3, showing that the brick decomposition with por-
tals contains a cut graph which is at most (1+ε) longer than the optimal one. In
Section 4, we show how to combine this structure theorem with the aforemen-
tioned framework to obtain our algorithm. This algorithm relies on one to solve
the problem when the input graph has bounded tree-width, which is described
in Section 5.

Due to space restrictions, many proofs are omitted, but they are included in
the full version of this paper [4].

2 Preliminaries

All graphs G = (V,E) in this article are multigraphs, possibly with loops, have
n vertices, m edges, are undirected and their edges are weighted with a length
�(e). These weights induce naturally a length on paths and subgraphs of G.

Graphs on surfaces. We will be using classical notions of graphs embedded on
surfaces, for more background on the subject, we refer to the textbook of Mohar
and Thomassen [14]. Throughout the article, Σ will denote a compact connected
surface of Euler genus g, which we will simply call genus. An embedding of G
on Σ is a crossing-free drawing of G on Σ, i.e. the images of the vertices are
pairwise distinct and the image of each edge is a simple path intersecting the
image of no other vertex or edge, except possibly at its endpoints. We will always
identify an abstract graph with its embedding. A face of the embedding is a
connected component of the complement of the graph. A cellular embedding is
an embedding of a graph where every face is a topological disk. Every embedding
in this paper will be assumed to be cellular. A graph embedding is a triangulation
if all the faces have degree three. Euler’s formula states that for a graph G
embedded on a surface Σ, we have n−m+f = 2−g, for f the number of faces of
the embedding. A noose is an embedding of the circle S1 on Σ which intersects
G only at its vertices. An embedding of a graph G on a surface is said to be
polyhedral if G is 3-connected and the smallest length of a non-contractible
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noose is at least 3 or if G is a clique and it has at most 3 vertices. In particular,
a polyhedral embedding is cellular. If G is a graph embedded on Σ, the surface
Σ′ obtained by cutting Σ along G is the disjoint union of the faces of G, it is a
(a priori disconnected) surface with boundary. When we cut a surface along a set
of nooses, viewed as a graph, the resulting connected components will be called
regions. A combinatorial map of an embedded graph is the combinatorial
description of its embedding, namely the cyclic ordering of the edges around
each vertex.

Given an embedded graph G, the medial graph MG is the embedded graph
obtained by placing a vertex ve for every edge e of G, and connecting the vertices
ve and v′e with an edge whenever e and e′ are adjacent on a face of G. The
barycentric subdivision of an embedded graph G is the embedded graph
obtained by adding a vertex on each edge and on each face and an edge between
every such face vertex and its adjacent (original) vertices and edge vertices.

For Σ a surface and G a graph embedded on Σ, a cut graph of (Σ,G) is a
subgraph H of G whose unique face is a disk. The length of the cut graph is the
sum of the lengths of the edges of H . Throughout the whole paper, OPT will
denote the length of the shortest cut graph of (Σ,G).

We refer the reader to [2,17] for definitions pertaining to tree decomposi-
tion and branch decomposition . A carving decomposition of a graph G is
the analogue of a branch decomposition with vertices and edges inverted, with
the carving-width defined analogously. A bond carving decomposition is a
special kind of carving decomposition where the middle sets always separate the
graph in two connected components. Since these concepts only appear sporadi-
cally in this paper, we refer to [17] for a precise definition.

Mortar graph and bricks. The framework of mortar graphs and bricks has been
developed by Borradaile, Klein and Mathieu [3] to efficiently compute spanners
for subset connectivity problems in planar graphs. We recall here the main def-
initions around mortar graphs and bricks and refer to the articles [2,3] for more
background on these objects.

Let G be a graph embedded on Σ of genus g. A path P in a graph G is ε-short
in G if for every pair of vertices x and y on P , the distance from x to y along
P is at most (1 + ε) times the distance from x to y in G: distP (x, y) ≤ (1 +
ε)distG(x, y). For ε > 0, let κ(g, ε) and α(g, ε) be functions to be defined later.
A mortar graph MG(G, ε) is a subgraph of G such that �(MG) ≤ αOPT , and
the faces of MG partition G into bricks B that satisfy the following properties:
1. B is planar.
2. The boundary of B is the union of four paths in clockwise order N,E, S, W .
3. N is 0-short in B, and every proper subpath of S is ε-short in B.
4. There exists a number k ≤ κ and vertices s0 . . . sk ordered from left to right

along S such that, for any vertex x of S[si, si+1), distS(x, si) ≤ εdistB(x,N).

The mortar graph is computed using a slight variant of the procedure in [2,
Theorem 4], the idea is the following:
1. Cut Σ along an approximate cut graph, yielding a disk D with boundary

∂D.
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2. Find shortest paths between certain vertices of ∂D. This defines the N and
S boundaries of the bricks.

3. Find shortest paths between vertices of the previous paths. These paths are
called the columns.

4. Take every κth path found in the last step. These paths are called the su-
percolumns and form the E and W boundaries of the bricks. The constant
κ is called the spacing of the supercolumns.

This leads to the following theorem to compute the mortar graph in time
O(g2n logn). The proof, very similar to the one in [2, Theorem 2], is omitted.

Theorem 2. Let ε > 0 and G be a graph embedded on Σ of genus g. There
exists α = O(log2 gε−1) such that there is a mortar graph MG(G, ε) of G such
that �(MG) ≤ αOPT and the supercolumns of MG have length ≤ εOPT with
spacing κ = O(log2 gε−3). This mortar graph can be found in O(g2n logn) time.

3 Structure Theorem

In this section, we prove the structure theorem, which shows that there exists an
ε-approximation to the optimal cut graph which only crosses the mortar graph
at a small subset of vertices called portals.

In order to state this theorem, following the literature, we define a brick-copy
operation B+ as follows. For each brick B, a subset of θ vertices is chosen as
portals such that the distance along ∂B between any vertex and the closest
portal is at most �(∂B)/θ. For every brick B, embed B in the corresponding
face of MG and connect every portal of B to the corresponding vertex of MG
with a zero-length portal edge; this defines B+(MG, θ). The edges originating
from MG are called the mortar edges.

We note that by construction, B+(MG, θ) embeds on the plane in such a
way that every brick of B+(MG, θ) is included in the corresponding brick of
MG. Furthermore, every vertex of G corresponds to a vertex of B+(MG, θ)
by mapping the insides of bricks to the insides of bricks in B+(MG, θ), and
the mortar graph to itself, cf. Figure 1. We denote this map by i : V (G) →
V (B+(MG, θ)).

Moreover, we contract the E and W boundaries of each brick of B+(MG, θ)
and their copies in the mortar graph. Since the sum of the length of the E and

Fig. 1. The different stages of the brick decomposition of a graph G, the mortar graph,
the set of bricks and the graph B+(MG, θ).
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W boundaries is at most εOPT , any solution of length � in B+(MG, θ) going
through a vertex resulting from a contraction can be transformed into a solution
of length at most � + 2εOPT in B+(MG, θ) where no edge is contracted. The
structure theorem is then the following:

Theorem 3. Let G be a graph embedded on Σ of genus g, and ε > 0. Let
MG(G, ε) be a corresponding mortar graph of length at most αOPT and su-
percolumns of length at most εOPT with spacing κ. There exists a constant
θ(α, ε, κ) depending polynomially on α, 1/ε and κ such that:

OPT(B+(MG, θ)) ≤ (1 + cε)OPT.

The proof of this theorem essentially consists in plugging in the structure
theorem of [3] and verifying that it fits. Let us first recall the structural theorem
of bricks [3]. For a graph H and a path P ⊆ H , a joining vertex of H with P is
a vertex in P that lies on an edge of H \ P .

Theorem 4. [3, Theorem 10.7] Let B be a brick, and F be a set of edges of B.

There is a forest F̃ in B with the following properties:
1. If two vertices of N ∪ S are connected by F , they are also connected by F̃ ,
2. The number of joining vertices of F̃ with both N and S is bounded by γ(κ, ε),

3. �(̃(F )) ≤ �(F )(1 + cε).
In the above, γ(κ, ε) = o(ε−2.5κ) and c is a fixed constant.

From this we can deduce the following proposition, and we proceed to the
proof of the structure theorem.

Proposition 1. Let C be a subgraph of G of length OPT . There exists a con-
stant θ(α, ε, κ) depending polynomially on α, 1/ε and κ and a subgraph Ĉ of
B+(MG, θ) with the following properties:

– �(Ĉ) ≤ (1 + c̃ε)�(C) = (1 + c̃ε)OPT , where c̃ is a fixed constant.
– If we denote by D the closed disk on which MG has been constructed, for

any two vertices s, t ∈ ∂D that are connected by C in D, i(s) and i(t) are

connected by Ĉ in D as well.

Proof of Theorem 3. Let C be an optimal cut graph of (Σ,G). We apply Propo-

sition 1 to C, it yields a subgraph Ĉ of B+(MG, θ) of length �(Ĉ) ≤ (1+ε)�(C).

We claim that this graph Ĉ contains a cut graph of Σ.
Suppose on the contrary that there exists a non-contractible cycle γ in (Σ,

B+(MG, θ)) which does not cross Ĉ. This cycle γ corresponds to a cycle γ′ in
(Σ,G) by contracting portal edges, and since C is a cut graph, there exists a
maximal subpath P of C restricted to D and a maximum subpath P ′ of γ′ in D
such that P ′ crosses P an odd number of times, otherwise, by flipping bigons we
could find a cycle homotopic to γ′ not crossing C. Denote by (s, t) and (s′, t′)
the intersections of P and P ′ with ∂D. Then, without loss of generality, s, s′,
t and t′ appear in this order on ∂D. Furthermore, the vertices i(s) and i(t) in

B+(MG, θ) are connected by Ĉ by Proposition 1, since s and t are connected

by C. Therefore, γ crosses Ĉ, and we reach a contradiction.
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4 Algorithm

We now explain how to apply the spanner framework of Borradaile et al. in [2] to
compute an approximation of the optimal cut graph. We start by computing the
optimal Steiner tree, for each subset of the portals in every brick by using the
algorithm or Erickson et al. [9], and then take the union of all these trees over
all bricks, plus the edges of the mortar graph. As this algorithm runs in time
O(nk3), this step takes time Og,ε(n). This defines the graphGspan, which by con-

struction has length ≤ f(g, ε)OPT , where f(g, ε) = O(2θ) = 2O(log2 g)poly(1/ε),
and contains a (1 + ε) approximation of the optimal cut graph by the structure
theorem.

We will use the following theorem of Demaine et al. [6, Theorem 1.1] (the
complexity of this algorithm can be improved to Og(n) [5]).

Theorem 5. For a fixed genus g, any k ≥ 2 and any graph G of genus at most
g, the edges of G can be partitioned into k sets such that contracting any one
of the sets results in a graph of tree-width at most O(g2k). Furthermore, the
partition can be found in time O(g5/2n3/2 logn) time.

The four steps of the framework are now the following.
1. Compute the spanner Gspan.
2. Apply Theorem 5 with k = f(g, ε)/ε, and contract the edges in the set of

the partition with the least weight. The resulting graph Gtw has tree-width
at most O(g2ε−1f(g, ε)).

3. Use the bounded tree-width to compute a cut graph of (Σ,Gtw). An algo-
rithm to do this is described in Section 5.

4. Incorporate the contracted edges back. By definition, they have length at
most f(g, ε)OPT/k = εOPT . Therefore, the final graph we obtain has the
desired length. If the resulting graph has more than one face, remove edges
until we obtain a cut-graph.

We now analyze the complexity of this algorithm. The spanner is computed
in time Og,ε(n logn). Using [5], the second step takes time Og,ε(n). Dynamic
programming takes time Og,ε(n

3) (see thereafter), and the final lifting step takes
linear time. Assuming the dynamic programming step described in the next
section, this proves Theorem 1.

5 Computing Cut Graphs for Bounded Tree-Width

There remains to prove that computing the optimal cut graph of (Σ,G) is fixed
parameter tractable with respect to both the tree-width of G and the genus of
Σ as a parameter. Out of convenience, we work with the branch-width instead,
which gives the result since they are within a constant factor [16, Theorem 5.1].
As cut graphs are a topological object, we will rely on surface-cut decomposi-
tions [17], which are a topological strengthening of branch decompositions. Note
that, for reasons which will be clear later, our definition is slightly different from
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the one of Rué, Sau and Thilikos as it does not rely on polyhedral decomposi-
tions.

Given a graph G embedded in a surface Σ of genus G, a surface-cut decom-
position of G is a branch decomposition (T, μ) of G such that for each edge
e ∈ E(T ), the vertices in mid(e) are contained in a set N of nooses in Σ such
that:
– |N | = O(g) and θ(N ) = O(g)
– The nooses in N pairwise intersect only at subsets of mid(e)
– Σ \⋃N contains exactly two connected components, of which closures con-

tain respectively G1 and G2.

where θ is defined as follows: for a point p in Σ, if we denote by N (p) the number
of nooses in N containing p, and let P (N ) = {p ∈ Σ | N (p) ≥ 2}, we define

θ(N ) =
∑

p∈P (N )

N (p) − 1.

Rué et al. showed how to compute such a surface-cut decomposition when the
input graph G is embedded polyhedrally on the surface Σ:

Theorem 6 ([17, Theorem 7.2]). Given a graph G on n vertices polyhedrally
embedded on a surface of genus g and with bw(G) ≤ k, one can compute a
surface-cut decomposition of G of width O(g + k) in time 2O(k)n3.

When the input graph is not polyhedral, Rué et al. propose a more intricate
version of surface-cut decompositions relying on polyhedral decompositions, but
it is unclear how to incorporate these in a dynamic program to compute optimal
cut graphs.

Instead, we present two ways to circumvent polyhedral decompositions and
use these surface-cut decompositions directly. The first one consists of observing
that the difficulties involved with computing surface-cut decompositions of non-
polyhedral embeddings can be circumvented by using a theorem of Inkmann [11].
Since Inkmann’s theorem has, up to our knowledge, not been published outside
of his thesis, and the proof is quite intricate, for the sake of clarity we also provide
a different approach, based on modifying the input graph to make it polyhedral.

In both cases, we obtain a branch decomposition with a strong topological
structure, which we can then use as a basis for a dynamic program to compute
the optimal cut graph.

5.1 A Simpler Version of Surface-Cut Decompositions

The algorithm [17, Algorithm 2] behind the proof of Theorem 6 relies on the
following steps. Starting with a polyhedral embedding of G on a surface,
1. Compute a branch decomposition branch(G) of G.
2. Transform branch(G) into a carving decomposition carv(G) of MG.
3. Transform carv(G) into a bond carving decomposition bond(G) of MG.
4. Transform bond(G) into a branch decomposition of G.
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The second step is the only one where where the polyhedrality of the embed-
ding is used, as it relies on the following lemma:

Lemma 1 ([17, Lemma 5.1]). Let G be a polyhedral embedding on a surface
Σ of genus g, and MG be the embedding of the medial graph. Then bw(G) ≤
cw(MG)/2 ≤ 6bw(G) + 4g +O(1), and the corresponding carving decomposition
of MG can be computed from the branch decomposition of G in linear time.

We observe that the following theorem of Inkmann shows that the branch-
width of a surface-embedded graph and the carving-width of its medial graph
are tightly related, even for non-polyhedral embeddings.

Theorem 7 ([11, Theorem 3.6.1]). For every surface Σ there is a non-
negative constant c(Σ) such that if G is embedded on Σ with |E(G)| ≥ 2 and
MG is its medial graph, we have 2bw(G) ≤ cw(M) ≤ 4bw(G) + c(Σ).

Digging into the proof reveals that c(Σ) = O(g2) for Σ of genus g. The idea
is therefore that replacing Lemma 5.1 of Thilikos et al. by Theorem 7 allows
us to lift the requirement of polyhedral embedding in their construction. One
downside is that this theorem does not seem to be constructive, and therefore we
need an alternative way to compute the carving decomposition in step 2. This
can be achieved in fixed parameter tractable time with respect to the carving-
width (and linear in n) using the algorithm of Thilikos et al. [18]. In conclusion,
we obtain the following corollary (note that the bottleneck in the complexity
is the same as in the one of Rué et al., which is the transformation between a
carving and a bond carving decomposition).

Corollary 1. Given a graph G on n vertices embedded in a surface of genus g
with bw(G) ≤ k, there exists an algorithm running in time Ok(n

3) computing a
surface-cut decomposition (T, μ) of G of width at most O(k + g2).

5.2 Making a Graph Polyhedral

In this section, we show how to go from an embedded graph to a polyhedral
embedding, without increasing the tree-width too much. The construction will
be split in several lemmas. The proofs of the three following lemmas are omitted.
The proofs of Lemma 3 and 4 rely on a theorem of Mazoit [13] connecting the
tree-width of a graph embedded on a surface and the one of its dual.

Lemma 2. Let G be a graph of tree-width at most k ≥ 2, embedded on a surface
of genus g. Then there exists a triangulation of G of tree-width at most k. More-
over, given a tree-decomposition of width k, one can compute a triangulation of
G of tree-width at most k in polynomial time.

Lemma 3. Let G be a triangulated graph of tree-width at most k, embedded on
a surface of genus g. Then its barycentric subdivision B(G) has tree-width at
most f(k, g) for some function f .



396 V. Cohen-Addad and A. de Mesmay

Lemma 4. Let G be a triangulated graph of tree-width at most k, embedded on
a surface of genus g. Let MG denote the medial graph of G, and G′ the superpo-
sition of G and MG. Then the tree-width of G′ is bounded by some function of
k and g.

Now, we observe that superposing medial graphs two times increases the
length of non-contractible nooses of a graph. Furthermore, if the new edges
are weighted heavily enough (e.g., with a weight larger than OPT, which we
know how to approximate), they will not change the value of the optimal cut
graph1. Therefore this allows us to assume that the embedded graph of which
we want to compute an optimal cut graph has only non-contractible nooses of
length at least three. By subdividing it to remove loops and multiple edges and
triangulating it, we can also assume that it is 3-connected (since the link of every
vertex of a triangulated simple graph is 2-connected), and therefore that it is
polyhedral.

For a polyhedral embedding, our definition of surface-cut decompositions and
the one of Thilikos et al. [17] coincide, and therefore we can use their algorithm
to compute it.

5.3 Dynamic Programming on Surface-Cut Decompositions

We now show how to compute an optimal cut graph of an embedded graph
of bounded branch-width, using surface-cut decompositions. We first recall the
following lemma of Erickson et al. which follows from Euler’s formula and allows
us to bound the complexity of the optimal cut graph. For a graph H embedded
on a region R, we define its reduced graph to be the embedded graph obtained by
repeatedly removing from G the degree 1 vertices which are not on a boundary
and their adjacent edges, and contracting each maximal path through degree 2
vertices to a single edge (weighted as the length of the path).

Lemma 5 ([8, Lemma 4.2]). Let Σ be a surface of genus g. Then any reduced
cut graph on Σ has less than 4g vertices and 6g edges.

The idea is then to compute in a dynamic programming fashion, for every
region R of the surface-cut decomposition, every possible combinatorial map M
corresponding to the restriction of a reduced cut graph of Σ to R, and every
possible position P of the vertices of the boundary of M on the boundary of R,
the shortest reduced graph embedded on R with map M and position P . The
bounds on the size of the boundaries of the region (coming from the definition
of surface-cut decompositions), as well as Lemma 5 allow us to bound the size
of the dynamic table, the proof is omitted.

Theorem 8. If a graph G of complexity n embedded on a genus g surface has
branch-width at most k, an optimal cut graph of G can be computed in time
Og,k(n

3).

1 When an edge is cut in two halves, the weight is spread in half on each sub-edge.
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Abstract. Deterministic constructions of expander graphs have been
an important topic of research in computer science and mathematics,
with many well-studied constructions of infinite families of expanders. In
some applications, though, an infinite family is not enough: we need ex-
panders which are “close” to each other. We study the following question:
Construct an an infinite sequence of expanders G0, G1, . . . , such that for
every two consecutive graphs Gi and Gi+1, Gi+1 can be obtained from
Gi by adding a single vertex and inserting/removing a small number of
edges, which we call the expansion cost of transitioning from Gi to Gi+1.
This question is very natural, e.g., in the context of datacenter networks,
where the vertices represent racks of servers, and the expansion cost cap-
tures the amount of rewiring needed when adding another rack to the
network. We present an explicit construction of d-regular expanders with
expansion cost at most 5d

2
, for any d ≥ 6. Our construction leverages the

notion of a “2-lift” of a graph. This operation was first analyzed by Bilu
and Linial [1], who repeatedly applied 2-lifts to construct an infinite fam-
ily of expanders which double in size from one expander to the next. Our
construction can be viewed as a way to “interpolate” between Bilu-Linial
expanders with low expansion cost while preserving good edge expansion
throughout.

1 Introduction

Expander graphs (aka expanders) have been the object of extensive study in the-
oretical computer science and mathematics (see e.g. the survey of [2]). Originally
introduced in the context of building robust, high-performance communication
networks [3], expanders are both very natural from a purely mathematical per-
spective and play a key role in a host of other applications (from complexity
theory to coding). While d-regular random graphs are, in fact, very good ex-
panders [4, 5], many applications require explicit, deterministic constructions of
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expanders.1 Consequently, a rich body of literature in graph theory deals with
deterministic constructions of expanders, of which the best known examples
are Margulis’s construction [6] (with Gabber and Galil’s analysis [7]), algebraic
constructions involving Cayley graphs such as that of Lubotzky, Phillips, and
Sarnak [8], constructions that utilize the zig-zag product [9], and constructions
that rely on the concept of 2-lifts [1, 10].

All of these constructions generate an infinite family of d-regular expanders.
However, for important applications of expanders that arise in computer net-
working, this is not enough. Our primary motivating example are datacenters,
which network an unprecedented number of computational nodes and are the
subject of much recent attention in the networking research community. Consider
a datacenter network represented as a graph, in which each vertex represents a
rack of servers, and edges represent communication links between these racks
(or, more accurately, between the so-called “top-of-rack switches”). Expanders
are natural candidates for datacenter network topologies as they fare well with
respect to crucial objectives such as fault-tolerance and throughput [3, 2]. How-
ever, the number of racks n in a datacenter grows regularly as new equipment
is purchased and old equipment is upgraded, calling for an expander construc-
tion that can grow gracefully (see discussion of industry experience in [11], and
references therein).

We hence seek expander constructions that satisfy an extra constraint: in-
cremental growth, or expandability. When a new rack is added to an existing
datacenter, it is impractical to require that the datacenter be entirely rewired
and reconfigured. Instead, adding a new rack should entail only a small num-
ber of local changes, leaving the vast majority of the network intact. From a
theoretical perspective, this boils down to requiring that the construction of ex-
panders not only work for all n, but also involve very few edge insertions and
deletions from one expander to the next.

Our aim, then, is to explicitly construct an infinite family of expanders such
that (1) every member of the family has good (edge) expansion; and (2) every
member of the family can be obtained from the previous member via the addition
of a single vertex and only “a few” edge insertions and deletions. Can this be
accomplished? What are the inherent tradeoffs (e.g., in terms of edge expansion
vs. number of edge insertions/deletions)? We formalize this question and take
a first step in this direction. Specifically, we present the first construction of
explicit expanding expanders and discuss its strengths and limitations.

1.1 Our Results and Techniques

We formally define edge expansion and expansion cost in Section 2. We now pro-
vide an informal exposition. The edge expansion of a set of vertices is the number
of edges leaving the set divided by the size of the set, and the edge expansion of
a graph is the worst-case edge expansion across all sets. The expansion cost for a
graph Gi on n vertices {1, . . . , n} and graph Gi+1 on n+1 vertices {1, . . . , n+1}
1 Throughout this paper we will use “explicit” and “deterministic” interchangeably.
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is the number of edge insertions and removals required to transition from Gi to
Gi+1. The expansion cost of a family of graphs {Gi = (Vi, Gi)}, where Vi+1 is the
union of Vi and an additional vertex, is the worst-case expansion cost across all
consecutive pairs of graphs in the family. Observe that adding a new vertex to a
d-regular graph while preserving d-regularity involves inserting d edges between
that vertex and the rest of the graph, and removing at least d

2 edges to “make

room” for the new edges. Hence, 3d
2 is a lower bound on the expansion cost of

any family of d-regular graphs.
Our main result is an explicit construction of an infinite family of d-regular

expanders with very good edge expansion and small expansion cost:

Theorem 1. For any even degree d ≥ 6, there exists an infinite sequence of
explicitly constructed d-regular expanders {Gi = (Vi, Ei} such that

1. |V0| = d
2 + 1, and for every i ≥ 0, |Vi+1| = |Vi|+ 1.

2. The edge expansion of Gi is at least d
3 −O(

√
d log3 d) for every i ≥ 0.

3. The expansion cost of the family {Gi} is at most 5d
2 .

The attentive reader might notice that we claim our graphs are d-regular,
yet the number of vertices of the first graph in the sequence, G0, is only

d
2 + 1.

This seeming contradiction is due to our use of multigraphs, i.e., graphs with
parallel edges. In particular, G0 is the complete graph on d

2 + 1 vertices, but
where every two vertices are connected by 2 parallel edges. While expanders are
traditionally simple graphs, all nice properties of d-regular expanders, including
the relationships between edge and spectral expansion, continue to hold with
essentially no change for d-regular “expander multigraphs”.

Our construction technique is to first deterministically construct an infinite
sequence of “extremely good” expanders by starting at K d

2+1 and repeatedly

“2-lifting” the graph [1]. This standard and well-studied approach to explicitly
constructing an infinite sequence of expanders was introduced in the seminal
work of Bilu and Linial [1]. However, as every 2-lift doubles the size of the graph,
this construction can only generate expanders on n vertices where n = 2i(d2 +1)
for some i ≥ 1. We show how to “interpolate” between these graphs. Intuitively,
rather than doubling the number of vertices all at once, we insert new vertices
one at a time until reaching the next Bilu-Linial expander in the sequence. Our
construction and proof crucially utilize the properties of 2-lifts, as well as the
flexibility afforded to us by using multigraphs.

While our main focus is on centralized constructions for use as datacenter net-
works, the fact that our construction is deterministic also allows for improved
expander constructions in some distributed models. Most notably, we get im-
proved “self-healing” expanders. In the self-healing model, nodes are either in-
serted or removed into the graph one at a time, and the algorithm must send
logarithmic-size messages between nodes (in synchronous rounds) in order to
recover to an expander upon node insertion or removal. Clearly small expansion
cost is a useful property in this context. The best-known construction of self-
healing expanders [12] gives an expander with edge expansion of at least d/20000,
O(1) maximum degree, O(1) topology changes, and O(log n) recovery time and
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message complexity (where the time and complexity bounds hold with high prob-
ability, while the other bounds hold deterministically). Our construction gives a
self-healing expander with two improvements: much larger edge expansion (ap-
proximately d/6 rather than d/20000), and deterministic complexity bounds. In
particular, we prove the following theorem:

Theorem 2. For any d ≥ 6, there is a self-healing expander which is completely
deterministic, has edge expansion at least d/6 − o(d), has maximum degree d,
has O(d) topology changes, and has recovery time and message complexity of
O(log n).

1.2 Related Work

The immediate precursor of this paper is a recent paper of Singla et al. [11],
which proposes random graphs as datacenter network topologies. [11] presents
a simple randomized algorithm for constructing a sequence of random regular
graphs with small expansion cost. While using random graphs as datacenter
topologies constitutes an important and thought-provoking experiment, the in-
herent unstructuredness of random graphs poses obstacles to their adoption in
practice. Our aim, in contrast, is to explicitly construct expanders with provable
guarantees on edge expansion and expansion cost.

The deterministic/explicit construction of expanders is a prominent research
area in both mathematics and computer science. See the survey of Hoory, Linial,
andWigderson [2]. Our approach relies on the seminal paper of Bilu and Linial [1],
which proposed and studied the notion of 2-lifting a graph. They proved that
when starting with any “good” expander, a random 2-lift results in another
good expander and, moreover, that this can be derandomized. Thus [1] provides a
means to deterministically construct an infinite sequence of expanders: start with
a good expander and repeatedly 2-lift. All expanders in this sequence are proven
to be quasi-Ramanujan graphs, and are conjectured to be Ramanujan graphs
(i.e., have optimal spectral expansion). Marcus, Spielman, and Srivastava [10]
recently showed that this is indeed essentially true for bipartite expanders.

There has been significant work on using expanders in peer-to-peer networks
and in distributed computing. See, in particular, the continuous-discrete ap-
proach of Naor and Wieder [13], and the self-healing expanders of [12]. The
main focus of this line of research is on the efficient design of distributed sys-
tems, and so the goal is to minimize metrics like the number of messages between
computational nodes, or the time required for nodes to join/leave the system.
Moreover, the actual degree does not matter (since edges are logical rather than
physical links), as long as it is constant. Our focus, in contrast, is on centralized
constructions that work for any fixed degree d.

2 Preliminaries: Expander Graphs and Expansion Cost

All missing proofs can be found in the full version [14]. We adopt most of our
notation from the survey of Hoory, Linial, and Wigderson on expanders [2].
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Throughout this paper the graphs considered are multigraphs without self-loops,
that is, may have parallel edges between any two vertices. We will commonly
treat a multigraph as a weighted simple graph, in which the weight of each edge
is an integer that specifies the number of parallel edges between the appropriate
two vertices. Given such a weighted graph G = (V,E,w), let n = |V | and say
that G is d-regular if every vertex in V has weighted degree d. We let N(u) =
{v ∈ V : {u, v} ∈ E} be the neighborhood of vertex u for any vertex u ∈ V .
Traditionally, expanders are defined as simple graphs, but it is straightforward
to see that all standard results on expanders used here continue to hold for
multigraphs.

Expansion: For S, T ⊆ V , let E(S, T ) denote the multiset of edges with one
endpoint in S and one endpoint in T , and let S̄ = V \ S. If G = (V,E,w)
is a d-regular multigraph, then for every set S ⊆ V with 1 ≤ |S| ≤ n

2 the edge

expansion (referred to simply as the expansion) of S is hG(S) =
|E(S,S̄)|

|S| . We will

sometimes omit the subscript when G is clear from context. The edge expansion
of G is h(G) = minS⊆V :1≤|S|≤n

2
hG(S). We say that G is an expander if h(G) is

large. In particular, we want h(G) to be at least d/c for some constant c.
While much of our analysis is combinatorial, we also make extensive use of

spectral analysis. Given a multigraph G, the adjacency matrix of G is an n× n
matrix A(G) in which the entry Aij specifies the number of edges between vertex
i and vertex j. We let λ1(G) ≥ λ2(G) ≥ · · · ≥ λn(G) denote the eigenvalues of
A(G), and let λ(G) = max{λ2(G), |λn(G)|}.

Cheeger’s inequality (the discrete version) enables us relate the eigenvalues of
a (multi)graph G to the edge expansion of G:

Theorem 3. d−λ2

2 ≤ h(G) ≤ √
2d(d− λ2).

We will also use the Expander Mixing Lemma, which, informally, states that
the number of edges between any two sets of vertices is very close to the expected
number of edges between such sets in a random graph.

Theorem 4 ([15]).
∣∣∣|E(S, T )| − d|S||T |

n

∣∣∣ ≤ λ
√|S||T | for all S, T ⊆ V .

Bilu-Linial: The construction of d-regular expanders using “lifts”, due to Bilu
and Linial [1], plays a key role in our construction. Informally, a graph H is
called a k-lift of a (simple) graph G if every vertex in G is replaced by k vertices
in H , and every edge in G is replaced with a perfect matching between the two
sets of vertices in H that represent the endpoints of that edge in G. To put
this formally: a graph H is called a k-lift of graph G if there is a function π :
V (H) → V (G) such that the following two properties hold. First, |π−1(u)| = k
for all u ∈ V (G). Second, if {u, v} ∈ E(G) then for every x ∈ π−1(u) there is
exactly one y ∈ π−1(v) such that {x, y} ∈ E(H).

We call the function π the assignment function for H . We follow Bilu and
Linial in only being concerned with 2-lifts. Observe that if H is a 2-lift of G
then |V (H)| = 2|V (G)| and |E(H)| = 2|E(G)|, and furthermore that if G is
d-regular then so is H . Bilu and Linial proved that when starting out with a
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d-regular expander G that also satisfies a certain sparsity condition (see Corol-
lary 3.1 in [1]), one can deterministically and efficiently find a 2-lift H where

λ(H) ≤ O(
√

d log3 d) and moreover H continues to satisfy the sparsity con-
dition. As Kd+1 (the d-regular complete graph on d + 1 vertices) satisfies the
sparsity condition, starting out with Kd+1 and repeatedly 2-lifting generates a
deterministic sequence of d-regular expanders, each of which twice as large as

the previous, with edge expansion at least
d−O(

√
d log3 d)

2 throughout (see also
Theorem 6.12 in [2]).

Incremental Expansion: We will also be concerned with the expansion cost
of an infinite family of expander (multi)graphs. Given two sets A,B, let A�B =
(A \ B) ∪ (B \ A) denote their symmetric difference. Let G = G1, G2, . . . be an
infinite family of d-regular expanders, where V (Gi) ⊂ V (Gi+1) for all i ≥ 1.

Definition 5. The expansion cost of G is α(G) = maxi≥1 |E(Gi)�E(Gi+1)|.
As our focus is on multigraphs, the edge sets are in fact multisets, and so the

expansion cost is the change in weight from Gi to Gi+1. Slightly more formally,
if we let xe

i denote the number of copies of edge e in E(Gi), we have that α(G) =
maxi≥1

∑
e∈E(Gi+1)∪E(Gi)

|xi
e−xi+1

e |. Observe that the expansion cost is defined
for any infinite sequence of graphs, and that a large gap in size from one graph
to the next trivially implies a large expansion cost. We restrict our attention
henceforth to constructions that generate a d-regular graph on n vertices for
every integer n. We observe that the expansion cost of any such sequence is at
least 3d

2 , since E(Gi+1) \ E(Gi) must contain d edges incident to the vertex in

V (Gi+1) \V (Gi), and in order to maintain d-regularity there must be at least d
2

edges in E(Gi) \ E(Gi+1).

3 Construction and Some Observations

We now formally present our construction of the sequence G of d-regular ex-
panders and prove some simple properties of this construction.

We begin with the complete graph on d
2 + 1 vertices and assign every edge a

weight of 2. This will serve as the first graph in G. To simplify exposition, we
will refer to this graph as G d

2+1. In general, the subscript i in graph Gi ∈ G
will henceforth refer to the number of vertices in Gi. Clearly, G d

2+1 is d-regular

and has edge expansion d
2 . We now embed the Bilu-Linial sequence of graphs

starting from G d
2+1 in G: for every i ≥ 0, let G2i+1( d

2+1) be the 2-lift of G2i( d
2+1)

guaranteed by [1] to have λ(G2i( d
2+1)) ≤ O(

√
d log3 d) (recall that the next graph

in the sequence can be constructed in polynomial time). Assign weight 2 to every
edge in this sequence of expanders. We refer to graphs in this subsequence of
G as BL expanders, since they are precisely d/2-regular BL expanders in which
every edge is doubled. Thus each BL expander is d-regular and by the Cheeger

inequality has edge expansion at least d
2 −O(

√
d log3 d).

We let G∗
i denote G2i( d

2+1). We know, from the definition of a 2-lift, that for

each i there exists a function π : V (G∗
i+1) → V (G∗

i ) which is surjective and has
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|π−1(u)| = 2 for all u ∈ V (G∗
i ). As we want that V (G∗

i ) ⊂ V (G∗
i+1), we identify

one element of π−1(u) with u, i.e. for each u ∈ V (G∗
i ) we will assume (without

loss of generality) that u ∈ V (G∗
i+1) and π(u) = u.

To construct the infinite sequence G it is clearly sufficient to show how to
create appropriate expanders for all values of n between 2i(d2+1) and 2i+1(d2+1)
for an arbitrary i. Fix some i ≥ 0, let π : V (G∗

i+1) → V (G∗
i ) be the assignment

function for the BL expanders, and initialize the sets S = ∅ (called the split
vertices) and U = V (G∗

i ) (called the unsplit vertices). We apply the following
algorithm to construct Gn+1 from Gn, starting with n = 2i(d2 +1) and iterating

until n = 2i+1(d2 + 1)− 1.

1. Splitting a vertex u into u and u′. Let u be an arbitrary unsplit vertex.
We let the new vertex in Gn+1 that is not in Gn be u′, the vertex in π−1(u)
that is not u. Let S(u) = S ∩N(u) be the neighbors of u that have already
split, and let U(u) = U ∩N(u) be the neighbors of u that are unsplit. Here
the neighborhood N(u) is with respect to Gn.

2. Inserting edges from u and u′ to unsplit neighbors. For every v ∈
U(u), replace the edge from u to v (which we prove later always exists) with
an edge from u to v of weight 1 and an edge from u′ to v of weight 1.

3. Inserting edges from u and u′ to split neighbors. For every pair of
vertices v, v′ ∈ S(u) with π(v) = π(v′), decrease the weight of {v, v′} by 1
and do one of the following:
– if {u, v} ∈ E(G∗

i+1), assign {u, v} a weight of 2, remove {u, v′}, and add
an edge {u′, v′} of weight 2;

– otherwise (that is, {u, v′} ∈ E(G∗
i+1)), assign {u, v′} a weight of 2, re-

move {u, v}, and add an edge {u′, v} of weight 2.
4. Inserting edges between u and u′. Add an edge between u and u′ of

weight |U(u)|.
5. Mark u and u′ as split. Remove u from U , add u and u′ to S.

We prove the following simple invariants. We will refer to two vertices u, v
as paired if π(u) = π(v). Together, these lemmas imply that the algorithm
is well-defined and that we have an infinite sequence of d-regular graphs that
interpolates between BL expanders.

Lemma 6. Let u, u′ be paired vertices with π(u) = π(u′) = u. Then throughout
the execution of the algorithm, edge {u, u′} exists if u has already split and if
there are neighbors of u which are unsplit. If {u, u′} exists then it has weight
equal to the number of neighbors of u that are unsplit.

Lemma 7. Edges between unpaired split vertices always have weight 2, edges
between unsplit vertices always have weight 2, and edges with one endpoint unsplit
and one split have weight 1.

Lemma 8. Every vertex has weighted degree d throughout the execution of the
algorithm.

Lemma 9. When all vertices have split, G is precisely G∗
i+1 in which all edges

have weight 2.
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4 Analysis: Expansion and Expansion Cost

We next prove that that the expansion cost of our construction is small, and the
edge expansion throughout is good. Specifically, we prove that the expansion cost
is at most 5

2d, and then prove some combinatorial lemmas which will immediately

imply that the edge expansion is at least d
4 −O(

√
d log3 d). We show in Section 5

how this bound on edge expansion can be improved to a tight lower bound

of d
3 − O(

√
d log3 d) via a more delicate, spectral analysis combined with the

combinatorial lemmas from this section.
We begin by analyzing the expansion cost.

Theorem 10. α(G) ≤ 5
2d.

Proof. Suppose Gn+1 is obtained from Gn by splitting vertex u into u and u′.
The transition from Gn to Gn+1 entails the following changes in edge weights:

– A change of 2 in edge weights per vertex in U(u). Each edge from
vertex u to a vertex v ∈ U(u) changes its weight from 2 to 1 and an additional
edge of weight 1 is added from u′ to v, so there are 2 edge changes per vertex
in U(u).

– A change of 5 in edge weights for every two paired vertices in S(u).
Every pair of edges in Gn (of weight 1) from u to paired vertices v, v′ in S(u)
is replaced by a pair of edges between u, u′ and v, v′, each of weight 2, which
results in a total change in edge weights of 4: 1 for increasing the weight of
one of u’s outgoing edges to the pair v, v′ from 1 to 2, 1 for decreasing an
edge of u’s other outgoing edge from 1 to 0, and 2 for the new edge from u′

the pair v, v′. In addition, the weight of the edge (v, v′) is decreased by 1.
So, each pair of vertices in S(u) induces a total change of 5 in edge weights.

– An additional change of |U(u)| in edge weights. An edge of weight
|U(u)| is added between u and u′.

Hence, |E(Gn)�E(Gn+1| = 2|U(u)|+5|S(u)|/2+ |U(u)| = 3|U(u)|+(5|S(u)|
/2). As 2|U(u)|+|S(u)| = d by Lemma 8, this concludes the proof of the theorem.

�
This analysis is tight for our algorithm. At some point in the execution of the

algorithm, some vertex u will be split after all of its neighboring vertices have
already been split. As this entails a change in weight of 5 for each of the d

2 paired
vertices in S(u), the resulting total change in edge weights will be 5

2d.

4.1 Edge Expansion

We show, via a combinatorial argument, that every member of our sequence of

graphs G has edge expansion at least d
4 − O(

√
d log3 d). To this end, we show

that for every n between 2i(d2 +1) and 2i+1(d2 +1), the graph G = Gn = (V,E)

has edge expansion at least d
4 − O(

√
d log3 d). We will then show in Section 5

how this lower bound on edge expansion can be tightened to d
3 − O(

√
d log3 d)

via spectral analysis combined with the combinatorial lemmas proved here.
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Theorem 11. For every G ∈ G, h(G) ≥ d
4 −O(

√
d log3 d).

We now prove Theorem 11. Let S ⊆ V denote the set of vertices that have
already split in G, and let U ⊆ V be the set of vertices that are currently
unsplit. Let H = (VH , EH) = G∗

i+1 be the next BL expander in the sequence
and let π be its assignment function (note that the range of π is the vertices of
the previous BL expander, which includes the vertices U in G). For any subset
A ⊆ V , let F (A) ⊆ VH denote the “future” set of A, in which all unsplit
vertices in A are split and both vertices appear in F (A). More formally, F (A) =
(A ∩ S) ∪ (∪u∈A∩Uπ

−1(u)). For X,Y ⊆ VH with X ∩ Y = ∅, let wH(X,Y )
denote the total edge weight between X and Y in H . Lastly, for A,B ⊆ V with
A ∩ B = ∅ we define wG(A,B) similarly, except that we do not include edge
weights between paired vertices. Our proof proceeds by analyzing wG(A,B) for
all possible different subsets of vertices A,B in G. As wG(A,B) only reflects the
edge weights in G between non-paired vertices, the proof below lower bounds
the actual edge expansion (which also includes weights between paired vertices).

Lemma 12. If A,B ⊆ S with A ∩B = ∅, then wH(F (A), F (B)) = wG(A,B).

Lemma 13. If A,B ⊆ U with A∩B = ∅, then wH(F (A), F (B)) = 2 ·wG(A,B).

Lemma 14. If A ⊆ S and B ⊆ U , then wH(F (A), F (B)) = 2 · wG(A,B).

Combining these lemmas proves that every cut in G has weight at least half
of that of the associated “future” cut, since we can divide any cut in G into split

and unsplit parts. This implies Theorem 11 as h(H) ≥ d
2 −O(

√
d log3 d).

Lemma 15. If (A, Ā) is a cut in G, then wG(A, Ā) ≥ 1
2wH(F (A), F (Ā)).

5 Improved Edge Expansion Analysis

We proved in Section 4.1 that our sequence of graphs has edge expansion at least
d
4 −O(

√
d log3 d). We next apply spectral analysis to improve this lower bound.

Theorem 16. For every G ∈ G, h(G) ≥ d
3 −O(

√
d log3 d).

Interestingly, while we prove this theorem by using spectral properties of Bilu-
Linial expanders, we cannot prove such a theorem through a direct spectral
analysis of the expanders that we generate.

Theorem 17. For any ε > 0, there are an infinite number of graphs G ∈ G
which have λ2(G) ≥ d/2− ε.

This implies that if we want to lower bound h(G) by using Theorem 3 (the
Cheeger inequalities), the best bound we could prove would be d/4. Thus The-
orem 16 beats the eigenvalue bound for this graph.

We now begin our proof of Theorem 16. We use the same terminology and
notation as in the proof of Theorem 11. The key to improving our analysis lies
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in leveraging the fact that H = G∗
i+1, the next BL expander in the sequence

of graphs G, is a strong spectral expander (i.e., λ(G∗
i+1) ≤ O(

√
d log3 d)). We

first handle the case of unbalanced cuts, then the more difficult case of nearly-
balanced cuts. We then show that the analysis in this section is tight.

Unbalanced Cuts. We first show that in a strong spectral expander, unbal-
anced cuts give large expansion. This is straightforward from the Mixing Lemma
(Theorem 4) if the cut is not too unbalanced, i.e. if both sides of the cut are
of linear size. However, a straightforward application of the Mixing Lemma fails
when the small side is very small. We show that this can be overcome by using
the full power of the Mixing Lemma: the two sets in Theorem 4 need not be a
cut, but can be any two sets.

Lemma 18. If X ⊆ VH with |X | ≤ n/2, then wH(X, X̄) ≥ |X |
(
d
(
n−|X|

n

)
−4λ

)
.

Lemma 19. If X ⊆ V with |X | < n
5 , then hG(X) ≥ d

3 −O
(√

d log3 d
)
.

Balanced Cuts. We next prove that hG(X) ≥ d
3 − O(

√
d log3 d) when n

5 ≤
|X | ≤ n

2 . To accomplish this, we use the Mixing Lemma (again) to show that
the expansion does not drop by a factor of 2 from the future cut. Intuitively,
if X contains many unsplit vertices, then even though G only gets half of the
weight from unsplit vertices than H does, there are only half as many vertices
and thus the expansion is basically preserved.2 On the other hand, if X contains
many split vertices, then either X̄ also contains many split vertices (and so by
Lemma 12 we lose nothing), or X̄ contains many unsplit vertices (and so the cut
is unbalanced enough for the Mixing Lemma to provide stronger bounds).

Lemma 20. If X ⊆ V with n
5 ≤ |X | ≤ n

2 , then hG(X) ≥ d
3 −O

(√
d log3 d

)
.

Proof. As before, let S(X) = S ∩ X,U(X) = U ∩ X,S(X̄) = S ∩ X̄, and
U(X̄) = U ∩ X̄ . We first analyze the weight of the future cut using the Mixing
Lemma (Theorem 4).

wH(F (X), F (X̄)) = wH(F (S(X)), F (S(X̄))) + wH(F (S(X)), F (U(X̄))) (1)

+ wH(F (U(X)), F (S(X̄))) + wH(F (U(X)), F (U(X̄)))

≥ d|F (S(X))| · |F (S(X̄))|
|F (X)|+ |F (X̄)| +

d|F (S(X))| · |F (U(X̄))|
|F (X)|+ |F (X̄)| (2)

+
d · |F (U(X))| · |F (S(X̄))|

|F (X)|+ |F (X̄)| +
d · |F (U(X))| · |F (U(X̄))|

|F (X)|+ |F (X̄)| − 4λ|VH |

≥ d
|S(X)|(|S(X̄)|+ 2|U(X̄)|) + 2|U(X)|(|S(X̄)|+ 2|U(X̄)|)

|X |+ |X̄|+ |U(X)|+ |U(X̄)| − 4λ|VH |.
(3)

2 We point out that this is not quite accurate, since F (X) could be larger than F (X̄).
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Equation (1) is simply the partition of the edges crossing the cut into the
natural four sets. Equation (2) is the application of the Mixing Lemma to
each of the four parts, together with an upper bound of |VH | on all sets to
bound the discrepancy due to the Mixing Lemma to 4λ|VH |. Equation (3) ex-
ploits the fact that unsplit vertices in V split into exactly two vertices in VH

to get that |VH | = |F (X)| + |F (X̄)| = |X | + |X̄ | + |U(X)| + |U(X̄)|, and
that |F (S(X))| = |S(X)|, |F (S(X̄))| = |S(X̄)|, |F (U(X))| = 2|U(X)|, and
|F (U(X̄))| = 2|U(X̄)|.

We can now apply Lemmas 12, 13, and 14 to relate this to the weight in G. The
first term in (3) remains unchanged, whereas the second, third, and fourth terms
are reduced by a factor of 2, and the final loss term also remains unchanged.
With these adjustments, we get that

wG(X, X̄) ≥ d
(|S(X)| (|S(X̄)|+ |U(X̄)|)+ |U(X)| (|S(X̄)|+ 2|U(X̄)|))

|X|+ |X̄ |+ |U(X)|+ |U(X̄)| − 4λ|VH |

= d · |S(X)| · |X̄ |+ |U(X)| · (|X̄ |+ |U(X̄)|)

|X|+ |X̄|+ |U(X)|+ |U(X̄)| − 4λ|VH |

= d · |X| · |X̄ |+ |U(X)| · |U(X̄)|
|X|+ |X̄ |+ |U(X)|+ |U(X̄)| − 4λ|VH |.

Note that λ in this expression is λ(H), not λ(G). We can now get the ex-
pansion simply by dividing by |X |, the size of the smaller side: hG(X) ≥ d ·

|X|·|X̄|+|U(X)|·|U(X̄)|
|X|(|X|+|X̄|+|U(X)|+|U(X̄)|) − 40λ, where for the final term we use the fact that

|VH | ≤ 2n and |X | ≥ n
5 to get that 4λ|VH |/|X | ≤ λ · 8n/(n5 ) = 40λ.

We claim that this expression is at least d
3−O(

√
d log3 d). As λ = O(

√
d log3 d),

it needs to be shown that |X|·|X̄|+|U(X)|·|U(X̄)|
|X|(|X|+|X̄|+|U(X)|+|U(X̄)|) ≥ 1

3 . Suppose for the sake

of contradiction that this is false. Then rearranging terms gives us that

|U(X)| · (3|U(X̄)| − |X |) < |X |2 − 2|X ||X̄|+ |X ||U(X̄)|. (4)

If |U(X̄)| > |X|
3 , then (4) implies that |U(X)| < |X |2−2|X ||X̄|+ |X ||U(X̄)| ≤

|X |2 − |X ||X̄| ≤ 0, where we used the fact that |U(X̄)| ≤ |X̄| and |X̄| ≥ |X |.
This is a contradiction, since |U(X)| clearly cannot be negative.

Otherwise, if |U(X̄)| ≤ |X|
3 , then (4) implies that

|U(X)| > 2|X ||X̄| − |X |2 − |X ||U(X̄)|
|X | − 3|U(X̄)| ≥ |X |2 − |X ||U(X̄)|

|X | − 3|U(X̄)| ≥ |X |,

since |X̄ | ≥ |X |. This is also a contradiction, as U(X) ⊆ X , and hence the lemma
follows. �

Combining Lemma 19 and Lemma 20 concludes the proof of Theorem 16.

Tightness of Analysis. We show that the bound on the edge expansion from
Theorem 16 is essentially tight and, moreover, is tight infinitely often.
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Theorem 21. There exists a graph in G with edge expansion at most d
3 + 2

3
and, for every i ≥ 1, there exists a graph in G between G∗

i and G∗
i+1 with edge

expansion at most d
3 +O(

√
d log3 d).

6 Open Questions

The obvious open question is proving better bounds for expansion and expan-
sion cost, and exploring the space of tradeoffs between them. Our construction
interpolates between Bilu-Linial (BL) expanders, which are very good spectral

expanders (λ ≤ O(
√

d log3 d)). But Theorem 17 implies that some of the ex-
panders that appear between the BL expanders in the sequence are only weak
spectral expanders. Can a sequence of strong spectral expanders (say, with
λ ≤ O(

√
d · polylog (d))) be constructed with low expansion cost?
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Abstract. We study the computational complexity of the graph modi-
fication problems Threshold Editing and Chain Editing, adding and
deleting as few edges as possible to transform the input into a threshold
(or chain) graph. In this article, we show that both problems are NP-
hard, resolving a conjecture by Natanzon, Shamir, and Sharan (2001).
On the positive side, we show that these problems admit quadratic ver-
tex kernels. Furthermore, we give a subexponential time parameterized

algorithm solving Threshold Editing in 2O(
√
k log k) + poly(n) time,

making it one of relatively few natural problems in this complexity class
on general graphs. These results are of broader interest to the field of
social network analysis, where recent work of Brandes (2014) posits that
the minimum edit distance to a threshold graph gives a good measure of
consistency for node centralities. Finally, we show that all our positive
results extend to Chain Editing, as well as the completion and deletion
variants of both problems.

1 Introduction

In this paper we study the computational complexity of two edge modification
problems, namely editing to threshold graphs and editing to chain graphs. Graph
modification problems ask whether a given graphG can be transformed to have a
certain property using a small number of edits (such as deleting/adding vertices
or edges), and have been the subject of significant previous work [6,19,23]. The
Threshold Editing problem takes as input an n-vertex graph G = (V,E) and
a non-negative integer k. The objective is to find a set F of at most k pairs of
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vertices such that G minus any edges in F plus all non-edges in F is a threshold
graph (can be constructed from the empty graph by repeatedly adding either an
isolated vertex or a universal vertex [2]).

Threshold Editing

Input: A graph G and a non-negative integer k
Q: Is there a set F ⊆ V 2 with |F | ≤ k so that G�F is a threshold graph?

The computational complexity of Threshold Editing has repeatedly been
stated as open, starting from Natanzon et al. [21], and then more recently by
Burzyn et al. [3], and again very recently by Liu, Wang, Guo and Chen [15]. We
resolve this by showing that the problem is indeed NP-hard.

Theorem 1. Threshold Editing is NP-complete, even on split graphs.

Graph editing problems are well-motivated by problems arising in the applied
sciences, where we often have a predicted model from domain knowledge, but
observed data fails to fit this model exactly. In this setting, edge modification
corresponds to correcting false positives (and/or false negatives) to obtain data
that is consistent with the model. Threshold Editing has specifically been of
recent interest in the social sciences, where Brandes et al. are using distance to
threshold graphs in work on axiomatization of centrality measures [1, 22]. More
generally, editing to threshold graphs and their close relatives chain graphs arises
in the study of sparse matrix multiplications [25]. Chain graphs are the bipartite
analogue of threshold graphs (see Definition 2), and we also establish hardness
of Chain Editing.

Theorem 2. Chain Editing is NP-complete, even on bipartite graphs.

Our final complexity result is for Chordal Editing—a problem whose NP-
hardness is well-known and widely used. This result also follows from our tech-
niques, and as the authors were unable to find a proof in the literature, we
include this argument for the sake of completeness.

Having settled the complexity of these problems, we turn to studying ways
of dealing with their intractability. Cai’s theorem [4] shows that Threshold

Editing and Chain Editing are fixed parameter tractable, i.e., solvable in f(k)·
poly(n) time where k is the edit distance from the desired model (graph class);
However, the lower bounds we prove when showing NP-hardness are on the order

of 2o(
√
k) under ETH, and thus leave a gap. We show that it is in fact the lower

bound which is tight (up to logarithmic factors in the exponent) by giving a
subexponential time algorithm for both problems.

Theorem 3. Threshold Editing and Chain Editing admit 2O(
√
k log k) +

poly(n) subexponential time algorithms.

Since our results also hold for the completion and deletion variants of both
problems (when F is restricted to be a set of non-edges or edges, respectively),
this also answers a question of Liu et al. [16] by giving a subexponential time
algorithm for Chain Edge Deletion.



On the Threshold of Intractability 413

A crucial first step in our algorithms is to preprocess the instance, reducing
to a kernel of size polynomial in the parameter. We give quadratic kernels for
all three variants (of both Threshold Editing and Chain Editing).

Theorem 4. Threshold Editing, Threshold Completion, and Thresh-

old Deletion admit polynomial kernels with O(k2) vertices.

This answers (affirmatively) a recent question of Liu, Wang and Guo [14]—
whether the previously known kernel, which has O(k3) vertices, for Threshold

Completion (equivalently Threshold Deletion) can be improved.

2 Preliminaries

Due to page limits, proofs marked with a �, as well as extended background
and definitions are deferred to the full version [9]. For a set A, we use [A]2 to
denote the set of all unordered pairs of elements of A. For a graph G = (V,E)
and F ⊆ [V ]2 we define G�F as the graph (V,E�F ), where � denotes the
standard symmetric difference operator on sets. For an edge set F ⊆ [V ]2 and
v ∈ V , we write F (v) to denote the set of edges incident to v in F . For a
graph G and a vertex v we define the true twin class of v, denoted ttc(v) as
the set {u ∈ V (G) | N [u] = N [v]}. Similarly, we define the false twin class of v,
denoted ftc(v) as the set {u ∈ V (G) | N(u) = N(v)}. Observe that ttc(v) = {v}
or ftc(v) = {v}. From this we define the twin class of v, denoted tc(v) as ttc(v)
if |ttc(v)| > |ftc(v)| and ftc(v) otherwise.

Split and threshold graphs. A split graph is a graph G = (V,E) whose vertex
set can be partitioned into two sets C and I such that G[C] is a complete graph
and G[I] is edgeless, i.e., C is a clique and I an independent set [2]. For a split
graph G we say that a partition (C, I) of V (G) forms a split partition of G
if G[C] induces a clique and G[I] an independent set. A split partition (C, I) is
called a complete split partition if for every vertex v ∈ I, N(v) = C. If G admits
a complete split partition, we say that G is a complete split graph. Threshold
graphs are closely related to split graphs, as seen in the following proposition.

Proposition 1 ([17]). A graph G is a threshold graph if and only if G has a
split partition (C, I) such that the neighborhoods of the vertices in I are nested,
i.e., for every pair of vertices v and u, either N(v) ⊆ N [u] or N(u) ⊆ N [v].

We also use the following alternative characterization of threshold graphs.

Proposition 2 ([2]). A graph G is a threshold graph if and only if G does not
have a C4, P4 nor a 2K2 as an induced subgraph.

Finally, we need a structural characterization of threshold graphs with guaran-
teed behavior with respect to some optimal solution of Threshold Editing.
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Definition 1 (Threshold partition, lev(v)). Wesay that (C, I) formsa thresh-
old partition of G when (C, I) = (〈C1, . . . , Ct〉, 〈I1, . . . , It〉) so that: (i) (C, I) is a
split partition of G, where C =

⋃
i≤t Ci and I =

⋃
i≤t Ii; (ii) Ci and Ii are twin

classes in G for every i; (iii) N [Cj ] ⊂ N [Ci] and N(Ii) ⊂ N(Ij) for every i < j.
Finally, (iv) we demand that for every i ≤ t, (Ci, I≥i) form a complete split parti-
tion of the graph induced by Ci ∪ I≥i. Here we let I≥i =

⋃
i≤j≤t Ij . We furthermore

define, for every vertex v in G, lev(v) as the number i such that v ∈ Ci ∪ Ii and we
denote each level Li = Ci ∪ Ii.

Proposition 3 (�). A graph G is a threshold graph if and only if G admits a
threshold partition.

Lemma 1 (�). For every instance (G, k) of Threshold Editing or Thresh-

old Completion it holds that there exists an optimal solution F such that for
every pair of vertices u, v ∈ V (G), if NG(u) ⊆ NG[v] then NG�F (u) ⊆ NG�F [v].

Chain Graphs. Chain graphs are the bipartite graphs whose neighborhoods of
the vertices on one of the sides form an inclusion chain (are nested). This implies
the neighborhoods on the opposite side are also nested. The problem of com-
pleting edges to chain graphs was introduced by Golumbic [12] and later studied
by Yannakakis [25], Feder, Mannila and Terzi [10] and finally by Fomin and Vil-
langer [11] who showed that Chain Completion is solvable in subexponential
time on bipartite graphs whose bipartition must be respected.

Definition 2 (Chain graph). A bipartite graph G = (A,B,E) is a chain graph
if there is an ordering of the vertices of A, a1, a2, . . . , a|A| such that N(a1) ⊆
N(a2) ⊆ · · · ⊆ N(a|A|).

Chain Editing

Input: A graph G = (V,E) and a non-negative integer k
Q: Is there a set F of size at most k such that G�F is a chain graph?

The fixed parameter tractability of Chain Editing, as mentioned above, follows
from Cai’s theorem [4] and the following forbidden induced subgraph character-
ization.

Proposition 4 ([2]). Let G be a graph. The following are equivalent: (i) G is a
chain graph, (ii) G is bipartite and 2K2-free, (iii) G is {2K2, C3, C5}-free, and
(iv) G is obtained from a threshold graph by removing all edges on the clique
side.

3 Hardness

In this section, we show that Threshold Editing and Chain Editing are
NP-complete. We also give a proof that Chordal Editing is NP-complete—
although this has been known for a long time (Natanzon [20], Natanzon et al. [21],
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vxa vxb vx⊥ vx� vxc vxd vya vyb vy⊥ vy� vyc vyd vza vzb vz⊥ vz� vzc vzd

v�1
�1 = x ∨ y

v�2
�2 = x ∨ z

Fig. 1. The connections of a clause and a variable. All the vertices on the top (the
variable vertices) belong to the clique, while the vertices on the bottom (the clause
vertices) belong to the independent set.

Sharan [24]), the authors were unable to find a proof in the literature, and
thus include the observation. A more general version of Chordal Editing was
recently shown to be FPT by Cao and Marx [5]. We note their variant is well-
known to be NP-complete, as it also generalizes Chordal Vertex Deletion.

NP-completeness of Threshold Editing. Our hardness reduction is from the prob-
lem 3Sat, where we are given a 3-CNF-SAT formula φ and asked to decide
whether φ admits a satisfying assignment. We let Cφ denote the set of clauses,
and Vφ the set of variables in a given formula φ. An assignment for a formula φ is
a function α : Vφ → {true, false}. Furthermore, we assume we have some nat-
ural lexicographical ordering <lex of the clauses �1, . . . , �|Cφ| and the variables
v1, . . . , v|Vφ|.

We design a split graph Gφ and pick an integer kφ = |Cφ| · (3|Vφ| − 1) so
that (Gφ, kφ) is a yes-instance of Threshold Editing if and only if φ is satisfi-
able. Further, we ensure the split partition must be maintained in any threshold
graph within distance kφ of Gφ. Given φ, we first create a clique of size 6|Vφ|;
To each variable x ∈ Vφ, we associate six vertices vxa , v

x
b , v

x
⊥, v

x
�, v

x
c , v

x
d with a

partial order denoted πφ so that vxa <πφ
vxb <πφ

vx�, v
x
⊥ <πφ

vxc <πφ
vxd . and for

every two vertex vx� and vy� with x <lex y, we have vx� <πφ
vy� . The choice of

whether vx� or vx⊥ comes first will result in the assignment α for φ. We enforce
the ordering by adding O(k2φ) vertices in the independent set (using the fact that
adding kφ + 1 new vertices incident to exactly the vertices up to and includ-
ing a vertex vi prevents swapping it with vi+1 in the solution). Now, for every
clause � ∈ Cφ, we add a vertex v� to the independent set, giving it total size
O(|Cφ|+ k2φ). If the variable x occurs in �, we make v� incident to vxb and vxd . If
x appears negatively, we also add (v�, v

x
⊥); if positively, we add (v�, v

x
�) instead.

For a variable z which does not occur in a clause �, we make v� adjacent to vzb ,
vzc , and vzd . To complete the reduction, we add kφ + 1 isolated vertices on each
end of both the independent set and the clique (total 4kφ + 1). This ensures
that no vertex will move from the clique to the independent set partition or vice
versa.

Lemma 2 (�). A 3-CNF-SAT formula φ is satisfiable if and only if (Gφ, kφ) is
a yes-instance to Threshold Editing.
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Our proof relies on the following observation: when we consider a fixed per-
mutation of the variable gadget vertices (the clique side), the only thing we
need to determine for a clause vertex v� is the cut-off point : the point in πφ

at which the vertex v� will no longer have any neighbors. Since no vertex vxi
swaps places with any other vxj for i, j ∈ {a, b, c, d}, and no vx� changes with vy�
for x, y ∈ Vφ, consider a fixed permutation of the variable vertices. We charge
the clause vertices with the edits incident to the clause vertex. Since the budget
is kφ = |C| · (3|Vφ| − 1), and every clause needs at least 3|Vφ| − 1, to obtain a
solution, we need to charge every clause vertex with exactly 3|Vφ| − 1 edits.

Lemma 3 (�). Let (Gφ, kφ) be an instance to Threshold Editing constructed
from a 3-CNF-SAT formula φ. For any clause vertex v�, at least 3|Vφ| − 1 edges
are needed to edit to eliminate all obstructions v� is a part of.

Lemma 4 (�). If there is an editing set F for an instance (Gφ, kφ) constructed
from a 3-CNF-SAT formula φ so that |F | ≤ kφ and |F (v�)| = 3|Vφ| − 1, then
the <lex-highest vertex connected to v� corresponds to a variable satisfying the
clause �.

This shows that there is a polynomial time many-one (Karp) reduction from
3Sat to Threshold Editing implying Theorem 1.

NP-hardness of Chain and Chordal Editing. All formal statements and proofs
for editing to chain and chordal graphs are deferred to the full version [9]. To
prove Chain Editing is NP-hard, it is useful to define and reduce through
two intermediate problems, Split Threshold Editing and Bipartite Chain

Editing
1, which each require the editing set to respect the bipartition. We prove

that both these problems, as well as Chain Editing, are NP-complete.
To prove that Chordal Editing is NP-hard, we use the observation of Yan-

nakakis that a bipartite graph can be transformed into a chain graph by adding
at most k edges if and only if the cobipartite graph formed by completing the two
sides can be transformed into a chordal graph by adding at most k edges [25]. We
again use an intermediate problem (Cobipartite Chordal Editing) which
asks for the bipartition to be respected, which we prove is hard via a reduction
from Bipartite Chain Editing.

Finally, we remark that together with ETH, these results imply that no algo-
rithm solves Split Threshold Editing, Bipartite Chain Editing, Chain

Editing, or Chordal Editing in time 2o(
√
k) · poly(n).

4 Quadratic Kernels for Threshold and Chain Editing

We give kernels with a quadratic number of vertices for Threshold Comple-

tion, Threshold Deletion, and Threshold Editing, answering a recent
question of Liu, Wang and Guo [14]. Our kernelization algorithms use methods

1 Which has also been referred to as Chain Editing in the literature [13]
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similar to those yielding a polynomial kernel for Trivially Perfect Edit-

ing [8]. Further, our techniques extend to give quadratic kernels for all three
analogous problems for editing to chain graphs; these results are deferred to the
full version [9]. Since the class of threshold graphs is closed under taking com-
plements, for every instance (G, k) of Threshold Completion, (Ḡ, k) is an
equivalent instance of Threshold Deletion (and vice versa), so we restrict
our attention to the completion and editing variants for the remainder of the
section. A proper kernel is obtained by a kernelization algorithm which guar-
antees to never increase the parameter. We may observe that we obtain proper
kernels, since our kernelization algorithms do not modify any edges, and only
change the budget in the case that we discover that we have a no-instance.

Theorem 5 (�). The following three problems admit kernels with at most 336k2+
388k + 92 vertices: Threshold Deletion, Threshold Completion and
Threshold Editing.

Motivated by the characterization of threshold graphs in Propositions 2 and 3,
our kernels rely on threshold obstructions, and consist of a twin reduction rule
and an irrelevant vertex rule.

The twin reduction rule is based on the following two observations: First, if an
obstruction contains a vertex v one can replace v by a twin not in the obstruction
and obtain a new, isomorphic obstruction. And second, no solution can interact
with all the vertices in a “large” twin class, for some meaning of large, so any
obstruction containing vertices from a large twin class will have to be handled
by edges not incident to the twin class.

An irrelevant vertex is one whose removal does not affect the solutions of
the instance. Most of our work consists of proving that we can either find such
an irrelevant vertex or conclude that the graph is small. A key concept of the
irrelevant vertex rule is what will be referred to as a threshold-modulator. It is
a set of vertices X in G of linear size in k, such that for every obstruction H
in G one can add and remove edges in [X ]2 and turn H into a non-obstruction.
Our kernelization algorithm will heavily depend on finding a small threshold-
modulator X and the fact that G−X is a threshold graph.

We can in polynomial time either obtain such a set X or conclude correctly
that the instance is a no-instance. The observation that G − X is a threshold
graph will be exploited heavily and we now fix a threshold decomposition (C, I)
of G − X . We then prove that the idea of Proposition 1 can be extended to
vertices in G − X when considering their neighborhoods in G. In other words,
the neighborhoods of the vertices in G−X are nested also when considering G.
This immediately yields that the number of subsets Y of X for which there exists
a vertex in G − X having Y as its X-neighborhood is bounded linearly in the
size of X and hence also in k.

We now either conclude that the graph is small or we identify a sequence of
levels in the threshold decomposition containing many vertices, such that all
the clique vertices and all the independent set vertices in the sequence have
identical neighborhoods in X , respectively. The crux is that in the middle of such
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H1 H2 H3 H4 H5 H6 H7

X

Fig. 2. Some of the intersections of an obstruction with a threshold-modulator X that
will not occur by definition. More specifically the ones necessary for the proof of the
kernel.

a sequence there will be a vertex that is replaceable by other vertices in every
obstruction and hence is irrelevant. Such a sequence is obtained by discarding
all levels in the decomposition that are extremal with respect to a subset Y
of X , meaning that there either are no levels above or underneath that contain
vertices with Y as its X-neighborhood. One can prove that in this process only
a quadratic number of vertices are discarded and from this we obtain a kernel.

Since the difference between chain and threshold graphs is in the obstruc-
tion set (which is now {2K2, C3, C5}), we only need to modify the portions of
the argument for the threshold kernel that explicitly apply the obstructions—
specifically the modulator construction (which will now be of size 5k), the irrel-
evant vertex rule, and a lemma giving the nested structure of the neighborhoods
in the modulator (which fails in chain graphs, but we prove a weaker version
that suffices for our purposes). Combining these, we get quadratic kernels for
editing to chain graphs.

Theorem 6 (�). The following three problems admit kernels with at most O(k2)
vertices: Chain Deletion, Chain Completion and Chain Editing.

5 Subexponential Time Algorithms

Threshold Editing in Subexponential time. In this section we give a subexponen-
tial time algorithm for Threshold Editing. We also show that we can modify
the algorithm to work with Chain Editing. Combined with the results of Fomin
and Villanger [11] and Drange et al. [7], we now have complete information on
the subexponentiality of edge modification to threshold and chain graphs. We
now aim to prove the following theorem:

Theorem 7. Threshold Editing admits a 2O(
√
k log k)+poly(n) subexponen-

tial time algorithm.

The first step of the algorithm is to apply the kernelization algorithm from
Theorem 5. Hence, we can assume from this point on that |V (G)| = O(k2).
Recall that the value of the parameter k is not changed during this procedure

and hence it is sufficient to aim for a 2O(
√
k log k) time algorithm also after the

kernelization procedure. We fix a solution F of the input instance (G, k) under
the assumption that one exists. Observe that G�F is a split graph. The lemma
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below allows us to iterate over all split partitions of G�F without knowing F

in time 2O(
√
k log k). It follows that we can assume that we have a split partition

of G�F at hand and hence we focus on solving instances of Split Threshold

Editing, the problem where the target split partition is fixed.

Lemma 5 (�, Few split partitions). There is an algorithm that given a
graph G and an integer k with |V (G)| = kO(1), can generate a set P of bipar-
titions of V (G) such that for every split graph H such that |E(H)�E(G)| ≤ k
and every split partition (C, I) of H it holds that (C, I) is an element of P.

Furthermore, the algorithm terminates in 2O(
√
k log k) time.

A crucial concept of our algorithm is the one of cheap and expensive vertices.
A cheap vertex is a vertex that is incident to at most 2

√
k edges of F and

every vertex that is not cheap, is expensive. It follows immediately that we can
guess the expensive vertices and the neighborhoods of cheap vertices in time

2O(
√
k log k).

Splitting Pairs and Unbreakable Segments.

Definition 3 (Splitting pair). Let G be a graph, k an integer, F a solution
of (G, k) and (C, I) a threshold decomposition of G�F . We then say that the
vertices u ∈ Ia and v ∈ Cb form a splitting pair if (i) a < b, (ii) u and v
are cheap, and (iii) ∪a<i<bLi consists of only expensive vertices. Recall from
Definition 1 that Li = Ci ∪ Ii.

Definition 4 (Unbreakable). Let G be a graph, k an integer, F a solution of
(G, k) and (C, I) a threshold decomposition of G�F . We then say that a sequence
of levels (Ca, Ia), (Ca+1, Ia+1), . . . , (Cb, Ib) is an unbreakable segment if there is
no splitting pair in the vertex set ∪i∈[a,b](Ci ∪ Ii).

Furthermore, we say that an instance (G, k) is unbreakable if there exists
an optimal solution F and a threshold decomposition (C, I) of G�F such that
the entire decomposition is an unbreakable segment. We also say that such a
decomposition is a witness of G being unbreakable.

Definition 5. Let G be a graph and (C, I) a threshold decomposition of G�F
for some solution F . Then we say that i is a transfer level if

– for every j > i it holds that Cj contains no cheap vertices and
– for every j < i it holds that Ij contains no cheap vertices.

Lemma 6 (�). Let (G, k) be a yes instance of Split Threshold Editing

with solution F such that G is unbreakable and (C, I) a witness. Then there is a
transfer level in (C, I).

Lemma 7 (�). Let (G, k) be an instance of Split Threshold Editing such
that G is unbreakable and (C, I) a witness of this. Then the number of levels in
(C, I) is at most 2

√
k + 1.
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Lemma 8 (�). Let (G, k) be an instance of Split Threshold Editing such
that G is unbreakable, (C, I) is a witness of this and F a corresponding solution.
If X is the set of cheap vertices in G then (G�F )[X ] forms a complete split
graph.

We will now describe the algorithm unbreakAlg. It takes as input an instance
(G, (C, I), k) of Split Threshold Editing, with the assumption that G is un-
breakable and has split partition (C, I), and returns either an optimal solution F
for (G, k) where |F | ≤ k or correctly concludes that (G, k) is a no-instance. As-
sume that (G, k) is a yes-instance. Then there exists an optimal solution F and a
threshold decomposition (C, I) of G�F that is a witness of G being unbreakable.
First, we guess the number of levels � in the decomposition, and by Lemma 7,
we have that � ∈ [0, 2

√
k + 1] and the transfer level t ∈ [0, �]. Then we guess

where the at most 2
√
k vertices that are expensive in G are positioned in (C, I).

Observe that from this information we can obtain all edges between expensive
vertices in F . Finally, we put every cheap vertex in the level that minimizes the
cost of fixing its adjacencies into the expensive vertices while respecting that t is
the transfer level. From this information we can obtain all adjacencies between
cheap and expensive vertices in F . Since the cheap vertices induce a complete
split graph we have complete information on F and hence may return F .

Lemma 9 (�). Given an instance (G, k) of Split Threshold Editing with G
being unbreakable, unbreakAlg either gives an optimal solution or correctly con-

cludes that (G, k) is a no-instance in time 2O(
√
k log k).

Divide and Conquer. We are now ready to sketch the main algorithm solveAlg.
It takes as input a split graph G with a fixed split partition (C, I), an integer k
and a set of vertices S and either returns an optimal solution of G[S] or correctly
concludes that (G[S], k) is a no-instance. Before we continue we fix a threshold
decomposition (C, I) of G�F that respects the split partition of G. Every S will
be constructed under the assumption that there exists integers a and b such that
S = ∪a≤i≤bLi.

The idea is to use splitting pairs to decompose G[S] into parts that we can
solve independently. First, we consider the case that G[S] is unbreakable. We
apply unbreakAlg and obtain an optimal solution F1 under the assumption that
G[S] is unbreakable. It remains to consider the case when there is a splitting pair.
First, we try every pair of cheap vertices u, v with u ∈ C an v ∈ I as our splitting
pair. We assume that u, v form the upper most splitting pair in G[S] with respect
to (C, I). We also guess the neighborhood of u and v in G�F .

The next step is to guess the expensive vertices X in between the levels
of u and v and how they are positioned in the decomposition. One can observe
that u and v together with their neighborhoods and X is sufficient information
to partition (C, I) into three parts. Namely (i) the set of vertices U that are
above or at the same level as u in the decomposition, (ii) the set of expensive
vertices X , and (iii) the remaining set of vertices R, the vertices below or at the
same level as v. By the selection of u and v it follows that G[U ] is unbreakable
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and hence can be solved by unbreakAlg. We then apply solveAlg recursively
on R. Observe that the edges between the different parts are decided by the
definition of a threshold decomposition. Hence, we can construct the resulting F
based on our u and v, their neighborhoods and X . We then minimize over all
these choices and return the smallest solution we find, also considering F1.

To obtain the required running time we apply memoization to S, meaning
that when we are finished with a call to solveAlg we store the solution for this
specific S. Then, the next time a similar call is made we can immediately return
the solution. Since every splitting pair, together with its neighborhood and the
expensive vertices in between uniquely defines a partition of V (G) and there

are only 2O(
√
k log k) such combinations it follows that solveAlg is applied to

at most 2O(
√
k log k) many different sets S. Due to the time complexity of the

subprocedures of the algorithm, the correctness of Theorem 7 follows.

Chain Editing. By a more involved approach than for threshold graphs, we

can with 2O(
√
k log k) delay assume that we know the bipartition of an optimal

solution. We then make one of the sides into a clique and do a query to our
threshold algorithm to obtain the following result:

Theorem 8 (�). Chain Editing is solvable in time 2O(
√
k log k) + poly(n).

6 Conclusion

In this paper we showed that the problems of editing edges to obtain either a
threshold graph or a chain graph are NP-complete. The latter resolves a con-
jecture of Natanzon et al. [21] and both results answer open questions from
Sharan [24], Burzyn et al. [3], and Mancini [18].

On the positive side, we show that both Threshold Editing and Chain

Editing admit quadratic kernels, i.e., given a graph (G, k), we can in polyno-
mial time find an equivalent instance (G′, k) where |V (G′)| = O(k2), and fur-
thermore, G′ is an induced subgraph of G. We also show that these results hold
for the deletion and completion variants as well, and these results answer open
questions by Liu et al. in a recent survey on kernelization complexity of graph
modification problems [14]. Finally we show that both problems admit subex-

ponential algorithms of time complexity 2O(
√
k log k) + poly(n). This answers a

recent open question by Liu et al. [16].
In addition, we give a proof for the NP-hardness of Chordal Editing which

has been announced several places but which the authors have been unable
to find. However, our NP-completeness proof for Chordal Editing suffers a
quadratic blow-up from 3Sat, i.e., k = Θ(|φ|2), so we cannot get better than

2o(
√
k) · poly(n) lower bounds from this technique. The current best algorithm

for Chordal Editing
2 runs in time 2O(k log k) · poly(n) [5], and so this leaves

a big gap. It would be interesting to see if we can achieve tighter lower bounds,

2 Here, the authors take Chordal Editing to allow vertex deletions.
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e.g., 2o(k) · poly(n) time lower bounds for Chordal Editing assuming ETH
together with a 2O(k) · poly(n) time algorithm.
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Abstract. We give a kernel with O(k7) vertices for Trivially Perfect

Editing, theproblemofaddingorremovingatmostk edges inordertomake
a given graph trivially perfect. This answers in affirmative an open ques-
tion posed by Nastos and Gao (Social Networks, 35(3):439–450, 2013) and
by Liu,Wang, andGuo (Tsinghua Science andTechnology, 19(4):346–357,
2014). Using our technique one can also obtain kernels of the same size for
the related problems, Trivially Perfect Completion and Trivially

Perfect Deletion.
We complement our study of Trivially Perfect Editing by prov-

ing that, contrary to Trivially Perfect Completion, it cannot be
solved in time 2o(k) ·nO(1) unless the Exponential Time Hypothesis fails.
In this manner we complete the picture of the parameterized and ker-
nelization complexity of the classic edge modification problems for the
class of trivially perfect graphs.

1 Introduction

Graph modification problems form an important class of problems, where the
task is to modify a given graph using a constrained number of modifications in
order to make it satisfy some property Π , or equivalently belong to the class G of
graphs satisfying Π . As far as allowed modifications are concerned, probably the
most popular variant is to delete vertices only (vertex deletion problems), but
there is also much work on modifying the edge set of the graph. Here, there are
three natural classes of problems: deletion problems (deleting the least number
of edges), completion problems (adding the least number of edges) and editing
problems (performing the least number of edge additions or deletions).

In this paper we study edge modification problems from the point of view
of parameterized complexity. A parameterized problem is called fixed-parameter
tractable if it can be solved in time f(k) ·nO(1) for some computable function f ,
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where n is the size of the input and k is its parameter. In our case, the natu-
ral parameter k is the allowed number of modifications. Cai [3] made a simple
observation that for all the aforementioned graph modification problems there
is a simple branching algorithm running in time cknO(1) for some constant c, as
long as G is characterized by a finite set of forbidden induced subgraphs : there
is a finite list of graphs H1, H2, . . . , Hp such that any graph G belongs to G if
and only if G does not contain any Hi as an induced subgraph. Although many
studied graph classes satisfy this property, there are important examples, like
chordal or interval graphs, that are outside this regime.

Hence, the parameterized analysis of modification problems for graph classes
characterized by a finite set of forbidden induced subgraphs focused on studying
the design of polynomial kernelization algorithms1; Such an algorithm is required,
given an input instance (G, k) of the problem, to preprocess it in polynomial time
and obtain an equivalent output instance (G′, k′), where |G′|, k′ ≤ p(k) for some
polynomial p. That is, the question is the following: can you, using polynomial
time preprocessing only, bound the size of the tackled instance by a polynomial
function depending only on k?

For vertex deletion problems, as long as G is characterized by a finite set of
forbidden induced subgraphs, the task is to hit all the copies of these subgraphs
(so-called obstacles) that are originally contained in the graph. Hence, one can
construct a simple reduction to the d-Hitting Set problem for a constant d
depending on G, and use the classic O(kd) kernel for the latter that is based on
the sunflower lemma [1]. For edge modification problems, however, this approach
fails utterly: every edge addition and deletion can create new obstacles, and thus
it is not sufficient to hit only the original ones. For this reason, edge modification
problems behave counter-intuitively with respect to polynomial kernelization,
and up to recently very little was known about their complexity.

On the positive side, kernelization of edge modification problems for well-
studied graph classes was explored by Guo [11], who showed that four prob-
lems: Threshold Completion, Split Completion, Chain Completion,
and Trivially Perfect Completion, all admit polynomial kernels. How-
ever, the study took a turn for the interesting when Kratch and Wahlström [14]
showed that there is a graph H on 7 vertices, such that the deletion problem to
H-free graphs (the class of graphs not admitting H as an induced subgraph) does
not admit a polynomial kernel, unless the polynomial hierarchy collapses. This
shows that the subtle differences between edge modification and vertex deletion
problems have tremendous impact on the kernelization complexity.

The line of research initiated by Kratch and Wahlström was continued by
Guillemot et al. [10], who showed that both for the class of P�-free graphs (for � ≥
7) and for the class of C�-free graphs (for � ≥ 4), the edge deletion problems
probably do not have polynomial kernelization algorithms. They simultaneously
gave a cubic kernel for the Cograph Editing problem, the problem of editing to

1 It is well-known that a problem is fixed-parameter tractable if and only if the
problem admits a kernelization algorithm, hence polynomial kernelization is a
natural next step.
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a graph without induced paths on four vertices. These results were later improved
by Cai and Cai [4], who tried to obtain a complete dichotomy of the kernelization
complexity of edge modification problems for classes of H-free graphs, for every
graph H . The project has been very successful—the question is settled for all
3-connected graphs H as well as all but a finite number of trees. In particular, it
turns out that the existence of a polynomial kernel for any of H-Free Editing,
H-Free Edge Deletion, or H-Free Completion problems is in fact a very
rare phenomenon, and basically happens only for some specific small graphs H .
For instance, for H being a path or a cycle, the aforementioned three problems
admit polynomial kernels if and only if H has at most three edges.

In this paper we study the Trivially Perfect Editing problem, which,
for a given graph G and integer k, asks whether G can be transformed into
a trivially perfect graph by performing at most k edge additions or removals.
Recall that a graph is trivially perfect if it does not contain a P4 or a C4 as
an induced subgraph. However, there is also an equivalent structural definition
that shows that trivially perfect graphs model tree-like hierarchical structures;
more precisely, they are exactly ancestor-descendant closures of rooted forests.
Interest in trivially perfect graphs started with the attempts to prove the strong
perfect graph theorem. Recently, a new source of motivation has grown, with
the realization that trivially perfect graphs are related to the width parameter
treedepth (called also vertex ranking number, ordered chromatic number, and
minimum elimination tree height). Although it had been known that both the
completion and the deletion problem for trivially perfect graphs are NP-hard, it
was open for a long time whether the editing version is NP-hard as well [2].

This question was answered very recently by Nastos and Gao [16], who showed
that the problem is indeed NP-hard. Actually, the work of Nastos and Gao focuses
on exhibiting applications of trivially perfect graphs in social network theory, since
this graph class may serve as a model for familial groups, that is, communities in
social networks showing a hierarchical nature. Specifically, the editing number to a
trivially perfect graph2 can be used as a measure of how much a social network re-
sembles a collection of hierarchies.Nastos andGao also askwhether it is possible to
obtain a polynomial kernelization algorithm for this problem. The question about
the existence of a polynomial kernel for Trivially Perfect Editing was then
restated in a recent survey by Liu,Wang, andGuo [15], which nota bene contains a
comprehensive overview of the current status of the research on the kernelization
complexity of graph modification problems.

Trivially perfect graphs were also studied from the point of view of subexpo-
nential parameterized algorithms: FPT algorithms with running time 2o(k) ·nO(1).
It has been recently discovered that such algorithms exist for completion prob-
lems to multiple subclasses of chordal graphs, and trivially perfect graphs are
among them, as proven by a superset of the current authors [7]. On the other
hand, Trivially Perfect Deletion does not enjoy the existence of such an
algorithm unless the Exponential Time Hypothesis (ETH, see [12]) fails [7]. For
Trivially Perfect Editing no such analysis was done up to this work.

2 Nastos and Gao use the terminology quasi-threshold instead of trivially perfect.



A Polynomial Kernel for Trivially Perfect Editing 427

Our Contribution. We answer the question of Nastos and Gao [16] and of Liu,
Wang, and Guo [15] in affirmative by proving the following theorem.

Theorem 1. The problem Trivially Perfect Editing admits a proper ker-
nel with O(k7) vertices.

Here, we say that a kernel (kernelization algorithm) is proper if it can only
decrease the parameter, i.e., the output parameter k′ satisfies k′ ≤ k.

To prove Theorem 1, we employ an extensive analysis of the tackled instance,
based on the structural definition of trivially perfect graphs. The main idea is
to construct a small vertex modulator, a set of vertices whose removal results
in obtaining a trivially perfect graph. However, since we are allowed only edge
deletions and additions, this modulator just serves as a tool for exposing the
structure of the instance. More specifically, we greedily pack disjoint obstructions
into a set X , whose size can be guaranteed to be at most 4k, with the condition
that to get rid of each of these obstructions, at least one edge must be edited
inside the modulator per obstruction. Having obtained such a modulator, the
rest of the graph, G −X , is trivially perfect, and we may apply the structural
view on trivially perfect graphs to find irrelevant parts that can be reduced.

While the modulator technique is commonly used in kernelization, the new
insight in this work is as follows. Since we work with an edge modification prob-
lem, we can be less restrictive about when an obstacle can be packed into the
modulator. For example, the obstacle does not need to be completely vertex-
disjoint with the so far constructed X ; sharing just one vertex is still allowed.
This observation allows us to reason about the adjacency structure between X
and V (G) \X , which is of great help when identifying irrelevant parts.

By modifying our algorithm slightly, we also obtain polynomial kernels for
Trivially Perfect Deletion and Trivially Perfect Completion.

Theorem 2. The problems Trivially Perfect Deletion and Trivially

Perfect Completion admit kernels with O(k7) vertices.

To the best of our knowledge, no polynomial kernel for Trivially Perfect

Deletion was known so far. For Trivially Perfect Completion, a cubic
kernel was shown earlier by Guo [11]. Unfortunately, the work of Guo [11] is
published only as a conference extended abstract, where it is only sketched how
the approach yielding a quartic kernel for Split Deletion could be used to
obtain a cubic kernel for Trivially Perfect Completion. The details of
this kernelization algorithm are deferred to the full version, which, alas, has
not appeared. For this reason, we believe that our proof of Theorem 2 fills an
important gap in the literature—the polynomial kernel for Trivially Perfect

Completion is an important ingredient of the subexponential parameterized
algorithm for this problem [7].

Finally, we show that Trivially Perfect Editing, in addition to being
NP-complete, cannot admit a subexponential parameterized algorithm, provided
that the Exponential Time Hypothesis holds.
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Theorem 3. Trivially Perfect Editing is NP-complete, and under ETH
cannot be solved in time 2o(k)nO(1) or 2o(n+m), even on graphs with maximum
degree 4.

In other words; the familial group measure cannot be computed in time subex-
ponential in terms of the value of the measure. This stands in contrast with
Trivially Perfect Completion that admits a subexponential parameter-
ized algorithm [7], and shows that Trivially Perfect Editing is more similar
to Trivially Perfect Deletion, for which a similar lower bound has been
proved earlier by Drange et al. [7]. In fact, our reduction can be used as an alter-
native proof of hardness of Trivially Perfect Deletion as well. We remark
that our reduction also refutes the existence of a subexponential parameterized
algorithm for Cograph Editing, which to the best of our knowledge was not
yet known.

Let us note that the NP-hardness reduction for Trivially Perfect Editing

presented by Nastos and Gao [16] cannot be used to prove nonexistence of a
subexponential parameterized algorithm, since it involves a cubic blow-up of
the parameter. To prove Theorem 3, we resort to the technique used for similar
hardness results by Komusiewicz and Uhlmann [13] and by Drange et al. [7].

Outline. In this extended abstract we focus on sketching the proof of the main
result, i.e., Theorem 1; all the technical proofs have been deferred to the full
version of the paper, a preprint of which is available online [8]. In Section 3 we
gather some conclusions and open problems. Proofs of Theorems 2 and 3 are
also deferred to the full version. We also remark that the full version contains a
broader overview of the context of this work in its introductory section.

2 Kernel for Trivially Perfect Editing:
Proof of Theorem 1

Trivially Perfect Graphs. A graph G is trivially perfect if and only if it does
not contain a C4 or a P4 as an induced subgraph. A superset of the current au-
thors [7] proposed the following notion of a structural decomposition for trivially
perfect graphs, which exposes their hierarchical nature. In the following, for a
rooted tree T and vertex t ∈ V (T ), by Tt we denote the subtree of T rooted at t.
The universal clique of a graph G is the unique set of universal vertices, and for
a set of vertices X ⊆ V (G), we write G[X ] to denote the graph induced on X .

Definition 1 (Universal clique decomposition, [7]). A universal clique de-
composition (UCD) of a connected graph G is a pair T = (T = (VT , ET ),B =
{Bt}t∈VT ), where T is a rooted tree and B is a partition of the vertex set V (G)
into disjoint nonempty subsets, such that

– if vw ∈ E(G) and v ∈ Bt, w ∈ Bs, then either t = s, t is an ancestor of s
in T , or s is an ancestor of t in T , and

– for every node t ∈ VT , the set of vertices Bt is the universal clique of
G[

⋃
s∈V (Tt)

Bs].
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Lemma 1 ([7]). A connected graph G admits a universal clique decomposition
if and only if it is trivially perfect. Moreover, such a decomposition is unique up
to isomorphisms.

We can trivially extend Lemma 1 to disconnected graphs by allowing the de-
composition to have a shape of a rooted forest, instead of just a rooted tree.

Overview of the Proof. We first give an overview of the structure of the proof.
As usual, the kernelization algorithm will be given as a sequence of data reduction
rules : simple preprocessing procedures that, if applicable, simplify the instance
at hand. For each rule we prove two claims: (a) that applicability of the rule can
be recognized in polynomial time, and (b) that the rule is safe, i.e., the resulting
instance is equivalent to the original one. At the end of the proof we argue that
if no rule is applicable, then the size of the instance is bounded by O(k7). Some
rules will decrement the budget k for edits; if this budget drops below zero, we
conclude that we are dealing with a no-instance, so we immediately terminate
the algorithm and provide a constant-size trivial no-instance as the kernel.

First, we give some preliminary basic rules, which mostly deal with situations
where we can find a large number of induced C4s and P4s in the graph (henceforth
called obstacles), which share only one edge or non-edge. We then infer that this
edge or non-edge has to be included in any editing set of size at most k, and
hence we can perform the necessary edit and decrement the budget.

Then, the idea is to apply a greedy algorithm that iteratively packs “edit-
disjoint” induced C4s and P4s in the graph. If we are able to pack more than k
of them, then this certifies that the considered instance does not have a solution,
and we can terminate the algorithm. Hence, if X is the union of vertex sets of
the packed obstacles, then |X | ≤ 4k and G − X is a trivially perfect graph.
Finding such a set X , which we call a TP-modulator, imposes a great deal of
structure on the instance, and is the key for further analysis of irrelevant parts
of the input.

In this paper we introduce a new twist to the modulator technique; Namely,
we observe that since we consider edge editing problems, the packed obstacles do
not have to be entirely vertex-disjoint, but the next obstacle can be packed even
if it shares one vertex with the union of vertex sets of the previous obstacles;
In some limited cases even having two vertices in common is permitted. Thus,
the obtained modulator X has the property that not only is there no obstacle in
the graph G that is vertex-disjoint with X , but even the existence of obstacles
sharing one vertex with X is forbidden. This simple observation enables us to
reason about the adjacency structure between X and V (G) \ X . In Lemma 3
we analyze this structure in order to prove the most important technical result
of the proof: The number of subsets of X that are neighborhoods within X of
vertices from V (G) \X is bounded polynomially in k.

We then proceed to analyze the trivially perfect graph G − X . Having the
polynomial bound on the number of neighborhoods within X , we can locate
in the UCD of G − X a polynomial (in k) number of important bags, where
something interesting from the point of view of X-neighborhoods happens. The
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parts between the important bags have very simple structure. They are either
tassels : sets of “trees” hanging below some important bag, where each such tree
is a module in the whole graph G; or combs : long “paths” stretched between
two important bags where all the vertices of subtrees attached to the path have
exactly the same neighborhood in X . Tassels and combs are treated differently:
Large tassels contain large trivially perfect modules in G that can be reduced
quite easily, however for combs we need to devise a quite complicated irrelevant
vertex rule that locates a vertex that can be safely discarded in a long comb.
Since the number of tassels and combs is polynomial in k, reducing the size of
each of them to polynomial in k concludes the construction of the kernel.

Simple Reduction Rules. We first apply two “sunflower” reduction rules,
which identify single edges or non-edges that have to be edited in any solution
of size at most k. In the following, G denotes the complement of graph G.

Rule 1. For an instance (G, k) with uv /∈ E(G), if there is a matching of size
at least k+ 1 in G[N(u) ∩N(v)], then add edge uv to G and decrease k by one,
i.e., return the new instance (G+ uv, k − 1).

Rule 2. For an instance (G, k) with uv ∈ E(G) and N1 = N(u) \ N [v] and
N2 = N(v)\N [u], if there is a matching in G between N1 and N2 of size at least
k + 1, then delete edge uv from G and decrease k by one, i.e., return the new
instance (G− uv, k − 1).

The safeness of both these rules is easy to argue. We apply these rules exhaus-
tively and then proceed to the further analysis of the instance, which we hence-
forth call reduced. That is, on this instance, Rules 1 and 2 can not be applied.
This property will be helpful in the structural analysis.

Modulator Construction. We proceed to the construction of a small mod-
ulator whose raison d’être is to expose structure in G. We say that a subset
W ⊆ V (G) with |W | = 4 is an obstruction if G[W ] is isomorphic to a C4 or a
P4. Formally, our modulator will be compliant to the following definition.

Definition 2 (TP-modulator). Let (G, k) be an instance of Trivially Per-

fect Editing. A subset X ⊆ V (G) is a TP-modulator if for every obstruction
W the following holds: (i) |W ∩X | ≥ 2, and (ii) if |W ∩X | = 2, then it cannot be
that G[W ] is a C4 of the form x1y1y2x2x1 or a P4 of the form x1y1y2x2, where
W ∩X = {x1, x2}. We call a TP-modulator X small if |X | ≤ 4k.

In particular, observe that for a TP-modulator X there is no obstacle disjoint
with X , so G − X is trivially perfect. The following result shows that we can
efficiently compute a small TP-modulator for the purpose of further analysis.

Lemma 2. Given an instance (G, k) for Trivially Perfect Editing, we
can in polynomial time construct a small TP-modulator X ⊆ V (G), or correctly
conclude that (G, k) is a no-instance.

The proof of Lemma 2 relies on the observation that if we start with X = ∅ and
iteratively pack into X an obstacle W that contradicts the properties asserted
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by Definition 2, then each packed obstacle needs at least one additional edit to
be broken, and hence we cannot pack more than k of them in a yes-instance.
By applying Lemma 2, from now on we assume that we are given a small TP-
modulator X in G.

Having constructed the modulator, we proceed to the analysis of the adjacency
structure between X and G\X . For a vertex v ∈ V (G)\X , the X-neighborhood
of v, denoted NX

G (v), is the set NG(v) ∩ X . The family of X-neighborhoods of
G is the set {NX

G (v) : v ∈ V (G) \X}.
Lemma 3. If (G, k) is a reduced instance for Trivially Perfect Editing

and X is a small TP-modulator, then the number of different X-neighborhoods
is at most O(k4).

The proof of Lemma 3 is the cornerstone of our approach. The first step is to un-
derstand how, for a pair of vertices of u, v ∈ V (G)\X , the relative positioning of
u and v in the UCD of G−X affects the relation between theirX-neighborhoods.
It appears that this can be very well understood using the maximality proper-
ties of the TP-modulator X . Then we move aside O(k4) “outlier” vertices of
G−X that have extraordinary X-neighborhoods, and argue that the remaining
X-neighborhoods form within X a set system that has a certain well-defined
property; we call such set systems TP-set systems. Using a purely combinatorial
argumentation we prove that the cardinality of a TP-set system on a universe
U cannot exceed |U |+ 1, and hence the bound of Lemma 3 follows.

Locating Important Bags. Recall that we have just analyzed the structure of
neighborhoods that nodes from V (G)\X have in X . Next, our goal is to perform
the symmetric analysis: to understand, how the neighborhood of a fixed x ∈ X
in V (G) \ X looks like. Let T = (T,B) be the UCD of G − X . First, we aim
to locate a family I ⊆ V (T ) of O(k) important bags, where some non-trivial
behavior w.r.t. the neighborhoods of vertices ofX happens. Then, we perform the
lowest common ancestor-closure on the set I (see Definition 4), thus increasing
its size to at most twice. After this step, all the connected components of T − I
have very simple structure from the point of view of their neighborhoods in X .
As there are only O(k) such components, we will be able to kernelize them
separately.

The following definition and lemma explains what are the types of neigh-
borhoods that vertices of X can have in V (G) \X . In the following we denote
by � the partial order on the vertices of the forest T induced by the ancestor-
descendant relation, i.e., s � t if and only if s is an ancestor of t in T (possi-
bly s = t).

Definition 3 (Type 0, 1, and 2 neighborhoods). Let x ∈ X be any vertex
and consider Ux = N(x) \X. We say that Ux is a neighborhood of Type 0 if Ux

is the union of the vertex sets of a collection of connected components of G−X;
Type 1 if there exists a node tx ∈ V (T ) such that

⋃
s≺tx

Bs ⊆ Ux ⊆ ⋃
s�tx

Bs. In
other words, Ux consists of all the vertices contained in bags on the path from tx
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to the root of its subtree in T , where some vertices of Btx itself may be excluded;
and of Type 2 if there exists a node tx ∈ V (T ) and a collection Lx of subtrees
of T rooted at children of tx such that Ux =

⋃
s�tx

Bs ∪
⋃

S∈Lx

⋃
s∈V (S) Bs. In

other words, Ux is formed by all the vertices contained in bags on the path from
tx to the root of its subtree in T , plus a selection of subtrees rooted in the children
of tx, where the vertices appearing in the bags of each such subtree are either all
included in Ux or all excluded from Ux.

Lemma 4. Let x ∈ X be any vertex and consider Ux = N(x) \X. Then Ux is
of Type 0, 1 or 2.

The proof of Lemma 4 again exploits the maximality properties of TP-modulator
X in order to reason about the structure of neighborhoods of vertices from X in
the UCD of G−X . Clearly, for every x ∈ X we can in polynomial time analyze
Ux and recognize it as a neighborhood of Type 0, 1, or 2. Let I0 be the set of
nodes tx for vertices x ∈ X for which Ux is of Type 1 or 2. To simplify the
structure of T − I0, we perform the lowest common ancestor-closure operation
on I0. The following variant of this operation, as well as its two basic properties,
are taken verbatim from the work of Fomin et al. [9].

Definition 4 ([9]). For a rooted tree T and vertex set M ⊆ V (T ) the lowest
common ancestor-closure (LCA-closure) is obtained by the following process. Ini-
tially, set M ′ = M . Then, as long as there are vertices x and y in M ′ whose least
common ancestor w is not in M ′, add w to M ′. When the process terminates,
output M ′ as the LCA-closure of M .

Lemma 5 ([9]). Let T be a tree, M ⊆ V (T ) and M ′ = LCA-closure(M). Then
|M ′| ≤ 2|M | and for every connected component C of T −M ′, |N(C)| ≤ 2.

Construct the set I by taking LCA-closure(I0) and adding the root of every
connected component of T that contains a bag of I0 (provided it is not already
included). The nodes from I will be marked as important nodes, or important
bags. From Lemma 5 it follows that |I| ≤ 3|X | ≤ 12k, and by the construction
we infer that every connected component C of T − I is of one of the following
three forms:

– C is not adjacent to any node of I, and is thus simply a connected component
of T that does not contain any important bag.

– C is adjacent to one node a of I, and it is a subtree rooted at a child of a.
– C is adjacent to two nodes a and b of I such that a is an ancestor of b.

Then C is formed by the internal nodes of the a− b path in T , plus all the
subtrees rooted at the other children of these internal nodes.

Twin and Module Reductions. Two vertices u and v are true twins if N [u] =
N [v]; this relation is an equivalence relation on V (G) and its equivalence classes
are called true twin classes. A module is a set of vertices M such that for every
vertex v in V (G) \M , either M ⊆ N(v) or M ∩ N(v) = ∅. The following two
reduction rules enable us to reduce large true twin classes and trivially perfect
modules.
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Rule 3. If L ⊆ V (G) is a true twin class of size |L| > 2k + 5, and v ∈ L is
an arbitrarily picked vertex, then remove v from the graph, i.e., proceed with the
instance (G− v, k).

Rule 4. Suppose M ⊆ V (G) is a module such that G[M ] is trivially perfect
and it contains an independent set of size at least 2k + 5. Then let us take any
independent set I ⊆ M of size 2k + 4, and we delete every vertex of M apart
from I, i.e., proceed with the instance (G− (M \ I), k).
The safeness of Rules 3 and 4 follows from a technical check. As for the poly-
nomial time applicability, for Rule 3 it is obvious, whereas we show that we
can in polynomial time verify whether Rule 4 can be applied using the module
decomposition of the graph; we refer to the full version [8] for details. Hence, we
can apply Reduction Rules 3 and 4 exhaustively, in addition to the basic rules
defined earlier. Rule 3 is helpful in limiting the sizes of non-important bags of the
UCD of G−X : Provided all the vertices of a bag have the same neighborhood
in X , they form a true twin class in G, which has size at most 2k+5 if Rule 3 is
inapplicable. By the inapplicability of Rule 4, we can bound the sizes of trivially
perfect modules in (G, k), as shown in the next two results.

Lemma 6. A (possibly disconnected) trivially perfect graph with maximum true
twin class size t and maximum independent set size α has at most (2α − 1)t
vertices in total.

Corollary 1. Suppose an instance (G, k) is reduced, and moreover Rules 3 and 4
are not applicable to (G, k). Then for every module M ⊆ V (G) such that G[M ]
is trivially perfect, we have that |M | = O(k2).

From now on we assume that in the considered instance (G, k) we have exhaus-
tively applied all the Rules 1–4. Hence, Corollary 1 can be used. Note that to
perform these steps, we do not need to construct the small modulator X at all.
However, we hope that the reader already sees that Rules 3 and 4 will be useful
for reasoning about too large parts of G−X between the important bags.

Kernelizing Non-important Parts. Recall that we have fixed a small TP-
modulator X with |X | ≤ 4k such that G −X is a trivially perfect graph with
universal clique decomposition T . Moreover, Rules 1–4 are inapplicable to (G, k).
By Lemma 3, we have that the number of different X-neighborhoods is O(k4).
By marking the important bags, we have marked a set I of O(k) bags of T
as important, in such a manner that every connected component of T − I is
adjacent to at most two vertices of I, and is in fact of one of the three forms
described in the paragraph following Lemma 5.

Thus, the whole vertex set of G−X can be partitioned into four sets:

VI : vertices contained in bags from I;
V0: vertices contained in bags of those components of T −I that are not adjacent

to any bag from I;
V1: vertices contained in bags of those components of T − I that are adjacent

to exactly one bag from I;
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V2: vertices contained in bags of those components of T − I that are adjacent
to exactly two bags from I.

We establish an upper bound on the size of each of these sets separately. Upper
bounds for VI , V0, and V1 follow already from the introduced reduction rules.

Lemma 7. |VI | ≤ O(k6), |V0| ≤ O(k6), and |V1| ≤ O(k7).

Let us take a closer look at the bound on |V1|. The vertices of V1 can be parti-
tioned into O(k) tassels, where each tassel comprises all the subtrees rooted at
the children of an important node x that do not contain any important node.
Each such subtree is a module in G that induces a trivially perfect graph, but
different subtrees within one tassel can have different neighborhoods in X . How-
ever, from Lemma 3 we know that the number of these neighborhoods is O(k4).
Thus, every tassel can be partitioned into O(k4) classes of subtrees, each of
which is a (possibly disconnected) module that induces a trivially perfect graph.
Hence, each of these classes has size O(k2) by Corollary 1, which together with
the number of tassels being O(k) gives us the O(k7) bound on |V1|.

However, for V2 we need a new reduction rule. The set V2 is composed of O(k)
combs, where each comb is formed by (i) vertices appearing in internal bags of
a path P in T between an important node b↓ and its important ancestor b↑, and
(ii) all the vertices in the subtrees rooted at the children of the internal vertices
of P that do not lie on P . The internal nodes of P form the shaft of the comb,
and the sets of subtrees rooted at the other children of the consecutive nodes of
the shaft form its teeth. It can be shown that the vertices from shaft have the
same neighborhood Y in X , and the vertices from the teeth also have the same
neighborhood Z ⊆ Y in X , but it can happen that Z differs from Y . In such a
situation, we prove that it is safe to remove the middle tooth of the comb; for a
formal statement of the following reduction rule we refer to the full version [8].

Rule 5 (Informal). Suppose C is a comb of length at least (4k + 3)2, and let
Rβ be the “middle” tooth of this comb. Then remove Rβ from the graph and do
not modify the budget. That is, proceed with the instance (G−Rβ , k).

The safeness of Rule 5 is proved by an involved technical check, which in par-
ticular relies on the exact definition of the “middle” tooth. If we apply Rule 5
on the combs exhaustively, then we know that each of them has length at most
O(k2). Then, using Corollary 1, it can be easily argued that the number of ver-
tices within each comb is O(k4), which leads to |V2| ≤ O(k5) since the number
of combs is O(k). By combining this with Lemma 7 and the fact that |X | ≤ 4k,
we infer that |V (G)| ≤ O(k7), which concludes the proof of Theorem 1.

3 Conclusions

In this paper we gave the first polynomial kernels forTrivially Perfect Edit-

ing and Trivially Perfect Deletion, which answers an open problem by
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Nastos and Gao [16], and Liu, Wang, and Guo [15]. Also, we showed that Triv-

ially Perfect Editing, in addition to being NP-complete, is not solvable in
subexponential parameterized time unless ETH fails. The same result was known
for Trivially Perfect Deletion, but contrasts the previous result that the
completion variant does admit a subexponential parameterized algorithm [7].

The main contribution of the paper is a proof that Trivially Perfect

Editing admits a kernel with O(k7) vertices. We apply the existing technique
of constructing a vertex modulator, but with a new twist: The fact that we
are solving an edge modification problem enables us also to argue about the
adjacency structure between the modulator and the rest of the graph, which
is helpful in understanding the structure of the instance. We believe that this
new insight can be applied to other edge modification problems as well. In fact,
the same general approach has been recently used by the first author to achieve
a quadratic kernel for Threshold Editing [6], and by the second author to
obtain a polynomial kernel for {Claw,Diamond}-Free Edge Deletion [5].
For other questions where the technique might be applicable, we propose the
following:

– Improve the O(k3) kernel for Cograph Editing of [10].
– Do Claw-Free Edge Deletion and Line Graph Edge Deletion admit

polynomial kernels?
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Abstract. Prophet inequalities bound the reward of an online
algorithm—or gambler—relative to the optimum offline algorithm—the
prophet—in settings that involve making selections from a sequence of
elements whose order is chosen adversarially but whose weights are ran-
dom. The goal is to maximize total weight.

We consider the problem of choosing quantities of each element sub-
ject to polymatroid constraints when the weights are arbitrary concave
functions. We present an online algorithm for this problem that does at
least half as well as the optimum offline algorithm. This is best possible,
as even in the case where a single number has to be picked no online
algorithm can do better.

An important application of our result is in algorithmic mechanism
design, where it leads to novel, truthful mechanisms that, under a mono-
tone hazard rate (MHR) assumption on the conditional distributions of
marginal weights, achieve a constant-factor approximation to the opti-
mal revenue for this multi-parameter setting. Problems to which this
result applies arise, for example, in the context of Video-on-Demand,
Sponsored Search, or Bandwidth Markets.

1 Introduction

Prophet inequalities compare the performance of an online algorithm to the
optimum offline algorithm in settings that involve making selections from a se-
quence of random elements. The online algorithm knows the distribution from
which the elements will be sampled, while the optimum offline algorithm knows
the sequence of sampled elements. Prophet inequalities thus bound the relative
power of online and offline algorithms in Bayesian settings. Not surprisingly, they
play an important role in the analysis of online and offline algorithms in these
settings. Less obviously, but no less importantly, they have a growing number of
applications in algorithmic mechanism design. Specifically, they have been used
to design simple yet approximately optimal (=revenue maximizing) mechanisms
for multi-parameter settings, in which Myerson [17]’s seminal characterization of
optimal mechanisms does not apply. Revenue maximization in multi-parameter
settings is considered one of the biggest challenges in this field.

A classic result of Krengel and Sucheston [15, 16] shows that when both the
online algorithm and the offline algorithm get to pick exactly one element, then
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the online algorithm can do at least half as well as the offline algorithm. More
formally, if w1, . . . , wn is a sequence of independent, non-negative, real-valued
random variables satisfying E[maxi wi] < ∞, then there exists a stopping rule τ
such that

E[wτ ] ≥ 1

2
· E[max

i
wi].

The bound is achieved, for example, by an elegant algorithm of Samuel-Cahn
[18]. This algorithm chooses a threshold T such that Pr(maxiwi > T ) = 1

2 ,
and selects the first element whose weight exceeds this threshold. Alternatively,
as described by Kleinberg and Weinberg [14], this bound can be obtained by
choosing threshold T = E[maxiXi]/2 and picking the first element whose weight
exceeds the threshold.

Kleinberg and Weinberg [14] recently extended this result to matroid settings.
In a matroid setting we are given a ground set U and a non-empty downward-
closed family of independent sets I ⊆ 2|U| satisfying the exchange axiom: for
all pairs of sets I, J ∈ I and |I| < |J | there exists an element j ∈ J such that
I∪{j} ∈ I; a maximal element of I is called a basis. For these settings they prove
that if both the online and the offline algorithm have to pick an independent set
of elements, then the online algorithm again can do at least half as well as the
offline algorithm. More formally, if w1, . . . , wn is a sequence of independent, non-
negative, real-valued random variables satisfying E[maxi wi] < ∞, then there is
a way to pick A ∈ I in an online fashion such that

E

[
∑

i∈A

wi

]
≥ 1

2
· E

[
max
B∈I

∑

i∈B

wi

]
.

A common restriction of the original result of Krengel and Sucheston and the
Kleinberg and Weinberg result is that they only apply to settings with binary
decisions (i.e., an element can either be picked or not).

A Prophet Inequality for Polymatroids Our main technical contribution is
a prophet inequality for settings in which the gambler and the prophet
have to choose quantities of each element subject to polymatroid constraints
and the weights are arbitrary concave functions. That is, we consider set-
tings in which we are given a ground set U and a submodular1 set func-
tion f : 2U → R and a vector of quantities z ∈ N

|U| is feasible
if z ∈ Pf = {q ∈ N

|U| | ∑u∈S q(u) ≤ f(S) for all S ⊆ U}. We will restrict our-
selves to integer quantities and integer-valued set functions for ease of exposition;
our results trivially extend to rational quantities and rational-valued functions
by scaling. For this setting we prove that if the goal of the online and the offline
algorithm is to maximize

∑
u∈U w(u, z(u)) over feasible z, and if the w’s are

random concave weights chosen independently for each element, then the online
algorithm can do at least half as well as the offline algorithm.

More formally, we show that if w1, . . . , wn is a sequence of independent, non-
negative, real-valued concave weight functions for elements u1, . . . , un, then there

1 A set function f is submodular if for all X ⊂ Y ⊆ U , f(X ∪ Y ) + f(X ∩ Y ) ≤
f(X) + f(Y ).



Polymatroid Prophet Inequalities 439

exists a way to choose a feasible z = (z1, . . . , zn) in an online fashion (i.e.,,
choosing zi when w1, . . . , wi have been revealed but wi+1, . . . , wn have not yet
been revealed) such that

E

[
n∑

i=1

w(ui, zi)

]
≥ 1

2
· E

[
max
q∈Pf

n∑

i=1

w(ui, qi)

]
.

Our result contains the previous results as a special case, and is best possible
as even in the case where a single element has to be picked no online algorithm
can do better.

To prove this result we apply a known reduction from polymatroids to ma-
troids (see, e.g., Section 44.6b of [19]). Applying this reduction, we transform
an input sequence to the polymatroid problem to an input sequence of the ma-
troid problem by repeating the (element, weight) pairs in the input sequence to
the polymatroid problem. While this construction turns inputs to the polyma-
troid problem into inputs to the matroid problem, it violates the independence
of weights assumption. Different matroid elements corresponding to the same
polymatroid element will have identical (and hence dependent) weights.

A second potential difficulty that arises when reducing the polymatroid prob-
lem to the matroid problem in this manner is that the canonical way of doing so
(by repeating elements of the ground set of the polymatroid and assigning the
j-th copy of an element in the resulting matroid problem the marginal weight of
the j-th unit of the corresponding element in the polymatroid setting) only leads
to a meaningful interpretation if the matroid algorithm always picks contiguous
elements from the beginning of each sequence of matroid elements corresponding
to the same polymatroid element.

The Kleinberg-Weinberg algorithm does not apply to dependent weights and it
also does not necessarily pick consecutive matroid elements. Our main technical
workhorse is therefore a novel algorithm for the matroid setting that is capable
of handling the dependencies resulting from the reduction, and that ensures
that a solution to the matroid problem can be meaningfully translated back
to the polymatroid setting. To ensure the latter our algorithm sets increasing
thresholds within each block of elements corresponding to the same polymatroid
element, and accepts an element precisely if the weight of that element passes the
threshold. Once an element fails to pass the threshold it “freezes” the threshold
at the current niveau. It thereby ensures that subsequent elements will not be
selected as their weight can only be lower. We control for the former, i.e., the
potential dependencies across weights of matroid elements corresponding to the
same polymatroid element, by introducing the notion of surrogate thresholds
and performing large parts of the analysis using these surrogate thresholds as
proxies.

Truthful Mechanisms with Near-Optimal Revenue The most important implica-
tion of our prophet inequality result are novel, truthful mechanisms that achieve
constant-factor approximations to the optimal revenue for a multi-parameter
mechanism design problem. The problem to which our mechanisms apply is



440 P. Dütting and R. Kleinberg

multi-parameter as each agent can receive multiple units, and can have arbi-
trary concave valuations. The requirement that the valuations are concave cor-
responds to the standard economic assumption that valuations have decreasing
marginals. Like prior results our mechanisms are posted-price mechanisms; that
is, they approach the agents in turn and present them with a price that the agents
can either accept or not. However, prior results that have used prophet inequal-
ities to devise posted-price mechanisms were restricted to unit-demand settings
(e.g., [5, 1, 14]). To the best of our knowledge, our posted price mechanisms are
the first such mechanisms for a multi-unit demand setting, and yield the first
constant-factor revenue guarantees for problems with polymatroid structure and
valuations with decreasing marginals.

In a Bayesian mechanism design problem with polymatroid structure we are
given a set N of n agents. Each agent i has a private, concave valuation function
vi : N → R+, drawn independently from not necessarily identical distributions
Fi with support Vi that are common knowledge. A mechanism (x, p) consists
of an outcome rule x :

∏
i Vi → R

n
+, where xi specifies how much service agent

i gets, and a payment rule p :
∏

i Vi → R
n
+, where pi specifies the payment of

agent i. An outcome is feasible if
∑

i∈S xi ≤ f(S) for all S ⊆ N , where f is an
integer-valued submodular function. Agent i’s utility is ui(b, vi) = vi(xi(b)) −
pi(b), where b denotes the bids of the agents. The welfare of a mechanism is∑

i∈N vi(xi(b)) and its revenue is
∑

i∈N pi(b). A mechanism is dominant strategy
incentive compatible (DSIC) (or truthful) if for every agent i, value vi, bid bi
and bids b−i = (b1, . . . , bi−1, bi+1, . . . , bn), ui((vi, b−i), vi) ≥ ui((bi, b−i), vi).

Practical mechanism design problems with polymatroid structure include:

(1) Video-on-Demand [4]: Consider a collection of spatially dispersed user
groups, each of which wants to watch various movies using a streaming service.
We can model this via a graph G = (

⋃
i∈N Ti ∪ {s}, E) in which Ti ∩ Tj = ∅ for

all i, j ∈ N and each edge e ∈ E has a capacity ce. The seller is identical with
source node s. Each agent i ∈ N is identified with a number of demand nodes
Ti corresponding to the members of user group i. The allocation to each agent
i ∈ N is

∑
t∈Ti

xt, where xt is the flow into t. An allocation x is feasible if and
only if

∑
t∈S xt ≤ f(S) for all S ⊆ ⋃

i∈N Ti, where f is the submodular function
giving the value of a minimum s-S-cut.

(2) Local Purchasing Collectives [3]: Consider a group of buyers which is
interested in purchasing a certain good from local providers. We can model this
via a bipartite graph with vertices on the left side representing providers and
those on the right side representing buyers (elements of N). An edge represents
a buyer having access to a particular provider. Suppose that each provider j
has a positive supply s(j). A vector of quantities purchased is feasible if each
buyer’s quantity can be fulfilled by one or more of the adjacent providers without
exceeding any provider’s supply. More formally, for a set S of buyers let Γ (S)
denote the set of providers adjacent to at least one element of S, and let f(S) =∑

j∈Γ (S) s(j) which is a submodular function. A vector x of quantities purchased

is feasible if and only if for every set of buyers S, we have
∑

i∈S xi ≤ f(S).
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(3) Sponsored Search [10]: In sponsored search a set of advertisers seeks to be
assigned clicks on ad slots. Denote the set of advertisers by N and the set of ad
slots byM . Sort the ad slots j ∈ M by non-increasing number of clicks αj ∈ N≥0.
An allocation x of clicks to advertisers is feasible if and only if

∑
i∈S xi ≤ f(S)

for all S ⊆ N , where f(S) =
∑|S|

j=1 αj is a submodular function.

(4) Bandwidth Markets [4]: In wireless communication settings agent i ∈ N
seeks to maximize its transmission rate xi. In a Gaussian multiple-access channel
the set of feasible transmission rates x—the so-called Cover-Wyner region—
forms a polymatroid (see [20] for details).

We present two DSIC posted-price mechanisms for these problems. The first
combines the thresholds of our algorithm with “eager” reserves, the second com-
bines them with “lazy” reserves [7]. The difference between eager and lazy re-
serves is that the former are applied during the computation of the allocation,
while the latter are applied only after the fact. In our case, however, both can
be implemented in an online fashion. We prove that these mechanisms achieve
at least a 1/2e2 resp. 1/2e fraction of the optimal revenue by proving a lower
bound in terms of the optimal welfare. For “eager” reserves we use Chebyshev’s
Integral Inequality and inductively apply a single-sample argument of [7]. For
“lazy” reserves we only need the single-sample result.

Related Work. We have already described the result by Krengel and Sucheston
[15, 16] for the case in which both the online algorithm and the offline algorithm
are allowed to pick one number, showing that the online algorithm can do at least
half as well as the offline algorithm. This bound is tight. The result has been
extended to the case where both the online algorithm and the offline algorithm
can pick k numbers by Alaei [1], showing that the online-to-offline ratio is at
least 1− 1/(

√
k + 3). This matches the aforementioned tight bound when k = 1,

and it remains nearly tight for k > 1, in the sense that a ratio of 1 − o(1/
√
k)

is known to be unattainable. Kleinberg and Weinberg [14] have extended the
bound of two to settings where the elements picked must be an independent set
in a matroid. This bound is also tight, as it subsumes the case where both the
online and offline algorithm have to pick one number.

Hajiaghayi et al. [13] observed the following relationship between prophet in-
equalities and algorithmic mechanism design: algorithms used to prove prophet
inequalities can be interpreted as truthful online auction mechanisms, and the
prophet inequality in turn can be interpreted as the mechanism’s approxima-
tion guarantee. Chawla et al. [5] observed an even subtler relationship between
the two topics: questions about the approximability of offline Bayesian opti-
mal mechanisms by sequential posted-price mechanisms could be translated into
questions about prophet inequalities, via the use of virtual valuation functions.
Alaei [1] and Kleinberg and Weinberg [14], armed with stronger prophet inequal-
ities, deepen this relationship even further. More recently, and in parallel to this
work, Feldman et al. [9] have designed posted-price mechanisms for combinato-
rial auctions, which are not based on prophet inequalities.
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Another related line of literature is work on secretary problems, which also
concerns relations between optimal offline selection rules and suboptimal online
stopping rules, but under the assumption of a randomly ordered input rather
than independent random numbers in a fixed order. While the polymatroid
prophet inequality that we solve here contains the matroid prophet inequality
problem as a special case, the matroid secretary problem introduced by Babaioff
et al. [2] remains largely unsolved despite recent progress.

A final related direction is work on exponential-sized Markov decision pro-
cesses (MDP’s) [6, 11, 12]. The connection here is that algorithms for prophet
inequalities can be formulated as exponential-sized MDP’s, whose state reflects
the entire set of decisions made prior to a specified point during the algorithm’s
execution. Most of the algorithms with provable approximation guarantees for
exponential-sized MDP’s are LP-based, while our algorithm is combinatorial.

2 Preliminaries

In a Bayesian online selection problem we are given a ground set U and for each
x ∈ U a probability distribution Fx with support Rd

≥ = {m ∈ R
d
+ : i ≤ i′ ⇒ mi ≥

mi′} of finite dimension d ∈ N+. This induces a probability distribution over
functions w : U × {1, . . . , d} → R+ in which the multivariate random variables
{(w(x, 1), . . . , w(x, d)) : x ∈ U} are independent and the marginals (w(x, 1) −
w(x, 0), . . . , w(x, d)−w(x, d−1)) where we set w(x, 0) = 0 have distribution Fx.
We refer to w(x, k) as the weight of k units of x, and to w(x, k) − w(x, k − 1)
as the marginal weight of the k-th unit of x. By our assumption regarding the
distributions Fx for x ∈ U , the marginal weights w(x, k) − w(x, k − 1) for all
x ∈ U and k ≥ 1 are decreasing and the weight w(x, k) of any given x ∈ U is a
concave function in k.

The goal is to choose a vector z ∈ R
|U| that maximizes

∑
x∈U w(x, z(x)).

For a given weight function w we use OPT(w), or simply OPT, to denote the
optimal value. The vector z will typically be restricted to come from a space
of feasible vectors F ⊆ R

|U|. One common restriction is F ⊆ {0, 1}|U| in which
case zi ∈ {0, 1} can be thought of as encoding membership in a subset A ⊆ U .
Two further restrictions, matroids and polymatroids, were discussed already in
Section 1. For matroids the distribution Fx for x ∈ U has dimension 1; for
polymatroids defined by f taking values in {1, . . . ,M} it suffices to consider
distributions Fx for x ∈ U of dimension M .

An input sequence is a sequence σ of ordered pairs (xi, wi)i=1,...,|U| consist-
ing of an element xi ∈ U and marginals wi ∈ R

d
≥ such that every xi ∈ U occurs

exactly once in the sequence. A deterministic online selection algorithm is a func-
tion z mapping every input sequence σ to a vector z(σ) ∈ F such that for any
pair of input sequences σ, σ′ that match on the first i pairs (x1, w1), . . . , (xi, wi)
we have zj(σ) = zj(σ

′) for all 1 ≤ j ≤ i. An online weight-adaptive adver-
sary that has chosen x1 . . . , xi−1 and has learned about w1, . . . , wi−1 chooses xi

without knowing wi.
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Notation. For a real number z, we use z+ to denote max{z, 0}. We use the
shorthand w(S) to denote the weight of a feasible (multi-)set S of elements
x ∈ U .

3 Algorithm for Polymatroids

We derive our algorithm for the polymatroid prophet inequality by reducing to
the matroid case. We begin by defining block-structured matroids, block-restricted
weight distributions, and block-restricted adversaries. Although a prophet in-
equality for the resulting matroid problem would translate into a prophet in-
equality for the polymatroid problem, we cannot simply apply the Kleinberg-
Weinberg algorithm for matroids to derive it. The reason is twofold. First, the
reduction from polymatroids to matroids leads to weight distributions that are
no longer independent. Second, for the weights in the matroid setting to be in
one-to-one correspondence to the weights in the polymatroid setting we need to
ensure that the matroid algorithm chooses consecutive elements of each block.
The crux of our analysis is therefore a novel algorithm for the matroid setting
that can handle the dependencies that result from the reduction and that guar-
antees that weights are consistent.

Due to space limitations, most proofs in this section and the following one are
deferred to the full version of the paper [8].

3.1 Block-Structured Matroids

We first define block-structured matroids and show that to every polymatroid
defined by an integer-valued submodular function there is an associated block-
structured matroid.

Definition 1. A block-structured matroid is one whose ground set is partitioned
into blocks B1, ..., Bn such that the independence relation is preserved under
permutations of the ground set that preserve the pieces of the partition.

For a set S ⊆ B1 ∪ · · · ∪ Bn we define its cardinality vector q(S) =
(q1(S), q2(S), . . . , qn(S)) by setting qi(S) = |S ∩Bi| for i = 1, . . . , n.

Lemma 1 (cf. Chapter 44.6b of [19]). Suppose f is a submodular function
on ground set U = {u1, . . . , un}, taking values in {0, 1, . . . ,M}. There is a block-
structured matroid Mf on ground set U × [M ] with blocks Bi = {ui}× [M ] (i =
1, . . . , n), whose independent sets are those S satisfying q(S) ∈ Pf .

Next we define block-restricted weight distributions and block-restricted ad-
versaries to capture the type of input sequences generated by our reduction.
We also define a property of algorithms for block-restricted matroids that en-
sures that the weights in the matroid setting can be translated back into the
polymatroid setting.

Definition 2. A block-restricted weight distribution on a block-structured ma-
troid is a joint distribution of weights for its elements, such that the elements
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of a block receive non-increasing weights, the weights within each block can be
arbitrarily correlated, but the weight assignments to different blocks are mutually
independent.

Definition 3. A block-restricted adversary is one who is restricted to choose
an ordering of the input sequence in which the elements of each block appear
consecutively, and after any proper subset of the blocks have been presented,
the choice of which block is presented next may only depend on the weights of
elements that have already been presented.

Definition 4. A deterministic algorithm for block-restricted matroids is con-
sistent if whenever it picks the j-th element of a block if it has already picked
elements 1, . . . , j − 1 from that block. In other words a consistent algorithm for
block-restricted matroids may only choose consecutive blocks of items at the be-
ginning of each block in the matroid.

Note that when all blocks have size 1, a block-structured matroid is simply
a matroid, and a block-restricted distribution is simply an independent distri-
bution. Furthermore, a block-restricted adversary is exactly the same as the
notion of online weight-adaptive adversary defined in [14]. Thus, the special case
in which all blocks have size 1 is precisely the setting of the matroid prophet
inequality of [14].

3.2 Prophet Inequality for Block-Structured Matroids

Next we describe our algorithm for the matroid problem. The algorithm is similar
in spirit to the algorithm of Kleinberg andWeinberg in that it sets a threshold for
each element and accepts the element if and only if its weight exceeds the thresh-
old. However, it significantly differs from the Kleinberg-Weinberg algorithm in
the way it chooses the thresholds.

Consider a block-restricted matroid M = (U , I). Let w,w′ : U → R+

denote two assignments of weights to the elements of U sampled indepen-
dently from a block-restricted weight distribution. For a given input sequence
σ = (x1, w(x1)), . . . , (xn, w(xn)) we compare the set A = A(σ) selected by the
algorithm to the basis B that maximizes w′(B). The matroid exchange axiom
guarantees the existence of a partition of B into disjoint subsets C,R such that
A ∪ R is also a basis of M. Among all such partitions, let C(A), R(A) denote
the one that maximizes w′(R). Let g(A) = w′(R(A)).

The selection algorithm when faced with element xi proceeds as follows: De-
note the (possibly empty) set of elements already selected by Ai−1 and denote
the (possibly empty) set of indices of elements belonging to the same block as xi

and that precede xi in the input sequence by Pred(xi). Element xi is accepted
if and only if w(xi) ≥ Ti where the threshold Ti is determined as follows. If
Ai−1 ∪ {xi} ∈ I then Ti = ∞. Otherwise,
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Ti = max{ max
j∈Pred(xi)

Tj,
1

2
· E[g(Ai−1)− g(Ai−1 ∪ {xi})]}

= max{ max
j∈Pred(xi)

Tj,
1

2
· E[w′(R(Ai−1))− w′(R(Ai−1 ∪ {xi}))]} (1)

= max{ max
j∈Pred(xi)

Tj,
1

2
· E[w′(C(Ai−1 ∪ {xi}))− w′(C(Ai−1))]}. (2)

Note that (1) and (2) define the same quantity: Let B be the maximum weight
basis of M with weights w′. Then, w′(B) = w′(C(Ai−1)) + w′(R(Ai−1)) and
w′(B) = w′(C(Ai−1 ∪ {xi})) + w′(R(Ai−1 ∪ {xi})). Equalizing and rearranging
gives

w′(R(Ai−1))− w′(R(Ai−1 ∪ {xi})) = w′(C(Ai−1 ∪ {xi}))− w′(C(Ai−1)).

Theorem 1. For every block-restricted matroid (U , I) with block-restricted
weight distribution there is a deterministic, consistent online selection algorithm
that achieves the following performance guarantee against block-restricted adver-
saries:

E[w(A)] ≥ 1

2
·OPT.

Before we outline how this theorem can be proved, we use it to derive a prophet
inequality for polymatroids.

3.3 Prophet Inequality for Polymatroids

The algorithm that achieves the prophet inequality in the polymatroid set-
ting (with integer-valued submodular function f taking values in {1, . . . ,M})
does so by reducing the problem to the block-structured matroid setting with
the matroid Mf defined in Lemma 1 as follows. If in the polymatroid set-
ting the elements are presented in order u1, . . . , un, then the reduction con-
structs an input sequence in the matroid setting by presenting the elements
in order (u1, 1), (u1, 2), . . . , (u2, 1), (u2, 2), . . . (lexicographic order, U coordi-
nate first). If in the polymatroid setting the marginal weights of element ui

are wi = (wi,1, wi,2, . . . , wi,M ) then element (ui, j) is presented in the matroid
setting with weight wi,j . If the matroid algorithm, while processing elements
(ui, 1), (ui, 2), . . . , (ui,M), selects a subset {ui} × Si, then the polymatroid al-
gorithm when processing ui sets zi = |Si|.

Theorem 2. For every polymatroid Pf defined by a rational-valued submodular
function f and concave weights there exists a deterministic online selection al-
gorithm that satisfies the following performance guarantee against online weight-
adaptive adversaries:

E

[
n∑

i=1

w(ui, z(ui))

]
≥ 1

2
·OPT.
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Fig. 1. Visualization of the thresholds set by the algorithm

3.4 Proof of the Block-Restricted Matroid Prophet Inequality

We start with a proposition that provides a lower bound on the sum of the
thresholds of the elements that are selected by the algorithm. The proof of this
proposition exploits the definition of the thresholds and, in addition, linearity of
expectation and a telescoping sum.

Proposition 1. For every input sequence σ, if A = A(σ), then∑
xi∈A Ti ≥ 1

2 · E[w′(C(A))].

Next we describe our main technical insight. Namely, that the thresholds
within a given block have a specific form (see Figure 1 for an illustration).
Specifically, consider any block consisting of elements ui0 , ui0+1, . . . , ui1−1. For
all i0 ≤ i ≤ i1 define Ai = Ai0−1 ∪ {xi0 , . . . , xi}, and

ti =
1

2
· Ew′

[
g(Ai−1)− g(Ai)

]
, (3)

where for convenience we also set Ai0−1 = Ai0−1. We will show that the sequence
of numbers defined by (3) forms a non-decreasing sequence depending only on
the weights associated with previous elements w1, w2, . . . , wi0−1, and that for
i0 ≤ i ≤ i1 − 1 the algorithm sets threshold Ti = ti if ti ≤ wi and Ti > wi

otherwise.

Lemma 2. Consider a block-structured matroid (U , I) with blocks B1, . . . , Bn.
For any input sequence σ generated by a block-restricted adversary, and any block
Bj, let i0, i0 + 1, . . . , i1 denote the times when the elements of Bj are presented
in σ. The sequence of numbers ti0 , . . . , ti1 defined by (3) satisfies ti0 ≤ ti0+1 ≤
· · · ≤ ti1 and depends only on the subsequence of σ preceding time i0. Moreover,
the algorithm is consistent and sets Ti = ti for all i0 ≤ i ≤ i1 such that ti ≤ wi,
and Ti > wi otherwise.

An important corollary of the preceding structural result regarding the thresh-
olds is the following assertion for two weight assignments w,w′ drawn indepen-
dently from a block-restricted weight distribution.
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Corollary 1. Let w,w′ be two weight assignments drawn independently from
a block-restricted weight distribution. For any input sequence σ generated by
a block-restricted adversary, and any block Bj, let i0, i0 + 1, . . . , i1 denote the
times when the elements of Bj are presented in σ. Then, for all i0 ≤ i < i1,
(wi − Ti)

+ = (wi − ti)
+, and wi, ti, w

′(xi) are mutually independent, so

E[(wi − Ti)
+] = E[(wi − ti)

+] = E[(w′(xi)− ti)
+].

The final ingredient is an upper bound on the sum of the surrogate thresholds
ti for the elements xi in R(A), where A is the set of elements accepted by the
algorithm on a given input sequence σ.

Proposition 2. For every input sequence σ generated by a block-restricted ad-
versary, let A = A(σ). Then

∑
xi∈R(A) ti ≤ 1

2 · E[w′(R(A))].

The proof of Theorem 1 uses our structural insight regarding the thresholds
to lift the proof from the actual thresholds to the surrogate thresholds. It then
uses the upper and lower bounds on the surrogate thresholds from this section
to establish the claimed bound.

4 Application to Mechanism Design

We conclude by showing how our prophet inequality algorithm can be used
to derive dominant strategy incentive compatible (DSIC), constant factor-
approximations to the optimal revenue for a multi-parameter setting in which
Myerson’s analysis of the revenue-maximizing auction does not apply. Our re-
sult applies to concave weights whose distribution satisfies a conditional analog
of the monotone hazard rate (MHR) condition. Specifically, we will assume that
for each element ui ∈ U the conditional distribution of the marginal weight
wi,j of the j-th unit given the marginal weights wi,1, . . . , wi,j−1 of the preceding

units is MHR. That is,
f(wi,j |wi,j0 ,...,wi,j−1)

1−F (wi,j |wi,j0 ,...,wi,j−1)
is non-decreasing in wi,j . One ex-

ample of a distribution satisfying this assumption is obtained by first drawing
wi,1 ∼ U [0, 1], then drawing wi,2 ∼ U [0, wi,1], and so on.

We obtain posted-price mechanisms by combining the algorithm for polyma-
troids with “eager” or “lazy” monopoly reserves [7]. The monopoly reserve r∗

for a given distribution F over valuations v with density f is r∗ = φ−1(0) where

φ(v) = v − 1−F (v)
f(v) is the virtual valuation. In the case of “eager” reserves, we

modify the algorithm so that it only awards element xi if its weight w(xi) exceeds
the threshold Ti and the monopoly reserve r∗i of the conditional distribution of
w(xi). In the case of “lazy” reserves, we first run the algorithm to determine a
tentative allocation, but then we only allocate elements whose weight also ex-
ceeds the reserve. Note that this can be done in an online fashion by computing
thresholds as if all tentative assignments were made, but only actually awarding
an element if it also exceeds the reserve.

Both mechanisms are DSIC as they are posted price. To prove the revenue
bounds we need the following single-sample result.
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Lemma 3 (Lemma 3.10 of Dhangwatnotai et al. [7]). Let F be an MHR
distribution with monopoly price r∗ and revenue function R̂. Let V (t) denote
the expected welfare of a single-item auction with a posted price of t and a sin-
gle bidder with valuation drawn from F . For every nonnegative number t ≥ 0,
R̂(max{t, r∗}) ≥ 1

e · V (t).

Theorem 3. For polymatroids Pf defined by rational-valued submodular func-
tion f and concave weights that satisfy the conditional analog of the MHR con-
dition, combining the polymatroid prophet inequality algorithm with “eager” or
“lazy” reserves yields a DSIC mechanism whose revenue REAGER or RLAZY on
any input sequence σ generated by an online weight-adaptive adversary satisfies

REAGER(σ) ≥ 1

2e2
· ROPT(σ) or RLAZY ≥ 1

2e
· ROPT(σ),

where ROPT denotes the optimal revenue.

Corollary 2. For MHR valuations with decreasing marginals, there is a truthful
1/2e approximation to revenue for video-on-demand, bandwidth markets, spon-
sored search, and local purchasing collectives.
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Abstract. Suppose you are given a graph G = (V,E) with a weight
assignment w : V → Z and that your objective is to modify w using
legal steps such that all vertices will have the same weight, where in
each legal step you are allowed to choose an edge and increment the
weights of its end points by 1.

In this paper we study several variants of this problem for graphs
and hypergraphs. On the combinatorial side we show connections with
fundamental results from matching theory such as Hall’s Theorem and
Tutte’s Theorem. On the algorithmic side we study the computational
complexity of associated decision problems.

Our main results are a characterization of the graphs for which any
initial assignment can be balanced by edge-increments and a strongly
polynomial-time algorithm that computes a balancing sequence of incre-
ments if one exists.
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Fig. 1. The node-weights after one incrementing step

1 Introduction

The following puzzle is often used as an introductory puzzle for the method of
invariance and potential functions: Six boxes numbered 1 to 6 are arranged in
a cycle. For every 1 ≤ i ≤ 6, we start with i oranges in box number i. At each
step we are allowed to add one orange to each of two adjacent boxes. Prove that
we will never be able to make all boxes contain the same number of oranges.
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One of the simple solutions to this puzzle is to observe that the total number
of oranges in boxes 1, 3, 5 is always smaller than the total number of oranges in
boxes 2, 4, 6 and this never changes through each step of the game.

In this paper we consider the natural generalization of the puzzle above to
arbitrary graphs. Let G = (V,E) be a finite graph, let w : V → N be a non-
negative integer weight function on its vertices and let e = {u, v} ∈ E. A positive
step on e modifies w by increasing the weights of u, v by 1 unit. We say that w
is equatable in G if there exists a sequence of only positive steps, S = s1, . . . , sm,
after which all vertices have the same weight. We also say that the sequence S
positively equates w.

Our main results are the following.

i) We characterize those graphs G = (V,E) for which any initial assigmnet
w : V → N0 is equatable. These are the connected graphs with an odd
number of nodes for which G − U has less than |U | isolated vertices for
any U ⊂ V . Here G − U is the subgraph of G that is induced by V \ U .
(Theorem 1)

ii) We show that the following problem can be solved in strongly polynomial
time. Given a graph G = (V,E) and an initial assignment w : V → N0,
decide whether w is equatable and compute an equating multiset of edges.
(Theorem 3)

iii) An initial assignment w of the nodes of a bipartite graph G = (L+R,E) is
not equatable if w(L) �= w(R), the difference w(L)−w(R) is invariant under
edge-increments. However, each balanced assignment with w(L) = w(R) is
equatable if and only if the strict Hall condition holds: For any nonempty set
of vertices X that is properly contained in L or in R, one has |X | < |N(X)|.
Here N(X) denotes the neighborhood of X . (Theorem 4)

iv) Finally we show that the analog of the decision problem ii) is NP -hard for
hypergraphs. (Theorem 5).

Related Work. The problem of equating the node-weights is closely related to

perfect b-matchings, [15]. Let b ∈ N
|V |
o be a vector of non-negative node-weights.

A b-matching of a graph G = (V,E) is a vector x ∈ N
|E|
0 that satisfies

∑

e∈δ(v)

xe ≤ bv, (1)

where δ(v) denotes the set of edges of G that are incident to v. A b-matching
is perfect, if the inequality in (1) can be replaced by equality. Thus b-matchings
are a generalization of matchings, where b is the all ones vector.

What is the relationship between b-matchings and the process of equating
positive weights in graphs by edge-increments? Suppose that the given initial

weight assignment w ∈ N
|V |
0 is equatable and that the resulting equated node-

weight is β ∈ N. Then, the edge-increments that lead to the balanced node-

weight β are a b-matching x ∈ N
|E|
0 with bv = β − wv for each vertex v. By
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incrementing the node-weights of each edge e exactly xe times, one arrives at a
balanced assignment with weight β on all the nodes.

Maximum weight b-matchings can be computed in polynomial time [5,4,3].
The currently fastest algorithms for maximum weight matching are by Gabov [6],
and Gabov and Tarjan [7]. The fastest algorithm for weighted b-matching is by
Anstee [1]. Recent exciting progress for maximum cardinality matching has been
given by Madry [13] improving upon the O(m

√
n) running time of Hopcroft and

Karp [10] and [12] in the sparse case.
A related notion to equatable graphs is the one of a regularizable graph. A

graph is regularizable, if there exists a k and a perfect k-matching such that
each edge is chosen at least once in this matching. Thus, one obtains a k-regular
graph by replacing each edge by as many parallel edges, as its multiplicity in the
b-matching. Berge [2] provided the following characterization of regularizable
graphs. If G is connected an bipartite, then G is regularizable if and only if
|N(U)| > |U | for each non-empty stable set U of G. This is a strict Hall condition
for stable sets.

2 A Characterization of Equatable Graphs

Which are the graphs G = (V,E) for which any initial assignment w : V → N0

is equatable? The following theorem provides the answer to that question.

Theorem 1. Let G = (V,E) be a finite graph. The following statements are
equivalent:

1. Every integer assignment w : V → N0 is equatable in G.

2. G is connected, |V | is odd and for all U ⊆ V , the graph G−U has less than
|U | isolated vertices, where G−U is the vertex induced subgraph on V −U .

Notice that condition 2) implies that G has at least 3 vertices. We will now
provide the proof of this theorem. To do so, we rely on a well known result of
Tutte that characterizes the existence of a perfect b-matching in a graph.

Theorem 2 (Tutte [16]). Let G = (V,E) be a finite graph and let b : V → N0

be a weight function on the vertices of G. The following statements are equivalent.

a) G has a perfect b-matching.

b) For every (possibly empty) subset U of V

∑

x∈U

b(x) ≥
∑

x∈I(U)

b(x) + S(G− U), (2)

where I(U) is the set of isolated vertices of G−U and S(G−U) is the number
of connected components of G − U that are not isolated vertices whose total
b-weight is odd.
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Proof (Proof of Theorem 1). Suppose that condition 2) holds. In order to show

that any w ∈ N
|V |
0 is equatable, it is enough to show that each assignment w(v)

with

w(v)(u) =

{
1, if u = v

0, otherwise

is equatable, since the corresponding steps decrease the weight of v relative to
the other vertices by exactly one. We show this by establishing existence of a
perfect b-matching with b(v) = 2 · n and b(u) = 2 · n + 1 for each other vertex
u �= v.

Let U ⊆ V . We have to show (2). If U = ∅, then G − U = G. The total
b-weight of G is even and G− ∅ has only one component, since G is connected,
thus S(G−U) = 0. Also, G−∅ does not have isolated vertices. This shows that
the right-hand-side of (2) is 0.

If U �= ∅ then, by our assumption, |I(U)| ≤ |U | − 1. We have

∑

x∈U

b(x) ≥ (2n+ 1)|U | − 1. (3)

Indeed, there is equality in (3) only if v ∈ U .
On the other hand

∑
x∈I(U) b(x) ≤ |I(U)|(2n+ 1). Therefore,

∑

x∈I(U)

b(x) ≤ |I(U)|(2n+ 1) ≤ (|U | − 1)(2n+ 1). (4)

Finally, the term S(G − U) is at most the number of components of G that
are not isolated vertices. Therefore,

S(G− U) ≤ n− 1

2
. (5)

Inequality (2) is, therefore, satisfied because using (3), (4), and (5) inequality
(2) reduces to

(2n+ 1)|U | − 1 ≥ (|U | − 1)(2n+ 1) +
n− 1

2
,

which clearly holds.

Suppose now that every w ∈ N
|V |
o is equatable. Then clearly, G is connected.

Also G has an odd number of vertices since the parity of the sum of weights is
invariant under the edge-increment operation. In a graph with an even number
of nodes, an equated assignment has even parity which shows that an odd initial
assignment is not equatable.

Let U be any non-empty set of vertices of G. Assume to the contrary that
G − U has k ≥ |U | isolated vertices. Denote by I the set of isolated vertices
in G − U and let v be a fixed vertex in U . Consider the weights assignment
w : V → N0 such that w(v) = 1 and for any other vertex v′ ∈ V we have
w(v′) = 0. We reach a contradiction by showing that w is not equatable. To see
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this observe that any step that increases by 1 the weight of a vertex in I must
increase by 1 the weight of some vertex in U . It follows that at any moment
the sum of the weights of the vertices in I is strictly smaller than the sum of
the weights of the vertices in U . Because |I| ≥ |U |, it is not possible to reach a
situation where all vertices in I ∪ U have the same weight. �

3 A Polynomial-Time Algorithm to Equate the Weights

In this section, we deal with the computational problem of deciding whether an
initial assignment w : V → N0 is equatable and, if so, how to compute a multiset
of edges that leads to such equated weights. Let us recall the connection to the
b-matching problem. If we know a number β ∈ N such that all node-weights
can be brought to β by increment-steps, then the multiset of edges leading to
uniform weights β is a perfect b-matching with weights b(v) = β−w(v) for each
v ∈ V . The primary question is then: Can β be efficiently computed? We will
now give a positive answer to this question. The main result of this section is
the following theorem. We first provide an upper bound on β.

Theorem 3. Given a graph G = (V,E) and an integer weights assignment
w : V → N0, one can determine in strongly polynomial time whether w is pos-
itively equatable in G. Moreover, the smallest multiset of edges equating w can
be determined efficiently.

We again make use of Theorem 2. For some target value β ≥ maxv∈V w(v)
let bβ : V → Z≥0 with bβ(v) := β − w(v). By Theorem 2 there is a sequence of
positive steps starting from node weights w and yielding uniform node weight β
if and only if (2) holds for b = bβ and all subsets U of V .

Lemma 1. If w is equatable, there is such a value β that is bounded from above
by nmaxv∈V w(v).

Proof. For the trivial case where w is uniformly zero we can choose β = 0.
Thus, in what follows we might assume that maxv∈V w(v) ≥ 1. Notice that with
respect to (2) the only subsets U of V that might force β to be big are those
with |U | > |I(U)| (otherwise, if |U | ≤ |I(U)|, the left hand side of (2) as a
function of β increases at most as fast as the right hand side does). For such
subset U , however, and for β = nmaxv∈V w(v) we get

∑

x∈U

bβ(x) ≥ |U |(β −max
v∈V

w(v))

≥ |U |β − nmax
v∈V

w(v) + n− |U |

= (|U | − 1)β + n− |U | ≥
∑

x∈I(U)

bβ(x) + S(G− U)

which concludes the proof. �
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Proof (Proof of Theorem 3). From now on we fix the parity of β (even or odd)
such that S(G − U) no longer depends on the particular value of β (in our
algorithm we deal with the two cases sequentially). In particular, for a fixed
subset U of V , both the left hand side and the right hand side of (2) are linear
functions of β. Therefore, for each U ⊆ V , one of three cases holds:

(i) (2) is satisfied for all values of β or for no value of β;
(ii) there is a βU ∈ Z such that (2) is satisfied if and only if β ≥ βU ;
(iii) there is a βU ∈ Z such that (2) is satisfied if and only if β ≤ βU .

This observation finally enables us to find the smallest feasible value of β (with
fixed parity) by binary search in polynomial time: Let α = maxv∈V w(v) and
γ = nmaxv∈V w(v). Due to Lemma 1, we can restrict our search for a suitable
value β to the interval [α, γ]. For fixed β′ ∈ [α, γ], we can test in polynomial time
whether (2) is satisfied for all subsets U of V and obtain a violating subset U
in the negative case. In fact such such a violating set is found by the algorithm
for the perfect bβ′-matching problem that also certifies the non-existence of a
perfect bβ′-matching with a set U ⊆ V violating (2).

In the positive case, we can decrease the upper bound γ to β′ and continue
the search. In the negative case, we distinguish the three cases (i), (ii), and (iii)
listed above w.r.t. the violating subset U . In case (i), there is no feasible β and
we thus terminate the search. In case (ii) we obtain a new lower bound βU > β′

and thus continue the search after replacing α with βU . Finally, in case (iii) we
obtain a new upper bound βU < β′ and thus continue the search after replacing γ
with βU .

Notice that the running time of the resulting binary search algorithm is only
weakly polynomial. A strongly polynomial running time can be achieved by
replacing binary search with parametric search [14]. �
Remark 1. We sketch Megiddo’s parametric search technique [14] in our setting.
Suppose that we want to find the smallest even β such that there exists a perfect
bβ-matching. Consider a fully combinatorial algorithm A for the non-parametric
problem, that is, for the perfect b-matching problem. A fully combinatorial al-
gorithm uses only additions, subtractions, and comparisons. In fact, such an
algorithm exists for the perfect b-matching problem, if the parities of the b(v)
are fixed, as it is for the case of all parametric bβ, if β is even, see [8, p. 186].
More precisely, the algorithm consists then of solving one general network flow
problem and one perfect matching problem on graphs that are polynomial in the
size of the graph G that is in our input, see, [8]. For both subproblems, there
exist fully-combinatorial algorithms, for example the minimum mean-cycle algo-
rithm [9] and Edmond’s algorithm [5].

Algorithm A is now modified in order to solve the parametric problem. For
this, the modified algorithm has to work with linear functions of the parameter
β instead of just constant numbers. Notice that adding or subtracting two linear
functions yields a linear function again. Comparing two linear functions, however,
imposes a problem. Whenever algorithm A compares two numbers, the modified
version first has to determine whether the desired value βOPT is smaller or larger
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than the unique point β∗ at which the two linear functions cross (if at all). This
can be decided by calling any algorithm B for the perfect b-matching problem
as a subroutine for the fixed parameter value β∗. Depending on the outcome,
the corresponding alternative of the comparison is chosen, for example in an if-
conditional, and one continues to run algorithm A for the parametric problem.
The number of calls of B is bounded by the number of comparisons performed
by A which is strongly polynomial in the input size. In this way, finding the
desired value βOPT is reduced to a series of non-parametric b-matching problems.

4 Bipartite Graphs

Going back to the elementary puzzle presented at the beginning, observe that the
corresponding graphG is bipartite where the two parts have the same cardinality.
The initial weight w is not equatable, since the sum of the weights of the vertices
in one part of the bi-partition is not equal to the sum of the weights.

Let G = (L,R,E) be a bipartite graph. An assignment of weights w to the
vertices of G is called balanced if w(L) = w(R), where for a subset U of vertices,
w(U) is defined as

∑
v∈U w(v).

We now characterize those bipartite graphs for which all balanced assignment
w are equatable.

Theorem 4. Let G = (L+R,E) be a bipartite graph. The following statements
are equivalent:

i) Every balanced assignment is positively equatable in G.
ii) For any non empty set of vertices X that is properly contained either in L

or in R, |X | < |N(X)|.
Here N(X) denotes the neighborhood of X , that is, the set of vertices in G that
are neighbors of some vertex inX . Notice that condition ii) implies that |L| = |R|
holds. Condition ii) is a “strict” version of the well known Hall’s condition for
the existence of a perfect matching. A bipartite graph has a perfect matching if
and only if for any non empty set of vertices X that is properly contained either
in L or in R, |X | ≤ |N(X)|.
Proof. Suppose that every balanced assignment to the vertices of G is positively
equatable. Assume to the contrary that there exists X ⊂ L, 0 < |X | < |L|, and
|X | ≥ |N(X)| (the symmetric case where X ⊂ R is similar). If N(X) = ∅, then
the vertices in X are isolated and any balanced assignment of weights to the
vertices in G where the vertices in X get weight 0 and some other vertex not in
X gets a positive weight is not equatable.

If N(X) is not empty, consider the following balanced assignment of weights
to the vertices of G. Pick a vertex v ∈ L \X and a vertex u ∈ N(X). We define
w(v) = w(u) = 1 and for every other vertex z of G we define w(z) = 0. Clearly,
w is balanced. However, the graph G together with the assignment of weights w
is not equatable. This is because a positive step increases the total weight of the
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vertices in N(X) by at least the same amount by which it increases the total
weight of the vertices in X . If after a series of positive steps the weights of the
vertices in G are the same, then in particular the total weight of the vertices
in X is at least as large as the total weight of the vertices in N(X) (because
|X | ≥ |N(X)|), but this is impossible because for the initial assignment of weight
the total weight of the vertices in X is 0 while the total weight of the vertices in
N(X) is 1.

Now, suppose that ii) holds. As in the proof of Theorem 1, it is enough to
show that any assignment with w(u) = w(v) = 1 for some u ∈ L and v ∈ R and
w(x) = 0 for any other vertex is equatable, since then, each balanced assignment
can be equated. This however follows from the fact that G−{u, v} has a perfect
matching, since it satisfies Hall’s condition. �

4.1 Hypergraphs

One can naturally generalize the equating problem to hypergraphs. In this set-
ting, one is given a hypergraph H = (V,E) and an integer weights assignment
w : V → N0. A a positive step on e ∈ E modifies w by increasing the weights
of each u ∈ E by 1 unit. The rest of the definitions are generalized in the ob-
vious way. Not surprisingly, deciding, whether one can equate the weights in
a hypergraph is NP-complete. This follows by a reduction from 3-dimensional
matching [11].

H

1

1 1

Fig. 2. NP-completeness in the hypergraph setting.

Thus deciding whether a hypergraph has a perfect matching is an NP-complete
problem. This can be trivially reduced to the equating problem by adding three
new vertices and two new edges, each consisting of two of the three new vertices.
The three vertices have weight 1 while all other vertices have weight 0. If these
weights can be equated, then they all have weight 1 in an equated assignment.
Thus, the weights can be equated if and only if the original hypergraph has a
perfect matching. Consequently, the following theorem holds.
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Theorem 5. The decision problem of determining for any hypergraph H =
(V,E) and any integer weights assignment w : V → Z, whether w is positively
equatable in H is NP-complete.
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Abstract. We consider a version of the Gale-Shapley stable matching
setting, where each pair of nodes is associated with a (symmetric) match-
ing cost and the preferences are determined with respect to these costs.
This stable matching version is analyzed through the Price of Anarchy
(PoA) and Price of Stability (PoS) lens under the objective of minimizing
the total cost of matched nodes (for both the marriage and roommates
variants). A simple example demonstrates that in the general case, the
PoA and PoS are unbounded, hence we restrict our attention to metric
costs. We use the notion of α-stability, where a pair of unmatched nodes
defect only if both improve their costs by a factor greater than α ≥ 1.
Our main result is an asymptotically tight trade-off, showing that with

respect to α-stable matchings, the Price of Stability is Θ
(
nlog(1+ 1

2α
)
)
.

The proof is constructive: we present a simple algorithm that outputs an
α-stable matching satisfying this bound.

1 Introduction

The aim of this paper is to connect two classic approaches towards matching.
The first approach tackles matching from a (global) optimization angle à la
Edmonds [15, 16]: given 2n nodes with pairwise costs c(x, y) = c(y, x) ∈ R>0,
the goal is to construct a perfect matching that minimizes the total cost. The
second approach tackles matching from the (local) selfish angle à la Gale and
Shapley [18]: each node is equipped with a preference list ranking its potential
matches and a matching is stable if no two unmatched nodes prefer each other
over their current matches.

We consider a restricted case of the stable matching realm, where the nodes
preferences are determined based on the aforementioned pairwise costs c(·, ·)
so that node x prefers node y over node y′ if and only if c(x, y) < c(x, y′),
and focus on the following question: How does the requirement to output a
(locally) stable matching affect its (global) total cost? In attempt to provide a
quantitative answer to this question, we shall look at matching instances through
the Price of Stability (PoS) lens that compares the min-cost stable matching to
the unrestricted optimum, measuring the ratio of their respective costs. In fact,
to provide a deeper understanding of the delicate balance between the global
matching cost and its local stability, we generalize the problem by using the
notion of an α-stable matching for α ≥ 1, in which no pair of unmatched nodes
can defect and thus improve their costs by a factor (strictly) greater than α.

c© Springer-Verlag Berlin Heidelberg 2015
N. Bansal and I. Finocchi (Eds.): ESA 2015, LNCS 9294, pp. 459–470, 2015.
DOI: 10.1007/978-3-662-48350-3_39
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Unfortunately, in general, the Price of Stability may be unbounded, as the
following simple example shows: Let G be a complete graph on four nodes
u1, u2, v1, v2 with edge costs c(u1, v1) = c(u2, v2) = 1, c(u1, u2) = ε for some
small ε > 0, and c(v1, v2) = c(u1, v2) = c(u2, v1) = C for some large C. Then,
the optimal perfect matching matches ui to vi for i = 1, 2 with a cost of 2,
whereas an α-stable matching for any reasonable value of α must match u1 to
u2, and hence also v1 to v2 which incurs an arbitrarily large cost.

Fortunately, real-world matching instances often exhibit metric costs, i.e.,
costs that satisfy the triangle inequality (or its bipartite counterpart). Metric
costs are intuitive for matching instances in which the costs are determined by
distances, but we argue that they are present also in matching instances with
more complex cost functions, e.g., online dating platforms — refer to the full
version of this paper for a comprehensive explanation that also addresses the
role that PoS plays in these matching scenarios.

The main result of this paper is an asymptotically tight tradeoff between the
parameter α and the PoS considering α-stable matchings: the PoS is roughly
n0.58 when α = 1 and it decreases exponentially as α increases. Since this tradeoff
is realized by a simple poly-time algorithm, the designers of a matching system
can now efficiently tune the parameter α to balance between the stability and
the total cost of their system’s output.

1.1 Related Work

Studying the impact of selfish players has been a major theoretical computer sci-
ence success story in the last decade (see, e.g., the 2012 Gödel Prize [28,31,38]).
In particular, much effort has been invested in quantifying how the efficiency of
a system degrades due to selfishness of its players. The most notable notions in
this context are the Price of Anarchy (PoA) [28, 32] and the Price of Stability
(PoS) [6, 39], comparing the best possible outcome to the outcome of the worst
(PoA) or best (PoS) solution with selfish players. Since their introduction, the
Price of Anarchy and the Price of Stability have been extensively analyzed in
diverse settings such as selfish routing [6, 9, 12, 13, 37, 38, 40], network formation
games [3,4,7,11,41], job scheduling [10,14,27,28], and resource allocation [25,36].
While selfish players are traditionally modeled using the Nash equilibrium solu-
tion concept, where no player can benefit from a unilateral deviation, in matching
settings unilateral deviations are not natural. Instead, we want that no two un-
matched players prefer each other over their current matching partners. This
solution concept is generally known as the Gale-Shapley stable matching [18].

For the most part, the stable matching realm has been subdivided into two
versions: the marriage (bipartite) version, where the players are partitioned into
men and women and each man (resp., woman) is equipped with a list of prefer-
ences over the set of women (resp., men); and the roommates (all-pairs) version,
where each player is equipped with a list of preferences over all other players.
Gale and Shapley showed that in the bipartite version, a stable matching always
exists, and in fact, can be computed by a simple poly-time algorithm. In contrast,
the all-pairs version does not necessarily have a solution. Both versions of the
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stable matching problem and their manifold variants (strictly/weakly ordered
preferences, (in-)complete preference lists, (a-)symmetric preferences) admit an
abundance of literature; see, e.g., the books of Knuth [26], Gusfield and Irv-
ing [19], Roth and Sotomayor [35], and Manlove [29]. The notion of stability
studied in this paper has been coined as weak stability by Irving [22].

Sometimes, the players’ preferences are associated with real costs so that each
preference list is sorted in order of non-decreasing costs. This setting gives rise
to the minimum-cost stable matching problem, where the goal is to construct
a stable matching that minimizes the total cost of matched partners. Irving et
al. [23] designed a poly-time algorithm for the bipartite (marriage) version of
a special case of this problem, referred to as the egalitarian stable matching
problem, where a cost of j is associated with each player for matching his/her
jth preferred partner. Roth et al. [34] gave an LP-based solution to the problem.
Irving’s work was generalized by Feder [17] who presented a poly-time algorithm
for the bipartite version of the general minimum-cost stable matching problem.
Moreover, Feder also established the NP-hardness of the all-pairs (roommates)
version and showed that it admits a 2-approximation algorithm.

The players’ preferences in general stable matching scenarios exhibit no in-
trinsic correlations. Several approaches have been taken towards introducing
consistency in the preference lists [21, 24, 26, 30]. Most relevant to the current
paper is the approach of Arkin et al. [8] who studied the geometric stable room-
mate problem, where the players are identified with points in a Euclidean space
and the preferences are given by the sorted distances to the other points. They
showed that in the geometric setting, a stable matching always exists and that
it is unique if the players’ preferences exhibit no ties. These results easily gen-
eralize to arbitrary metric spaces. Arkin et al. also introduced the notion of an
α-stable matching, which is central to the current paper.

There is an extensive literature on matching instances whose preferences are
determined by the numerical attributes of the edges, interpreted as gains that
should be maximized, rather than costs that should be minimized (cf. correlated
two-sided markets) [1, 2, 5, 20]. Closely related to the goal of the current paper,
Anshelevich et al. [5] establish tight tradeoffs between the matching stability
parameter α and the PoA and PoS in the bipartite case under this gain maxi-
mization variant. In fact, the simple iterative algorithm presented in Sec. 4.1 is
equivalent to the algorithm used in the proof of Theorem 2 in [5], but as it turns
out, analyzing the quality of the resulting (α-stable) matching under the cost
minimization variant studied in the current paper is much more demanding.

Reingold and Tarjan [33] proved that the approximation ratio of some greedy
algorithm for minimum-cost perfect matching in metric graphs is Θ(nlog(3/2))
where log(3/2) ≈ 0.58.1 It turns out that this result is equivalent to establishing
the same bound for the PoA of minimum-cost perfect matching in such graphs.
In the full version of this paper, we give a simpler proof for the PoA-result and
extend their result to obtain a lower bound for the PoS for all α ≥ 1.

1 In this paper, log x denotes the logarithm of x to the base of 2.
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2 Setting and Preliminaries

Consider a graphG with vertex set V (G) and edge set E(G). Each edge e ∈ E(G)
is assigned a positive real cost c(e). Unless stated otherwise, our graphs have 2n
vertices, n ∈ Z>0, and are either complete (|E(G)| = (

2n
2

)
) or complete bipartite

(V (G) = U1 ∪ U2, |U1| = |U2| = n and |E(G)| = n2). We say that the complete
graphG ismetric if c(x, y) ≤ c(x, z)+c(z, y) for every x, y, z ∈ V (G); we say that
the complete bipartite graph G is metric if c(x, y) ≤ c(x, z) + c(z, z′) + c(z′, y)
for every x, y, z, z′ ∈ V (G), where x, z′ and y, z are on opposite sides of G. For
an arbitrary graph G, the distance distG(x, y) of two vertices x and y of G is
defined as the weighted length of the shortest path between x and y in G.

A matching is a subset M ⊆ E(G) of the edges such that every vertex in
V (G) is incident to at most one edge in M . A matching is called perfect if every
vertex in V (G) is incident to exactly one edge in M , which implies that |M | = n
as |V (G)| = 2n. For a perfect matching M and a vertex x ∈ V (G), we denote by
M(x) the unique vertex y ∈ V (G) such that (x, y) ∈ M . Unless stated otherwise,
all matchings mentioned hereafter are assumed to be perfect. (Perfect matchings
clearly exist in a complete graph with an even number of vertices and in a
complete balanced bipartite graph.) Given an edge subset F ⊆ E(G), we define
the cost of F as the total cost of all edges in F , denoted by c(F ) =

∑
e∈F c(e);

in particular, the cost of a matching is the sum of its edge costs.

Definition (α-Stable Matching). Consider some (perfect) matching M ⊆
E(G) and some real number α ≥ 1. An edge (u, v) /∈ M is called α-unstable
(a.k.a. α-blocking) with respect to M if α·c(u, v) < min{c(u,M(u)), c(v,M(v))}.
Otherwise, the edge is called α-stable. A matching M is called α-stable if it
does not admit any α-unstable edge. We will omit α and call edges as well as
matchings just stable or unstable whenever α is clear from the context or the
argumentation holds for every choice of α.

Let M∗ denote a certain (perfect) matching M that minimizes c(M). For sim-
plicity, in what follows, we restrict our attention to complete (rather than com-
plete bipartite) metric graphs, although all our results hold also for the complete
bipartite case (following essentially the same lines of arguments).

Definition (α-Price of Stability). The α-Price of Stability of G, denoted by
PoSα(G), is defined as PoSα(G) = min{c(M)/c(M∗) : M is α-stable matching}.
Furthermore, PoSα(2n) = sup{PoSα(G) : G is metric, |V (G)| = 2n}. Unless
stated otherwise, when the parameter α is omitted, we refer to the case α = 1.

Definition (Price of Anarchy). The Price of Anarchy of a graph G, denoted
by PoA(G), is defined as PoA(G) = max{c(M)/c(M∗) : M is stable matching}.
Furthermore, PoA(2n) = sup{PoA(G) : G is metric, |V (G)| = 2n}.
Note that since any stable matching by definition is also α-stable for any α ≥ 1,
the Price of Anarchy does not improve by considering α-stability and hence its
definition does not include the parameter α.
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3 Price of Anarchy

The following theorem was implicitly proven by Reingold and Tarjan [33] in 1981.
They showed that forminimum-costperfectmatching inmetric graphs, the approx-
imation ratio of the algorithm that picks edges by ascending costs is Θ(nlog(3/2)).
Since the matching returned by this greedy algorithm is stable and since every sta-
ble matching can be obtained from the algorithm by an appropriate tie-breaking
policy, it follows that the PoA of minimum-cost perfect matching in such graphs is
alsoΘ(nlog(3/2)). A simpler and more intuitive proof for Reingold and Tarjan’s 30
years old result is given in the full version of this paper.

Theorem 1. The PoA of minimum-cost perfect matching in metric graphs with
2n vertices is Θ(nlog(3/2)).

4 Price of Stability

The upper bound established on the PoA in Sec. 3 clearly holds for the PoS
too. In the full version of this paper, we show that the proof technique for the
Ω(nlog(3/2))-lower bound of Sec. 3 can be easily adapted to establish the same
lower bound for the PoS as well. In fact, we generalize this result, showing that
PoSα(2n) = Ω

(
nlog(1+1/(2α))

)
for every α ≥ 1. Consequently, we turn our atten-

tion to bounding PoSα(2n) from above, establishing the following asymptotically
tight upper bound.

Theorem 2. The PoSα of minimum-cost perfect matching in metric graphs with
2n vertices is at most 3 · nlog(1+1/(2α)).

The proof of Theorem 2 is constructive, relying on a simple algorithm pre-
sented in Sec. 4.1. Sec. 4.2 provides the analysis of this algorithm, showing that
the returned matching indeed satisfies the bound. Full proofs missing from this
section can be found in the full version of this paper.

4.1 An Algorithm for α-Stable Matchings

The following algorithm Stab transforms a minimum-cost matching M∗ in a
metric graph into an α-stable matching M .

Algorithm Stab: Start with the minimum-cost matching M ← M∗ and iterate
over all edges of G by non-decreasing order of costs. If the edge (u, v) currently
considered is α-unstable in the current matching M , replace the edges (u,M(u))
and (v,M(v)) in M by (u, v) and (M(u),M(v)) (this operation is called a flip
of the edge (u, v)) and continue with the next edge. After having iterated over
all edges, return M .

We assume that edge cost ties are resolved in an arbitrary but consistent manner.
In the following, we denote by Mi the matching calculated by the above algo-
rithm at the end of iteration i. Moreover, M0 = M∗ is the initial minimum-cost
matching and MS the final matching returned by Stab.



464 Y. Emek, T. Langner, and R. Wattenhofer

Lemma 3. For any unstable edge b created by the flip of an edge e, we have
c(b) > c(e).

Corollary 4 follows by induction on i. Lemma 5 then follows by a straightfor-
ward analysis of the algorithm’s run-time.

Corollary 4. Let ei be the edge considered in iteration i. Then for any unstable
edge b in Mi it holds that either c(ei) < c(b) or b will be considered in a later
iteration j > i.

Lemma 5. Algorithm Stab transforms a minimum-cost matching into a valid
α-stable matching in time O(n2 logn).

4.2 Cost Analysis

Our goal in this section is to show that when Stab is invoked with parame-
ter α for any α ≥ 1, it returns an α-stable matching MS satisfying c(MS) =
c(M∗) · O(nlog(1+1/(2α))). Since this section makes heavy use of rooted binary
trees and their properties, we require a few definitions. In a full binary tree, each
inner node has exactly two children. The depth d(v) of a node v in a tree T is
the length of the unique path from the root of T to v and the height h(T ) of a
tree T is defined as the maximal depth of any node in T . The height h(v) of a
node v of T is defined to be the height of its subtree. The leaf set L(T ) or L(F )
of a tree T or a collection F of trees is the set of all leaves in T or F , resp. The
leaf set L(v) of a node v in a tree is L(Tv) where Tv is the subtree rooted at v.
Finally, two nodes with the same parent are called sibling nodes. We begin with
Lemma 6 stating an important property of the edges that are flipped by Stab.

Lemma 6. If an edge e is flipped in iteration i, then e ∈ Mj for all j ≥ i and,
in particular, e ∈ MS.

Consider an iteration of Stab where edge (u, v) is flipped because it was
unstable at the beginning of the iteration. Then the two edges (u,M(u)) and
(v,M(v)) are replaced by (u, v) and (M(u),M(v)). Since the edge (u, v) is se-
lected irrevocably according to Lemma 6, the edges (u,M(u)) and (v,M(v)) can
never be part of M again. The only edge, of the four edges involved, that may
be changed again, is the edge (M(u),M(v)). Thus, we refer to (M(u),M(v)) as
an active edge. We also refer to all edges in M0 as active. Using the notion of
active edges, we shall now model the changes that Stab applies to the matching
during its execution through a logical helper structure called the flip forest. To
avoid confusion between the basic elements of our graphs and the basic elements
of the flip forest, we refer to the former as vertices/edges and to the latter as
nodes/links.

Definition (Flip Forest). The flip forest F = (U,K) for a certain execution
of Stab is a collection of disjoint rooted trees and has node set U and link set K.
For each edge e ∈ V ×V that has been active at some stage during the execution,
there exists a node ue ∈ U . This correspondence is denoted by ue ∼ e. For each
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flip of an edge (u, v) in G, resulting in the removal of the edges (u,M(u)) and
(v,M(v)) from M , K contains a link connecting the node y ∼ (u,M(u)) to its
parent x ∼ (M(u),M(v)) and a link connecting the node z ∼ (v,M(v)) to its
parent x ∼ (M(u),M(v)). (Observe that, by definition, all three edges (u,M(u)),
(v,M(v)), and (M(u),M(v)) are active.) Refer to the full version of this paper
for an illustration.2

The definition of a flip forest ensures that for each flip of the algorithm, we
obtain a binary flip tree segment. When we transcribe each flip operation of the
complete execution of Stab into a flip tree segment as explained above, we end
up with a collection of full binary trees — the flip forest. This is because the
parent node of a tree segment may appear as a child node of the tree segment
corresponding to a later iteration of the algorithm since its corresponding edge
is still active and therefore may participate in another flip. Each such tree is
called a flip tree hereafter.

Observe that all leaves (including isolated nodes) in the flip forest correspond
to edges in the minimum-cost matching M0 = M∗. The edges in the matching
MS are implicitly represented by the flip forest: An edge that gets flipped —
and is therefore irrevocably selected into MS — has no corresponding node in F ,
but we may associate it with the node corresponding to the active edge resulting
from the flip. On top of these edges, MS contains the edges corresponding to the
roots of the trees in the flip forest.

We now define a function ψ : U 
→ R that maps a real weight to each node in
the flip forest F as follows. For each leaf � of a flip tree in F , we set ψ(�) := c(e),
where � ∼ e and we recall that an edge corresponding to a leaf node in F is part
of M∗. The function ψ is extended to an inner node x of a flip tree with child
nodes y and z by the recursion

ψ(x) := ψ(y) + ψ(z) + (1/α) ·min{ψ(y), ψ(z)} . (1)

For ease of notation, we call the child with smaller (resp., larger) weight as well
as the link leading to its parent light (resp., heavy); ties are resolved arbitrarily.
We denote the light child of a node x as x

L
and the heavy child as x

H
. Then we

can rewrite Eq. (1) as ψ(x) := ψ(x
H
) + (1 + 1/α) · ψ(x

L
).

Lemma 7. Let x be a node in F and e an edge in G with x ∼ e. Then c(e) ≤
ψ(x).

At this stage, we would like to relate the weight ψ(rT ) of the roots rT in F to
the cost of the stable matching MS returned by Stab. To that end, we observe
that MS consists of the edges corresponding to the roots in F and to the edges
that have been flipped along the course of the execution; let R and D denote
the set of the former and latter edges, respectively. Observe that

c(MS) =
∑

e∈R

c(e) +
∑

e∈D

c(e) .

2 All figures are deferred to the full version of this paper.
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Consider the flip of the edge (u, v) resulting in the insertion of the edge
(M(u),M(v)) ∼ x to M and the removal of the edges (u,M(u)) ∼ xL and
(v,M(v)) ∼ xH from M . Since ψ(x) = ψ(xH) + (1 + 1/α) · ψ(xL), we have
ψ(x)−(ψ(xL)+ψ(xH)) = ψ(xL)/α. Lemma 7 then implies that ψ(x)−(ψ(xL)+
ψ(xH)) ≥ c(u,M(u))/α, and since edge (u, v) was flipped, we have ψ(x) −
(ψ(xL) + ψ(xH)) ≥ c(u, v). Therefore,

∑

e∈D

c(e) ≤
∑

internal x∈U

(ψ(x)− (ψ(xL) + ψ(xH)))

=
∑

flip trees T

(
ψ(rT ) −

∑

�∈L(T )

ψ(�)
)

=
∑

flip trees T

ψ(rT ) −
∑

�∈L(F )

ψ(�) ,

where the second equation holds by a telescoping argument. Note further that∑
e∈R c(e) ≤ ∑

flip treesT ψ(rT ) and thus

c(MS) ≤ 2
∑

flip trees T

ψ(rT ) −
∑

�∈L(F )

ψ(�) .

Since c(M∗) =
∑

�∈L(F ) ψ(�), Corollary 8 follows.

Corollary 8. The matching MS returned by Stab satisfies

c(MS) ≤ 2
∑

flip trees T

ψ(rT )− c(M∗) .

We will now have a closer look at the properties of our flip trees and their
weights. It will be convenient to ignore the relation of the flip trees to the Stab

algorithm at this stage; in other words, we consider an abstract full binary tree
T with a leaf weight function w : L(T ) → R≥0. For any leaf � of T , we set
ψ(�) = w(�) and determine the weight ψ(x) of each inner node x in T following
the recursion given by Eq. (1). Note that we allow our tree T to have zero-weight
leaves now (this can only make our analysis more general).

Definition (Complete Binary Tree). A full binary tree T is called complete
if all leaves are at depth h(T ) or h(T ) − 1. Given some positive integer n that
will typically be the number of leaves in some tree, let h(n) = �logn and k(n) =
2h(n) − n. Note that 0 ≤ k(n) < 2h(n)−1.

Observe that for a complete full binary T with n leaves, h(n) is the height h(T )
of T while k(n) equals the number of missing leaves at the maximum depth h(T ).

Definition (ψ-Balanced Binary Tree). A full binary tree T is called ψ-
balanced if for any two sibling nodes x, y in T , we have ψ(x) = ψ(y).

Consider a full binary tree T . Let Λ(T ) denote the sum of the weights of the
leaves of T , i.e., Λ(T ) =

∑
�∈L(T ) w(�) =

∑
�∈L(T ) ψ(�), and let Ψ(T ) = ψ(rT )

(recall that rT denotes the root of T ). The following observation is established
by induction on the node depth.
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Observation 1. For any node v of a ψ-balanced full binary tree T , we have
ψ(v) = (2 + 1/α)−d(v) · Ψ(T ).
Definition (Effect of a Flip Tree). The effect η(T ) of a full binary tree T is
defined as

η(T ) =

{
Ψ(T )/Λ(T ) if Λ(T ) > 0

1 if Λ(T ) = 0
.

An n-leaf full binary tree T is said to be effective if it maximizes η(T ), i.e., if
there does not exist any n-leaf full binary tree T ′ such that η(T ′) > η(T ).

Intuitively speaking, if we think of T as a flip tree, then its effect is a measure
for the factor by which the flips represented by T increase the cost of M∗ when
applied to it. But, once again, we do not restrict our attention to flip trees at this
stage. The effect of a full binary tree is essentially determined by its topology
and by the assignment of weights to its leaves. It is important to point out that
the effect of a flip tree is invariant to scaling its leaf weights (see full version
of this paper). Our upper bound is established by showing that the effect of an
effective n-leaf full binary tree is O(

nlog(1+1/(2α))
)
. We begin by developing a

better understanding of the topology of effective ψ-balanced full binary trees.

Lemma 9. An effective n-leaf ψ-balanced full binary tree must be complete.

Proof (sketch). Aiming for a contradiction, suppose that T is not complete. Let
z be an internal node at depth d with leaf children x, y (whose depth is d + 1)
and let z′ be a leaf at depth d′ < d. Let T ′ be the full binary tree obtained
from T by deleting x and y and inserting two new leaves x′, y′ as children of z′.
Let w and w′ be the leaf weigh functions of T and T ′, respectively, defined by
requiring that T and T ′ are ψ-balanced and scaled so that Ψ(T ) = Ψ(T ′) = 1;
this is well defined since by Observation 1, the ψ-values of all nodes in T and T ′

(and in particular, the leaf weight functions w and w′) are fully determined by
their topology and the values of Ψ(T ) and Ψ(T ′) (in a top-down fashion).

We establish the proof by arguing that Λ(T ′) < Λ(T ) which implies η(T ′) >
η(T ), in contradiction to T being effective. To that end, notice that the construc-
tion of T ′ implies Λ(T ′) = Λ(T )+w′(x′)+w′(y′)+w′(z)−(w(x) + w(y) + w(z′)).
The assertion follows from Observation 1 by a direct calculation. ��

Next, we develop a closed-form expression for the effect of complete ψ-balanced
full binary trees. We define the function ϕ : Z>0 
→ R as

ϕ(n) :=
(2 + 1/α)h(n)

2h(n) + k(n)/α

and recall that h(n) = �logn and k(n) = 2h(n) − n. Lemma 10 follows from
Observation 1 by direct calculation and Lemma 11 follows from ϕ’s definition.

Lemma 10. The effect of an n-leaf complete ψ-balanced full binary tree T is
η(T ) = ϕ(n).
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Lemma 11. The function ϕ(n) is strictly increasing.

Now, we can show that it is sufficient to consider complete ψ-balanced full
binary trees.

Lemma 12. An effective n-leaf full binary tree must be ψ-balanced.

Proof. We prove the statement by induction on the number of leaves n. The base
case of a tree having a single leaf (which is also the root) holds vacuously; the
base case of a tree having two leaves is trivial. Assume that the assertion holds
for trees with fewer than n leaves and let T be an effective n-leaf full binary
tree. Let T� and Tr be the left and right subtrees of T and let z be the number
of leaves in T� where 1 ≤ z ≤ n− 1.

Observe that both T� and Tr have to be effective as otherwise, η(T ) could
be increased. More precisely, if Ti ∈ {T�, Tr} is not effective, then there exists
a full binary tree T ′

i with the same number of leaves as Ti (either z or n − z)
such that η(T ′

i ) > η(Ti); by replacing Ti with T ′
i in T and scaling Λ(T ′

i ) so that
Λ(T ′

i ) = Λ(Ti), we increase Ψ(T ) without affecting Λ(T ), thus increasing η(T ), in
contradiction to T being effective. By the inductive hypothesis, both T� and Tr

are ψ-balanced, hence Lemma 9 guarantees that both are complete. This allows
us to use Lemma 10 to determine the effects of T� and Tr as ϕ(z) and ϕ(n− z),
respectively.

Assume without loss of generality that the leaf weights are scaled such that
Λ(T ) = Λ(T�) + Λ(Tr) = 1 and set Λ(T�) = x, Λ(Tr) = 1 − x, for some 0 ≤
x ≤ 1. We consider a set of n − 1 functions fz : [0, 1] 
→ R>0 (parametrized by
1 ≤ z ≤ n− 1) with

fz(x) =

{
ϕ(z) · x+ (1 + 1/α)ϕ(n− z) · (1− x) if ϕ(z)x ≥ ϕ(n− z)(1− x)

(1 + 1/α)ϕ(z) · x+ ϕ(n− z) · (1− x) if ϕ(z)x ≤ ϕ(n− z)(1− x)

that, by Lemma 10, determine the effect of T given that T� has 1 ≤ z ≤ n −
1 leaves and Λ(T�) = x ∈ [0, 1]. Observe that each fz is a piecewise linear
continuous function, linear in the intervals [0, bz] and [bz, 1], where bz is the
break point of fz satisfying ϕ(z)bz = ϕ(n− z)(1− bz). Hence, fz must attain its
maximum either at a boundary point 0 or 1, or at the break point bz, where the
latter case corresponds to a ψ-balanced tree.

Consider the function f(x) = maxz fz(x) whose maximum corresponds to the
effect of an effective n-leaf full binary tree and let x̂ ∈ argmaxx∈[0,1] f(x). We
argue that x̂ can be neither 0 nor 1. Indeed, if x̂ = 0, then Λ(T ) = Λ(Tr) and
Ψ(T ) = Ψ(Tr), hence η(T ) = η(Tr) for the corresponding tree T . But since Tr

has fewer leaves than T and is complete and ψ-balanced, Lemmas 10 and 11
dictate that its effect — and thus also the effect of T — must be smaller than
the effect of an n-leaf complete ψ-balanced full binary tree, a contradiction to
the choice of x̂ maximizing f(x). An analogous argument excludes x̂ = 1. It
follows that the maximum of f(x) must be attained at a point 0 < x̂ < 1, which,
by the definition of f , is the break point bz of some function fz and thus realized
by a ψ-balanced tree. ��
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Combining Lemmas 9, 10, and 12 and recalling that h = h(n) = �logn ≤
logn+ 1 and k = k(n) ≥ 0, we conclude that the effect of an n-leaf full binary
tree is at most

(2 + 1/α)h

2h + k/α
≤ (2 + 1/α)h

2h
≤ (1 + 1/(2α))logn+1 ≤ 3/2 · nlog(1+1/(2α)) .

Returning to the definition of the flip forest F , we recall that there exists one leaf
in F for each of the n edges in the minimum-cost matching M∗ and therefore
each flip tree has at most n leaves. Furthermore, since

c(M∗) =
∑

flip trees T

∑

�∈L(T )

ψ(�) =
∑

flip trees T

Λ(T ) ,

we can employ Corollary 8 to derive

c(MS)

c(M∗)
≤ 2 ·

∑
flip trees T Ψ(T )

∑
flip trees T Λ(T )

≤ 2 · max
flip trees T

η(T ) ≤ 3 · nlog(1+1/(2α)) ,

thus establishing Theorem 2.
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Abstract. We study the multidimensional vector packing problem with
selfish items. An item is d-dimensional non-zero vector, whose rational
components are in [0, 1], and a set of items can be packed into a bin if
for any 1 ≤ i ≤ d, the sum of the ith components of all items of this set
does not exceed 1. Items share costs of bins proportionally to their �1-
norms, and each item corresponds to a selfish player in the sense that it
prefers to be packed into a bin minimizing its resulting cost. This defines
a class of games called vector packing games. We show that any game in
this class has a packing that is a strong equilibrium, and that the strong
price of anarchy (and the strong price of stability) is logarithmic in d,
and provide an algorithm that constructs such a packing. We also show
improved and nearly tight lower and upper bounds of d+ 0.657067 and
d+0.657143 respectively, on the price of anarchy, exhibiting a difference
between the multidimensional problem and the one dimensional problem,
for which that price of anarchy is at most 1.6428.

1 Introduction

Motivation and Framework. Bin Packing is a classical combinatorial opti-
mization problem which has been studied since the early 70’s. In addition to its
theoretical importance, this problem in its different variants has real-life applica-
tions in various areas such as packaging, resource allocation, load balancing and
distributed computer system design among many others (see [8] for a survey). In
this paper we consider the Multidimensional Bin Packing problem (MBP), also
known in the literature as the Vector Packing problem. In this problem, each
bin has a d-dimensional capacity of one unit in each of the d dimensions and
each item has an associated non-zero multidimensional size, represented by a d-
dimensional vector with components in the range [0, 1]. The goal is to pack a set
of vectors into a minimum number of multidimensional bins without exceeding
the capacity of any bin in any dimension. The problem was first studied in one
dimension (that is, for d = 1) see e.g. [18] and has been extended to multiple di-
mensions (d ≥ 2) ([19,15,6]). Such problems naturally arise when packing items
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that have multiple, often incomparable, characteristics such as length, weight,
and others.

Recently, this problem has received a renewed burst of attention in the context
of Cloud Computing, a popular computing service paradigm currently practiced
by all major data centers, including those managed by Google and Amazon.
In order to reduce maintenance costs and for a more efficient utilization of the
physical resources, while considering quality of service requirements, the modern
data centers use the technique of server virtualization, that consists of abstract-
ing the physical resources and running multiple virtual machines (VMs) on one
Physical Machine (PM), that has multiple limited resources, such as memory,
CPU, bandwidth etc.. In the heart of this technique lies the assignment of the
VMs to the PMs, which is called the VM Placement problem. Seeing the VMs
as the items and the PMs as the bins, this problem very naturally translates
to our MBP problem. It is then not surprising that the MBP problem is one of
the main problems encountered in Cloud Computing, and so many works were
dedicated to suggesting and applying various MBP algorithms for this purpose,
see eg. [29,21,27].

Yet to add to this challenge, in many real-life environments, and Cloud Com-
puting is no exception, the service provider and users can have different, possibly
conflicting, interests and behave strategically. Hence, in this paper we take a
game-theoretic approach to the MBP, and examine various stability properties
of the packings. That demand that the packing is stable is very important, since
migration of a VM among the PMs once the assignment was made is highly un-
desirable, as it interrupts the services running on that VM (until the migration
is complete), delaying the service for the user, and on the other hand causing an
overhead to the entire system. For this reason, studying scheduling and packing
problems under a game-theoretic framework has become a common practice, see
e.g. [20,24,1,5,12].

The Model. The multidimensional vector packing problem and the corre-
sponding vector packing game (VPG) are defined as follows. There are n items
I = {1, 2, . . . , n}, each with d ≥ 2 components, that are to be partitioned or
packed into blocks called bins. Let the vector of item i ∈ I be denoted by
pi = (p1i , . . . , p

d
i ), where 0 ≤ pji ≤ 1 for 1 ≤ j ≤ d, and

∑d
j=1 p

i
k > 0. An infinite

supply of bins is given, each with d identical resources. A bin is represented by
an all-one vector, and a packed bin B is seen as a set of items it contains, that is,
B ⊆ I. We let the size of the jth component of bin B be P j

B =
∑

i∈B pji , and it

is required that P j
B =

∑
i∈B pji ≤ 1, i.e., for every 1 ≤ j ≤ d, it is required that

the items do not exceed the capacity of 1. In the optimization problem, the goal
is to pack a given set of items into a minimum number of bins. For item i, let
vi =

∑d
j=1 p

j
i be its �1-norm, also called its volume. For a bin B, its volume is

v(B) =
∑

i∈B vi =
∑d

j=1 P
j
B . A vector packing game is defined by a set of items,

such that each item belongs to a different selfish agent. The strategy of an item
is the bin into which it is packed, and the outcome is a packing of the items into
bins (we assign infinite costs to items packed into invalid bins, and therefore in
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what follows we assume that all bins are valid). The cost of item i that is packed
into bin B in a packing A is ci(A) = vi

v(B) , and thus
∑

i∈B ci(A) = 1 (we use ci
instead of ci(A) if A is clear from the context).

We use the �1-norm in our cost-scheme, as the IaaS market providers offer
instances of VMs with fixed amounts of each of the resources, but the users pay
a fixed cost for the entire VM, and not per resource.

We will next provide definitions of the game theoretic solution concepts con-
sidered in this paper, namely, (pure) Nash equilibria, weakly and strictly Pareto
optimal (Nash) equilibria and Strong (Nash) equilibria for VPG.

A packingA is a (pure) Nash equilibrium (NE) if no item inA has an incentive
to unilaterally move to a different bin (a new bin or a bin where it can be packed
legally), given that all other items keep their strategies unchanged, that is, no
other item moves at the same time. We measure the inefficiency of equilibria
by the (asymptotic) price of anarchy [20] and price of stability [2] of classes of
games. For a game G, let OPT (G) denote the minimum number of bins that
is required by any valid packing. A solution that uses this number of bins is
called socially optimal (or optimal). Let Jd denote the class of d-dimensional
vector packing games. The price of anarchy is the ratio between the number of
(non-empty) bins used by the worst packing that is an NE, that is, the largest
number of bins in any NE packing for G is ζ, then poa(G) = ζ

OPT (G) . We let

poa(d) = lim
K→∞

sup
G∈Jd,OPT (G)≥K

poa(G), and this is the (asymptotic) price of

anarchy for dimension d. The price of stability is defined similarly, but now the
best packing that is NE is considered for each G.

Strong (Nash) equilibria packings (SNE) [3,25,17,1,14] are packings where
there does not exist a subset of items (also called a coalition) that can deviate
from their strategies simultaneously (while other items keep their strategies),
such that all items participating in the coalition reduce their costs. Note that
the items of a coalition can move to existing bins, or they can use a new bin, and
they do not necessarily all move to the same bin. Obviously, by this definition,
an SNE is an NE.

The grand coalition is defined to be a coalition composed of the entire set of
items. A packing is called weakly Pareto optimal if there is no alternative solution
to which the grand coalition can deviate simultaneously and every item benefits
from it. A packing is called strictly Pareto optimal if there is no alternative
solution to which the grand coalition can deviate simultaneously, such that at
least one item benefits from it, and no item has a larger cost as a result. The
last two concepts are borrowed from welfare economics. The two requirements,
that a packing is both (strictly or weakly) Pareto optimal and an NE results
in two additional kinds of NE, strictly Pareto optimal NE (SPNE) and weakly
Pareto optimal NE (WPNE) [10,7,11,4,9]. By these definitions, every WPNE is
an NE, every SPNE is a WPNE, and every SNE is a WPNE. Strictly Pareto
optimal points are of particular interest in economics [22]. Even though these
concepts are stronger than NE, still for many problems a solution which is an
SNE, an SPNE, or a WPNE is not necessarily socially optimal, which is also
the case for our game.
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The (asymptotic) strong price of anarchy (spoa) and strong price of stabil-
ity (spoa) as well and the strictly and weakly Pareto optimal prices of anarchy
(wppoa and sppoa) and the strictly and weakly Pareto optimal prices of sta-
bility (wppos and sppos) are defined similarly to poa and pos, but each time
the respective stability concepts are considered.

Related Work and Our Contribution. In this section, we survey the known
bounds on the game-theoretic measures defined above for bin packing games, for
the one dimensional and for the multidimensional cases.

The one dimensional bin packing game (BPG) with proportional cost-sharing
scheme (like in this paper) was introduced by Bilò [5], who was the first to
study the bin packing problem from this type of game theoretic perspective. He
provided the first bounds on the poa, a lower bound of 8

5 and an upper bound of
5
3 , and showed that pos=1. The quality of NE solutions was further investigated
in [12], where nearly tight bounds for the PoA were given; an upper bound of
1.6428 and a lower bound of 1.6416 (see also [28]). Interestingly, the poa is
not equal to the approximation ratio of any natural algorithm for bin packing.
The spoa and spos were also analyzed in [12], and it was shown that these two
measures are equal. Moreover, it was shown the set of SNE and the set of outputs
of the Subset Sum algorithm [16] are the same, which gave bounds on the spoa
and spos. In the paper [13], the exact spoa (which is also the approximation ratio
of Subset Sum) was determined, and it was shown that its value is approximately
1.6067. In the same article, the parametric problem where the size of every item
is upper bounded by a parameter is studied. Some properties of other measures
that were not studied in [5,12,13] (the ones related to Pareto optimal solutions)
are mentioned in [9]. Specifically, they showed that any optimal packing is Pareto
optimal (as we show here, this holds in the multidimensional case, as well), that
wppoa=poa, that sppoa≥ spoa and that wppos=sppos=1. Other variants of
this game, with different cost structures, were considered in [9,23].

The multidimensional bin packing (or the vector packing) game (VPG) was
first introduced by Ye and Chen in [26], where they call it ‘virtual machine
placement game’. They considered only NE solutions, showed that any game
has a packing that is a Nash equilibrium and provided the first bounds on the
poa, a lower bound of d and an upper bound of d+ 16/5 (which is proved by a
reduction to the First Fit algorithm using the result of [15], and holds even for
the absolute poa, while the resulting upper bound for the measure studied here
is d+ 0.7, which is the asymptotic approximation ratio of First Fit for multiple
dimensions [15]), and showed that pos=1. In this paper we consider this model,
which was studied in [26].

In Section 2, we show improved and nearly tight lower and upper bounds of
d + 0.657067 and d + 0.657143 respectively, on the poa for d ≥ 2, exhibiting
a difference between the multidimensional problem and the one dimensional
problem, for which that poa is at most 1.6428.

In the same section, we consider Pareto optimal packings, show that they exist
for any game, and that any optimal packing exhibits Pareto optimality, hence
wppos=sppos=1 (as for any game there exists a optimal packing that is also
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NE), however wppoa and sppoa remain linear in d as is the poa, which implies
that imposing this stronger demand for stability on the NE solution does not
help to reduce the inefficiency of the equilibria. We then proceed to show that
restricting the sizes of the coordinates of items in the packing also does not help
to reduce this inefficiency, which still remains linear in d.

In Section 3 we consider strong Nash equilibrium packings, show that any
game has such packing, and that the spoa (and the spos) is ln d + Θ(1). So,
only when we make this (very) strong demand for stability it allows us to reduce
the inefficiency of the solution. This gap leads us to conclude that this inefficiency
is much a result of the fact that the players’ actions are not coordinated and not
only of their selfishness. In addition, we provide an algorithm called Greedy Set
Cover, that constructs (any) SNE packing. It has an exponential running time,
but as the problem of computing an SNE packing is NP-hard already for d = 1
[12], no polynomial time algorithm can do that, unless P=NP.

Some proofs were omitted from this version due to space constraints.

2 Price of Anarchy

In this section, we prove close bounds on poa(d). We show an upper bound
of d + 23

35 ≈ d + 0.657143, and a lower bound of approximately d + 0.657067.
This reveals interesting properties of the problem. The claim that every NE
can be obtained by First Fit algorithm (FF in short) is true here as well as
in the one dimensional case; sort the bins by non-increasing total size (in all
components), and apply FF on the items in this order. Recall that for FF, the
approximation ratio for dimension d is equal to the approximation ratio of the
one dimensional problem plus d− 1. This is not the case here, and the value of
the poa is a new value in bin packing problems. In the analysis of FF for multiple
dimensions [15], bins for which exactly one component is above 1

2 and the other
components are at most 1

2 were split into d classes 1, 2, . . . , d (according to which
component is the largest one). One property of FF is that the bins of the jth
class could have been created by applying FF on one dimensional items (of sizes
equal to the jth component). While we use a similar partition in our proof (and
partition bins similarly), this property does not hold for NE packings (it can
be demonstrated using our lower bound for poa(d), where class 1 is larger by a
multiplicative factor of approximately 1.657067 than the number of bins in an
optimal solution, while poa(1) ≤ 1.643). The behavior for all values of d such
that d ≥ 2 is more uniform in terms of the difference between the value of the
poa and d.

2.1 Upper Bound

Here, we discuss the upper bound. The next theorem shows poa(d) ≤ d+ 23
35 .

Theorem 1. Let G′ be a d-dimensional game. For every packing A′ that is an
NE, |A′| ≤ (d+ 23

35 )OPT (G′) + 4.
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2.2 Lower Bound

We start with defining several parameters. The three parameters Ai, Bi, and Ci

are defined for any integer i ≥ 1. We also let A0 = 1 (while B0 and C0 are not

defined). Let Ai =
Ai−1

22i−1−2i+1 for i ≥ 1, where A1 = A0 and Ai < Ai−1 for i ≥ 2

(as 22i−1 < 2i). Moreover, let Bi = Ai · (2i − 2) and Ci = Ai · (22i−1 − 2i+1 + 2)
(and thus B1 = C1 = 0). For i ≥ 1, we have Ai + Bi + Ci = Ai · (1 + (2i −
2) + (22i−1 − 2i+1 + 2)) = Ai · (22i−1 − 2i + 1) = Ai−1. For any integer i ≥ 1,

let Di = Ai+2Bi+2Ci

2i−1 = 2Ai−1−Ai

2i−1 (thus, D1 = 1), for j ≥ 1, κj =
∑j

i=1 Di,
and finally κ∞ = limj→∞ κj (the approximate value of κ∞ is 1.657067). Since
0 < Ai ≤ 1 for i ≥ 1, all values Bi, Ci are positive and smaller than 1.

Theorem 2. For any d ≥ 2, poa(d) ≥ κ∞ + d− 1.

Proof. We will show that poa(d) ≥ κj + d − 1 for any j ≥ 2. Given j ≥ 2
and d ≥ 2, let N > max{d, 2j} be a large integer divisible by 22i−1 − 2i + 1
for any integer i such that 2 ≤ i ≤ j. Let δ > 0 be a small constant such that
δ = 1

N30j+10 . For i ≥ 1, let δi = N10i · δ and ρi = N10i+5 · δ. Thus, for i ≥ 1,
δi+1 = N5 ·ρi = N10 ·δi. We have δi = N−30j−10+10i and ρi = N−30j−5+10i. The
values N ·Ai are integers for i ≥ 1, and therefore N ·Bi and N ·Ci are integers
for i ≥ 1, where 0 < N · Bi < N and 0 < N · Ci < N (so 1 ≤ N · Bi ≤ N − 1
and 1 ≤ N · Ci ≤ N − 1).

We have the following types of items.

– For r = 2, . . . , d, items of class (0, r) are M = N30j+1 − N30j items whose
component r is equal to δ1, and the other components are equal to δ21 . These
items are also called items of class 0.

– Items of class 1 have a first component of value 1
2 + δ1, and the remaining

d− 1 components are equal to ρ1. The number of such items is N .
– Items of class (i, 1) (for 2 ≤ i ≤ j) have first components of value 1

2i +
(N · Ci + 1)δi − ρi−1. The remaining d− 1 components are equal to ρi. The
number of such items is N ·Bi.

– Items of class (i, 2) (for 2 ≤ i ≤ j) have first components of value 1
2i − (N ·

Ci + 1)δi. The remaining d− 1 components are equal to ρi. The number of
such items is N ·Bi.

– For 1 ≤ t ≤ N · Ci, there is an item of class (i, 3) (for 2 ≤ i ≤ j) whose first
component has the value 1

2i + tδi − ρi−1. The remaining d − 1 components
are equal to ρi.

– For 1 ≤ t ≤ N · Ci, there is an item of class (i, 4) (for 2 ≤ i ≤ j) whose first
component has the value 1

2i − tδi. The remaining d−1 components are equal
to ρi.

– Items of class (i, 5) (for 2 ≤ i ≤ j) have first components of value 1
2i +

2i(N ·Ci+1)δi−ρi−1. The remaining d− 1 components are equal to ρi. The
number of such items is N ·Ai.

An item of class (i, 3) and an item of class (i, 4) whose sum of first components
is 1

2i−1 − ρi−1 (that is, they are defined for the same value of t) are called a pair.
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The items of classes (i, 1) and (i, 2) are split into pairs as well (where each pair
consists of one item of each of these classes, and the sum of their first components
is also 1

2i−1 − ρi−1). Such a pair (of the first kind or of the second kind) is called
a pair of class i.

By the definition of δ, every component that is not the first component of an
item is at most 0 < ρj = N−20j−5 ≤ N−45. We show that the first components
are in (0, 1]. This obviously holds for class 0. For class 1, we have δ1 = N−30j ≤
N−60 < 1

2 . For classes (i, 1), (i, 3), and (i, 5), let the first component be 1
2i +

Xδi− ρi−1 for 1 ≤ X ≤ 2i(N ·Ci +1) ≤ 2j ·N ≤ N2. We have Xδi ≥ δi > ρi−1,
and Xδi ≤ N2δi = N2−30j−10+10i ≤ N−20j−8 < 1

2 . For classes (i, 2) and (i, 4),
let the first component be 1 − Xδi for 1 ≤ X ≤ N · Ci + 1 ≤ N . We have
Xδi ≤ Nδi ≤ N−20j−9 < 2−20j−9 < 1

2j+1 .

Claim 3. The entire set of these items can be packed into N bins, and this
packing is optimal.

Now, we describe the bins of an alternative packing which uses a much larger
number of bins. We will show that it is valid and that that is a NE. We modify
the input by removing some items. Obviously, it is still possible to pack the
input into N bins. Items can only possibly benefit from moving to non-empty
bins, and therefore we will only show that no item can benefit from moving to
another packed bin.

For r = 2, . . . , d, there are N − 1 bins, each containing N30j items of class
(0, r). The rth component of such a bin is 1, and any other component is N−30j .
The volume is therefore strictly above 1. As no item has any zero component, no
additional item can be packed into such a bin. The other bins will have volumes
strictly below 1, and therefore items of class 0 are packed into these (d−1)(N−1)
bins can not benefit from moving to another bin.

There are N bins, each containing one item of class 1. The first component
for such a bin is 1

2 + δ1 > 1
2 , and the volume is 1

2 + δ1 + (d− 1)ρ1 < 1
2 +Nρ1 =

1
2 +N−30j+6 < 1.

For 1 ≤ i ≤ N · Ci − 1, instead of the pairs, we create modified pairs (only
for classes (i, 3) and (i, 4) and not for classes (i, 1) and (i, 2)). A modified pair
for class i is a pair of items whose first components are 1

2i +(t+1)δi − ρi−1 and
1
2i −tδi, for some t such that 1 ≤ t ≤ N ·Ci−1. The two items of classes (i, 3) and
(i, 4) whose first components are 1

2i + δi−ρi−1 and 1
2i −N ·Ci are removed from

the input as they do not belong to modified pairs (and some modified pairs are
removed later). The sum of first components of a modified pair is 1

2i−1 +δi−ρi−1.
For 2 ≤ i ≤ j, there are two kinds of bins of type i. Bins of type [i, a] have one

item of class (i, 5) and 2i− 2 items of class (i, 2). Bins of type [i, b] have 2i−1− 1
modified pairs of class i and one item of class (i, 1). Since Bi = (2i − 2)Ai and
Ci = (2i−1 − 1)Bi, we have N ·Bi

2i−2 = N · Ai and N ·Ci−1
2i−1−1 = N · Bi − 1

2i−1−1 ≥
N · Bi − 1. Thus, by removing one item of class (i, 1) and some items of classes
(i, 3) and (i, 4) (that is, by removing some modified pairs), it is possible to create
N · Ai bins of type [i, a] and N · Bi − 1 bins of type [i, b].

Claim 4. The packing defined above is a valid NE packing.



478 L. Epstein and E. Kleiman

We have proved that the alternative packing is an NE. We find that the total
number of bins in this packing is (d− 1)(N − 1) +N +

∑j
i=2(N(Ai +Bi)− 1).

We have Ai +Bi = Ai(2
i − 1) = 2Ai−1−Ai

2i−1 = Di, as 2Ai−1 −Ai = (22i − 2i+1 +

1)Ai = (2i − 1)2 · Ai, and N = N · D1. Thus, the number of bins is at least
(d− 1)(N − 1)− (j − 1) +Nκj . For a sufficiently large value of N , we find that
the ratio tends to κj + d− 1. ��

2.3 Other Variants

As the poa is fairly high, it is interesting to identify the difficulty. In this section,
we show that neither limiting the item components nor requiring that the NE
will also be Pareto points affects the property that the price of anarchy is linear.
In the next section we will show that the situation is very different for strong
equilibria.

The Parametric Case. In the parametric variant, a parameter 0 < ξ < 1 is
given such that all item components do not exceed ξ.

Lemma 5. The poa is linear in d for any parameter ξ.

Pareto Price of Anarchy

Proposition 6. Any optimal packing is strictly Pareto optimal (and hence also
weakly Pareto optimal).

As for any game there exists an optimal packing that is an NE [26], this proves
that a SPNE and WPNE always exist, and that sppos=wppos=1.

Proposition 7. The wppoa and sppoa are linear in d.

3 Strong Price of Anarchy

We start with showing that any game G has at least one SNE. We will show,
however, that spos(d) is equal to spoa(d) and it is logarithmic in the dimen-
sion d, and in particular, not every game has a solution that is both an SNE
and socially optimal. As for other bin packing games, we consider the following
(exponential time) algorithm, called Greedy Set Cover (GSC). For an input
set of items I, in each step, the algorithm selects a subset of items of maximum
volume that can be packed into a bin together, and creates this bin.

Proposition 8. Every run of GSC creates an SNE packing (thus an SNE al-
ways exists), and any SNE packing can be created by some run of GSC (with
some tie-breaking policy).

Theorem 9. For a game G′ ∈ Jd with the set of items I ′, a packing A′ that is an
output of GSC has at most (ln 2d+1)OPT (G′)+1 = (ln d+ln 2+1)OPT (G′)+1
bins.
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Proof. First, note that GSC creates at most one bin B̃ such that v(B̃) ≤ 1
2 ,

as the contents of any two bins of volumes at most 1
2 can be packed into a

single bin. Moreover, if such a bin exists, it must be created last by GSC, as
sequence of the volumes of bins created by GSC is monotonically non-increasing.
Let G be the game resulting from G′ by removing the items of B̃ if it exists,
(and otherwise G = G′), and let I be its set of items. Obviously OPT (G) ≤
OPT (G′). Let A be A′ excluding B̃ if it exists (and otherwise A = A′). We
will show that the number of bins in A, |A|, is at most (ln(2d) + 1)OPT (G) ≤
(ln(2d)+1)OPT (G′). Specifically, since |A| = ∑

i∈I ci(A), it is sufficient to prove∑
i∈I ci(A) ≤ (ln(2d)+1)OPT (G), or alternatively, that given a socially optimal

packing A′′ for I ′ = I \ B̃, for any bin B′ of A′′,
∑

i∈B′ ci(A′′) ≤ ln 2d+ 1.
Consider an arbitrary such bin B′′, and let π1, π2, . . . , πk denote its items,

ordered in the order that GSC packs them into bins of A′ (items of one bin of A′

are ordered arbitrarily). For the input I, the set of bins of A is exactly the bins
of A′ (as the bin that is possibly removed is packed last by GSC), and therefore
we will consider A in what follows. Let B� denote the bin of A that contains
item π�, for � ≤ k. Let V� =

∑k
j=� vπj (and Vk+1 = 0). For any bin B�, as this is

a bin of A, v(B�) >
1
2 . By the definition of costs, cπ�

(A) =
vπ�

v(B�)
.

When item π� for � < k is packed into B�, items π�+1, . . . , πk are also still
available for packing (they will be packed into the same bin or a bin opened later).
Thus, the bin B� of A that contains item π� has volume of v(B�) ≥ V�. We find
v(B�) ≥ max{1/2, V�} and therefore cπ�

(A) ≤ vπ�

max{1/2,V�} . Let 0 ≤ k′ ≤ k be

the maximum index such that Vk′ > 1
2 (k′ = 0 if V1 ≤ 1

2 ). If k
′ = 0, then we

have
∑k

i=1 cπi(A) <
∑k

i=1 2vπi = 2
∑k

i=1 vπi = 2V1 ≤ 1. Otherwise, let v′πk′ =

Vk′ − 1
2 > 0 and v′′πk′ = vπk′ −v′πk′ . We have v′′πk′ = vπk′ −Vk′ + 1

2 = 1
2−Vk′+1 ≥ 0,

as Vk′+1 ≤ 1
2 . Thus, v

′
πk
, v′′πk

≤ vπk
.

We get

cπk′ (A) ≤ vπk′

max{1/2, Vk′} =
v′πk′ + v′′πk′

max{1/2, Vk′} ≤ v′πk′

Vk′
+ 2v′′πk′ .

We find that
∑

i∈B′′ ci(A) =
∑k′−1

�=1 cπ�
(A) + cπk′ (A) +

∑k
�=k′+1 cπ�

(A) ≤
∑k′−1

�=1

vπ�

V�
+

v′
π
k′

Vk′ + 2v′′πk′ +
∑k

�=k′+1 2vπ�
.

Using v′′πk
= 1

2−Vk′+1, we get 2v
′′
πk′+

∑k
j=k′+1 2vπj = 2(12−Vk′+1)+2Vk′+1 = 1

(which holds even if k′ = k).

We use the integral (with γ > 0 and α, β ≥ 0)
∫ β

α
1

x+γ dx = ln(β+γ)−ln(α+γ).

For ξ ≥ 0, υ > 0, we have ξ
ξ+υ ≤ ∫ ξ

0
1

x+υdx = ln(ξ + υ)− ln(υ).

For k′, taking ξ = v′πk′ , υ = 1
2 , we have

v′
π
k′

Vk′ =
v′
π
k′

v′
π
k′+

1
2

≤ ln(v′πk′ +
1
2 ) −

ln(12 ) = ln(Vk′ ) + ln 2, and for 1 ≤ � ≤ k′ − 1, taking ξ = vπ�
, υ = V�+1, we get

vπ�

V�
=

vπ�

vπ�
+V�+1

≤ ln(V�)− ln(V�+1).
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Thus,
(∑k′−1

j=1

vπ�

V�

)
+

v′
π
k′

Vk′ ≤ ln(V1) + ln 2 = ln(V (B′′)) + ln 2 ≤ ln d+ ln 2 =

ln(2d), and as V (B′′) ≤ d, we get
∑k

j=1

vπ�

v(B�)
≤ ln(2d) + 1. ��

The next theorem shows that the SPoS is Ω(log d), and therefore the SPoA
Ω(log d) as well.

Theorem 10. Let d ≥ 2. For any integer M , there exists a game G ∈ Jd , such
that OPT (G) ≥ M , and any run of GSC uses Hd · (OPT (G) − 1) bins, where

Hd =
∑d

�=1
1
� .

Proof. Given M , let N > max{M − 1, 4d} be an integer that is divisible by d!.
Let δ > 0 such that δ = 1

N3d3 . For 0 ≤ j ≤ d+ 1, let δj =
δ
4j (thus δ0 = δ, and,

δj−1 = 4δj for j > 0), and for 0 ≤ j ≤ d + 1, Δj =
∑d

�=j δ�, and therefore for

j ≤ d, Δj =
∑d

�=j δd4
d−� = δd ·

∑d−j
�=0 4

� = δd · (4d−j+1 − 1)/3, and Δd+1 = 0.

Note that δ < 1
5000 and for 2 ≤ j ≤ d, Δj <

δ
4d · 4d−j+1

3 = δ
3·4j−1 =

δj−1

3 < δj−1.

In particular, Δ2 < δ
12 , and Δj+1 < δj <

1
2 .

There is a class of tiny items, all of which are identical items whose d compo-

nents are all equal to δd+1. Their total number is (4d−1)N
3d and the volume of one

such item is dδd+1. There are d classes of large items. Class j (for 1 ≤ j ≤ d)
has N items in total, partitioned into d!

(d−j)!(j−1)! types. For 2 ≤ j ≤ d, every

item has d− j components equal to zero, one component equal to 1−Δj+1 (this
component is called the large component of the item, and it is strictly larger
than 1

2 ), and the remaining j − 1 components are equal to δj (for j = d, there

are no components equal to zero). For j = 1 there are N
d types of items, every

item has one component equal to 1−Δ2 − δd+1 (this is the large component of
the item, and it is larger than 1

2 in this case as well), and the remaining com-
ponents are equal to zero. The types are determined according to the identity
of components (i.e., which components are equal to zero and which component
is 1−Δj+1); there are d!

(d−j)!(j−1)! options for every 1 ≤ j ≤ d, and each option

gives a different type. There are equal numbers of items of the different types, so

there are N(d−j)!(j−1)!
d! items of each type. Let ωj denote the volume of an item

of class j. For j ≥ 2, ωj = 1−Δj+1+(j−1)δj , and for j = 1, ω1 = 1−Δ2−δd+1.
For 2 ≤ j ≤ d− 1, ωj > ωj+1 holds as

ωj − ωj+1 = (1−Δj+1 + (j − 1)δj)− (1−Δj+2 + jδj+1)

= Δj+2−Δj+1+(j−1)δj−jδj+1 = (j−1)δj−(j+1)δj+1 = δj((j−1)−(j+1)/4) ,

and ((j−1)−(j+1)/4) = (3j−5)/4 > 0 for j ≥ 2. Moreover, for 2 ≤ j ≤ d, ωj > 1
as ωd = 1−Δd+1+(d− 1)δd = 1+(d− 1)δd > 1, and ωj > ωd for 2 ≤ j ≤ d− 1.
However, it holds that ω1 < 1. On the other hand, ω2 = 1 −Δ3 + δ2 < 1 + δ

16 ,

so for any 1 ≤ j ≤ d, ωj < 1 + δ
16 .

Claim 11. The entire set of these items can be packed into N +1 bins, and this
packing is optimal.
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To analyze the behavior of GSC on this input, we start with several claims.

Claim 12. If for some j such that 1 ≤ j ≤ d, only large items of classes j, . . . , d
are available, while tiny items and large items of classes 1, . . . , j − 1 have been
packed already, then any bin that is packed with available items can contain at
most d− j + 1 items.

The next claim discusses the action of GSC as long as not all large items of
class 1 are packed.

Claim 13. Each of the first N
d bins created by GSC contains exactly d items

of class 1, all of distinct types, and it contains exactly 4d−1
3 tiny items. After

GSC packs the first N
d bins, all remaining items are large, and none of them is

of class 1.

The next claim discusses the action of GSC after all tiny items and all large
items of class 1 were packed. For 1 ≤ j ≤ d+ 1, let ρj =

∑j−1
�=1

N
� .

Claim 14. Each of the bins of indices ρj + 1, . . . , ρj+1 for 2 ≤ j ≤ d contains
exactly d− j + 1 large items of class j (and no other items).

Since each bin of GSC contains (excluding tiny items) d− j+1 items of some

class j, the total number of bins is
∑d

j=1
N

d−j+1 = N
∑d

�=1
1
� = N ·Hd. Thus, we

find that the number of bins created by GSC is exactly Hd · (OPT (G)− 1). ��
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Abstract. We consider the classic problem of scheduling a set of n jobs
non-preemptively on a single machine. Each job j has non-negative pro-
cessing time, weight, and deadline, and a feasible schedule needs to be
consistent with chain-like precedence constraints. The goal is to com-
pute a feasible schedule that minimizes the sum of penalties of late
jobs. Lenstra and Rinnoy Kan [Annals of Disc. Math., 1977] in their
seminal work introduced this problem and showed that it is strongly
NP-hard, even when all processing times and weights are 1. We study
the approximability of the problem and our main result is an O(log k)-
approximation algorithm for instances with k distinct job deadlines.

1 Introduction

In an instance of the classic precedence-constrained single-machine deadline
scheduling problem we are given a set [n] := {1, . . . , n} of jobs that need to
be scheduled non-preemptively on a single machine. Each job j ∈ [n] has a non-
negative deadline dj ∈ N, a processing time pj ∈ N as well as a non-negative
penalty wj ∈ N. A feasible schedule has to be consistent with precedence con-
straints that are given implicitly by a directed acyclic graph G = ([n], E); i.e.,
job i ∈ [n] has to be processed before job j if G has a directed i, j-path. A feasi-
ble schedule incurs a penalty of wj if job j is not completed before its deadline
dj . Our goal is then to find a feasible schedule that minimizes the total penalty
of late jobs. In the standard scheduling notation [10] the problem under consid-
eration is succinctly encoded as 1|prec|∑wjUj , where Uj is a binary variable
that takes value 1 if job j is late and 0 otherwise.

Single-machine scheduling with deadline constraints is a practically important
and well-studied subfield of scheduling theory that we cannot adequately survey
here. We refer the reader to Chapter 3 of [22] or Chapter 4 of [3], and focus here
on the literature that directly relates to our problem. The decision version of the
single-machine deadline scheduling problemwithout precedence constraints is part
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of Karp’s list of 21 NP-complete problems [16], and a fully-polynomial-time ap-
proximation scheme is known [8,23]. The problem becomes strongly NP-complete
in the presence of release dates as was shown by Lenstra et al. [20]. Lenstra and
Rinnoy Kan [21] later proved that the above problem is strongly NP-hard even
in the special case where each job has unit processing time and penalty, and the
precedence digraph G is a collection of vertex-disjoint directed paths.

Despite being classical, and well-motivated, little is known about the approx-
imability of precedence-constrained deadline scheduling. This surprises, given
that problems in this class were introduced in the late 70s, and early 80s, and
that these are rather natural variants of Karp’s original 21 NP-hard problems.
The sparsity of results to date suggests that the combination of precedence con-
straints and deadlines poses significant challenges. We seek to show, however,
that these challenges can be overcome to achieve non-trivial approximations for
these important scheduling problems. In this paper we focus on the generaliza-
tion of the problem studied in [21], where jobs are allowed to have arbitrary non-
negative processing times, and where we minimize the weighted sum of late jobs.
Once more using scheduling notation, this problem is given by 1|chains|∑wjUj

(and hereafter referred to as pDLS). Our main result is the following.

Theorem 1. pDLS has an efficient O(log k)-approximation algorithm, where k
is the number of distinct job deadlines in the given instance.

We note that our algorithm finds a feasible schedule without late jobs if such
a schedule exists.

In order to prove this result, we first introduce a novel, and rather subtle
configuration-type LP. The LP treats each of the directed paths in the given prece-
dence system independently. For each path, the LP has a variable for all nested
collections of k suffixes of jobs, and integral solutions set exactly one of these vari-
ables per path to 1. This determines which subset of jobs are executed after each
of the k distinct job deadlines. The LP then has constraints that limit the total
processing time of jobs executed before each of the k deadlines.While we can show
that integral feasible solutions to our formulation naturally correspond to feasi-
ble schedules, the formulation’s integrality gap is large (see the full version [7] for
details). In order to reduce the gap, we strengthen the formulation using valid
inequalities of Knapsack cover-type [1,4,14,25] (see also [5,18]).

The resulting formulation has an exponential number of variables and con-
straints, and it is not clear whether it can be solved efficiently. In the case of
chain-like precedences, we are able to provide an alternate formulation that,
instead of variables for nested collections of suffixes of jobs, has variables for
job-suffixes only. Thereby, we reduce the number of variables to a polynomial
of the input size, while increasing the number of constraints slightly. We do not
know how to efficiently solve even this alternate LP. However, we are able to
provide a relaxed separation oracle (in the sense of [4]) for its constraints, and
can therefore use the Ellipsoid method [11] to obtain approximate solutions for
the alternate LP of sufficient quality.

We are able to provide an efficiently computable map between solutions for the
alternate LP, and those of the original exponential-sized formulation. Crucially,
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we are able to show that the latter solutions are structurally nice; i.e., no two
nested families of job suffixes in its support cross! Such cross-free solutions to the
original LP can then be rounded into high-quality schedules. Because of space
limitations, details describing the alternate compact LP, the relaxed separation
oracle, and the efficiently computable map are only provided in the full version
of the paper [7].

Several comments are in order. First, there is a significant body of research that
investigatesLP-based techniques for single-machine, precedence-constrained,min-
imum weighted completion-time problems (e.g., see [13,12,24], and also [6] for a
more comprehensive summary of LP-based algorithms for this problem). None of
these LPs seem to be useful for the objective of minimizing the total penalty of
late jobs. In particular, converting these LPs requires the introduction of so called
“big-M”-constraints that invariably yield formulationswith large integrality gaps.

Second, using Knapsack-cover inequalities to strengthen an LP formulation for
a given covering problem is not new. In the context of approximation algorithms,
such inequalities were used by Carr et al. [4] in their work on the Knapsack
problem and several generalizations. Subsequently, they also found application
in the development of approximation algorithms for general covering and packing
integer programs [18], in approximating column-restricted covering IPs [17,5],
as well as in the area of scheduling (without precedence constraints) [2]. Note
that our strong formulations for pDLS use variables for (families of) suffixes of
jobs in order to encode the chain-like dependencies between jobs. This leads to
formulations that are not column-restricted, and they also do not fall into the
framework of [18] (as, e.g., their dimension is not polynomial in the input size).

Third, it is not clear how what little work there has been on precedence-
constrained deadline scheduling can be applied to the problem we study. The
only directly relevant positive result we know of is that of Ibarra and Kim [15],
who consider the single-machine scheduling problem in which n jobs need to be
scheduled non-preemptively on a single machine while adhering to precedence
constraints given by acyclic directed forests, with the goal to maximize the to-
tal profit of jobs completed before a common deadline T . While the allowed
constraints are strictly more general than the chain-like ones we study, this is
more than outweighed by the fact that all jobs have a common deadline, which
significantly reduces the complexity of the problem and renders it similar to
the well-studied Knapsack problem. Indeed, we show in the full version [7] of
our paper that pDLS with forest precedences and a single deadline admits a
pseudo-polynomial time algorithm as well. This implies that the decision version
of pDLS is only weakly NP-complete in this special case. Given the strong NP-
hardness of pDLS (as established in [21]), it is unclear how Ibarra and Kim’s
results can be leveraged for our problem.

It is natural to ask whether the approximation bound provided in Theorem 1
can be improved. In [7] we provide an example demonstrating that this is un-
likely if we use a path-independent rounding scheme (as in the proof of Theorem
1). This example highlights that different paths can play vastly different roles in
a solution, and be critical to ensuring that distinct necessary conditions are met.
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Thus, rounding paths independently can lead to many independent potential
points of failure in the process, and significant boosting of success probabilities
must occur if we are to avoid all failures simultaneously. This means, roughly
speaking, that our analysis is tight and therefore our approximation factor cannot
be improved without significant new techniques. Given the above, it is natural to
look for dependent rounding schemes for solutions to our LP. Indeed, such an idea
can be made to work for the special case of pDLS with two paths.

Theorem 2. pDLS with two paths admits a 2-approximation algorithm based
on a correlated rounding scheme.

The proof of Theorem 2 is deferred to [7], and shows that the configurational
LP used in the proof of Theorem 1 has an integrality gap of at most 2 for pDLS
instances with two paths. This is accomplished using a randomized rounding
scheme that samples families of suffix chains from the two paths in a correlated
fashion instead of independently. The approach uses the fact that our instances
have two paths, and extending it to general instances appears difficult.

We point out that the emphasis in Theorem 2 and its proof is on the techniques
used rather than the approximation guarantee obtained. In fact, we provide a
dynamic-programming-based exact algorithm for pDLS instances with a fixed
number of chains (see [7] for details).

Theorem 3. pDLS can be solved exactly when the number of chains is fixed.

1.1 Deadline Scheduling and Technology Diffusion

As we show now, the precedence-constrained single-machine deadline scheduling
problem is closely related to the technology diffusion (TD) problem which was
recently introduced by Goldberg and Liu [9] in an effort to model dynamic
processes arising in technology adaptation scenarios. In an instance of TD, we
are given a graph G = (V,E), and thresholds θ(v) ∈ {θ1, . . . , θk} for each v ∈ V .
We consider dynamic processes in which each vertex v ∈ V is either active or
inactive, and where an inactive vertex v becomes active if, in the graph induced
by it and the active vertices, v lies in a connected component of size at least
θ(v). The goal in TD is now to find a smallest seed set S of initially active
vertices that eventually lead to the activation of the entire graph. Goldberg and
Liu argued that it suffices (albeit at the expense of a constant factor loss in
the approximation ratio) to consider the following connected abstraction of the
problem: find a permutation π = (v1, . . . , vn) of V such that the graph induced
by v1, . . . , vi is connected, for all i, and such that

S(π) = {vi : i < θ(vi)}

is as small as possible.
As Goldberg and Liu [9] argue, TD has no o(log(n))-approximation algorithm

unless NP has quasi-polynomial-time algorithms. The authors also presented
an O(rk log(n))-approximation, where r is the diameter of the given graph,
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and k is the number of distinct thresholds used in the instance. Könemann,
Sadeghian, and Sanità [19] recently improved upon this result by presenting
a O(min{r, k} log(n))-approximation algorithm. The immediate open question
arising from [9] and [19] is whether the dependence of the approximation ratio
on r and k is avoidable. As it turns out, our work here provides an affirmative
answer for TD instances on spider graphs (i.e., trees in which at most one vertex
has degree larger than 2).

Theorem 4. TD is NP-hard on spiders. In these graphs, the problem also ad-
mits an O(log(k))-approximation.

The theorem follows from the fact that TD in spiders and pDLS with unit
processing times, and penalties are equivalent. We sketch the proof. Given an
instance of TD on spider G = (V,E), we create a job for each vertex v ∈ V , and
let dv = n − θ(v) + 1, and pv = wv = 1. We also create a dependence chain for
each leg of the spider; i.e., the job for vertex v depends on all its descendants
in the spider, rooted at its sole vertex of degree larger than 2. It is now an easy
exercise to see that the TD instance has a seed set of size s iff the pDLS instance
constructed has a schedule that makes s jobs late.

2 Notation

In the rest of the paper we will consider an instance of pDLS given by a collection
[n] of jobs. Each job j has non-negative processing time pj , penalty wj and
deadline dj . The precedence constraints on [n] are induced by a collection of
vertex-disjoint, directed paths P = {P1, . . . , Pq}. In a feasible schedule job j has
to precede job j′ if there is a directed j, j′-path in one of the paths in P ; we will
write j � j′ to indicate j has to precede j′ from now on for ease of notation,
and j ≺ j′ if we furthermore have j �= j′. We denote the set of distinct deadlines
in our instance by D = {D1, . . . , Dk}, with higher indices corresponding to later
deadlines, that is, indexed such that Di < Di′ whenever i < i′. We use the
notation i(j) ∈ [k] to denote the index that the deadline of job j has in the set
D, so we have that dj = Di(j) for all j ∈ [n]. We say that a job is postponed or
deferred past a certain deadline Di if the job is executed after Di. Our goal is
to find a feasible schedule that minimizes the total penalty of late jobs. Given a
directed path P , we let

P�j := {j′ ∈ [n] : j � j′}
be the suffix induced by job j ∈ [n]. We call a sequence S = (S1, S2, . . . , Sk) of
suffixes of a given path P ∈ P a suffix chain if

P ⊇ S1 ⊇ S2 ⊇ · · · ⊇ Sk;

while a suffix chain could have arbitrary length, we will only use suffix chains
with length k = |D|. Given two suffix chains S and S′ with k suffixes each, we
say S � S′ if Si ⊇ S′

i for all i ∈ [k]. If we have neither S � S′ nor S′ � S, we
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say that S and S′ cross. Given two suffix chains S and S′, we obtain their join
S ∨ S′ by letting (S ∨ S′)i = Si ∪ S′

i. Similarly, we let the meet of S and S′ be
obtained by letting (S ∧ S′)i = Si ∩ Si.

3 An Integer Programming Formulation

Our general approach will be to formulate the problem as an integer program, to
solve its relaxation, and to randomly round the fractional solution into a feasible
schedule of the desired quality. The IP will have a layered structure. For each
deadline Di ∈ D, we want to decide which jobs in [n] are to be postponed past
deadline Di. We start with the following two easy but crucial observations.

Observation 5. Consider a path P ∈ P, and suppose that j ∈ P is one of the
jobs on this path. If j is postponed past Di then so are all of j’s successors on P .
Thus, we may assume w.l.o.g. that the collection of jobs of P that are executed
after time Di forms a suffix of P .

Observation 6. Consider a path P ∈ P, and suppose that j ∈ P is one of
the jobs on this path. If j is postponed past Di, then it is also postponed past
every earlier deadline Di′ < Di. Thus, we may assume w.l.o.g. that the collec-
tions S1, . . . , Sk of jobs of P that are executed after deadlines D1 < · · · < Dk,
respectively, exhibit a chain structure, i.e. S1 ⊇ S2 ⊇ · · · ⊇ Sk.

Combining the above two observations, we see that for each path P ∈ P , the
collections of jobs postponed past each deadline form a suffix chain SP = SP

1 ⊇
SP
2 ⊇ · · · ⊇ SP

k . In the following we let SP denote the collection of suffix chains
for path P ; we introduce a binary variable xS for each suffix chain S ∈ SP and
each P ∈ P . In an IP solution xS = 1 for some S ∈ SP if for each i ∈ [k]
the set of jobs executed past deadline Di is precisely Si. We now describe the
constraints of the IP in detail.
(C1) At most one suffix chain of postponed jobs per path. In a solution,
we want to pick at most one suffix chain for each path P ∈ P , and thus obtain
the following natural constraint:

∑

S∈SP

xS ≤ 1 ∀P ∈ P . (C1)

(C2) Deferring sufficiently many jobs. In any feasible schedule, the total
processing time of jobs scheduled before time Di must be at most Di; conversely,
the total processing time of jobs whose execution is deferred past time Di must
be at least Γ −Di, where Γ =

∑
j∈[n] pj is the total processing time of all jobs.

This is captured by the following constraints:

∑

P∈P

∑

S∈SP

piSxS ≥ Γ −Di ∀i ∈ [k]

where piS is the total processing time of the jobs contained in Si. While the
above constraints are certainly valid, in order to reduce the integrality gap of the
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formulation and successfully apply our rounding scheme we need to strengthen
them, as we now describe. To this end, suppose that we are given a chain

FP = FP
1 ⊇ FP

2 ⊇ FP
3 ⊇ . . . ⊇ FP

k

of k suffixes of deferred jobs for each path P ∈ P , and let F = {FP}P∈P be the
family of these suffix chains. Suppose that we knew that we were looking for a
schedule in which the jobs in FP

i are deferred past deadline Di for all P ∈ P .
For each i ∈ [k], a feasible schedule must now defer jobs outside

⋃
P∈P FP

i of
total processing time at least

Θi,F := max

⎧
⎨

⎩(Γ −Di)−
∑

P∈P

∑

j∈FP
i

pj , 0

⎫
⎬

⎭ . (1)

We obtain the following valid inequality for any feasible schedule:
∑

P∈P

∑

S∈SP

pi,FS xS ≥ Θi,F ∀i ∈ [k], ∀F ∈ S, (C2)

where S is the collection of all families of suffix chains for P (including the empty

family), and where pi,FS is the minimum of Θi,F and the total processing time
of jobs j that are in Si but not in FP

i ; formally, for F ∈ S, i ∈ [k], P ∈ P , and
S ∈ SP , we set

pi,FS := min

⎧
⎨

⎩
∑

j∈Si\FP
i

pj , Θ
i,F

⎫
⎬

⎭ .

(C2) falls into the class of Knapsack Cover (KC) inequalities [1,4,14,25], and
the above capping of coefficients is typical for such inequalities.

All that remains to define the IP is to give the objective function. Consider
a job j on path P ∈ P , and suppose that the IP solution x picks suffix chain
S ∈ SP . Job j is late (i.e., its execution ends after time dj = Di(j)) if j is
contained in the suffix Si(j). We can therefore express the penalty of suffix chain
S succinctly as

wS :=
∑

j∈P : j∈Si(j)

wj . (2)

We can now state the canonical LP relaxation of the IP as follows

min

{
∑

P∈P

∑

S∈SP

wSxS : (C1), (C2), x ≥ 0

}
. (P)

For convenience we introduce auxiliary indicator variables Uj for each job
j ∈ [n]. Uj takes value 1 if j’s execution ends after time dj , and hence

Uj :=
∑

S∈SP :j∈Si(j)

xS , (3)

where P is the chain containing job j.
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4 Rounding the Relaxation

Our rounding scheme does not apply only to (suitable) feasible points for (P),
but in fact allows us to round a much broader class of (not necessarily feasible)
fractional points (U, x) to integral feasible solutions (Û , x̂) of the corresponding
IP, while only losing a factor ofO(log k) in the objective value. As we will see later
being able to round this broader class of points is crucial for our algorithm. In
order to formally describe the class of points we can round, we need to introduce
the concept of canonical chain families. Informally, the canonical suffix chain for
a path P defers each job j ∈ P as much as possible, subject to ensuring no job
in P is deferred past its deadline. The definition below makes this formal.

Definition 1. Given an instance of pDLS, we let CP
i be the longest suffix of

path P ∈ P that consists only of jobs whose deadline is strictly greater than Di.
Jobs in CP

i may be scheduled to complete after Di without incurring a penalty.
We call

CP := CP
1 ⊇ . . . ⊇ CP

k

the canonical suffix chain for path P , and let C = {CP }P∈P be the canonical
suffix chain family.

Our general approach for rounding a solution (U, x) to program (P) is to split
jobs into those with large Uj values and those with small ones. While we can
simply think of “rounding up” Uj values when they are already large, we need
to utilize the constraints (C1) and (C2) to see how to treat jobs with small Uj

values. As it turns out, in order to successfully round (U, x) we need it to satisfy
the KC-inequality for a single suffix chain family only. Naturally this family will
depend on the set of jobs with large Uj value. We can formalize the above as
follows.

Consider any instance I of pDLS, and let (U, x) be a solution to (P). Define
the set L of jobs that are late to an extent of at least 1/(γ log k) for a parameter
γ > 0 (whose value we will make precise at a later point):

L = {j : Uj ≥ 1/(γ log k)}.

We now obtain a modified instance of pDLS, denoted IL, by increasing the
deadline for the jobs in L to Γ . Thus, jobs in L can never be late in the modified
instance IL. Note that since we do not modify the processing time of any job
j ∈ [n], we have that pi,FS and Θi,F remain identical in IL and I for all i, F , and
S. Similarly, each job j ∈ [n] has the same penalty wj in I and IL. Let C be
the canonical suffix chain family for IL. We are able to round a solution (U, x)
as long as it satisfies the following conditions:

(a) for each P ∈ P , the set {S ∈ SP : xS > 0} is cross-free
(b) (U, x) is feasible for a relaxation (P’) of (P) that replaces the constraints (C2)

by
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∑

P∈P

∑

S∈SP

pi,CS xS ≥ Θi,C ∀i ∈ [k], (C2’)

where C is the canonical suffix chain family for the modified pDLS instance
IL.

In the next section, we see how we can find solutions satisfying both of these
conditions.

Suppose (U, x) is a solution to (P) that satisfies (a) and (b). Obtain x0 by
letting x0

S = xS if S makes at least one job j ∈ [n] late in IL, and let x0
S = 0

otherwise. Define U0 ≤ U as in (3) (with x0 in place of x), and note that (U0, x0)
satisfies (a) and (b). Let us now round (U0, x0). We focus on path P ∈ P , and
define the support of (U0, x0) induced by P :

T P := {S ∈ SP : x0
S > 0}.

As this set is cross-free by assumption (a), T P has a well-defined maximal ele-
ment S∗ with S � S∗ for all S ∈ T P (recall, S � S∗ means S defers no less jobs
past every deadline Di than S∗ does). By definition, S∗ makes at least one job
j ∈ [n] \ L late. Since S∗ is maximal in T P it therefore follows that j is late in
all S ∈ T P . Using the definition of (U0, x0) as well as the fact that j �∈ L we
obtain ∑

S∈T P

x0
S =

∑

S∈SP :j∈Si(j)

x0
S = U0

j ≤ Uj <
1

γ log k
. (4)

We let (Ū , x̄) = γ log k · (U0, x0) and obtain the following lemma. The proof
of this and several of the following lemmas are deferred to [7] because of space
limitations.

Lemma 1. (Ū , x̄) satisfies

∑

S∈SP

x̄S ≤ 1 ∀i ∈ [k], ∀P ∈ P (C1)

∑

P∈P

∑

S∈SP

pi,CS x̄S ≥ γ log k · Θi,C ∀i ∈ [k], (C2)

where C is the canonical suffix chain family defined for the modified instance IL
of pDLS.

We now randomly round (Ū , x̄) to an integral solution (Û , x̂) as follows. For
each P ∈ P , we independently select a single random suffix chain S ∈ SP using
marginals derived from x̄, and set the corresponding x̂S = 1. In particular, we
set x̂ so that for all P ∈ P and all S ∈ SP we have

Pr[x̂S = 1] =

{
x̄S if S ∈ T P

1−∑
S′∈T P x̄S′ if S = CP .
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Since (Ū , x̄) satisfies (C1), we can see that the above describes a valid randomized
process. We run this process independently for each path P ∈ P to obtain x̂. A
job j ∈ [n] \ L is late if it is contained in level i(j) of the suffix chain S chosen
for path P by the above process. Thus, we set

Ûj :=
∑

S∈SP :j∈Si(j)

x̂S ,

and easily obtain the following lemma.

Lemma 2. For all j �∈ L, E[Ûj ] = Ūj.

The preceding lemma shows that the expected penalty of (Û , x̂) in the modi-
fied instance IL is exactly

∑
j∈[n]\Lwj Ūj . The following lemma shows that the

schedule induced by x̂ postpones at least Θi,C jobs past deadlineDi for all i ∈ [k]
with constant probability.

Lemma 3. With constant probability, we have

∑

P∈P

∑

S∈SP

pi,CS x̂S ≥ Θi,C ∀i ∈ [k], (5)

where C is the canonical suffix chain family for the modified pDLS instance IL.
In particular, for γ = 4 the constraint holds with probability at least 0.7.

For each P ∈ P let ŜP be the join of the suffix chain corresponding to solution
x̂, and the canonical suffix chain CP ; i.e., suppose that x̂S = 1 for S ∈ SP . Then

ŜP = S ∨ CP . (6)

Clearly, ŜP is a suffix chain for path P . We use the following greedy algorithm
to obtain a schedule.

for i = 1 to k do
for all P ∈ P do
Schedule all jobs in P \ ŜP

i not already scheduled respecting the prece-
dence constraints

end for
end for
Schedule all remaining jobs respecting the precedence constraints

Theorem 7. The schedule produced by the above algorithm is feasible. Further-
more, if (5) holds, the schedule has cost at most

∑
j /∈L wjÛj in the instance

IL.
Corollary 1. The schedule produced by the above algorithm is feasible and in-
curs penalty at most 8 log k ·∑j wjUj in the original instance of the pDLS with
constant probability.
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5 Solving LP (P)

In the preceding sections, we have seen that pDLS can be expressed as an IP, and
that solutions to a somewhat weakened LP relaxation of it can be rounded into
feasible schedules for the original problem instance. Importantly, we do not know,
however, how to obtain solutions for this LP relaxation, and this seems particu-
larly complicated as (P) has an exponential number of variables and constraints.
It turns out that, in the special case of chain-like precedence constraints, one can
find an equivalent and more compact LP formulation for (P).

The new IP has binary variables xi
j for each job j ∈ [n] and for each deadline

Di; in a solution, xi
j will have value 1 if j and all of its successors are executed

after deadline Di, and xi
j = 0 otherwise. In the revised IP we will add constraints

that force a solution to pick at most one suffix of postponed jobs per path and
layer (see (D1)). Just like before, we will add a constraint that ensures that the
execution of sufficiently many jobs is deferred past each deadline Di; once more,
this involves adding a certain family of Knapsack cover inequalities (see D2).
The new IP has a polynomial number of variables. The less expressive nature of
these variables forces us to add extra constraints that ensure chain structure of
the suffixes chosen for each of the paths (see D3). In the following LP relaxation
of the new IP, we let

Uj =
∑

j′�j

x
i(j)
j′ ,

which, in an integer solution, has value 1 whenever job j is executed past its
deadline.

min
∑

j∈[n]

wjUj (P2)

s.t.
∑

j∈P

xi
j ≤ 1 ∀P ∈ P , i ∈ [k] (D1)

∑

P∈P

∑

j∈P\FP
i

pi,Fj xi
j ≥ Θi,F ∀i ∈ [k], ∀F ∈ S (D2)

∑

j′:j′�j

xi+1
j′ ≤

∑

j′ :j′�j

xi
j′ ∀P ∈ P , ∀j ∈ P, ∀i ∈ [k − 1] (D3)

x ≥ 0

In the case of chain-like preferences, LPs (P) and (P2) are equivalent, as we
can show. More precisely, we are able to obtain an objective-value preserving
map between feasible solutions to (P2) and cross-free solutions to (P). Unfor-
tunately, we still do not know how to solve LP (P2): while it has a polynomial
number of variables, it has an exponential number of constraints, and we do
not know how to employ the Ellipsoid method [11] as we do not know how to
separate the Knapsack cover-style constraints in (D2). Instead we design a re-
laxed separation oracle (in the sense of [4]) that allows us to efficiently find a
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polynomial-sized subfamily of constraints in (D2). Roughly speaking, replacing
(D2) by the constraints in this subfamily yields a compact LP whose solution
can be mapped to a solution to a weakened form of (P) that satisfies conditions
(a) and (b) in Section 4. Thus, this solution can now be rounded into a feasible
schedule (with constant probability). The reader is once more referred to [7] for
a detailed description of the solution method sketched in this section.
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1 Introduction

Optimal stopping theory is a powerful tool for analyzing scenarios in which
we generally require optimizing an objective function over the space of stopping
rules for an allocation process under uncertainty. One such a scenario is the online
auction which is the essence of many modern markets, particularly networked
markets where information about goods, agents, and outcomes is revealed over a
period of time and the agents must make irrevocable decisions without knowing
future information. Combining optimal stopping theory with game theory allows
us to model the actions of rational agents applying competing stopping rules in
an online market.

Perhaps the most classic problems of stopping theory are the prophet inequal-
ity and the secretary problem. Research investigating the relation between online
auction mechanisms and prophet inequalities was initiated by Hajiaghayi, Klein-
berg, and Sandholm [11]. They observed that algorithms used in the derivation
of prophet inequalities, owing to their monotonicity properties, could be inter-
preted as truthful online auction mechanisms and that the prophet inequality in
turn could be interpreted as the mechanism’s approximation guarantee. Later
Chawla, Hartline, Malec, and Sivan [7] showed the applications of prophet in-
equalities in Bayesian optimal mechansim design problems. The connection be-
tween the secretary problem and online auction mechanisms has been explored
by Hajiaghayi, Kleinberg and Parkes [10] and initiated several follow-up papers
(see e.g. [4,5,6,12,14]).
Prophet Inequality. The classical prophet inequality has been studied in the
optimal stopping theory since the 1970s when introduced by Krengel and Suche-
ston [13,16,17] and more recently in computer science Hajiaghayi, Kleinberg and
Sandholm [11]. In the prophet inequality setting, given (not necessarily identi-
cal) distributions {D1, . . . , Dn}, an online sequence of values X1, · · · , Xn where
Xi is drawn from Di, an onlooker has to choose one item from the succession
of the values, where Xk is revealed at step k. The onlooker can choose a value
only at the time of arrival. The onlooker’s goal is to maximize her revenue. The
inequality has been interpreted as meaning that a prophet with complete fore-
sight has only a bounded advantage over an onlooker who observes the random
variables one by one, and this explains the name prophet inequality.

An algorithm for the prophet inequality problem can be described by setting a
threshold for every step: we stop at the first step that the arriving value is higher
than the threshold of that step. The classical prophet inequality states that by
choosing the same threshold OPT/2 for every step, one achieves the competitive
ratio of 1/2. Here the optimal solution OPT is defined as E [maxXi]. Naturally,
the first question is whether one can beat 1/2. Unfortunately, this is not possible:
let q = 1

ε , and q′ = 0. The first value X1 is always 1. The second value X2 is
either q with probability ε or q′ with probability 1−ε. Observe that the expected
revenue of any (randomized) online algorithm is max(1, ε(1ε )) = 1. However the
prophet, i.e., the optimal offline solution would choose q′ if it arrives, and he
would choose the first value otherwise. Hence, the optimal offline revenue is
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(1− ε)× 1 + ε(1ε ) ≈ 2. Therefore we cannot hope to break the 1/2 barrier using
any online algorithm.

Secretary Problem. Imagine that you manage a company, and you want to hire
a secretary from a pool of n applicants. You are very keen on hiring only the
best and brightest. Unfortunately, you cannot tell how good a secretary is until
you interview him, and you must make an irrevocable decision whether or not to
make an offer at the time of the interview. The problem is to design a strategy
which maximizes the probability of hiring the most qualified secretary. It is well-
known since 1963 by Dynkin in [8] that the optimal policy is to interview the first
t − 1 applicants, then hire the next one whose quality exceeds that of the first
t− 1 applicants, where t is defined by

∑n
j=t+1

1
j−1 ≤ 1 <

∑n
j=t

1
j−1 . As n → ∞,

the probability of hiring the best applicant approaches 1/e ≈ 0.36, as does the
ratio t/n. Note that a solution to the secretary problem immediately yields an
algorithm for a slightly different objective function optimizing the expected value
of the chosen element. Subsequent papers have extended the problem by varying
the objective function, varying the information available to the decision-maker,
and so on, see e.g., [1,9,19,20].

We refer the reader to the full version of this paper for a further survey of
previous results.

2 Our Contributions

In this paper, we introduce prophet secretary as a natural combination of the
prophet inequality problem and the secretary problem with applications to the
Bayesian optimal mechanism design. Consider a seller that has an item to sell
on the market to a set of arriving customers. The seller knows the types of
customers that may be interested in the item and he has a price distribution for
each type: the price offered by a customer of a type is anticipated to be drawn
from the corresponding distribution. However, the customers arrive in a random
order. Upon the arrival of a customer, the seller makes an irrevocable decision to
whether sell the item at the offered price. We address the question of maximizing
the seller’s gain.

More formally, in the prophet secretary problem we are given a set
{D1, . . . , Dn} of (not necessarily identical) distributions. A number Xi is drawn
from each distribution Di and then, after applying a random permutation
π1, . . . , πn, the numbers are given to us in an online fashion, i.e., at step k,
πk and Xπk

are revealed. We are allowed to choose only one number, which can
be done only upon receiving that number. The goal is to maximize the expec-
tation of the chosen value, compared to the expectation of the optimum offline
solution that knows the drawn values in advance (i.e., OPT = E [maxi Xi]). For
the ease of notation, in what follows the index i iterates over the distributions
while the index k iterates over the arrival steps.

An algorithm for the prophet secretary problem can be described by a se-
quence of (possibly adaptive) thresholds 〈τ1, . . . , τn〉: we stop at the first step
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k that Xπk
≥ τk. In particular, if the thresholds are non-adaptive, meaning

that they are decided in advance, the following is a generic description of an

algorithm. The competitive ratio of the following algorithm is defined as E[Y ]
OPT .

Algorithm Prophet Secretary
Input: A set of distributions {D1, . . . , Dn}; a randomly permuted
stream of numbers (Xπ1 , . . . , Xπn) drawn from the corresponding
distributions.
Output: A number Y .

1. Let 〈τ1, . . . , τn〉 be a sequence of thresholds.
2. For k ← 1 to n

(a) If Xπk
≥ τk then let Y = Xπk

and exit the For loop.
3. Output Y as the solution.

Recall that when the arrival order is adversarial, the classical prophet in-
equality states that by choosing the same threshold OPT/2 for every step, one
achieves the tight competitive ratio of 1/2. On the other hand, for the basic sec-
retary problem where the distributions are not known, the optimal strategy is to
let τ1 = · · · = τn

e
= ∞ and τn

e +1 = · · · = τn = max(Xπ1 , . . . , Xπn
e
). This leads

to the optimal competitive ratio of 1
e 
 0.36. Hence, our goal in the prophet

secretary problem is to beat the 1/2 barrier.
We would like to mention that in an extension of this problem, in which the

seller has B identical items to sell, it is indeed easier to track the optimal solution
since we have multiple choices. In fact, an algorithm similar to that of [2,3] can
guarantee a competitive ratio of 1− 1√

B+3
which goes to one as B grows.

We first show that unlike the prophet inequality setting, one cannot obtain
the optimal competitive ratio by using a single uniform threshold. Indeed, in
the full version of this paper we show that 1/2 is the best competitive ratio one
can achieve with uniform thresholds. To beat the 1

2 barrier, as a warm up we
first show that by using two thresholds one can achieve the competitive ratio of
5/9 
 0.55. This can be achieved by choosing the threshold 5

9 ·OPT for the first

half of the steps and then decreasing the threshold to OPT
3 for the second half

of the steps. Later in Section 4, we show that by setting n distinct thresholds
one can obtain the (1− 1/e ≈ 0.63)-competitive ratio for the prophet secretary
problem.

Theorem 1. Let 〈τ1, . . . , τn〉 be a non-increasing sequence of n thresholds, such

that (i) τk = αk ·OPT for every k ∈ [n]; (ii) αn = 1
n+1 ; and (iii) αk =

nαk+1+1
n+1

for k ∈ [n − 1]. The competitive ratio of Algorithm Prophet Secretary invoked
with thresholds τk’s is at least α1. When n goes to infinity, α1 converges to
1− 1/e ≈ 0.63.

Remark 1. We should mention that Yan in [21] establishes a 1 - 1/e approxima-
tion when the designer is allowed to choose the order of arrival. Thus, Theorem
1 can be viewed as improving that result by showing that a random arrival order
is sufficient to obtain the same approximation.
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The crux of the analysis of our algorithm is to compute the probability of
picking a value x at a step of the algorithm with respect to the threshold factors
αk’s. Indeed one source of difficulty arises from the fundamental dependency
between the steps: for any step k, the fact that the algorithm has not stopped in
the previous steps leads to various restrictions on what we expect to see at the
step k. For example, consider the scenario that D1 is 1 with probability one and
D2 is either 2 or 0 with equal probabilities. Now if the algorithm chooses τ1 = 1,
then it would never happen that the algorithm reaches step two and receives a
number drawn from D2! That would mean we have received a value from D1 at
the first step which is a contradiction since we would have picked that number.
In fact, the optimal strategy for this example is to shoot for D2! We set τ1 = 2 so
that we can ignore the first value in the event that it is drawn from D1. Then we
set τ2 = 1 so that we can always pick the second value. Therefore in expectation
we get 5/4 which is slightly less than OPT = 6/4.

To handle the dependencies between the steps, we first distinguish between
the events for k ∈ [n] that we pick a value between τk+1 and τk. We show that
the expected value we pick at such events is indeed highly dependent on θ(k),
the probability of passing the first k elements. We then use this observation to
analyze competitive ratio with respect to θ(k)’s and the thresholds factors αk’s.
We finally show that the competitive ratio is indeed maximized by choosing
the threshold factors described in Theorem 1. In Section 3.1, we first prove
the theorem for the simple case of n = 2. This enables us to demonstrate our
techniques without going into the more complicated dependencies for general
n. We then present the full proof of Theorem 1 in Section 4. We would like
to emphasize that our algorithm only needs to know the value of OPT , thus
requiring only a weak access to the distributions themselves.

As mentioned before, Bayesian optimal mechanism design problems provide a
compelling application of prophet inequalities in economics. In such a Bayesian
market, we have a set of n agents with private types sampled from (not necessary
identical) known distributions. Upon receiving the reported types, a seller has
to allocate resources and charge prices to the agents. The goal is to maximize
the seller’s revenue in equilibrium. Chawla et al. [7] pioneered the study the
approximability of a special class of such mechanisms, sequential posted pricing
(SPM): the seller makes a sequence of take-it-or-leave-it offers to agents, offer-
ing an item for a specific price. They show although simple, SPMs approximate
the optimal revenue in many different settings. Therefore prophet inequalities
directly translate to approximation factors for the seller’s revenue in these set-
tings through standard machineries. Indeed one can analyze the so-called virtual
values of winning bids introduced by Roger Myerson [18], to prove via prophet
inequalities that the expected virtual value obtained by the SPM mechanism ap-
proximates an offline optimum that is with respect to the exact types. Chawla et
al. [7] provide a type of prophet inequality in which one can choose the ordering
of agents. They show that under matroid feasibility constraints, one can achieve
a competitive ratio of 0.5 in this model, and no algorithm can achieve a ratio
better 0.8. Kleinberg and Weinberg [15] later improved there result by giving
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an algorithm with the tight competitive ratio of 0.5 for an adversarial ordering.
Our result can be seen as improving their approximation guarantees to 0.63 for
the case of single-item SPMs when the order of agents are chosen randomly.

On the other hand, from the negative side the following theorem shows that
no online algorithm can achieve a competitive ratio better than 0.73.

Theorem 2. For any arbitrary small positive number ε, there is no online algo-
rithm for the prophet secretary problem with competitive ratio 11

15 + ε ≈ 0.73+ ε.

We also consider the minimization variants of the prophet inequality problem,
the prophet secretary problem and the secretary problem. In the minimization
variant, we need to select one element of the input and we aim to minimize
the expected value of the selected element. In particular, we show that, even
for the simple case in which numbers are drawn from identical and independent

distributions (i.i.d.), there is no (1.11)n

6 competitive online algorithm for the
minimization variants of the prophet inequality and prophet secretary problems.

Theorem 3. The competitive ratio of any online algorithm for the minimization
prophet inequality with n identical and independent distributions is bounded by
(1.11)n

6 . This bound holds for the minimization prophet secretary problem as well.

Furthermore, we empower the online algorithm and assume that the online
algorithm can withdraw and change its decision once. Indeed, for the minimiza-
tion variants of all, prophet secretary problem, secretary problem and prophet
inequality, we show that there is no C competitive algorithm, where C is an
arbitrary large number.

We refer the reader to the full version of this paper for the missing proofs.

3 Preliminaries

We first define some notation. For every k ∈ [n], let zk denote the random
variable that shows the value we pick at the kth step. Observe that for a fixed
sequence of drawn values and a fixed permutation, at most one of zk’s is non-zero
since we only pick one number. Let z denote the value chosen by the algorithm.
By definition, z =

∑n
k=1 zk. In fact, since all but one of zk’s are zero, we have

the following proposition. We note that since the thresholds are deterministic,
the randomness comes from the permutation π and the distributions.

Proposition 1. Pr [z ≥ x] =
∑

k∈[n] Pr [zk ≥ x].

For every k ∈ [n], let θ(k) denote the probability that Algorithm Prophet
Secretary does not choose a value from the first k steps. For every i ∈ [n] and
k ∈ [n − 1], let q−i(k) denote the probability that the following two events
concurrently happen:

(i) Algorithm Prophet Secretary does not choose a value from first k elements.
(ii) None of the first k values are drawn from Di.

Proposition 2. If the thresholds of Algorithm Prophet Secretary are non-
increasing, then for every i ∈ [n] and k ∈ [n− 1], we have θ(k + 1) ≤ q−i(k).
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3.1 Two Thresholds Breaks 1
2
Barrier

Since using one threshold is hopeless, we now try using two thresholds. More
formally, for the first half of steps, we use a certain threshold, and then we use a
different threshold for the rest of steps. We note that similar to the one-threshold
algorithm, both thresholds should be proportional to OPT . Furthermore, at the
beginning we should be optimistic and try to have a higher threshold, but if we
cannot pick a value in the first half, we may need to lower the bar! We show
that by using two thresholds one can indeed achieve the competitive ratio of
5
9 
 0.55. In fact, this improvement beyond 1/2 happens even at n = 2. Thus as
a warm up before analyzing the main algorithm with n thresholds, we focus on
the case of n = 2.

Let τ1 = α1OPT and τ2 = α2OPT for some 1 ≥ α1 ≥ α2 ≥ 0 to be optimized
later. Recall that z1 and z2 are the random variables showing the values picked
up by the algorithm at step one and two, respectively. We are interested in
comparing E [z] with OPT . By Proposition 1 we have

E [z] =

∫ ∞

0

Pr [z ≥ x] dx =

∫ ∞

0

Pr [z1 ≥ x] dx+

∫ ∞

0

Pr [z2 ≥ x] dx .

Observe that z1 (resp. z2) is either zero or has a value more than τ1 (resp.
τ2). In fact, since τ1 ≥ τ2, z is either zero or has a value more than τ2. Recall
that θ(1) is the probability of z1 = 0 while θ(2) is the probability of z1 = z2 = 0.
This observation leads to the following simplification

E [z] =

∫ τ2

0

Pr [z1 ≥ x] dx+

∫ τ1

τ2

Pr [z1 ≥ x] dx+

∫ ∞

τ1

Pr [z1 ≥ x] dx

+

∫ τ2

0

Pr [z2 ≥ x] dx+

∫ ∞

τ2

Pr [z2 ≥ x]dx

=

∫ τ2

0

Pr [z ≥ x] dx+

∫ τ1

τ2

Pr [z1 ≥ x]dx+

∫ ∞

τ1

Pr [z1 ≥ x] dx+

∫ ∞

τ2

Pr [z2 ≥ x]dx

= τ2(1− θ(2)) + (τ1 − τ2)(1− θ(1)) +

∫ ∞

τ1

Pr [z1 ≥ x] dx+

∫ ∞

τ2

Pr [z2 ≥ x]dx .

Let us first focus on Pr [z1 ≥ x]. The first value may come from any of the
two distributions, thus we have

Pr [z1 ≥ x] =
1

2
Pr [X1 ≥ x] +

1

2
Pr [X2 ≥ x] .

On the other hand, z2 is non-zero only if we do not pick anything at the first
step. For i ∈ {1, 2}, we pick a value of at least x drawn fromDi at step two, if and
only if: (i) the value drawn from Di is at least x; and (ii) our algorithm does not
pick a value from the previous step which is drawn from the other distribution.
By definitions, the former happens with probability Pr [Xi ≥ x], while the latter
happens with probability q−i(1). Since these two events are independent we have

Pr [z2 ≥ x] =
1

2

∑

i∈{1,2}
q−i(1) Pr [Xi ≥ x] ≥ θ(2)

2

∑

i

Pr [Xi ≥ x] ,
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where the last inequality follows from Proposition 2, although the proposition is
trivial for n = 2. We can now continue analyzing E [z] from before

E [z] = τ2(1− θ(2)) + (τ1 − τ2)(1− θ(1)) +

∫ ∞

τ1

Pr [z1 ≥ x] dx+

∫ ∞

τ2

Pr [z2 ≥ x] dx

≥ τ2(1− θ(2)) + (τ1 − τ2)(1− θ(1))

+
θ(1)

2

∫ ∞

τ1

∑

i

Pr [Xi ≥ x]dx+
θ(2)

2

∫ ∞

τ2

∑

i

Pr [Xi ≥ x] dx .

We note that although the θ(1) factor is not required in the third term of
the last inequality, we include it so that the formulas can have the same for-
mation as in the general formula of the next sections. It remains to bound∫∞
τk

∑
i Pr [Xi ≥ x] for k ∈ {1, 2}. Recall that OPT = E [maxiXi]. Hence for

every k ∈ {1, 2} we have

OPT =

∫ τk

0

Pr [maxXi ≥ x] dx+

∫ ∞

τk

Pr [maxXi ≥ x] dx

≤ τk +

∫ ∞

τk

Pr [maxXi ≥ x]dx Pr [maxXi ≥ x] ≤ 1

(1−αk)OPT ≤
∫ ∞

τk

Pr [maxXi ≥ x] dx τk = αkOPT

≤
∫ ∞

τk

∑

i

Pr [Xi ≥ x] dx Pr [maxXi ≥ x] ≤
∑

i

Pr [Xi ≥ x] dx

Therefore we get

E [z] ≥ τ2(1− θ(2)) + (τ1 − τ2)(1− θ(1))

+
θ(1)

2

∫ ∞

τ1

∑

i

Pr [Xi ≥ x] dx+
θ(2)

2

∫ ∞

τ2

∑

i

Pr [Xi ≥ x]dx

≥ (α2OPT )(1− θ(2)) + (α1 − α2)OPT (1− θ(1)) +
θ(1)

2
(1− α1)OPT

+
θ(2)

2
(1− α2)OPT = OPT

(

α1 + θ(1)(
1 + 2α2 − 3α1

2
) + θ(2)(

1− 3α2

2
)

)

Therefore by choosing α2 = 1/3 and α1 = 5/9, the coefficients of θ(1) and θ(2)
become zero, leading to the competitive ratio of 5/9 
 0.55. In the next section,
we show how one can generalize the arguments to the case of n thresholds for
arbitrary n.

4 (1 − 1
e
≈ 0.63)-Competitive Ratio Using n Thresholds

In this section we prove our main theorem. In particular, we invoke Algorithm
Prophet Secretary with n distinct thresholds τ1, . . . , τn. The thresholds τ1, . . . , τn
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that we consider are non-adaptive (i.e., Algorithm Prophet Secretary is oblivious
to the history) and non-increasing. Intuitively, this is because as we move to the
end of stream we should be more pessimistic and use lower thresholds to catch
remaining higher values.

Formally, for every k ∈ [n], we consider threshold τk = αk · OPT where the
sequence α1, . . . , αn is non-increasing that is, α1 ≥ α1 ≥ . . . ≥ αn. We invoke
Algorithm Prophet Secretary with these thresholds and analyze the competitive
ratio of Algorithm Prophet Secretary with respect to coefficients αk. Theorem 1
shows that there exists a sequence of coefficients αk that leads to the competitive
ratio of (1− 1/e) ≈ 0.63.

Proof of Theorem 1. We prove the theorem in two steps: First, we find a lower
bound on E [z] in terms of OPT and coefficients αi. Second, we set coefficients
αk so that (1) α1 becomes the competitive ratio of Algorithm Prophet Secretary
and (2) α1 converges to 1− 1/e, when n goes to infinity.

We start by proving the following auxiliary lemmas. In the first lemma, we
find a lower bound for

∫∞
τk

Pr [maxXi ≥ x] dx based on OPT = E [maxi Xi].

Lemma 1.
∫∞
τk

Pr [maxXi ≥ x] dx ≥ (1− αk)OPT .

Next, to find a lower bound for E [z], we first split it into two terms. Later,
we find lower bounds for each one of these terms based on OPT = E [maxiXi].

Lemma 2. Let z =
∑n

k=1 zk denote the value chosen by Algorithm Prophet
Secretary. For z we have

E [z] =

n∑

k=1

∫ τk

0

Pr [zk ≥ x] dx+

n∑

k=1

∫ ∞

τk

Pr [zk ≥ x] dx.

Lemma 3.
∑n

k=1

∫ τk
0 Pr [zk ≥ x] dx ≥ OPT

∑n
k=1(1 − θ(k))(αk − αk+1).

Proof. Suppose x ≤ τk. Observe that the event zk ≥ x occurs when Algorithm
Prophet Secretary chooses a value at step k. In fact, since the thresholds are non-
increasing, whatever we pick at the first k steps would be at least x. Recall that
for every k ∈ [n], θ(k) is the probability that Algorithm Prophet Secretary does
not choose a value from the first k steps. Hence, for every k ∈ [n] and x ≤ τk we
have ∑

j≤k

Pr [zj ≥ x] = 1− θ(k). (1)

To simplify the notation, we assume that α0 = ∞ which means τ0 = ∞ and
we let αn+1 = 0 which means τn+1 = 0. Therefore we have

n∑

k=1

∫ τk

0

Pr [zk ≥ x] dx =

n∑

k=1

∫ τk

τn+1

Pr [zk ≥ x] dx.
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Next, we use Equation (1) to prove the lemma as follows.

n∑

k=1

∫ τk

0

Pr [zk ≥ x] dx =

n∑

k=1

∫ τk

τn+1

Pr [zk ≥ x] dx

=

n∑

r=1

∫ τr

τr+1

r∑

k=1

Pr [zk ≥ x] dx ≥
n∑

r=1

∫ τr

τr+1

(1− θ(r))dx

=

n∑

r=1

(1− θ(r))(τr − τr+1) = OPT ·
n∑

k=1

(1− θ(k))(αk − αk+1) . �

Lemma 4.
∑n

k=1

∫∞
τk

Pr [zk ≥ x] dx ≥ OPT
∑

k
θ(k)
n (1 − αk).

Proof. Recall that for every distribution Di we draw a number Xi. Later, we
randomly permute the numbers X1, · · · , Xn. Let the sequence of indices after
the random permutation be π1, . . . , πn, i.e., at step k, number Xπk

for πk ∈ [n]
is revealed.

Suppose x ≥ τk. We break the event zk > 0 to n different scenarios depending
on which index of the distributions D1, · · · , Dn is mapped to index πk in the
random permutation. Let us consider the scenario in which Algorithm Prophet
Secretary chooses the value drawn from a distribution i at step k. Such a scenario
happens if (i) Algorithm Prophet Secretary does not choose a value from the first
k − 1 steps which are not drawn from i, and (ii) Xi ≥ τk. Observe that the
two events are independent. Therefore, we have Pr [zk ≥ x] =

∑
i Pr [πk = i] ·

Pr [Xi ≥ x] · q−i(k − 1), where q−i(k) for every i ∈ n and k ∈ [n − 1] is the
probability that the following two events concurrently happen: (i) Algorithm
Prophet Secretary does not choose a value from the first k elements, and (ii)
none of the first k values are drawn from Di. Since πk is an index in the random
permutation we obtain

Pr [zk ≥ x] =
∑

i

Pr [πk = i] Pr [Xi ≥ x]·q−i(k−1) =
1

n

∑

i

Pr [Xi ≥ x] q−i(k−1).

Using Proposition 2 and an application of the union bound we then have

Pr [zk ≥ x] =
∑

i

Pr [πk = i] · Pr [Xi ≥ x] · q−i(k − 1)

=
1

n

∑

i

Pr [Xi ≥ x] · q−i(k − 1)

≥ θ(k)

n
·
∑

i

Pr [Xi ≥ x] ≥ θ(k)

n
· Pr

[
max

i
Xi ≥ x

]
.

Therefore, we obtain the following lower bound on
∑n

k=1

∫∞
τk

Pr [zk ≥ x] dx.
n∑

k=1

∫ ∞

τk

Pr [zk ≥ x] dx ≥
∑

k

∫ ∞

τk

θ(k)

n
Pr [maxXi ≥ x] dx

=
∑

k

θ(k)

n

∫ ∞

τk

Pr [maxXi ≥ x] dx .
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Finally, we use the lower bound of Lemma 1 for
∫∞
τk

Pr [maxXi ≥ x] dx to
prove the lemma.
n∑

k=1

∫ ∞

τk

Pr [zk ≥ x] dx ≥
∑

k

θ(k)

n

∫ ∞

τk

Pr [maxXi ≥ x] dx

≥
∑

k

θ(k)

n
(1− αk) ·OPT = OPT ·

∑

k

θ(k)

n
· (1 − αk) .

�

Now we can plug in the lower bounds of Lemmas 3 and 4 into Lemma 2 to
obtain a lower bound for E [z].

Corollary 1. Let z =
∑n

k=1 zk denote the value chosen by Algorithm Prophet
Secretary. For z we have

E [z] ≥ OPT · (α1 +

n∑

k=1

θ(k)(
1

n
− αk

n
− αk + αk+1)).

We finish the proof of the theorem by proving the following claim.

Lemma 5. The competitive ratio of Algorithm Prophet Secretary is at least α1

which quickly converges to 1− 1/e ≈ 0.63 when n goes to infinity.

Proof. Using Corollary 1, for z we have

E [z] ≥ OPT

(
α1 +

n∑

k=1

θ(k)

(
1

n
− αk

n
− αk + αk+1

))
.

which means that the competitive ratio depends on the probabilities θ(k)’s.
However, we can easily get rid of the probabilities θ(k)’s by choosing αk’s such
that for every k,

(
1
n − αk

n − αk + αk+1

)
= 0.

More formally, by starting from αn+1 = 0 and choosing αk = 1+nαk+1

1+n for
k ≤ n, the competitive ratio of the algorithm would be α1. Below, we show
that when n goes to infinity, α1 quickly goes to 1 − 1/e which means that the
competitive ratio of Algorithm Prophet Secretary converges to 1− 1/e ≈ 0.63.

First, we show by the induction that αk =
∑n−k

i=0
ni

(1+n)i+1 . For the base case

we have

αn =
1 + nαn+1

1 + n
=

1 + n× 0

1 + n
=

n0

(1 + n)1
.

Given αk+1 =
∑n−(k+1)

i=0
ni

(1+n)i+1 we show the equality for αk as follows.

αk =
1 + nαk+1

1 + n
=

1 + n(
∑n−(k+1)

i=0
ni

(1+n)i+1 )

1 + n

=
n0

(1 + n)1
+

n−(k+1)∑

i=0

ni+1

(1 + n)i+2
=

n−k∑

i=0

ni

(1 + n)i+1
.
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Now we are ready to show α1 ≥ 1− 1/e when n goes to infinity.

lim
n→∞α1 = lim

n→∞

n−1∑

i=0

ni

(n+ 1)i+1
= lim

n→∞
1

n+ 1

n−1∑

i=0

(1− 1

n+ 1
)i

≈ lim
n→∞

1

n+ 1

n−1∑

i=0

e−i/n ≈
∫ 1

0

e−xdx = 1− 1/e . �
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Abstract. It is well-known that local search heuristics for the Maximum-
Cut problem can take an exponential number of steps to find a local
optimum, even though they usually stabilize quickly in experiments. To
explain this discrepancy we have recently analyzed the simple local search
algorithm FLIP in the framework of smoothed analysis, in which inputs
are subject to a small amount of random noise. We have shown that in
this framework the number of iterations is quasi-polynomial, i.e., it is
polynomially bounded in nlog n and φ, where n denotes the number of
nodes and φ is a parameter of the perturbation.

In this paper we consider the special case in which the nodes are points
in a d-dimensional space and the edge weights are given by the squared
Euclidean distances between these points. We prove that in this case for
any constant dimension d the smoothed number of iterations of FLIP
is polynomially bounded in n and 1/σ, where σ denotes the standard
deviation of the Gaussian noise. Squared Euclidean distances are often
used in clustering problems and our result can also be seen as an upper
bound on the smoothed number of iterations of local search for min-sum
2-clustering.

1 Introduction

Clustering is nowadays ubiquitous in computer science. Despite intensive re-
search on sophisticated algorithms, simple local search methods are often the
most successful and versatile algorithms in practice. These algorithms are based
on a simple principle: start with some feasible clustering and perform local im-
provements until a local optimum is found. Usually local search methods do not
work well in the worst case because in most cases there are rather contrived
instances on which they perform poorly.

Motivated by this striking discrepancy between theory and practice, we have
recently analyzed the simple local search algorithm FLIP for the Maximum-Cut
Problem in the framework of smoothed analysis, which can be considered as a
less pessimistic variant of worst-case analysis in which the adversarial input is
subject to a small amount of random noise [5]. We continue this line of research
and consider the special case of the Maximum-Cut Problem in which the nodes
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are points in a d-dimensional space and the edge weights are given by the squared
Euclidean distances between these points. We assume that the input is a finite
setX ⊆ R

d of points that is to be partitioned into two partsX1 andX2 such that

the weight
∑

x∈X1

∑
y∈X2

∥∥x−y
∥∥2

becomes maximal, where
∥∥x−y

∥∥ denotes the
Euclidean distance between x and y. The FLIP algorithm starts with an arbitrary
cut (X1, X2) and iteratively increases the weight of the cut by moving one vertex
from X1 to X2 or vice versa, as long as such an improvement is possible. Squared
Euclidean distances are common in many clustering applications.

In the model we consider, an adversary specifies an arbitrary set X ⊆ [0, 1]d

of n = |X | points. Then each point is randomly perturbed by adding a Gaussian
vector of standard deviation σ to it. The parameter σ determines how powerful
the adversary is. In the limit for σ → 0 the adversary is as powerful as in
a classical worst-case analysis, whereas for large σ smoothed analysis almost
coincides with average-case analysis. Note that the restriction to [0, 1]d is merely
a scaling issue and entails no loss of generality.

For a given instance of the Maximum-Cut Problem we define the number of
steps of the FLIP algorithm on that instance to be the largest number of local
improvements the FLIP algorithm can make for any choice of the initial cut and
any pivot rule determining the local improvement that is chosen if multiple are
possible. Formally, this can be described as the longest path in the transition
graph of the FLIP algorithm. We are interested in the smoothed number of steps
of the FLIP algorithm. This quantity depends on the number n of nodes and the
standard deviation σ and it is defined as the largest expected number of steps
the adversary can achieve by his choice of the point set X .

Theorem 1. For any constant dimension d ≥ 2, the smoothed number of steps
of the FLIP algorithm for squared Euclidean distances is bounded from above by
a polynomial in n and 1/σ. The degree of this polynomial depends linearly on d.

This result significantly improves upon the exponential worst-case running
time of the FLIP algorithm and the quasi-polynomial bound on the smoothed
number of steps for general instances. The theorem shows that for squared Eu-
clidean distances worst-case instances are fragile and unlikely to occur in the
presence of a small amount of random noise.

We view Theorem 1 as a further step towards understanding the behavior of
local search heuristics on semi-random inputs. Its proof is considerably differ-
ent from our previous analysis for general graphs and also from the smoothed
analysis of other local search heuristics in the literature. We believe that the
technique used to prove Theorem 1, which we summarize in Section 2, might
also be interesting for analyzing local search algorithms for other problems. In
that sense, we view Theorem 1 also as a proof of concept of our new technique.

1.1 Related Work

Smoothed analysis has originally been introduced by Spielman and Teng to
explain why the simplex method solves linear programs efficiently in practice
despite its exponential worst-case running time [13]. Since then it has gained a
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lot of attention and it has been used to analyze a wide variety of optimization
problems and algorithms (see, e.g., the surveys [8,14]).

For many optimization problems, local search heuristics are prime examples
of algorithms with exponential worst-case running time that work well and ef-
ficiently in practice. Consequently, there has been a considerable amount of
research on the smoothed analysis of local search. Englert et al. [4] and Manthey
and Veenstra [9] have analyzed the smoothed running time of the popular 2-Opt
heuristic for the traveling salesman problem. Arthur and Vassilvitskii initiated
the smoothed analysis of the k-means method [2] that culminated in a proof
that the smoothed running time of the k-means method is polynomial [1].

Both the worst-case and the smoothed running time of the FLIP algorithm
for the Maximum-Cut Problem have been studied. It is known that the prob-
lem of computing a locally optimal cut is PLS-complete [11] even for graphs of
maximum degree five [3]. This means that, unless PLS ⊆ P, there is no efficient
algorithm to compute partitions that are locally optimal and it also implies that
there are instances on which there exist initial cuts from which any sequence of
local improvements to a local optimum has exponential length. Admittedly, these
lower bounds do not carry over immediately to squared Euclidean distances but
there is also no sub-exponential worst-case upper bound known for this case.

Elsässer and Tscheuschner [3] were the first who analyzed the smoothed run-
ning time of the FLIP algorithm and showed that it is polynomially bounded if
the graph G has at most logarithmic degree. Later we [5] analyzed the smoothed
running time of the FLIP algorithm for general graphs and we proved a quasi-
polynomial bound, i.e., a bound that is polynomial in nlogn. While it would also
be worthwhile to study the quality of locally optimal cuts in the framework of
smoothed analysis, this line of research has not been pursued yet. It is well-
known that even in the worst case any locally optimal cut is a 2-approximation
of a maximum cut (see, e.g., [7]).

Schulman [12] studied the min-sum 2-clustering problem for squared Eu-
clidean distances. In this problem, the input also consists of a finite set of
points X ⊆ R

d and the goal is to find a partition of X into two classes X1

and X2 such that the sum of the edge weights inside the two classes (i.e.,∑
x,y∈X1

∥∥x−y
∥∥2+

∑
x,y∈X2

∥∥x−y
∥∥2) becomes minimal. This problem is equiv-

alent to the Maximum-Cut Problem with squared Euclidean distances (not in
terms of approximation though) and hence the FLIP algorithm can also be seen
as a local search algorithm for min-sum 2-clustering. Schulman gives an algo-
rithm that solves the problem optimally in time O(nd+1). The bound proven in
Theorem 1 does not improve upon the running time of Schulman’s algorithm for
computing the optimal cut. However, the worst-case running time of the FLIP
algorithm might be much worse than that.

Sankar, Spielman and Teng [10] analyzed the condition number of randomly
perturbed matrices and proved that it is unlikely that a matrix whose entries
are independent Gaussians has a large condition number. We will use this as one
crucial ingredient of our analysis of the FLIP algorithm.
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2 Outline of Our Analysis

The analysis of the FLIP algorithm for squared Euclidean distances differs signif-
icantly from our previous analysis for general graphs and also from the smoothed
analysis of other local search heuristics in the literature. Theorem 1 as well as all
results in the literature are based on finding a lower bound for the improvement
made by any local improvement or any sequence of consecutive local improve-
ments of a certain length. Since X ⊆ [0, 1]d, the value of any cut is bounded
polynomially in n with high probability. Hence, proving that in any local im-
provement or in any sequence of poly(n) consecutive local improvements the
value of the cut increases by at least ε := 1/poly(n) with high probability suf-
fices for proving that the expected number of local improvements is polynomially
bounded. We will call an improvement of at least ε significant in the following.

We call a configuration (i.e., a partition of X into X1 and X2) bad if it admits
an insignificant local improvement. Any fixed configuration is bad only with
probability at most poly(nε/σ). With this observation in mind one could try to
use a union bound over all possible configurations to bound the probability that
there exists a bad configuration. However, since there is an exponential number
of configurations, this does not work. In fact, one can even prove that with high
probability there do exist bad configurations. We will improve the union bound
by not fixing the configuration of all points from X but only some of them, i.e.,
we will only make a union bound over a small subset of the points. To illustrate
this, let us give two examples from the literature.

– An observation that has been exploited by Elsässer and Tscheuschner [3] is
that it suffices to fix the flipping vertex and the neighborhood of this vertex
in the union bound. For graphs of logarithmic maximum degree, this yields
a polynomial bound on the smoothed number of local improvements.

– Another observation that has been used in a much more general form in [5]
is the following: Any sequence of constantly many consecutive local improve-
ments that starts and ends with the same vertex flipping yields a significant
improvement with high probability. We showed that in order to bound the
probability that there exists a sequence of this type in which all improve-
ments are insignificant it suffices to use a union bound over all sequences of
this type (there are only polynomially many because they are of constant
length). One does, however, not need to specify in the union bound the
configuration of the vertices that are not involved in the sequence.

The two examples above have in common that the union bound fixes only the
configuration of some of the vertices (which we call active). The configuration of
the other vertices (which we call passive) is not fixed in the union bound. In the
examples the active points were chosen such that knowing their configuration
suffices to compute the probability that the considered step or sequence of steps
is bad. In our analysis we also fix only the configuration of some active vertices.
The difference is that the passive vertices are not irrelevant because their con-
figuration has a very essential impact on the improvements made by the flips in
the considered sequences.
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Let us go into more detail. Remember that we consider complete graphs in
which each vertex is a point in R

d and the weights of the edges are given by the
squared Euclidean distance. Our goal is to show that in this setting with high
probability there is no sequence in which 9d+16 different vertices move making
only insignificant local improvements. Observe that the length of such a sequence
is at most 29d+16 as otherwise one configuration would repeat. We apply a union
bound over all such sequences. We call all vertices that flip in the considered
sequence active and apply another union bound over all configurations of the
active points. With only the information about the sequence and the configura-
tion of the active points, it is not possible to determine linear combinations of
the edge weights that describe the improvements made in the sequence because
the configuration of the passive points is unknown.

Assume that the passive points P are partitioned into the sets P1 and P2.
One crucial observation for our analysis is that in the case of squared Euclidean
distances it suffices to know |P1| and the value cP :=

∑
x∈P1

x − ∑
x∈P2

x in
order to determine the improvements made by the active points. This value is
unknown if the configuration of the passive points (i.e., the partition (P1, P2))
is unknown and we have to assume that cP ∈ R

d is chosen adversarially. We
prove that there is a point capxP ∈ R

d such that the first flips of the first d + 1
active points can only all be small improvements if cP is chosen very close to capxP

(Phase 1). The point capxP can be computed as the solution of a system of linear
equations whose coefficients are determined by the considered sequence and the
active points alone. In particular, capxP does not depend on the passive points.

In fact, if cP is chosen to be capxP , then the improvement of each of the steps
is exactly equal to zero. The coefficients in this system of linear equations are
normally distributed. Hence we can use the result of Sankar et al. [10] to argue
that the condition number is not too large with high probability. From this it
follows that cP has to be chosen close to capxP in order to guarantee that each step
makes only an insignificant improvement. In order to decrease the probability
that the condition number is too large, we repeat Phase 1 nine times, i.e., we
consider the first flips of the first 9(d+ 1) active points.

The adversarywho determines the position of cP has no choice but to choose cP
close to capxP if he wants to achieve that each of the first 29d+9 steps in the sequence
is an insignificant improvement. We then substitute cP by capxP in the formulas de-
scribing the improvements of steps. This results in formulas which do not depend
on the passive points anymore and by our assumption that cP is close to capxP these
formulas are good approximations for the improvements of the last seven active
points (Phase 2).We use these formulas to argue that it is unlikely that all of them
take values in (0, ε) without having to use a union bound over the configuration
of the passive points. (This approach is remotely inspired by the analysis of the
k-means method where approximate centers of clusters are used [1].)

In our analysis we crucially use that the edge weights are given by squared Eu-
clidean distances because for other distance measures the necessary information
about the configuration of the passive points is not captured solely by cP .
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3 Preliminaries and Notation

In this section we state some lemmas that we will use later to prove Theorem 1
and we introduce some notation. Throughout the paper, ε denotes the threshold
value between an insignificant and a significant step. Due to space limitations, all
formal proofs are deferred to the full version. Proof ideas for the most important
lemmas are given in this version.

Lemma 2. Let Dmax := σ
√
2n + 1 and let X be a set of n Gaussian ran-

dom vectors in R
d with mean values in [0, 1]n and standard deviation σ. Then

Pr
[
X �⊆ [−Dmax, Dmax]

d
] ≤ d/2n.

Up to our proof of the main result in Section 7, we assume without further
mention that X ⊆ [−Dmax, Dmax]

d and σ ≤ 1/
√
2n, which implies Dmax ≤ 2.

Furthermore, we assume n ≥ d, which is without loss of generality because d is
a constant.

Lemma 3. The weight of any cut is between 0 and φmax := 16dn2.

One crucial ingredient of our analysis is the following result.

Lemma 4 (Sankar, Spielman, Teng [10]). Let Ā ∈ R
d×d with

∥∥Ā
∥∥
2
≤ √

d

be arbitrary. Let A be obtained from Ā by adding to each entry an indepen-
dent Gaussian with mean 0 and standard deviation σ. Then for all δ ≥ 1,

Pr [κ(A) ≥ δ] ≤ 14.1d(1+
√

2 ln(δ)/9d)

δσ , where κ(A) :=
∥∥A

∥∥
2

∥∥A−1
∥∥
2
denotes the

condition number of A.

The following lemma follows from elementary probability theory.

Lemma 5. Let k ∈ N and λ1, . . . , λk ∈ Z with
∑k

i=1 λi �= 0. Let u, v1, . . . , vk ∈
R

d and let z denote a d-dimensional Gaussian random vector with mean μ ∈ R
d

and standard deviation σ. Then for every τ ∈ R and δ > 0,

Pr
[
u · z +∑k

i=1 λi ·
∥∥z − vi

∥∥2 ∈ [τ, τ + δ]
]
≤

√
δ

σ .

For a point z ∈ R
d and a finite set B ⊆ R

d we write Φ(z,B) =
∑

x∈B

∥∥z−x
∥∥2.

Furthermore we denote by cm(B) = 1
|B|

∑
x∈B x the center of mass of B and we

use the notation Ψ(B) = Φ(cm(B) , B).

4 Improvement of a Double Movement

Let us consider the improvement of a single step in which a point z ∈ X switches
sides. If we denote by Xz

1 ⊆ X all points on the same side as z before the
movement (not including z itself) and by Xz

2 ⊆ X all points on the other side
then the improvement of the step can be written as

Φ(z,Xz
1 )− Φ(z,Xz

2 )

= |Xz
1 | ·

∥∥z − cm(Xz
1 )

∥∥2 + Ψ(Xz
1 )−

( |Xz
2 | ·

∥∥z − cm(Xz
2 )

∥∥2 + Ψ(Xz
2 )
)
,

(1)

where the equation follows from the following lemma.
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Lemma 6 ([6]). For any z ∈ R
d and any finite set X ⊆ R

d it holds

Φ(z,X) = |X | · ∥∥z − cm(X)
∥∥2 + Ψ(X).

Since the occurrence of Ψ(Xz
1 ) and Ψ(Xz

2 ) in (1) is problematic for our analy-
sis, we will eliminate these terms by considering two consecutive steps and adding
or subtracting their respective improvements. To be more precise consider two
consecutive steps in which the points y and z switch sides (in this order) and
let Xz

1 and Xz
2 be defined as above with the only exception that y is contained

in neither of them. If y and z are on different sides before they move, then it
is easy to see from (1) that the terms Ψ(Xz

1 ) and Ψ(Xz
2 ) cancel out if one adds

the improvements of the two steps. If y and z are on the same side before they
move, then similarly one can see that the terms Ψ(Xz

1 ) and Ψ(Xz
2 ) cancel out if

one subtracts the improvements of the two steps. In both cases we denote the
resulting term ξ(z) (it is only indexed by z and not by y because we define y to
be the unique point that moves before z in the considered sequence of steps). If
both steps yield an improvement in (0, ε] then ξ(z) lies in [−ε, 2ε].

The following definition makes the reasoning above more formal. For reasons
that will become clear later, we assume that the sets Xz

1 and Xz
2 are both

partitioned into two parts, which we call passive and active.

Definition 7. For a given sequence of steps and an arbitrary point z ∈ X that
moves during this sequence at least once but not in the first step, let p(z) be the
point from X that moves last before the first move of z. For any ε > 0, any such
point z ∈ X and the set P ⊆ X \ {z, p(z)} of passive points that do not move
during the considered sequence, we define the following variables and functions,
where y = p(z).

– Az := (X \ P ) \ {y, z} is the set of active points.
– Xz

1 is the set of points that are on the same side as z directly before the first
movement of z, excluding y and z. Furthermore, let Xz

2 := (X \Xz
1 ) \ {y, z}

be the set of points that are on the other side, excluding y and z.
– We partition Xz

1 and Xz
2 into active and passive points: Az

1 := Az ∩ Xz
1 ,

Az
2 := Az ∩Xz

2 , P
z
1 := P ∩Xz

1 , P
z
2 := P ∩Xz

2 .
– π(z) is 1 if y and z jump in different directions; otherwise it is −1.
– ξ(z) is defined as the improvement of the z-movement plus π(z) times the

improvement of the y-movement.

In the next lemma we break the term ξ(z) into two parts. One part, called b(z),
depends only on the active points and |P z

1 | and |P z
2 | but not on the positions

of the passive points. All information about the the passive points is subsumed
in the other part. It is important for our analysis that all information needed
about the passive points is the value cP (z) as defined in the following lemma.

Lemma 8. Let y := p(z),

b(z) :=(|P z
1 | − |P z

2 |) · (
∥∥z

∥∥2 − ∥∥y
∥∥2) + Φ(z, Az

1)− Φ(z, Az
2)

− Φ(y,Az
1) + Φ(y,Az

2)−
{
0 if π(z) = 1,

2
∥∥z − y

∥∥2 if π(z) = −1,

and cP (z) :=
∑

x∈P z
1
x−∑

x∈P z
2
x. Then ξ(z) = 2cP (z) · (y − z) + b(z).
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Lemma 9. If the movements of p(z) and z both yield an improvement of at
most ε > 0, then |ξ(z)| ≤ 2ε.

5 Phase 1

In Phase 1 we consider a sequence of length at most 2d+1 in which d+1 different
points z0, . . . , zd move. Then the points z0, . . . , zd are active and all other points
are passive. Assume in this section that an arbitrary such sequence is fixed and
that the initial configuration of z0, . . . , zd is also fixed. We will later apply a
union bound over all choices for such a sequence and the initial configuration
of z0, . . . , zd. Let P1 ∈ {1, 2} be the side on which z1 is at the beginning of
the sequence, and let P2 be the other side. We define P := X \ {z0, . . . , zd}
and cP := cP (z

1). We assume that the cardinalities
∣∣P z1

1

∣∣ and
∣∣P z1

2

∣∣ are fixed.
We will later also apply a union bound over all choices for these cardinalities.

If any of the movements in the considered sequence yields a significant im-
provement then we are done. Otherwise we will prove that we have obtained
enough information to deduce approximately the position of cP . In order to
see this, observe that by Lemma 8 the first movement of each zi with i ≥ 1
determines the following equation:

ξ(zi) = 2cP (z
i) · (p(zi)− zi) + b(zi).

Let σi be +1 if the first movement of zi is in the same direction as the first
movement of z1, i.e., from P1 to P2, and −1 otherwise. Then cP (z

i) = σi ·cP (z1)
holds for every i ≥ 1. Hence, ξ(zi) = 2σi(p(zi) − zi) · cP + b(zi). This implies
that the point cP satisfies the system ξ = 2McP + b of linear equations where

M :=

⎛

⎜⎝
σ1(p(z1)− z1)

...
σd(p(zd)− zd)

⎞

⎟⎠ , ξ :=

⎛

⎜⎝
ξ(z1)
...

ξ(zd)

⎞

⎟⎠ , and b :=

⎛

⎜⎝
b(z1)
...

b(zd)

⎞

⎟⎠ .

If the matrix M is invertible (which it is with probability 1), then cP = M−1(ξ−
b)/2. As argued above, we are interested in the case that all movements in
Phase 1 yield only a small improvement of at most ε for some ε > 0. In this case
each ξ(zi) satisfies |ξ(zi)| ≤ 2ε according to Lemma 9. We consider the approx-
imate solution capxP of the system of linear equations assuming that each ξ(zi)
is exactly zero: capxP = −M−1b/2. If the condition number of M is not too large
and each ξ(zi) is close to zero, then capxP is close to cP . Note that we can cal-
culate capxP without uncovering the points in P or knowing their configuration
because neither M nor b depends on the positions of the passive points.

Since the sequence of moves is fixed, also the matrix M is fixed. We will first
show (using Lemma 4) that it is well-conditioned with high probability.

Lemma 10. For every δ ≥ 1, Pr [κ(M) ≥ δ] ≤ 72d3

σ
√
δ
.

In order for the distance between cP and capxP to be small we do not only need
that the matrix M is well-conditioned but also that the norm of the right-hand
side of the system of linear equations is not too small.
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Lemma 11. Let δ∈ [0, 1]. If
∥∥ξ

∥∥
∞≤ 2φmax·δ then Pr

[∥∥b− ξ
∥∥
2
≤δ

] ≤ 12d3/4n
√
δ

σ .

As the quotient κ(M)/
∥∥b− ξ

∥∥ occurs in our analysis under a condition of the

form
∥∥ξ

∥∥
∞ ≤ 2δ, we define qδ :=

{
κ(M)/

∥∥b− ξ
∥∥ if

∥∥ξ
∥∥
∞ ≤ 2δ,

0 otherwise.
The second

case in this definition is necessary because we will treat the event
∥∥ξ

∥∥
∞ > 2δ

separately and do not want it to have any effect on qδ.

Lemma 12. Let ε > 0. If
∥∥ξ

∥∥
∞ ≤ 2ε then

∥∥capxP − cP
∥∥ ≤ 4dnε · qε.

As we will bound the expected value of the smallest improvement of a sequence
later on, we will need a bound for

∫∞
0

Pr
[
qφmax/t ≥ tc

]
dt for some constant

c < 1. It turns out that the bounds given in Lemma 10 and Lemma 11 are not
strong enough to make this integral finite. Therefore, we repeat Phase 1 nine
times with d + 1 different points each time such that the nine repetitions are
mutually independent. We consider active points from a repetition also as active
in the other repetitions such that they do not account for cP and capxP . Note
that we now need 9(d+ 1) active points Z = {z0i , . . . , zdi : i = 1, . . . , 9} in total.
Assume in the following that an arbitrary sequence of length at most 29(d+1)

with 9(d+ 1) active points is fixed and that also the initial configuration of the
active points is fixed. We will later apply a union bound over all choices. We get
nine approximations capxP for the same cP (possibly negated) and nine different

qδ for the quotient κ(M)∥∥b−ξ
∥∥ . Let q

∗
δ be the minimum of these qδ and let i∗ be the

repetition in which this minimum is obtained.

Lemma 13.
∫∞
0

Pr
[
q∗φmax/t

≥ t7/15
]
dt ≤ O

(
d18n9

σ9

)
.

6 Phase 2

Assume in the following that an arbitrary sequence of length at most 29(d+1)+7

with 9(d+ 1) + 7 active points is fixed and that also the initial configuration of
the active points is fixed. We will later apply a union bound over all choices for
the sequence and the initial configuration of the active points. The longest prefix
of this sequence in which at most 9(d+1) points move forms the nine repetitions
of Phase 1, which we have analyzed in the previous section. Phase 2, which we
analyze in this section, starts with the first move of point number 9(d+ 1) + 1.
Hence, Phase 2 contains seven active points that do not move in Phase 1. Let
S = {s1, . . . , s�} denote the set of  := 7 points that move in Phase 2 in this
order (i.e., Phase 2 starts with the first movement of s1).

We will apply the principle of deferred decisions in the following way: Except
from the analysis of the error event F1(δ) (Lemma 16) we assume in this section
that the positions of all 9d+9 active points Z of Phase 1 are already uncovered.
The points from S are passive in Phase 1 and hence, they belong to the set P .
This implies, in particular, that cP (but not capxP ) depends on these points.
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The set of passive points changes now with every new point that gets active. We
define the set of passive points during the first move of sj as P j := P \{s1, . . . , sj}
and we assume that in addition to the active points from Phase 1 also the
points s1, . . . , sj−1 are uncovered when sj moves for the first time.

From now on, we mean with capxP the point calculated in repetition i∗ of
Phase 1 and we denote by ξ the corresponding vector from repetition i∗. Define
σ̂j like σi in Phase 1 but for the new points moving in Phase 2, i.e., σ̂j is 1 if
the first movement of sj is from P1 to P2 and −1 otherwise.

According to Lemma 8, we can write ξ(sj) = 2σ̂jcP j · (p(sj) − sj) + b(sj).
Due to its definition, the point cP j is just cP shifted by sj and the already
uncovered points s1, . . . , sj−1. Therefore, we get an approximation capxP j for cP j

by shifting capxP in the same (now deterministic up to the randomness of sj)
way as cP . As capxP j and cP j are near to each other with high probability under
the assumption that all steps in Phase 1 yield insignificant improvements, the
“approximate improvement” ξapx(sj) := 2σ̂jcapxP j ·(p(sj)−sj)+b(sj) is nearly the
same as ξ(sj) (Lemma 14). Thus,

∣∣ξ(sj)
∣∣ can only be small if

∣∣ξapx(sj)
∣∣ is small.

But in the definition of ξapx(sj), the only randomness left is the position of the
point sj . Hence, we can derive a bound for the probability of an insignificant
improvement by analyzing a term in which only one random point is left. We do
this successively for s1, . . . , s�.

Lemma 14. Let 1 ≤ j ≤  and 0 ≤ ε ≤ 1. If
∥∥ξ

∥∥
∞ ≤ 2ε and

∣∣ξ(sj)
∣∣ ≤ 2ε, then∣∣ξapx(sj)

∣∣ ≤ 74d3/2nq∗ε · ε. (Note that
∥∥ξ

∥∥
∞ ≤ 2ε does not imply anything for∣∣ξ(sj)

∣∣ as ξ is the vector from Phase 1.)

As already mentioned, the only randomness left in the definition of ξapx(sj)
is the point sj . Hence, we can rewrite

∣∣ξ(sj)
∣∣ in the following way, where C is

the set of all points of the form −capxP +
∑

v∈Z∪S αv · v with αv ∈ {−1, 0, 1}.
Lemma 15.

∣∣ξapx(sj)
∣∣ = νj · ∥∥sj∥∥2 +2sj · σ̂j · cj + τ j , where νj ∈ Z and τ j ∈ R

are known constants, and cj ∈ C has known coefficients αv.

We want to bound the probability that
∣∣ξapx(sj)

∣∣ is close to zero. If νj = 0,

we have to make sure that
∥∥cj

∥∥ is not too small as otherwise the variance of
2sj · σ̂j · cj is very small. We cannot guarantee this for every j, but it is unlikely
to have three different j with small

∥∥cj
∥∥.

Lemma 16. For δ ≥ 0, let F1(δ) be the event that there are three distinct points

x1, x2, x3 ∈ C with
∥∥xi

∥∥ ≤ √
δ/2 for i = 1, 2, 3. Then Pr [F1(δ)] ≤ O(1) ·

(√
δ

σ

)4

.

Hence, we know that for at least four different j it is unlikely that
∣∣ξapx(sj)

∣∣
is small. Now if we define Δ := maxj

∣∣ξ(sj)
∣∣ and Δapx := maxj

∣∣ξapx(sj)
∣∣, we are

able to show that it is unlikely that Δapx and thus Δ is small.

Lemma 17. For any δ ≥ 0, Pr [Δapx ≤ δ] ≤ O
(√

δ
σ

)4

.

Corollary 18.
∫∞
0

Pr
[
Δapx ≤ t−8/15

]
dt ≤ O(σ−4).
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7 Bounding the Expected Number of Steps

With Lemma 13 and Corollary 18 we have all the ingredients that we need for
bounding the expected number of steps of the algorithm. We first outsource a
calculation which uses the aforementioned lemmata to yield a bound for the
probability of a small improvement by a fixed sequence. Then we are able to
show our main result.

Lemma 19.
∫∞
0 Pr

[
Δ ≤ 2φmax

t

]
dt ≤ O

(
d20.5·n12

σ9

)
.

Proof (Theorem 1). We first stick with our assumption σ ≤ 1/
√
2n. Let F be the

event that our point set X is not contained in [−Dmax, Dmax]
d ⊆ [−2, 2]d. Let a

block be nine repetitions of Phase 1 followed by a repetition of Phase 2. Let us
derive a union bound over all possible choices of blocks: There are nO(d) choices
for the active points in Phase 1 and Phase 2. Furthermore, we need another
factor n for the choice of |P1|. Instead of fixing the whole sequence of steps, it
suffices for our purposes to fix the configuration of the active points before every
first move of a point, which results in another factor 2O(d2). Together this results
in a factor of 2O(d2) · nO(d).

Let T be the number of blocks that are processed during the FLIP algorithm.
Then

E [T ] =

∫ 2n

0

Pr [T ≥ t] dt ≤
∫ 2n

0

Pr [F ] + 2O(d2) · nO(d) ·Pr

[
Δ ≤ 2φmax

t

]
dt

≤ 2n · d

2n
+ 2O(d2)nO(d) d

20.5n12

σ9
≤ d+

2O(d2)nO(d)

σ9
≤ 2O(d2)nO(d)

σ9
.

As O(d) different points move in a block, the length of a block is at most 2O(d).

Hence, the total number of steps is bounded by 2O(d) · 2O(d2) · nO(d) · σ−9 =
2O(d2) · nO(d) · σ−9.

If σ > 1/
√
2n, we create an equivalent instance by scaling down the mean

values by the factor 1/(
√
2nσ) (i.e., the mean values remain in [0, 1]n) and setting

the standard deviation to σ′ = 1/
√
2n < σ. As these instances are equivalent,

we obtain the same expected number of iterations and thus also a bound of
2O(d2) · nO(d) · (√2n)9 ≤ 2O(d2) · nO(d) · σ−9. 
�

8 Concluding Remarks

We proved the first polynomial upper bound on the smoothed number of steps
of the FLIP algorithm for the Maximum-Cut problem. Our upper bound ap-
plies only to squared Euclidean distances because it uses essentially the identity
given in Lemma 6, which is special to squared Euclidean distances. It might
be possible to extend our analysis to Bregman divergences because these also
satisfy Lemma 6. An immediate extension to general graphs does not seem to
be possible and it is still a very interesting open question if the result from [5]
for general graphs can be improved.
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Our result gives only a polynomial smoothed running time if the dimension is
constant because the degree of the polynomial grows linearly with d. We think
that it is conceivable to improve the smoothed running time to 2O(d) times a
polynomial in n and 1/σ whose degree is independent of d by a more careful
analysis of the condition number in Phase 1 that does not use the result by
Sankar et al. [10] as a black box. Generally, we hope that our work triggers further
improvements like, e.g., the first smoothed analysis of the k-means method by
Arthur and Vassilvitskii [2], which only gave a polynomial bound for constant k.

A version of the k-means method that works rather well in experiments is
Hartigan’s method [15]. Telgarsky and Vattani conjecture that the smoothed
running time of this algorithm is polynomial [15]. However, so far this conjecture
could not be proven and it seems rather challenging. As Hartigan’s method has
some similarities with the FLIP algorithm for the Maximum-Cut problem for
squared Euclidean distances, we believe that our new proof technique might also
be helpful for proving Telgarsky and Vattani’s conjecture.
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Abstract. Symmetric submodular functions are an important family
of submodular functions capturing many interesting cases including cut
functions of graphs and hypergraphs. In this work, we identify submodu-
lar maximization problems for which one can get a better approximation
for symmetric objectives compared to what is known for general sub-
modular functions.

For the problem of maximizing a non-negative symmetric submodu-
lar function f : 2N → R

+ subject to a down-monotone solvable polytope
P ⊆ [0, 1]N , we describe an algorithm producing a fractional solution
of value at least 0.432 · f(OPT ), where OPT is the optimal integral
solution. Our second result is a 0.432-approximation algorithm for the
problem max{f(S) : |S| = k} with a non-negative symmetric submod-
ular function f : 2N → R

+. Our method also applies to non-symmetric
functions, in which case it produces 1/e − o(1) approximation. Finally,
we describe a deterministic linear-time 1/2-approximation algorithm for
unconstrained maximization of a non-negative symmetric submodular
function.

Keywords: Symmetric submodular functions, Cardinality constraint,
Matroid constraint.

1 Introduction

The study of combinatorial problems with submodular objective functions has
recently attracted much attention, and is motivated by the principle of econ-
omy of scale, prevalent in real world applications. Submodular functions are also
commonly used as utility functions in economics and algorithmic game theory.
Symmetric submodular functions are an important family of submodular func-
tions capturing, for example, the mutual information function and cut functions
of graphs and hypergraphs.

Minimization of symmetric submodular functions subject to various con-
strains and approximating such functions by other functions received a lot of
attention [6,7,13,17,18]. However, maximization of symmetric submodular func-
tions was the subject of only limited research, despite an extensive body of
works dealing with maximization of general non-negative submodular functions
(see, e.g., [1,3,5,16,19]). In fact, we are only aware of two papers dealing with
maximization of symmetric submodular functions. First, Feige et al. [8] show an

c© Springer-Verlag Berlin Heidelberg 2015
N. Bansal and I. Finocchi (Eds.): ESA 2015, LNCS 9294, pp. 521–532, 2015.
DOI: 10.1007/978-3-662-48350-3�44
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1/2-approximation algorithm for the problem of maximizing a symmetric sub-
modular function subject to no constraint (which is the best possible). This
result was later complemented by an algorithm achieving the same approxima-
tion ratio for general submodular functions [1]. Second, Lee et al. [15] show a
1/3-approximation algorithm for maximizing a symmetric submodular function
subject to a general matroid base constraint.

In this work, we identify a few submodular maximization problems for which
one can get a better approximation for symmetric objectives than the state
of the art approximation for general submodular functions. Our first result is
an improved algorithm for maximizing a non-negative symmetric submodular
function1 f : 2N → R

+ subject to a down-monotone solvable polytope2 P ⊆
[0, 1]N . More formally, given a set function f : 2N → R, its multilinear extension
is the function F : [0, 1]N → R defined by F (x) = E[f(R(x))], where R(x) is a
random set containing every element u ∈ N with probability xu, independently.
Our result is an approximation algorithm for the problem max{F (x) : x ∈ P}
whose approximation ratio is about: 1/2 · [1 − (1 − d(P)2/d(P))], where d(P) is
the density3 of P . In the following theorem, and throughout the paper, we use
n to denote |N |.
Theorem 1. Given a non-negative symmetric submodular function f : 2N →
R

+, a down-monotone solvable polytope P ⊆ [0, 1]N and a constant T ≥ 0, there
exists an efficient algorithm that finds a point x ∈ [0, 1]N such that F (x) ≥
1/2 · [1− e−2T − o(1)] ·max{F (x) : x ∈ P ∩ {0, 1}N}. Additionally,
(a) x/T ∈ P.
(b) Let TP = − ln(1− d(P) + n−4)/d(P). Then, T ≤ TP implies x ∈ P.

Theorem 1 improves over the result of [11], who gave an approximation ratio
of e−1−o(1) for the case of general submodular functions. More specifically, The-
orem 1 provides an approximation ratio of at least 1/2 · [1−e−2]−o(1) ≥ 0.432 for
an arbitrary down-monotone solvable polytope since T can always be set to be
at least 1. For many polytopes the result produced by Theorem 1 can be rounded
using known rounding methods (see, e.g., pipage rounding [3], swap rounding [4]
and contention resolution schemes [5]). For example, matroid polytopes allow
rounding without any loss in the approximation ratio. Moreover, due to prop-
erty (a) of Theorem 1, the combination of our algorithm with the contention
resolution schemes rounding described by [5] produces better approximation ra-
tios than those implied by a black box combination (see [11] for details).

1 A set function f : 2N → R
+ is symmetric if f(S) = f(N \S) for every set S ∈ N , and

submodular if f(A) + f(B) ≥ f(A ∪B) + f(A ∩B) for every pair of sets A,B ⊆ N .
2 A polytope P ⊆ [0, 1]N is solvable if one can optimize linear functions over it, and
down-monotone if for every two vectors x, y ∈ [0, 1]N , x ≤ y and y ∈ P imply x ∈ P .

3 Consider a representation of P using m inequality constraints, and let us denote the
ith inequality constraint by

∑
u∈N ai,uxu ≤ bi. By Sect. 3.A of [9], we may assume

all the coefficients are non-negative and each constraint has at least one non-free
non-zero coefficient. The density d(P) of P is defined as the maximum value of
min1≤i≤m

bi∑
u∈N ai,u

for any such representation.
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Our next result considers the problem max{f(S) : |S| = k} for a non-negative
symmetric submodular function f : 2N → R

+. For this problem we prove the
following theorem.

Theorem 2. There exists an efficient algorithm that given a non-negative sym-
metric submodular function f : 2N → R

+ and an integer cardinality parameter
1 ≤ k ≤ n/2, achieves an approximation of 1/2[1 − (1− k/n)2n/k]− o(1) for the
problem: max{f(S) : |S| = k}. If k > n/2, then the same result holds with the
cardinality parameter replaced by n− k.

Notice that Theorem 2 achieves for the problem max{f(S) : |S| = k} the same
approximation ratio achieved by Theorem 1 for the problem max{f(S) : |S| ≤ k}
(as long as k ≤ n/2). Using the same technique we get a result also for the more
well-studied case of general (non-symmetric) submodular functions.

Theorem 3. There exists an efficient algorithm that given a non-negative sub-
modular function f : 2N → R

+ and an integer cardinality parameter 1 ≤ k ≤ n,
achieves an approximation of e−1 − o(1) for the problem: max{f(S) : |S| = k}.

Theorems 2 and 3 improve over results achieved by [2] when k/n ≤ 0.204 and
k/n ≤ 0.093, respectively. Most practical applications of maximizing a submod-
ular function subject to a cardinality constraint use instances having relatively
small k/n ratios, and thus, can benefit from our improvements (see [2] for a list
of such applications). We complement Theorem 2 by showing that one cannot
get an approximation ratio better than 1/2 for any ratio k/n.

Theorem 4. Consider the problems max{f(S) : |S| = p/q · n} and max{f(S) :
|S| ≤ p/q ·n} where p < q are positive constant integers and f is a non-negative
symmetric submodular function f : 2N → R

+ obeying n/q ∈ Z. Then, every
algorithm with an approximation ratio of 1/2 + ε for one of the above problems
(for any constant ε > 0) uses an exponential number of value oracle queries.

The result of Theorem 4 follows quite easily from the symmetry gap framework
of [19] and is known for the case of general submodular functions as well as for
some pairs of p and q (e.g., the case p/q = 1/2 follows immediately from the work
of [19]). We give the theorem here mainly for completeness reasons, and defer
its proof to the full version of this paper.

We also consider the unconstrained submodular maximization problem (i.e.,
max{f(S) : S ⊆ N}). For symmetric submodular functions, Feige et al. [8] give
for this problem a simple linear-time randomized algorithm and a slower deter-
ministic local search, both achieving an optimal approximation ratio of 1/2 (up
to a low order error term in the case of the local search). Buchbinder et al. [1]
give a randomized linear-time algorithm for the case of general submodular func-
tions achieving the same approximation ratio. Finding a deterministic algorithm
with the same approximation ratio for general submodular functions is still an
open problem. Recently, Huang and Borodin [14] showed that a large family
of deterministic algorithms resembling the algorithm of [1] fails to achieve 1/2-
approximation. We show that for symmetric submodular functions there exists
a deterministic linear-time 1/2-approximation algorithm.
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Theorem 5. There exists a deterministic linear-time 1/2-approximation algo-
rithm for the problem max{f(S) : S ⊆ N}, where f : 2N → R

+ is a non-negative
symmetric submodular function.

Theorem 5 improves over the time complexity of the local search algorithm
of [8] and also avoids the low order error term.

1.1 Our Techniques

Some of our results are based on variants of the measured continuous greedy
algorithm of [11]. We modify the measured continuous greedy in two main ways.

– The analysis of [11] relies on the observation that F (1OPT ∨ x) ≥ [1 −
maxu∈N xu] · f(OPT ) for an arbitrary vector x ∈ [0, 1]N .4 To get bet-
ter results for symmetric functions we use an alternative lower bound on
F (1OPT ∨ x) given by Lemma 6.

Lemma 6. Given a set S, a non-negative symmetric submodular function
f : 2N → R

+ and a vector x ∈ [0, 1] obeying F (y) ≤ F (x) for every {y ∈
[0, 1]N : y ≤ x}, then F (1S ∨ x) ≥ f(S)− F (x).

Using the bound given by Lemma 6 in the analysis requires a slight modi-
fication of the measured continuous greedy algorithm to guarantee that its
solution always obeys the requirements of the lemma. We defer the proof of
Lemma 6 to Sect. 2.

– The measured continuous greedy algorithm can handle only constraints spec-
ified by a down-monotone polytope. Thus, it cannot handle problems of
the form max{f(S) : |S| = k}. To bypass this difficulty, we use two in-
stances of the measured continuous greedy algorithm applied to the prob-
lems max{f(S) : |S| ≤ k} and max{f(N \ S) : |S| ≤ n − k}. Note that
the optimal solutions of both problems are at least as good as the optimal
solution of max{f(S) : |S| = k}. A careful correlation of the two instances
preserves their approximation ratios, and allows us to combine their outputs
into a solution for max{f(S) : |S| = k} with the same approximation ratio.

Our result for the problem max{f(S) : S ⊆ N} is based on the linear-time
deterministic algorithm suggested by [1] for this problem. Buchbinder et al. [1]
showed that this algorithm has an approximation ratio of 1/3 for general non-
negative submodular functions. The algorithm maintains two solutions X and Y
that become identical when the algorithm terminates. The analysis of the algo-
rithm is based on a set OPT (X,Y ) that starts as OPT and converts gradually to
the final value of X (and Y ). The key observation of the analysis is showing that
in each iteration (of the algorithm) the value of OPT (X,Y ) deteriorates by at

4 For every set S ⊆ N , we use 1S to denote the characteristic vector of S. Given two
vectors x, y ∈ [0, 1]N , we use x∨ y to denote the coordinate-wise maximum of x and
y. In other words, for every u ∈ N , (x∨ y)u = max{xu, yu}. Similarly, x∧ y denotes
the coordinate-wise minimum of x and y.
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most the increase of f(X)+f(Y ). In this work we show that the exact same algo-
rithm provides 1/2-approximation when the objective is also symmetric. To that
aim, we consider two sets OPT (X,Y ) and OPT (X,Y ). These sets start as OPT
and OPT = N \OPT respectively, and convert gradually into the final value of
X (and Y ). We prove that the deterioration of f(OPT (X,Y ))+ f(OPT (X,Y ))
lower bounds the increase of f(X) + f(Y ). Due to space constraints, we omit
the development of this idea into a formal proof of Theorem 5.

1.2 Related Work

The literature on submodular maximization problems is very large, and there-
fore, we mention below only a few of the most relevant works. Feige et al. [8] pro-
vided the first constant factor approximation algorithms for max{f(S) : S ⊆ N}.
Their best approximation algorithm achieved an approximation ratio of 2/5−o(1).
Oveis Gharan and Vondrák [12] used simulated annealing techniques to provide
an improved approximation of roughly 0.41. Feldman et al. [10] combined the al-
gorithm of [12] with a new algorithm, yielding an approximation ratio of roughly
0.42. Finally, Buchbinder et al. [1] gave a 1/2-approximation for this problem,
matching a lower bound proved by [8].

The problem of maximizing a (not necessary monotone) submodular func-
tion subject to a general matroid constraint was given a 0.309-approximation
by [19]. Using simulated annealing techniques this was improved to 0.325 [12],
and shortly later was further pushed to 1/e− o(1) by [11] via the measured con-
tinuous greedy algorithm. Recently, Buchbinder et al. [2] showed that for the
problem max{f(S) : |S| ≤ k} (which is a special case of a matroid constraint) it
is possible to get an approximation ratio in the range [1/e+ε, 1/2−o(1)] for some
small constant ε > 0 (the exact approximation ratio in this range depends on
the ratio k/n). A hardness result of 0.491 was given by [12] for the case k 	 n.

The problem of maximizing a (not necessary monotone) submodular function
subject to a matroid base constraint was shown to have no constant approxima-
tion ratio by [19]. Buchbinder et al. [2] showed that the special case of max{f(S) :
|S| = k} admits an approximation ratio from the range [0.356, 1/2− o(1)] (again,
the exact approximation ratio in this range depends on k/n). On the other hand,
the hardness of 0.491 by [12] applies also to this problem when k 	 n.

2 Preliminaries

For every set S ⊆ N and an element u ∈ N , we denote the union S ∪ {u} by
S + u, the expression S \ {u} by S − u and the set N \S by S̄. Additionally, we
use 1S and 1u to denote the characteristic vectors of S and {u}, respectively.
Given a submodular function f : 2N → R and its corresponding multilinear
extension F : [0, 1]N → R, we denote the partial derivative of F at a point
x ∈ [0, 1]N with respect to an element u by ∂uF (x). Since F is multilinear,
∂uF (x) = F (x∨1u)−F (x∧1N−u). Additionally, we use f̄ and F̄ to denote the
functions f̄(S) = f(N \ S) and F̄ (x) = F (1N − x).
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We look for algorithms of polynomial in n (the size of N ) time complexity.
However, an explicit representation of a submodular function might be exponen-
tial in the size of its ground set. The standard way to bypass this difficulty is
to assume access to the function via a value oracle. For a submodular function
f : 2N → R, given a set S ⊆ N , the value oracle returns the value of f(S). Some
of our algorithms assume a more powerful oracle that given a vector x ∈ [0, 1]N ,
returns the value of F (x). If such an oracle is not available, one can approximate
it arbitrarily well using a value oracle to f by averaging enough samples, which
results in an o(1) loss in the approximation ratio. This is a standard practice
(see, e.g., [3]), and we omit details.

The following lemma gives a few useful properties of submodular functions.

Lemma 7. If f : 2N → R is a submodular function and F : [0, 1]N → R is its
multilinear extension, then:

– For every vector x ∈ [0, 1]N , F̄ (x) is the multilinear extension of f̄ .
– If f is symmetric, then for every vector x ∈ [0, 1]N , F (x) = F̄ (x).
– For every three vectors z ≤ y ≤ x ∈ [0, 1]N , F (x)−F (y) ≤ F (x−z)−F (y−z).

We omit the (standard) proof of Lemma 7 due to space constraints. We are
now ready to give the promised proof of Lemma 6.

Proof (Lemma 6). Since f is symmetric, f(S) − F (x ∨ 1S) = f(S̄) − F ((1N −
x) ∧ 1S̄) ≤ F (x ∧ 1S̄)− f(∅) ≤ F (x ∧ 1S̄) ≤ F (x), where the equality and first
inequality hold by Lemma 7, the second inequality holds by the non-negativity
of f and the last inequality holds since x ∧ 1S̄ ≤ x. �

The following lemma shows that the multilinear extension behaves like a linear
function as long as the change in its input is small. Similar lemmata appear in
many works. A proof of this specific lemma can be found in [9] (as Lemma 2.3.7).

Lemma 8. Consider two vectors x, x′ ∈ [0, 1]N such that for every u ∈ N ,
|xu − x′

u| ≤ δ. Then, F (x′) − F (x) ≥ ∑
u∈N (x′

u − xu) · ∂uF (x) − O(n3δ2) ·
maxu∈N f({u}).

We also use the following lemma, which comes handy in proving the feasibility
of the solutions produced by some of our algorithms. This lemma is implicitly
proved by [11] (some parts of the proof, which are omitted in [11], can be found
in [9]).

Lemma 9. Fix some δ ≤ n−5, and let {I(i)}�i=1 be a set of � points in a down-
monotone polytope P ⊆ [0, 1]N . Let {y(i)}�i=0 be a a set of �+1 vectors in [0, 1]N

obeying the following constraints. For every element u ∈ N ,

yu(i) ≤
{
0 if i = 0 ,

yu(i− 1) + δIu(i) · (1 − yu(i− 1)) otherwise .

Then,

– yu(i)/(δi) ∈ P.
– Let TP = − ln(1− d(P) + n−4)/d(P). Then, δi ≤ TP implies y(i) ∈ P.
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3 Measured Continuous Greedy for Symmetric Functions

In this section we prove Theorem 1. Due to space constraints, many of the proofs
of this section are omitted.

Theorem 1. Given a non-negative symmetric submodular function f : 2N →
R

+, a down-monotone solvable polytope P ⊆ [0, 1]N and a constant T ≥ 0, there
exists an efficient algorithm that finds a point x ∈ [0, 1]N such that F (x) ≥
1/2 · [1− e−2T − o(1)] ·max{F (x) : x ∈ P ∩ {0, 1}N}. Additionally,
(a) x/T ∈ P.
(b) Let TP = − ln(1− d(P) + n−4)/d(P). Then, T ≤ TP implies x ∈ P.

To simplify the proof of the theorem, we use the following reduction.

Reduction 10. When proving Theorem 1, we may assume 1u ∈ P ∀ u ∈ N .

Algorithm 1 is a variant of the Measured Continuous Greedy algorithm pre-
sented by [11]. Notice that the definition of δ in the algorithm guarantees that
δ ≤ n−5 and t = T after �n5T � iterations. Thus, by Lemma 9, the output of
Algorithm 1 obeys properties (a) and (b) guaranteed by Theorem 1. To complete
the proof of Theorem 1, it is only necessary to show that the approximation ratio
of Algorithm 1 matches the approximation ratio guaranteed by the theorem.

Algorithm 1. Measured Continuous Greedy for Symmetric
Functions (f,P , T )

// Initialization

1 Set: δ ← T (�n5T )−1.
2 Initialize: t ← 0, y(0) ← 1∅.

// Main loop

3 while t < T do
4 foreach u ∈ N do Let wu(t) ← F (y(t)∨ 1u)− F (y(t)).
5 Let I(t) be a vector in P maximizing I(t) · w(t).
6 foreach u ∈ N do Let yu(t+ δ) ← yu(t) + δIu(t) · (1− yu(t)).
7 foreach u ∈ N do if ∂uF (y(t+ δ)) < 0 then yu(t+ δ) ← 0.

8 Return y(T ).

First, we need a lower bound on the improvement achieved in each iteration
of the algorithm. The following lemma is a counterpart of Corollary III.4 of [11].

Lemma 11. For every time 0 ≤ t < T , F (y(t + δ)) − F (y(t)) ≥ δ · [F (y(t) ∨
1OPT )− F (y(t))]−O(n3δ2) · f(OPT ).

The last lemma gives a lower bound on the improvement achieved in every step
of the algorithm in terms of F (y(t) ∨ 1OPT ). To make this lower bound useful,
we need to lower bound the term F (y(t)∨ 1OPT ) using Lemma 6. Observe that
Line 7 guarantees that the conditions of Lemma 6 hold.
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Corollary 12. For every time 0 ≤ t < T , F (y(T+δ))−F (y(T )) ≥ δ·[f(OPT )−
2 · F (y(t))] −O(n3δ2) · f(OPT ).

At this point we have a lower bound on the improvement achieved in each
iteration in terms of f(OPT ) and F (y(t)). In order to complete the analysis of
the algorithm, we need to derive from it a bound on the value of F (y(t)) for
every time t. Let h(t) = 1/2 · [1− e−2t] · f(OPT ).

Lemma 13. For every 0 ≤ t ≤ T , F (y(t)) ≥ h(t)−O(n3δ) · t · f(OPT ).

Using the last lemma we can prove the approximation ratio of Theorem 1.

Proof (Approximation Ratio of Theorem 1). By Lemma 13,

F (y(T )) ≥ h(T )−O(n3δT ) · f(OPT ) = 1/2 · [1− 2e−T −O(n3δT )] · f(OPT ) .

The proof is now complete since T is a constant and δ ≤ n−5. �

4 Equality Cardinality Constraints

In this section we prove Theorem 2.

Theorem 2. There exists an efficient algorithm that given a non-negative sym-
metric submodular function f : 2N → R

+ and an integer cardinality parameter
1 ≤ k ≤ n/2, achieves an approximation of 1/2[1 − (1− k/n)2n/k]− o(1) for the
problem: max{f(S) : |S| = k}. If k > n/2, then the same result holds with the
cardinality parameter replaced by n− k.

Due to space constraints, many of the proofs of this section have been omitted.
The proof of Theorem 3 is based on similar ideas, and is also omitted. To simplify
the proof of Theorem 2, we assume the following reduction was applied.

Reduction 14. We may assume in the proof of Theorem 2 that 2k ≤ n.

The algorithm we use to prove Theorem 2 is Algorithm 2. One can think of this
algorithm as two synchronized instances of Algorithm 1. One instance starts with
the solution 1∅ and looks for a solution obeying the constraint

∑
u∈N xu ≤ k.

The other instance starts with the solution 1N and looks for a solution obeying
the constraint

∑
u∈N xu ≥ k (alternatively, we can think of the second instance

as having the objective f̄ and the constraint
∑

u∈N xu ≤ n − k). The two in-
stances are synchronized in two senses:

– In each iteration, the two instances choose direction vectors I1 and I2 obey-
ing I1 + I2 = 1N (i.e., the direction vector of one instance implies the
direction vector of the other instance).

– The direction vectors are selected in a way that improves the solutions of
both instances.
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Algorithm 2. Double Measured Continuous Greedy(f,N , k)

// Initialization

1 Set: T ← −n/k · ln(1− k/n+ n−4) and δ ← T (�n5T )−1.
2 Initialize: t ← 0, y1(0) ← 1∅ and y2(0) ← 1N .

// Main loop

3 while t < T do
4 foreach u ∈ N do
5 Let w1

u(t) ← F (y1(t) ∨ 1u)− F (y1(t)) and
w2

u(t) ← F (y2(t) ∧ 1N−u)− F (y2(t)).

6 Let I1(t) ∈ [0, 1]N and I2(t) ∈ [0, 1]N be two vectors maximizing

min{I1(t) · w1(t) + 2 · F (y1(t)), I2(t) · w2(t) + 2 · F (y2(t))}
among the vectors obeying |I1(t)| = k, |I2(t)| = n− k and
I1(t) + I2(t) = 1N .

7 foreach u ∈ N do
8 Let y1

u(t+ δ) ← y1
u(t) + δI1u(t) · (1− y1

u(t)) and
y2
u(t+ δ) ← y2

u(t)− δI2u(t) · y2
u(t).

9 foreach u ∈ N do
10 if ∂uF (y1(t+ δ)) < 0 then y1

u(t+ δ) ← 0.
11 if ∂uF (y2(t+ δ)) > 0 then y2

u(t+ δ) ← 1.

12 t ← t+ δ.

13 if |y1(T )| = |y2(T )| then return y1(T ).

14 else return y1(T ) · |y2(T )|−k

|y2(T )|−|y1(T )| + y2(T ) · k−|y1(T )|
|y2(T )|−|y1(T )| .

In Algorithm 2, and throughout this section, given a vector x, we denote
|x| = ∑

u∈N xu. The output of Algorithm 2 is a fractional solution. This solution
can be rounded into an integral solution using a standard rounding procedure
such as pipage rounding [3].

We begin the analysis of Algorithm 2 by observing that its Line 6 can be im-
plemented efficiently using an LP solver. Hence, the algorithm has a polynomial
time complexity. The following lemma follows from Lemma 9.

Lemma 15. For every time 0 ≤ t ≤ T , the vectors y1(t) and y2(t) obey:

– y1(t), y2(t) ∈ [0, 1]N .
– y1(t) ≤ y2(t) (element-wise).
– |y1(t)| ≤ k ≤ |y2(t)|.
As a corollary of Lemma 15, we can guarantee feasibility. Let y be the vector

produced by Algorithm 2.

Corollary 16. y is a feasible solution.

Our next objective is lower bounding the value F (y) in terms of F (y1(T )) and
F (y2(T )). Let r : [0, 1] → R

+ be the function:

r(x) = F (y1(T ) + x(y2(T )− y1(T ))) .
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Intuitively, r(x) evaluates F on a vector that changes from y1(T ) to y2(T ) as x
increases. The following observation follows from the submodularity of f .

Observation 17. r is a non-negative concave function.

Corollary 18. F (y) ≥ min{F (y1(T )), F (y2(T ))}.
Proof. If |y1(T )| = |y2(T )| then y = y1(T ), which makes the corollary trivial.
Thus, we may assume from now on: |y1(T )| �= |y2(T )|. Observe that in this case:

F (y) = F

(
y1(T ) · |y2(T )| − k

|y2(T )| − |y1(T )| + y2(T ) · k − |y1(T )|
|y2(T )| − |y1(T )|

)

= r

(
k − |y1(T )|

|y2(T )| − |y1(T )|
)

.

Notice that k − |y1(T )| ∈ [0, 1]. Thus, the concavity of r implies:

F (y) = r

(
k − |y1(T )|

|y2(T )| − |y1(T )|
)

≥ min{r(0), r(1)} = min{F (y1(T )), F (y2(T ))} .

�
The proof of Theorem 2 now boils down to lower bounding the expression

min{F (y1(T )), F (y2(T ))}. The following lemma is a counter-part of Lemma III.2
of [11]. Let Δ(t) = min{F (y1(t)∨1OPT )+F (y1(t)), F (y2(t)∧1OPT )+F (y2(t))}.
Lemma 19. For every time 0 ≤ t < T :

∑

u∈N
(1− y1u(t)) · I1u(t) · ∂uF (y1(t)) + 2 · F (y1(t)) ≥ Δ(t) ,

−
∑

u∈N
y2u(t) · I2u(t) · ∂uF (y2(t)) + 2 · F (y2(t)) ≥ Δ(t) .

We also need the following technical lemma.

Lemma 20. f(OPT ) ≥ maxu∈N f({u})/2.
Corollary 21. For every time 0 ≤ t < T ,

F (y1(t+ δ))− F (y1(t)) ≥ δ · [Δ(t)− 2 · F (y1(t))]−O(n3δ2) · f(OPT ) ,

F (y2(t+ δ))− F (y2(t)) ≥ δ · [Δ(t)− 2 · F (y2(t))]−O(n3δ2) · f(OPT ) .

Proof. Lemmata 8, 19 and 20 imply:

F (y1(t+ δ))− F (y1(t)) ≥ δ · [Δ(t)− 2 · F (y(t))] −O(n3δ2) · f(OPT ) ,

where y1(t + δ) represents its value at the beginning of the loop starting on
Line 9. The first part of the corollary now follows by noticing that the last loop
can only increase F (y1(t+δ)). The second part of the corollary is analogous. �
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To make the lower bounds given in the above lemma useful, we need a lower
bound onΔ(t). This lower bound is obtained using Lemma 6 and the observation
that the loop starting on Line 9 of Algorithm 2 guarantees that the conditions
of Lemma 6 hold.

Lemma 22. For every time 0 ≤ t < T , Δ(t) ≥ f(OPT ).

Corollary 21 and Lemma 22 imply together the following counterpart of Corol-
lary 12.

Corollary 23. For every time 0 ≤ t < T ,

F (y1(T + δ))− F (y1(T )) ≥ δ · [f(OPT )− 2 · F (y1(t))]−O(n3δ2) · f(OPT ) ,

F (y2(T + δ))− F (y2(T )) ≥ δ · [f(OPT )− 2 · F (y2(t))]−O(n3δ2) · f(OPT ) .

Repeating the same line of arguments used in Sect. 3, the previous corollary
implies:

Lemma 24. F (y1(T )) ≥ 1/2 · [1 − e−2T − o(1)] · f(OPT ) and F (y2(T )) ≥ 1/2 ·
[1− e−2T − o(1)] · f(OPT ).

We are now ready to prove the approximation ratio guaranteed by Theorem 2.

Proof (Approximation Ratio of Theorem 2). By Corollary 18 and Lemma 24,
the approximation ratio of Algorithm 2, up to an error term of o(1), is at least:

1− e−2[−(n/k)·ln(1−k/n+n−4)]

2
=

1− (1− k/n)2n/k ·
(
1 + n−4

1−k/n

)2n/k

2

≥ 1− (1− k/n)2n/k · e4n−3k−1

2
=

1− (1− k/n)2n/k

2
− o(1) . �
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Abstract. We generalize Karp-Rabin string matching to handle mul-
tiple patterns in O(n log n + m) time and O(s) space, where n is the
length of the text and m is the total length of the s patterns, return-
ing correct answers with high probability. As a prime application of our
algorithm, we show how to approximate the LZ77 parse of a string of
length n. If the optimal parse consists of z phrases, using only O(z)
working space we can return a parse consisting of at most 2z phrases in
O(n log n) time, and a parse of at most (1 + ε)z phrases in O(n log2 n)
for any constant ε > 0. As previous quasilinear-time algorithms for LZ77
use Ω(n/poly log n) space, but z can be exponentially small in n, these
improvements in space consumption are substantial.

1 Introduction

Multiple-pattern matching, the task of locating the occurrences of s patterns
of total length m in a single text of length n, is a fundamental problem in the
field of string algorithms. The algorithm by Aho and Corasick [2] solves it using
O(n + m) time and O(m) working space in addition to the space needed for
the text. To list all occ occurrences rather than, e.g., the leftmost ones, extra
O(occ) time is necessary. When the space is limited, we can use a compressed
Aho-Corasick automaton [12]. In extreme cases, one could apply a linear-time
constant-space single-pattern matching algorithm sequentially for each pattern
in turn, at the cost of increasing the running time to O(n · s+m). Well-known
examples of such algorithms include those by Galil and Seiferas [9], Crochemore
and Perrin [5], and Karp and Rabin [14] (see [3] for a recent survey).
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It is easy to generalize Karp-Rabin matching to handle multiple patterns in
O(n+m) expected time and O(s) working space provided that all patterns are
of the same length [11]. To do this, we store the fingerprints of the patterns in
a hash table, and then slide a window over the text maintaining the fingerprint
of the fragment currently in the window. The hash table lets us check if that
fragment is an occurrence of a pattern. If so, we report it and update the hash
table so that every pattern is returned at most once. This is a very simple and
actually applied idea [1], but it is not clear how to extend it for patterns with
many distinct lengths. In this paper we develop a method which works for any
set of patterns in O(n log n+m) time and O(s) working space. We assume that
read-only random access to the text and the patterns is available throughout the
algorithm, and we do not include their sizes while measuring space consumption.

In a very recent independent work Clifford et al. [4] gave a dictionary matching
algorithm in the streaming model. In this setting the patterns and later the
text are scanned once only (as opposed to read-only random access) and an
occurrence needs to be reported immediately after its last character is read. The
algorithm presented in [4] uses O(s log �) space and takes O(log log(s+ �)) time
per character where � is the length of the longest pattern (ms ≤ � ≤ m).

As a prime application of our dictionary-matching algorithm, we show how
to approximate the Lempel-Ziv 77 (LZ77) parse [19] of a text of length n using
working space proportional to the number of phrases (again, we assume read-
only random access to the text). Computing the LZ77 parse in small space is
an issue of high importance, with space being a frequent bottleneck of today’s
systems. Moreover, LZ77 is useful not only for data compression, but also as a
way to speed up algorithms [16]. We present two solutions to this problem, both
of which work in O(z) space for inputs admitting LZ77 parsing with z phrases.
The first one produces a parse consisting of at most 2z phrases in O(n log n)
time, while the other for any positive ε < 1 in O(ε−1n log2 n) time generates a
factorization with no more than (1 + ε)z phrases.

To the best of our knowledge, approximating LZ77 factorization in small space
has not been considered before, and our algorithm is significantly more efficient
than methods producing the exact answer. A recent sublinear-space algorithm,
due to Kärkkäinen et al. [13], runs in O(nd) time and uses O(n/d) space for
any parameter d. An earlier online solution by Gasieniec et al. [10] uses O(z)
space and takes O(z2 log2 z) time for each character appended. Other previous
methods use significantly more space when the parse is small relative to n; see [8]
for a recent discussion.

Structure of the Paper. Sect. 2 introduces terminology and recalls several
known concepts. This is followed by the description of our pattern-matching
algorithm. In Sect. 3 we show how to process patterns of length at most s and
in Sect. 4 we handle longer patterns, with different procedures for repetitive
and non-repetitive ones. Finally, in Sect. 5, we apply the dictionary matching
algorithm to construct the approximations of the LZ77 parsing. Selected details
and proofs, omitted in this extended abstract due to space restrictions, can be
found in the full version of the paper [7].
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Model of Computation. Our algorithms are designed for the word-RAM with
Ω(log n)-bit words and assume integer alphabet of polynomial size. The usage
of Karp-Rabin fingerprints makes them randomized (Monte Carlo). A correct
answer is returned with high probability, i.e., the error probability is inverse
polynomial with respect to input size, where the degree of the polynomial can
be set arbitrarily large. In the full version of the paper we show how to turn them
into Las Vegas algorithms (where the time bounds hold with high probability).

2 Preliminaries

We consider finite words over an integer alphabet Σ = {0, . . . , σ − 1}, where
σ = poly(n+m). For a word w = w[1] . . . w[n] ∈ Σn, we define the length of w
as |w| = n. For 1 ≤ i ≤ j ≤ n, a word u = w[i] . . . w[j] is called a subword of w.
By w[i..j] we denote the occurrence of u at position i, called a fragment of w. A
fragment with i = 1 is called a prefix (and often denoted w[..j]) and a fragment
with j = n is called a suffix (and denoted w[i..]).

A positive integer p is called a period of w whenever w[i] = w[i + p] for
1 ≤ i ≤ |w| − p. In this case, the prefix w[..p] is often also called a period of w.
The length of the shortest period of a word w is denoted as per(w). A word

w is called periodic if per(w) ≤ |w|
2 and highly periodic if per(w) ≤ |w|

3 . The
well-known periodicity lemma [6] says that if p and q are both periods of w and
p+ q ≤ |w|, then gcd(p, q) is also a period of w.

2.1 Fingerprints

Our randomized construction is based on Karp-Rabin fingerprints; see [14]. Fix
a word w[1..n] over an alphabet Σ = {0, . . . , σ − 1}, a constant c ≥ 1, a prime
number p > max(σ, nc+4), and choose x ∈ Zp uniformly at random. We define
the fingerprint of a subword w[i..j] as Φ(w[i..j]) = w[i] + w[i + 1]x + . . . +
w[j]xj−i mod p. With probability at least 1 − 1

nc , no two distinct subwords of
the same length have equal fingerprints. The situation when this happens for
some two subwords is called a false-positive. From now on when stating the
results we assume that there are no false-positives to avoid repeating that the
answers are correct with high probability. For pattern matching, we apply this
construction for w = TP1 . . . Ps, the concatenation of the text with the patterns.
Fingerprints let us easily locate many patterns of the same length, as mentioned
in the introduction. A straightforward solution described in the introduction
builds a hash table mapping fingerprints to patterns. However, the construction
of such a table could fail with probability Θ( 1

sc ) for some constant c. Since we
aim at O( 1

(n+m)c ) error probability, we provide a solution using a deterministic

dictionary [17]. Although it adds O(s log s) to the time complexity, this extra
term becomes dominated in our main results.

Theorem 1. Given a text T of length n and patterns P1, . . . , Ps, each of length
exactly �, we can compute the the leftmost occurrence of every pattern Pi in T
using O(n+ s�+ s log s) total time and O(s) space.
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2.2 Tries

A trie of a collection of patterns P1, . . . , Ps is a rooted tree whose nodes corre-
spond to prefixes of the patterns. The root represents the empty word and the
edges are labeled with single characters. The node corresponding to a particular
prefix is called its locus. In a compacted trie unary nodes that do not represent
any pattern are dissolved and the labels of their incidents edges are concate-
nated. The dissolved nodes are called implicit as opposed to the explicit nodes,
which remain stored. The locus of a string in a compacted trie might therefore
be explicit or implicit. All edges outgoing from the same node are stored on a
list sorted according to the first character, which is unique among these edges.
The labels of edges of a compacted trie are stored as pointers to the respective
fragments of patterns Pi. Consequently, a compacted trie can be stored in space
proportional to the number of explicit nodes, which is O(s).

Consider two compacted tries T1 and T2. We say that (possibly implicit) nodes
v1 ∈ T1 and v2 ∈ T2 are twins if they are loci of the same string. Note that every
v1 ∈ T1 has at most one twin v2 ∈ T2. The proof of the following result is omitted
due to space constraints.

Lemma 2. Given two compacted tries T1 and T2 constructed for s1 and s2 pat-
terns, respectively, in O(s1+s2) total time and space we can find for each explicit
node v1 ∈ T1 a node v2 ∈ T2 such that if v1 has a twin in T2, then v2 is the twin.
(If v1 has no twin in T2, the algorithm returns an arbitrary node v2 ∈ T2).

3 Short Patterns

To handle the patterns of length not exceeding a given threshold �, we first
build a compacted trie for those patterns. Construction is easy if the patterns
are sorted lexicographically: we insert them one by one into the compacted trie
first naively traversing the trie from the root, then potentially partitioning one
edge into two parts, and finally adding a leaf if necessary. Thus, the following
result suffices to efficiently build the tries.

Lemma 3. One can lexicographically sort strings P1, . . . , Ps of total length m
in O(m+ σε) time using O(s) space, for any ε > 0.

Next, we partition T into O(n� ) overlapping blocks T1 = T [1..2�], T2 = T [�+
1..3�], T3 = T [2� + 1..4�], . . .. Notice that each subword of length at most � is
completely contained in some block. Thus, we may seek for occurrences of the
patterns in each block separately.

The suffix tree of each block Ti takes O(� log �) time [18] and O(�) space to
construct and store (the suffix tree is discarded after processing the block). We
apply Lemma 2 to the suffix tree and the compacted trie of patterns; this takes
O(�+s) time. For each pattern Pj we obtain a node such that the corresponding
subword is equal to Pj provided that Pj occurs in Ti. We compute the leftmost
occurrence Ti[b..e] of the subword, which takes constant time if we store addi-
tional data at every explicit node of the suffix tree, and then we check whether
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Ti[b..e] = Pj using fingerprints. For this, we precompute the fingerprints of all
patterns, and for each block Ti we precompute the fingerprints of its prefixes
in O(�) time and space, which allows to determine the fingerprint of any of its
subwords in constant time.

In total, we spend O(m + σε) for preprocessing and O(� log � + s) for each
block. Since σ = (n+m)O(1), for small enough ε this yields the following result.

Theorem 4. Given a text T of length n and patterns P1, . . . , Ps of total length
m, using O(n log �+ sn

� +m) total time and O(s+ �) space we can compute the
leftmost occurrences in T of all patterns Pj of length at most �.

4 Long Patterns

To handle patterns longer than a certain threshold, we first distribute them into
groups according to the value of �log4/3 |Pj |�. Patterns longer than the text can
be ignored, so there are O(log n) groups. Each group is handled separately, and
from now on we consider only patterns Pj satisfying �log4/3 |Pj |� = i.

We set � = �(4/3)i−1� and define αj and βj as, respectively, the prefix and
the suffix of length � of Pj . Since 2

3 (|αj | + |βj |) = 4
3� ≥ |Pj |, the following

lemma yields a classification of the patterns into three classes: either Pj is highly
periodic, or αj is not highly periodic, or βj is not highly periodic.

Lemma 5. Suppose x and y are, respectively, a prefix and a suffix of a word w
such that |w| ≤ 2

3 (|x|+ |y|). If w is not highly periodic, then x or y is not highly
periodic.

The intuition behind this classification is as follows. If the prefix or the suffix
is not repetitive, then we will not see it many times in a short subword of the
text. On the other hand, if both the prefix and suffix are repetitive, then there
is some structure that we can take advantage of.

To assign every pattern to the appropriate class, we compute the periods of
Pj , αj and βj . For this we use the following lemma; a very similar result can be
found in [15].

Lemma 6. Given a read-only string w one can decide in O(|w|) time and con-
stant space if w is periodic and if so, compute per(w).

4.1 Patterns without Long Highly Periodic Prefix

Below we show how to deal with patterns with non-highly periodic prefixes αj .
Patterns with non-highly periodic suffixes βj can be processed using the same
method after reversing the text and the patterns.

Lemma 7. Let � be an arbitrary integer. Suppose we are given a text T of
length n and patterns P1, . . . , Ps such that for 1 ≤ j ≤ s we have � ≤ |Pj | < 4

3�
and αj = Pj [1..�] is not highly periodic. We can compute the leftmost and the
rightmost occurrence of each pattern Pj in T in O(n+ s(1 + n

� ) log s+ s�) total
time using O(s) space.
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The algorithm scans the text T with a sliding windows of length �. Whenever
it encounters a subword equal to the prefix αj of some Pj , it creates a request
to verify whether the corresponding suffix βj of length � occurs at the respective
position. The request is processed when the sliding window reaches that position.
This way the algorithm detects the occurrences of all the patterns. In particular,
we may store the leftmost and rightmost of occurrences of each pattern.

We use the fingerprints to compare the subwords of T with αj and βj . To this
end, we precompute Φ(αj) and Φ(βj) for each j. We also build a deterministic
dictionary D [17] with an entry mapping Φ(αj) to j for every pattern (if there are
multiple patterns with the same value of Φ(αj), the dictionary maps a fingerprint
to a list of indices). These steps take O(s�) and O(s log s), respectively. Pending
requests are maintained in a priority queue Q, implemented using a binary heap1

as pairs containing the pattern index (as a value) and the position where the
occurrence of βj is anticipated (as a key).

Algorithm 1. Processing phase for patterns with non-highly periodic αj .

1 for i = 1 to n− �+ 1 do
2 h := Φ(w[i..i + �− 1])
3 foreach j : Φ(αj) = h do
4 add a request (i+ |Pj | − �, j) to Q
5 foreach request (i, j) ∈ Q at position i do
6 if h = Φ(βj) then
7 report an occurrence of Pj at i+ �− |Pj |
8 remove (i, j) from Q
Algorithm 1 provides a detailed description of the processing phase. Let us

analyze its time and space complexities. Due to the properties of Karp-Rabin
fingerprints, line 2 can be implemented in O(1) time. Also, the loops in lines 3
and 5 takes extra O(1) time even if the respective collections are empty. Apart
from these, every operation can be assigned to a request, each of them taking
O(1) (lines 3 and 5-6) or O(log |Q|) (lines 4 and 8) time. To bound |Q|, we need
to look at the maximum number of pending requests.

Fact 8. For any pattern Pj there are O(1+ n
� ) requests and at any time at most

one of them is pending.

Proof. Note that there is a one-to-one correspondence between requests con-
cerning Pj and the occurrences of αj in T . The distance between two such
occurrences must be at least 1

3�, because otherwise the period of αj would be at
most 1

3�, thus making αj highly periodic. This yields the O(1+ n
� ) upper bound

on the total number of requests. Additionally, any request is pending for at most
|Pj |−� < 1

3� iterations of the main for loop. Hence, the request corresponding to
an occurrence of αj is already processed before the next occurrence appears. 	

1 Hash tables could be used instead of the heap and the deterministic dictionary. Al-
though this would improve the time complexity in Theorem 7, the running time
of the algorithm in Thm. 11 would not change and failures with probability in-
verse polynomial with respect to s would be introduced; see also a discussion before
Thm. 1.
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Hence, the scanning phase uses O(s) space and takes O(n + s(1 + n
� ) log s)

time. Taking preprocessing into account, we obtain bounds claimed in Lemma 7.

4.2 Highly Periodic Patterns

Lemma 9. Let � be an arbitrary integer. Given a text T of length n and a
collection of highly periodic patterns P1, . . . , Ps such that for 1 ≤ j ≤ s we have
� ≤ |Pj | < 4

3�, we can compute the leftmost occurrence of each pattern Pj in T
using O(n+ s(1 + n

� ) log s+ s�) total time and O(s) space.

Proof (sketch). The solution is basically the same as in the proof of Lemma 7,
except that the algorithm ignores certain shiftable occurrences. An occurrence of
x at position i of T is called shiftable if there is another occurrence of x at position
i − per(x). The remaining occurrences are called non-shiftable. Notice that the
leftmost occurrence is always non-shiftable, so indeed we can safely ignore some
of the shiftable occurrences of the patterns. Because 2 per(Pj) ≤ 2

3 |Pj | ≤ 8
9� < �,

the following claim implies that if an occurrence of Pj is non-shiftable, then the
occurrence of αj at the same position is also non-shiftable.

Claim. Let y be a prefix of x such that |y| ≥ 2 per(x). Suppose x has a non-
shiftable occurrence at position i in w. Then the occurrence of y at position i is
also non-shiftable.

The proof of the claim, implementation details of shiftable occurrences detection,
and the running time analysis are provided in the full version of the paper. 	


4.3 Summary

Theorem 10. Given a text T of length n and patterns P1, . . . , Ps of total length
m, using O(n log n + m + sn

� log s) total time and O(s) space we can compute
the leftmost occurrences in T of all patterns Pj of length at least �.

Proof. The algorithm distributes the patterns into O(log n) groups according to
their lengths, and then into three classes according to their repetitiveness, which
takes using O(m) time and O(s) space in total. Then, it applies either Lemma 7
or Lemma 9 on every class. It remains to show that the running times of all
those calls sum up to the claimed bound. Each of them can be seen as O(n) plus
O(|Pj | + (1 + n

|Pj | ) log s) per every pattern Pj . Because � ≤ |Pj | ≤ n and there

are O(log n) groups, this sums up to O(n logn+m+ sn
� log s). 	


Using Thm. 4 for all patterns of length at most min(n, s), and (if s ≤ n) Thm. 10
for patterns of length at least s, we obtain our main theorem.

Theorem 11. Given a text T of length n and patterns P1, . . . , Ps total length
m, we can compute the leftmost occurrence of every Pi in T using O(n logn+m)
total time and O(s) space.
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5 Approximating LZ77 in Small Space

A non-empty fragment T [i..j] is called a previous fragment if the corresponding
subword occurs in T at a position i′ < i. A phrase is either a previous fragment
or a single letter not occurring before in T . The LZ77-factorization of a text
T [1..n] is a greedy factorization of T into z phrases, T = f1f2 . . . fz, such that
each fi is as long as possible. To formalize the concept of LZ77-approximation,
we first make the following definition.

Definition 12. Let w = g1g2 . . . ga be a factorization of w into a phrases. We
call it c-optimal if the fragment corresponding to the concatenation of any c
consecutive phrases gi . . . gi+c−1 is not a previous fragment.

A c-optimal factorization approximates the LZ77-factorization in the number
of factors, as the following observation states. However, the stronger property of
c-optimality is itself useful in certain situations.

Observation 13. If w = g1g2 . . . ga is a c-optimal factorization of w into a
phrases, and the LZ77-factorization of w consists of z phrases, then a ≤ c · z.

5.1 2-Approximation Algorithm

Outline. Our algorithm is divided into three phases, each of which refines the
factorization from the previous phase:

Phase 1. Create a factorization of T [1..n] stored implicitly as up to z chains
consisting of O(log n) phrases each.

Phase 2. Try to merge phrases within the chains to produce an O(1)-optimal
factorization.

Phase 3. Try to merge adjacent factors as long as possible to produce the final
2-optimal factorization.

Every phase takes O(n log n) time and uses O(z) working space. In the end, we
get a 2-approximation of the LZ77-factorization. Phases 1 and 2 use the very
simple multiple pattern matching algorithm for patterns of equal lengths devel-
oped in Thm. 1, while Phase 3 requires the general multiple pattern matching
algorithm obtained in Thm. 11.

Phase 1. To construct the factorization, we imagine creating a binary tree on
top the text T of length n = 2k – see also Fig. 1 (we implicitly pad w with
sufficiently many $’s to make its length a power of 2). The algorithm works in
logn rounds, and the i-th round works on level i of the tree, starting at i = 1
(the children of the root). On level i, the tree divides T into 2i blocks of size n/2i;
the aim is to identify previous fragments among these blocks and declare them
as phrases. (In the beginning, no phrases exist, so all blocks are unfactored.)
To find out if a block is a previous fragment, we use Thm. 1 and test whether
the leftmost occurrence of the corresponding subword is the block itself. The
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Fig. 1. An illustration of Phase 1 of the algorithm, with the “cherries” depicted in
thicker lines. The horizontal lines represent the LZ77-factorization and the vertical
lines depict factors induced by the tree. Longer separators are drawn between chains,
whose lengths are written in binary with the least significant bits on top.

exploration of the tree is naturally terminated at the nodes corresponding to the
previous fragments (or single letters not occurring before), forming the leaves of
a (conceptual) binary tree. A pair of leaves sharing the same parent is called a
cherry. The block corresponding to the common parent is induced by the cherry.
To analyze the algorithm, we make the following observation:

Fact 14. A block induced by a cherry is never a previous fragment. Therefore,
the number of cherries is at most z.

Proof. The former part of the claim follows from construction. To prove the
latter, observe that the blocks induced by different cherries are disjoint and hence
each cherry can be assigned a unique LZ77-factor ending within the block. 	


Consequently, while processing level i of the tree, we can afford storing all
cherries generated so far on a sorted linked list L. The remaining already gener-
ated phrases are not explicitly stored. In addition, we also store a sorted linked
list Li of all still unfactored nodes on the current level i (those for which the cor-
responding blocks are tested as previous fragments). Their number is bounded
by z (because there is a cherry below every node on the list), so the total space is
O(z). Maintaining both lists sorted is easily accomplished by scanning them in
parallel with each scan of T , and inserting new cherries/unfactored nodes at their
correct places. Furthermore, in the i-th round we apply Thm. 1 to at most 2i

patterns of length n/2i, so the total time is
∑logn

i=1 O(n+2i log(2i)) = O(n log n).
Next, we analyze the structure of the resulting factorization. Let hx−1hx and

hyhy+1 be the two consecutive cherries. The phrases hx+1 . . . hy−1 correspond to
the right siblings of the ancestors of hx and to the left siblings of the ancestors
of hy (no further than to the lowest common ancestor of hx and hy). This
naturally partitions hxhx+1 . . . hy−1hy into two parts, called an increasing chain
and a decreasing chain to depict the behaviour of phrase lengths within each
part. Observe that these lengths are powers of two, so the structure of a chain
of either type is determined by the total length of its phrases, which can be
interpreted as a bitvector with bit i′ set to 1 if there is a phrase of length 2i

′

in the chain. Those bitvectors can be created while traversing the tree level by
level, passing the partially created bitvectors down to the next level Li+1 until
finally storing them at the cherries in L.
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At the end we obtain a sequence of chains of alternating types, see Fig. 1.
Since the structure of each chain follows from its length, we store the sequence
of chains rather the actual factorization, which might consist ofΘ(z logn) = ω(z)
phrases. By Fact 14, our representation uses O(z) words of space and the last
phrase of a decreasing chain concatenated with the first phrase of the consecutive
increasing chain never form a previous fragment (these phrases form the block
induced by the cherry).

Phase 2. In this phase we merge phrases within the chains. We describe how to
process increasing chains; the decreasing are handled, mutatis mutandis, analo-
gously. We partition the phrases h� . . . hr within a chain into groups.

For each chain we maintain an active group, initially consisting of h�, and
scan the remaining phrases in the left-to-right order. We either append a phrase
hi to the active group gj, or we output gj and make gj+1 = hi the new active
group. The former action is performed if and only if the fragment of length 2|hi|
starting at the same position as gj is a previous fragment. Having processed the
whole chain, we also output the last active group. The proof of the following
claim is omitted due to space constraints.

Claim. Within every chain each single group gj forms a valid phrase, but no
concatenation of three adjacent groups gjgj+1gj+2 form a previous fragment.

The procedure described above is executed in parallel for all chains, each
of which maintains just the length of its active group. In the i-th round only
chains containing a phrase of length 2i participate (we use bit operations to
verify which chains have length containing 2i in the binary expansion). These
chains provide fragments of length 2i+1 and Thm. 1 is applied to decide which
of them are previous fragments. The chains modify their active groups based on
the answers; some of them may output their old active groups. These groups
form phrases of the output factorization, so the space required to store them
is amortized by the size of that factorization. As far as the running time is
concerned, we observe that in the i-th round no more than min(z, n

2i ) chains

participate. Thus, the total running time is
∑logn

i=1 O(n+ n
2i log

n
2i ) = O(n log n).

Fact 14 combined with the claim above yields 5-optimality of the resulting
factorization (see the full version for details).

Phase 3. This phase uses an algorithm which given a c-optimal factorization,
computes a 2-optimal factorization using O(c · n logn) time and O(c · z) space.

The procedure consists of c iterations. In every iteration we first detect pre-
vious fragments corresponding to concatenations of two adjacent phrases. The
total length of the patterns is up to 2n, so this takes O(n log n+m) = O(n log n)
time and O(c · z) space using Thm. 11. Next, we scan through the factorization
and merge every phrase gi with the preceding phrase gi−1 if gi−1gi is a previous
fragment and gi−1 has not been just merged with its predecessor.

We shall prove that the resulting factorization is 2-optimal. Consider a pair
of adjacent phrases gi−1gi in the final factorization and let j be the starting
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position of gi. Suppose gi−1gi is a previous fragment. Our algorithm performs
merges only, so the phrase ending at position j−1 concatenated with the phrase
starting at position j formed a previous fragment at every iteration. The only
reason that these factors were not merged could be another merge of the former
factor. Consequently, the factor ending at position j − 1 took part in a merge
at every iteration, i.e., gi−1 is a concatenation of at least c phrases of the input
factorization. However, all the phrases created by the algorithm form previous
fragments, which contradicts the c-optimality of the input factorization.

5.2 Approximation Scheme

Lemma 15. Given a text T of length n and its disjoint fragments T [b1..e1], . . . ,
T [bs..es] (represented by positions), using O(n log2 n) total time and O(s) space
we can find for each j the longest previous fragment being a prefix of T [bj..ej ].

Proof. For every j, we use binary search to compute the length �j of the re-
sulting previous fragment. All binary searches are performed in parallel. That
is, we proceed in O(log n) phases, and in every phase we check, for every j, if
T [bj..bj + �j − 1] is a previous fragment using Thm. 11, and then update every
�j accordingly. The space complexity is clearly O(s) and, because the considered
fragments are disjoint, the running time is O(n logn) per phase. 	


The starting point is a 2-optimal factorization into a phrases, which can be
found in O(n log n) time using the previous method. The text is partitioned into
ε
2a blocks consisting of 2

ε consecutive phrases. For each block we construct the
greedy factorization: we iteratively partition the block from left to right into
maximal phrases. In each step we need to determine the longest previous frag-
ment being a prefix of the part of the block which has not been factorized yet. For
this we use Lemma 15 for the unfactored parts, which requires O(n log n) time
per iteration. The number of iterations is O(1ε ) since every block can be surely
factorized into 2

ε phrases and the greedy factorization is optimal. To bound the
approximation guarantee, observe that every phrase inside the block, except pos-
sibly for the last one, contains an endpoint of a phrase in the LZ77-factorization.
Consequently, the total number of phrases is at most z + ε

2a ≤ (1 + ε)z.

Theorem 16. Given a text T of length n whose LZ77-factorization consists of
z phrases, we can factorize T into at most 2z phrases using O(n log n) time and
O(z) space. Moreover, for any positive ε < 1 in O(ε−1n log2 n) time and O(z)
space we can compute a factorization into no more than (1 + ε)z phrases.

Epilogue. In the full version of this paper [7] we extend Thm. 11 so that if
Pj has no occurrences in T , the algorithm finds (the leftmost occurrence of) the
longest prefix of Pj which occurs in T . The same idea lets us obtain an O(n log n)
time bound in Theorem 15. Hence, in Thm. 16 the running time of the algorithm
computing a factorization with (1 + ε)z phrases becomes O(ε−1n logn).
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1 Introduction

Many of the combinatorial optimization problems studied in theoretical com-
puter science are idealized mathematical models of real-world problems. When
the simplest model is well-understood, it can be enriched to better capture the
real-world problem one actually wants to solve. Thus it comes as no surprise
that many of the well-studied computational problems generalize each other: the
Constraint Satisfaction Problem generalizes Satisfiability, the problem
of finding a spanning tree of maximum degree at most d generalizes Hamilto-

nian Path, while the problem of packing sets of size 3 generalizes packing sets
of size 2, also known as the Maximum Matching problem.

By definition, the generalized problem is computationally harder than the
original. However it is sometimes the case that the most difficult instances of
the generalized problem are actually instances of the original problem. In other
words, the “further away” an instance of the generalized problem is from being
an instance of the original, the easier the instance is. Abasi et. al [1] initiated
the study of this phenomenon in parameterized complexity (we refer the reader
to the textbooks [4,5,7,17] for an introduction to parameterized complexity). In
particular, they study the r-Simple k-Path problem. Here the input is a graph
G, and integers k and r, and the objective is to determine whether there is an
r-simple k-path in G, where an r-simple k-path is a sequence v1, v2, . . . , vk of
vertices such that every pair of consecutive vertices is adjacent and no vertex of
G is repeated more than r times in the sequence. Observe that for r = 1 the
problem is exactly the problem of finding a simple path of length k in G. On the
other hand, for r = k the problem is easily solvable in polynomial time, as one
just has to look for a walk in G of length k. Thus, gradually increasing r from 1 to
k should provide a sequence of computational problems that become easier as r
increases. Abasi et al. [1] confirm this intuition by giving a randomized algorithm
for r-Simple k-Path with running time O(r2k/rnO(1)) for any 2 ≤ r ≤ k.

In this paper we continue the investigation of algorithms for problems with a
relaxation parameter r that interpolates between an NP-hard and a polynomial
time solvable problem. We show that in several interesting cases one can get a
sequence of algorithms with better and better running times as the relaxation
parameter r increases, essentially providing a smooth transition from the NP
hard to the polynomial time solvable case.

Our main technical contribution is a new algorithm for the (r, k)-Monomial

Detection problem. Here the input is an arithmetic circuit C that computes
a polynomial f of degree k in n variables x1, . . . , xn. The task is to determine
whether the polynomial f has a monomial

∏n
i=1 xai

i , such that 0 ≤ ai ≤ r for
every i ≤ n. The main result of Abasi et al. [1] is a randomized algorithm for
(r, k)-Monomial Detection with running time O(r2k/r |C|nO(1)), and their al-
gorithm for r-Simple k-Path is obtained using a reduction to (r, k)-Monomial

Detection. We give a deterministic algorithm for the problem with running
time rO(k/r)|C|nO(1) in the case when the circuit C is non-canceling. Formally,
this means that the circuit contains only variables at its leaves (i.e., no con-
stants) and only addition and multiplication gates (i.e, no subtraction gates).



Fast Algorithms for Parameterized Problems 547

Informally, all monomials of the polynomials computed at intermediate gates
of C contribute to the polynomial computed by C. Before stating our theorem,
we remark that the formal definitions of problems and notations involved in the
algorithmic results presented in the introduction can be found in full version.
We use the notation Ok in our theorems to hide kO(1) terms.

Theorem 1 Given a non-canceling circuit C computing a polynomial
f(X1, . . . , Xn) ∈ Z[X1, . . . , Xn], (r, k)-Monomial Detection can be solved
in deterministic time Ok(|C| · r18k/r · 2O(k/r) · n log3 n).

Comparing our algorithm with the algorithm of Abasi et al. [1], our algorithm is
slower by a constant factor in the exponent of r, and only works for non-canceling
circuits. However our algorithm is deterministic (while the one by Abasi et al. is
randomized) and also works for the weighted variant of the problem, while the
one by Abasi et al. does not. In the weighted variant each variable xi has a non-
negative integer weight wi, and the weight of a monomial Πn

i=1xai

i is defined as
∑n

i=1 wiai. The task is to determine whether there exists a monomial Πn
i=1xai

i ,
such that 0 ≤ ai ≤ r for every i ≤ n, and if so, to return one of minimum weight.
As a direct consequence we obtain the first deterministic algorithm for r-Simple
k-Path with running time rO(k/r)|C|nO(1), and the first algorithm with such a
running time for weighted r-Simple k-Path.

Theorem 2 (Weighted) r-Simple k-Path can be solved in deterministic time
Ok(r12k/r · 2O(k/r) · n3 · log n).

Here, by Weighted r-Simple k-Path we mean the variant where the weights
are on vertices, and the weight of an r-simple k-path is the sum of the weights
of traversed vertices, including multiplicities. However, we can also solve the
edge-weighted variant at a cost of a larger constant in the exponent.

The significance of an in-depth study of (r, k)-Monomial Detection, is that
it is the natural “relaxation parameter”-based generalization of the fundamental
Multi-linear Monomial Detection problem. The Multi-linear Mono-

mial Detection problem is simply (r, k)-Monomial Detection with r = 1.
A multitude of parameterized problems reduce to Multi-linear Monomial

Detection [2,4,9,14,22]. Thus, obtaining good algorithms (r, k)-Monomial

Detection is an important step towards efficient algorithms for relaxation
parameter-variants of these problems. For some problems, such as k-Path, ef-
ficient algorithms for the relaxation parameter variant (i.e r-Simple k-Path)
follow directly from the algorithms for (r, k)-Monomial Detection. In this
paper we give two more examples of fundamental problems for which efficient
algorithms for (r, k)-Monomial Detection lead to efficient algorithms for their
“relaxation parameter”-variant.

Our first example is the (r, p, q)-Packing problem. Here the input is a family
F of sets of size q over a universe of size n, together with integers r and p. The
task is to find a subfamily A ⊆ F of size at least p such that every element of the
universe is contained in at most r sets in A. Observe that (r, p, q)-Packing is
the relaxation parameter variant of the classic Set Packing problem ((r, p, q)-
Packing with r = 1). We give an algorithm for (r, p, q)-Packing with running
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time 2O(pq· log r
r )|F|nO(1). For r = 1 this matches the best known algorithm [2]

for Set Packing, up to constants in the exponent, and when r grows our algo-
rithm is significantly faster than 2pq|F|nO(1). Just as for r-Simple k-Path, our
algorithm also works for weighted variants. We remark that (r, p, q)-Packing
was also studied by Fernau et al. [6] from the perspective of kernelization.

Theorem 3 Let k � p · q. Then (Weighted) (r, p, q)-Packing can be solved
in deterministic time Ok(|F| · r12k/r · 2O(k/r) · n log2 n).

Again, by Weighted (r, p, q)-Packing we mean a variant where elements are
assigned weights and the weight of a set is equal to the sum of the weights of
its elements. However, at a cost of a larger constant in the exponent we can also
solve the variant where each set is assigned its own weight.

Our second example is the Degree-Bounded Spanning Tree problem.
Here, we are given as input a graph G and integer d, and the task is to deter-
mine whether G has a spanning tree T whose maximum degree does not exceed
d. For d = 2 this problem is equivalent to Hamiltonian Path, and hence the
problem is NP-complete in general, but for d = n − 1 it boils down to check-
ing the connectedness of G. Thus, Degree-Bounded Spanning Tree can be
thought of as a relaxation parameter variant of Hamiltonian Path. The prob-
lem has received significant attention in the field of approximation algorithms:
there are classic results of Fürer and Raghavachari [11], Goemans [13], and of
Singh and Lau [20] that give additive approximation algorithms for the prob-
lem and its weighted variant. From the point of view of exact algorithms, the
currently fastest exact algorithm, working for any value of d, is due to Fomin
et al. [8] and has running time O(2n+o(n)). In this work, we give a randomized
algorithm for Degree-Bounded Spanning Tree with running time 2O(n log d

d ),
by reducing the problem to an instance of (r, k)-Monomial Detection. Thus,
our algorithm significantly outperforms the algorithm of Fomin et al. [8] for all
super-constant d, and runs in polynomial time for d = Ω(n). Interestingly, the
instance of (r, k)-Monomial Detection that we create crucially uses subtrac-
tion, since the constructed circuit computes the determinant of some matrix.
Thus we are not able to apply our algorithm for non-canceling circuits, and
have to resort to the randomized algorithm of Abasi et al. [1] instead. Obtaining
a deterministic algorithm for Degree-Bounded Spanning Tree that would
match the running time of our algorithm, or extending the result to the weighted
setting, remains as an interesting open problem.

Our methods. The starting point for our algorithms is the notion of representa-
tive sets. If A is a family of sets, with all sets in A having the same size p, we
say that a subfamily A′ ⊆ A q-represents A if for every set B of size q, whenever
there exists a set A ∈ A such that A is disjoint from B, then there also exists a
set A′ ∈ A′ such that A′ is disjoint from B.

Representative sets were defined by Monien [16], and were recently used to give
efficient parameterized algorithms for a number of problems [9,10,18,19,23,24],
including k-Path [9,10,19], Set Packing [19,23,24] and Multi-linear Mono-

mial Detection [9]. It is therefore very tempting to try to use representative
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sets also for the relaxation parameter variants of these problems. However, it
looks very hard to directly use representative sets in this setting. On a super-
ficial level the difficulty lies in that representative sets are useful to guarantee
disjointness, while the solutions to the relaxation parameter variants of the con-
sidered problems may self-intersect up to r times.

We overcome this difficulty by generalizing the notion of representative sets
to multisets. When taking the union of two multisets A and B, an element that
appears a times in A and b times in B will appear a+b times in the union A+B.
Thus, if two regular sets A and B are viewed as multisets, they are disjoint if
and only if no element appears more than once in A + B. We can now relax
the notion of disjointedness and require that no element appears more than r
times in A + B. Specifically, if A is a family of multisets, with all multisets in A
having the same size p (counting duplicates), we say that a subfamily A′ ⊆ A q-
represents A if the following condition is satisfied. For every multiset B of size q,
whenever there exists an A ∈ A such that no element appears more than r times
in A + B, there also exists an A′ ∈ A′ such that no element appears more than
r times in A′ + B. The majority of the technical effort in the paper is spent on
proving that every family A of multisets has a relatively small q-representative
family A′ in this new setting, and to give an efficient algorithm to compute A′

from A. The formal statement of this result can be found in Corollary 2.
On the way to develop our algorithm for computing representative sets of

multisets, we give a new construction of a pseudo-random object called lopsided
universal sets. Informally speaking, an (n, p, q)-lopsided universal set is a set of
strings such that, when focusing on any k � p+q locations, we see all patterns of
hamming weight p. These objects have been of interest for a while in mathematics
and in theoretical computer science under the name Cover Free Families (Cf.
[3]). We give, for the first time, an explicit construction of an (n, p, q)-lopsided
universal set whose size is only polynomially larger than optimal for all p and q.
See the full version [12] for a formal statement.

Both our algorithm for computing representative sets of multisets, and the
new construction of lopsided universal sets may be of independent interest.

Outline of the Paper. In Section 2 we give the necessary definitions and set up
notational conventions. In Section 3 we give our construction of representative
sets for multisets. This construction requires an auxiliary tool called minimal
separating families. The construction of Section 3 assumes that an appropri-
ate construction of minimal separating families is given as a black box, and
this construction is deferred to full version. Our new construction of lopsided
universal sets is a corollary of the construction of minimal separating families,
and is also explained in full version. In Section 4 we briefly discuss the applica-
tions of representative sets to (r, k)-Monomial Detection, (r, p, q)-Packing
and r-Simple k-Path (details deferred to full version). In Section 5 we present
our algorithm for Degree-Bounded Spanning Tree. Finally, we conclude by
discussing open problems and directions for future research in Section 6.
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The full version of this paper, which contains a natural order of intro-
ducing the consecutive concepts and results, is available on arxiv [12].

2 Preliminaries

Notation. Throughout the paper, we use the notation Ok to hide kO(1) terms.
We denote [n] = {1, 2, . . . , n}. For sets A and B, by { A → B } we denote the set
of all functions from A to B. The notation � is used to introduce new objects
defined by formulas on the right hand side.

Separating Families. Recall that, for an integer t ≥ 1, we say that a family of
functions H ⊆ { [n] → [m] } is a t-perfect hash family, if for every C ⊆ [n] of size
|C| = t there is f ∈ H that is injective on C. We will be interested in constructing
families of perfect hash functions that, in addition to being injective on a set C,
have the property of sending another large set D to an output disjoint from the
image of C. We call such a family of functions a separating family.

Definition 1 (Separating family). Fix integers t, k, s, n such that 1 ≤ t ≤ n.
For disjoint subsets C, D ⊆ [n], we say that a function h : [n] → [s] separates C
from D if

– h is injective on C; and
– there are no collisions between C and D. That is, h(C) ∩ h(D) = ∅.

A family of functions H ⊆ { [n] → [s] } is (t, k, s)-separating if for every
disjoint subsets C, D ⊆ [n] with |C| = t and |D| ≤ k − t, there is a function
h ∈ H that separates C from D.

We say that H is (t, k, s)-separating with probability γ if for any fixed C
and D with sizes as above, a function h chosen uniformly at random from H
separates C from D with probability at least γ.

For us, the most important case of separating families is when the range size
is |C| + 1. In this case we use the term minimal separating family. It will also be
convenient to assume in the definition that C is mapped to the first |C| elements
in the range.

Definition 2 (Minimal separating family) A family of functions H ⊆ { [n] →
[t + 1] } is (t, k)-minimal separating if for every disjoint subsets C, D ⊆ [n] with
|C| = t and |D| ≤ k − t, there is a function h ∈ H such that

– h(C) = [t].
– h(D) ⊆ {t + 1}.

3 Multiset Separators and Representative Sets

The purpose of this section is to formally define and construct representative
sets for multisets. We will use, as an auxiliary result, an efficient construction of
a small separating family. This result is actually the most technical part of this
paper, and its proof is deferred entirely to the appendix.
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Theorem 4 Fix integers n, t, k such that 1 ≤ t ≤ min(n, k). Then a (t, k)-
minimal separating family of size Ok((k/t)2t · 2O(t) · log n) can be constructed in
time Ok((k/t)2t · 2O(t) · n · log n).

Proof. (sketch) We first hash the set C of size t injectively into t ‘buckets’ using
known constructions. At this stage we have ‘taken care’ of C but the set D of
size ≤ k − t is scattered somehow among the t buckets. The novel idea is that
a combination of guesses as to how the D has been scattered, together with the
use of hitting sets for combinatorial rectangles [15] can now be used to separate
C from D in a way that is not too costly. 	

Our primary tool for the construction of representative sets for multisets is what
we call a multiset separator (see Definition 3). Informally, a multiset separator
is a not too large set of ‘witnesses’ for the fact that two multisets of bounded
size do not jointly contain too many repetitions per element.

Notation for Multisets. Fix integers n, r, k ≥ 1. We use [r]0 to denote {0, . . . , r}.
An r-set is a multiset A where each element of [n] appears at most r times. It
will be convenient to think of A as a vector in [r]n0 , where Ai denotes the number
of times i appears in A. We denote by |A| the number of elements in A counting
repetitions. That is, |A| =

∑n
i=1 Ai. We refer to |A| as the size of A. An (r, k)-set

is an r-set A ∈ [r]n0 , where the number of elements with repetitions is at most
k. That is, |A| ≤ k.

Fix r-sets A, B ∈ [r]n0 . We say that A ≤ B when Ai ≤ Bi for all i ∈ [n]. By
A ∈ [r]n0 we denote the “complement” of r-set A, that is, Ai = r − Ai for all
i ∈ [n]. By A+B we denote the “union” of A and B, that is, (A+B)i = Ai +Bi

for all i ∈ [n]. Suppose now that A and B are (r, k)-sets. We say that A and
B are (r, k)-compatible if A + B is also an (r, k)-set, and |A + B| = k. That
is, the total number of elements with repetitions in A and B together is k and
any specific element i ∈ [n] appears in A and B together at most r times. With
the notation above at hand, we can define the central object needed for our
algorithms.

Definition 3 (Multiset separator) Let F be a family of r-sets. We say that
F is an (r, k)-separator if for any (r, k)-sets A, B ∈ [r]n0 that are (r, k)-compatible,
there exists F ∈ F such that A ≤ F ≤ B.

Construction of Multiset Separators. The following theorem shows how an (r, k)-
separator can be constructed from a minimal separating family.

Theorem 5 Fix integers n, r, k such that 1 < r ≤ k, and let t � �2k/r�. Suppose
a (t, k)-minimal separating family H ⊆ { [n] → [t + 1] } can be constructed in
time f(r, k, n). Then an (r, k)-separator F of size |H| ·(r+1)t can be constructed
in time Ok(f(r, k, max(n, t)) · (r + 1)t).

Proof. (sketch) Given (r, k)-compatible multisets A and B, we wish to ‘separate’
them by a multiset F such that A ≤ F ≤ B. Because of the compatibility, there
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can only 2k/r ‘large indices’ - where Ai > r/2 or Bi > r/2. If we knew these
indices in advance, we could afford to try all values Fi to find a value such that
Ai ≤ Fi ≤ Bi. For any other i ∈ [n], defining Fi = r/2 is fine. The problem
is that there are many options for the set of large indices. However, a minimal
separating family allows us to separate the set of large indices from others while
trying a small number of possibilities. 	


Combination of Theorems 4 and 5 immediately yields the following.

Corollary 1 [�]1 Fix integers n, r, k such that 1 < r ≤ k. Then an (r, k)-
separator F of size Ok(r6k/r ·2O(k/r) · log n) can be constructed in time Ok(r6k/r ·
2O(k/r) · n · log n)

Multisets Over a Weighted Universe. Before proceeding, we discuss the issue of
how the considered multisets will be equipped with weights. For simplicity, we
assume that the universe [n] is weighted, i.e., each element i ∈ [n] is assigned an
integer weight w(i). We define the weight of a multiset as the sum of the weights
of its elements counting repetitions. Formally, for A ∈ [r]n0 we have

w(A) =
n

∑

i=1
Ai · w(i).

Whenever we talk about a weighted family of multisets, we mean that the uni-
verse [n] is equipped with a weight function and the weights of the multisets are
defined as in the formula above.

Representative Sets for Multisets. We are ready to define the notion of a repre-
sentative set for a family of multisets.

Definition 4 (Representative sets for multisets) Let P be a weighted fam-
ily of (r, k)-sets. We say that a subfamily P̂ ⊆ P represents P if for every
(r, k)-set Q the following holds. If there exists some P ∈ P of weight w that is
(r, k)-compatible with Q, then there also exists some P ′ ∈ P̂ of weight w′ ≤ w
that is (r, k)-compatible with Q.

The following definition and lemma show that having an (r, k)-separator is
sufficient for constructing representative sets.

Definition 5 Let P be a weighted family of r-sets and let F be a family of
(r, k)-sets. The weighted family TrimF(P) ⊆ P is defined as follows: For each
F ∈ F , and for each 1 ≤ i ≤ k, check if there exists some P ∈ P with |P | = i
and P ≤ F . If so, insert into TrimF(P) some P ∈ P that is of minimal weight
among those with |P | = i and P ≤ F .

Lemma 1. [�] Let F be an (r, k)-separator and let P be a weighted family of
(r, k)-sets. Then TrimF(P) represents P.
1 Proof of statements marked with � are omitted due to space constraints and may be

found in the full version [12].
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We can now combine Lemma 1 with the construction of an (r, k)-separator
from Corollary 1, and thus obtain a construction of a small representative family
for a weighted family of multisets.

Corollary 2 [�] There exists a deterministic algorithm that, given a weighted
family P or (r, k)-sets, runs in time Ok(|P| · r6k/r · 2O(k/r) · n log n) and returns
returns a family P̂ ⊆ P that represents P and has size Ok(r6k/r · 2O(k/r) · log n).

4 Algorithmic Applications

For lack of space, we defer all details to the full version [12], and now only
sketch how representative sets for multisets can be applied to r-Simple k-Path,
(r, p, q)-Packing, and (r, k)-Monomial Detection. In all cases, the algorithm
applies the expand-and-shrink strategy that was used by Fomin et al. [10] for
k-Path and by Zehavi [23] for Set Packing (see also the appropriate chapter
of [4]). Basically, we iteratively expand the so far obtained family of partial
solutions, e.g. by prolonging all the constructed paths by one vertex, and then
trim the obtained expanded family by computing its representative subfamily.
For (r, k)-Monomial Detection, we compute for each gate a representative
set of monomials that appear in the polynomial computed at this gate. This is
done by “merging” the representative sets of monomials for the input gates, and
computing the representative set of this merge. The assumption that the circuit
is non-canceling is necessary to argue that the set of monomials appearing at
each gate is indeed a proper merge of the sets appearing on its input gates.

5 Low Degree Monomials and Low Degree
Spanning Trees

Let G be a simple, undirected graph with n vertices. Let T be the family of
spanning trees of G; in particular, if G is not connected then T = ∅. With every
edge e ∈ E(G) we associate a variable ye. The Kirchhoff’s polynomial of G is
defined as:

KG((ye)e∈E(G)) =
∑

T∈T

∏

e∈E(T )

ye.

Thus, KG is a polynomial in Z[(ye)e∈E(G)]. Let v1, v2, . . . , vn be an arbitrary
ordering of V (G). The Laplacian of G is an n × n matrix LG = [aij ], where

aij =

⎧

⎪

⎨

⎪

⎩

∑

e incident to vi
ye if i = j,

−yvivj if i = j and vivj ∈ E(G),
0 if i = j and vivj /∈ E(G).

Observe that LG is symmetric and the entries in every column and in every row
of LG sum up to zero. Then it can be shown that all the first cofactors of LG,
i.e., the determinants of matrix LG after removing a row and a column with
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the same indices, are equal. Let NG be this common value; then NG is again a
polynomial over variables (ye)e∈E(G). The Kirchhoff’s Matrix Tree Theorem, in
its general form, states that these two polynomials coincide.

Theorem 6 (Matrix Tree Theorem) KG = NG.

We remark that the Matrix Tree Theorem is usually given in the more specific
variant, where all variables ye are replaced with 1; then the theorem expresses
the number of spanning trees of G in terms of the first cofactors of LG. However,
the proof can be easily extended to the above, more general form; cf. [21].

Observe that Theorem 6 provides a polynomial-time algorithm for evaluating
KG over a vector of values of variables (ye)e∈E(G). Indeed, we just need to
construct matrix LG, remove, say, the first row and the first column, and compute
the determinant. We now present how this observation can be used to design a
fast exact algorithm for the Degree-Bounded Spanning Tree problem.

Theorem 7 The Degree-Bounded Spanning Tree problem can be solved
in randomized time O∗(dO(n/d)) with false negatives.

Proof. Associate every vertex v of the given graph G with a distinct variable xv.
Let KG ∈ Z[(xv)v∈V (G)] be a polynomial defined as KG with every variable yuv,
for uv ∈ E(G), evaluated to xuxv. Then it follows that

KG((xv)v∈V (G)) =
∑

T∈T

∏

v∈V (G)

xdegT (v)
v .

Observe also that KG is 2(n − 1)-homogeneous, that is, all the monomials of
KG have their total degrees equal to 2(n − 1). Thus, graph G admits a spanning
tree with maximum degree at most d if and only if polynomial KG contains a
(d, 2(n − 1))-monomial. Using Theorem 6 we can construct a nO(1)-sized circuit
evaluating KG. Hence, verifying whether KG contains a (d, 2(n − 1))-monomial
boils down to applying the algorithm of Abasi et al. [1] for (r, k)-Monomial

Detection with r = d and k = 2(n − 1). This algorithm runs in randomized
time O∗(dO(n/d)) and can only produce false negatives. 	


Let us repeat that in the proof of Theorem 7 we could not have used
Theorem 9 instead of the result of Abasi et al. [1], because the constructed
circuit is not non-canceling. Derandomizing the algorithm and extending it to
the weighted setting remains hence open.

Interestingly, the running time of the algorithm of Theorem 7 is essentially
optimal, up to the log d factor in the exponent. A similar lower bound for r-
Simple k-Path was given by Abasi et al. [1].

Theorem 8 [�] Unless ETH fails, there exists a constant s > 0 such that for no
fixed integer d ≥ 2 the Degree-Bounded Spanning Tree problem with the
degree bound d can be solved in time O∗(2sn/d).



Fast Algorithms for Parameterized Problems 555

6 Conclusions

In this paper we considered relaxation parameter variants of several well studied
problems in parameterized complexity and exact algorithms. We proved, some-
what surprisingly, that instances with moderate values of the relaxation parame-
ter are significantly easier than instances of the original problems. We hope that
our work, together with the result of Abasi et al. [1] breaks the ground for a
systematic investigation of relaxation parameters in parameterized complexity
and exact algorithms. We conclude with mentioning some of the most natural
concrete follow up questions to our work.

– We gave a deterministic algorithm for non-canceling (r, k)-Monomial De-

tection with running time 2O(k log r
r )|C|nO(1), while Abasi et al. [1] gave a

randomized algorithm with such a running time for (r, k)-Monomial De-

tection without the non-cancellation restriction. Is there a deterministic al-
gorithm for (r, k)-Monomial Detection with running time 2O(k log r

r )|C|nO(1)?
– Does there exist a deterministic algorithm with running time 2O(n log r

r ) for
Degree-Bounded Spanning Tree? Note that a deterministic algorithm
with running time 2O(k log r

r )|C|nO(1) for (r, k)-Monomial Detection would
immediately imply such an algorithm for Degree-Bounded Spanning

Tree.
– Is there a 2O(k log r

r )nO(1) time algorithm for the problem where we are given
as input a graph G, integers k and d, and asked whether G contains a subtree
T on at least k vertices, such that the maximum degree of T is at most d?
Observe that for k = n this is exactly the Degree-Bounded Spanning

Tree problem.
– Is it possible to obtain kernels for problems with relaxation parameters with

smaller and smaller size bounds as the relaxation parameter increases?
– Is there an algorithm for r-Simple k-Path with running time 2O(k/r)nO(1)?

Or a 2O(n/d) time algorithm for Degree Bounded Spanning Tree?
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Abstract. Load balanced routing is a long standing yet challenging problem.
Despite many years’ of work there is still a gap between theoretical research and
practical algorithms. The main contribution in this paper is to bridge the gap and
provide rigorous analysis of a practically interesting algorithm for routing in a
large scale sensor network of complex shape – routing by using the medial axis
of the network. In this algorithm, a skeleton of the network is extracted such that
a virtual coordinate system can be developed for greedy routing achieving good
load balance in simulations. We show for the first time a constant approximation
factor for this algorithm by a highly technical analysis. The analysis explains the
performance observed in previous simulations and is also the first known constant
approximation algorithm for load balanced routing in a sensor network with non-
trivial geometry.

1 Introduction

Load balanced routing is a fundamental and challenging problem. It is of crucial im-
portance in wireless sensor networks since overloaded nodes may deplete their battery
prematurely, severely hampering the utility of the network. It is also more challeng-
ing in the sensor network setting as only distributed, lightweight algorithms are useful.
Despite many years’ of research there is still a separation between algorithms with theo-
retical guarantees and algorithms that are practically useful. In the theoretical direction,
load balanced routing is often formulated as minimizing the maximum traffic load of
a given set of routing requests on a network with fixed capacities. Approximation al-
gorithms using global optimizations on graphs [13, 14] do not meet the low resource
requirement and do not have constant approximation ratio. In practice, a number of
algorithms arrive at a good balance between good performance and low requirement
on computation and communication. But nothing provable is known. The results in this
paper bridge the gap by providing the first constant approximation ratio for a practically
interesting algorithm.

Wireless sensor networks differ from other types of networking scenarios in the rich
geometric properties. In this setting, n sensors are embedded (positions chosen uni-
formly randomly) in a geometric region Ω ⊂ R

2 providing dense coverage of Ω. A
sensor network is a graph on the vertices. We assume that a unit disk graph is used
to model wireless communication: two nodes are connected by an edge if the distance
is at most 1. The load of a node is the number of routing paths (out of the total

(
n
2

)
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paths) passing through it under all-pairs communication. One wishes to find paths that
minimize the maximum load, and paths that are also easy to store/compute.

Unfortunately, understanding the dependency of load balanced routing on the geo-
metric shape of Ω is still very limited. For sensors uniformly randomly placed inside a
disk with all pairs traffic, shortest path routing (i.e., routing paths along straight lines)
will create higher traffic load at the center of the disk. But the highest traffic load can
be shown to be a constant factor away from the optimal solution (minimizing the max-
imum traffic) [8]. Nothing is known on the optimal solution in a disk beyond a discrete
approximation using simulations [12]. Apart from that, constant approximation solution
using greedy routing is known for narrow strips [7] and for simply connected domains
admiting a constant stretch area-preserving map to disks [8]. The general question of
finding a constant approximation load balanced routing scheme for an arbitrary geo-
metric domain is still open.

In this paper we achieve for the first time a constant approximation ratio for load-
balanced routing in a network Ω with arbitrarily complex shape. This problem is sub-
stantially more challenging than the case of a simply connected domain. In the case of a
disk or other simply connected domain, the main challenge is to avoid concentration of
routing paths either at the center of the disk or at a reflex vertex (corner) of the domain.
But when we move to a domain with holes, a new challenge appears. We need to de-
cide how the routing paths get around the holes and how such traffic is distributed. This
decision has to be dependent on the ‘width’ of the corridors on each side of holes. See
Figure 1. Thus the topology of the domain and the topological structure of the routing
paths are essential.

Fig. 1. In simply connected domains, the main challenge is to avoid path concentration (left two
figures). In the case of a non-simple domain, we may need to distribute the paths around the holes
by how much resource we have available along the ‘corridors’.

We show that routing using the medial axis κ of the sensor network field, with some
modification, achieves an approximation factor of O(1), when the source and destina-
tion are uniformly randomly selected. The medial axis of a 2D domain Ω is the col-
lection of points that have more than one closest points on the boundary of Ω. It is a
planar graph homotopic to Ω. Thus as a skeleton of Ω, it has been used in a distributed
routing algorithm to guide messages to pass around ‘holes’ [3]. Basically the medial
axis is represented by a compact discrete graph κ̂ to be disseminated to all nodes in the
network. Each node knows its relative position to the medial axis and a greedy rout-
ing algorithm directs a message to the destination by first travelling ‘horizontally’ (i.e.,
in parallel with the medial axis) and then ‘vertically’ (i.e., perpendicular to the medial
axis) to the destination. In the same paper it has been demonstrated using simulations
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that this algorithm has guaranteed delivery and good performance in balancing traffic
load, compared to other greedy alternatives. In this paper we build on this algorithm.
Specifically, our contributions are the following:

– We enhance the original medial axis based routing algorithm by running an LP op-
timization on the medial axis κ̂ . This LP program helps us decide how to distribute
routing paths with respect to the holes in the network. The solution to the LP pro-
vides a compact, probabilistic routing guidance. This knowledge is distributed to
all nodes in the network. Each node s stores O(|κ̂|) information such that for any
destination t, a set of paths with probabilities can be extracted to guide how the
message should travel with respect to the medial axis κ. The actual routing path is
again realized by a local, greedy procedure.

– We show that the above algorithm achieves a constant approximation ratio. The
analysis is highly technical. Majority of the proofs are in the full paper and we
present the intuition and proof sketch in the main body of the paper.

Related Work. In the field of networking algorithms, load balanced routing on a graph
with given source destination pairs is a long standing problem. One way to formulate
this problem is to select routes that minimize congestion (the maximum number of
messages that any node/link carries), termed the unsplittable flow problem. Solving
this problem optimally is NP-hard even in very simple networks (such as grid). The
best approximation algorithm has an approximation factor of O(log n/ loglogn) [13,
14] in a network of n vertices. It is also shown that getting an approximation within
factor Ω(loglogn) is NP-hard [1]. Another popular way to formulate the problem is to
consider node disjoint or edge disjoint paths that deliver the largest number of given
source destination pairs. This is again NP-hard [9] and the best approximation factor
known is O(

√
n) [4]. It is NP-hard to approximate within a factor of Ω(log1/2−ε n) [5].

These approximation algorithms are mostly only of theoretical interest. They require
global knowledge and are not suitable for distributed settings.

In the wireless sensor network setting, a number of algorithm make use of the ge-
ometric property in designing load balanced routing algorithms. Mei and Stefa [11]
suggested to wrap a square network into a torus so as to avoid loading the network
center. Yu et. al [16] map the network as the skeleton of a convex polytope using the
Thurston’s embedding. In [15], a network of multiple holes is converted to the covering
space to ‘remove’ the hole boundaries and prevent them from being heavily loaded. All
of them are shown by simulations to have reasonable performance, but no theoretical
guarantee is known.

2 Network Model and Medial Axis

In this section we describe the network model for our theoretical analysis. We remark
that some of the following assumptions are purely for the proofs and not necessary for
the routing algorithm.

Medial Axis in the Continuous Setting: The medial axis κ of a geometric domain Ω
is defined as the set of points with more than one closest point to the boundary of Ω. It
is known that κ is a planar graph that is homotopic to Ω [2]. κ is composed of branches
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(called medial edges) joined by junction points (called medial vertices), that can have
degree 1 (being the endpoint of a branch) or degree ≥ 3. Each point a on the medial
axis has a maximal empty disk inside Ω that touches at least two points on ∂Ω. The
line segment connecting a with a tangent point is called a chord of a.

p

x = κ(p)

y

κ

r(p) = |xp|/|xy|

w
q

Fig. 2. An example of a medial axis of a
domain Ω. Two medial balls centered at
x,w are shown. We also show a possible
routing path from p to q.

We assume that Ω only has a finite number
of arc segments on its boundary ∂Ω, that is, a
part of the boundary that coincides with part of
a circle. In this case, all but a finite number of
points W on the medial axis κ of Ω have only
a constant number of chords. In addition, we
will punch a point hole at each point of W and
recompute the medial axis κ. If there are still
points on κ with an infinitely number of chords,
we repeat the same procedure until no point on
the medial axis has an infinite number of chords.
We remark that this procedure will only create a
finite number of additional point holes. This way
we remove medial vertices of degree 1. We also assume there is no degeneracy, i.e., any
maximal empty ball is tangent to at most three points on the boundary. Thus all points
on κ have at most three chords. Thus all medial vertices have degree exactly 3. Each
canonical piece is bounded by two chords, a medial edge (or a medial vertex) and a
piece of ∂Ω.

Medial Axis Based Coordinates: For each point p ∈ Ω not on the medial axis, p must
be on a unique chord xy, with x ∈ κ, y ∈ ∂Ω [3]. Furthermore, y is p’s closest point on
∂Ω. By this property we can define the projection of p on κ as the point x and denote
it as κ(p) and assign coordinates (x(p), y(p), r(p)) where x(p) ∈ κ and y(p) ∈ ∂Ω are
the endpoints of the unique chord p lies on, and 0 < r(p) = |px(p)|/|x(p)y(p)| < 1 is
the normalized distance from x(p).

Discrete Sensors S. We assume that sensors have bounded density ε: inside any disk
of radius ε inside Ω, there is at least one sensor inside. Further we assume that any two
sensors are at distance at least ε/2 apart. The minimum density requirement is typically
guaranteed by sensing coverage requirement. The requirement on minimum distance
separation can be obtained by using a greedy algorithm to subsample in a dense region.
Basically, select any sensor not yet selected, remove all sensors within distance ε/2,
and continue. Any two sensors selected are of distance at least ε/2 apart.

To define a discrete sample of Ω, we also assume a uniform set of sensors along the
continuous medial axis κ with density ε, such that any point of κ has a sensor within
distance ε along κ.

Discrete Medial Axis. In the sensor network setting the discrete medial axis is used [3].
First, the sample points on κ are connected into a graph as a discrete approximation of κ.
In the continuous setting a chord is a line segment connecting a point on the medial axis
to a tangent point on the boundary. In the discrete setting, due to the discrete resolution
a chord is a tree Ta rooted at a point a ∈ S on the medial axis. In particular, suppose a is
on a medial edge, and its neighbors are a1 and a2 to the left and right of a respectively.
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And m1,m2 are halfway midpoints between a1 and a, a and a2 along κ respectively.
Suppose the two chords of m1 and m2 connect to p1, p2 ∈ ∂Ω respectively. We build
a tree Ta containing all the nodes of S inside the region bounded by four curves: the
segment on κ between m1,m2, the two chords m1p1 and m2p2, and the boundary
segment between p1p2. See Figure 3.

κ

∂Ω

am1 m2
a1 a2

p1 p2

Fig. 3. A discrete chord.

Consider a canonical piece, we define a (continu-
ous) normalized contour κi of level i ∈ [0, 1] as the
collection of points w such that w lies on a chord xy
with x ∈ κ, y ∈ ∂Ω, and i = |wx|/|xy| (the normal-
ized distance to κ). We will use this to redefine chords
in the discrete setting. Each node w has a parent in the
tree Ta as a node who lies on a lower level contour
than w. For each point p ∈ S, if Ta contains p we de-
note by a = κ̂(p) its projection on κ̂, to be differentiated from the continuous projection
of p on κ. We also denote by r(a) the length of the chord of a. We denote by r̂(a) the
depth of the tree Ta, and n̂(a) the total number of nodes in Ta.

For a node a on κ, we first want to understand the relationship between r̂(a) and
n̂(a). In the continuous setting, the analog of r̂(a) refers to the length of a chord issued
at g, while the analog of n̂(a) refers to the measure of the points on this chord. And these
two numbers are the same. In this discrete setting, however, these two measures can be
different. In the extreme setting, imagine a perfect disk of radius r. The medial axis
is a single point at the center of the disk o. The chords are organized in about O(1/ε)
trees, each one containing roughly O(r2/ε) nodes. So in this case r̂(o) = O(r/ε) and
n̂(o) = O(r2/ε) – a big discrepancy. However, this can only happen when the point o
has infinitely many chords, i.e., the boundary segment is an arc. Under our assumption
that medial vertices have degree 3, n̂(a) = O(r̂(a)) for any a ∈ κ. The proof of the
following Lemma is omitted in this abstract.

Lemma 1. Suppose any point on the medial axis κ of domain Ω has only a finite num-
ber of tangents. Then n̂(a) = O(r̂(a)) for any a ∈ κ.

By now the continuous medial axis is abstracted by a (discrete) medial axis graph
(MAG) κ̂ in which the (continuous) medial axis are approximated by a discrete sample
V and V are connected in the same way as the medial edges. The size of κ̂ is depends
on the geometric complexity of Ω. Typically |V | = k is much smaller than n, the num-
ber of sensors. Algorithmically, extracting the medial axis and assigning coordinates
proceeds by 1) detecting the boundaries of the sensor domain Ω, 2) flooding to get a
discrete medial axis (nodes having equal hop-counts to the boundary) and finally 3)
naming each node by a local computation. These steps are described in detail in [3] and
we omit the discussion here.

3 Our Medial Axis Based Routing Scheme

Based on [3] we develop the new algorithm as below. The last three steps are new.

1. Extract the medial axis κ̂ of the discrete sensor network. Assign all the sensors
medial axis based coordinates.
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2. Run a flow program on the medial axis graph. This returns a routing scheme on the
medial axis.

3. Store a compact representation of this routing scheme at the sensors.
4. Extend the routing scheme on the medial axis to get a routing scheme on the entire

domain, by routing first “in parallel” and then vertically to the medial axis. By
routing in parallel, we move in the direction guided by the routing scheme along
the medial axis and keeping the normalized distance to the medial axis to be the
same (see Figure 2). By routing vertically, we mean the message travels along a
chord towards the destination.

3.1 Step 2: The Flow Program

Let the (discrete) medial axis graph be denoted as κ̂ = (V,E), |V | = k. We denote
by r̂(v) the maximum depth of the shortest path tree rooted at v ∈ V , and by n̂(v) the
number of sensors in the tree(s) rooted at this node. For each node we assign a capacity
c · r̂(v), where c > 0 is a parameter.

Our flow program will capture all traffic projected onto the medial axis. Thus we
have k(k−1) commodities, one for every ordered pair (i, j) of nodes in V with demand
dij = dji = n̂(i)n̂(j).

Let the flow of commodity ij along the edge (u, v) be fij(u, v). Our flow must
satisfy the following constraints:

– Capacity constraints The load of v is from three kinds of messages: messages
with source v, messages with destination v, and messages with neither source nor
destination as v.

∑

j �=v

∑

u

fvj(v, u) +
∑

j �=v

∑

u

fjv(u, v) +
∑

ij:i�=v,j �=v

∑

u

fij(u, v) ≤ cr̂(v)

Note that the first two sums each simplify to m− n̂(v), as there are precisely these
many messages with v as source and destination.

– Flow conservation
∑

w∈V fij(u,w) =
∑

w∈V fij(w, u) ∀u /∈ {i, j}.
– Demand satisfaction ∀i, j ∈ V,

∑
w∈V fij(i, w) =

∑
w∈V fij(w, j) = dij .

The program we want to run is to minimize c subject to these conditions. Since the
only unknown variables above are the flow quantities, i.e., fij(u, v) for commodity ij
on edge (u, v), we can do the following: we first fix c large enough (say equal to the
sum of all the demands, which is O(n3), where n is the number of sensors in Ω), and
find whether the set of three constraints are feasible. This would imply that the chosen
capacity is sufficient to route the flows according to the specified demands. We then do
a binary search on the optimal value of c; each time we halve the current value of c and
check for feasibility. Thus we end up with the optimal c, in a runtime that is O(log n)
times the complexity of checking feasibility, which sums up to O(k2 logn). This is
pretty efficient; note that k is the number of nodes on the medial axis κ̂, which is much
smaller than n (the number of sensors).

Once we get the optimal value of c and the corresponding flows fij(u, v) on every
edge for every commodity, we can find the paths to take from a particular source i to
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source j using the “path stripping” algorithm in [14]. This returns a set of paths that
realize the optimal flow, and these paths constitute the routing scheme on the medial
axis graph κ̂. We call this routing scheme Γκ.

3.2 Step 3: Compact Representation of Γκ

Once the medial axis is extracted and the coordinates are assigned, we also store a
compact representation of the medial axis graph, called CMAG. This graph has the
following properties:

1. The number of vertices in the CMAG equals the number of medial vertices.
2. A path (on the medial axis) between two medial vertices that does not go through

any other medial vertex, corresponds to an edge between the corresponding pair of
vertices on the CMAG. Thus “consecutive” medial vertices have an edge between
them.

3. The size of the CMAG is linear in the number of big topological features in Ω; if
Ω has h holes (boundaries), then this graph has size O(h).

The proof of the following theorem can be found in the appendix.

Theorem 2. Let κ̂c = (Vc, Ec) denote the CMAG, with k = O(h) number of vertices
and edges. The routing scheme Γk can be stored compactly in a way that requires O(h)
space for any node on the medial axis, and O(h2h) space for any medial vertex (a
vertex of κ̂c).

3.3 Extending Γκ to Γ on Ω

Given a source-destination pair (s, t) ∈ Ω, we now use Γκ to build a path from s to t.
Roughly, the path starts from s, follows nodes at the same normalized distance (same
r in terms of the medial axis coordinates in Figure 2) to the medial axis as s until it
arrives at the chord containing t, and then follows part of the chord to arrive at t. The
first part of this path is denoted as routing in parallel to κ̂. The second part is denoted
as routing vertically to κ̂. The homotopy of this path is the same as the homotopy of the
path from κ(s) to κ(t), as determined by Γκ.

Route in Parallel to κ̂. In the discrete setting, suppose v is on the chord of a1 and the
next node on κ (as suggested by the flow algorithm) is a2. We choose the next node
from the chord of a2. We may not have a node in Ta2 with exactly the same normalized
distance to κ as v. Instead, we choose the node u whose normalized distance to κ is the
closest to the normalized distance from the source s to κ. By our density constraint, u
is within distance ε from the normalized contour κi, where i is the normalized distance
of s to κ. The same is done for routing in the rotary system if needed.

Route Vertically to κ̂. When the message gets to a node whose projection to κ is the
same as the projection of the destination t, we simply route the message along the tree
to the destination.

Route in the Rotary System. At last, we remark that we need to also involve the
rotary system as introduced in [3]. Basically the chords of medial vertices partition the
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domain Ω into canonical pieces in which the coordinates we define can be considered
as cartesian coordinates. Some canonical pieces share a common chord while some
canonical pieces only share a common medial vertex (e.g. the pieces near a medial
vertex of degree 3). Now, consider a route P along the medial axis that goes through
a medial vertex q with degree 3. If the canonical pieces for the two medial edges on
P right before and after q do not share a common chord of q, the extension of P to
the domain has to connect the two canonical pieces somehow. To do that, we introduce
a rotary system inside the maximal ball centered at each medial vertex of degree 3
using a polar coordinate system. The extension of P will travel along an arc connecting
the two canonical pieces. There are two arcs connecting the two pieces, clockwise or
counterclockwise. In [3], the direction is arbitrary. Here we always split with probability
half among the two choices so each gets half of the total traffic.

Comparison to the Medial Axis Routing Scheme in [3]. The idea of routing in par-
allel to the medial axis is the same as in [3]; the main innovation here is in the flow
program in Step 2. In [3] the routing used on the medial axis was simply the shortest
path routing. Our routing scheme given by the flow program helps us prove the approx-
imation guarantee. Theorem 2 guarantees that this routing scheme is also compactly
represented and lightweight, much like the shortest path scheme.

4 Proof of Approximation Guarantee

In this section we present the proof of the following theorem:

Theorem 3. There exists a constant C ≥ 1 such that the maximum load of the routing
scheme Γ obtained above is at most C times the maximum load of the optimal routing
scheme Γ ∗ on Ω.

OPT Proj. on MA (κ(Γ∗), L∗(u)
r(u) )

OPT (Γ∗, �∗
p)

Flow Routing on MA (Γ∗
k,

L(v)
r(v) )

L(v)/r(v) ≤ L∗(u)/r(u)

�∗
p ≥ C1L

∗(u)/r(u)

MA-based Routing (Γ, �q)

�h
q ≤ C2L(v)/r(v)

�r
q ≤ C3L(v)/r(v)

�v
q ≤ C4�

∗
p

Fig. 4. The outline of the proof for medial-axis based routing.

Proof Sketch. The proof is highly technical and involves a number of new ideas. The
outline of the proof is shown in Figure 4. Let the maximum load of Γ ∗ (Γ ) be realized
at a point p (or q), and equal �∗p (�q). We will show �q ≤ C�∗p for some constant C.

There are three main steps to relate �∗p at node p with �q at node q. In the first step we
consider the projection of optimal routing scheme on medial axis, denoted by κ(Γ ∗).
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That is, for each path γ∗(s, t) ∈ Γ ∗, we project each node onto the medial axis, getting a
path along the medial axis from κ̂(s) to κ̂(t). This path might be non-simple, containing
duplicated visits to the same node. When such things happen, we simply remove the
redundant segments and only keep a simple path along κ̂. The traffic load caused by
κ(Γ ∗) is no greater after this small simplification. It is clear to see that the traffic pattern
for κ(Γ ∗) is exactly the same as the traffic pattern for our flow program: node i on the
medial axis sends n̂(i)n̂(j) messages to node j.

The three steps in Figure 4 relate the traffic load in the four routing algorithms (the
optimal algorithm, the projection of the optimal on κ, the flow program, and the exten-
sion of the flow algorithm to Ω), the bottom two on the original domain Ω and top two
on the medial axis.

Step One: We relate optimal max load with the projection on κ̂.

Lemma 4. Denote by L∗(i) the number of messages passing through node i ∈ κ̂ un-
der the projection κ(Γ ∗). Let u ∈ κ̂ be the node where the maximum of the quantity
L∗(i)/r̂(i) occurs. Then �∗p ≥ C1L

∗(u)/r̂(u), for some constant C1.

Proof. Consider the discrete chord at u, which is a tree Tu with n(u) nodes, each has
traffic at most �∗p (the maximum traffic load). Thus the traffic at u by the projection on κ̂
is L∗(u) ≤ n̂(u)�∗p. The claim follows from the fact that n̂(u) = O(r̂(u)) for any node
u ∈ κ̂ (Lemma 1).

Step Two: On the medial axis, we run an optimization algorithm to find the routing
scheme minimizing L(x)/r̂(x) for any node x on the medial axis, for the given traffic
pattern. Minimizing max load is an NP-hard problem when the problem is integral,
i.e., only a single path is taken by each node. But in our case, we use a non-integral
solution which can be interpreted as a probabilistic solution on a family of paths. Thus
we minimize the expected maximum traffic load. This routing paths are denoted by the
family Γκ. Let v ∈ κ̂ be the node where the quantity L(x)/r̂(x) achieves its maximum
value (L(x) is the number of messages passing through x under Γκ). Optimality of the
flow program then implies L(v)/r̂(v) ≤ L∗(u)/r̂(u).

Step Three: In the last step, we take the routing paths along the medial axis and convert
them to routing paths in the original network. Specifically, for a source s and t in the
domain, we first project them to the medial axis along the chord at κ̂(s), κ̂(t) respec-
tively. Then we use the routing algorithm guided by Γκ computed in the previous step
to compute a path γ(κ̂(s), κ̂(t)) along the medial axis. This path is then converted to
a path in the original domain – specifically, the message first travels on a path parallel
along the medial axis until it arrives at the chord of t; then it follows the chord to arrive
at t. It may also use the rotary system around a medial vertex. Thus the traffic at q (the
node with max load) in our routing scheme is divided naturally into horizontal (denoted
by �hq ), rotary (denoted by �rq) and vertical (denoted by �vq ) loads. Thus �q = �hq+�rq+�vq .
For the horizontal and rotary traffic, we show that there exist constants C2 and C3 such
that �hq ≤ C2L(v)/r̂(v), and �rq ≤ C3L(v)/r̂(v). For the vertical traffic, we show that
it is bounded by the maximum load of any routing scheme on Ω, including that of the
optimum Γ ∗. Thus we show that �vq = O(�∗p).
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Collecting the inequalities from the three steps, we have that for some constant C,
�q ≤ C�∗p. The complete proof for the third step is in the full paper. In the following we
only provide a sketch.

Proof for �hq : We first note that by definition of L(v)/r̂(v) as the maximum of the
LP program, L(κ̂(q))/r̂(κ̂(q)) ≤ L(v)/r̂(v), where κ̂(q) is the projection of q on κ̂.
Hence it suffices to show that there exists C3 such that �hq ≤ C3L(κ̂(q))/r̂(κ̂(q)). For
simplicity, set r := r̂(κ̂(q)). In fact we will prove that for any node v on the chord of
κ̂(q), the traffic load �hv is bounded as required.

The total horizontal traffic load at κ̂(q) is actually shared by all the nodes in the chord
of κ̂(q). If the nodes in the chord share the traffic uniformly, then the claim is trivially
true. Note that the flow program, and hence our extension, does not distinguish between
nodes on the same chord when it comes to determining homotopy of paths1.

Therefore, the traffic carried by a node is determined by how many sources stay on
the same horizontal level, which can differ. For any node v at normalized distance β,
denote by Hβ the normalized contour formed by all nodes at normalized distance β.
Now, only the nodes with normalized distance within [β− ε, β+ ε] may possibly arrive
at v, by our definition. By the bounded density condition, the number of sensor nodes
with normalized height within [β − ε, β + ε] is proportional to the total area occupied
by the points with normalized height in the same range, which is then proportional to
the length of Hβ . Thus we have that

Observation 1: The ratio of the number of messages passing horizontally through a node
v (at height β) and the total number of messages passing through the chord containing
v, is proportional to the length of Hβ .

Now we need to examine the length of the contours Hβ for different normalized
distance β ∈ [0, 1]. The heaviest traffic load happens at the node whose depth coincides
with the longest contour. The worst case is that the contour at one particular normalized
height is long, while all the others are very short. The following observation says that
this cannot happen (proof omitted).

Observation 2: Suppose Hi is the longest contour, i ∈ [0, 1]. There is a constant δ such
that one of the two cases is true: (i) the contours Hj with j ∈ [i, i + δ] have length
Ω(Length(Hi)); (ii) the contours Hj with j ∈ [i− δ, i] have length Ω(Length(Hi)).

Within the chord of κ̂(q), O(δr) nodes have normalized depth within the range [i, i+
δ] or [i − δ, i]. Even if all other contours have length 0 and the rest of the nodes in the
chord share no traffic within L(κ̂(q)), the maximum node will still receive traffic load
at most L(κ̂(q))/(δr). Since δ is a constant, the claim is true.

Proof of �rq: Some nodes will carry both horizontal traffic and the rotary traffic. The
proof for the rotary traffic being not very high is in fact the same as the argument on
horizontal traffic – by analyzing the length of contours at different normalized depth.
Thus we omit the discussion here.

Proof of �vq : First recall that a message passes through q vertically iff the destination
is in the subtree(s) rooted at κ̂(q). Thus the number of messages passing vertically is

1 For a given destination t, the distribution over the homotopy types of paths from s1 to t or s2
to t is the same, if s1 and s2 are on the same chord.



Medial Axis Based Routing Has Constant Load Balancing Factor 567

O(n · w) where w = n(κ(q))), since the source could be any of the n sensors, while
the destination must be in the subtree, that has size w = n(κ̂(q)).

We claim that for any routing scheme Γ on the network, the maximum load is
Ω(n

√
n). This is simple if the network communication graph is assumed to be pla-

nar, in which case we can use the planar separator theorem [10]: there exists a cut S of
size O(

√
n) such that the removal of this set partitions the graph into two subgraphs A

and B, with no edges from A to B, and A and B have at least n/3 nodes. This means
that during all-pairs communication, there are Ω(n2) messages with source in A and
destination in B, and all these messages must pass through nodes in S. Thus the av-
erage load of a node in S is Ω(n2/

√
n) = Ω(n

√
n), which is clearly no greater than

the maximum load over S. The proof can be generalized to the case when the graph
is a unit-disk-graph, using arguments similar to those presented in [6]. We omit the
technical details here.

Now we show that �v(q) is smaller than the maximum load of any routing scheme.
By arguments above, �v(q) = O(nw) and by Lemma 3, w = n(κ(q)) = O(r(κ(q)).
Thus if we prove that r(κ(q)) = O(

√
n), we are done, as the max load of any routing

scheme is Ω(n
√
n). This is a simple area argument; the maximal ball centered at κ(q)

and of radius r(κ(q)) is by definition empty and completely contained inside Ω, since it
just touches the boundary at finitely many points. The area of this ball is πr2(κ(q))), and
because of the uniform density assumption, this area must be O(n). Thus r = O(

√
n)

and we are done.

5 Discussions and Open Problems

Randomized to Deterministic: Note that the paths found by the path stripping al-
gorithm are probabilistic; between a given source-destination pair (s, t) the algorithm
returns a probability distribution over the set of all possible paths between s and t.
One could use randomized rounding as in [14] to get deterministic paths between every
pair; however, this will increase our approximation factor from O(1) to a factor that is
slightly sublogarithmic in n (the number of sensors on the medial axis).

Other Traffic Distributions: In this paper we showed how to get a constant factor ap-
proximation for uniform traffic load. However, our algorithm can easily be generalized
to any arbitrary traffic distributionΠ onΩ, although we cannot prove the approximation
yet. Let Π(s, t) denote the probability of communication between source-destination
nodes s and t respectively. Let u = κ(s) and v = κ(t) be their projections on the me-
dial axis. Denote by Ciu and Cjv denote the set of nodes at depths i and j in the trees
rooted at nodes u and v, respectively, and the cardinalities of these sets by niu and niv ,
respectively.

When we set up the multicommodity flow program, instead of assigning a demand
of rurv between nodes u and v on the medial axis, we now assign a demand

du,v =

r(u)∑

i=1

r(v)∑

j=1

∑

s∈Ciu

∑

t∈Cjv

Π(s, t)

niunjv
,
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and run the flow algorithm. The paths generated by the flow algorithm can be extended
to get a routing scheme on Ω that satisfies the traffic distribution Π .

Thus, the two open questions that remain are 1) does the algorithm of this paper
for uniformly deployed nodes and arbitrary traffic patterns provide an approximation
guarantee?, and 2) can one remove the uniformly deployed nodes condition, even for
the uniform traffic distribution?
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Abstract. Recent papers on approximation algorithms for the trav-
eling salesman problem (TSP) have given a new variant on the well-
known Christofides’ algorithm for the TSP, called the Best-of-Many
Christofides’ algorithm. The algorithm involves sampling a spanning tree
from the solution to the standard LP relaxation of the TSP, and running
Christofides’ algorithm on the sampled tree. In this paper we perform
an experimental evaluation of the Best-of-Many Christofides’ algorithm
to see if there are empirical reasons to believe its performance is better
than that of Christofides’ algorithm. In our experiments, all of the im-
plemented variants of the Best-of-Many Christofides’ algorithm perform
significantly better than Christofides’ algorithm; an algorithm that sam-
ples from a maximum entropy distribution over spanning trees seems to
be particularly good.

Keywords: traveling salesman problem, Christofides algorithm.

1 Introduction

In the traveling salesman problem (TSP), we are given a complete, undirected
graphG = (V,E) as input with costs ce ≥ 0 for all e ∈ E, and we must find a tour
through all the vertices of minimum cost. In what follows, we will assume that the
costs obey the triangle inequality; that is, c(u,w) ≤ c(u,v)+c(v,w) for all u, v, w ∈ V .
We will sometimes refer to the asymmetric traveling salesman problem (ATSP),
in which the input is a complete directed graph, and possibly c(u,v) �= c(v,u).

In 1976, Christofides [6] gave a 3
2 -approximation algorithm for the TSP; an

α-approximation algorithm for the TSP is one that runs in polynomial time
and returns a solution of cost at most α times the cost of an optimal solution.
The value α is sometimes known as the performance guarantee of the algorithm.
Christofides’ algorithm works as follows: it computes a minimum-cost spanning
tree (MST) F of the input graph G, then finds a minimum-cost perfect matching
M on all the odd-degree vertices of the tree F . The resulting edge set F ∪M is

c© Springer-Verlag Berlin Heidelberg 2015
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DOI: 10.1007/978-3-662-48350-3_48
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then an Eulerian subgraph of G. By “shortcutting” an Eulerian traversal of the
subgraph, we can obtain a tour that visits each vertex exactly once and has cost
no greater than the cost of the edges in F ∪M .

No approximation algorithm with performance guarantee better than 3
2 is yet

known for the TSP. However, some progress has been made in recent years for
special cases and variants of the problem. Asadpour et al. [4] gave an O(log n/
log logn)-approximation algorithm for the ATSP (where n = |V |), improving
on a long-standing O(log n)-approximation algorithm of Frieze, Galbiati, and
Maffioli [8]. A sequence of improvements has been obtained in the special case of
the graph TSP, in which the input to the problem is an undirected, not necessarily
complete graph G, and the cost c(u,v) for each u, v ∈ V is the number of edges
in the shortest u-v path in G. In this case, Oveis Gharan, Saberi, and Singh
[21] were able to improve slightly on the factor of 3

2 . Mömke and Svensson [16]
then gave a 1.462-approximation algorithm; Mucha [17] improved the analysis
of the Mömke and Svensson algorithm to obtain a 13

9 -approximation algorithm.
Sebő and Vygen [24], by adding some additional ideas, gave a 1.4-approximation
algorithm for graph TSP.

An idea used in several of these results is to start with a tree that is determined
by an LP relaxation, rather than the minimum-cost spanning tree. For the TSP,
a well-known relaxation of the problem is as follows:

Min
∑

e∈E

cexe :

x(δ(v)) = 2, ∀v ∈ V ; x(δ(S)) ≥ 2, ∀S ⊂ V, S �= ∅; 0 ≤ xe ≤ 1, ∀e ∈ E,

where δ(S) is the set of all edges with exactly one endpoint in S and we use
the shorthand that x(F ) =

∑
e∈F xe. This LP relaxation is sometimes called

the Subtour LP. It is not hard to show that given a feasible solution x to the
Subtour LP, n−1

n x is feasible for the spanning tree polytope {x ∈ 
|E| : x(E) =
n−1, x(E(S)) ≤ |S|−1 ∀S ⊆ V, |S| ≥ 2}, where E(S) is the set of all edges with
both endpoints in S. Oveis Gharan, Saberi, and Singh [21] propose an algorithm
which has since been called (by [2]) Best-of-Many Christofides: given the LP
solution x∗, we can compute in polynomial time a decomposition of x∗ into a
convex combination of spanning trees, and we run Christofides’ algorithm for
each of these trees and output the lowest cost solution found. More precisely, if
χF ∈ {0, 1}|E| is the characteristic vector of a set of edges F , then given Subtour

LP solution x∗, we find spanning trees F1, . . . , Fk such that n−1
n x∗ =

∑k
i=1 λiχFi

for λi ≥ 0 and
∑k

i=1 λi = 1. Then for each tree Fi we find a matching Mi of the
odd-degree vertices, and we compute a tour by shortcutting Fi ∪Mi. We return
the cheapest tour found.

An alternative perspective is to consider randomly sampling a spanning tree
from a distribution on spanning trees given by the convex combination, then
run Christofides’ algorithm on the resulting tree found; that is, we sample tree
Fi with probability λi. This perspective potentially allows us to avoid comput-
ing the convex combination explicitly. However, the distribution of trees then
depends on the (implicit) convex combination. Asadpour et al. [4] and Oveis
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Gharan, Saberi, and Singh [21] use a maximum entropy distribution. For the
Asadpour et al. ATSP result, the main property used of the maximum entropy
distribution is that in some cuts of edges, the appearance of arcs is negatively
correlated. Chekuri, Vondrák, and Zenklusen [5] show how to draw a sample with
the appropriate negative correlation properties given an explicit convex combi-
nation of trees; their distribution over trees is not the same as the maximum
entropy distribution.

An exciting possible direction for an improved approximation algorithm for
the TSP is to show that some variation of the Best-of-Many Christofides’ algo-
rithm gives a performance guarantee strictly better than 3/2, either by starting
with a convex combination of spanning trees, or using some of the stronger prop-
erties obtained by sampling a tree from a negatively correlated distribution, or
the maximum entropy distribution. In this paper, we experimentally evaluate
these different versions of the Best-of-Many Christofides’ algorithm in order to
see if there is empirical evidence that these algorithmic variants are any better
than the standard Christofides’ algorithm, and whether any of the variants is
more promising than the others.

In particular, we start by implementing Christofides’ algorithm. Since most
of our instances are geometric, we compute a Delaunay triangulation using the
package Triangle [25]; it is known that the edges of an MST for a 2D Euclidean
instance are a subset of the edges of the Delaunay triangulation. We use Prim’s
algorithm to compute the MST from these edges. For non-geometric instances,
we use Prim’s algorithm to compute the MST. We then use the Blossom V
code of Kolmogorov [12] to find a minimum-cost perfect matching on the odd
degree vertices of the tree. We compute a tour by shortcutting the resulting
Eulerian graph; we perform a simple optimization on the shortcutting. We then
use the Concorde TSP solver [3] to compute a solution x∗ to the subtour LP. We
implement two different ways of finding an explicit convex combination of trees
equal to n−1

n x∗; in the first, we use a column generation technique suggested
by An in his Ph.D. thesis [1] in conjunction with the linear programming solver
Gurobi [10]. In the second, we compute a packing of spanning trees via iteratively
“splitting off” edges of the LP solution from vertices, then maintaining a convex
combination of trees as we “lift back” the split-off edges. For this algorithm, we
use a subroutine of Nagamochi and Ibaraki [18] to obtain a complete splitting-off
of a vertex. We also implement two methods for obtaining a randomly sampled
tree from the support of the LP solution. We first implement the SwapRound
procedure of Chekuri et al. [5]; given an explicit convex combination of trees
generated by the first two methods, we can sample a spanning tree such that
the edges of the tree appearing in any given set are negatively correlated (we
define the negative correlation more precisely in Section 2.3). We also implement
the method for computing a maximum entropy distribution over spanning trees
given the LP solution x∗, and then drawing a sample from this distribution, as
given in the ATSP paper of Asadpour et al. [4] and the Ph.D. thesis of Oveis
Gharan [19]. Our implementation choices for the maximum entropy routine were
influenced by a code shared with us by Oveis Gharan [20].
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To test our results, we ran these algorithms on TSPLIB instances of Reinelt
[22] (both Euclidean and non-Euclidean instances) and Euclidean VLSI instances
from Rohe [23]. We also considered graph TSP instances to see if the performance
of the algorithms was better for such instances than for weighted instances. For
our graph TSP instances, we used undirected graphs from the Koblenz Network
Collection of Kunegis [13].

It is known that the standard Christofides’ algorithm typically returns so-
lutions of cost of about 9-10% away from the cost of an optimal solution on
average (see, for instance, Johnson and McGeoch [11]); this is better than its
worst-case guarantee of at most 50% away from the cost of an optimal solution,
but not as good as other heuristics (such as the Lin-Kernighan heuristic [14])
that do not have performance guarantees. We confirm these results for the stan-
dard Christofides’ algorithm on geometric instances, but Christofides’ algorithm
appears to do worse on graph TSP instances; we had solutions of about 12%
away from optimal. All of the Best-of-Many Christofides’ algorithms performed
substantially better than the standard Christofides’ algorithm, with solutions
of cost about 3-7% away from optimal for the Euclidean instances, 2-3% away
from optimal for the non-Euclidean instances, and under 1% away from optimal
for the graph TSP instances. These results may indicate that the graph TSP
instances are easier for LP-based algorithms than geometric instances. The al-
gorithm that used the maximum entropy distribution on average outperformed
the other Best-of-Many Christofides’ algorithms; however, the algorithm that
found a convex combination of spanning trees via splitting off, then used the
SwapRound routine, was nearly as good as maximum entropy sampling, and
was better in some cases.

Our paper is structured as follows. In Section 2, we give a more detailed
description of the algorithms that we implemented. In Section 3, we describe the
TSP datasets we used and our machine environment, and in Section 4 we give
the results of our experiments, as well as some analysis. We conclude in Section
5. Because of space constraints, we have omitted many details and some figures
from this extended abstract; a full version of the paper is available online [9].

2 Algorithms

In this section, we give descriptions of the various algorithms that we imple-
mented. Sections 2.1 and 2.2 describe the two algorithms that generate explicit
convex combinations of spanning trees given the Subtour LP solution x∗; as de-
scribed above, we compute the Subtour LP solution by using the Concorde TSP
solver [3]. Section 2.3 describes the SwapRound algorithm of Chekuri, Vondrák,
and Zenklusen [5] that generates a randomly sampled tree given an explicit con-
vex combination of spanning trees. Section 2.4 describes the maximum entropy
distribution on spanning trees, the algorithm used to compute it, and the algo-
rithm used to draw a sample from this distribution.
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2.1 Column Generation

Our first algorithm for decomposing the Subtour LP solution n−1
n x∗ into a con-

vex combination of spanning trees follows an algorithm described by An in his
Ph.D. thesis [1]; we use column generation to generate the trees in the convex
combination. In particular, we would like to solve the following linear program,
in which we have a variable yT for each possible spanning tree T , where we as-
sume that x∗

e is the given solution to the Subtour LP and the graph G = (V,E)
is on the edges E = {e : x∗

e > 0}:

Min
∑

e∈E

se :
∑

T :e∈T

yT + se =
n− 1

n
x∗
e, ∀e ∈ E; yT , se ≥ 0, ∀T, ∀e ∈ E.

Since n−1
n x∗ can be expressed as a convex combination of spanning trees, the

optimal solution to the LP is zero, and for an optimal solution (y∗, s∗), y∗ gives
a convex combination of spanning trees.

Because of space constraints, we omit details of the implementation of the
algorithm. As is typical of column generation algorithms, solving the LP to op-
timality can take a long time. On instances of 500 cities, it could take up to
10 hours of computation time. Thus in order to make comparisons with other
methods, we terminated early. In particular, we store the current objective func-
tion value and wait until either the value drops by .1 or 100 iterations have
occurred. If the objective has not dropped by .1 in the 100 iterations, we termi-
nate; otherwise, once it has dropped by .1 we restart the iteration count. Our
cutoff behavior allows us to avoid the long set of iterations in which the method
is near optimal but only makes incremental progress.

2.2 Splitting Off and Tree Packing

Let x∗ be a basic feasible solution to the Subtour LP. It is known that x∗ is
rational, so that there exists a K such that Kx∗ is integer. We let Ĝ be a
multigraph with Kx∗

e copies of edge e. Then by the constraints of the Subtour
LP, each vertex has 2K edges incident on it, and for each i, j ∈ V , there are
at least 2K edge-disjoint paths between i and j. Lovász [15] showed that given
any edge (x, z) incident on z it is possible to find another edge (y, z) incident
on z such that if we remove (x, z) and (y, z) from Ĝ and add edge (x, y), then
for all pairs of vertices i, j ∈ V , i, j �= z, there are still 2K edge-disjoint paths
between i and j. Removing (x, z) and (y, z) and adding (x, y) so as to preserve
connectivity in this way is called the splitting off operation. A complete splitting
off at z removes all 2K edges incident at z from Ĝ and adds K edges not
incident on z to Ĝ so that for all pairs of vertices i, j ∈ V , i, j �= z, there are
still 2K edge-disjoint paths between i and j. Nagamochi and Ibaraki [18] give an
O(nm logn+ n2 log2 n) time algorithm for obtaining a complete splitting off at
a node. We implemented the Nagamochi-Ibaraki algorithm, and use it to obtain
a set of K trees in the original multigraph Ĝ (following Frank [7, Chapter 10])
by splitting off all edges except those incident to two nodes, then constructing
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the trees inductively as we “lift back” the split off edges. We omit the details
due to space constraints.

2.3 SwapRound and Negatively Correlated Distributions

The algorithms of the previous two sections give a convex combination of span-
ning trees such that the convex combination of the characteristic vectors of the
trees is dominated by the Subtour LP solution x∗. Let z∗ =

∑K
i=1 λiχFi ≤ x∗

give the convex combination of the characteristic vectors χFi of K trees Fi. One
can think about the convex combination as being a distribution on spanning
trees. We sample tree Fi with probability λi. A nice feature of this sampling
scheme is that the expected cost of the sampled tree is

∑
e∈E cez

∗
e ≤ ∑

e∈E cex
∗
e ,

at most the value of the Subtour LP. This follows since the probability that a
given edge e ∈ E is in the sampled tree F is

Pr[e ∈ F ] =
∑

i:e∈Fi

λi =
∑

i:e∈Fi

λiχFi(e) = z∗e ≤ x∗
e.

Let Xe be a random variable which is 1 if edge e is in the sampled tree and 0
otherwise; then we have shown that E[Xe] = z∗e .

Asadpour et al. [4] showed that for proving results about the asymmetric
TSP, it is useful to think about drawing a sample such that the edges of the
spanning tree appearing in a fixed set are negatively correlated. We will say that
a probability distribution is negatively correlated if E[Xe] = z∗e and for any set
of edges A ⊆ E, E [Πe∈AXe] ≤

∏
e∈A z∗e , and E [Πe∈A(1 −Xe)] ≤

∏
e∈A(1−z∗e).

Negative correlation allows the proof of concentration bounds that get used in
the result of Asadpour et al.

Chekuri, Vondrák, and Zenklusen [5] give a sampling scheme they call Swap-
Round such that given any convex combination of spanning trees as input,
SwapRound gives a sample from a negatively correlated distribution as out-
put (their result applies more generally to matroids). Let F1, . . . , Fk be the trees
from the convex combination. The algorithm maintains a spanning tree F , which
is initially F1. Then it loops through the other trees F2, . . . , Fk, and calls a sub-
routine, MergeBasis, with the two trees F and Fi, and with probability weights∑i−1

j=1 λj and λi, and updates F to be the result of MergeBasis. The routine
MergeBasis, given two trees F and F ′ and weights λ and λ′, repeatedly inter-
changes edges between the trees F and F ′ until the two are the same. While
F �= F ′, the routine finds edges e ∈ F −F ′ and e′ ∈ F ′ −F such that F − e+ e′

is a spanning tree and F ′ − e′ + e is a spanning tree (such edges are known to
exist if F �= F ′). Then with probability λ/(λ + λ′), the routine updates F ′ to
F ′ − e′ + e, and otherwise the routine sets F to F − e + e′. When F = F ′, the
routine returns F .

We implemented the SwapRound and MergeBasis routines in order to see if
sampling a spanning tree from a negatively correlated distribution would lead
to better overall results. Because both the column generation and splitting off
methods give a convex combination of spanning trees, we tried these two methods
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both with and without the SwapRound routine on the output. Because the
sampling can be performed in parallel, we had four threads running to draw the
samples. We drew 1000 samples per instance, and output the best tour found.

2.4 The Maximum Entropy Distribution

Asadpour et al. [4] consider sampling spanning trees from the maximum entropy
distribution over spanning trees. Given the subtour LP solution x∗, we set z∗ =
n−1
n x∗. If T is the set of all spanning trees of the graph G, then the maximum

entropy distribution is an optimal solution to the following:

Inf
∑

T∈T
p(T ) log p(T ) :

∑

T :e∈T

p(T ) = z∗e , ∀e ∈ E;
∑

T∈T
p(T ) = 1; p(T ) ≥ 0, ∀T.

Asadpour et al. show that the constraint
∑

T∈T p(T ) = 1 is redundant. Given
that z∗ is in the relative interior of the spanning tree polytope, they argue that
there must exist γ∗

e for all e ∈ E such that sampling tree T with probability
proportional to p(T ) = eγ

∗(T ) (with γ∗(T ) ≡ ∑
e∈T γ∗

e ) results in Pr[e ∈ T ] = z∗e
and gives the maximum entropy distribution.

Asadpour et al. then give an algorithm for computing values γ̃e that approx-
imately satisfy the conditions. In particular, the value γ̃e are such that if we
set

p̃(T ) ≡ 1

P
e(

∑
e∈T γ̃e), for P ≡

∑

T∈T
e(

∑
e∈T γ̃e), then z̃e ≡

∑

T∈T :T�e

p̃(T ) ≤ (1 + ε)z∗e .

To compute the γ̃e, we use a combination of the algorithm suggested in Asadpour
et al. and one given by code written by Oveis Gharan [20]. We omit the details
due to space constraints.

Once the γ̃e have been computed, we need to be able to sample from the
corresponding distribution. Asadpour et al. set λe = eγ̃e , and then sample a tree
with probability proportional to

∏
e∈T λe. Asadpour et al. give an algorithm for

computing such a sample in polynomial time, which we implemented. We also
implemented the following algorithm for sampling λ-random trees used in the
code of Oveis Gharan [20]: we pick an arbitrary starting node i as a location,
and start with an empty edge set which will become the spanning tree. With
probability proportional to the λe for each edge e = (i, j) incident on the current
node i, pick an incident edge. If the node j has not yet been visited, add edge
(i, j) to the tree. The new location becomes node j. Repeat until every node
has been added to the tree (and hence the tree is spanning). This algorithm is
not guaranteed to find a sample in polynomial time; however, we found that it
scaled to larger instances better than the algorithm given in Asadpour et al.

We sampled trees as desired from the graph; as with the SwapRound method,
1000 samples were used for the results presented here. For each sampled tree,
we ran Christofides’ algorithm, and output the lowest cost result found across
all samples. Once the γ̃ are computed, we can draw the samples in parallel using
four threads.
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3 Experiments

The algorithms above were implemented in C++. We ran the algorithms on a
machine with a 4.00Ghz Intel i7-875-K processor with 8GB DDR3 memory.

For test data, we used the TSPLIB instances of Reinelt [22]; we considered
59 two-dimensional Euclidean instances with up to 2103 vertices (averaging 524
vertices), and 5 non-Euclidean instances with 120 to 1032 vertices (gr120, si175,
si535, pa561, and si1032), averaging 484 vertices. Similarly, we considered 39
two-dimensional Euclidean VLSI instances of Rohe [23] with up to 3694 vertices,
averaging 1473 vertices. We also considered instances of the graph TSP: we used
9 instances from the Koblenz Network Collection of Kunegis [13]. Specifically,
we considered undirected simple graphs; if the graph had multiple connected
components, we used the largest connected component and discarded the rest
of the graph. The resulting instances ranged in size from 18 to 1615 vertices,
averaging 363.

4 Results

A summary of our results can be found in Table 1. For the two methods that
construct an explicit convex combination of spanning trees (column generation
and splitting off), the best error is the error of the minimum-cost tour resulting
from running Christofides’ algorithm over all the trees in the decomposition,
while the average error is the average error from running Christofides’ algorithm
over all the trees in the decomposition. For the methods that sample trees from
a distribution (the swap round variants and the maximum entropy distribution),
the best error is the smallest error found over all tours resulting from running
Christofides’ algorithm on all the trees sampled from the distribution, and the
average error is the average over all sampled trees. We make several observations
based on this summary.

Table 1. Summary of results, giving the percentage in excess of optimal for the al-
gorithms. ‘Std’ is Christofides algorithm, ‘ColGen’ is column generation, ‘MaxEnt’ is
maximum entropy sampling, ‘Split’ is the splitting-off algorithm, and ‘SR’ is the swap
round algorithm. The TSPLIB E instances are two-dimensional Euclidean, and the
TSPLIB N instances are non-Euclidean.

Std ColGen ColGen+SR MaxEnt Split Split+SR
Best Ave Best Ave Best Ave Best Ave Best Ave

TSPLIB (E) 9.56% 4.03% 6.44% 3.45% 6.24% 3.19% 6.12% 5.23% 6.27% 3.60% 6.02%
VLSI 9.73% 7.00% 8.51% 6.40% 8.33% 5.47% 7.61% 6.60% 7.64% 5.48% 7.52%
TSPLIB (N) 5.40% 2.73% 4.41% 2.22% 4.08% 2.12% 3.99% 2.92% 3.77% 1.99% 3.82%
Graph 12.43% 0.57% 1.37% 0.39% 1.29% 0.31% 1.23% 0.88% 1.77% 0.33% 1.20%

The first is that our results for Christofides’ algorithm are very similar to those
found by Johnson and McGeoch [11], at least for the Euclidean TSPLIB and
VLSI instances, with roughly 9-10% error; the error is less on the non-Euclidean
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TSPLIB instances. Somewhat surprisingly, Christofides’ algorithm seems to per-
form significantly worse on the graph TSP instances from the Koblenz Network
Collection, with 12% error.

One reason that the performance of Christofides’ algorithm on the graph TSP
instances is surprising is that for the other algorithms, the graph TSP instances
seem to be significantly easier, with error under 1%. The VLSI instances appear
to be the hardest overall for the algorithms collectively, but this may be because
the average instance size is larger.

Another observation is that using SwapRound to sample trees does improve
the overall performance of the output.

Of all the algorithms, drawing from the maximum entropy distribution gives
the best overall results, but constructing the convex combination via splitting off
and then applying SwapRound was quite close in most cases, and better in some.
Column generation is the worst of the variants, but we did not check whether
the early termination of the column generation routine contributed to the weak
performance of this variant.

Why are the Best-of-Many Christofides’ algorithm variants significantly better
than Christofides’ algorithm? The key is that they trade off significantly higher
spanning tree cost against significantly lower matching costs, with the reduction
in the matching costs outweighing the increase in the spanning tree cost; these
results are summarized in Table 2. The average tree cost for all of the Best-
of-Many Christofides’ algorithm variants is at most the value of the subtour
LP; the subtour LP is known to be very close to the cost of the optimal tour
experimentally (about 98%-99% of optimal), and our experiments confirm this,
while the minimum-cost spanning trees are 79%-93% of the cost of the optimal
tour in our experiments. However, the matching costs are dramatically reduced.
For Christofides’ algorithm, the cost of the matching is 25%-40% of the cost of
the optimal tour, while for the Best-of-Many Christofides’ variants, it is 10%-
15% in the case of the TSPLIB/VLSI instances, and 4-5% for the graph TSP
instances.

Table 2. Costs of trees and matchings for the various methods, all expressed relative
to the cost of the optimal tour.

Tree Matching

Std BOM Std ColGen ColGen+SR MaxEnt Split Split+SR

TSPLIB (E) 87.47% 98.57% 31.25% 11.43% 11.03% 10.75% 10.65% 10.41%
VLSI 89.85% 98.84% 29.98% 14.30% 14.11% 12.76% 12.78% 12.70%
TSPLIB (N) 92.97% 99.36% 24.15% 9.67% 9.36% 8.75% 8.77% 8.56%
Graph 79.10% 98.23% 39.31% 5.20% 4.84% 4.66% 4.34% 4.49%

One reason the matching costs are so much lower in the Best-of-Many Christofides’
algorithm variants is that sampling a spanning tree from the subtour LP solution
gives spanning trees such that a very high percentage of the vertices have de-
gree two. See Figure 1 to compare the minimum-cost tree on the VLSI instance
XQF131 with a tree produced by the maximum entropy distribution. Thus the
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number of edges needed in the matching is much smaller. These edges tend to
be longer in the Best-of-Many Christofides’ variants, because odd-degree vertices
are rarer, and thus not as near to each other, but because the number of edges
needed is much smaller, there is a significant reduction in the cost of the match-
ing. We summarize information about the matching costs in Table 3, where we
give the average fraction of odd-degree nodes for the various algorithms, as well
as the average cost of a matching edge (expressed in terms of percentage of the
cost of an optimal tour). For the TSPLIB and VLSI instances, 36 to 39% of the
min-cost spanning tree vertices are odd, whereas for the Best-of-Many variants,
the number is between 8-12%; however, the cost of each matching edge is roughly
half to two-thirds more in these instances. The graph instances are quite differ-
ent; for these instances, the min-cost spanning trees have 66% of vertices having
odd degree, while the Best-of-Many variants have about the same percentages
as before. For these instances, however, the cost of the matching edges are about
the same between the standard Christofides’ algorithm and the Best-of-Many
variants.

(a) Standard Christofides MST (b) Maximum entropy

Fig. 1. Sample trees on VLSI instance XQF131 from Rohe [23].

Table 3. Information about matchings for the various algorithms and instances. ‘Num’
indicates the average percentage of odd-degree vertices in the spanning tree, and ‘Cost’
is the average cost of a matching edge expressed as a percentage of the cost of the
optimal tour.

Std ColGen ColGen+SR MaxEnt Split Split+SR
Num Cost Num Cost Num Cost Num Cost Num Cost Num Cost

TSPLIB (E) 39% 0.89% 9.3% 1.3% 8.4% 1.4% 8.0% 1.4% 7.6% 1.5% 7.8% 1.4%
VLSI 36% 0.21% 12% 0.34% 11% 0.36% 8.6% 0.38% 8.3% 0.41% 8.3% 0.39%
TSPLIB (N) 38% 0.48% 12% 0.63% 11% 0.67% 10% 0.66% 9.8% 0.69% 9.8% 0.66%
Graph 66% 1.9% 8.9% 1.7% 8.2% 1.7% 7.8% 1.7% 7.6% 1.5% 7.8% 1.5%

5 Conclusions

Our goal in this paper was to determine whether the empirical performance of
the Best-of-Many Christofides’ algorithms gives any reason to think they might
be provably better than the Christofides’ algorithm. The answer to this question
appears to be yes, with the large caveat that there are many heuristics for the



580 K. Genova and D.P. Williamson

traveling salesman problem (like Lin-Kernighan) with far better performance
than Christofides’ algorithm which have no provable performance guarantee at
all. We also wished to determine which variant might be most promising for
further theoretical study. For this question, it seems that the sampling methods
have the most promise: that is, maximum entropy sampling or the SwapRound
algorithm applied to some initial convex combination of trees. However, because
the good performance of these algorithms depends on taking the best result over
a large number of samples drawn, one might have to argue that a good tour is
produced with reasonable probability after multiple draws; it does not seem that
one can argue that a good tour is produced in expectation from a single draw.
The average performance of these sampling methods does not seem significantly
different from what happens when we construct an explicit convex combination
(with column generation, or splitting off).

In our limited experience, it also seems that graph TSP is significantly easier
problem for the Best-of-Many variants, and this may bear further investigation
both theoretically and empirically. The quality of the solutions found by these
algorithms relative to the standard Christofides’ algorithm may indicate that
these instances really are much easier than the general case of symmetric cost
functions with triangle inequality.
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Abstract. Let G be a strongly connected directed graph. We consider
the following three problems, where we wish to compute the small-
est strongly connected spanning subgraph of G that maintains respec-
tively: the 2-edge-connected blocks of G (2EC-B); the 2-edge-connected
components of G (2EC-C); both the 2-edge-connected blocks and the
2-edge-connected components of G (2EC-B-C). All three problems are
NP-hard, and thus we are interested in efficient approximation algo-
rithms. For 2EC-C we can obtain a 3/2-approximation by combining
previously known results. For 2EC-B and 2EC-B-C, we present new 4-
approximation algorithms that run in linear time. We also propose var-
ious heuristics to improve the size of the computed subgraphs in prac-
tice, and conduct a thorough experimental study to assess their merits
in practical scenarios.

1 Introduction

Let G = (V,E) be a directed graph (digraph), with m edges and n vertices.
An edge of G is a strong bridge if its removal increases the number of strongly
connected components of G. A digraph G is 2-edge-connected if it has no strong
bridges. The 2-edge-connected components ofG are its maximal 2-edge-connected
subgraphs. Let v and w be two distinct vertices: v and w are 2-edge-connected,
denoted by v ↔2e w, if there are two edge-disjoint directed paths from v to w
and two edge-disjoint directed paths from w to v. (Note that a path from v to w
and a path from w to v need not be edge-disjoint.) A 2-edge-connected block of
G = (V,E) is a maximal subset B ⊆ V such that u ↔2e v for all u, v ∈ B.
Differently from undirected graphs, in digraphs 2-edge-connected blocks can
be different from the 2-edge-connected components, i.e., two vertices may be
2-edge-connected but lie in different 2-edge-connected components. See Figure 1.

Computing a smallest spanning subgraph that maintains the same edge or
vertex connectivity properties of the original graph is a fundamental problem in
network design, with many practical applications [15]. In this paper we consider
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Fig. 1. From left-to-right we show: a strongly connected digraph G with a strong bridge
(c, e), the 2-edge-connected components of G, and the 2-edge-connected blocks of G.

the problem of finding the smallest spanning subgraph of G that maintains cer-
tain 2-edge-connectivity requirements in addition to strong connectivity. Specif-
ically, we distinguish three problems that we refer to as 2EC-B, 2EC-C and 2EC-
B-C. In particular, we wish to compute the smallest strongly connected spanning
subgraph of a digraph G that maintains the following properties: the pairwise
2-edge-connectivity of G, i.e., the 2-edge-connected blocks of G (2EC-B); the 2-
edge-connected components of G (2EC-C); both the 2-edge-connected blocks and
the 2-edge-connected components of G (2EC-B-C). Since all those problems are
NP-hard [7], we are interested in designing efficient approximation algorithms.

Related Work. Finding a smallest k-edge-connected (resp. k-vertex-connected)
spanning subgraph of a given k-edge-connected (resp. k-vertex-connected) di-
graph is NP-hard for k ≥ 2 for undirected graphs, and for k ≥ 1 for digraphs [7].
Problems of this type, together with more general variants of approximating
minimum-cost subgraphs that satisfy certain connectivity requirements, have
received a lot of attention, and several important results have been obtained.
See, e.g., the survey [13]. Currently, the best approximation ratio for comput-
ing the smallest strongly connected spanning subgraph (SCSS) is 3/2 achieved
by Vetta [17]. A linear-time algorithm that achieves a 5/3-approximation was
given by Zhao et al. [18]. For the smallest k-edge-connected spanning subgraph
(kECSS), Laehanukit et al. [14] gave a randomized (1+1/k)-approximation algo-
rithm. Regarding hardness of approximation, Gabow et al. [5] showed that there
exists an absolute constant c > 0 such that for any integer k ≥ 1, approximating
the smallest kECSS on directed multigraphs to within a factor 1+c/k in polyno-
mial time implies P = NP. Jaberi [12] considered various optimization problems
related to 2EC-B and proposed corresponding approximation algorithms. The
approximation ratio in Jaberi’s algorithms, however, is linear in the number of
strong bridges, and hence O(n) in the worst case.

Our Results. In this paper we provide both theoretical and experimental con-
tributions to the 2EC-B, 2EC-C and 2EC-B-C problems. A 3/2-approximation for
2EC-C can be obtained by carefully combining the 2ECSS randomized algorithm
of Laehanukit et al. [14] and the SCSS algorithm of Vetta [17]. A faster and de-
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terministic 2-approximation algorithm for 2EC-C can be obtained by combining
techniques based on edge-disjoint spanning trees [4,16] with the SCSS algorithm
of Zhao et al. [18]. We remark that the other two problems considered here,
2EC-B and 2EC-B-C, seem harder to approximate. The only known result is the
sparse certificate for 2-edge-connected blocks of [8], which implies a linear-time
O(1)-approximation algorithm for 2EC-B. Unfortunately, no good bound for the
approximation constant was previously known, and indeed achieving a small
constant seemed to be non-trivial. In this paper, we make a substantial progress
in this direction by presenting new 4-approximation algorithms for 2EC-B and
2EC-B-C that run in linear time (the algorithm for 2EC-B-C runs in linear time
once the 2-edge-connected components of G are available; if not, they can be
computed in O(n2) time [10]).

From the practical viewpoint, we provide efficient implementations of our algo-
rithms that are very fast in practice. We further propose and implement several
heuristics that improve the size (i.e., the number of edges) of the computed span-
ning subgraphs in practice. Some of our algorithms require O(mn) time in the
worst case, so we also present several techniques to achieve significant speedups
in their running times. With all these implementations, we conduct a thorough
experimental study and report its main findings. We believe that this is crucial to
assess the merits of all the algorithms considered in practical scenarios. For lack
of space, proofs and some details are omitted and will be given in the full paper.

2 Preliminaries

A flow graph is a digraph such that every vertex is reachable from a distinguished
start vertex. Let G = (V,E) be a strongly connected digraph. For any vertex
s ∈ V , we denote by G(s) = (V,E, s) the corresponding flow graph with start
vertex s; all vertices in V are reachable from s since G is strongly connected.
The dominator relation in G(s) is defined as follows: A vertex u is a dominator
of a vertex w (u dominates w) if every path from s to w contains u; u is a proper
dominator of w if u dominates w and u �= w. The dominator relation is reflexive
and transitive. Its transitive reduction is a rooted tree, the dominator tree D(s):
u dominates w if and only if u is an ancestor of w in D(s). If w �= s, d(w), the
parent of w in D(s), is the immediate dominator of w: it is the unique proper
dominator of w that is dominated by all proper dominators of w. The dominator
tree of a flow graph can be computed in linear time, see, e.g., [1,2]. An edge
(u,w) is a bridge in G(s) if all paths from s to w include (u,w).1 Italiano et al.
[11] showed that the strong bridges of G can be computed from the bridges of
the flow graphs G(s) and GR(s), where s is an arbitrary start vertex and GR is
the digraph that results from G after reversing edge directions. A spanning tree
T of a flow graph G(s) is a tree with root s that contains a path from s to v for
all vertices v. Two spanning trees B and R rooted at s are edge-disjoint if they
have no edge in common. A flow graph G(s) has two such spanning trees if and

1 Throughout, we use consistently the term bridge to refer to a bridge of a flow graph
G(s) and the term strong bridge to refer to a strong bridge in the original graph G.
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only if it has no bridges [16]. The two spanning trees are maximally edge-disjoint
if the only edges they have in common are the bridges of G(s). Two (maximally)
edge-disjoint spanning trees can be computed in linear-time by an algorithm of
Tarjan [16], using the disjoint set union data structure of Gabow and Tarjan [6].
Two spanning trees B and R rooted at s are independent if for all vertices v,
the paths from s to v in B and R share only the dominators of v. Every flow
graph G(s) has two such spanning trees, computable in linear time [9] which are
maximally edge-disjoint.

3 Approximation Algorithms and Heuristics

We describe our main approaches for solving problem 2EC-B. Let G = (V,E)
be the input directed graph. The first two algorithms process one edge (x, y) of
the current subgraph G′ of G at a time, and test if it is safe to remove (x, y).
Initially G′ = G, and the order in which the edges are processed is arbitrary. The
third algorithm starts with the empty graph G′ = (V, ∅), and adds the edges of
spanning trees of certain subgraphs of G until the resulting digraph is strongly
connected and has the same 2-edge-connected blocks as G.

Two Edge-Disjoint Paths Test. We test if G′ \ (x, y) contains two edge-
disjoint paths from x to y. If this is the case, then we remove edge (x, y). This
test takes O(m) time per edge, so the total running time is O(m2). We refer
to this algorithm as Test2EDP-B. Note that Test2EDP-B computes a minimal 2-
approximate solution for the 2ECSS problem [3], which is not necessarily minimal
for the 2EC-B problem.

2-Edge-Connected Blocks Test. If (x, y) is not a strong bridge in G′, we test
if G′ \ (x, y) has the same 2-edge-connected blocks as G′. If this is the case then
we remove edge (x, y). We refer to this algorithm as Test2ECB-B. Since the 2-
edge-connected blocks of a graph can be computed in linear time [8], Test2ECB-B
runs in O(m2) time. Test2ECB-B computes a minimal solution for 2EC-B and
achieves an approximation ratio of 4.

Independent Spanning Trees.We can compute a sparse certificate for 2-edge-
connected blocks as in [8], based on a linear-time construction of two independent
spanning trees of a flow graph [9]. We refer to this algorithm as IST-B original.
We will show later that a suitably modified construction, which we refer to as
IST-B, yields a linear-time 4-approximation algorithm.

Test2EDP-B and Test2ECB-B can be combined into a hybrid algorithm (Hybrid-
B), as follows: if the tested edge (x, y) connects vertices in the same block (i.e.,
x ↔2e y), then apply Test2EDP-B; otherwise, apply Test2ECB-B. One can show
that Hybrid-B returns the same sparse subgraph as Test2ECB-B.

In algorithm Hybrid-B we also apply an additional speed-up heuristic for trivial
edges (x, y): if x belongs to a nontrivial block (i.e., a block of size ≥ 2) and has
outdegree two or y belongs to a nontrivial block and has indegree two, then (x, y)
must be included in the solution. As we show later in our experiments, such a
simple test can yield significant performance gains.
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Note that Test2EDP-B, Test2ECB-B and Hybrid-B produce a 4-approximation
for 2EC-B in O(n2) time if they are run on the sparse subgraph computed by
IST-B instead of the original digraph. We observed experimentally that this also
improves the quality of the computed solutions in practice. Therefore, we applied
this idea in all our implementations. See Table 1 in Section 4.

Although all the above algorithms do not maintain the 2-edge-connected com-
ponents of the original graph, we can still apply them to get an approximation
for 2EC-B-C, as follows. First, we compute the 2-edge-connected components of
G and solve the 2ECSS problem independently for each such component. Then,
we can apply any of the algorithms for 2EC-B (Test2EDP-B, Test2ECB-B, Hybrid-
B or IST-B) for the edges that connect different components. To speed them up,
we apply them to a condensed graph H that is formed from G by contracting
each 2-edge-connected component of G into a single supervertex. Note that H is
a multigraph since the contractions can create loops and parallel edges. For any
vertex v of G, we denote by h(v) the supervertex of H that contains v. Every
edge (h(u), h(v)) of H is associated with the corresponding original edge (u, v) of
G. Algorithms Test2EDP-BC, Test2ECB-BC, Hybrid-BC or IST-BC are obtained
by applying to graph H the corresponding algorithm for 2EC-B. Let H ′ be the
obtained subgraph of H , and let G′ be the digraph that is obtained after we
expand back each supervertex of H with its 2-edge-connected sparse subgraph
computed before. Then, G′ is a valid solution to the 2EC-B-C problem.

As a special case of applying Test2EDP-B to H , we can immediately remove
loops and parallel edges (h(u), h(v)) if H has more than two edges directed from
h(u) to h(v). To obtain faster implementations, we solve the 2ECSS problems in
linear-time using edge-disjoint spanning trees [4,16]. Let C be a 2-edge-connected
component of G. We select an arbitrary vertex v ∈ C as a root and compute two
edge-disjoint spanning trees in the flow graph C(v) and two edge-disjoint span-
ning trees in the reverse flow graph CR(v). The edges of these spanning trees
give a 2-approximate solution C′ for 2ECSS on C. Moreover, as in 2EC-B, we can
apply algorithms Test2EDP-BC, Test2ECB-BC and Hybrid-BC on the sparse sub-
graph computed by IST-BC. Then, these algorithms produce a 4-approximation
for 2EC-B-C in O(n2) time. Furthermore, for these O(n2)-time algorithms, we
can improve the approximate solution C′ for 2ECSS on each 2-edge-connected
component C of G, by applying the two edge-disjoint paths test on the edges of
C′. We incorporate all these ideas in all our implementations.

We can also use the condensed graph in order to obtain an efficient approxima-
tion algorithm for 2EC-C. To that end, we can apply the algorithm of Laehanukit
et al. [14] and get a 3/2-approximation of the 2ECSS problem independently for
each 2-edge-connected component of G. Then, since we only need to preserve
the strong connectivity of H , we can run the algorithm of Vetta [17] on a di-
graph H̃ that results from H after removing all loops and parallel edges. This
computes a spanning subgraph H ′ of H̃ that is a 3/2-approximation for SCSS in
H . The corresponding expanded graph G′, where we substitute each superver-
tex h(v) of H with the approximate smallest 2ECSS, gives a 3/2-approximation
for 2EC-C. A faster and deterministic 2-approximation algorithm for 2EC-C can
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be obtained as follows. For the 2ECSS problems we use the edge-disjoint span-
ning trees 2-approximation algorithm described above. Then, we solve SCSS
on H̃ by applying the linear-time algorithm of Zhao et al. [18]. This yields a
2-approximation algorithm for 2EC-C that runs in linear time once the 2-edge-
connected components of G are available (if not, they can be computed in O(n2)
time [10]). We refer to this algorithm as ZNI-C.

Theorem 1. There is a polynomial-time algorithm for 2EC-C that achieves an
approximation ratio of 3/2. Moreover, if the 2-edge-connected components of G
are available, then we can compute a 2-approximate 2EC-C in linear time.

3.1 Independent Spanning Trees

Here we present our new algorithm IST-B and prove that it gives a linear-time
4-approximation for 2EC-B and 2EC-B-C. Since IST-B is a modified version of
the sparse certificate C(G) for the 2-edge-connected blocks of a digraph G [8]
(IST-B original), let us review IST-B original first.

Let s be an arbitrarily chosen start vertex of the strongly connected digraph
G. The canonical decomposition of the dominator treeD(s) is the forest of rooted
trees that results from D(s) after the deletion of all the bridges of G(s). Let T (v)
denote the tree containing vertex v in this decomposition. We refer to the subtree
roots in the canonical decomposition as marked vertices. For each marked vertex
r we define the auxiliary graph Gr = (Vr , Er) of r as follows. The vertex set Vr of
Gr consists of all the vertices in T (r), referred to as ordinary vertices, and a set
of auxiliary vertices, which are obtained by contracting vertices in V \ T (r), as
follows. Let v be a vertex in T (r). We say that v is a boundary vertex in T (r) if v
has a marked child in D(s). Let w be a marked child of a boundary vertex v: all
the vertices that are descendants of w in D(s) are contracted into w. All vertices
in V \T (r) that are not descendants of r are contracted into d(r) (r �= s if any such
vertex exists). During those contractions, parallel edges are eliminated. We call an
edge in Er \E shortcut edge. Such an edge has an auxiliary vertex as an endpoint.
We associate each shortcut edge (u, v) ∈ Er with a corresponding original edge
(x, y) ∈ E, i.e. x was contracted into u or y was contracted into v (or both). If
G(s) has b bridges then all the auxiliary graphs Gr have at most n + 2b vertices
and m + 2b edges in total and can be computed in O(m) time. As shown in [8],
two ordinary vertices of an auxiliary graph Gr are 2-edge-connected in G if and
only if they are 2-edge-connected in Gr. Thus the 2-edge-connected blocks of G
are a refinement of the vertex sets in the trees of the canonical decomposition. The
sparse certificate of [8] is constructed in three phases.Wemaintain a list (multiset)
L of the edges to be added inC(G); initiallyL = ∅. The same edgemay be inserted
into Lmultiple times, but the total number of insertions will beO(n). So the edges
of C(G) can be obtained from L after we remove duplicates, e.g. by using radix
sort. Also, during the construction, the algorithm may choose a shortcut edge or
a reverse edge to be inserted into L. In this case we insert the associated original
edge instead.

Phase 1. We insert into L the edges of two independent spanning trees, B(G(s))
and R(G(s)) of G(s).
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Phase 2. For each auxiliary graph H = Gr of G(s), that we refer to as the first-
level auxiliary graphs, we compute two independent spanning trees B(HR(r))
and R(HR(r)) for the corresponding reverse flow graph HR(r) with start vertex
r. We insert into L the edges of these two spanning trees. We note that L induces
a strongly connected spanning subgraph of G at the end of this phase.

Phase 3. Finally, in the third phase we process the second-level auxiliary graphs,
which are the auxiliary graphs of HR for all first-level auxiliary graphs H . Let
(p, q) be a bridge of HR(r), and let HR

q be the corresponding second-level auxil-

iary graph. For every strongly connected component S of HR
q \ (p, q), we choose

an arbitrary vertex v ∈ S and compute a spanning tree of S(v) and a spanning
tree of SR(v), and insert their edges into L.

The above construction inserts O(n) edges into C(G), and therefore achieves
a constant approximation ratio for 2EC-B. It is not straightforward, however, to
give a good bound for this constant, since the spanning trees that are used in this
construction contain auxiliary vertices that are created by applying two levels of
the canonical decomposition. In the next section we analyze a modified version of
the sparse certificate construction, and show that it achieves a 4-approximation
for 2EC-B. Then we show that we also achieve a 4-approximation for 2EC-B-C
by applying this sparse certificate on the condensed graph H .

The New Algorithm IST-B. The main idea behind IST-B is to limit the number
of edges added to the sparse certificate C(G) because of auxiliary vertices. In
particular, we show that in Phase 2 of the construction it suffices to add at most
one new edge for each first-level auxiliary vertex, while in Phase 3 at most 2b
additional edges are necessary for all second-level auxiliary vertices, where b is
the number of bridges in G(s).

Consider Phase 2. Let H = Gr be a first-level auxiliary graph. In the sparse
certificate we include two independent spanning trees, B(HR(r)) and R(HR(r)),
of the reverse flow graph HR(r) with start vertex r. In our new construction,
each auxiliary vertex x in HR will contribute at most one new edge in C(G).
Suppose first that x = d(r), which exists if r �= s. The only edge entering d(r) in
HR is (r, d(r)) which is the reverse edge of the bridge (d(r), r) of G(s). So d(r)
does not add a new edge in C(G), since all the bridges of G(s) were added in the
first phase of the construction. Next we consider an auxiliary vertex x �= d(r).
In HR there is a unique edge (x, z) leaving x, where z = d(x). This edge is
the reverse of the bridge (d(x), x) of G(s). Suppose that x has no children in
B(HR(r)) and R(HR(r)). Deleting x and its two entering edges in both spanning
trees does not affect the existence of two edge-disjoint paths from v to r in H ,
for any ordinary vertex v. However, the resulting graph C(G) at the end may
not be strongly connected. To fix this, it suffices to include in C(G) the reverse
of an edge entering x from only one spanning tree. Finally, suppose that x has
children, say in B(HR(r)). Then z = d(x) is the unique child of x in B(HR(r)),
and the reverse of the edge (x, z) of B(HR(r)) is already included in C(G) by
Phase 1. Therefore, in all cases, we can charge to x at most one new edge.
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Now we consider Phase 3. Let HR
q be a second-level auxiliary graph of HR.

Let e be the strong bridge entering q in HR, and let S be a strongly connected
component in HR

q \ e. In our sparse certificate we include the edges of a strongly

connected subgraph of S, so we have spanning trees T and TR of S(v) and SR(v),
respectively, rooted at an arbitrary ordinary vertex v. Let x be an auxiliary
vertex of S. If x is a first-level auxiliary vertex in H then it has a unique entering
edge (w, x) which is a bridge in G(s) already included in C(G). If x is ordinary
in H but a second-level auxiliary vertex in Hq then it has a unique leaving edge
(x, z), which is a bridge in HR(r) and C(G) already contains a corresponding
original edge. Consider the first case. If x is a leaf in TR then we can delete the
edge entering x in TR. Otherwise, w is the unique child of x in TR, and the
corresponding edge (w, x) entering x in H has already been inserted in C(G).
The symmetric arguments hold if x is ordinary in H . This analysis implies that
we can associate each second-level auxiliary vertex with one edge in each of T
and TR that is either not needed in C(G) or has already been inserted. If all such
auxiliary vertices are associated with distinct edges then they do not contribute
any new edges in C(G). Suppose now that there are two second-level auxiliary
vertices x and y that are associated with a common edge e. This can happen only
if one of these vertices, say y, is a first-level auxiliary vertex, and x is ordinary
in H . Then y has a unique entering edge in H , which means that e = (x, y) is
a strong bridge, and thus already in C(G). Also e ∈ T and eR = (y, x) ∈ TR.
In this case, we can treat x and y as a single auxiliary vertex that results from
the contraction of e, which contributes at most two new edges in C(G). Since
y is a first-level auxiliary vertex, this can happen at most b times in all second-
level auxiliary graphs, so the 2b bound follows. Using the above construction we
obtain the following result (see the full paper for the complete proof):

Theorem 2. There is a linear-time approximation algorithm for the 2EC-B
problem that achieves an approximation ratio of 4. Moreover, if the 2-edge-
connected components of the input digraph are known in advance, we can compute
a 4-approximation for the 2EC-B-C problem in linear time.

Heuristics Applied on Auxiliary Graphs. To speed up algorithms from the
Test2EDP and Hybrid families, we applied them to the first-level and second-
level auxiliary graphs. Our experiments indicated that applying this heuristic
to second-level auxiliary graphs yields better results than the ones obtained
on first-level auxiliary graphs. We refer to those variants as Test2EDP-B-Aux,
Hybrid-B-Aux, Test2EDP-BC-Aux, Hybrid-BC-Aux, depending on the algorithm
(Test2EDP or Hybrid) and problem (2EC-B or 2EC-B-C) considered.

4 Experimental Analysis

We implemented the algorithms previously described: 7 for 2EC-B, 6 for 2EC-
B-C, and one for 2EC-C, as summarized in Table 1. All implementations were
written in C++ and compiled with g++ v.4.4.7 with flag -O3. We performed our
experiments on a GNU/Linux machine, with Red Hat Enterprise Server v6.6: a
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Table 1. The algorithms considered in our experimental study. The worst-case bounds
refer to a digraph with n vertices and m edges. †These linear running times assume
that the 2-edge-connected components of the input digraph are available.

Algorithm Problem Technique Time

ZNI-C 2EC-C Zhao et al. [18] applied on the condensed graph O(m+n)†

IST-B original 2EC-B Original sparse certificate from [8] O(m + n)

IST-B 2EC-B Modified sparse certificate O(m + n)

Test2EDP-B 2EC-B Two edge-disjoint paths test on sparse certificate of input
graph

O(n2)

Test2ECB-B 2EC-B 2-edge-connected blocks test on sparse certificate of input
graph

O(n2)

Hybrid-B 2EC-B Hybrid of two edge-disjoint paths and 2-edge-connected
blocks test on sparse certificate of input graph

O(n2)

Test2EDP-B-Aux 2EC-B Test2EDP-B applied on second-level auxiliary graphs O(n2)

Hybrid-B-Aux 2EC-B Hybrid-B applied on second-level auxiliary graphs O(n2)

IST-BC 2EC-B-C Modified sparse certificate preserving 2-edge-connected
components (applied on the condensed graph)

O(m+n)†

Test2EDP-BC 2EC-B-C Two edge-disjoint paths test on sparse certificate of con-
densed graph

O(n2)

Test2ECB-BC 2EC-B-C 2-edge-connected blocks test on sparse certificate of con-
densed graph

O(n2)

Hybrid-BC 2EC-B-C Hybrid of two edge-disjoint paths and 2-edge-connected
blocks test on sparse certificate of condensed graph

O(n2)

Test2EDP-BC-Aux 2EC-B-C Test2EDP-BC applied on second-level auxiliary graphs O(n2)

Hybrid-BC-Aux 2EC-B-C Hybrid-BC applied on second-level auxiliary graphs O(n2)

Table 2. Real-world graphs sorted by file size of their largest SCC; n is the number
of vertices, m the number of edges, and δavg is the average vertex indegree; b∗ is the
number of strong bridges; δBavg and δCavg are lower bounds on the average vertex indegree
of an optimal solution to 2EC-B and 2EC-C, respectively.

Dataset n m file size δavg b∗ δBavg δCavg type

Rome99 3353 8859 100KB 2.64 1474 1.75 1.67 road network
P2p-Gnutella25 5153 17695 203KB 3.43 2181 1.60 1.00 peer2peer
P2p-Gnutella31 14149 50916 621KB 3.59 6673 1.56 1.00 peer2peer
Web-NotreDame 53968 296228 3,9MB 5.48 34879 1.50 1.36 web graph
Soc-Epinions1 32223 443506 5,3MB 13.76 20975 1.56 1.55 social network
USA-road-NY 264346 733846 11MB 2.77 104618 1.80 1.80 road network
USA-road-BAY 321270 800172 12MB 2.49 196474 1.69 1.69 road network
USA-road-COL 435666 1057066 16MB 2.42 276602 1.68 1.68 road network
Amazon0302 241761 1131217 16MB 4.67 73361 1.74 1.64 prod. co-purchase
WikiTalk 111881 1477893 18MB 13.20 85503 1.45 1.44 social network
Web-Stanford 150532 1576314 22MB 10.47 64723 1.62 1.33 web graph
Amazon0601 395234 3301092 49MB 8.35 83995 1.82 1.82 prod. co-purchase
Web-Google 434818 3419124 50MB 7.86 211544 1.59 1.48 web graph
Web-Berkstan 334857 4523232 68MB 13.50 164779 1.56 1.39 web graph

PowerEdge T420 server 64-bit NUMA with two Intel Xeon E5-2430 v2 processors
and 16GB of RAM RDIMM memory. Each processor has 6 cores sharing a 15MB
L3 cache, and each core has a 2MB private L2 cache and 2.50GHz speed. In our
experiments we did not use any parallelization, and each algorithm ran on a
single core. We report CPU times measured with the getrusage function. All
our running times were averaged over ten different runs.
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For the experimental evaluation we use the datasets shown in Table 2. We
measure the quality of the solution computed by algorithm A on problem P
by a quality ratio defined as q(A,P) = δAavg/δ

P
avg , where δAavg is the average

vertex indegree of the subgraph computed by A and δPavg is a lower bound on
the average vertex indegree of the optimal solution for P . Specifically, for 2EC-B
and 2EC-B-C we define δBavg = (n+k)/n, where n is the total number of vertices
of the input digraph and k is the number of vertices that belong in nontrivial
2-edge-connected blocks.2 We set a similar lower bound δCavg for 2EC-C, with
the only difference that k is the number of vertices that belong in nontrivial
2-edge-connected components. Note that the quality ratio is an upper bound of
the actual approximation ratio. The smaller the values of q(A,P) (i.e., the closer
to 1), the better is the approximation obtained by algorithm A for problem P .

We now report the results of our experiments with all the algorithms consid-
ered for problems 2EC-B, 2EC-B-C and 2EC-C. As previously mentioned, for the
sake of efficiency, all variants of Test2EDP, Test2ECB and Hybrid were run on the
sparse certificate computed by either IST-B or IST-BC (depending on the prob-
lem at hand) instead of the original digraph. For the 2EC-B problem, the quality
ratio of the spanning subgraphs computed by the different algorithms is shown
in Table 3, while their running times are plotted in Figure 2 (top). Similarly, for
the 2EC-C and 2EC-B-C problems, the quality ratio of the spanning subgraphs
computed by the different algorithms is shown in Table 4, while their running
times are plotted in Figure 2 (bottom).

There are two peculiarities related to road networks that emerge immediately
from the analysis of our experimental data. First, all algorithms achieve consis-
tently better approximations for road networks than for most of the other graphs
in our data set. Second, for the 2EC-B problem the Hybrid algorithms (Hybrid-B
and Hybrid-B-Aux) seem to achieve substantial speedups on road networks; for the
2EC-B-C problem, this is even true for Test2ECB-BC. The first phenomenon can
be explained by taking into account the macroscopic structure of road networks,
which is rather different from other networks. Indeed, road networks are very close
to be “undirected”: i.e., whenever there is an edge (x, y), there is also the reverse
edge (y, x) (expect for one-way roads). Roughly speaking, road networks mainly
consist of the union of 2-edge-connected components, joined together by strong
bridges, and their 2-edge-connected blocks coincide with their 2-edge-connected
components. In this setting, a sparse strongly connected subgraph of the con-
densed graph will preserve both blocks and components. The second phenomenon
is mainly due to the trivial edge heuristic described in Section 3.

Apart from the peculiarities of road networks, ZNI-C behaves as expected for
2EC-C through its linear-time 2-approximation algorithm. Note that for both
problems 2EC-B and 2EC-B-C, all algorithms achieve quality ratio significantly
smaller than our theoretical bound of 4. Regarding running times, we observe
that the 2EC-B-C algorithms are faster than the 2EC-B algorithms, sometimes

2 This follows from the fact that in the sparse subgraph the k vertices in nontrivial
blocks must have indegree at least two, while the remaining n−k vertices must have
indegree at least one, since we seek for a strongly connected spanning subgraph.
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Table 3. Quality ratio q(A,P) of the solutions computed for 2EC-B.

Dataset
IST-B

IST-B Test2EDP-B
Test2ECB-B

Test2EDP-B-Aux Hybrid-B-Aux
original & Hybrid-B

Rome99 1.389 1.363 1.171 1.167 1.177 1.174
P2p-Gnutella25 1.656 1.512 1.220 1.143 1.251 1.234
P2p-Gnutella31 1.682 1.541 1.251 1.169 1.291 1.274
Web-NotreDame 1.964 1.807 1.489 1.417 1.500 1.471
Soc-Epinions1 2.047 1.837 1.435 1.379 1.441 1.406
USA-road-NY 1.343 1.245 1.174 1.174 1.175 1.175
USA-road-BAY 1.361 1.307 1.245 1.246 1.246 1.246
USA-road-COL 1.354 1.304 1.251 1.252 1.252 1.252
Amazon0302 1.762 1.570 1.186 1.134 1.206 1.196
WikiTalk 2.181 2.050 1.788 1.588 1.792 1.615
Web-Stanford 1.907 1.688 1.409 1.365 1.418 1.406
Amazon0601 1.866 1.649 1.163 1.146 1.170 1.166
Web-Google 1.921 1.728 1.389 1.322 1.401 1.377
Web-Berkstan 2.048 1.775 1.480 1.427 1.489 1.469

Table 4. Quality ratio q(A,P) of the solutions computed for 2EC-C and 2EC-B-C.

Dataset ZNI-C IST-BC Test2EDP-BC
Test2ECB-BC

Test2EDP-BC-Aux Hybrid-BC-Aux
& Hybrid-BC

Rome99 1.360 1.371 1.197 1.187 1.197 1.195
P2p-Gnutella25 1.276 1.517 1.218 1.141 1.249 1.232
P2p-Gnutella31 1.312 1.537 1.251 1.170 1.290 1.273
Web-NotreDame 1.620 1.747 1.500 1.426 1.510 1.484
Soc-Epinions1 1.790 1.847 1.488 1.435 1.489 1.476
USA-road-NY 1.343 1.341 1.163 1.163 1.163 1.163
USA-road-BAY 1.360 1.357 1.237 1.237 1.237 1.237
USA-road-COL 1.343 1.339 1.242 1.242 1.242 1.242
Amazon0302 1.464 1.580 1.279 1.228 1.292 1.284
WikiTalk 1.891 2.099 1.837 1.630 1.838 1.827
Web-Stanford 1.560 1.679 1.430 1.390 1.436 1.427
Amazon0601 1.709 1.727 1.200 1.186 1.202 1.200
Web-Google 1.637 1.728 1.437 1.381 1.446 1.431
Web-Berkstan 1.637 1.753 1.516 1.472 1.523 1.511

significantly, as they take advantage of the condensed graph that seems to ad-
mit small size in real-world applications. In addition, our experiments highlight
interesting tradeoffs between practical performance and quality of the obtained
solutions. Indeed, the fastest (IST-B and IST-B original for problem 2EC-B; IST-
BC for 2EC-B-C) and the slowest algorithms (Test2ECB-B and Hybrid-B for 2EC-
B; Test2ECB-BC and Hybrid-BC for 2EC-B-C) tend to produce respectively the
worst and the best approximations. Note that IST-B improves the quality of
the solution of IST-B original at the price of slightly higher running times, while
Hybrid-B (resp., Hybrid-BC) produces the same solutions as Test2ECB-B (resp.,
Test2ECB-BC) with rather impressive speedups. Running an algorithm on the
second-level auxiliary graphs seems to produce substantial performance benefits
at the price of a slightly worse approximation (Test2EDP-B-Aux, Hybrid-B-Aux,
Test2EDP-BC-Aux and Hybrid-BC-Aux versus Test2EDP-B, Hybrid-B, Test2EDP-
BC and Hybrid-BC). Overall, in our experiments Test2EDP-B-Aux and Test2EDP-
BC-Aux seem to provide good quality solutions for the problems considered with-
out being penalized too much by a substantial performance degradation.
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Abstract. We propose algorithms to compute the Delaunay triangu-
lation of a point set L using only (squared) distance comparisons (i.e.,
predicates of degree 2). Our approach is based on the witness complex,
a weak form of the Delaunay complex introduced by Carlsson and de
Silva. We give conditions that ensure that the witness complex and the
Delaunay triangulation coincide and we introduce a new perturbation
scheme to compute a perturbed set L′ close to L such that the Delaunay
triangulation and the witness complex coincide. Our perturbation algo-
rithm is a geometric application of the Moser-Tardos constructive proof
of the Lovász local lemma.

1 Introduction

The witness complex was introduced by Carlsson and de Silva [14] as a weak form
of the Delaunay complex that is suitable for finite metric spaces and is computed
using only distance comparisons. The witness complex Wit(L,W ) is defined from
two sets L and W in some metric space X : a finite set of points L on which the
complex is built, and a set W of witnesses that serves as an approximation of
X . A fundamental result of de Silva [13] states that Wit(L,W ) = Del(L) if
W is the entire Euclidean space X = R

d, and the result extends to spherical,
hyperbolic and tree-like geometries. The result has also been extended to the
case where W = X is a smoothly embedded curve or surface of Rd [2]. However,
when the setW of witnesses is finite, the Delaunay triangulation and the witness
complexes are different and it has been an open question to understand when the
two structures are identical. In this paper, we answer this question and present
an algorithm to compute a Delaunay triangulation using the witness complex.

We first give conditions on L that ensure that the witness complex and the
Delaunay triangulation coincide when W ⊂ R

d is a finite set (Section 3). Some
of these conditions are purely combinatorial and easy to check. In a second part
(Section 4), we show that those conditions can be satisfied by slightly perturbing
the input set L. Our perturbation algorithm is a geometric application of the
Moser-Tardos constructive proof of the general Lovász local lemma. Its analysis
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uses the notion of protection of a Delaunay triangulation that we have previously
introduced to study the stability of Delaunay triangulations [3].

Our algorithm has several interesting properties and we believe that it is a
good candidate for implementation in higher dimensions.

1. Low algebraic degree. The only numerical operations used by the algo-
rithm are (squared) distance comparisons (i.e., predicates of degree 2). In
particular, we do not use orientation or in-sphere predicates, whose degree
depends on the dimension d and are difficult to implement robustly in higher
dimensions.

2. Efficiency. Our algorithm constructs the witness complex Wit(L′,W ) =
Del(L′) of the perturbed set L′ in time sublinear in |W |. See Section 5.

3. Simplex quality. Differently from all papers on this and related topics, we
do not compute the volume or any measure of simplex quality. Nevertheless,
through protection, a lower bound on the thickness of the output simplices
can be guaranteed (see Theorem 3), and the resulting Delaunay triangulation
is stable with respect to small metric or point perturbations [3].

4. No need for coordinates. We can construct Delaunay triangulations of
points that come from some Euclidean space but whose actual positions are
unknown. We simply need to know the interpoint distances.

5. A thorough analysis. Almost all papers in Computational Geometry rely
on oracles to evaluate predicates exactly and assume that the complexity of
those oracles is O(1). Our (probabilistic) analysis is more precise. We only
use predicates of degree 2 (i.e. double precision) and the analysis fully covers
the case of non generic data.

Previous Work. Millman and Snoeyink [11] developed a degree-2 Voronoi di-
agram on a U × U grid in the plane. The diagram of n points can be com-
puted using only double precision by a randomized incremental construction in
O(n log n logU) expected time and O(n) expected space. The diagram also an-
swers nearest neighbor queries, but it doesn’t use sufficient precision to determine
a Delaunay triangulation.

Our paper borrows ideas from the controlled perturbation paradigm [9]. The
purpose is to actually perturb the input, thereby reducing the required precision
of the underlying arithmetic and avoiding explicit treatment of degenerate cases.
A specific scheme for Delaunay triangulations in arbitrary dimensions has been
proposed by Funke et al. [8]. Their algorithm relies on a careful analysis of the
usual predicates of degree d+ 2 and is much more demanding than ours.

Notation. In order to avoid boundary complications, we work on the flat torus
T
d = R

d/Zd. Boundary issues are discussed in the full version [6] of the paper.
The landmarks form a finite set L ⊂ T

d, but the set of witnesses W ⊆ T
d is

only required to be closed in T
d. If for any x ∈ T

d there is a w ∈ W with
‖w − x‖ < ε, we say that W ⊂ T

d is an ε-sample. For any finite set L ⊂ T
d

there is a λ > 0 such that L is a λ̃-sample for Td for all λ̃ ≥ λ. The parameter λ
is called the sampling radius of L. Also, there is a μ̄ > 0 such that ‖p− q‖ ≥ μ̄λ
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for all p, q ∈ L. We call μ̄ the sparsity ratio of L, and we say that L is (λ, μ̄)-net.
Observe that μ̄ < 2. Indeed, if p and q belong to a (λ, μ̄)-net L, and q is the
closest point to p in L, then μ̄λ ≤ ‖p− q‖ < 2λ.

In order to avoid topological complications associated with the periodic bound-
ary conditions, we impose the constraint λ ≤ 1/4. A simplex σ ⊂ L is a finite
set. We always assume that L contains a non-degenerate d-simplex (i.e., L is not
contained in a lower dimensional flat).

2 Delaunay and Witness Complexes

Definition 1 (Delaunay center and Delaunay complex). A Delaunay cen-
ter for a simplex σ ⊂ L is a point x ∈ T

d that satisfies ‖p−x‖ ≤ ‖q−x‖, ∀p ∈ σ
and ∀q ∈ L. The Delaunay complex Del(L) of L is the complex consisting of all
simplexes σ ⊂ L that have a Delaunay center.

Note that x is at equal distance from all the vertices of σ. A Delaunay simplex
is top dimensional if is not the proper face of any Delaunay simplex. The affine
hull of a top dimensional simplex has dimension d. If σ is top dimensional, the
Delaunay center is the circumcenter of σ which we denote cσ. We write Rσ for
the circumradius of σ.

Delaunay [7] showed that if the point set L is generic, i.e., if no empty sphere
contains d+ 2 points on its boundary, then Del(L) is a triangulation of Td (see
the discussion in Section 3), and any perturbation L′ of a finite set L is generic
with probability 1. We refer to this as Delaunay’s theorem.

We introduce now the witness complex that can be considered as a weak
variant of the Delaunay complex.

Definition 2 (Witness and witness complex). Let σ be a simplex with ver-
tices in L ⊂ T

d, and let w be a point of W ⊆ T
d. We say that w is a witness of

σ if ‖w− p‖ ≤ ‖w− q‖, ∀p ∈ σ and ∀q ∈ L \ σ. The witness complex Wit(L,W )
is the complex consisting of all simplexes σ such that for any simplex τ ⊆ σ, τ
has a witness in W .

Observe that the only predicates involved in the construction of Wit(L,W ) are
(squared) distance comparisons, i.e. polynomials of degree 2 in the coordinates
of the points. This is to be compared with the predicate that decides whether a
point lies inside, on or outside the sphere circumscribing a d-simplex which is a
polynomial of degree d+ 2.

3 Identity of Witness and Delaunay Complexes

In this section, we make the connection between Delaunay and witness complexes
more precise. We start with de Silva’s result [13]:

Theorem 1. Wit(L,W ) ⊆ Del(L), and if W = T
d then Wit(L,W ) = Del(L).

If L is generic, we know that Del(L) is embedded in T
d by Delaunay’s theorem.

It therefore follows from Theorem 1 that the same is true for Wit(L,W ). In
particular, the dimension of Wit(L,W ) is at most d.
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Identity from protection. When W is not the entire space T
d but a finite set of

points, the equality between Del(L) and Wit(L,W ) no longer holds. However, by
requiring that the d-simplices of Del(L) be δ-protected, a property introduced in
[3], we are able to recover the inclusion Del(L) ⊆ Wit(L,W ), and establish the
equality between the Delaunay complex and the witness complex with a discrete
set of witnesses.

Definition 3 (δ-protection). We say that a simplex σ ⊂ L is δ-protected at
x ∈ T

d if ‖x− q‖ > ‖x− p‖+ δ, ∀p ∈ σ and ∀q ∈ L \ σ.
We say that Del(L) is δ-protected when each Delaunay d-simplex of Del(L) has

a δ-protected Delaunay center. In this sense, δ-protection is in fact a property of
the point set and we also say that L is δ-protected. If Del(L) is δ-protected for
some unspecified δ > 0, we say that L is protected (equivalently L is generic). We
always assume δ < λ since it is impossible to have a larger δ if L is a λ-sample.
The following lemma is proved in [4]. For simplicity, we use star2(p′) to denote
star(star(p; Del(L)); Del(L)), where star(p;K) denotes the star of p in K, i.e.
the smallest subcomplex of K containing the simplices that have p as a vertex.
The link of p, link(p;K), is the simplicial complex defined by the simplices in
star(p) that do not contain p.

Lemma 1 (Inheritance of protection). Let L be a (λ, μ̄)-net and sup-
pose p ∈ L. If every d-simplex in star2(p) is δ-protected, then all simplices in
star(p; Del(L)) are at least δ′-protected where δ′ = μ̄δ

4d .

The following lemma is an easy consequence of the previous one (see [6] for a
proof).

Lemma 2 (Identity from protection). Let L be a (λ, μ̄)-net with p ∈ L. If
all the d-simplices in star2(p) are δ-protected and W is an ε-sample for T

d with
δ ≥ 8dε

μ̄ , then star(p;Wit(L,W )) = star(p; Del(L)).

We end this subsection with a result proved in [3, Lemma 3.13] that will be
useful in Section 5. For any vertex p of a simplex σ, the face oppposite p is the
face determined by the other vertices of σ, and is denoted by σp. The altitude
of p in σ is the distance D(p, σ) = d(p, aff(σp)) from p to the affine hull of σp.
The altitude D(σ) of σ is the minimum over all vertices p of σ of D(p, σ). A
poorly-shaped simplex can be characterized by the existence of a relatively small
altitude. The thickness of a j-simplex σ is the dimensionless quantity Θ(σ) that

evaluates to 1 if j = 0 and to D(σ)
jΔ(σ) otherwise, where Δ(σ) denotes the diameter

of σ, i.e. the length of its longest edge.

Lemma 3 (Thickness from protection). Suppose σ ∈ Del(L) is a d-simplex
with circumradius less than λ and shortest edge length greater than or equal to
μ̄λ. If every (d − 1)-face of σ is also a face of a δ-protected d-simplex different

from σ, then the thickness of σ satisfies Θ(σ) ≥ δ̄ (μ̄+δ̄)
8d .

In particular, suppose p ∈ L, where L is a (λ, μ̄)-net, and every d-simplex in

star2(p) is δ-protected, then every d-simplex in star(p) is
(

δ̄ μ̄
8d

)
-thick.
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A combinatorial criterion for identity. The previous result will be useful in
our analysis but does not help to compute Del(L) from Wit(L,W ) since the
δ-protection assumption requires knowledge of Del(L). A more useful result in
this context will be given in Lemma 5. Before stating the lemma, we need to
introduce some terminology and, in particular, the notion of good links.

A complex K is a k-pseudo-manifold if it is a pure k-complex and every
(k − 1)-simplex is the face of exactly two k-simplices.

Definition 4 (Good links). Let K be a complex with vertex set L ⊂ T
d. We

say p ∈ L has a good link if link(p;K) is a (d − 1)-pseudo-manifold. If every
p ∈ L has a good link, we say K has good links.

For our purposes, a simplicial complex K is a triangulation of Td if it is a d-
manifold embedded in T

d. We observe that a triangulation has good links.

Lemma 4 (Pseudomanifold criterion). If K is a triangulation of T
d and

J ⊆ K has the same vertex set, then J = K if and only if J has good links.

A proof is given in [6]. We can now state the lemma that is at the heart of
our algorithm. It follows from Theorem 1, Lemma 4, and Delaunay’s theorem:

Lemma 5 (Identity from good links). If L is generic and the vertices of
Wit(L,W ) have good links, then Wit(L,W ) = Del(L).

4 Turning Witness Complexes into Delaunay Complexes

Let, as before, L be a finite set of landmarks and W a finite set of witnesses. In
this section, we intend to use Lemma 5 to construct Del(L′), where L′ is close to
L, using only comparisons of (squared) distances. The idea is to first construct
the witness complex Wit(L,W ) which is a subcomplex of Del(L) (Theorem 1)
that can be computed using only distance comparisons. We then check whether
Wit(L,W ) = Del(L) using the pseudomanifold criterion (Lemma 4). While there
is a vertex p of Wit(L,W ) that has a bad link (i.e. a link that is not a pseu-
domanifold), we perturb p′ and the set of vertices I(p′), to be exactly defined
in Section 4.2, that are responsible for the bad link L(p′) = link(p′,Wit(L′,W ),
and recompute the witness complex for the perturbed points. We write L′ for the
set of perturbed points at some stage of the algorithm. Each point p′ is randomly
and independently taken from the so-called picking ball B(p, ρ). Upon termina-
tion, we have Wit(L′,W ) = Del(L′). The parameter ρ, the radius of the picking
balls, must satisfy Eq. (2) to be presented later. The steps are described in more
detail in [6, Algo. 1]. The analysis of the algorithm relies on the Moser-Tardos
constructive proof of Lovász local lemma.

4.1 Lovász Local Lemma

The celebrated Lovász local lemma is a powerful tool to prove the existence of
combinatorial objects [1]. Let A be a finite collection of “bad” events in some
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probability space. The lemma shows that the probability that none of these
events occur is positive provided that the individual events occur with a bounded
probability and there is limited dependence among them.

Lemma 6 (Lovász local lemma). Let A = {A1, . . . , AN} be a finite set of
events in some probability space. Suppose that each event Ai is independent of
all but at most Γ of the other events Aj , and that Pr [Ai] ≤ � for all 1 ≤ i ≤ N .

If � ≤ 1
e(Γ+1) (e is the base of the natural logarithm), then Pr

[∧N
i=1 ¬Ai

]
> 0.

Assume that the events depend on a finite set of mutually independent variables
in a probability space. Moser and Tardos [12] gave a constructive proof of Lovász
lemma leading to a simple and natural algorithm that checks whether some event
A ∈ A is violated and randomly picks new values for the random variables on
which A depends. We call this a resampling of the event A. Moser and Tardos
proved that this simple algorithm quickly terminates, providing an assignment
of the random variables that avoids all of the events in A. The expected total
number of resampling steps is at most N/Γ .

4.2 Correctness of the Algorithm

We write ρ = ρ̄λ and μ = μ̄λ, and we assume ρ̄ < μ̄/4. The triangle inequal-
ity yields a bound on the sampling radius λ′ and the sparsity ratio μ̄′ of any
perturbed point set L′: λ′ = λ(1 + ρ̄) < 2λ and μ̄′ = μ̄−2ρ̄

1+ρ̄ ≥ μ̄
3 .

We refer to the terminology of the Lovász local lemma. Our variables are the
points of L′ which are randomly and independently taken from the picking balls
B(p, ρ), p ∈ L.

The events are associated to points of L′, the vertices of Wit(L′,W ). We say
that an event happens at p′ ∈ L when the link L(p′) of p′ in Wit(L′,W ) is
not good, i.e., is not a pseudomanifold. We know from Lemma 2 that if p′ is a
vertex of Wit(L′,W ) and L(p′) is not good, then there must exist a d-simplex
in star2(p′) that is not δ-protected for δ = 8dε/μ̄′. We will denote by

– I1(p
′) : the set of points of L′ that can be in star2(p′)

– I2(p
′) : the set of points of L′ that can violate the δ-protected zone Zδ(σ

′) =
B(cσ, Rσ + δ) \B(cσ, Rσ) for some d-simplex σ′ in star2(p′)

– I(p′) := I1(p
′) ∪ I2(p

′)
– S(p′) : the set of d-simplices with vertices in I1(p

′) that can belong to
star2(p′)

The probability �1(p
′) that L(p′) is not good is at most the probability �2(p

′)
that one of the simplices of S(p′), say σ′, has its δ-protecting zone Zδ(σ

′) violated
by some point of L′. Write �3(q

′, σ′) for the probability that q′ belongs to the
δ-protection zone of the d-simplex σ′. We have

�1(p
′) ≤ �2(p

′) ≤
∑

q′∈I2(p′)

∑

σ′∈S(p′)

�3(q
′, σ′) (1)

The following lemma, proved in [6] upper bounds |I(p′)|, |S(p′)|, Γ and�3(q
′, σ′).

Observe that the events p′ and q′ are independent if I(p′) ∩ I(q′) = ∅.
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Lemma 7. (1) |I(p′)| ≤ I =
(

36
μ̄

)d

and |S(p′)| ≤ K= Id+1

(d+1)! . (2) An event is

independent of all but at most Γ =
(

66
μ̄

)d

other events. (3) �3(q
′, σ′) ≤ 2πd−1 δ

ρ .

Using Eq. (1) and Lemma 7, we conclude that �1(p
′) ≤ 2πd−1 I K δ

ρ .
An event depends on at most Γ other events. Hence, to apply the Lovász

Local Lemma 6, it remains to ensure that �1(p
′) ≤ 1/(e(Γ + 1)). In addition,

we also need that δ ≥ 8dε/μ̄′ to be able to apply Lemma 2. We thefore need to

satisfy 8dε
μ̄′ ≤ δ ≤ Jρ where J−1 def

= 2eπd−1IK(Γ +1). Observe that I, K, Γ and
J depend only on μ̄ and d. We conclude that the conditions of the Lovász local
lemma hold if the parameter ρ satisfies

μ

4
≥ ρ ≥ 24dε

μ̄J
where J−1 def

= 2eπd−1IK(Γ + 1) =

(
2

μ̄

)O(d2)

(2)

Hence, if ε is sufficiently small, we can fix ρ so that Eq. (2) holds. The algo-
rithm is then guaranteed to terminate. By Lemma 5, the output is Del(L′).

It follows from Moser-Tardos theorem that the expected number of times a

bad link is encountered is O
(

|L|
Γ

)
and since |I(p′)| ≤ I, we get that the number

of point perturbations performed by the algorithm is O
(

I |L|
Γ

)
on expectation.

We sum up the results of this section in

Theorem 2. Under Eq. (2), the algorithm terminates and outputs the Delaunay
triangulation of some set L′ whose distance to L is at most ρ. The number of

point perturbations performed by the algorithm is O
(

I |L|
Γ

)
.

5 Sublinear Algorithm

When the set L′ is generic,K = Wit(L′,W ) is embedded in T
d and is therefore d-

dimensional. It is well known that the d-skeleton of Wit(L′,W ) can be computed
in time O((|W |+|K|) log |L′|) using only distance comparisons [5]. Although easy
and general, this construction is not efficient when W is large.

In this section, we show how to implement an algorithm called Algorithm 2
with execution time sublinear in |W |. We will assume that the points of W are
located at the centers of the cells of a grid, which is no real loss of generality.
The idea is to restrict our attention to a subset of W , namely the set of full-
leaf-points introduced in Section 5.2. These are points that may be close to the
circumcenter of some d-simplex. A crucial observation is that if a d-simplex has a
bounded thickness, then we can efficiently compute a bound on the number of its
full-leaf-points. This observation will also allow us to guarantee some protection
(and therefore thickness) on the output simplices, as stated in Theorem 3 below.

The approach is based on the relaxed Delaunay complex, which is related to
the witness complex, and was also introduced by de Silva [13]. We first introduce
this, and the structural observations on which the algorithm is based.
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5.1 The Relaxed Delaunay Complex

The basic idea used to get an algorithm sublinear in |W | is to choose witnesses
for d-simplices that are close to being circumcenters for these simplices. With
this approach, we can in fact avoid looking for witnesses of the lower dimensional
simplices. The complex that we will be computing is a subcomplex of a relaxed
Delaunay complex:

Definition 5 (Relaxed Delaunay complex). Let σ ⊂ L′ be a simplex. An
α-center of σ is any point x ∈ T

d such that ‖x− p‖ ≤ ‖x− q‖+α ∀p, q ∈ σ. We
say that x is an α-Delaunay center of σ if ‖x − p‖ ≤ ‖x − q‖ + α ∀p ∈ σ and
∀q ∈ L′. The set of simplices that have an α-Delaunay center in W is a simplicial
complex, called the α-relaxed Delaunay complex, and is denoted Delα(L′,W ).

We say w ∈ W is an α-witness for σ ⊂ L′ if ‖w− p‖ ≤ ‖w− q‖+α for all p ∈ σ
and all q ∈ L′ \ σ. We observe that w ∈ W is an α-Delaunay center if and only
if it is an α-center and also an α-witness.

Lemma 8. The distance between an α-Delaunay center for σ ∈ Delα(L′,W )
and the farthest vertex in σ is less than λ′ + α. In particular, Δσ < 2λ′ + 2α.

If τ ∈ Del(L′) and c is a Delaunay center of τ , then any point in B(c, r) is a
2r-Delaunay center for τ . Thus Del(L′) ⊆ Del2ε(L′,W ).

If, for some δ ≥ 0, each of the d-simplices in Delα(L′,W ) has a δ-protected
circumcenter, then we have that Delα(L′,W ) ⊆ Del(L′), and with α ≥ 2ε, it
follows (Lemma 8) that Delα(L′,W ) = Del(L′), and Del(L′) is itself δ-protected
and has good links.

Reviewing the analysis of the Moser-Tardos algorithm of Section 4.2, we ob-
serve that the exact same estimate of �2(p

′) that serves as an upper bound on
the probability that one of the simplices in star2(p′,Del(L′)) is not δ-protected
at its circumcenter, also serves as an upper bound on the probability that one
of the simplices in star2(p′,Delα(L′,Td)) is not δ-protected at its circumcenter,
provided that 4α+δ ≤ λ′ (using the diameter bound of 2λ′+2α from Lemma 8),
which we will assume from now on. We can therefore modify the algorithm by
replacing Wit(L′,W ) by Delα(L′,W ).

We now describe how to improve this algorithm to make it efficient. For our
purposes it will be sufficient to set α = 2ε. In order to obtain an algorithm
sublinear in |W |, we will not compute the full Del2ε(L′,W ) but only a subcom-
plex we call Del2ε0 (L′,W ). The exact definition of Del2ε0 (L′,W ) will be given in
Section 5.3, but the idea is to only consider d-simplices that show the properties
of being Θ0-thick for some parameter Θ0 to be defined later. This will allow
us to restrict our attention to points of W that lie near the circumcenter. As
explained in Section 5.3, this is done without explicitly computing thickness or
circumcenters.

As will be shown in Section 5.4 (Lemma 12), the modification of the witness
algorithm ([6, Algo. 1]) that computes Del2ε0 (L′,W ) instead of Wit(L′,W ) will
terminate and output a complex Del2ε0 (L′,W ) with good links. However, this is
not sufficient to guarantee that the output is correct, i.e., that Del2ε(L′,W ) =



A Probabilistic Approach to Reducing Algebraic Complexity 603

Del(L′). In order to obtain this guarantee, we insert an extra procedure check(),
which, without affecting the termination guarantee, will ensure that the simplices
of Del2ε0 (L′,W ) have δ∗-protected circumcenters for a positive δ∗. It follows
that Del2ε0 (L′,W ) ⊆ Del(L′) and, by Lemma 4, that Del2ε0 (L′,W ) = Del(L′).
Pseudocode for this modified perturbation algorithm is presented as Algorithm 2
in [6].

We describe the details of computing Del2ε0 (L′,W ) and of the check() pro-
cedure in the following subsections.

5.2 Computing Relaxed Delaunay Centers

We observe that the α-Delaunay centers of a d-simplex σ are close to the cir-
cumcenter of σ, provided that σ has a bounded thickness:

Lemma 9 (Clustered α-Delaunay centers). Assume that L′ is a (λ′, μ̄′)-
sample. Let σ be a non degenerate d-simplex, and let x be an α-center for σ at
distance at most Cλ′ from the vertices of σ, for some constant C > 0. Then x
is at distance at most Cα

Θ(σ)μ̄′ from the circumcenter cσ of σ. In particular, if x

is an α-Delaunay center for σ, then ‖cσ − x‖ < 2α
Θ(σ)μ̄′ .

See [6] for a proof. It follows from Lemma 9 that α-Delaunay centers are close
to all the bisecting hyperplanes Hpq = {x ∈ R

d | ‖x − p‖ = ‖x − q‖, p, q ∈ σ}.
The next simple lemma asserts a kind of qualitative converse:

Lemma 10. Let σ be a d-simplex and Hpq be the bisecting hyperplane of p and
q. A point x that satisfies d(x,Hpq) ≤ α, for any p, q ∈ σ is a 2α-center of σ.

Let σ be a d-simplex of Delα(L′,W ) and let Ω̄ be the smallest box with edges
parallel to the coordinate axes that contains σ. Then the edges of Ω̄ have length
at most 2λ′ + 2α (Lemma 8). Any α-Delaunay center for σ is at a distance at
most λ′ + α from Ω̄. Therefore all the α-Delaunay centers for σ lie in an axis-
aligned hypercube Ω with the same center as Ω̄ and with side length at most
4λ′ + 4α < 5λ′. Observe that the diameter (diagonal) z of Ω is at most 5λ′√d.

Our strategy is to first compute the α-centers of σ that belong to Ω ∩W and
then to determine which ones are α-witnesses for σ. Deciding if an α-center is
an α-witness for σ can be done in constant time since L′ is a (λ′, μ̄′)-net and
Δσ ≤ 2λ′ + 2α (Lemma 8).

We take α = 2ε. To compute the 2ε-Delaunay centers of σ, we will use a
pyramid data structure (it is an octree when d = 3). The pyramid consists of at
most log z

ε levels. Each level h > 0 is a grid of resolution 2−hz. The grid at level
0 consists of the single cell, Ω. Each node of the pyramid is associated to a cell
of a grid. The children of a node ν correspond to a subdivision into 2d subcells
(of the same size) of the cell associated to ν. The leaves are associated to the
cells of the finest grid whose cells have diameter ε.

A node of the pyramid that is intersected by all the bisecting hyperplanes of
σ will be called a full node or, equivalently, a full cell. By our definition of W , a
cell of the finest grid contains an element of W at its center. The full-leaf-points
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are the elements of W associated to full cells at the finest level. By Lemma 10,
the full-leaf-points are 2ε-centers for σ. In order to identify the full-leaf cells, we
traverse the full nodes of the pyramid starting from the root. Note that to decide
if a cell is full, we only have to decide if two corners of a cell are on opposite sides
of a bisecting hyperplane, which reduces to evaluating a polynomial of degree 2
in the input variables. A simple volume argument leads to the following lemma:

Lemma 11. The number of full cells is ≤ nσ(ε) =
n0

(Θ(σ)μ̄′)d log
5
√
dλ′
ε , where n0

depends on d. nσ(ε) is also a bound on the time to compute the full cells.

5.3 Construction of Del2ε0 (L′,W )

By Lemma 8, all the simplices incident to a vertex p′ of Del2ε(L′) are contained
in N(p′) = L′ ∩B(p′, 2λ′ + 4ε), and it follows from the fact that L′ is a (λ′, μ̄′)-
net that |N(p′)| ≤ 2O(d)

(μ̄′)d . In the first step of the algorithm, we compute, for

each p′ ∈ L′, the set N(p′), and the set of d-simplices Cd(p
′) = {σ = {p′} ∪

σ̃ : |σ̃| = d and σ̃ ⊂ N(p′) \ {p′}}. Observe that |Cd(p
′)| = (|N(p′)|

d

)
= 2O(d2)

(μ̄′)d2
.

We then extract from Cd(p
′) a subset WCd(p

′) of simplices that have a full-leaf-
point that is a 2ε-Delaunay center, and have a number of full cells less than or

equal to n0(ε)
def
= n0

(Θ0μ̄′)d log 5
√
dλ′
ε . This is done by applying the algorithm of

Section 5.2 with a twist. As soon as a d-simplex appears to have more than n0(ε)
full cells, we stop considering that simplex. The union of the sets WCd(p

′) for
all p′ ∈ L′ is a subcomplex of Del2ε(L′) called Del2ε0 (L′,W ). It contains every
d-simplex σ in Del2ε(L′,W ) that has a 2ε-Delaunay center in W at a distance
less than ε from its actual circumcenter, and satisfies the thickness criterion
Θ(σ) ≥ Θ0. Note, however, that we do not claim that every simplex that has at
most n0(ε) full cells is Θ0-thick. See [6, Algo. 3] for pseudocode describing the

algorithm for constructing Del2ε0 (L,W ). As noted above, |N(p′)| = 2O(d)

(μ̄′)d for any

p′ ∈ L′, and all the N(p′) can be computed in O(|L′|2) time by a brute force
method. But assuming we have access to “universal hash functions” then we can
use the “grid method” described in [10, Chap. 1] with the sparsity condition

of L to get the complexity down to 2O(d)|L′|
(μ̄′)d . Using the facts that λ′ < 2λ and

μ̄′ ≥ μ̄
3 (see beginning of Section 4.2), we conclude that the total complexity of

the algorithm is O
(

|L|
Θd

0 (μ̄)
d2+d

log λ
ε

)
and is therefore sublinear in |W |.

5.4 Correctness of the Algorithm

We will need the following lemma which is an analog of Lemma 2. The lemma
also fixes Θ0. Its proof follows directly from Lemma 3, and the observation that
any simplex with a protected circumcenter is a Delaunay simplex.

Lemma 12. Suppose that the d-simplices in Del(L′) are δ-protected at their

circumcenters, with δ = δ̄λ′. If Θ0 = δ̄μ̄′

8d , then Del(L′) ⊆ Del2ε0 (L′,W ) and if



A Probabilistic Approach to Reducing Algebraic Complexity 605

in addition every d-simplex of Del2ε0 (L′,W ) has a protected circumcenter, then
Del2ε0 (L′,W ) = Del(L′).

We first show that Algorithm 2 terminates if we desactivate the call to pro-
cedure check(). As discussed after Lemma 8, the analysis of Section 4.2 im-
plies that the perturbations of Algorithm 2 can be expected to produce a point
set L′ for which all the d-simplices in Del2ε(L′,Td) have a δ-protected circum-
center. Since this complex includes both Del(L′) and Del2ε0 (L′,W ), Lemma 12
shows that we can expect the algorithm to terminate with the condition that
Del2ε0 (L′,W ) has good links.

We now examine procedure check() and show that it does not affect the
termination guarantee. By Lemma 3, if Del(L′) is δ-protected, then any σ ∈
Del(L′) satisfies Θ(σ) ≥ Θ0 = δ̄μ̄′

8d . Consider now σ ∈ Del2ε0 (L′,W ). Since the
full leaves of the pyramid data-structure for σ are composed entirely of 2ε-centers
at a distance less than 4

√
dλ′ from any vertex of σ, Lemma 9 implies that, if σ is

Θ0-thick, then ‖x−cσ‖ ≤ 8
√
dε

Θ0μ̄′ . This means that we can restrict our definition of

Del2ε0 (L′,W ) to include only simplices for which the set of full leaves has diameter

less than 16
√
dε

Θ0μ̄′ . Further, we observe that if σ is δ-protected at its circumcenter,

then it will have a (δ−2ε)-protected full-leaf-point; this follows from the triangle
inequality. The check() procedure ensures that all the simplices in Del2ε0 (L′,W )
have these two properties. It follows from the discussion above that activating
procedure check() does not affect the termination guarantee.

The fact that the algorithm terminates yields Del2ε0 (L′,W ) with good links.
In order to apply Lemma 12 to guarantee that Del2ε0 (L′,W ) = Del(L′), we need
to guarantee that the simplices of Del2ε0 (L′,W ) are protected. The following
lemma, proved in [6], provides a bound on δ to ensure such a protection δ∗ > 0.

Lemma 13. If δ = Jρ, with J defined in Eq. (2), then the d-simplices in
Del2ε0 (L′,W ) produced by the modified perturbation algorithm [6, Algo. 2] are

δ∗-protected, with δ∗ = δ −
(

34
√
d

Θ0μ̄′

)
ε.

In order to have δ∗ > 0, we need a lower bound on δ, and hence on the minimal

perturbation radius through δ = Jρ. Therefore we require: Jμ
4 ≥ δ > 34

√
dε

Θ0μ̄′

(compare with (2)). Writing δ̄ = δ
λ′ and Θ0 = δ̄μ̄′

8d , and using λ′ ≥ λ, μ̄′ ≥ μ̄/3
when ρ ≤ μ/4, we obtain the conditions under which Algorithm 2 is guaranteed

to produce a δ∗-protected Delaunay triangulation: Jμ̄
4 ≥ δ̄ > 2448d

3
2

δ̄μ̄2
ε
λ . The

right-hand inequality is satisfied provided δ̄ ≥ 50d
3
4

μ̄

√
ε
λ . We have proved

Theorem 3. If ρ̄ ≤ μ̄/4 and ρ̄ = Ω
(

1
Jμ̄

√
ε
λ

)
(with J defined in Eq. (2)),

Algorithm 2 terminates and outputs the Delaunay triangulation of L′. The De-
launay d-simplices are δ∗-protected, as defined in Lemma 13, and consequently

satisfy a thickness bound of Θ(σ) ≥ δ̄∗(μ̄/3+δ̄∗)
8d . The complexity of the algorithm

is O
(

|L|
Θd

0 μ̄d2+d
log λ

ε

)
. The constants in Ω and O depend only on d (the depen-

dence being exponential).
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Abstract. In this paper, we give a characterization of the visibility
graphs of pseudo-polygons. We first identify some key combinatorial
properties of pseudo-polygons, and we then give a set of five necessary
conditions based off our identified properties. We then prove that these
necessary conditions are also sufficient via a reduction to a characteriza-
tion of vertex-edge visibility graphs given by O’Rourke and Streinu.

1 Introduction

Geometric covering problems have been a focus of research for decades. Here we
are given some set of points P and a set S where each s ∈ S can cover some
subsets of P . The subset of P is generally induced by some geometric object.
For example, P might be a set of points in the plane, and s consists of the points
contained within some disk in the plane. For most variants, the problem is NP-
hard and can easily be reduced to an instance of the combinatorial set cover
problem which has a polynomial-time O(log n)-approximation algorithm, which
is the best possible approximation under standard complexity assumptions [5].
The main question therefore is to determine for which variants of geometric set
cover can we obtain polynomial-time approximation algorithms with approxi-
mation ratio o(log n), as any such algorithm must exploit the geometry of the
problem to achieve the result. This area has been studied extensively, see for
example [2,13,1], and much progress has been made utilizing algorithms that are
based on solving the standard linear programming relaxation.

Unfortunately this technique has severe limitations for some variants of geo-
metric set cover, and new ideas are needed to make progress on these variants.
In particular, the techniques are lacking when the points P we wish to cover is
a simple polygon, and we wish to place the smallest number of points in P that
collectively “see” the polygon. This problem is classically referred to as the art
gallery problem as an art gallery can be modeled as a polygon and the points
placed by an algorithm represent cameras that can “guard” the art gallery. This
has been one of the most well-known problems in computational geometry for
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many years, yet still to this date the best polynomial-time approximation algo-
rithm for this problem is a O(log n)-approximation algorithm. The key issue is
a fundamental lack of understanding of the combinatorial structure of visibility
inside simple polygons. It seems that in order to develop powerful approximation
algorithms for this problem, the community first needs to better understand the
underlying structure of such visibility.

Visibility Graphs. A very closely related issue which has received a lot of atten-
tion in the community is the visibility graph of a simple polygon. Given a simple
polygon P , the visibility graph G = (V,E) of P has the following structure.
For each vertex p ∈ P , there is a vertex in V , and there is an edge connecting
two vertices in G if and only if the corresponding vertices in P “see” each other
(i.e., the line segment connecting the points does not go outside the polygon).
Two major open problems regarding visibility graphs of simple polygons are the
visibility graph characterization problem and the visibility graph recognition
problem. The visibility graph characterization problem seeks to define a set of
properties that all visibility graphs satisfy. The visibility graph recognition prob-
lem is the following. Given a graph G, determine if there exists a simple polygon
P such that G is the visibility graph of P in polynomial time.

The problems of characterizing and recognizing the visibility graphs of simple
polygons have had partial results given dating back to over 25 years ago [6] and
remain open to this day with only a few special cases being solved. Character-
ization and recognition results have been given in the special cases of “spiral”
polygons [4] and “tower polygons” [3]. There have been several results [7,4,11]
that collectively have led to four necessary conditions that a simple polygon
visibility graph must satisfy. That is, if the graph G does not satisfy all four of
the conditions then we know that G is not the visibility graph for any simple
polygon, and moreover it can be determined if a graph G satisfies all of the nec-
essary conditions in polynomial time. Streinu, however, has given an example of
graph that satisfies all of the necessary conditions but is not a visibility graph for
any simple polygon [12], implying that the set of conditions is not sufficient and
therefore a strengthening of the necessary conditions is needed. Unfortunately
it is not even known if simple polygon visibility graph recognition is in NP. See
[8] for a nice survey on these problems and other related visibility problems.

Pseudo-polygons. Given the difficulty of understanding simple polygon vis-
ibility graphs, O’Rourke and Streinu [9] considered the visibility graphs for a
special case of polygons called pseudo-polygons which we will now define. An
arrangement of pseudo-lines L is a collection of simple curves, each of which
separates the plane, such that each pair of pseudo-lines of L intersects at exactly
one point, where they cross. Let P = {p0, p2, . . . , pn−1} be a set of points in R

2,
and let L be an arrangement of

(
n
2

)
pseudo-lines such that every pair of points

pi and pj lie on exactly one pseudo-line in L, and each pseudo-line in L contains
exactly two points of P . The pair (P,L) is called a pseudo configuration of points
(pcp) in general position.
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Intuitively a pseudo-polygon is determined similarly to a standard Euclidean
simple polygon except using pseudo-lines instead of straight line segments. Let
Li,j denote the pseudo-line through the points pi and pj. We view Li,j as having
three different components. The subsegment of Li,j connecting pi and pj is called
the segment, and we denote it pipj. Removing pipj from Li,j leaves two disjoint
rays. Let ri,j denote the ray starting from pi and moving away from pj , and
we let rj,i denote the ray starting at pj and moving away from pi. Consider
the pseudo line Li,i+1 in a pcp (indices taken modulo n and are increasing in
counterclockwise order throughout the paper). We let ei denote the segment
of this line. A pseudo-polygon is obtained by taking the segments ei for i ∈
{0, . . . , n−1} if (1) the intersection of ei and ei+1 is only the point pi+1 for all i,
and (2) distinct segments ei and ej do not intersect for all j �= i+1. We call the
segments ei the boundary edges. A pseudo-polygon separates the plane into two
regions: “inside” the pseudo-polygon and “outside” the pseudo-polygon, and any
two points pi and pj see each other if the segment of their pseudo-line does not
go outside of the pseudo-polygon. See Fig. 1 for an illustration. Pseudo-polygons
can be viewed as a combinatorial abstraction of simple polygons. Note that every
simple polygon is a pseudo-polygon (simply allow each Li,j to be the straight
line through pi and pj), and Streinu showed that there are pseudo-polygons that
cannot be “stretched” into a simple polygon [12].

p3
p0

p1

p2

p0
p3

p2p1

(a) (b)

Fig. 1. (a) A pcp and pseudo-polygon. (b) The corresponding visibility graph.

O’Rourke and Streinu [9] give a characterization of vertex-edge visibility graphs
of pseudo-polygons. In this setting, for any vertex v we are told which edges v sees
rather than which vertices it sees. Unfortunately, O’Rourke and Streinu showed
that vertex-edge visibility graphs encode more information about a pseudo-
polygon than a regular visibility graph [10], and the regular visibility graph
characterization problem has remained open for over fifteen years.

Our Results. In this paper, we give a characterization of the visibility graphs of
pseudo-polygons. We first identify some key combinatorial properties of pseudo-
polygons, and we then give a set of five necessary conditions based off our identi-
fied properties. We then prove that these necessary conditions are also sufficient
via a reduction to O’Rourke and Streinu’s vertex-edge characterization [9]. That
is, for any visibility graph G that satisfies all necessary conditions, we construct
a vertex-edge visibility graph GV E that corresponds with G and show that it
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satisfies the characterization properties. Since all simple polygons are pseudo-
polygons, our necessary conditions also apply to simple polygon visibility graphs,
and in some cases extend or generalize the previously given necessary conditions
given for simple polygon visibility graphs [8]. Each of the four necessary condi-
tions given for simple polygons [8] have been proved using geometric arguments,
yet each of them are implied by the necessary conditions we give for pseudo-
polygons which are proved without geometric arguments. Given that not all
pseudo-polygons are simple polygons [12], additional necessary conditions will
be needed to characterize the visibility graphs of simple polygons.

2 Preliminaries

We begin with some preliminaries and definitions that will be relied upon heavily
in our proof. Our main focus of this paper is to determine if a graph G is the
visibility graph for some pseudo-polygon. Note that the visibility graph G of a
pseudo-polygon P must contain a Hamiltonian cycle because each pi must see
pi−1 and pi+1. Since determining if a graph contains a Hamiltonian cycle is NP-
hard, previous research has assumed that G does have such a cycle C and the
vertices are labeled in counterclockwise order according to this cycle. So now
suppose we are given an arbitrary graph G = (V,E) with the vertices labeled
p0 to pn−1 such that G contains a Hamiltonian cycle C = (p0, p2, . . . , pn−1)
in order according to their indices. We are interested in determining if G is
the visibility graph for some pseudo-polygon P where C corresponds with the
boundary of P . For any two vertices pi and pj , we let ∂(pi, pj) denote the vertices
and boundary edges encountered when walking counterclockwise around C from
pi to pj (inclusive). For any edge {pi, pj} in G, we say that {pi, pj} is a visible
pair, as their points in P must see one another. If {pi, pj} is not an edge in
G, then we call (pi, pj) and (pj , pi) invisible pairs. Note that visible pairs are
unordered, and invisible pairs are ordered (for reasons described below).

Consider any invisible pair (pi, pj). If G is the visibility graph for a pseudo-
polygon P , the segment of Li,j must exit P . For example, suppose we want to
construct a polygon P such that the graph in Fig. 2 (a) is the visibility graph
of P . Note that p0 should not see p2, and thus if there exists such a polygon,
it must satisfy that p0p2 exits the polygon. In the case of a simple polygon,
we view this process as placing the vertices of P in convex position and then
contorting the boundary of P to block p0 from seeing p2. We can choose p1 or
p3 to block p0 from seeing p2 (see (b) and (c)). Note that as in Fig. 2 (b) when
using p1 ∈ ∂(p0, p2) as the blocker in a simple polygon, the line segment p0p1
does not go outside P and the ray r1,0 first exits P through a boundary edge
in ∂(p2, p0). Similarly as in Fig. 2 (c) when using p3 ∈ ∂(p2, p0) as the blocker,
the line segment p0p3 does not go outside of the polygon and the ray r3,0 first
exits the polygon through a boundary edge in ∂(p1, p3). The situation is similar
in the case of pseudo-polygons, but since we do not have to use straight lines
to determine visibility, instead of bending the the boundary of P to block the
invisible pair we can instead bend the pseudo-line. See Fig. 2 (d) and (e). Note
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that the combinatorial structure of the pseudo-line shown in part (d) (resp. part
(e)) is the same as the straight line in part (b) (resp. in part (c)). The following
definition plays an important role in our characterization. Consider a pseudo-
polygon P , and let pi and pj be two vertices of P that do not see each other.
We say a vertex pk ∈ ∂(pi, pj) of P is a designated blocker for the invisible
pair (pi, pj) if pi sees pk (i.e. the segment pipk is inside the polygon) and the
ray ri,k first exits the polygon through an edge in ∂(pj , pi). The definition for
pk ∈ ∂(pj , pi) is defined similarly. See Figure 3 (a) for an illustration. Intuitively,
a designated blocker is a canonical vertex that prevents the points in an invisible
pair from seeing each other. In this section, we will prove a key structural lemma
of pseudo-polygons: every invisible pair in any pseudo-polygon P has exactly one
designated blocker.

p0
p3

p1
p2

p3

p1
p0p2

p3

p1

p0p2

p0
p3

p1
p2

p0
p3

p1
p2

(a) (b) (c) (d) (e)

Fig. 2. (a) A visibility graph G. (b) A simple polygon using p1 to block p0 and p2. (c)
A simple polygon using p3 to block p0 and p2. (d) A pseudo-polygon using p1 to block
p0 and p2. (e) A pseudo-polygon using p3 to block p0 and p2.

We now give several definitions and observations that will be used in the proof
of the key lemma. Consider an input graph G with Hamiltonian cycle C, and
let (pi, pj) be an invisible pair in G. If G is the visibility graph of a pseudo-
polygon, then there must be some vertex in G that serves as the designated
blocker for (pi, pj). The following definition gives a set of at most two candidate
vertices for this role. Starting from pj , walk clockwise towards pi until we reach
the first point pk such that {pi, pk} is a visible pair (clearly there must be such
a point since {pi, pi+1} is a visible pair). We say that pk is a candidate blocker
for (pi, pj) if there are no visible pairs {ps, pt} such that ps ∈ ∂(pi, pk−1) and
pt ∈ ∂(pk+1, pj). Similarly, walk counterclockwise from pj to pi until we reach
the first point pk′ such that {pi, pk′} is a visible pair. Then pk′ is a candidate
blocker for (pi, pj) if there are no visible pairs {ps, pt} such that ps ∈ ∂(pj , pk′−1)
and pt ∈ ∂(pk′+1, pi). Note that a vertex may be a candidate blocker for (pi, pj)
but not for (pj , pi). It clearly follows from the definition that (pi, pj) can have
at most two candidate blockers: at most one in ∂(pi, pj) and at most one in
∂(pj , pi). We will see that if a vertex in G is not a candidate blocker for (pi, pj),
then it cannot serve as a designated blocker for (pi, pj) in P .

We utilize some observations regarding the vertex-edge visibility graphs for
pseudo-polygons given by O’Rourke and Streinu [9] in the proof of our key lemma
as well. We first formally define what it means for a vertex to see a boundary
edge in a pseudo-polygon. Vertex pj is a witness for the vertex-edge pair (pi, e)
if and only if either
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pi
pj

pk

ri,k
pipk

pi

pj

pk

e

pi
pk

pt pj

(a) (b) (c)

Fig. 3. (a) A designated blocker. (b) The vertex-edge pair (pi, e) has two witnesses.
Therefore pi sees e. (c) If pk is the designated blocker for (pi, pj) then it also is for
(pi, pt).

1. pi and pj are both endpoints of e (permitting pj = pi), or
2. pi is not an endpoint of e, and both of the following occur: (a) pi sees pj ,

and (b) pj is an endpoint of e, or the first boundary edge intersected by rj,i
is e.

Given the definition of a witness, we say vertex p sees edge e if and only if
there are at least two witnesses for (p, e). See Fig. 3 (b). The definition requires
two witnesses as a vertex pi could see one endpoint of e without seeing any other
part of the edge, and in this situation it is defined that pi does not see e. We
now give the following lemma relating edge visibility and vertex visibility. Some
similar results for straight-line visibility were given in [10], and we prove them
in the context of pseudo-visibility.

Lemma 1. If a vertex pi sees edges ej−1 and ej, then it sees vertex pj. Also if
a vertex pi sees vertex pj, then it sees at least one of ej−1 and ej.

The following lemma from [9] is used in the proof of our key lemma. Note
that Case A and Case B are symmetric.

Lemma 2. If pk ∈ ∂(pb+1, pa) sees non-adjacent edges ea and eb and no edge
∂(pa+1, pb), then exactly one of Case A or B holds. Case A: (1) pk sees pa+1

but not pb; and (2) pa+1 is a witness for (pk, eb); and (3) pa+1 sees eb but pb
does not see ea. Case B: (1) pk sees pb but not pa+1; and (2) pb is a witness
for (pk, ea); and (3) pb sees ea but pa+1 does not see eb.

We are now ready to present our key structural lemma.

Lemma 3. For any invisible pair (pi, pj) in a pseudo-polygon P , there is exactly
one designated blocking vertex pk. Moreover, pk is a candidate blocker for the
invisible pair (pi, pj) in the visibility graph of P .

Proof. We begin by showing that a designated blocking vertex pk for an invisible
pair (pi, pj) is a candidate blocker for the invisible pair (pi, pj). Without loss of
generality, assume that pk ∈ ∂(pi, pj). For the sake of contradiction, suppose pi
sees a point pt ∈ ∂(pk+1, pj). The pseudo-lines Li,k and Li,t intersect at pi, and
by the definition of designated blocker, the ray ri,k must intersect Li,t again, a
contradiction. Therefore pk must be the first point that pi sees when walking
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clockwise from pj . It remains to argue that no point ps ∈ ∂(pi+1, pk−1) sees a
point pt ∈ ∂(pk+1, pj). Suppose the contrary. Then the segments pipk and pspt
must both be contained inside of the polygon, and therefore they must intersect
each other, and we also have ri,k must intersect pspt again following the definition
of designated blocker, a contradiction. It follows that the vertex pk must be a
candidate blocker for the invisible pair (pi, pj).

It remains to show that there must be exactly one designated blocker for each
invisible pair. Since each designated blocker is a candidate blocker, there can
clearly be at most two designated blockers. We first show there cannot be two
designated blockers for an invisible pair (pi, pj). Suppose pk and pk′ are both
designated blockers. Since they are both candidate blockers, we can assume
without loss of generality that pk ∈ ∂(pi, pj) and pk′ ∈ ∂(pj , pi). It follows from
the definition of designated blocker that Li,k and Li,k′ intersect twice.

We now show that there must be a designated blocker. Consider an invisible
pair (pi, pj). Starting from pj , walk clockwise towards pi until we reach the first
point pi sees, which we denote pk. Note that this point must exist since pi sees
pi+1. Similarly walk counter clockwise from pj until we reach the first point pi
sees, which we denote pk′ . Clearly it must be that pi cannot see any point in
∂(pk+1, pk′−1). By Lemma 1 we have that pi must see at least one edge adjacent
to pk and at least one edge adjacent to pk′ , and we will show that pi can see
exactly one edge in ∂(pk, pk′). First suppose that pi sees no edges in ∂(pk, pk′).
Then it must see ek−1 and ek′ with no edges in ∂(pk, pk′). Applying Lemma 2,
we have that either pi does not see pk or it does not see pk′ , a contradiction. By
Lemma 1 we have that pi cannot see two consecutive edges es−1 and es or else
pi would see ps ∈ ∂(pk+1, pk′−1), a contradiction. So finally suppose pi sees two
non-consecutive edges ea and eb in ∂(pk, pk′). Then Lemma 2 implies that either
pi sees pa+1 or it sees pb, a contradiction in either case. It follows that pi must
see exactly one edge in ∂(pk, pk′).

Suppose without loss of generality that the edge ea ∈ ∂(pk, pk′) that pi sees
is in ∂(pj, pk′). Then pi sees ek−1 and ea, and pi does not see any edge in
∂(pk, pa−1). Applying Lemma 2, we see that we must be in Case A as pi cannot
see pa. Part (2) from Case A gives us that pk is a witness for (pi, ea), and therefore
ri,k first exits the polygon through edge ea. It follows that pk is a designated
blocker for the invisible pair (pi, pj). ��

3 Necessary Conditions

In this section, we give a set of five necessary conditions (NCs) that G must
satisfy. That is, if G does not satisfy one of the conditions then G is not the
visibility graph for any pseudo-polygon. Following from Lemma 3, if G is the
visibility graph of a pseudo-polygon P then we should be able to assign candidate
blockers in G to invisible pairs to serve as the designated blockers in P so that
Lemma 3 and other pcp properties hold. The NCs outline a set of properties
that this assignment must satisfy if the assignments correspond with a valid set
of designated blockers in a pseudo-polygon. The proofs of these conditions use
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the definition of designated blockers to show that if the assignment of candidate
blockers to invisible pairs do not satisfy the condition, then some pseudo-lines
intersect twice, intersect but do not cross, etc. We illustrate the conditions with
simple polygon examples to develop intuition, but the proofs hold for pseudo-
polygons. The proofs are ommitted due to lack of space.

Let (pi, pj) be an invisible pair, and let pk be the candidate blocker assigned
to it. The first NC uses the definition of pseudo-lines and designated blockers
to provide additional constraints on pi and pk. See Fig. 3 (c) for an illustration.
Note that while the condition is stated for pk ∈ ∂(pi, pj), a symmetric condition
for when pk ∈ ∂(pj , pi) clearly holds.

Necessary Condition 1. If pk ∈ ∂(pi, pj) is the candidate blocker assigned
to invisible pair (pi, pj) then both of the following must be satisfied: (1) pk is
assigned to the invisible pair (pi, pt) for every pt ∈ ∂(pk+1, pj) and (2) if (pk, pj)
is an invisible pair then pi is not the candidate blocker assigned to it.

Again let pk be the candidate blocker assigned to an invisible pair (pi, pj)
such that pk ∈ ∂(pi, pj). Since pk is a candidate blocker, we have that (ps, pj) is
an invisible pair for every ps ∈ ∂(pi, pk−1). The next NC is a constraint on the
location of designated blockers for (ps, pj). In particular, if {ps, pk} is a visible
pair, then pk must be the designated blocker for (ps, pj). See Fig. 4 (a). If (ps, pk)
is an invisible pair, then it must be assigned a designated blocker pt. In this case,
pt must also be the designated blocker for (ps, pj). See Fig. 4 (b).

pi
pj

pk
ps

pi
pjps

pkpt

(a) (b)

Fig. 4. (a) If pk is the designated blocker for (pi, pj) and ps sees pk then pk is the
designated blocker for (ps, pj). (b) If ps does not see pk, and pt is the designated
blocker for (ps, pk) then pt is also the designated blocker for (ps, pj).

Necessary Condition 2. Let (pi, pj) denote an invisible pair, and suppose pk
is the candidate blocker assigned to this invisible pair. Without loss of generality,
suppose pk ∈ ∂(pi, pj), and let ps be any vertex in ∂(pi, pk−1). Then exactly one
of the following two cases holds: (1) {ps, pk} is a visible pair, and the candidate
blocker assigned to the invisible pair (ps, pj) is pk, or (2) (ps, pk) is an invisible
pair. If the candidate blocker assigned to (ps, pk) is pt, then (ps, pj) is assigned
the candidate blocker pt.

The next NC is somewhat similar to Necessary Condition 2, except instead
of introducing constraints on the designated blockers for (ps, pj), it introduces
constraints on the designated blockers for (pj , ps) (where the order is reversed).
Similar to the previous case, if pj sees pk then pk must block pj from seeing
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every ps ∈ ∂(pi, pk−1), but we can also see that pk must block pj from any point
pt such that pi is the designated blocker for (pk, pt). See Fig. 5 (a). If pj does
not see pk, then there must be a designated blocker pq for (pj , pk). See Fig. 5
(b). We show that in this case, pq must be the designated blocker for all (pj , ps)
and (pj , pt). Also, (pi, pq) must be an invisible pair with designated blocker pk.

pi
pj

pk
pspt

pi
pspt

pk
pq

pj
(a) (b)

Fig. 5. (a) If pk is the designated blocker for (pi, pj) and pj sees pk then pk is the
designated blocker for (pj , ps), (pj , pi), and (pj , pt). (b) If pj does not see pk, and pq is
the designated blocker for (pj , pk) then pq is the designated blocker for (pj , ps), (pj , pi),
and (pj , pt). Moreover, (pi, pq) is an invisible pair and pk is its designated blocker.

Necessary Condition 3. Let (pi, pj) denote an invisible pair, and suppose pk
is the candidate blocker assigned to this invisible pair. Without loss of generality,
suppose pk ∈ ∂(pi, pj). Then exactly one of the following two cases holds:

1. (a) {pj, pk} is a visible pair. (b) For all ps ∈ ∂(pi, pk−1), the candidate
blocker assigned to the invisible pair (pj , ps) is pk. (c) If pt is such that pi
is the candidate blocker assigned to the invisible pair (pk, pt), then (pj , pt) is
an invisible pair and is assigned the candidate blocker pk.

2. (a) (pj , pk) is an invisible pair. Let pq denote the candidate blocker assigned
to (pj , pk). (b) (pi, pq) is an invisible pair, and pk is the candidate blocker
assigned to it. (c) For all ps ∈ ∂(pi, pk), the candidate blocker assigned to the
invisible pair (pj , ps) is pq. (d) If pt is such that pi is the candidate blocker
assigned to the invisible pair (pk, pt), then (pj , pt) is an invisible pair and is
assigned the candidate blocker pq.

Suppose pk is a candidate blocker for an invisible pair (pi, pj) (or (pj , pi)), and
suppose without loss of generality that pi ∈ ∂(pj , pk). If pk is also a candidate
blocker for an invisible pair (ps, pt) such that ps, pt ∈ ∂(pk, pj) then we say
that the two invisible pairs are a separable invisible pair. We have the following
condition which is the same as Necessary Condition 3 for simple polygons in [8].
See Fig. 6 (a).

Necessary Condition 4. Suppose (pi, pj) and (ps, pt) are a separable invisible
pair with respect to a candidate blocker pk. If pk is assigned to (pi, pj) then it is
not assigned to (ps, pt).

We now give the final NC. Let pi, pj , ps, and pt be four vertices of G in
“counter-clockwise order” around the Hamiltonian cycle C. We say that pi, pj , ps,
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pj
pt

pi ps

pk
pm

pi

ps
pt

pj

(a) (b)

Fig. 6. (a) If pk blocks one invisible pair of a separable invisible pair then it cannot
block the other one as well. (b) pi, pj , ps, and pt are {pi, pt}-pinched. If pj blocks pi
from seeing some point, then ps cannot also block pt from seeing that point.

and pt are {pi, pt}-pinched if there is a pm ∈ ∂(pt, pi) such that pi is the desig-
nated blocker for the invisible pair (pj , pl) and pt is the designated blocker for
the invisible pair (ps, pl). See Fig. 6 (b). The notion of {pj, ps}-pinched is defined
symmetrically.

Necessary Condition 5. Let pi, pj , ps, and pt be four vertices of G in counter-
clockwise order around the Hamiltonian cycle C that are {pi, pt}-pinched. Then
they are not {pj, ps}-pinched.

4 Proving the Conditions Are Sufficient

Suppose we are given an assignment of candidate blockers to invisible pairs that
satisfies all NCs presented in Section 3. In this section, we prove that G is the
visibility graph for some pseudo-polygon. We make use of the characterization of
vertex-edge visibility graphs for pseudo-polygons given by O’Rourke and Streinu
[9]. That is, we show that the vertex-edge visibility graph associated with G
and the assignment of candidate blockers satisfies the necessary and sufficient
conditions given in [9].

We begin by giving an important lemma that relates vertex-edge visibility
with designated blockers in any pseudo-polygon P .

Lemma 4. A vertex pi does not see an edge ej if and only if one of the two
following conditions hold: (1) ps ∈ ∂(pi+1, pj) is the designated blocker for (pi, pt)
for some pt ∈ ∂(pj+1, pi−1), or (2) pt ∈ ∂(pj+1, pi−1) is the designated blocker
for (pi, ps) for some ps ∈ ∂(pi+1, pj−1).

Lemma 4 implies that given any visibility graph G with an assignment of
designated blockers to its invisible pairs, there is a unique associated vertex-
edge visibility graph. Let us denote this graph GV E . We will show that if the
assignment of designated blockers to the invisible pairs satisfies NCs 1-5, then
GV E satisfies the following characterization given by O’Rourke and Streinu [9].
This implies that there is a pseudo-polygon P such that GV E is the vertex-
edge visibility graph of P and G is the visibility graph of P . Note pj is an
articulation point of the subgraph of GV E induced by ∂(pi+1, pk) if and only if
pj is a candidate blocker for the invisible pair (ps, pt) for some ps ∈ ∂(pi+1, pj−1)
and some pt ∈ ∂(pj+1, pk).
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Theorem 1. [9] A graph is the vertex-edge visibility graph of a pseudo-polygon
P if and only if it satisfies the following. If pk ∈ ∂(pj+1, pi−1) sees two non-
adjacent edges ei and ej and no edge in ∂(pi+1, pj−1) then it satisfies exactly one
of the following two properties: (1) pi+1 sees ej and pi+1 is an articulation point
of the subgraph induced by ∂(pk, pj), or (2) pj sees ei and pj is an articulation
point of the subgraph induced by ∂(pi+1, pk).

Good Lines and Centers. If Li,j is such that {pi, pj} is a visible pair, then
we say Li,j is a good line. Recall Li,j can be decomposed into three portions:
the segment pipj and two infinite rays ri,j and rj,i. The ray ri,j starts at pj
and does not include pi, and rj,i is defined symmetrically. We now define the
center of Li,j to be the connected subsegment of Li,j consisting of the following:
the segment pipj , the subsegment of ri,j obtained by starting at pj and walking
along the ray until we first reach exit outside of P (this may or may not be just
pj), and the symmetric subsegment of rj,i. Note that the center of Li,j is simply
the intersection of Li,j and P if the rays never re-enter P after leaving.

Given the visibility graph G and the assignment of candidate blockers to
invisible pairs, we will now describe how to construct a witness P ′ that will be
used to show that G is the visibility graph of a pseudo-polygon P . P ′ has a
vertex for each vertex of G, and for every visible pair {pi, pj} in G, the center
of Li,j will appear in P ′. The center will behave according to the assignment
of candidate blockers to invisible pairs. In other words, if pj is assigned to the
invisible pair (pi, pk), then the center will be defined so that it fits the definition
of designated blocker for this invisible pair.

For each vertex pi in G, we add a point pi to P ′. We place these points in R
2

in convex position in “counterclockwise order”. That is, indices increase (modulo
n) when walking around the convex hull in the counterclockwise direction. Now
suppose that pj is the candidate blocker assigned to an invisible pair (pi, ps). We
define ri,j to be such that pj is a designated blocker for (pi, ps). First note that if
pj is the candidate blocker assigned to (pi, ps) and (pi, pt), then it cannot be that
one of ps and pt is in ∂(pi, pj) and the other is in ∂(pj , pi) by Necessary Condition
4, so without loss of generality assume that any such point is in ∂(pj, pi). Let ps
be such that pj is assigned to (pi, ps) but it is not assigned to (pi, ps+1). It follows
from Necessary Condition 1 that there is exactly one such point ps that satisfies
this condition. We begin the definition of ri,j as a straight line from pj to the
edge es. There may be many rays from many different vertices which intersect
the edge es. If ra,b is another ray intersecting es, we “preserve the order” of the
rays so that ri,j and ra,b do not intersect. Note that because of property (2) of
Necessary Condition 1, these centers do not self-intersect.

Lemma 5. If GV E does not satisfy the conditions of Theorem 1, then there
exists a pair of distinct good line centers that intersect twice in P ′.

Combining Lemma 5 with the following lemma, we get that GV E satisfies
Theorem 1 and therefore is the vertex-edge visibility graph for a pseudo-polygon.

Lemma 6. The centers of any pair of good lines intersects at most once, and if
they intersect they cross.
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We now have that GV E is the vertex-edge visibility graph for some pseudo-
polygon P . It follows from Lemma 4 that G is the visibility graph of P , giving
us the following theorem.

Theorem 2. A graph G with a given Hamiltonian cycle C is the visibility graph
of a pseudo-polygon P if and only if there is an assignment of candidate blockers
to the invisible pairs that satisfies Necessary Conditions 1 - 5.
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Abstract. We introduce the Excesses Incremental Breadth-First Search
(Excesses IBFS) algorithm for maximum flow problems. We show that
Excesses IBFS has the best overall practical performance on real-world
instances, while maintaining the same polynomial running time guaran-
tee of O(mn2) as IBFS, which it generalizes. Some applications, such
as video object segmentation, require solving a series of maximum flow
problems, each only slightly different than the previous. Excesses IBFS
naturally extends to this dynamic setting and is competitive in practice
with other dynamic methods.

1 Introduction

The maximum flow problem and its dual, the minimum s–t cut problem, are fun-
damental optimization problems with applications in a wide range of areas such
as network optimization, computer vision, and signal processing. We present a
new robust algorithm for the maximum flow problem that is particularly suitable
for dynamic applications. We prove a strongly polynomial running time bound
for our algorithm and compare its performance to previous algorithms.

Experimental work has been done on Dinic’s blocking flow algorithm [4,16],
the Push-Relabel (PR) algorithm [5,12,13], and Hochbaum’s Pseudoflow algo-
rithm (HPF) [18,3,9]. All three have a strongly polynomial worst-case time
bound. In contrast, the algorithm of Boykov and Kolmogorov (BK) [2] is purely
practical: it has no strongly polynomial time bound, but is probably the most
widely used algorithm in computer vision. The Incremental Breadth-First Search
(IBFS) algorithm [14] shares some features with both BK and PR. It is competi-
tive with BK in practice [14] and has the same strongly polynomial time bounds
as PR:O(mn2) without sophisticated data structures andO(mn log(n2/m)) with
dynamic trees, where m is the number of arcs and n is the number of vertices.

� Work partly done while the author was at Microsoft Research Silicon Valley.

c© Springer-Verlag Berlin Heidelberg 2015
N. Bansal and I. Finocchi (Eds.): ESA 2015, LNCS 9294, pp. 619–630, 2015.
DOI: 10.1007/978-3-662-48350-3�52



620 A.V. Goldberg et al.

The maximum flow problem has also been studied in a dynamic setting, where
one solves a series of maximum flow instances, each obtained from the previous
one by relatively few changes in the input. The naive approach is to solve each
problem independently, but one can do better. Kohli and Torr [19,20,1] extend
the BK algorithm to the dynamic setting for better performance.

Despite improvements over the years, there is still much room for obtaining
faster running times in practice. A natural question is whether we can come up
with a robust algorithm that is fast for all applications, both static and dynamic,
and has a worst-case strongly polynomial time bound.

In this paper, we present the Excesses IBFS (EIBFS) algorithm, which gen-
eralizes IBFS. We show that EIBFS is the best overall algorithm in practice
on real-world data. On most instances it is the fastest compared to all other
algorithms (often by orders of magnitude); when it loses, it is by small factors.
Unlike IBFS, Excesses IBFS naturally extends to the dynamic setting, where it
is competitive in practice with the dynamic extension of BK [19].

Section 2 describes the EIBFS algorithm, proves its correctness, and shows
that it has the same worst-case time bounds as IBFS: O(mn log(n2/m)) with
dynamic trees and O(mn2) without. Section 3 describes improvements that can
be implemented in both IBFS and EIBFS. Section 4 has an extensive experi-
mental comparison of all the key players in solving maximum flow in practice.
Our benchmark is a superset of previous benchmarks and as comprehensive as
we could make it.

IBFS offered a faster, theoretically justified alternative to solving maximum
flow. Excesses IBFS offers an even faster, still theoretically justified and dynamic
alternative to all existing methods.

Definitions and Notation. The input to the maximum flow problem is a
directed graph G = (V,E), a source s ∈ V , a sink t ∈ V (with s �= t), and a
capacity function u : E ⇒ [1, . . . , U ].

We assume that every arc a has a reverse arc aR of capacity 0. A (feasible) flow
f is an anti-symmetric function (i.e. f(a) = −f(aR)) on E ∪ ER that satisfies
capacity constraints on all arcs and conservation constraints at all vertices except
s and t. The capacity constraint for an arc (v, w) is that f(v, w) ≤ u(v, w). The
conservation constraint for v is

∑
(u,v)∈E f(u, v) =

∑
(v,w)∈E f(v, w). The flow

value is the total flow into the sink: |f | = ∑
(v,t)∈E f(v, t). A cut is a partitioning

of vertices S ∪ T = V with s ∈ S and t ∈ T . The capacity of a cut is defined as
u(S, T ) =

∑
(v,w)∈E|v∈S,w∈T u(v, w). The max-flow/min-cut theorem [10] states

that the maximum flow value is equal to the minimum capacity of a cut.
The residual capacity of an arc a ∈ E ∪ER is defined by uf(a) = u(a)− f(a).

The residual graph Gf = (V,Ef ) is the graph induced by the arcs in E ∪ ER

with strictly positive residual capacity. A valid distance labeling from s is an
integral function ds on V that given a flow f satisfies ds(s) = 0 and ds(w) ≤
ds(v) + 1 for every arc (v, w) ∈ Ef . A valid distance labeling to t, dt, is defined
symmetrically. We say that an arc (v, w) is admissible w.r.t. ds if (v, w) ∈ Ef and
ds(v) = ds(w)− 1, and admissible w.r.t. dt if (v, w) ∈ Ef and dt(w) = dt(v)− 1.
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2 Excesses IBFS

Unlike IBFS and BK, which always maintain a feasible flow, Excesses IBFS is a
generalization of IBFS that maintains a pseudoflow, a flow that observes capacity
but not conservation constraints. For a vertex v, let ef (v) =

∑
w|(w,v)∈E f(w, v)−∑

w|(v,w)∈E f(v, w). We say v is an excess if ef (v) > 0 and a deficit if ef (v) < 0.
We define s and t to have infinite excess and deficit, respectively.

Pseudoflows often allow to efficiently restart an algorithm after solving a prob-
lem to solve related problems. For example, for the global minimum cut prob-
lem [17] and the parametric flow problem [11], one gets the same running time
bound for a sequence of flow computations as that for a single computation.

EIBFS maintains a pair of vertex-disjoint forests S and T in the admissible
subgraph. Each excess is a root of a tree in S, and a root in S must be an excess.
Similarly, each deficit is a root of a tree in T , and a root in T must be a deficit.
For a non-root vertex v in S or T , we let p(v) be the parent of v in its respective
forest. We call a vertex which is not in S nor in T a free vertex.

The algorithm maintains distance labels ds(v) and dt(v) for every vertex v.
The forest arcs in S and T are admissible with respect to ds and dt, respectively.
Initially, every root r in S or in T has ds(r) = 0 or dt(r) = 0, respectively. New
excesses and deficits that form as the algorithm runs may have arbitrary distance
labels, so the roots of the forests do not necessarily have zero distance label.
Similar forests have been introduced before in an algorithm for finding a global
minimum cut [17]. We also maintainDs = maxv∈S ds(v) andDt = maxv∈T dt(v).

Initially, S contains only s, T contains only t, ds(s) = dt(t) = 0, Ds = Dt = 0
and p(v) is null for every vertex v. The algorithm proceeds in phases. Every
phase is either a forward phase (where we grow the S forest) or a reverse phase
(where we grow the T forest). Every phase executes growth steps, which may be
interrupted by augmentation steps (when an augmenting path is found) followed
by alternating adoption and augmentation steps.

We describe a forward phase; reverse phases are symmetric. The goal of a
forward phase is to grow S by one level. If S has vertices at level Ds + 1 at the
end of the phase, we increment Ds; otherwise we terminate.

We execute growth steps as in IBFS. When the phase starts we make all
vertices v in S with ds(v) = Ds active. We then pick an active vertex v and scan
v by examining residual arcs (v, w). If w is in S, we do nothing. If w is free, we
add w to S, set p(w) = v, and set ds(w) = Ds + 1. If w is in T , we perform an
augmentation step as described below. We remember (v, w) as the outgoing arc
that triggered the augmentation step. If v is still active after the augmentation
step, we resume the scan of v from (v, w) to avoid re-scanning the preceding
arcs. If (v, w) is still residual and connects the forests, we do more augmentation
steps using it. After all arcs out of v have been scanned, v becomes inactive.
When all vertices are inactive, the phase ends.

Augmentation steps differ from those of IBFS. When we find a connecting
arc (v, w) with v in S and w in T we increase the flow on (v, w) by any feasible
amount without violating the capacity constraint of (v, w) (we will discuss the
best strategy for choosing the amount later). As a result of adding flow, an
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excess may be created in T and a deficit may be created in S. We now alternate
between augmentation steps and adoption steps as we describe below. Once all
excesses have been drained or removed from T and all deficits have been drained
or removed from S we continue to perform growth steps.

We describe how we handle excesses created in T . We handle deficits in S
symmetrically. We call a vertex v ∈ T an orphan if its parent arc (v, p(v)) is
not admissible (possibly saturated) and ef (v) ≥ 0. We execute an augmenta-
tion step by picking an excess v ∈ T and pushing flow out of v as described
below, possibly creating orphans and more excesses in T . If the augmentation
step created orphans, we run adoption steps to repair them. After orphans are
repaired we execute another augmentation step from another excess. We stop
when all excesses are drained or removed from T . The excesses can be picked in
any arbitrary order; highest level order seems to work well in practice.

We push flow out of an excess v ∈ T as follows. We traverse the tree path
from v to the root r of its tree in T . For every arc (x, y) along this path, in turn,
we increase the flow by min{uf(x, y), ef (x)}. It follows that we either drain the
entire amount of excess from x or saturate the arc (x, y), making x an orphan in
T . Root r remains a deficit if we did not drain enough excess into it. Otherwise
it has ef (r) ≥ 0 and becomes an orphan; it can no longer serve as a root in T .

An adoption step repairs an orphan v in T by either setting a new parent, p(v)
in T or removing v from T . There are different methods to performing adoption
steps. The simplest one is round robin adoption described below. More advanced
methods are described in Section 3. In either method, if v is removed from T
and v still has excess, then v is added to S as a new root with distance label
ds(v) = Ds + 1 in a forward phase or ds(v) = Ds in a reverse phase.

The original IBFS algorithm can be seen as a restricted version of EIBFS with
a specific strategy for choosing the amount of flow to push on a connecting arc
(v, w) between S and T . This strategy is to always take the bottleneck residual
capacity along the tree path from s to v, the arc (v, w), and the tree path from w
to t. Such an augmentation step will never create additional excesses or deficits
in its tree. As a result, the S and T forests will simply be BFS trees rooted in s
and t, respectively.

Round-Robin Adoption. We describe adoption steps in T . The adoption
steps in S are symmetric. For efficiency, we maintain for every vertex a current
arc, which ensures that each arc incident to a vertex v is scanned at most once
following each increase in dt(v). When a free vertex is added to T or when the
distance label of a vertex changes, we set the current arc to the first arc in its
adjacency list. We maintain the invariant that the arcs preceding the current arc
on the adjacency list of each vertex are not admissible.

The round robin method is based on the relabel operation of the push-relabel
algorithm [15]. An adoption step on a vertex v works as follows. We first scan v’s
adjacency list starting from the current arc and stop when we find an admissible
outgoing arc or reach the end of the list. If we find an admissible arc (v, u) we
set the current arc of v to (v, u) and set p(v) = u. If we do not find such an arc,
we apply the orphan relabel operation to v.
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The orphan relabel operation scans v’s adjacency list to find a new parent u
for v. Vertex u qualifies to be a new parent of v if (1) u is a vertex of minimum
dt(u) such that (v, u) is residual and (2) dt(u) < Dt in a forward phase and
dt(u) ≤ Dt in a reverse phase. If no vertex u qualifies as a new parent of v then
we make v a free vertex if ef (v) = 0 or add it to S as a new root if ef (v) > 0.

If there is a vertex u that qualifies to be a parent of v then we choose u to
be the first such vertex along v’s adjacency list. We set the current arc of v to
(v, u), set p(v) = u and set dt(v) = dt(u)+1. Every vertex w with p(w) = v now
becomes an orphan and needs to be repaired by adoption steps as well.

If v is active and we execute the orphan relabel operation on v, then we make
v inactive (v is no longer in T or no longer with distance label dt(v) = Dt).

Pushing Flow on Connecting Arcs. When a growth step finds an arc (v, w)
with v ∈ S and w ∈ T , we must decide how to increase the flow on (v, w). As
we show later, the rule below ensures a strongly polynomial time bound.

Let rv be the root of v’s tree in S and let rw be the root of w’s tree in T .
Let bv be the bottleneck capacity along the path from v to rv and let bw be the
bottleneck capacity along the path from w to rw. Consider the following cases:

1. If rv = s and rw = t, we push uf (v, w).
2. If rv = s and rw �= t, we push min{bv, uf(v, w)}, thus creating no deficits in

S (except v temporarily).
3. If rv �= s and rw = t, we push min{uf(v, w), bw}, thus creating no excesses

in T (except w temporarily).
4. If rv �= s and rw �= t we push min{ef(rv), bv, uf (v, w), bw,−ef(rw)}, thus

creating no deficits or excesses in S or T (except v or w temporarily).

Correctness and Running Time. Correctness for EIBFS relies on the fol-
lowing lemma, which is the counterpart of Lemma 1 of IBFS [14]. See the full
version of this extended abstract for a complete proof of correctness.

Lemma 1. During a forward phase, if (u, v) is residual: (1) if u ∈ S, ds(u) ≤
Ds, and v /∈ S, then u is an active vertex; (2) if v ∈ T and u �∈ T , then
dt(v) = Dt; (3) after the increase of Ds, if u ∈ S and v �∈ S, then ds(u) = Ds.

Next we show that the worst-case time complexity of EIBFS is O(mn2), which
can be improved to O(mn log(n2/m)) using dynamic trees and existing tech-
niques. We first consider the invariants maintained by the algorithm. These are
the counterparts of the invariants in Lemma 2 of IBFS [14].

Lemma 2. The following invariants hold:

1. If (v, w) is residual with v, w ∈ S, then ds(w) ≤ ds(v)+1. If (v, w) is residual
with v, w ∈ T , then dt(v) ≤ dt(w) + 1.

2. For every vertex u in S, u’s current arc precedes the first admissible arc to
u or is equal to it. For every vertex u in T , u’s current arc precedes the first
admissible arc from u or is equal to it.
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3. After an adoption step on u: if u is in S and ef (u) ≤ 0 then (p(u), u) is
admissible; if u is in T and ef (u) ≥ 0 then (u, p(u)) is admissible.

4. For every vertex v, ds(v) and dt(v) never decrease.

Proof. The proof, by induction on the growth, augmentation and adoption steps,
is the same as that of Lemma 2 for IBFS [14]. Although augmentation steps differ
a little, the same arguments hold for EIBFS. The only addition is the case of
removing an excess from T or a deficit from S during an adoption step.

We consider a vertex v with ef (v) > 0 removed from T during an adoption
step; the case of a deficit removed from S is symmetric. Since we reset the current
arc of v, (2) holds. Since ef(v) > 0, (3) does not apply. We assign v the highest
possible label in S (either Ds+1 for a forward phase or Ds for a reverse phase),
so (4) holds. We are left to show that invariant (1) is maintained.

We assume there is a residual arc (u, v) with u in S, otherwise (1) holds
vacuously. If u was in S at the beginning of the current phase (v was not)
then by Lemma 1 u was on the last level of S and thus ds(u) = Ds at that
time. By induction assumption of (4) we get that now ds(u) ≥ Ds and thus
ds(v) ≤ ds(u) + 1. If u was not in S at that time, then by definition of the
algorithm it could only have been added to S with a label Ds +1. By induction
assumption of (4) we get that now ds(u) ≥ Ds+1 and thus ds(v) ≤ ds(u)+1. �	

Adoption steps on a vertex charge their work to increases in the vertex’s
distance label. Lemma 3 is the counterpart of Lemma 5 in IBFS [14] and shows
why this charging is possible. The proof is the same as in Lemma 5 [14]. Lemma 4
and 5 allow us to bound the maximum label assigned during the algorithm.

Lemma 3. After an orphan relabel on v in S, ds(v) increases. After an orphan
relabel on v in T , dt(v) increases.

Lemma 4. For every vertex v in S with ef(v) > 0 we have ds(v) ≤ n. For every
vertex v in T with ef (v) < 0 we have dt(v) ≤ n.

Proof. We prove the lemma for a vertex v in S. The proof for T is symmetric.
We put new excesses in S only when we remove an excess from T during an
adoption step that follows an augmentation step. Let (x, y) be the connecting
arc between S and T that initiated this augmentation step.

Since we created excesses in T and by the definition of the flow increase on
(x, y) we get that s is the root of x’s tree. By applying Lemma 2 (1) to the path
from s to v we get that at the time we initiated the augmentation step we had
ds(x) ≤ n − 1. By definition of the algorithm we get that at the same time we
had ds(x) ≥ Ds. It follows that Ds ≤ ds(x) ≤ n− 1 and therefore Ds + 1 ≤ n.
Since we assign ds(v) = Ds + 1 the lemma follows. �	
Lemma 5. For every vertex v in S we have ds(v) < 2n. For every vertex v in
T we have dt(v) < 2n.

Proof. We prove the lemma for a vertex v in S. The proof for T is symmetric.
Let vertex r in S, ef (r) > 0 be the root of v’s tree. By applying Lemma 2 (1)
to the path from r to v we get that ds(v) ≤ ds(r) + n− 1. By Lemma 4 we get
that ds(r) ≤ n. It follows that ds(v) ≤ 2n− 1. �	
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By Lemma 5 the maximum ds or dt label is O(n). The following theorem
follows using the same arguments as in the proof of Lemma 6 for IBFS [14].

Theorem 1. Excesses IBFS runs in O(n2m) time.

Dynamic Setting. We now consider the dynamic setting: after computing a
maximum flow in the network, the capacities of some arcs change and we must
recompute a maximum flow as fast as possible. IBFS does not seem to provide
a robust method for recomputing a maximum flow other than starting the S
and T trees from scratch. EIBFS, however, naturally lends itself to this setting.
We first restore the invariants that were violated by changing the capacities,
then run EIBFS normally continuing with the residual flow and forests from the
previous computation.

Consider the network after changing some capacities. There are several types
of violations to flow feasibility or to the invariants of the EIBFS that may follow:

1. An arc (v, w) such that now f(v, w) > u(v, w).
2. A new residual arc (v, w) such that v is in S and w is in T .
3. A new residual arc (v, w) such that v and w are in S and ds(w) > ds(v) + 1,

or the symmetric case for T .
4. A new residual arc (v, w) such that v and w are in S, ds(w) = ds(v)+1, and

(v, w) precedes the current arc of v, or the symmetric case for T .
5. A new residual arc (v, w) such that v is in S, ds(v) ≤ Ds and w not in S, or

the symmetric case for T .

Violation (4) can be fixed by reassigning the current arc of v. Violation (1)
can be fixed by pushing flow on (w, v); (2), (3) and (5) can be fixed by saturating
(v, w). In both cases the end result is the creation of new excesses or deficits in
S and T . Excesses in S and deficits in T become new roots and need no further
handling. Deficits in S and excesses in T are treated by alternating augmentation
and adoption steps as when we find a connecting arc between S and T .

We found that in practice it pays off to reset the forests every O(m) work.
After a reset, the S and T forests are composed only of excesses or deficits,
respectively, as roots with distance label 0. Note that this scans the nodes array
once. This is similar in concept to Push-Relabel’s global update operation [5].

3 Improvements to IBFS and Excesses IBFS

Forward or Reverse Phases. IBFS or EIBFS can use different strategies
to alternate between forward and reverse phases. The original version of IBFS
strictly alternated between them, producing trees with roughly the same height.
As observed in [14], IBFS often spends the majority of its time on adoption steps.
If arc capacities are distributed independently uniformly at random, balancing by
height also tends to balance the amount of adoption work. In practice, however,
this strategy is often far from optimal. A more robust alternative is to maintain
an operation count that is indicative of the total amount of adoption work in
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each forest. We run a reverse phase when this counter is higher for S than for
T , and a forward phase otherwise. Counting the number of distinct orphans
examined (which is fairly oblivious to the choice of adoption method) in every
adoption process works well in practice.

Alternative Adoption Strategies. The round-robin adoption strategy tends
to be quite fast, but in pathological cases it may process the same vertex a
large number of times. We thus propose a three-pass adoption strategy, which
looks at each arc adjacent to an orphan at most three times during the entire
adoption process of one augmentation step. This is more robust, and cannot be
outperformed by the round-robin method by more than a constant factor.

This strategy associates a bucket (linked list) with each distance label. We
denote by B(v) the distance label associated with the bucket containing v. The
method works in two rounds: the first incurs at most one pass of the adjacency
list for every orphan; the second round incurs at most two more.

We describe the adoption in T (S is symmetric). The first round examines
every orphan v in T in ascending order of distance labels. We scan v’s adjacency
list starting from the current arc and stop as soon as we find a residual arc (v, u)
with dt(u) = dt(v) − 1. If such a vertex u is found, we set p(v) = u and set the
current arc of v to (v, u). If no such u is found, we remove v from T (v becomes a
free vertex), put v in bucket dt(v) + 1, and make the children of v in T orphans.

The second round iterates over the buckets in ascending order of distance
labels. We examine every orphan v in the bucket. If this is the second pass of
v, then we perform an orphan relabel operation as in Section 2. If v finds a
potential parent u in T (note that u is not an orphan) we move it to the bucket
dt(u) + 1. If vertex v did not find a potential parent, it remains free, but it may
be reattached to T later in the round.

If this is the third pass of v, we scan v’s adjacency list, performing two oper-
ations. The first operation is to find a parent u in T for which dt(u) = B(v)− 1
and (v, u) is residual. At the time of the third pass we are guaranteed to find
such a parent. At the end of the scan we set the current arc of v to be (v, u), set
p(v) = u and set dt(v) = B(v). The second operation applies to every neighbor
w with (w, v) residual and w either free or in a bucket B(w) > B(v)+1. We put
w in the bucket B(v) + 1 and remove it from any other bucket.

In practice, we use a hybrid method, which works as follows for every adoption
process of one augmentation step. It starts with the round-robin method while
keeping count of the average number of times each orphan is examined. If this av-
erage exceeds 3, it processes all remaining orphans using the three-pass method.
We found that this method combines the best of both worlds and outperforms
the round-robin and the three-pass methods in practice.

4 Experimental Results

In our experiments we use the implementation of BK version 3.0.1 from
http://www.cs.ucl.ac.uk/staff/V.Kolmogorov/software.html. That im-
plementation allows for dynamic capacities on the arcs from the source and to

http://www.cs.ucl.ac.uk/staff/V.Kolmogorov/ software.html
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the sink. We added the option for dynamic capacities on all arcs. The dynamic
version of BK was formulated by Kohli and Torr [19]. We also compare to UBK,
an altered version of BK that maintains a consecutive arc structure: the arcs
reside in an array grouped by the vertex they originate from (same as in [14]).
We denote our implementation of Excesses IBFS with all the optimizations of
Section 3 by EIBFS, and use IBFS to denote the implementation from [14].
The implementations of EIBFS and IBFS maintain a consecutive arc structure.
We use the implementation of Hochbaum’s pseudoflow (HPF) version 2.3 from
http://riot.ieor.berkeley.edu/Applications/Pseudoflow/maxflow.html.
We run the highest label FIFO variant of HPF, as recommended by the down-
load page. We run also an implementation of Two-Level Push-Relabel (P2R)
[12]. Our implementation of EIBFS and benchmark data are available at
http://www.cs.tau.ac.il/~sagihed/ibfs/.

We run our experiments on a 64-bit Windows 8 machine with 8GB of RAM
and an Intel i5-3230M 2.6GHz processor (two physical cores, 256KB L1 cache).
We used the MinGW g++ compiler with -O3 optimization settings. We compile
with 64-bit or 32-bit pointers depending on problem size. We report system times
of the maximum flow computation obtained with ftime. On the rare occasions in
which running times are too small to measure, we round them up to a millisecond.
We report absolute times (in seconds) for EIBFS and relative (to EIBFS) times
for all algorithms. Factors greater than 1 mean EIBFS was faster.

Batra and Verma [22] noted that initialization times may be significant. There-
fore our reported times include any initialization time past the initial reading of
arcs. In all implementations, this reading consists of only two operations: writing
arcs consecutively to memory and advancing the count of vertex degrees.

Table 1 reports results for static problems. We consider representative in-
stances from a wide variety of families (see the full version of this extended ab-
stract for a complete set of results). Multi-view reconstruction, 3D segmentation,
stereo images, surface fitting and the first video segmentation family are provided
by University of Western Ontario (http://vision.csd.uwo.ca/maxflow-data).
Families of deconvolution, decision tree field (DTF), super resolution, texture
restoration, automatic labeling environment (ALE) and synthetic segmenta-
tion are provided by http://ttic.uchicago.edu/~dbatra/research/mfcomp/

[22]. Another synthetic family is from the DIMACS maximum flow challenge
(http://dimacs.rutgers.edu/Challenges/). We run also on families of image
and video segmentation with GMM models, multi-label image segmentation [1],
lazy-brush image painting [21], road newtwork partitioning (PUNCH) [6], and
graph bisection [7,8]. For stereo, ALE, PUNCH, and bisection, we report times
summed over similar instances. Capacities are integral for all problems.

On real-world problems, EIBFS is the fastest overall algorithm, sometimes by
orders of magnitude. It often improves the performance of IBFS but sometimes
slows it down by marginal factors. EIBFS is the overall fastest the stereo, multi-
view, 3D segmentation, surface fitting, and video frame families, losing occasion-
ally to other algorithms only by small factors.OnDTFproblemsHPF is the fastest,
outperformingEIBFSby 20%onaverage.On lazy-brushproblemsEIBFS is fastest

http://riot.ieor.berkeley.edu/Applications/Pseudoflow/maxflow.html
http://www.cs.tau.ac.il/~sagihed/ibfs/
http://vision.csd.uwo.ca/maxflow-data
http://ttic.uchicago.edu/~dbatra/research/mfcomp/
http://dimacs.rutgers.edu/Challenges/
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Table 1. Performance on real-world and synthetic static inputs

instance eibfs relative times

family name
n

1024
m
n time[s] eibfs ibfs bk ubk hpf p2r

stereo BVZ-tsukuba 108 4.0 0.249 1.00 0.94 1.02 1.09 3.50 7.49
KZ2-venus 294 5.7 1.643 1.00 0.92 1.27 1.37 3.23 7.02

multi-view camel-med 9450 4.0 7.125 1.00 1.95 2.67 2.75 1.52 4.44
gargoyle-med 8640 4.0 8.516 1.00 1.62 11.73 9.35 0.93 2.35

3D adhead6c100(64bit) 12288 6.0 11.250 1.00 1.08 2.38 1.95 1.71 1.95
segmentation babyface6c100 4943 6.0 3.336 1.00 1.10 2.22 2.10 3.86 6.22

bone6c100 7616 6.0 2.180 1.00 1.84 1.87 1.54 1.67 2.36
bone sx26c100(64bit) 3808 26.0 4.171 1.00 1.68 2.90 1.90 1.09 1.25
bone sx6c100 3808 6.0 1.492 1.00 1.27 2.73 2.28 1.79 1.82
bone sxyz26c10 960 26.0 0.742 1.00 1.98 2.04 1.24 0.71 1.53
liver6c100 4064 6.0 3.391 1.00 1.16 2.78 2.43 2.15 2.79

surface fitting bunny-med 6163 6.0 0.687 1.00 1.07 1.36 1.15 3.77 22.28

video1 car 32bins 77 9.7 0.015 1.00 1.01 9.41 2.92 1.99 5.61
(single frame) person 16bins 107 9.9 0.015 1.00 1.10 154.74 19.74 1.21 5.41

videoSegA 168 8.0 0.051 1.00 1.03 1.46 1.52 5.58 13.62
videoSegB 225 8.0 0.015 1.00 1.01 0.70 1.10 1.58 3.31
videoSegC 234 8.0 0.042 1.00 1.26 1.44 1.48 1.67 3.03

deconvolution graph3x3 1 21.9 0.001 1.00 2.00 1.94 2.00 1.00 1.00
graph5x5 1 67.7 0.004 1.00 1.00 7.50 5.19 0.65 0.25

DTF printed graph1 19 56.7 0.069 1.00 1.09 7.83 4.34 0.77 1.31
printed graph16 11 55.2 0.034 1.00 1.00 5.69 3.07 0.80 1.17

lazy-brush lbrush-bird 2316 4.0 3.070 1.00 3.11 1.28 1.04 1.97 3.81
lbrush-doctor 2317 4.0 1.140 1.00 18.00 1.47 1.15 1.10 9.45
lbrush-mangagirl 579 4.0 0.273 1.00 4.89 1.23 0.94 1.43 8.38
lbrush-elephant 2314 4.0 2.930 1.00 4.95 1.10 1.05 1.13 4.62

texture texture graph 42 15.1 0.010 1.00 1.14 0.57 1.28 0.86 1.72

resolution superres graph 42 15.1 0.007 1.00 1.00 0.19 1.19 0.99 1.98

segmentation butterfly 453 8.0 0.084 1.00 1.11 1.52 1.59 5.96 8.22
comp 236 8.0 0.078 1.00 1.40 2.20 2.21 4.01 3.89
ferro 230 8.0 0.056 1.00 1.27 2.11 2.28 6.17 16.57
flamingo2 468 8.0 0.106 1.00 1.06 1.38 1.35 3.94 5.08

PUNCH punch-eu22p 1825 2.8 29.219 1.00 1.78 3.26 2.65 0.50 1.60
punch-eu22u 1825 2.8 10.517 1.00 2.84 2.37 1.96 0.89 3.62
punch-us22p 1596 2.8 47.189 1.00 1.96 2.98 2.38 0.32 0.76
punch-us22u 1596 2.8 10.859 1.00 6.22 2.40 2.02 0.85 2.48

bisection alue7065 32 3.2 0.110 1.00 2.00 1.29 1.42 1.58 4.83
cal 1761 2.5 7.156 1.00 8.45 1.63 1.45 1.64 8.91
horse 46 6.0 0.313 1.00 1.00 0.55 0.55 1.94 3.19
rgg18 254 11.8 5.282 1.00 1.48 0.65 0.46 1.75 2.78

ALE graph 2007 000033 168 27.3 0.915 1.00 1.02 175.23 11.32 27.29 24.03
graph 2007 001288 161 29.0 0.904 1.00 1.02 186.73 6.77 69.02 19.55

segmentation 0.000099502487562 1 39 4.0 0.044 1.00 0.78 0.99 0.92 0.78 1.56
(synthetic) 0.002148473323752 1 39 45.0 0.059 1.00 1.06 9.34 6.49 3.22 1.58

0.004631311287980 1 39 94.5 0.112 1.00 1.03 9.56 5.62 2.11 1.47
0.021520481611665 1 39 432.4 0.584 1.00 1.12 9.52 4.51 0.69 0.69
0.100000000000000 1 39 2001.6 3.278 1.00 0.93 9.65 3.93 0.61 0.75

DIMACS ac.n1024 1 1019.0 0.034 1.00 1.07 37.76 4.71 0.91 0.63
(synthetic) ac.n4096 4 4091.0 1.337 1.00 1.18 42.97 7.41 0.42 0.50

rmf-long.n4 264 5.8 11.490 1.00 1.73 7.87 5.18 0.04 0.02
rmf-wide.n4 120 5.8 2.696 1.00 1.21 19.63 13.34 0.17 0.30
wash-line.n16384-64 64 127.7 1.034 1.00 2.68 4.98 3.32 0.51 0.45
wash-line.n8192-45 32 89.8 0.218 1.00 3.15 7.51 4.54 0.39 0.53
wash-rlg-long.n2048 128 6.0 1.621 1.00 6.97 16.42 12.74 0.07 0.07
wash-rlg-wide.n2048 128 5.9 1.037 1.00 1.27 213.70 156.68 0.19 0.32
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Table 2. Performance on real-world dynamic input

instance dynamic eibfs relative times

family name
n

1024
m
n iters time[s] eibfs bk ubk nibfs

bisection alue7065 32 3.2 9.0 0.074 1.00 0.47 0.50 0.62
cal 1760 2.5 8.0 5.846 1.00 1.26 1.03 0.86
horse 46 6.0 9.0 0.072 1.00 0.78 0.65 0.95
rgg18 254 11.8 9.0 1.753 1.00 0.52 0.48 1.34

video1 car 32bins.inc 77 9.7 4320.0 2.691 1.00 2.27 1.10 7.17
person 16bins.inc 107 9.9 28380.0 21.502 1.00 11.78 2.92 9.17
videoSegA.inc 168 8.0 49.0 0.867 1.00 1.96 1.91 1.41
videoSegB.inc 225 8.0 49.0 0.236 1.00 0.61 0.49 1.41

video2 gir.inc 405 8.0 4.0 0.078 1.00 2.00 1.64 1.36
highway.inc 75 8.0 40.0 0.177 1.00 1.90 1.91 1.31
office.inc 84 8.0 46.0 0.279 1.00 1.78 1.46 0.92
pedestrians.inc 84 8.0 50.0 0.083 1.00 1.13 1.35 1.73

multi-label cowInc00 405 8.0 16.0 0.001 1.00 1.50 1.00 29.60
gardenInc00 20 7.9 28.0 0.001 1.00 1.00 1.00 4.60

and improves IBFS considerably.BK is the fastest on texture restorationand super
resolution problems, since most of the running time is taken up by initialization
(as seen by comparing BK to UBK). On image segmentation problems EIBFS is
fastest. On PUNCH problems HPF is fastest, outperforming EIBFS by 25% on
average. On bisection problems EIBFS and BK/UBK are competitive. On ALE
problems EIBFS is faster by orders of magnitude compared to all other algorithms
except IBFS. On synthetic problems, EIBFS is faster than IBFS but can still lose
by orders of magnitude to HPF and P2R (especially on DIMACS instances). We
note that some have very large vertex degrees, with most of the time used for ini-
tialization of the arc structure.

Table 2 considers dynamic problems. Dynamic video segmentation aligns max-
imum flow problems from consecutive video frames as one dynamic maximum
flow set. Dynamic multi-label image segmentation aligns maximum flow prob-
lems from consecutive alpha expansion iterations over the same label. Dynamic
bisection aligns maximum flow problems from nearby branches of a branch-and-
bound tree. The table shows that, for dynamic applications, EIBFS is compet-
itive with UBK, which in turn tends to be faster than BK. We also include
NIBFS, a more naive implementation of IBFS for the dynamic setting. After
every set of incremental changes, it only fixes violations on arcs where the flow
is greater than the capacity; it then resets the S and T forests as in the periodic
update of dynamic EIBFS. The results show that EIBFS is much more robust:
it can outperform NIBFS by large factors but the converse is false.
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Abstract. We consider a generalization of the secretary problem where
contracts are temporary, and for a fixed duration γ. This models online
hiring of temporary employees, or online auctions for re-usable resources.
The problem is related to the question of finding a large independent set
in a random unit interval graph.

1 Introduction

This paper deals with a variant of the secretary model, where contracts are tem-
porary. E.g., employees are hired for short-term contracts, or re-usable resources
are rented out repeatedly, etc. If an item is chosen, it “exists” for a fixed length
of time and then disappears.

Motivation for this problem are web sites such as Airbnb and oDesk. Airbnb
offers short term rentals in competition with classic hotels. A homeowner posts a
rental price and customers either accept it or not. oDesk is a venture capitalizing
on freelance employees. A firm seeking short term freelance employees offers a
salary and performs interviews of such employees before choosing one of them.

We consider an online setting where items have values determined by an
adversary, (“no information” as in the standard model [15]), combined with
stochastic arrival times that come from a prior known distribution (in contrast
to the random permutation assumption and as done in [21,7,16]). Unlike much
of the previous work on online auctions with stochastic arrival/departure timing
([18]), we do not consider the issue of incentive compatibility with respect to
timing, and assume that arrival time cannot be misrepresented.

The temp secretary problem can be viewed

1. As a problem related to hiring temporary workers of varying quality sub-
ject to workplace capacity constraints. There is some known prior F (x) =∫ x

0
f(z)dz on the arrival times of job seekers, some maximal capacity, d, on

the number of such workers that can be employed simultaneously, and a
bound k on the total number than can be hired over time. If hired, workers
cannot be fired before their contract is up.

2. Alternately, one can view the temp secretary problem as dealing with social
welfare maximization in the context of rentals. Customers arrive according
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to some distribution. A firm with capacity d can rent out up to d boats
simultaneously, possibly constrained to no more than k rentals overall. The
firm publishes a rental price, which may change over time after a customer
is serviced. A customer will choose to rent if her value for the service is
at least the current posted price. Such a mechanism is inherently dominant
strategy truthful, with the caveat that we make the common assumption
that customers reveal their true values in any case.

We give two algorithms, both of which are quite simple and offer posted
prices for rental that vary over time. Assuming that the time of arrival cannot
be manipulated, this means that our algorithms are dominant strategy incentive
compatible.

For rental duration γ, capacity d = 1, no budget restrictions, and arrival
times from an arbitrary prior, the time-slice algorithm gives a 1

2e competitive
ratio. For arbitrary d the competitive ratio of the time-slice algorithm is at
least (1/2) · (1− 5/

√
d). This can be generalized to more complex settings. The

time slice algorithm divides time into slices of length γ. It randomly decides
if to work on even or odd slices. Within each slice it uses a variant of some
other secretary problem (E.g., [26], [2], [24]) except that it keeps track of the
cumulative distribution function rather than the number of secretaries.

The more technically challenging Charter algorithm is strongly motivated by
the k-secretary algorithm of [24]. For capacity d, employment period γ, and
budget d ≤ k ≤ d/γ (the only relevant values), the Charter algorithm does the
following:

– Recursively run the algorithm with parameters γ, �k/2� on all bids that
arrive during the period [0, 1/2).

– Take the bid of rank �k/2� that appeared during the period [0, 1/2), if such
rank exists and set a threshold T to be it’s value. If no such rank exists set
the threshold T to be zero.

– Greedily accept all items that appear during the period [1/2, 1) that have
value at least T — subject to not exceeding capacity (d) or budget (k)
constraints.

For d = 1 the competitive ratio of the Charter algorithm is at least

1

1 + kγ

(
1− 5√

k
− 7.4

√
γ ln(1/γ)

)
.

Two special cases of interest are k = 1/γ (no budget restriction), in which case

the expression above is at least 1
2

(
1− 12.4

√
γ ln(1/γ)

)
. We also show an upper

bound of 1/2+ γ/2 for γ > 0. As γ approaches zero the two bounds converge to
1/2. Another case of interest is when k is fixed and γ approaches zero in which
this becomes the guarantee given by Kleinberg’s k-secretary algorithm.

For arbitrary d the competitive ratio of the Charter algorithm is at least

1−Θ

(√
ln d√
d

)
−Θ(γ log (1/γ)).
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We remark that neither the time slice algorithm nor the Charter algorithm
requires prior knowledge of n, the number of items due to arrive.

At the core of the analysis of the Charter algorithm we prove a bound on the
expected size of the maximum independent set of a random unit interval graph.
In this random graph model we draw n intervals, each of length γ, by drawing
their left endpoints uniformly in the interval [0, 1). We prove that the expected
size of a maximum independent set in such a graph is about n/(1+nγ). We say
that a set of length γ segments that do not overlap is γ-independent. Similarly,
a capacity d γ-independent set allows no more than d segments overlapping at
any point.

Note that if γ = 1/n then this expected size is about 1/2. This is intuitively
the right bound as each interval in the maximum independent set rules out on
average one other interval from being in the maximum independent set.

We show that a random unit interval graph with n vertices has a capacity d
γ-independent subset of expected size at least min(n, d/γ)(1 − Θ(

√
ln d/

√
d)).

We also show that when n = d/γ the expected size of the maximum capacity d
γ-independent subset is no more than n(1−Θ(1/

√
d)). These results may be of

independent interest.

Related Work. Worst case competitive analysis of interval scheduling has a
long history, e.g., [30,28]. This is the problem of choosing a set of non-overlapping
intervals with various target functions, typically, the sum of values.

[19] introduce the question of auctions for reusable goods. They consider a
worst case mechanism design setting. Their main goal is addressing the issue of
time incentive compatibility, for some restricted set of misrepresentations.

The secretary problem is arguably due to Johannes Kepler (1571-1630), and
has a great many variants, a survey by [15] contains some 70 references. The
“permutation” model is that items arrive in some random order, all n! permu-
tations equally likely. Maximizing the probability that the best item is chosen,
when the items appear in random order, only comparisons can be made, and
the number of items is known in advance, was solved by [27] and by [12]. A
great many other variants are described in ([15,11]), differing in the number of
items to be chosen, the target function to be maximized, taking discounting into
account, etc.

An alternative to the random permutation model is the stochastic arrival
model, introduced by Karlin [21] in a “full information” (known distribution
on values) setting. Bruss [7] subsequently studied the stochastic arrival model
in a no-information model (nothing is known about the distribution of values).
Recently, [13] made use of the stochastic arrival model as a tool for the analysis
of algorithms in the permutation model.

Much of the recent interest in the secretary problem is due to it’s connection
to incentive compatible auctions and posted prices [18,24,2,3,1,10].

Most directly relevant to this paper is the k-secretary algorithm by R. Klein-
berg [24]. Constrained to picking no more than k secretaries, the total value of
the secretaries picked by this algorithm is at least a (1− 5√

k
) of the value of the

best k secretaries.
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Babaioff et al. [2] introduced the knapsack secretary problem in which every
secretary has some weight and a value, and one seeks to maximize the sum
of values subject to a upper bound on the total weight. They give a 1/(10e)
competitive algorithm for this problem. (Note that if weights are one then this
becomes the k-secretary problem). The Matroid secretary problem, introduced
by Babaioff et al. [4], constrains the set of secretaries picked to be an independent
set in some underlying Matroid. Subsequent results for arbitrary Matriods are
given in [8,26,14].

Another generalization of the secretary problem is the online maximum bi-
partite matching problem. See [25,22]. Secretary models with full information or
partial information (priors on values) appear in [5] and [29]. This was in the con-
text of submodular procurement auctions ([5]) and budget feasible procurement
([29]). Other papers considering a stochastic setting include [23,17].

In our analysis, we give a detailed and quite technical lower bound on the size
of the maximum independent set in a random unit interval graph (produced by
the greedy algorithm). Independent sets in other random interval graph models
were previously studied in [20,9,6].

2 Formal Statement of Problems Considered

Each item x has a value v(x), we assume that for all x �= y, v(x) �= v(y) by
consistent tie breaking, and we say that x > y iff v(x) > v(y). Given a set of
items X , define v(X) =

∑
x∈X v(x) and Tk(X) = maxT⊆X,|T |≤k v(T ).

Given a set X and a density distribution function f defined on [0, 1), let
θf : X 	→ [0, 1) be a random mapping where θf (x) is drawn independently from
the distribution f . The function θf is called a stochastic arrival function, and we
interpret θf (x), x ∈ X , to be the time at which item x arrives. For the special
case in which f is uniform we refer to θf as θ.

In the problems we consider, the items arrive in increasing order of θf . If
θf (x) = θf (y) the relative order of arrival of x and y is arbitrary. An online
algorithm may select an item only upon arrival. If an item x was selected, we
say that the online algorithm holds x for γ time following θf (x).

An online algorithm A for the temp secretary problem may hold at most one
item at any time and may select at most k items in total. We refer to k as the
budget of A. The goal of the algorithm is to maximize the expected total value
of the items that it selects. We denote by A(X, θf ) the set of items chosen by
algorithm A on items in X appearing according to stochastic arrival function
θf .

The set of the arrival times of the items selected by an algorithm for the temp
secretary problem is said to be γ-independent. Formally, a set S ⊂ [0, 1) is said
to be γ-independent if for all t1, t2 ∈ S, t1 �= t2 we have that |t1 − t2| ≥ γ.

Given γ > 0, a budget k, a set X of items, and a mapping θf : X 	→ [0, 1) we
define Opt(X, θf ) to be a γ-independent set S, |S| ≤ k, that maximizes the sum
of values.
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Given rental period γ > 0, distribution f , and budget k, the competitive ratio
of an online algorithm A is defined to be

inf
X

Eθf :X �→[0,1)[v(A(X, θf ))]

Eθf :X �→[0,1)[v(Opt(X, θf ))]
. (1)

The competitive ratio of the temp secretary problem is the supremum over all
algorithms A of the competitive ratio of A.

Note that when γ → 0, the the temp secretary problem reduces to Kleinberg’s
k-secretary problem.

We extend the γ-temp secretary problem by allowing the algorithm to hold at
most d items at any time. Another extension we consider is the knapsack temp
secretary problem where each item has a weight and we require the set held by
the algorithm at any time to be of total weight at most W . Also, we define the
Matroid temp secretary problem where one restricts the set of items held by the
algorithm at any time to be an independent set in some Matroid M .

More generally, one can define a temp secretary problem with respect to some
arbitrary predicate P that holds on the set of items held by an online algorithm
at all times t. This framework includes all of the variants above. The optimal
solution with respect to P is also well defined.

3 The Time-Slice Algorithm

In this section we describe a simple time slicing technique. This gives a reduc-
tion from temp secretary problems, with arbitrary known prior distribution on
arrival times, to the “usual” continuous setting where secretaries arrive over
time, do not depart if hired, and the distribution on arrival times is uniform.
The reduction is valid for many variants of the temp secretary problem, includ-
ing the Matroid secretary problem, and the knapsack secretary problem. We
remark that although the Matriod and Knapsack algorithms are stated in the
random permutation model, they can be replaced with analogous algorithms in
the continuous time model and can therefore be used in our context.

We demonstrate this technique by applying it to the classical secretary prob-
lem (hire the best secretary). We obtain an algorithm which we call Sliceγ for
the temp secretary problem with arbitrary prior distribution on arrival times
that is O(1) competitive.

Consider the 1/2γ time intervals (i.e. slices) Ij = [2γj, 2γ(j + 1)), 0 ≤ j ≤
1/(2γ) − 1. We split every such interval into two, I�j = [2γj, 2γj + γ), Irj =

[2γj + γ, 2γ(j + 1)).1

Initially, we flip a fair coin and with probability 1/2 decide to pick points
only from the left halves (I�j ’s) or only from the right halves (Irj ’s). In each such
interval we pick at most one item by running the following modification of the
continuous time secretary algorithm.

1 For simplicity we assume that 1/(2γ) is an integer.
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The continuous time secretary algorithm [13] observes the items arriving be-
fore time 1/e, sets the largest value of an observed item as a threshold, and then
chooses the first item (that arrives following time 1/e) of value greater than
the threshold. The modified continuous time secretary algorithm observes items
as long as the cumulative distribution function of the current time is less than
1/e, then it sets the largest value of an observed item as a threshold compute a
threshold, and choose the next item of value larger than the threshold.

It is clear that any two points picked by this algorithm have arrival times
separated by at least γ.

Theorem 1. The algorithm Sliceγ is 1/(2e) competitive.

Proof. The analysis is as follows. Fix the mapping of items to each of the left
intervals I�j ’s and to each of the right intervals Irj ’s (leaving free the assignment
of items to specific arrival times within their the intervals they are assigned to).
Let OPT � (OPT r) be the sum of the items of maximum value over all intervals
I�j (Irj ). Let OPT be the average optimal value conditioned on this mapping of
items to intervals. Clearly,

OPT � +OPT r ≥ OPT. (2)

For any interval Ij ’s (I�j ’s) Sliceγ gain at least 1/e over the top value in the
interval conditioned on the event that Sliceγ doesn’t ignore this interval, this
happens with probability 1/2. Therefore the expected sum of values achieved by
Sliceγ is at least

1

2
· 1
e
OPT � +

1

2
· 1
e
OPT r . (3)

Substitution (2) into (3) we get the lemma. ��
Appropriately choosing times (rather than number of elements) as a function

of the prior distribution allows us to do the same for other variants of the sec-
retary problem, the Knapsack (achieving a competitive ratio of 1

2 · 1
10e , see [2])

and Matriod (O(ln ln ρ) when ρ is the rank of the Matroid, see [26,14]).

4 Improved Results for the Temp Secretary Problem
for the Uniform Arrival Distribution

In this section we give an improved algorithm, referred as the charter algorithm
Ck,γ , for the temp secretary problem with uniform arrival times and capacity 1
(at most one secretary can be hired at any time).

As it is never the case that more than 1/γ items can be selected, setting k =
�1/γ� effectively removes the budget constraint. Note that Ck,0 is Kleinberg’s
algorithm for the k-secretary problem, with some missing details added to the
description.

To analyze the charter algorithm we establish a lower bound on the expected
size of the maximum γ-independent subset of a set of uniformly random points
in [0, 1). We apply this lower bound to the subset of the items that Kleinberg’s
algorithm selects.
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4.1 The Temp Secretary Algorithm, Ck,γ : A Competitive Ratio of
1/(1 + kγ)

This charter algorithm, Ck,γ gets parameters k (the maximal number of rentals
allowed) and γ (the rental period) as is described in detail in Algorithm 1. As
the entire period is normalized to [0, 1), having k > �1/γ� is irrelevant. Thus,
we assume that k ≤ �1/γ�.2

We show that Ck,γ(X) gains in expectation about 1/(1 + kγ) of the top k
values of X , which implies that the competitive ratio (see definition (1)) of Ck,γ

is at least about 1/(1 + kγ).
Note that for k = �1/γ�, Ck,γ has a competitive ratio close to 1/2, while for

γ = 0, Ck,γ has a competitive ratio close to 1.
It is easy to see that Ck,γ , chooses a γ-independent set of size at most k.
The main theorem of this paper is the following generalization of Kleinberg’s

k-secretary problem:

Theorem 2. For any set of items S = {xi}ni=1, 0 < γ ≤ γ∗ = 0.003176 and
any positive integer k ≤ 1/γ:

Eθ:S �→[0,1][v(Ck,γ(S, θ))] ≥ 1

1 + γk
(1− β(γ, k))Tk(S), (4)

where β(γ, k) = 7.4
√
γ ln(1/γ) + 5√

k
, and the expectation is taken oven all uni-

form mappings of S to the interval [0, 1). (Note that the right hand side of
Equation (4) is negative for γ∗ < γ ≤ 0.5.)

4.2 Outline of the Proof of Theorem 2

We prove Theorem 2 by induction on k. For k ≤ 25 the theorem holds vacuously.
The profit, p[0,1/2), on those items that arrive during the time interval [0, 1/2)

is given by the inductive hypothesis3. However, the inductive hypothesis gives
this profit, p[0,1/2), in terms of the top �k/2� elements that arrive before time
1/2, and not in terms of Tk(X), the value of the top k items overall. Thus, we
need to relate p[0,1/2) to Tk(X). In the full version of this paper we show that
p[0,1/2) is about 1/2 of Tk(X).

Let Z>T be the set of items that arrive in the time interval [1/2, 1) and have
value greater than the threshold T . From Z>T we greedily pick a γ-independent
subset4. It is easy to see that this set is in fact a maximal γ-independent subset.

To bound the expected profit from the items in Z>T we first bound the size
of the maximal γ-independent set amongst these items. To do so we use the
following general theorem (see also Section 6 and the full version of this paper).

2 To simplify the presentation we shall assume the in sequel that k ≤ 1/γ.
3 This profit, p[0,1/2) is Eθ:S �→[0,1)

[
v(C

[0,1/2)
k,γ (S, θ))

]
, where C

[0,1/2)
k,γ (S, θ) the set of

items chosen by the algorithm during the time period [0, 1/2).
4 Modulo the caveat that the arrival time of the 1st item chosen from the 2nd half
must be at least γ after the arrival time of the last item chosen in the 1st half.
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ALGORITHM 1. The Charter Algorithm Ck,γ

1 if k = 1 then
/* Use the ‘‘continuous secretary’’ algorithm [13]: */

2 Let x be the largest item to arrive by time 1/e (if no item arrives by time
1/e — let x be the absolute zero, an item smaller than all other items).

3 Ck,γ accepts the first item y, y > x, that arrives after time 1/e (if any)

4 else
/* Process the items scheduled during the time interval [0, 1/2)

*/

5 Initiate a recursive copy of the algorithm, C′ = C�k/2�,2γ .
6 x ← next element // If no further items arrive x ← ∅
7 while x �= ∅ AND θ(x) < 1/2 do
8 Simulate C′ with input x and modified schedule θ′(x) = 2θ(x).
9 if C′ accepts x then

10 Ck,γ accepts x

11 x ← next element // If no further items arrive, x ← ∅
/* Determine threshold T */

12 Sort the items that arrived during the time interval [0, 1/2):
y1 > y2 > · · · > ym (with consistent tie breaking).

13 Let τ = �k/2�.
14 if m < τ then
15 set T to be the absolute zero

16 else
17 set T ← yτ .

/* Process the items scheduled during the time interval [1/2, 1)
*/

18 do
19 if x > T AND (θ(x) ≥ θ(x′) + γ where x′ is the last item accepted by

Ck,γ

20 OR no items have been previously accepted) then
21 Ck,γ accepts x

22 x ← next element // If no further items arrive, x ← ∅
23 until x = ∅ OR k items have already been accepted

Theorem 3. Let Z = {z1, z2, . . . , zn} be a set of independently uniform sam-
ples, zi, from the real interval [0, 1). For 0 ≤ γ ≤ 1,

EZ [m(Z, γ)] ≥ 1− α(γ)

γ + 1/n
=

(1 − α(γ))n

1 + nγ
, where α(γ) = 3

√
γ ln(1/γ), (5)

where m(Z, γ) denotes the size of the largest γ-independent subset of Z.

We apply Theorem 3 to the items in Z>T . We can apply this theorem since
arrival times of items in Z>T are uniformly distributed in the 2nd half. Specif-
ically, we give a lower bound on the expected profit of the algorithm from the
items in the 2nd half as follows:
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1. Condition on the size of Z>T .

2. Subsequently, condition on the set of arrival times {θ1, θ2, . . . , θ|Z>T |} of the
items in Z>T but not on which item in Z>T arrives when. This conditioning
fixes the γ-independent set selected greedily by the algorithm.

3. We take the expectation over all bijections θ whose image on the domain
Z>T is the set {θ1, θ2, . . . , θ|Z>T |}. The expected profit (over the set Z>T

and over these bijections) is “approximately”

Size of maximal γ-independent set from Z>T

|Z>T | ·
∑

z∈Z>T

v(z). (6)

The “approximately” is because of some technical difficulties:

– We cannot ignore the last item amongst those arriving prior to time 1/2.
If one such item was chosen at some time 1/2−γ < t < 1/2 then arrivals
during the period [1/2, t+ γ) cannot be chosen.

– We cannot choose more than k items in total, if the algorithm choose λ
items from the time interval [0, 1/2), it cannot choose more than k − λ
items from the time interval [1/2, 1), but k− λ may be smaller than the
size of the γ-independent set from Z>T .

4. To get an unconditional lower bound we average Equation (6) over the pos-
sible sizes of the γ-independent set as given by Theorem 3.

5 Upper Bound for the Temp Secretary Problem with
Uniform Arrival Times and with No Budget Restriction

Theorem 4. For the temp secretary problem where item arrival times are taken
from the uniform distribution, for any γ ∈ (0, 1), any online algorithm (poten-
tially randomized) has a competitive ratio ≤ 1/2 + γ/2.

Proof. Let A denote the algorithm. Consider the following two inputs:

1. The set S of n-1 items of value 1.

2. The set S′ = S ∪ {xn} where v(xn) = ∞.

Note that these inputs are not of the same size (which is ok as the number of
items is unknown to the algorithm).

Condition the mapping θ : S 	→ [0, 1) (but not the mapping of xn). If A
accepts an item x at time θ(x) we say that the segment [x, x+ γ) is covered. For
a fixed θ let g(θ) be the expected fraction of [0, 1) which is not covered when
running A on the set S with arrival times θ. This expectation is over the coin
tosses of A. Let G be Eθ:S �→[0,1)[g(θ)].

The number of items that A picks on the input S with arrival time θ is at

most 1−g(θ)
γ +1. Taking expectation over all mappings θ : S 	→ [0, 1) we get that

the value gained by A is at most (1−G)/γ + 1.
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As n → ∞ the optimal solution consists of �1/γ� items of total value �1/γ�.
Therefore the competitive ratio of A is at most

(1−G)/γ + 1

1/γ
= 1−G+ γ. (7)

Note that g(θ) is exactly the probability that A picks xn on the input S∪{xn}
(this probability is over the mapping of xn to [0, 1) conditioned upon the arrival
times of all the items in S ⊂ S′). Therefore the competitive ratio of A on the
input S′ is

E[g(θ)] = G . (8)

Therefore the competitive ratio of A is no more than the minimum of the two
upper bounds (7) and (8)

min (G, 1−G+ γ) ≤ 1/2 + γ/2 .

��

6 About Theorem 3: A Lower Bound on the Expected
Size of the Maximum γ-independent Subset

Recall the definition of Z and m(Z, γ) from Theorem 3.
Define the random variable Xi, 1 ≤ i ≤ n to be the i’th smallest point in Z.

Define the random variable Ci to be the number of points from Z that lie in
the interval [Xi, Xi + γ). Note that at most one of these points can belong to a
γ-independent set.

The greedy algorithm constructs a maximal γ-independent set by traversing
points of Z from the small to large and adding a point whenever possible. Let
Ii be a random variable with binary values where Ii = 1 iff Xi was chosen by
the greedy algorithm. It follows from the definition that

∑
i Ii gives the size of

the maximal independent set, m(Z, γ), and that
∑

i IiCi = n.
Note that E[Ci] ≤ 1+ nγ, one for the point Xi itself, and nγ as the expected

number of uniformly random points that fall into an interval of length γ. If Ci

and Ii were independent random variables, it would follow that

E
[∑

IiCi

]
≤ (1 + nγ)

∑
Prob[ Ii = 1 ],

and, thus,

m(Z, γ) =
∑

I1 ≥ n/(1 + nγ).

Unfortunately, Ci and Ii are not independent, and the full proof of Theorem
3, that deals with such dependencies, appears in the full version of this paper
(on the Archive).
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7 Discussion and Open Problems

We’ve introduced online optimization over temporal items under stochastic in-
puts subject to conditions of two different types:

– “Vertical” constraints: Predicates on the set of items held at all times t. In
this class, we’ve considered conditions such as no more than d simultaneous
items held at any time, items held at any time of total weight ≤ W , items
held at any time must be independent in some Matroid.

– “Horizontal” constraints: Predicates on the set of items over all times. Here,
we’ve considered the condition that no more than k employees be hired over
time.

One could imagine much more complex settings where the problem is defined
by arbitrary constraints of the first type above, and arbitrary constraints of the
2nd type. For example, consider using knapsack constraints in both dimensions.
The knapsack constraint for any time t can be viewed as the daily budget for
salaries. The knapsack constraint over all times can be viewed as the total budget
for salaries. Many other natural constraints suggest themselves.

It seems plausible that the time slice algorithm can be improved, at least in
some cases, by making use of information revealed over time, as done by the
Charter algorithm.
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Abstract. Consider a graph G with n vertices. On each vertex we place
a box. These n vertices and n boxes are both numbered from 1 to n
and initially shuffled according to a permutation π ∈ Sn. We introduce
a sorting problem for a single robot: In every step, the robot can walk
along an edge of G and can carry at most one box at a time. At a vertex,
it may swap the box placed there with the box it is carrying. How many
steps does the robot need to sort all the boxes?

We present an algorithm that produces a shortest possible sorting walk
for such a robot if G is a tree. The algorithm runs in time O(n2) and
can be simplified further if G is a path. We show that for planar graphs
the problem of finding a shortest possible sorting walk is NP-complete.

Keywords: Physical Sorting, Shortest Sorting Walk, Warehouse Reor-
ganization, Robot Scheduling, Permutation Properties

1 Introduction

Motivation. Nowadays, many large warehouses are operated by robots. Such
automated storage and retrieval systems (abbreviated AS/RS) are used in in-
dustrial and retail warehouses, archives and libraries, as well as automated car
or bicycle parking systems. When it needs to rearrange the stored goods, such a
robot faces a physical sorting task. In contrast to standard sorting algorithms, it
does not have constant time access to the stored objects. It might need to travel
for a significant amount of time before fetching the object in question, and then
moving it to its desired location also takes time. We want to look at the problem
of finding the most efficient route for the robot that allows it to permute the
stored objects. Our interest in this problem arises from a bike parking system to
be built in Basel, for which bike boxes need to be rearranged according to the
expected pickup times of the customers.

Problem Description. We consider the following model throughout this paper.
Our warehouse holds n boxes. Each box is unique in its content but all the
boxes have the same dimensions and can be handled the same way. The storage
locations and aisles of the warehouse are represented by a connected graph G =
(V,E), where n = |V | and m = |E|. Every vertex v ∈ V represents a location
that can hold a single box. Every edge e = (u, v) ∈ E represents a bidirectional
aisle between two locations. We assume that our warehouse is full, meaning
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N. Bansal and I. Finocchi (Eds.): ESA 2015, LNCS 9294, pp. 643–655, 2015.
DOI: 10.1007/978-3-662-48350-3_54
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that at each location there is exactly one box stored initially. The boxes and
locations are numbered from 1 to n and are initially shuffled according to some
permutation π ∈ Sn, representing that the box at vertex i should get moved to
vertex π(i). The robot is initially placed at a vertex r. In every step the robot
can move along a single edge. It can carry at most one box with it at any time.
When arriving at a vertex it can either put down the box it was traveling with
(if there is no box at this vertex), pick up the box from the current vertex (if it
arrived without carrying a box), swap the box it was carrying with the box at
this vertex (if there is one) or do nothing.

We refer to each traveled edge of the robot as a step of the sorting process.
A sequence of steps that lets the robot sort all the boxes according to π and
return to r is called a sorting walk. We measure the length of a sorting walk as
the number of edges that the robot travels along. Therefore, we assume that all
aisles are of equal length and that all of the box-handling actions (pickup, swap,
putdown) only take a negligible amount of time compared to the time spent
traveling along the edges. We are looking for the shortest sorting walk.

Example. Figure 1 shows an example of a warehouse where G is a tree consisting
of 8 vertices. It is not obvious how we can find a short walk that allows the robot
to sort these 8 boxes. We will see an efficient algorithm that produces such a
sorting walk and we will prove that this sorting walk has minimum length.
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Fig. 1. (left) Initial state of the warehouse with storage locations as circles and boxes
as squares. The box at vertex i is labeled with its target vertex π(i). (center) The
initial state with π drawn as dashed arcs towards their target vertex instead of num-
bered boxes. (right) This shows the state of the warehouse after two steps have been
performed. First the robot brought box 4 to vertex 2. Then it took box 2 to vertex 5.
(bottom) A shortest possible sorting walk consisting of 18 steps.

Organization. Section 2 introduces some terminology and shows first lower and
upper bounds on the length of a shortest sorting walk on general graphs. We
then look for shortest walks for certain classes of graphs. Section 3 shows a
way of finding shortest sorting walks on path graphs where the robot starts
at one of the ends of the path. Our main result is given in Section 4, where
we efficiently construct shortest sorting walks on arbitrary trees with arbitrary
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starting position. Finally, in Section 5 we show that it is NP-complete to find a
shortest sorting walk for planar graphs.

Related Work. Sorting algorithms for physical objects were studied in many dif-
ferent models before. Sorting streams of objects was studied for instance by
Knuth [8], where we can use an additional stack to buffer objects for rearrange-
ment. Similar problems were also studied in the context of sorting railway cars,
for example by Büsing et al. [1]. Most similar to our solutions is an algorithm
called cycle sort by Haddon [4] that minimizes the number of writes when sort-
ing an array by looking at the cycles of its permutation. Katsuhisa et al. [10]
recently studied the process of sorting n tokens on a graph of n vertices using
as few swaps of neighboring tokens as possible. For path graphs the number of
swaps is minimized by bubble sort. They give a 2-approximation for tree graphs
by simulating cycle sort. Compared to our setting, they do not require that suc-
cessive actions are applied to nearby vertex positions. Sliding physical objects
are also studied in the context of the hardness of many different puzzle games.
We refer to Hearn [5] for an overview. An extensive overview of the research on
storage yard operation can be found in [2].

2 Notation and General Bounds

Before we look at specific types of graphs, we introduce some notation and show
some general lower and upper bounds for the length of a shortest sorting walk.

Formally, we describe the state τ of the warehouse by a triple (v, b, σ) where
v ∈ V is the current position of the robot, b ∈ {1, . . . , n}∪ {�} is the number of
the box that the robot is currently traveling with or � if it is traveling without
a box, and σ is the current mapping from vertices to boxes. If there is no box
at some vertex i, we will have σ(i) = �. At any point there will always be at
most one vertex without a box, thus at most one number will not appear in
{σ(i) | i ∈ {1, . . . , n}}. In other words: Looking at σ and b together will at all
times be a permutation of {1, . . . , n} ∪ {�}. Given the current state, the next
step s of the robot can be specified by the pair (p, b), if the robot moves to p ∈ V
with box b ∈ {1, . . . , n} ∪ {�}.

We start with τ0 = (r,�, π), so the robot is at the starting position and is not
carrying a box. Applying a step st = (p, b) to a state τt−1 = (vt−1, bt−1, σt−1)
transforms it into state τt = (vt, bt, σt) with vt = p, bt = b. σt only differs from
σt−1 if a swap was performed, so if bt−1 �= b, in which case we set σt(vt−1) = bt−1.
In order to get σ = id in the end, we let the robot put its box down whenever it
moves onto an empty location. Thus if σt−1(p) = �, we let bt = � and σt(p) = b.

Step st is valid only if (vt−1, p) ∈ E and b ∈ {bt−1, σt−1(vt−1)}, so if the robot
moved along an edge of G and carried either the same box as before or the box
that was located at the previous vertex. Thus after putting down a box at an
empty location, the robot can either immediately pick it up again or continue
without carrying a box. A sequence of steps S = (s1, . . . , sl) is a sorting walk of
length l, if we start with τ0, all steps are valid, and we end in τl = (r,�, id). We
are looking for the minimum l such that a sorting walk of length l exists.
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We denote the set of cycles of the permutation π as C = {C1, . . . , C|C|},
where each cycle Ci is an ordered list of vertices Ci = (vi,1, . . . , vi,|Ci|) such
that π(vi,j) = vi,j+1 for all j < |Ci| and π(vi,|Ci|) = vi,1. In the example shown
in Figure 1, we have C = {(1, 4), (2), (3, 7, 5), (6, 8)}. As cycles of length one
represent boxes that are placed correctly from the beginning, we usually ignore
such trivial cycles and let C = {C ∈ C | |C| > 1} be the set of non-trivial cycles.

Let d(u, v) denote the distance (length of the shortest path) from u to v in
G. So if the robot wants to move a box from vertex u to vertex v, it needs at
least d(u, v) steps for that. By d(C) we denote the sum of distances between all
pairwise neighbors in the cycle C and by d(π) the sum of all such cycle distances
for all cycles in π, i.e., d(π) =

∑
C∈C d(C) =

∑
v∈V d(v, π(v)).

We distinguish two kinds of steps in a sorting walk: essential and non-essential
steps. A step s = (p, b) is essential if it brings box b one step closer to its target
position than it was in any of the previous states, so if d(p, b) is smaller than
ever before. We say that such a step is essential for a cycle C if b ∈ C. A single
step can be essential for at most one cycle, as at most one box is moved in a
step and each box belongs to exactly one cycle. In the example in Figure 1 for
instance, the first step was essential for cycle (1, 4). Overall, 16 steps (all but s2
and s15) were essential. This corresponds to the sum of distances of all boxes to
their targets d(π), which we formalize as follows.

Lemma 1 (Lower bound by counting essential steps). Every sorting walk
for a permutation π on a graph G has length at least d(π) =

∑
b∈{1,...,n} d(b, π(b)).

Proof. Throughout any sorting walk, there will be exactly d(b, π(b)) essential
steps that move box b. As the robot cannot move more than one box at a time,
the sum of distances between all boxes and their target positions can decrease
by at most 1 in each step. Therefore, there will be d(π) =

∑
b∈{1,...,n} d(b, π(b))

essential steps in every sorting walk and at least as many steps overall. ��
The remaining challenge is to minimize the number of non-essential steps. In

case that π consists only of a single cycle, the shortest solution is easy to find.
We just pick up the box at r and bring it to its target position π(r) in d(r, π(r))
steps. We continue with the box at π(r), bring it to π(π(r)) and so on until we
return to r and close the cycle. Therefore, by just following this cycle, the robot
can sort these boxes in d(π) steps without any non-essential steps. As it brings
one box one step closer to its target position in every step, by Lemma 1 no other
sorting walk can be shorter.

But what if there is more than one cycle? One idea could be to sort each cycle
individually one after the other. This might not give a shortest possible sorting
walk, but it might give a reasonable upper bound. So the robot picks up the box
at r, brings it to its target, swaps it there, continues with that box and repeats
this until it closes the cycle. After that, the robot moves to any box b that is not
placed at its correct position yet. These steps will be non-essential as the robot
does not carry a box during these steps from r to b. Once it arrives at b, it sorts
the cycle in which b is contained. In this way, it sorts cycle after cycle and finally
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returns to r. The number of non-essential steps in this process depends on the
order in which the cycles are processed and which vertices get picked to start the
cycles. The following lemma shows that a linear amount of non-essential steps
will always suffice.

Lemma 2 (Upper bound from traversal). There is a sorting walk of length
at most d(π) + 2 · (n− 1) for a permutation π on a graph G.

Proof. We let the robot do a depth-first search traversal of G while not carrying
a box. Whenever we encounter a box that is not placed correctly yet, we sort its
entire cycle. As the robot returns to the same vertex at the end of the cycle we
can continue the traversal at the place where we interrupted it. Recall that G is
connected, so during the traversal we will visit each vertex at least once and at
the end all boxes will be at their target position. The number of non-essential
steps is now given by the number of steps in the traversal which is twice the
number of edges of the spanning tree produced by the traversal. ��

We can see that these sorting walks might not be optimal, for instance in the
example shown in Figure 1. Every sorting walk that sorts only one cycle at a
time will have length at least 20, while the optimal solution consists of only 18
steps.

As d(π) can grow quadratic in n, the linear gap between the upper and lower
bound might already be considered negligible. However, for the rest of this paper
we want to find sorting walks that are as short as possible.

3 Sorting on Paths

We now look at the case where G is the path graph P = (V,E). Imagine that
the vertices v1 to vn are ordered on a line from left to right and every vertex is
connected to its left and right neighbor, thus E = {{vi, vi+1} | i ∈ {1, . . . , n−1}}.
We further assume that the robot is initially placed at one of the ends of the
path, so let r = v1.

By I(C) = [l(C), r(C)], we denote the interval of P covered by the cycle C,
where l(C) = minvi∈C i and r(C) = maxvi∈C i. We say that two cycles C1 and C2

intersect if their intervals intersect. Now let I = (C, E) be the intersection graph
of the non-trivial cycles, so E = {{C1, C2} | C1, C2 ∈ C s.t. I(C1) ∩ I(C2) �=
∅}. We then use D = {D1, . . . , D|D|} to represent the partition of C into the
connected components of this intersection graph I. Two cycles C1 and C2 are
in the same connected component Di ∈ D, if and only if there exists a sequence
of pairwise-intersecting cycles that starts with C1 and ends with C2. We let
l(D) = minC∈D l(C) and r(D) = maxC∈D r(C) be the boundary vertices of
the connected component D. We index the cycles and components from left to
right according to their leftmost vertex, so that l(Ci) < l(Cj) and l(Di) < l(Dj)
whenever i < j.

Theorem 1 (Shortest sorting walk on paths). The shortest sorting walk
on a path P with permutation π can be constructed in time Θ(n2) and has length
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d(π) + 2 ·
⎛

⎝l(D1)− 1 +

|D|−1∑

i=1

(l(Di+1)− r(Di))

⎞

⎠ .

Proof. We claim that the number of non-essential steps that are needed is twice
the number of edges that are not covered by any cycle interval, and lie between
r and the rightmost box that needs to be moved.

We prove the claim by induction on the number of non-trivial cycles of π. We
already saw how we can find a minimum sorting walk if π consists of a single
cycle only. If there are several cycles but only one of them is non-trivial, so
|C| > 1 but

∣∣C∣∣ = 1, the shortest sorting walk is also easy to find: We walk to
the right until we encounter the leftmost box of this non-trivial cycle C, then
we sort C and return to r. The number of steps is d(π) + 2 · (l(C) − 1) and is
clearly optimal. Figure 2 (left) gives an example of such a case.

Now let us look at the case where π consists of exactly two non-trivial cycles
C1 and C2. If C1 and C2 intersect, we can interleave the sorting of the two cycles
without any non-essential steps. We start sorting C1 until we first encounter a
box that belongs to C2, so until the first step (p, b) where p ∈ C2. This will
happen eventually, as we assumed that C1 and C2 intersect. We then leave box
b at position p in order to sort C2. After sorting C2, we will be back at position
p and can finish sorting C1, continuing with box b. As we will end in l(C1) and
then return to v1, we found a minimum walk of length d(π) + 2 · (l(C1) − 1).
Figure 2 (center) gives an example of such a case.

Let us assume that C1 and C2 do not intersect. This implies that there is no
box that has to go from the left of r(C1) to the right of l(C2) and vice versa. But
the robot still has to visit the vertices of C2 at some point and then get back to
the starting position. So each of the edges between the two cycles will be used
for at least two non-essential steps. We construct a sorting walk that achieves
this bound of d(π) + 2 · (l(C1)− 1+ l(C2)− r(C1)). We start by sorting C1 until
we get to r(C1). We then take the box π(r(C1)) from there and walk with it
to l(C2). From there we can sort C2 starting with box π(l(C2)). We again end
at l(C2), where we can pick up box π(r(C1)) again and take it back to position
r(C1). From there, we finish sorting C1 and return back to v1. Figure 2 (right)
gives an example of such a case.

Next, let us assume that we have three or more non-trivial cycles. We look
at these cycles from left to right and we assume that by induction we already
found a minimum sorting walk Si for sorting the boxes of the first i cycles C1

to Ci. For the next cycle Ci+1 we now distinguish two cases: If Ci+1 intersects
any cycle C∗ ∈ {C1, . . . , Ci} (which does not necessarily need to be Ci), we
can easily insert the essential sorting steps for Ci+1 into Si at the point where
Si first walks onto l(Ci+1) while sorting C∗. As we only add essential steps,
this new walk Si+1 will still be optimal if Si was optimal. We have |Si+1| =
|Si|+d(Ci+1) = |Si|+

∑
b∈Ci+1

d(b, π(b)). In the other case, Ci does not intersect
any of the previous cycles. We then know that any sorting walk uses all the edges
between maxj∈{1,...,i} r(Cj) and l(Ci+1) for at least two non-essential steps. So
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1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

C1C1 C1C1
C2C2 C1C1 C2C2

D1D1 D1D1 D1D1 D2D2

Fig. 2. (left) An example with a single non-trivial cycle. A shortest sorting
walk S with |S| = d(π) + 2 · (l(C1) − 1) = 8 + 2 · (2 − 1) = 10 is
((2,�), (3, 5), (4, 5), (5, 5), (4, 3), (3, 3), (4, 4), (3, 2), (2, 2), (1,�)). (center) An example
with two intersecting cycles. A shortest sorting walk S with |S| = d(π) = 10
is ((2, 3), (3, 5), (4, 5), (5, 5), (4, 4), (3, 2), (2, 2), (3, 3), (2, 1), (1, 1)). (right) An example
with two non-intersecting cycles. A shortest sorting walk S with |S| = d(π)+2·(l(D2)−
r(D1)) = 4 + 2 · (4− 2) = 8 is ((2, 2), (3, 1), (4, 1), (5, 5), (4, 4), (3, 1), (2, 1), (1, 1)).

if we interrupt Si after the step where it visits maxj∈{1,...,i} r(Cj) to insert non-
essential steps to l(Ci+1), essential steps to sort Ci+1 and non-essential steps to
get back to maxj∈{1,...,i} r(Cj) we get a minimum walk Si+1. This case occurs
whenever Ci+1 lies in another connected component than all the previous cycles.
So if Ci is the first cycle in some component Dj, we have |Si+1| = |Si|+d(Ci+1)+
2·(l(Dj)−r(Dj−1)), and so we get exactly the extra steps claimed in the theorem.

��

Algorithmic Construction. The proof of Theorem 1 immediately tells us how
we can construct a minimum sorting walk efficiently. Given P and π we first
extract the cycles of π and order them according to their leftmost box, which
can easily be done in linear time. We then build our sorting walk S in the form
of a linked list of steps inductively, starting with an empty walk. While adding
cycle after cycle we keep for every vertex v of P a reference to the earliest step
of the current walk that arrives at v. We also keep track of the step smax that
reaches the rightmost vertex visited so far.

When adding a new cycle C to the walk, we check whether we stored a step
for l(C). If yes, we simply insert the steps to sort C into the walk and update
the vertex-references of all the vertices we encounter while sorting C. If l(C)
was not visited by the walk so far, we insert the necessary non-essential steps
into the walk to get from smax to l(C) and back after sorting C. In either case
we update smax if necessary. The runtime of adding a new cycle to the walk
is linear in the number of steps we add. Overall our construction runs in time
Θ(n+ |S|) ⊆ Θ(n2), so it is linear in the combined size of the input and output
and at most quadratic in the size of the warehouse.

So far, we assumed that the robot works on a path and starts at an endpoint
of that path. What if the robot starts at an inner vertex of the path? It is not
immediately clear whether its first step should go to the left or to the right then.
Instead of going into the details of this scenario, we now study the more general
problem of arbitrary trees with arbitrary starting positions.
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4 Sorting on Trees

We now want to study the problem of sorting boxes placed on an arbitrary tree.
So let T = (V,E) be the underlying tree, let r ∈ V be the starting vertex and
let T be rooted at r. For any cycle C of π we say that it hits a vertex v if the
box initially placed on v belongs to the cycle C. We denote by V (C) the set of
vertices hit by C. We let T (C) denote the minimum subtree of T that contains
all vertices hit by C and we say C covers v for every v ∈ T (C). In Figure 1 for
example, we have T ((3, 5, 7)) = {1, 2, 3, 5, 6, 7}.

Before describing our solution, we will first derive a lower bound on the length
of any sorting walk on T . We describe how we map each sorting walk to an
auxiliary structure called cycle anchor tree that reflects how the cycles of π are
interleaved in the sorting walk. We then bound the length of the sorting walk
only knowing its cycle anchor tree. We give an explicit construction of a sorting
walk that shows that this bound is tight. In order to find an optimal solution we
first find a cycle anchor tree with the minimum possible bound and then apply
the tight construction to get a shortest possible sorting walk.

4.1 Cycle Anchor Trees

Definition. A cycle anchor tree T̃ is a directed, rooted tree that contains one
vertex ṽC for every non-trivial cycle C of π and an extra root vertex r̃. Given a
sorting walk S we construct from it a cycle anchor tree T̃ as follows: We start
with T̃ only containing r̃. We go through the essential steps in S. If step s is the
first essential step for some cycle C, we create a vertex ṽC in T̃ . To determine
the parent node of ṽC in T̃ we look for the last essential step s′ in S before s
and its corresponding cycle C′. We now say that C is anchored at C′ and add
an edge (ṽC′ , ṽC) to T̃ . If no such step s′ exists (which only happens for the very
first essential step in S) we use the root r̃ as the parent of ṽC .

Edge Costs. We also assign an integer cost to each edge of a cycle anchor tree.
For this we call a sorting step a down-step if the robot moves away from the
root and an up-step otherwise. The cost c for an edge between two nodes of T̃ is
now defined as follows: Let c((ṽC1 , ṽC2)) be the minimum number of down-steps
on the path from any vertex v ∈ T (C1) to any vertex w ∈ V (C2). Let us fix
one such path that minimizes the number of down-steps and let v and w be its
endpoints. This path, conceptually, consists of two parts: some up-steps towards
the root and then some down-steps away from the root. However, note that we
never walk down and then up again, as this would correspond to traversing the
same edge twice. Let a be the vertex where this path switches from up-steps to
down-steps, also known as the lowest common ancestor of v and w. We say that
a is an anchor vertex for anchoring C2 at C1. For the single edge incident to the
root, we have c((r̃, ṽC)) being the minimum number of down-steps on the path

from the root to any vertex v ∈ V (C). The cost c(T̃ ) of an entire cycle anchor

tree T̃ is simply the sum of its edge costs. Figure 3 illustrates the definitions and



How to Sort by Walking on a Tree 651

r̃̃r
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Fig. 3. (first figure on the left) The two pairs of dashed arrows symbolize boxes that
need to be swapped. A shortest path from any v ∈ T (C1) to any w ∈ V (C2) is shown
with continuous arrows, three of them being down-steps, so c((ṽC1 , ṽC2)) = 3. The
anchor vertex a is the vertex immediately before the first down step. Note that c is
not symmetric as c((ṽC2 , ṽC1)) = 2. (the three figures on the right) An example of a
sorting walk on a tree with three non-trivial cycles. The dashed arrows on the left show
the desired shuffling of the boxes. The dotted arrow in the middle shows a minimum
sorting walk of ten steps, where each step is labeled with the box it moves. On the
right, the corresponding cycle anchor tree is given. The edge from ṽC1 to ṽC3 has cost
1 as there is a down-step necessary to get from vertex 1 ∈ T (C1) to vertex 3 ∈ V (C3).
The edge (ṽC1 , ṽC2) is free as vertex 2 is both in T (C1) and V (C2).

gives an example of the transformation from a sorting walk to a weighted cycle
anchor tree.

Theorem 2 (Lower bound for trees). Any sorting walk S that sorts a per-

mutation π on a tree T and corresponds to a cycle anchor tree T̃ has length at
least d(π) + 2 · c(T̃ ).

Proof. We partition the steps of S into three sets: essential steps Se, non-essential
down-steps Sn,d and non-essential up-steps Sn,u. From Lemma 1 we have |Se| =
d(π). We argue that S contains at least c(T̃ ) many non-essential down-steps.
To do this we look at the segments of S that were relevant when we described
how we derive T̃ from S. For an edge (ṽC1 , ṽC2) of T̃ , we look for the segment
SC1,C2 of S between the first essential step s2 of C2 and its most recent preceding
essential step s1 for some other cycle C1. What do we know about SC1,C2? First
of all, we know that s1 is essential for C1, so s1 ends at a vertex covered by C1

and SC1,C2 starts somewhere in T (C1). Next, s2 is the first essential step that
moves a box of C2. Note that some or even all of the boxes of C2 might have
been moved in non-essential steps before s2, putting them further away from
their target position. But as we are on a tree (where there is only a single path
between any pair of points), the first time a box gets moved closer to its target
position than it was originally is a move away from its initial position, which
means that s2 starts at a vertex hit by C2. So SC1,C2 ends somewhere in V (C2).
By definition of c(ṽC1 , ṽC2), there are at least c(ṽC1 , ṽC2) many down-steps in
SC1,C2 . The same holds for the initial segment Sr,C . As all these segments of the

sorting walk are disjoint, we get that |Sn,d| ≥ c(T̃ ).
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Finally we argue that |Sn,d| = |Sn,u| to conclude the proof. Consider any edge
e of T and count all steps of S that go along e. Regardless of whether the steps
are essential or non-essential, we know that there must be equally many up-steps
and down-steps along e, as S is a closed sorting walk and T has no cycles. So for
every time we walk down along an edge, we also have to walk up along it once.
We see that this equality also holds for the essential up-steps and down-steps
along e. Along e there will be as many essential up-steps as there are boxes in
the subtree below e whose target is in the tree above e. As π is a permutation,
there are equally many boxes that are initially placed above e and have their
target in the subtree below e. So as the overall number of steps match and the
essential number of steps match, also the number of non-essential up-steps and
down-steps must be equal along e. As this holds for any edge e, it also holds for
the entire sorting walk. ��

Note that we did not say anything about where these non-essential up-steps
are on S, just that there are as many as there are non-essential down-steps.

4.2 Reconstructing a Sorting Walk

We now give a tight construction of a sorting walk of the length of this lower
bound.

Theorem 3 (Tight construction). Given T , π and cycle anchor tree T̃ , we

can find a sorting walk of length d(π) + 2 · c(T̃ ).

Proof. We perform a depth-first search traversal of T̃ , starting at r̃ and itera-
tively insert steps into an initially empty sorting walk S. At any point of the
traversal, S is a closed sorting walk that sorts all the visited cycles of the anchor
tree. For traversing a new edge of T̃ from ṽC to ṽC′ , we do the following: Let
v ∈ T (C) and w ∈ V (C′) be the two vertices that have the minimum number

of down-steps between them, as in the definition of the edge weights of T̃ . Let
a denote the anchor vertex on the path from v to w. Furthermore, let s = (a, b)
be the first step of S that ends in a. Note that such a step has to exist, as a
either lies in T (C) or on the path from v to the root and all of these vertices
already have been visited by S if S sorts C. We now build a sequence SC′ , which
consists of three parts: We first take the box b from a to w, then sort C′ starting
at w and finally bring b back from w to a. SC′ will contain exactly c(ṽC , ṽC′)
down-steps in the first part, then d(C′) steps to sort C′, and finally c(ṽC , ṽC′)
up-steps. We insert SC′ into S immediately after s, making sure that S now also
sorts C′ and is still a valid sorting walk. After the traversal of all cycles in the
anchor tree, S will sort π and be of length d(π) + 2 · c(T̃ ). ��

Note that the sorting walk S constructed this way does not necessarily map
back to T̃ , but its corresponding cycle anchor tree has the same weight as T̃ .
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4.3 Finding a Cheapest Cycle Anchor Tree

Let S∗ denote a shortest sorting walk for T and π. Using Theorem 3 to find
S∗ (or another equally long sorting walk), all we need is its corresponding cycle

anchor tree T̃ ∗. It suffices to find any cycle anchor tree with cost at most c(T̃ ∗).
Especially, it suffices to find a cheapest cycle anchor tree T̃min among all possible
cycle anchor trees. We then use Theorem 3 to get a sorting walk Smin from T̃min.
As c(T̃min) ≤ c(T̃ ∗) we get

|Smin| = d(π) + 2 · c(T̃min) ≤ d(π) + 2 · c(T̃ ∗) ≤ |S∗|

and therefore Smin is a shortest sorting walk. To find this cheapest cycle anchor
tree, we build the complete directed graph G̃ of potential anchor tree edges. Note
that the weights of these edges only depend on T and π but not on a sorting
walk.

Optimum Branching. Given this complete weighted directed graph G̃ we find
its minimum directed spanning tree rooted at r̃ using Edmond’s algorithm for
optimum branchings [3]. A great introduction to this algorithm, its correctness
proof by Karp [7] and its efficient implementation by Dijkstra [9] can be found
in the lecture notes of Zwick [11]. Combining these results with Theorem 3 will
now allow us to find shortest sorting walks in polynomial time.

Theorem 4 (Efficient solution). For any sorting problem on a tree T with
permutation π, we can find a minimum sorting walk in time O(n2).

Proof. We first extract all the cycles in linear time. We then precompute the
weights of all potential cycle anchor tree edges between any pair of cycles or
the root. For this we run breadth-first search (BFS)

∣∣C∣∣+ 1 times, starting once

with r and once with T (C) for every C ∈ C and count the number of down-steps
along these BFS trees. We also precompute all the anchor points. As we run
O(n) many BFS traversals, this precomputation takes time O(n2).

As an efficient implementation of Edmond’s algorithm allows us to find T̃min

in time O(n2), we can find Smin in time O(n2) time overall.
In every step of the construction in Theorem 3, we can find step s in constant

time, if we keep track of the first step of S visiting each vertex of T . We build
S as a linked list of steps in time linear to its length. Thus, as on the path
(Theorem 1), we can construct Smin in time Θ(n+ |S|) from T̃min.

Combining these three steps gives an algorithm that runs in time O(n2). ��

5 Sorting on Other Graphs

Our algorithms for G being a path or a tree rely heavily on having unique paths
between any pair of vertices. Therefore, these algorithms cannot be applied to
graphs with cycles. In this section, we show that no efficient algorithm for general
graphs can be found unless P equals NP .
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Theorem 5 (NP-completeness for planar graphs). Finding a shortest sort-
ing walk for a planar graph G = (V,E) and permutation π is NP-complete.

Proof. We use a reduction from the problem of finding Hamiltonian circuits in
grid graphs [6]. We replace each vertex of the grid by a pair of neighboring ver-
tices with swapped boxes. A formal proof is omitted due to the page limitation.

6 Conclusion

In this paper, we studied a sorting problem on graphs with the simple cost model
of counting the number of edges traveled. We presented an efficient algorithm
that finds an optimum solution if the graph is a tree, and showed that the
problem is hard on general graphs. All our results easily extend to weighted
graphs where each edge has an individual travel time. It is open whether there
are efficient algorithms for other special kinds of graphs or if there are good
approximation algorithms for general graphs.

We provide an implementation of the algorithm for finding shortest sorting
walks on paths and trees, as well as an interactive visualization on our website:
http://dgraf.ch/treesort
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Abstract. Complete-linkage clustering is a very popular method for
computing hierarchical clusterings in practice, which is not fully under-
stood theoretically. Given a finite set P ⊆ R

d of points, the complete-
linkage method starts with each point from P in a cluster of its own
and then iteratively merges two clusters from the current clustering that
have the smallest diameter when merged into a single cluster.

We study the problem of partitioning P into k clusters such that
the largest diameter of the clusters is minimized and we prove that the
complete-linkage method computes an O(1)-approximation for this prob-
lem for any metric that is induced by a norm, assuming that the dimen-
sion d is a constant. This improves the best previously known bound
of O(log k) due to Ackermann et al. (Algorithmica, 2014). Our improved
bound also carries over to the k-center and the discrete k-center problem.

1 Introduction

In a typical clustering problem, the goal is to partition a given set of objects
into clusters such that similar objects belong to the same cluster while dissimilar
objects belong to different clusters. Clustering is ubiquitous in computer science
with applications ranging from biology to information retrieval and data com-
pression. In applications where the number of clusters is not known a priori,
hierarchical clusterings are of particular appeal. A hierarchical clustering of a
set P of n objects is a sequence C1, C2, . . . , Cn, where Ci is a clustering of P into i
non-empty clusters and Ci+1 is a refinement of Ci. Besides the advantage that the
number of clusters does not have to be specified in advance, hierarchical cluster-
ings are also appealing because they help to understand the hereditary properties
of the data and they provide information at different levels of granularity.

In practice, agglomerative methods are very popular for computing hierarchi-
cal clusterings. An agglomerative clustering method starts with the clustering Cn,
in which every object belongs to its own cluster. Then it iteratively merges the
two clusters from the current clustering Ci+1 with the smallest distance to obtain
the next clustering Ci. Depending on how the distance between two clusters is
defined, different agglomerative methods can be obtained. A common variant
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is the complete-linkage method in which the distance between two clusters A
and B is defined as the diameter or the (discrete) radius of A ∪ B, assuming
some distance measure on the objects from P is given.

The complete-linkage method is very popular and successful in a wide variety
of applications. To name just a few of many recent examples, Rieck et al. [7]
have used it for automatic malware detection, Ghaemmaghami et al. [6] have
used it to design a speaker attribution system, and Cole et al. [2] use it as part of
the Ribosomal Database Project. Yet the complete-linkage method is not fully
understood in theory and there is still a considerable gap between the known
upper and lower bounds for its approximation guarantee.

1.1 Problem Definitions and Algorithms

Let P ⊆ R
d denote a finite set of points and let dist : Rd × R

d → R≥0 denote
some metric on R

d. A k-clustering C of P is a partition of P into k non-empty
sets C1, . . . , Ck. We consider three different ways to measure the quality of the
k-clustering C, which lead to three different optimization problems.

– diameter k-clustering problem: Find a k-clustering C with minimum
diameter. The diameter diam(C) of C is given by the maximal diameter
maxi diam(Ci) of one of its clusters, where the diameter of a set C ⊆ P is
defined as diam(C) := maxx,y∈C dist(x, y).

– k-center problem: Find a k-clustering C with minimum radius. The ra-
dius rad(C) of C is given by the maximal radius maxi rad(Ci) of one of
its clusters, where the radius of a set C ⊆ P is defined as rad(C) :=
miny∈Rd maxx∈C dist(x, y).

– discrete k-center problem: Find a k-clustering C with minimum discrete
radius. The discrete radius drad(C) of C is given by the maximal discrete
radius maxi drad(Ci) of one of its clusters, where the discrete radius of a
set C ⊆ P is defined as drad(C) := miny∈C maxx∈C dist(x, y).

The complete-linkage method CL starts with the |P |-clustering C|P | in which
every point from P is in its own cluster. Then, for i = |P | − 1, |P | − 2, . . . , 1,
it merges two clusters from Ci+1 to obtain Ci. Regardless of the choice of which
clusters are merged, this yields a hierarchical clustering C1, . . . , C|P |. Which clus-
ters are merged in an iteration depends on the optimization problem we consider.
For the diameter k-clustering problem, the complete-linkage method chooses two
clusters A and B from Ci+1 such that diam(A ∪ B) is minimized. Similarly, for
the k-center problem and the discrete k-center problem it chooses two clusters A
and B from Ci+1 such that rad(A∪B) or drad(A∪B) is minimized, respectively.
Hence, every objective function gives rise to a different variant of the complete-
linkage method. When it is not clear from the context which variant is meant,
we will use the notation CLdrad, CLrad, and CLdiam to make the variant clear.

1.2 Related Work

Let P ⊆ R
d and a metric dist on P be given and let Odrad

k , Orad
k , and Odiam

k

be optimal k-clusterings of P for the discrete k-center problem, the k-center
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problem, and the diameter k-clustering problem, respectively. For each of these
three problems, it is easy to find examples where no hierarchical clustering C =
(C1, . . . , C|P |) exists such that Ck is an optimal k-clustering for every k. We say
that a hierarchical clustering C is an α-approximate hierarchical clustering for the
diameter k-clustering problem if diam(Ck) ≤ α · diam(Odiam

k ) holds for every k.
In general, we allow α to be a function of k and d. We define α-approximate
hierarchical clusterings analogously for the (discrete) k-center problem.

Dasgupta and Long [3] gave an efficient algorithm that computes 8-approxi-
mate hierarchical clusterings for the diameter k-clustering and the k-center prob-
lem, thereby giving a constructive proof of the existence of such hierarchical
clusterings. Their result holds true for arbitrary metrics on R

d and it can even
be improved to an expected approximation factor of 2e ≈ 5.44 by a randomized
algorithm. They also studied the performance of the complete-linkage method
and presented an artificial metric on R

2 for which its approximation factor is
only Ω(log k) for the diameter k-clustering and the k-center problem. Ackermann
et al. [1] showed for the diameter k-clustering and the discrete k-center problem a
lower bound of Ω( p

√
log k) for the �p-metric for every p ∈ N, assuming d = Ω(k).

Ackermann et al. [1] also showed that the complete-linkage method yields
an O(log k)-approximation for any metric that is induced by a norm, assuming
that d is a constant. Here the constant in the big O notation depends on the
dimension d. For the discrete k-center problem the dependence on d is only
linear and additive. For the k-center problem the dependence is multiplicative
and exponential in d, while for the diameter k-clustering problem it is even
multiplicative and doubly exponential in d. The analysis of Ackermann et al.
proceeds in two phases. The first phase ends when 2k clusters are left and the
second phase consists of the last k merge operations. In the first phase a factor
depending only on d but not on k is incurred. To make this precise, let Cdrad

2k , Crad
2k ,

and Cdiam
2k denote the 2k-clusterings computed by the corresponding variants

of CL. Ackermann et al. prove that for each objective X ∈ {drad, rad, diam}
there exists a function κX such that

X(CX
2k) ≤ κX(d) ·X(OX

k ). (1)

The function κdrad is linear in d, the function κrad is exponential in d, and the
function κdiam is doubly exponential in d. The factor O(log k) is only incurred in
the last k merge operations. Let Cdrad

k , Crad
k , and Cdiam

k denote the k-clusterings
computed by the corresponding variants of CL. Ackermann et al. show that for
each objective X ∈ {drad, rad, diam}, it holds

X(CX
k ) ≤ O(log k) ·X(CX

2k),

where the constant in the big O notation depends again on the dimension d.
Additionally, Ackermann et al. [1] studied the case d = 1 separately and proved
that the complete-linkage method computes 3-approximate hierarchical cluster-
ings for the diameter k-clustering problem and the k-center problem for d = 1.

The approximability of non-hierarchical clustering problems is well under-
stood. Feder and Greene [5] proved that for the Euclidean metric the k-center
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problem and the diameter k-clustering problem cannot be approximated better
than a factor of 1.822 and 1.969, respectively. For the �1 and the �∞-metric
they prove a lower bound of 2 for the approximability of both problems. On the
positive side, they also provide a 2-approximation algorithm for any �p-metric.

A naive implementation of the complete-linkage method has a running time
of O(|P |3). Defays gave an implementation with running time O(|P |2) [4].

1.3 Our Results

Our main result is a proof that the complete-linkage method yields an O(1)-
approximation for the (discrete) k-center problem and the diameter k-clustering
problem for any metric on R

d that is induced by a norm, assuming that d is a
constant. This does not contradict the lower bound of Ackermann et al. because
this lower bound assumes that the dimension depends linearly on k. In light of
our result, the dependence of this lower bound on k is somewhat misleading and
it could also be expressed as Ω( p

√
log d).

In order to obtain our result, we improve the second phase of the analysis of
Ackermann et al. [1] and we prove that for each objective X ∈ {drad, rad, diam},

X(CX
k ) ≤ O(1) ·X(CX

2k).

The constant in the big O notation depends neither on d nor on k. It is 37, 19, and
17 for the discrete k-center problem, the k-center problem, and the diameter k-
clustering problem, respectively. Together with (1) this yields the desired bound
for the approximation factor.

In our analysis we introduce the concept of clustering intersection graphs.
Given an �-clustering C1, . . . , C� computed by the complete-linkage method and
an optimal k-clustering O1, . . . , Ok, the clustering intersection graph contains
a node for each cluster Cj and a hyperedge for every optimal cluster Oi. The
hyperedge corresponding to Oi contains all clusters Cj with Oi∩Cj 
= ∅. We then
observe that merge operations of the complete-linkage method correspond to
the contraction of two nodes in the clustering intersection graph. We obtain our
results by carefully exploiting the structural properties of clustering intersection
graphs.

In Section 2 we introduce formally the concept of clustering intersection
graphs and prove some elementary properties. In Section 3 we combine our
analysis with the result of Ackermann et al. about the first phase to prove that
the complete-linkage method yields an O(1)-approximation. Due to space con-
straints, proofs of statements marked by (�) are deferred to the full version of
this paper.

2 Clustering Intersection Graphs

Our analysis is based on studying the clustering intersection graph induced
by CL at certain points of time. Before we introduce the concept of cluster-
ing intersection graphs formally, we will define these points of time. Let P ⊆ R

d
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be arbitrary and let Ok denote some arbitrary optimal k-clustering of P (w.r.t.
the chosen objective function diameter or (discrete) radius). By scaling our point
set we may assume that the objective value of Ok equals 1. We define t≤x to be
the last step before some cluster of size larger than x (w.r.t. the chosen objective
function) is obtained and denote the clustering of CL at time t≤x by Ax. The
following lemma is crucial for our analysis.

Lemma 1 (�). Let x > 0. In Ax there do not exist two clusters a1 and a2 such
that

diam(a1)+ dist(a1, a2) + diam(a2) ≤ x, for CLdiam,

rad(a1)+ dist(a1, a2) + 2 rad(a2) ≤ x, for CLrad,

drad(a1)+ dist(a1, a2) + 2 drad(a2) ≤ x, for CLdrad,

where dist(a1, a2) is defined as the minimum distance between two points p1 ∈ a1
and p2 ∈ a2.

This implies that if we have at t≤x two clusters a1, a2 ∈ Ax and some cluster
o ∈ Ok with a1∩ o 
= ∅ and a2 ∩ o 
= ∅, then depending on the objective function
at t≤2x+1 or t≤3x+1 either a1 or a2 or both were merged.

2.1 Definition and Fundamental Properties

The fact that we can guarantee for certain pairs of clusters that one of it is
merged at a certain point of time motivates us to define a clustering intersection
graph (which is in general a hypergraph) with the clusters from Ax as vertices,
where two vertices are neighbored if and only if there exists a cluster o ∈ Ok

with which both have a non-empty intersection.

Definition 2. Let Ok be an optimal k-clustering of some finite point set P ⊆
R

d. Let Ax be the clustering of P computed by CL at time t≤x. We define the
clustering intersection graph (CI-graph) Gx(Ax,Ok) at point of time t≤x as a
graph with vertex set Ax. A set of vertices N = {v1, . . . , v�} forms a hyperedge
if there exists some cluster o ∈ Ok such that for each cluster vi we have that
vi ∩ o 
= ∅ and furthermore there does not exist a cluster v 
∈ N with v ∩ o 
= ∅.

In general, the CI-graph is a hypergraph with exactly k edges and |Ax| ver-
tices. If a statement holds for arbitrary points of time or the point of time is clear
from context we omit the index x and just write G. Note that for each cluster
a ∈ Ax each point p ∈ a in the cluster is contained in some optimal cluster o.
Thus, the CI-graph does not contain isolated vertices where isolated means that
the vertex has no incident edge. We call a vertex � a leaf if � is incident to exactly
one edge e and moreover � is not the only vertex incident to e. Moreover an edge
e is called a loop if e is only incident to one vertex. We define the degree of a
vertex v to be number of non-loop edges that contain v plus twice the number
of loops that consist of v. The CI-graph has the crucial property that merging
two clusters in Ax corresponds to contracting the corresponding vertices in the
CI-graph.
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Clusters constructed by CL
Optimal Clusters

Fig. 1. Example of a clustering instance with an optimal clustering and a clustering
computed by CL (left side) and the corresponding CI-graph (right side). Note that the
figure is only schematic and does not depict the actual clustering computed by CL on
the given instance

Lemma 3. There is a homomorphism between pairs of clusterings (O,A) where
O and A are both clusterings of a finite point set P ⊆ R

d and the set of CI-
graphs with respect to the operations merging two clusters in A and contracting
two vertices in the corresponding CI-graph.

Assume that two clusters a1 and a2 are merged in a step of CL. Then all
clusters o ∈ O that have a nonempty intersection with a1 or a2 clearly have a
nonempty intersection with a1 ∪ a2. Let G and G′ denote the CI-graph before
and after this merge operation, respectively. Then it is easy to see that G′ is
obtained from G by contracting the two vertices v1 and v2 corresponding to a1
and a2. The vertex that results from this contraction is incident to each edge
that was incident to v1 or v2 before.

To prove that the approximation factor of CL is at most x, it is sufficient
to show that at time t≤x the CI-graph Gx contains at least as many edges
as vertices. Clearly this is equivalent to |Ax| ≤ k, which means that CL has
terminated.

2.2 The One-Dimensional Case

One can prove that CL yields a constant approximation factor for all finite
point sets P ⊆ R, all metrics dist : R × R → R≥0 and all k ∈ N analyzing the
structure of the CI-graph after certain time periods showing that at t≤3 (or t≤5)
the number of vertices is smaller or equal to the number of edges. The result is
known for the diameter k-clustering problem and the k-center problem [1]. Our
result also holds for the discrete k-center problem. For a detailed proof see the
full version of our paper.

Theorem 4 (�). For d = 1 and arbitrary k,
CLdiam computes a 3-approximation for the diameter k-clustering problem,
CLrad computes a 5-approximation for the k-center problem,
CLdrad computes a 5-approximation for the discrete k-center problem.
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2.3 Completion of the CI-Graph

In the one-dimensional case one has the crucial property that all vertices of a
CI-graph can be arranged in increasing order on a line such that only neighbored
vertices on the line may be contracted. Additionally, it follows from Lemma 1
that at least one vertex of every neighbored pair must be contracted until a
certain time step. This implies that each edge is incident to at most 3 vertices
at t≤1, which is essential in the proof of Theorem 4. This property is not true
anymore in higher dimensions.

Given a CI-graph G, we construct a weighted multi-graph Γ (G), which we
call the completion of G. The graph Γ (G) has the same vertex set as the CI-
graph G. For every hyperedge {v1, . . . , v�} in G, we introduce a clique with edge
weights 1 in Γ (G). For each pair of vertices v and w from the same connected
component that are not adjacent we add an edge (v, w) to Γ (G). If p denotes the
length of the shortest v-w-path in G then the weight of the edge (v, w) in Γ (G)
is set to p + (p − 1)x for the objective function diam and p + (p − 1)2x for
the objective functions rad and drad. This construction ensures the following
important property: the weight of every edge (v, w) in Γ (G) is an upper bound
for the distance of the corresponding clusters (remember that the distance of
two clusters is defined as the smallest distance between any pair of points from
these clusters).

Lemma 5 (�). Assume that the shortest v-w-path in a CI-graph G has length p.
Then the smallest distance between two points in v and w is at most p+(p−1)x
for the objective function diam and p+ (p− 1)2x for the objective functions rad
and drad.

For the analysis of CL we choose a subgraph H of Γ (G). Unfortunately,
Lemma 3 cannot be applied to H since H is no CI-graph but we state a weaker
version, which is still strong enough for our analysis.

Lemma 6 (�). Let Gx = Gx(Ax,Ok) be a CI-graph of a clustering (Ax,Ok) at
point of time t≤x. Let Hx be a subgraph of Γ (Gx) with V (Hx) = V (Gx). Now
consider Gx′ = Gx′(Ax′ ,Ok) for some point of time t≤x′ with x′ > x. Let Hx′

be the graph that arises from Hx by performing the same contractions that are
made between Gx and Gx′ . Then V (Gx′) = V (Hx′) and moreover the weight
of any edge (v, w) in Hx′ is an upper bound for the distance of the clusters
corresponding to v and w.

2.4 Analysis of H at Different Time Steps

The analysis of CL proceeds as follows. Let Gx be the CI-graph for a fixed point
of time t≤x. Assume that there exists a special subgraph Hx of Γ (Gx) satisfying
the properties

i) V (Hx) = V (Gx),
ii) |E(Hx)| ≤ k,
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iii) and no vertex in Hx is isolated (i.e., every vertex in Hx has at least one
incident edge).

We will prove that at a certain point of time tc, depending on the maximum
edge weight in Hx, we have that |V (Hc)| ≤ |E(Hc)|. Because of property i) and
Lemma 6 we conclude V (Hc) = V (Gc). Together with property ii) we obtain
|V (Gc)| = |V (Hc)| ≤ |E(Hc)| = |E(Hx)| ≤ k and thus CL terminated. In the
following we denote Hx′ by H if the point of time is clear from context or if a
statement holds for all Hx′ with x′ ≥ x.

First note that H is a multi-graph. Multi-graphs have the crucial property
that a connected component has at least as many edges as vertices if and only
if a cycle exists (where a loop is considered as a special case of a cycle).

Definition 7. We call a connected component of H active if the component is
a tree. Otherwise we call it inactive.

Observation 8. If Hx′ has no active connected component, then CL has ter-
minated at t≤x′ .

Leaves of H and their neighbors have a key role in the analysis of the algo-
rithm. We will show that between certain time steps either a leaf or its unique
neighbor is merged. Define dn as an upper bound for the distance between the
clusters corresponding to any pair of adjacent vertices v1 and v2 in Hx. Be-
cause of Lemma 6 we have that dn is smaller or equal to the maximum edge
weight in H at any point of time. We use that fact later when choosing the
subgraph Hx. We analyze time steps t≤x+i(dn+x) for the diameter k-clustering
problem and t≤x+i(dn+2x) for the k-center and discrete k-center problem ac-
cording to Lemma 1 and denote them by ti. In accordance to that, we define
xi = x + i(dn + x) for CLdiam and xi = x + i(dn + 2x) for CLrad and CLdrad,
respectively.

Definition 9. We call a vertex p ∈ H in an active connected component of Ha
leaf-parent if p is the neighbor of some leaf and has at least degree 2.

At the beginning of our analysis at t≤x there does not necessarily exist a
leaf-parent in each active component. This follows because the smallest possible
active component consists of two connected vertices and is the only possibility
of an active component without a leaf-parent (remember that in H there exist
no isolated vertices by property iii); any connected component that consists of a
single vertex must contain a loop and is hence inactive). Analogous to dimension
one we show that at point of time t1 for each active connected component by
CL either one vertex was merged with a vertex from another component but
thereby some vertex with degree 2 is built or two vertices from one component
were merged. The latter means that a cycle was built and the component is no
longer active. The following lemma ensures that at a certain point of time there
exists a leaf-parent in each active component.

Lemma 10 (�). Each active component C of H containing a vertex v of degree 2
contains at least one leaf-parent p. In particular Hx1 contains at least one leaf-
parent in each active component.
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The proof of Lemma 10 gives a hint that we have in general at least two leaf-
parents in each component while components with exactly one leaf-parent are
of a special form. We will use this structure later on to prove that if each active
component contains at least 2 leaf-parents the algorithm terminates. Therefore
we need some statement counting the number of remaining contractions de-
pending on the number of leaf-parents. First, we need some statement how often
contraction steps are performed in each component.

Lemma 11 (�). Let � be some leaf in Hxi at an arbitrary point of time ti with
i ≥ 0. Then the leaf � is also contained in Hx0 and it is not contracted between t0
and ti. Moreover between two steps of time ti and ti+1 where i ∈ N0 we have that
for each leaf � either the leaf � or its corresponding leaf-parent p� is contracted.

We denote the number of leaf-parents of H at time ti for a connected compo-
nent C by n�p(C). Since in each active component the number of leaf-parents is
at most the number of leaves, we may conclude that the algorithm performs at

least n�p/2 contractions between ti and ti+1 where n�p =
r∑

i=1

n�p(Ci) is the sum

over the number of leaf-parents in the active connected components. Now we
count the number of leaf-parents contained in one active connected component.
The idea is that if each active component contains at least two leaf-parents then
we have at least as many contractions as active components and can conclude
that the algorithm will terminate. Therefore we show that at a certain point of
time every active component must contain at least two leaf-parents. First we
will show that if the number of leaf-parents in an active component is at least
two, then after contraction the number of leaf-parents does not decrease below
two.

Lemma 12 (�). Assume that two vertices v1 and v2 from two different compo-
nents C1 and C2 that contain each at least one leaf-parent are contracted in H. If
the resulting component C = C1 ∪C2 is active then C has at least as many leaf-
parents as the maximum of C1 and C2, i.e., n�p(C) ≥ max{n�p(C1), n�p(C2)}.

We may conclude that the only possibility to obtain an active component
containing just one leaf-parent is that we contract vertices from two different
components which contain only one leaf-parent. In particular for two such com-
ponents C1 and C2 we have to contract the leaf-parents p1 and p2. If another
vertex and therefore a leaf of C1 is contracted another component C1 ∪C2 with
at least two leaf-parents is built.

Lemma 13 (�). For CLdiam each active component contains at least 2 leaf-
parents at point of time t3. For CLrad each active component contains at least 2
leaf-parents at t2. For CLdrad each active component contains at least 2 leaf-
parents at t6.

It remains to prove that CL terminates if each component contains at least
two leaf-parents.

Lemma 14 (�). If at ti each active component of Hxi contains at least two
leaf-parents then CL has terminated at ti+1.
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3 Approximation Factor of CL in the Case d ≥ 2

In this section we combine our analysis with the result of Ackermann et al. [1]
for the first phase of CL (i.e., the steps until 2k clusters are left) in order to
prove the main theorem. From the analysis of Ackermann et al. it follows that
there is a function κ such that for x = κ(d) the CI-graph Gx contains at most 2k
vertices. We will analyze the last k steps of CL more carefully. We consider the
completion Γ (Gx) of Gx and assume that it is connected. This is not necessarily
the case but we will see later that this assumption is without loss of generality
because our analysis can be applied to each connected component separately. In
fact, the result of Ackermann et al. implies that for each connected component
of Gx the number of vertices is at most twice the number of edges.

3.1 CI-Graphs with at most 2k Vertices

Let Hx be a subgraph of Γ (Gx) with k edges and at most 2k vertices such
that Hx fulfills the properties i)-iii). The goal is to find such a subgraph Hx

whose maximum edge weight is small. Note that properties i), ii), and iii) imply
|V (Gx)| = |V (Hx)| ≤ 2|E(Hx)| ≤ 2k = 2|E(Gx)|, which means |V (Gx)| ≤
2|E(Gx)| is a necessary property of Gx to find a subgraph Hx.

We will prove that we can always find a subgraph Hx of Gx that satisfies
properties i)-iii) and has the following additional property iv): for each edge
e′ = (v, w) ∈ E(Hx) the vertices v and w have distance at most 2 in Gx, i.e.,
either there is an edge e ∈ E(Gx) with {v, w} ⊆ e or there are two edges ev ∈
E(Gx) and ew ∈ E(Gx) with v ∈ ev, w ∈ ew, and v ∩ w 
= ∅.

Using this we will prove that CL terminates at time t≤O(x) if for each con-
nected component C of the CI-graph Gx we have that |V (C)| ≤ 2|E(C)|.

In order to find a subgraph Hx of Γ (Gx) that satisfies properties i)-iv) we
let T be a spanning tree of Γ (Gx) that uses only edges of weight 1. Such a
spanning tree is guaranteed to exist because we assumed Gx to be connected.
Such a spanning tree satisfies all properties except for ii) because the number of
edges in T is |V (Gx)| − 1 and |V (Gx)| can only be bounded by 2k.

However, any perfect matching in the spanning tree T is a subgraph H that
satisfies the properties i)-iv). If T does not contain a perfect matching, we show
how to find a perfect 2-matching (according to the following definition).

Definition 15. An α-matching in a graph G is a matching M in the complete
graph K|V (G)| with |V (G)| vertices such that for each matching edge (v, w) ∈ M
the distance of v and w in G is at most α. Moreover we call an α-matching
perfect if M is a perfect matching in K|V (G)|.

Lemma 16 (�). Each tree T with an even number |V (T )| of vertices has a
perfect 2-matching.

Construction of Hx. We construct a graph Hx that satisfies the properties
i), ii), iii), and iv) as follows. First we compute an arbitrary spanning tree T
of Γ (Gx) that uses only edges of weight 1. If |V (Gx)| = |V (Hx)| is even, then
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the graph Hx is chosen as a perfect 2-matching of T . Then the properties i),
iii), and iv) are satisfied by construction and property ii) is satisfied because
of |E(Hx)| = |V (Hx)|/2 ≤ k. If |V (Gx)| is odd, we choose some leaf v from
the spanning tree T . Then we find a perfect 2-matching M in T \ {v}. Since
|V (Gx)| ≤ 2|E(Gx)| we have that the matching contains at most |E(Gx)| − 1
edges. Thus we set Hx to M and may add the edge from T that is incident to v
to Hx such that property iii) becomes true.

Now we have a graph Hx fulfilling properties i), ii), iii), and iv). Property
iv) and Lemma 6 imply that dn ≤ 2 + x for the objective function diam and
dn ≤ 2 + 2x for the objective functions rad and drad. We conclude with the
following theorem.

Theorem 17 (�). Assume that the CI-graph Gx is connected and contains k
edges and at most 2k vertices at some point of time t≤x. Then CLdiam computes

a 9x+ 8 approximation for the diameter k-clustering problem. Moreover CLrad

computes a 13x+6 approximation for the k-center problem and CLdrad computes
a 25x+ 12 approximation for the discrete k-center problem.

3.2 Approximation Factor of CL

Now for each version of the algorithm CLdiam, CLrad, and CLdrad we combine
our analysis with the special result of [1] corresponding to each of the methods.
We state the following lemma from [1] deriving an upper bound for a point of
time x where |V (Gx)| ≤ 2k.

Lemma 18 ([1]). Let P ⊆ R
d be finite. Then, for all k ∈ N with 2k ≤ |P |, the

partition A of P into 2k clusters computed by CLdrad satisfies

max
a∈A

drad(a) < 20d · drad(Odrad
k ).

Combining this result with Theorem 17 yields the following theorem.

Theorem 19 (�). For d ∈ N and a finite point set P ⊆ R
d the algorithm

CLdrad computes an O(d)-approximation for the discrete k-center problem.

Lemma 20 ([1]). Let P ⊆ R
d be finite. Then, for all k ∈ N with 2k ≤ |P |, the

partition A of P into 2k clusters computed by CLrad satisfies

max
a∈A

rad(a) < 24d · e24d · rad(Orad
k ).

Combining this result with Theorem 17 yields the following theorem.

Theorem 21. For d ∈ N and a finite point set P ⊆ R
d the algorithm CLrad

computes an eO(d)-approximation for the k-center problem.

Lemma 22 ([1]). Let P ⊆ R
d be finite. Then, for all k ∈ N with 2k ≤ |P |, the

partition A of P into 2k clusters computed by CLdiam satisfies

max
a∈A

diam(a) < 23(42d)
d

(28d+ 6) · diam(Odiam
k ).
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Analogously to CLdrad and CLrad we can conclude the following theorem.

Theorem 23. For d ∈ N and a finite point set P ⊆ R
d the algorithm CLdiam

computes a 2O(d)d-approximation for the diameter k-clustering problem.

4 Conclusions

We have shown that the popular complete-linkage method computes O(1)-ap-
proximate hierarchical clusterings for the diameter k-clustering problem and
the (discrete) k-center problem, assuming that d is a constant. For this it was
sufficient to improve the second phase of the analysis by Ackermann et al. [1]
(i.e., the last k merge operations). We used their results about the first phase
to obtain our results. It is a very interesting question if the dependence on the
dimension can be improved in the first phase. If we express the known lower
bound of Ackermann et al. [1] in terms of d then it becomes Ω( p

√
log d). Hence,

in terms of d, there is still a huge gap between the known upper and lower
bounds. Another interesting question is whether the upper bound of O(log k)
holds also for metrics that are not induced by norms.
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Abstract. In the Mixed Chinese Postman Problem (MCPP), given a
weighted mixed graph G (G may have both edges and arcs), our aim is
to find a minimum weight closed walk traversing each edge and arc at
least once. The MCPP parameterized by the number of edges in G or
the number of arcs in G is fixed-parameter tractable as proved by van
Bevern et al. (2014) and Gutin, Jones and Sheng (2014), respectively.
In this paper, we consider the unweighted version of MCPP. Solving
an open question of van Bevern et al. (2014), we show that somewhat
unexpectedly MCPP parameterized by the (undirected) treewidth of G is
W[1]-hard. In fact, we prove that even the MCPP parameterized by the
pathwidth of G is W[1]-hard. On the positive side, we show that MCPP
parameterized by treedepth is fixed-parameter tractable. We are unaware
of any natural graph parameters between pathwidth and treedepth and
so our results provide a dichotomy of the complexity of MCPP.

1 Introduction

A mixed graph is a graph that may contain both edges and arcs (i.e., directed
edges). A mixed graph G is strongly connected if for each ordered pair x, y of
vertices in G there is a path from x to y that traverses each arc in its direction.
In this paper, we will deal with simple mixed graphs (where for every pair of
vertices u, v, at most one of the edge uv, the arc uv and the arc vu exist)1 and
(possibly non-simple) directed multigraphs (with multiple arcs between each
pair of vertices). Whenever we refer to the treewidth (pathwidth, treedepth)
of a graph, we mean the treewidth (pathwidth, treedepth) of the underlying
undirected graph.

In this paper, we study the following well-known problem.

Mixed Chinese Postman Problem (MCPP)

Instance: A strongly connected mixed graph G = (V,E∪A), with vertex
set V , set E of edges and set A of arcs; a weight function w : E∪A → N0.
Output: A closed walk H of G that traverses each edge and arc at least
once, of minimum weight.

1 We can relax our assumption that we deal only with simple mixed graph in the
treedepth part of the paper as subdividing parallel arcs/edges increases treedepth
by at most one.

c© Springer-Verlag Berlin Heidelberg 2015
N. Bansal and I. Finocchi (Eds.): ESA 2015, LNCS 9294, pp. 668–679, 2015.
DOI: 10.1007/978-3-662-48350-3_56
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In what follows, we will consider a solution H of MCPP as both a walk in G
and a supergraph of G.

There is numerous literature on various algorithms and heuristics for MCPP;
for informative surveys, see [2,4,9,18]. When A = ∅, we call the problem the
Undirected Chinese Postman Problem (UCPP), and when E = ∅, we
call the problem the Directed Chinese Postman Problem (DCPP). It is
well-known that UCPP is polynomial-time solvable [8] and so is DCPP [1,5,8],
but MCPP is NP-complete, even when G is planar with each vertex having total
degree 3 and all edges and arcs having weight 1 [17]. It is therefore reasonable to
believe that MCPP may become easier the closer it gets to UCPP or DCPP.
Indeed, when parameterized by the number of edges in G or the number of arcs
in G, MCPP is proved to be fixed-parameter tractable (FPT, defined below) by
van Bevern et al. [2] and Gutin, Jones and Sheng [15], respectively.

In this paper, we consider structural parameterizations ofMCPP. Van Bevern
et al. [2] noted that Fernandes, Lee and Wakabayashi [12] proved that MCPP

parameterized by the treewidth of G is in XP (when all edges and arcs have
weight 1), and asked whether this parameterization of MCPP is FPT. It is well-
known that many graph problems are FPT when parameterized by the treewidth
of the input graph (only a few such problems are W[1]-hard; see, e.g., [6,10,14]).
In this paper, we show that somewhat unexpectedly the MCPP parameterized
by treewidth belongs to a small minority of problems, i.e., it is W[1]-hard. In
fact, we prove a stronger result by (i) replacing treewidth with pathwidth, and
(ii) assuming that all edges and arcs have weight 1.

To complement this, we obtain a positive result for the parameter treedepth.
We prove that if there exists an improvement step for MCPP, then there is also
an improvement step where the number of changes is bounded by a function of
the treedepth. Thus, to search for a feasible improvement step one can apply
Courcelle’s theorem on the treedepth decomposition of the graph, because the
whole shape of the improvement can be encoded in the formula. Note that the
bound on treedepth is used here in two different manners: to prove a structural
result about the space of the solutions, and to run the final dynamic program-
ming algorithm.

Following [12], we assume that all weights equal 1, however, we do not foresee
any significant difficulty in generalizing our result to the weighted case.

Our paper is organized as follows. In the rest of this section, we provide
some basic definitions on parameterized complexity as well as the definitions of
treewidth, pathwidth and treedepth. In Section 2 we introduce an intermediate
problem Properly Balanced Subgraph (PBS), and give a W[1]-hardness
proof for a restricted variant of it. In Section 3 we reduce this variant of PBS to
MCPP parameterized by pathwidth, showing that the latter is also W[1]-hard.
In Section 4 we show that PBS is FPT with respect to treedepth, as outlined
above, and in Section 5 we reduce MCPP parameterized by treedepth to PBS

parameterized by treedepth, showing that this parameterization of MCPP is
FPT. We conclude the paper with Section 6, where, in particular, we mention
an open question from [2] on another parameterization of MCPP. We assume
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familiarity with the basic concepts of parameterized algorithms and complexity.
For information on these topics, see [7]. For reasons of space, many proofs and
figures are omitted, but can be found in the arXiv version [16].

Treewidth, Pathwidth and Treedepth. We use the standard notions of treewidth
and pathwidth of an undirected graph [13]. For a directed multigraph H , we will
use pw(H) to denote the pathwidth of the underlying undirected graph of H .

The treedepth of a connected graph G is defined as follows. Let T be a rooted
tree with vertex set V (G), such that if xy is an edge in G then x is either an
ancestor or a descendant of y in T . Then we say that G is embedded in T . The
depth of T is the number of vertices in a longest path in T from the root to a
leaf. The treedepth of G is the minimum t such that G is embedded in a tree of
depth t. Thus, for example, a star K1,r has treedepth 2. A path of length n has
treedepth O(log n). A graph of treedepth k has pathwidth at most k − 1.

2 Properly Balanced Subgraph Problem

In this section, we introduce the problem Properly Balanced Subgraph

(PBS), and show that it is W[1]-hard parameterized by pathwidth. In Section
4, we will show that a special case of the problem with restricted weights is
fixed-parameter tractable with respect to treedepth.

A directed multigraph is called balanced if the in-degree of each vertex co-
incides with its out-degree. A double arc is a specified pair of arcs (a, a′) such
that a and a′ have the same heads and tails. We will say that a subgraph D′

of D respects double arcs if |A(D′) ∩ {a, a′}| �= 1 for every double arc (a, a′). A
forbidden pair is a specified pair of arcs (b, b′) such that b is the reverse of b′. We
say that D′ respects forbidden pairs if |A(D′) ∩ {b, b′}| �= 2 for every forbidden
pair (b, b′). We will say that a subgraph D′ of D is properly balanced if D′ is
balanced and respects double arcs and forbidden pairs. PBS is then defined as
follows.

Properly Balanced Subgraph (PBS)

Instance: A directed multigraph D = (V,A); a weight function w : A →
Z; a set X = {(a1, a′1), . . . , (ar, a′r)} of double arcs with ai, a

′
i ∈ A for

each i ∈ [r]; a set Y = {(b1, b′1), . . . , (bs, b′s)} of forbidden pairs with
bi, b

′
i ∈ A for each i ∈ [s]. Each arc occurs at most once in

⋃
(X ∪ Y ).

Output: A properly balanced subgraph D′ of D of negative weight, if
one exists.

Throughout the paper, when we talk about a graph in the context of PBS,
we implicitly mean a directed multigraph together with a weight function, a set
of double arcs and a set of forbidden pairs, as described above.

2.1 Gadgets for PBS

We now describe some simple gadget graphs (for now we do not assign weights;
we will do this later). Each gadget will have some number of input and output
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arcs. Later, we will combine these gadgets by joining the input and output arcs
of different gadgets together using double arcs. Henceforth, for each positive
integer n, [n] = {1, 2, . . . , n}.

A Duplication gadget has one input arc and t output arcs, for some positive
integer t. The vertex set consists of vertices x, y, and ui, vi for each i ∈ [t]. The
arcs form a cycle xyu1v1 . . . utvtx. The input arc is the arc xy, and the output
arcs are the arcs uivi for each i ∈ [t].

A Choice gadget has one input arc xy and t output arcs uivi : i ∈ [t], for
some positive integer t. The vertex set consists of the vertices x, y, z, w and ui, vi
for each i ∈ [t]. The arcs consist of a path wxyz, and the path zuiviw for each
i ∈ [t].

Finally, a Checksum gadget has tl left input arcs xiyi : i ∈ [tl] for some positive
integer tl, and tr right input arcs uivi : i ∈ [tr], and no output arcs. The vertex
set consists of the vertices w, z together with xi, yi for each i ∈ [tl] and ui, vi for
each i ∈ [tr]. The arc set consists of the path wxiyiz for each i ∈ [tl], and zuiviw
for each i ∈ [tr].

Proposition 1 below is easy to prove and thus its proof is omitted.

Proposition 1. Let D be one of the gadgets described above, let X be a subset
of input arcs in D, and let Y be a subset of output arcs in D. Then there exists
a properly balanced subgraph D′ of D containing all the arcs from X and Y (and
no other input or output arcs) if and only if one of the following cases holds: (1)
X = ∅ and Y = ∅; (2) D is a Duplication gadget, |X | = 1 and Y contains all
the output arcs of D; (3) D is a Choice gadget, |X | = 1 and |Y | = 1; or (4) D
is a Checksum gadget, and X contains an equal number of left input arcs and
right input arcs.

Observe that in all of our gadgets, the vertices in input or output arcs all have
in-degree and out-degree 1. We next describe how to combine these gadgets. For
two unjoined arcs uv and xy (possibly in disjoint graphs), the operation of joining
uv and xy is as follows: Identify u and x, and identify v and y. Keep both uv
and xy, and add (uv, xy) as a double arc.

Lemma 1. Let D1 and D2 be disjoint directed multigraphs. Let u1v1, . . . utvt be
arcs in D1, and let x1y1, . . . xtyt be arcs in D2, such that ui and vi both have in-
degree and out-degree 1 in D1, and xi and yi both have in-degree and out-degree
1 in D2, for each i ∈ [t]. Let D be the graph formed by joining uivi and xiyi, for
each i ∈ [t]. Then a subgraph D′ of D is a properly balanced graph if and only if
(1) |A(D′) ∩ {uivi, xiyi}| �= 1 for each i ∈ [t]; and (2) D′ restricted to D1 is a
properly balanced subgraph of D1, and D′ restricted to D2 is a properly balanced
subgraph of D2.

2.2 W[1]-Hardness of PBS

We now use the gadget behavior, as described in Prop. 1, to construct a W[1]-
hardness proof for PBS. By joining an output arc of one gadget to the input
arc of another gadget, we have that a solution will only pass through the second
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gadget if it uses the corresponding arc of the first gadget. Thus for example, if
a Duplication gadget has k output arcs, each of which is joined to the input arc
of a Choice gadget, then any solution that uses the input arc of the Duplication
gadget has to use exactly one output arc from each of the Choice gadgets. By
combining gadgets in this way, we can create “circuits” that represent instances
of other problems.

We will use this idea to represent the following W[1]-hard problem. In k-
Multicolored Clique, we are given a graph G = (V1 ∪ V2 · · · ∪ Vk, E), such
that for each i ∈ [k], Vi forms an independent set, and asked to decide whether
G contains a clique with k vertices, where k is the parameter.

Theorem 1 ([11]). k-Multicolored Clique is W[1]-hard.

Theorem 2. PBS is W[1]-hard parameterized by pathwidth, even when there
are no forbidden arcs, there is a single arc a∗ of weight −1 and a∗ is not part of
a double arc, and all other arcs have weight 0.

We give a sketch of the proof (for a full proof, see the arXiv version [16]):
Let G = (V1 ∪ · · · ∪ Vk, E) be an instance of k-Multicolored Clique. We

construct an equivalent instance of PBS as follows.
Initially we have a duplication gadget with k output arcs, whose input arc is

the only arc of weight −1. All other arcs will have weight 0. Thus, any solution
to the PBS instance will have to use this duplication gadget and all its output
arcs. Then for each i ∈ [k], we choose a vertex vi ∈ Vi (represented by a Choice
gadget with |Vi| output arcs, whose input arc is joined to the initial Duplication
gadget). For each choice of vi, and for each j ∈ [k]\{i} (enforced by a Duplication
gadget with k− 1 output arcs), we then choose an edge ei→j that is adjacent to
vi and a vertex in Vj (represented by a choice gadget with |N(vi) ∩ Vj | output
arcs).

The graph so far looks like a “tree” of gadgets, and as such has bounded
treewidth. It is easy to show that it also has bounded pathwidth (since each
gadget has bounded pathwidth and the tree of gadgets has bounded depth). It
enforces that we choose a set of vertices v1, . . . , vk, and then an edge ei→j for
each ordered pair (i, j), i �= j. (Each possible choice for ei→j is represented by
one output arc on the last layer of Choice gadgets.) Now observe that v1, . . . , vk
forms a clique if and only if there are choices of ei→j such that ei→j = ej→i for
each (i, j).

We can check for this condition as follows. Firstly, we associate each edge
e with a unique number ne. Then, for each output arc corresponding to the
edge e, we join that arc to a Duplication gadget with ne output arcs. (This
increases the pathwidth of the graph by a constant.) Then for each unordered
pair {i, j}, i < j, we create a Checksum gadget CheckEdge(i, j). The left input
arcs of this gadget are joined to all the output arcs of all Duplication gadgets
corresponding to a choice for ei→j , and the right input arcs are joined to all the
output arcs of all Duplication gadgets corresponding to a choice for ej→i. This
completes the construction of the graph.
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It follows that for any solution to the PBS instance, the number of left input
arcs of CheckEdge(i, j) in the solution is equal to the number associated with
the edge chosen for ei→j . Similarly the number of right input arcs in the solution
is equal to the number associated with the edge chosen for ej→. As these numbers
have to be equal, it follows that there is a solution if and only if the choice for
ei→j is the same as the choice for ej→i for each i �= j. Thus, our PBS instance
has a solution of negative weight if and only if G has a clique. It remains to
check the pathwidth of the graph.

Before the addition of the Checksum gadgets, the graph has pathwidth
bounded by a constant. As the input arcs of these gadgets are joined to other
arcs, adding the Checksum gadgets only requires adding 2 vertices for each (i, j).
Thus, the pathwidth of the constructed graph is O(k2).

3 Reducing PBS to MCPP

We now show how to reduce an instance of PBS, of the structure given in
Theorem 2, to MCPP. Let (D = (V,A), w,X = {(ai, a′i) : i ∈ [t]}, Y = ∅)
be an instance of PBS with double arcs X and no forbidden pairs, and where
w(a∗) = −1 for a single arc a∗ and w(a) = 0 for every other arc. We may assume
that a∗ is not in a double arc. We will produce an instance G of MCPP and
an integer W , such that G has a solution of weight W , and G has a solution
of weight less than W if and only if our instance of PBS has a solution with
negative weight. All edges and arcs in our MCPP instance will have weight 1.

We derive G by replacing every double arc and individual arc of D by an
appropriate gadget. The gadgets will be such that within each gadget, there are
only two behaviors of MCPP solutions of reasonable weight: a solution can be
balanced within the gadget (corresponding to not using the original arc/double
arc in a solution to D), or a solution can be imbalanced at the vertices by the
same amount that the original arc / double arc is (which corresponds to using
the original arc / double arc in a solution to D). Thus, every solution for G of
reasonable weight corresponds to a properly balanced subgraph of D, and vice
versa.

For each gadget, except for the gadget corresponding to the negative weight
arc, the weights of the two solutions will be the same. In the case of the negative
weight arc, the solution that corresponds to using the arc will be cheaper by 1.
Thus, there are two possible weights for a solution to G, and the cheaper weight
is only possible if D has a properly balanced subgraph of negative weight.

In what follows, we will construct arcs and edges of two weights, standard
and heavy. Standard arcs and edges have weight 1; heavy arcs and edges have
weight M , where M is a large enough (polynomially bounded) integer that we
may assume that no solution traverses a heavy arc or edge more than once. This
will be useful to impose structure on the possible solutions when constructing
gadgets. A heavy arc (edge) is equivalent to a directed (undirected) path of
length M , and so we also show W[1]-hardness for the unweighted case.

Given a directed multigraph H (corresponding to part of a solution to an
MCPP instance) and a vertex v, the imbalance of v is d+H(v)−d−H(v). The gadgets
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are constructed as follows. It is straightforward to verify that each gadget has
only two solutions that traverse each heavy arc or edge exactly once, and that
the imbalances and weights of these solutions are as described above. (For a full
proof, see the arXiv version [16].)

For an arc uv of weight 0 that is not part of a double arc: Construct
Gadget(u, v) by creating a new vertex zuv, with standard arcs zuvu and zuvv,
two heavy arcs uzuv, and a heavy arc vzuv.

For an arc uv of weight −1 that is not part of a double arc: Construct
Gadget(u, v) by adding two new vertices wuv and zuv, with standard arcs
zuvu, zuvwuv and vwuv , two heavy arcs uzuv, one heavy arc wuvzuv, and two
heavy arcs wuvv.

For a double arc from u to v: Gadget(u, v) consists of a heavy arc uv and
a heavy edge {u, v}. Assuming a solution traverses each heavy arc/edge exactly
once, the only thing to decide is in which direction to traverse the undirected
edge.

We note that each of our gadgets has pathwidth bounded by a constant. It
can be shown that replacing the arcs of D with gadgets in this way will only
increase the pathwidth by a constant.

We now have that, given an instance (D,w,X, Y ) of PBS of the type spec-
ified in Theorem 2, we can in polynomial time create an equivalent instance G
of MCPP with pathwidth bounded by O(pw(D)). We therefore have a parame-
terized reduction from this restriction of PBS, parameterized by pathwidth, to
MCPP parameterized by pathwidth. As this restriction of PBS is W[1]-hard by
Theorem 2, we have the following theorem.

Theorem 3. MCPP is W[1]-hard parameterized by pathwidth.

4 PBS Parameterized by Treedepth

In this section we show that a certain restriction of PBS is fixed-parameter
tractable with respect to treedepth. The restriction we require is that all arcs
in double arcs have weight 0, all arcs in forbidden pairs have weight −1, and all
other arcs have weight 1 or −1. We choose this restriction, as this is the version
of PBS that we get when we reduce from MCPP.

Aside from some standard dynamic programming techniques, our main tech-
nical tool is Lemma 3, which shows that we may assume there exists a solution
with size bounded by a function of treedepth. The following simple observation
will be useful in the proof of Lemma 3.

Lemma 2. Let {Hi : i ∈ I} be a family of pairwise arc-disjoint subgraphs of G,
such that each Hi respects double arcs. Then H =

⋃
i∈I Hi is a properly balanced

subgraph of G if and only if H is balanced and H respects forbidden pairs.

We are now ready to prove that any properly balanced subgraph decomposes
into properly balanced subgraphs of size bounded by a function of treedepth.
This will allow us to assume, when constructing the algorithm (Theorem 4),
that a solution has bounded size.
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Lemma 3. Let G be a directed multigraph (with double arcs and forbidden pairs)
of treedepth k, and let H be a properly balanced subgraph of G. Then H is a union
of pairwise arc-disjoint graphs Hi, each of which is a properly balanced subgraph

of G, with |A(Hi)| ≤ f(k) where f(k) = 22
k

.

Proof. We prove the claim by induction on the treedepth k. For the base case,
observe that if k = 1 then G has no arcs, and the claim is trivially true. So now
assume that k ≥ 2, and that the claim holds for all graphs of treedepth less than
k. We also assume that the underlying undirected graph of H is 2-connected, as
otherwise a block decomposition of H is a decomposition into properly balanced
subgraphs, and we may apply our result to each block of H . Similarly, if the
underlying undirected graph of G is not 2-connected but H is, then H lies inside
one block of G, and we may restrict our attention to this block. Hence assume
that the underlying undirected graph of G is 2-connected as well.

Let G be embedded in a tree T of depth k, and let x be the root of T . Observe
that x has only one child in T , as otherwise x is a cut-vertex in G. Let y be
this child, and let G′ be the multigraph derived from G by identifying x and y
and removing loops. Similarly, let H ′ be the subgraph of G′ derived from H by
identifying x and y and removing loops. Observe that H ′ is balanced as H is
balanced and so the number of arcs into {x, y} equals the number of arcs out of
it. Let B be the set of arcs in H between x and y, and observe that there is a
one-to-one correspondence between the arcs of H ′ and the arcs of H not in B.
By identifying x and y in T , we get that G′ has treedepth at most k − 1.

By the induction hypothesis, H ′ can be partitioned into a family {H ′
i : i ∈ I ′}

of pairwise arc-disjoint properly balanced subgraphs of G′, each having at most
f(k− 1) arcs. For each i ∈ I ′, let Fi be the subgraph of G corresponding to H ′

i.
Observe that B can also be partitioned into a family {Fi : i ∈ I ′′} of subgraphs
with at most 2 arcs, that respect double arcs (we add any double arc from B as
a subgraph Fi, and add every other arc as a single-arc subgraph).

Letting J = I ′ ∪ I ′′, we have that {Fi : i ∈ J } is a partition of H , each
Fi has at most f(k − 1) arcs, and each Fi respects double arcs and is balanced
everywhere except possibly at x and y. We now combine sets of these subgraphs
into subgraphs that are balanced everywhere.

For each i ∈ J , let ti be the imbalance of Fi at x, i.e. ti = d+Fi
(x) − d−Fi

(x).

Observe that |ti| ≤ f(k−1)
2 for each i and, as H is balanced,

∑
i∈J ti = 0.

Suppose that there exists a subset J ′ ⊆ J such that |J ′| ≤ f(k − 1) − 1 and∑
i∈J ti = 0. Then let H1 =

⋃
i∈J ′ Fi. By construction, H1 is balanced at every

vertex (as it is balanced for every vertex other than y, and a directed multigraph
cannot be imbalanced at a single vertex), and H1 respects double arcs. As H1 is
a subgraph of H , H1 also respects forbidden pairs. Therefore H1 is a properly
balanced subgraph, with number of arcs at most (f(k− 1)− 1)f(k− 1). Observe

that f(k) = 22
k

is a solution to the recursion (f(k− 1)− 1)f(k− 1) < f(k) with

f(1) = 4. Thus, H1 has at most 22
k

arcs, as required. By applying a similar
argument to H \H1, we get a properly balanced subgraph H2 with at most f(k)
arcs. Repeating this process, we get a partition of H into properly balanced
subgraphs each with at most f(k) arcs.
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We now show that J ′ exists. Let J1 be a set containing a single ti, of minimum
absolute value, and iteratively construct sets Jr by adding i such that ti < 0
to Jr−1 if

∑
p∈Jr−1

tp > 0, and adding i such that ti > 0 otherwise. Now note

that either ti = ±f(k− 1)/2 for every i ∈ J , in which case we have a subset J ′

with |J ′| = 2, or |∑i∈Jr
ti| < f(k−1)

2 for each r, and therefore there are at most
f(k − 1)− 1 possible values that

∑
i∈Jr

ti can take. Then there exist r, r′ such
that r′ < r, r − r′ ≤ f(k − 1)− 1, and

∑
i∈Jr\Jr′

ti = 0. So let J ′ = Jr \ Jr′ .
��

Using Lemma 3, we may now assume that if G has a properly balanced sub-
graph with negative weight, then it has a properly balanced subgraph of negative
weight with at most f(k) arcs (as any negative weight properly balanced sub-
graph can be partitioned into properly balanced subgraphs of at most f(k) arcs,
at least one of which must have negative weight).

4.1 Fixed-Parameter Tractability of PBS

As the treedepth of G is at most k, it follows that it has pathwidth at most k−1
[3]. Using this fact, and the fact that we may assume that a solution has at most
f(k) arcs, we have the following:

Theorem 4. PBS is FPT with respect to treedepth, provided that all arcs in
double arcs have weight 0, all arcs in forbidden pairs have weight −1, and all
other arcs have weight 1 or −1.

We can prove Theorem 4 using standard dynamic programming techniques.
For each node x in a path (or tree) decomposition of D, we may construct a set of
partial solutions on the set of vertices covered by x and its descendants. Solutions
are indexed by their restriction to β(x) and the imbalance they impose on each
vertex in β(x), where β(x) is the set of vertices covered by x. Where multiple
solutions share the same index, we store a solution with minimum weight. As
the property of being balanced can be decided by checking the imbalance of each
vertex, and the other properties of a properly balanced subgraph can be checked
by examining the restriction of the subgraph to each pair of adjacent vertices,
this indexing gives us enough information to find a minimum weight solution.

The full details of the proof are standard to anyone familiar with dynamic
programming techniques, but tedious to write out and verify. Therefore, in the
full version of our paper [16] we give a proof using Courcelle’s theorem.

5 Positive Result: Reducing MCPP to PBS

In this section, we consider MCPP with all weights equal 1 parameterized
by treedepth. In contrast to pathwidth, we will show that MCPP parame-
terized by treedepth is FPT. Hereinafter, bH(v) denotes the imbalance of v,
i.e. d+H(v) − d−H(v). In the problem comp-MCPP, we are given an instance of
MCPP together with a solution H , and asked to find a solution H ′ of weight less
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than w(H), if one exists. To solve an instance of MCPP, it would be enough to
find some (not necessarily optimal) solution of weight M , then repeatedly apply
comp-MCPP to find better solutions, until we find a solution which cannot be
improved by comp-MCPP and is therefore optimal. As comp-MCPP returns
an improved solution if one is available, we would have to apply comp-MCPP

at most M times.
To show that our approach leads to an FPT algorithm for MCPP, we first

show that we may assume that M is bounded by an appropriate value.

Lemma 4. Given an instance (G,w) of MCPP with m arcs and edges, we can,
in polynomial time, find a closed walk of of G that traverses each edge and arc at
least once, if such a walk exists, and this walk traverses each arc at most m+ 1
times.

As with the hardness proof, we will use PBS as an intermediate problem. We
now reduce comp-MCPP to PBS, in the following sense: For any input graph
G and initial solution H , we produce a directed multigraph D (with double arcs
and forbidden pairs), such that D has a properly balanced subgraph of negative
weight if and only if G has a solution of weight less than w(H).

For any adjacent vertices u, v in G, let Guv be the subgraph of G induced
by {u, v}, and similarly let Huv be the subgraph of H induced by {u, v}. Let
M = w(H). Thus, we may assume that any improved solution has weight less
than M . By Lemma 4 and the assumption that the weight of every arc and edge
is 1, we may assume M ≤ m2 +m.

For each edge and arc uv in G, we will produce a gadget Duv, based on Guv

and Huv and the value M . The gadget Duv is a directed multigraph, possibly
containing double arcs or forbidden pairs, and by combining all the gadgets, we
will get an instance D of PBS.

We now construct Duv according to the following cases (roughly speaking, a
positive weight arc represents adding an arc in that direction, and a negative
weight arc represents removing an arc in the opposite direction):

If Guv is an arc from u to v and Huv traverses uv t ≤ M times: Then
Duv has t − 1 arcs from v to u of weight −1, and M − t arcs from u to v of
weight 1.

If Guv is an edge between u and v, and Huv traverses uv from u to v
t ≤ M times, and from v to u 0 times: Then Duv has a double arc (a, a′),
where a and a′ are both arcs from v to u of weight 0. In addition, Duv has t− 1
arcs from v to u of weight −1, M − t arcs from u to v of weight 1, and M − 1
arcs from v to u of weight 1.

If Guv is an edge between u and v and Huv traverses uv from u to v
t > 0 times, and from v to u s > 0 times: Then we may assume s = t = 1,
as otherwise we may remove a pair of arcs (uv, vu) from H and get a better
solution to MCPP. Then Duv has M − 1 arcs from u to v of weight 1, M − 1
arcs from v to u of weight 1, and a forbidden pair (a, a′), where a is an arc from
u to v, a′ is an arc from v to u, and both a and a′ have weight −1.
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Lemma 5. Let uv be an edge or arc in G, and let B and W be arbitrary integers
such that w(Huv) +W ≤ M . Then the following are equivalent.

1. There exists a graph H ′
uv with vertex set {u, v} that covers Guv, such that

w(H ′
uv) = w(Huv) +W and bH′

uv
(u) = bHuv (u) +B;

2. Duv has a subgraph D′
uv which respects double arcs and forbidden pairs, such

that w(D′
uv) = W and bD′

uv
(u) = B.

Note that in a graph H ′′ with two vertices u and v, bH′′(u) = −bH′′(v). Thus,
in addition to implying that bD′

uv
(u) = bH′

uv
(u)− bHuv (u), the claim also implies

that bD′
uv
(v) = bH′

uv
(v)− bHuv (v).

Lemma 6. Let D be the directed multigraph derived from G and H by taking
the vertex set V (G) and adding the gadget Duv for every arc and edge uv in G.
Then there exists a solution H ′ with weight less than H if and only if D has a
properly balanced subgraph of weight less than 0.

Lemma 6 implies that we have a parameterized reduction from comp-MCPP

parameterized by treedepth to PBS parameterized by treedepth. Then by
Theorem 4, we have the following theorem.

Theorem 5. MCPP with all weights equal 1 is FPT with respect to treedepth.

6 Discussion

We proved that MCPP parameterized by pathwidth is W[1]-hard, even if all
edges and arcs of the input graph G have weight 1. This solves the second open
question of van Bevern et al. [2] on parameterizations of MCPP; the first being
the parameterization by the number of arcs in G, which was settled in [15].

We also showed that the unweighted version of MCPP is FPT with respect
to treedepth. This is the first problem we are aware of that has been shown
to be W[1]-hard with respect to treewidth but FPT with respect to treedepth.
Note that the pathwidth of a graph lies between its treewidth and treedepth.
Open problems include pinning down the tractability border for the problem
more precisely, or to find parameterizations that allow for more practical FPT
algorithms. Some candidate parameters are distance to linear forest, which is
weaker than pathwidth, and the feedback vertex set number.

Another parameterization of MCPP in [2] is as follows. Call a vertex v of G
even if the total number of arcs and edges incident to v is even. Motivated by
the fact that if each vertex of G is even, then MCPP is polynomial-time solvable
[8], van Bevern et al. [2] ask whether MCPP parameterized by the number of
non-even vertices is FPT. Here, even membership in XP is open.
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Abstract. We consider the following online appointment scheduling
problem: Jobs of different processing times and weights arrive online
step-by-step. Upon arrival of a job, its (future) starting date has to be
determined immediately and irrevocably before the next job arrives, with
the objective of minimizing the average weighted completion time. In this
type of scheduling problem it is impossible to achieve non-trivial compet-
itive ratios in the classical, adversarial arrival model, even if jobs have
unit processing times. We weaken the adversary and consider random
order of arrival instead. In this model the adversary defines the weight-
processing time pairs for all jobs, but the order in which the jobs arrive
online is a permutation drawn uniformly at random.

For the case of jobs with unit processing time we give a constant-
competitive algorithm. We use this algorithm as a building block for the
general case of variable job processing times and achieve competitive
ratio O(log n). We complement these algorithms with a lower bound of
Ω(n) for unit-processing time jobs in the adversarial input model.

1 Introduction

In scheduling problems there is a number of jobs given and the scheduler decides
how, when and where each job is processed. The resulting schedule is evalu-
ated under some objective function, typically minimizing a cost function on the
completion time of the jobs. Often such schedules need to be computed online,
meaning the scheduler has to make decisions without knowing the complete input
for the problem instance. In a standard online variant, once a job is completed,
the scheduler selects which job to process next from the jobs that have arrived
in the meantime. Even worst-case competitive analysis admits surprisingly good
results in this model (see Section 1.1 for an overview).

In stricter settings, worst-case analysis is overly pessimistic and therefore un-
able to produce meaningful results. Consider the following appointment schedul-
ing problem: Jobs arrive online one after the other and directly upon arrival each
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job has to be assigned a starting and completion time in the future so as to opti-
mize some objective function such as the weighted sum of completion times. As
a motivation, just imagine a doctor’s receptionist taking phone calls and making
appointments for the next day. On the one hand he does not want to re-schedule
appointments, on the other hand the most urgent cases should be treated first.
In worst-case analysis, it is impossible to achieve any non-trivial competitive
ratios for this kind of problem as we illustrate by giving a lower bound later on.

An interesting way to bypass these impossibility results is to incorporate a
small stochastic component into the input model. A prime example of this phe-
nomenon from a different domain is the secretary problem: A sequence of entities
with different scores show up one after the other. After an entity has arrived,
one has to make an irrevocable decision whether to keep this entity and to stop
the sequence or to discard the entity and continue. Assuming a worst-case input,
it is impossible to achieve a non-trivial competitive ratio. The situation is dif-
ferent if the adversary determines the scores but the arrival order of the entities
is drawn uniformly from all possible permutations. Under these circumstances,
it is possible to pick the highest-scored entity with probability 1

e . Generalizing
this problem, in many online maximization settings, it is possible to achieve a
constant competitive ratio assuming a random input order whereas worst-case
analyses would be pointless.

These positive results hold for maximization problems, whereas scheduling
problems are typically cost-minimization problems. This can mean a big dif-
ference, particularly in a probabilistic setting: In a maximization problem it is
possible to achieve reasonable (expected) competitive ratios, even if the algo-
rithm returns no solution at all with probability 1/2. Many algorithms indeed
exploit this fact by using a constant fraction of the input only for “statistical”
purposes and dropping it afterwards. In a minimization problem, this is gener-
ally impossible as one is usually required to satisfy certain cover contraints such
that dropping input elements is not readily possible. We show that the random-
order assumption makes a significant difference in online minimization problems
nevertheless.

Formal Problem Statement. We assume there are n ∈ N jobs and a single pro-
cessing unit. Each job i has a specific weight wi ∈ R

+ as well as a process-
ing time li ∈ N. All jobs are to be processed sequentially without preemption.
Thus a feasible solution is a vector of starting times s such that in no time-step
two jobs are processed simultaneously, i.e. sj �∈ [si, si + li) for all i, j ∈ [n],
i �= j. The objective is to minimize the weighted sum of completion times, i.e.,
∑n

j=1 wjCj =
∑n

j=1 wj(sj +lj−1). In the scheduling literature, this optimization
problem is also referred to as 1|| ∑n

j=1 wjCj in the online list model.
Jobs arrive sequentially and scheduling decisions have to be made immediately

and irrevocably. Upon its arrival, a job’s processing time li and its weight wi are
revealed and the algorithm has to assign a position in the schedule to the job1. In
1 Note that the time slots in this schedule are unrelated to the rounds in which the

jobs arrive. Throughout the proofs, we will refer to the schedule slots by s and t,
whereas the rounds will be referred to as r.
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a fully adversarial input, even with identical job processing times, no randomized
algorithm can be better than Ω(n)-competitive (for a proof see Section 4), which
is trivially achieved by any schedule without idle slots. Therefore, we consider the
random-order model. Here an adversary constructs the instance and determines
the processing times and weights of the jobs, but the arrival order is drawn at
random. Technically, a permutation π ∈ Sn is drawn uniformly at random and
then the jobs are presented according to this permutation. The algorithm gets
to know the processing time of the sequence n before the first round.

We evaluate our online algorithms in terms of the widespread competitive
ratio. It is defined by E[ALG]

OPT , where ALG and OPT denote the cost of the online
and the optimal algorithm, respectively. The optimal algorithm, however, works
offline and is assumed to know the whole instance in advance. In our algorithms,
the expectation of their cost is only with respect to the random input.

Our Contribution. Our main contribution is an algorithm for the case of iden-
tical processing times. That is, similarly to the secretary problem, n entities of
different weights are revealed online. We have to assign each entity to a slot
1, 2, . . . so as to minimize the weighted sum of slot numbers. Our algorithm
for this problem is 34-competitive. Specifically, the competitive factor holds for
every single job and not only in expectation over all jobs. This means there is
no job that suffers a bad position for the sake of the overall solution as each job
is guaranteed to lose at most the competitive factor in expectation.

Upon arrival of a job, the algorithm computes the optimal schedule of all jobs
seen so far. This solution includes a slot number for the currently considered
job. We use this number as a guide to find the permanent slot for the online
job. To this end, we scale the locally optimal solution with a factor depending
on the fraction of the overall input that we have seen up to this point. This
factor decreases as we learn more about the problem instance at hand. Finally
we schedule the job to the first free slot after this tentative slot.

As a next step we generalize the setting toward jobs with different processing
times. We present an O(log n)-competitive algorithm. It divides the jobs into
classes of almost equal processing times. For each processing time class it runs
the algorithm for jobs with identical processing time as a subroutine. We devise
a labeling scheme that associates slots to processing time classes and guarantees
that every instance of the subroutine loses no more than a factor 2 log n on top
of its inherent competitive ratio.

We complement this algorithm with the simple lower bound that all online
algorithms are Ω(n)-competitive in the worst-case input order.

1.1 Related Work

In offline scheduling minimizing the weighted completion time is well understood.
On a single machine the problem can be solved easily with Smith’s ratio rule.
For more complex versions with identical machines, related machines and release
dates there are PTAS known [1,7]. A common online variant of the problem is
as follows. The jobs are unknown to the algorithm until their respective release
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dates. At any point in time, the algorithm decides which of the released jobs
to process next. This setting has been studied intensively when only a single
machine or identical parallel machines are available as well as when preemption
is allowed or not allowed, respectively; see [19,8,27,28,15] for detailed results.
More recently a stochastic variant has been considered. Here the scheduler does
not learn the true processing time of a job upon its arrival, but he learns a
probability distribution over the processing time of the job instead; see [20,21]
for the latest results. Stochastic processing times have also been considered in
[5] regarding offline appointment scheduling. All these online results are in the
adversarial input model, where an oblivious adversary creates the worst-case
input sequence online.

Note that this setting (both the deterministic and the stochastic variant) is
significantly different from the one studied in this paper. The crucial difference is
that in the traditional model scheduling is an ad-hoc decision. It only affects (at
most) the time until completing the currently processed job. In contrast, in our
problem every job needs to be assigned its starting date irrevocably immediately
upon its arrival. To the best of our knowledge, there is only a single previous
result in this “online list scheduling model”. Fiat and Woeginger [13] show that
with worst-case input there is no O(log(n))-competitive randomized online list
scheduling algorithm, even on a single machine and with unit weights. We show
that in the random-order model we can get constant- or O(log n)-competitive
even if jobs have weights.

The random-order model has been studied mostly in the context of packing
problems. Motivated by the classical secretary problem, Babaioff et al. [4] intro-
duced the matroid secretary problem and conjectured that it is O(1)-competitive.
Toward this end several O(log log(ρ))-competitive algorithms have been pro-
posed recently [18,12]. Here ρ is the rank of the considered matroid. Further
variants of the secretary problem are given in [3], among them also one that
aims at minimizing the sum of the accepted ranks. Another branch of research
focuses on linear constraints. This includes (generalizations of) matching [22,9]
and general packing LPs [11,2,26,16]. It is a common assumption in these prob-
lems that capacities are large compared to the consumption in a single round.
In this case, there are even 1 − ε-competitive algorithms.

Apart from scheduling, a few other min-sum online optimization problems
have been studied. For facility location there is a deterministic lower bound
of Ω(log(n)), while Meyerson [23] shows a constant competitive factor in the
random order model. For network design [25] and the parking permit problem
[24] only adversarial input has been studied. They admit O(k)-competitive al-
gorithms where k is the number of options available. A general framework for
linear online covering problems with adversarial input has been presented by
Buchbinder and Naor [6]. However, naturally in weighted settings, the competi-
tive ratio is limited by strong impossibility results, such as Ω(n) in our case.

A number of alternative online input models that combine adversarial and
stochastic components have been studied. Devanur et al. [10] use the i.i.d.
model and introduce generalization, the adversarial stochastic model. Kleinberg
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and Weinberg [17] consider the prophet inequality model, in which weights are
stochastic but the arrival order is adversarial. In [14], a unifying graph sam-
pling model is introduced that contains the random-order and prophet inequality
model as special cases.

2 Jobs with Uniform Processing Time

We start with investigating the online appointment scheduling where all jobs’
processing times are uniform, i.e. we consider them to be normalized to 1. The
optimal solution is an ordering of the jobs, decreasing in their weight. In this
setting the challenge is to order the online incoming jobs according to their weight
when they arrive. Given a sufficiently large fraction of the unknown input, a job’s
relative position in this fraction is a quite good representative for its position
in the complete input. This is why Algorithm 1 uses a local solution to guide
the online computation. Generally, it works as follows: Upon the arrival of an
element i the optimal ordering s̃(r) on set J containing all jobs that have arrived
so far is computed. Afterwards, this local solution is scaled by a factor fr in
order to create sufficiently large gaps between the jobs. This steady distribution
is essential for later insertions of jobs as they tend to be ranked between those
ones scheduled up to now. The incoming job i is assigned a so-called tentative slot
hatsi in this scaled solution. As tentative slots are not unique, we solve eventual
conflicts by assigning i to the first free slot si after its tentative position. At the
end of the analysis it will become clear how to choose the parameters c and d.

Algorithm 1. Algorithm for Uniform Jobs
Let J be the set of jobs arrived so far, initially J = ∅
for each round r with incoming job i do

J := J ∪ {i};
s̃(r) := optimal solution in round r on set J ;

ŝi :=
⌈

fr · s̃
(r)
i

⌉

, where fr = c
(

n
r

)1/d;

si := earliest free slot after ŝi;

Theorem 1. The algorithm for jobs with uniform processing time schedules ev-
ery single job 34-competitive in expectation.

The proof of this theorem will be split into three parts. First, in Section 2.1, we
will bound the expected tentative slot number that is assigned to a job. Next, in
Section 2.2, we bound the amount by which a job is shifted due to collisions, i.e.,
by how much the final slot differs from the tentative slot. Finally, in Section 2.3,
we combine these insights to prove the claim.

Note that the job indices are irrelevant for the algorithm. Therefore, in the
analysis, we assume that these indices are assigned such that w1 > w2 > . . . >
wn. By this assumption, the optimal offline solution is simply 1, 2, . . . , n.
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2.1 Bound on Tentative Slot Numbers

As a first step, for a fixed job i, we bound its tentative slot number. Note that,
by our assumption w1 > w2 > . . . > wn its slot number in the offline optimum
would be i.

Lemma 2. The expected tentative slot of job i is E [ŝi] ≤ cd
d−1 ·i+1+O

(

n1/d−1)

.

Proof. The algorithm sets ŝi =
⌈

fπ(i)s̃
(π(i))
i

⌉

≤ fπ(i)s̃
(π(i))
i + 1. So

E [ŝi − 1] ≤ E
[

fπ(i)s̃
(π(i))
i

]

= cn
1/d

n
∑

r=1
Pr [r = π(i)]

1
r1/d

E
[

s̃
(π(i))
i

∣

∣

∣ π(i) = r
]

,

where π is the random permutation the jobs are presented in. Observe that
s̃
(π(i))
i − 1 is exactly the number of jobs whose weight is larger than wi that

come in rounds before r. Conditioning on π(i) = r, the order of the remaining
n − 1 jobs is still uniform. Out of these exactly i − 1 have a weight larger than
wi. In expectation, a r−1

n−1 fraction of these are assigned to rounds 1, . . . , r − 1.
This gives us E

[

s̃
(π(i))
i

∣

∣

∣ π(i) = r
]

= (i − 1) r−1
n−1 + 1. Using that furthermore

Pr [π(i) = r] = 1
n for all r, we get

E
[

fπ(i)s̃
(π(i))
i

]

≤ cn
1/d

(

i − 1
n

n
∑

r=1

r1−1/d

n
+ 1

n

n
∑

r=1

1
r1/d

)

.

We approximate both sums by the corresponding integrals (see full version).
Regarding the bound on E [ŝi − 1], this gives us

E [ŝi − 1] ≤ cn
1/d

(

i − 1
n2

(

1
2 − 1

d

n2−1/d + n1−1/d

)

+ 1
n

+ 1
n1/d

1
1 − 1

d

)

= c

(

(i − 1) 1
2 − 1

d

+ i − 1
n

+ 1
n1−1/d

+ 1
1 − 1

d

)

≤ ci
1

1 − 1
d

+ c

n1−1/d

and therefore we get E [ŝi] ≤ c
1− 1

d

· i + c
n1−1/d + 1. ��

2.2 From Tentative to Actual Slots

It still remains to bound the number of the actual slot that is assigned to a job
i. To this end, we will use the following intuition. Imagine the schedule to be a
queue, first all jobs that have tentative slots between slot 1 and ŝi arrive. While
processing these jobs, the arrival continues and more jobs come in. These new
jobs are also processed before we start to work off i. We will use the fact that
the average expected number of jobs tentative assigned to a slot is bounded by
some q < 1. This causes the effects of this cascade to be bounded in expectation.
To formalize this, we use the following technical lemma for a queueing process.
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Lemma 3. Consider non-negative integer random variables At such that there
is q ∈ (0, 1) with the property that for any t ∈ N and a1, . . . , at−1 ∈ N, we have
E [At | A1 = a1, . . . , At−1 = at−1] ≤ q. Furthermore, let Q0 ∈ N and Qt+1 =
max {0, Qt + At+1 − 1} and T = min {t | Qt = 0}, then E [T ] ≤ 1

1−q Q0.

Proof. We divide the time2 waiting for Qt = 0 into phases as follows: If phase p
ends at time Tp−1, then phase p lasts exactly for QTp−1 steps. The intuition is
that we are waiting for a FIFO queue to become empty. The initial queue length
is Q0. After Q0 steps, the initial elements of the queue have been processed.
During this processing, additional elements may have arrived that need to be
processed. This process continues until Qt = 0 for the first time.

Formally, we set Tp = Tp−1 + QTp−1 , T0 = 0. By this definition we have
QTp = QTp−1 +

∑Tp

t=Tp−1+1 At + (Tp − Tp−1) =
∑Tp

t=Tp−1+1 At. Now induction

gives us E
[

QTp

∣

∣ A1, . . . , ATp−1

]

= E
[

∑Tp

t=Tp−1+1 At

∣

∣

∣ A1, . . . , ATp−1

]

≤ q(Tp −
Tp−1) = QTp−1 using the condition on the expectation. This implies E

[

QTp

] ≤
qE

[

QTp−1

]

and by induction E
[

QTp

] ≤ qpQ0.
We have T = maxp Tp and therefore T =

∑∞
p=0 QTp . By linearity of expecta-

tion, we get E [T ] =
∑∞

p=0 E
[

QTp

] ≤ ∑∞
p=0 qpQ0 = 1

1−q Q0 . ��
Using this lemma, we will show that the index of the actual slot a job is

mapped to is at most a constant factor larger than the tentative slot. This proof
is still technically involved because we have to be careful with dependencies.
Besides, in each round there are only a few possible options for the respectively
assigned tentative slot. So, the arrival is not as balanced as in Lemma 3.

Lemma 4. Fix a job i and a round r. Conditioned on the event that job i comes
in round r and gets tentative slot ŝi, the expected first feasible slot si is given by
E [si | π(i) = r, ŝi] ≤ 1

1−q ŝi with q =
(

r
n

)1/d · 2d
c .

Proof. Let A′
t be the random variable counting the number of jobs that are

tentatively allocated onto slot t by the end of round r − 1. Analogously to
Lemma 3 we define Q′

t = max
{

0, Q′
t−1 + A′

t − 1
}

and T ′ = min {t | Q′
t = 0}. If

we set Q′
0 = ŝi then T ′ ≥ si is an upper bound for the first feasible slot after

ŝi. Unfortunately, Lemma 3 cannot be applied here because the A′
t are mutually

dependent. To apply the lemma nevertheless, we define a set of variables At

that are coupled to A′
t in such a way, that

∑

t′≤t A′
t′ ≤ ∑

t′≤t At′ holds for all t.
Furthermore we choose Q0 = Q′

0. It is easy to see that by this definition Q′
t ≤ Qt

for all t and therefore we also have T ′ ≤ T . Thus it suffices to consider At to
prove the lemma.

We choose At in such a way that we divert mass away from A′
t onto the

A′
t′ with t′ < t. As a first step, we balance the load between different slots,

which we will exploit later. To this end, let Ur′ be drawn independently uni-
formly from [0, fr′ ], where fr′ = c

(

n
r

)1/d is the scaling factor used in round r′.
2 Note that the notion of time within this proof refers to the queueing perspective,

not to the algorithm’s input.
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Define Zr′ = fr′ s̃
(r′)
π−1(r′) − Ur′ . So, Zr′ is a real-valued random variable taking

values on [0, fr′r′]. Indeed it is uniformly distributed on this interval because,
conditioned on the set J in a round r′, π−1(r′) can be considered drawn uni-
formly from J . So, s̃

(r′)
π−1(r′) is drawn uniformly from {1, 2, . . . , r′}. We will use

�Zr′	 as a lower bound on the tentative slot used in round r′. Therefore, define
Xt,r′ to be 1 if Zr′	 = t and 0 otherwise. Now, let

At =
∑

r′≤r

(

1
br′

+
(

1 − t

br′

)

· Xt,r′

)

with br′ = �fr′r′	 =
⌈

c
( n

r′
)1/d

r′
⌉

.

To complete the proof of the lemma, it now remains to show the following
two claims. (a)

∑

t′≤t At′ ≥ ∑

t′≤t A′
t′ for all t. (b) Given arbitrary numbers

a1, . . . , at−1 ∈ N, we have E [At | A1 = a1, . . . , At−1 = at−1] ≤ q. Then Lemma 3
directly gives the desired result. Due to space limitations, the formal proof of
Claim (a) can only be found in the full version.

Proof of Claim (b) For an arbitrary matrix x = (xt′,r′)t′,r′∈N, xt′,r′ ∈ {0, 1}, let
Ex be the event that Xt′,r′ = xt′,r′ for all t′ < t and all r′ ≤ r. We now upper-
bound the value of Pr [Xt,r′ = 1 | Ex]. Observe that �Zr′	 ≤ �fr′r′	. Therefore,
if t > fr′r′, we immediately have Xt,r′ = 0. Furthermore, if xt′,r′ = 1 for some
t′ < t, then also Xt,r′ = 0. So, let us, without loss of generality, assume that
t ≤ �fr′r′	 and xt′,r′ = 0 for all t′ < t.

We also observe that the algorithm only uses relative ranks to determine
the slot allocation: In each round r′′ the solution s always allocates the same
slots S′, regardless of the actual job weights. Therefore, Zr′ can considered to
be independent of all Zr′′ , r′′ �= r′. Consequently, conditioned on Ex, Zr′ is
uniformly distributed on (t − 1, br′ ]. Therefore, we get

Pr [Xt,r′ = 1 | Ex] ≤ 1
br′ − (t − 1)

.

Given arbitrary numbers a1, . . . , at−1 ∈ N, we now bound the conditioned ex-
pectation E [At | A1 = a1, . . . , At−1 = at−1]. To this end observe, that the event
A1 = a1, . . . , At−1 = at−1 can equivalently be expressed by a set X of 0/1 ma-
trices x with the property that A1 = a1, . . . , At−1 = at−1 if and only if there is
x ∈ X such that Xt′,r′ = xt′,r′ for all t′ < t and all r′ ≤ r.

Using the above bound on Pr [Xt,r′ = 1 | Ex], we get

E [At | Ex] =
∑

r′≤r

(

1
br′

+
(

1 − t

br′

)

· Pr [Xt,r′ = 1 | Ex]
)

≤
∑

r′≤r

(

1
br′

+
(

1 − t − 1
br′

)

· 1
br′ − (t − 1)

)

=
∑

r′≤r

2 1
br′

= 2
cn1/d

∑

r′≤r

(r′)1/d−1 .

As this bound holds for all x ∈ X , we also have

E [At | A1 = a1, . . . , At−1 = at−1] ≤ 2
cn1/d

∑

r′≤r

(r′)1/d−1 ≤
( r

n

)1/d

· 2d

c
. ��
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2.3 Putting the Pieces Together

Using the insights from the previous sections, the proof of Theorem 1 is relatively
straightforward.

Proof (of Theorem 1). Combining Lemmas 2 and 4, we get that for every job i

E [si] ≤
n

∑

i=1
wi · 1

1 − 2d
c

E [ŝi] ≤
n

∑

i=1
wi

1
1 − 2d

c

·
(

cd

d − 1
i + 1 + O

(

n
1/d−1

)

)

.

We omit the O-term since it tends towards 0 for large n. Setting c = 8 and
d = 2, we get 1

1− 2d
c

·
(

cd
d−1 i + 1

)

= 2(16i + 1) ≤ 34i. Therefore for every job i the
allocated slot si in expectation only deviates by a factor of 34 from its optimal
slot s∗

i in the offline schedule. ��

3 General Jobs

With the constant competitive algorithm for jobs with uniform processing time
as a subroutine we devise an algorithm for jobs with variable processing times.
We use several instances of Algorithm 1 to schedule jobs with similar processing
time. We sort jobs into processing time classes where every class λ = 2b for b ∈ N

contains the jobs with processing times between two powers of two 2b−1 < li ≤
2b. To this end we define a labeling scheme that maps the sub-schedules of the
different processing time classes onto the overall schedule in such a way, that no
job is pushed back by more than a factor of 2 log(n) compared to his position in
the sub-schedule.

Theorem 5. The algorithm for jobs with general processing time is 2α log(n)-
competitive where α is the competitive factor of the algorithm for jobs with uni-
form jobs used as subroutine.

We start out with the labeling scheme that allows us to group slots to meta-
slots, each associated to a single processing time class. Without loss of generality
let the total number of jobs n be a power of two. Let Tk be a complete binary
tree of height log(n). We call the level of the leaves j = 0. Now we label a node
σ on level j of Tk with λ(σ) = 2k+j . This way, the leaves get label 2k, their
parents get label 2k+1 up to the root with label 2k+log n.

Now we traverse the tree T0 in post-order and map its nodes onto the slots
in our schedule. In this traversal order we descend left first and map a parent
node right after all his children. For each node σ with label λ(σ) we create a
meta-slot of λ(σ) many neighboring slots. We proceed to map T1 starting from
the first free slot after T0 and so on.

Observation 6. The mapping of tree Tk requires 2kn log(n) slots in the schedule
and starts at slot (2k − 1)n log(n) + 1.

This follows simply from the fact that every level j in tree Tk contains n
2j

nodes and each node takes 2j+k slots.
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Lemma 7. The γ-th meta slot with label λ ends no later than slot 2 log(n)γλ
in the schedule.

Proof. The first occurrence of label λ is in tree Tk with k = 0 if λ ≤ n and
k = log(λ) − log(n) otherwise. Therefore tree Tk′ with k′ = 0 if λ ≤ n and
k′ = log(λ) + log(γ) − log(n) otherwise is the first tree that contains at least γ
meta-slots with label λ.

Now we make a case distinction, if k′ = 0, then label λ is used on level
j = log(λ). In the post-order traversal when reaching the γ-th node with label
λ, the subtrees of previous nodes of label λ have been traversed plus the subtree
of the current node plus at most a γ

n/2j -fraction of all nodes on higher levels.

Each subtree takes log(λ)λ many slots. There are
⌊

γ
n/2j

n
2−j

⌋

≤ γ2j−j′ nodes on
higher levels j′ = log(λ) + 1, . . . , log n, each taking 2j′ slots. So the γ-th node
with label λ ends on slot γ log(λ)λ + (log n − log(λ))γ2j = log(n)γλ.

In the other case, if k′ �= 0 it follows from Observation 6 that tree Tk′ starts at
slot (2k′ − 1)n log(n) + 1 ≤ λ + γn log(n) + 1 = 2log(γ)+log(λ)−log(n)n log(n) + 1 =
γλ log(n)+1. Furthermore label λ is used on level j = log(λ)−k′ in tree Tk′ and
the leaves in tree Tk′ take 2k′ slots each. Thus the total number of slots used
through the post-order traversal on Tk′ is bounded byγ(log(λ) − k′) · 2log(λ)−k′ ·
2k′ + (log n − (log(λ) − k′))γλ = log(n)γλ. So, the γth slot of label λ ends no
later than 2 log(n)γλ. ��

Algorithm 2. Log-Algorithm for Jobs with different processing times

for each round r with incoming job i having processing time li do
choose b such that 2b−1 < li ≤ 2b;
Let Jb := {jobs j with lj ∈ (2b−1, 2b]};
Let Σb := {meta-slots σ|λ(σ) = 2b};
s(b) = output from uniform algorithm with job i on known Jb;
schedule i on si-th meta-slot in Σb;

Proof (of Theorem 5). We run one instance of an α-competitive algorithm for
jobs with uniform processing time for every processing time class as a subroutine.
These subroutines give for every job i a γ = s

(b)
i and a λ = 2b such that

2b−1 < li ≤ 2b. Now meta-slot γ of the subroutine would end in slot γλ if no
other labels were interwoven. Therefore the labeling stretches the α-competitive
schedule s(b) by an additional factor of 2 log(n)γλ

γλ = 2 log(n). ��

4 Lower Bound for Fully Worst-Case Input

As mentioned before, we motivate the use of the random order model by giving a
lower bound when performing classical worst-case analysis in the general setting
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with different job processing times and weights. There, an adversary is allowed
to construct the instance, i.e. to determine the jobs’ weights, and then also to
present the jobs in any preferred order. This, obviously, is more powerful, but
we show that it does not allow designing algorithms that achieve a reasonable
competitive ratio. As we use a randomized instance, we can extend our results
to even hold for randomized algorithms by applying Yao’s principle.

Theorem 8. For every randomized online algorithm weights can be chosen in a
way such that E [ALG] ≥ n

8 · OPT, even if all jobs have equal processing times.

Proof. We show this claim by using Yao’s principle. We will devise a randomized
instance such that for any deterministic algorithm E

[ALG
OPT

] ≥ n
8 . To this end, let

T be drawn uniformly from {1, . . . , n}. We define the weights of a job arriving in
round t to be wt = M t if t ≤ T and wt = 0 otherwise, with M > n. First, we com-
pute the cost incurred by an optimal algorithm. According to the construction
described above, T many jobs with non-zero weights M, M2, . . . , MT are given.
It is obviously the best solution to put the heaviest job first, and then proceed
with the jobs decreasing in their weight. Formally, job j is assigned slot T −j +1.
This results in cost OPT =

∑T
j=1 M j (T − j + 1) =

∑T −1
j=0 MT −j(j+1) ≤ 2·MT .

Now we focus on the cost of a deterministic online algorithm ALG. Until
(including) round T , the behavior of this algorithm is independent of T . Its
behavior after this point is irrelevant for the resulting cost. Therefore, we can
express the algorithm’s choices as an injective function σ : [n] → N, meaning
that the ith job is scheduled to slot σ(i).

As the function is injective, there is a set S ⊆ [n] of size
⌈

n
2

⌉

such that σ(i) ≥
⌊

n
2

⌋

+ 1 ≥ n
2 for all i ∈ S. Note that if T ∈ S, then ALG ≥ n

2 · MT ≥ n
2 · OPT

2 ,
so ALG

OPT ≥ n
4 . As T ∈ S happens with probability at least 1

2 , we get E
[ALG
OPT

]

≥ n
8 . ��
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Abstract. An instance of the Connected Maximum Cut problem con-
sists of an undirected graph G = (V,E) and the goal is to find a subset
of vertices S ⊆ V that maximizes the number of edges in the cut δ(S)
such that the induced graph G[S] is connected. We present the first non-
trivial Ω( 1

log n
) approximation algorithm for the connected maximum

cut problem in general graphs using novel techniques. We then extend
our algorithm to an edge weighted case and obtain a poly-logarithmic
approximation algorithm. Interestingly, in stark contrast to the classical
max-cut problem, we show that the connected maximum cut problem re-
mains NP-hard even on unweighted, planar graphs. On the positive side,
we obtain a polynomial time approximation scheme for the connected
maximum cut problem on planar graphs and more generally on graphs
with bounded genus.

1 Introduction

Submodular optimization problems have, in recent years, received a considerable
amount of attention [1, 2, 3, 4, 7, 15, 27] in algorithmic research. In a general
submodular maximization problem, we are given a non-negative submodular1

function over the power set of a universe U of elements, f : 2U → R
+ ∪ {0}

and the goal is to find a subset S ⊆ U that maximizes f(S) so that S satis-
fies certain pre-specified constraints. In addition to their practical relevance, the
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study of submodular maximization problems has led to the development of sev-
eral important theoretical techniques such as the continuous greedy method and
multi-linear extensions [4] and the double greedy [2] algorithm, among others.

In this study, we are interested in the problem of maximizing a submodular
set function over vertices of a graph, such that the selected vertices induce a
connected subgraph. Motivated by applications in coverage over wireless net-
works, Kuo et al. [25] consider the problem of maximizing a monotone, submod-
ular function f subject to connectivity and cardinality constraints of the form
|S| ≤ k and provide an Ω( 1√

k
) approximation algorithm. For a restricted class of

monotone, submodular functions that includes the covering function2, Khuller
et al. [24] give a constant factor approximation to the problem of maximizing f
subject to connectivity and cardinality constraints.

In the light of these results, it is rather surprising that no non-trivial approxi-
mation algorithms are known for the case of general (non-monotone) submodular
functions. Formally, we are interested in the following problem, which we refer to
as connected submodular maximization (CSM): given a simple, undirected graph
G = (V,E) and a non-negative submodular set function f : 2V → R

+∪{0}, find
a subset of vertices S ⊆ V that maximizes f(S) such that G[S] is connected.
We take the first but important step in this direction and study the problem
in the case of one of the most important non-monotone submodular functions,
namely the cut function. Formally, given an undirected graph G = (V,E), the
goal is to find a subset S ⊆ V , such that G[S] is connected and the number of
edges that have exactly one end point in S, referred to as the cut function δ(S),
is maximized. We refer to this as the connected maximum cut problem. Further,
we also consider an edge weighted variant of this problem, called the weighted
connected maximum cut problem, where function to be maximized is the total
weight of edges in the cut δ(S).

We now outline an application to the image segmentation problem that seeks
to identify “objects” in an image. Graph based approaches for image segmen-
tation [16, 28] represent each pixel as a vertex and weighted edges represent
the dissimilarity (or similarity depending on the application) between adjacent
pixels. Given such a graph, a connected set of pixels with a large weighted cut
naturally corresponds to an object in the image. Vicente et al. [32] show that
even for interactive image segmentation, techniques that require connectivity
perform significantly better than cut based methods alone.

1.1 Related Work

Max-cut is a fundamental problem in combinatorial optimization that finds ap-
plications in diverse areas. A simple randomized algorithm that adds each ver-
tex to S independently with probability 1/2 gives a 0.5-approximate solution
in expectation. In a breakthrough result, Goemans and Williamson [18] gave a
0.878-approximation algorithm using semidefinite programming and randomized

2 In this context, a covering function is defined as f(S) =
∑

v∈N+(S) weight(v) where

N
+(S) is the closed neighborhood of the set of vertices S
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rounding. Further, Khot et al. [23] showed that this factor is optimal assuming
the unique games conjecture. Interestingly, the max-cut problem can be solved
in polynomial time in planar graphs by a curious connection to the matching
problem in the dual graph [20]. To the best of our knowledge, the connected
maximum cut problem has not been considered before our work. Haglin and
Venkatesan [21] showed that a related problem, where we require both sides of
the cut, namely G[S] and G[V \S], to be connected, is NP-hard in planar graphs.

We note that the well studied maximum leaf spanning tree (MLST) prob-
lem (e.g. see [30]) is a special case of the connected submodular maximization
problem. We also note that recent work on graph connectivity under vertex
sampling leads to a simple constant approximation to the connected submod-
ular maximization for highly connected graphs, i.e., for graphs with Ω(log n)
vertex connectivity. Proofs of these claims are presented in the full version of
this paper [22].

We conclude this section by noting that connected variants of many classical
combinatorial problems have been extensively studied in the literature and have
been found to be useful. The best example for this is the connected dominating set
problem. Following the seminal work of Guha and Khuller [19], the problem has
found extensive applications (with more than a thousand citations) in the domain
of wireless ad hoc networks as a virtual backbone (e.g. see [9, 12]). Few other
examples of connected variants of classic optimization problems include group
Steiner tree [17] (which can be seen as a generalization of a connected variant of
set cover), connected domatic partition [5, 6], connected facility location [13, 31],
and connected vertex cover [8].

1.2 Contribution and Techniques

Our key results can be summarized as follows.

1. We obtain the first Ω( 1
logn ) approximation algorithm for the connected

maximum cut (CMC) problem in general graphs. Often, for basic connectivity
problems on graphs, one can obtain simple O(log n) approximation algorithms
using a probabilistic embedding into trees with O(log n) stretch [14]. Similarly,
using the cut-based decompositions given by Räcke [29], one can obtain O(log n)
approximation algorithms for cut problems (e.g. minimum bisection). Interest-
ingly, since the CMC problem has the flavors of both cut and connectivity prob-
lems simultaneously, neither of these approaches are applicable. Our novel ap-
proach is to look for α-thick trees, which are basically sub-trees with “high”
degree sum on the leaves.

2. For the weighted connected maximum cut problem, we obtain an Ω( 1
log2 n

)

approximation algorithm. The basic idea is to group the edges into logarithmic
number of weight classes and show that the problem on each weight class boils
down to the special case where the weight of every edge is either 0 or 1.

3. We obtain a polynomial time approximation scheme for the CMC problem
in planar graphs and more generally in bounded genus graphs. This requires
the application of a stronger form of the edge contraction theorem by Demaine,
Hajiaghayi and Kawarabayashi [11] that may be of independent interest.
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4. We show that the CMC problem remains NP-hard even on unweighted,
planar graphs. This is in stark contrast with the regular max-cut problem that
can be solved optimally in planar graphs in polynomial time. We obtain a poly-
nomial time reduction from a special case of 3-SAT, called the planar monotone
3-SAT (PM-3SAT), to the CMC problem in planar graphs. This entails a delicate
construction, exploiting the so called rectilinear representation of a PM-3SAT
instance, to maintain planarity of the resulting CMC instance.

2 Approximation Algorithms for General Graphs

In this section, we consider the connected maximum cut problem in general
graphs. In fact, we provide an Ω( 1

logn ) approximation algorithm for the more
general problem in which edges can have weight 0 or 1 and the objective is
to maximize the number of edges of weight 1 in the cut. This generalization
will be useful later in obtaining a poly-logarithmic approximation algorithm for
arbitrary weighted graphs.

We denote the cut of a subset of vertices S in a graph G, i.e., the set of edges
in G that are incident on exactly one vertex of S by δG(S) or when G is clear
from context, just δ(S). Further, for two disjoint subsets of vertices S1 and S2

in G, we denote the set of edges that have one end point in each of S1 and S2,
by δG(S1, S2) or simply δ(S1, S2). The formal problem definition follows -

Binary Connected Maximum Cut (b-CMC): Given a graph G = (V,E) and
a weight function w : E → {0, 1}, find a set S ⊂ V that maximizes

∑
e∈δ(S) w(e)

such that G[S] induces a connected subgraph.

We call an edge of weight 0, a 0-edge and that of weight 1, a 1-edge. Further,
let w(δ(S)) =

∑
e∈δ(S) w(e) denote the weight of the cut, i.e., the number of

1-edges in the cut. We first start with a simple reduction rule that ensures that
every vertex v ∈ V has at least one 1-edge incident on it.

Claim 1. Given a graph G = (V,E), we can construct a graph G′ = (V ′, E′)
in polynomial time, such that every v′ ∈ V ′ has at least one 1-edge incident on
it and G′ has a b-CMC solution S′ of weight at least ψ if and only if G has a
b-CMC solution S of weight at least ψ.

Proof Sketch. A vertex v that only has 0-edges incident on it can be deleted from
the graph without affecting the value of the optimal cut. To ensure that any
solution that contains v remains connected, we add a clique of 0-edges between
all neighbors of v. The formal proof is included in the full version [22]. �	

From now on, we will assume, without loss of generality, that every vertex of
G has at least one 1-edge incident on it. We now introduce some new definitions
that would help us to present the main algorithmic ideas. We denote by WG(v)
the total weight of edges incident on a vertex v in G, i.e., WG(v) =

∑
e:v∈e w(e).

In other words, WG(v) is total number of 1-edges incident on v. Further let η
be the total number of 1-edges in the graph. The following notion of an α-thick
tree is a crucial component of our algorithm.
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Definition 1 (α-thick tree). Let G = (V,E) be a graph with n vertices and η
1-edges. A subtree T ⊆ G (not necessarily spanning), with leaf set L, is said to
be α-thick if

∑
v∈LWG(v) ≥ αη.

The following lemma shows that this notion of an α-thick tree is intimately
connected with the b-CMC problem.

Lemma 1. For any α > 0, given a polynomial time algorithm A that computes
an α-thick tree T of a graph G, we can obtain an α

4 -approximation algorithm for
the b-CMC problem on G.

Proof. Given a graph G = (V,E) and weight function w : E → {0, 1}, we use
Algorithm A to compute an α-thick tree T , with leaf set L. Let mL denote the
number of 1-edges in G[L], the subgraph induced by L in the graph G. We now
partition L into two disjoint sets L1 and L2 such that the number of 1-edges
in δ(L1, L2) ≥ mL

2 . This can be done by applying the standard randomized
algorithm for max-cut (e.g. see [26]) on G[L] after deleting all the 0-edges. Now,
consider the two connected subgraphs T \L1 and T \L2. We first claim that every
1-edge in δ(L) belongs to either δ(T \ L1) or δ(T \ L2). Indeed, any 1-edge e in
δ(L), belongs to one of the four possible sets, namely δ(L2, T \L), δ(L1, V \ T ),
δ(L1, T \L) and δ(L2, V \T ). In the first two cases, e belongs to δ(T \L2) while
in the last two cases, e belongs δ(T \L1), hence the claim. Further, every 1-edge
in δ(L1, L2) belongs to both δ(T \ L1) and δ(T \ L2). Hence, we have -

∑

e∈δ(T\L1)

w(e) +
∑

e∈δ(T\L2)

w(e) =
∑

e∈δ(L)

w(e) + 2
∑

e∈δ(L1,L2)

w(e) (1)

≥
∑

e∈δ(L)

w(e) +mL ≥ 1

2

∑

v∈L

WG(v) ≥ αη

2
(2)

Hence, the better of the two solutions T \L1 or T \L2 is guaranteed to have a cut
of weight at least αη

4 , where η is the total number of 1-edges in G. To complete
the proof we note that for any optimal solution OPT , w(δ(OPT )) ≤ η. �	

Thus, if we have an algorithm to compute α-thick trees, Lemma 1 provides
an Ω(α)-approximation algorithm for the b-CMC problem. Unfortunately, there
exist graphs that do not contain α-thick trees for any non-trivial value of α. For
example, let G be a path graph with n vertices and m = n− 1 1-edges. It is easy
to see that for any subtree T , the sum of degrees of the leaves is at most 4. In
spite of this setback, we show that the notion of α-thick trees is still useful in ob-
taining a good approximation algorithm for the b-CMC problem. In particular,
Lemma 3 and Theorem 1 show that path graph is the only bad case, i.e., if the
graph G does not have a long induced path, then one can find an Ω( 1

logn )-thick
tree. Lemma 2 shows that we can assume without loss of generality that the
b-CMC instance does not have such a long induced path.
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Shrinking Thin Paths. A natural idea to handle the above “bad” case is to
get rid of such long paths that contain only vertices of degree two by contracting
the edges. We refer to a path that only contains vertices of degree two as a d-2
path. Further, we define the length of a d-2 path as the number of vertices (of
degree two) that it contains. The following lemma shows that we can assume
without loss of generality that the graph G contains no “long” d-2 paths.

Lemma 2. Given a graph G, we can construct, in polynomial time, a graph
G′ with no d-2 paths of length ≥ 3 such that G′ has a b-CMC solution S′ of
cut weight (w(δ(S′))) at least ψ if and only if G has a b-CMC solution S of
cut weight at least ψ. Further, given the solution S′ of G′, we can recover S in
polynomial time.

Proof Sketch. Suppose the graph G has a d-2 path p of length ≥ 3. We observe
that at most 2 edges of p can be cut by any b-CMC solution S since G[S] must
be connected. As a result, the long d-2 path p can be replaced by a smaller
path p′ with at most 2 vertices of degree 2 without affecting the quality of any
optimum b-CMC solution. The formal proof follows from a case analysis based
on the structure of the optimal solution and its interaction with the path p and
is presented in the full version [22]. �	

Spanning Tree with Many Leaves. Assuming that the graph has no long
d-2 paths, the following lemma shows that we can find a spanning tree T that
has Ω(n) leaves. Note that Claim 1 now guarantees that there are Ω(n) 1-edges
incident on the leaves of T .

Lemma 3. Given a graph G = (V,E) with no d-2 paths of length ≥ 3, we can
obtain, in polynomial time, a spanning tree T = (V,ET ) with at least n

14 leaves.

Proof. Let T be any spanning tree of G. We note that although G does not
have d-2 paths of length ≥ 3, such a guarantee does not hold for paths in T .
Suppose that there is a d-2 path ℘ of length 7 in T . Let the vertices of this
path be numbered v1, v2, . . . , v7 and consider the vertices v3, v4, v5. Since G does
not have any d-2 path of length 3, there is a vertex vi, i ∈ {3, 4, 5} such that
degG(vi) ≥ 3. We now add an edge e = {vi, w} in G \ T to the tree T . The
cycle C that is created as a result must contain either the edge {v1, v2} or the
edge {v6, v7}. We delete this edge to obtain a new spanning tree T ′. It is easy
to observe that the number of vertices of degree two in T ′ is strictly less than
that in T . This is because, although the new edge {vi, w} can cause w to have
degree two in T ′, we are guaranteed that the vertex vi will have degree three
and vertices v1 and v2 (or v6 and v7) will have degree one. Hence, as long as
there are d-2 paths of length 7 in T , the number of vertices of degree two can
be strictly decreased. Thus this process must terminate in at most n steps and
the final tree T (1) obtained does not have any d-2 paths of length ≥ 7.

We now show that the tree T (1) contains Ω(n) leaves by a simple charging
argument. Let the tree T (1) be rooted at an arbitrary vertex. We assign each
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vertex of T (1) a token and redistribute them in the following way : Every vertex
v of degree two in T (1) gives its token to its first non degree two descendant,
breaking ties arbitrarily. Since there is no d-2 path of length ≥ 7, each non degree
two vertex collects at most 7 tokens. Hence, the number of vertices not having
degree two in T (1) is at least n

7 . Further, since the average degree of all vertices

in a tree is at most 2, a simple averaging argument shows that T (1) must contain
at least n

14 vertices of degree one, i.e., n
14 leaves. �	

2.1 Obtaining an Ω( 1
logn

) Approximation

We now have all the ingredients required to obtain the Ω( 1
logn ) approximation

algorithm. We observe that if the graph G is sparse, i.e. η ≤ cn logn (for a
suitable constant c), then the tree obtained by using Lemma 3 is an Ω( 1

logn )-
thick tree and thus we obtain the required approximate solution in this case.
On the other hand, if the graph G is sparse, then we use Lemma 3 to obtain a
spanning tree, delete the leaves of this tree, and then repeat this procedure until
we have no more vertices left. Since, we delete a constant fraction of vertices
in each iteration, the total number of iterations is O(log n). We then choose
the “best” tree out of the O(log n) trees so obtained and show that it must
be an α-thick tree, with α = Ω( 1

logn ). Finally, using Lemma 1, we obtain an

Ω( 1
log n ) approximate solution as desired. We refer to Algorithm 1 for the detailed

algorithm.

1 Input: Graph G = (V,E)
2 Output: A subset S ⊆ V , such that G[S] is connected
3 Set G1(V1, E1) = G, n1 = |V1|
4 Let η ← Number of 1-edges in G
5 Use Lemma 3 to obtain a spanning tree T1 of G1 with leaf set L1

6 if η ≤ cn log n then
7 Use Lemma 1 on T1 to obtain a set connected S
8 return S

9 end
10 i = 1
11 while Gi �= φ do
12 Ei+1 ← Ei \ (E[Li] ∪ δ(Li))
13 Vi+1 ← Vi \ Li, ni+1 = |Vi+1|
14 Contract degree-2 vertices in Gi+1

15 Use Lemma 3 to obtain a spanning tree Ti+1 of Gi+1 with leaf set Li+1

16 i = i+ 1

17 end
18 Choose j = argmaxi(

∑
v∈Li

degG(v))

19 Use Lemma 1 on Tj to obtain a connected set S
20 return S

Algorithm 1. Finding α-thick trees
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Theorem 1. Algorithm 1 gives an Ω( 1
logn ) approximate solution for the b-CMC

problem.

Proof. Let us assume that η ≤ cn logn (for some constant c). Now, Lemma 3
and Claim 1 together imply that

∑
v∈L1

WG(v) = Ω(n). Further, since we have

w(δ(OPT )) ≤ η ≤ cn logn, T is an α-thick tree for some α = Ω( 1
logn ). Hence,

we obtain an Ω( 1
logn ) approximate solution using Lemma 1.

On the other hand, if η > cn logn, we show that at least one of the trees Ti

obtained by the repeated applications of the Lemma 3 is an α-thick tree T of G
for α = Ω( 1

log n ). We first observe that the While loop in Step 11 runs for at most

O(log n) iterations. This is because we delete Ω(ni) leaves in each iteration and
hence after k = O(log n) iterations, we get Gk = φ. We now count the number
of 1-edges “lost” in each iteration. We recall that WG(v) is the total number
of 1-edges incident on v in a graph G. In an iteration i, the number of 1-edges
lost at Step 12 is at most

∑
v∈Li

WGi(v). In addition, we may lose a total of at

most 2n ≤ 2η
c log n edges due to the contraction of degree two vertices in Step 14.

Suppose for the sake of contradiction that
∑

v∈Li
WG(v) < η

d log n , ∀1 ≤ i ≤ k
where d is a suitable constant. Then the total number of 1-edges lost in k =
O(log n) iterations is at most

k∑

i=1

(
∑

v∈Li

WGi(v)) +
2η

c logn
<

k∑

i=1

η

d log n
+

2η

c logn
=

η

d̂
+

η

c logn
< η

The equality follows for a suitable constant d̂ as k = O(log n). The final inequal-
ity holds for a suitable choice of the constants c and d. But this is a contradiction
since we have Gk = φ.

Since we choose j to be the best iteration, we have
∑

v∈Lj
WG(v) ≥ η

d logn for

some constant d. Hence the tree Tj is an α-thick tree of G for α = 1
d logn and

the theorem follows by Lemma 1. �	

General Weighted Graphs. We now consider the weighted connected maxi-
mum cut (WCMC) problem. Formally, we are given a graph G = (V,E) and a
weight function w : E → R

+∪{0}. The goal is to find a subset S of vertices that
induces a connected subgraph and maximizes the quantity

∑
e∈δ(S) w(e). We

obtain a Ω( 1
log2 n

) approximation algorithm for this problem. Our basic strat-

egy is to group edges having nearly the same weight into a class and thus create
O(log n) classes. We then solve the b-CMC problem for each class independently
and return the best solution. Due to space limitations, we defer the details to
the full version [22].

3 CMC in Planar and Bounded Genus Graphs

In this section, we consider the CMC problem in planar graphs and more gen-
erally, in graphs with genus bounded by a constant. We show that the CMC
problem has a PTAS in bounded genus graphs.
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3.1 PTAS for Bounded Genus Graphs

We use the following (paraphrased) contraction decomposition theorem by De-
maine, Hajiaghayi and Kawarabayashi [11].

Theorem 2. ([11]) For a bounded-genus graph G and an integer k, the edges of
G can be partitioned into k color classes such that contracting all the edges in any
color class leads to a graph with treewidth O(k). Further, the color classes are
obtained by a radial coloring and have the following property: If edge e = (u, v)
is in class i, then every edge e′ such that e′ ∩ e = φ is in class i− 1 or i or i+1.

Given a graph G of constant genus, we use Theorem 2 appropriately to obtain
a graph H with constant treewidth. In the full version of the paper [22], we show
that one can solve the CMC problem optimally in polynomial time on graphs
with constant treewidth by dynamic programming.

Theorem 3 If the CMC problem can be solved optimally on graphs of constant
treewidth, then there exists a polynomial time (1 − ε) approximation algorithm
for the CMC problem on bounded genus graphs (and hence on planar graphs).

Proof. Let G = (V,E) be the graph of genus bounded by a constant and let
S denote the optimal CMC of G and ψ = |δ(S)| be its size. Using Theo-
rem 2 with k = 3

ε , we obtain a partition of the edges E into 3
ε color classes

namely C1, C2, . . . , C 3
ε
. We further group three consecutive color classes into

1
ε groups G1, . . . , G 1

ε
where Gj = C3j−2 ∪ C3j−1 ∪ C3j . Let Gj∗ denote the

group that intersects the least with the optimal connected max cut of G, i.e.,
j∗ = argminj(|Gj ∩ δ(S)|)3. As the 1

ε groups partition the edges, we have
|Gj∗ ∩ δ(S)| ≤ εψ. Let i = 3j∗ − 1, so that Gj∗ = Ci−1 ∪ Ci ∪ Ci+1. Let
H = (VH , EH) denote the graph of treewidth O(1ε ) obtained by contracting all
edges of color Ci.

We first show that H has a CMC of size at least (1 − ε)ψ. For a vertex
v ∈ VH , let μ(v) ⊆ V denote the set of vertices of G that have merged together
to form v due to the contraction. We define a subset S′ ⊂ VH as S′ = {v ∈
VH | μ(v)∩S = φ}. Note that because we contract edges (and not delete them),
S′ remains connected. We claim that |δ(S′)| ≥ (1 − ε)ψ. Let e = (u, v) be an
edge in δ(S). Now e /∈ δ(S′) implies that at least one edge e′ such that e′∩e = φ
has been contracted. By the property guaranteed by Theorem 2, we have that
e ∈ Gj∗ . Hence we have, |δ(S′)| ≥ |δ(S)\Gj∗ | = |δ(S)|− |Gj∗ ∩δ(S)| ≥ (1− ε)ψ.

Finally, given a connected max cut of size ψ in H , we can recover a connected
max cut of size at least ψ in G by simply un-contracting all the contracted
edges. Hence, by solving the CMC problem on H optimally, we obtain a (1− ε)
approximate solution in G. �	

3.2 NP-Hardness in Planar Graphs

We now describe a non-trivial polynomial time reduction of a 3-SAT variant
known as planar monotone 3-SAT (PM-3SAT) to the CMC problem on a planar

3 We “guess” j∗ by trying out all the 1
ε
possibilities.
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graph, thereby proving that the latter is NP-hard. The following reduction is in-
teresting as the classical max-cut problem can be solved optimally in polynomial
time on planar graphs using duality. In fact, it was earlier claimed erroneously
that even CMC can be solved similarly [21].

An instance of PM-3SAT is a 3-CNF boolean formula φ such that -
a) A clause contains either all positive literals or all negative literals.
b) The associated bipartite graph Gφ

4 is planar.
c) Furthermore, Gφ has monotone, rectilinear representation. We refer the

reader to Berg and Khosravi [10] for a complete description. Figure 1a illus-
trates the rectilinear representation by a simple example.

x1 x2 x3 x4 x5

C1 = x1 ∨ x2 ∨ x5

C2 = x2 ∨ x3 ∨ x4

C5 = x̄1 ∨ x̄3 ∨ x̄5

C3 = x̄1 ∨ x̄2 ∨ x̄3 C4 = x̄3 ∨ x̄4 ∨ x̄5

(a) Monotone rectilinear representa-
tion

x1

x̄1

x2

x̄2

x3

x̄3

x4

x̄4

x5

x̄5

C1

C2

C3
C4

C5

h1
1 h1

2 h1
K

K
vertices

√
K

vertices

(b) Reduction of PM-3SAT to a planar
CMC instance

Fig. 1. Example illustrating the rectilinear representation and the reduction to a planar
CMC instance of the formula (x1 ∨ x2 ∨ x5) ∧ (x2 ∨ x3 ∨ x4) ∧ (x̄1 ∨ x̄2 ∨ x̄3) ∧ (x̄3 ∨
x̄4 ∨ x̄5) ∧ (x̄1 ∨ x̄3 ∨ x̄5).

Given such an instance, the PM-3SAT problem is to decide whether the
boolean formula is satisfiable or not. Berg and Khosravi [10] show that the
PM-3SAT problem is NP-complete.

The Reduction.Given a PM-3SAT formula φ, with a rectilinear representation,
we obtain a polynomial time reduction to a planar CMC instance, there by
showing that the latter is NP-hard. Let {xi}ni=1 denote the variables of the PM-
3SAT instance and {Cj}mj=1 denote the clauses. We construct a planar graph Hφ

as follows. For every variable xi, we construct the following gadget: We create
two vertices v(xi) and v(x̄i) corresponding to the literals xi and x̄i. Additionally,
we have K > m2 “helper” vertices, hi

1, h
i
2, . . . , h

i
K such that each hi

k is adjacent
to both xi and x̄i. Further, for every hi

k we add a set Li
k of K new vertices

that are adjacent only to hi
k. Now, in the rectilinear representation of the PM-

3SAT, we replace each variable rectangle by the above gadget. For two adjacent
variable rectangles in the rectilinear representation, say xi and xi+1, we connect

4 Gφ has a vertex for each clause and each variable and an edge between a clause and
the variables that it contains
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the helpers hi
K and hi+1

1 . For every clause Cj , Hφ has a corresponding vertex
v(Cj) with edges to the three literals in the clause. Finally, for each vertex v(Cj),

we add a set Lj of
√
K new vertices adjacent only to v(Cj). It is easy to observe

that the reduction maintains the planarity of the graph. Figure 1b illustrates
the reduction by an example.

The NP-hardness of the planar connected max cut is a consequence of the
following theorem. We defer the proof to the full version [22].

Theorem 4. Let Hφ denote an instance of the planar CMC problem correspond-
ing to an instance φ of PM-3SAT obtained as per the reduction above. Then, the
formula φ is satisfiable if and only if there is a solution S to the CMC problem
on Hφ with |δHφ

(S)| ≥ m
√
K + nK + nK2.
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function subject to a matroid constraint. In: IPCO, pp. 182–196 (2007)

[5] Censor-Hillel, K., Ghaffari, M., Giakkoupis, G., Haeupler, B., Kuhn, F.: Tight
bounds on vertex connectivity under vertex sampling. In: SODA (2015)

[6] Censor-Hillel, K., Ghaffari, M., Kuhn, F.: A new perspective on vertex connec-
tivity. In: SODA, pp. 546–561 (2014)

[7] Chekuri, C., Ene, A.: Submodular Cost Allocation Problem and Applications. In:
Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part I. LNCS, vol. 6755,
pp. 354–366. Springer, Heidelberg (2011)

[8] Cygan, M.: Deterministic parameterized connected vertex cover. In: Fomin, F.V.,
Kaski, P. (eds.) SWAT 2012. LNCS, vol. 7357, pp. 95–106. Springer, Heidelberg
(2012)

[9] Das, B., Bharghavan, V.: Routing in ad-hoc networks using minimum connected
dominating sets. In: ICC, vol. 1, pp. 376–380 (1997)

[10] de Berg, M., Khosravi, A.: Finding perfect auto-partitions is NP-hard. In: Eu-
roCG 2008, pp. 255–258 (2008)

[11] Demaine, E.D., Hajiaghayi, M., Kawarabayashi, K.-I.: Contraction decomposi-
tion in H-minor-free graphs and algorithmic applications. In: STOC, pp. 441–450
(2011)

[12] Du, D.Z., Wan, P.J.: Connected dominating set: theory and applications.
Springer optimization and its applications (2013)

[13] Eisenbrand, F., Grandoni, F., Rothvoß, T., Schäfer, G.: Approximating con-
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Abstract. We consider offsets of a union of convex objects. We aim for
a filtration, a sequence of nested cell complexes, that captures the topo-
logical evolution of the offsets for increasing radii. We describe methods
to compute a filtration based on the Voronoi diagram of the given con-
vex objects. We prove that, in two and three dimensions, the size of
the filtration is proportional to the size of the Voronoi diagram. Our
algorithm runs in Θ(n log n) in the 2-dimensional case and in expected
time O(n3+ε), for any ε > 0, in the 3-dimensional case. Our approach is
inspired by alpha-complexes for point sets, but requires more involved
machinery and analysis primarily since Voronoi regions of general con-
vex objects do not form a good cover. We show by experiments that our
approach results in a similarly fast and topologically more stable method
compared to approximating the input by point samples.

1 Introduction

Motivation. The theory of persistent homology has led to a new way of under-
standing data through its topological properties, commonly referred as topolog-
ical data analysis. The most common setup assumes that the data is given as
a finite set of points and analyzes the sublevel sets of the distance function to
the point set. An equivalent formulation is to take offsets of the point sets with
increasing offset parameter and to study the changes in the hole structure of the
shape obtained by the union of the offset balls (Figure 1).

We pose the question how to generalize the default framework for point sets
to more general input shapes. While there is no theoretical obstacle to consider
distance functions from shapes rather than points (at least for reasonably “nice”
shapes), it raises a computational question: How can the topological information
be encoded in a combinatorial structure of small size?

With the wealth of applications of persistence of point set data, and together
with the challenges raised by the extension from point sets to sets of convex
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αr2r1 r30

Fig. 1. From left to right, we see an example shape, three offsets with increasing radii
r1 < r2 < r3, and the 1-barcode of the shape. While being simply-connected initially,
two holes have been formed at radius r1, one of which disappears for a slightly larger
offset value while the other one persists for a large range of scales. At r2, we see the
formation of another rather short-lived hole. The barcode summarizes these facts by
displaying one bar per hole. The bar spans over the range of offset radii for which the
hole is present.

objects, we believe that the latter is a logical next step of investigation. Our
motivation originates from the increasingly popular application of 3D printing. A
common problem in this context is that often available models of shapes contain
features that complicate the printing process, or turn it impossible altogether.
A ubiquitous example is the presence of thin features which may easily break,
and call for thickening. One work-around is to offset the model by a small value
to stabilize it, but the optimal offset parameter is unclear, as it should get rid
of many spurious features of the model without introducing too many new ones.
Moreover, one would prefer local thickening [26], and possibly thickening by
different offset size in different parts of the model. A by-product of our work
here is a step toward automatically detecting target regions for local thickening
that do not incur spurious artifacts. Persistent homology provides a barcode
which constitutes a summary of the hole structure of the offset shape for any
parameter value (Figure 1) which is helpful for the choice of a good offset value.

Problem Definition and Contribution. We design, analyze, implement, and ex-
perimentally evaluate algorithms for computing persistence barcodes of convex
input objects. More precisely, we concentrate on the problem of computing a
filtration, a sequence of nested combinatorial cell complexes that undergoes the
same topological changes as the offset shapes. Since the input objects are convex,
the nerve theorem asserts that the intersection patterns of the offsets (called the
nerve) reveal the entire topological information. This leads to the generalization
of Čech filtrations from point sets to our scenario. The resulting filtration has a
size of O(nd+1) for n input objects in d-dimensional Euclidean space, where the
size of the filtration is defined to be the number of simplex insertions involved
over the entire filtration. This size is already problematic for small d and a natu-
ral idea to reduce its size is to consider restricted offsets, that is, intersecting the
offset of an input object with its Voronoi region, the portion of the space closest
to the object. This approach is again inspired by the analogous case of point
sets, where alpha-complexes are preferred over the Čech complexes for small
dimensions. However, the approach for point sets does not directly carry over
to arbitrary convex objects: Voronoi regions of convex objects can intersect in
non-contractible patterns, which prevents the application of the nerve theorem.
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Our first result is that in R
2, the non-contractibility does not really cause

problems: the barcode of convex polygons is encoded in the barcode of the nerve
of their restricted offsets, despite the non-contractible intersections. As a result
we obtain a linear-size filtration, improving the cubic size one obtained from
using the unrestricted nerves. The filtration can be computed in time O(n log n),
dominated by the computation time of the Voronoi diagram. While the proof
ultimately still relies on the nerve theorem, it requires a deeper investigation
of the structure of Voronoi diagrams of convex objects. Moreover, it requires a
slight generalization of a result in [9] (see Theorem 1 below), showing that the
nerve isomorphism commutes with inclusions, to the case of simplicial complexes
connected by certain simplicial maps. The analogous statement in R

3 is not true.
Our second result is a general construction of a cell complex with the desired

barcode in three dimensions. Our construction scheme computes the Voronoi
diagram of the input sites as a preprocessing step and cuts (subdivides) the
edges and faces of the Voronoi diagram into smaller pieces in a controlled way.
The resulting refinement of the Voronoi diagram gives rise to a dual cell complex
whose size is linear in the size of the Voronoi diagram of the input sites. As the
latter is known to be bounded by O(n3+ε), our filtration is significantly smaller
than O(n4), as obtained by a Čech-like filtration. The time for computing the
filtration is bounded from above by O(n3+ε). The correctness proof works by
(conceptually) “thicken up” lower-dimensional cells of the Voronoi diagram to
obtain a good cover of the space, for which the nerve theorem applies.

We have implemented our algorithm for polygons and report on extensive ex-
perimental evaluation. In particular, we compare our approach with the natural
alternative to replace the input polygons with sufficiently dense point samples.
Although the point sample approach yields very close approximations to the ex-
act barcode in a comparable running time, the approximation error induced by
the sampling results in additional noise on a large range of scales and therefore
makes the topological analysis of the offset filtration more difficult.

Some proofs throughout the text are omitted due to lack of space. For addi-
tional details and proofs see the arxiv version [17].

Related Work. Since its introduction in [14], persistent homology has become
an active area of research, including theoretical, algorithmic, and application
results; we refer to the textbook [13] and the surveys [8,15] for an overview.
The information gathered by persistence is usually displayed either in terms of
a barcode (as in this work) or, equivalently, via a persistence diagram [13].

The textbook [13] describes the most common approaches for computing fil-
trations of point sets, including Čech- and alpha-complexes. Another common
construction is the (Vietoris-)Rips complex: it approximates the Čech complex
in the sense that it is nested between two Čech complexes on similar scales. How-
ever, this property does not carry over to the case of arbitrary convex objects.
A recent research topic is to come up with sparsified versions of Rips [12,24] and
Čech complexes [7,22] to lower the filtration size; our work is in the same spirit.

Topological methods for shape analysis have been extensively studied: a com-
monly used concept are Reeb graphs which yield a skeleton representing the con-
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nectivity of the shape and can be seen as a special case of persistent homology
in dimension 0; see [5] for ample applications. The full theory of persistent ho-
mology has also been applied to various tasks in shape analysis, including shape
segmentation [25] and partial shape similarity [16]. While these works study the
intrinsic properties of a shape through descriptor functions independent of the
embedding, our problem setup rather asks about extrinsic properties, that is,
how the shape is embedded in ambient space.

2 Topological Background

We review standard notation in persistent homology and dualizations of set
covers through nerves. We assume familiarity with basic topological notions such
as simplicial complexes, homology groups and persistent homolgy; the necessary
background is covered by the textbook [13] and in more detail by [18].

Filtration. We call a collection of spaces (Qα)α≥0 with the property that Qα ⊆
Qα′ whenever α ≤ α′ a filtration (induced by inclusion). Intuitively, a filtration
is merely an increasing sequence of spaces as illustrated in Figure 1 (left). To
obtain its (persistent) barcode, we apply the homology functor : let Hp(Q), the p-
th homology group of Q over an arbitrary fixed base field, with p ≥ 0. Then, the
object (Hp(Qα))α≥0 together with the induced maps Fα,α′ : Hp(Qα) → Hp(Qα′)
defines a so-called persistence module and encodes the births and deaths of ho-
mology classes during the filtration process. This information can be compactly
described in terms of a p-barcode. Figure 1 (right) displays the 1-barcode of the
example. This construction works generally for filtrations of simplicial complexes
(using simplicial homology), of CW-complexes (using cellular homology) and of
subsets of Rd (using singular homology).

Nerves. Let P := {P 1, . . . , Pn} be a collection of non-empty sets in a com-
mon domain. The underlying space is defined as |P| := ⋃

i=1,...,n P
i. We call a

non-empty subset {P i1 , . . . , P ik} ⊆ P intersecting, if
⋂k

j=1 P
ij �= ∅. The nerve

Nrv(P) of P is the collection of all intersecting subsets. It is clear by definition
that every singleton set {P i} is in the nerve, and that any non-empty subset of
an intersecting set is intersecting. The latter property implies that the nerve is a
simplicial complex : the singleton sets {Pi} are the vertices of that complex. We
call P a good cover if all sets in the collection are closed and triangulable, and
any intersecting subset yields a contractible intersection. For example, any col-
lection of closed convex sets forms a good cover. The Nerve theorem states that
if P is a good cover, |P| is homotopically equivalent to Nrv(P). In particular,
Hp(|P|) is isomorphic to Hp(Nrv(P)) for all p ≥ 0.

Barcodes of Shapes. We let dist(·, ·) denote the Euclidean distance function. For
a point set A ⊂ R

d and x ∈ R
d, we set dist(x,A) := infy∈A dist(x, y). Then,

dist(·, A) : Rd → R is called the distance function from A, and Aα := {x ∈
R

d | dist(x,A) ≤ α} is called the α-offset of A. With P as above, we write
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Pα := {P 1
α, . . . , P

n
α } for the collection α-offsets of P . In particular, P0 = P . We

call (|Pα|)α≥0 the offset-filtration of P . We pose the question of how to compute
the barcode of the offset filtration of convex objects efficiently. See Figure 1 for
an illustration of these concepts.

We define the analogue of Čech filtrations: We call (Nrv(Pα))α≥0 the nerve fil-
tration of P ; it is indeed a filtration because for α1 ≤ α2, Nrv(Pα1) ⊆ Nrv(Pα2).
The following result [9] implies immediately that the p-barcodes of the offset
filtration and the nerve filtration of P are equal for all p ≥ 0.

Theorem 1 (Persistence Nerve Theorem). Let (P 1
α)α≥0, . . . , (P

n
α )α≥0 be

filtrations such that for each α ≥ 0, Pα := {P 1
α, . . . , P

n
α } is a good cover. Then,

the barcodes of (|Pα|)α≥0 and (Nrv(Pα))α≥0 are the same.

The nerve only changes for values where a collection of offsets of objects becomes
intersecting. We call such an offset value nerve-critical. Since |P| ⊂ R

d, we can
restrict to collections of size at most d + 1, as the offset filtration has a trivial
barcode in dimension d and higher. Sorting the nerve-critical values 0 = α0 <
α1 < . . . < αm and setting Ki := Nrv(Pαi), the nerve filtration simplifies to the
finite filtration K0 ⊂ K1 ⊂ . . . ⊂ Km whose barcode can be computed using
standard methods; see [14,28] or [3,6] for an optimized variant. As Km contains
a simplex for any subset of P of size up to d+ 1, its size is Θ(nd+1).

3 Barcodes of Restricted Offsets

Let P := {P 1, . . . , Pn} be convex polyhedra in R
d, that is, each P i is the inter-

section of finitely many half-spaces. The major disadvantage of the construction
of Section 2 is the sheer size of the resulting filtration, Θ(nd+1). Our goal is
to come up with a filtration that yields the same barcode and is substantially
smaller in size. Our approach is reminiscent of alpha-complexes for point sets,
but it requires additional ideas for being applicable to convex objects.

From now on, we make the following assumptions for simplicity: We refer to
the elements of P as sites. We restrict our attention to d ∈ {2, 3}, that is, sites
are polygons (d = 2) or polyhedra (d = 3). We assume the sites to be pairwise
disjoint and in general position, that is, for any pair P i, P j of sites, there is a
unique pair of points xi ∈ ∂P i, xj ∈ ∂P j that realizes the distance between
the sites. Moreover, we assume that the number of vertices, edges and faces of
each site is bounded by a constant. For a point p ∈ R

d, the site P k is closest if
dist(p, P k) ≤ dist(p, P �) for any 1 ≤ � ≤ n. We assume for simplicity the generic
case that no point has more than d+1 closest sites. We set dist(x) := dist(x, |P|).

The Voronoi diagram [2] Vor(P) is the partition of the space into maximal
connected components with the same set of closest sites. The Voronoi diagram
is an arrangement in R

d, and its combinatorial complexity is the number of
cells. The Voronoi region of P k, denoted by V k, is the (closed) set of points for
which P k is one of its closest sites. For a cell σ of Vor(P), we call crit(σ) :=
infx∈σ dist(x) the critical value of σ and a point x that attains this infimum a
critical point of σ. Note that critical points of a cell may lie on its boundary.
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For any two sites P i, P j , the set of all points x with dist(x, P i) = dist(x, P j) =
α is the intersection ∂(P i ⊕ Bα) ∩ ∂(P j ⊕ Bα), where Bα is the ball of radius
α, and ⊕ denoting the Minkowski sum. The bisector ρ is the set of points x
that satisfy dist(x, P i) = dist(x, P j). By general position of the sites, there
is a unique point on ρ that minimizes dist(·, P i). More generally, for α ≥ 0, let
ρα := {x ∈ ρ | dist(x, P i) ≤ α}. We will frequently use the fact that for any α, ρα
is empty or contractible. This is implied by the following generalization the well-
known pseudodisk-property [21], [10, Thm.13.8]. We refer to [17, Appendix B]
for the proof of the case d = 3.

Theorem 2. For d ∈ {2, 3}, let P1, P2 be two convex disjoint polytopes in R
d

in general position and let B be the unit ball. Then, ∂(P1 ⊕ B) ∩ ∂(P2 ⊕ B) is
either empty, a single point, or homeomorphic to a (d− 2)-sphere.

The restricted α-offset of P k is defined as Qk
α := P k

α ∩ V k. We set Qα :=
{Q1

α, . . . , Q
n
α} and Q := Q0. In the same way as in Section 2, we define the

restricted nerve filtration as (Nrv(Qα))α≥0 and Q-critical values as those values
where a simplex enters the restricted nerve filtration. The restricted nerve filtra-
tion can be expressed by a finite sequence of simplicial complexes that changes
precisely at theQ-critical values. The size of the filtration is bounded by the com-
binatorial complexity of the Voronoi diagram. Moreover, the Q-critical value of
a simplex associated with a Voronoi cell σ equals the critical value of σ.

Restricting the offsets to Voronoi regions brings a problem: Qα is not neces-
sarily a collection of convex sets, since V k is not convex in general. Even worse,
Qα might not be a good cover. For instance, in Figure 2 we see that the Voronoi
regions of the two large polygons intersect in two segments. This means that
Theorem 1 does not apply to this case.

4 Barcodes of Restricted Offsets in 2D

We first restrict to the case d = 2, that means, our input sites are interior-disjoint
convex polygons. While the restriction of offsets invalidates the proof strategy
of using the persistence nerve theorem, it does not invalidate the statement, at
least in dimensions 0 and 1.

Theorem 3. For convex polygonal sites in R
2, the 0- and 1-barcode of the re-

stricted nerve filtration are equal to the 0- and 1-barcode of the offset filtration,
respectively.

As a consequence of this theorem, we obtain a filtration of size O(n) that has
the same barcode as the offset filtration; the size follows from the fact that the
complexity of the Voronoi diagram is O(n). This is much smaller than the O(n3)
filtration obtained by the unrestricted nerve. The construction time is dominated
by computing the Voronoi diagram and thus bounded by O(n log n) [27].

The proof of Theorem 3 requires substantially more algebraic machinery than
what we have introduced and is omitted due to lack of space. We provide a brief
summary of the proof, and refer to [17, Appendix A] for the full proof.
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A non-contractible intersection of two restricted offsets of sites is always
caused by a bounded connected component in the complement of their union,
called a surrounded region. Such a region is caused by one or more sites in its
inside; we call such sites inactive when they become part of a surrounded re-
gion, and active otherwise. For instance, the two inner sites in Figure 2 become
surrounded by the outer sites eventually. The idea of the proof is to ignore in-
active sites from the considerations. For any α, the restricted offsets of active
sites form a good cover and the nerve theorem applies. Moreover, we can show
that the union of restricted offsets does not change when removing the inactive
sites, because the surrounding regions “conquer” the entire territory previously
occupied by inactive sites. That means, for any α ≥ 0, the union of restricted
offsets has the same homology as the nerve of restricted offset of active sites.

The first major result we show is that the nerves of restricted offsets of active
sites and of all sites have the same 0- and 1-homology. The proof (for 1-homology)
is based on an explicit construction that transforms any 1-cycle in the nerve of
all sites to an homologous cycle that only includes active sites.

To finish the proof, we have to show that the induced isomorphisms commute
with inclusions. This case is not covered by Theorem 1 because the offsets do
not form a good partition. Instead, we consider the nerves of restricted active
sites as an intermediate structure. They do not form a filtration because sites
disappear from the nerve when becoming inactive, so the simplicial complexes
are not nested. Still, the nerves can be connected by simplicial maps instead of
inclusions and the concept of barcodes extends to this setup. As second major
result, we show that the isomorphism induced by the nerve theorem between
offsets sites and nerve of restricted active offsets commutes with these simplicial
maps. The proof requires the study of this isomorphism in detail and extends
the proof of Theorem 1 in this setting.

Fig. 2. A ghost sphere

Theorem 3 does not generalize to the 2-barcode. For
instance, in Figure 2, we see four sites in R

2 where ev-
ery triple of Voronoi regions intersects, but there is no
common intersection of all four of them. Consequently,
their nerve consists of the four boundary triangles of a
tetrahedron and therefore carries non-trivial 2-homology.
We refer to such homology classes as “ghost features”. In
R

2, the offset filtration can clearly not form any void and
we can therefore safely ignore all ghosts. In R

3, however,
the 2-barcode carries information about the offset and
the ghosts need to be distinguished from real features.

5 Barcodes of Restricted Offsets in 3D

As Theorem 3 does not generalize to higher-dimensions, we now present a re-
finement of the nerve construction for R

3. Reconsidering the “ghost example”
from Section 3, it seems attractive to pass to the multi-nerve [11], that is, in-
troducing a distinct simplex for each lower-dimensional cell of the Voronoi di-
agram. However, this approach is not sufficient. First, Voronoi cells might be



712 D. Halperin, M. Kerber, and D. Shaharabani

non-simply connected. For example, in Figure 3 (top), the Voronoi cell of the
two large polyhedra will contain an unbounded face with a hole in its middle.

Fig. 3. Problems in
3D

Furthermore, even if the Voronoi cells form a good cover,
this may not be true for the restricted offsets at all scales
α. This can be observed at Figure 3 (bottom), where
two different connected components are formed when the
offsets of the two large polyhedra first intersect, despite
the fact that the Voronoi cells form a good cover.

An arrangement A in R
3 is a refinement of Vor(P)

in R
3 if every 0-, 1-, 2-, or 3-dimensional cell of A is

contained in a cell of Vor(P). For a cell σ ∈ A and
α ≥ 0, define the restricted cell σα := {x ∈ σ |
dist(x) ≤ α}. We call σ sublevel-contractible if for all
α ≥ 0, σα is empty or contractible. Note that sublevel-
contractible cells are contractible. We call an arrange-
ment A a sublevel-contractible refinement of Vor(P), if A
is a refinement of Vor(P) and every cell of A is sublevel-
contractible. As before, we define the critical value of a
cell σ ∈ A as crit(σ) := inf{α ∈ R | σα �= ∅}.

Dualization. An arrangement A in R
3 gives rise to a dual

structure in a natural way: fixing two cells σ, τ of A with
dim(σ) < dim(τ), we have that either σ is contained in or
completely disjoint from the boundary of τ . In the former
case, we say that σ is incident to τ . If σ is incident to τ ,
crit(σ) ≥ crit(τ). The dualization A∗ of A is defined as
follows: for every cell σ of A, A∗ has a dual cell σ∗ such
that their dimensions add up to 3. The boundary of a dual
cell σ∗ of dimension δ, ∂(σ∗), is the set of all dual cells τ∗ of dimension δ − 1
such that σ is incident to τ . See the figure to the right for an illustration of a
planar arrangement (black) and the dualization (blue).

The critical value of a dual cell is defined as the critical value of its primal
counterpart. This turns the dualization into a filtered cell complex, since any
dual cell has a critical value not smaller than any dual cell in its boundary. For
α ∈ [0,∞], we letA∗

α denote the collection of dual cells with critical value at most
α. Since ∂∂(σ) = 0 for any σ, there is a well-defined homology group for each
A∗

α, and therefore, a barcode of the dualization A∗. We can now state the main
result which allows us to express the barcode of the offset of three-dimensional
shapes in terms of a combinatorial structure.

Theorem 4. Let P be a collection of convex polyhedra in R
3, and let A be a

sublevel-contractible refinement of Vor(P). Then, the barcode of the offset filtra-
tion of P equals the barcode of A∗.

Sublevel-contractible Refinements. We are left with the question of how to obtain
a sublevel-contractible refinement of a Voronoi diagram of convex polyhedra.
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We remark that for d = 2, the Voronoi diagram of convex polygons is already
sublevel-contractible, so no refinement is needed. The resulting dualization is
precisely the multi-nerve [11]. However, we note that in light of Theorem 3,
there is no need to consider dualizations at all in the planar case.

We turn to the case d = 3. Here, the Voronoi diagram is generally not sublevel-
contractible, for the reasons given at the beginning of the section. To make it
sublevel-contractible, we will cut every cell into sublevel-contractible pieces. We
consider the case of a single connected component of a bisector (that is, a 2-
cell of the Voronoi diagram) in isolation: as it will turn out, our method will
ensure that all trisectors (i.e., points with the same distance to three sites) on
its boundary will become sublevel-contractible as well.

Let us fix a 2-cell σ contained in the bisector ρ of two sites. The boundary
of σ consists of 1-cells, where each 1-cell belongs to some trisector. Since ρ is
homeomorphic to a plane, we can distinguish between an outer boundary of σ
(which might be unbounded if σ is unbounded) and an arbitrary number of
closed inner boundaries. The presence of inner boundaries turns σ non-simply
connected, and thus σ is not sublevel-contractible (as in Figure 3 (top)). By
Theorem 2 the distance function can only have one local minimum on ρ, and
thus on σ. However, it is well possible that dist restricted to σ has local minima
on ∂(σ), both on inner and outer boundary components. The presence of such
local minima turns the restricted cell σα disconnected for a certain range of
scales and makes σ not sublevel-contractible as well (as in Figure 3 (bottom)).

We now define a sublevel-contractible refinement of σ into 2-cells by intro-
ducing cuts in σ. We start by cutting σ along a curve ψ on ρ that goes through
the minimum o and that is unimodal for dist(·), that is, has a minimum at o
and dist-monotone otherwise. Moreover, we require ψ to intersect every 1-cell in
the boundary of σ only a constant number of times. Such a curve indeed exists
since we can find two monotone paths from o to the outer boundary that avoid
all inner boundaries.

Having cut using ψ, we introduce additional cuts: for any value β > 0, the
β-isoline is the curve defined by all points p on the bisector with dist(p) = β.
By Theorem 2, a β-isoline is a closed cycle on the bisector that loops around
o. We define a boundary-critical point of σ as a local maximum or minimum of
dist restricted to ∂σ. For a boundary-critical point p with β = dist(p), an isoline
segment at p is a maximal connected piece of the β-isoline within σ \ψ with p on
its boundary. An isoline segment may degenerate into a point. We introduce cuts
along all isoline segments for all boundary-critical points. Since ψ is unimodal,
unbounded, and goes through o, it intersects any isoline twice. Hence, isoline
segments cannot be closed curves. New 0-cells are added at boundary-critical
points and at the endpoints of isoline segments. See Figure 4 for an illustration.

Lemma 5. The cutting scheme from above yields a sublevel-contractible refine-
ment of Vor(P).

Size and Computation of Sublevel-contractible Refinements. We can compute a
sublevel-contractible refinement using a combinatorial algorithm. It traverses the



714 D. Halperin, M. Kerber, and D. Shaharabani

o

(a) The original face σ

o

(b) The isoline cuts over σ (c) The final cutting

Fig. 4. A sublevel-contractible refinement of a 2-cell. The original 2-cell σ is shown
in (a). In (b) we add the cut induced by the unbounded curve ψ (green) and cuts
induced by the isoline segments at boundary-critical points (black). The part of an
isoline that is not an isoline segment is shown in red. The final cutting is shown in (c).

2-cells σ of Vor(P) and cuts them according to the described strategy. For that,
it maintains a sweep-line reflecting the intersection of a sweeping isoline with all
boundary segments of σ. It performs two sweeps, constructing ψ and adding cuts
induced by it in the first sweep, and cutting along isoline segments in the second
sweep. It is not hard to argue that the described refinement only increases the
complexity of the arrangement by a constant factor. Every cut originates at a
1-cell or a 0-cell of the Voronoi diagram, and we can charge the performed cut to
that cell. We can show that every 1- and 0-cell is only charged a constant number
of times – the only technical difficulty is to show that the number of local extrema
on a trisector is constant. This follows from the fact that a trisector is defined
by constantly many algebraic equations, exploiting that every site consists only
of constantly many faces. Since every cut introduces only a constant number of
new cells to the arrangement, we get the following result:

Theorem 6. For a set P of convex, disjoint polyhedra in generic position, let
π(n) be the complexity of Vor(P). Then there exists a sublevel-contractible refine-
ment of Vor(P) with O(π(n)) cells, which can be computed in O(π(n) log(π(n)))
time, excluding the computation time of the Voronoi diagram.

Together with Theorem 4, it follows that we can find a cellular filtration of
size O(π(n)) whose barcode equals the barcode of the original offset filtration.
The exact value of π(n) is far from being settled but we know that it is bounded
from below by Ω(n2) (by a straightforward construction even for n points) and
from above by O(n3+ε) [1,23]. We therefore get a filtration of size O(n3+ε), that
is significantly smaller than the unrestricted nerve filtration of size O(n4), and
that can be computed in O(n3+ε) expected time.

6 Polygons vs. Point Samples: Experimental Comparison

Computing Voronoi diagrams of polyhedra in space is a difficult problem. While
efforts to compute it are underway, so far only restricted cases have been com-
pleted; see e.g., [19]. We therefore restrict our experiments to the planar case.
Still, already in the plane approximating the shapes by point samples introduces
noise that is hard to distinguish from real small features.
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Comparison Details. We implemented the restricted nerve algorithm for the two-
dimensional case as described in Section 4, using Cgal’s 2D Segment Delaunay
Graphs package [20] for computing the Voronoi diagram of convex polygons.
For comparison purposes, we also implemented the unrestricted nerve filtra-
tion described in Section 2. In addition, we implemented an approximation of
the barcode by approximating the input polygons with a finite point set whose
Hausdorff-distance to the input is at most ε (by placing a grid of side length√
2ε and taking as our sample the centers of all grid cells which intersect the

input), and compute the barcode from the alpha complex of the points. The size
of the filtration is linear in the number of sampled points. In all variants, after
computing the filtration, we obtain the barcode using the PHAT library [4].

Table 1. Running times (in s) and filtra-
tion sizes for an input consisted of 250 ran-
domly generated convex polygons with a to-
tal of 1060 vertices

Approach Time Size

Restricted nerve 1.285 1473
Unrestricted nerve 9943 2604375
Point sample (ε = 1) 0.217 9021
Point sample (ε = 0.1) 3.3 505833

Analysis. We compare the three ap-
proaches for several inputs of increas-
ing sizes, and report on their running
time and filtration size. For brevity,
we demonstrate our findings for only
one example in Table 1. As expected,
the unrestricted nerve yields large fil-
trations and high running times com-
pared to the restricted nerve. Com-
paring the running time of the re-
stricted nerve approach with that of the point sampling approach is difficult
as it depends on the choice of ε. Still, our experiments show that for a compara-
bly fast choice of ε, the approximated barcode contains many short bars that can
be attributed to noise introduced by the approximation, and that can not be eas-
ily distinguished from genuine short bars that exist in the exact barcode. Thus,
our approach is comparably fast to that of a “reasonable” approximation of the
input, and has the advantage of obtaining an exact barcode. We note that our
simple point-sampling approach could be significantly improved, for example, by
sampling points only on the boundary of the polygons, however such methods
would introduce more noise and would require additional post-processing.
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These results have immediate interesting applications in the geomet-
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Objects Approx. Alg. Hardness

Disks/pseudo-disks QPTAS [31]
Exact version is NP-Hard

[15]

Fat triangles of same size O(1) [13]
APX-Hard: [21]
I.e., no PTAS possible.

Fat objects in R
2 O(log∗ opt) [5] APX-Hard: [21]

Objects ⊆ R
d, O(1) density

E.g. fat objects, O(1) depth.
PTAS: Theorem 6p725

Exact version is NP-Hard

[15]

Objects with polylog density QPTAS: T6
No PTAS under ETH
Lemma 10p726

Objects with density ρ in R
d PTAS: T6
RT nO(ρ(d+1)/d/εd).

No (1 + ε)-approx
with RT npolylog(ρ)

assuming ETH: L10

Fig. 1. Known results about the complexity of geometric set-cover. Specifically, the
input is a given set of points, and a set of objects, and the task is to find the smallest
subset of objects that covers the points. To see that the hardness proof Feder and
Greene [15] indeed implies the above, one just has to verify that the input instance
their proof generates has bounded depth.

that are larger than it. This notion was introduced by van der Stappen et al. [40],
although weaker notions involving a single resolution were studied earlier (e.g.
in the work by Schwartz and Sharir [38]). A closely related geometric property
to density is fatness. Informally, an object is fat if it contains a ball, and is
contained inside another ball, that up to constant scaling are the same size. Fat
objects have low union complexity [3], and in particular, shallow fat objects have
low density [39].

We study the intersection graphs arising out of low-density scenes. Specifically,
a set F of objects in R

d induces an intersection graph GF having F as its the
set of vertices, and two objects f, g ∈ F are connected by an edge if and only if
f ∩g �= ∅. Without any restrictions, intersection graphs can represent any graph.
There is much work on intersection graphs, from interval graphs, to unit disk
graphs, and more. The circle packing theorem [25,4,36] implies that every planar
graph can be realized as a coin graph, where the vertices are interior disjoint
disks, and there is an edge connecting two vertices if their corresponding disks
are touching. This implies that planar graphs are low density. Miller et al. [29]
studied the intersection graphs of balls (or fat convex object) of bounded depth
(i.e., every point is covered by a constant number of balls), and these intersection
graphs are readily low density. Some results related to our work include: (i)
planar graphs are the intersection graph of segments [9], and (ii) string graphs
(i.e., intersection graph of curves in the plane) have small separators [28].

The class of low-density graphs is contained in the class of graphs with poly-
nomial expansion. The class of graphs with polynomial expansion was defined
by Nešetřil and Ossona de Mendez as part of a greater investigation on the
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Objects Approx. Alg. Hardness

Disks/pseudo-disks PTAS [32] Exact version is NP-Hard

Fat triangles of similar size. O(log log opt) [6] APX-Hard Lemma 8p726

Objects with O(1) density. PTAS: Theorem 6p725 Exact ver. NP-Hard [15]

Objects polylog density. QPTAS: T6
No PTAS under ETH
Lemma 10 / L8

Objects with density ρ in R
d PTAS: T6
RT nO(ρ(d+1)/d/εd)

No (1 + ε)-approx
with RT npolylog(ρ)

assuming ETH: L10

Fig. 2. Known results about the complexity of geometric hitting set. Specifically, the
input is a given set of points, and a set of objects, and the task is to find the smallest
subset of points such that any object is hit by one of these points.

sparsity of graphs (see the book [35]). Perhaps a motivating observation to their
theory is that the sparsity of a graph (the ratio of edges to vertices) is somewhat
unstable: a clique (with maximum density) can be disguised as a sparse graph by
splitting every edge by a middle vertex. Nešetřil and Ossona de Mendez investi-
gate graph invariants that can sustain small changes to graphs, such as taking
(shallow) minors and subdivisions, and their systematic classifications of graphs
are complimented by algorithmic results. For the class of nowhere dense graphs
[35, Section 5.4], Grohe, Kreutzer and Siebertz recently showed that first-order
properties are fixed-parameter tractable [18]. In this paper, we study graphs of
bounded expansion [35, Section 5.5], which intuitively requires graphs to not
only be sparse, but have shallow minors that are sparse as well.

There is a long history of optimization in structured graph classes. Lipton
and Tarjan first obtained a PTAS for independent set in planar graphs by using
separators [26,27]. Baker [7] developed techniques for covering problems (e.g.
dominated set) on planar graphs, which were extended to graphs with bounded
local treewidth by Eppstein [14] and graphs excluding minors by Grohe [17].
Separators have also played a key role in geometric optimization algorithms, in-
cluding a PTAS for independent set and (continuous) piercing set for fat objects
[10], a PTAS for piercing half-spaces and pseudo-disks [32], a QPTAS for maxi-
mum weighted independent sets of polygons [1,2,20], and a QPTAS for Set Cover
by pseudodisks [30], among others.

Lastly, Cabello and Gajser [8] develop PTAS’s for some of the problems we
study in the specific setting of minor-free graphs.

Our Results. We develop polynomial time approximation schemes for basic in-
dependence, packing and covering problems in graphs with polynomial expansion
and in low-density graphs. These two graph classes are related as low-density
graphs have polynomial expansion, and we leverage properties of polynomial
expansion beyond just having small separators.



720 S. Har-Peled and K. Quanrud

Specifically, we get PTAS for independent set, dominating set, and subset
dominating set for graphs with bounded expansion. These results seems to be
new. Naturally, these results immediately extend to low-density graphs. We get
faster algorithms for low-density graphs than implied by polynomial expansion
by using the underlying geometry of these graphs.

The low-density algorithms are complimented by matching hardness results
that suggest our approximations are nearly optimal with respect to depth (under
SETH). The context of our results, for geometric settings, is summarized in
Figure 1 and Figure 2.

Paper Organization. We describe low-density graphs in Section 2.1 and prove
some basic properties. Bounded expansion graphs are surveyed in Section 2.2.
Section 3 presents the new approximation algorithms and Section 4 present the
hardness results. Proofs, where omitted, can be found in the full version of this
paper [21].

2 Preliminaries

2.1 Low-Density Graphs

One of the two main thrusts of this work is to investigate the following family
of graphs.

Definition 1. A set of objects F in R
d (not necessarily convex or connected)

has density ρ if any ball � intersects at most ρ objects in F with diameter larger
than the diameter of �, the minimum such quantity is denoted by density(F). If
ρ is a constant, then F has low density.

Any graph that is the intersection graph of a set of objects F in R
d with density

ρ is ρ-dense. The class of all graphs that are ρ-dense and are induced by objects
in R

d is denoted by Cd
ρ.

A set of α-fat convex objects in R
d with bounded depth had bounded density,

where a set has depth k if every point in R
d is covered at most k times. This

fact is well known, see [21].
A graph G is k-degenerate if any subgraph of G has a vertex of degree at

most k.

Observation 1. A ρ-dense graph is (ρ−1)-degenerate (with degree ρ−1 attained
by the object with smallest diameter). Therefore, a ρ-dense graph with n vertices
has at most (ρ− 1)n edges.

Definition 2. A metric space X is a doubling space if there is a universal
constant cdbl > 0, such that any ball � of radius r can be covered by cdbl balls
of half the radius. Here cdbl is the doubling constant, and its logarithm is the
doubling dimension.
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In R
d the doubling constant is cd = 2O(d), and the doubling dimension is

O(d) [41], making the doubling dimension a natural abstraction of the notion of
dimension in the Euclidean case.

Lemma 1. Let F be a set of objects in R
d with density ρ. Then, for any

α ∈ (0, 1), a ball � = �(c, r) can intersect at most ρc
�lg 1/α�
dbl objects of F with

diameter ≥ α · 2r, where lg = log2 and cdbl is the doubling constant of Rd.

Proof. Cover � by minimum number balls of radius ≤ αr. By the definition of

the doubling constant, the number of balls needed is c
�log2 1/α�
dbl . Each of these

balls, by definition of density, can intersect at most ρ objects of F of diameter
larger than α · 2r, which implies the claim. �	

The density definition can be made to be somewhat more flexible, as follows.

Lemma 2. Let α > 0 be a parameter, and let F be a collection of objects in
R

d such that, for any r, any ball with radius r intersects at most ρ objects with

diameter ≥ 2αr. Then F has density c
�logα�
dbl ρ.

Proof. Let � be a ball with radius r. We can cover � with c
�logα�
dbl balls with

radius r/α. Each r/α-radius ball can intersect at most ρ objects with diameter

2α · (r/α) = 2r, so � intersects at most c
�logα�
dbl ρ balls with radius r. �	

2.1.1 Minors of Low-Density Objects. Let F and G be two collections of
objects in R

d. G is a minor of F if it can be obtained by deleting objects and
replacing pairs of overlapping objects f and g (i.e., f ∩ g �= ∅) with their union
f ∪ g. A sequence of unions and deletions taking F to G, where every object of
G corresponds to a cluster of objects of F . If the intersection graphs of each of
these clusters has radius t, then G is a t-shallow minor of F .

Surprisingly, even for a set F of fat and convex shapes in the plane with
constant density, their intersection graph GF can have arbitrarily large cliques as
minors (see Figure 3). On the other hand, there is a simple relationship between
the depth of a shallow minor of objects and its density.

Lemma 3. Let F be a collection of objects with density ρ in R
d, and let G be

t-shallow minor of F . Then G has density at most tO(1)ρ.

Proof. Every object g ∈ G has a defining subset Fg ⊆ F . These sets are disjoint,
and let P = {Fg | g ∈ G} be the induced partition of F into clusters. Next,
consider any ball � = �(c, r), and suppose that g ∈ G intersects � and it has
diameter at least 2r, and let Fg ∈ P be its defining cluster, and H = GFg be its
associated intersection graph. By assumption H has (graph) diameter ≤ t.

Now, let h be any object in Fg that intersect �, let dH denote the shortest
path metric of H (under the number of edges), and let h′ be the object in Fg

closest to h (under dH), such that diam(h′) ≥ 2r/t (if there is no such object
then the diameter of diam(g) < t(2r/t) ≤ 2r, which is a contradiction).



722 S. Har-Peled and K. Quanrud

(A) (B) (C) (D) (E)

Fig. 3. (A) and (B) are two low-density collections of n2 disjoint horizontal slabs,
whose intersection graph (C) contains n rows as minors. (D) is the intersection graph
of a low-density collection of vertical slabs that contain n columns as minors. In (E),
the intersection graph of all the slabs contain the n rows and n columns as minors that
form a Kn,n bipartite graph, which in turn contains an n+ 1 vertex clique minor.

Consider the shortest path π ≡ h1, . . . , hτ between h = h1 and h′ = hτ in H,
where τ ≤ t. Observe that, for i = 1, . . . τ − 1, diam(hi) < 2r/t, and thus the

distance between � and h′ is bounded by
∑τ−1

i=1 diam(hi) ≤ (τ − 1)2r/τ < 2r.
We refer to h′ as the representative of g, denoted by rep(g) ∈ Fg.

Now, let H =
{
rep(g) ∈ F

∣∣∣ g ∈ G, diam(g) ≥ 2r, and g ∩ � �= ∅
}
. The repre-

sentatives in H are all unique, each is of diameter ≥ 2r/t, all of them intersect
�(c, 3r), and they all belong to F , a set of density ρ. Lemma 1 implies that

|H| ≤ ρc
�lg t�
dbl , implying the claim. �	

2.2 Graphs with Polynomial Expansion

Let G be an undirected graph. A minor of G is a graph H that can be obtained
by contracting edges, deleting edges, and deleting vertices from G. If H is a minor
of G, then each vertex in H corresponds to a connected subset of vertices in G,
based on the contraction of edges. H is a t-shallow minor (or a minor of
depth t) of G, where t is an integer, if each cluster of vertices has radius at most
t. Let ∇t(G) denote the set of all graphs that are minors1 of G of depth t.

The greatest reduced average density of rank r (denoted �r) of G is the quantity

�r(G) = supH∈∇r(G)
|E(H)|
|V(H)| [33]. The expansion of a graph class C is the function

f : N → N ∪ {∞} defined by f(r) = supG∈C �r(G). The class C has bounded
expansion if f(r) is finite for all r. Specifically, C has polynomial expansion
if f is (bounded by) a polynomial, subexponential expansion if f is (bounded by)
a subexponential function, and so forth. The polynomial expansion is of order
k if f(x) = O(xk).

For example, the class of planar graphs has constant expansion because pla-
nar graphs are sparse and every minor of a planar graph is planar. More sur-
prisingly, Lemma 3 together with Observation 1 implies that low-density graphs
have polynomial expansion.

Lemma 4. Let ρ > 0 be fixed. The graph class Cd
ρ of ρ-dense graphs in R

d has

polynomial expansion bounded by f(t) = ρt�log cdbl�.
1 I.e., these graphs can not legally drink alcohol.
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2.2.1 Separators and Divisions. Nešetřil and Ossona de Mendez showed
that graphs with subexponential expansion have subexponential-sized separator.
For the simpler case of polynomial expansion, we have the following.

Theorem 2 ([34, Theorem 8.3]). Let C be a class of graphs with polynomial
expansion of order k. For any graph in C with n vertices and m edges, one
can compute, in O

(
mn1−α log1−α n

)
time, a separator of size O

(
n1−α log1−α n

)
,

where α = 1/(2k + 2).

For the sake of completeness, a proof is provided in full version of this paper.
This result is well known, and we simply retrace the calculations of [34] for
polynomial f instead of subexponential f .

Theorem 2 gives us a strongly sublinear separator for low-density graphs of

size O

((
ρ2n logn

)1− 1
O(log cdbl)

)
. Geometric arguments give a slightly stronger

separators, of size O(ρ + ρ1/dn1−1/d), in R
d. For the sake of completeness, an

algorithm to compute such a separator, which also exposes the structure of low-
density objects, is provided in the full version.

Consider a set V, and a family W of subsets C1, . . . , Ck ⊆ V such that V =⋃k
i=1 Ci. A set Ci is a cluster and the entire collection W = {C1, . . . , Ck} is a

cover . A cover of a graph G = (V,E) is a cover of its vertices. Given a cover
W , the excess of a vertex v ∈ V that appears in j clusters is j − 1. The total
excess of the cover W is the sum of excesses of all the vertices in V.

A cover C of G is a λ-division if (i) for all C,C′ ∈ C, C \C′ and C′ \C are
separated in G (i.e., there is no edge between these sets of vertices in G), and
(ii) for all C ∈ C, |C| ≤ λ. A vertex v ∈ V is an interior vertex of a cover W if
it appears in exactly one cluster of W (and its excess is zero), and a boundary
vertex otherwise. By property (i), the entire neighborhood of an interior vertex
of a division lies in the same cluster.

The property of a class of graph having λ-divisions is slightly stronger than
being weakly hyperfinite. A graph is weakly hyperfinite if there is a small subset
of vertices whose removal leaves small connected components [35, Section 16.2].
λ-divisions also provide such a set: the set of all boundary vertices. The connected
components induced by removing the boundary vertices are not only small, but
the neighborhoods of these components are small as well.

As noted by Henzinger et al. [23], strongly sublinear separators obtain λ-
divisions with total excess εn for λ = poly(1/ε). Such divisions were first used
by Frederickson in planar graphs [16]. A proof of the following well-known result
is provided in the full version.

Lemma 5. Let G be a graph with n vertices, such that any induced subgraph
with m vertices has a separator with O(mα logβ m) vertices, for some α < 1 and
β ≥ 0. Then, for ε > 0, the graph G has λ-divisions with total excess εn, where

λO

((
ε−1 logβ ε−1

)1/(1−α)
)
.

In this paper, we are concerned specifically with divisions of polynomial ex-
pansion graphs and low-density graphs.
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Lemma 6. (a) Let G be a graph with n vertices and polynomially expansion of
degree k, and let ε > 0 be fixed. Then graph λ-divisions with total excess εn

for λ = O
(
(1/ε)2k+2 log2k+1(1/ε)

)
.

(b) Let G be a ρ-dense graph with n vertices. Then G has λ-divisions with total
excess at most εn, for λ = O

(
ρ/εd

)
.

3 Approximation Algorithms

Independent Set. Given an undirected graph G = (V,E), an independent set
is a set of vertices S ⊆ V such that no two vertices in S are connected by an
edge. It is NP-Complete to decide if a graph contains an independent set of
size k [24], and one cannot approximate the size of the maximum independent
set to within a factor of n1−ε, for any fixed ε > 0, unless P = NP [22].

Chan and Har-Peled [12] gave a PTAS for independent set with planar graphs,
and the algorithm and its underlying argument extends to hereditary graph
classes with strongly sublinear separators. The algorithm starts with an empty
independent set, and repeatedly performs beneficial local exchanges of constant
size in the independent set until it reaches a maximal independent set.

Lemma 7. Let C be a hereditary graph class with f(ε)-divisions of total excess
εn. For any ε > 0, and graph G = (V,E) ∈ C, the f(ε)-local search algorithm
computes, in nO(f(ε)) time, a (1−2ε)-approximation for the maximum cardinality
independent subset of V.

In particular, we obtain a PTAS for independent set in graph classes with poly-
nomial expansion and low-density.

Theorem 3. Let C be a graph class with polynomial expansion of order k, and
let ε > 0 be fixed. For λ = Õ((1/ε)2k+2), the λ-local search algorithm computes
a (1− 2ε) approximation for the maximum size independent set of any graph in
C in running time nO(λ).

Theorem 4. Let ε > 0 be given, and F a collection of objects in R
d. Then the

local search algorithm computes a (1 − ε)-approximation for the maximum size

independent subset of F in time nO(ρ/εd).

These bounds are slightly stronger than those obtained by naively applying
Theorem 3, because of stronger geometric separators.

The proof of Lemma 7 extends immediately to more general packing problems;
namely, to graphs satisfying a hereditary and mergeable property Π , as defined
by Har-Peled in [20, Section 5]. Thus, this class of packing problem also has
PTAS’s on low-density graphs and graph classes with polynomial expansion.
These details are deferred to the full version.

Dominating Set. Given an undirected graph G = (V,E), a dominating set is
a set of vertices D ⊆ V such that every vertex in G is either in D or adjacent
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to a vertex in D by an edge. It is NP-Complete to decide if a graph contains
a dominating set of size k (by a simple reduction from set covering, which is
NP-Complete [24]), and one cannot obtain a c logn approximation (for some
constant c) unless P = NP [37].

More generally, let G = (V,E) be an undirected graph, and let C,D ⊆ V be
two subset of vertices. We say D dominates C if every vertex in C either is in D
or is adjacent to some vertex in D. In the subset dominating set problem , we
are given an undirected graph G = (V,E) and two subsets of vertices C,D ⊆ V
such that D dominates C, and the goal is to compute the minimum cardinality
subset of D that dominates C.
Theorem 5. Let C be a graph class with polynomial expansion of order k, and
let ε > 0 be fixed. Given an instance (G = (V,E), C,D) of the subset dominating

set problem with G ∈ C with n vertices, for λ = Õ((1/ε)2k+2), the λ-local search
algorithm computes a (1 + 3ε)-approximation for the smallest cardinality subset
of D that dominates C in time nO(λ).

We thus immediately obtain PTAS’s for dominating set type problems on low-
density graphs, and highlight two geometric versions in particular. Let F be a
collection of objects in R

d and P a collection of points. In the discrete hitting
set problem , we want to compute the minimum cardinality set Q ⊆ P such
that for every f ∈ F , we have Q∩ f �= ∅. In the discrete geometric set cover
problem , we want to compute the smallest cardinality set G ⊆ F such that for

every point p ∈ P, we have p ∩
(⋃

f∈G f
)
�= ∅.

Theorem 6. Let F be a collection of m objects in R
d with density ρ, and let P

be a set of n points in R
d.

(a) The local search algorithm, for exchanges of size λ = O(ρ/εd), computes a
subset Q ⊆ P that is a (1 + ε)-approximation for the smallest cardinality
subset of P that is a hitting set for F . The running time of the algorithm is
mnO(λ).

(b) The local search algorithm for exchanges of size λ = O(ρ/εd), computes a
subset G ⊆ F that is a (1 + ε)-approximation for the smallest cardinality
subset of F that covers P. The running time of the algorithm is nmO(λ).

To our knowledge, these are the first PTAS’s for discrete hitting set and dis-
crete set cover with shallow fat triangles and similar fat objects. Previously, such
algorithms were known only for disks and points in the plane.

The proof of Theorem 5 for subset dominating set extends to natural variants
such as edge cover, vertex cover, distance dominating set, dominating set with
multiplicities, and connected dominating set. These reductions, provided in the
full version, attest to the robustness of the class of graphs with polynomial
expansion.

4 Hardness of Approximation

Some of the results of this section appeared in an unpublished manuscript [19].
Chan and Grant [11] also prove some related hardness results, which were (to
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some extent) a followup work to the aforementioned manuscript [19]. Proofs of
the following hardness results, as well as some other results omitted due to space
constraints, are provided in the full version.

In the fat-triangles discrete hitting set problem , we are given a set of
points in the plane P and a set of fat triangles T, and want to find the smallest
subset of P such that each triangle in T contains at least one point in the set.

Lemma 8. There is no PTAS for the fat-triangle discrete hitting set problem,
unless P = NP. One can prespecify an arbitrary constant δ > 0, and the claim
would hold true even with the following restrictions hold on the given instance
(P,T): (A) Every angle of every triangle in T is between 60 − δ and 60 + δ
degrees. (B) No point of P is covered by more than three triangles of T. (C) The
points of P are in convex position. (D) All the triangles of T are of similar size.
Specifically, each triangle has side length in the range (say) (

√
3 − δ,

√
3 + δ).

(E) The points of P are a subset of the vertices of the triangles of T.

Let P be a set of n points in the plane, and F be a set of m regions in the
plane, such that (I) the shapes of F are convex, fat, and of similar size, (II) the
boundaries of any pair of shapes of F intersect in at most 6 points, (III) the
union complexity of any m shapes of F is O(m), and (IV) any point of P is
covered by a constant number of shapes of F. We are interested in finding the

minimum number of shapes of F that covers all the points of P. This variant is
the friendly geometric set cover problem.

Lemma 9. There is no PTAS for the friendly geometric set cover problem, un-
less P = NP.

The exponential time hypothesis (ETH), is that 3SAT can not be solved
in time better than 2Ω(n), where n is the number of variables. The strong
exponential time hypothesis (SETH), is that the time to solve kSAT is at
least 2ckn, where ck converges to 1 as k increases.

Lemma 10. Assuming ETH, an instance of geometric set cover with n fat trian-
gles, and density at least Ω(logc n), can not be (1+ε)-approximated in polynomial
time, where c is a sufficiently large constant.

The same holds if the triangles are replaced by objects with low density, and
for geometric hitting set.
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Abstract. A monotone drawing of a graph G is a straight-line drawing
of G such that, for every pair of vertices u,w in G, there exists a path
Puw in G that is monotone on some line luw. (Namely, the order of the
orthogonal projections of the vertices in Puw on luw is the same as the
order they appear in Puw.) In this paper, we show that the classical
Schnyder drawing of 3-connected plane graphs is a monotone drawing
on a grid of size f × f (f ≤ 2n− 5 is the number of internal faces of G),
which can be constructed in O(n) time. It also has the advantage that,
for any given vertices u,w, the monotone line luw can be identified in
O(1) time.

1 Introduction

A straight-line drawing of a plane graph G is a drawing Γ in which each vertex
of G is drawn as a distinct point on the plane and each edge of G is drawn as
the line segment connecting two end vertices without any edge crossing. A path
P in a straight-line drawing Γ is monotone if there exists a line l such that the
orthogonal projections of the vertices of P on l appear along l in the order they
appear in P . We call l a monotone line (or monotone direction) of P . Γ is called
a monotone drawing of G if it contains at least one monotone path Puw between
every pair of vertices u,w of G. We call the monotone direction luw of Puw the
monotone direction for u,w.

Monotone drawings are introduced by Angelini et. al. as a new visualization
paradigm in [1]. Consider the example described in [1]: a traveler uses a road
map to find a route from a town u to a town w. He would like to easily spot a
path connecting u and w. This task is harder if each path from u to w on the map
has legs moving away from u. The traveler rotates the map to better perceive
its content. Hence, even if in the original map orientation all the paths from u
to w have annoying back and forth legs, the traveler might be happy to find
one map orientation where a path from u to w smoothly goes from left to right.
This approach is also motivated by human subject experiments: it was shown
that the “geodesic tendency” (paths following a given direction) is important in
understanding the structure of the underlying graphs [12].

� Research supported in part by NSF Grant CCR-1319732.
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Monotone drawing is also closely related to several other important graph
drawing problems. In a monotone drawing, each monotone path is monotone
with respect to a different line. In an upward drawing [8,10], every directed
path is monotone with respect to the positive y direction. Even more related to
monotone drawings are greedy drawings [2,14,15]. In a greedy drawing, for any
two vertices u, v, there exists a path Puv from u to v such that the Euclidean
distance from an intermediate vertex of Puv to the destination v decreases at each
step. In a monotone drawing, for any two vertices u, v, there exists a path Puv

from u to v and a line luv such that the Euclidean distance from the projection
of an intermediate vertex of Puv on l to the projection of the destination v on l
decreases at each step.

Related Works. It was shown by Angelini et. al. in [1] that every tree of n
vertices has a monotone drawing of size O(n2)×O(n), or O(n1.58)×O(n1.58). It
was also shown that every biconnected planar graph of n vertices has a monotone
drawing in real coordinate space. Several papers have been published after [1].
The focus of the research is to identify the graph classes having monotone draw-
ings and, if so, to find a monotone drawing with size as small as possible. It was
shown by Angelini et. al. in [3] that every planar graph has a monotone drawing
of size O(n)×O(n2). However, the drawing presented in [3] is not straight-line.
It may need up to 4n− 10 bends in the drawing. [13] showed that every tree has
a monotone drawing of size O(n1.5)×O(n1.5). Recently it was shown that every
planar graph has a monotone drawing of size O(n2)×O(n) [11]. The main goal
of this paper is to show that every 3-connected plane graph G has a monotone
drawing of size O(n)×O(n).

Let G be a 3-connected plane graph. A straight-line drawing Γ of G is called
convex if every face of G is drawn as a convex polygon in Γ . Γ is called strictly
convex if the internal angles of every convex polygon in Γ is strictly less than
180◦. By using a result of [4], Angelini et. al. showed that every strictly convex
drawing of G is monotone [1]. The condition strictly convex is crucial here. For
example, consider a convex drawing Γ of G. Suppose that Γ contains a face
F with three consecutive vertices u1, u2, u3 and other three consecutive vertices
v1, v2, v3 such that (i) the internal angles of F at u2 and v2 are 180◦, and (ii) the
line passing through u1, u2, u3 and the line passing through v1, v2, v3 are parallel
in Γ . Then, there exists no monotone path in Γ between u2 and v2.

Every 3-connected plane graph admits an elegant combinatorial structure
called Schnyder wood (to be defined later). By using Schnyder wood, one can
obtain a convex drawing of G on a grid of size f × f [7,9]. (f is the number
of internal faces of G). Note that f ≤ 2n − 5 by Euler formula. We call such
drawings the Schnyder drawing. Bonichon et. al. reduced the drawing size to
(n − 1 − Δ) × (n − 1 − Δ) [6], (where Δ is the number of cyclic cycles in the
minimal Schnyder wood of G, a parameter with range 0 ≤ Δ ≤ (n/2)− 2). The
drawings in [7,6,9] are not strictly convex, hence not known to be monotone.

Rote showed that every 3-connected planar graph has a strictly convex draw-
ing on a grid of size O(n7/3) × O(n7/3) [16]. The size of the drawing grid was
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reduced to O(n2)×O(n2) in [5]. From the results in [1], this implies a monotone
drawing of size O(n2)×O(n2) for 3-connected plane graphs.

Our Results:

– We show that the Schnyder drawing (as described in [9]), although not
strictly convex, is actually monotone. Since the size of the drawing is f × f
(f ≤ 2n − 5), this is the first monotone drawing with area o(n3) for this
subclass of planar graphs.
In addition, we show that the Schnyder drawing has the following advantages:

– In the monotone drawing in [1], the monotone direction luw for two vertices
u,w depends on u and w. Hence, we may need n2 different monotone direc-
tions luv for different pairs u and w. In contrast, for the Schnyder drawing,
we only need 6 intervals of monotone directions for any vertex pair u,w.

– In the monotone drawing in [1], one needs to search the monotone direction
luw for the given two vertices u,w. The search procedure in [1] is adapted
from [4], which takes O(n logn) time. In contrast, for the Schnyder drawing,
we can identify the interval of monotone directions for u,w in O(1) time
(after O(n) time pre-processing).

2 Preliminaries

Most definitions in this paper are standard. A planar graph is a graph G such
that the vertices of G can be drawn in the plane and the edges in G can be
drawn as non-intersecting curves. Such a drawing is also called an embedding.
The embedding of G divides the plane into a number of connected regions called
faces. The unbounded face is the external face. The other faces are internal faces.
The vertices and edges not on the external face are internal vertices and edges. A
plane graph is a planar graph with a fixed embedding. We abbreviate the words
“counterclockwise” and “clockwise” as ccw and cw, respectively.

Let p be a point in the plane and let l be a half-line with p as its starting
point. The slope of l, denoted by slope(l), is the angle spanned by a ccw rotation
that brings the line in the positive x-axis direction to overlap with l.

In this paper, we only consider straight-line drawings (i.e. each edge of G is
drawn as a straight-line segment between its end vertices.) Let Γ be such a
drawing of G and let e = (u,w) be an edge of G. The direction of e, denoted by
d(u,w) or d(e), is the half-line starting at u and passing through w. The slope
of an edge (u,w), denoted by slope(u,w), is the slope of d(u,w). Observe that
slope(u,w) = slope(w, u) − 180◦. When comparing directions and their slopes,
we assume that they are applied at the origin of the axes.

Let P (u1, uk) = (u1, . . . , uk) be a path of G. We also use P (u1, uk) to denote
the drawing of the path in Γ . P (u1, uk) is monotone with respect to a direction
d if the orthogonal projections of the vertices u1, . . . , uk on d appear in the same
order as they appear on the path. P (u1, uk) is monotone if it is monotone with
respect to some direction. A drawing Γ is monotone if there exists a monotone
path P (u,w) for every pair of vertices u,w in Γ .
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Let emin and emax be the edges in P (u1, uk) with the smallest and the largest
slope, respectively. They are called the extremal edges of P (u1, uk). The closed
interval [slope(emin), slope(emax)] is called the range of P (u1, uk) and denoted
by range(P (u1, uk)). Note that slope(ui, ui+1) ∈ range(P (u1, uk)) for all edges
(ui, ui+1) (1 ≤ i ≤ k − 1) in P (u1, uk). The following property of monotone
drawings is proved in [1].

Property 1. A path P (u1, uk) with range [slope(emin), slope(emax)] is monotone
if and only if slope(emax)− slope(emin) < 180◦. (See Fig 1.)

Let P (u1, uk) = (u1, . . . , uk) be a monotone path in Γ with the extremal
edges emin and emax. Let a = slope(emax)− 90◦ and b = slope(emin) + 90◦. Note
that a < b (because slope(emax)− slope(emin) < 180◦). We call the open interval
(a, b) the interval of monotone directions for P (u1, uk).

Property 2. Let P (u1, uk) be a monotone path with (a, b) as its interval of mono-
tone directions. For any direction l with slope(l) ∈ (a, b), P (u1, uk) is monotone
with respect to l.

u
1

1 k
u

k

e
min

e
max

mind(e     )

d l

d(e     )max P(u  , u  )

c

Fig. 1. Illustration of Property 1 and 2; slope(c) = a◦; slope(d) = b◦.

Proof. Let l be such a direction. For any edge e ∈ P (u1, uk), the angle between
e and l is strictly between −90◦ and 90◦ (see Fig 1). Thus the order of the
projections of the vertices in P (u1, uk) on l is the same as the order they appear
in P (u1, uk). �

The following structure of 3-connected plane graphs is defined in [7,18].

Definition 1. Let G be a 3-connected plane graph with three external vertices
v1, v2, v3 in ccw order. A Schnyder wood of G is a triplet of rooted spanning
trees {T1, T2, T3} of G such that:

1. For i ∈ {1, 2, 3}, the root of Ti is vi, and the edges of G are directed from
children to parent in Ti.

2. Each edge e of G is contained in at least one and at most two spanning trees.
If e is contained in two trees, then it has different directions in the two trees.
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3. For each vertex v /∈ {v1, v2, v3} of G, v has exactly one edge leaving v in
each of T1, T2, T3. The ccw order of the edges incident to v is: leaving in T1,
entering in T3, leaving in T2, entering in T1, leaving in T3, entering in T2.
Each entering block may be empty.

4. An edge with two opposite directions is considered twice. The first and the
last incoming edges are possibly coincident with the outgoing edges.

5. For i ∈ {1, 2, 3}, all the incoming edges incident to vi belong to Ti.

v 1

v 3

v 1

1
R (u)

R (u)
2

R (u)
3

P (u)1

P (u)3

v 2 v 2
v 2

T 1

T 1
T 3

T 2

T 2

T 1

a

b

c

f

d
e

g

(3)

u

(4)

P (u)
2

(1)

T2

T
3

(2)

2

3

T

T 1T

T
3

v v

Fig. 2. (1), (2) two examples of edge pattern around an internal vertex v; (3) a 3-
connected graph G with its Schnyder wood; (4) the paths Pi(u) and the regions Ri(u).

Figure 2 (1) and (2) show two examples of the edge pattern around an interval
vertex v. (The edges in T1, T2, T3 are drawn as solid (red), dashed (blue) and
dotted (green) lines, respectively). In the second example, the edge leaving v
in T3 and an edge entering v in T2 are the same edge. Figure 2 (3) shows an
example of the Schnyder wood of a 3-connected plane graph.

In [7], it was shown that every 3-connected plane graph has a Schnyder wood,
which can be compute in linear time. For each vertex u of G and i ∈ {1, 2, 3},
Pi(u) denotes the path in Ti from u to the root vi of Ti. We also use Pi(u) to
denote the set of the vertices in Pi(u). The sub-path of the external face of G
with end vertices v1 and v2 and not containing v3 is denoted by ext(v1, v2). The
sub-paths ext(v2, v3) and ext(v3, v1) are defined similarly.

Let pi(u) denote the parent of u in Ti. Then, u is an i-child of pi(u). If there
is a path in Ti from u to w, then w is an i-ancestor of u, and u is an i-descendant
of w. Schnyder woods have been well studied in [7,9]. They have the following
properties:

Property 3. Let G be a 3-connected plane graph with n vertices and m edges.
Let R = {T1, T2, T3} be a Schnyder wood of G, where Ti is a spanning tree
rooted at the vertex vi for i ∈ {1, 2, 3}.

1. For each vertex u of G, P1(u),P2(u) and P3(u) have only vertex u in common.
2. For i, j ∈ {1, 2, 3}(i �= j) and two vertices u and w, the intersection of Pi(u)

and Pj(w) is either empty or a common sub-path.
3. For the vertices v1, v2, v3 the following hold: P1(v2) = P2(v1) = ext(v1, v2);

P2(v3) = P3(v2) = ext(v2, v3); P3(v1) = P1(v3) = ext(v3, v1).
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For each vertex u /∈ {v1, v2, v3}, the three paths P1(u), P2(u), P3(u) divide G
into three regions R1(u), R2(u), R3(u) (see Fig 2 (4)): Ri(u) denotes the region of
G bounded by the paths Pi−1(u), Pi+1(u) and the external path ext(vi−1, vi+1).
(We assume a cyclic order on the set {1, 2, 3} so that i− 1 and i+1 are always
defined. Namely if i = 3 then i + 1 = 1; if i = 1 then i − 1 = 3). We also use
Ri(u) to denote the set of the vertices in the region Ri(u). (For each external
vertex vi (i ∈ 1, 2, 3), Pi(vi) = {vi}. So only Ri(vi) contains faces in it. Ri−1(vi)
and Ri+1(vi) contain no faces.)

v 2
0 3 6 9 11

v 3

v 1

3

6

9

11

a

b

c

f

d e

g

Fig. 3. Schnyder drawing of the graph
shown in Fig 2 (3).

Table 1. Coordinates of the vertices in
the drawing in Fig 3.

x1(∗) x2(∗) x3(∗)
v1 11 0 0
v2 0 11 0
v3 0 0 11
a 4 6 1
b 6 3 2
c 8 0 3
d 4 4 3
e 3 3 5
f 7 0 4
g 1 4 6

Definition 2. [7]. For a vertex u in G, xi(u) (i ∈ {1, 2, 3}) denotes the number
of faces of G in the region Ri(u). They are called Schnyder coordinates of u.

The following elegant theorem was proved in [7,9,18].

Theorem 1. Fix any pair i, j ∈ {1, 2, 3} (i �= j). Take X(u) = xi(u) and
Y (u) = xj(u) as the x- and y-coordinates for each vertex u in G. Then, we
obtain a straight-line convex drawing of G on an f × f grid (f is the number of
internal faces of G).

By Theorem 1, there are six different Schnyder drawings. In the rest of the
paper, we consider a particular Schnyder drawing Γ ∗ using x3(u) as the x-
coordinate and x1(u) as the y-coordinate. The results obtained in this paper
can be easily adapted to other five Schnyder drawings. From now on, Γ ∗ always
denotes this particular Schnyder drawing. Figure 3 shows the drawing Γ ∗ of the
graph in Figure 2 (3). Table 1 shows the vertex coordinates of Γ ∗.

3 Schnyder Drawing of 3-Connected Plane Graphs is
Monotone

In this section, we show that the Schnyder drawing Γ ∗ derived from a Schnyder
wood R = {T1, T2, T3} is monotone. First, we show a special property of Γ ∗

required by our proofs. By Definition 1, any edge e = (u,w) of G belongs to
at least one and at most two Ti (i ∈ {1, 2, 3}). In the following, the notation
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e = (u,w) ∈ T1 means either e only belongs to T1, or e belongs to both T1 and
T2, or e belongs to both T1 and T3. In all three cases, u is a child of w in T1.
The meanings of the notations e ∈ T2 and e ∈ T3 are similar.

Lemma 1. Let Γ ∗ be the Schnyder drawing of G and e = (u,w) an edge of G.

1. Suppose e ∈ T1. If e only belongs to T1, slope(u,w) ∈ (90◦, 135◦). If e belongs
to T1 and T2, slope(u,w) = 90◦. If e belongs to T1 and T3, slope(u,w) =
135◦.

2. Suppose e ∈ T2. If e only belongs to T2, slope(u,w) ∈ (180◦, 270◦). If
e belongs to T2 and T1, slope(u,w) = 270◦. If e belongs to T2 and T3,
slope(u,w) = 180◦.

3. Suppose e ∈ T3. If e = (u,w) only belongs to T3, slope(u,w) ∈ (315◦, 360◦).
If e belongs to T3 and T1, slope(u,w) = 315◦. If e belongs to T3 and T2,
slope(u,w) = 360◦.

Proof. Let X(u) = x3(u) and Y (u) = x1(u) be the x- and y-coordinate of the
vertex u in Γ ∗.

ww
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Fig. 4. The proof of Lemma 1. (1) Case 1a; (2) Case 1b; (3) Case 1c.

Case 1: e = (u,w) ∈ T1. In this case, u is a 1-child of w.
Case 1a: (u,w) belongs to T1 only (Fig 4 (1)). Then, we have R1(w) ⊃ R1(u),

R2(w) ⊂ R2(u) and R3(w) ⊂ R3(u). Let A = R3(u)− R3(w) and B = R2(u)−
R2(w) be the regions shown in Fig 4 (1). Let |A| and |B| denote the number of
faces in the region A and B. Note that |A| > 0 and |B| > 0. Define Δ(X) =
X(w) − X(u) and Δ(Y ) = Y (w) − Y (u). Then, Δ(X) = −|A| and Δ(Y ) =
|A|+ |B|. This implies slope(u,w) ∈ (90◦, 135◦) (see Figure 4 (1)).

Case 1b: (u, v) belongs to T1 and T2 (Fig 4 (2)). Then, we haveR1(w) ⊃ R1(u),
R2(w) ⊂ R2(u) and R3(w) = R3(u). Let B = R2(u)−R2(w) be the region shown
in Fig 4 (2). Then, Δ(X) = X(w)−X(u) = 0 and Δ(Y ) = Y (w)−Y (v) = |B| >
0. This implies slope(u,w) = 90◦ (see Figure 4 (2)).

Case 1c: (u, v) belongs to T1 and T3 (Fig 4 (3)). Then, we haveR1(w) ⊃ R1(u),
R2(w) = R2(u) and R3(w) ⊂ R3(u). Let A = R3(u)−R3(w) be the region shown
in Fig 4 (3). Then,Δ(X) = X(w)−X(u) = −|A| andΔ(Y ) = Y (w)−Y (v) = |A|.
This implies slope(u,w) = 135◦ (see Figure 4 (3)).

Case 2: e = (u,w) ∈ T2. In this case, u is a 2-child of w (see Figure 5 (1)).
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By similar analysis as in Case 1, we have R1(w) ⊆ R1(u), R2(w) ⊇ R2(u) and
R3(w) ⊆ R3(u). Let A = R1(u) − R1(w) and B = R3(u) − R3(w). (Note that
either A or B may contain no faces.)

If e = (u,w) only belongs to T2, then |A| > 0 and |B| > 0. We have Δ(X) =
−|B| < 0 and Δ(Y ) = −|A| < 0. This implies slope(u,w) ∈ (180◦, 270◦).

If e = (u,w) belongs to T2 and T1, then |B| = 0. We have Δ(X) = 0 and
Δ(Y ) = −|A| < 0. This implies slope(u,w) = 270◦.
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Fig. 5. The proof of Lemma 1. (1) Case 2; (2) Case 3.

If e = (u,w) belongs to T2 and T3, then |A| = 0. We have Δ(Y ) = 0 and
Δ(X) = −|B| < 0. This implies slope(u,w) = 180◦.

Case 3: e = (u,w) ∈ T3. In this case, u is a 3-child of w (see Figure 5 (2)).
By similar analysis as in Case 1, we have R1(w) ⊆ R1(u), R2(w) ⊆ R2(u) and

R3(w) ⊇ R3(u). Let A = R2(u) − R2(w) and B = R1(u) − R1(w). (Note that
either A or B may contain no faces.)

If e = (u,w) only belongs to T3, then |A| > 0 and |B| > 0. We have Δ(X) =
|A|+ |B| > 0 and Δ(Y ) = −|B| < 0. This implies slope(u,w) ∈ (315◦, 360◦) (see
Figure 5 (3)).

If e = (u,w) ∈ T3 and T1, then |A| = 0. We have Δ(X) = |B| and Δ(Y ) =
−|B|. This implies slope(u,w) = 315◦.

If edge e = (u,w) ∈ T3 and T2, then |B| = 0. We have Δ(X) = |A| > 0 and
Δ(Y ) = 0. This implies slope(u,w) = 360◦. �
Definition 3. Let u,w be two vertices of G such that u ∈ Ri(w) (i ∈ {1, 2, 3}).
1. A path P (u,w) in G is called an i-left path if there exists a vertex t in P (u,w)

(possibly t = u or t = w) such that:
– for any edge e in the sub-path P (u, t), e ∈ Ti.
– for any edge e in the sub-path P (t, w), e ∈ Ti+1.

2. A path P (u,w) in G is called an i-right path if there exists a vertex t in
P (u,w) (t �= u and t �= w) such that:
– for any edge e in the sub-path P (u, t), e ∈ Ti.
– for any edge e in the sub-path P (t, w), e ∈ Ti−1.

(For i = 1, i− 1 denotes 3. For i = 3, i+ 1 denotes 1).

Lemma 2. For any two vertices u and w (u �= w) in G, there always exists an
i-left or i-right path P (u,w) for some i ∈ {1, 2, 3}.
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Proof. Consider the three regions R1(w), R2(w) and R3(w) defined by the three
paths P1(w), P2(w), P2(w). We divide the proof into three cases depending on
the location of u.

Case 1: u ∈ R1(w) − P3(w). Follow the path P1(u) starting from u. Clearly,
this path must cross P2(w) or P3(w) at a vertex t.

Case 1-left: t ∈ P2(w). This case includes the sub-cases:

– u ∈ P2(w). In this case t = u (see the vertex u1 in Fig 6 (1)).
– u �∈ P2(w) and t = w (see the vertex u2 in Fig 6 (1)).
– u �∈ P2(w) and t �= w (see the vertex u3 in Fig 6 (1)).
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Fig. 6. The proof of Lemma 2. (1) The 1-left and 1-right path P (u,w); (2) the 2-left,
2-right, 3-left and 3-right paths P (u,w).

In any case, the concatenation of the sub-path of P1(u) between u and t and
the reverse of the sub-path P2(w) between t and w is the required 1-left path
P (u,w).

Case 1-right: t ∈ P3(w) − {w} (see the vertex u4 in Fig 6 (1)).
In this case, the concatenation of the sub-path of P1(u) between u and t and

the reverse of the sub-path P3(w) between t and w is the required 1-right path
P (u,w).

Case 2: u ∈ R2(w)−P1(w). Follow the path P2(u) starting from u. This path
must cross P1(w) or P3(w) at a vertex t. If t ∈ P3(w), we can obtain a 2-left
path P (u,w) (see the vertex u1 in Fig 6 (2)). If t ∈ P1(w)−{w}, we can obtain
a 2-right path P (u,w) (see the vertex u2 in Fig 6 (2)).

Case 3: u ∈ R3(w)−P2(w). Follow the path P3(u) starting from u. This path
must cross P1(w) or P2(w) at a vertex t. If t ∈ P1(w), we can obtain a 3-left
path P (u,w) (see the vertex u3 in Fig 6 (2)). If t ∈ P2(w)−{w}, we can obtain
a 3-right path P (u,w) (see the vertex u4 in Fig 6 (2)). �

Lemma 3. Let P (u,w) be an i-left or i-right path in the Schnyder drawing Γ ∗.

1. If P (u,w) is a 1-left path, range(P (u,w)) = [0◦, 135◦]. If P (u,w) is a 1-right
path, range(P (u,w)) = [90◦, 180◦].

2. If P (u,w) is a 2-left path, range(P (u,w)) = [180◦, 315◦]. If P (u,w) is a
2-right path, range(P (u,w)) = [135◦, 270◦].
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3. If P (u,w) is a 3-left path, range(P (u,w)) = [270◦, 360◦]. If P (u,w) is a
3-right path, range(P (u,w)) = [−45◦, 90◦].

Hence, by Property 1, all i-left and i-right paths (i ∈ {1, 2, 3}) are monotone.

Proof. The proof is divided into six cases depending on the type of P (u,w).
Case 1-left: P (u,w) is a 1-left path. In this case, P (u,w) is divided into two

sub-paths P (u, t) and P (t, w). For any edge ei in P (u, t), ei is in T1 and follows
the same direction of T1. By Lemma 1, slope(ei) ∈ [90◦, 135◦]. For any edge ej ∈
P (t, w), ej is in T2 but follows the opposite direction of T2. By Lemma 1, slope(ej)
∈ [0◦, 90◦]. Thus, for any edge e ∈ P (u,w), we have slope(e) ∈ [0◦, 135◦]. Fig 7
case 1-left shows the range(P (u,w)). (The left figure shows the path pattern of
P (u,w), the right figure shows the corresponding range(P (u,w))).

Case 1-right: P (u,w) is a 1-right path. In this case, P (u,w) is divided into
two sub-paths P (u, t) and P (t, w) (see Fig 7 case 1-right). For any edge ei in
P (u, t), ei is in T1 and follows the same direction of T1. By Lemma 1, slope(ei)
∈ [90◦, 135◦]. For any edge ej ∈ P (t, w), ej is in T3 but follows the opposite
direction of T3. By Lemma 1, slope(ej) ∈ [135◦, 180◦]. Thus, for any edge e ∈
P (u,w), we have slope(e) ∈ [90◦, 180◦].
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The proof for the other 4 cases are similar.
Case 2-left: P (u,w) is a 2-left path (see Fig 7 case 2-left). In this case, for any

edge e ∈ P (u,w), we have slope(e) ∈ [180◦, 315◦].
Case 2-right: P (u,w) is a 2-right path (see Fig 7 case 2-right). In this case,

for any edge e ∈ P (u,w), we have slope(e) ∈ [135◦, 270◦].
Case 3-left: P (u,w) is a 3-left path (see Fig 7 case 3-left). In this case, for any

edge e ∈ P (u,w), we have slope(e) ∈ [270◦, 360◦].
Case 3-right: P (u,w) is a 3-right path (see Fig 7 case 3-right). In this case,

for any edge e ∈ P (u,w), we have slope(e) ∈ [−45◦, 90◦]. �

By Lemmas 2, 3 and Property 1, we immediately have the following:

Theorem 2. The Schnyder drawing Γ ∗ of a 3-connected graph G is a monotone
drawing.

Next, we discuss how to find the monotone directions for two given vertices
u,w in G. By Lemma 3 and Property 2, we immediately have:

Lemma 4. Let P (u,w) be a path in Γ ∗.

1. The interval of monotone directions of a 1-left path P (u,w) is (45◦, 90◦).
2. The interval of monotone directions of a 1-right path P (u,w) is (90◦, 180◦).
3. The interval of monotone directions of a 2-left path P (u,w) is (225◦, 270◦).
4. The interval of monotone directions of a 2-right path P (u,w) is (180◦, 225◦).
5. The interval of monotone directions of a 3-left path P (u,w) is (270◦, 360◦).
6. The interval of monotone directions of a 3-right path P (u,w) is (0◦, 45◦).

Definition 4. Let u,w be two vertices of G. If there exists a path P (u,w) that
is a 1-left (1-right, 2-left, 2-right, 3-left, 3-right, respectively) path, we say the
relative position of u with respect to w is 1-left (1-right, 2-left, 2-right, 3-left,
3-right, respectively).

Theorem 3. Let G be a 3-connected plane graph. G can be pre-processed in
O(n) time such that, for any two vertices u and w (u �= w) in G, the interval of
monotone directions in Γ ∗ for u,w can be determined in O(1) time.

Proof. Let R = {T1, T2, T3} be the Schnyder wood of G for the drawing Γ ∗. We
perform ccw post-order traversal on T1 and assign post-order number N1(u) to
the vertices u in G. (Namely, we visit and number the vertices in the subtrees
rooted at the children of the root v1 of T1 recursively in ccw order, then we visit
and number the root v1).

Similarly, let N2(u) (N3(u), respectively) be the ccw post-order traversal num-
ber of u with respect to T2 (T3, respectively). N1(u), N2(u) and N3(u) for all
vertices u can be easily computed in O(n) time.

The following facts can be easily verified: the relative position of u with respect
to w is:
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1-left if and only if N2(u) < N2(w), N3(u) > N3(w) and N1(u) < N1(w).
1-right if and only if N2(u) < N2(w), N3(u) > N3(w) and N1(u) > N1(w).
2-left if and only if N3(u) < N3(w), N1(u) > N1(w) and N2(u) < N2(w).
2-right if and only if N3(u) < N3(w), N1(u) > N1(w) and N2(u) > N2(w).
3-left if and only if N1(u) < N1(w), N2(u) > N2(w) and N3(u) < N3(w).
3-right if and only if N1(u) < N1(w), N2(u) > N2(w) and N3(u) > N3(w).

Knowing N1(∗), N2(∗) and N2(∗), we can determine the relative position of u
with respect to w, and hence the interval of the monotone directions for u,w, in
O(1) time. �

4 Conclusion

In this paper, we presented a simple proof that the classical Schnyder drawing
of 3-connected plane graphs is a monotone drawing on a f × f grid, which can
be constructed in O(n) time. It also has the advantage that for any two vertices
u,w, the interval of monotone directions luw can be identified in O(1) time. This
is the first monotone drawing with o(n3) area for 3-connected plane graphs.
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Abstract. We give a new data structure for the fully-dynamic minimum spanning
forest problem in simple graphs. Edge updates are supported in O(log4 n/ log logn)
expected amortized time per operation, improving the O(log4 n) amortized bound
of Holm et al. (STOC ’98, JACM ’01). We also provide a deterministic data struc-
ture with amortized update time O(log4 n log log logn/ log logn). We assume the
Word-RAM model with standard instructions.

1 Introduction

A dynamic graph problem is that of maintaining a dynamic graph on n vertices where
edges may be inserted or deleted and possibly where queries regarding properties of
the graph are supported. We call the dynamic problem decremental resp. incremental if
edges can only be deleted resp. inserted, and fully dynamic if both edge insertions and
deletions are supported.

We consider the fully-dynamic minimum spanning forest (MSF) problem which is
to maintain a state for each edge of whether it belongs to the current MSF or not. After
an edge update, at most one edge becomes a new tree edge in the MSF and at most one
edge becomes a non-tree edge, and a data structure needs to output which edge changes
state, if any.

Dynamic MSF is one of the most fundamental dynamic graph problems, and the first
non-trivial solution was presented by Frederickson [4] in 1983. Frederickson achieved
a worst-case update time of O(

√
m) where m is the number of edges at the time of the

update. This was later improved by Eppstein et al. [3] to O(
√

n) using the sparsifica-
tion technique. Henzinger and King made a data structure with amortized update time
O( 3

√
n logn). Holm et al. [9] dramatically improved this amortized bound to O(log4 n).

All these bounds are for simple graphs (no parallel edges), but any MSF structure can
be extended to general graphs via a simple reduction that adds O(logm) to the update
time. In the following we will assume all graphs are simple unless otherwise stated.

We show how to support updates in O(log4 n/ loglogn) expected amortized time,
which is the first improvement in 17 years. To obtain this bound, we assume the Word-
RAM model of computation with standard instructions. More generally, our time bound
per update can be written as

O
(

log4 n
loglogn

· sort(logc n,n2)

logc n

)
,
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for some constant c > 0, where sort(k,r) is the time for sorting k natural numbers
with values in the range from 0 to r. Equivalenty, sort(k,r)/k is the operation time
of a priority queue. Thus, the update time of our structure depends on the model of
computation, and the choice of the priority queue that our structure uses as a building
block. The following table shows both deterministic and randomized variants of the
data structure differing only in the choice of priority queue.

Table 1. Update time, depending on choice of priority queue from [2, 5, 11, 13], see Section 1.1

Deterministic Randomized

RAM w. AC0 O(log4 n
√

log log logn/
√

loglogn) O(log4 n log loglogn/ log logn)

RAM, AC0, O(1) time mult. O(log4 n log log logn/ log logn) O(log4 n/ log logn)

1.1 Related Work

Holm et al. [9] gave a deterministic data structure for decremental MSF with O(log2 n)
amortized update time. Combining this with a slightly modified version of a reduc-
tion from fully-dynamic to decremental MSF of Henzinger and King [6], they ob-
tained their O(log4 n) bound for fully-dynamic MSF. A somewhat related problem to
dynamic MSF is fully-dynamic connectivity. Here a data structure needs to support in-
sertion and deletion of edges as well as connectivity queries between vertex pairs. The
problem was first studied by Frederickson [4] who obtained O(

√
m) update time O(1)

query time data structure. Update time was improved to O(
√

n) by Eppstein et al. [3].
Henzinger and King [7] obtained expected O(log3 n) amortized update time and query
time O(logn/ loglogn). Henzinger and Thorup [8] improved update time to O(log2 n)
with a clever sampling technique. A deterministic structure with the same bounds was
given by Holm et al. [9]. Thorup [12] achieved an expected amortized update-time of
O(logn(loglogn)3) and query time O(logn/ loglog logn), using randomization. Wulff-
Nilsen [14] gave a deterministic, amortized O(log2 n/ loglogn) update-time data struc-
ture with O(logn/ loglogn) query time. An Ω(logn) lower bound on the operation time
for fully-dynamic connectivity and MSF was given by Pǎtraşcu and Demaine [10].

As indicated above, priority queues are essential to our data structure. Equivalently,
we rely on the ability to efficiently sort l = logc n elements from [n2] where c is a con-
stant. Expressed as a function of l, the elements lie in the range 0 . . .2w − 1, where
w = 2l1/c. To sort quickly, we rely on w > l. In the RAM-model with AC0 instructions,
Raman [11] gave a deterministic bound of O(l

√
log l log log l). Using randomization,

Thorup [13] improved this to O(l loglog l). The same time bounds were achieved with-
out randomization, if assuming constant time multiplication, by Han [5]. Andersson et
al. [2] achieve optimal O(l) sorting time, using randomization, and assuming O(1) time
multiplication; their algorithm requires w � log2+ε l for some constant ε, which in our
case is satisfied as w > l1/c.

1.2 Idea and Paper Outline

Since the data structures of Holm et al. [9] for decremental MSF and fully dynamic con-
nectivity are essentially the same, the question arises of whether the O(log2 n/ loglogn)
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fully-dynamic connectivity structure in [14] can be directly translated to an improved
O(log2 n/ loglogn) decremental MSF structure. If that were the case, we could imme-
diately use the reduction from fully-dynamic to decremental MSF in [9] to obtain an
O(log4 n/ loglogn) bound for fully-dynamic MSF. Unfortunately, that is not the case
as the data structure in [14] relies on a shortcutting system which can not be easily
adapted to decremental MSF. Instead, we make a different analysis of the reduction
from fully-dynamic to decremental MSF (Section 2) which surprisingly shows how a
slightly slower decremental MSF structure than that in [9] can in fact lead to a slightly
faster fully dynamic MSF!

A modified version of the dynamic connectivity structure by Wulff-Nilsen [14] with
O(log2 n) update time is described in Section 3. It is shown in Section 3.3 how to modify
it to a simple decremental MSF structure with the same performance. We then show how
to speed up a certain part of this decremental MSF structure in Section 4. The main idea
is to extend it with a non-trivial shortcutting system involving fast priority queues in
order to speed up the search for replacement edges. This system is the main technical
contribution of the paper. We conclude Section 4 by showing that this data structure for
decremental MSF speeds up fully-dynamic MSF.

2 Reduction to Decremental MSF

In this section, we present a different analysis of the reduction from fully dynamic MSF
to decremental MSF from [9] based on the construction from [6]. The main difference
is that in our analysis, we do not insist on all edges being deleted in the decremental
MSF problem. The proof of the following Lemma is omitted due to space constraints.

Lemma 1. Suppose we have a decremental (deletions-only) MSF data structure that
for a connected simple graph with n vertices and m edges has a total worst-case running
time for the construction and the first d deletions of O(tcm+ trd), where tc and tr are
non-decreasing functions of n. Then there exists a fully dynamic MSF data structure for
simple graphs on n vertices with amortized update time O(log3 n+ tc log2 n+ tr logn).

The following corollary is crucial in obtaining our improvement for fully-dynamic
MSF. It shows that to obtain a faster data structure for this problem by reduction to
decremental MSF, it actually suffices with a decremental MSF structure which is slower
than that in [9] in the case where all edges end up being deleted.

Corollary 1. Given a decremental MSF structure with tc =
log2 n

ε loglogn and tr = log2+ε n
where ε < 1 is a constant, the reduction gives a fully dynamic MSF structure with

amortized update time O( log4

loglogn).

3 Simple Data Structures for Dynamic Connectivity
and Decremental MSF

In this section, we give a description of the fully-dynamic connectivity data structure
in [14] (based on [12]) except that shortcuts are omitted and a spanning forest is main-
tained. We will modify it in Section 3.3 to support decremental MSF.
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Let G = (V,E) denote the dynamic graph. The data structure maintains, for each
edge e ∈ E , a level �(e) which is an integer between 0 and �max = �log2 n�. As we
shall see, the level of an edge e starts at 0 and can only increase over time and for the
amortization, we can view �max − �(e) as the amount of credits left on e.

For 0 ≤ i ≤ �max, let Ei denote the set of edges of E with level at least i and let
Gi = (V,Ei). The (connected) components of Gi are level i clusters or just clusters. The
following invariant is maintained:
Invariant: For each i, any level i cluster contains at most �n/2i� vertices.

Consider a level i cluster C. By contracting all edges of Ei+1 in C, we get a connected
multigraph of level i-edges where vertices correspond to level (i+1) clusters contained
in C. Our data structure maintains a spanning tree of this multigraph. The union of
spanning trees over all clusters is a spanning forest of G.

The data structure maintains a cluster forest of G which is a forest C of rooted trees
where a node u at level i is a level i cluster C(u). Roots of C are components of G = G0

and leaves of C are vertices of G. A level i-node u which is not a leaf has as children
the level (i+ 1) nodes v for which C(v) ⊆ C(u). In addition to C , the data structure
maintains n(u) for each node u ∈ C denoting the number of vertices of G contained in
C(u) (equivalently, the number of leaves in the subtree of C rooted at u).

3.1 Handling Insertions and Deletions

When a new edge e = (u,v) is inserted into G, it is given level 0 and C is updated by
merging the roots ru and rv corresponding to the components of G containing u and v,
respectively. The new root inherits the children of both ru and rv. If ru 	= rv, e becomes
a tree edge in the new level 0 cluster. Otherwise, e becomes a non-tree edge.

Deleting an edge e = (u,v) is more involved. If e is not a tree edge, no structural
changes occur in C . Otherwise, let i = �(e). The deletion of e splits a spanning tree of a
level i cluster C into two subtrees, Tu containing u (inside some level i+ 1-cluster) and
Tv containing v. One of these trees, say Tu, contains at most half the vertices (in V ) of C.
For each level i edge in Tu, we increase its level to i+ 1. In C , this amounts to merging
all nodes corresponding to level i+ 1 clusters in Tu into one node, w; see Figure 1(a)
and (b). By the choice of Tu, this does not violate the invariant.

Next, we search through (non-tree) level i edges incident to C(w) in some arbitrary
order until some edge is found which connects C(w) and Tv (if any). For all visited
level i edges which did not reconnect the two trees, their level is increased to i+ 1,
thereby paying for them being visited. If a replacement edge (a,b) was found, no more
structural changes occur in C and (a,b) becomes a new tree edge. Otherwise, w is
removed from its parent p (corresponding to C) and a new level i node p′ is created
having w as its single child and having p as sibling; see Figure 1(b) and (c). This has
the effect of splitting C =C(p) into two smaller level i clusters. The same procedure is
now repeated recursively at level i− 1 where we try to reconnect the two trees of level
i−1 edges containing the new level i clusters C(p) and C(p′), respectively. If level 0 is
reached and no replacement edge was found, a component of G is split in two.
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Fig. 1. (a): Part of C before the merge. (b): Level i+ 1 nodes u2 and u3 are merged into a new
level i+ 1 node w. (c): A replacement level i edge was not found so w is given a new parent p′
which becomes the sibling of p.

3.2 Local Trees

To guide the search for level i tree/non-tree edges, we first modify C to a forest CL of
binary trees. This is done by inserting, for each non-leaf node u ∈ C , a binary local
tree L(u) between u and its children; see Figure 2. To describe the structure of L(u),
we first need to define heavy and light children of u. A child v of u in C is heavy if
n(v) ≥ n(u)/ logεh n, where εh > 0 is a constant that we may pick as small as we like.
Otherwise, v is light. The root of L(u) has two children, one rooted at heavy tree Th(u)
and the other rooted at light tree Tl(u). The leaves of Th(u) resp. Tl(u) are the heavy
resp. light children of u. Before describing the structure of these trees, let us associate
a rank rank(v)←�logn(v)� with each node v in C .

Tree Th(u) is formed by initially regarding each heavy child of u as a trivial rooted
tree with a single node and repeatedly pairing roots r1 and r2 of trees with the same
rank, creating a new tree with a root r of rank rank(r) = rank(r1)+1 and with children
r1 and r2. When the process stops, the remaining rooted trees, called rank trees, all
have distinct ranks and they are attached as children to a rooted rank path P such that
children with larger rank are closer to the root of P than children of smaller rank. We
define the rank of a node on the rank path to be the larger of the ranks of its children.

Tree Tl(u) is more involved. Its leaves are the light children of u and they are divided
into groups each having size at most logα n, where α is a constant that we may pick as

top tree

Th(u) Tl(u)u

Fig. 2. The structure of local tree L(u) of a node u in C , from [14]. In Th(u), rank trees are black
and the rank path and roots of rank trees are grey. In Tl(u), the buffer tree is grey, top and bottom
trees are white, and rank trees are black.
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large as we like. The nodes in each group are kept as leaves in a balanced binary search
tree (BBST) ordered by n(v)-values. One of these trees is the buffer tree and the others
are bottom trees. We define the rank of each bottom tree root as the maximum rank of
its leaves and we pair them up into rank trees exactly as we did when forming Th(u).
However, instead of attaching the rank tree roots to a rank path, we instead keep them
as leaves of a BBST called the top tree1, where again the ordering is by rank. We also
have the buffer tree root as a child of the top tree and we regard it as having smaller
rank than all the other leaves. It was shown in [14] that CL has height O( 1

εh
logn). Refer

to nodes of CL belonging to C as cluster nodes.

Merging Local Trees. We need to support the merge of local trees L(u) and L(v) in CL

corresponding to a merge of cluster nodes u and v into a new node w. First, we merge
the buffer trees of L(u) and L(v) into a new BBST Tb by adding the leaves of the smaller
tree to the larger tree. Heavy trees Th(u) and Th(v) have their rank paths removed and
leaves that should be light in L(w) are removed from Th(u) and Th(v) and added as
leaves of Tb. For each leaf removed from Th(u) and Th(v), we remove their ancestor
rank nodes. We end up with subtrees of the original rank trees in Th(u) and Th(v) and
these subtrees are paired up as before and attached to a new rank path for Th(w). Tree Tb

becomes a buffer tree in Tl(w) if its number of leaves does not exceed logα n; otherwise,
it becomes a bottom tree in Tl(w), leaving an empty buffer tree. Rank trees in Tl(u) and
Tl(v) are stripped off from their top trees and paired up into new rank trees as before
(here we include Tb if it became a bottom tree) and these are attached as leaves to a new
top tree for Tl(w).

In the above merge, let p be the parent of u and v in C . In CL, we need to delete u
and v as leaves of L(p) and to add w as a new leaf of L(p). We shall only describe the
deletion of u as v is handled in the same manner. We consider four cases depending on
which part of L(p) u belongs to:

– If u is a leaf in the buffer tree of Tl(p), delete it with a standard BBST operation.
– If u is a leaf in a bottom tree B of Tl(p), a similar BBST update happens in B.

Additionally the max rank of leaves in B is updated as this rank is associated with
the root of B. If the maximum does not decrease, no further updates are needed.
Otherwise, remove all ancestor rank nodes of B in Tl(p), pair the resulting rank
trees as before and attach them as leaves of the top tree.

– If u is a leaf in Th(p), remove it and its ancestor rank nodes in Th(p), pair up the
resulting rank trees and attach them to a new rank path for Th(p).

To add w as a new leaf of L(p), we only have two cases. If w is a heavy node, we regard
it as a trivial rank tree, delete the rank path of Th(p), repeatedly pair up the rank trees
(including w) and reattach them with a new rank path to form the updated Th(p). If
instead w is a light node, we add it to the buffer tree of Tl(p) (which may be turned into
a bottom tree, as described above).

Handling Cluster Splits. What remains is to describe the updates to local trees after
splitting a level i cluster in two. Let w, p, and p′ be defined as in the previous subsection

1 Not to be confused with the data structure of that name [1].
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and let p′′ be the parent of p and p′ in C (Figure 1(b) and (c)). Creating L(p′) is trivial as
p′ has only the single child w in C and attaching p′ as a leaf of L(p′′) is done as above.
The removal of w from L(p) decreases n(p) which may cause some light children of p
in C to become heavy. In CL, each corresponding leaf of Tl(p) is removed and added
to Th(p) and L(p) is updated accordingly as described above. Since n(p) decreases, p
might change from being a heavy child of p′′ to being a light child. If so, we move it
from Th(p′′) to the buffer tree of Tl(p′′), as described above.

Bitmaps. Having modified C into the forest CL of binary trees, we add bitmaps to nodes
of CL to guide the search for level i edges. More precisely, each node u∈ CL is associated
with two bitmaps tree(u) and nontree(u), where the ith bit of tree(u) (nontree(u)) is 1
iff there is at least one level i tree (non-tree) edge incident to a leaf in the subtree of CL

rooted at u. Since CL is binary, these bitmaps enable us to identify a level i tree/non-
tree edge incident to a cluster C(u) by traversing a path down from u in CL in time
proportional to its length by backtracking when bitmaps with ith bit 0 are encountered.
When a level i tree edge is removed (which happens if it is deleted from G or has its level
increased), then for each of its endpoints u, we set tree(u)[i] = 0 and update the bitmaps
for all ancestors v of u in CL bottom-up by taking the logical ’or’ of the tree-bitmaps of
its children. A similar update is done to nontree-bitmaps if u is a non-tree edge. When
inserting a level i tree/non-tree edge, bitmaps are updated in a similar manner.

3.3 Supporting Decremental MSF

We can convert the above fully dynamical connectivity structure to a decremental MSF
structure by using a trick from [9]. For decremental MSF, we can assume that the
initial graph is simple and connected and that all weights are distinct and belong to
{0,1, . . . ,n2} by doing an initial comparison sort and then working on ranks of weights
instead. All edges start at level 0 and we initialize the spanning forest to the MSF. When
searching through the level i non-tree edges incident to C(w) as in Section 3.1, we do
so in order of increasing weight. We support this by letting each node of CL contain the
weight of the cheapest level i-edge below it, for each i. To find the cheapest non-tree
edge with an endpoint in C(w) we can follow the cheapest level i weight down from w
in CL until we reach a leaf x and then take the cheapest level i-edge incident to x. As
shown in [9], this small modification to the connectivity structure suffices to support
decremental MSF.

Performance. Finding the initial MSF can be done in O(m+ n logn) time using Prim’s
algorithm with Fibonacci heaps. We split the time complexity analysis for the rest of
the above data structure into three parts: searching for edges down from C(w) in CL

to identify a cheapest level i-edge incident to a leaf x, maintaining the edge weights
associated with nodes of CL, and making structural changes to CL.

To analyze the time for the first part, note that since CL has height O(logn), searching
down from C(w) to x takes O(logn) time. In order to efficiently identify the cheapest
level i-edge incident to such a leaf x, we extend the data structure by letting x have an
O(logn) array of doubly-chained lists of edges, so let Ei(x) be the list of level i non-tree
edges incident to w in order of increasing weight. The cheapest level i-edge incident to
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x is then the first edge of Ei(x) and can thus be found in O(1) time. When increasing the
level of an edge e = (x,y) from i to i+ 1, it is not a replacement edge, and is therefore
the cheapest level i non-tree edge incident to any vertex in its component. In particular
it is the cheapest level i non-tree edge incident to x and y and is therefore at the start
of Ei(x) and Ei(y). Furthermore, (as shown in [9]) it is costlier than all other edges that
have been moved to level i+1 earlier, so when we move it, all we need to do is put it at
the end of Ei+1(x) and Ei+1(y) to keep them sorted. This takes O(1) time.

We have shown how the cheapest non-tree edge incident to C(w) can be found in
O(logn) time. Maintaining edge weights associated with nodes of CL can also be done
in O(logn) time since for each edge level change (or the deletion of an edge), only
the weights along the leaf-to-root paths in CL from the endpoints of the edge need to
be updated. It remains to bound the time for structural changes to CL. It was shown
in [14] that by picking constant εh sufficiently small and constant α sufficiently large
(see definitions in Section 3.2), this takes amortized O(logn/ loglogn) time per edge
level change plus an additional O(log2 n/ loglogn) worst-case time per edge deletion.

We conclude from the above that the total time to build our decremental MSF struc-
ture on a simple connected graph with n vertices and m edges, and then deleting d
edges is O(m log2 n+ d log2 n). In the next section, we give a variant of this data struc-
ture where exactly the same structural changes occur in CL but where the time to search
for edges is sped up using a new shortcutting system together with fast priority queues.
Since structural changes take a total of O(m log2 n/ loglogn+ d log2 n/ loglogn) time,
these will not be the bottleneck so we ignore them in the time analysis in the next
section. Also, the structure in [14] can identify the parent cluster node of a cluster in
O(logn/ loglogn) time, so we shall also ignore this cost.

4 Faster Data Structure for Dynamic MSF

In this section, we present our new data structure for decremental MSF. Assume that
the initial graph is connected. If not, we maintain the data structure separately for each
component. The total time bound is O(m log2 n/ loglogn+ d log2+ε n) for a constant
ε < 1, where the initial graph has m edges and n vertices and where d edges are deleted
in total. By Corollary 1, this suffices in order to achieve O(log4 n/ loglogn) update time
for fully-dynamic MSF.

A bottleneck of the simple data structure for decremental MSF presented in Sec-
tion 3.3 is moving up and down trees of CL. The data structure identifies level i-edges
incident to a level (i+1)-cluster C(u) in order of increasing weight by moving down CL

from node u, always picking the child (or children) with the cheapest level i-edge below
it. When a leaf is reached, the cheapest level i-edge e incident to it is traversed. If both
endpoints of e were identified in the downward search then we do not need an upwards
search. If only one endpoint was identified then we do an upwards search in CL from the
other endpoint until reaching the node for a level (i+ 1)-cluster. Each upwards search
can trivially be done in O(logn) time as this is a bound on the height of trees in CL.
We claim that this is actually fast enough. To see why, note that we only do an upwards
search when a reconnecting edge is found. At most one reconnecting edge is found per
edge deleted so we can in fact afford to spend O(log2+ε n) time on the upwards search.
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In the following, we can thus restrict our attention to speeding up downward searches.
It suffices to get a search time of O(logn/ loglogn) since for every two downward
searches, we either increase the level of an edge or we find a reconnecting edge.

4.1 A Downwards Shortcutting System

We use a downwards shortcutting system with fast min priority queues to speed up
downward searches. Certain nodes of CL are augmented with min priority queues keyed
on edge weights. Since we may assume for our decremental structures that edge weights
are in the range {0,1, . . . ,n2}, we can use fast integer priority queues. In the following,
we assume constant time for each queue operation. As mentioned in the introduction,
a less efficient queue will slow down the performance of our data structure by a factor
equal to its operation time.

The nodes of CL with associated priority queues are referred to as queue nodes. The
following types of nodes are queue nodes (εq is a small constant to be chosen later):

1. cluster nodes whose level is divisible by εq log logn�,
2. heavy tree nodes u with a parent v in CL such that rank(u)≤ iεq loglogn�< rank(v)

for an integer i,
3. rank nodes of light trees whose rank is divisible by εq log logn�,
4. roots and leaves of buffer, bottom, and top trees.

Each queue node u (excluding leaves of CL) is associated with an array whose ith
entry points to a min-queue Qi(u), for each level i. If u is a proper ancestor of a level
(i+ 1)-node, Qi(u) is empty. Otherwise, for each nearest descending node v of u in CL

which is either a queue-node or a leaf of CL, Qi(u) contains the node v with associated
key k denoting the weight of the cheapest level i-edge incident to a leaf of the sub-tree
of CL rooted at v.

The priority queues associated with queue nodes induce our downwards shortcutting
system in CL. To see how, consider a level (i+1)-cluster C(u). To identify the cheapest
level i-edge e incident to C(u), assume first that u is a queue node. Then a minimum
element in Qi(u) is a node v below u with e incident to C(v). We refer to (u,v) as a
shortcut. Whereas our simple data structure would traverse the path from u down to v
in CL, our new data structure can use the shortcut (u,v) to jump directly from u to v
within the time it takes to obtain the minimum element in Qi(u). At v, we identify a
minimum element w in Qi(v) and jump directly to this node along (v,w). This shortcut
traversal continues until a leaf of CL is reached, and e is identified as one of the edges
incident to this leaf. If both endpoints of e are below u in CL, one of the queues contains
two distinct minimum elements v and v′, corresponding to where the paths down to the
endpoints of e branch out. In this case, we search down from both v and v′.

Now assume that u is not a queue node. Then all nearest descending queue nodes v
of u are visited and for each of them the minimum element in Qi(v) is identified and its
associated key ki(v). The search procedure described above is then applied to each of
the at most two nodes v with minimum key ki(v).

Let us analyze the time for the search procedure above. The following lemma (proof
omitted) bounds time to identify nearest descending queue nodes.
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Lemma 2. The nearest descending queue nodes of a cluster node can be found in
O(log3εq n) time.

If our initial node u is not a queue node, we can thus in O(log3εq n) time find all near-
est descending queue nodes of u and among these obtain the at most two nodes v with
smallest key in Qi(v). Now, assume that the initial node u is a queue node and consider
the shortcut path P of queue nodes from u to a leaf that the procedure visits. The number
of visited queue nodes of type 1 is clearly O(logn/(εq loglogn)). Since ranks of nodes
along P cannot increase and since the difference in rank between two consecutive rank
nodes on P is at least εq loglogn�, the number of queue nodes of type 2 or 3 is also
O(logn/(εq loglogn)). Finally, since the rank difference between a cluster node u and
any leaf in Tl(u) is Ω(εh loglogn) (see [14]), P contains only O(logn/(εh loglogn))
queue nodes of type 4. Given our downwards shortcutting system, the cheapest level i-
edge incident to C(u) can thus be found in O(log3εq n+( 1

εh
+ 1

εq
) logn/ loglogn) time.

Below we show how to maintain this system efficiently under changes to CL.

4.2 Dealing with Non-Topological Changes

Two types of changes occur in CL: topological changes when cluster nodes are merged
or split and non-topological changes when an edge increases its level or is removed
and information about which edges are the cheapest below a cluster node needs to be
updated. We start with the non-topological changes.

Suppose a level i-edge e disappears, either because it is deleted or because its level is
increased to i+1. Then, we need to update priority queues of queue nodes accordingly.
If �(e) increases, then the two downward paths identified with our shortcutting system
contain all the queue nodes whose level i-queues need to be updated. For each endpoint
x of e, we traverse each of these paths bottom-up. Let u be the current non-leaf node
in one of these traversals and let v be its predecessor wrt. the traversal. If the key of
v in Qi(u) equals the weight w(e) of e, we increase it to the key for the minimum
element in Qi(v), or remove v from Qi(u) if Qi(v) is empty. Otherwise, we stop, as the
minimum key of Qi(v) is unchanged, and thus no queue nodes above v need updates.
As each queue update takes O(1) time, total time is bounded by the number O(( 1

εh
+

1
εq
) logn/ loglogn) of queue nodes considered.

We also need to update priority queues for level (i+ 1)-edges since e has its level
increased to i+ 1. Note that all the queue nodes that need to be updated belong to the
two downward paths traversed. Again, we traverse each path bottom-up. Let u be the
current non-leaf node in one of the traversals and let v be its predecessor. If v is not
present in Qi+1(u), we add it with key w(e). Otherwise, if the key of v in Qi+1(u) is
greater than w(e), we decrease it to w(e). In both cases, we then proceed upwards.
Otherwise, we stop since no queues above u need updates. Total time to update level
(i+ 1)-queues is O(( 1

εh
+ 1

εq
) logn/ loglogn).

It remains to consider the case where e disappears because it was deleted. Then
we identify all the queue nodes above e that need to be updated by traversing the
leaf-to-root paths in CL for the endpoints of e. The queue nodes visited have their
queue nodes updated as described above. Since CL has height O( 1

εh
logn), total time
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is O( 1
εh

logn+( 1
εh
+ 1

εq
) logn/ loglogn). This completes the description of how to deal

with non-topological changes.

4.3 Dealing with Topological Changes

Now, we describe how to maintain queues under topological changes to CL. We assume
that deleting a shortcut is free as it is paid for when the shortcut is formed. In our
analysis for bounding the total time to form shortcuts, we use the accounting method;
during the course of the algorithm, credits will be associated with certain parts of CL

and each credit can pay for a constant amount of work. Denote by smax = logα n the
maximum number of leaves of a buffer tree. The following invariants are maintained:
– Each leaf of a heavy tree contains (2+ logsmax) logn credits (heavy tree invariant),
– Each leaf of a buffer tree contains (2+ logsmax − logs) logn credits where s is the

number of leaves in the tree (buffer tree invariant).
– Each leaf of a bottom tree contains 1 credit (bottom tree invariant).

Lemma 3. A buffer tree with s1 leaves has more credits than one with s2 < s1 leaves.

Proof. The function f (x) = x(2+ logsmax − logx) is monotonically increasing on [1,
smax] since f ′(x) = 2+ logsmax− logx−1/ ln2> logsmax− logx≥ 0 for all x∈ [1,smax].

Recall that εh was introduced when defining heavy and light children. We observe that
initially, all edges of the decremental MSF structure have level 0 and because of our
assumption that the initial graph is connected, C consists of a single root r with each
vertex of the graph as a child, implying that CL is the single local tree L(r). This local
tree contains at most logεh n leaves in the heavy tree and a single buffer tree with at
most smax leaves. Furthermore, there are at most n bottom tree leaves. By Lemma 3, the
initial amount of credits required is at most logεh n(2+ logsmax) logn+ 2smax logn+ n.

The general type of change to C during the deletion of a level i-tree edge was de-
scribed in Section 3.1 and the corresponding updates to local trees in CL was described
in Section 3.2. The first step is to merge all level (i+ 1) clusters on the smaller com-
ponent of the split level i-tree (Figure 1(a) and (b)). We now describe how to update
shortcuts accordingly. Assume that only two level (i+ 1) clusters C(u) and C(v) are
merged into a new level (i+ 1) cluster C(w); the general case is omitted due to space
constraints. It may be helpful to consult Figure 2.

We now describe how to update shortcuts through the heavy tree. A shortcut (x,y)
goes through a node z ∈ CL if x is an ancestor of z and y is a descendant of z (where
possibly x = z or y = z). In the new local tree L(w), we obtain all shortcuts through
nodes of Th(w) bottom-up. Note that queue nodes in the subtrees of CL rooted at leaves
of Th(w) need not be updated. For each queue node a ∈ Th(w), assume all queues of its
nearest descending queue nodes have been constructed. Then for each level j, construct
Q j(a) by visiting all nearest descending queue nodes b of a and for each of them adding
the cheapest node of Q j(b) to Q j(a). By Lemma 2, this takes O(log3εq n) time for each
j, giving a total time of O(log1+3εq n) to construct the queues associated with a. As
Th(w) has size O(logεh n), total time to construct all shortcuts through nodes of Th(w) is
O(log1+3εq+εh n) which over all levels is O(log2+3εq+εh n). Adding (2+ logsmax) logn
credits to each leaf of Th(w) is dominated by the cost to construct shortcuts.
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The procedure for updating shortcuts through the light tree Tl(w) and the local tree
for the parent of w in C and handling cluster splits is omitted due to space constraints.
It can be shown that with εh <

1
2 and εq <

1
6 , Corollary 1 implies:

Theorem 1. There is a data structure for fully-dynamic minimum spanning tree which
supports updates in O(log4 n/ loglogn) amortized time.
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Abstract. In this paper, we introduce a methodology, called decomposition-
based reductions, for showing the equivalence among various problems
of bounded-width.

First, we show that the following are equivalent for any α > 0:
– SAT can be solved in O∗(2αtw) time,
– 3-SAT can be solved in O∗(2αtw) time,
– Max 2-SAT can be solved in O∗(2αtw) time,
– Independent Set can be solved in O∗(2αtw) time, and
– Independent Set can be solved in O∗(2αcw) time,

where tw and cw are the tree-width and clique-width of the instance,
respectively.

Then, we introduce a new parameterized complexity class EPNL,
which includes Set Cover and TSP, and show that SAT, 3-SAT, Max

2-SAT, and Independent Set parameterized by path-width are EPNL-
complete. This implies that if one of these EPNL-complete problems can
be solved in O∗(ck) time, then any problem in EPNL can be solved in
O∗(ck) time.

1 Introduction

SAT is a fundamental problem in complexity theory. Today, it is widely believed
that SAT cannot be solved in polynomial time. This is not only because anyone
could not find a polynomial-time algorithm for SAT despite many attempts, but
also because if SAT can be solved in polynomial time, any problem in NP can
be solved in polynomial time (NP-completeness). Actually, even no algorithms
faster than the trivial O∗(2n)-time1 exhaustive search algorithm are known.
Impagliazzo and Paturi [12] conjectured that SAT cannot be solved in O∗((2−
ε)n) time for any ε > 0, and this conjecture is called the Strong Exponential
Time Hypothesis (SETH). Under the SETH, conditional lower bounds for several
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problems have been obtained, including k-Dominating Set [16], problems of
bounded tree-width [14,8], and Edit Distance [3].

When considering polynomial-time tractability, all the NP-complete problems
are equivalent, that is, if one of them can be solved in polynomial time, then
all of them can be also solved in polynomial time. Similarly, when consider-
ing subexponential-time tractability, all the SNP-complete problems are equiva-
lent [13]. However, if we look at the exponential time complexity for solving each
NP-complete problem more closely, the situation changes; whereas the current
fastest algorithm for SAT is the naive O∗(2n)-time exhaustive search algorithm,
faster algorithms have been proposed for many other NP-complete problems such
as 3-SAT [11], Max 2-SAT [18], and Independent Set [19]. Although there
are many problems, including Set Cover and TSP

2, for which the current
fastest algorithms take O∗(2n) time, we do not know whether a faster algorithm
for one of these problems leads to a faster algorithms for SAT and vice versa.
Actually, only a few problems, such as Hitting Set and Set Splitting, are
known to be equivalent to SAT in terms of exponential time complexity [7].

In this paper, we propose a new methodology, called decomposition-based re-
ductions. Although the idea of decomposition-based reductions is simple, we can
obtain various interesting results. First, we show that when parameterized by
width, there are many problems that are equivalent to SAT. Second, we show
the equivalence among different width; Independent Set parameterized by
tree-width and Independent Set parameterized by clique-width are equiva-
lent. Third, we introduce a new parameterized complexity class EPNL, which
includes Set Cover and TSP, and show that many problems parameterized by
path-width are EPNL-complete. For these problems, conditional lower-bounds
under the SETH are already known [14]. However, our results imply that these
problems are at least as hard as not only n-variable SAT but also any problem
in EPNL. In this sense, our hardness results are more robust.

It has been shown that many NP-hard graph optimization problems can be
solved efficiently if the input graph has a nice decomposition. One of the most
famous decompositions is tree-decomposition, and a graph is parameterized by
tree-width, the size of the largest bag in the (best) tree-decomposition of the
graph. Intuitively speaking, tree-width measures how much a graph looks like a
tree. If we are given a graph and its tree-decomposition of width tw3, many prob-
lems can be solved in O∗(ctw) time, where c is a problem-dependent constant.
For example, we can solve Independent Set and Max 2-SAT in O∗(2tw) time
by standard dynamic programming and Dominating Set in O∗(3tw) time by
combining with subset convolution [17].4 Recently, Lokshtanov et al. [14] showed

2 For Undirected Hamiltonicity, a faster algorithm has been proposed in a recent
paper by Björklund [4]. However, for general TSP, the trivial O∗(2n)-time dynamic
programming algorithm is still the current fastest.

3 Obtaining a tree-decomposition of the minimum width is NP-hard. In this paper,
we assume that we are given a decomposition as a part of the input, and a problem
is parameterized by the width of the given decomposition.

4 For problems related to SAT, we consider the tree-width of the primal graph of the
input. See Section 2 for details.
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that many of these algorithms are optimal under the SETH. These results are
obtained by reducing an n-variable instance of SAT to an instance of the target
problem with tree-width approximately n

log c , where c is a problem dependent
constant. However, these reductions are one-way, and thus a faster SAT algo-
rithm may not lead to faster algorithms for these problems. Moreover, there is
a possibility that one of these problems has a faster algorithm but the others do
not.

The first contribution of this paper is showing the following equivalence among
problems of bounded tree-width:

Theorem 1. For any α > 0, the following are equivalent:

1. SAT can be solved in O∗(2αtw) time.
2. 3-SAT can be solved in O∗(2αtw) time.
3. Max 2-SAT can be solved in O∗(2αtw) time.
4. Independent Set can be solved in O∗(2αtw) time.

For all of these problems, the fastest known algorithms run in O∗(2tw) time [15]
and Theorem 1 states that this is not a coincidence. Note that an n-variable
instance of SAT has tree-width at most n − 1. Hence by Theorem 1, for any
ε > 0, an O∗((2− ε)tw)-time algorithm for Independent Set of bounded tree-
width implies an O∗((2 − ε)n)-time algorithm for the general SAT. Therefore,
our result includes the hardness result by Lokshtanov et al. [14]. We believe that
the same technique can be applied to many other problems. In practice, SAT
solvers are widely used to solve various problems by reductions to SAT. Using
our methodology, we can reduce an instance of some problem to an instance
of SAT by preserving the tree-width. Since tree-decompositions can be used to
speed-up SAT solvers [10], our reductions may be useful in practice.

Clique-width is the number of labels we need to construct the given graph by
iteratively performing certain operations. Similarly to the tree-width case, many
problems can be solved in O∗(ccw) time if the given graph has a clique-width
cw, where c is a problem-dependent constant [6].

The second contribution of this paper is showing the following equivalence
between Independent Set of bounded tree-width and bounded clique-width:

Theorem 2. For any α > 0, the following are equivalent:

1. Independent Set can be solved in O∗(2αtw) time.
2. Independent Set can be solved in O∗(2αcw) time.

The fastest known algorithms for Independent Set parameterized by clique-
width runs in O∗(2cw) time [6]. It is surprising that we can obtain such strong
connections between problems of bounded tree-width and a problem of bounded
clique-width because tree-width and clique-width are very different parameters
in nature; a complete graph of n vertices has a clique-width two whereas its
tree-width is n − 1. Hence, even if there is an efficient algorithm for a problem
of bounded tree-width, it does not immediately imply that there is an efficient
algorithm for the same problem of bounded clique-width. However, Theorem 2
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states that a faster algorithm for Independent Set of bounded tree-width
implies a faster algorithm for Independent Set of bounded clique-width. We
note that Independent Set is chosen because SAT, 3-SAT, and Max 2-SAT

are still NP-complete when its primal graph is a clique (cw = 2). Hence, these
problems parameterized by tree-width and clique-width are not equivalent unless
P = NP. We believe that we can obtain similar results for many other problems
that can be solved efficiently on graphs of bounded clique-width.

The third contribution of this paper is introducing a new parameterized com-
plexity class EPNL (Exactly Parameterized NL) and showing the following com-
plete problems:

Theorem 3. SAT, 3-SAT,Max 2-SAT, and Independent Set parameterized
by path-width are EPNL-complete.

Intuitively, EPNL is a class of parameterized problems that can be solved by
a non-deterministic Turing machine with the space of k + O(log n) bits. For
the precise definitions of EPNL and EPNL-completeness, see Section 4. Flum
and Grohe [9] introduced a similar class, called para-NL, that can be solved in
f(k) + O(log n) space. Although they showed that a trivial parameterization of
an NL-complete problem is para-NL-complete under the standard parameterized
reduction, this does not hold in our case because we use a different reduction
to define the complete problems. If one of the NP-complete problems can be
solved in polynomial time, any problem in NP can be solved in polynomial
time. Similarly, if one of the EPNL-complete problems can be solved in O∗(ck)
time, any problem in EPNL can be solved in O∗(ck) time. Since the class EPNL
contains many famous problems, such as Set Cover parameterized by the
number of elements and TSP parameterized by the number of vertices, for which
no O∗((2 − ε)n)-time algorithms are known, our result implies that we can use
the hardness of not only SAT but also these problems to establish the hardness
of the problems parameterized by path-width.

1.1 Overview of Decomposition-Based Reductions

We explain the basic idea of decomposition-based reductions. Although we deal
with three different decompositions in this paper, the basic idea is the same.
We believe that the same idea can be used to other decompositions such as
branch-decomposition.

A decomposition can be seen as a collection of sets forming a tree. For
example, tree-decomposition is a collection of bags forming a tree and clique-
decomposition is a collection of labels forming a tree. First, for each node i of
a decomposition tree, we create gadgets as follows: (1) for each element x in
the corresponding set Xi, create a path-like gadget xi that expresses the state
of the element (e.g. the value of the variable x for the case of SAT), and (2)
create several gadgets to solve subproblem corresponding to this node (e.g. sim-
ulate clauses inside Xi for the case of SAT). Then, for each node c, its parent
p, and each common element x ∈ Xc ∩Xp, by connecting the tail of xc and the
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head of xp, we establish local consistency. From the definition of the decomposi-
tion, this leads to global consistency. Since the obtained graph has a locality, it
has a small width. We may need additional tricks to establish local consistency
without increasing the width.

1.2 Organization

The rest of the paper is organized as follows. In Section 2, we introduce defini-
tions and basic lemmas often used in this paper. In Section 3, we give a tree-width
preserving reduction from Max 2-SAT to SAT. The reduction is rather simple
but contains an essential idea of tree-decomposition-based reductions. In Sec-
tion 4, we introduce EPNL and show that SAT parameterized by path-width
is EPNL-complete. Due to space limitations, several reductions and proofs are
omitted. These will be presented in the full version of this paper.

2 Preliminaries

For an integer k, we denote the set {1, 2, . . . , k} by [k] and the set {0, 1, . . . , k−1}
by [k]′. Let G = (V,E) be an undirected graph. We denote the degree of a vertex
v as dG(v). We denote the neighborhood of a vertex u by NG(u) = {v ∈ V |
{u, v} ∈ E}, and the closed neighborhood of u byNG[u] = NG(u)∪{u}. Similarly,
we denote the neighborhood of a subset S ⊆ V by NG(S) =

⋃
v∈S NG(v) \ S,

and the closed neighborhood by NG[S] = NG(S) ∪ S. We drop the subscript G
when it is clear from the context. For a subset S ⊆ V , let G[S] = (S, {{u, v} ∈
E | u ∈ S, v ∈ S}) denote the subgraph induced by S. For a vertex v ∈ V , let G/v
denote the graph obtained by removing v and making the neighbors of v form
a clique. We call this operation eliminating v. Similarly, for a subset S ⊆ V , we
denote by G/S the graph obtained by removing S and making the neighbors of
S form a clique.

A tree-decomposition of a graph G = (V,E) is a pair (T, χ), where T = (I, F )
is a tree and χ = {Xi ⊆ V | i ∈ I} is a collection of subsets of vertices (called
bags), with the following properties:

1.
⋃

i Xi = V .
2. For each edge uv ∈ E, there exists a bag that contains both of u and v.
3. For each vertex v ∈ V , the bags containing v form a connected subtree in T .

In order to avoid confusion between a graph and its decomposition tree T , we
call a vertex of the tree a node, and an edge of the tree an arc. We identify a node
i ∈ I of the tree and the corresponding bagXi. The width of a tree-decomposition
is the maximum of |Xi| − 1 over all nodes i ∈ I. The tree-width of a graph G,
tw(G), is the minimum width among all the possible tree-decompositions of G.

A nice tree-decomposition is a tree decomposition such that the root bag Xr

is an empty set and each node i is one of the following types:

1. Leaf: a leaf node with Xi = ∅.
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2. Introduce(v): a node with one child c such that Xi = Xc ∪ {v} and v �∈ Xc.
3. Introduce(uv): a node with one child c such that u, v ∈ Xi = Xc. We require

that this node appears exactly once for each edge uv of G.
4. Forget(v): a node with one child c such that Xi = Xc \ {v} and v ∈ Xc.

From the definition of tree-decompositions, this node appears exactly once
for each vertex of G.

5. Join: a node with two children l and r with Xi = Xl = Xr.

Any tree-decomposition can be easily converted into a nice tree-decomposition
of the same width in polynomial time by inserting intermediate bags between
each adjacent bags. Thus, in this paper, we use nice tree-decompositions to make
discussions simple.

A (nice) path-decomposition is a (nice) tree-decomposition (T, χ) such that the
decomposition tree T = (I, F ) is a path. The path-width of a graph G, pw(G),
is the minimum width among all the possible path-decompositions of G.

In order to prove the upper bound on tree-width, we will often use the fol-
lowing lemmas. Due to space limitations, proofs of these lemmas are omitted.

Lemma 1 (Arnborg [1]). For a graph G = (V,E) and a vertex v ∈ V ,
tw(G) ≤ max(d(v), tw(G/v)). Moreover, if we are given a tree-decomposition of
G/v of width w, we can construct a tree-decomposition of G of width max(d(v), w)
in linear time.

Lemma 2. For a graph G = (V,E) and a vertex subset S ⊆ V , tw(G) ≤
max(|N [S]| − 1, tw(G/S)).

Lemma 3. Let X and Y be disjoint vertex sets of a graph G such that for each
vertex x ∈ X, |N(x) ∩ Y | ≤ 1. Then, tw(G) ≤ max(|N [X ] \ Y |, tw(G/X)).

Lemma 4. Let {Si | i ∈ [d]} be a family of disjoint vertex sets of a graph G
such that each set has size at most k and there are no edges between Si and
Sj for any |i − j| > 1. Then, tw(G) ≤ max(2k + |N(S)| − 1, tw(G/S)), where
S =

⋃
i∈[d] Si.

For a vertex set S, if we can obtain tw(G) ≤ max(d, tw(G/S)) by applying one
of these lemmas, we say that the elimination has degree d. If we can reduce a
graph G into a graph G′ by a series of eliminations of degree at most d, we can
obtain tw(G) ≤ max(d, tw(G′)).

Let x be a Boolean variable. We denote the negation of x by x. A literal is
either a variable or its negation, and a clause is a disjunction of several literals
l1, . . . , lk, where k is called the length of the clause. We call a clause of length
k a k-clause. A CNF is a conjunction of clauses. If all the clauses have length
at most k, it is called a k-CNF. We say that a CNF on a variable set X is
satisfiable if there is an assignment to X that makes the CNF true. (k-)SAT is
a problem in which, given a variable set X and a (k-)CNF C, the objective is to
determine whether C is satisfiable or not. Max 2-SAT is a problem in which,
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given a variable set X , a 2-CNF C, and an integer k, the objective is to determine
whether there exists an assignment that satisfies at least k clauses in C.

Let C be a CNF on variables X . The primal graph of C is the graph G =
(X,E) such that there exists an edge between two vertices if and only if their
corresponding variables appear in the same clause. For readability, we identify
a variable or a literal as the corresponding vertex in the primal graph. That is,
we may use the same symbol x to indicate both a variable in a CNF and the
corresponding vertex in the primal graph, and both literals x and x correspond
to the identical vertex in the primal graph. For a CNF C, we slightly change the
definition of the nice tree-decomposition as follows:

3′. Introduce(C): an internal node with one child c such that Xi = Xc and all
the variables in C are in Xi. We require that this node appears exactly once
for each clause C ∈ C.

Note that because the variables in the same clause form a clique in the primal
graph, there always exists a bag that contains all of them.

In our reductions, we will use a binary representation of an integer. Let
{a1, a2, . . . , aM} be Boolean variables. We denote the integer

∑
i∈[M ],ai=true 2

i−1

by (a1a2 . . . aM )2, or (a∗)2 for short. For readability, we will frequently use (arith-
metic) constraints such as (a∗)2 = (b∗)2 + (c∗)2. Note that any arithmetic con-
straint on M variables can be trivially simulated by at most 2M M -clauses.
Thus, if M is logarithmic in the input size, the number of required clauses is
polynomial in the input size.

3 Tree-width Preserving Reduction from Max 2-SAT to
SAT

Let (X, C = {C1, . . . , Cm}, k) be an instance of Max 2-SAT. We want to con-
struct an instance (X ′, C′) of SAT such that C′ is satisfiable if and only if at
least k clauses of C can be satisfied. Let M = 	log (m+ 1)
. In the following
reductions, we will use arithmetic constraints on O(M) variables, which can be
simulated by poly(m) clauses.

Let T = (I, F ) be a given nice tree-decomposition of width tw. We will
create an instance of SAT whose tree-width is at most tw + O(logm). We
note that the additive O(logm) factor is allowed because O∗(2α(tw+O(logm))) =
O∗(2αtwpoly(m)) = O∗(2αtw). For each node i ∈ I, we create variables {xi |
x ∈ Xi} ∪ {si,j | j ∈ [M ]} ∪ {wi}. The value (si,∗)2 will represent the number
of satisfied clauses in the subtree rooted at i. For each node i and its parent p,
we create a constraint xi = xp for each variable x ∈ Xi ∩Xp. Because the nodes
containing the same variable form a connected subtree in T , these constraints
ensure that for any variable x ∈ X , all the variables {xi | x ∈ Xi} take the same
value. For each node i, according to its type, we do as follows:

1. Leaf: create a clause (si,j) for each j ∈ [M ].
2. Introduce(v): create a constraint si,j = sc,j for each j ∈ [M ].
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3. Introduce(x∨y): create a constraint wi ⇔ (xi∨yi) and a constraint (si,∗)2 =
(sc,∗)2 + (wi)2.

4. Forget(v): create a constraint si,j = sc,j for each j ∈ [M ].

5. Join: create a constraint (si,∗)2 = (sl,∗)2 + (sr,∗)2.

Finally for the root node r, we create a constraint (sr,∗)2 ≥ k. Now, we have ob-
tained an instance (X ′, C′) of polynomial size. We note that, from the definition
of a nice tree-decomposition, there exists exactly one Introduce(C) node for each
clause C ∈ C. Thus, the sum ∑

i∈I(wi)2, which is equal to (sr,∗)2, represents the
number of satisfied clauses. Therefore, C′ is satisfiable if and only if at least k
clauses of C can be satisfied. Finally, we show that the reduction preserves the
tree-width.

Lemma 5. C′ has tree-width at most tw +O(logm).

Proof. We will prove the bound by reducing the primal graph of C′ into an
empty graph by a series of eliminations of degree at most tw+O(logm). For a
node i, let Yi denote the vertex set {xi | x ∈ Xi} and Vi denote the vertex set
Yi ∪ {wi} ∪ {si,j | j ∈ [M ]}. Starting from the primal graph of C′ and the given
tree-decomposition T of C, we eliminate the vertices as follows. First, we choose
an arbitrary leaf i of T . Then, we eliminate all the vertices of Vi in a certain
order, which will be described later. Finally, we remove i from T and repeat the
process until T becomes empty.

Let i be a leaf and p be its parent. If i is the only child of p, we haveN(Vi) ⊆ Vp.
Thus, the eliminations of Vi can create edges only inside Vp. If p has another
child q, we have N(Vi) ⊆ Vp ∪ {sq,j | j ∈ [M ]}. Thus, the eliminations of Vi can
create edges only inside Vp ∪ {sq,j | j ∈ [M ]}. Therefore, after processing each
node, we can ensure that the edges created by previous eliminations are only
inside Vi ∪ {sc,j | c is a child of i and j ∈ [M ]} for each node i.

Now, we describe the details of the eliminations. Let i be the current node
to process. If i is the root, the number of remaining vertices is O(logm). Thus,
the elimination of these vertices has degree O(logm). Otherwise, let p be the
parent of i. First, we eliminate the vertices Yi. Because each vertex of Yi is
adjacent to at most one vertex of Yp, Lemma 3 gives the elimination of degree
|N [Yi] \ Yp| ≤ |Vi| ≤ tw + O(logm). Then, we eliminate the remaining vertices
Vi \ Yi. If i is the only child of p, let Vq = Yq = ∅, and otherwise, let q be the
another child of p. By applying Lemma 2, we obtain the elimination of degree
|N [Vi \ Yi]| − 1 ≤ |Vi \ Yi|+ |Vp|+ |Vq \ Yq| ≤ tw +O(logm). ��

4 Exactly Parameterized NL

By extending the classical complexity class NL (Non-deterministic Logspace),
we define a class of parameterized problems EPNL (Exactly Parameterized NL)
which can be solved by a non-deterministic Turing machine with the space of
k +O(log n) bits.
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Definition 1 (EPNL). A parameterized problem (L, κ), where, L ⊆ {0, 1}∗ is
a language and κ : {0, 1}∗ → N is a parameterization, is in EPNL if there exists
a polynomial p : N → N and a verifying polynomial-time deterministic Turing
machine M : {0, 1}∗×{0, 1}∗ → {0, 1} with four binary tapes, a read-only input
tape, a read-only read-once certificate tape, and two read/write working tapes
called the k-bit tape and the logspace tape with the following properties.

– For any input x ∈ {0, 1}∗, it holds that x ∈ L if and only if there exists a
certificate y ∈ {0, 1}p(|x|) such that M(x, y) = 1.

– For any x ∈ {0, 1}∗ and y ∈ {0, 1}p(|x|), the machine M uses at most κ(x)
space from the k-bit tape and O(log |x|) space from the logspace tape.

Note that the machine M is not allowed to use O(κ(x)) bits from the k-bit
tape but at most κ(x) bits. This is why we use two separated working tapes
instead of one long working tape of length κ(x) + O(log |x|); in the latter case,
because there is only one head, it may be difficult to simulate a random-access
κ(x)-bit array.

We give several examples of problems in EPNL. Due to the space constraints,
the proofs are omitted. For all the problems in Lemma 7, the current fastest
algorithms take O∗(2n) time [5].

Lemma 6. SAT, 3-SAT, Max 2-SAT, and Independent Set parameterized
by path-width are in EPNL.

Lemma 7. Travelling Salesman Problem(TSP), Optimal Linear

Arrangement, Directed Feedback Arc Set parameterized by the num-
ber of vertices of the input graph, and Set Cover parameterized by the number
of elements are in EPNL.

Now, we define logspace parameter-preserving reduction and introduce EPNL-
complete problems.

Definition 2 (Reducibility). A parameterized problem A = (L, κ) is logspace
parameter-preserving reducible to a parameterized problem B = (L′, κ′), denoted
by A ≤pp

L B, if there exists a logspace computable function φ : {0, 1}∗ → {0, 1}∗
such that

– x ∈ L ⇐⇒ φ(x) ∈ L′, and
– κ′(φ(x)) ≤ κ(x) +O(log |x|).
Note that in the standard parameterized reduction, the computation can take

f(κ(x))poly(|x|) time and the parameter κ′(φ(x)) of the reduced instance can
be increased to any function of the original parameter κ(x). However, in our
reduction, we allow only a logspace computation and an additive increase by
O(log |x|) of the parameter.

Proposition 1. If A ≤pp
L B and B ∈ EPNL, then A ∈ EPNL.

The proof of the proposition is an easy extension of the case for NL (see the
textbook by Arora and Barak [2, Chap.4.3.]), so we omit it here.
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Definition 3 (EPNL-complete). A parameterized problem A is called EPNL-
hard if for any B ∈ EPNL, we have B ≤pp

L A. Moreover, if A ∈ EPNL, A is
called EPNL-complete.

Since there are at most 2k+O(log |x|)poly(|x|) = O∗(2k) states, any problem in
EPNL can be solved in O∗(2k) time by dynamic programming. The following
proposition follows from the definitions.

Proposition 2. Any problem in EPNL can be solved in O∗(2k) time. If one
of the EPNL-hard problem can be solved in O∗(ck) time, then any problem in
EPNL can also be solved in O∗(ck) time.

Now, we show that the problems in Lemma 6 are EPNL-complete. Due to the
space constraints, we give a proof only for SAT here. The proofs for the other
problems can be obtained by series of (decomposition-based) reductions and will
be presented in the full version of this paper.

Theorem 4. SAT parameterized by path-width is EPNL-complete.

Proof. SAT parameterized by path-width is in EPNL. So it is sufficient to show
that any parameterized problem A = (L, κ) in EPNL can be reduced to SAT
parameterized by path-width. Let M be a Turing machine that accepts L, Q be
the set of (internal) states of M , and t, s : N → N be the polynomial time bound
and logarithmic space bound of M , respectively. We reduce an instance x of A
with a parameter k = κ(x) to SAT as follows.

For each step i ∈ [t(|x|)], we create the following variables:

– Qi,q for each q ∈ Q, which indicates that M is in state q,
– HI

i,j for each j ∈ [	log |x|
], which indicates the position of the input tape
head in binary,

– HK
i,j for each j ∈ [	log k
], which indicates the position of the k-bit tape head

in binary,
– HL

i,j for each j ∈ [	log r(|x|)
], which indicates the position of the logspace
tape head in binary,

– TK
i,h for each h ∈ [k]′, which indicates the symbol written in the h-th cell of

the k-bit tape,
– TL

i,h for each h ∈ [s(|x|)]′, which indicates the symbol written in the h-th cell
of the logspace tape, and

– TC
i , which represents the symbol in the cell of the certificate tape.

Now, we create clauses. Let qs ∈ Q be the initial state and qt ∈ Q be the
accepting state. First, we create the following clauses (consisting of single literals)
to express the initial and the final configuration:

– Q1,qs (the machine is in the state qs),

– HI
1,j for each j ∈ [	log |x|
] (the input tape head is at the position 0),

– HK
1,j for each j ∈ [	log k
] (the k-bit tape head is at the position 0),

– HL
1,j for each j ∈ [	log s(|x|)
] (the logspace tape head is at the position 0),
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– TK
1,h for each h ∈ [k]′ (each cell of the k-bit tape has symbol 0),

– TL
1,h for each h ∈ [r(|x|)]′ (each cell of the logspace tape has symbol 0), and

– Qt(|x|),qt (the machine must finish in the state qt).

Then, for each step i ∈ [t(|x|)], we create clauses to express transitions. The
machine can take only one state, so we create a clause Qi,q∨Qi,q′ for each q �= q′.
If a cell changes, the head must be there (or equivalently, cells not pointed by
the head must remain unchanged), so we create the following clauses:

– TK
i,hK �= TK

i+1,hK → (HK
i,∗)2 = hK for each hK ∈ [k]′, and

– TL
i,hL �= TL

i+1,hL → (HL
i,∗)2 = hL for each hL ∈ [s(|x|)]′.

Let δ : (q, cI , cK , cL, cC) �→ (q′, c′K , c′L, dI , dK , dL, dC) be the transition function,
which indicates that if the machine is in the state q, the symbol in the input tape
is cI , the symbol in the k-bit tape is cK , the symbol in the logspace tape is cL,
and the symbol in the certificate tape is cC , then the machine changes the state
to q′, write c′K to the cell of the k-bit tape, write c′L to the cell of the logspace
tape, move the input tape head by dI , move the k-bit tape head by dK , move the
logspace tape head by dL, and move the certificate tape head by dC . Note that
since the certificate tape is read-once, dC ≥ 0. For each hI ∈ [|x|]′, hK ∈ [k]′,
hL ∈ [s(|x|)]′, and transition (q, cI , cK , cL, cC) �→ (q′, c′K , c′L, dI , dK , dL, dC), we
create clauses as follows. If a symbol in the hI -th position of the input tape is
not cI , this transition never occurs. Otherwise, let C be the constraint Qi,q ∧
(HI

i,∗)2 = hI ∧ (HK
i,∗)2 = hK ∧ (HL

i,∗)2 = hL ∧ TK
i,hK = cK ∧ TL

i,hL =

cL ∧ TC
i = cC . Then, we create the following clauses:

– C → Qi+1,q′ (the machine changes the state to q′),
– C → TK

i+1,hK = c′K (c′K is written in the cell of the k-bit tape),

– C → TL
i+1,hL = c′L (c′L is written in the cell of the the logspace tape),

– C → (HI
i+1,∗)2 = hI + dI (the input tape head moves by dI),

– C → (HK
i+1,∗)2 = hK + dK (the k-bit tape head moves by dK),

– C → (HL
i+1,∗)2 = hL + dL (the logspace tape head moves by dL), and

– C → TC
i = TC

i+1 if dC = 0 (if the certificate tape head does not move, then
the symbol in the certificate tape does not change).

It is not difficult to check that the reduction can be done in logspace and
the obtained CNF is satisfiable if and only if there is a certificate such that the
machine finishes in the accepting state. Finally, we show that the obtained CNF
has path-width k +O(log |x|).

For a step i, let TK
i = {TK

i,h | h ∈ [k]′} and Xi be the set of other variables.
The primal graph of the obtained CNF has the following properties:

– N [Xi] ⊆ TK
i−1 ∪Xi−1 ∪ TK

i ∪Xi ∪ TK
i+1 ∪Xi+1,

– N(TK
i,j) ⊆ {TK

i−1,j, T
K
i+1,j} ∪Xi−1 ∪Xi ∪Xi+1.

We can construct a path-decomposition as follows: starting fromabagTK
1 ∪X1 and

i = 1, introduce Xi+1, introduce T
K
i+1,1, forget T

K
i,1, . . . , introduce T

K
i+1,k, forget
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TK
i,k, forgetXi (the current bag consists of T

K
i+1 ∪Xi+1), and then increase i. Since

the size ofXi isO(log |x|) and the size of TK
i is exactly k, the width of the obtained

path-decomposition is k +O(log |x|). ��
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Abstract. We consider the problem of multiplying two U×U matrices A
and C of elements from a field F. We present a new randomized algorithm
that can use the known fast square matrix multiplication algorithms to
perform fewer arithmetic operations than the current state of the art for
output matrices that are sparse.

In particular, let ω be the best known constant such that two dense
U × U matrices can be multiplied with O (Uω) arithmetic operations.
Further denote by N the number of nonzero entries in the input matrices
while Z is the number of nonzero entries of matrix product AC. We

present a new Monte Carlo algorithm that uses Õ
(
U2

(
Z
U

)ω−2
+N

)

arithmetic operations and outputs the nonzero entries of AC with high
probability. For dense input, i.e., N = U2, if Z is asymptotically larger
than U , this improves over state of the art methods, and it is always at
most O (Uω). For general input density we improve upon state of the art
when N is asymptotically larger than U4−ωZω−5/2.

The algorithm is based on dividing the input into ”balanced” subprob-
lems which are then compressed and computed. The new subroutine that
computes a matrix product with balanced rows and columns in its out-

put uses time Õ
(
UZ(ω−1)/2 +N

)
which is better than the current state

of the art for balanced matrices when N is asymptotically larger than
UZω/2−1, which always holds when N = U2.

In the I/O model — where M is the memory size and B is the block
size — our algorithm is the first nontrivial result that exploits cancella-
tions and sparsity of the output. The I/O complexity of our algorithm

is Õ
(
U2(Z/U)ω−2/(Mω/2−1B) + Z/B +N/B

)
, which is asymptotically

faster than the state of the art unless M is large.

1 Introduction

In this paper we consider computing the matrix product AC of two matrices
A and C in the case where the number of nonzero entries of the output AC is
sparse. In particular we consider the case where matrix elements are from an
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arbitrary field and cancellations can be exploited, i.e., ”Strassen-like” methods
are allowed.

The case of sparse output is well-motivated by real-world applications such
as computation of covariance matrices in statistical analysis. In general, matrix
multiplication is a fundamental operation in computer science and mathematics,
due to the wide range of applications and reductions to it — e.g. computing the
determinant and inverse of a matrix, or Gaussian elimination. Matrix multipli-
cation has also seen lots of use in non-obvious applications such as bioinformat-
ics [18], computing matchings [15,12] and algebraic reasoning about graphs, e.g.
cycle counting [2,3].

Our main result is a new output-sensitive Monte Carlo algorithm, that given as
input the U ×U matrices A and C computes the nonzero entries of AC with high
probability. ForZ the number of nonzero output entries ofAC, andN the number

of nonzero entries ofA and C, our algorithm uses Õ
(
U2

(
Z
U

)ω−2
+N

)
arithmetic

operations and its I/O complexity, where memory sizeM and block size B are pa-
rameters in the model, is given by Õ (

U2(Z/U)ω−2/(Mω/2−1B) + Z/B +N/B
)
.

The algorithm exploits cancellations, both to avoid computing zero entries of
the output and by calling a Strassen-like algorithms.

When the input is dense, i.e., N = U2, the RAM bound is strictly better
than all state of the art methods when Z � U and is never worse than O(Uω).
The I/O bound is strictly better than state of the art unless M is large — see
Section 1.3. We note that the algorithm works over any field, but not over any
semiring.

1.1 Preliminaries

We analyze our algorithms in the standard word-RAM model we assume that
the word size is large enough to fit a field element. We further analyze our
algorithms in the external memory model [1], where we have a disk containing
an infinite number of words and a internal memory that can hold M words. A
word can only be manipulated if it is residing in internal memory and words are
transferred to internal memory in blocks of B words at a time and the number
of such block transfers is called the I/O performance of the algorithm. Here we
assume that a word can hold a field element as well as its position in the matrix.

Let A be a U1 × U3 matrix and C be a U3 × U2 matrix over any field F,
then Ai,j is the entry of A located in the i’th row and j’th column and Ai,∗
will be used as shorthand for the entire i’th row (A∗,i for column i). The matrix

product is given as (AC)i,j =
∑U3

k=1 Ai,kCk,j . We say that a sum of elementary
products cancel if the sum over them equals zero even though there are nonzero
summands. We allow ourselves to use cancellations, i.e., ”Strassen-like” methods,
and our algorithms does not produce output results that are zero. We use log
for the logarithm with base 2 and ln for the natural logarithm and when used in
a context that requires integers, we let log stand for �log� and ln stand for �ln�.
Throughout this paper we will use f(n) = Õ (g(n)) as shorthand for f(n) =
O (g(n) logc g(n)) for any constant c. Here n stands for the input size, in our
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context it can always be taken as U . We let sort(n) = O((n/B) logM/B(n/B))
be shorthand for the I/O complexity [1] of sorting n elements. Note that input
layout is irrelevant for our complexities, as sorting the input to a different layout
is hidden in Õ (·), i.e., O(sort(n)) = Õ (n/B). When we use this notation there
is usually at least a binary logarithm hidden in the Õ ()-notation and not only
the logM/B(n/B)-factor of sorting.

We will let f � g denote that f is asymptotically larger than g. Let ω denote
the real number for which the matrix product of two U × U matrices can be
computed in time O(Uω). For a hash function h : [U ] → [d] we define the binary
projection matrix Ph ∈ {0, 1}U×d by (Ph)i,j = 1 ⇐⇒ j = h(i). Finally we
say that an algorithm has a silent failure to mean that the algorithm finished
without an error, but the output is not correct.

We will use the following easy fact about the number of arithmetic operations
FRAM(U, V,W ), and I/Os FI/O(U, V,W ) needed to multiply a U × V matrix by
a V ×W matrix.

Fact 1 (Folklore). Let ω be the smallest constant such that an algorithm to
multiply two n×n matrices that runs in time O(nω) is known. Let β = min{U, V,W}.

Fast matrix multiplication has FRAM(U, V,W ) = O (
UVW · βω−3

)
running

time on a RAM, and uses
FI/O(U, V,W ) = O (

FRAM(U, V,W )/(Mω/2−1B) + (UV + VW + UW )/B
)
I/Os.

Proof. Assume wlog that β divides α = UVW/β. Since β is the smallest di-
mension we can divide the matrices into α/β2 submatrices of size β × β, which
can each be solved in O (βω) operations. The I/O complexity follows from an
equivalent blocking argument [10].

For U, V,W and U ′, V ′,W ′ with UVW = U ′V ′W ′ we have F (U, V,W ) >
F (U ′, V ′,W ′) if min{U, V,W} < min{U ′, V ′,W ′}, i.e., the “closer to square”
the situation is, the faster the fast matrix multiplication algorithm runs, both
in terms of RAM and I/O complexity.

1.2 Our Results

We show the following theorem, that provides an output sensitive fast matrix
multiplication algorithm granted that the output is balanced.

Theorem 2. Let A and C be U × U matrices over the field F that contain at
most N nonzero entries and the product AC contains at most Z ≥ U nonzero
entries in total and at most Θ(Z/U) per row and per column. Then there exists
an algorithm for which it holds:

(a) The algorithm uses Õ
(
UZ

ω−1
2 +N

)
time in the RAM model.

(b) The algorithm uses Õ
(
UZ

ω−1
2 /(Mω/2−1B) + Z/B +N/B

)
I/Os

(c) With probability at least 1− 1/U2 the algorithm outputs the nonzero entries
of AC.
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We then show the main theorem, a fast matrix multiplication algorithm that
works on any input and is sensitive to the average number of nonzero entries in
the rows and columns of the output.

Theorem 3. Let A and C be U × U matrices over field F that contain at most
N nonzero entries and the product AC contains at most Z nonzero entries in
total. Then there exists an algorithm for which it holds:

(a) The algorithm uses time Õ (
U2(Z/U)ω−2 +N

)
time in the RAM model.

(b) The algorithm uses Õ (
U2(Z/U)ω−2/(Mω/2−1B) + U2/B

)
I/Os

(c) With probability at least 1− 1/U2 the algorithm outputs the nonzero entries
of AC.

The algorithm of Theorem 2 has asymptotically lower running time compared
to that of Theorem 3 for 1 < Z < U2 (for current ω) and for Z = U2 they
both match Õ(Uω). However, the algorithm from Theorem 2 requires balanced
rows and columns and in fact the algorithm from Theorem 3, which works in
the general case, is based on calling it on balanced partitions. For the sake of
simplicity we state and proof Theorem 3 for square inputs only and note that
there is nothing in our arguments prevents the generalization to the rectangular
case. To the knowledge of the authors there are no previously known output-
sensitive I/O-efficient algorithms that exploits cancellations and we outperform
the general dense as well as the optimal sparse algorithm by Pagh-Stöckel unless
M is large. We summarize the results of this section and the closest related
results in Table 1.

Table 1. Comparison of matrix multiplication algorithms of two U × U in the RAM
and I/O model. N denotes the number of nonzeros in the input matrices, Z the number
of nonzeros in the output matrix and ω is the currently lowest matrix multiplication
exponent.

Method word-RAM complexity Notes

General dense O (Uω)

Lingas Õ
(
U2Zω/2−1

)
Requires boolean matrices.

Iwen-Spencer, Le Gall O (
U2+ε

)
Requires O (

n0.3
)
nonzeros per column.

Williams-Yu, Pagh Õ (
U2 + UZ

)

Van Gucht et al. Õ
(
N
√
Z + Z +N

)

This paper, Thm. 2 Õ
(
UZ(ω−1)/2 +N

)
Requires balanced rows and columns.

This paper, Thm. 3 Õ (
U2(Z/U)ω−2 +N

)

Method I/O complexity Notes

General dense Õ
(
Uω/(Mω/2−1B)

)

Pagh-Stöckel Õ
(
N
√
Z/(B

√
M)

)
Elements from semirings.

This paper, Thm. 2 Õ
(
UZ

ω−1
2 /(Mω/2−1B) + Z/B +N/B

)
Requires balanced rows and columns.

This paper, Thm. 3 Õ
(
U2(Z/U)ω−2/(Mω/2−1B) + U2/B

)

Result Structure. The paper is split into three parts: the row balanced case,
subdivision into balanced parts, and the balanced case. After a discussion of the
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related work in Section 1.3, we consider in Section 2 the case where we have
an upper bound on the number of output entries in each row of the output. In
this case we can compress the computation by reducing the number of columns,
where the magnitude of the reduction is based on the upper bound on the output
entries. Then in Section 3 we make use of the row balanced compression, by
showing that a potentially unbalanced output can be divided into such balanced
cases, which gives Theorem 3. In Section 4 we show that if there is an upper
bound on the number of output entries in both rows and columns, then we can
compress in both directions which yields Theorem 2.

1.3 Related Work

Two U ×U matrices can trivially be multiplied in O(U3) arithmetic operations
by U2 inner products of length U vectors. The first one to improve upon the
O(U3) barrier was Strassen [17] who for ω = log2 7 showed an O(Uω) algorithm
by exploiting clever cancellations. Since then there has been numerous advances
on ω, e.g. [16,6,20] and most recently ω < 2.3728639 was shown due to Le
Gall [8].

The closest algorithm in spirit to our general algorithm of Theorem 3 is due to
Williams and Yu [22]. They recursively, using time Õ (

U2
)
, with high probability

compute all positions of nonzero output entries. After this they compute each
output value in time O(U) for a total number of Õ (

U2 + UZ
)
operations. This

matches the exact case of Pagh’s compressed matrix multiplication result [13],
which is significantly more involved but also gives a stronger guarantee: given
a parameter b, using time Õ (

U2 + Ub
)
, it gives the exact answer with high

probability if Z ≤ b, otherwise it outputs a matrix where each entry is close
to AC in terms of the Frobenius norm. Our general algorithm of Theorem 3
improves upon both when Z � U .

In the case of sparse input matrices, Yuster and Zwick [23] showed how to
exploit sparseness of input using an elegant and simple partitioning method.
Their result was extended to be both input and output sensitive by Amossen
and Pagh [4], leading to a time bound of Õ (

N2/3Z2/3 +N0.862Z0.546
)
based on

current ω. In our (non-input sensitive) case where N = U2 we are strictly better
for all U > 1 and Z > U . We note that the algorithm of Amossen and Pagh is
presented for boolean input and claimed to work over any ring, however both the
result of Yuster-Zwick and Amossen-Pagh do not support cancellations, i.e., their
bounds are in terms of the number of vector pairs of the input that have nonzero
elementary products. The above, as well as Pagh [13] and Williams-Yu [22] were

improved recently by Van Gucht et al. [19] to be Õ
(
Z +N

√
Z +N

)
operations,

stated in the binary case but claimed to work over any field. Compared to this
we use Õ (

U2(Z/U)ω−2
)
operations by Theorem 3, which for N > U4−ωZω−5/2

improves Van Gucht et al. in the general case. For dense inputs, N = U2, this
threshold on N simplifies to Z > U (ω−2)/(ω−5/2) which holds for all positive
integers Z ≥ 1 and U > 1.
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In the balanced case, Iwen and Spencer [9] showed that if every column of the
output matrix has O(U0.29462) nonzero entries, then the matrix product can be
computed using time O(U2+ε) for constant ε > 0. Recently due to Le Gall [8]
this result now holds for output matrices with columns with at most O(U0.3)
nonzeros. In this case our balanced matrix multiplication algorithm of Theorem 2
uses time Õ (

U2.19
)
(for ω = 2.3728639), which is asymptotically worse, but our

method applies to general balanced matrices. Compared to Van Gucht et al., in
the balanced case, we improve upon their operation count when N > UZω/2−1.
When N = U2 this always holds since Z ≤ U2.

For boolean input matrices, the output sensitive algorithm of Lingas [11] runs
in time Õ (

U2Zω/2−1
)
, which we improve on for 1 ≤ Z < U2 by a relative

factor of Z1−ω/2 and match when Z = U2. Additionally our algorithm works
over any field. Lingas however shows a partial derandomization that achieves
the same bound using only O(log2 U) random bits, which is a direction not
pursued in this paper. The general case, i.e., dense input and output without
fast matrix multiplication allowed, multiplying two boolean matrices has time
complexity O (

U3poly(log log)/ log4 U
)
due to Yu [21], which is an improvement

to Chans time O
(
U3 (log logU)

3
/ log3 U

)
algorithm [5]. Both are essentially

improvements on the four russians trick: 1) divide the matrix into small t × t
blocks 2) pre-compute results of all t× t blocks and store them in a dictionary.
Typically t = O(logU) and the gain is that there are (U/t)2 = U2/ log2 U blocks
instead of U2 cells.

In terms of I/O complexity, an optimal general algorithm was presented by
Hong and Kung [10] that uses O(U3/(B

√
M) I/Os using a blocking argument.

An equivalent blocking argument gives in our case where we are allowed to
exploit cancellations an I/O complexity of O(Uω/(Mω/2−1B)). This is the com-
plexity of the black box we will invoke on dense subproblems (also stated in
Fact 1). For sparse matrix multiplication in the I/O model over semirings, Pagh
and Stöckel [14] showed a Õ(N

√
Z/(B

√
M) algorithm and a matching lower

bound. To the knowledge of the authors the algorithm presented in this paper
is the first algorithm that exploits cancellations and is output sensitive. Our al-
gorithm is asymptotically better than the general dense for all 1 ≤ Z < U2 and
we match their complexity for Z = U2. Our new algorithm is asymptotically

faster than Pagh-Stöckel precisely when Z >
(
U4−ωM3/2−ω/2/N

)1/(5/2−ω)
. To

simplify, consider the case of dense input, i.e., N = U2, then our new algorithm
is better unless M much is larger than Z, which is typically assumed to not be
the case.

Comparison summary. The general algorithm of Theorem 3 works over any
field and can exploit cancellations (and supports cancellation of terms). In the
RAM model it is never worse than O(Uω) and in the case of dense input, which
is the case that suits our algorithms best, we improve upon state of the art
(Pagh [13] and Williams-Yu [22]) when Z � U . For arbitrary input density we
improve upon state of the art (Van Gucht et al [19] when N � U4−ωZω−5/2. In
the I/O model our algorithm is the first output sensitive algorithm that exploits
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cancellations and it outperforms the known semiring algorithms for almost the
entire parameter space.

2 The Row Balanced Case

Lemma 1. Let A ∈ F
U ′×U and C ∈ F

U×U be two matrices with U ′ ≤ U .
Assume each row of the U ′ × U product matrix AC has at most d/5 non-zero
entries. For any natural constant c there is a data structure where

(a) initializing the data structure takes time Õ (nnz(C) + FRAM(U ′, U, d)) on the
RAM and Õ (

sortM,B(nnz(C)) + FI/O(U
′, U, d)

)
I/Os

(b) the silent failure probability of initialization is at most U−c

(c) the data structure can answer queries for entries of (AC) in time O(log(U2+c))
(d) the data structure can report all (non-zero) entries with O(U ′sort(kU)) I/Os

Proof. We chose a parameter k (number of repetitions) by k = 6 ln(U2+c). The
data structure consists of k independent compressed versions of AC, Gi ∈ F

U ′×d.
We choose k independent random (hash) functions hl : [U ] → [d] where each hl(j)
is chosen independently and uniformly from [d]. Each hl is stored as a table in
the data structure. We compute k compressed matrices Gl = ACPhl

. See also
Algorithm 1. This computation can be achieved by scanning C and changing all
column indexes by applying the hash function. The resulting matrix C′ with d
columns is multiplied by A using a fast dense method described in Fact 1.

There are U ′U ≤ U2 different queries that are answered using Algorithm 2.
A particular zl = (Gl)i,j is correct if no (other) non-zero entry of AC has been
hashed to the same position of Gl. Because we are hashing only within rows,
there are at most d/5 such non-zero entries. For a random hash function the
probability that a particular one does so is 1/d, so the probability that zl is
correct is at least

(1− 1/d)d/5 ≥ (1/4)1/5 ≥ 3/4 .

Here, the first inequality stems from (1 − 1/d)d approaching e−1 from below
and being ≥ 1/4 for d ≥ 2, and the second by 44 > 35. Now, the probability
of the median (or a majority vote) being false is at most that of the following
Bernoulli experiment: If heads (errors) turn up with probability 1/4 and k trials
are performed, at least k/2 heads show up. By a Chernoff-Hoeffding inequality [7,
Theorem 1.1, page 6] (equation (1.6) with ε = 1) this failure probability is
at most exp(− 1

3
k
2 ) = exp(−k/6) ≤ U−2−c. Hence a union bound over all U2

possible queries shows that a randomly chosen set of compression matrices leads
to a correct data structure with probability at least 1− U−c.

To report all entries of AC we proceed row by row. We can assume that all
Gl are stored additionally row wise, i.e., first the first row of G1, then the first
row of G2 and so on, after that the second row of each Gl and so on. This
reordering of the data structure does not change the asymptotic running time of
the initialization phase. For row i we copy each entry gi,j′ ∈ Gl as many times
as there is an j ∈ U with hl(j) = j′ and annotate the copy with the index j.
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This can be achieved by scanning if the graph of the hash function is sorted
by target element. Then all these copies are sorted mainly by the annotated
index and secondarily by their value. With this, for each j, the entries of the
Gl corresponding to (i, j) are sorted together and a median or majority vote
can easily be computed. If desired, the zero entries can be filtered out. The I/O
complexity is obviously as claimed.

Input: Matrices A ∈ F
U′×U and C ∈ F

U×U

Output: k, hash functions h1, . . . , hk : [U ] → [d],

compressed matrices Gi ∈ F
U′×d

1 Set k = k = 6 ln(U2/δ)
2 for l ← 1 to k do
3 Create random function hl : [U ] → [d]

4 Create C′ ∈ F
U×d, initialized to 0

5 foreach (i, j) with Ci,j �= 0 do
6 C′

i,hl(j)
+ = Ci,j ; /* C′ = CPhl

*/

7 Fast Multiply Gi = AC′

Algorithm 1: Initialization Balanced Rows

Input: k, Hash Functions h1, . . . , hk : U → d, i, j
Output: (AC)i,j

1 for l ← 1 to k do
2 Set zl = (Gl)i,hl(j)

3 Report Median of zl
Algorithm 2: Query Balanced Rows

3 Subdividing into Balanced Parts

To make use of Lemma 1 for general matrices, it is important that we can
estimate the number of nonzero elements in the rows of the output:

Fact 4 ([14], Lemma 1). Let A and C be U ×U matrices with entries of field
F, N = nnz(A) + nnz(C) and let 0 < ε, δ ≤ 1.
We can compute estimates z1, . . . , zU using O(ε−3N log(U/δ) logU) RAM oper-
ations and Õ(ε−3N/B) I/Os, such that with probability at least 1 − δ it holds
that (1− ε) nnz([AC]k∗) ≤ zk ≤ (1 + ε) nnz([AC]k∗) for all 1 ≤ k ≤ U .

With this we can get the following data structure for potentially unbalanced
output matrices.
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Lemma 2. Let A,C ∈ F
U×U be two square matrices, and let N = nnz(A) +

nnz(C), Z = nnz(AC). For any natural constant c there is a data structure
where

(a) initializing the data structure takes
time Õ (FRAM(U,Z/U,U) +N) = Õ (

U2(Z/U)ω−2 +N
)
on the RAM

and Õ (
FI/O(U,Z/U,U)

)
I/Os

(b) the silent failure probability of initialization is at most U−c

(c) the data structure can answer queries for entries of (AC) in time O(log(U2/δ))
(d) the data structure can report all (non-zero) entries with O(Usort(kU) +

sort(U2)) I/Os

Proof. We use Fact 4 to partition the output matrix into blocks of rows, for each
of which we use the data structure of Lemma 1.

Observe that permuting the rows of AC is the same as permuting the rows
of A. We use Fact 4 with ε = .3 and δ = U1+c/2 to estimate the number of
non-zeros in row i of AC as zi. We group the rows accordingly, row i belongs to
group l if U ·2−l−1 < 1.3zi ≤ U ·2−l. We create a table that states for each original
row its group and position in the group (row in the smaller matrix) Hence with
overall probability at least 1− U−c/2, each group l contains xl rows where the
number of non-zeros is between U · 2−l−2 and U · 2−l. At the cost of sorting A
we make these at most logU matrices Al ∈ F

xl×U explicit in sparse format.
We create the overall data structure from smaller ones, one for each Rl = AlC
using Lemma 1 with c′ = c+1. These data structures have an individual success
probability of at least 1− U−c′ , and because there are at most logU such data
structures, by a union bound, an overall success probability of 1− U−c.

The overall creation cost hinges on the cost for multiplying the smaller ma-
trices, i.e.,

∑
l FRAM(U, xl, 5U2−l). To bound this, we estimate xl by the upper

bound xl ≤ 4 ·Z ·2l/U which stems from U ·2−l−2 ·xl ≤ Z. For l > log(Z/U) this
bound is bigger than U and we should estimate such xl as U . This implies that
this part of the sum forms a geometric series, and asymptotically it is sufficient
to consider

log(Z/U)∑

l=1

FRAM(U, 4Z · 2l/U, 5U2−l) .

For this sum of fast matrix multiply running times we realize that the product
of the dimensions is always 20UZ, and hence each term is at most that of the
most unbalanced case. Hence we can estimate the overall running time on the
RAM as FRAM(U, 4Z/U, 5U) log(U). The same argument works for the overall
number of I/Os. By observing that the required work on A takes Õ (

sort(U2)
)
=

Õ (
FI/O(U,Z/U,U)

)
we get that the I/O performance of initializing is as stated.

To report all output entries, we use the reporting possibility of the smaller
data structures. That output has to be annotated with the original row number
and sorted accordingly. This yields the claimed I/O-bound.

Proof (of Theorem 3). We use the data structure of Lemma 2 with c = 2. To
produce the output RAM efficiently, we perform U2 queries to the data structure
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which is Õ (
U2

)
= Õ (

U2(Z/U)ω−2
)
. To produce the output I/O efficiently, we

use the procedure of item (d). Because O(Usort(kU)+sort(U2)) = Õ (
U2/B

)
=

Õ (
FI/O(U,Z/U,U)

)
by Fact 1 we also get the claimed I/O performance.

4 The Balanced Case

If the matrices are square and have d as an upper bounds on the number of
nonzero entries both in columns and row we can hash in both columns and rows.
This is beneficial because we achieve a more balanced setting of the dimensions
when calling the fast matrix multiplication algorithm.

4.1 A Data Structure for Balanced Output

Lemma 3. Let A ∈ F
U ′×U and C ∈ F

U×U be two matrices with U ′ ≤ U . Let
Z = nnz(AC) and N = nnz(A) + nnz(C). Assume each row and each column
of the U ′ × U product matrix AC has at most d/5 entries. Assume further that
Z > Ud/O(1). For any constant c there is a data structure where

(a) initializing the data structure takes time Õ
(
N + FRAM(

√
Ud, U,

√
Ud)

)
=

Õδ

(
UZ

ω−1
2 +N

)
on the RAM and Õ

(
N/B + FI/O(

√
Ud, U,

√
Ud)

)
I/Os

(b) the silent failure probability of initialization is at most 3U−c

(c) the data structure can answer queries for entries of (AC) in timeO(log(U2+c))
(d) A batched query for up to 2Z entries can be performed with Õ ((Z)/B) I/Os.

Proof. (Sketch) The construction is as in Lemma 1 (including k = 6 ln(U2+c)),
only that both A and C are compressed using hash functions. The compression
is only down to

√
Ud > d columns and rows. Additionally to collisions within

a row or within a column, now also collision of arbitrary elements are possible.
The failure probability of all three cases can be derived just as in Lemma 1. For
the chosen parameters the sum of the three failure probabilities yields the claim.

To perform a batched query for 2Z entries, the following I/O-efficient algo-
rithm can be used. Observe that all described sorting steps are on the queries
or on compressed matrices and hence operate on O(Z) elements. We first con-
sider the compressed matrices individually. With a first sorting step (by row),
the queries are annotated by the hashed row. In a second sorting step they are
annotated by column. Now all annotated queries are sorted into the compressed
matrix. For each query, the corresponding entry of the compressed matrix is
extracted and annotated with the query. When this is done for all compressed
matrices, the annotated entries are sorted by the index of query and a median
or majority vote is performed.
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4.2 Creating the Output as Sparse Matrix

Unlike in the other settings, here the time to query for all possible entries of the
output matrix might dominate the overall running time. Hence, in this section
we propose an additional algorithm to efficiently extract the entries of AC that
are nonzero, relying on the bulk query possibility of the data structure.

Lemma 4. Let A,C ∈ F
U×U be two matrices. Let Z = nnz(AC) and N =

nnz(A) + nnz(C). Assume each row and each column of the U × U product
matrix AC has at most d/5 entries. Assume further that Z > Ud/O(1). For any
natural constant c there is an algorithm that

(a) takes time Õ
(
Z +N + FRAM(

√
Ud, U,

√
Ud)

)
on the RAM

and Õ
(
sortM,B(N + Z) + FI/O(

√
Ud, U,

√
Ud)

)
I/Os

(b) the silent failure probability is at most 5U−c

Proof. For each column of AC, we create a perfectly balanced binary tree where
the leafs are the individual entries of the column. An internal node of the tree is
annotated with the information whether there is a nonzero leaf in the subtree.
A simultaneous BFS traversal of all these trees (one for each column) allows to
identify all positions of nonzero entries. The number of elements on the “wave-
front” of the BFS algorithm is at most Z. To advance the wavefront by one
level, a batched query to at most 2Z positions of the tree is sufficient. Finally,
the matrix AC itself is stored in a data structure as in Lemma 3 with failure
probability 3U−c.

Instead of annotating the tree nodes directly, we compute several random dot
products with the leaf-values. More precisely, for each leaf we choose a coefficient
uniformly from {0, 1} ⊂ F. Now, if one leaf has value r = 0, then with probability
at least 1/2 the dot product is non-zero: Assume all other coefficients are fixed,
leading to a certain partial sum s; now it is impossible that both s and s+ 1 · r
are zero. If we have (c + 3) logU many such coefficients, the failure probability
is at most 1/U c+3.

Observe that for one level of the tree and one random choice, the dot products
form a matrix that can be computed asHAC for a {0, 1}-matrixH , and HA can
be computed by sorting A. Observe further that the number of nonzero entries
of the columns and rows of HAC are such that each of these matrices can be
encoded using the data structure of Lemma 3 with failure probability 3U−c−1.

If there is no failure, the algorithm, using the batch queries, achieves the
claimed running times and I/Os.

The probability that there is an encoding error in any of the matrices encoding
the trees is, for sufficiently big U , at most U−c because there are only log(U)(c+
3) log(U) < U/3 such matrices. The probability of a single tree node being
encoded incorrectly is at most 3/U c+3. Because there are U2 logU < U3/3 tree
nodes in total, all trees are correct with probability at least 1−U−c. Hence the
overall failure probability, including that the data structure for the entries of
AC failed, is hence as claimed.
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Proof (of Theorem 2). We invoke Lemma 4 with c = 2. Combining the state-

ments about the RAM running time with Fact 1 and the calculation ZU
√
Z

ω−3
=

UZ
ω−1

2 gives the claimed RAM running time. Doing the same for the I/O bound
and using that Õ (sortM,B(N + Z)) = Õ (N/B + Z/B) gives the claimed I/O
performance.
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Treewidth and Total Unimodularity

Bart M.P. Jansen1,� and Stefan Kratsch2,��

1 Eindhoven University of Technology, The Netherlands
b.m.p.jansen@tue.nl

2 University of Bonn, Germany
kratsch@cs.uni-bonn.de

Abstract. Kernelization is a theoretical formalization of efficient pre-
processing for NP-hard problems. Empirically, preprocessing is highly
successful in practice, for example in state-of-the-art ILP-solvers like
CPLEX. Motivated by this, previous work studied the existence of ker-
nelizations for ILP related problems, e.g., for testing feasibility of Ax ≤ b.
In contrast to the observed success of CPLEX, however, the results
were largely negative. Intuitively, practical instances have far more useful
structure than the worst-case instances used to prove these lower bounds.

In the present paper, we study the effect that subsystems that have
(a Gaifman graph of) bounded treewidth or that are totally unimodular
have on the kernelizability of the ILP feasibility problem. We show that,
on the positive side, if these subsystems have a small number of vari-
ables on which they interact with the remaining instance, then we can
efficiently replace them by smaller subsystems of size polynomial in the
domain without changing feasibility. Thus, if large parts of an instance
consist of such subsystems, then this yields a substantial size reduction.
Complementing this we prove that relaxations to the considered struc-
tures, e.g., larger boundaries of the subsystems, allow worst-case lower
bounds against kernelization. Thus, these relaxed structures give rise to
instance families that cannot be efficiently reduced, by any approach.

1 Introduction

The notion of kernelization from parameterized complexity is a theoretical for-
malization of preprocessing (i.e., data reduction) for NP-hard combinatorial
problems. Within this framework it is possible to prove worst-case upper and
lower bounds for preprocessing; see, e.g., recent surveys on kernelization [13,12].
Arguably one of the most successful examples of preprocessing in practice are
the simplification routines within modern integer linear program (ILP) solvers
like CPLEX (see also [8,1,14]). Since ILPs have high expressive power, already
the problem of testing feasibility of an ILP is NP-hard; there are immediate re-
ductions from a variety of well-known NP-hard problems. Thus, the problem also
inherits many lower bounds, in particular, lower bounds against kernelization.
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integer linear program feasibility – ilpf

Input: A matrix A ∈ Z
m×n and a vector b ∈ Z

m.
Question: Is there an integer vector x ∈ Z

n with Ax ≤ b?

Despite this negative outlook, a formal theory of preprocessing, such as ker-
nelization aims to be, needs to provide a more detailed view on one of the most
successful practical examples of preprocessing, even if worst-case bounds will
rarely match empirical results. With this premise we take a structural approach
to studying kernelization for ilpf. We pursue two main structural aspects of
ILPs. The first one is the treewidth of the so-called Gaifman graph underlying
the constraint matrix A. As a second aspect we consider ILPs whose constraint
matrix has large parts that are totally unimodular. Both bounded treewidth
and total unimodularity of the whole system Ax ≤ b imply that feasibility (and
optimization) are tractable. We study the effect of having subsystems that have
bounded treewidth or that are totally unimodular. We determine when such sub-
systems allow for a substantial reduction in instance size. Our approach differs
from previous work [10,11] in that we study structural parameters related to
treewidth and total unimodularity rather than considering parameters such as
the dimensions n and m of the constrain matrix A or the sparsity thereof.

Treewidth and ILPs. The Gaifman graph G(A) of a matrix A ∈ Z
m×n is

a graph with one vertex per column of A, i.e., one vertex per variable, such
that variables that occur in a common constraint form a clique in G(A) (see
Section 3.1). This perspective allows us to consider the structure of an ILP by
graph-theoretical means. In the context of graph problems, a frequently em-
ployed preprocessing strategy is to replace a simple (i.e., constant-treewidth)
part of the graph that attaches to the remainder through a constant-size bound-
ary, by a smaller gadget that enforces the same restrictions on potential solutions.
There are several meta-kernelization theorems (cf. [9]) stating that large classes
of graph problems can be effectively preprocessed by repeatedly replacing such
protrusions by smaller structures. It is therefore natural to consider whether
large protrusions in the Gaifman graph G(A), corresponding to subsystems of
the ILP, can safely be replaced by smaller subsystems.

We give an explicit dynamic programming algorithm to determine which as-
signments to the boundary variables (see Section 3.3) of the protrusions can be
extended to feasible assignments to the remaining variables in the protrusion.
Then we show that, given a list of feasible assignments to the boundary of the
protrusion, the corresponding subsystem of the ILP can be replaced by new con-
straints. If there are r variables in the boundary and their domain is bounded
by d, we find a replacement system with O(r · dr) variables and constraints that
can be described in Õ(d2r) bits. By an information-theoretic argument we prove
that equivalent replacement systems require Ω(dr) bits to encode. Moreover, we
prove that large-domain structures are indeed an obstruction for effective ker-
nelization by proving that a family of instances with a single variable of large
domain (all others have {0, 1}), and with given Gaifman decompositions into
protrusions and a small shared part of encoding size N , admit no kernelization
or compression to size polynomial in N .
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On the positive side, we apply the replacement algorithm to protrusion decom-
positions of the Gaifman graph to shrink ilpf instances. When an ilpf instance
can be decomposed into a small number of protrusions with small boundary
domains, replacing each protrusion by a small equivalent gadget yields an equiv-
alent instance whose overall size is bounded. The recent work of Kim et al. [9] on
meta-kernelization has identified a structural graph parameter such that graphs
from an appropriately chosen family with parameter value k can be decomposed
into O(k) protrusions. If the Gaifman graph of an ilpf instance satisfies these
requirements, the ilpf problem has kernels of size polynomial in k. Concretely,
one can show that bounded-domain ilpf has polynomial kernels when the Gaif-
man graph excludes a fixed graph H as a topological minor and the parameter k
is the size of a modulator of the graph to constant treewidth. We do not pursue
this application further in the paper, as it follows from our reduction algorithms
in a straight-forward manner.

Total Unimodularity. Recall that a matrix is totally unimodular (TU) if every
square submatrix has determinant 1, −1, or 0. If A is TU then feasibility of
Ax ≤ b, for any integral vector b, can be tested in polynomial time. (Similarly,
one can efficiently optimize any function cTx subject to Ax ≤ b.) We say that a
matrix A is totally unimodular plus p columns if it can be obtained from a TU
matrix by changing entries in at most p columns. Clearly, changing a single entry
may break total unimodularity, but changing only few entries should still give a
system of constraints Ax ≤ b that is much simpler than the worst-case. Indeed,
if, e.g., all variables are binary (domain {0, 1}) then one may check feasibility
by simply trying all 2p assignments to variables with modified column in A. The
system on the remaining variables will be TU and can be tested efficiently.

From the perspective of kernelization it is interesting whether a small value
of p allows a reduction in size for Ax ≤ b or, in other words, whether one can
efficiently find an equivalent system of size polynomial in p. We prove that this
depends on the structure of the system on variables with unmodified columns.
If this remaining system decomposes into separate subsystems, each of which
depends only on a bounded number of variables in non-TU columns, then by
a similar reduction rule as for the treewidth case we get a reduced instance of
size polynomial in p and the domain size d. Complementing this we prove that
without this bounded dependence there is no kernelization to size polynomial in
p+ d; this also holds even if p counts the number of entry changes to obtain A
from a TU matrix, rather than the (usually smaller) number of modified columns.

Related Work. Several lower bounds for kernelization for ilpf and other ILP-
related problems follow already from lower bounds for other (less general) prob-
lems. For example, unless NP ⊆ coNP/poly and the polynomial hierarchy col-
lapses, there is no efficient algorithm that reduces every instance (A, b) of ilpf
to an equivalent instance of size polynomial in n (here n refers to the number of
columns in A); this follows from lower bounds for hitting set [6] or for satis-
fiability [5] and, thus, holds already for binary variables (0/1-ilpf). The direct
study of kernelization properties of ILPs was initiated in [10,11] and focused on
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the influence of row- and column-sparsity of A on having kernelization results
in terms of the dimensions n and m of A. At high level, the outcome is that
unbounded domain variables rule out essentially all nontrivial attempts at poly-
nomial kernelizations. In particular, ilpf admits no kernelization to size polyno-
mial in n +m when variable domains are unbounded, unless NP ⊆ coNP/poly;
this remains true under strict bounds on sparsity [10]. For bounded domain vari-
ables the situation is a bit more positive: there are generalizations of positive
results for d-hitting set and d-satisfiability (when sets/clauses have size
at most d). One can reduce to size polynomial in n in general [11], and to size
polynomial in k when seeking a feasible x ≥ 0 with |x|1 ≤ k for a sparse covering
ILP [10].

Organization. Section 2 contains preliminaries about parameterized complex-
ity, graphs, and treewidth. In Section 3 we analyze the effect of treewidth on
preprocessing ILPs, while we consider the effect of large totally unimodular sub-
matrices in Section 4. We conclude in Section 5. Due to space constraints, most
proofs are deferred to the full version.

2 Preliminaries

Parameterized Complexity and Kernelization.A parameterized problem is
a set Q ⊆ Σ∗×N where Σ is any finite alphabet and N denotes the non-negative
integers. In an instance (x, k) ∈ Σ∗ × N the second component is called the
parameter. A parameterized problemQ is fixed-parameter tractable (FPT) if there
is an algorithm that, given any instance (x, k) ∈ Σ∗ ×N, takes time f(k)|x|O(1)

and correctly determines whether (x, k) ∈ Q; here f is any computable function.
A kernelization for Q is an algorithm K that, given (x, k) ∈ Σ∗ ×N, takes time
polynomial in |x|+k and returns an instance (x′, k′) ∈ Σ∗×N such that (x, k) ∈
Q if and only if (x′, k′) ∈ Q (i.e., the two instances are equivalent) and |x′|+k′ ≤
h(k); here h is any computable function, and we also call it the size of the kernel.
If h(k) is polynomially bounded in k, then K is a polynomial kernelization. We
also define (polynomial) compression; the only difference with kernelization is
that the output is any instance x′ ∈ Σ′∗ with respect to any fixed language L,
i.e., we demand that (x, k) ∈ Q if and only if x′ ∈ L and that |x′| ≤ h(k).
A polynomial-parameter transformation from a parameterized problem P to a
parameterized problem Q is a polynomial-time mapping that transforms each
instance (x, k) of P into an equivalent instance (x′, k′) of Q, with the guarantee
that (x, k) ∈ P if and only if (x′, k′) ∈ Q and k′ ≤ p(k) for some polynomial p.

Graphs. All graphs in this work are simple, undirected, and finite. For a finite
set X and positive integer n, we denote by

(
X
n

)
the family of size-n subsets of X .

The set {1, . . . , n} is abbreviated as [n]. An undirected graph G consists of a

vertex set V (G) and edge set E(G) ⊆ (
V (G)

2

)
. For a set X ⊆ V (G) we use G[X ]

to denote the subgraph of G induced by X . We use G − X as a shorthand
for G[V (G) \X ]. For v ∈ V (G) we use NG(v) to denote the open neighborhood
of v. For X ⊆ V (G) we define NG(X) :=

⋃
v∈X NG(v) \X . The boundary of X

in G, denoted ∂G(X), is the set of vertices in X that have a neighbor in V (G)\X .
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Protrusion Decompositions. For a positive integer r, an r-protrusion in a
graph G is a vertex set X ⊆ V (G) such that tw(G[X ]) ≤ r − 1 and ∂G(X) ≤ r.
An (α, r)-protrusion decomposition of a graph G is a partition P = Y0 ·∪ Y1 ·∪
. . . ·∪ Y� of V (G) such that (1) for every 1 ≤ i ≤ � we have NG(Yi) ⊆ Y0, (2)
max(�, |Y0|) ≤ α, and (3) for every 1 ≤ i ≤ � the set Yi∪NG(Yi) is an r-protrusion
in G. We sometimes refer to Y0 as the shared part.

3 ILPs of Bounded Treewidth

We analyze the influence of treewidth for preprocessing ilpf. In Section 3.1 we
give formal definitions to capture the treewidth of an ILP, and introduce a special
type of tree decompositions to solve ILPs efficiently. In Section 3.2 we study the
parameterized complexity of ilpf parameterized by treewidth. Tractability turns
out to depend on the domain of the variables. An instance (A, b) of ilpf has
domain size d if, for every variable xi, there are constraints −xi ≤ d′ and xi ≤ d′′

for some d′ ≥ 0 and d′′ ≤ d−1. (All positive results work also under more relaxed
definitions of domain size d, e.g., any choice of d integers for each variable, at the
cost of technical complication.) The feasibility of bounded-treewidth, bounded-
domain ILPs is used in Section 3.3 to formulate a protrusion replacement rule.
It allows the number of variables in an ILP of domain size d that is decomposed
by a (k, r)-protrusion decomposition to be reduced to O(k · r ·dr). In Section 3.4
we discuss limitations of the protrusion-replacement approach.

3.1 Tree Decompositions of Linear Programs

Given a constraint matrix A ∈ Z
m×n we define the corresponding Gaifman

graph G = G(A) as follows [7, Chapter 11]. We let V (G) = {x1, . . . , xn}, i.e.,
the variables in Ax ≤ b for b ∈ Z

m. We let {xi, xj} ∈ E(G) if and only if there is
an r ∈ [m] with A[r, i] �= 0 and A[r, j] �= 0. Intuitively, two vertices are adjacent
if the corresponding variables occur together in some constraint.

Observation 1. For every row r of A ∈ Z
m×n, the variables Yr with nonzero

coefficients in row r form a clique in G(A). Consequently (cf. [3]), any tree
decomposition (T,X ) of G(A) has a node i with Yr ⊆ Xi.

To simplify the description of our dynamic programming procedure, we will
restrict the form of the tree decompositions that the algorithm is applied to.
This is common practice when dealing with graphs of bounded treewidth: one
works with nice tree decompositions consisting of leaf, join, forget, and introduce
nodes. When using dynamic programming to solve ILPs it will be convenient to
have another type of node, the constraint node, to connect the structure of the
Gaifman graph to the constraints in the ILP. In the full version we define the
notion of a nice Gaifman decomposition including constraint nodes. It can be
derived efficiently from a nice tree decomposition of the Gaifman graph.

Proposition 1. There is an algorithm that, given A ∈ Z
m×n and a width-w

tree decomposition (T,X ) of the Gaifman graph of A, computes a nice Gaifman
decomposition (T ′,X ′,Z ′) of A having width w in O(w2 · |V (T )|+n ·m ·w) time.
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3.2 Feasibility on Gaifman Graphs of Bounded Treewidth

We discuss the influence of treewidth on the complexity of ilpf. It turns out
that for unbounded domain variables the problem remains weakly NP-hard on
instances with Gaifman graphs of treewidth at most two (Theorem 1). On the
other hand, the problem can be solved by a simple dynamic programming al-
gorithm with runtime O∗(dw+1), where d is the domain size and w denotes the
width of a given tree decomposition of the Gaifman graph (Theorem 2). In other
words, the problem is fixed-parameter tractable in terms of d+w, and efficiently
solvable for bounded treewidth and d polynomially bounded in the input size.

Both results are not hard to prove and fixed-parameter tractability of ilpf(d+
w) can also be derived from Courcelle’s theorem (cf. [7, Corollary 11.43]). Explicit
proofs are provided in the full version of this work. Theorem 2 is a subroutine
of our protrusion reduction algorithm.

Theorem 1. ilp feasibility remains weakly NP-hard when restricted to in-
stances (A, b) whose Gaifman graph G(A) has treewidth two.

Theorem 2. Instances (A ∈ Z
m×n, b) of ilpf of domain size d with a given

nice Gaifman decomposition of width w can be solved in time O(dw+1 ·w·(n+m)).

If a nice Gaifman decomposition is not given, one can be computed by com-
bining an algorithm for computing tree decompositions [2,4] with Proposition 1.

3.3 Protrusion Reductions

To formulate the protrusion replacement rule, which is the main algorithmic as-
set used in this section, we need some terminology. For a non-negative integer r,
an r-boundaried ILP is an instance (A, b) of ilpf in which r distinct boundary
variables xt1 , . . . , xtr are distinguished among the total variable set {x1, . . . , xn}.
If Y = (xi1 , . . . , xir ) is a sequence of variables of Ax ≤ b, we will also use (A, b, Y )
to denote the corresponding r-boundaried ILP. The feasible boundary assign-
ments of a boundaried ILP are those assignments to the boundary variables
that can be completed into an assignment that is feasible for the entire system.

Definition 1. Two r-boundaried ILPs (A, b, xt1 , . . . , xtr ) and (A
′, b′, x′

t′1
, . . . , x′

t′r
)

are equivalent if they have the same feasible boundary assignments.

The following lemma shows how to compute equivalent boundaried ILPs for
any boundaried input ILP. The replacement system is built by adding, for each
infeasible boundary assignment, a set of constraints on auxiliary variables that
explicitly blocks that assignment.

Lemma 1. There is an algorithm with the following specifications: (1) It gets
as input an r-boundaried ILP (A, b, xt1 , . . . , xtr ) with domain size d, with A ∈
Z
m×n, b ∈ Z

m, and a width-w nice Gaifman decomposition (T,X ,Z) of A. (2)
Given such an input it takes time O(dr ·(dw+1w(n+m))+r2 ·d2r). (3) Its output
is an equivalent r-boundaried ILP (A′, b′, x′

t′1
, . . . , x′

t′r
) of domain size d contain-

ing O(r · dr) variables and constraints, and all entries of (A′, b′) in {−d, . . . , d}.
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Intuitively, we can simplify an ilpf instance (A, b) with a given protrusion
decomposition by replacing all protrusions with equivalent boundaried ILPs of
small size via Lemma 1. We get a new instance containing all replacement con-
straints plus all original constraints that are fully contained in the shared part.

Theorem 3. For each constant r there is an algorithm that, given an instance
(A, b) of ilpf with domain size d, along with a (k, r)-protrusion decomposi-
tion Y0 ·∪ Y1 ·∪ . . . ·∪ Y� of the given Gaifman graph G(A), outputs an equiv-
alent instance (A′, b′) of ilpf with domain size d on O(k · dr) variables in
time O(n ·m+ d2r(n+m) + k ·m · dr + k2 · d2r). Each constraint of (A′, b′) is
either a constraint in (A, b) involving only variables from Y0, or one of O(k · dr)
new constraints with coefficients and right-hand side among {−d, . . . , d}.

3.4 Limitations for Replacing Protrusions

In this section, we discuss limitations regarding the replacement of protrusions
in an ILP. First of all, there is an information-theoretic limitation for the worst-
case size replacement of any r-boundaried ILP with variables xt1 , . . . , xtr each
with domain size d. Clearly, there are dr different assignments to the boundary.
For any set A of assignments to the boundary variables, using auxiliary variables
and constraints one can construct an r-boundaried ILP whose feasible boundary
assignments are exactly A. This gives a lower bound of dr bits for the encoding
size of a general r-boundaried ILP, since we have 2d

r

subsets. Our first result
regarding limitations for replacing protrusions is that this lower bound even
holds for boundaried ILPs of bounded treewidth.

Proposition 2. For any d, r ∈ N and A ⊆ {0, . . . , d − 1}r there is an r-
boundaried ILP of treewidth 3r with domain size d, whose feasible boundary
assignments are A.

The proposition follows from the fact that the encoding in Lemma 1 produces
a boundaried ILP of treewidth at most 3r. To find an r-boundaried ILP of small
treewidth whose feasible assignments are A, we may therefore first construct
an arbitrary r-boundaried ILP whose feasible boundary assignments are A, and
then invoke Lemma 1. Our used encoding in Lemma 1 uses size Õ(d2r). Note
that, when using an encoding for sparse matrices, our replacement size comes
fairly close to the information-theoretic lower bound.

Second, the lower bounds for 0/1-ilpf(n), which follow, e.g., from lower
bounds for hitting set parameterized by ground set size, imply that there is no
hope for a kernelization just in terms of deletion distance to a system of bounded
treewidth. (This distance is upper bounded by n.) Note that the bound relies on
a fairly direct formulation of hitting set instances as ILPs, which creates huge
cliques in the Gaifman graph when expressing sets as large inequalities (over
indicator variables). The lower bound can be strengthened somewhat by instead
representing sets less directly: For each set, “compute” the sum of its indicator
variables using auxiliary variables for partial sums. Similarly to the example of
subset sum, this creates a structure of bounded treewidth. Note, however, that
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this structure is not a (useful) protrusion because its boundary can be as large
as n; this is indeed the crux of having only a modulator to bounded treewidth
but no guarantee for (or means of proving of) the existence of protrusions with
small boundaries.

Finally, we prove in the following theorem that the mentioned information-
theoretic limitation also affects the possibility of strong preprocessing, rather
than being an artifact of the definition of equivalent boundaried ILPs. In other
words, there is a family of ilpf instances that already come with a protrusion
decomposition, and with a single variable of large domain, but that cannot be
reduced to size polynomial in the parameters of this decomposition. Note that
this includes all other ways of handling these instances, which establishes that
protrusions with even a single large domain boundary variable can be the crucial
obstruction from achieving a polynomial kernelization.

Theorem 4. Assuming NP � coNP/poly, there is no polynomial-time algorithm
that compresses instances (A ∈ Z

m×n, b ∈ Z
m) of ilpfwith entries in {−n, . . . , n}

that consist of {0, 1}-variables except for a single variable of domain d ≤ n,
which are given together with a (k, 5)-protrusion decomposition Y0 ·∪ Y1 ·∪ . . . ·∪ Y�

of V (G(A)), to size polynomial in k + m̂ + log d, where m̂ is the number of con-
straints that affect only variables of Y0.

Intuitively, the parameterization chosen in the theorem implies that every-
thing can be bounded to size polynomial in the parameters except for the
variables in Y1, . . . , Y� and the (encoding size of the) constraints that are fully
contained in protrusions (recall that constraints give cliques in G(A)). To put
this lower bound into context, we prove that a more general (and less technical)
variant is fixed-parameter tractable.

Theorem 5. The following variant of ilpf is FPT: We allow a constant num-
ber c of variables with polynomially bounded domain; all other variables have
domain size d. Furthermore, there is a specified set of variables S ⊆ {x1, . . . , xn}
such that the graph G(A) − S has bounded treewidth. The parameter is d+ |S|.

4 Totally Unimodular Subproblems

We say that a matrix A is totally unimodular plus p entries if A can be obtained
from a totally unimodular matrix by replacing any p entries by new values. (This
is more restrictive than the equally natural definition of adding p arbitrary rows
or columns.) We note that ilpf is FPT with respect to parameter p+ d, where
d bounds the domain: It suffices to try all dp assignments for variables whose
column in A has at least one modified entry. After simplification the obtained
system is TU and, thus, existence of a feasible assignment for the remaining
entries can be tested in polynomial time.

Our following result shows that, despite fixed-parameter tractability for pa-
rameter p+ d, the existence of a polynomial kernelization is unlikely; this holds
already when d = 2.
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Theorem 6. ilp feasibility restricted to instances (A, b, p) where A is to-
tally unimodular plus p entries does not admit a kernel or compression to size
polynomial in p unless NP ⊆ coNP/poly, even if all domains are {0, 1}.
Proof. We reduce from the hitting set(n) problem, in which we are given a
set U , a set F ⊆ 2U of subsets of U , and an integer k ∈ N, and we have to decide
whether there is a choice of at most k elements of U that intersects all sets in F ;
the parameter is n := |U |. Dom et al. [6] proved that hitting set(n) admits no
polynomial kernelization or compression (in terms of n) unless NP ⊆ coNP/poly.
We present a polynomial-parameter transformation from hitting set(n) to
ilpf(p) with domain size 2. The ILP produced by the reduction will be of the
form Ax ≤ b where A is totally unimodular plus p = n entries. Thus, any
polynomial kernelization or compression in terms of p would give a polynomial
compression for hitting set(n) and, thus, imply NP ⊆ coNP/poly as claimed.

Construction. Let an instance (U,F , k) be given. We construct an ILP
with 0/1-variables that is feasible if and only if (U,F , k) is yes for hitting

set(n).

– Our ILP has two types of variables: xu,F for all u ∈ U, F ∈ F and xu for
all u ∈ U . For all variables we enforce domain {0, 1} by xu,F ≥ 0, xu,F ≤
1, xu ≥ 0, and xu ≤ 1 for u ∈ U and F ∈ F .

– The variables xu,F are intended to encode what elements of u “hit” which
sets F ∈ F . We enforce that each set F ∈ F is “hit” by adding the following
constraint.

1 ≤
∑

u∈F

xu,F ∀F ∈ F (1)

– The variables xu are used to control which variables xu,F may be assigned
values greater than zero; effectively, they correspond to the choice of a hit-
ting set from U . Control of the xu,F variables comes from the following
constraints.

∑

F∈F
xu,F ≤ |F| · xu ∀u ∈ U (2)

Additionally, we constrain the sum over all xu to be at most k, in line with
the concept of having xu select a hitting set of size at most k.

∑

u∈U

xu ≤ k (3)

Clearly, the construction can be performed in polynomial time. The proof that
the obtained ILP is feasible if and only (U,F , k) is yes for hitting set(n)
is deferred to the full version. In the remainder of the proof, we show that
the constraints can be written as Ax ≤ b where A is totally unimodular
plus n entries (here x stands for the vector of all variables xu,F and xu over
all u ∈ U and F ∈ F). First, we need to write our constraints in the form
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A

(
xU,F
xU

)
≤ b, where, e.g., xU stands for the column vector of all variables xu

with u ∈ U . For now, we translate constraints (1), (2), and (3) into this form;
domain-enforcing constraints will be discussed later. We obtain the following,
where (1/0) and (−1/0) are shorthand for submatrices that are entirely 0 ex-
cept for exactly one 1 or one −1 per column, respectively.

A′x =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎝ −1/0

⎞
⎠

⎛
⎜⎝

0 · · · 0
...

. . .
...

0 · · · 0

⎞
⎟⎠

⎛
⎝ 1/0

⎞
⎠

⎛
⎝

−|F| 0 0
0 −|F| 0
0 0 −|F|

⎞
⎠

0 · · · 0 1 · · · 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(
xU,F
xU

)
≤

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1
...

−1
0
...
0
k

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(1)

(2)

(3)

|U ||F| × |U |

Let us denote by Â′ the matrix obtained fromA′ by replacing all n entries−|F|
by zero.

Â′ =

⎛

⎝
(−1/0) 0
(1/0) 0
0 · · · 0 1 · · · 1

⎞

⎠

It is known that any matrix over {−1, 0, 1} in which every column has at most
one entry 1 and at most one entry −1, is totally unimodular (cf. [15, Theorem
13.9]). Since Â′ is of this form, it is clear that Â′ is totally unimodular. To
obtain the whole constraint matrix A we need to add rows corresponding to
domain-enforcing constraints for all variables, and reset the −|F| values that
we replaced by zero. Clearly, putting back the latter breaks total unimodularity
(and this is why A is only almost TU), but let us add everything else and see that
the obtained matrix Â is totally unimodular. The domain-enforcing constraints
affect only one variable each and, thus, each of them corresponds to a row in Â
that contains only a single nonzero entry of value 1 or −1. It is well known that
adding such rows (or columns) preserves total unimodularity. (The determinant
of any square submatrix containing such a row can be reduced to that of a smaller
submatrix by expanding along a row that has only one nonzero of 1 or −1.)

Finally, Â and A are only distinguished by the n entries of value −|F| that
are present in A but which are 0 in Â. Since Â is totally unimodular, it follows
that A is totally unimodular plus p = n entries, as claimed. 	


Complementing Theorem 6, we prove that TU subsystems of an ILP can be
reduced to a size that is polynomial in the domain, with degree depending on
the number of variables that occur also in the rest of the ILP. We again phrase
this in terms of replacing boundaried ILPs and prove that any r-boundaried TU
subsystem can be replaced by a small equivalent system of size polynomial in
the domain d with degree depending on r.
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Lemma 2. There is an algorithm with the following specifications: (1) It gets
as input an r-boundaried ILP (A, b, xt1 , . . . , xtr ) with domain size d, with A ∈
Z
m×n, b ∈ Z

m, and such that the restriction of A to columns [m]\ {t1, . . . , tr} is
totally unimodular. (2) Given such an input it takes time O(dr · g(n,m) + d2r)
where g(n,m) is the runtime for an LP solver for determining feasibility of a
linear program with n variables and m constraints. (3) Its output is an equiva-
lent r-boundaried ILP (A′, b′, x′

t′1
, . . . , x′

t′r
) of domain size d containing O(r · dr)

variables and constraints, and all entries of (A′, b′) in {−d, . . . , d}.
Lemma 2 implies that if Y0 is a set of (at most) p variables whose removal

makes the remaining system TU, then the number of variables in the system can
efficiently be reduced to a polynomial in d + p with degree depending on r, if
each TU subsystem depends on at most r variables in Y0. To get this, it suffices
to apply Lemma 2 once for each choice of at most r boundary variables in Y0.
(Note that without assuming a bounded value of r we only know r ≤ p, so the
worst-case bound obtained is not polynomial, but exponential, in p+ d.)

5 Discussion and Future Work

We have studied the effect that subsystems with bounded treewidth or total
unimodularity have regarding kernelization of the ILP Feasibility problem.
We show that if such subsystems have a constant-size boundary to the rest of the
system, then they can be replaced by an equivalent subsystem of size polynomial
in the domain size (with degree depending on the boundary size). Thus, if an
ilpf instance can be decomposed by specifying a set of p shared variables whose
deletion (or replacing with concrete values) creates subsystems that are all TU or
bounded treewidth and have bounded dependence on the p variables, then this
can be replaced by an equivalent system whose number of variables is polynomial
in p and the domain size d. We point out that for the case of binary variables (at
least in the boundary) the replacement structures get much simpler, using no
additional variables and with only a single constraint per forbidden assignment.
Using a similar approach and binary encoding for boundary variables should
reduce the number of additional variables to O(log d) per boundary variable.

Complementing this, we established several lower bounds regarding limita-
tions of replacing such subsystems. Inherently, the replacement rules rely on
having subsystems with small boundary size for giving polynomial bounds. We
showed that this is indeed necessary by giving lower bounds for fairly restricted
settings where we do not have the guarantee of constant boundary size, indepen-
dent of the means of data reduction. In the case of treewidth we could also show
that boundaries with only one large-domain variable can be a provable obstacle.
For the case of totally unimodular subsystems a discussion in the full version
shows that these behave in a slightly simpler way than bounded-treewidth sub-
systems: By ad hoc arguments we can save a factor of d in the encoding size by
essentially dropping the contribution of any one boundary variable; thus we rule
out a lower bound proof for the case of one boundary variable having large do-
main. Asymptotically, we can save a factor of almost d2, which is tight. It would
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be interesting whether having two or more large domain variables (in a boundary
of constant size) would again allow a lower bound against kernelization.

A natural extension of our work is to consider the optimization setting where
we have to minimize or maximize a linear function over the variables, and may
or may not already know that the system is feasible. In part, our techniques
are already consistent with this since the reduction routine based on treewidth
dynamic programming or optimization over a TU subsystem can be easily aug-
mented to also optimize a target function over the variables. A technical caveat,
however, is the following: If we simplify a protrusion, then along with each fea-
sible assignment to the boundary, we have to store the best target function
contribution that could be obtained with the variables that are removed; this
value can, theoretically, be unbounded in all other parameters. If a binary encod-
ing of such values is sufficiently small (or if the needed space is allowed through
an additional parameter), then our results also carry over to optimization. Apart
from that, a rigorous analysis of both weight reduction techniques and possible
lower bounds is left as future work.
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Abstract. Given an n-vertex digraphD = (V,A) theMax-k-Ordering
problem is to compute a labeling � : V → [k] maximizing the num-
ber of forward edges, i.e. edges (u, v) such that �(u) < �(v). For differ-
ent values of k, this reduces to Maximum Acyclic Subgraph (k = n),
and Max-DiCut (k = 2). This work studies the approximability of
Max-k-Ordering and its generalizations, motivated by their applica-
tions to job scheduling with soft precedence constraints. We give an LP
rounding based 2-approximation algorithm forMax-k-Ordering for any
k = {2, . . . , n}, improving on the known 2k/(k − 1) -approximation ob-
tained via random assignment. The tightness of this rounding is shown
by proving that for any k = {2, . . . , n} and constant ε > 0, Max-k-
Ordering has an LP integrality gap of 2− ε for nΩ( 1/log log k ) rounds of
the Sherali-Adams hierarchy.

A further generalization of Max-k-Ordering is the restricted max-
imum acyclic subgraph problem or RMAS, where each vertex v has
a finite set of allowable labels Sv ⊆ Z

+. We prove an LP rounding
based 4

√
2
/(√

2 + 1
) ≈ 2.344 approximation for it, improving on the

2
√
2 ≈ 2.828 approximation recently given by Grandoni et al. [5]. In

fact, our approximation algorithm also works for a general version where
the objective counts the edges which go forward by at least a positive
offset specific to each edge.

The minimization formulation of digraph ordering is DAG edge dele-
tion or DED(k), which requires deleting the minimum number of edges
from an n-vertex directed acyclic graph (DAG) to remove all paths of
length k. We show that both, the LP relaxation and a local ratio approach
for DED(k) yield k-approximation for any k ∈ [n]. A vertex deletion ver-
sion was studied earlier by Paik et al. [16], and Svensson [17].

1 Introduction

One of the most well studied combinatorial problems on directed graphs (di-
graphs) is the Maximum Acyclic Subgraph problem (MAS): given an n-vertex
digraph, find a subgraph1 of maximum number of edges containing no directed

� Partially supported by NSF grants CCF-1217890 and IIS-1451430.
1 Unless specified, throughout this paper a subgraph is not necessarily induced.
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cycles. An equivalent formulation of MAS is to obtain a linear ordering of the
vertices which maximizes the number of directed edges going forward. A natural
generalization is Max-k-Ordering where the goal is to compute the best k-
ordering, i.e. a labeling of the vertices from [k] = {1, . . . , k} (2 ≤ k ≤ n), which
maximizes the number of directed edges going forward in this ordering. It can
be seen – and we show this formally – that Max-k-Ordering is equivalent to
finding the maximum subgraph which has no directed cycles, and no directed
paths2 of length k. Note thatMAS is the special case ofMax-k-Ordering when
k = n, and for k = 2 Max-k-Ordering reduces to the well known Max-DiCut
problem.

A related problem is the Restricted Maximum Acyclic Subgraph problem or
RMAS, in which each vertex v of the digraph has to be assigned a label from
a finite set Sv ⊆ Z

+ to maximize the number of edges going forward in this
assignment. Khandekar et al. [9] introduced RMAS in the context of graph
pricing problems and its approximability has recently been studied by Grandoni
et al. [5]. A further generalization is OffsetRMAS where each edge (u, v) has
an offset oe ∈ Z

+ and is satisfied by a labeling � if �(u) + oe ≤ �(v). Note
that when all offsets are unit OffsetRMAS reduces to RMAS, which in turn
reduces to Max-k-Ordering when Sv = [k] for all vertices v.

This study focuses on the approximability of Max-k-Ordering and its gen-
eralizations and is motivated by their applicability in scheduling jobs with soft
precedences under a hard deadline. Consider the following simple case of dis-
crete time scheduling: given n unit length jobs with precedence constraints and
an infinite capacity machine, find a schedule so that all the jobs are completed
by timestep k. Since it may not be feasible to satisfy all the precedence con-
straints, the goal is to satisfy the maximum number. This is equivalent to Max-
k-Ordering on the corresponding precedence digraph. One can generalize this
setting to each job having a set of allowable timesteps when it can be scheduled.
This can be abstracted as RMAS and a further generalization to each prece-
dence having an associated lag between the start-times yields OffsetRMAS as
the underlying optimization problem.

Also of interest is the minimization version of Max-k-Ordering on directed
acyclic graphs (DAGs). We refer to it as DAG edge deletion or DED(k) where
the goal is to delete the minimum number of directed edges from a DAG so that
the remaining digraph does not contain any path of length k. Note that the prob-
lem for arbitrary k does not admit any approximation factor on general digraphs
since even detecting whether a digraph has a path of length k is the well studied
NP-hard longest path problem. A vertex deletion formulation of DED(k) was
introduced as an abstraction of certain VLSI design and communication prob-
lems by Paik et al. [16] who gave efficient algorithms for it on special cases of
DAGs, and proved it to be NP-complete in general. More recently, its connection
to project scheduling was noted by Svensson [17] who proved inapproximability
results for the vertex deletion version.

2 The length of a directed path is the number of directed edges it contains.
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The rest of this section gives a background of previous related work, describes
our results, and provides an overview of the techniques used.

1.1 Related Work

It is easy to see that MAS admits a trivial 2-approximation, by taking any linear
ordering or its reverse, and this is also obtained by a random ordering. For Max-
k-Ordering the random k-ordering yields a 2k/(k − 1) -approximation for any
k ∈ {2, . . . , n}. For k = 2, which is Max-DiCut, the semidefinite programming
(SDP) relaxation is shown to yield a ≈ 1.144-approximation in [13], improving
upon previous analyses of [14], [19], and [3]. As mentioned above, RMAS is a
generalization of Max-k-Ordering, and a 2

√
2-approximation for it based on

linear programming (LP) rounding was shown recently by Grandoni et al. [5]
which is also the best approximation for Max-k-Ordering for k = 3. For
4 ≤ k ≤ n− 1, to the best of our knowledge the proven approximation factor for
Max-k-Ordering remains 2k/(k − 1).

On the hardness side, Newman [15] showed that MAS is NP-hard to approxi-
mate within a factor of 66/65. Assuming Khot’s [10] Unique Games Conjecture
(UGC), Guruswami et al. [6] gave a (2 − ε)-inapproximability for any ε > 0.
Note that Max-DiCut is at least as hard as Max-Cut. Thus, for k = 2,
Max-k-Ordering is NP-hard to approximate within factor (13/12 − ε) [7],
and within factor 1.1382 assuming the UGC [11]. For larger constants k, the
result of Guruswami et al. [6] implicitly shows a (2 − ok(1))-inapproximability
for Max-k-Ordering, assuming the UGC.

For the vertex deletion version ofDED(k), Paik et al. [16] gave linear time and
quadratic time algorithms for rooted trees and series-parallel graphs respectively.
The problem reduces to vertex cover on k-uniform hypergraphs for any constant
k thereby admitting a k-approximation, and a matching (k−ε)-inapproximability
assuming the UGC was obtained by Svensson [17].

1.2 Our Results

The main algorithmic result of this paper is the following improved approxima-
tion guarantee for Max-k-Ordering.

Theorem 1. There exists a polynomial time 2-approximation algorithm forMax-
k-Ordering on n-vertex weighted digraphs for any k ∈ {2, . . . , n}.
The above approximation is obtained by appropriately rounding the standard
LP relaxation of the CSP formulation of Max-k-Ordering. For small values
of k this yields significant improvement on the previously known approximation
factors: 2

√
2 for k = 3 (implicit in [5]), 8/3 for k = 4, and 2.5 for k = 5. The

latter two factors follow from the previous best 2k/(k − 1) -approximation given
by a random k-ordering for 4 ≤ k ≤ n− 1. The detailed proof of Theorem 1 is
given in Section 3.

Using an LP rounding approach similar to Theorem 1, in Section 4 we show the
following improved approximation for OffsetRMAS which implies the same
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for RMAS. Our result improves the previous 2
√
2 ≈ 2.828-approximation for

RMAS obtained by Grandoni et al. [5].

Theorem 2. There exists a polynomial time 4
√
2
/
(
√
2 + 1) ≈ 2.344 approxi-

mation algorithm for OffsetRMAS on weighted digraphs.

Our next result gives a lower bound that matches the approximation obtained
in Theorem 1. We show that even after strengthening the LP relaxation of Max-
k-Ordering with a large number of rounds of the Sherali-Adams hierarchy, its
integrality gap remains close to 2, and hence Theorem 1 is tight.

Theorem 3. For any small enough constant ε > 0, there exists γ > 0 such that
for Max-k-Ordering on n-vertex weighted digraphs and any k ∈ {2, . . . , n},
the LP relaxation with n(γ/log log k ) rounds of Sherali-Adams constraints has a
(2− ε) integrality gap.

For DED(k) on DAGs we prove the following approximation for any k, not
necessarily a constant.

Theorem 4. The standard LP relaxation for DED(k) on n-vertex DAGs can
be solved in polynomial time for k = {2, . . . , n−1} and yields a k-approximation.
The same approximation factor is also obtained by a combinatorial algorithm.

Due to lack of space the proofs of Theorem 3 and Theorem 4 are deferred to the
full version [8]. In the full version, we also complement the above theorem by
showing a (�k/2� − ε) hardness factor for DED(k) via a simple gadget reduction
from Svensson’s [17] (k− ε)-inapproximability for the vertex deletion version for
constant k, assuming the UGC.

1.3 Overview of Techniques

The approximation algorithms we obtain for Max-k-Ordering and its gener-
alizations are based on rounding the standard LP relaxation for the instance.
Max-k-Ordering is viewed as a constraint satisfaction problem (CSP) over
alphabet [k], and the corresponding LP relaxation has [0, 1]-valued variables xv

i

for each vertex v and label i ∈ [k], and yeij for each edge (u, v) and pairs of labels
i and j to u and v respectively. We show that a generalization of the rounding
algorithm used by Trevisan [18] for approximating q-ary boolean CSPs yields
a 2-approximation in our setting. The key ingredient in the analysis is a lower
bound on a certain product of the {xu

i }, {xv
i } variables corresponding to the end

points of an edge e = (u, v) in terms of the {yeij} variables for that edge. This
improves a weaker bound shown by Grandoni et al. [5]. For OffsetRMAS, a
modification of this rounding algorithm yields the improved approximation.

The construction of the integrality gap for the LP augmented with Sherali-
Adams constraints for Max-k-Ordering begins with a simple integrality gap
instance for the basic LP relaxation. This instance is appropriately sparsified to
ensure that subgraphs of polynomially large (but bounded) size are tree-like. On
trees, it is easy to construct a distribution over labelings from [k] to the vertices
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(thought of as k-orderings), such that the marginal distribution on each vertex is
uniform over [k] and a large fraction of edges are satisfied in expectation. Using
this along with the sparsification allows us to construct distributions for each
bounded subgraph, i.e. good local distributions. Finally a geometric embedding
of the marginals of these distributions followed by Gaussian rounding yields
modified local distributions which are consistent on the common vertex sets.
These distributions correspond to an LP solution with a high objective value, for
large number of rounds of Sherali-Adams constraints. Our construction follows
the approach in a recent work of Lee [12] which is based on earlier works of
Arora et al. [1] and Charikar et al. [2].

For the DED(k) problem, the approximation algorithms stated in Theorem 4
are obtained using the acyclicity of the input DAG. In particular, we show that
both, the LP rounding and the local ratio approach, can be implemented in
polynomial time on DAGs yielding k-approximate solutions.

2 Preliminaries

This section formally defines the problems studied in this paper. We begin with
Max-k-Ordering.

Definition 1. Max-k-Ordering: Given an n-vertex digraph D = (V,A) with
a non-negative weight function w : A → R

+, and an integer 2 ≤ k ≤ n, find a
labeling to the vertices � : V → [k] that maximizes the weighted fraction of edges
e = (u, v) ∈ A such that �(u) < �(v), i.e. forward edges.

It can be seen thatMax-k-Ordering is equivalent to the problem of computing
the maximum weighted subgraph of D which is acyclic and does not contain any
directed path of length k. The following lemma implies this equivalence and its
proof is included in the full version [8].

Lemma 1. Given a digraph D = (V,A), there exists a labeling � : V → [k] with
each edge e = (u, v) ∈ A satisfying �(u) < �(v), if and only if D is acyclic and
does not contain any directed path of length k.

The generalizations of Max-k-Ordering studied in this work, viz. RMAS
and OffsetRMAS, are defined as follows.

Definition 2. OffsetRMAS: The input is a digraph D = (V,A) with a finite
subset Sv ⊆ Z

+ of labels for each vertex v ∈ V , a non-negative weight function
w : A → R

+, and offsets oe ∈ Z
+ for each edge e ∈ A. A labeling � to V s.t.

�(v) ∈ Sv, ∀v ∈ V satisfies an edge e = (u, v) if �(u) + oe ≤ �(v). The goal
is to compute a labeling that maximizes the weighted fraction of satisfied edges.
RMAS is the special case when each offset is unit.

As mentioned earlier,DED(k) is not approximable on general digraphs. There-
fore, we define it only on DAGs.

Definition 3. DED(k): Given a DAG D = (V,A) with a non-negative weight
function w : A → R

+, and an integer 2 ≤ k ≤ n− 1, find a minimum weight set
of edges F ⊆ A such that (V,A \ F ) does not contain any path of length k.
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The rest of this section describes the LP relaxations for Max-k-Ordering and
OffsetRMAS studied in this paper.

2.1 LP Relaxation for Max-k-Ordering

From Definition 1, an instance I of Max-k-Ordering is given by D = (V,A),
k, and w. Viewing it as a CSP over label set [k], the standard LP relaxation
given in Figure 1 is defined over variables xv

i for each vertex v and label i, and
yeij for each edge e = (u, v) and labels i to u and j to v.

max
∑

e∈A

w(e) ·
∑

i,j∈[k]
i<j

ye
ij (1)

subject to,

∀v ∈ V,
∑

i∈[k]

xv
i = 1. (2)

∀e = (u, v) ∈ A, and i, j ∈ [k],
∑

�∈[k]

ye
i� = xu

i , (3)

and,
∑

�∈[k]

ye
�j = xv

j . (4)

∀v ∈ V, and i ∈ [k], xv
i ≥ 0. (5)

∀e ∈ A, and i, j ∈ [k], ye
ij ≥ 0. (6)

Fig. 1. LP Relaxation for instance I of Max-k-Ordering.

Sherali-Adams Constraints. Let zSσ ∈ [0, 1] be a variable corresponding to a
subset S of vertices, and a labeling σ : S → [k]. The LP relaxation in Figure 1 can
augmented with r rounds of Sherali-Adams constraints which are defined over the
variables {zSσ | 1 ≤ |S| ≤ r+1}. The additional constraints are given in Figure 2.
The Sherali-Adams variables define, for each subset S of at most (r+1) vertices,
a distribution over the possible labelings from [k] to the vertices in S. The
constraints given by Equation (7) ensure that these distributions are consistent
across subsets. Additionally, Equations (9) and (10) ensure the consistency of
these distributions with the variables of the standard LP relaxation given in
Figure 1.

LP Relaxation for RMAS and OffsetRMAS. The LP relaxation forRMAS
is a generalization of the one in Figure 1 for Max-k-Ordering and we omit a
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∀S ⊆ T ⊆ V,

1 ≤ |S|, |T | ≤ r + 1,

and σ : S → [k], zSσ =
∑

ρ:T→[k]
ρ|S=σ

zTρ . (7)

∀S ⊆ V, 1 ≤ |S| ≤ r + 1,

and σ : S → [k], 0 ≤ zSσ ≤ 1. (8)

∀v ∈ V, and σ : {v} → [k],

s.t. σ(v) = i, xv
i = z{v}σ . (9)

∀e = (u, v) ∈ A, and,

σ : {u, v} → [k],

s.t. (σ(u), σ(v)) = (i, j), ye
ij = z{u,v}σ . (10)

Fig. 2. r-round Sherali-Adams constraints for LP relaxation in Figure 1.

detailed definition. Let S = ∪v∈V Sv denote the set of all labels. For convenience,
we define variables {xv

i | v ∈ V, i ∈ S} and {yeij | e = (u, v) ∈ A, i, j ∈ S}
and force the infeasible assignments to be zero, i.e. xv

i = 0 for i /∈ Sv. The
other constraints are modified accordingly. For OffsetRMAS, an additional
change is that the contribution to the objective from each edge e = (u, v) is∑

i∈Su,j∈Sv,i+oe≤j y
e
ij .

3 A 2-Approximation for Max-k-Ordering

This section proves the following theorem that implies Theorem 1.

Theorem 5. Let {xv
i }, {yeij} denote an optimal solution to the LP in Figure 1.

Let � : V → [k] be a randomized labeling obtained by independently assigning to
each vertex v label i with probability 1/2k + xv

i /2 . Then, for any edge e = (u, v),

Pr[�(u) < �(v)] ≥ 1

2

⎛

⎜⎜⎝
∑

i,j∈[k]
i<j

yeij

⎞

⎟⎟⎠ .

To analyze the rounding given above, we need the following key lemma that
bounds the sum of products of row and column sums of a matrix in terms of the
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matrix entries. It improves a weaker bound shown by Grandoni et al. [5] and
also generalizes to arbitrary offsets.

Lemma 2. Let A = [aij ] be a k × k matrix with non-negative entries. Let ri =∑
j aij and cj =

∑
i aij denote the sum of entries in the ith row and jth column

respectively, and let 1 ≤ θ ≤ k − 1 be an integer offset . Then,

∑

i+θ≤j
i,j∈[k]

ricj ≥ k − θ + 1

2(k − θ)

⎛

⎜⎜⎝
∑

i+θ≤j
i,j∈[k]

aij

⎞

⎟⎟⎠

2

. (11)

Proof. The LHS of the above is simplified as,

∑

i+θ≤j

ricj =
∑

i+θ≤j

⎡

⎣
(∑

j′
aij′

)(∑

i′
ai′j

)⎤

⎦ (12)

≥
∑

x+θ≤y

a2xy + 2 ·
∑

x+θ≤y
x+θ≤y′

y<y′

axyaxy′ +
∑

x+θ≤y
x′+θ≤y′

x<x′

axyax′y′ , (13)

where all the indices above are in [k]. Note that (13) follows from (12) because:
(i) For any x+ θ ≤ y, a2xy appears in the RHS of (12) when i = x and j = y.
(ii) For x+θ ≤ y and x+θ ≤ y′, axyaxy′ appears in the RHS of (12) both, when
i = x, j = y, and when i = x, j = y′.
(iii) For any x+ θ ≤ y and x′ + θ ≤ y′ (say x < x′), it must be that x+ θ ≤ y′,
and hence axyax′y′ appears in the RHS of (12) when i = x and j = y′.
Thus, we obtain,

∑

i+θ≤j

ricj ≥
⎛

⎝
∑

x+θ≤y

axy

⎞

⎠
2

−

⎛

⎜⎜⎜⎜⎝

∑

x+θ≤y
x′+θ≤y′

x<x′

axyax′y′

⎞

⎟⎟⎟⎟⎠
. (14)

Therefore, it is sufficient to show that

∑

x+θ≤y
x′+θ≤y′

x<x′

axyax′y′ ≤ k − θ − 1

2(k − θ)

⎛

⎝
∑

x+θ≤y

axy

⎞

⎠
2

. (15)

Substituting,

⎛

⎝
∑

x+θ≤y

axy

⎞

⎠
2

=
∑

x+θ≤y

a2xy + 2 ·
∑

x+θ≤y
x+θ≤y′

y<y′

axyaxy′ + 2 ·
∑

x+θ≤y
x′+θ≤y′

x<x′

axyax′y′ ,
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and simplifying, inequality (15) can be rewritten as,

∑

x+θ≤y

a2xy + 2
∑

x+θ≤y
x+θ≤y′

y<y′

axyaxy′ −
(

2

k − θ − 1

)
·

∑

x+θ≤y
x′+θ≤y′

x<x′

axyax′y′ ≥ 0, (16)

⇔ aTMa ≥ 0, (17)

where a ∈ R
Z , Z := {(x, y) | x + θ ≤ y and x, y ∈ [k]} with a(x,y) := axy, and

M ∈ R
Z×Z is a symmetric matrix defined as follows:

M(x,y)(x′,y′) =

⎧
⎪⎨

⎪⎩

1 if (x, y) = (x′, y′),
1 if x′ = x, and y �= y′,
−1/(k − θ − 1) if x �= x′.

(18)

To complete the proof of the lemma we show that M is positive semidefinite.
Consider the set of unit vectors {vx | 1 ≤ x ≤ k − θ} given by the normalized
corner points of the (k − θ − 1)-dimensional simplex centered at the origin. It
is easy to see (for e.g. in Lemma 3 of [4]) that, 〈vx, vx′〉 = −1/(k − θ − 1) if
x �= x′. Thus, M = LTL, where L is a matrix whose columns are indexed by Z
such that the (x, y) column is vx. Therefore, M is positive semidefinite. ��

Proof (of Theorem 5). For brevity, let ze =
∑

i<j y
e
ij denote the contribution of

the edge e to the LP objective. From the definition of the rounding procedure
we have,

Pr[�(u) < �(v)] =
∑

i<j

Pr[�(u) = i] Pr[�(v) = j]

=
∑

i<j

(
1

2k
+

xu
i

2

)(
1

2k
+

xv
j

2

)

=
1

4

⎛

⎝ (k − 1)

2k
+

1

k

∑

i<j

(xu
i + xv

j ) +
∑

i<j

xu
i x

v
j

⎞

⎠

We can now apply Lemma 2 to the k × k matrix [yeij ]. The LP constraints
guarantee that ri = xu

i and cj = xv
j are equal to the row and column sums

respectively. Further, substituting offset θ = 1, we obtain

Pr[�(u) < �(v)] ≥ 1

4

⎛

⎝ (k − 1)

2k
+

1

k

∑

i<j

(xu
i + xv

j ) +
k

2(k − 1)
z2e

⎞

⎠ . (19)
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On the other hand,

∑

i<j

(xu
i + xv

j ) =

k−1∑

i=1

(k − i)xu
i +

k∑

j=2

(j − 1)xv
j

≥
k−1∑

i=1

⎡

⎣(k − i)
∑

j′>i

yeij′

⎤

⎦+

k∑

j=2

⎡

⎣(j − 1)
∑

i′<j

yei′j

⎤

⎦ . (20)

For a < b, yeab appears (k − a) times in the RHS of the above inequality when
i = a, and (b − 1) times when j = b. Since k − a + b − 1 ≥ k, we obtain that
RHS of Equation (20) is lower bounded by k

∑
a<b y

e
ab = kze. Substituting back

into Equation (19) and simplifying gives us that Pr[�(u) < �(v)] is at least,

ze
4

[
1 +

1

2

(
(k − 1)

kze
+

kze
(k − 1)

)]
≥ ze

4
(1 + 1) =

ze
2
, (21)

where we use t+ 1/t ≥ 2 for t > 0. ��

4 Approximation for OffsetRMAS

Let D = (V,A), {Sv}v∈V , w, and {oe}e∈A constitute an instance of OffsetR-
MAS as given in Definition 2. Without loss of generality, one can assume that for
each edge e = (u, v) ∈ A, min(Su)+oe ≤ max(Sv), otherwise no feasible solution
can satisfy e and that edge can be removed. A simple randomized strategy that
independently assigns each vertex v either �vmin := min(Sv) or �

v
max := max(Sv)

with equal probability is a 4-approximation. The recent work of Grandoni et
al. [5] show that combining this randomized scheme with an appropriate LP-
rounding yields a 2

√
2 ≈ 2.828 approximation algorithm for RMAS.

We show that a variant of the rounding scheme developed in Section 3 yields
an improved approximation factor for OffsetRMAS. In particular, we prove
the following theorem which implies Theorem 2.

Theorem 6. Let {xv
i }, {yeij} denote an optimal solution to the linear program-

ming relaxation of OffsetRMAS described in Section 2. Let � be a randomized
labeling obtained by independently assigning labels to each vertex v with the fol-
lowing probabilities:

Pr[�(v) = i] =

{
1
4 +

xv
i

2 if i ∈ {�vmin, �
v
max}

xv
i

2 if i ∈ Sv \ {�vmin, �
v
max}

(22)

Then, for any edge e = (u, v) we have

Pr[�(u) + oe ≤ �(v)] ≥ 1

4

(
1 +

1√
2

)
⎛

⎜⎜⎝
∑

i∈Su,j∈Sv

i+oe≤j

yeij

⎞

⎟⎟⎠ .
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Proof. Let S = ∪v∈V Sv denote the set of all labels and let ze =
(∑

i+oe≤j y
e
ij

)

denote the contribution of the edge e to the LP objective. We have,

Pr[�(u) + oe ≤ �(v)] =
∑

i+oe≤j
i∈Su,j∈Sv

Pr[�(u) = i] Pr[�(v) = j]

Substituting the assignment probabilities from (22) into the above and simpli-
fying we obtain,

Pr[�(u) + oe ≤ �(v)]

=
1

16
+

1

8

⎛

⎜⎜⎝
∑

i≤�vmax−oe
i∈S

xu
i +

∑

j≥�umin+oe
j∈S

xv
j

⎞

⎟⎟⎠+
1

4

⎛

⎜⎜⎝
∑

i+oe≤j
i,j∈S

xu
i x

v
j

⎞

⎟⎟⎠ (23)

Note that we allow i, j ∈ S in the above sums instead of Su and Sv. This does
not affect the analysis as the LP forces xu

i = 0 for i /∈ Su and similarly for v.
Now, consider the |S| × |S| matrix [yeij ]. Since xu

i and xv
j are equal to the row

sums and column sums of this matrix respectively, Lemma 2 guarantees that,

∑

i+oe≤j
i,j∈S

xu
i x

v
j ≥ |S| − oe + 1

2(|S| − oe)

⎛

⎜⎜⎝
∑

i∈Su,j∈Sv
i+oe≤j

yeij

⎞

⎟⎟⎠

2

≥ (|S| − oe + 1)

2(|S| − oe)
z2e ≥ z2e

2
.

We thus have,

Pr[�(u) + oe ≤ �(v)]

≥ 1

16
+

1

8

⎛

⎝
∑

i≤�vmax−oe

xu
i +

∑

j≥�umin+oe

xv
j

⎞

⎠+
z2e
8

≥ 1

16
+

1

8

⎛

⎝
∑

i≤�vmax−oe

⎛

⎝
∑

j≥i+oe

yei,j

⎞

⎠+
∑

j≥�umin+oe

⎛

⎝
∑

i+oe≤j

yei,j

⎞

⎠

⎞

⎠+
z2e
8

=
1

16
+

1

8

⎛

⎜⎜⎝2
∑

i+oe≤j
i∈Su,j∈Sv

yei,j

⎞

⎟⎟⎠+
z2e
8

≥ 1

16
+

ze
4

+
z2e
8

=
ze
4

(
1 +

1

2

(
1

2ze
+ ze

))
≥ ze

4

(
1 +

1√
2

)
, (24)

where the last inequality uses t+ 1/at ≥ 2/
√
a for a, t > 0. ��
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Abstract. We design approximate weakly group strategy-proof mecha-
nisms for resource reallocation problems using Milgrom and Segal’s de-
ferred acceptance auction framework: the radio spectrum and network
bandwidth reallocation problems in the procurement auction setting and
the cost minimization problem with set cover constraints in the sell-
ing auction setting. Our deferred acceptance auctions are derived from
simple greedy algorithms for the underlying optimization problems and
guarantee approximately optimal social welfare (cost) of the agents re-
taining their rights (contracts). In the reallocation problems, we design
procurement auctions to purchase agents’ broadcast/access rights to free
up some of the resources such that the unpurchased rights can still be
exercised with respect to the remaining resources. In the cost minimiza-
tion problem, we design a selling auction to sell early termination rights
to agents with existing contracts such that some minimal constraints are
still satisfied with remaining contracts. In these problems, while the “al-
located” agents transact, exchanging rights and payments, the objective
and feasibility constraints are on the “rejected” agents.

1 Introduction

Motivated by the US government’s effort to reallocate channels currently allo-
cated for television broadcasting for wireless broadband services, Milgrom and
Segal [9] introduced a class of mechanisms called deferred acceptance (DA) auc-
tions for resource reallocation problems. DA auctions greedily choose an alloca-
tion by iteratively rejecting the least attractive bid determined by some scoring
functions and can be implemented with adaptive reverse greedy algorithms. Mil-
grom and Segal showed that DA auctions satisfy several important properties:
they are strategyproof, weakly group (WG) strategy-proof, can be implemented
using ascending clock auctions, and lead to the same outcomes as the complete-
information Nash equilibria of corresponding paid-as-bid auctions.

Subsequently, Dütting et al. [3] studied the strengths and limitations of DA
auctions with respect to achievable approximation guarantees on social welfare
in two selling auction design problems. For the knapsack auction problem, they
showed a separation between approximation guarantees by DA auctions and by
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more general strategyproof mechanisms. For the combinatorial auction prob-
lem with single-minded bidders, they designed an O(d)-approximate DA auc-
tion when bidders’ desired bundles’ sizes are at most d and an O(

√
m logm)-

approximate DA auction where m is the number of items. In a different work,
Dütting et al. [4] studied double auctions for settings in which unit-demand
buyers and unit-supply sellers must be matched one-to-one subject to certain
constraints. In particular, they showed WG-strategy-proof DA double auctions
can be designed by composing two greedy algorithms, one for each side, that use
DA rules.

In this paper, we further develop connections between DA auctions and greedy
algorithms in the context of the resource reallocation problems that motivated
Milgrom and Segal [9]’s DA auction framework. More specifically, we show that
several simple greedy approximation algorithms lead to DA auctions with the
same approximation guarantees. We consider welfare maximization in the radio
spectrum and network bandwidth reallocation problems and the cost minimiza-
tion problem with set cover constraints.

In the radio spectrum reallocation problem, we (the government) want to
reallocate channels currently allocated for television broadcasting for wireless
broadband services, effectively reducing the number of channels available for
broadcasting, by buying the television stations’ broadcasting rights. The real-
location process involves purchasing some of the rights and reassigning the re-
maining stations with rights into a smaller set of channels; the cleared spectrum
will, then, be used for wireless broadband services. The reassignment should be
accomplished in a way that respects constraints stipulating that two interfer-
ing neighboring stations are not assigned to the same channel. Assuming the
stations bid their values of keeping broadcast rights, we want to maximize the
social welfare of the stations to keep their rights.

Similarly, in the network bandwidth reallocation problem, we (the network
operator) want to reallocate some network connections currently in use for other
purposes. We want to buy access rights of some firms using the network such that
the demands of firms still with their rights can be served in a smaller network,
with the goal of maximizing the social welfare of these latter firms.

In addition, we consider the cost minimization problem with set cover con-
straints in the selling auction setting. The bidders are looking to terminate their
contracts, by paying penalties if necessary, and we (the government) want to
agree to such requests while ensuring that some minimal constraints, modeled
by the well-known set cover problem, are satisfied. We sell early termination
rights to these bidders with the goal of minimizing the social cost, i.e., the total
bid value, of those bidders whose requests are not honored.

Our Contributions Using Milgrom and Segal [9]’s DA auction framework, we
design approximate DA auctions for reallocation problems, in which the “al-
located” agents transact, exchanging rights and payments, while the objective
and feasibility constraints are on the “rejected” agents. We show simple forward
greedy algorithms, not the reverse kind, are sufficient to derive DA auctions that
guarantee approximately optimal social welfare (cost) of agents to retain their
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rights (contracts). Our DA auctions are computationally efficient and can be
computable in polynomial time. More interestingly, the scoring functions of the
auctions are algorithmic in nature and might not be expressible in a closed form;
they use helper variables to track the progress of allocation.

In the radio spectrum reallocation problem, we design DA auctions that
are approximately optimal for certain interference graphs: interval graphs, disk
graphs, and bounded degree-d graphs. Unlike the near-optimality result in [9]
that relies on the existence of a non-trivial partitioning scheme, our approxima-
tion ratios depend solely on simple graph parameters. Disk graphs, in particular,
are a natural modeling representation of the interference graphs of the stations’
circular broadcast ranges. For the network bandwidth reallocation problem, we
design an approximate DA auction with scoring functions derived from a result
due to Briest et al. [2]. For the cost minimization problem with set cover con-
straints, we show that a well-known primal-dual greedy approximation algorithm
can be implemented by a DA auction.

Future Work. It would be interesting to investigate whether or not we can further
improve the results in this paper. For instance, in the radio spectrum reallocation
problem, a better performing DA auction with more complex scoring functions
might be possible on different kinds of interference graphs. More generally, it
would be interesting to have black box results formalizing the conditions under
which greedy algorithms can be implemented as DA auctions and comparison-
type results comparing DA auctions to other kinds of auctions with different
incentive properties in terms of social welfare/cost.

Other Related Work. Mechanisms derived from greedy algorithms have been
studied previously for other various mechanism design problems, but not within
the DA auction framework and without consideration of WG strategy-proofness.
We refer to these work and the references therein: Lehmann et al. [7], Borodin
and Lucier [8, 1], and Briest at al. [2].

Due to space constraints, we refer to the long version of this paper [6] for more
details.

2 Preliminaries

We consider procurement auctions in the resource reallocation problems; the
setting for selling auctions in the cost minimization problem is equivalent but
inverted.

Let N be the set of bidders. Each bidder submits a bid and the auction decides
on the allocation and payments such that the bidders either “win” or “lose”, i.e.,
his bid to supply an item is accepted or not, and only the winning bidders receive
payments. We assume that bids b = (b1, . . . , b|N |) are from the bid profile space
B = B1 × · · · ×B|N |, and that each bidder i’s value vi is in the range [0, v̄i] and
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Algorithm 1. DA Auction with Scoring Functions {sAi }A⊆N,i∈A

1: Accept bids b1, . . . , b|N|
2: A = N
3: while ∃i ∈ A : sAi (bi, bN\A) > 0 do
4: i = argmaxi∈A sAi (bi, bN\A)
5: A = A \ {i}
6: end while
7: return A

his bid bi is restricted to a finite set Bi such that max Bi > v̄i.
1 A procurement

auction has allocation rule a : B → 2N and payment rule p : B → R
|N | such that

pi(b) = 0 for i ∈ N \ a(b). In settings we consider, there will be constraints on
the possible allocations allowed. Note each bidder is a strategic agent that seeks
to maximize his utility (or payoff) which is pi(b)−vi if he wins, and 0 otherwise.

We define important properties of auctions: An auction is strategy-proof if
for every bidder i, vi ∈ [0, v̄i], and other bids b−i ∈ B−i, it is optimal for the
bidder to truthfully bid his value v+i := min{bi ∈ Bi : bi > vi}. An auction is
weakly group (WG) strategy-proof if for every profile of values v, a set of bidders
S ⊆ N , and coordinated false bids by these deviating bidders, there exists at
least one bidder in S who does not get a strictly better payoff than under truthful
reporting. An auction is α-approximate if it achieves at least the α fraction of
the optimal welfare in all problem instances.

In reallocation problems, we want to design a procurement auction to purchase
agents’ broadcast/access rights to free up some of the resources such that the
unpurchased rights can still be exercised with respect to the remaining resources.
Agents report their private values of rights and receive payments when their
rights are purchased. Our objective is to maximize the social welfare of agents
retaining their rights. Note that the “allocated” agents transact, exchanging
rights and payments, but the objective and feasibility constraints are on the
“rejected” agents in these auctions.2

Deferred Acceptance Auctions Deferred acceptance (DA) auctions are auctions
in which the allocation is determined by an iterative process of rejecting bid-
ders one by one from the whole set. Milgrom and Segal [9] showed they satisfy
strong incentive guarantees such as strategy-proofness, WG-strategy-proofness,
and other useful implementation properties. Note the well-studied Vickrey auc-
tion is known to be not WG-strategy-proof.

DA auctions can be described as reverse greedy algorithms that use certain
scoring functions {sAi }A⊆N,i∈A as shown in Algorithm 1. Bidders are removed
from A one at a time until termination of the while-loop and the resultingA is the
allocation. Note the scoring functions sAi : Bi × BN\A → R

+ are nondecreasing
in the first argument. The bidder i’s score during an iteration with the current

1 The restriction of finite bid spaces can be removed.
2 In more common auction settings, the objective and feasibility constraints are on
the “allocated” agents.
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set of active bidders A is dependent on its own bid bi and bids of those inactive
bidders in N \A, but not on the bids of other active bidders. For the allocation
rule a determined by Algorithm 1, the corresponding payment rule p is defined:

pi(b−i) = max{b′i ∈ Bi : i ∈ a(b′i, b−i)} , (1)

i.e., the winning bidder i’s payment is the maximum bid value with which he
remains allocated. For more details, see [9].

We study greedy algorithms with allocation rules implementable by DA auc-
tions. These algorithms include the standard greedy-by-weight algorithms that
process elements in order of decreasing weight and several primal-dual greedy al-
gorithms that utilize variables from the linear programming formulations of the
underlying problems. In this paper, we are primarily interested in the greedy
algorithms of the “single pass” nature, i.e., those that start with an empty (and
feasible) solution and iteratively augment it without any post-processing steps
that might undo some part of the solution.

We formalize a notion to capture which greedy algorithms can be implemented
as DA auctions. Note we have an analogous definition for reverse greedy algo-
rithms that instead return A as the final solution3, but the following version for
forward greedy algorithms is sufficient for the reallocation problems:

Definition 1. Let N be the element set and w : N → R
+ be a weight function. A

greedy algorithm ALG is DA-implementable if it can be implemented with active
set A which is initialized to N and scoring functions sAi : Bi ×BN\A → R

+ for
each A ⊆ N, i ∈ A such that:

1. In each iteration, element i to be selected and removed from A is the highest
scoring element argmaxi∈A sAi (wi, wN\A);

2. When sAi (wi, wN\A) = 0 for all i ∈ A, ALG terminates and returns N \A.

Notations We use the common notation −i to denote the bidders other than
bidder i. We use x(i) and xi interchangeably to indicate the i-th component
value (representing the i-th bidder, the i-th edge, etc.) for any vector variable x.
Without loss of generality, we assume argmax and argmin operators return the
lowest indexed argument according to a consistent global order in the case of a
tie.

3 Radio Spectrum Reallocation

We design a simple DA auction that achieves near-optimal social welfare for cer-
tain classes of interference graphs in the spectrum reallocation problem. Without
relying on the assumption of a partitioning scheme in Milgrom and Segal [9], we
show that our DA auction achieves an approximation ratio dependent only on

3 This is for the more common auction setting described in Footnote 2.
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simple structural parameters of the interference graphs.4 For our analysis, we
proceed with a series of reductions from the spectrum reallocation problem to
the maximum weight k-colorable subgraph problem to the submodular function
maximization and maximum weight independent set problems.

The spectrum reallocation problem is as follows: Let G = (V,E) be the inter-
ference graph where V is the vertex set representing the television stations and
E is the edge set where there is an edge between two vertices if the corresponding
stations interfere were they to be assigned to the same channel; we use N and
V interchangeably. Let k be the number of channels available for reassignment.
Given stations’ bids b1, b2, . . ., we want to find a set A of stations to allocate,
or buy their broadcast rights, to maximize the welfare of those retaining their
rights such that the subgraph G(V \ A,E) induced by them is k-colorable, i.e.,
colorable with k colors. We interpret the bids to be the stations’ reported values
of retaining the broadcast rights.

We consider the following classes of G: interval graphs, disk graphs, and
bounded degree-d graphs. The interval graphs and disk graphs are intersection
graphs with a geometric representation; in interval (disk) graphs, the vertices
represent line-segments (disks) in a 1D-space (2D-space) and an edge exists be-
tween two vertices if their corresponding representations intersect or even just
touch. In bounded degree-d graphs, the degree of every vertex is at most d.

3.1 Main Results

We reduce the spectrum reallocation problem to the NP-hard problem of finding
the maximum weight k-colorable subgraph of G: Given G(V,E), k and a weight
function w : V → R

+, we want to find the maximum weight subgraph V ′ ⊂ V
such that G(V ′, E) is k-colorable. As the weight function is derived from the bids
b1, b2, . . ., we have the same objective in both problems. In particular, if there
is a DA-implementable approximate greedy algorithm for the maximum weight
k-colorable subgraph problem, we get a DA auction with the same performance
guarantee on social welfare for the spectrum reallocation problem.

In fact, Algorithm 2 is a DA-implementable greedy algorithm with good ap-
proximation guarantees:

Theorem 1. Algorithm 2 is a DA-implementable (1 − e−1/α)-approximation
algorithm for the maximum weight k-colorable subgraph problem where α is 2+γ
for interval graphs, (2 + γ)2 for disk graphs, and d for bounded degree-d graphs,
for γ = lmax/lmin, i.e., the ratio between the maximum and minimum lengths
(radii) for interval (disk) graphs.

Proof. (DA-implementability) Note that Algorithm 2 upon termination returns
a subgraph along with a valid k-coloring given by the independent sets I1, . . . , Ik.

4 Milgrom and Segal’s result assumes the existence of a ordered partition of N into m
disjoint setsN1, . . . , Nm such that: (1) the edge (i, j) exists for each i, j ∈ Nk, 1 ≤ k ≤
m; and (2) there exists some d < n such that |S|+|∩i∈S∪l<k{j ∈ Nl : (i, j) ∈ E}| ≤ n
for each 1 ≤ k ≤ m and S ⊆ Nk with |S| ≤ n− d.
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Algorithm 2. Greedy Algorithm for the Max Weight k-colorable Subgraph
Prob.
1: I1 = · · · = Ik = ∅
2: for v ∈ V in decreasing order of weight do
3: if ∃ i : Ii ∪ {v} remains independent then
4: i = min {i : Ii ∪ {v} remains independent}
5: Ii = Ii ∪ {v}
6: end if
7: end for
8: return

⋃
i Ii

We show its implementation with the active set and scoring functions as follows:

Let the active set A be the vertices not yet selected and I
N\A
1 , . . . , I

N\A
k be the

associated independent sets consisting of vertices in N \A. We define the scoring
functions:

sAv (wv, wN\A) =

{
w(v), if ∃i : IN\A

i ∪ {v} is independent

0, otherwise
. (2)

Note that each scoring function sAv is nondecreasing in the first argument, and
that the next element v to be greedily selected into N \A (and out of A) is the
highest scoring element argmaxv s

A
v .

(Approximation) We defer this part of the proof to Section 3.2.

Hence, our main result follows. In the special cases of the unit-interval and
unit-disk graphs (i.e., γ = 1), we get constant approximations:

Corollary 1. The DA auction with scoring functions (2) is a (1 − e−1/α)-
approximate WG-strategy-proof mechanism for the spectrum reallocation prob-
lem, where α is 2 + γ for interval graphs, (2 + γ)2 for disk graphs, and d for
bounded degree-d graphs; and γ = lmax/lmin.

3.2 Proof of Theorem 1 (Approximation)

We show that Algorithm 2 achieves the stated approximation ratios for the in-
terval graphs, disk graphs, and bounded degree-d graphs by analyzing a related
algorithm, Algorithm 3, which will be shown to be equivalent for a choice of
ALG. We further reduce the maximum weight k-colorable subgraph problem to
a monotone submodular function maximization problem. For a short review of
submodular functions, we refer to Appendix A in [6].

Let M be the set of all independent sets of G and f : 2M → R be a set
function defined as f(S) =

∑
v∈∪I∈SI w(v). Note that f(∅) = 0 and f is a mono-

tone submodular function. Since we want to find k independent sets I1, . . . , Ik
(for k colors) such that the total weight of vertices covered by them is maxi-
mized, the maximum weight k-colorable subgraph problem is equivalent to the
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Algorithm 3. A Greedy Algorithm with Subroutine ALG

1: V ′ = V
2: for i = 1, . . . , k do
3: Run ALG on G(V ′, E) and get an (approx.) max weight independent set Ii
4: V ′ = V ′ \ Ii
5: end for
6: return

⋃
i Ii

maximization problem of

maxS⊆M :|S|≤kf(S) . (3)

Note the k independent sets should be disjoint to be a valid coloring, but as
any k independent sets can be modified to be disjoint, the above maximization
problem still gives the same optimal value.

Thewell-knowngreedyalgorithmduetoNemhauseretal. [10], thatisAlgorithm 3
with the optimal ALG that returns the maximumweight independent set, is a (1−
e−1)-approximation algorithm. However, it is not computationally efficient as the
maximum weight independent set problem is difficult for general graphs; even the
unweighted version is known to be NP-hard and cannot be approximated in poly-
nomial time within a factor of |V |1−ε for any fixed ε > 0, unless P =NP [5].

Instead, we use the following lemma (with its proof in Appendix A in [6])
to show that Algorithm 3 with an approximation algorithm ALG has a similar
approximation guarantee, and design a computationally efficient ALG:

Lemma 1. Algorithm 3 with an α-approximation algorithm ALG is a (1 −
e−1/α)-approximation algorithm for the maximization problem (3).

For the classes of interference graphs in consideration, the following ALG is
a polynomial time approximation algorithm:

ALG := Given graph G, select vertices in decreasing order of weight

as long as those selected form an independent set.

Lemma 2. Algorithm ALG is an α-approximation algorithm for the maximum
weight independent set problem, where α is 2 + γ for interval graphs, (2 + γ)2

for disk graphs, and d for bounded degree-d graphs; and γ = lmax/lmin.

Proof. (Sketch) Note the graphs are bounded claw-free graphs; a graph is (τ+1)-
claw free if each vertex has at most τ mutually non-adjacent vertices. More
generally, ALG is a τ -approximation algorithm on (τ + 1)-claw free graphs. For
each vertex selected by the optimal algorithm, ALG either selects it or does not
select it in favor of another. For each vertex selected by ALG, it can be involved
in at most τ such instances of the latter case. For details, see Appendix B in [6].

Finally, note that Algorithm 3 is equivalent to Algorithm 2; we construct the
independent sets one by one in the former and all at once in parallel in the latter.
By Lemmas 1 and 2, Theorem 1 follows.
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4 Network Bandwidth Reallocation

In this section, we show an approximate DA auction for the network bandwidth
reallocation problem. We reduce the problem to the optimization problem of
network unicast/multicast routing and show a primal-dual greedy algorithm due
to Briest et al. [2] is DA-implementable.

The network bandwidth reallocation problem for unicast routing is defined as
follows: Let G = (V,E) be the network graph with |V | = n, |E| = m, and edge
capacities c(e), ∀e ∈ E. Let N be the firms (the bidders) with access rights such
that each firm i has a terminal pair (si, ti) and demand d(i) and private value
v(i) for his right. Without loss of generality, we assume that d(i) ∈ [0, 1], ∀i;
c(e) ≥ 1, ∀e; and C := minec(e) > 1. Given the reports of firms’ values for their
rights b1, b2, . . ., we buy access rights of some firms such that the demands of
those still retaining rights can be satisfied in the network, i.e., there is a feasible
solution that routes each unsplittable flow of the demanded amount between
terminals subject to the edge capacity constraints. We want to maximize the
social welfare of those still holding rights. Note G is the reduced smaller network
after removing reallocated edges.

In the multicast routing version of the problem, each firm has a set of terminal
vertices, with one being the source, and demands a (unsplittable) multicast tree
(a.k.a., Steiner tree) spanning the terminals.

For the corresponding optimization problem of network routing, we know the
values v(i), ∀i ∈ N and want to compute a subset of firms with the maximum
total value such that their demands can be satisfied. Note that the objectives of
both mechanism design and algorithmic problems are on the same set of firms.

Algorithm 4, due to Briest et al. [2], is a polynomial time greedy algorithm
based on the primal-dual scheme (see Appendix C in [6] for the primal-dual linear
programming relaxations). Let Si be the set of all paths from si to ti in G and
S =

⋃
i Si; in the multicast routing case, Si is the set of all Steiner trees spanning

the firm i’s terminals. Given S ∈ Si, let qS(e) = d(i) if e ∈ S, and qS(e) = 0
otherwise. Note ē ≈ 2.718 is the Euler number. In Line 3, we need to compute
the shortest path with respect to the dual variables y in the unicast routing
case and the minimum weight Steiner tree in the multicast routing case. We can
compute the shortest path exactly using any shortest path algorithm. For the
NP-hard Steiner tree problem, we use the polynomial time 1.55-approximation
algorithm due to Robins and Zelikovsky [11].

We show that Algorithm 4 is DA-implementable and obtain a DA auction for
the network bandwidth reallocation problem:

Theorem 2. Algorithm 4 isaDA-implementable
(

ēγC
C−1m

1/(C−1)
)
-approximation

algorithm for the network bandwidth reallocation problem where γ = 1 for unicast
routing and γ = 1.55 for multicast routing.

Proof. (DA-implementability) We show an implementation with an active set
and scoring functions as follows: Let the active set A be the set of firms not yet

selected, so N ′ in Algorithm 4, and {yN\A
e }e∈E be the associated dual variables.
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Algorithm 4. Greedy Algorithm for the Network Routing Problem

1: T = ∅; N ′ = N ; y(e) = 1/c(e), ∀e ∈ E
2: while N ′ 
= ∅ and

∑
e∈E c(e)y(e) < ēC−1m do

3: Si = argminS∈Si

∑
e∈S y(e),∀i ∈ N ′

4: i = argmaxi∈N′
{

v(i)
d(i)·∑e∈Si

y(e)

}

5: T = T ∪ {Si}; N ′ = N ′ \ {i}
6: Update y(e) = y(e) · (ēC−1m

)qSi
(e)/(c(e)−1)

,∀e ∈ Si

7: end while
8: return T

We define the scoring functions:

sAi (vi, vN\A) =
v(i)

d(i)
∑

e∈Si
y
N\A
e

, where Si = argminS∈Si

∑

e∈S

yN\A
e . (4)

Note A changes when a firm is selected in Lines 4-5 and the scoring functions
change correspondingly when the dual variables ye change. The scoring functions
are nondecreasing in the first argument and functions of attributes of firms in
N \A. Also, the next firm to be added to N \A is the highest scoring firm.

(Approximation) We refer this part of the proof to Briest et al. [2].

Corollary 2. The DA auction with scoring functions (4) is a
(

ēγC
C−1m

1/(C−1)
)
-

approximate WG-strategy-proof mechanism for the network bandwidth realloca-
tion problem, where γ = 1 for unicast routing and γ = 1.55 for multicast routing.

5 Cost Minimization with Set Cover Constraints

We apply our approach to the cost minimization problem with set cover con-
straints in the selling auction setting.

In the selling auction setting, the DA auction (Algorithm 1) is “inverted”:
the while-loop’s stopping condition becomes ∃i ∈ A : sAi (bi, bN\A) < ∞ (so, it
terminates when all the scores are ∞); the next agent to be rejected in Lines
4-5 becomes the lowest scoring agent argmini∈As

A
i (bi, bN\A); and the payment

rule (1) becomes pi(b−i) = min{b′i ∈ Bi : i ∈ a(b′i, b−i)}. Similarly, each bidder
wants to maximize his utility which is vi − pi(b) if he wins, and 0 otherwise.

Let N be the set of bidders with cost function c : N → R
+ and E be a universe

of elements. For each i ∈ N , there is an associated set Si ⊆ E; we assume each
e ∈ E is covered by, i.e., contained in, at least one Si. For example, N is a set
of firms with private costs c that are bidding b1, b2, . . . to prematurely terminate
their contracts and E is a representation of their responsibilities. We want to
honor requests while rejecting some to ensure that all the responsibilities are
covered by at least one rejected firm. We interpret c(i) to be the value of early
termination for firm i and want to minimize the social cost, the total bid value,
of those still with contracts.
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Algorithm 5. Greedy Algorithm for the Set Cover Problem

1: I = ∅; y(e) = 0,∀e ∈ E
2: while ∃e 
∈ ⋃

i∈I Si do
3: Increase y(e) until there is some i such that

∑
e′∈Si

y(e′) = c(i)
4: I = I ∪ {i}
5: end while
6: return I

The cost minimization problem with set cover constraints reduces to the well-
known set cover problem with the same objective: given the cost function c,
we want to select a subset of N with minimum cost whose sets cover E. The
set cover problem includes many other algorithm design problems such as the
minimum spanning tree problem, the Steiner tree problem, etc.

The set cover problem has primal-dual linear programming relaxations (see
Appendix D in [6]) and a polynomial time greedy approximation algorithm,
Algorithm 5. We show that Algorithm 5 is DA-implementable and obtain a DA
auction:

Theorem 3. Algorithm 5 is a DA-implementable f -approximation algorithm
for the set cover problem where f = maxe|{i : e ∈ Si}|.
Proof. (DA-implementability) We show an implementation with an active set
and scoring functions as follows: Let A be the set of bidders not yet selected
and yN\A(e), ∀e ∈ E be the associated dual variables, dependent on N \ A, in
Algorithm 5. We define the scoring functions as follows:

sAi (ci, cN\A) =

{
c(i)−∑

e∈Si
yN\A(e), if T

N\A
i is not empty

∞, otherwise
, (5)

where T
N\A
i = {e : e ∈ Si, e �∈

⋃
j∈N\A Sj}, i.e., those elements in Si not covered

by the selected sets in N \ A. When a bidder i is selected from A, there is an

element e ∈ T
N\A
i , the lowest indexed one if many exist, that we can associate

to the bidder and increase the corresponding dual variable y(e) by the amount
c(i)−∑

e′∈Si
yN\A(e′).

Note that the scoring functions are nondecreasing in the first argument. As-

sume the lowest scoring bidder it is associated with the element et ∈ T
N\A
i at

each iteration t. Then, the steps of the DA auction with the above scoring func-
tions can be realized as the steps of Algorithm 5 when the elements to be used
in Line 3 are exactly the associated elements e1, e2, . . ., and the next bidder to
be selected by Algorithm 5 is the lowest scoring bidder at each iteration.

(Approximation) The proof that Algorithm 5 has the approximation ratio of
f can be found, for instance, in [12].

Corollary 3. The (“inverted”) DA auction with scoring functions (5) is a f -
approximate WG-strategy-proof mechanism for the cost minimization problem
with set cover constraints where f = maxe|{i : e ∈ Si}|.
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Abstract. We call a digraph h-semicomplete if each vertex of the di-
graph has at most h non-neighbors, where a non-neighbor of a vertex v
is a vertex u �= v such that there is no edge between u and v in either
direction. This notion generalizes that of semicomplete digraphs which
are 0-semicomplete and tournaments which are semicomplete and have
no anti-parallel pairs of edges. Our results in this paper are as follows.
(1) We give an algorithm which, given an h-semicomplete digraph G on
n vertices and a positive integer k, in (h + 2k + 1)2knO(1) time either
constructs a path-decomposition of G of width at most k or concludes
correctly that the pathwidth of G is larger than k. (2) We show that
there is a function f(k, h) such that every h-semicomplete digraph of
pathwidth at least f(k, h) has a semicomplete subgraph of pathwidth at
least k.

One consequence of these results is that the problem of deciding if
a fixed digraph H is topologically contained in a given h-semicomplete
digraph G admits a polynomial-time algorithm for fixed h.

1 Introduction

A tournament is a digraph obtained from a complete graph by orienting each
edge. A semicomplete digraph generalizes a tournament, allowing each pair of
distinct vertices to optionally have two edges in both directions between them.
Tournaments and semicomplete digraphs are well-studied (see [1], for example)
and have recently been attracting renewed interests in the following context.

There are many problems on undirected graphs that admit polynomial time
algorithms but have digraph counterparts that are NP-complete. For example,
Robertson and Seymour [14], in their Graph Minors project, proved that the k
disjoint paths problem (and the k edge-disjoint paths problem) can be solved in
polynomial for fixed k. On the other hand, digraph versions of these problems are
NP-complete even for k = 2 due to Fortune, Hopcroft, and Wyllie [5]. Recently,
Chudnovsky, Scot, and Seymour [3] showed that the k directed disjoint paths
problem can be solved in polynomial time for fixed k if the digraph is restricted

c© Springer-Verlag Berlin Heidelberg 2015
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to be semicomplete. The edge-disjoint version of the problem is also polynomial
time solvable on semicomplete digraphs, due to Fradkin and Seymour [8]. The
situation is similar for the topological containment problem, which asks if a
given graph (digraph) contains a subgraph isomorphic to a subdivision of a
fixed graph (digraph) H : the undirected version is polynomial time solvable
due to the disjoint paths result and the directed version is NP-complete on
general digraphs [5], while the question on semicomplete digraphs is polynomial
time solvable due to Fradkin and Seymour [7] and moreover is fixed-parameter
tractable due to Fomin and Pilipczuk [6,13]. In addition to these algorithmic
results, some well-quasi-order results that are similar to the celebrated Graph
Minors theorem of Robertson and Seymour [15] have been proved on the class of
semicomplete digraphs [4,11]. These developments seem to suggest that the class
of semicomplete digraphs is a promising stage for pursuing digraph analogues of
the splendid outcomes, direct and indirect, from the Graph Minors project.

Given this progress on semicomplete digraphs, it is natural to look for more
general classes of digraphs on which similar results hold. Indeed, the results
on disjoint paths problems cited above are proved for some generalizations of
semicomplete digraphs. The vertex-disjoint path algorithm given in [3] works for
a digraph class called d-path dominant digraphs, which contains semicomplete
digraphs (d = 1) and digraphs with multipartite underlying graphs (d = 2). The
edge-disjoint path algorithm given in [8] works for digraphs with independence
number (of the underlying graph) bounded by some fixed integer. On the other
hand, the results for topological containment in [7,6,13] are strictly for the class
of semicomplete graphs.

The pathwidth of digraphs, which plays an essential role in some of the above
results, is defined as follows. Let G be a digraph. A path-decomposition of G is
a sequence (X1, . . . , Xm) of vertex sets Xi ⊆ V (G), called bags, such that the
following three conditions are satisfied:

1.
⋃

1≤i≤m Xi = V (G),
2. for each edge (u, v) of G, u ∈ Xi and v ∈ Xj for some i ≥ j, and
3. for every v ∈ V (G), the set {i | v ∈ Xi} of indices of the bags containing v

forms a single integer interval.

The first and the third conditions are the same as in the definition of the path-
width of undirected graphs; the second condition, on each edge, is different and
depends on the direction of the edge. Note that some authors, including the
present authors in previous work in different contexts, reverse the direction of
edges in this condition. We follow the convention of the papers cited above. As in
the case of undirected graphs, the width of a path-decomposition (X1, . . . , Xm)
is max1≤i≤m |Xi| − 1 and the pathwidth of G, denoted by pw(G), is the smallest
integer k such that there is a path-decomposition of G of width k.

Unlike for the pathwidth of undirected graphs, which is linear-time fixed-
parameter tractable [2], no FPT-time algorithm is known for computing the
pathwidth of general digraphs: only XP-time algorithms (of running time nO(k))
are known. The third author of the current paper proposed one in [16], which
was unfortunately flawed and has recently been corrected in [9] by the current
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and two more authors. Another XP algorithm is due to Nagamochi [12], which is
formulated for a more general problem of optimizing linear layouts in submodular
systems.

In this paper, we consider another direction of generalizing semicomplete di-
graphs and study the pathwidth of digraphs in the generalized class. For non-
negative integer h, we say that a simple digraph G is h-semicomplete if each
vertex of G has at most h non-neighbors, where a non-neighbor of vertex v is
a vertex u distinct from v such that there is no edge of G between u and v
in either direction. Thus, semicomplete digraphs are 0-semicomplete. Our main
results are as follows.

Theorem 1. There is an algorithm which, given an h-semicomplete digraph
G on n vertices and a positive integer k, in (h + 2k + 1)2knO(1) time either
constructs a path-decomposition of G of width at most k or concludes correctly
that the pathwidth is larger than k.

This theorem generalizes the kO(k)n2 time result of Pilipczuk [13] on semicom-
plete digraphs. Compared on semicomplete digraphs, his algorithm has smaller
dependence on n (our O(1) exponent on n is naively 4), while the hidden constant
in the exponent on k can be large.

Theorem 2. There is a function f(h, k) on positive integers h and k such that
each h-semicomplete digraph with pathwidth at least f(h, k) has a semicomplete
subgraph of pathwidth at least k.

The topological containment result in [7] is based on two components. One is
a combinatorial result that, for each fixed digraphH , there is a positive integer k
such that every semicomplete digraph G of pathwidth larger than k topologically
contains H . The second component is a dynamic programming algorithm that,
given a digraph G on n vertices together with a path-decomposition of width k
and a digraph H on r vertices with s edges, decides if G topologically contains
H in O(n3(k+rs)+4) time. Note that this algorithm does not require G to be
semicomplete. Theorem 2 enables us to generalize the first component to h-
semicomplete digraphs and Theorem 1 gives us the path-decomposition to be
used in the dynamic programming. Thus, we have the following theorem.

Theorem 3. For fixed positive integer h and fixed digraph H, the problem of
deciding if a given h-semicomplete digraph topologically contains H can be solved
in polynomial time.

We should remark that extending the FPT result of [6,13] in this direction
using the approach of this paper appears difficult, as the FPT-time dynamic
programming algorithm therein heavily relies on the strict semicompleteness of
the input digraph.

Techniques. Our algorithm in Theorem 1 borrows the notion of separation
chains from [13] but the algorithm itself is completely different from the one
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in [13]. The advantage of our algorithm is that it works correctly on general di-
graphs, in contrast to the one in [13] which is highly specialized for semicomplete
digraphs. We need a property of h-semicomplete digraphs only in the analysis
of the running time.

Our algorithm is based on the one due to Nagamochi [12] for more general
problem of finding an optimal linear layout for submodular systems. Informally,
his algorithm applied to the pathwidth computation works as follows. Fix di-
graph G and let d+(U) for each U ⊆ V (G) denote the number of out-neighbors
of U . The width of permutation π of V (G) is defined to be the maximum of
d+(V (π′)) where π′ ranges over all the prefixes of π and V (π′) denotes the set of
vertices in π′. The smallest integer k such that there is a permutation of width
k is called the vertex separation number of G and is equal to the pathwidth of
G [17]. Thus, our goal is to decide, given k, if there is a permutation of V (G) of
width at most k.

Nagamochi’s algorithm is a combination of divide-and-conquer and branching
from both sides of the permutation. For disjoint subsets S and T of V (G), call a
permutation π of V (G) an (S, T )-permutation, if it has a prefix π′ with V (π′) = S
and a suffix π′′ with V (π′′) = T . A vertex set X that minimize d+(X) subject to
S ⊆ X ⊆ V (G) \ T is called a minimum (S, T ) separator. A crucial observation,
based on the submodularity of set function d+ is the following. Let X be a
minimum (S, T )-separator. Then, if there is an (S, T )-permutation of width at
most k then there is such a permutation that is an (S, V (G) \X)-permutation
and an (X,T )-permutation at the same time. Thus if there is a minimum (S, T )-
separator distinct from both S and V (G) \ T , then we can divide the problem
into two smaller subproblems. When there is no minimum (S, T )-separator other
than S or V (G) \T , we need to branch on vertices to add to S or T . For general
digraphs, the running time is n2k+O(1): we need to branch on O(n) vertices from
both sides, and the depth of branching is bounded by k, as the value d+(X) of
the minimum separator X increases at least by one after we branch from both
sides.

For h-semicomplete digraphs, we observe that the number of vertices v such
that d+(S ∪ {v}) ≤ k is at most h + 2k + 1 (see Proposition 1) and therefore,
we need to branch on at most h + 2k + 1 vertices when extending from S.
Unfortunately, we do not have a similar bound on the number of vertices to
branch on from the side of T . For example, if |T | < k, then d+(V (G)\(T∪{v})) ≤
k for every v �∈ T and therefore we need to branch on every vertex not in
T ∪ S ∪N+(S), where N+(S) denotes the set of out-neighbors of S.

This asymmetry comes from the asymmetry inherent in the vertex separation
number characterization: the width of a permutation π in G is not equal in
general to the width of a reversal of π in G−1, the digraph obtained from G
by reversing all of its edges. We use separation chains [13] to give a symmetric
characterization of pathwidth and formulate a variant of Nagamochi’s algorithm
which branches from each side on at most (h+ 2k + 1) vertices. This is how we
get the running time stated in Theorem 1. We remark that a similar result on
cutwidth is an immediate corollary of the Nagamochi’s result, since we have the
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desired symmetry in the definition of cutwidth: the cutwidth of a permutation
π in G equals the cutwidth of the reversal of π in G−1.

The scenario for the combinatorial result in Theorem 2 is rather straight-
forward. Given an h-semicomplete graph G of pathwidth at least f(h, k), we
complete it into a semicomplete graph G′ on V (G), which must have pathwidth
at least f(h, k). We then find an obstacle T ⊆ V (G) in G′ for small pathwidth, of
one of the types defined in [13]. Then we consider a random semicomplete sub-
graph G′′ of G and show that G′′ inherits an obstacle T ′ from T with high prob-
ability such that the existence of T ′ in G′′ implies pw(G′′) ≥ k. We need to over-
come, however, some difficulties in carrying out this scenario. To be more specific,
consider one type of obstacles, namely degree tangles [13]. An (l, k)-degree tangle
of G is a vertex set T with |T | = l such that maxv∈T d+(v)−minv∈T d+(v) ≤ k.
In order for a degree tangle T in G′ to give rise to a degree-tangle T ′ of the
random subgraph G′′, we need the out-degrees of vertices in T ′ to “shrink” al-
most uniformly. To this end, we wish our sampling to be such that (1) each
vertex v ∈ V (G) is in V (G′′) with a fixed probability p and (2) for each vertex
set S ⊆ V (G), the intersection S ∩ V (G′′) has cardinality sharply concentrated
around its expectation p|S|. The following theorem, which may be of indepen-
dent interest, makes this possible: we apply this theorem to the complement of
the underlying graph of G with d = h.

Theorem 4. Let G be an undirected graph on n vertices with maximum degree
d or smaller. Let p = 1

2d+1 . Then, it is possible to sample a set I of independent
vertices of G so that Pr(v ∈ I) = p for each v ∈ V (G) and, for each S ⊆ V (G),
we have

Pr(|S ∩ I| > p|S|+ t) < exp

(
− t2

9|S|
)

and

Pr(|S ∩ I| < p|S| − t) < exp

(
− t2

9|S|
)
.

Even with this sampling method, it is still not clear if we can have the desired
“uniform shrinking” of out-degrees of the vertices in the degree tangle, since if
the set S of out-neighbors of a vertex has cardinality Ω(n), then the deviation
of |S ∩ V (G′′)| from its expectation p|S| is necessarily Ω(

√
n). To overcome this

difficulty, we introduce several types of obstacles that are robust against random
sampling and show that (1) if G′ has an obstacle of a type in [13] then it has a
robust obstacle and (2) each robust obstacle in G′ indeed gives rise to a strong
enough obstacle in G(V ′′) with high probability.

The rest of this paper is organized as follows. In Section 2 we define some
notation. In Section 3, we describe our algorithm and prove Theorem 1, omitting
the proofs of some lemmas. In Section 4, we sketch our proof of Theorem 2. All
the omitted proofs and details, including the proof of Theorem 4, can be found
in the full version of this paper [10].
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2 Notation

Digraphs in this paper are simple: there are no self-loops and, between each pair
of distinct vertices, there is at most one edge in each direction. For digraph G,
V (G) denotes the set of vertices of G and E(G) ⊆ V (G)×V (G) the set of edges
of G. If (u, v) ∈ E(G), then v is an out-neighbor of u and u is an in-neighbor
of v. For each v ∈ V (G), we denote the set of in-neighbors of v by N−

G (v) =
{u | (u, v) ∈ E(G)} and write N−

G [v] for N−
G (v) ∪ {v}. For U ⊆ V (G), we define

N−
G [U ] =

⋃
v∈U N−

G [v] and N−
G (U) = N−

G [U ] \ U . We define the notation for
out-neighbors N+ similarly. In this paper, the in-degree and out-degree of vertex
v in G, denoted by d−G(v) and d+G(v), respectively, counts the in-neighbors and
out-neighbors rather than the incoming and outgoing edges: d−G(v) = |N−

G (v)|
and d+G(v) = |N+

G (v)|; we also define d−G(U) = |N−
G (U)| and d+G(U) = |N+

G (U)|
for U ⊆ V (G). We omit the reference to G from the above notation when it is
clear from the context which digraph is meant.

3 Algorithm

In this section, we describe the algorithm claimed in Theorem 1, prove its cor-
rectness, and analyze its running time. As suggested in the introduction, our
first task is to give a symmetric characterization of pathwidth to which the
Nagamochi’s algorithm is adaptable.

Let G be a digraph. A pair (A,B) of vertex sets of G is a separation of G if
A ∪ B = V and there is no edge from A \ B to B \ A. The order of separation
(A,B) is |A ∩ B|. For S, T ⊆ V such that S ∩ T = ∅, separation (A,B) is an
S–T separation if S ∩ B = ∅ and T ∩ A = ∅. We call an S–T separation (A,B)
trivial if B = V (G) \ S or A = V (G) \ T .

An important role in our algorithm is played by a minimum S-T separation,
which is defined to be an S–T separation of the smallest order. Note that if a
minimum S-T separation is trivial, then it must be either (N+[S], V (G) \S) or
(V (G) \ T, N−[T ]). As will be seen later, we may use non-trivial minimum S-T
separations to divide-and-conquer subproblems in our pathwidth computation.

A sequence of separations ((A0, B0), (A1, B1), . . . , (Ar, Br)) is a separation
chain if A0 ⊆ A1 ⊆ . . . ⊆ Ar and Br ⊆ Br−1 ⊆ . . . ⊆ B0. The order of this sepa-
ration chain is the maximum order of its member separations. We use operator +
for concatenating sequences of separations and for appending a separation to a
sequence of separations: for sequences C and C′ of separations and a separation
(A,B), C + C′ is the concatenation of C and C′, (A,B) + C is the sequence C
preceded by (A,B), and C + (A,B) is the sequence C followed by (A,B).

Let C = ((A0, B0), (A1, B1), . . . , (Ar, Br)) be a separation chain. We say that
C is gapless if, for every 0 < i ≤ r, either |Ai \Ai−1| ≤ 1 or |Bi−1 \Bi| ≤ 1 holds.
Note that this definition allows a repetition of an identical separation. We say
that C is an S–T chain, if B0 = V (G)\S and Ar = V (G)\T , that is, both ends
of C are trivial S–T separations. Note that every separation in an S–T chain is
an S–T separation.
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As observed in [13],
(1) if (X1, X2, . . . , Xr) is a path-decomposition of G then ((A0, B0), (A1, B1),
. . . , (Ar, Br)), where Ai =

⋃
j≤i Xj and Bi =

⋃
i<j Xj , is an ∅–∅ chain in G, and

(2) if ((A0, B0), (A1, B1), . . . , (Ar , Br)) is an ∅–∅ chain in G, then (W1,W2, . . . ,
Wr), where Wi = Ai ∩Bi−1 for 1 ≤ i ≤ r, is a path-decomposition of G.

These observations lead to the following characterization of pathwidth by
means of gapless separation chains.

Lemma 1. Digraph G has a path-decomposition of width k if and only if it has
a gapless ∅–∅ chain of order k.

Proof. Suppose G has a path-decomposition (X1, X2, . . . , Xr) of width k. We
may assume that this path-decomposition is nice: X1 = Xr = ∅ and, for 1 ≤ i <
r, either Xi+1 = Xi ∪ {v} for some v ∈ V (G) \Xi or Xi+1 = Xi \ {v} for some
v ∈ Xi. If we set Ai =

⋃
j≤i Xj and Bi =

⋃
j>i Xj for 0 ≤ i ≤ r as in observation

(1), then ((A0, B0), (A1, B1), . . . , (Ar, Br)) is a gapless ∅–∅ chain. The order of
this separation chain is max0≤i≤r |Ai ∩ Bi| = max1≤i≤r−1 |Xi ∩ Xi+1| = k.
Conversely, suppose a gapless separation chain ((A0, B0), (A1, B1), . . . , (Ar , Br))
of order k is given. We set Xi = Ai∩Bi−1 for 1 ≤ i ≤ r. Then, (X1, X2, . . . , Xr)
is a path-decomposition by observation (2). Since our separation chain is gapless,
we have either |Ai \Ai−1| ≤ 1 or |Bi−1\Bi| ≤ 1 for 1 ≤ i ≤ r. In the former case,
we have |Ai ∩Bi−1| ≤ |Ai−1 ∩Bi−1|+1 = k+1 and, in the latter case, we have
|Ai ∩Bi−1| ≤ |Ai ∩Bi|+ 1 = k+1. Therefore, the width of path-decomposition
(X1, X2, . . . , Xr) is at most k and hence G has a path-decomposition of width
k. ��

We say that a pair (S, T ) of vertex sets of G is k-admissible if N+[S]∩ T = ∅
(and hence S ∩ N−[T ] = ∅), d+(S) ≤ k, and d−(T ) ≤ k. It is clear that (S, T )
must be k-admissible in order for G to have a gapless S–T chain of order at
most k. Our algorithm solves the following problem with parameter k: given
digraph G and a k-admissible pair (S, T ), compute a gapless S–T chain of order
at most k if one exists and otherwise report the non-existence. The algorithm
in Theorem 1 applies this algorithm to (S, T ) = (∅, ∅) and, if it returns an ∅–∅
chain of order k, converts it to a path-decomposition of width at most k, using
the proof of Lemma 1.

The following lemma provides the base case for our algorithm.

Lemma 2. If pair (S, T ) is k-admissible and satisfies |V (G) \ (S ∪ T )| ≤ k + 1
then G has a gapless S–T chain of order at most k.

The proof is by induction on |V (G) \ (S ∪ T )| and is constructive.
We have two types of recurrences: divide-and-conquer and branching. The

following lemma, which corresponds to the main lemma in [12] underlying the
algorithm for submodular systems, provides a recurrence of the first type.

Lemma 3. Suppose G has a gapless S–T chain of order k and let (X,Y ) be a
minimum S–T separation of G. Then G has a gapless S–T chain of order at
most k of the form C1 + (X,Y ) + C2, where C1 is a gapless S–(Y \ X) chain
and C2 is a gapless (X \ Y )–T chain.
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The recurrence of the second type is provided by the following lemma.

Lemma 4. Suppose G has a gapless S–T chain of order at most k and sup-
pose that |V (G) \ (S ∪ T )| ≥ k + 2 holds. Then, there are a gapless S–T
chain ((A0, B0), . . . , (Ar, Br)) of order at most k and a pair of distinct vertices
u ∈ V (G) \ (S ∪ N−[T ]) and v ∈ V (G) \ (T ∪ N+[S]) such that the following
holds:

1. ((A1, B1), . . . , (Ar, Br)) is an (S ∪ {u})–T chain,
2. ((A0, B0), . . . , (Ar−1, Br−1)) is an S–(T ∪ {v}) chain, and
3. ((A1, B1), . . . , (Ar−1, Br−1)) is an (S ∪ {u})–(T ∪ {v}) chain.
Given these recurrences and the base case above, our algorithm is straightfor-

ward. Suppose we are given a k-admissible pair (S, T ). If |V (G)\(S∪T )| ≤ k+1
holds then we apply Lemma 2 and return the gapless S–T chain it provides. Sup-
pose otherwise. We test if there is a minimum S–T separation that is non-trivial:
a minimum S–T separation (X,Y ) that is not equal to either (N+[S], V (G)\S)
or (V (G) \ T, N−[T ]). If we find one, we apply Lemma 3 and recurse on sub-
problems (S, Y \ X) and (X \ Y, T ). If either of the recursive calls returns a
negative answer, we return a negative answer. Otherwise, we concatenate the
solutions from the subproblems as prescribed in Lemma 3 and return the result.
Finally suppose that there is no minimum S–T separation that is non-trivial.
If (N+[S], V (G) \ S) is the only minimum S–T separation, then we recurse on
(S∪{v}, T ) for every v ∈ V (G)\ (S∪T ) such that (S ∪{v}, T ) is k-admissible.
If (V (G) \ T,N−[T ]) is the only minimum S–T -separation, then we similarly
branch from T . If both (N+[S], V (G) \S) and (V (G) \ T, N−[T ]) are the min-
imum S–T separations, then we branch from both sides. In either case, if any
of the recursive call returns a gapless separation chain of order at most k, we
trivially extend the chain into a gapless S–T separation of order at most k and
return this chain. Otherwise, that is, if all the recursive calls return negative
answers, we return a negative answer.

The correctness of this algorithm is proved by a straightforward induction for
which the above Lemmas provide the base case and the induction steps.

We analyze the running time of the algorithm. The following observation
extends the one in [13] that the number of vertices of out-degree at most k in a
semicomplete digraph is at most 2k + 1.

Proposition 1. Let G be an h-semicomplete digraph and let U ⊆ V (G). Then
the number of vertices v ∈ V (G) \ U such that d+(U ∪ {v}) ≤ k is at most
h + 2k + 1 for every k > 0. The similar statement with the out-degree replaced
by the in-degree also holds.

Proof. Fix U , let X ⊂ V (G) \U be arbitrary, and set |X | = b. By the definition
of h-semicomplete digraphs, G[X ] contains at least b(b − h − 1)/2 edges and
hence the average out-degree of vertices in G[X ] is at least (b − h − 1)/2. For
each v ∈ X , N+

G (U ∪ {v}) contains N+
G[X](v) and hence if b > h + 2k + 1 then

there is at least one v ∈ X such that |N+
G (U ∪ {v})| > k. This proves the first

statement. The second statement is immediate by symmetry. ��
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Thus, the number of vertices to branch on from each side in the above algo-
rithm is bounded by h+ 2k + 1.

To measure the “size” of the problem instance (S, T ), we introduce the follow-
ing two functions. Let γ(S, T ) denote the order of the minimum S–T separation.
Let μ(S, T ) be defined by

μ(S, T ) = 2|V (G) \ (N+[S] ∪N−[T ])|+ |N+(S)ΔN−(T )|,

where XΔY is the symmetric difference between X and Y .

Lemma 5. Let (X,Y ) be a minimum S–T separation. Then, we have

μ(S, Y \X) + μ(X \ Y, T ) = μ(S, T ).

Lemma 6. Let (X,Y ) be a non-trivial S–T separation: X \Y �= S and Y \X �=
T . Then, we have μ(S, Y \X) ≥ 1 and μ(X \ Y, T ) ≥ 1.

Let R(S, T ) denote the number of problem instances recursively considered
when we solve the instance (S, T ), not counting the instances in the base case,
but counting the instance (S, T ) itself unless it is in the base case. Let μ′(S, T ) =
max{0, 2μ(S, T )− 1}.
Lemma 7. Let G be an h-semicomplete digraph and k a positive integer. Then,
for each k-admissible pair (S, T ), we have

R(S, T ) ≤ μ′(S, T ) · (h+ 2k + 1)2(k−γ(S,T ))

The proof of this lemma is by a straightforward induction on the structure of
the computation.

The time for processing each pair (S, T ) excluding the time consumed by
subsequent recursive calls is dominated by the time for finding minimum S–
T separation and for deciding if there is a minimum S–T separation that is
not trivial. This can be done in nO(1) time by the repeated use of a standard
augmenting path algorithm for minimum S-T cut. Since μ′(∅, ∅) = O(n), we
have the running time claimed in Theorem 1.

4 Tame Obstacles Survive Random Sampling:
Proof Sketch of Theorem 2

We sketch the proof of Theorem 2 in this section.
Let G be a semicomplete digraph with n vertices. For 0 ≤ d ≤ n, let V −

≤d(G),

V −
≥d(G), V +

≤d(G), and V +
≥d(G) denote the set of vertices v with d−G(v) ≤ d,

d−G(v) ≥ d, d+G(v) ≤ d, and d+G(v) ≥ d, respectively. We omit the reference
to G and write V −

≤d etc. when G is clear from the context.
We first define several types of obstacles against small pathwidth in semicom-

plete digraphs.



On the Pathwidth of Almost Semicomplete Digraphs 825

Definition 1. [13] Let G be a semicomplete digraph and let d ≥ 0, l > 0 and
k > 0 be integers. A (d, l, k)-degree tangle of G is a vertex set T ⊆ V +

≥d ∩ V +
≤d+k

with |T | = l. A (d, l, k)-matching tangle of G is a pair of vertex sets (T1, T2)
with |T1| = |T2| = l such that:

1. T1 ⊆ V +
≤d, T2 ⊆ V +

≥d+k+1, and
2. there is some bijection φ : T1 → T2 such that (v, φ(v)) ∈ E(G) for every

v ∈ T1.

We will often refer to a (d, l, k)-degree (-matching) tangle as an (l, k)-degree
(-matching) tangle without specifying d.

Pilipczuk [13] showed that a (5k+2, k)-degree tangle in G implies pw(G) ≥ k+1
and an (l, k)-matching tangle implies pw(G) ≥ min{l, k+1}. We prove and use a
slightly stronger statement on degree tangles: an (l, k)-degree tangle in G implies
pw(G) ≥ (l − k − 1)/2.

We follow the scenario described in the introduction. Given an h-semicomplete
digraph G of pathwidth at least f(h, k), we complete it into a semicomplete
digraph G′ on V (G), in which we find a large obstacle, say a degree tangle
T . Then, we apply Theorem 4 to obtain a random independent set I of the
complement of the underlying graph of G. We hope that T ∩I is a tangle of G[I]
that is strong enough to conclude pw(G[I]) ≥ k. For this to happen, we need to
have the out-degrees |N+

G′(v) ∩ I| of v, for v ∈ T ∩ I, to be close to each other.
As observed in [13], the optimal vertex separation sequence lists the vertices

roughly in the order of increasing out-degrees and therefore each vertex has most
vertices of smaller degree as its out-neighbors,with some exceptions. The following
notion of the wildness of vertices measures how exceptional a vertex is.

Definition 2. For each vertex v ∈ G, we define the wildness wld(v) of v by

wld(v) = |V +
≤d+(v) \N+(v)|.

If the vertices of a degree-tangle T have small wildness, then most of their
out-neighbors are shared and we may expect that their degrees in the sampled
subgraph G[I] will be close together. We call such a degree-tangle tame.

Definition 3. We say that an (l, w)-degree tangle T of G is tame (relative to
the parameters l and w), if wld(v) ≤ 3l + w + 2pw(G) for each v ∈ T .

A degree-tangle is not necessarily tame, but a large number of wild vertices
in a degree-tangle are themselves an evidence of large pathwidth. We capture
this fact by another type of obstacles we call spiders.

Definition 4. Let G be a semicomplete digraph and let d, l, and w be positive
integers. A (d, l, w)-spider is a triple (T, L,R), where T is a vertex set with
|T | ≥ l, L is a family {Lv | v ∈ T } of vertex sets, and R is a family {Rv | v ∈ T }
of vertex sets, such that the following holds for each v ∈ T :
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1. Lv ⊆ N−(v), |Lv| ≥ 3l, and d+(u) ≤ d for each u ∈ Lv, and
2. Rv ⊆ N+(v), |Rv| ≥ 3l, and d+(u) ≥ d+ w for each u ∈ Rv.

We will sometimes refer to a (d, l, w)-spider as an (l, w)-spider, without specify-
ing d.

Using an argument similar to the one in [13] used to show that a matching-
tangle is indeed an obstacle, we have the following lemma.

Lemma 8. If a semicomplete digraph G has an (l, w)-spider then pw(G) >
min{l, w}.

The following lemma shows that spiders capture what we intended them to
capture.

Lemma 9. Suppose G has a (2l, w)-degree tangle T . Then, G has either a tame
(l, w)-degree tangle or an (l, w)-spider.

We similarly define the tameness of matching tangles and of spiders. We then
show that if we have a matching-tangle then we have either a tame matching-
tangle or a spider. We also show that if we have a spider then we have a tame
spider. This gets us ready for carrying out our scenario.

Fix positive integer h. Let kh be a constant large enough as required in
technical Lemmas used below. We set f(k, h) = 128(h + 1)k for k ≥ kh and
f(k, h) = f(kh, h) for k < kh.

Let G be an h-semicomplete digraph of pathwidth at least f(k, h). In the
following proof that G contains a semicomplete subgraph of pathwidth at least
k, we assume k ≥ kh; otherwise we would prove that G contains a semicomplete
subgraph of pathwidth at least kh ≥ k. We set K = (h+ 1)k for readability.

List the vertices of G as v1, . . . , vn, in the non-decreasing order of out-degrees.
Let G′ be the semicomplete digraph obtained from G by adding edge (vi, vj) for
each pair i > j such that neither (vi, vj) nor (vj , vi) is an edge of G. By our
assumption, pw(G′) ≥ pw(G) is at least 128K. We assume that pw(G′) ≤ 140K
in our construction; if this assumption does not hold, we choose k′ ≥ k such that
128(h + 1)k′ ≤ pw(G′) ≤ 140(h + 1)k′ and prove that G has a semicomplete
subgraph of pathwidth at least k′.

We first obtain a tame (46K, 18K)-degree tangle, a tame (6K,w)-spider for
some w ≥ 18K, or a tame (6K, 18K)-matching tangle of G′. The crucial part of
the proof that this is possible is the algorithm due to Pilipczuk (Theorem 32 in
[13]) that finds in the given semicomplete digraph either a large degree-tangle, a
large matching-tangle, or a path-decomposition of some width if not obstructed
by those tangles.

If G′ has a tame (46K, 18K)-degree tangle, then we may show that the random
subgraph G[I] has a (21k, 10k)-degree tangle with high probability. If G′ has
a tame (6K,w)-spider for w ≥ 18K, we may show that G[I] contains a (k, k)-
spider with high probability. For the third case where we have a tame (6K, 18K)-
matching tangle, we slightly modify the sampling method: we contract each edge
representing the matching bijection of the matching tangle and sample on this
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contracted graph. With this care taken, we may show that the resulting random
subgraph contains with a (k, k)-matching tangle. In either case, we conclude that
G contains a semicomplete subgraph of pathwidth at least k. This completes a
sketch of the proof of Theorem 2.
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Abstract. Randomized algorithms and data structures are often ana-
lyzed under the assumption of access to a perfect source of randomness.
The most fundamental metric used to measure how “random” a hash
function or a random number generator is, is its independence: a se-
quence of random variables is said to be k-independent if every variable
is uniform and every size k subset is independent.

In this paper we consider three classic algorithms under limited in-
dependence. Besides the theoretical interest in removing the unrealistic
assumption of full independence, the work is motivated by lower inde-
pendence being more practical. We provide new bounds for randomized
quicksort, min-wise hashing and largest bucket size under limited inde-
pendence. Our results can be summarized as follows.

– Randomized Quicksort. When pivot elements are computed using
a 5-independent hash function, Karloff and Raghavan, J.ACM’93
showed O(n log n) expected worst-case running time for a special
version of quicksort. We improve upon this, showing that the same
running time is achieved with only 4-independence.

– Min-Wise Hashing. For a set A, consider the probability of a partic-
ular element being mapped to the smallest hash value. It is known
that 5-independence implies the optimal probability O(1/n). Broder
et al., STOC’98 showed that 2-independence implies it is O(1/

√|A|).
We show a matching lower bound as well as new tight bounds for 3-
and 4-independent hash functions.

– Largest Bucket. We consider the case where n balls are distributed
to n buckets using a k-independent hash function and analyze the
largest bucket size. Alon et. al, STOC’97 showed that there exists a
2-independent hash function implying a bucket of size Ω(n1/2). We
generalize the bound, providing a k-independent family of functions
that imply size Ω(n1/k).
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1 Introduction

A unifying metric of strength of hash functions and pseudorandom number gen-
erators is the independence of the function. We say that a sequence of random
variables is k-independent if every random variable is uniform and every size k
subset is independent. A question of theoretical interest is, regarding each al-
gorithmic application, how much independence is required?. With the standard
implementation of a random generator or hash function via a k-degree polyno-
mial k determines both the space used and the amount of randomness provided.
A typical assumption when performing algorithmic analysis is to just assume full
independence, i.e., that for input size n then the hash function is n-independent.
Besides the interest from a theoretic perspective, the question of how much in-
dependence is required is in fact interesting from a practical perspective: hash
functions and generators with lower independence are as a rule of thumb faster
in practice than those with higher independence, hence if it is proven that the
algorithmic application needs only k-independence to work, then it can pro-
vide a speedup for an implementation to specifically pick a fast construction
that provides the required k-independence. In this paper we consider three fun-
damental applications of random hashing, where we provide new bounds for
limited independence. We note that due to space constraints, this version should
be considered an extended abstract and we refer to the full version for full proofs
and all technical details.

Min-Wise Hashing. We consider the commonly used scheme min-wise hashing,
which was first introduced by Broder [2] and has several practical applications
(see Section 2). Here we study families of hash functions, where a function h is
picked uniformly at random from the family and applied to all elements of a set
A of size n. We say that h is min-wise independent if for any element x ∈ A
then Pr(minh(A) = h(x)) = 1/n and ε-min-wise independent if Pr(minh(A) =
h(x)) ≤ (1 + ε)/n. For families of k-independent hash functions we show new
tight bounds for k = 2, 3, 4 of ε = Θ(

√
n), Θ(log n), Θ(log n) respectively and for

k = 5 it is folklore that O(1)-min-wise (ε = O(1)) can be achieved. Since tight
bounds for k ≥ 5 exist (see Section 2), our contribution closes the problem.

Randomized Quicksort. Next we consider a classic sorting algorithm pre-
sented in many randomized algorithms books, e.g. already on page three of
Motwani-Raghavan [11]. In the setting where we assign a hash value to each ele-
ment, and the pivot element is chosen to be the one with the smallest hash value,
the classic analysis of quicksort in Motwani-Raghavan gives that the expected
worst-case running time is O(n(log n) · (1 + ε)) if n elements are sorted using
an ε-min-wise hash function. The new tight bounds for min-wise hashing show
the limitations of this classical analysis, and for k = 2, 4 we get stronger bounds
using a new approach. A special version of randomized quicksort was shown
by Karloff and Raghavan to use expected worst-case time O(n log n) when the
pivot elements are chosen using a 5-independent hash function [10]. Our main
result is a new general bound for the number of comparisons performed under
limited independence, which applies to several settings of quicksort, including
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the setting of Karloff-Raghavan where we show the same running time using
only 4-independence. Furthermore, we show that k = 2 and k = 3 can imply
expected worst-case time Ω

(
n log2 n

)
. An interesting observation is that our

new bounds for k = 4 and k = 2 shows that the classic analysis using min-wise
hashing is not tight, as we go below those bounds by a factor logn for k = 4
and a factor

√
n/ logn for k = 2. Our findings imply that a faster 4-independent

hash function can be used to guarantee the optimal running time for randomized
quicksort, which could potentially be of practical interest. Interestingly, our new
bounds on the number of performed comparisons under limited independence
has implications on classic algorithms for binary planar partitions and treaps.
For binary planar partitions our results imply expected partition size O(n log n)
for the classic randomized algorithm for computing binary planar partitions [11,
Page 10] under 4-independence. For randomized treaps [11, Page 201] our new
results imply O(logn) worst-case depth for 4-independence.

Largest Bucket Size. The last setting we consider is throwing n balls into n
buckets using a k-independent hash function and analyzing the size of the largest
bucket. This can be regarded as a load balancing as the balls can represent “tasks”
and the buckets can represent processing units. Our main result is a family of
k-independent hash functions, which when used in this setting implies largest
bucket size Ω(n1/k) with constant probability. This result was previously known
only for k = 2 due to Alon et al. [1] and our result is a generalization of their
bound. As an example of the usefulness of such bucket size bounds, consider the
fundamental data structure; the dictionary. Widely used algorithms books such
as Cormen et al. [7] teaches as the standard method to implement a dictionary
to use an array with chaining. Chaining here simply means that for each key,
corresponding to an entry in the array, we have a linked list (chain) and when a
new key-value pair is inserted, it is inserted at the end of the linked list. Clearly
then, searching for a particular key-value pair takes worst-case time proportional
to the size of the largest chain. Hence, if one is interested in worst-case lookup
time guarantees then the expected largest bucket size formed by the keys in the
dictionary is of great importance.

2 Relation to Previous Work

We will briefly review related work on the topic of bounding the independence
used as well as mention some of the popular hash function constructions.

The line of research that considers the amount of independence required is
substantial. As examples, Pagh et al. [12] showed that linear probing works
with 5-independence. For the case of ε-min-wise hashing Indyk [9] showed that
O(log 1

ε )-independence is sufficient. For both of the above problems Thorup and
Pǎtraşcu [14] showed optimality: They show existence of explicit families of hash
functions that for linear probing is 4-independent leading to Ω(logn) probes and
for ε-min-wise hashing is Ω(log 1

ε )-independent implying (2ε)-min-wise hashing.
Additionally, they show that the popular multiply-shift hashing scheme by Di-
etzfelbinger et al. [8] is not sufficient for linear probing and ε-min-wise hashing.
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In terms of lower bounds, it was shown by Broder et al. [3] that k = 2 implies
Pr(min h(A) = h(x)) = 1/

√|A|. We provide a matching lower bound and new
tight bounds for k = 3, 4. Additionally, we review a folklore O(1/n) upper bound
for k = 5. Our lower bound proofs for min-wise hashing (see Table 1) for k = 3, 4
are similar to those of Thorup and Pǎtraşcu for linear probing, in fact we use
the same bad families of hash functions but with a different analysis. Further
the same families imply the same multiplicative factors relative to the optimal.
Our new tight bounds together with the bounds for k ≥ 5 due to [9,14] provide
the full picture of how min-wise hashing behaves under limited independence.

Randomized quicksort [11] is well known to sort n elements in expected time
O(n logn) under full independence. Given that pivot elements are picked by hav-
ing n random variables with outcomes 0, . . . , n− 1 and the outcome of variable i
in the sequence determines the ith pivot element, then running time O(n log n)
has been shown [10] for k = 5. We improve this and show O(n log n) time for
k = 4 in the same setting. To the knowledge of the authors, it is still an open
problem to analyze the version of randomized quicksort under limited indepen-
dence as presented by e.g. Motwani-Raghavan. The analysis of both the random-
ized binary planar partition algorithm and the randomized treap in Motwani-
Raghavan is done using the exact same argument as for quicksort, namely using
min-wise hashing which we show cannot be improved further and is not tight.
Our new quicksort bounds directly translates to improvements for these two ap-
plications. The randomized binary planar partition algorithm is hence improved
to be of expected size O(n log2 n) for k = 2 and O(n logn) for k = 4, and the
expected worst case depth of any node in a randomized treap is improved to be
O(log2 n) for k = 2 and O(log n) for k = 4.

As briefly mentioned earlier, our largest bucket size result is related to the
generalization of Alon et al., STOC’97, specifically [1, Theorem 2]. They show
that for a (perfect square) field F then the class H of all linear transformations
between F

2 and F has the property that when a hash function is picked uniformly
at random from h ∈ H then an input set of size n exists so that the largest bucket
has size at least

√
n. In terms of upper bounds for largest bucket size, remember

that a family Hu of hash functions that map from U to [n] is universal [4] if for
a h picked uniformly from Hu it holds

∀x �= y ∈ U : Pr(h(x) = h(y)) ≤ 1/n.

Universal hash functions are known to have expected largest bucket size at most√
n + 1/2, hence essentially tight compared to the bound

√
n lower bound of

Alon et al. On the other end of the spectrum, full independence is known to
give expected largest bucket size Θ(log n/loglogn) due to a standard applica-
tion of Chernoff bounds. This bound was proven to hold for Θ(log n/loglogn)-
independence as well [15]. In Section 7.1 we additionally review a folklore upper
bound coinciding with our new Ω(n1/k) lower bound.

Since the question of how much independence is needed from a practical per-
spective can often be represented as “how fast a hash function can I use and
maintain algorithmic guarantees?” we will briefly recap some commonly used
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hash functions and pseudorandom generators. Functions with lower indepen-
dence are typically faster in practice than functions with higher independence.
The formalization of this is due to Siegel’s lower bound [16] in which it is shown
that in the cell probe model, to achieve k-independence and number of probes
t < k then you need space k(n/k)1/t. Since space usage scales with the indepen-
dence k then for high k the effects of the memory hierarchy will mean that even
if the time is held constant the practical time will scale with k as cache effects
impact the running time.

The most used hashing scheme in practice is, as mentioned, the 2-independent
multiply-shift by Dietzfelbinger et al. [8], which can be twice as fast [18] com-
pared to even the simplest linear transformation x �→ (ax + b) mod p. For
3-independence we have due to (analysis by) Thorup and Pǎtraşcu the sim-
ple tabulation scheme [13], which can be altered to give 5-universality [19]. For
general k-independent hash functions the standard solution is degree k− 1 poly-
nomials, however especially for low k these are known to run slowly, e.g. for
k = 5 then polynomial hashing is 5 times slower than the tabulation based solu-
tion of [19]. Alternatively for high independence the double tabulation scheme
by Thorup [17], which builds on Siegels result [16], can potentially be practical.
On smaller universes Thorup gives explicit and practical parameters for 100-
independence. Also for high independence, the nearly optimal hash function of
Christiani et al. [6] should be practical. For generating k-independent variables
then Christiani and Pagh’s constant time generator [5] performs well — their
method is at an order of magnitude faster than evaluating a polynomial using
fast fourier transform. We note that even though constant time generators as the
above exist, the practical evaluation time will scale with the independence. This
comes from the space usage of the generators scaling with the independence of
the generated variables, and increasing the working set incurs more cache misses
and hence increases the number of block transfers performed.

Finally, we would like to note that the paradigm of independence has its lim-
itations in the sense that even though one can prove that k-independence by
itself does not imply certain algorithmic guarantees, it can not be ruled out that
k-independent hash functions exist that do. That is, lower bound proofs typi-
cally construct artificial families to provide counter examples, which in practice
would not come into play. As an example, consider that linear probing needs 5-
independence to work as mentioned above but it has been proven to work with
simple tabulation hashing [13], which only has 3-independence.

3 Our Results

With regard to min-wise hashing, we close this version of the problem by pro-
viding new and tight bounds for k = 2, 3, 4. We consider the following setting:
let A be a set of size n and let H be a k-independent family of hash functions.
We examine the probability of any element x ∈ A receiving the smallest hash
value h(x) out of all elements in A when h ∈ H is picked uniformly at ran-
dom. For the case of k = 2, 3, 4-independent families we provide the new bounds
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Table 1. Result overview for min-wise hashing. Results in this paper are marked
with ∗. For a set A of size n and an element x ∈ A, the cells correspond the probability
Pr(minh(A) = h(x)) for a hash function h picked uniformly at random from a k-
independent family H.

k = 2 k = 3 k = 4 k ≥ 5

Upper bound O(
√
n/n) O((logn)/n)∗ O((log n)/n)∗ O(1/n)

Lower bound Ω(
√
n/n)∗ Ω((logn)/n)∗ Ω((logn)/n)∗ Ω(1/n)

shown in Table 1, which provides a full understanding of the parameter space
as a tight bound of Pr(minh(A) = h(x)) = O(1/n) is known for k ≥ 5 due
to Indyk [9]. We note that our lower bound proofs on min-wise hashing, which
work by providing explicit bad families of functions, share similarity with Tho-
rup and Pǎtraşcu’s [14, Table 1] lower bounds on linear probing. In fact, our bad
families of functions used are exactly the same, while the analysis is different.
Surprisingly, the constructions imply the same factor relative to optimal as in
linear probing, for every examined value of k.

Next, we consider randomized quicksort under limited independence. In the
same setting as Karloff and Raghavan [10], our main result is that 4-independence
is sufficient for the optimal O(n log n) expected worst-case running time. The
setting is essentially that pivot elements are picked from a sequence of k-
independent random variables that are pre-computed. Our results apply to a
related setting of quicksort as well as to the analysis of binary planar partitions
and randomized treaps. Our results are summarized in Table 2.

Table 2. Result overview for randomized quicksort. Results in this paper are marked
with ∗. When our hash function h is picked uniformly from k-independent family H
then the cells in the table denote the expected running time to sort n distinct elements.
The 5-independent upper bound is from Karloff-Raghavan [10].

k = 2 k = 3 k = 4 k ≥ 5

Upper bound O(n log2 n)∗ O(n log2 n)∗ O(n log n)∗ O(n log n)
Lower bound Ω(n log n) Ω(n log n) Ω(n log n) Ω(n log n)

Finally, we consider the fundamental problem of throwing n balls into n buck-
ets. The main result is a simple k-independent family of functions which when
used to throw the balls imply that with constant probability the largest bucket
has Ω(n1/k) balls. We show the theorem below.

Theorem 1. Consider the setting where n balls are distributed among n buckets
using a random hash function h. For m ≤ n and any k ∈ N such that k < n1/k

and mk ≥ n a distribution over k-independent hash functions exists such that the
largest bucket size is Ω(m) with probability Ω

(
n
mk

)
when h is chosen according

to this distribution.

An implication of Theorem 1 is that we now have the full understanding of
the parameter space for this problem, as it was well known that independence
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k = O(logn/loglogn) implied Θ(log n/loglogn) balls in the largest bucket. We
summarize with the corollary below.

Corollary 1. Consider the setting where n balls are distributed among n buckets
using a random hash function h. Given an integer k a distribution over hash
functions exists such that if h is chosen according to this distribution then with
L being the size of the largest bucket

(a) if k ≤ n1/k then L = Ω
(
n1/k

)
with probability Ω(1).

(b) if k > n1/k then L = Ω (logn/ log logn) with probability Ω(1).

We note that the result of Theorem 1 is not quite the generalization of the lower
bound of Alon et al. since they show Ω(n1/2) largest bucket size for a special
class of linear transformations while our result provides an explicit worst-case
k-independent scheme to achieve largest bucket size Ω(n1/k). However, as is
evident from the proof of Theorem 1, our scheme is not that artificial: In fact it
is “nearly” standard polynomial hashing.

4 Preliminaries

We will introduce some notation and fundamentals used in the paper. For an
integer n we let [n] denote {0, . . . , n − 1}. For an event E we let [E] be the
variable that is 1 if E occurs and 0 otherwise. Unless explicitly stated otherwise,
logn refers to the base 2 logarithm of n. For a real number x and a non-negative
integer k we define xk as x(x− 1) . . . (x− (k − 1)).

The paper is about application bounds when the independence of the random
variables used is limited. We define independence of a hash function formally
below.

Definition 1. Let h : U → V be picked uniformly at random from a family H
of functions, k ∈ N and let u1, . . . , uk be any distinct k elements from U and
v1, . . . , vk be any k elements from V .
Then the family H is k-independent if it holds that

Prh∈H (h(u1) = v1 ∧ . . . ∧ h(uk) = vk) =
1

|V |k .

Note that an equivalent definition for a sequence of random variables hold: they
are k-independent if any element is uniformly distributed and every k-tuple of
them is independent.

5 Min-Wise Hashing

In this section we show the bounds that can be seen in Table 1. As mentioned
earlier, there is a close relationship between the worst case query time of an
element in linear probing and min-wise hashing when analyzed under the as-
sumption of hash functions with limited independence. Intuitively, long query
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time for linear probing is caused by many hash values being “close” to the hash
value of the query element. On the other hand, a hash value is likely to be the
minimum if it is “far away” from the other hash values. So intuitively, min-wise
hashing and linear probing are related by the fact that good guarantees require
a “sharp” concentration on how close to the hash value of the query element the
other hash values are.

We refer to the full version for the proof details.

5.1 Upper Bounds

We show the following theorem which results in the upper bounds shown in
Table 1. Note that the bound for 4-independence follows trivially from the bound
for 3-independence and that the 5-independence bound is folklore but included
for completeness.

Theorem 2. Let X = {x0, x1, . . . , xn} and h : X → (0, 1) be a hash function.
If h is 3-independent then

Pr

(
h(x0) < min

i∈{1,...,n}
h(xi)

)
= O

(
log(n+ 1)

n+ 1

)

If h is 5-independent then

Pr

(
h(x0) < min

i∈{1,...,n}
h(xi)

)
= O

(
1

n+ 1

)

5.2 Lower Bounds

We first show the k = 4 lower bound seen in Table 1. As mentioned earlier, the
argument follows from the same “bad” distribution as Thorup and Pǎtraşc [14],
but with a different analysis.

Theorem 3. For any key set X = {x0, x1, . . . , xn} there exists a random hash
function h : X → (0, 1) that is 4-independent such that

Pr (h(x0) < min {h(x1), . . . , h(xn)}) = Ω

(
log(n+ 1)

n+ 1

)
(1)

The lower bound for k = 2 is shown in the following theorem.

Theorem 4. For any key set X = {x0, x1, . . . , xn} there exists a random hash
function h : X → [0, 1) that is 2-independent such that

Pr

(
h(x0) < min

i∈{1,...,n}
h(xi)

)
= Ω

(
1√
n

)
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6 Quicksort

The textbook version of the quicksort algorithm, as explained in [11], is the
following. As input, we are given a set of n numbers S = {x0, . . . , xn−1} and we
choose a pivot element xi uniformly at random . We then compare each element
in S with xi and determine the sets S1 and S2 which consist of the elements
that are smaller and greater than xi respectively. Then we recursively call the
procedure on S1 and S2 and output the sorted sequence S1 followed by xi and
S2. For this setting, to the knowledge of the authors, there are no known bounds
under limited independence.

We consider two different settings where our results seen in Table 2 apply.

Setting 1. Firstly, we consider the same setting as in [10]. Let the input again
be S = {x0, . . . , xn−1}. The pivot elements are pre-computed the following way:
let random variables Y1, . . . , Yn be k-independent and each Yi is uniform over
[n]. The ith pivot element is chosen to be xYi . Note that the sequence of Yi’s
is not always a permutation, hence a cleanup phase is necessary afterwards in
order to ensure pivots have been performed on all elements.

Setting 2. The second setting we consider is the following. Let Z = Z1, . . . , Zn

be a sequence of k-independent random variables that are uniform over the
interval (0, 1). The first pivot element is xi where i is the index of the smallest
Zi. Then, recursively, the pivot elements are found in the same manner in the
subproblems. We note that finding the smallest Zi in each interval incurs an
additional cost that is of the same order as sorting the sequence of Zi’s.

In this section we show the results of Table 2 in Setting 1. We refer to the
full version of this article for proofs for Setting 2 and note that the same bounds
apply to both settings.

Recall that we can use the results on min-wise hashing to show upper bounds
on the running time. The key to sharpening this analysis is to consider a problem
related to that of min-wise hashing. In Lemma 1, we show that for two sets A,B
satisfying |A| ≤ |B| there are only O(1) pivot elements chosen from A before
the first element is chosen from B. We could use a min-wise type of argument
to show that a single element a ∈ A is chosen as a pivot element before the first
pivot element is chosen from B with probability at most O

(
logn
|B|

)
. However,

this would only give us an upper bound of O (logn) and not O(1). We refer to
the full version for the proof details.

Lemma 1. Let h : [n] → [n] be a 4-independent hash function and let A,B ⊆ [n]
be disjoint sets such that |A| ≤ |B|. Let j ∈ [n] be the smallest value such that
h(j) ∈ B, and j = n if no such j exist. Then let C be the i ∈ [j] such that
h(i) ∈ A, i.e.

C = {i ∈ [n] | h(i) ∈ A, h(0), . . . , h(i− 1) /∈ B}

Then E (|C|) = O(1).
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We show how we apply Lemma 1 to guarantee that quicksort only makes
O (n logn) comparisons in expectation.

Theorem 5. Consider quicksort in Setting 1 where we sort a set S =
{x0, . . . , xn−1} and pivot elements are chosen using a 4-independent hash func-
tion. For any i the expected number of times xi is compared with another element
xj ∈ S\ {xi} when xj is chosen as a pivot element is O (logn). In particular the
expected running time is O (n logn).

Next we show that the cleanup phase as described by Setting 1 takes O(n log n)
for k = 2, which means it makes no difference to asymptotic running time of
quicksort.

Lemma 2. Consider quicksort in Setting 1 where we sort a set S =
{x0, . . . , xn−1} with a 2-independent hash function. The cleanup phase takes
O (n logn) time.

Finally we show the new 2-independent bound. The argument follows as the 4-
independent argument, except with 2nd moment bounds instead of 4th moment
bounds.

Theorem 6. Consider quicksort in Setting 1 where we sort a set S =
{x0, . . . , xn−1} and pivot elements are chosen using a 2-independent hash func-
tion. For any i the expected number of times xi is compared with another element
xj ∈ S\ {xi} when xj is chosen as a pivot element is O (

log2 n
)
. In particular

the expected running time is O (
n log2 n

)
.

6.1 Binary Planar Partitions and Randomized Treaps

The result for quicksort shown in Theorem 5 has direct implications for two
classic randomized algorithms. Both algorithms are explained in common text
books, e.g. Motwani-Raghavan.

A straightforward analysis of the randomized algorithm [11, Page 12] for con-
structing binary planar bipartitions simply uses min-wise hashing to analyze the
expected size of the partition. In the analysis, the size of the constructed par-
tition depends on the probability of the event happening that a line segment u
comes before a line segment v in the random permutation u, . . . , ui, v. Using the
the min-wise probabilities of Table 1 directly we get the same bounds on the
partition size as running times on quicksort using the min-wise analysis. This
analysis is tightened through Theorem 5 for both k = 2 and k = 4.

By an analogous argument, the randomized treap data structure of [11, Page
201] achieves expected node depth O(log n) when a treap is built over a size n
set using the min-wise bounds. Under limited independence using the min-wise
analysis, the bounds achieved are then O(

√
n),O(log2 n),O(log2 n),O(log n) for

k = 2, 3, 4, 5 respectively. By Theorem 5 we get O(log2 n) for k = 2 and O(log n)
for k = 4.
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7 Largest Bucket Size

We explore the standard case of throwing n balls into n buckets using a random
hash function. We are interested in analyzing the bucket that has the largest
number of balls mapped to it. Particularly, for this problem our main contribu-
tion is an explicit family of hash functions that are k-independent (remember
Definition 1) and where the largest bucket size is Ω

(
n1/k

)
. However we start by

stating the matching upper bound. For the proof details of both bounds we refer
to the full version of the article.

7.1 Upper Bound

We will briefly show the upper bound that matches our lower bound presented
in the next section. We are unaware of literature that includes the upper bound,
but note that it follows from a standard argument and is included for the sake
of completeness.

Lemma 3. Consider the setting where n balls are distributed among n buckets
using a random hash function h. For m = Ω

(
logn

log log n

)
and any k ∈ N such

that k < n1/k then if h is k-independent the largest bucket size is O(m) with
probability at least 1− n

mk .

7.2 Lower Bound

At a high level, our hashing scheme is to divide the buckets into sets of size p, for
prime a p = Θ(m), and in each set polynomial hashing is used on the keys that
do not “fill” the set. The crucial point is then to see that for polynomial hashing,
the probability that a particular polynomial hashes a set of keys to the same
value can be bounded by the probability of all coefficients of the polynomial
being zero. Having a bound on this probability, the set size can be picked such
that with constant probability the coefficients of one of the polynomials is zero,
resulting in a large bucket.

Since it is well known that using O(log n/ log logn)-independent hash func-
tion to distribute the balls will imply largest bucket size Ω (logn/ log logn) ,
Corollary 1 provides the full understanding of the largest bucket size.

Proof. (of Corollary 1) Part (a) follows directly from Theorem 1. Part (b) follows
since k > n1/k implies k > logn/ log logn and so we apply the Ω (logn/ log logn)
bound from [15].
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Abstract. We consider the unweighted bipartite maximum matching
problem in the one-pass turnstile streaming model where the input
stream consists of edge insertions and deletions. In the insertion-only
model, a one-pass 2-approximation streaming algorithm can be easily
obtained with space O(n log n), where n denotes the number of vertices
of the input graph. We show that no such result is possible if edge dele-
tions are allowed, even if space O(n3/2−δ) is granted, for every δ > 0.
Specifically, for every 0 ≤ ε ≤ 1, we show that in the one-pass turn-
stile streaming model, in order to compute a O(nε)-approximation, space
Ω(n3/2−4ε) is required for constant error randomized algorithms, and, up
to logarithmic factors, space Õ(n2−2ε) is sufficient.

Our lower bound result is proved in the simultaneous message model
of communication and may be of independent interest.

1 Introduction

Massive graphs are usually dynamic objects that evolve over time in structure
and size. For example, the Internet graph changes as webpages are created or
deleted, the structure of social network graphs changes as friendships are es-
tablished or ended, and graph databases change in size when data items are
inserted or deleted. Dynamic graph algorithms can cope with evolving graphs
of moderate sizes. They receive a sequence of updates, such as edge insertions
or deletions, and maintain valid solutions at any moment. However, when con-
sidering massive graphs, these algorithms are often less suited as they assume
random access to the input graph, an assumption that can hardly be guaranteed
in this context. Consequently, research has been carried out on dynamic graph
streaming algorithms that can handle both edge insertions and deletions.

Dynamic Graph Streams. A data streaming algorithm processes an input
stream X = X1, . . . , Xn sequentially item by item from left to right in passes
while using a memory whose size is sublinear in the size of the input [24]. Graph
streams have been studied for almost two decades. However, until recently, all
graph streams considered in the literature were insertion-only, i.e., they pro-
cess streams consisting of sequences of edge insertions. In 2012, Ahn, Guha and
McGregor [2] initiated the study of dynamic graph streaming algorithms that
process streams consisting of both edge insertions and deletions. Since then, it
has been shown that a variety of problems for which space-efficient streaming
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algorithms in the insertion-only model are known, such as testing connectivity
and bipartiteness, computing spanning trees, computing cut-preserving sparsi-
fiers and spectral sparsifiers, can similarly be solved well in small space in the
dynamic model [2,3,19,18]. An exception is the maximum matching problem
which, as we will detail later, is probably the most studied graph problem in
streaming settings. In the insertion-only model, a 2-approximation algorithm for
this problem can easily be obtained in one pass with O(n logn) space, where n is
the number of vertices in the input graph. Even in the sliding-window model 1,
which can be seen as a model located between the insertion-only model and the
dynamic model, the problem can be solved well [7]. The status of the problem
in the dynamic model has been open so far, and, in fact, it is one of the open
problems collected at the Bertinoro 2014 workshop on sublinear algorithms 2.

Results on dynamic matching algorithms [5,4] show that even when the se-
quence of graph updates contains deletions, then large matchings can be main-
tained without too many reconfigurations. These results may give reasons for
hope that constant or poly-logarithmic approximations could be achieved in the
one-pass dynamic streaming model. We, however, show that if there is such an
algorithm, then it uses a huge amount of space.

Summary of Our Results. In this paper, we present a one-pass dynamic
streaming algorithm for maximum bipartite matching and a space lower bound
for streaming algorithms in the turnstile model, a slightly more general model
than the dynamic model (see Section 2 for a discussion), the latter constitut-
ing the main contribution of this paper. We show that in one pass, an O(nε)-
approximation can be computed in space Õ(n2−2ε) (Theorem 4), and space
Ω(n3/2−4ε) is necessary for such an approximation (Corollary 1).

Lower Bound via Communication Complexity. Many lower bounds on
the space requirements of algorithms in the insertion-only model are proved in
the one-way communication model. In the one-way model, party one sends a
message to party two who, upon reception, sends a message to party three. This
process continues until the last party receives a message and outputs the result. A
recent result by Li, Nguyên and Woodruff [21] shows that space lower bounds for
turnstile streaming algorithms can be proved in the more restrictive simultaneous
model of communication (SIM model). In this model, the participating parties
simultaneously each send a single message to a third party, denoted the referee,
who computes the output of the protocol as a function of the received messages.
A lower bound on the size of the largest message of the protocol is then a lower
bound on the space requirements of a turnstile one-pass streaming algorithm.
Our paper is the first that uses this connection in the context of graph problems.

A starting point for our lower bound result is a work of Goel, Kapralov and
Khanna [12], and a follow-up work by Kapralov [16]. In [12], via a one-way two-

1 In the sliding-window model, an algorithm receives a potentially infinite insertion-
only stream, however, only a fixed number of most recent edges are considered by
the algorithm. Edges outside the most recent window of time are seen as deleted.

2 See also http://sublinear.info/64

http://sublinear.info/64
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party communication lower bound, it is shown that in the insertion-only model,
every algorithm that computes a (3/2 − ε)-approximation, for ε > 0, requires

Ω(n1+ 1
log log n ) space. This lower bound has then been strengthened in [16] to hold

for (e/(e−1)−ε)-approximation algorithms.Both lowerbound constructions heav-
ily rely on Ruzsa-Szemerédi graphs. A graphG is an (r, s)-Ruzsa-Szemerédi graph
(in short:RS-graph), if its edge set canbe partitioned into rdisjoint inducedmatch-
ings each of size at least s. The main argument of [12] can be summarized as fol-
lows: Suppose that the first party holds a relatively dense Ruzsa-Szemerédi graph
G1. The second party holds a graphG2 whose edges render one particular induced
matching M ⊆ E(G1) of the first party indispensable for every large matching
in the graph G1 ∪ G2, while all other induced matchings are rendered redundant.
Note that asM is an induced matching, there are no alternative edges inG1 differ-
ent fromM that interconnect the vertices that arematched byM . As the first party
is not aware which of its induced matchings is required, and as the communication
budget is restricted, only few edges ofM on averagewill be sent to the second party.
Hence, the expected size of the output matching is bounded.

When implementing the previous idea in the SIM setting, the following issues
have to be addressed:

Firstly, the number of parties in the simultaneous message protocol needs to
be at least as large as the desired bound on the approximation factor. The trivial
protocol where every party sends a maximum matching of its subgraph, and the
referee outputs the largest received matching, shows that the approximation
factor cannot be larger than the number of parties, even when message sizes are
as small as Õ(n). Hence, proving hardness for polynomial approximation factors
requires a polynomial number of participating parties. On the other hand, the
number of parties can neither be chosen too large: If the input graph is equally
split among p parties, for a large p, then the subgraphs of the parties are of size
O(n2/p). Thus, with messages of size Õ(n2/p), all subgraphs can be sent to the
referee who then computes and outputs an optimal solution. Hence, the larger
the number of parties, the weaker a bound on the message sizes can be achieved.

Secondly, there is no “second party” as in the one-way setting whose edges
could render one particular matching of every other party indispensable. Instead,
a construction is required so that every party both has the function of party one
(one of its induced matchings is indispensable for every large matching) and of
party two (some of its edges render many of the induced matchings of other
parties redundant). This suggests that the RS-graphs of the parties have to
overlap in many vertices. While arbitrary RS-graphs with good properties can
be employed for the lower bounds of [12] and [16], we need RS-graphs with simple
structure in order to coordinate the overlaps between the parties.

We show that both concerns can be handled. In Section 3, we present a care-
fully designed input distribution where each party holds a highly symmetrical
RS-graph. The RS-graph of a party overlaps almost everywhere with the RS-
graphs of other parties, except in one small induced matching. This matching,
however, cannot be distinguished by the party, and hence, as in the one-way
setting, the referee will not receive many edges of this matching.
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Upper Bound. Our upper bound result is achieved by an implementation of
a simple matching algorithm in the dynamic streaming model: For an integer
k, pick a random subset A′ ⊆ A of size k of one bipartition of the bipartite
input graph G = (A,B,E); for each a ∈ A′, store arbitrary min{k, deg(a)}
incident edges, where deg(a) denotes the degree of a in the input graph; output a
maximum matching in the graph induced by the stored edges. We prove that this
algorithm has an approximation factor of n/k. In order to collect k incident edges
of a given vertex in the dynamic streaming model, we employ the l0-samplers
of Jowhari, Sağlam, Tardos [15], which have previously been used for dynamic
graph streaming algorithms [2]. By chosing k = Θ(n1−ε), this construction leads
to a O(nε)-approximation algorithm with space Õ(n2−2ε). While this algorithm
in itself is rather simple and standard, it shows that non-trivial approximation
ratios for maximum bipartite matching in the dynamic streaming model are
possible with sublinear space. Our upper and lower bounds show that in order to
compute a nε-approximation, space Õ(n2−2ε) is sufficient and space Ω(n3/2−4ε)
is required. Improving on either side is left as an open problem.

FurtherRelatedWork.Matchingproblemsareprobably themost studiedgraph
problem in the streaming model [11,22,8,9,1,2,20,25,12,16,13,7,6,18,23,17,10].
Closest to our work are the alreadymentioned lower bounds [12] and [16]. Their ar-
guments are combinatorial and so are the arguments in this paper. Note that lower
bounds for matching problems in communication settings have also been obtained
via information complexity in [13,14].

In the dynamic streaming model, Ahn et al. [2] provide a multi-pass algorithm
with O(n1+1/p poly ε−1) space, O(p · ε−2 · log ε−1) passes, and approximation
factor 1 + ε for the weighted maximum matching problem, for a parameter p.
This is the only result on matchings known in the dynamic streaming setting.

Outline. After a section on preliminaries, we present our hard input distribution
in Section 3 which is then used in Section 4 in order to prove our lower bound
in the SIM model. Finally, our upper bound is presented in Section 5.

Due to space restrictions, lemmas and theorems marked with (*) are post-
poned to the full version of this article.

2 Preliminaries

For an integer a ≥ 1, we write [a] for {1, . . . , a}. We use the notation Õ(), which
equals the standard O() notation where all poly-logarithmic factors are ignored.

Simultaneous Communication Complexity. Let G = (A,B,E) denote a
simple bipartite graph, and, for an integer P ≥ 2, let G1, . . . , GP be edge-disjoint
subgraphs of G. In the simultaneous message complexity setting, for p ∈ [P ],
party p is given Gp, and sends a single message μp of limited size to a third
party denoted the referee. Upon reception of all messages, the referee outputs a
matching M in G. Note that the participating parties cannot communicate with
each other, but they have access to an infinite number of shared random coin
flips which can be used to synchronize their messages.
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We say that an algorithm/protocol is a constant error algorithm/protocol if
it errs with probability at most ε, for 0 ≤ ε < 1/2. We also assume that a
algorithm/protocol never outputs edges that do not exist in the input graph.

Turnstile Streams. For a bipartite graph G = (A,B,E), let X = X1, X2, . . .
be the input stream with Xi ∈ E × {+1,−1}, where +1 indicates that an edge
is inserted, and −1 indicates that an edge is deleted. Edges could potentially
be inserted multiple times, or be removed before they have been inserted, as
long as once the stream has been fully processed, the multiplicity of an edge
is in {−c,−c + 1, . . . , c − 1, c}, for some integer c. The reduction of [21] and
hence our lower bound holds for algorithms that can handle this type of dynamic
streams, also known as turnstile streams. Such algorithms may for instance abort
if negative edge multiplicities are encountered, or they output a solution among
the edges with non-zero multiplicity.

In [21] it is shown that every turnstile algorithm can be seen as an algorithm
that solely computes a linear sketch of the input stream. As linear sketches can
be implemented in the SIM model, lower bounds in the SIM model are lower
bounds on the sketching complexity of problems, which in turn imply lower
bounds for turnstile algorithms. We stress that our lower bound holds for linear
sketches. Note that all known dynamic graph algorithms3 solely compute linear
sketches (e.g. [2,3,19,18]). This gives reasons to conjecture that also all dynamic
algorithms can be seen as linear sketches, and, as a consequence, our lower bound
not only holds for turnstile algorithms but for all dynamic algorithms.

3 Hard Input Distribution

In this section, we construct our hard input distribution. First, we describe the
construction of the distribution from a global point of view in Subsection 3.1.
Restricted to the input graph Gp of any party p ∈ [P ], the distribution of Gp

can be described by a different construction which is simpler and more suitable
for our purposes. This will be discussed in Subsection 3.2.

3.1 Hard Input Distribution: Global View

Denote by P the number of parties of the simultaneous message protocol. Let
k,Q be integers so that P ≤ k ≤ n

P , and Q = o(P ). The precise values of k and
Q will be determined later. First, we define a bipartite graph G′ = (A,B,E)
on O(n) vertices with A = B = [(Q + P )k] from which we obtain our hard
input distribution. For 1 ≤ i ≤ Q + P , let Ai = {1 + (i − 1)k, ik} and let
Bi = {1 + (i− 1)k, ik}. The edge set E is a collection of matchings as follows:

E =
⋃

i,j∈[Q],p∈[P ]

Mp
i,j ∪

⋃

i∈{Q+1,...,Q+P},j∈[Q]

(Mi,j ∪Mj,i) ∪
⋃

i∈{Q+1,...,Q+P}
Mi,i,

3 Some of those algorithms couldn’t handle arbitrary turnstile streams as they rely on
the fact that all edge multiplicities are in {0, 1}.
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where Mi,j is a perfect matching between Ai and Bj , and M1
i,j , . . . ,M

P
i,j are P

edge-disjoint perfect matchings between Ai and Bj . Note that as we required
that k ≥ P , the edge-disjoint matchings M1

i,j , . . . ,M
P
i,j can be constructed4.

From G′, we construct the input graphs of the different parties as follows:

1. For every p ∈ [P ], let G′
p = (A,B,E′

p) where E′
p consists of the matchings

Mp
i,j for i, j ∈ [Q], the matching MQ+p,Q+p and the matchings MQ+p,j and

Mj,Q+p for j ∈ [Q].
2. For every p ∈ [P ], for every matching M of G′

p, pick a subset of edges of size
k/2 from M uniformly at random and replace M by this subset.

3. Pick random permutations πA, πB : [Q+ P ] → [Q+ P ]. Permute the vertex
IDs of the graphs G′

p, for 1 ≤ p ≤ P , so that if πA(i) = j then Ai receives
the IDs of Aj as follows: The vertices a1 = 1 + k(i − 1), a2 = 2 + k(i −
1), . . . , ak = ki receive new IDs so that after the change of IDs, we have
a1 = 1 + k(j − 1), a2 = 2 + k(j − 1), . . . , ak = kj. The same procedure is
carried out with vertices Bi and permutation πB . Denote by Gp the graph
G′

p once half of the edges have been removed and the vertex IDs have been
permuted. Let G be the union of the graphs Gp.

The structure of G′ and a subgraph G′
p is illustrated in Figure 1.

A1 AQ AQ+1 AQ+P A1 AQ AQ+p

B1 BQ BQ+1 BQ+P B1 BQ BQ+p

G′ G′
p ⊆ G

Fig. 1. Left: Graph G′. A vertex corresponds to a group of k vertices. Each edge
indicates a perfect matching between the respective vertex groups. The bold edges
correspond to the matchings MQ+p,Q+p, for 1 ≤ p ≤ P , the solid edges correspond
to matchings Mp

i,j , for 1 ≤ i, j ≤ Q, 1 ≤ p ≤ P , and the dotted edges correspond to
matchings MQ+p,i,Mi,Q+p, for 1 ≤ i ≤ Q and 1 ≤ p ≤ P . Right: Subgraph G′

p ⊆ G.

Properties of the input graphs. Graph G′ has a perfect matching of size
(Q+ P )k which consists of a perfect matching between vertices A1, . . . , AQ and
B1, . . . , BQ, and the matchings MQ+p,Q+p for 1 ≤ p ≤ P . As by Step 2 of the
construction of the hard instances, we remove half of the edges of every matching,

a maximum matching in graph G is of size at least (Q+P )k
2 . Note that while there

are many possibilities to match the vertex groups A1, . . . , AQ and B1, . . . , BQ,
in every large matching, many vertices of AQ+i are matched to vertices of BQ+i

using edges from the matching MQ+i,Q+i. For some p ∈ [P ], consider now the

4 For instance, define G′ so that G′|Ai∪Bi is a P -regular bipartite graph. It is well-
known (and easy to see via Hall’s theorem) that any P -regular bipartite graph is the
union of P edge-disjoint perfect matchings.
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graph G′
p from which the graph Gp is constructed. G′

p consists of perfect match-
ings between the vertex groups Ai and Bj for every i, j ∈ [Q]∪{Q+p}. In graph
Gp, besides the fact that only half of the edges of every matching are kept, the
vertex IDs are permuted. We will argue that due to the permuted vertices, given
Gp, it is difficult to determine which of the matchings corresponds to the match-
ing MQ+p,Q+p in G′. Therefore, if the referee is able to output edges from the
matching MQ+p,Q+p, then many edges from every matching have to be included
into the message μp sent by party p.

3.2 Hard Input Distribution: Local View

From the perspective of an individual party, by symmetry of the previous con-
struction, the distribution from which the graph Gp is chosen can also be de-
scribed as follows:

1. Pick IA, IB ⊆ [Q + P ] so that |IA| = |IB | = Q+ 1 uniformly at random.
2. For every i ∈ IA and j ∈ IB , introduce a matching of size k/2 between Ai

and Bj chosen uniformly at random from all possible matching between Ai

and Bj of size k/2.

Gp can be seen as a ((Q+1)2, k/2)-Ruzsa-Szemerédi graph or as a (Q+1, k(Q+
1)/2)-Ruzsa-Szemerédi graph. Let Gp denote the possible input graphs of party
p. We prove now a lower bound on |Gp|.

Lemma 1. There are at least |Gp| >
(
Q+P
Q+1

) (Q+P )!
(P−1)!

(
2k

k+1

)(Q+1)2

possible input

graphs for every party p. Moreover, the input distribution is uniform.

Proof. The vertex groups IA and IB are each of cardinalityQ+1 and chosen from
the set [Q+ P ]. There are

(
Q+P
Q+1

)
choices for IA. Consider one particular choice

of IA. Then, there are
(Q+P )!
(P−1)! possibilities to pair those with Q+1 vertex groups

of the B nodes. Each matching is a subset of k/2 edges from k potential edges.

Hence, there are
(
Q+P
Q+1

) (Q+P )!
(P−1)!

(
k
1
2k

)(Q+1)2

input graphs for each party. Using a

bound on the central binomial coefficient, this term can be bounded from below

by
(
Q+P
Q+1

) (Q+P )!
(P−1)!

(
2k

k+1

)(Q+1)2

. �	

The matching in Gp that corresponds to the matching between AQ+p and BQ+p

in G′
p will play an important role in our argument. In the previous construction,

every introduced matching in Gp plays the role of matching MQ+p,Q+p in G′
p

with equal probability. In the following, we will denote by Mp the matching in
Gp that corresponds to the matching MQ+p,Q+p in G′

p.

4 Simultaneous Message Complexity Lower Bound

We prove now that no communication protocol with limited maximal message
size performs well on the input distribution described in Section 3. First, we
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focus on deterministic protocols, and we prove a lower bound on the expected
approximation ratio (over all possible input graphs) of any deterministic protocol
(Theorem 1). Then, via an application of Yao’s lemma, we obtain our result for
randomized constant error protocols (Theorem 2). Our lower bound for dynamic
one-pass streaming algorithms, Corollary 1, is then obtained as a corollary of
Theorem 2 and the reduction of [21].

Lower Bound For Deterministic Protocols. Consider a deterministic protocol
that runs on a hard instance graph G and uses messages of length at most s.
As the protocol is deterministic, for every party p ∈ [P ], there exists a function
mp that maps the input graph Gp of party p to a message μp. As the maximum
message length is limited by s, there are 2s different possible messages. Our
parameters Q, k will be chosen so that s is much smaller than the number of
input graphs Gp for party p, as stated in Lemma 1. Consequently, many input
graphs are mapped to the same message.

Consider now a message μp and denote by μ−1
p the set of graphs Gp that are

mapped by mp to message μp. Upon reception of μp, the referee can only output
edges that are contained in every graph of μ−1

p , since all outputted edges have
to be contained in the input graph.

Let N denote the matching outputted by the referee, and let Np = N ∩Mp

denote the outputted edges from matchingMp. Furthermore, for a given message
μp, denote by Gμp := Mp ∩

⋂
Gp∈μ−1

p
Gp.

In the following, we will bound the quantity E|Np| from above (Lemma 2).
By linearity of expectation, this allows us to argue about the expected number
of edges of the matchings ∪pNp outputted by the referee. We can hence argue
about the expected size of the outputted matching, which in turn implies a lower
bound on the approximation guarantee of the protocol (Theorem 1).

Lemma 2. For every party p ∈ [P ], we have E|Np| = O
(√

sk
Q

)
.

Proof. Let Γ denote the set of potential messages from party p to the referee. As

the maximum message length is bounded by s, we have |Γ | ≤ 2s. Let V =
|Gp|
k2s be

a parameter which splits the set Γ into two parts as follows. Denote by Γ≥ ⊆ Γ
the set of messages μp so that |μ−1

p | ≥ V , and let Γ< = Γ \Γ≥. In the following,
for a message μp ∈ Γ , we denote by P [μp] the probability that message μp is
sent by party p. Note that

∑
μp∈Γ<

P [μp] <
2sV
|Gp| , since there are at most 2sV

input graphs that are mapped to messages in Γ<. We hence obtain:

E|Np| ≤
∑

μp∈Γ

P [μp]E|Gμp | =
∑

μp∈Γ≥

(
P [μp]E|Gμp |

)
+

∑

μp∈Γ<

(
P [μp]E|Gμp |

)

≤
∑

μp∈Γ≥

(
|μ−1

p |
2s

E|Gμp |
)

+
∑

μp∈Γ<

(P [μp]) k

< max{E|Gμp | : μp ∈ Γ≥}+ 2sV

|Gp| k = max{E|Gμp | : μp ∈ Γ≥}+ 1,
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where we used the definition of V for the last equality. In Lemma 3, we prove

that ∀μp ∈ Γ≥ : E|Gμp | = O
(√

sk
Q

)
. This then implies the result. �	

Lemma 3. Suppose μp is so that |μ−1
p | ≥ V =

|Gp|
k2s . Then, E|Gμp | = O

(√
sk
Q

)
.

Proof. Remember that every graph Gp ∈ μ−1
p consists of (Q + 1)2 edge-disjoint

matchings, and Mp is a randomly chosen one of those. We define

Il = {(i, j) ∈ [Q+ P ]× [Q+ P ] : Gμp |Ai∪Bj contains a matching of size l}.
We prove first that if |Il| is large, then μ−1

p is small.
Claim (*). Let l = o(k). Then, |Il| ≥ x ⇒ |μ−1

p | <
(
Q+P
Q+1

) (Q+P )!
(P−1)! (

3
4 )

lx
(

2k√
k

)(Q+1)2

.

Then, we can bound:

E|Gμp | ≤
|Il|(
Q+1
2

) · k + (1− |Il|(
Q+1
2

) )l < |Il|(
Q+1
2

) · k + l. (1)

Note that by assumption, we have μ−1
p ≥ V . Let l, x be two integers so that:

(
Q+ P

Q+ 1

)
(Q+ P )!

(P − 1)!
(
3

4
)lx

(
2k√
k

)(Q+1)2

= V. (2)

Then, by the previous claim, we obtain |Il| < x. Solving Equality 2 for variable
x, and further bounding it yields:

x ≤ 1

l

(
(Q+ 1)2(k − 1

2
log k) + log

((
Q+ P

Q+ 1

)
(Q + P )!

(P − 1)!

)
− log V

)
. (3)

Remember that V was chosen as V =
|Gp|
k2s , and hence log V ≥ (Q + 1)2(k −

log(k + 1)) + log
((

Q+P
Q+1

) (Q+P )!
(P−1)!

)
− s− log(k). Using this bound in Inequality 3

yields

x ≤ 1

l

(
(Q+ 1)2(log(k + 1)− 1

2
log k) + s− log k

)

≤ 1

l

(
(Q+ 1)2(log(k + 1)) + s

)
.

Now, using |Il| ≤ x and the previous inequality on x, we continue simplifying
Inequality 1 as follows:

E|Gμ| ≤ · · · < |Il|
(Q+ 1)2

· k + l ≤ (Q + 1)2(log(k + 1)) + s

l(Q+ 1)2
· k + l

≤ log(k + 1)k

l
+

sk

l(Q+ 1)2
+ l = O(

sk

l(Q+ 1)2
+ l),

since s = ω((Q + 1)2 log(k + 1)). We optimize by choosing l =
√
sk
Q , and we

conclude E|Gμ| = O(
√
sk
Q ). �	
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Theorem 1. For any P ≤ √
n, let Pdet be a P -party deterministic simultaneous

message protocol for maximum matching where all messages are of size at most s.

Then, Pdet has an expected approximation factor of Ω
((

Pn
s

) 1
4

)
.

Proof. For every matching M ′ in the input graph G, the size of M ′ can be
bounded by |M ′| ≤ 2Qk +

∑P
p=1 |M ′ ∩ Mp|, since at most 2Qk edges can be

matched to the vertices of the vertex groups
⋃

i∈[Q] Ai ∪ Bi, and the edges of

matchings Mp are the only ones not incident to any vertex in
⋃

i∈[Q] Ai ∪ Bi.
Hence, by linearity of expectation, and the application of Lemma 2, we obtain:

E|N | ≤ 2Qk +

P∑

p=1

E|Np| ≤ 2Qk + P ·O
(√

sk

Q

)
. (4)

A maximum matching in G is of size at least k(Q+P )
2 . We hence obtain the

expected approximation factor:

E

1
2k(Q+ P )

|N | ≥
1
2k(Q+ P )

E|N | = Ω

⎛

⎝ k(Q + P )(
Qk + P ·

√
sk
Q

)

⎞

⎠ = Ω

(
(Q+ P )Q

√
k

Q2
√
k + P

√
s

)

= Ω

(
PQ

√
k

Q2
√
k + P

√
s

)
= Ω

(
min{P

Q
,
Q
√
k√
s

}
)
, (5)

where the first inequality follows from Jensen’s inequality, and the third equality

uses Q = o(P ). The previous expression is maximized for Q =
(

P
√
s√
k

)1/2

, and

we obtain an approximation factor of Ω

(
P

1
2 k

1
4

s
1
4

)
. In turn, this expression is

maximized when k is as large as possible, that is, k = n/P (remember that the
possible range for k is P ≤ k ≤ n/P ). We hence conclude that the approximation

factor is Ω(
(
Pn
s

) 1
4 ). �	

Lower Bound for Randomized Protocols. Last, in Theorem 2, we extend our
determinstic lower bound to randomized ones.

Theorem 2 (*). For any P ≤ √
n, let Prand be a P -party randomized simulta-

neous message protocol for maximum matching with error at most ε < 1/2, and
all messages are of size at most s. Then, Prand has an approximation factor of

Ω
((

Pn
s

) 1
4

)
.

Our lower bound for one-pass turnstile algorithms now follows from the re-
duction given in [21] and the application of Theorem 2 for P =

√
n.

Corollary 1. For every 0 ≤ ε ≤ 1, every randomized constant error turnstile
one-pass streaming algorithm for maximum bipartite matching with approxima-

tion ratio nε uses space Ω
(
n

3
2−4ε

)
.
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5 Upper Bound

In this section, we first present a simple randomized algorithm for bipartite
matching. Then, we will discuss implementations of this algorithm as a simulta-
neous message protocol and as a dynamic one-pass streaming algorithm.

Algorithm 1. Bipartite Matching algorithm

Require: G = (A,B,E) {Bipartite input graph}
1: A′ ← subset of A of size k chosen uniformly at random
2: ∀a ∈ A′ : E′[a] ← arbitrary subset of incident edges of a of size min{k, degG(a)}
3: return maximum matching in

⋃
a∈A′ E

′[a]

Bipartite Matching Algorithm. Consider Algorithm 1. First, a subset A′ ⊆ A
consisting of k vertices is chosen uniformly at random. Then, for each vertex
a ∈ A′, the algorithm picks arbitrary k incident edges. Finally, a maximum
matching among the retained edges is computed and returned.

Clearly, the algorithm stores at most k2 edges. In the next lemma, we prove
that Algorithm 1 has an expected approximation ratio of n

k .

Lemma 4 (*). Let G = (A,B,E) be a bipartite graph with |A|+ |B| = n. Then,
Algorithm 1 has an expected approximation ratio of n

k .

Implementation of Algorithm 1 as a Simultaneous Message Protocol. Algorithm 1
can be implemented in the simultaneous message model as follows. Using shared
random coins, the P parties agree on the subset A′ ⊆ A. Then, for every a ∈ A′,
every party chooses arbitrary min{degGi

(a), k} edges incident to a and sends
them to the referee. The referee computes a maximum matching in the graph
induced by all received edges. As the referee receives a superset of the edges as
described in Algorithm 1, the same approximation factor as in Lemma 4 holds.
We hence obtain the following theorem:

Theorem 3. For every P ≥ 1, there is a randomized P -party simultaneous
message protocol for maximum matching with expected approximation factor nα

and all messages are of size Õ(n2−2α).

Implementation of Algorithm 1 as a Dynamic Streaming Algorithm. We employ
the technique of l0 sampling in our algorithm [15]. For a turnstile stream that
describes a vector x, a l0-sampler samples uniformly at random from the non-
zero coordinates of x. Similar to Ahn, Guha, and McGregor [2], we employ the
l0-sampler by Jowhari et al. [15]. Their result can be summarized as follows:

Lemma 5 ([15]). There exists a turnstile streaming algorithm that performs
l0-sampling using space O(log2 n log δ−1) with error probability at most δ.

In order to implement Algorithm 1 in the dynamic streaming setting, for every
a ∈ A′, we use enough l0-samplers on the sub-stream of incident edges of a in
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order to guarantee that with large enough probability, at least min{k, degG(a)}
different incident edges of a are sampled. It can be seen that, for a large enough
constant c, c · k logn samplers are enough, with probability 1− 1

nΘ(c) . We make
use of the following technical lemma.

Lemma 6 (*). Let S be a finite set, k an integer, and c a large enough constant.
When sampling c · k logn times from S, then with probability 1− 1

nΘ(c) , at least
min{k, |S|} different elements of S have been sampled.

This allows us to conclude with the main theorem of this section.

Theorem 4. There exists a one-pass randomized dynamic streaming algorithm
for maximum bipartite matching with expected approximation ratio nα using
space Õ(n2−2α).
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Abstract. The Min-sum single machine scheduling problem (denoted
1||∑ fj) generalizes a large number of sequencing problems. The first
constant approximation guarantees have been obtained only recently
and are based on natural time-indexed LP relaxations strengthened with
the so called Knapsack-Cover inequalities (see Bansal and Pruhs, Che-
ung and Shmoys and the recent (4 + ε)-approximation by Mestre and
Verschae). These relaxations have an integrality gap of 2, since the Min-
knapsack problem is a special case. No APX-hardness result is known
and it is still conceivable that there exists a PTAS. Interestingly, the
Lasserre hierarchy relaxation, when the objective function is incorpo-
rated as a constraint, reduces the integrality gap for the Min-knapsack
problem to 1 + ε.

In this paper we study the complexity of the Min-sum single machine
scheduling problem under algorithms from the Lasserre hierarchy. We
prove the first lower bound for this model by showing that the integrality
gap is unbounded at level Ω(

√
n) even for a variant of the problem that

is solvable in O(n log n) time, namely Min-number of tardy jobs. We
consider a natural formulation that incorporates the objective function
as a constraint and prove the result by partially diagonalizing the matrix
associated with the relaxation and exploiting this characterization.

1 Introduction

The Min-sum single machine scheduling problem (often denoted 1||∑ fj) is
defined by a set of n jobs to be scheduled on a single machine. Each job has an
integral processing time, and there is a monotone function fj(Cj) specifying the
cost incurred when the job j is completed at a particular time Cj ; the goal is to
minimize

∑
fj(Cj). A natural special case of this problem is given by the Min-

number of tardy jobs (denoted 1||∑wjUj), with fj(Cj) = wj if Cj > dj ,
and 0 otherwise, where wj ≥ 0, dj > 0 are the specific cost and due date of
the job j respectively. This problem is known to be NP-complete [11]. However,
restricting to unit weights, the problem can be solved in O(n logn) time [17].
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The first constant approximation algorithm for 1||∑ fj was obtained by Bansal
and Pruhs [1], who considered an even more general scheduling problem. Their
16-approximation has been recently improved to 4 + ε: Cheung and Shmoys [5]
gave a primal-dual algorithm and claimed that is a (2 + ε)-approximation; re-
cently, Mestre and Verschae [16] showed that the analysis in [5] cannot yield an
approximation better than 4 and provided a proof that the algorithm in [5] has an
approximation ratio of 4 + ε.

A particular difficulty in approximating this problem lies in the fact that the
ratio (integrality gap) between the optimal IP solution to the optimal solution of
“natural” LPs can be arbitrarily large, since the Min-knapsack LP is a com-
mon special case. Thus, in [1,5] the authors strengthen natural time-indexed LP
relaxations by adding (exponentially many) Knapsack-Cover (KC) inequalities
introduced by Wolsey [24] (see also [4]) that have proved to be a useful tool to
address capacitated covering problems.

One source of improvements could be the use of semidefinite relaxations such
as the powerful Lasserre/Sum-of-Squares hierarchy [13,19,22] (we defer the def-
inition and related results to Section 2). Indeed, it is known [10] that for Min-

knapsack the Lasserre hierarchy relaxation, when the objective function is in-
corporated as a constraint in the natural LP, reduces the gap to (1 + ε) at level
O(1/ε), for any ε > 0.1 In light of this observation, it is therefore tempting to
understand whether the Lasserre hierarchy relaxation can replace the use of ex-
ponentially many KC inequalities to get a better approximation for the problem
1||∑ fj.

2

In this paper we study the complexity of the Min-sum single machine

scheduling problem under algorithms from the Lasserre hierarchy. Our contribu-
tion is two-fold. We provide a novel technique that is interesting in its own for
analyzing integrality gaps for the Lasserre hierarchy. We then use this technique
to prove the first lower bound for this model by showing that the integrality
gap is unbounded at level Ω(

√
n) even for the unweighted Min-number of

tardy jobs problem, a variant of the problem that admits an O(n log n) time
algorithm [17]. This is obtained by formulating the hierarchy as a sum of (ex-
ponentially many) rank-one matrices (Section 2) and, for every constraint, by
choosing a dedicated collection (Section 3) of rank-one matrices whose sum can
be shown to be positive definite by diagonalizing it; it is then sufficient to com-
pare its smallest eigenvalue to the smallest eigenvalue of the remaining part of
the sum of the rank-one matrices (Theorem 1). Furthermore, we complement the
result by proving a tight characterization of the considered instance by analyzing
the sign of the Rayleigh quotient (Theorem 2).

Finally, we show a different use of the above technique to prove that the class
of unconstrained k (≤ n) degree 0/1 n-variate polynomial optimization problems
cannot be solved exactly within k− 1 levels of the Lasserre hierarchy relaxation.

1 The same holds even for the weaker Sherali-Adams hierarchy relaxations.
2 Note that in order to claim that one can optimize over the Lasserre hierarchy in
polynomial time, one needs to assume that the number of constraint of the starting
LP is polynomial in the number of variables (see the discussion in [14]).
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We do this by exhibiting for each k a 0/1 polynomial optimization problem of
degree k with an integrality gap. This complements the recent results in [7,12]:
in [7] it is shown that the Lasserre relaxation does not have any gap at level �n

2 �
when optimizing n-variate 0/1 polynomials of degree 2; in [12] the authors of
this paper prove that the only polynomials that can have a gap at level n − 1
must have degree n.

Duo to space limitation the some of the proofs are omitted.

2 The Lasserre Hierarchy

In this section we provide a formal definition of the Lasserre hierarchy [13]
together with a brief overview of the literature.

Related work. The Lasserre/Sum-of-Squares hierarchy [13,19,22] is a systematic
procedure to strengthen a relaxation for an optimization problem by constructing
a sequence of increasingly tight formulations, obtained by adding additional
variables and SDP constraints. The hierarchy is parameterized by its level t,
such that the formulation gets tighter as t increases, and a solution can be found
in time nO(t). This approach captures the convex relaxations used in the best
available approximation algorithms for a wide variety of optimization problems.
Due to space restrictions, we refer the reader to [6,14,18,20] and the references
therein.

The limitations of the Lasserre hierarchy have also been studied, but not many
techniques for proving lower bounds are known. Most of the known lower bounds
for the hierarchy originated in the works of Grigoriev [8,9] (also independently
rediscovered later by Schoenebeck [21]). In [9] it is shown that random 3XOR
or 3SAT instances cannot be solved by even Ω(n) rounds of Lasserre hierarchy.
Lower bounds, such as those of [3,23] rely on [9,21] plus gadget reductions. For
different techniques to obtain lower bounds see [2,12,15].

Notation and the formal definition. In the context of this paper, it is convenient
to define the hierarchy in an equivalent form that follows easily from “standard”
definitions (see e.g. [14]) after a change of variables.3

For the applications that we have in mind, we restrict our discussion to op-
timization problems with 0/1-variables and m linear constraints. We denote
K = {x ∈ R

n | g�(x) ≥ 0, ∀� ∈ [m]} to be the feasible set of the linear relax-
ation. We are interested in approximating the convex hull of the integral points
in K. We refer to the �-th linear constraint evaluated at the set I ⊆ [n] (xi = 1
for i ∈ I, and xi = 0 for i /∈ I) as g�(xI). For each integral solution xI , where
I ⊆ N , in the Lasserre hierarchy defined below there is a variable ynI that can
be interpreted as the “relaxed” indicator variable for the solution xI .

3 Notice that the used formulation of the Lasserre hierarchy given in Definition 1
has exponentially many variables yn

I , due to the change of variables. This is not
a problem for our purposes, since we are interested in showing an integrality gap
rather than solving an optimization problem.
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For a set I ⊆ [n] and fixed integer t, let Pt(I) denote the set of the subsets of I
of size at most t. For simplicity we write Pt([n]) = Pt(n). Define d-zeta vectors:

ZI ∈ R
Pd(n) for every I ⊆ [n], such that for each |J | ≤ d, [ZI ]J =

{
1, if J ⊆ I
0, otherwise

.

In order to keep the notation simple, we do not emphasize the parameter d as
the dimension of the vectors should be clear from the context (we can think of
the parameter d as either t or t+ 1).

Definition 1. The Lasserre hierarchy relaxation at level t for the set K, denoted
by Last(K), is given by the set of values ynI ∈ R for I ⊆ [n] that satisfy

∑

I⊆[n]

ynI = 1, (1)

∑

I⊆[n]

ynI ZIZ
�
I 
 0, where ZI ∈ R

Pt+1(n) (2)

∑

I⊆[n]

g�(xI)y
n
I ZIZ

�
I 
 0, ∀� ∈ [m], where ZI ∈ R

Pt(n) (3)

It is straightforward to see that the Lasserre hierarchy formulation given in Def-
inition 1 is a relaxation of the integral polytope. Indeed consider any feasible
integral solution xI ∈ K and set ynI = 1 and the other variables to zero. This so-
lution clearly satisfies Condition (1), Condition (2) because the rank one matrix
ZIZ

�
I is positive semidefinite (PSD), and Condition (3) since xI ∈ K.

3 Partial Diagonalization

In this section we describe how to partially diagonalize the matrices associated to
Lasserre hierarchy. This will be used in the proofs of Theorem 1 and Theorem 2.

Below we denote by wn
I either ynI or ynI g�(xI). The following simple observation

describes a congruent transformation (∼=) to obtain a partial diagonalization of
the matrices used in Definition 1. We will use this partial diagonalization in our
bound derivation.

Lemma 1. Let C ⊆ Pn(n) be a collection of size |Pd(n)| (where d is either t
or t + 1). If C is such that the matrix Z with columns ZI for every I ∈ C is
invertible, then

∑

I⊆[n]

wn
I ZIZ

�
I

∼= D +
∑

I∈Pn(n)\C
wn

I Z
−1ZI(Z

−1ZI)
�

where D is a diagonal matrix with entries wn
I , for I ∈ C.

Proof. It is sufficient to note that
∑

I∈C w
n
I ZIZ

�
I = ZDZ�. �

Since congruent transformations are known to preserve the sign of the eigen-
values, the above lemma in principle gives us a technique to check whether or
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not (2) and (3) are satisfied: show that the sum of the smallest diagonal element
of D and the smallest eigenvalue of the matrix

∑
I∈[n]\C w

n
I Z

−1ZI(Z
−1ZI)

� is
non-negative. In what follows we introduce a method to select the collection C
such that the matrix Z is invertible.

Let Zd denote the matrix with columns [Zd]I = ZI indexed by sets I ⊆ [n]
of size at most d. The matrix Zd is invertible as it is upper triangular with ones
on the diagonal. It is straightforward to check that the inverse Z−1

d is given by[
Z−1
d

]
I,J

= (−1)|J\I| if I ⊆ J and 0 otherwise (see e.g. [14]). In Lemma 1 we

require a collection C such that the matrix, whose columns are the zeta vectors
corresponding to elements in C, is invertible. The above indicates that if we take
C to be the set of subsets of [n] with size less or equal to d, then this requirement
is satisfied. We can think that the matrix Zd contains as columns the zeta vectors
corresponding to the set ∅ and all the symmetric differences of the set ∅ with sets
of size at most d. The observation allows us to generalize this notion: fix a set
S ⊆ [n], and define C to contain all the sets S⊕ I for |I| ≤ d (here ⊕ denotes the
symmetric difference). More formally, consider the following |Pd(n)| × |Pd(n)|
matrix Zd(S), whose generic entry I, J ⊆ Pd(n) is

[
Zd(S)

]
I,J

=

{
1 if I ⊆ J ⊕ S,
0 otherwise.

(4)

Note that Zd(∅) = Zd. In order to apply Lemma 1, we show that Zd(S) is invert-
ible.

Lemma 2. Let Ad(S) be a |Pd(n)| × |Pd(n)| matrix defined as

[
Ad(S)

]
I,K

=

{
(−1)|K∩S| if (I \ S) ⊆ K ⊆ I
0 otherwise.

(5)

Then Z−1
d(S) = Z−1

d Ad(S).

We also give a closed form of the elements of the matrix Z−1
d(S).

Lemma 3. For each I, J ⊆ Pd(N) the generic entry (I, J) of Z−1
d(S) is

[
Z−1
d(S)

]

I,J
= (−1)|J∩S|+|J\I|

{
(−1)d−|I∪J|(|S\(I∪J)|−1

d−|I∩J|
)
, if I \ S ⊆ J

0, otherwise.
(6)

4 A Lower Bound for Min-Number of Tardy Jobs

We consider the single machine scheduling problem to minimize the number of
tardy jobs: we are given a set of n jobs, each with a processing time pj > 0, and
a due date dj > 0. We have to sequence the jobs on a single machine such that
no two jobs overlap. For each job j that is not completed by its due date, we
pay the cost wj .
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4.1 The Starting Linear Program

Our result is based on the following “natural” linear programming (LP) relax-
ation that is a special case of the LPs used in [1,5] (therefore our gap result
also holds if we apply those LP formulations). For each job we introduce a vari-
able xj ∈ [0, 1] with the intended (integral) meaning that xj = 1 if and only
if the job j completes after its deadline. Then, for any time s ∈ {d1, . . . , dn},
the sum of the processing times of the jobs with deadlines less than s, and that
complete before s, must satisfy

∑
j:dj≤s(1 − xj)pj ≤ s. The latter constraint

can be rewritten as a capacitated covering constraint,
∑

j:dj≤t xjpj ≥ Dt, where

Ds :=
∑

j:dj≤s pj − s represents the demand at time s. The goal is to minimize∑
j wjxj .

4.2 The Integrality Gap Instance

Consider the following instance with n = m2 jobs of unit costs. The jobs are
partitioned into m blocks N1, N2, . . . , Nm, each with m jobs. For i ∈ [m], the
jobs belonging to block Ni have the same processing time P i, for P > 1, and
the same deadline di = m

∑i
j=1 P

j − ∑i
j=1 P

j−1. Then the demand at time

di is Di =
∑i

j=1 P
j−1. For any t ≥ 0, let T be the smallest value that makes

Last (LP (T )) feasible, where LP (T ) is defined as follows for xij ∈ [0, 1], for
i, j ∈ [m]:

LP (T )

m∑

i=1

m∑

j=1

xij ≤ T, (7a)

�∑

i=1

m∑

j=1

xij · P i ≥ D�, for � ∈ [m] (7b)

Note that, for any feasible integral solution for LP (T ), the smallest T (i.e. the
optimal integral value) can be obtained by selecting one job for each block, so the
smallest T for integral solutions is m =

√
n. The integrality gap of Last (LP (T ))

(or LP (T )) is defined as the ratio between
√
n (i.e. the optimal integral value)

and the smallest T that makes Last (LP (T )) (or LP (T )) feasible. It is easy to
check that LP (T ) has an integrality gap P for any P ≥ 1: for T =

√
n/P , a

feasible fractional solution for LP (T ) exists by setting xij =
1√
nP

.

4.3 Proof of Integrality Gap for Last(LP (T ))

Theorem 1. For any k ≥ 1 and n such that t =
√
n

2k − 1
2 ∈ N, the following

solution is feasible for Last(LP (
√
n/k))

ynI =

{
α, ∀I ∈ P2t+1(n)
0, otherwise

(8)

where α > 0 is such that
∑

I⊆[n] y
n
I = 1 and the parameter P is large enough.
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Proof. We need to show that the solution (8) satisifies the feasibility condi-
tions (1)–(2) for the variables and the condition (3) for every constraint. The
condition (1) is satisfied by definition of the solution, and (2) becomes a sum
of positive semidefinite matrices ZIZ

�
I with non-negative weights ynI , so it is

satisfied as well.
It remains to show that (3) is satisfied for both (7a) and (7b). Consider the

equation (7a) first, and let g(xI) = T −∑
i,j xij be the value of the constraint

when the decision variables are xij = 1 whenever (i, j) ∈ I, and 0 otherwise.4

Now for every I ⊆ [n], it holds g(xI)y
n
I ≥ 0, as we have ynI = 0 for every

I containing more than 2t + 1 =
√
n
k = T elements. Hence the sum in (3) is

again a sum of positive semidefinite matrices with non-negative weights, and the
condition is satisfied.

Finally, consider the �-th constraint of the form (7b), and let g�(xI) =∑l
i=1

∑m
j=1 xij ·P i−D�. In order to prove that (3) is satisfied, we apply Lemma 1

with the following collection of subsets of [n]: C = {I ⊕ S | I ⊆ [m], |I| ≤ t},
where we take S = {(�, j) | j ∈ [t+ 1]}. Now, any solution given by the elements
of C contains at least one job from the block �, meaning that the corresponding
allocation xI satisfies the constraint.

By Lemma 2, the matrix Zt(S) is invertible and by Lemma 1 we have for (3)

that
∑

I⊆[n] g�(xI)y
n
I ZIZ

�
I

∼= D +
∑

I∈[n]\C g�(xI)y
n
I Z

−1
t(S)ZI(Z

−1
t(S)ZI)

�, where
D is a diagonal matrix with elements g�(xI)y

n
I for each I ∈ C. We prove that the

latter is positive semidefinite by analysing its smallest eigenvalue λmin. Writing
RI = Z−1

t(S)ZI(Z
−1
t(S)ZI)

�, we have by Weyl’s inequality

λmin

⎛

⎝D +
∑

I∈[n]\C
g�(xI)y

n
I RI

⎞

⎠ ≥ λmin (D) + λmin

⎛

⎝
∑

I∈[n]\C
g�(xI)y

n
I RI

⎞

⎠

Since D is a diagonal matrix with entries g�(xI)y
n
I for I ∈ C, and for every

I ∈ C the constraint g�(xI) is satisfied, we have λmin(D) ≥ α
(
P � −D�

)
=

α
(
P � − P �−1

P−1

)
.

On the other hand for every I ⊆ [n], g�(xI) ≥ −∑�
j=1 P

j−1 = −P �−1
P−1 .

The nonzero eigenvalue of the rank one matrix RI is
(
Z−1
t(S)ZI

)�
Z−1
t(S)ZI ≤

|Pt(n)|3tO(t) = nO(
√
n). This is because by Lemma 3, for every I, J ∈ Pt(n),

|[Z−1
t(S)]I,J | ≤ tO(t), for |S| = t+ 1, and [ZI ]J ∈ {0, 1}. Thus

λmin

⎛

⎝D +
∑

I∈[n]\C
g�(xI)y

n
I RI

⎞

⎠ ≥ α

(
P k − P k − 1

P − 1

)
− α

P k − 1

P − 1
2nnO(

√
n) ≥ 0

for P = nO(
√
n). �

4 Strictly speaking I ⊆ [n] is a set of numbers, so we associate to each pair i, j a number
via the one-to-one mapping (i − 1)m + j. Hence, to keep the notation simple, we
here understand (i, j) ∈ I to mean (i− 1)m+ j ∈ I .
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The above theorem states that the Lasserre hierarchy has an arbitrarily large

integrality gap k even at level t =
√
n

2k − 1
2 . In the following we provide a tight

analysis characterization for this instance, namely we prove that the Lasserre

hierarchy admits an arbitrarily large gap k even at level t =
√
n
k − 1. Note that

at the next level, namely t + 1 =
√
n/k, Last+1(LP (

√
n/k)) has no feasible

solution for k > 1,5 which gives a tight characterization of the integrality gap
threshold phenomenon. The claimed tight bound is obtained by utilizing a more
involved analysis of the sign of the Rayleigh quotient for the almost diagonal
matrix characterization of the Lasserre hierarchy.

Theorem 2. For any k ≥ 1 and n such that t =
√
n
k − 1 ∈ N, the following

solution is feasible for Last(LP (
√
n/k))

ynI =

{
α, ∀I ∈ Pt+1(n)
0, otherwise

(9)

where α > 0 is such that
∑

I⊆[n] y
n
I = 1 and the parameter P is large enough.

Proof. The solution satisfies the conditions (1), (2) and (3) for (7a) by the same
argument as in the proof of Theorem 1.

We prove that the solution satisfies the condition (3) for any constraint � of
the form (7b). Since M 
 0 if and only if v�Mv ≥ 0, for every unit vector v
of appropriate size, by Lemma 1 (for the collection C = Pt(n)) and using the
solution (9) we can transform (3) to the following semi-infinte system of linear
inequalities

∑

I∈Pt(n)

g�(xI)v
2
I+

∑

J⊆[n]:|J|=t+1

⎛

⎜⎜⎝
∑

I∈Pt(n)
I⊂J

vI(−1)|I|

⎞

⎟⎟⎠

2

g�(xJ ) ≥ 0, ∀v ∈ S
|Pt(n)|−1

(10)
Consider the �-th covering constraint g�(x) ≥ 0 of the form (7b) and the corre-

sponding semi-infinite set of linear inequalities (10). Then consider the following
partition of Pt+1(n): A = {I ∈ Pt+1(n) : I ∩N� �= ∅} and B = {I ∈ Pt+1(n) :
I ∩N� = ∅}.

Note that A corresponds to the assignments that are guaranteed to satisfy the
constraint �. More precisely, for S ∈ A we have g�(xS) ≥(
P � −∑�

j=1 P
j−1

)
= P �

(
1− P �−1

P �(P−1)

)
≥ P �

(
1− 1

P−1

)
, and for S ∈ B we

have g�(xS) ≥ −∑�
j=1 P

j−1 ≥ P �
(
− 1

P−1

)
. Since P > 0, by scaling g�(x) ≥ 0

(see (7b)) by P �, we will assume, w.l.o.g., that

5 The constraint (7b) implies that any feasible solution for Last+1(LP (
√
n/k)) has

yn
I = 0 for all |I | > √

n/k. This in turn implies, with Lemma 1 for C = Pt(n), that∑
I⊆[n] g�(xI)y

n
I ZIZ

�
I

∼= D�, where D� is a diagonal matrix with entries g�(xI)y
n
I ,

for every |I | ≤ t, there exists � such that g�(xI) < 0 which, in any feasible solution
implies yn

I = 0, contradicting (1).
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g�(xS) ≥
{
1− 1

P−1 , if S ∈ A

− 1
P−1 , if S ∈ B

Note that, since v is a unit vector, we have v2I ≤ 1, and for any J ⊆ [n] such

that |J | = t+1, the coefficient of g�(xJ ) is bounded by

(∑
I∈Pt(n)

I⊂J

vI(−1)|I|
)2

≤
2O(t). For all unit vectors v, let β denote the smallest possible total sum of the
negative terms in (10) (these are those related to g�(xI) for I ∈ B). Note that

β ≥ − |B|2O(t)

P = −nO(t)

P .
In the following, we show that, for sufficiently large P , the claimed solution

satisfies (10). We prove this by contradiction.
Assume that there exists a unit vector v such that (10) is not satisfied by the

solution. We start by observing that under the previous assumption the following

holds v2I = nO(t)

P for all I ∈ A ∩ Pt(n). If not, we would have an I ∈ A ∩ Pt(n)
such that v2Ig�(xI) ≥ −β contradicting the assumption that (10) is not satisfied.
We claim that under the contradiction assumption, the previous bound on v2I

can be generalized to v2I = nO(t2)

P for any I ∈ Pt(n). Then, by choosing P such
that v2I < 1/n2t, for I ∈ Pt(n), we have

∑
I∈Pt(n)

v2I < 1, which contradicts the
assumption that v is a unit vector.

The claim follows by showing that ∀I ∈ B ∩ Pt(n) it holds v2I ≤ nO(t2)/P .
The proof is by induction on the size of I for any I ∈ B ∩ Pt(n).

Consider the empty set, since ∅ ∈ B ∩ Pt(n). We show that v2∅ = nO(t)/P .
With this aim, consider any J ⊆ N� with |J | = t + 1. Note that J ∈ A, so

g�(xJ ) ≥ t+1− 1/(P − 1) and its coefficient u2
J =

(∑
I∈Pt(n)

I⊂J

vI(−1)|I|
)2

is the

square of the sum of v∅ and other terms vI , all with I ∈ A∩Pt(n). Ignoring all the
other positive terms apart from the one corresponding to J in (10), evaluating
the sum of all the negative terms as β and using a loose bound g�(xJ ) ≥ 1/2 for
large P , we obtain the following bound b0

|v∅| ≤
√
−2β +

∑

∅�=I⊂J

|vI | ≤ b0 = O

(√
−β + 2O(t)n

O(t)

√
P

)
=

nO(t)

√
P

(11)

which implies that v2∅ = nO(t)/P .
Similarly as before, consider any singleton set {i} with {i} ∈ B ∩ Pt(n) and

any J ⊆ N� with |J | = t. Note that J ∈ A, g�(xJ ) ≥ t − 1/(P − 1) and its

coefficient u2
J =

(
∑

I∈Pt(n)
I⊂J∪{i}

vI(−1)|I|
)2

is the square of the sum of v{i}, v∅ and

other terms vI , with I ⊆ J and therefore v2I = nO(t)

P . Moreover, again note that
u2
J is smaller than −β (otherwise (10) is satisfied). Therefore, for any singleton

set {i} ∈ B ∩ Pt(n), we have that |v{i}| ≤ |v∅|+
√−2β +

∑
∅�=I⊂J |vI | ≤ 2b0.
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Generalizing by induction, consider any set S ∈ B ∩ Pt(n) and any J ⊆ N�

with |J | = t+ 1− |S|. We claim that |v|S|| ≤ b|S| where

b|S| = b0 +

|S|−1∑

i=0

nibi (12)

This follows by induction hypothesis and by because again g�(J ∪S)uJ∪S ≤ −β

and therefore, |vS | ≤
∑|S|−1

i=0

(∑
I∈B
|I|=i

|vI |
)
+
√−2β +

∑
∅�=I⊂J |vI |.

From (12), for any S ∈ B ∩ Pt(n), we have that |vS | is bounded by bt =

(nt−1 + 1)bt−1 = nO(t2)b0 = nO(t2)√
P

. �

5 Application in 0/1 Polynomial Optimization

In this section we use the developed technique to prove an integrality gap result
for the unconstrained 0/1 n-variate polynomial optimization problem. We start
with the following definition of Lasserre hierarchy.

Definition 2. The Lasserre hierarchy at level t for the unconstrained 0/1
optimization problem with the objective function f(x) : {0, 1}n → R, denoted
by Last(f(x)), is given by the feasible points ynI for each I ⊆ [n] of the following
semidefinite program

∑

I⊆[n]

ynI = 1, (13)

∑

I⊆[n]

ynI ZIZ
�
I 
 0, where ZI ∈ R

Pt(n) (14)

The main result of this section is the following theorem.

Theorem 3. The class of unconstrained k–degree 0/1 n-variate polynomial opti-
mization problems cannot be solved exactly with a k−1 level of Lasserre hierarchy.

Proof. For every k ≤ n we give an unconstrained n-variate polynomial optimiza-
tion problem with an objective function f(x) of degree k such that Lask−1(f(x))
has an integrality gap. Consider a maximization problem with the following ob-
jective function over {0, 1}n: f(x) = ∑

I⊆[n]
|I|≤k

(n−|I|
k−|I|

)
(−1)|I|+1

∏
i∈I xi. We prove

that the following solution is super-optimal and feasible for Lask−1(f(x))

ynI =

⎧
⎨

⎩

α, ∀I ∈ [n], |I| ≥ n− k + 1
−ε, I = ∅
0, otherwise

(15)

where α > 0 is such that
∑

∅�=I⊆[n] y
n
I = 1 + ε and the ε is small enough.
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It is easy to check that the objective function is equivalent to

f(x) =
∑

K⊆[n]
|K|=k

∑

J⊆K
J �=∅

(−1)|J|+1
∏

j∈J

xj

Now, consider any integral 0/1 solution, for every K ⊆ [n] of size |K| = k, a
partial summation

∑
∅�=J⊆K(−1)|J|+1

∏
j∈J xj takes value one, if for at least one

j ∈ K, xj = 1, and zero otherwise. Thus the integral optimum is
(
n
k

)
for any

solution x ∈ {0, 1}n such that at least n− k + 1 coordinates are set to 1.
On the other hand the objective value for the Lasserre solution (15) is given

by the formula6

∑

I∈[n]

f(xI)y
n
I =

∑

I∈[n]
|I|≥n−k+1

f(xI)y
n
I =

(
n

k

) ∑

I∈[n]
|I|≥n−k+1

ynI = (1 + ε)

(
n

k

)

where the first equality comes from the fact that f(x∅) = 0 and the second from
the fact that f(xI) =

(
n
k

)
for any I ⊆ [n], |I| ≥ n− k + 1.

Finally, we prove that the solution (15) is feasible for Lask−1(f(x)). The con-
straint (13) is satisfied by definition. In order to prove that the constraint (14) is
satisfied, we apply Lemma 1 with the collection C = {I ⊕ S | I ⊆ [n], |I| ≤ k − 1}
of subsets of [n], for S = [n], and get that

D +
∑

I∈[n]\C
ynI Z

−1
t(S)ZI(Z

−1
t(S)ZI)

� = D − εZ−1
t(S)Z∅(Z−1

t(S)Z∅)� (16)

where D is a diagonal matrix with diagonal entires equal to α ≥ 1/2n. Since
the nonzero eigenvalue of the rank one matrix Z−1

t(S)Z∅(Z
−1
t(S)Z∅)� is equal to

(
Z−1
t(S)Z∅

)�
Z−1
t(S)Z∅ ≤ |Pt(n)|t2t = nO(t), one can choose ε = 1/nO(t) such that

by the Weyl’s inequality we have that the matrix in (16) is PSD. �
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Abstract. We study a general family of facility location problems de-
fined on planar graphs and on the 2-dimensional plane. In these problems,
a subset of k objects has to be selected, satisfying certain packing (dis-
jointness) and covering constraints. Our main result is showing that, for
each of these problems, the nO(k) time brute force algorithm of selecting

k objects can be improved to nO(
√

k) time. The algorithm is based on
focusing on the Voronoi diagram of a hypothetical solution of k objects;
this idea was introduced recently in the design of geometric QPTASs,
but was not yet used for exact algorithms and for planar graphs. As con-

crete consequences of our main result, we obtain nO(
√

k) time algorithms
for the following problems: d-Scattered Set in planar graphs (find
k vertices at pairwise distance d); d-Dominating Set/(k, d)-Center

in planar graphs (find k vertices such that every vertex is at distance
at most d from these vertices); select k pairwise disjoint connected ver-
tex sets from a given collection; select k pairwise disjoint disks in the
plane (of possibly different radii) from a given collection; cover a set of
points in the plane by selecting k disks/axis-parallel squares from a given
collection. We complement these positive results with lower bounds sug-
gesting that some similar, but slightly more general problems (such as

covering points with axis-parallel rectangles) do not admit nO(
√

k) time
algorithms.

1 Introduction

Parameterized problems often become easier when restricted to planar graphs:
usually significantly better running times can be achieved and sometimes prob-
lems that are W[1]-hard on general graphs become fixed-parameter tractable
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on planar graphs. In most cases, the improved running time involves a square

root dependence on the parameter: it is often of the form 2O(
√
k) · nO(1) or

nO(
√
k). The appearance of the square root can be usually traced back to the

fact that a planar graph with n vertices has treewidth O(
√
n). Indeed, the theory

of bidimensionality gives a quick explanation why problems such as Indepen-

dent Set, Longest Path, Feedback Vertex Set, Dominating Set, or
even distance-r versions of Independent Set and Dominating Set (for fixed

r) have algorithms with running time 2O(
√
k) · nO(1) (cf. survey [6]). In all these

problems, there is a relation between the size of the largest grid minor and the
size of the optimum solution, which allows us to bound the treewidth of the
graph in terms of the parameter of the problem. More recently, subexponential
parameterized algorithms have been explored also for problems where there is no
such straightforward parameter-treewidth bound: for examples, see [5,9,10,14].

A similar “square root phenomenon” has been observed in the case of geo-
metric problems: it is usual to see a square root in the exponent of the running
time of algorithms for NP-hard problems defined in the 2-dimensional Euclidean
plane. Most relevant to our paper is the fact that Independent Set for unit
disks (given a set of n unit disks, select k of them that are pairwise disjoint) and
the discrete k-center problem (given a set of n points and a set of n unit disks,

select k disks whose union covers every point) can be solved in time nO(
√
k) by

geometric separation theorems and shifting arguments [3,4,8,12], improving on
the trivial nO(k) time brute force algorithm. However, all of these algorithms are
crucially based on a notion of area and rely on the property that all the disks
have the same size (at least approximately). Therefore, it seems unlikely that
these techniques can be generalized to the case when the disks can have very dif-
ferent radii or to planar-graph versions of the problem, where the notion of area
is meaningless. Using similar techniques, one can obtain approximation schemes
for these and related geometric problems, again with the limitation that the ob-
jects need to have (roughly) the same area. Very recently, a new and powerful
technique emerged from a line of quasi-polynomial time approximation schemes
(QPTAS) for geometric problems [1,2,7,13]. As described explicitly by Har-Peled
[7], the main idea is to reason about the Voronoi diagram of the k objects in the
solution. In particular, we are trying to guess a separator consisting of O(

√
k)

segments that corresponds to a balanced separator of the Voronoi diagram. In
this paper, we show how this basic idea and its extensions can be implemented to

obtain nO(
√
k) time exact algorithms for a wide family of geometric packing and

covering problems in a uniform way. In fact, we show that the algorithms can
be made to work in the much more general context of planar graph problems.

Algorithmic Results. We study a general family of facility location problems
for planar graphs, where a set of k objects has to be selected, subject to certain in-
dependence and covering constraints. Two archetypal problems from this family
are (1) selecting k vertices of an edge-weighted planar graph that are at distance
at least d from each other (d-Scattered Set) and (2) selecting k vertices of an
edge-weighted planar graph such that every vertex of the graph is at distance



Optimal Parameterized Algorithms for Planar Facility Location Problems 867

at most d from a selected vertex (d-Dominating Set); for both problems, d
is a real value being part of the input. We show that, under very general con-

ditions, the trivial nO(k) time brute force algorithm can be improved to nO(
√
k)

time for problems in this family. Our result is not just a simple consequence of
bidimensionality and bounding the treewidth of the input graph. Instead, we
focus on the Voronoi diagram of a hypothetical solution, which can be consid-
ered as a planar graph with O(k) vertices. It is known that such a planar graph
has a balanced separator cycle of length O(

√
k), which can be translated into

a separator that breaks the instance in way suitable for using recursion on the
resulting subproblems. Of course, we do not know the Voronoi diagram of the

solution and its balanced separator cycle, but we argue that only nO(
√
k) sepa-

rator cycles can be potential candidates. Hence, by guessing one of these cycles,

we define and solve nO(
√
k) subproblems. The running time of the algorithm is

thus governed by a recurrence relation of the form f(k) = nO(
√
k)f(k/2), which

resolves to f(k) = nO(
√
k).

In Section 3, we define a general facility location problemDisjoint Network

Coverage that contains numerous concrete problems of interest as special cases.
Now, we discuss specific algorithmic results following from the general result.

Informally, the input of Disjoint Network Coverage consists of an edge-
weighted planar graph G, a set D of objects (which are connected sets of vertices
in G) and a set C of clients (which are vertices of G). The task is to select a set
of exactly k pairwise-disjoint1 objects that maximizes the total number of the
covered clients. We define covering as follows: the input contains a radius for
each object in D and a sensitivity for each client in C, and a client is considered
covered by an object if the sum of the radius and the sensitivity is at least
the distance between the object and the client. When both the radius and the
sensitivity are 0, then this means that the client is inside the object; when the
radius is r and the sensitivity is 0, then this means that the client is at distance
at most r from the object. The objects and the clients may be equipped with
costs and prizes, and we may want to maximize/minimize the total revenue of
the solution.

The first special case of the problem is when there are no clients at all: then
the task is to select k objects that are pairwise disjoint. Our algorithm solves
this problem in complete generality: the only condition is that each object is a
connected vertex set (i.e. it induces a connected subgraph of G).

Theorem 1.1 (packing connected sets). Let G be a planar graph, D be a

family of connected vertex sets of G, and k be an integer. In time |D|O(
√
k) ·nO(1),

we can find a set of k pairwise disjoint objects in D, if such a set exists.

We can also solve the weighted version, where we want to select k members
of D maximizing the total weight. As a special case, Theorem 1.1 gives us an

nO(
√
k) time algorithm for d-Scattered Set, which asks for k vertices that are

at distance at least d from each other (with d being part of the input).

1 More precisely, if objects have different radii, then instead of requiring disjointness,
we set up a technical condition called “normality,” which we define in Section 3.
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If each object in D is a single vertex and r(·) assigns a radius to each object
(potentially different radii for different objects), then we get a natural covering
problem. Thus, the following theorem is also a corollary of our general result.

Theorem 1.2 (covering vertices with centers of different radii). Let G
be a planar graph, let D,C ⊆ V (G) be two subsets of vertices, let r : D → Z

+

be a function, and k be an integer. In time |D|O(
√
k) · nO(1), we can find a set

S ⊆ D of k vertices that maximizes the number of vertices covered in C, where
a vertex u ∈ C is covered by v ∈ S if the distance between u and v is at most
r(v).

If D = C = V (G), r(v) = d for every v ∈ V (G), and we are looking for a
solution fully covering C, then we obtain as a special case d-Dominating Set

(also called (k, d)-Center). Theorem 1.2 gives an nO(
√
k) time algorithm for this

problem (with d being part of the input). Theorem 1.2 can be also interpreted
as covering the vertices in C by very specific objects: balls of radius r(v) around
a center v. If we require that the selected objects of the solution are pairwise
disjoint, then we can generalize this problem to arbitrary objects.

Theorem 1.3 (covering vertices with independent objects). Let G be a
planar graph, let D be a set of connected vertex sets in G, let C ⊆ V (G) be a

set of vertices, and let k be an integer. In time |D|O(
√
k) · nO(1), we can find a

set S of at most k pairwise disjoint objects in D that maximizes the number of
vertices of C in the union of the vertex sets in S.

By simple reductions, geometric packing/covering problems can be reduced to
problems on planar graphs. In particular, given a set of disks (of possibly different
radii), the problem of selecting k disjoint disks can be reduced to selecting disjoint
connected vertex sets in a planar graph, and Theorem 1.1 can be applied.

Theorem 1.4 (packing disks). Given a set D of disks (of possibly different

radii) in the plane, in time |D|O(
√
k) we can find a set of k pairwise disjoint disks,

if such a set exists.

This is a strong generalization of the results of Alber and Fiala [4], which gives an

|D|O(
√
k) time algorithm only if the ratio of the radii of the smallest and largest

disks can bounded by a constant (in particular, if all the disks are unit disks). As
Theorem1.1 works for arbitrary connected sets of vertices, we can prove the analog
of Theorem 1.4 for most reasonable sets of connected geometric objects.

Theorem 1.5 (packing simple polygons). Given a set D of simple polygons

in the plane, in time |D|O(
√
k) · nO(1) we can find a set of k polygons in D with

pairwise disjoint closed interiors, if such a set exists. Here n is the total number
of vertices of the polygons in D.

Similarly, the problem of covering the maximum number of points by selecting
k disks from a given set D of disks can be reduced to a problem on planar graphs
and then Theorem 1.2 can be invoked.
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Theorem 1.6 (covering with disks). Given a set C of points and a set D of

disks (of possibly different radii) in the plane, in time |D|O(
√
k) · |C|O(1) we can

find a set of k disks in D maximizing the total number of points they cover in C.
Covering points with axis-parallel squares (of different sizes) can be handled
similarly, by treating axis-parallel squares as balls in the in the �∞ metric.

Theorem 1.7 (covering with squares). Given a set C of points and a set D
of axis-parallel squares (of possibly different size) in the plane, in time |D|O(

√
k) ·

|C|O(1) we can find a set of k squares in D maximizing the total number of points
they cover in C.

Hardness Results. Comparing packing results Theorems 1.1 and 1.5 with cov-
ering results Theorems 1.2, 1.6, and 1.7, one can observe that our algorithm
solves packing problems in much wider generality than covering problems. It
seems that we can handle arbitrary objects in packing problems, while it is
essential for covering problems that each object is a ball in some metric. We
present a set of hardness results suggesting that this apparent difference is not a
shortcoming of our algorithm, but it is inherent to the problem: there are natural
geometric covering problems where the square root phenomenon does not occur.

Using a result of Pătraşcu and Williams [15] and a simple reduction from
Dominating Set, we show that if the task is to cover points with convex poly-
gons, then improving upon a brute-force algorithm is unlikely.

Theorem 1.8 (covering with convex polygons, lower bound). Let D be a
set of convex polygons and let P be a set of points in the plane. Assuming SETH,
there is no f(k) · (|D| + |P|)k−ε time algorithm for any computable function f
and ε > 0 that decides if there are k polygons in D that together cover P.

Theorem 1.8 gives a lower bound only if the covering problem allows arbitrary
convex polygons. We present also two lower bounds in the much more restricted
setting of covering with axis-parallel rectangles.

Theorem 1.9 (covering with rectangles, lower bound). Consider the prob-
lem of covering a point set P by selecting k axis-parallel rectangles from a set D.

1. Assuming ETH, there is no algorithm for this problem with running time
f(k) · (|P| + |D|)o(k) for any computable function f , even if each rectangle
in D is of size 1× k or k × 1.

2. Assuming ETH, for every ε0 > 0, there is no algorithm for this problem with
running time f(k) · (|P|+ |D|)o(k/ log k) for any computable function f , even
if each rectangle in D has both width and height in the range [1− ε0, 1 + ε0].

This shows that even a minor deviation from the setting of Theorem 1.7 makes

the existence of nO(
√
k) algorithms implausible. It seems that for covering prob-

lems, the square root phenomenon depends not on the objects being simple, or
fat, or similar in size, but really on the fact that the objects are balls in a metric.
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2 Geometric Problems

Our main algorithmic result is a technique for solving a general facility location

problem on planar graphs in time nO(
√
k). With simple reductions, we can use

this algorithm to solve 2-dimensional geometric problems. However, our main
algorithmic ideas can be implemented also directly in the geometric setting,
giving self-contained geometric algorithms. These algorithms avoid some of the
technical complications that arise in the planar graph counterparts, such as the
Voronoi diagram having bridges or shortest paths sharing subpaths. The full
algorithm appears in the full version [11], here we focus on these simpler cases.

Packing Unit Disks. We start with Independent Set for unit disks: given a
set D of closed disks of unit radius in the plane, the task is to select k disjoint

disks. This problem is known to be solvable in time nO(
√
k) [4,12]. We present

another nO(
√
k) algorithm for the problem, demonstrating how we can solve it

recursively by focusing on the Voronoi diagram of a hypothetical solution.
The main combinatorial idea behind the algorithm is the following. Let P be

a set of points in the plane. The Voronoi region of p ∈ P is the set of those points
x in the plane that are “closest” to p in the sense that the distance of x and P is
exactly the distance of x and p. Consider a hypothetical solution consisting of k
independent disks and let us consider the Voronoi diagram of the centers of these
k disks (see Figure 1(a)). To emphasize that we consider the Voronoi diagram
of the centers of the k disks in the solution and not the centers of the n disks in
the input, we call this diagram the solution Voronoi diagram. For simplicity, let
us assume that the solution Voronoi diagram is a 2-connected 3-regular graph
embedded on a sphere. We need a balanced separator theorem of the following
form. A noose of a plane graph G is a closed curve δ on the sphere such that
δ alternately travels through faces and vertices of G, and every vertex and face
of G is visited at most once. It is possible to show that every 3-regular planar
graph G with k faces has a noose δ of length O(

√
k) (that is, going through

O(
√
k) faces and vertices) that is face balanced, in the sense that there are at

most 2
3k faces of G strictly inside δ and at most 2

3k faces of G strictly outside δ.

Consider a face-balanced noose δ of length O(
√
k) as above (see Figure 1(b)).

Noose δ goes through O(
√
k) faces of the solution Voronoi diagram, which cor-

respond to a set Q of O(
√
k) disks of the solution. The noose can be turned into

a polygon Γ with O(
√
k) vertices the following way (see Figure 1(c)). Consider

a subcurve of δ that is contained in the face corresponding to disk p ∈ Q and
its endpoints are vertices x and y of the solution Voronoi diagram. Then we can
“straighten” this subcurve by replacing it with straight line segments connecting
the center of p with x and y. Thus, the vertices of polygon Γ are center points
of disks in Q and vertices of the solution Voronoi diagram. Observe that Γ inter-
sects the Voronoi regions of the points in Q only; this follows from the convexity
of the Voronoi regions. In particular, among the disks in the solution, Γ does
not intersect any disk outside Q.

The main idea is to use this polygon Γ to separate the problem into two
subproblems. Of course, we do not know the solution Voronoi diagram and hence
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(a) Voronoi diagram of the cen-
ters of disks in solution.

(b) A noose in the Voronoi dia-
gram.

(c) The polygon corresponding
to the noose.

(d) The problem breaks into
two independent parts.

Fig. 1. Using a noose in the Voronoi diagram for divide and conquer.

we have no way of computing from it the balanced noose δ and the polygon

Γ . However, we can efficiently list nO(
√
k) candidate polygons. By definition,

every vertex of the polygon Γ is either the center of a disk in D or a vertex of
the solution Voronoi diagram. Every vertex of the solution Voronoi diagram is
equidistant from the centers of three disks in D and for any three such centers
(in general position) there is a unique point in the plane equidistant from them.
Thus every vertex of the polygon Γ is either a center of a disk in D or can be
described by a triple of disks in D, and hence Γ can be described by an O(

√
k)-

tuple of disks from D. By branching into nO(
√
k) directions, we may assume that

we have correctly guessed the subset Q of the solution and the polygon Γ .
Provided Q is indeed part of the solution (which we assume), we may remove

these disks from D and decrease the target number of disks by |Q|. We can also
perform the following cleaning steps: (1) Remove any disk that intersects a disk
in Q. (2) Remove any disk that intersects Γ . The correctness of the cleaning
steps above follows directly from our observations on the properties of Γ .

After these cleaning steps, the instance falls apart into two independent parts:
each remaining disk is either strictly inside Γ or strictly outside Γ (see Fig-
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ure 1(d)). As δ was face balanced, there are at most 2
3k faces of the solution

Voronoi diagram inside/outside δ, and hence the solution contains at most 2
3k

disks inside/outside Γ . Therefore, for k′ := 1, . . . , � 2
3k�, we recursively try to find

exactly k′ independent disks from the input restricted to the inside/outside Γ , re-

sulting in 2 · 23k recursive calls. Taking into account the nO(
√
k) guesses for Q and

Γ , the number of subproblems we need to solve is 2· 23k ·nO(
√
k) = nO(

√
k) and the

parameter value is at most 2
3k in each subproblem. Therefore, the running time

of the algorithm is governed by the recursion T (n, k) = nO(
√
k) · T (n, (2/3)k),

which solves to T (n, k) = nO(
√
k). This proves the first result: packing unit disks

in the plane in time nO(
√
k). Let us repeat that this result was known before

[4,12], but as we shall see, our algorithm based on Voronoi diagrams can be
generalized to objects of different size, planar graphs, and covering problems.

Covering Points by Unit Disks. Let us now consider the following problem:
given a setD of unit disks and a set C of client points, we need to select k disks from
D that together cover every point in C. We show that this problem can be solved in

time nO(
√
k) using a similar approach. Note that this time the disks in the solution

are not necessarily disjoint, but this does not change the fact that their centers
(which can be assumed to be distinct) define a Voronoi diagram. Therefore, it will
be convenient to switch to an equivalent formulation of the problem described in
terms of the centers of the disks: D is a set of points and we say that a selected
point in D covers a point in C if their distance is at most 1.

As before, we can try nO(
√
k) possibilities to guess a set Q ⊆ D of center

points and a polygon Γ corresponding to a face-balanced noose. The question
is how to use Γ to split the problem into two independent subproblems. The
cleaning steps (1) and (2) for the packing problem are no longer applicable: the
solution may contain disks intersecting the disks with centers in Q as well as
further disks intersecting Γ . Instead we do as follows. First, if we assume that
Q is part of the solution, then any point in C covered by some point in Q can be
removed. Second, we know that in the solution Voronoi diagram every point of
Γ belongs to the Voronoi region of some point in Q. Hence we can remove any
point from D that contradicts this assumption. That is, if there is p ∈ D and
v ∈ Γ such that v is closer to p than to every point in Q, then we can safely
remove p from D. Thus we have the following cleaning steps: (1) Remove every
point of C covered by Q. (2) Remove every point of D that is closer to a point
of Γ than every point in Q. Let Din,Dout (Cin, Cout) be the remaining points
in D (C) strictly inside and outside Γ , respectively. We know that the solution
contains at most 2

3k center points inside/outside Γ . Hence, for 1 ≤ k′ ≤ � 2
3k�,

we solve two subproblems, with point sets (Din, Cin) and (Dout, Cout).
If there is a set of kin center points in Din covering Cin and there is a set

of kout center points in Dout covering Cout, then, together with Q, they form a
solution of |Q| + kin + kout center points. By solving the defined subproblems
optimally, we know the minimum value of kin and kout required to cover Cin and
Cout, and hence we can determine the smallest solution that can be put together
this way. But is it true that we can always put together an optimum solution
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this way? The problem is that, in principle, the solution may contain a center
point p ∈ Dout that covers some point q ∈ Cin that is not covered by any center
point in Din. In this case, in the optimum solution the number of center points
selected from Din can be strictly less than what is needed to cover Cin.

Fortunately, we can show that this problem never arises. Suppose that there
is such a p ∈ Dout and q ∈ Cin. As p is outside Γ and q is inside Γ , the segment
connecting p and q intersects Γ at some point v ∈ Γ , which means dist(p, q) =
dist(p, v) + dist(v, q). By cleaning step (2), there has to be a p′ ∈ Q such that
dist(p′, v) ≤ dist(p, v), otherwise p would be removed from D. This means that
dist(p, q) = dist(p, v)+dist(v, q) ≥ dist(p′, v)+dist(v, q) ≥ dist(p′, q). Therefore,
if p covers q, then so does p′ ∈ Q. But in this case we would have removed q
from C in the first cleaning step. Thus we can indeed obtain an optimum solution
the way we proposed, by solving optimally the defined subproblems. Again we

have nO(
√
k) subproblems, with parameter value at most 2

3k. Hence, the same

recursion applies to the running time, resulting in an nO(
√
k) time algorithm.

Packing in Planar Graphs. How can we translate the geometric ideas ex-
plained above to the context of planar graphs? Let G be an edge-weighted pla-
nar graph and let F be a set of disjoint “objects” — connected sets of vertices
in G. Then we can define the analog of the Voronoi regions: for every p ∈ F ,
let Mp contain every vertex v to which p is the closest object in F , that is,
dist(v,F) = dist(v, p). It is easy to verify that region Mp has the following con-
vexity property: if v ∈ Mp and P is a shortest path between v and p, then every
vertex of P is in Mp.

While Voronoi regions are easy to define in graphs, the proper definition of
Voronoi diagrams and the construction of polygon Γ are far from obvious. We
omit the discussion of these technical details, and we only state in Lemma 2.1
below (a simplified version of) the main technical tool that is at the core of the
algorithm. Note that the statement of Lemma 2.1 involves only the notion of
Voronoi regions, hence there are no technical issues in interpreting and using it.
However, in the proof we have to define the analog of the Voronoi diagram for
planar graphs and address issues such that this diagram is not 2-connected etc.

Let us consider first the packing problem: given an edge-weighted graph G, a
set D of d objects (connected subsets of vertices), and an integer k, find a subset
F ⊆ D of k disjoint objects. Looking at the algorithm for packing unit disks, what
we need is a suitable guarded separator: a pair (Q,Γ ) consisting of a set Q ⊆ D
of O(

√
k) objects and a subset Γ ⊆ V (G) of vertices. If there is a hypothetical

solution F ⊆ D consisting of k disjoint objects, then a suitable guarded separator
(Q,Γ ) should satisfy the following three properties: (1) Q ⊆ F , (2) Γ is fully
contained in the Voronoi regions of the objects in Q, and (3) Γ separates the
objects in F in a balanced way. Our main technical result is that it is possible

to enumerate a set of dO(
√
k) guarded separators such that for every solution F ,

one of the enumerated guarded separators satisfies these three properties. We
state here a simplified version that is suitable for packing problems.
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Lemma 2.1. Let G be an n-vertex edge-weighted planar graph, D a set of d
connected subsets of V (G), and k an integer. We can enumerate (in time poly-

nomial in the size of the output and n) a set N of dO(
√
k) pairs (Q,Γ ) with

Q ⊆ D, |Q| = O(
√
k), Γ ⊆ V (G) such that the following holds. If F ⊆ D is a

set of k pairwise disjoint objects, then there is a pair (Q,Γ ) ∈ N such that

1. Q ⊆ F ,
2. if (Mp)p∈F are the Voronoi regions of F , then Γ ⊆ ⋃

p∈Q Mp,

3. for every connected component C of G− Γ , there are at most 2
3k objects of

F that are fully contained in C.

The proof goes along the same lines as the argument for the geometric setting.
After carefully defining the analog of the Voronoi diagram, we can use the planar
separator result to obtain a noose δ. As before, we “straighten” the noose into
a closed walk in the graph using shortest paths connecting O(

√
k) objects and

O(
√
k) vertices of the Voronoi diagram. The vertices of this walk separate the

objects that are inside/outside the noose, hence it has the required properties.
Thus by trying all sets of O(

√
k) objects and O(

√
k) vertices of the Voronoi

diagram, we can enumerate a suitable set N . A technical difficulty in the proof
is that the definition of the vertices of the Voronoi diagram is nontrivial. More-

over, to achieve the bound dO(
√
k) instead of nO(

√
k), we need a more involved

way of finding a set of dO(1) candidate vertices; unlike in the geometric setting,
enumerating vertices equidistant from three objects is not sufficient.

Armed with set N from Lemma 2.1, the packing problem can be solved in a
way analogous to the case of unit disks. We guess a pair (Q,Γ ) ∈ N that satisfies
the properties of Lemma 2.1. Then objects of Q as well as those intersecting Γ
can be removed from D. In other words, we have to solve the problem on graph
G − Γ , so we can focus on each connected component separately. However, we
know that each such component contains at most 2

3k objects of the solution.
Hence, for each component C of G− Γ containing at least one object of D and
for k′ = 1, . . . , � 2

3k�, we recursively solve the problem on C with parameter k′. A
similar reasoning as before shows that we can put together an optimum solution
for the original problem from optimum solutions for the subproblems. As at most
d components of G − Γ contain objects from D, we recursively solve at most
d · 2

3k subproblems for a given (Q,Γ ). Hence, the total number of subproblems

we solve is at most d · 2
3k · |N | = d · 2

3k · dO(
√
k) = dO(

√
k). The same analysis of

the recurrence shows that the running time of the algorithm is dO(
√
k) · nO(1).

Covering in Planar Graphs. Let us consider now the following analog of
covering points by unit disks: given an edge-weighted planar graph G, two sets
of vertices D and C, and integers k and r, the task is to find a set F ⊆ D of k
vertices that covers every vertex in C. Here p ∈ D covers q ∈ C if dist(p, q) ≤ r,
i.e., we can imagine that p represents a ball of radius r in the graph with center at
p. Unlike in the case of packing, D is a set of vertices, not a set of connected sets.

Let F be a hypothetical solution. We can construct the set N given by
Lemma 2.1 and guess a guarded separator (Q,Γ ) satisfying the three proper-
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ties. As we assume that Q is part of the solution, we remove from C every vertex
that is covered by some vertex in Q; let C′ be the remaining vertices. By the
third property of Lemma 2.1, we can assume that in the solution F , the set Γ
is fully contained in the Voronoi regions of the vertices in Q. This means that if
there is a p ∈ D \ Q and v ∈ Γ such that dist(p, v) < dist(p,Q), then p can be
removed from D. Let D′ be the remaining set of vertices. For every component
C of G− S and k′ = 1, . . . , � 2

3k�, we recursively solve the problem restricted to
C, that is, with the restrictions D′[C] and C′[C] of the object and client sets. It
is very important to point out that now (unlike how we did the packing problem)
we do not change the graph G in each call: we use the same graph G, only with
the restricted sets D′[C] and C′[C]. The reason is that restricting to the graph
G[C] can change the distances between vertices in C.

If kC is the minimum number of vertices in D′[C] that can cover C′[C], then
we know that there are |Q| + ∑

kC vertices in D that cover every vertex in C.
As in the case of covering with disks, we argue that if there is a solution, then
we can obtain a solution this way. The reasoning is basically the same: we just
replace the Euclidean metric with the graph metric, and use the fact that the
shortest path connecting any two points of D′ ∪C′ lying in different components

of G−Γ must intersect Γ . As in the case of packing, we have at most d· 23k·dO(
√
k)

subproblems and the running time dO(
√
k) · nO(1) follows the same way.

Nonuniform Radius. A natural generalization of the covering problem is when
every vertex p ∈ D is given a radius r(p) ≥ 0 and p covers a q ∈ C if dist(p, q) ≤
r(p). That is, now the vertices in D represent balls with possibly different radii.

There are two ways in which we can handle this more general problem. The
first is a simple graph-theoretic trick. For every p ∈ D, attach a path of length
R − r(p) to p, and replace p in D with the other end p′ of this path, where
R = maxp′∈D r(p′). Now a vertex q ∈ C is at distance at most r(p) from p iff it
is at distance at most R from p′, so we can solve the problem by applying the
algorithm for uniform radius R. The second way is somewhat more complicated,
but it seems to be the robust solution of the issue. We can namely work with the
additively weighted Voronoi diagram, that is, instead of defining the Voronoi re-
gions of F by comparing distances dist(p, v) for p ∈ F , we compare the weighted
distances dist(p, v)− r(p). It can be verified that the main arguments of the al-
gorithm, like convexity of the Voronoi regions or the separability of subproblems
in the covering setting, all go through after redoing the same calculations.

3 The General Problem

Suppose we are given an edge-weighted undirected graph G, a family of objects
D, and a family of clients C. Every object p ∈ D has three attributes. It has its
location loc(p), which is a nonempty subset of vertices of G such that G[loc(p)]
is connected. It has its cost λ(p), which is a real number (possibly negative).
Finally, it has its radius r(p), which is a nonnegative real value denoting the
strength of domination imposed by p. Every client q ∈ C has three attributes. It
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has its placement pla(q), which is a vertex of G where the client resides. It has
also its sensitivity s(q), which is a real value denoting how sensitive the client
is to domination from objects. Finally, it has prize π(q), which is a real value
denoting the prize for dominating the client. Note that there can be multiple
clients placed in the same vertex and the prizes may be negative.

We say that a subfamily F ⊆ D is normal if locations of objects from F are
disjoint, and moreover dist(loc(p1), loc(p2)) > |r(p1)−r(p2)| for all pairs (p1, p2)
of different objects in F . In particular, normality implies disjointness of locations
of objects from F , but if all the radii are equal, then the two notions coincide. We
say that a client q is covered by an object p if dist(pla(q), loc(p)) ≤ s(q) + r(p).

We are finally ready to define Disjoint Network Coverage. As input we
get an edge-weighted graph G embedded on a sphere, families of objects D and
clients C (described using their attributes), and an integer k. For a subfamily
Z ⊆ D, we define its revenue Π(Z) as the total sum of prizes of clients covered
by at least one object from Z minus the total sum of costs of objects from Z.
In the Disjoint Network Coverage problem, the task is to find a subfamily
Z ⊆ D such that the following holds: (1) family Z is normal and has cardinality
exactly k and (2) subject to the previous constraint, family Z maximizes the
revenue Π(Z). The main result of this paper is the following theorem.

Theorem 3.1 (Main result). Disjoint Network Coverage can be solved

in time |D|O(
√
k) · (|C| · |V (G)|)O(1).
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Abstract. We consider the problem of finding a minimum spanning tree
(MST) in a graph with uncertain edge weights given by open intervals on
the edges. The exact weight of an edge in the corresponding uncertainty
interval can be queried at a given cost. The task is to determine a possibly
adaptive query sequence of minimum total cost for finding an MST.
For uniform query cost, a deterministic algorithm with best possible
competitive ratio 2 is known [7].

We solve a long-standing open problem by showing that random-
ized query strategies can beat the best possible competitive ratio 2 of
deterministic algorithms. Our randomized algorithm achieves expected
competitive ratio 1 + 1/

√
2 ≈ 1.707. This result is based on novel struc-

tural insights to the problem enabling an interpretation as a generalized
online bipartite vertex cover problem. We also consider arbitrary, edge-
individual query costs and show how to obtain algorithms matching the
best known competitive ratios for uniform query cost. Moreover, we give
an optimal algorithm for the related problem of computing the exact
weight of an MST at minimum query cost. This algorithm is based on
an interesting relation between different algorithmic approaches using
the cycle-property and the cut-property characterizing MSTs. Finally,
we argue that all our results also hold for the more general setting of
matroids. All our algorithms run in polynomial time.

1 Introduction

Uncertainty in the input data is an omnipresent issue in most real world planning
processes. The quality of solutions for optimization problems with uncertain
input data crucially depends on the amount of uncertainty. More information,
or even knowing the exact data, allows for significantly improved solutions (see,
e. g., [16]). It is impossible to fully avoid uncertainty. Nevertheless, it is sometimes
possible to obtain exact data, but it may involve certain exploration cost in
time, money, energy, bandwidth, etc. A classical application are estimated user
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demands that can be specified by undertaking a user survey, but this is an
investment in terms of time and/or cost.

In this paper we are concerned with fundamental combinatorial optimization
problems with uncertain input data which can be explored at certain cost. We
mainly focus on the minimum spanning tree (MST) problem with uncertain edge
weights. In a given graph, we know initially for each edge only an interval con-
taining the edge weight. The true value is revealed upon request (we say query)
at a given cost. The task is to determine a minimum-cost adaptive sequence of
queries to find a minimum spanning tree. In the basic setting, we only need to
guarantee that the obtained spanning tree is minimal and do not need to com-
pute its actual weight, i. e., there might be tree edges whose weight we never
query, as they appear in an MST independent of their exact weight. We measure
the performance of an algorithm by competitive analysis. For any realization of
edge weights, we compare the query cost of an algorithm with the optimal query
cost. This is the cost for verifying an MST for a given fixed realization.

As our main result we develop a randomized algorithm that improves upon the
competitive ratio of any deterministic algorithm. This solves an important open
problem in this area (cf. [4]). We also present the first algorithms for non-uniform
query costs and generalize the results to uncertainty matroids, in both settings
matching the best known competitive ratios for MST with uniform query cost.

Related Work. The huge variety of research streams dealing with optimiza-
tion under uncertainty reflects its importance for theory and practice. The major
fields are online optimization [3], stochastic optimization [2], and robust opti-
mization [1], each modeling uncertain information in a different way. Typically
these models do not provide the possibility to influence when and how uncertain
data is revealed. Kahan [12] was probably the first to study algorithms for ex-
plicitly exploring uncertain information in the context of finding the maximum
and median of a set of values known to lie in given uncertainty intervals.

The MST problem with uncertain edge weights was introduced by Erlebach
et al. [7]. Their deterministic Algorithm U-RED achieves competitive ratio 2 for
uniform query cost when all uncertainty intervals are open intervals or trivial
(i. e., containing one point only). They also show that this ratio is optimal and
can be generalized to the problem of finding a minimum weight basis of a matroid
with uncertain weights [6]. According to Erlebach [4] it remained a major open
problem whether randomized algorithms can beat competitive ratio 2. The offline
problem of finding the optimal query set for given exact edge weights can be
solved optimally in polynomial time [5].

Further problems studied in this uncertainty model include finding the k-th
smallest value in a set of uncertainty intervals [9, 11, 12] (also with non-uniform
query cost [9]), caching problems in distributed databases [15], computing a
function value [13], and classical combinatorial optimization problems, such as
shortest path [8], finding the median [9], and the knapsack problem [10].

A generalized exploration model was proposed in [11]. The OP-OP model
reveals, upon an edge query, a refined open or trivial subinterval and might, thus,
require multiple queries per edge. They show that Algorithm U-RED [7] can be
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adopted and still achieves competitive ratio 2. The restriction to open intervals is
not crucial as slight model adaptions allow to deal with closed intervals [11,12].

While most works aim for minimal query sets to guarantee exact optimal
solutions, Olsten and Widom [15] initiate the study of trade-offs between the
number of queries and the precision of the found solution. They are concerned
with caching problems. Further work in this vein can be found in [8, 9, 13].

Our Contribution. After presenting some structural insights in Section 2, we
affirmatively answer the question if randomization helps to minimize query cost
in order to find an MST. In Section 3 we present a randomized algorithm with
tight competitive ratio 1.707, thus beating the best possible competitive ratio 2
of any deterministic algorithm. On the other hand, one can easily achieve a lower
bound of 1.5 for any randomized algorithm by considering a graph consisting of
two parallel edges with crossing uncertainty intervals, e.g., (1, 3) and (2, 4).

One key observation is that the minimum spanning tree problem under uncer-
tainty can be interpreted as a generalized online bipartite vertex cover problem.
A similar connection for a given realization of edge weights was established in [5]
for the related MST verification problem. In our case, new structural insights
allow for a preprocessing which suggests a unique bipartition of the edges for
all realizations simultaneously. Our algorithm borrows and refines ideas from a
recent water-filling algorithm for the online bipartite vertex cover problem [17].

In Section 4 we consider the more general non-uniform query cost model in
which each edge has an individual query cost. We observe that this problem can
be reformulated within a different uncertainty model, called OP-OP, presented
in [11]. The 2-competitive algorithm in [11] is a pseudo-polynomial 2-competitive
algorithm for our problem with non-uniform query cost. We design new direct
and polynomial-time algorithms that are 2-competitive and 1.707-competitive
in expectation. To that end, we employ a new strategy carefully balancing the
query cost of an edge and the number of cycles it occurs in.

In Section 5 we consider the problem of computing the exact value of an MST
under uncertain edge weights. While previous algorithms (U-RED [7], our algo-
rithms) aim for removing the largest-weight edge from a cycle, we now attempt
to detect minimum-weight edges separating the graph into two components. In-
terestingly, the latter cut-based algorithm can be shown to solve the original
problem (not computing the exact MST value) achieving the same best possible
competitive ratio of 2 as the cycle-based algorithm presented in [7].

Finally, in Section 6 we observe in a broader context that these two algorithms
can be interpreted as the best-in and worst-out greedy algorithm on matroids.

Due to space constraints some details are omitted and will be presented in a
full version.

2 Problem Definition, Notation and Structural Insights

Problem Description. Initially we are given a weighted, undirected, connected
graph G = (V,E), with |V | = n and |E| = m. Each edge e ∈ E comes with an
uncertainty interval Ae and possibly a query cost ce. The uncertainty interval Ae
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gives the only information about e’s unknown weight we ∈ Ae. We assume that
an interval is either trivial, i.e., Ae = [we, we], or, it is open Ae = (Le, Ue) with
lower limit Le and upper limit Ue > Le. A realization of edge weights (we)e∈E

for an uncertainty graph G is feasible, if all edge weights we, e ∈ E, lie in their
corresponding uncertainty intervals, i.e., we ∈ Ae.

The task is to find a minimum spanning tree (MST) in the uncertainty graph G
for an unknown, feasible realization of edge weights. To that end, we may query
any edge e ∈ E at cost ce and obtain the exact weight we. The goal is to design
an algorithm that constructs a sequence of queries that determines an MST at
minimum total query cost. A set of queries Q ⊆ E is feasible, if an MST can
be determined given the exact edge weights for edges in Q; that is, given we

for e ∈ Q, there is a spanning tree which is minimal for any realization of edge
weights we ∈ Ae for e ∈ E \ Q. We denote this problem as MST with edge
uncertainty and say MST under uncertainty for short.

Note that this problem does not necessarily involve computing the actual
MST weight. We refer to the problem variant in which the actual MST weight
must be computed as computing the MST weight under uncertainty.

We evaluate our algorithms by standard competitive analysis. An algorithm
is α-competitive if, for any realization (we)e∈E , the solution query cost is at most
α times the optimal query cost for this realization. The optimal query cost is
the minimum query cost that an offline algorithm must pay when it is given the
realization (and thus an MST) and has to verify an MST. The competitive ratio
of an algorithm Alg is the infimum over all α such that Alg is α-competitive.
For randomized algorithms we consider the expected query cost. Competitive
analysis addresses the problem complexity evolving from the uncertainty in the
input, possibly neglecting any computational complexity. However, we note that
all our algorithms run in polynomial time unless explicitly stated otherwise.

Structural Insight. We derive a structural property that allows to reduce MST
under uncertainty to a set of crucial instances. Given an uncertainty graph G =
(V,E), consider the following two MSTs for extreme realizations. Let TL ⊆ E be
an MST for the realization wL, in which all edge weights of edges with non-trivial
uncertainty interval are close to their lower limit, more precisely we = Le + ε
for infinitesimally small ε > 0. Symmetrically, let TU ⊆ E be an MST when the
same edges have weight we = Ue − ε.

Theorem 1. Given an uncertainty graph with trees TL and TU , any edge e ∈
TL \ TU with Le �= Ue is in every feasible query set for any feasible realization.

Proof. Given an uncertainty graph, let h be an edge in TL\TU with non-trivial
uncertainty interval. Assume all edges apart from h have been queried and thus
have fixed weight we. As edge h is in TL, we can choose its edge weight such
that edge h is in any MST. We set wh = Lh + ε and choose ε so small, that
all edges with at least the same weight in wL now have a strictly larger edge
weight. Symmetrically, if we choose the edge weight wh sufficiently close to the
upper limit Uh, no MST contains edge h. Consequently we cannot decide whether
edge h is in an MST without querying it. ��
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Any edge in the set TL\TU with non-trivial uncertainty area is in every feasible
query set and thus can be queried in a preprocessing step. Its existence increases
the size of every feasible query set and hence decreases the competitive ratio of an
instance.Thuswe restrict our analysis to instances forwhich the setTL\TU contains
only edges with Le = Ue, to find the worst-case competitive ratio of an algorithm.

Assumption 1 We restrict to uncertainty graphs for which all edges e ∈ TL\TU

have trivial uncertainty area, i.e. Le = Ue.

We call an edge in a cycle maximal, if any realization has an MST that does not
contain this edge. Symmetrically, an edge in a cut is minimal if every realization
has an MST containing it. Whenever we sort by increasing lower (decreasing
upper) limit, we break ties by preferring the smaller upper (greater lower) limit.

3 A Randomized Algorithm for MST under Uncertainty

We give an algorithm that solves MST under uncertainty with competitive ra-
tio 1 + 1/

√
2 ≈ 1.707 in expectation. As U-RED in [7], our algorithm is based

on Kruskal’s algorithm [14], that iteratively deletes maximal edges from cycles.
We decide how to resolve cycles, by maintaining an edge potential for each
edge e ∈ TL describing the probability to query it. The edge potentials are in-
creased in every cycle we consider throughout the algorithm. To determine the
increase, we carefully adapt a water-filling scheme presented in [17] for online
bipartite vertex cover. In this section we assume uniform query cost ce = 1,
e ∈ E, and explain the generalization to non-uniform query costs in Section 4.

Our algorithm Random is structured as follows: We maintain a tree Γ which
initially is set to TL and sort all remaining edges in R = E \ TL by increasing
lower limit. We choose a query bound b ∈ [0, 1] uniformly at random. Then we
iteratively add edges fi ∈ R to Γ , closing a unique cycle Ci in each iteration i.
Edges in Ci∩TL with uncertainty interval overlapping that of edge fi compose the
neighbor set X(fi). In each cycle we query edges until we identify a maximal edge.

To decide which edge to query in cycle Ci, we consider the potentials ye of
edges e ∈ Ci ∩ TL. In each iteration we evenly increase the potential of all
neighbors X(fi) of edge fi. We choose a threshold t(fi) as large as possible, such
that when we increase ye to max{t(fi), ye} for all neighbors e ∈ X(fi), the total
increase in the potential sums up to no more than a fixed parameter α whose
optimal value is determined later in the analysis.

Now we compare the edge potentials to the query bound b and decide if we
query the edges in X(fi) or edge fi. If these queries do not suffice to identify a
maximal edge, we repeatedly query the edge with the largest upper limit in the
cycle. A formal description of our algorithm is given in Algorithm 1.

Random computes a feasible query set, since it deletes in each cycle a maximal
edge. It terminates, as in each iteration of the while loop one edge is queried.
When all edges in a cycle have been queried, we always find a maximal edge.

For the analysis of Random we combine the Kruskal-MST structure of our
algorithm with Assumption 1. Similar to the analysis in [7] we derive two lemmas.
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Algorithm 1. Random
Input: An uncertainty graph G = (V,E) and a parameter α ∈ [0, 1].
Output: A feasible query set Q.
1. Determine tree TL, set the temporary graph Γ to TL, and initialize Q = ∅.
2. Index the edges in R = E\TL by increasing lower limit f1, . . . , fm−n+1.
3. For all edges e ∈ TL set the potential ye to 0.
4. Choose the query bound b ∈ [0, 1] uniformly at random.
5. for i = 1 to m− n+ 1 do
6. Add edge fi to the temporary graph Γ and let Ci be the unique cycle closed.
7. Let X(fi) be the set of edges g ∈ TL ∩ Ci with Ug > Lfi .
8. if no edge in the cycle Ci is maximal then
9. Maximize the threshold t(fi) ≤ 1 s.t.

∑
e∈X(fi)

max {0, t(fi)− ye} ≤ α.
10. Increase the edge potential ye = max {t(fi), ye} for all edges e ∈ X(fi).
11. if t(fi) ≤ b then
12. Add edge fi to the query set Q and query it.
13. else
14. Add all edges in X(fi) to query set Q and query them.
15. while no edge in the cycle Ci is maximal do
16. Query the edge e ∈ Ci with maximum Ue and add it to the query set Q.
17. Delete a maximal edge from Γ .
18. return The query set Q.

Lemma 1. Any feasible query set contains for every cycle-closing edge fi either
edge fi or its neighborhood X(fi).

Lemma 2. Any edge queried in Line 16 of Random is contained in any feasible
query set.

This concludes the preliminaries to prove the algorithm’s competitive ratio.

Theorem 2. For α = 1√
2
, Random has competitive ratio 1 + 1√

2
(≈ 1.707).

Proof. Consider a fixed realization and an optimal query set Q∗. We denote the
potential of an edge e ∈ TL at the start of iteration i by yie and use ye to denote the
edge potential after the last iteration of the algorithm. The increase of potentials
in the algorithm depends on the cycles that are closed and thus on the realization,
but not the queried edges. This means the edge potentials are chosen indepen-
dently of the query bound b in the algorithm. Edges queried in Line 16 are inQ∗ by
Lemma 2, therefore an edge e ∈ TL\Q∗ is queried with probability P (ye > b) = ye
and an edge fi ∈ R\Q∗ is queried with probabilityP (t(fi) ≤ b) = 1−t(fi). Hence,
we can bound the total expected query cost by

E [|Q|] ≤ |Q∗|+
∑

e∈TL\Q∗
ye +

∑

i:fi∈R\Q∗
(1− t(fi)) . (1)

For any edge e ∈ TL\Q∗, Lemma 1 states that all edges f ∈ R with e ∈ X(f)
must be in the optimal query set Q∗. The potential ye is the sum of the potential
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increases caused by edges f ∈ R with e ∈ X(f). As in each iteration of the
algorithm the total increase of potential is bounded by α, we have

∑

e∈TL\Q∗
ye =

∑

e∈TL\Q∗

∑

i:fi∈R∩Q∗,
e∈X(fi)

max
{
t(fi)− yie, 0

}

≤
∑

i:fi∈R∩Q∗

∑

e∈X(fi)

max
{
t(fi)− yie, 0

} ≤
∑

i:fi∈R∩Q∗
α = α · |R ∩Q∗|. (2)

For an edge fi ∈ R\Q∗ with t(fi) < 1 we distribute exactly potential α among its
neighbors X(fi) in Lines 9 and 10 of the algorithm. By Lemma 1, the neighbor
set X(fi) is part of the optimal query set Q∗. We consider the share of the
total potential increase each neighbor receives and distribute the term 1− t(fi)
(see (1)) according to these shares. Hence,

∑

i:fi∈R\Q∗
(1− t(fi)) =

∑

i:fi∈R\Q∗

1− t(fi)

α

∑

e∈X(fi)

max{t(fi)− yie, 0}

=
∑

e∈TL∩Q∗

∑

i:fi∈R\Q∗,
e∈X(fi)

1− t(fi)

α
(yi+1

e − yie) . (3)

In the last equation we have used yi+1
e = max{t(fi), yie}. We consider the inner

sum in (3) and bound the summation term from above by an integral from yie
to yi+1

e of the function 1−z
α . This yields a valid upper bound as the function is

decreasing in z and t(fi) = yi+1
e , unless yi+1

e − yie = 0. This yields

∑

i:fi∈R\Q∗,
e∈X(fi)

1− t(fi)

α
(yi+1

e − yie) ≤
∑

i:fi∈R\Q∗,
e∈X(fi)

∫ yi+1
e

yi
e

1− z

α
dz ≤

∫ 1

0

1− z

α
dz =

1

2α
.

Now we use this bound in Equation (3) and conclude
∑

i:fi∈R\Q∗
(1− t(fi)) ≤ 1

2α
· |TL ∩Q∗|.

Plugging this bound and (2) into (1) yields total query cost

E [|Q|] ≤ |Q∗|+ α · |R ∩Q∗|+ 1

2α
· |TL ∩Q∗| .

Choosing α = 1/
√
2 gives the desired competitive ratio 1 + 1/

√
2 for Random.

A simple example shows that this analysis is tight. Consider two parallel edges
f and g with overlapping uncertainty intervals. Let f be the edge with larger
upper limit. In Random we distribute potential α to g and potential 1 − α to
edge f . However, the realization with Lf < wg < Ug < wf has optimal query
set {f}, while {g} is not a feasible query set. The algorithm queries edge g first
with probability α and has query cost 2 in this case. Thus the algorithm has
expected competitive ratio 1 + α for this instance. ��
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4 Non-uniform Query Cost

Consider the problem MST under uncertainty in which each edge e ∈ E has
associated an individual query cost ce. W.l.o.g. we assume ce > 0, for all e ∈ E,
since querying all other edges only decreases the total query cost. We give a
new polynomial-time 2-competitive algorithm, which is deterministically best
possible. Furthermore, we adapt our algorithm Random (Sec. 3) to handle non-
uniform query costs achieving the same competitive ratio 1 + 1/

√
2.

Before showing the main results, we remark that the problem can be trans-
formed into the OP-OP model [11]. This model allows multiple queries per edge
and each query returns an open or trivial subinterval. Given an uncertainty
graph, we model the query cost ce, e ∈ E, in the OP-OP model as follows:
querying an edge e returns the same interval for ce − 1 queries and then the
exact edge weight. The 2-competitive algorithm for the OP-OP model [11] has
a running time depending on the query cost of our original problem.

Theorem 3. There is a pseudo-polynomial 2-competitive algorithm for MST
under uncertainty and non-uniform query cost.

4.1 Balancing Algorithm

Our polynomial-time algorithm Balance relies on the property that an MST
is cycle-free, similar to previous algorithms for uniform query cost. The key idea
is as follows: To decide which edge to query in a cycle, we use a value function
v : E → R≥0 that represents for an edge e ∈ E the cost difference between a
local solution containing e and one that does not. Initially we are locally only
aware of each edge individually and thus initialize its value at ce. We design a
balancing scheme that queries among two well-chosen edges the one with smaller
value and charges the value of the queried edge to the non-queried alternative.

More formally, in Balance (cf. Algorithm 2) we choose a tree TL and it-
eratively add the other edges in increasing order of lower limit to TL. In an
occurring cycle, we consider an edge f with maximal upper limit and an edge g
with overlapping uncertainty interval. We query the edge e ∈ {f, g} with the
smaller value v(e) and decrease the value of the non-queried edge by v(e). We
repeat this until we identify a maximal edge in the cycle.

Balance computes a feasible query set, since it deletes in each cycle a maxi-
mal edge. It terminates, as in each iteration of the while loop one edge is deleted
or queried. When all edges in a cycle are queried, we always find a maximal edge.

Now we consider a query set computed by Balance. For each edge e ∈ E, let
the set of its children C(e) ⊆ E be the set of edges that decreased v(e) in the al-
gorithm (cf. Line 14 and 16). Furthermore we define recursively the set of related
edges Se ⊆ E to be the union of edge e and the sets Sh of all children h ∈ C(e).

Every edge is the child of at most one edge, because when it contributes to
some value in Line 14 or 16, it is queried. Thus we can interpret a set of related
edges Se and its children-relation as a tree. Slightly abusing notation we speak of
a vertex cover VC (Se) of the set of related edges Se and mean a minimum weight
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Algorithm 2. Balance
Input: An uncertainty Graph U = (V, E) and a query cost function c : E → R≥0.
Output: A feasible query set Q.
1. Choose a tree TL and let the temporary graph Γ = TL.
2. Index the edges in E\TL by increasing lower limit e1, e2, . . . , em−n+1.
3. Set a value function v : E → R≥0 to ce for all edges.
4. for i = 1 to m− n+ 1 do
5. Add ei to Γ .
6. while Γ has a cycle C do
7. if C contains a maximal edge e then
8. Delete e from Γ .
9. else

10. Choose f ∈ C such that Uf = max{Ue|e ∈ C} and g ∈ C\f with Ug > Lf .
11. if Ag is trivial then
12. Query edge f and add f to Q.
13. else if v(f) ≥ v(g) then
14. Query edge g, add g to Q, and subtract v(g) from v(f).
15. else
16. Query edge f , add f to Q, and subtract v(f) from v(g).
17. return The query set Q.

vertex cover in the corresponding tree. We use VC e for a vertex cover containing
edge e and VC \e for one not containing e. Similar to Lemmas 1 and 2 we have:

Lemma 3. For every feasible query set Q and every set of related edges Se in
Balance, the set Q contains a vertex cover of Se.

Lemma 4. Every edge queried in Line 12 is in every feasible query set.

The following two lemmas establish a relation between the value v(e) of an
edge e ∈ E and the cost of its related edges Se. The proof is by induction.

Lemma 5. The value function after an execution of Balance fulfills for every
edge e ∈ E and its set of related edges Se:

∑

f∈VCe(Se)

cf = v(e) +
∑

f∈VC\e(Se)

cf .

Lemma 6. The value function after an execution of Balance fulfills for every
edge e ∈ E and its set of related edges Se:

2 ·
∑

f∈VC\e(Se)

cf = −v(e) +
∑

f∈Se

cf .

This concludes all preliminaries we need to prove the main theorem.

Theorem 4. Balance has a competitive ratio of 2 and this is best possible.
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Proof. For some realization, let Q∗ denote an optimal query set and Q a query
set computed by Balance. Let A be the set of all edges not in Q and let B be
the set of all edges queried in Line 12 of Balance. As any edge in Q is either
queried in Line 12, or the child of some other edge, Q is the disjoint union of
the sets Sa\{a}, a ∈ A, and the sets Sb, b ∈ B.

We bound the cost of a set Sa\{a}, a ∈ A, by applying Lemmas 6 and then 5
and concluding from Lemma 3 that Q∗ contains a vertex cover of Sa. Hence,

∑

e∈Sa\{a}
ce ≤ 2 ·

∑

e∈VC \a(Sa)

ce = 2 ·
∑

e∈VC (Sa)

ce ≤ 2 ·
∑

e∈Q∗∩Sa

ce.

By definition, every edge b ∈ B is queried in Line 12 and is thus by Lemma 4 an
element of Q∗. Applying Lemma 3 this means the cost of Q∗ ∩ Sb is at least the
of cost VC b(Sb). We use this fact after applying Lemmas 5 and 6 and deduce

∑

e∈Sb

ce = v(b) + 2 ·
∑

e∈VC \b(Sb)

ce ≤ 2 ·
∑

e∈VC b(Sb)

ce ≤ 2 ·
∑

e∈Q∗∩Sb

ce.

As the set Q is a disjoint union of all sets Sa\{a}, a ∈ A, and Sb, b ∈ B, this yields
the desired competitive ratio of 2. This factor is best possible for deterministic
algorithms, even in the special case of uniform query costs [7]. ��

4.2 Randomization for Non-uniform Query Cost

We generalize the algorithm Random (Sec. 3) to the non-uniform query cost
model. The adaptation is similar to one for the weighted online bipartite vertex
cover problem in [17]. For each edge fi ∈ R we distribute at most 1/α · cfi new
potential to its neighborhood X(fi). We replace Line 9 of Random by:

Maximize t(fi) ≤ 1 s.t.
∑

e∈X(fi)

ce max{t(fi)− ye), 0} ≤ cfi
α

holds. (4)

Using exactly the same analysis as presented in Section 3 this yields:

Theorem 5. For the non-uniform query cost setting Random adapted by (4)
achieves expected competitive ratio 1 + 1√

2
.

5 Computing the MST Weight under Uncertainty

In this section we give an optimal polynomial-time algorithm for computing the
exact MST weight in an uncertainty graph. As a key to our result, we algorithmi-
cally utilize the well-known characterization of MSTs through the cut property -
in contrast to previous algorithms for the MST under uncertainty problem which
relied on the cycle property (cf. Random, Balance, and U-RED [7]).

In Cut-Weight, we consider a tree TU and iteratively delete its edges in
decreasing order of upper limits. In each iteration, we consider the cut which
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Algorithm 3. Cut-Weight
Input: An uncertainty graph G = (V,E).
Output: A feasible query set Q.
1. Choose a tree TU and let the temporary graph Γ = TU . Initialize Q = ∅.
2. Index all edges of TU by decreasing upper limit e1, e2, ..., en−1.
3. for i = 1 to n− 1 do
4. Delete ei from Γ .
5. while Γ has two components do
6. Let S be the cut containing all edges in G between the two components of Γ .
7. if S contains a minimal edge e then
8. Query edge e and add it to Q.
9. Replace edge ei in Γ with e and contract edge e.

10. else
11. Choose g ∈ S such that Lg = min{Le|e ∈ S}, query it and add it to Q.
12. return The query set Q.

is defined in the original graph and query edges in increasing order of lower
limits until we identify a minimal edge. Then we exchange the tree edge with
the minimal edge and contract it. Applying this procedure, we only query edges
that are in any feasible query set.

Theorem 6. Cut-Weight determines the optimal query set and the exact
MST weight in polynomial time.

It may seem surprising that Cut-Weight solves the problem optimally whereas
cycle-based algorithms do not. However, there is an intuition. Cut-Weight
identifies a minimum weight edge in each cut which characterizes an MST. Infor-
mally speaking, it has a bias to query edges of the MST. In contrast, cycle-based
algorithms identify maximum weight edges in cycles, which are not in the tree.

6 Matroids under Uncertainty

We briefly consider a natural generalization of MST under uncertainty: given an
uncertainty matroid, i.e., a matroid with a ground set of elements with unknown
weights, find a minimum weight matroid base. Erlebach et al. [6] show that the
algorithm U-RED [7] can be applied to uncertainty matroids with uniform query
cost and yields again a competitive ratio of 2. Similarly, our algorithms Random
and Balance can be generalized to matroids with non-uniform cost, and Cut-
Weight can determine the total weight of a minimum weight matroid base.

Theorem 7. There are deterministic resp. randomized online algorithms with
competitive ratio 2 resp. 1.707 for finding a minimum weight matroid base in an
uncertainty matroid with non-uniform query cost.

Theorem 8. There is an algorithm that determines an optimal query set and
the exact weight of a min-weight matroid base in an uncertainty matroid.
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In a matroid with known weights we can find a minimum weight base greedily;
we distinguish between best-in greedy and worst-out greedy algorithms (cf. [14]).
They are dual in the sense that both solve the problem on a matroid and take
the role of the other on the corresponding dual matroid. The best-in greedy
algorithm adds elements in increasing order of weights as long as the system
stays independent. Merging ideas from our algorithm Random and U-RED2
in [6] yields a best-in greedy algorithm, Cycle-Alg, for uncertainty matroids.
A worst-out greedy algorithm deletes elements in decreasing order of weights
as long as a basis is contained. We can adapt our algorithm Cut-Weight in
Section 5 to a worst-out greedy algorithm, Cut-Alg, for uncertainty matroids.

Proposition 1. The algorithms Cycle-Alg and Cut-Alg are dual to each
other in the sense that they solve the same problem on a matroid and its dual.

Acknowledgments. We thank the anonymous referees for numerous helpful
comments that improved the presentation of the paper.
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Compressed Data Structures

for Dynamic Sequences

J. Ian Munro and Yakov Nekrich

David R. Cheriton School of Computer Science, University of Waterloo

Abstract. We consider the problem of storing a dynamic string S over
an alphabetΣ = { 1, . . . , σ } in compressed form. Our representation sup-
ports insertions and deletions of symbols and answers three fundamental
queries: access(i, S) returns the i-th symbol in S, ranka(i, S) counts how
many times a symbol a occurs among the first i positions in S, and
selecta(i, S) finds the position where a symbol a occurs for the i-th time.
We present the first fully-dynamic data structure for arbitrarily large
alphabets that achieves optimal query times for all three operations and
supports updates with worst-case time guarantees. Ours is also the first
fully-dynamic data structure that needs only nHk+o(n log σ) bits, where
Hk is the k-th order entropy and n is the string length. Moreover our
representation supports extraction of a substring S[i..i + �] in optimal
O(log n/ log log n+ �/ logσ n) time.

1 Introduction

In this paper we consider the problem of storing a sequence S of length n over
an alphabet Σ = { 1, . . . , σ } so that the following operations are supported:
- access(i, S) returns the i-th symbol, S[i], in S
- ranka(i, S) counts how many times a occurs among the first i symbols in S,
ranka(i, S) = |{ j |S[j] = a and 1 ≤ j ≤ i }|
-selecta(i, S) finds the position inS where a occurs for the i-th time, selecta(i, S) =
j where j is such that S[j] = a and ranka(j, S) = i.
This problem, also known as the rank-select problem, is one of the most funda-
mental problems in compressed data structures. There are many data structures
that store a string in compressed form and support three above defined op-
erations efficiently. There are static data structures that use nH0 + o(n log σ)
bits or even nHk + o(n log σ) bits for any k ≤ α logσ n − 1 and a positive
constant α < 11. Efficient static rank-select data structures are described in
[11,10,8,18,19,2,14,26,4]. We refer to [4] for most recent results and a discussion
of previous static solutions.

1 Henceforth H0(S) =
∑

a∈Σ
na
n

log n
na

, where na is the number of times a occurs in
S, is the 0-th order entropy and Hk(S) for k ≥ 0 is the k-th order empirical entropy.
Hk(S) can be defined as Hk(S) =

∑
A∈Σk |SA|H0(SA), where SA is the subsequence

of S generated by symbols that follow the k-tuple A; Hk(S) is the lower bound on
the average space usage of any statistical compression method that encodes each
symbol using the context of k previous symbols [22].

c© Springer-Verlag Berlin Heidelberg 2015
N. Bansal and I. Finocchi (Eds.): ESA 2015, LNCS 9294, pp. 891–902, 2015.
DOI: 10.1007/978-3-662-48350-3_74
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In many situations we must work with dynamic sequences. We must be able to
insert a new symbol at an arbitrary position i in the sequence or delete an arbi-
trary symbol S[i]. The design of dynamic solutions, that support insertions and
deletions of symbols, is an important problem. Fully-dynamic data structures for
rank-select problem were considered in [15,7,5,20,6,13,21,16]. Recently Navarro
and Nekrich [24,25] obtained a fully-dynamic solution with O(log n/ log logn)
times for rank, access, and select operations. By the lower bound of Fredman
and Saks [9], these query times are optimal. The data structure described in [24]
uses nH0(S) + o(n log σ) bits and supports updates in O(log n/ log logn) amor-
tized time. It is also possible to support updates in O(log n) worst-case time,
but then the time for answering a rank query grows to O(log n) [25]. All pre-
viously known fully-dynamic data structures need at least nH0(S) + o(n log σ)
bits. Two only exceptions are data structures of Jansson et al. [17] and Grossi
et al. [12] that keep S in nHk(S) + o(n log σ) bits, but do not support rank and
select queries. A more restrictive dynamic scenario was considered by Grossi
et al. [12] and Jansson et al. [17]: an update operation replaces a symbol S[i]
with another symbol so that the total length of S does not change, but inser-
tions of new symbols or deletions of symbols of S are not supported. Their data
structures need nHk(S)+o(n log σ) bits and answer access queries in O(1) time;
the data structure of Grossi et al. [12] also supports rank and select queries in
O(log n/ log logn) time.

In this paper we describe the first fully-dynamic data structure that keeps the
input sequence in nHk(S) + o(n log σ) bits; our representation supports rank,
select, and access queries in optimal O(log n/ log logn) time. Symbol insertions
and deletions at any position in S are supported in O(log n/ log log n) worst-case
time. We list our and previous results for fully-dynamic sequences in Table 1.
Our representation of dynamic sequences also supports the operation of extract-
ing a substring. Previous dynamic data structures require O(�) calls of access
operation in order to extract the substring of length �. Thus the previous best
fully-dynamic representation, described in [24] needs O(�(log n/ log logn)) time
to extract a substring S[i..i + � − 1] of S. Data structures described in [12]
and [17] support substring extraction in O(log n/ log logn+ �/ logσ n) time but
they either do not support rank and select queries or they support only updates
that replace a symbol with another symbol. Our dynamic data structure can
extract a substring in optimal O(log n/ log log n + �/ logσ n) time without any
restrictions on updates or queries.

In Section 2 we describe a data structure that uses O(log n) bits per symbol
and supports rank, select, and access in optimal O(log n/ log logn) time. This
data structure essentially maintains a linked list L containing all symbols of
S; using some auxiliary data structures on L, we can answer rank, select, and
access queries on S. In Section 3 we show how the space usage can be reduced
to O(log σ) bits per symbol. A compressed data structure that needs H0(S)
bits per symbol is presented in Section 4. The approach of Section 4 is based
on dividing S into a number of subsequences. We store a fully-dynamic data
structure for only one such subsequence of appropriately small size. Updates on



Compressed Data Structures for Dynamic Sequences 893

Table 1. Previous and New Results for Fully-Dynamic Sequences. The rightmost col-
umn indicates whether updates are amortized (A) or worst-case (W). We use notation
λ = log n/ log log n in this table.

Ref. Space Rank Select Access Insert/
Delete

[14] nH0(S) + o(n log σ) O((1 + log σ/ log log n)λ) O((1 + log σ/ log log n)λ) W

[26] nH0(S) + o(n log σ) O((log σ/ log log n)λ) O((log σ/ log log n)λ) W

[24] nH0(S) + o(n log σ) O(λ) O(λ) O(λ) O(λ) A

[24] nH0(S) + o(n log σ) O(log n) O(λ) O(λ) O(log n) W

[17] nHk + o(n log σ) - - O(λ) O(λ) W

[12] nHk + o(n log σ) - - O(λ) O(λ) W

New nHk + o(n log σ) O(λ) O(λ) O(λ) O(λ) W

other subsequences are supported by periodic re-building. In Section 5 we show
that the space usage can be reduced to nHk(S) + o(n log σ).

2 O(n logn)-Bit Data Structure

We start by describing a data structure that uses O(log n) bits per symbol.

Lemma 1. A dynamic string S[1,m] for m ≤ n over alphabet Σ = { 1, . . . , σ }
can be stored in a data structure that needs O(m logm) bits, and answers queries
access, rank and select in time O(logm/ log logn). Insertions and deletions of
symbols are supported in O(logm/ log logn) time. The data structure uses a
universal look-up table of size o(nε) for an arbitrarily small ε > 0.

Proof : We keep elements of S in a list L. Each entry of L contains a symbol
a ∈ Σ. For every a ∈ Σ, we also maintain the list La. Entries of La correspond
to those entries of L that contain the symbol a. We maintain data structures
D(L) and D(La) that enable us to find the number of entries in L (or in some
list La) that precede an entry e ∈ L (resp. e ∈ La); we can also find the i-th
entry e in La or L using D(L·). We will prove in Lemma 4 that D(L) needs
O(m logm) bits and supports queries and updates on L in O(logm/ log logn)
time.

We can answer a query selecta(i, S) by finding the i-th entry ei in La, fol-
lowing the pointer from ei to the corresponding entry e′ ∈ L, and counting
the number v of entries preceding e′ in L. Clearly2, selecta(i, S) = v. To an-
swer a query ranka(i, S), we first find the i-th entry e in L. Then we find the
last entry ea that precedes e and contains a. Such queries can be answered in
O((log log σ)2 log logm) time as will be shown in the full version of this pa-
per [23]. If e′a is the entry that corresponds to ea in La, then ranka(i, S) = v,
where v is the number of entries that precede e′a in La. �
2 To simplify the description, we assume that a list entry precedes itself.
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3 O(n log σ)-Bit Data Structure

Lemma 2. A dynamic string S[1, n] over alphabet Σ = { 1, . . . , σ } can be stored
in a data structure using O(n log σ) bits, and supporting queries access, rank
and select in time O(log n/ log logn). Insertions and deletions of symbols are
supported in O(log n/ log logn) time.

Proof : If σ = logO(1) n, then the data structures described in [26] and [14] provide

desired query and update times. The case σ = logΩ(1) n is considered below.
We show how the problem on a sequence of size n can be reduced to the

same problem on a sequence of size O(σ logn). The sequence S is divided into
chunks. We can maintain the size ni of each chunk Ci, so that ni = O(σ logn)
and the total number of chunks is bounded by O(n/σ). We will show how
to maintain chunks in the full version of this paper [23]. For each a ∈ Σ,
we keep a global bit sequence Ba. Ba = 1d101d20 . . . 1di0 . . . where di is the
number of times a occurs in the chunk Ci. We also keep a bit sequence
Bt = 1n101n20 . . . 1ni0 . . .. We can compute ranka(i, S) = v1 + v2 where v1 =
rank1(select0(j1, Ba), Ba), j1 = rank0(select1(i, Bt), Bt), v2 = ranka(i1, Ci2),
i2 = j1+1 and i1 = i−rank1(select0(j1, Bt), Bt). To answer a query selecta(i, S),
we first find the index i2 of the chunk Ci2 that contains the i-th occurrence of
i, i2 = rank0(select1(i, Ba), Ba) + 1. Then we find va = selecta(Ci2 , i − i1) for
i1 = rank1(select0(i2 − 1, Ba), Ba); va identifies the position of the (i − i1)-
th occurrence of a in the chunk Ci2 , where i1 denotes the number of a’s in
the first i2 − 1 chunks. Finally we compute selecta(i, S) = va + sp where
sp = rank1(select0(i2 − 1, Bt), Bt) is the total number of symbols in the first
i2 − 1 chunks. We can support queries and updates on Bt and on each Ba in
O(log n/ log logn) time [26]. By Lemma 1, queries and updates on Ci are sup-
ported in O(log σ/ log logn) time. Hence, the query and update times of our data
structure are O(log n/ log logn).

Bt can be kept in O((n/σ) log σ) bits [26]. The array Ba uses O(na log
n
na

)
bits, where na is the number of times a occurs in S. Hence, all Ba and Bt use
O((n/σ) log σ+

∑
a na log

n
na

) = O(n log σ) bits. By Lemma 1, we can also keep
the data structure for each chunk in O(log σ + log logn) = O(log σ) bits per
symbol. �

4 Compressed Data Structure

In this Section we describe a data structure that uses H0(S) bits per sym-
bol. We start by considering the case when the alphabet size is not too large,
σ ≤ n/ log3 n. The sequence S is split into subsequences S0, S1, . . . Sr for
r = O(log n/(log logn)). The subsequence S0 is stored in O(log σ) bits per ele-
ment as described in Lemma 2. Subsequences S1, . . . Sr are substrings of S \ S0.
S1, . . . Sr are stored in compressed static data structures. New elements are al-
ways inserted into the subsequence S0. Deletions from Si, i ≥ 1, are implemented
as lazy deletions: an element in Si is marked as deleted. We guarantee that the



Compressed Data Structures for Dynamic Sequences 895

number of elements that are marked as deleted is bounded by O(n/r). If a sub-
sequence Si contains many elements marked as deleted, it is re-built: we create a
new instance of Si that does not contain deleted symbols. If a symbol sequence
S0 contains too many elements, we insert the elements of S0 into Si and re-build
Si for i ≥ 1. Processes of constructing a new subsequence and re-building a
subsequence with too many obsolete elements are run in the background.

The bit sequence M identifies elements in S that are marked as deleted:
M [j] = 0 if and only if S[j] is marked as deleted. The bit sequenceR distinguishes
between the elements of S0 and elements of Si, i ≥ 1: R[j] = 0 if the j-th element
of S is kept in S0 and R[j] = 1 otherwise.

We further need auxiliary data structures for answering select queries. We
start by defining an auxiliary subsequence S̃ that contains copies of elements
already stored in other subsequences. Consider a subsequence S obtained by
merging subsequences S1, . . ., Sr (in other words, S is obtained from S by
removing elements of S0). Let S′

a be the subsequence obtained by selecting
(roughly) every r-th occurrence of a symbol a in S. The subsequence S′ is
obtained by merging subsequences S′

a for all a ∈ Σ. Finally S̃ is obtained
by merging S′ and S0. We support queries select′a(i, S̃) on S̃, defined as fol-
lows: select′a(i, S̃) = j such that (i) a copy of S[j] is stored in S̃ and (ii) if
selecta(i, S) = j1, then j ≤ j1 and copies of elements S[j+1], S[j+2], . . ., S[j1]
are not stored in S̃. That is, select′a(i, S̃) returns the largest index j, such that
S[j] precedes S[selecta(i, S)] and S[j] is also stored in S̃. The data structure for
S̃ delivers approximate answers for select queries; we will show later how the
answer to a query selecta(i, S) can be found quickly if the answer to select′a(i, S̃)
is known. Queries select′(i, S̃) can be implemented using standard operations
on a bit sequence of size O((n/r) log logn) bits; for completeness, we provide
a description in the full version of this paper [23]. We remark that S and S′

are introduced to define S̃; these two subsequences are not stored in our data
structure. The bit sequence Ẽ indicates what symbols of S are also stored in S̃:
Ẽ[i] = 1 if a copy of S[i] is stored in S̃ and Ẽ[i] = 0 otherwise. The bit sequence
B̃ indicates what symbols in S̃ are actually from S0: B̃[i] = 0 iff S̃[i] is stored
in the subsequence S0. Besides, we keep bit sequences Da for each a ∈ Σ. Bits
of Da correspond to occurrences of a in S. If the l-th occurrence of a in S is
marked as deleted, then Da[l] = 0. All other bits in Da are set to 1.

We provide the list of subsequences in Table 2. Each subsequence is augmented
with a data structure that supports rank and select queries. For simplicity we
will not distinguish between a subsequence and a data structure on its elements.
If a subsequence supports updates, then either (i) this is a subsequence over a
small alphabet or (ii) this subsequence contains a small number of elements. In
case (i), the subsequence is over an alphabet of constant size; by [26,14] queries
on such subsequences are answered in O(log n/ log logn) time. In case (ii) the
subsequence contains O(n/r) elements; data structures on such subsequences are
implemented as in Lemma 2. All auxiliary subsequences, except for S̃, are of type
(i). Subsequence S0 and an auxiliary subsequence S̃ are of type (ii). Subsequences
Si for i ≥ 1 are static, i.e. they are stored in data structures that do not support
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Table 2. Auxiliary subsequences for answering rank and select queries. A subsequence
is dynamic if both insertions and deletions are supported. If a subsequence is static,
then updates are not supported. Static subsequences are re-built when they contain
too many obsolete elements.

Name Purpose Alph. Dynamic/
Size Static

S0 Subsequence of S - Dynamic
Si, 1 ≤ i ≤ r Subsequence of S - Static
M Positions of symbols in Si, i ≥ 1, that are marked as deleted const Dynamic
R Positions of symbols from S0 in S const Dynamic

S̃ Delivers an approximate answer to select queries - Dynamic

S′
a, a ∈ Σ Auxiliary sequences for S̃ - Dynamic

Ẽ Positions of symbols from S̃ in S const Dynamic

B̃ Positions of symbols from S0 in S̃ const Dynamic
Da Positions of symbols marked as deleted among all a’s const Dynamic

updates. We re-build these subsequences when they contain too many obsolete
elements. Thus dynamic subsequences support rank, select, access, and updates
inO(log n/ log log n) time. It is known that we can implement all basic operations
on a static sequence in O(log n/ log logn) time3. Our data structures on static
subsequences are based on the approach of Barbay et al. [3]; however, our data
structure can be constructed faster when the alphabet size is small and supports
a substring extraction operation. A full description will be given in the full
version of this paper [23]. We will show below that queries on S are answered by
O(1) queries on dynamic subsequences and O(1) queries on static subsequences.

We also maintain arrays Size[] and Counta[] for every a ∈ Σ. For any 1 ≤
i ≤ r, Size[i] is the number of symbols in Si and Counta[i] specifies how many
times a occurs in Si. We keep a data structure that computes the sum of the
first i ≤ r entries in Size[i] and find the largest j such that

∑j
t=1 Size[t] ≤ q for

any integer q. The same kinds of queries are also supported on Counta[]. Arrays
Size[] and Counta[] use O(σ · r · logn) = O(n/ log n) bits.

Queries. To answer a query ranka(i, S), we start by computing i′ = select1(i,M);
i′ is the position of the i-th element that is not marked as deleted. Then we find
i0 = rank0(i

′, R) and i1 = rank1(i
′, R). By definition of R, i0 is the number

of elements of S[1..i] that are stored in the subsequence S0. The number of a’s
in S0[1..i0] is computed as c1 = ranka(i0, S0). The number of a’s in S1, . . . , Sr

before the position i′ is found as follows. We identify the index t, such that∑t
j=1 Size[j] < i1 ≤ ∑t+1

j=1 Size[j]. Then we compute how many times a oc-

curred in S1, . . . , St, c2,1 =
∑t

j=1 Counta[j], and in the relevant prefix of St+1,

c2,2 = ranka(i1 −
∑t

j=1 Size[j], St+1). Let c2 = rank1(c2,1 + c2,2, Da). Thus c2
is the number of symbols ’a’ that are not marked as deleted among the first
c2,1 + c2,2 occurrences of a in S \ S0. Hence ranka(i, S) = c1 + c2.

3 Static data structures also achieve significantly faster query times, but this is not
necessary for our implementation.
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To answer a query selecta(i, S), we first obtain an approximate answer by
asking a query select′a(i, S̃). Let i′ = select1(i,Da) be the rank of the i-th
symbol a that is not marked as deleted. Let l0 = select′a(i′, S̃). We find l1 =
rank1(l0, Ẽ) and l2 = selecta(ranka(l1, S̃) + 1, S̃). Let first = select1(l1, Ẽ) and
last = select1(l2, Ẽ) be the positions of S̃[l1] and S̃[l2] in S. By definition of
select′, ranka(first, S) ≤ i and ranka(last, S) > i. If ranka(first, S) = i, then
obviously selecta(i, S) = first. Otherwise the answer to selecta(i, S) is an integer
between first and last. By definition of S̃, the substring S[first], S[first+ 1],
. . ., S[last] contains at most r occurrences of a. All these occurrences are stored in
subsequences Sj for j ≥ 1. We compute i0 = ranka(rank0(first, R), S0) and i1 =

i′ − i0. We find the index t such that
∑t−1

j=1 Counta[j] < i1 ≤ ∑t
j=1 Counta[j].

Then v1 = selecta(i1 − ∑t−1
j=1 Counta[j], St) is the position of S[selecta(i, S)]

in St. We find its index in S by computing v2 = v1 +
∑t−1

j=1 Size[j] and v3 =
select1(v2, R). Finally selecta(i, S) = rank1(v3,M).

Answering an access query is straightforward. We determine whether S[i] is
stored in S0 or in some Sj for j ≥ 1 using R. Let i′ = select1(i,M). If R[i′] = 0
and S[i] is stored in S0, then S[i] = S0[rank0(i

′, R)]. If R[i′] = 1, we compute i1 =

rank1(i
′, R) and find the index j such that

∑j−1
t=1 Size[t] < i1 ≤ ∑j

t=1 Size[t].

The answer to access(i, S) is S[i] = Sj [i2] for i2 = i1 −
∑j−1

t=1 Size[t].

Space Usage. The redundancy of our data structure can be estimated as fol-
lows. The space needed to keep the symbols that are marked as deleted in sub-
sequences Sj is bounded by O((n/r) log σ). S0 also takes O((n/r) log σ) bits.

The bit sequences R and M need O((n/r) log r) = o(n) bits; B̃, Ẽ also use
O((n/r) log r) bits. Each bit sequence Da can be maintained in O(n′

a log(na/n
′
a))

bits where na is the total number of symbols a in S and n′
a is the number

of symbols a that are marked as deleted. All Da take O(
∑

n′
a log

na

n′
a
); the

last expression can be bounded by O((n/r)(log r + log σ)). The subsequence
S̃ can be stored in O((n/r) log σ) bits. Thus all auxiliary subsequences use
O((n/r)(log σ + log r)) = o(n log σ) bits. Data structures for subsequences Si,
r ≥ i ≥ 1, use

∑r
i=1(niHk(Si) + o(ni log σ)) = nHk(S \ S0) + o(n log σ) bits for

any k = o(logσ n), where ni is the number of symbols in Si. SinceHk(S) ≤ H0(S)
for k ≥ 0, all subsequences Si are stored in nH0(S) + o(n log σ) bits.

Updates. When a new symbol is inserted, we insert it into the subsequence S0 and
update the sequence R. The data structure for S̃ is also updated accordingly. We
also insert a 1-bit at the appropriate position of bit sequences M and Da where
a is the inserted symbol. Deletions from S0 are symmetric. When an element
is deleted from Si, i ≥ 1, we replace the 1-bit corresponding to this element in
M with a 0-bit. We also change the appropriate bit in Da to 0, where a is the
symbol that was deleted from Si.

We must guarantee that the number of elements in S0 is bounded by O(n/r);
the number of elements marked as deleted must be also bounded by O(n/r).
Hence we must re-build the data structure when the number of symbols in S0

or the number of deleted symbols is too big. Since we aim for updates with
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worst-case bounds, the cost of re-building is distributed among O(n/r) updates.
We run two processes in the background. The first background process moves
elements of S0 into subsequences Si. The second process purges sequences S1,
. . ., Sr and removes all symbols marked as deleted from these sequences. Details
are given in the full version of this paper.

We assumed in the description of updates that logn is fixed. In the general
case we need additional background processes that increase or decrease sizes
of subsequences when n becomes too large or too small. These processes are
organized in a standard way. Thus we obtain the following result

Lemma 3. A dynamic string S[1, n] over alphabet Σ = { 1, . . . , σ } for σ <
n/ log3 n can be stored in a data structure using nH0+o(n log σ)+O(n log logn)
bits, and supporting queries access, rank and select in time O(log n/ log logn).
Insertions and deletions of symbols are supported in O(log n/ log logn) time.

In the full version of this paper [23] we show that the space usage of the above
described data structure can be reduced to nHk + o(n log σ) bits. We also show
how the result of Lemma 3 can be extended to the case when σ ≥ n/ log3 n. The
full version also contains the description of the static data structure and presents
the procedure for extracting a substring S[i..i+ �] of S in O(log n/ log logn+ �)
time.

4.1 Compressed Data Structure for σ > n/ log3 n

If the alphabet size σ is almost linear, we cannot afford storing the arrays
Counta[]. Instead, we keep a bit sequence BCounta for each alphabet sym-
bol a. Let sa,i denote the number of a’s occurrences in the subsequence Si

and sa =
∑r

i=1 sa,i. Then BCounta = 1sa,101sa,20 . . . 1sa,r . If sa < r log2 n,we
can keep BCounta in O(sa log

r+sa
sa

) = O(sa log logn) bits. If sa > r log2 n,

we can keep BCounta in O(r log r+sa
sa

) = O((sa/ log
2 n) logn) = O(sa/ logn)

bits. Using BCounta, we can find for any q the subsequence Sj , such that
Counta[j] < q ≤ Counta[j + 1] in O(log n/ log logn) time.

We also keep an effective alphabet4 for each Sj . We keep a bit vectorMapj[] of
size σ, such that Mapj[a] = 1 if and only if a occurs in Sj . Using Mapj[], we can
map a symbol a ∈ [1, n] to a symbolmapj(a) = rank1(a,Mapj) so thatmapj(a) ∈
[1, |Sj|] for any a that occurs inSj . LetΣj = {mapj(a) | a occurs in Sj }. For every
mapj(a) we can find the corresponding symbol a using a select query on Mapj .
We keep a static data structure for each sequence Sj overΣj. Queries and updates
are supported in the same way as in Lemma 3. Combining the result of this sub-
section and Lemma 3, we obtain the data structure for an arbitrary alphabet size.

Theorem 1. A dynamic string S[1, n] over alphabet Σ = { 1, . . . , σ } can be
stored in a data structure using nH0 + o(n log σ) bits, and supporting queries

4 An alphabet for Sj is effective if it contains only symbols that actually occurred in
Sj .
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access, rank and select in time O(log n/ log logn). Insertions and deletions of
symbols are supported in O(log n/ log logn) time.

5 Compressed Data Structure II

By slightly modifying the data structure of Theorem 1 we can reduce the space
usage to essentially Hk(S) bit per symbol for any k = o(logσ n) simultane-
ously. First, we observe that any sub-sequence Si for i ≥ 1 is kept in a data
structures that consumes Hk(Si) + o(|Si| log σ) bits of space. Thus all Si use∑r

i=1(niHk(Si)+o(ni log σ)) = nHk(S\S0)+o(n logσ) bits. It can be shown that

nHk(S\S0)+o(ni log σ)) = nHk(S\S0)+O(n logn
r )+o(n logσ) bits; for complete-

ness, we prove this bound in the full version [23]. Since r = O(log n/ log logn),
the data structure of Theorem 1 uses nHk + o(n log σ) +O(n log logn) bits.

In order to get rid of the O(n log logn) additive term, we use a different
static data structure; our static data structure is described in the full version.
As before, the data structure for a sequence Si uses |Si|Hk + o(|Si| log σ) bits.
But we also show in the full version that our static data structure can be con-
structed in O(|Si|/ log1/6 n) time if the alphabet size σ is sufficiently small,

σ ≤ 2log
1/3 n. The space usage nHk(S) + o(n log σ) can be achieved by ap-

propriate change of the parameter r. If σ > 2log
1/3 n, we use the data struc-

ture of Theorem 1. As explained above, the space usage is nHk + o(n log σ) +

O(n log logn) = nHk + o(n log σ). If σ ≤ 2log
1/3 n we also use the data struc-

ture of Theorem 1, but we set r = O(log n log log n). The data structure needs
nHk(S) + O(n/ log logn) + o(n log σ) = nHk(S) + o(n log σ) bits. Since we can

re-build a static data structure for a sequence Si in O(|Si| log1/6 n) time, back-
ground processes incur an additional cost of O(log n/ log logn). Hence the cost
of updates does not increase.

6 Substring Extraction

Our representation of compressed sequences also enables us to retrieve a sub-
string S[i..i + � − 1] of S. We can retrieve a substring of S by extracting a
substring of S0 and a substring of some Si for i ≥ 1 and merging the result. A
detailed description is provided in the full version of this paper [23]. Our result
can be summed up as follows.

Theorem 2. A dynamic string S[1, n] over alphabet Σ = { 1, . . . , σ } can be
stored in a data structure using nHk + o(n log σ) bits, and supporting queries
access, rank and select in time O(log n/ log logn). Insertions and deletions of
symbols are supported in O(logn/ log logn) time. A substring of S can be ex-
tracted in O(log n/ log log n+ �/ logσ n) time, where � denotes the length of the
substring.
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2007. LNCS, vol. 4596, pp. 521–532. Springer, Heidelberg (2007)

14. He, M., Munro, J.I.: Succinct representations of dynamic strings. In: Chavez, E.,
Lonardi, S. (eds.) SPIRE 2010. LNCS, vol. 6393, pp. 334–346. Springer, Heidelberg
(2010)

15. Hon, W.-K., Sadakane, K., Sung, W.-K.: Succinct data structures for searchable
partial sums. In: Ibaraki, T., Katoh, N., Ono, H. (eds.) ISAAC 2003. LNCS,
vol. 2906, pp. 505–516. Springer, Heidelberg (2003)

16. Hon, W.-K., Sadakane, K., Sung, W.-K.: Succinct data structures for searchable
partial sums with optimal worst-case performance. Theoretical Computer Sci-
ence 412(39), 5176–5186 (2011)

17. Jansson, J., Sadakane, K., Sung, W.-K.: CRAM: Compressed random access mem-
ory. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012,
Part I. LNCS, vol. 7391, pp. 510–521. Springer, Heidelberg (2012)

18. Lee, S., Park, K.: Dynamic rank-select structures with applications to run-length
encoded texts. In: Ma, B., Zhang, K. (eds.) CPM 2007. LNCS, vol. 4580, pp. 95–
106. Springer, Heidelberg (2007)



Compressed Data Structures for Dynamic Sequences 901

19. Lee, S., Park, K.: Dynamic rank/select structures with applications to run-length
encoded texts. Theoretical Computer Science 410(43), 4402–4413 (2009)
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A.1 Prefix Sum Queries on a List

In this section we describe a data structure on a list L that is used in the proof
of Lemma 1 in Section 2.

Lemma 4. We can keep a dynamic list L in an O(m logm)-bit data structure
D(L), where m is the number of entries in L. D(L) can find the i-th entry in L
for 1 ≤ i ≤ m in O(logm/ log logn) time. D(L) can also compute the number of
entries before a given element e ∈ L in O(logm/ log logn) time. Insertions and
deletions are also supported in O(logm/ log logn) time.

Proof : D(L) is implemented as a balanced tree with node degree Θ(logε n). In
every internal node we keep a data structure Pref (u); Pref (u) contains the total
number n(ui) of elements stored below every child ui of u. Pref (u) supports
prefix sum queries (i.e., computes

∑t
i=1 n(ui) for any t) and finds the largest j,

such that
∑j

i=1 n(ui) ≤ q for any integer q. We implement Pref (u) as in Lemma
2.2 in [27] so that both types of queries are supported in O(1) time. Pref (u)
uses linear space (in the number of its elements) and can be updated in O(1)
time. Pref (u) needs a look-up table of size o(nε). To find the i-th entry in a list,
we traverse the root-to-leaf path; in each visited node u we find the child that
contains the i-th entry using Pref (u). To find the number of entries preceding a
given entry e in a list, we traverse the leaf-to-root path π that starts in the leaf
containing e. In each visited node u we answer a query to Pref (u): if the j-th

child uj of u is on π, then we compute s(u) =
∑j−1

i=1 n(ui) using Pref (u). The
total number of entries to the left of e is the sum of s(u) for all nodes u on π.
Since we spend O(1) time in each visited node, both types of queries are answered
in O(1) time. An update operation leads to O(logm/ log logn) updates of data
structures Pref (u). The tree can be re-balanced using the weight-balanced B-
tree [1], so that its height is always bounded by O(logm/ log logn). �
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Abstract. The geometric hitting set problem is one of the basic geometric com-
binatorial optimization problems: given a set P of points, and a set D of geometric
objects in the plane, the goal is to compute a small-sized subset of P that hits all
objects inD. In 1994, Bronniman and Goodrich [6] made an important connection
of this problem to the size of fundamental combinatorial structures called ε-nets,
showing that small-sized ε-nets imply approximation algorithms with correspond-
ingly small approximation ratios. Finally, recently Agarwal-Pan [5] showed that
their scheme can be implemented in near-linear time for disks in the plane.

This current state-of-the-art is lacking in three ways. First, the constants in
current ε-net constructions are large, so the approximation factor ends up being
more than 40. Second, the algorithm uses sophisticated geometric tools and data
structures with large resulting constants. Third, these have resulted in a lack of
available software for fast computation of small hitting-sets. In this paper, we
make progress on all three of these barriers: i) we prove improved bounds on
sizes of ε-nets, ii) design hitting-set algorithms without the use of these data-
structures and finally, iii) present dnet, a public source-code module that incor-
porates both of these improvements to compute small-sized hitting sets and ε-nets
efficiently in practice.

Keywords: Geometric Hitting Sets, Approximation Algorithms, Computational
Geometry.

1 Introduction

The minimum hitting set problem is one of the most fundamental combinatorial opti-
mization problems: given a range space (P,D) consisting of a set P and a set D of
subsets of P called the ranges, the task is to compute the smallest subset Q ⊆ P that
has a non-empty intersection with each of the ranges in D. This problem is strongly
NP-hard. If there are no restrictions on the set system D, then it is known that it is NP-
hard to approximate the minimum hitting set within a logarithmic factor of the optimal.
The problem is NP-complete even for the case where each range has exactly two points
since this problem is equivalent to the vertex cover problem which is known to be NP-
complete. A natural occurrence of the hitting set problem occurs when the range space
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D is derived from geometry – e.g., given a set P of n points in R
2, and a set D of m tri-

angles containing points of P , compute the minimum-sized subset of P that hits all the
triangles in D. Unfortunately, for most natural geometric range spaces, computing the
minimum-sized hitting set remains NP-hard. For example, even the (relatively) simple
case where D is a set of unit disks in the plane is strongly NP-hard [10].

Given a range space (P,D), a positive measure μ on P (e.g., the counting measure),
and a parameter ε > 0, an ε-net is a subset S ⊆ P such that D ∩ S �= ∅ for all D ∈ D
with μ(D ∩ P ) ≥ ε · μ(P ). The ε-net theorem [9] implies that for a large family of
geometric hitting set systems (e.g., disks, half-spaces, k-sided polytopes, r-admissible
set of regions in R

d) there exists an ε-net of size O(d/ε log d/ε). For certain range
spaces, one can even show the existence of ε-nets of size O(1/ε) – an important case
being for disks in R

2 [12]. In 1994, Bronnimann and Goodrich [6] proved the following
interesting connection between the hitting-set problem, and ε-nets: if one can compute
an ε-net of size c/ε for the ε-net problem for (P,D) in polynomial time, then one can
compute a hitting set of size at most c · OPT for (P,D), where OPT is the size of
the optimal (smallest) hitting set, in polynomial time. Until very recently, the best
algorithms based on this observation, referred to as rounding techniques, had running
times of Ω(n2), and it had been a long-standing open problem to compute a O(1)-
approximation to the hitting-set problem for disks in the plane in near-linear time. In
a recent break-through, Agarwal-Pan [5] presented the first near-linear algorithm for
computing O(1)-approximations for hitting sets for disks.

The limitation of the rounding technique – that it cannot give a PTAS – was over-
come using an entirely different technique: local search [11,4]. It has been shown that
the local search algorithm for the hitting set problem for disks in the plane gives a
PTAS. Unfortunately the running time of the naive algorithm to compute a (1 + ε)-
approximation is O(nO(1/ε2)). Based on local search, an Õ(n2.34) time algorithm was
proposed [7] yielding an (8 + ε)-approximation.

Our Contributions

All approaches towards approximating geometric hitting sets for disks have to be eval-
uated on the questions of computational efficiency as well as approximation quality.
In spite of all the progress, there remains a large gap – mainly due to the ugly trade-
offs between running times and approximation factors. The breakthrough algorithm of
Agarwal-Pan [5] suffers from two main problems:

– It rounds via ε-nets to design a Õ(n)-time algorithm, but the constant in the approx-
imation depends on the constant in the size of ε-nets, which are large. For disks in
the plane, the current best size of ε-net is at least 40/ε [12], yielding at best a
40-approximation algorithm. Furthermore, there is no implementation or software
solution available that can even compute such ε-nets efficiently.

– It uses sophisticated data-structures that have large constants in the running time.
In particular, it uses the O(log n + k)-time algorithm for range reporting for disk
ranges in the plane (alternatively, for halfspaces in R

3) as well as a dynamic data-
structure for maintaining approximate weighted range-counting under disk ranges
in polylogarithmic time. We have not been able to find efficient implementations of
any of these data-structures.
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It will turn out that all ideas for an efficient practical solution for the geometric hitting
set problem for disks are unified by one of the basic structures in the study of planar
geometry: Delaunay triangulations. Delaunay triangulations will be the key structure
for computing these improved ε-nets, and the Delaunay structures already computed
for constructing these nets will turn out to be crucial in computing small-sized hitting
sets. More precisely, our contributions are:

1. Constructing small ε-nets (Section 2). We show that the sample-and-refine approach
of Chazelle-Friedman [8] together with additional structural properties of Delaunay
triangulation results in ε-nets of surprisingly low size:

Theorem 1. Given a set P of n points in R
2, there exists an ε-net under disk ranges of

size at most 13.4/ε. Furthermore it can be computed in expected time O(n logn).

The algorithm is simple to implement. We have implemented it, and present the sizes of
ε-nets for various real-world data-sets; the results indicate that our theoretical analysis
closely tracks the actual size of the nets.

2. Engineering a hitting-set algorithm (Section 3). Together with the result of Agarwal-
Pan, this immediately implies:

Corollary 1. For any δ > 0, one can compute a (13.4+ δ)-approximation to the mini-
mum hitting set for (P,D) in time Õ(n).

We then present a modification of the algorithm of Agarwal-Pan that does not use any
complicated data-structures – just Delaunay triangulations, ε-nets and binary search
(e.g., it turns out that output sensitive range reporting is not required). This comes with
a price: although experimental results indicate a near-linear running time, we have been
unable to theoretically prove that the algorithm runs in expected near-linear time.

3. Implementation and experimental evaluation (Section 4). We present dnet, a public
source-code module that incorporates all these ideas to efficiently compute small-sized
hitting sets in practice. We give detailed experimental results on both synthetic and
real-world data sets, which indicates that the algorithm computes, on average, a 1.3-
approximation in near-linear time. This surprisingly low approximation factor com-
pared to the proven worst case bound is the result of fine tuning the parameters of the
algorithm.

Due to lack of space, most of the proofs are left for the full paper.

2 A Near Linear Time Algorithm for Computing ε-nets for Disks
in the Plane

Through a more careful analysis, we present an algorithm for computing an ε-net of
size 13.4

ε , running in expected near linear time. The method, shown in Algorithm 1,
computes a random sample and then solves subproblems involving subsets of the points
located in pairs of Delaunay disks circumscribing adjacent triangles in the Delaunay
triangulation of the random sample. The key to improved bounds is i) using additional
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structural properties of Delaunay triangulations, and ii) new improved constructions of
ε-nets for large values of ε. The presented algorithm can be extended to handle the case
when the ε-net is with respect to a measure on the point set taking only rational values.

Let Δ(abc) denote the triangle defined by the three points a, b and c. Dabc denotes
the disk through a, b and c, while Dabc denotes the halfspace defined by a and b not
containing the point c. Let c(D) denote the center of the disk D.

Let Ξ(R) be the Delaunay triangulation of a set of points R ⊆ P in the plane.
We will use Ξ when R is clear from the context. For any triangle Δ ∈ Ξ , let DΔ

be the Delaunay disk of Δ, and let PΔ be the set of points of P contained in DΔ.
Similarly, for any edge e ∈ Ξ , let Δ1

e and Δ2
e be the two triangles in Ξ adjacent to e,

and Pe = PΔ1
e

⋃
PΔ2

e
. If e is on the convex-hull, then one of the triangles is taken to be

the halfspace whose boundary line is supported by e and not containing R.

Algorithm 1. Compute ε-nets

Data: Compute ε-net, given P : set of n points in R
2, ε > 0 and c0.

1 if εn < 13 then
2 Return P

3 Pick each point p ∈ P into R independently with probability c0
εn

.
4 if |R| ≤ c0/2ε then
5 restart algorithm.

6 Compute the Delaunay triangulation Ξ of R.
7 for triangles Δ ∈ Ξ do
8 Compute the set of points PΔ ⊆ P in Delaunay disk DΔ of Δ.

9 for edges e ∈ Ξ do
10 Let Δ1

e and Δ2
e be the two triangles adjacent to e, Pe = PΔ1

e
∪ PΔ2

e
.

11 Let ε′ = ( εn
|Pe| ) and compute an ε′-net Re for Pe depending on the cases below:

12 if 1
2
< ε′ < 1 then

13 compute using Lemma 1.

14 if ε′ ≤ 1
2

then
15 compute recursively.

16 Return
(⋃

e Re

) ∪R.

In order to prove that the algorithm gives the desired result, the following lemma re-
garding the size of an ε-net will be useful. Let f(ε) be the upper bound of the size of the
smallest ε-net for any set P of points in R

2 under disk ranges.

Lemma 1. For 2
3 < ε < 1, f(ε) ≤ 2, and for 1

2 < ε ≤ 2
3 , f(ε) ≤ 10. In both cases the

ε-net can be computed in O(n log n) time.

Call a tuple ({p, q}, {r, s}), where p, q, r, s ∈ P , a Delaunay quadruple if
int(Δ(pqr)) ∩ int(Δ(pqs)) = ∅ where int(·) denotes the interior of a set. Define
its weight, denoted W({p,q},{r,s}), to be the number of points of P in Dpqr ∪ Dpqs.
Let T≤k be the set of Delaunay quadruples of P of weight at most k and similarly Tk
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denotes the set of Delaunay quadruples of weight exactly k. Similarly, a Delaunay triple
is given by ({p, q}, {r}), where p, q, r ∈ P . Define its weight, denoted W({p,q},{r}), to
be the number of points of P in Dpqr ∪Dpqr . Let S≤k be the set of Delaunay triples of
P of weight at most k, and Sk denotes the set of Delaunay triples of weight exactly k.
One can upper bound the size of T≤k, S≤k and using it, we derive an upper bound on
the expected number of sub-problems with a certain number of points.

Lemma 2. If εn ≥ 13, E
[
|{e ∈ Ξ | k1εn ≤ |Pe| ≤ k2εn}|

]
≤ (3.1)c30

εek1c0
(k31c0+3.7k22).

Lemma 3. Algorithm COMPUTE ε-NET computes an ε-net of expected size 13.4/ε.

Proof. First we show that the algorithm computes an ε-net. Take any disk D with center
c containing εn points of P , and not hit by the initial random sample R. Increase its
radius while keeping its center c fixed until it passes through a point, say p1 of R.
Now further expand the disk by moving c in the direction p1c until its boundary passes
through a second point p2 of R. The edge e defined by p1 and p2 belongs to Ξ , and the
two extreme disks in the pencil of empty disks through p1 and p2 are the disks DΔ1

e
and

DΔ2
e
. Their union covers D, and so D contains εn points out of the set Pe. Then the net

Re computed for Pe must hit D, as εn = (εn/|Pe|) · |Pe|.
p1

p2

D

e

D

For the expected size, clearly, if εn < 13 then the
returned set is an ε-net of size 13

ε . Otherwise we
can calculate the expected number of points added
to the ε-net during solving the sub-problems. We
simply group them by the number of points in
them. Set Ei = {e | 2iεn ≤ |Pe| < 2i+1εn},
and let us denote the size of the ε-net returned by
our algorithm with f ′(ε). Then

E [f ′(ε)] = E[|R|] + E
[
|
⋃

e∈Ξ

Re|
]
=

c0
ε
+ E[|{e | εn ≤ |Pe| < 3εn/2}|] · f(2/3)

+E[|{e | 3εn/2 ≤ |Pe| < 2εn}|] · f
(
1

2

)
+
∑

i=1

E

[
∑

e∈Ei

f ′
(

εn

|Pe|
)]

. (1)

Noting that E[
∑

e∈Ei
f ′( εn

|Pe| ) | |Ei| = t] ≤ tE[f ′(1/2i+1)], we get

E

[
∑

e∈Ei

f ′
(

εn

|Pe|
)]

= E

[
E[

∑

e∈Ei

f ′
(

εn

|Pe|
)
|Ei]

]
≤ E

[|Ei| · E[f ′(1/2i+1)]
]

= E[|Ei|] · E[f ′(1/2i+1)] (2)

as |Ei| and f ′(·) are independent. As ε′ = εn
|Pe| > ε, by induction, assume E[f ′ (ε′)] ≤

13.4
ε′ . Then by using Lemma 1 and 2

E [f ′(ε)] ≤ c0
ε
+

(3.1) · c30(c0 + 8.34)

εec0
· 2 + (3.1) · c30((3/2)3c0 + 14.8)

εe3c0/2
· 10

+
∑

i

(3.1) · c30(23ic0 + 3.7 · 22i+2)

εec02i
· 13.4 · 2i+1 ≤ 13.4

ε
(3)
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by setting c0 = 12. 
�
Lemma 4. Algorithm COMPUTE ε-NET runs in expected time O(n log n).

We have shown that the expected size of the returned ε-net is 13.4/ε. Furthermore,
by Markov’s inequality and repeatedly running the algorithm, an ε-net of size (1 + δ) ·
13.4/ε is returned in exptected time O(n/δ · logn) for any constant δ > 0. Setting δ
small enough finishes the proof of Theorem 1.

3 Engineering the Agarwal-Pan Algorithm

The Agarwal-Pan (AP) algorithm (shown in Algorithm 2) uses an iterative reweighing
strategy, where the idea is to assign a weight w(·) to each p ∈ P such that the total
weight of points contained in each D ∈ D is relatively high. It starts by setting w(p) =
1 for each p ∈ P . If there exists a disk D with small weight, it increases the weight
of the points in D until their total weight exceeds a threshold of cW/OPT, where c is
some constant and W =

∑
p∈P w(p) is the current total weight. If after any iteration,

all disks have weight above the threshold cW
2eOPT

, return a c
2eOPT

-net with respect to these
weights, ensuring that every disk is hit.

For the purpose of analysis, Agarwal and Pan conceptually divide the reweighings
into O(log n) phases, where each phase (except perhaps the last) performs Θ(OPT)
reweighings. The implementation of the AP algorithm requires two ingredients: A) a
range reporting data structure and B) a dynamic approximate range counting data struc-
ture. The former is used to construct the set of points to be reweighed and the latter
is required for figuring out whether a disk needs reweighing. As a pre-processing step,
the AP algorithm first computes a 1/OPT-net Q to be returned as part of the hitting
set. This ensures that the remaining disks not hit by Q contain less than n/OPT points.
Additionally they observe that in any iteration, if less than OPT disks are reweighed,
then all disks have weight more than cW

2eOPT
.

Algorithm 2. AP algorithm for computing hitting sets
Data: A point set P , a set of disks D, a fixed constant c, and the value of OPT.

1 Compute a (1/OPT)-net, Q, of P and remove disks hit by Q
2 Set w(p) = 1 for all p ∈ P
3 repeat
4 foreach D ∈ D do
5 if w(D) ≤ cW/OPT then
6 reweigh D repeatedly until the weight w(D) exceeds cW/OPT

7 flag = false
8 foreach D ∈ D do
9 if w(D) < (c/2e) ·W/OPT then flag = true

10 until flag = true
11 return Q along with a (c/2eOPT)-net of P with respect to w(·)
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The AP algorithm is simple and has a clever theoretical analysis. Its main draw-
back is that the two data structures it uses are sophisticated with large constants in the
running time. This unfortunately renders the AP algorithm impractical. Our goal is to
find a method that avoids these sophisticated data structures and to develop additional
heuristics which lead to not only a fast implementation but also one that generally gives
an approximation ratio smaller than that guaranteed by the theoretical analysis of the
AP algorithm. As part of the algorithm, we use the algorithm for constructing ε-nets
described in the previous section, which already reduces the approximation factor sig-
nificantly.

Removing A). Just as Agarwal and Pan do, we start by picking a c1/OPT-net, for some
constant c1. The idea for getting rid of range-reporting data-structure is to observe that
the very fact that a disk D is not hit by Q, when Q is an ε-net, makes it possible to
use Q in a simple way to efficiently enumerate the points in D. We will show that D
lies in the union of two Delaunay disks in the Delaunay triangulation of Q, which, as
we show later, can be found by a simple binary search. The resulting algorithm still has
worst-case near-linear running time.

Removing B). Our approach towards removing the dependence on dynamic approxi-
mate range counting data structure is the following: at the beginning of each phase we
pick a c2/OPT-netR, for some constant c2. The set of disks that are not hit byR are then
guaranteed to have weight at most c2W/OPT, which we can then reweigh during that
phase. While this avoids having to use data-structure B), there are two problems with
this: a) disks with small weight hit by R are not reweighed, and b) a disk whose initial
weight was less than c2W/OPT could have its current weight more than c2W/OPT in
the middle of a phase, and so it is erroneously reweighed.

Towards solving these problems, the idea is to maintain an additional set S which is
empty at the start of each phase. When a disk D is reweighed, we add a random point
of D (sampled according to the probability distribution induced by w(·)) to S. Addi-
tionally we maintain a nearest-neighbor structure for S, enabling us to only reweigh D
if it is not hit by R ∪ S. Now, if during a phase, there are Ω(OPT) reweighings, then as
in the Agarwal-Pan algorithm, we move on to the next phase, and a) is not a problem.
Otherwise, there have been less than OPT reweighings, which implies that less than
OPT disks were not hit by R. Then we can return R together with the set S consisting
of one point from each of these disks. This will still be a hitting set.

To remedy b), before reweighing a disk, we compute the set of points inside D,
and only reweigh if the total weight is at most c2W/OPT. Consequently we sometimes
waste O(n/OPT) time to compute this list of points inside D without performing a
reweighing. Due to this, the worst-case running time increases to O(n2/OPT). In prac-
tice, this does not happen for the following reason: in contrast to the AP algorithm, our
algorithm reweighs any disk at most once during a phase. Therefore if the weight of any
disk D increases significantly, and yet D is not hit by S, the increase must have been
due to the increase in weight of many disks intersected by D which were reweighed
before D and for which the picked points (added to S) did not hit D. Reweighing in
a random order makes these events very unlikely (in fact we suspect this gives an ex-
pected linear-time algorithm, though we have not been able to prove it).
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Algorithm 3. Algorithm for computing small-sized hitting sets.
Data: A point set P , a set of disks D, and the size of the optimal hitting set OPT.

1 Compute a (c1/OPT)-net Q of P and the Delaunay triangulation Ξ(Q) of Q.
2 foreach q ∈ Q do construct Ψ(Q)(q). foreach D ∈ D do
3 if D not hit by Q then add D to D1. // using Ξ(Q)

4 P1 = P \Q.
5 foreach p ∈ P1 do set w(p) = 1. repeat
6 Compute a (c2/OPT)-net, R, of P1 and the Delaunay triangulation Ξ(R) of R.
7 Set S = ∅, Ξ(S) = ∅.
8 foreach D ∈ D1 in a random order do
9 if D not hit by R ∪ S then // using Ξ(R) and Ξ(S)

10 foreach p ∈ D do set w(p) = w(p) + c3w(p). // using Ψ(Q) Add a
random point in D to S; update Ξ(S).

11 until |S| ≤ c4OPT

12 return {Q ∪R ∪ S}

See Algorithm 3 for the new algorithm (the data-structure Ψ(Q) will be defined
later).

Lemma 5. The algorithm terminates, Q∪R∪S is a hitting set, of size at most (13.4+
δ) · OPT, for any δ > 0.

Proof. By construction, if the algorithm terminates, then Q ∪ R ∪ S is a hitting-set.
Set c1 = 13.4 · 3/δ, c2 = 1/(1 + δ/(13.4 · 3)), c3 = δ/10000 and c4 = δ/3. By the
standard reweighing argument, we know that after t reweighings, we have:

OPT (1 + c3)
t

OPT ≤ n · (1 + c2c3
OPT

)t (4)

which solves to t = O(OPT logn
δ ). Each iteration of the repeat loop, except the last one,

does at least c4OPT reweighings. Then the repeat loop can run for at mostO(OPT logn
c4OPTδ ) =

O(log n/δ) times.
By Theorem 1, |Q| ≤ (13.4/c1)OPT, |R| ≤ (13.4/c2)OPT, and |S| ≤ c4OPT. Thus

the overall size is 13.4OPT · (1/c1 + 1/c2 + c4/13.4
) ≤ (13.4 + δ) · OPT.

Algorithmic details. Computing an ε-net takesO(n log n) time using Theorem 1. Check-
ing if a disk D is hit by an ε-net (Q, R, or S) reduces to finding the closest point in the
set to the center of D, again accomplished in O(log n) time using point-location in
Delaunay/Voronoi diagrams Ξ(·). It remains to show how to compute, for a given disk
D ∈ D1, the set of points of P contained in D:

Lemma 6. Given a disk D ∈ D1, the set of points of P contained in D can be reported
in time O(n/OPT logn).

4 Implementation and Experimental Evaluation

In this section we present experimental results for our algorithms implemented in C++

and running on a machine equipped with an Intel Core i7 870 processor (2.93 GHz)
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and with 16 GB main memory. All our implementations are single-threaded, but we
note that our hitting set algorithm can be easily multi-threaded. The source code can
be obtained from the authors’ website 1. For nearest-neighbors and Delaunay triangula-
tions, we use CGAL. It computes Delaunay triangulations in expected O(n log n) time.
To calculate the optimal solution for the hitting set problem we use the IP solver SCIP
(with the linear solver SoPlex). Creating the linear program is carried out efficiently by
using the Delaunay triangulation of the points for efficient range searching.

Datasets. In order to empirically validate our algorithms we have utilized several
real-world point sets. All our experiments’ point sets are scaled to a unit square. The
World dataset [3] contains locations of cities on Earth (except for the US) having around
10M records. For our experiments we use only the locations of cities in China having
1M records (the coordinates have been obtained from latitude and longitude data by
applying the Miller cylindrical projection). The dataset ForestFire contains 700K loca-
tions of wildfire occurrences in the United States [2]. The KDDCUP04Bio dataset [1]
(KDDCU for short) contains the first 2 dimensions of a protein dataset with 145K en-
tries. We have also created a random data set Gauss9 with 90K points sampled from 9
different Gaussian distributions with random mean and covariance matrices.
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Fig. 1. ε-net size multiplied by ε for the datasets, ε = 0.01 (left) and a subset of the ε-net for the
World dataset (right).

Sizes of ε-nets. Setting the probability for random sampling to 12
ε·n results in ap-

proximately 12
ε sized nets for nearly all datasets, as expected by our analysis. We note

however, that in practice setting c0 to 7 gives smaller size ε-nets, of size around 9
ε . See

Figure 1 for the dependency of the net size on c0 for ε = 0.01. It also includes an ε-net
calculated with our algorithm for a subset of the World data (red points denote the ε-net
and each pixel’s color is the logarithm of the number of disks it is contained in). See
Table 1 for the ε-net sizes for different values of ε while c0 is set to 7 and 12. This table
also includes the size of the first random sample (R), which shows that the number of
subproblems to solve increases as the random sample is more sparse.
Approximate Hitting Sets. For evaluating the practical usability of our approximate
hitting set algorithm we compare it to the optimal solution. Our algorithm needs a guess

1 http://perso.esiee.fr/˜busn/#hittingsetApplication

http://perso.esiee.fr/~busn/#hittingsetApplication
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Table 1. The size of the ε-net multiplied by ε (left value in a column for a fixed ε) and the size
of R, the first random sample multiplied by ε (right value in a column) for various point sets with
c0 = 7 or 12.

c0 = 7 c0 = 12

ε 0.2 0.1 0.01 0.001 0.2 0.1 0.01 0.001

China 7.8 6.6 8.3 6.1 8.28 6.80 8.426 7.090 14.2 14.2 10.6 10.6 12.33 12.33 12.152 12.138

ForestFire 7.4 7.4 8.3 7.3 8.46 7.46 8.522 6.892 13 13 11.6 11.6 12.01 12.01 12.103 12.077

KDDCU 7.4 7.4 8.4 7.4 8.31 7.29 8.343 6.989 10.2 10.2 9.8 9.8 11.65 11.57 12.006 11.978

Gauss9 7.4 5.8 7.8 7.6 8.00 7.18 8.100 6.882 9.8 9.8 12.0 12.0 11.61 11.43 11.969 11.965

for OPT, and so we run it with O(log n) guesses for the value of OPT . The parameters
are set as follows: c0 = 10, c1 = 30, c2 = 12, c3 = 2 and c4 = 0.6.

Our datasets only contain points and in order to create disks for the hitting set prob-
lem we have utilized two different strategies. In the first approach we create uniformly
distributed disks in the unit square with uniformly distributed radius within the range
[0, r]. Let us denote this test case as RND(r). In the second approach we added disks
centered at each point of the dataset with a fixed radius of 0.001. Let us denote this
test case by FIX(0.001). The results are shown in Table 2 for two values r = 0.1 and
r = 0.01. Our algorithm provides a 1.3 approximation on average. With small radius
the solver seems to outperform our algorithm but this is most likely due to the fact that
the problems become relatively simpler and various branch-and-bound heuristics be-
come efficient. With bigger radius and therefore more complex constraint matrix our
algorithm clearly outperforms the IP solver. Our method obtains a hitting set for all
point sets, while in some of the cases the IP solver was unable to compute a solution in
reasonable time (we terminate the solver after 1 hour).

Table 2. Hitting sets. From top to bottom, RND(0.1), RND(0.01).

# of
points

# of
disks

Q
size

R
size

S
size

# of
phases

IP
solution

dnet
solution

ap-
prox.

IP
time(s)

dnet
time(s)

China 50K 50K 367 809 604 11 1185 1780 1.5 60 12

ForestFire 50K 16K 43 85 224 11 267 352 1.3 54.3 6.9

KDDCU 50K 22K 171 228 786 11 838 1185 1.4 40.9 9.8

Gauss9 50K 35K 322 724 1035 11 1493 2081 1.4 52.5 11.7

China 50K 49K 673 1145 4048 11 4732 5862 1.2 4.5 14.5

ForestFire 50K 25K 162 268 1021 11 1115 1451 1.3 6.2 9.5

KDDCU 50K 102K 1326 2492 6833 11 8604 10651 1.2 12.5 22.2

Gauss9 50K 185K 2737 6636 9867 11 15847 19239 1.2 22.4 36.0

In Table 3 we have included the memory consumption of both methods and statistics
for range reporting. It is clear that the IP solver requires significantly more memory
than our method. The statistics for range reporting includes the total number of range
reportings (calculating the points inside a disk) and the number of range reportings
when the algorithm doubles the weight of the points inside a disk (the doubling column
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in the table). It can be seen that only a fraction of the computations are wasted since the
number of doublings is almost as high as the total number or range reportings. This in
fact shows that the running time of our algorithm is near-linear in n.

Table 3. Memory usage in MB (left) and range reporting statistics (right).

RND(0.01) RND(0.1) FIX(0.001)
IP dnet IP dnet IP dnet

China 243 21 4282 19 434 20

ForesFire 524 28 3059 18 5470 24

KDDCU 458 30 2999 23 175 22

Gauss9 569 33 3435 24 158 24

RND(0.01) RND(0.1) FIX(0.001)
total doubling total doubling total doubling

China 44014 43713 9406 9184 96335 95846

ForesFire 11167 11086 2767 2728 15648 15020

KDDCU 75448 75016 8485 8364 173147 173044

Gauss9 121168 120651 14133 13906 217048 217019

In order to test the scalability of our method compared to the IP solver we have
used the ForestFire and China dataset with limiting the number of points to 10K, 20K,
30K. . . and repeating exactly the same experiments as above (while increasing the
number of disks in a similar manner). In Figure 2 we plot the running time of the
methods. The solid lines represent the case RND(0.1) while the dashed ones denote
RND(0.01). One can see that as the number of points and disks increases our method
becomes more efficient even though for small instances this might not hold. It can be
seen that for the China dataset and RND(0.01) the IP solver is faster than our method
but after 500K points our method becomes faster. In Figure 2 the dotted line represents
the running time of our algorithm for FIX(0.001). In this case the IP running time is
not shown because the solver was only able to solve the problem with 10K points within
a reasonable time (for 20K and 30K points it took 15 and 21 hours respectively).
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Fig. 2. Different point set sizes for the ForestFire (left) and China (right) datasets.

We have varied the radius of the disks for the fixed radius case to see how the al-
gorithms behave. See Figure 3. With bigger radius the IP solver becomes very quickly
unable to solve the problem (for radius 0.002 it was unable to finish within a day),
showing that our method is more robust.

In order to test the extremes of our algorithm we have taken the World dataset con-
taining 10M records. Our algorithm was able to calculate the solution of theFIX(0.001)
problem of size around 100K in 3.5 hours showing that the algorithm has the potential
to calculate results even for extremely big datasets with a more optimized (e.g., multi-
threaded) implementation.
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Fig. 3. Different radii settings for the KDDCU (left) and China (right) datasets.
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Abstract. For any integer n ≥ 1 a middle levels Gray code is a cyclic
listing of all bitstrings of length 2n+1 that have either n or n+1 entries
equal to 1 such that any two consecutive bitstrings in the list differ in
exactly one bit. The question whether such a Gray code exists for every
n ≥ 1 has been the subject of intensive research during the last 30 years,
and has been answered affirmatively only recently [T. Mütze. Proof of the
middle levels conjecture. arXiv:1404.4442, 2014]. In this work we provide
the first efficient algorithm to compute a middle levels Gray code. For
a given bitstring, our algorithm computes the next � bitstrings in the
Gray code in time O(n�(1 + n

�
)), which is O(n) on average per bitstring

provided that � = Ω(n).

Keywords: Gray code, Middle levels conjecture.

1 Introduction

Efficiently generating all objects in a particular combinatorial class (e.g. per-
mutations, combinations, partitions or trees) in such a way that each object is
generated exactly once is one of the oldest and most fundamental problems in
the area of combinatorial algorithms, and such generation algorithms are used
as core building blocks in a wide range of practical applications (the survey [19]
lists numerous references). A classical example is the so-called binary Gray code,
which lists all 2n bitstrings of length n such that any two consecutive bitstrings
differ in exactly one bit. A straightforward implemention of this algorithm takes
time O(n) to compute from a given bitstring the next one in the list (see Al-
gorithm G in [13, Section 7.2.1.1]), which can be improved to O(1) [2] (see
Algorithm L in [13, Section 7.2.1.1]). The space requirement of both algorithms
is O(n). Similar minimum-change generation algorithms have been developed
for various other combinatorial classes. We exemplarily cite four examples from
the excellent survey [19] on this topic: (1) listing all permutations of {1, . . . , n}
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so that consecutive permutations differ only by the swap of one pair of adjacent
elements [11, 23], (2) listing all k-element subsets of an n-element set such that
consecutive sets differ only by exchanging one element [2, 7, 18], (3) listing all
binary trees with n vertices so that consecutive trees differ only by one rotation
operation [14], (4) listing all spanning trees of a graph such that consecutive
trees differ only by exchanging one edge [5].

Coming back to Gray codes, we say that a bitstring of length n has weight k,
if it has exactly k entries equal to 1 (and n− k entries equal to 0). Furthermore,
for any integer n ≥ 1 we define a middle levels Gray code as a cyclic listing
of all bitstrings of length 2n + 1 that have weight n or n + 1 such that any
two consecutive bitstrings in the list differ in exactly one bit (the name ‘middle
levels’ becomes clear when considering the relevant bitstrings as subsets in the
Hasse diagram of the subset inclusion lattice). Clearly, a middle levels Gray
code has to visit N :=

(
2n+1

n

)
+

(
2n+1
n+1

)
= 2

(
2n+1

n

)
= 2Θ(n) many bitstrings in

total, and the weight of the bitstrings will alternate between n and n + 1 in
every step. The existence of a middle levels Gray code for every value of n is
asserted by the infamous middle levels conjecture, which originated probably
with Havel [9] and Buck and Wiedemann [3], but has also been attributed to
Dejter, Erdős, Trotter [12] and various others. It also appears as Exercise 56 in
Knuth’s book [13, Section 7.2.1.3]. It may come as a surprise that establishing
the existence of a middle levels Gray code appears to be a difficult problem, given
that by item (2) above one can easily come up with a listing of all bitstrings
of length 2n + 1 with weight exactly n (or exactly n + 1) such that any two
consecutive bitstrings differ in two bits.

The middle levels conjecture has attracted considerable attention over the
last 30 years (see e.g. [6, 8, 10, 12, 20]). Until recently, middle levels Gray codes
had only been found with brute-force computer searches for n ≤ 19 [21, 22] (for
n = 19 this Gray code already consists of N = 137.846.528.820 bitstrings). A
complete proof of the conjecture has only been announced very recently.

Theorem 1 ([15]). A middle levels Gray code exists for every n ≥ 1.

Our Results. Even though the proof of Theorem 1 given in [15] is construc-
tive, a straightforward implementation takes exponential (in n) time and space
to compute for a given bitstring the next one in the middle levels Gray code (es-
sentially, we need to compute and store the entire list of N = 2Θ(n) bitstrings).
The main contribution of this paper is a time- and space-efficient algorithm to
compute a middle levels Gray code for every n ≥ 1, which can be considered an
algorithmic proof of Theorem 1. Specifically, given any bitstring of length 2n+1
with weight n or n+1, our algorithm computes the next � bitstrings in the Gray
code in time O(n�(1+ n

� )), which is O(n) on average per bitstring provided that
� = Ω(n) (for most bitstrings the worst-case running time is O(n), for few it is
O(n2)). Our algorithm requires O(n) space.

An implementation of this algorithm in C++ can be found on the authors’
websites [1], and we invite the reader to experiment with this code. We used it to
compute a middle levels Gray code for n = 19 in less than a day on an ordinary
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desktop computer. For comparison, the above-mentioned intelligent brute-force
computation for n = 19 from [22] took 164 days (using comparable hardware).

Remark 1. Clearly, the ultimate goal would be a generation algorithm with a
worst-case running time of O(1) per bitstring, but we believe this requires sub-
stantial new ideas that would in particular yield a much simpler proof of Theo-
rem 1 than the one presented in [15].

Remark 2. It was shown in [15] that there are in fact double-exponentially (in
n) many different middle levels Gray codes (which is easily seen to be best pos-
sible). This raises the question whether our algorithm can be parametrized to
compute any of these Gray codes. While this is possible in principle, choosing
between doubly-exponentially many different Gray codes would require a param-
eter of exponential size, spoiling the above-mentioned runtime and space bounds.
Moreover, it would introduce a substantial amount of additional complexity in
the description and correctness proof of the algorithm. To avoid all this, our
algorithm computes only one particular ‘canonical’ middle levels Gray code.

Outline of This Paper. In Section 2 we present the pseudocode of our middle
levels Gray code algorithm, and in Section 3 we discuss how to implement it
to achieve the claimed runtime bound. The definition of one technical auxiliary
function used in the algorithm and the correctness proof are omitted in this
extended abstract due to the limited space. Complete proofs can be found in the
preprint [16].

2 The Algorithm

It is convenient to reformulate our problem in graph-theoretic language: To this
end we define the middle levels graph, denoted by Q2n+1(n, n+1), as the graph
whose vertices are all bitstrings of length 2n+1 that have weight n or n+1, with
an edge between any two bitstrings that differ in exactly one bit (so bitstrings
that may appear consecutively in the middle levels Gray code correspond to
neighboring vertices in the middle levels graph). Clearly, computing a middle
levels Gray code is equivalent to computing a Hamilton cycle in the middle
levels graph (a Hamilton cycle is a cycle that visits every vertex exactly once).
Throughout the rest of this paper we talk about middle levels Gray codes using
this graph-theoretic terminology.

Our algorithm to compute a Hamilton cycle in the middle levels graph (i.e., to
compute a middle levels Gray code) is inspired by the constructive proof of The-
orem 1 in [15]. Efficiency is achieved by reformulating this inductive construction
as a recursive algorithm. Even though the description of the algorithm is com-
pletely self-contained and illustrated with figures and examples that highlight
the main ideas, the reader may find it useful to first read an informal overview
of the proof of Theorem 1, which can be found in [15, Section 1.2].

Roughly speaking, our algorithm consists of a lower level function that com-
putes sets of disjoint paths in the middle levels graph and several higher level
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functions that combine these paths to form a Hamilton cycle. In the following
we explain these functions from bottom to top. Before doing so we introduce
some notation that will be used throughout this paper.

2.1 Basic Definitions

Reversing/inverting and concatenating bitstrings. We define 0 := 1 and 1 := 0.
For any bitstring x we let rev(x) denote the bitstring obtained from x by re-
versing the order of the bits and inverting every bit. Moreover, for any bitstring
x = (x1, . . . , x2n) we define π(x) := (x1, x3, x2, x5, x4, . . . , x2n−1, x2n−2, x2n) (ex-
cept the first and last bit, all adjacent pairs of bits are swapped). Note that the
mappings rev and π are self-inverse. For two bitstrings x and y we denote by
x◦y the concatenation of x and y. For any graph G whose vertices are bitstrings
and any bitstring y we denote by G ◦ y the graph obtained from G by attaching
y to every vertex of G.

Layers of the cube. For n ≥ 0 and k with 0 ≤ k ≤ n, we denote by Bn(k) the
set of all bitstrings of length n with weight k. For n ≥ 1 and k with 0 ≤ k ≤ n−1,
we denote by Qn(k, k+1) the graph with vertex set Bn(k)∪Bn(k+1), with an
edge between any two bitstrings that differ in exactly one bit.

Oriented paths, first/last vertices. An oriented path P in a graph is a path
with a particular orientation, i.e., we distinguish its first and last vertex. For an
oriented path P = (v1, v2, . . . , v�) we define its first and last vertex as F (P ) := v1
and L(P ) := v�, respectively.

Bitstrings and Dyck paths. We often identify a bitstring x with a lattice path
in the integer lattice Z

2 as follows: Starting at the coordinate (0, 0), we read
the bits of x from left to right and interpret every 1-bit as an upstep that
changes the current coordinate by (+1,+1) and every 0-bit as a downstep that
changes the current coordinate by (+1,−1). For any n ≥ 0 and k ≥ 0 we
denote by Dn(k) the set of lattice paths with k upsteps and n − k downsteps
(n steps in total) that never move below the line y = 0. For n ≥ 1 we define
D>0

n (k) ⊆ Dn(k) as the set of lattice paths that have no point of the form (x, 0),
1 ≤ x ≤ n, and D=0

n (k) ⊆ Dn(k) as the set of lattice paths that have at least
one point of the form (x, 0), 1 ≤ x ≤ n. For n = 0 we define D=0

0 (0) := {()},
where () denotes the empty lattice path, and D>0

0 (0) := ∅. We clearly have
Dn(k) = D=0

n (k)∪D>0
n (k). Furthermore, for n ≥ 1 we let D−

n (k) denote the set
of lattice paths with k upsteps and n− k downsteps (n steps in total) that have
exactly one point of the form (x,−1), 1 ≤ x ≤ n. It is well known that in fact
|D=0

2n (n)| = |D−
2n(n)| = |D>0

2n (n + 1)| and that the size of these sets is given by
the n-th Catalan number (see [4]). Observe that the mappings rev and π map
each of the sets D=0

2n (n) and D−
2n(n) onto itself (see [15, Lemma 11]).

2.2 Computing Paths in Q2n(n, n + 1)

The algorithm Paths() is at the core of our Hamilton cycle algorithm. For
simplicity let us ignore for the moment the parameter flip ∈ {true, false} and
assume that it is set to false. Then for every n and k with 1 ≤ n ≤ k ≤ 2n− 1



Efficient Computation of Middle Levels Gray Codes 919

the algorithm Paths() defines a set of disjoint oriented paths P2n(k, k + 1) in
the graph Q2n(k, k + 1) in the following way: Given a vertex x ∈ Q2n(k, k + 1)
and the parameter dir ∈ {prev, next}, the algorithm computes the neighbor
of x on the path that contains the vertex x. The parameter dir controls the
search direction, so for dir = prev we obtain the neighbor of x that is closer
to the first vertex of the path, and for dir = next the neighbor that is closer
to the last vertex of the path. If x is a first or last vertex on an oriented path
from P2n(k, k + 1), then the result of a call to Paths() with dir = prev or
dir = next, respectively, is undefined (such calls will not be made).

Algorithm 1. Paths(n, k, x, dir, flip)

Input: Integers n and k with 1 ≤ n ≤ k ≤ 2n− 1, a vertex x ∈ Q2n(k, k + 1),
parameters dir ∈ {prev, next} and flip ∈ {true, false}

Output: A neighbor of x in Q2n(k, k + 1)

P1 if n = 1 then /* base cases */
P2 depending on x and dir, return previous/next neighbor of x on P2(1, 2)

P3 else if n = k = 2 and flip = true then
P4 depending on x and dir, return previous/next neighbor of x on P̃4(2, 3)

P5 Split x = (x1, . . . , x2n) into x− := (x1, . . . , x2n−2) and x+ := (x2n−1, x2n)
P6 if k ≥ n+ 1 then
P7 return Paths(n− 1, k − x2n−1 − x2n, x

−, dir, flip) ◦ x+

P8 else /* k = n */
P9 if x+ = (1, 0) then

P10 return Paths(n− 1, n− 1, x−, dir, flip) ◦ x+

P11 else if x+ = (0, 0) then
P12 if x− ∈ D>0

2n−2(n) then return x− ◦ (0, 1)
P13 else return Paths(n− 1, n, x−, dir, flip) ◦ x+

P14 else if x+ = (0, 1) then
P15 if x− ∈ D=0

2n−2(n− 1) then return x− ◦ (1, 1)
P16 else if x− ∈ D−

2n−2(n− 1) and dir = next then return x− ◦ (1, 1)
P17 else if x− ∈ D>0

2n−2(n) and dir = prev then return x− ◦ (0, 0)
P18 else return Paths(n− 1, n− 1, x−, dir, false) ◦ x+

P19 else if x+ = (1, 1) then
P20 if x− ∈ D=0

2n−2(n− 1) and dir = next return x− ◦ (0, 1)
P21 else if x− ∈ D−

2n−2(n− 1) and dir = prev then return x− ◦ (0, 1)
P22 else return rev

(
π
(
Paths(n−1, n−1, rev−1(π−1(x−)),dir, flip)

)) ◦x+

where dir := prev if dir = next and dir := next otherwise

The algorithm Paths() works recursively: For the base case of the recursion
n = 1 (lines P1–P2) it computes neighbors for the set of paths P2(1, 2) :=
{((1, 0), (1, 1), (0, 1))} (this set consists only of a single path on three vertices).
E.g., the result of the call Paths(1, 1, (1, 0), next, false) is (1, 1) and the result
of Paths(1, 1, (1, 1), prev, false) is (1, 0). For the recursion step the algorithm
considers the last two bits of the current vertex x (see line P5) and, depending
on their values (see lines P9, P11, P14 and P19), either flips one of these two bits
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(see lines P12, P15, P16, P17, P20, P21), or recurses to flip one of the first 2n−2
bits instead, leaving the last two bits unchanged (see lines P7, P10, P13, P18,
P22). As already mentioned, the algorithm Paths() is a recursive formulation
of the inductive construction of paths described in [15, Section 2.2], and the
different cases in the algorithm reflect the different cases in this construction.
The recursion step in line P22 is where the mappings rev and π introduced in
Section 2.1 come into play (recall that rev−1 = rev and π−1 = π).

It can be shown that the set of paths P2n(n, n+1) computed by the algorithm
Paths() (with parameters k = n and flip = false) has the following properties
(we only state these properties here; a proof can be found in [16]):

(i) All paths in P2n(n, n + 1) are disjoint, and together they visit all vertices
of the graph Q2n(n, n+ 1).

(ii) The sets of first and last vertices of the paths in P2n(n, n+ 1) are D=0
2n (n)

and D−
2n(n), respectively.

From (ii) we conclude that the number of paths in P2n(n, n + 1) equals the
n-th Catalan number. E.g., the set of paths P4(2, 3) computed by Paths()
is P4(2, 3) = {P, P ′} with P := ((1, 1, 0, 0), (1, 1, 0, 1), (0, 1, 0, 1), (0, 1, 1, 1),
(0, 0, 1, 1), (1, 0, 1, 1), (1, 0, 0, 1)) and P ′ := ((1, 0, 1, 0), (1, 1, 1, 0), (0, 1, 1, 0)).

We will see in the next section how to combine the paths P2n(n, n+1) in the
graph Q2n(n, n + 1) computed by our algorithm Paths() (called with flip =
false) to compute a Hamilton cycle in the middle levels graph Q2n+1(n, n+1).
One crucial ingredient we need for this is another set of paths P̃2n(n, n + 1),
computed by calling the algorithm Paths() with flip = true. We shall see
that the core ‘intelligence’ of our Hamilton cycle algorithm consists of cleverly
combining some paths from P2n(n, n + 1) and some paths from P̃2n(n, n + 1)
to a Hamilton cycle in the middle levels graph. We will see that from the point
of view of all top-level routines that call the algorithm Paths() only the paths
P2n(k, k + 1) and P̃2n(k, k + 1) for k = n are used, but the recursion clearly
needs to compute these sets also for all other values k = n+1, n+2, . . . , 2n− 1.

Specifically, calling the algorithm Paths() with flip = true yields a set of
paths P̃2n(k, k+1) that differs from P2n(k, k+1) as follows: First note that for
certain inputs of the algorithm the value of the parameter flip is irrelevant, and
the computed paths are the same regardless of its value (this is true whenever
the recursion ends in the base case in lines P1-P2). One such example is the
path ((1, 0, 1, 1, 0, 0), (1, 1, 1, 1, 0, 0), (0, 1, 1, 1, 0, 0)) (computing previous or next
neighbors for any vertex on this path yields the same result regardless of the
value of flip). Such paths are not part of P̃2n(k, k + 1), and we ignore them in
the following. The remaining paths from P2n(k, k+1) can be grouped into pairs
and for every such pair (P, P ′) the set P̃2n(k, k+1) contains two paths R and R′

that visit the same set of vertices as P and P ′, but that connect the end vertices
of the paths the other way: Formally, denoting by V (G) the vertex set of any
graph G, we require that V (P ) ∪ V (P ′) = V (R) ∪ V (R′) and F (P ) = F (R),
F (P ′) = F (R′), L(P ) = L(R′) and L(P ′) = L(R). We refer to a pair (P, P ′)
satisfying these conditions as a flippable pair of paths, and to the corresponding
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paths (R,R′) as a flipped pair. This notion of flippable/flipped pairs is extremely
valuable for designing our Hamilton cycle algorithm, as it allows the algorithm
to decide independently for each flippable pair of paths, whether to follow one
of the original paths or the flipped paths in the graph Q2n(n, n+ 1).

The base case for the recursive computation of P̃2n(k, k+1) is the set of paths
P̃4(2, 3) := {R,R′} (see lines P3–P4) that is defined by the two paths R :=
((1, 1, 0, 0), (1, 1, 1, 0), (0, 1, 1, 0)) and R′ := ((1, 0, 1, 0), (1, 0, 1, 1), (0, 0, 1, 1),
(0, 1, 1, 1), (0, 1, 0, 1), (1, 1, 0, 1), (1, 0, 0, 1)) in Q4(2, 3). Continuing the previous
example, observe that the set of paths P4(2, 3) = {P, P ′} computed by Paths()
mentioned before and this set of paths P̃4(2, 3) = {R,R′} satisfy precisely the
conditions for flippable/flipped pairs of paths, i.e., (P, P ′) is a flippable pair and
(R,R′) is a corresponding flipped pair of paths.

2.3 Computing a Hamilton Cycle in the Middle Levels Graph

The algorithm HamCycleFlip() uses the paths P2n(n, n+1) and P̃2n(n, n+1)
in the graph Q2n(n, n+1) computed by the algorithm Paths() as described in the
previous section to compute for a given vertex x the next vertex on a Hamilton
cycle in the middle levels graph Q2n+1(n, n + 1). To simplify the exposition of
the algorithm, let us ignore for the moment the parameter flip ∈ {true, false}
and assume that it is set to false, and let us also ignore line F3 (so only paths
from P2n(n, n + 1) are considered, and those from P̃2n(n, n + 1) are ignored).
With these simplifications the algorithm HamCycleFlip() will not compute a
Hamilton cycle, but a set of several smaller cycles that together visit all vertices of
the middle levels graph (this will be corrected later by setting flip accordingly).

The algorithm HamCycleFlip() is based on the following decomposition
of the middle levels graph Q2n+1(n, n + 1) (see Figure 1): By partitioning the

C2n+1

Q2n(n, n+ 1) ◦ (0) Q2n(n− 1, n) ◦ (1)

Q2n+1(n, n+ 1)

B2n(n+ 1) ◦ (0)

B2n(n) ◦ (0)

B2n(n) ◦ (1)

B2n(n− 1) ◦ (1)M2n+1

P2n(n, n+ 1) rev(P2n(n, n+ 1))

Fig. 1. The top part of the figure shows the decomposition of the middle levels graph
and the definition (1). The 2-factor consists of three disjoint cycles that together visit
all vertices of the graph. The first and last vertices of the paths are drawn in black
and white, respectively. The bottom part of the figure shows a simplified drawing that
helps analyzing the cycle structure of the 2-factor (it has two short cycles and one long
cycle).
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vertices (=bitstrings) of the graph Q2n+1(n, n+1) according to the value of the
last bit, we observe that it consists of a copy of the graph Q2n(n, n + 1) ◦ (0)
and a copy of the graph Q2n(n − 1, n) ◦ (1) plus the set of edges M2n+1 =
{(x ◦ (0), x ◦ (1)) | x ∈ B2n(n)} along which the last bit is flipped. Observe
furthermore that the graphs Q2n(n, n+1) and Q2n(n−1, n) are isomorphic, and
the mapping rev is an isomorphism between these graphs. It is easy to check that
this isomorphism preserves the sets of end vertices of the paths P2n(n, n + 1):
Using property (ii) mentioned in the previous section, we have rev(D=0

2n (n)) =
D=0

2n (n) and rev(D−
2n(n)) = D−

2n(n) (in Figure 1, these sets are the black and
white vertices). By property (i) of the paths P2n(n, n+ 1), we conclude that

C2n+1 := P2n(n, n+ 1) ◦ (0) ∪ rev(P2n(n, n+ 1)) ◦ (1) ∪ M ′
2n+1 (1)

with M ′
2n+1 := {(x◦(0), x◦(1)) | x ∈ D=0

2n (n)∪D−
2n(n)} ⊆ M2n+1 is a so-called 2-

factor of the middle levels graph, i.e., a set of disjoint cycles that together visit all
vertices of the graph. Note that along each of the cycles in the 2-factor, the paths
from P2n(n, n + 1) ◦ (0) are traversed in forward direction, and the paths from
rev(P2n(n, n+1))◦ (1) in backward direction. The algorithm HamCycleFlip()
(called with flip = false) computes exactly this 2-factor C2n+1: Given a vertex
x of the middle levels graph, it computes the next vertex on one of the cycles
from the 2-factor by checking the value of the last bit (line F2), and by returning
either the next vertex on the corresponding path from P2n(n, n+1)◦(0) (line F5)
or the previous vertex on the corresponding path from rev(P2n(n, n + 1)) ◦ (1)
(line F8; recall that rev−1 = rev). The cases that the next cycle edge is an
edge from M ′

2n+1 receive special treatment: In these cases the last bit is flipped
(lines F4 and F7).

Algorithm 2. HamCycleFlip(n, x, flip)

Input: An integer n ≥ 1, a vertex x ∈ Q2n+1(n, n+ 1), state variable
flip ∈ {true, false}

Output: Starting from x the next vertex on a Hamilton cycle in
Q2n+1(n, n+ 1), updated state variable flip ∈ {true, false}

F1 Split x = (x1, . . . , x2n+1) into x− := (x1, . . . , x2n) and the last bit x2n+1

F2 if x2n+1 = 0 then
F3 if x− ∈ D=0

2n (n) then return
(
Paths(n, n, x−, next, a) ◦ (x2n+1), a

)
where

a := IsFlipVertex(x−)
F4 else if x− ∈ D−

2n(n) then return (x− ◦ (1), false)
F5 else return

(
Paths(n, n, x−, next, flip) ◦ (x2n+1), flip

)

F6 else /* x2n+1 = 1 */
F7 if x− ∈ D=0

2n (n) then return (x− ◦ (0), false)
F8 else return

(
rev

(
Paths(n, n, rev−1(x−), prev, false)

) ◦ (x2n+1), false
)

As mentioned before, calling the algorithm HamCycleFlip() with flip =
false yields the 2-factor in the middle levels graph defined in (1) that consists
of more than one cycle. However, it can be shown that by replacing in (1) some
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of the flippable pairs of paths from P2n(n, n + 1) ◦ (0) by the corresponding
flipped paths from the set P̃2n(n, n + 1) ◦ (0) (which are computed by calling
the algorithm Paths() with flip = true) we obtain a 2-factor that has only
one cycle, i.e., a Hamilton cycle. The key insight is that replacing a pair of
flippable paths that are contained in two different cycles of the 2-factor C2n+1

by the corresponding flipped paths joins these two cycles to one cycle (this is an
immediate consequence of the definition of flippable/flipped pairs of paths). This
flipping is controlled by the parameter flip of the algorithm HamCycleFlip():
It decides whether to compute the next vertex on a path from P2n(n, n+1)◦ (0)
(if flip = false) or from P̃2n(n, n+ 1) ◦ (0) (if flip = true). Note that these
modifications do not affect the paths rev(P2n(n, n+1))◦(1) in the union (1): For
the corresponding instructions in lines F6–F8, the value of flip is irrelevant.

The decision whether to follow a path from P2n(n, n+1)◦(0) or from P̃2n(n, n+
1) ◦ (0) is computed at the vertices x ◦ (0), x ∈ D=0

2n (n), by calling the function
IsFlipVertex(x) (line F3). This decision is returned to the caller and main-
tained until the last vertex of the corresponding path in the graph Q2n(n, n +
1) ◦ (0) is reached. Recall that by the definition of flippable pairs of paths, this
decision can be made independently for each flippable pair (of course it has to
be consistent for both paths in a flippable pair: either both are flipped or none
of them).

2.4 The Top-Level Algorithm

The algorithm HamCycle(n, x, �) takes as input a vertex x of the middle levels
graph Q2n+1(n, n + 1) and computes the next � vertices that follow x on a
Hamilton cycle in this graph (i.e., for � ≤ N = 2

(
2n+1
n

)
, every vertex appears at

most once in the output, and for � = N every vertex appears exactly once and
the vertex x comes last).

Algorithm 3. HamCycle(n, x, �)

Input: An integer n ≥ 1, a vertex x ∈ Q2n+1(n, n+ 1), an integer � ≥ 1
Output: Starting from x, the next � vertices on a Hamilton cycle in

Q2n+1(n, n+ 1)

H1 Split x = (x1, . . . , x2n+1) into x− := (x1, . . . , x2n) and the last bit x2n+1

H2 flip := false
H3 if x2n+1 = 0 then /* initialize state variable flip */
H4 y := x−

H5 while y /∈ D=0
2n (n) do /* move backwards to first path vertex */

H6 y := Paths(n, n, y, prev, false)

H7 flip := IsFlipVertex(y)

H8 y := x
H9 for i := 1 to � do /* Hamilton cycle computation */

H10 (y, flip) := HamCycleFlip(n, y,flip)
H11 output y
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In terms of Gray codes, the algorithm takes a bitstring x of length 2n + 1
that has weight n or n+ 1 and outputs the � subsequent bitstrings in a middle
levels Gray code. A single call HamCycle(n, x, �) yields the same output as �
subsequent calls xi+1 := HamCycle(n, xi, 1), i = 0, . . . , � − 1, with x0 := x.
However, with respect to running times, the former is faster than the latter.

The algorithm HamCycle() consists of an initialization phase (lines H2–H7)
in which the initial value of the state variable flip is computed. This is achieved
by following the corresponding path from P2n(n, n + 1) ◦ (0) backwards to its
first vertex (lines H5–H6) and by calling the function IsFlipVertex() (line H7).
The actual Hamilton cycle computation (lines H8–H11) repeatedly computes
the subsequent cycle vertex and updates the state variable flip by calling the
function HamCycleFlip() discussed in the previous section (line H10).

2.5 Flip Vertex Computation

To complete the description of our Hamilton cycle algorithm, it remains to spec-
ify the auxiliary function IsFlipVertex(n, x). As mentioned before, this func-
tion decides for each vertex x ∈ D=0

2n (n) whether our Hamilton cycle algorithm
should follow the path from P2n(n, n + 1) that starts with this vertex (return
value false) or the corresponding flipped path from P̃2n(n, n+1) (return value
true) in the graph Q2n(n, n+1) ◦ (0) (recall (1)). This function therefore nicely
encapsulates the core ‘intelligence’ of our algorithm so that it produces a 2-factor
consisting only of a single cycle and not of several smaller cycles in the middle
levels graph. As the definition of this function is rather technical and unintuitive,
it is omitted in this extended abstract. It can be found in [16, Section 2.5].

3 Runtime Analysis

A naive implementation of the function Paths() takes time O(n2): To see this
observe that the membership tests whether x− is contained in one of the sets
D=0

2n−2(n−1), D−
2n−2(n−1) or D>0

2n−2(n) in lines P12, P15, P16, P17, P20 and P21
and the application of the mappings rev and π in line P22 take time O(n) (recall
that rev−1 = rev and π−1 = π), and that the value of n decreases by 1 with each
recursive call. In the following we sketch how this can improved so that each call
of Paths() takes only time O(n) (more details can be found in the comments
of our C++ implementation [1]): For this we maintain counters c0 and c1 for
the number of zeros and ones of a given bitstring x = (x1, . . . , x2n). Moreover,
interpreting the bitstring x as a lattice path (as described in Section 2.1), we
maintain vectors c00, c01, c10, c11 that count the number of occurences of pairs of
consecutive bits (x2i, x2i+1), i ∈ {1, . . . , n−1}, per height level of the lattice path
for each of the four possible value combinations of x2i and x2i+1. E.g., for the
bitstring x = (1, 1, 0, 0, 0, 0, 1, 0, 1, 0) the vector c10 has a single nonzero entry 1
at height level (=index) 1 for the two bits (x2, x3) = (1, 0), the vector c00 has a
single nonzero entry 1 at height level (=index) 0 for the two bits (x4, x5) = (0, 0),
and the vector c01 has a single nonzero entry 2 at height level (=index) -1 for
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the pairs of bits (x6, x7) = (x8, x9) = (0, 1). Using these counters, the three
membership tests mentioned before can be performed in constant time. E.g., a
bitstring x = (x1, . . . , x2n) is contained in D=0

2n (n) if and only if c0 = c1 and
x1 = 1 and the entry of c00 at height level 0 equals 0 (i.e., the lattice path
never moves below the line y = 0). Moreover, these counters can be updated
in constant time when removing the last two bits of x and when applying the
mappings rev and π: Note that rev simply swaps the roles of c0 and c1 and
the roles of c00 and c11 (plus a possible index shift), and that π simply swaps
the roles of c10 and c01. To compute the applications of rev and π in line P22
in constant time, we do not modify x at all, but rather count the number of
applications of rev and π and keep track of the middle range of bits of x that is
still valid (when removing the last two bits of x, this range shrinks by 2 on one
of the sides). Taking into account that multiple applications of rev and π cancel
each other out, this allows us to compute the effect of applying those mappings
lazily when certain bits are queried later on (when testing the values of the last
two bits of some substring of x).

The auxiliary function IsFlipVertex() defined in [16, Section 2.5] can be
implemented to run in time O(n2) (see that paper for more details).

It was shown in [17, Eq. (25)] that the length of any path P ∈ P2n(n, n+ 1)
with a first vertex F (P ) =: x ∈ D=0

2n (n) is given by the following simple formula:
Considering the unique decomposition x = (1) ◦ x� ◦ (0) ◦ xr with x� ∈ D=0

2k (k)
for some k ≥ 0, the length of P is given by 2|x�|+2 ≤ 2(2n− 2)+ 2 = 4n− 2. It
follows that the while-loop in line H5 terminates after at most O(n) iterations,
i.e., the initialization phase of HamCycle() (lines H2–H7) takes time O(n2).

It was shown in [17, Theorem 10] that the distance between any two neigh-
boring vertices of the form x◦ (0), x′ ◦ (0) with x, x′ ∈ D=0

2n (n) (x and x′ are first
vertices of two paths P, P ′ ∈ P2n(n, n + 1)) on a cycle in (1) is exactly 4n+ 2.
Comparing the lengths of two paths from P2n(n, n+1) that form a flippable pair
with the lengths of the corresponding flipped paths from the set P̃2n(n, n + 1),
we observe that either the length of one the paths decreases by 4 and the length
of the other increases by 4, or the lengths of the paths do not change (the
paths P, P ′ and R,R′ defined in Section 2.2 have exactly the length differences
−4 and +4, and these differences only propagate through the first cases of the
Paths() recursion, but not the last case in lines P19–P22). It follows that ev-
ery call of HamCycleFlip() for which the condition in line F3 is satisfied and
which therefore takes time O(n2) due to the call of IsFlipVertex(), is followed
by at least 4n − 3 calls in which the condition is not satisfied, in which case
HamCycleFlip() terminates in time O(n). Consequently, � consecutive calls of
HamCycleFlip() take time O(n2 + n�).

Summing up the time O(n2) spent for the initialization phase and O(n2 +
n�) for the actual Hamilton cycle computation, we conclude that the algorithm
HamCycle(n, x, �) runs in time O(n2 + n�) = O(n�(1 + n

� )), as claimed.
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Abstract. In this paper we study similarity measures for moving curves
which can, for example, model changing coastlines or glacier termini.
Points on a moving curve have two parameters, namely the position
along the curve as well as time. We therefore focus on similarity measures
for surfaces, specifically the Fréchet distance between surfaces. While
the Fréchet distance between surfaces is not even known to be com-
putable, we show for variants arising in the context of moving curves
that they are polynomial-time solvable or NP-complete depending on
the restrictions imposed on how the moving curves are matched. We
achieve the polynomial-time solutions by a novel approach for computing
a surface in the so-called free-space diagram based on max-flow min-cut
duality.

1 Introduction

Over the past years the availability of devices that can be used to track moving
objects has increased dramatically, leading to an explosive growth in movement
data. Naturally the goal is not only to track objects but also to extract information
from the resulting data. Consequently recent years have seen a significant increase
in the development of methods extracting knowledge from moving object data.

Tracking an object gives rise to data describing its movement. Often the scale
at which the tracking takes place is such that the tracked objects can be viewed
as point objects. Cars driving on a highway, birds foraging for food, or humans
walking in a pedestrian zone: for many analysis tasks it is sufficient to consider
them as moving points. Hence the most common data sets used in movement
data processing are so-called trajectories: sequences of time-stamped points.

However, not all moving objects can be reasonably represented as points. A
hurricane can be represented by the position of its eye, but a more accurate
description is as a 2-dimensional region which represents the hurricanes extent.
When studying shifting coastlines, reducing the coastline to a point is obviously
unwanted: one is actually interested in how the whole coast line moves and
changes shape over time. The same holds true when studying the terminus of a
glacier. In such cases, the moving object is best represented as a polyline rather
than by a single point. In this paper we hence go beyond the basic setting of
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moving point objects and study moving complex, non-point objects. Specifically,
we focus on similarity measures for moving curves, based on the Fréchet distance.

Definitions and Notation. The Fréchet distance is a well-studied distance
measure for shapes, and is commonly used to determine the similarity between
two curves A and B : [0, 1] → R

n. A natural generalization to more com-
plex shapes uses the definition of Equation 1 where the shapes A and B have
type X → R

n.

Dfd(A,B) = inf
μ:X→X

sup
x∈X

‖A(x)−B(μ(x))‖ (1)

A

t

p

B ◦ µ

t

p

µ

Fig. 1. A matching μ between sur-
faces A and B drawn as a homeo-
morphism between their parameter
spaces.

Here, ‖ · ‖ : R
n → R is a norm

such as the Euclidean norm (L2) or the
Manhattan norm (L1). The matching μ
ranges over orientation-preserving homeo-
morphisms (possibly with additional con-
straints) between the parameter spaces of
the shapes compared; as such, it defines a
correspondence between the points of the
compared shapes. A matching between sur-
faces with parameters p and t is illustrated
in Figure 1. Given one such matching we
obtain a distance between A and B by tak-
ing the largest distance between any two
corresponding points of A and B. The Fréchet distance is the infimum of these
distances taken over all possible matchings. For moving points or static curves,
we have as parameter space X = [0, 1] and for moving curves or static surfaces,
we have X = [0, 1]2. We can define various similarity measures between shapes
by imposing further restrictions on μ.

In practice a curve is generally represented by a sequence of P + 1 points.
Assuming a linear interpolation between consecutive points, this results in a
polyline with P segments. Analogously, a moving curve is a sequence of T + 1
polylines, each of P segments. We also interpolate the polylines linearly, yielding
a bilinear interpolation, or a quadrilateral mesh of P × T quadrilaterals.

Related Work. The Fréchet distance or related measures are frequently used
to evaluate the similarity between point trajectories [8,7,13]. The Fréchet dis-
tance is also used to match point trajectories to a street network [2,5]. The
Fréchet distance between polygonal curves can be computed in near-quadratic
time [3,6,9,17], and approximation algorithms [4,15] have been studied.

The natural generalization to moving (parameterized) curves is to interpret
the curves as surfaces parameterized over time and over the curve parameter.
The Fréchet distance between surfaces is NP-hard [16], even for terrains [10]. In
terms of positive algorithmic results for general surfaces the Fréchet distance
is only known to be semi-computable [1,12]. Polynomial-time algorithms have
been given for the so called weak Fréchet distance [1] and for the Fréchet distance
between simple polygons [11] and so called folded polygons [14].
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When interpreting moving curves as surfaces it is important to take the differ-
ent roles of the two parameters into account: the first is inherently linked to time
and the other to space. This naturally leads to restricted versions of the Fréchet
distance of surfaces. For curves, restricted versions of the Fréchet distance were
considered [7,18]. For surfaces we are not aware of similar results.

1.1 Results

We refine the Fréchet distance between surfaces to meaningfully compare moving
curves. To do so, we restrict matchings to be one of several suitable classes.
Representative matchings for the considered classes together with the running
times of our results are illustrated in Figure 2.

Identity Synchronous Constant Synchronous Dynamic
O(PT ) O(P 2T log(PT )) O(P 3T logP log(PT ))

Asynchronous Constant Asynchronous Dynamic Orientation-Preserving
NP-complete NP-hard NP-hard

Fig. 2. The time complexities of the considered classes of matchings.

The simplest class of matchings consists of a single predefined identity match-
ing μ(p, t) = (p, t). Hence, to compute the identity Fréchet distance, we need only
determine a pair of matched points that are furthest apart. It turns out that one of
the points of a furthest pair is a vertex of a moving curve (i.e. quadrilateral mesh),
allowing computation in O(PT ) time. See the full paper for more details.

We also discuss the synchronous constant Fréchet distance in the full paper.
Here we assume that the matching of timestamps is known in advance, and the
matching of positions is the same for each timestamp, so it remains constant. Our
algorithm computes the positional matching that minimizes the Fréchet distance.

The synchronous dynamic Fréchet distance considered in Section 2 also as-
sumes a predefined matching of timestamps, but does not have the constraint of
the synchronous constant class that the matching of positions remains constant
over time. Instead, the positional matching may change continuously over time.

Finally, in Section 3, we consider several cases where neither positional nor
temporal matchings are predefined. The three considered cases are the asyn-
chronous constant , asynchronous dynamic , and orientation-preserving Fréchet



Computing the Similarity Between Moving Curves 931

distance. The asynchronous constant class of matchings consists of a constant
(but not predefined) matching of positions, as well as timestamps whereas in
the asynchronous dynamic class of matchings, the positional matching may
change continuously. In the orientation-preserving class (see the full paper),
matchings range over orientation preserving homeomorphisms between the pa-
rameter spaces, given that the corners of the parameter space are aligned.

The last three classes are quite complex, and we give constructions proving
that approximating the Fréchet distance within a factor 1.5 is NP-hard under
these classes. For the asynchronous constant and asynchronous dynamic classes
of matchings, this result holds even for moving curves embedded in R

1 whereas
the result for the orientation-preserving case holds for embeddings in R

2.
Although we do not discuss classes where positional matchings are known in

advance, these symmetric variants can be obtained by interchanging the time and
position parameters for the discussed classes. Deciding which variant is appropri-
ate for comparing two moving curves depends largely on how the data is obtained,
as well as the use case for the comparison. For instance, the synchronous constant
variant may be used on a sequence of satellite images which have associated times-
tamps. The synchronous dynamic Fréchet distance is better suited for sensors with
different sampling frequencies, placed on curve-like moving objects.

2 Synchronous Dynamic Matchings

Synchronous dynamic matchings align timestamps under the
identity matching, but the matching of positions may change
continuously over time. Specifically, the matching is defined
as μ(p, t) = (πt(p), t). Here, μ(p, t) : [0, P ]×[0, T ]→ [0, P ]×[0, T ]
is continuous, and for any t the matching πt : [0, P ] → [0, P ] be-
tween the two curves at that time is a nondecreasing surjection.

2.1 Freespace Partitions in 2D

Fig. 3. A matching (green) in
the 2D freespace (white).

The freespace diagram Fε is the set pairs of
points that are within distance ε of each other.

(x, y) ∈ Fε ⇔ ‖A(x)−B(y)‖ ≤ ε

If A and B are curves with parameter
space [0, P ], then their freespace diagram is two-
dimensional, and the Fréchet distance is the min-
imum value of ε for which an xy-monotone path
(representing μ) from (0, 0) to (P, P ) through the
freespace exists.

We use a variant of the max-flow min-cut dual-
ity to determine whether a matching through the
freespace exists. Before we present the 3D vari-
ant for moving curves with synchronized times-
tamps, we illustrate the idea in the fictional 2D freespace of Figure 3. Here, any
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matching—such as the green path—must be an x- and y-monotone path from
the bottom left to the top right corner and this matching must avoid all obstacles
(i.e. all points not in Fe). Therefore each such matching divides the obstacles in
two sets: those above, and those below the matching.

Suppose we now draw a directed edge from an obstacle a to an obstacle b
if and only if any matching that goes over a must necessarily go over b. The
key observation is that a matching exists unless such edges can form a path
from the lower-right boundary to the upper-left boundary of the freespace. In
the example, a few trivial edges are drawn in black and gray. If all obstacles
were slightly larger, an edge could connect a blue obstacle with a red obstacle,
connecting the two boundaries by the edges drawn in black.

2.2 Freespace Partitions in 3D

In contrast to the 2D freespace where the matching is a path, matchings of the
form μ(p, t) = (πt(p), t) form surfaces in the 3D freespace F3D

ε (see Equation 2).
Such a surface again divides the obstacles in the freespace in two sets and can be
punctured by a path connecting two boundaries. We formalize this concept for
the 3D freespace and give an algorithm for deciding the existence of a matching.

(x, y, t) ∈ F3D
ε if and only if ‖A(x, t)−B(y, t)‖ ≤ ε (2)

For x, y, t ∈ N, the cell Cx,y,t of the 3D freespace is the set F3D
ε ∩ ([x, x+1]×

[y, y + 1]× [t, t+ 1]). The property of Lemma 1 holds for all such cells.

Lemma 1. A cell Cx,y,t of the freespace has a convex intersection with any line
parallel to the xy-plane or the t-axis.

u

µ

dx
y

t

Fig. 4. μ separates u and d.

We divide the set of points not in F3D
ε into a

set O of so-called obstacles, such that each indi-
vidual obstacle is a connected point set. Let u be
the open set of points representing the left and top
boundary of F3D

ε . Symmetrically, let d represent
the bottom and right boundary, see Figure 4. De-
note by O′ ⊂ O the obstacles between the bound-
aries.

O = {u, d}∪O′ with
⋃
O′ = ([0, P ]2×[0, T ])\F3D

ε ;
u = {(x, y, t) | (x < 0∧ y > 0)∨ (x < P ∧ y > P )};
d = {(x, y, t) | (x > 0∧ y < 0)∨ (x > P ∧ y < P )}.

Given a matching μ, let D ⊆ O be the set of
obstacles below it, then u /∈ D and d ∈ D. Here, we use axes (x, y, t) and say
that a point is below some other point if it has a smaller y-coordinate. Because
each obstacle is a connected set and μ cannot intersect obstacles, a single obstacle
cannot lie on both sides of the same matching. Because all matchings have u /∈ D
and d ∈ D, a matching exists if and only if ¬(d ∈ D ⇒ u ∈ D).
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We compute a relation � of elementary dependencies between obstacles, such
that its transitive closure �� has d �� u if and only if d ∈ D ⇒ u ∈ D. Let a�b if and
only if a∪ b is connected (a touches b) or there exists some point (xa, ya, ta) ∈ a
and (xb, yb, tb) ∈ b with xa ≤ xb, ya ≥ yb and ta = tb. We prove in Lemmas 2
and 3 that this choice of � satisfies the required properties and in Theorem 4
that we can use the transitive closure �� of � to solve the decision problem of
the Fréchet distance.

Lemma 2. If a �� b, then a ∈ D ⇒ b ∈ D.

Proof. Assume that a � b, then either a touches b and no matching can separate
them, or there exists some (xa, ya, t) ∈ a and (xb, yb, t) ∈ b with xa ≤ xb, ya ≥ yb.
If there were some matching μ with a ∈ D, then (xa, yμ, t) ∈ μ for some yμ > ya.
Similarly, if b /∈ D, then (xb, y

′
μ, t) ∈ μ for some y′μ < yb. We can further deduce

from xa ≤ xb and monotonicity of μ that we can pick y′μ such that ya < yμ ≤
y′μ < yb. However, this contradicts ya ≥ yb, so such a matching does not exist.
Hence, a ∈ D ⇒ b ∈ D whenever a � b and therefore whenever a �� b. ��
Lemma 3. If d ∈ D ⇒ u ∈ D, then d �� u.

Proof. Suppose d ∈ D ⇒ u ∈ D but not d �� u. Then no matching exists, and
no path from d to u exists in the directed graph G = (O, �). Pick as D the set
of obstacles reachable from d in G, then D does not contain u. Pick the tightest
matching μ such that D lies below it, we define μ in terms of matchings πt ⊆
R

2 × {t} in the plane at each timestamp t.

(x, y, t) ∈ πt if and only if (x′ > x ∧ y′ < y) ⇒ ¬m(x′, y′, t) ∧m(x, y, t) where

m(x, y, t) if and only if {(x′, y′, t) | x′ ≤ x ∧ y′ ≥ y} ∩
⋃

D = ∅
Because u /∈ D, this defines a monotone path πt from (0, 0) to (P, P ) at

each timestamp t. Suppose that πt properly intersects some o ∈ O, such that
some point of (xo, yo, t) ∈ o lies below πt. It follows from the definition of �
and ¬m(xo, yo, t) that d � o for some d ∈ D. However, such obstacle o cannot
exist because D satisfies �. As a result, no path πt intersects any obstacle and we
can connect the paths πt to obtain a continuous matching μ without intersecting
any obstacles. So μ does not intersect obstacles in O \D, contradicting d ∈ D ⇒
u ∈ D. ��
Theorem 4. The Fréchet distance is greater than ε if and only if d �� u for ε.

Proof. We have for every matching that u /∈ D and d ∈ D. Therefore it follows
from Lemma 2 that no matching exists if d �� u for ε. In that case, the Fréchet
distance is greater than ε. Conversely, if ¬(d �� u) there is a set D satisfying ��
with u /∈ D and d ∈ D. In that case, a matching exists by Lemma 3, and the
Fréchet distance is less than ε. ��
We choose the set of obstacles O′ such that

⋃
O′ = ([0, P ]2 × [0, T ]) \ Fε and

the relation � is easily computable. Note that due to Lemma 1, each connected
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component contains a corner of a cell, so any cell in the freespace contains
constantly many (up to eight) components of

⋃
O′. Moreover, we can index

each obstacle in O′ by a grid point (x, y, t) ∈ N
3.

Let ox,y,t ⊆ ([0, P ]2× [0, T ])∩([x−1, x+1]× [y−1, y+1]× [t−1, t+1])\Fε be
the maximal connected subset of the cells adjacent to (x, y, t), such that ox,y,t
contains (x, y, t). Now, the obstacle ox,y,t is not well-defined if (x, y, t) ∈ Fε, in
which case we define ox,y,t to be an empty (dummy) obstacle. We have O′ =⋃

(x,y,t){ox,y,t} and we remark that obstacles are not necessarily disjoint.

Each of the O(P 2T ) obstacles is now defined by a constant number of vertices.
We therefore assume that for each pair of obstacles (a, b) ∈ O2, we can decide
in constant time whether a � b; even though this decision procedure depends
on the chosen distance metric. For each obstacle a = ox,y,t, there are O(P 2)
obstacles b = ox′,y′,t′ for which a � b, namely because t − 2 ≤ t′ ≤ t + 2 if a � b.
Furthermore, u and d contribute to O(P 2T ) elements of the relation. Therefore
we can compute the relation � in O(P 4T ) time.

Testing whether d �� u is equivalent to testing whether a path from d to u exists
in the directed graph (O, �), which can be decided using a depth first search. So
we can solve the decision problem for the Fréchet distance in O(P 2T + | � |) =
O(P 4T ) time. However, the relation � may yield many unnecessary edges. In
Section 2.4 we show that a smaller set E of size O(P 3T ) with the same transitive
closure �� is computable in O(P 3T logP ) time, so the decision algorithm takes
only O(P 3T logP ) time.

2.3 Parametric Search

x

y

t

Fig. 5. [0, 2]3 \ F3D
ε

To give an idea of what the 3D freespace looks
like, we have drawn the obstacles of the eight cells
of the freespace between two quadrilateral meshes
of size P × T = 2 × 2 in Figure 5. Cells of the
3D freespace lie within cubes, having six faces and
twelve edges. We call such edges x-, y- or t-edges,
depending on the axis to which they are parallel.

We are looking for the minimum value of ε for
which a matching exists. When increasing the value
of ε, the relation � becomes sparser since obstacles
shrink. Critical values of ε occur when � changes.
Due to Lemma 1, all critical values involve an edge
or an xt-face or yt-face of a cell, but never the
internal volume, so the following critical values cover all cases.

a) The minimal ε such that (0, 0, t) ∈ F3D
ε and (P, P, t) ∈ F3D

ε for all t.

b) An edge of Cx,y,t becomes nonempty.

c) Endpoints of y-edges of Cx,y,t and Cx+i,y,t align in y-coordinate, or endpoints
of x-edges of Cx,y,t and Cx,y−j,t align in x-coordinate.

d) Endpoints of a t-edge of Cx,y,t and a t-edge of Cx+i,y−j,t align in t-coordinate.
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e) An obstacle in Cx,y,t stops overlapping with an obstacle in Cx+i,y,t or Cx,y−j,t

when projected along the x- or y-axis.

The endpoints involved in the critical values of type a), b), c) and d) can be
captured in O(P 2T ) functions. We apply a parametric search for the minimum
critical value εabcd of type a), b), c) or d) for which a matching exists. This
takes O((P 2T + timedec) log(PT )) time.

b

c

a

x

y

t

Fig. 6. a � b and a � c

We illustrate the need for critical values of type e)
in Figure 6, here obstacle a overlaps with both ob-
stacles b and c while the overlap in edges does not
contribute to �. It is unclear how critical values of
type e) can be incorporated in the parametric search
directly. Instead, we enumerate and sort the O(P 3T )
critical values of type e) in O(P 3T log(PT )) time. Us-
ing O(log(PT )) calls to the decision algorithm, we
apply a binary search to find the minimum criti-
cal value εe of type e) for which a matching exists.
Finding the critical value εe then takes O((P 3T +
timedec) log(PT )) time.

The synchronous dynamic Fréchet distance is then the minimum of εabcd
and εe. This results in the following running time.

Theorem 5. The synchronous dynamic Fréchet distance can be computed in
O((P 3T + timedec) log(PT )) time.

Before stating the final running time, we present a faster algorithm for the
decision algorithm.

2.4 A Faster Decision Algorithm

To speed up the decision procedure we distinguish the cases for which two ob-
stacles may be related by �, these cases correspond to the five types of critical
values of Section 2.3. Critical values of type a) and b) depend on obstacles in
single cells, so there are at most O(P 2T ) elements of � arising from type a)
and b). Critical values of type c) and e) arise from pairs of obstacles in cells in
the same row or column, so there are at most O(P 3T ) of them. In fact, we can
enumerate the edges of type a), b), c), and e) of � in O(P 3T ) time. On the other
hand, edges of type d) arise between two cells with the same value of t, so there
can be O(P 4T ) of them.

We compute a smaller directed graph (V,E) with |E| = O(P 3T ) that has
a path from d to u if and only if d �� u. Let V = O = {u, d} ∪ O′ be the
vertices as before (we will include dummy obstacles for grid points in that lie
in the freespace) and transfer the edges in � except those of type d) to the
smaller set of edges E. We must still induce edges of type d) in E, but instead
of adding O(P 4T ) edges, we use only O(P 3T ) edges. The edges of type d) can
actually be captured in the transitive closure of E using only O(P ) edges per
obstacle in E.
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Using an edge from ox,y,t to ox+1,y,t and to ox,y−1,t, we construct a path
from ox,y,t to any obstacle ox+i,y−j,t. The sole purpose of the dummy obstacles
is to construct these paths effectively. For obstacles whose gridpoints have the
same t-coordinates, it then takes a total of O(P 2T ) edges to include the obstacles
overlapping in t-coordinate related by type d), this is valid because (x, y, t) ∈
ox,y,t for non-dummy obstacles.

Denote by Ed
k the edges of type d) of the form (a, b) = (ox,y,ta , ox+i,y−j,tb)

where tb = ta+k, then the set Ed
0 of O(P 2T ) edges is the one we just constructed.

Now it remains to induce paths with ta �= tb, that still overlap in t-coordinates,
i.e. the sets Ed

−2, E
d
−1, E

d
1 and Ed

2 . Denote by t−(a) and t+(a) the minimum
and maximum t-coordinate over points in an obstacle a. For each obstacle, both
the t−(a) and the t+(a) coordinates are an endpoint of a t-edge in a cell defining
the obstacle due to Lemma 1, and therefore computable in constant time.

Our savings arise from the fact that if ox,y,t�ox+i,y−j,t+k and ox,y,t�ox+i′,y−j′,t+k

with i ≤ i′ and j ≤ j′, then Ed
0 induces a path from ox+i,y−j,t+k to ox+i′,y−j′,t+k,

so we do not need an additional edge to induce a path to the latter obstacle. To
avoid degenerate cases, we start by exhaustively enumerating edges of Ed

k (k ∈
{−2,−1, 1, 2}) for which i ≤ 1 or j ≤ 1 in O(P 3T ) time so we need only consider
edges with i ≥ 2 ∧ j ≥ 2.

3 1 2 4 3

2 3 3 1 3

4 4 4 3 4

2 4 2 3 2

3 3 3 1 4

2

x

y

Fig. 7. Two edges (green) cover
(red) all four obstacles b (green)
within the query rectangle (blue)
with values t−(b) ≤ t+(a) = 2.

For these remaining cases, we have a � b
if and only if t+(a) ≥ t−(b) ∧ tb = ta + k,
and t−(a) ≤ t+(b)∧ tb = ta−k for positive k.
From this we can derive the edges of Ed

k . Al-
though for each a, there may be O(P 2) ob-
stacles b such that a � b with tb = ta + k,
the Pareto frontier of those obstacles b con-
tains only O(P ) obstacles, see the grid of fic-
tional values t−(b) in Figure 7. In the full
paper, we show how to find these Pareto fron-
tiers in O(P logP ) time per obstacle a, using
only O(P 2T ) preprocessing time for the com-
plete freespace.

As a result, we can compute all O(P 3T )
edges of Ed

k in O(P 3T logP ) time. By The-
orem 6, the decision problem for the syn-
chronous dynamic Fréchet distance is solv-
able in O(P 3T logP ) time.

Theorem 6. The decision problem for the synchronous dynamic Fréchet dis-
tance is solvable in O(P 3T logP ) time.

Proof. The edges E of types other than d) are enumerated in O(P 3T ) time, and
using constantly many Pareto frontier queries for each obstacle, O(P 3T ) edges
of type d) in E are computed in O(P 3T logP ) time. Given the set E of edges,
deciding whether a path between two vertices exists takes O(|E|) = O(P 3T )
time. The transitive closure of E equals ��, so a path from d to u exists in E
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if and only if there was such a path in �. Since we compute E in O(P 3T logP )
time, the decision problem is solved in O(P 3T logP ) time. ��
The following immediately follows from Theorems 5 and 6.

Corollary 7. The synchronous dynamic Fréchet distance can be computed in
O(P 3T logP log(PT )) time.

3 Hardness

We extend the synchronous constant and syn-
chronous dynamic classes of matchings to asyn-
chronous ones. For this, we allow realignments of
timestamps, giving rise to the asynchronous con-
stant and asynchronous dynamic classes of match-
ings. The asynchronous constant class ranges over

matchings of the form μ(p, t) = (π(p), τ(t)) where the π and τ are matchings
of positions and timestamps. The asynchronous dynamic class of matchings has
the form μ(p, t) = (πt(p), τ(t)) for which the positional matching πt changes over
time. We first prove that the asynchronous constant Fréchet distance is in NP.

Theorem 8. Computing the Fréchet distance is in NP for the asynchronous
constant class of matchings.

Proof. Given any matching μ(p, t) = (π(p), τ(t)) with a Fréchet distance of ε,
we can derive—due to Lemma 1—a piecewise-linear matching τ∗ in O(T ) time,
such that a matching μ∗(p, t) = (π∗(p), τ∗(t)) with Fréchet distance at most ε
exists. We can realign the quadrilateral meshes A and B under τ∗ to obtain
meshes A∗ and B∗ of polynomial size. Now the polynomial-time decision algo-
rithm for synchronous constant matchings (see full paper) is applicable to A∗

and B∗. ��
Due to critical values of type e), it is unclear whether each asynchronous dynamic
matching admits a piecewise-linear matching τ∗ of polynomial size, which would
mean that the asynchronous dynamic Fréchet distance is also in NP.

We show that computing the Fréchet distance is NP-hard for both classes by
a reduction from 3-SAT. The idea behind the construction is illustrated in the
two height maps of Figure 8. These represent quadrilateral meshes embedded
in R

1 and correspond to a single clause of a 3-CNF formula of four variables.
We distinguish valleys (dark), peaks (white on A, yellow on B) and ridges

(denoted Xi, Fi and Ti). An important observation is that in order to obtain a
low Fréchet distance of ε < 3, the n-th valley of A must be matched with the n-
th valley of B. Moreover, each ridge Xi must be matched with Fi or Ti and each
peak of A must be matched to a peak of B. Note that even for asynchronous
dynamic matchings, if Xi is matched to Fi, it cannot be matched to Ti and
vice-versa because the (red) valley separating Fi and Ti has distance 3 from Xi.

The aforementioned properties are reflected more clearly in the 2D freespace
between the curves at aligned timestamps t and τ(t). In Figure 8, we give a 2D
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slice (at tA = T/2, tB = T/4) of the 4D-freespace diagram with ε = 2 for the
shown quadrilateral meshes. In this diagram with ε = 2, only 23 monotone paths
exist (up to directed homotopy) whereas for ε = 3 there would be 24 monotone
paths (one for each assignment of variables). For ε = 2, the peak of X2 cannot
be matched to F2 at t = T/4 of B, corresponding to an assignment of X2 = true.

Consider a 3-CNF formula with n variables and m clauses, then A and B con-
sist ofm clauses along the t-axis and n variables (X1 . . . Xn and F1, T1 . . . Fn, Tn)
along the p-axis. The k-th clause of A is matched to the k-th clause of B due to
the elevation pattern on the far left (p = 0). This means that the peaks of A are
matched with peaks of the same clause on B and all these peaks have the same
timestamp because τ(t) is constant (independent of p).

For each clause, there are three rows (timestamps) of B with peaks on the
ridges. On each such timestamp, exactly one ridge (depending on the disjuncts
of the clause) does not have a peak. Specifically, if a clause has Xi or ¬Xi as
its k-th disjunct, then the k-th row of that clause has no peak on ridge Fi or Ti,
respectively. We use these properties in Theorem 11 where we prove that it is
NP-hard to approximate the Fréchet distance within a factor 1.5.

Lemma 9. The Fréchet distance between two such moving curves is at least 3
if the corresponding 3-CNF formula is unsatisfiable.

Proof. Consider a matching yielding a Fréchet distance smaller than 3 given
an unsatisfiable formula, then the peaks of A (of the k-th clause) are matched
with peaks of B (of a single row of the k-th clause). Assign the value true to
variableXi if ridgeXi is matched with Ti and false if it is matched with Fi. Then
for every clause (Vi∨Vj∨Vk) with Vi ∈ {Xi,¬Xi}, there is a peak at π(Xi), π(Xj)
or π(Xk) for that clause. Such a matching cannot exist because then the 3-CNF
formula would be satisfiable, so the Fréchet distance is at least 3. ��

Lemma 10. The Fréchet distance between two such moving curves is at most 2
if the corresponding 3-CNF formula is satisfiable.

Proof. Consider a satisfying assignment to the 3-CNF formula. Match Xi with
the center of Fi or Ti, if Xi is false or true, respectively. For every clause, the
timestamp with peaks of A can be matched with a row of peaks on B. As was

0

T/2

p

t
X1 X2 X3 X4A

0

T/4

p

t
F1 T1 F2 T2 F3 T3 F4 T4B

Fig. 8. Two quadrilateral meshes A and B embedded in R
1 (indicated by color and

isolines). Their Fréchet distance is 2 isolines if the clause (X2∨¬X3∨¬X4) is satisfiable
and 3 isolines otherwise. The freespace Fε=2 of (A,B) at times (T/2, T/4) on the right.
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already hinted at by Figure 8, the remaining parts of the curves can be matched
with ε = 2. Therefore this yields a Fréchet distance of at most 2. ��
Theorem 11. It is NP-hard to approximate the asynchronous constant or asyn-
chronous dynamic Fréchet distance for moving curves in R

1 within a factor 1.5.

Proof. By Lemmas 9 and 10, the asynchronous constant or asynchronous dy-
namic Fréchet distance between two quadrilateral meshes embedded in R

1 is at
least 3 or at most 2, depending on whether a 3-CNF formula is satisfiable. ��
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speed limits. Comput. Geom. Theory Appl. 44(2), 110–120 (2011)



I/O-Efficient Similarity Join�

Rasmus Pagh1, Ninh Pham1, Francesco Silvestri1��, and Morten Stöckel2,���
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Abstract. We present an I/O-efficient algorithm for computing similar-
ity joins based on locality-sensitive hashing (LSH). In contrast to the
filtering methods commonly suggested our method has provable sub-
quadratic dependency on the data size. Further, in contrast to straight-
forward implementations of known LSH-based algorithms on external
memory, our approach is able to take significant advantage of the avail-
able internal memory: Whereas the time complexity of classical algo-
rithms includes a factor of Nρ, where ρ is a parameter of the LSH used,
the I/O complexity of our algorithm merely includes a factor (N/M)ρ,
where N is the data size and M is the size of internal memory. Our
algorithm is randomized and outputs the correct result with high proba-
bility. It is a simple, recursive, cache-oblivious procedure, and we believe
that it will be useful also in other computational settings such as parallel
computation.

1 Introduction

The ability to handle noisy or imprecise data is becoming increasingly important
in computing. In database settings this kind of capability is often achieved using
similarity join primitives that replace equality predicates with a condition on
similarity. To make this more precise consider a space U and a distance function
d : U × U → R. The similarity join of sets R,S ⊆ U is the following: Given
a radius r, compute the set R ��≤r S = {(x, y) ∈ R × S | d(x, y) ≤ r}. This
problem occurs in numerous applications, such as web deduplication [3,15], doc-
ument clustering [4], data cleaning [2,6]. As such applications arise in large-scale
datasets, the problem of scaling up similarity join for different metric distances
is getting more important and more challenging.
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Many known similarity join techniques (e.g., prefix filtering [2,6], positional
filtering [15], inverted index-based filtering [3]) are based on filtering techniques
that often, but not always, succeed in reducing computational costs. If we let
N = |R|+ |S| these techniques generally require Ω(N2) comparisons for worst-
case data. Another approach is locality-sensitive hashing (LSH) where candidate
output pairs are generated using collisions of carefully chosen hash functions.
The LSH definition is as follows.

Definition 1. Fix a distance function d : U × U → R. For positive reals
r, c, p1, p2, and p1 > p2, c > 1, a family of functions H is (r, cr, p1, p2)-sensitive
if for uniformly chosen h ∈ H and all x, y ∈ U:

– If d(x, y) ≤ r then Pr [h(x) = h(y)] ≥ p1;
– If d(x, y) > cr then Pr [h(x) = h(y)] ≤ p2.

We say that H is monotone if Pr [h(x) = h(y)] is a non-increasing function of
the distance function d(x, y).

LSH is able to break the N2 barrier in cases where for some constant c > 1
the number of pairs in R ��≤cr S is not too large. In other words, there should
not be too many pairs that have distance within a factor c of the threshold, the
reason being that such pairs are likely to become candidates, yet considering
them does not contribute to the output. For notational simplicity, we will talk
about far pairs at distance greater than cr (those that should not be reported),
near pairs at distance at most r (those that should be reported), and c-near
pairs at distance between r and cr (those that should not be reported but affect
the I/O cost).

In this paper we study I/O-efficient similarity join methods based on LSH.
That is, we are interested in minimizing the number of I/O operations where
a block of B points from U is transferred between an external memory and
an internal memory with capacity for M points from U. Our main result is the
first cache-oblivious algorithm for similarity join that has provably sub-quadratic
dependency on the data size N and at the same time inverse polynomial depen-
dency on M . In essence, where previous methods have an overhead factor of
either N/M or (N/B)ρ we obtain an overhead of (N/M)ρ, where 0 < ρ < 1 is a
parameter of the LSH employed, strictly improving both. We show:

Theorem 1. Consider R,S ⊆ U, let N = |R| + |S|, assume 18 logN + 3B ≤
M < N and that there exists a monotone (r, cr, p1, p2)-sensitive family of func-
tions with respect to distance measure d, using space B and with p2 < p1 < 1/2.
Let ρ = log p1/ log p2. Then there exists a cache-oblivious randomized algorithm
computing R ��≤r S (wrt. d) with probability 1−O (1/N) using

Õ
⎛

⎝
(
N

M

)ρ
⎛

⎝N

B
+

|R ��
≤r

S|
MB

⎞

⎠+

|R ��
≤cr

S|
MB

⎞

⎠ I/Os.1

1 The Õ (·)-notation hides polylog(N) factors.
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At first, the given I/O complexity may look somewhat strange, but we argue
that the bound is really quite natural. The first term matches the complexity
of the standard LSH method if we set M = 1, and becomes essentially linear
when M = N (i.e., when we know that the I/O complexity is linear). Regarding
the second term, we need to use |R ��≤r S|/(MB) I/Os to compute distances
of |R ��≤r S| pairs since in a single I/O we can introduce at most MB pairs
in memory. We get a factor (N/M)

ρ
because we may introduce some very near

pairs this number of times in memory. We can make a similar argument for the
last term. Because it is very hard to distinguish distance r from distance slightly
above r we expect to have to get some, possibly all, pairs in R ��≤cr S into fast
memory in order to conclude that they should not be output. A more detailed
discussion and experimental evaluations can be seen in the full version [13].

It is worth noting that whereas most methods in the literature focus on a
single (or a few) distance measure, our methods work for an arbitrary space
and distance measure that allows LSH, e.g., Hamming, Manhattan (�1), Eu-
clidean (�2), Jaccard, and angular metric distances. A primary technical hurdle
in the paper is that we cannot use any kind of strong concentration bounds on
the number of points having a particular value, since hash values of an LSH
family may be correlated by definition. Another hurdle is duplicate elimination
in the output stemming from pairs having multiple LSH collisions. However, in
the context of I/O-efficient algorithms it is natural to not require the listing of
all near pairs, but rather we simply require that the algorithm enumerates all
such near pairs. More precisely, the algorithm calls for each near pair (x, y) a
function emit(x, y). This is a natural assumption in external memory since it
reduces the I/O complexity. In addition, it is desired in many applications where
join results are intermediate results pipelined to a subsequent computation, and
are not required to be stored on external memory. Our upper bound can be easily
adapted to list all instances by increasing the I/O complexities of an unavoidable
additive term of Θ (|R ��≤r S|/B) I/Os.

The organization of the paper is as follows. In Section 2, we briefly review
related work. Section 3 describes our algorithms including a warm-up cache-
aware approach and the main results, a cache-oblivious solution, its analysis, and
a randomized approach to remove duplicates. Section 4 concludes the paper.

2 Related Work

Because Locality-sensitive hashing (LSH) is a building block of our I/O-efficient
similarity join, we briefly review LSH, the computational I/O model, and some
state-of-the-art similarity join techniques.

Locality-Sensitive Hashing (LSH). LSH was originally introduced by Indyk
and Motwani [12] for similarity search problem in high dimensional data. This
technique obtains a sublinear (i.e., O (Nρ)) time complexity by increasing the
gap of collision probability between near points and far points using the LSH
family as defined in Definition 1. Such gap of collision probability is polynomial,
with an exponent of ρ = log p1/ log p2 dependent on c, and 0 < ρ < 1.
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In this work we will use LSH as a black box for the similarity join problem.
It is worth noting that the standard LSHs for metric distances, including Ham-
ming [12], �1 [7], �2 [1,7], Jaccard [4] and angular distances [5] are monotone.
These common LSHs are space-efficient, and use space comparable to that re-
quired to store a point, except the LSH of [1] which requires space No(1). We
did not explicitly require the hash values themselves to be particularly small.
However, using universal hashing we can always map to small bit strings while
introducing no new collisions with high probability. Thus we assume that B hash
values fit in one memory block.

Computational I/O Model. We study algorithms for similarity join in the
external memory model, which has been widely adopted in the literature (see, e.g.,
the survey by Vitter [14]). The external memory model consists of an internal
memory of M words and an external memory of unbounded size. The processor
can only access data stored in the internal memory and move data between the
two memories in blocks of size B. For simplicity we will here measure block and
memory size in units of points from U, such that a block can contain B points.

The I/O complexity of an algorithm is defined as the number of input/output
blocks moved between the two memories by the algorithm. The cache-aware
approach makes use of the parameter M explicitly to achieve its I/O complexity
whereas the cache-oblivious one [8] does not explicitly use any model parameters.
The latter is a desirable property as it implies optimality on all levels of the
memory hierarchy and does not require parameter tuning when executed on
different physical machines. The cache-oblivious model assumes that the internal
memory is ideal in the sense that it has optimal cache-replacement policy that
can evict the block that is used the farthest in the future, and also that a block
can be placed anywhere in the cache (full associativity).

Similarity Join Techniques.We review some state-of-the-art of similarity join
techniques most closely related to our work.
– Index-based similarity join. A popular approach is to make use of index-

ing techniques to build a data structure for one relation, and then perform
queries using the points of the other relation. The indexes typically perform
some kind of filtering to reduce the number of points that a given query point
is compared to (see, e.g., [3,6]). Indexing can be space consuming, in partic-
ular for LSH, but in the context of similarity join this is not a big concern
since we have many queries, and thus can afford to construct each hash table
“on the fly”. On the other hand, it is clear that index-based similarity join
techniques will not be able to take significant advantage of internal memory
when N � M . Indeed, the query complexity stated in [9] is O ((N/B)ρ)
I/Os. Thus the I/O complexity of using indexing for similarity join will be
high.

– Sorting-based. The indexing technique of [9] can be adapted to compute
similarity joins more efficiently by using the fact that many points are being
looked up in the hash tables. This means that all lookups can be done in
a batched fashion using sorting. This results in a dependency on N that is
Õ (

(N/B)1+ρ
)
I/Os, where ρ ∈ (0; 1) is a parameter of the LSH family.
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– Generic joins. When N is close to M the I/O-complexity can be improved
by using general join operators optimized for this case. It is easy to see
that when N/M is an integer, a nested loop join requires N2/(MB) I/Os.
Our cache-oblivious algorithm will make use of the following result on cache-
oblivious nested loop joins:

Theorem 2. (He and Luo [11]) For an arbitrary join condition, the join
of relations R and S can be computed in O ((|R|+ |S|)/B + (|R||S|)/(MB))
I/Os by a cache-oblivious algorithm. This number of I/Os suffices to generate
the result in memory, but may not suffice to write it to disk.

3 Our Algorithms

In this sectionwe describe our I/O efficient algorithms.We start in Section 3.1with
a warm-up cache-aware algorithm. It uses an LSH family where the value of the
collision probability is set to be a function of the internal memory size. Section 3.2
presents our main result, a recursive and cache-oblivious algorithmwhich uses the
LSH as a black-box approach and does not make any assumption on the value of
collision probability. Section 3.3 describes the analysis and Section 3.4 shows how
to reduce the expected number of times each near pair is emitted.

3.1 Cache-Aware Algorithm: ASimJoin

We will now describe a simple cache-aware algorithm called ASimJoin, which
achieves the worst case I/O bounds as stated in Theorem 1. Due to the limit of
space, we will sketch some intuitions of the algorithm and refer to [13] for the
full discussion and omitted proof.

ASimJoin relies on an (r, cr, p′1, p′2)-sensitive family H′ of hash functions with
the following properties: p′2 ≤ M/N and p′1 ≥ (M/N)ρ, for a suitable value
0 < ρ < 1. Given an arbitrary (r, cr, p1, p2)-sensitive family H, the family H′ can
be built by concatenating �logp2

(M/N)	 hash functions from H. For simplicity,
we assume that logp2

(M/N) is an integer and thus the probabilities p′1, p
′
2 can

be exactly obtained. However, the algorithm and the analysis can be extended
to the general case by increasing the I/O complexity by a factor at most p−1

1 in
the worst case; in practical scenarios, this factor is a small constant [4,7,9].

Let R and S denote the input sets. The algorithm repeats L = 1/p′1 times the
following procedure. A hash function is randomly drawn from the (r, cr, p′1, p

′
2)-

sensitive family, and it is used for partitioning the sets R and S into buckets
of points with the same hash value. Then, the algorithm iterates through every
hash value and, for each hash value v, it uses a double nested loop for generating
all pairs of points in Rv × Sv, where Rv and Sv denote the buckets respectively
containing points of R and S with hash value v. A pair is emitted only if it
is a near pair. For each input point x ∈ R ∪ S, we maintain a counter that is
increased every time a pair (x, y) is generated and y is far from x. The counter is
maintained over all the L repetitions and keeps track of the number of collisions
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of x with its far points. As soon as the counter of a point exceeds 4LM , the point
is removed from the input set2. We refer to the pseudocode for more details.

By using the (r, cr, p′1, p′2)-sensitive family, ASimJoin guarantees that each
point collides with at most M far points. Therefore, each point in Rv ∪Sv is far
from at most M points in Rv ∪Sv (note that points in R and S are in the same
universe and then collision probabilities apply independently of the belonging
set). This implies that, if there are not too many near and c-near pairs,Rv ��≤rSv

can be efficiently computed with O (M/B) I/Os. On the other hand, if there are
many near or c-near points, the I/O complexity can be upper bounded in an
output sensitive way. In particular, we observe that a point cannot collide with
too many far points since it is removed from the set after 4LM collisions with
far points. Moreover, since each near pair has probability p′1 to be emitted by
partitioning R and S with LSH, the process is repeated L = 1/p′1 times.

Algorithm. ASimJoin(R,S): R,S are the input sets.

1 Associate to each point in S a counter initially set to 0;
2 Repeat L = 1/p′1 times
3 Choose h′

i ∈ H′ uniformly at random;
4 Use h′

i to partition (in-place) R and S in buckets Rv, Sv of points with hash
value v;

5 For each hash value v generated in the previous step
6 /* For simplicity we assume that |Rv| ≤ |Sv| */
7 Split Rv and Sv into chunks Ri,v and Si,v of size at most M/2;
8 For every chunk Ri,v of Rv

9 Load in memory Ri,v;
10 For every chunk Si,v of Sv do
11 Load in memory Si,v;
12 Compute Ri,v × Si,v and emit all near pairs. For each far pair,

increment the associated counters by 1;
13 Remove from Si,v and Ri,v all points with the associated counter

larger than 4LM , and write Si,v back to external memory;

14 Write Ri,v back to external memory;

3.2 Cache-Oblivious Algorithm: OSimJoin

The above cache-aware algorithm uses an (r, cr, p′1, p
′
2)-sensitive family of func-

tions, with p′1 ∼ (M/N)ρ and p′2 ∼ M/N , for partitioning the initial sets into
smaller buckets, which are then efficiently processed in the internal memory us-
ing the nested loop algorithm. As soon as the internal memory size M is known,
this family of functions can be built by concatenating �logp2

p′2	 hash functions
from any given primitive (r, cr, p1, p2)-sensitive family. However, in the cache-
oblivious settings the value of M is not known and such family cannot be built.

2 We observe that removing points that collide with at least 4LM points is only
required for getting the claimed I/O complexity with high probability. The algo-
rithm can be simplified by removing this operation, and yet obtaining the same
I/O bound in expectation.
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Therefore, we propose in this section an algorithm, named OSimJoin, that ef-
ficiently compute the similarity join even without knowing the values of the
internal memory size M and the block length B, and uses as a black-box a given
monotonic (r, cr, p1, p2)-sensitive family of functions3. The value of p1 and p2
can be considered constant in practical scenario.

As common in the cache-oblivious settings, we use a recursive approach for
splitting the problem into smaller and smaller subproblems that at some point
will fit the internal memory, although this point is not known in the algorithm.
We first give a high level description of the cache-oblivious algorithm and an
intuitive explanation. We then provide a more detailed description and analysis.

Algorithm. OSimJoin(R,S, ψ): R,S are the input sets, and ψ is the
recursion depth.

1 If |R| > |S|, then swap (the references to) the sets such that |R| ≤ |S|;
2 If ψ = Ψ or |R| ≤ 1, then compute R ��≤r S using the algorithm of Theorem 2

and return;
3 Pick a random sample S′ of 18Δ points from S (or all points if |S| < 18Δ);
4 Compute R′ containing all points of R that have distance smaller than cr to at

least half points in S′. Permute R such that points in R′ are in the first positions;
5 Compute R′ ��≤r S using the algorithm of Theorem 2;
6 Repeat L = 1/p1 times
7 Choose h ∈ H uniformly at random;
8 Use h to partition (in-place) R\R′ and S in buckets Rv, Sv of points with

hash value v;
9 For each v where Rv and Sv are nonempty, recursively call

OSimJoin (Rv, Sv, ψ + 1);

OSimJoin receives in input the two sets R and S of similarity join, and a
parameter ψ denoting the depth in the recursion tree (initially, ψ = 0) that is
used for recognizing the base case. Let |R| ≤ |S|, N = |R| + |S|, and denote
with Δ = logN and Ψ = �log1/p2

N	 two global values that are kept invariant
in the recursive levels and computed using the initial input size N . For the sake
of simplicity, we assume that 1/p1 and 1/p2 are integers, and further assume
without loss of generality that the initial size N is a power of two. Note that,
if 1/p1 is not integer, that the last iteration can be performed with probability
1/p1 − �1/p1, such that L ∈ {�1/p1, �1/p1	} and E [L] = 1/p1.

OSimJoin works as follows. If the problem is currently at recursive level
Ψ = �log1/p2

N	 or |R| ≤ 1, the recursion ends and the problem is solved using
the cache-oblivious nested loop described in Theorem 2. Otherwise the following
operations are executed. By exploiting sampling, the algorithm identifies a subset
R′ of R containing (almost) all points that are near or c-near to a constant
fraction of points in S. More specifically, the set R′ is computed by creating a
random sample S′ of S of size 18Δ and then adding to R′ all points in R that have

3 The monotonicity requirement can be relaxed to the following: Pr [h(x) = h(y)] ≥
Pr [h(x′) = h(y′)] for every two pairs (x, y) and (x′, y′) where d(x, y) ≤ r and
d(x′, y′) > r. A monotone LSH family clearly satisfies this assumption.



948 R. Pagh et al.

distance at most cr to at least half points in S′. The join R′ ��≤r S is computed
by using the cache-oblivious nested-loop of Theorem 2 and then points in R′

are removed from R. Subsequently, the algorithm repeats L = 1/p1 times the
following operations: a hash function is extracted from the (r, cr, p1, p2)-sensitive
family and used for partitioning R and S into buckets, denoted with Rv and Sv

with any hash value v; then, the join Rv ��≤r Sv is computed recursively.
The explanation of our approach is the following. By recursively partitioning in-

put points with hash functions froman (r, cr, p1, p2)-sensitive family, the algorithm
decreases the probability of collision between two far points. In particular, the col-
lision probability of two far points is pi2 at the i-th recursive level. On the other
hand, by repeating the partitioning 1/p1 times in each level, the algorithm guar-
antees that a pair of near points is enumerated with constant probability since the
probability that two near points collide is pi1 at the i-th recursive level. It deserves
to be noticed that the collision probability of far and near points at the recursive
level log1/p2

(N/M) is Θ (M/N) and Θ ((M/N)ρ), respectively, which are asymp-
totically equivalent to the values in the cache-aware algorithm. In other words, the
partitioning of points at this level is equivalent to the one in the cache-aware algo-
rithm, being the expected number of colliding far points isM . Finally, we observe
that, when a point in R becomes close to many points in S, it is more efficient to
detect and remove it, instead of propagating it down to the base cases. Indeed, it
may happen that the collision probability of these points is large (close to 1) and
the algorithm is not able to split them into subproblems that fit in memory.

3.3 I/O Complexity and Correctness of OSimJoin

Analysis of I/O Complexity. We will bound the expected number of I/Os
of the algorithm rather than the worst case. This can be converted to a fixed
time bound by a standard technique of restarting the computation when the
expected number of I/Os is exceeded by a factor 2. To succeed with probability
1−1/N it suffices to do O (logN) restarts to complete within twice the expected
time bound, and the logarithmic factor is absorbed in the Õ-notation. If the
computation does not succeed within this bound we fail to produce an output,
slightly increasing the error probability.

For notational simplicity, in this section we let R and S denote the initial
input sets and let R̃ and S̃ denote the subsets given in input to a particular
recursive subproblem (note that R̃ can be a subset of R but also of S; similarly
for S̃). We also let S̃′ denote the sampling of S̃ in Step 3, and with R̃′ the subset
of R̃ computed in Step 4. Our first lemma says that two properties of the choice
of random sample in Step 3 are almost certain. The proof relies on Chernoff
bounds on the choice of S̃′. See [13] for the omitted proof.

Lemma 1. Consider a run of Steps 3 and 4 in a subproblem OSimJoin(R̃, S̃, ψ),
for any level 0 ≤ ψ ≤ Ψ . Then with probability at least 1−O (1/N) over the choice
of sample S̃′ we have:

|R̃′ ��
≤cr

S̃| > |R̃′||S̃|
6

and |(R̃\R̃′) ��
>cr

S̃| > 5|R̃\R̃′||S̃|
6

.
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In the remainder of the paper, we assume that Lemma 1 holds and refer to this
event as A. By the above, A holds with probability 1−O (1/N).

To analyze the number of I/Os for subproblems of size more than M we bound
the cost in terms of different types of collisions, i.e., pairs in R× S that end up
in the same subproblem of the recursion. We say that (x, y) is in a particular
subproblem OSimJoin(R̃, S̃, ψ) if (x, y) ∈ (R̃ × S̃) ∪ (S̃ × R̃). Observe that a
pair (x, y) is in a subproblem if and only if x and y have colliding hash values
on every step of the call path from the initial invocation of OSimJoin.

Definition 2. Given Q ⊆ R × S let Ci (Q) be the number of times a pair in Q
is in a call to OSimJoin at the ith level of recursion. We also let Ci,k (Q), with
0 ≤ k ≤ logM denote the number of times a pair in Q is in a call to OSimJoin
at the ith level of recursion where the smallest input set has size in [2k, 2k+1) if
0 ≤ k < logM , and in [M,+∞) if k = logM . The count is over all pairs and
with multiplicity, so if (x, y) is in several subproblems at the ith level, all these
are counted.

Next we bound the I/O complexity of OSimJoin in terms of Ci (R ��≤cr S)
and Ci,k (R ��>cr S), for any 0 ≤ i < Ψ . These quantities are then bounded in
Lemma 3. Due to the space constraint, refer to [13] for the proof details.

Lemma 2. Let � = �log1/p2
(N/M)	 and M ≥ 18 logN + 3B. Given that A

holds, the I/O complexity of OSimJoin(R,S, 0) is

Õ

⎛

⎜⎜⎝
NL�

B
+

�∑

i=0

Ci

(
R ��

≤cr
S

)

MB
+

Ψ−1∑

i=�

logM∑

k=0

Ci,k

(
R ��

>cr
S

)
L

B2k

⎞

⎟⎟⎠

Proof. (Sketch) The proof of this lemma consists of bounding the I/O complexity
of each step as a function of the number of c-near or far collisions. The first two
terms give the cost of all subproblems at levels above �: the first term is due
to Step 5 and follows by expressing the cost in Theorem 2 in terms of c-near
collision through Lemma 1; the second term follows from a simple analysis of
Steps 7-8. The last term is the cost of levels below � and follows by expressing the
I/O complexity in terms of far collisions within subproblems of size in [2k, 2k+1)
for any k ≥ 0. The cost of level � is asymptotically negligible compared to the
other cases. ��

We will now analyze the expected sizes of the terms in Lemma 2. Clearly each
pair from R×S is in the top level call, so the number of collisions is |R||S| < N2.
But in lower levels we show that the expected number of times that a pair collides
either decreases or increases geometrically, depending on whether the collision
probability is smaller or larger than p1 (or equivalently, depending on whether
the distance is greater or smaller than the radius r). The lemma follows by
expressing the number of collisions of the pairs at the ith recursive level as a
Galton-Watson branching process [10]. See [13] for proof details.
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Lemma 3. Given that A holds, for each 0 ≤ i ≤ Ψ we have

1. E

[
Ci

(
R ��

>cr
S

)]
≤ |R ��

>cr
S| (p2/p1)i;

2. E

[
Ci

(
R ��

>r,≤cr
S

)]
≤ |R ��

>r,≤cr
S| ;

3. E

[
Ci

(
R ��

≤r
S

)]
≤ |R ��

≤r
S|Li;

4. E

[
Ci,k

(
R ��

>cr
S

)]
≤ N2k+1 (p2/p1)

i, for any 0 ≤ k < logM .

We are now ready to prove the I/O complexity of OSimJoin as claimed
in Theorem 1. By the linearity of expectation and Lemma 2, we get that the
expected I/O complexity of OSimJoin is

Õ

⎛

⎜⎜⎝
NL�

B
+

�∑

i=0

E

[
Ci

(
R ��

≤cr
S

)]

MB
+

Ψ−1∑

i=�

logM∑

k=0

E

[
Ci,k

(
R ��

>cr
S

)]
L

B2k

⎞

⎟⎟⎠ ,

where � = �log1/p2
(N/M)	. By noticing Ci,logM (R ��>cr S) ≤ Ci (R ��>cr S) we

have |R ��>cr S| ≤ N2 and Ci (R ��≤cr S) = Ci (R ��≤r S) + Ci (R ��>r,≤cr S),
and by plugging in the bounds on the expected number of collisions given in
Lemma 3, we get the claimed result.

Analysis of Correctness. We now argue that a pair (x, y) with d(x, y) ≤ r is
output with good probability. Let Xi = Ci((x, y)) be the number of subproblems
at level i containing (x, y). By applying Galton-Watson branching process, we
get that E [Xi] = (Pr [h(x) = h(y)] /p1)

i. If Pr [h(x) = h(y)] /p1 > 1 then in fact
there is positive constant probability that (x, y) survives indefinitely, i.e., does
not go extinct [10]. Since at every branch of the recursion we eventually compare
points that collide under all hash functions on the path from the root call, this
implies that (x, y) is reported with positive constant probability.

In the critical case where Pr [h(x) = h(y)] /p1 = 1 we need to consider the
variance of Xi, which by [10, Theorem 5.1] is equal to iσ2, where σ2 is the
variance of the number of children (hash collisions in recursive calls). If 1/p1
is integer the number of children in our branching process follows a binomial
distribution with mean 1. This implies that σ2 < 1. Also in the case where 1/p1
is not integer it is easy to see that the variance is bounded by 2. That is, we
have Var (Xi) ≤ 2i, which by Chebychev’s inequality means that for some integer
j∗ = 2

√
i+O (1):

∞∑

j=j∗
Pr [Xi ≥ j] ≤

∞∑

j=j∗
Var (Xi) /j

2 ≤ 1/2 .

Since we have E [Xi] =
∑∞

j=1 Pr [Xi ≥ j] = 1 then
∑j∗−1

j=1 Pr [Xi ≥ j] > 1/2,
and since Pr [Xi ≥ j] is non-increasing with j this implies that Pr [Xi ≥ 1] ≥
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1/(2j∗) = Ω
(
1/

√
i
)
. Since recursion depth is O (logN) this implies the probabil-

ity that a near pair is found is Ω
(
1/

√
logN

)
. Thus, by repeating O

(
log3/2 N

)

times we can make the error probability O (
1/N3

)
for a particular pair and

O (1/N) for the entire output by applying the union bound.

3.4 Removing Duplicates

The definition of LSH requires the probability p(x, y) = Pr [h(x) = h(y)] of two
near points x and y of being hashed on the same value is at least p1. If p(x, y) �
p1, our OSimJoin algorithm can emit (x, y) many times. As an example suppose
that the algorithm ends in one recursive call: then, the pair (x, y) is expected
to be in the same bucket for p(x, y)L iterations of Step 6 and thus it is emitted
p(x, y)L � 1 times in expectation. Moreover, if the pair is not emitted in the
first recursive level, the expected number of emitted pairs increases as (p(x, y)L)i

since the pair (x, y) is contained in (p(x, y)L)i subproblems at the ith recursive
level. A simple solution requires to store all emitted near pairs on the external
memory, and then using a cache-oblivious sorting algorithm [8] for removing
repetitions. However, this approach requires Õ (κ|R ��≤r S|/B) I/Os, where κ is
the expected average replication of each emitted pair, which can dominate the
complexity of OSimJoin. A similar issue appears in the cache-aware algorithm
ASimJoin as well: however, a near pair is emitted in this case at most L′ =
(N/M)ρ since there is no recursion and the partitioning of the two input sets is
repeated only L′ times.

If the collision probability Pr [h(x) = h(y)] can be explicitly computed in O (1)
time and no I/Os for each pair (x, y), it is possible to emit each near pair once in
expectation without storing near pairs on the external memory. We note that the
collision probability can be computed for many metrics, including Hamming [12],
�1 and �2 [7], Jaccard [4], and angular [5] distances. For the cache-oblivious algo-
rithm, the approach is the following: for each near pair (x, y) that is found at the
ith recursive level, with i ≥ 0, the pair is emitted with probability 1/(p(x, y)L)i

and is ignored otherwise. For the cache-aware algorithm, the idea is the same
but a near pair is emitted with probability 1/(p(x, y)L′) with L′ = (N/M)ρ. The
proof of the claim is provided in [13].

We observe that the proposed approach is equivalent to use an LSH where
p(x, y) = p1 for each near pair. Finally, we remark that this approach does not
avoid replica of the same near pair when the algorithm is repeated for increasing
the collision probability of near pairs.

4 Conclusion

In this paper we examine the problem of computing the similarity join of two
relations in an external memory setting. Our new cache-aware algorithm of Sec-
tion 3.1 and cache-oblivious algorithm of Section 3.2 improve upon current state
of the art by around a factor of (M/B)ρ I/Os unless the number of c-near pairs



952 R. Pagh et al.

is huge (more than NM). We believe this is the first cache-oblivious algorithm
for similarity join, and more importantly the first subquadratic algorithm whose
I/O performance improves significantly when the size of internal memory grows.

It would be interesting to investigate if our cache-oblivious approach is also
practical — this might require adjusting parameters such as L. Our I/O bound
is probably not easy to improve significantly, but interesting open problems are
to remove the error probability of the algorithm and to improve the implicit
dependence on dimension in B and M : In this paper we assume for simplicity
that the unit of M and B is number of points, but in general we may get tighter
bounds by taking into account the gap between the space required to store a
point and the space for e.g., hash values. Also, the result in this paper is made
with general spaces in mind and it is an interesting direction to examine if the
dependence on dimension could be made explicit and improved in specific spaces.
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Our main contribution is a 7/12-approximation algorithm for the M2PP prob-
lem. We also investigate {0, 1}-edge-weighted graphs – in which the weights of
the edges of G are either 0 or 1 – and we present a .75-approximation algorithm
for the M2PP problem and a .6-approximation algorithm for the MTP problem
in this setting.

Both the M2PP and MTP problems have been studied before, mostly under
the names Maximum 2-Path Packing and Maximum Triangle Packing

respectively. Unfortunately, these names have also been used for the related but
different problems defined below. Consequently, we use separate terminology to
make a clear distinction between the packing and partitioning settings.

Given an unweighted graph H , a 2-Path Packing of H is a collection of
vertex disjoint 2-paths and a Triangle Packing of H is a collection of vertex
disjoint triangles. Such a collection is called perfect if it uses all the vertices of H .
The Maximum 2-Path Packing problem asks to find a 2-Path Packing of
maximum cardinality. The Maximum Triangle Packing problem is defined
similarly.

The difference between packing and partitioning is that in the partitioning
setting all edges exist (though some may have weight 0). Thus, any collection of
disjoint sets of 3 vertices forms a valid partition of H into e.g. triangles, while
such an arbitrary collection may not be a valid triangle packing.

Related Work. In their classic book [10], Garey and Johnson show that decid-
ing whether a graph admits a perfect Triangle Packing or a perfect 2-Path
Packing is NP-complete (p. 68 and 76 respectively). More general results on the
NP-completeness of packing families of graphs into a given graph are provided in
[17] and [22]. Both the Maximum 2-Path Packing and Maximum Triangle

Packing problems are special cases of the unweighted 3-Set Packing problem
for which [18] (also see [12]) presents a local search algorithm that achieves a
2
3 − ε approximation (with ε > 0).

In [19] it is shown that the Maximum Triangle Packing is APX-hard
even in graphs of maximum degree 4 and in [7] it is shown to be NP-hard to
approximate within a factor of .9929. Moreover, [11] shows that the problem
remains NP-complete even when restricted to the families of chordal, planar,
line or total graphs. A .833-approximation algorithm for graphs with maximum
degree 4 is presented in [23]. For the Maximum 2-Path Packing problem, [24]
presents a fixed parameter tractable algorithm and [2] presents an approximation
algorithm for an edge weighted version of the problem.

The M2PP and MTP problems studied in this paper are special cases of the
weighted 3-Set Packing problem for which [1] presents a 1

2 − ε approximation
algorithm. In [14], Hassin et al. observe that there exists a simple reduction
from M2PP (respectively, MTP) to the problem of deciding whether a graph has
a perfect 2-Path Packing (resp., Triangle Packing), implying that the two
problems are NP-complete. Moreover, they present a randomized 35

67 − ε ≈ .5222
approximation algorithm for M2PP and in [26] this algorithm is refined and
derandomized, leading to an improved approximation ratio of .5265−ε; a simpler
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analysis was presented in [27]. For the MTP problem, [14] (see also Erratum [15])
presents a 43

83 − ε ≈ .518 approximation algorithm and [5] (see also Erratum [6])
presents a randomized approximation algorithm which achieves a ratio of .5257.
For {0, 1}-edge-weighted graphs, Hassin and Schneider [16] present a local search
based .55-approximation algorithm for M2PP which runs in time O(|V |10). In
[13] the authors study the problem of partitioning a complete weighted graph
into paths of length 3 and present a .75-approximation algorithm.

Contribution. In this paper we present a simple, matching based 7/12 ≈ .583
approximation algorithm for the M2PP problem on graphs with general non-
negative weights, improving upon the (.5265 − ε)-approximation algorithm of
[26]. Besides improving the approximation ratio, our algorithm is significantly
less computationally intensive: the algorithm of [26] runs in time exponential in
1/ε while our algorithm runs in cubic time. Moreover, for {0, 1}-edge-weighted
graphs we provide a .75-approximation algorithm for the M2PP problem im-
proving upon the .55-approximation algorithm of [16]. The core idea of our algo-
rithms is adapted from [13], where the authors show how to partition a complete
weighted graph into paths of length 3. For a complete graph on n = 3k vertices
we prove the following two theorems in Section 2 and Section 3 respectively.

Theorem 1. There exists a 7/12-approximation algorithm for the M2PP prob-
lem running in time O(k3).

Theorem 2. For {0, 1}-edge-weighted graphs there exists a 3/4-approximation
algorithm for the M2PP problem running in time O(k3).

In Section 4 we show how an approximation algorithm for M2PP can be com-
bined with a 3-Set Packing approximation algorithm to obtain an approximate
solution for the MTP on {0, 1}-edge-weighted graphs. We are not aware of pre-
vious results for the MTP problem restricted to this case.

Theorem 3. For {0, 1}-edge-weighted graphs there exists a 5/8-approximation
algorithm for the MTP problem running in time O(k3).

Motivation. Besides being interesting variants of theMaximum 2-Path Pack-

ing and Maximum 2-Path Packing problems, M2PP and MTP are natural
special cases of the Team Formation problem. Given a social network of ex-
perts, the Team Formation problem asks to find the most cohesive team. Some
authors [9], [20], [21], [25] measure the cohesiveness of a team as the number of
connections within a team, while others [20] consider only connections between
a team leader and the other team members. Experimental evidence presented
in [3] suggests that indeed, not all ties between team members are of equal im-
portance, and maximizing the connection between the team leader and the rest
of the group suffices. If, as in [20], we are interested in forming multiple teams,
the Team Formation problem for teams of size 3 can be cast as either M2PP
or MTP, depending on whether we are forming teams with or without a leader
respectively .
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2 M2PP in General Graphs

In this section we present and analyze the ���������	
���������� ap-
proximation algorithm for theM2PP problem in graphs with general non-negative
weights. For ease of presentation we restrict our attention to the case when k is
even. The case when k is odd can be solved similarly.

Some of the graphs we argue about in this section may refer to non-simple
graphs that have parallel edges and self-loops. To avoid confusion we begin by
formally defining the notion of a graph as used below. A graph G = (V,E, γ) is a
set of vertices V together with a set of edges E and a function γ : E → {{u, v} :
u, v ∈ V }. For an edge e ∈ E with γ(e) = {u, v} we call the vertices u and v the
endpoints of the edge e. Two edges e1, e2 ∈ E are called parallel if γ(e1) = γ(e2),
and an edge e ∈ E is called a loop if the two endpoints of e coincide. For clarity,
we sometimes use V (G) and E(G) to denote the vertex and edge set of the graph
G respectively. We say that the graph G is complete if for any vertices u �= v
in V (G) there exists an edge e ∈ E(G) such that γ(e) = {u, v}, and we say
that the graph G is simple if it contains no loops or parallel edges. In an edge
weighted graph each edge e ∈ E is associated with a weight ω(e). We slightly
abuse notation by using ω(A) to denote the sum of the weights of the edges in
an edge set A, and by using V (A) to denote the set of endpoints of edges in A.
Moreover, we use ω(G) to denote the sum of the weights of the edges in E(G).
For a set of 2-paths Π we use E(Π) to denote the set of edges used by the
2-paths of Π and ω(Π) to denote the sum of the weights of the edges in E(Π).
For an edge e ∈ E, let Ve, Ee and γe be defined as follows:

– Ve = (V \γ(e))∪{ve} for some new vertex ve /∈ V . We say that e is the edge
of G corresponding to ve, and vice versa.

– Ee = E \ {e}
– for any edge f ∈ Ee, γe(f) is defined as:

γe(f) =

{
γ(f) if γ(f) ∩ γ(e) = ∅,
(γ (f) \ γ(e)) ∪ {ve} otherwise.

We define G/e = (Ve, Ee, γe), the graph resulting from contracting the edge e.
For a set of edges A we denote by G/A the graph obtained fromG by sequentially
contracting all edges of A.

2.1 The ���������	
���������� Algorithm

The ���������	
���������� algorithm takes as input a weighted com-
plete simple graph G = (V,E, ωG, γG), with |V | = 3k, and in the first step it
computes a perfect maximum weight matching M of G. If needed, M may use
edges of weight 0 so that all vertices are matched. Therefore, the size of M is
3k/2. In the second step, it contracts the edges of M to obtain a graph H and
assigns to an edge e in H the weight

ωH(e) ≡ ωG(e)−min{ωG(a), ωG(b)},
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where a and b are the edges in M corresponding to the endpoints of e. In the
next step, a maximum weight matching N of size exactly k/2 is computed in
H based on the edge weight function ωH . Observe that some of the edges in N
may have negative weights in H . The matching N dictates how the edges of M
are combined into the output 2-paths:

– for each edge e ∈ N , let a, b ∈ M be the edges corresponding to the endpoints
of e, with ωG(a) ≥ ωG(b); create a 2-path {a, e}, and call the vertex of b not
incident to e a residual vertex.

– for each edge a ∈ M corresponding to a vertex of H not matched by N ,
create a 2-path from a and an arbitrary residual vertex.

We denote by Π1 the set of 2-paths created that contain an edge of N and the
remaining 2-paths by Π2. Notice that the size of both Π1 and Π2 is k/2. The
algorithm outputs the set of 2-paths A = Π1 ∪ Π2. A more formal description
of the algorithm is presented in the full paper.

2
3

2
3

2
3

1

1

1

1

(a) Matching M

1
3

(b) H and matching N

2
3

2
3

1

(c) Algorithm output

Fig. 1. Illustration of a tight example.

Example. In Fig. 1 we illustrate the main steps of the���������	
�����

������ algorithm on a simple complete graph on six vertices (therefore k = 2).
Fig. 1(a) shows the complete graph G with the zero weight edges omitted, and
for each non-zero edge its corresponding weight. The optimal solution of weight
4 is drawn in light gray and a possible maximum weight matching M is displayed
in bold (red). Fig. 1(b) shows the positive weight edges of the graph H . All the
illustrated edges have weight 1 in the graph G and have weight 1− 2/3 in H . A
maximum matching N of size k/2 = 1 is shown in bold (blue). Finally, Fig. 1(c)
shows a possible output of the algorithm, with the dotted segment denoting an
edge of zero weight. The weight of the output solution is 7/3 which is a 7/12
fraction of the weight of the optimal solution.

Algorithm Analysis. Since the most time consuming part of the ���������

�	
���������� algorithm is computing the matchings M and N , the algo-
rithm runs in time O(k3) [8].

We denote by OPT the set of 2-paths in a fixed optimal solution and in the
remaining of this section show that the algorithm outputs a solution of weight
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at least 7/12 · ωG(OPT ). In Lemma 1 we show that the weight of the output
solution is at least the weight of the matching M in G plus the weight of the
matching N in H , i.e., ωG(A) ≥ ωG(M) + ωH(N). In Lemma 2 we lower bound
ωH(E(OPT ) \M), the weight of the edges of the optimal solution in the graph
H , by ωG(E(OPT ))− 4/3 ·ωG(M); in Lemma 3 we show that the weight of the
matching N in H is at least ωH(E(OPT ) \M)/4. Combining these two bounds
it follows that ωH(N) ≥ ωG(OPT )/4−ωG(M)/3. Furthermore, it is easy to see
that the weight of the matching M is at least half of the weight of the optimal
solution since one can form a matching by selecting the heaviest edge of each
2-path in OPT and arbitrarily match the remaining vertices. Combining these
results,

ωG(A) ≥ ωG(M) + ωH(N) ≥ 2ωG(M)/3 + ωG(OPT )/4 ≥ 7/12 · ωG(OPT ),

thus proving Theorem 1.

Lemma 1. ωG(A) ≥ ωG(M) + ωH(N).

Proof sketch. First observe that all the edges of N are part of a 2-path in the
output solution. Moreover, each edge b ∈ M that does not appear in the output
solution is adjacent to an edge e ∈ N whose weight in H is ωH(e) = ωG(e) −
ωG(b). Therefore, the weight of e in H accounts for the absence of edge b in the
output solution.

Lemma 2. ωH(E(OPT ) \M) ≥ ωG(E(OPT ))− 4/3 · ωG(M).

In the full version of the paper we prove Lemma 2 by formalizing the intuition
that, since the edges of OPT in H form a sparse graph, it is not possible that a
small number of heavy edges of M correspond to the endpoints of many edges
of OPT in H , which would make the total weight of OPT in H much smaller
than the weight of OPT in G.

Lemma 3. The graph H of the ���������	
���������� algorithm has
a matching of size k/2 of weight at least ωH(E(OPT ) \M)/4.

Proof sketch. Let A be a set of k edges of E(OPT ) such that A is a matching
of G and A ∩ M = ∅. Then the edges of A ∪ M form a collection of disjoint
alternating paths and cycles in G, which implies that the edges of A form a
collection of disjoint paths and cycles in H . If all the cycles of A in H were of
even length, then one could split A into two matchings ofH , each of size k/2, and
therefore show that there exists a matching of H with at least half the weight
of A. However, although the cycles of A ∪M in G have even length (since they
are alternating), there is no guarantee that after contracting the edges of M the
cycles formed by A are still of even length. In the full paper we show that there
exists a matching A of G that “almost always” uses the heaviest edge from each
optimal 2-path and moreover, the edges of A∪M do not contain any cycles and
therefore form a collection of disjoint alternating paths.
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3 M2PP on {0, 1}-Edge-Weighted Graphs

In this section we describe and analyze the �	
���������� approximation
algorithm for the M2PP problem in graphs in which the weights of the edges are
either 0 or 1. The main difference to the algorithm described in section 2 is that
the first matching M may not be perfect. The following steps are slightly more
involved since after contracting the edges of M , one has to distinguish between
those vertices that correspond to edges of M and those that don’t.

The �	
���������� algorithm operates in the following four phases.
First, it finds a maximum weight matching M of G of minimum cardinality.
In other words, M is a maximum weight matching of G that does not have
any weight 0 edges. Next, it constructs a (complete) graph H by contracting
the edges of M in G and colors the vertices of H white and black according
to whether they are vertices from the original graph or they are obtained from
contracted edges of M . Namely, H = (VW ∪ VB, E

′, ω) is a {0, 1}-edge weighted
graph where VW and VB are the sets of white and black vertices respectively,
and |VW |+ 2|VB| = 3k.

We say that the vertex ũ ∈ V (H) corresponds to the vertex u ∈ V (G) if
either u does not appear as a vertex in M and ũ = u (in which case ũ is
white), or u is incident to some edge e ∈ M and ũ is the (black) vertex obtained
by contracting e. We say that the edge {ũ, ṽ} ∈ E′ corresponds to the edge
{u, v} ∈ G if ũ corresponds to u and ṽ corresponds to v. (Note that an edge
of H may correspond to up to 4 edges of G.) The edge {ũ, ṽ} ∈ E′ has weight
1 iff at least one of the edges in G corresponding to it has weight 1. Hereafter,
an edge of H between two black vertices is called a black-black edge; white-black
and white-white edges are defined analogously.

In the third phase, the algorithm finds a maximum weight matching N of H
among those having:

– min{|VB |, |VW |} white-black edges (the maximum possible).
– an equal number of black-black edges and unmatched black vertices.

In the fourth phase, the edges of the matching N dictate how the edges ofM and
the vertices not matched by M are combined into four collections Π1, . . . , Π4 of
2-paths as follows:

– Π1: 2-paths of maximum weight formed from the three vertices of G corre-
sponding to each white-black edge in N .

– Π2: 2-paths of maximum weight formed from each set of four vertices of
G corresponding to a black-black edge in N . Each such set has an unused
residual vertex. Denote by R be the set of all residual vertices.

– Π3: 2-paths formed from the edge of G corresponding to a black vertex not
matched by N , and an arbitrary vertex from the set R of residual vertices.

– Π4: 2-paths of weight 0 formed by arbitrarily partitioning the remaining
uncovered (white) vertices into triples.

The algorithm outputs the set of 2-paths A = Π1 ∪Π2 ∪Π3 ∪Π4. Observe that
when |M | > k the set Π4 is empty, and when |M | ≤ k the sets Π2 and Π3 are
empty.
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Examples. We illustrate the main steps of the algorithm with two examples.
Fig. 2(a) shows a complete {0, 1}-edge weighted graph on 12 vertices with its
zero weight edges omitted. The matching M = {a, b, c} is shown in bold (red).
Fig. 2(b) shows the graph H obtained from contracting the edges of M , with
the matching N shown in bold (red). Vertices va, vb and vc correspond to the
edges a, b and c respectively. Fig. 2 (c) shows the resulting 2-paths with zero
weight edges drawn as dotted segments. The algorithm outputs the sets Π1 =
{π1, π

′
1, π

′′
1 } and Π4 = {π4}. Note that since G has a small matching number

(< k), both Π2 and Π3 are empty.

a

b

c

(a) Matching M

va

vb

vc

(b) H and matching N

π1

π′
1

π4

π′′
1

(c) Output 2-paths

Fig. 2. ��������	
��� algorithm on a graph with small matching number.

Fig. 3(a) shows a complete {0, 1}-edge weighted graph G on 12 vertices with
its zero weight edges omitted. A maximum matching M = {a, b, c, d, e} is shown
in bold (red). Fig. 3(b) shows the graph H obtained from G after the edges of
M are contracted. The vertices va-ve correspond to edges a-e respectively. The
matching N is shown in bold (red). Fig. 3(c) shows the resulting 2-paths with
zero weight edges drawn as dotted segments. The algorithm produces the sets
Π1 = {π1, π

′
1}, Π2 = {π2} and Π3 = {π3}. Note that because G has a large

matching number (≥ k), the set Π4 is empty.

e

d

c

b

a

(a)

va

vb

vc

vd

ve

(b)

π1

π2

π3

π′
1

(c)

Fig. 3. ��������	
��� algorithm on a graph with large matching number.
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Algorithm Analysis. In the full paper we show that the matching N can be
found in O(k3) time by modifying the weights of the graph H and applying
a standard maximum weight matching algorithm. Since contracting the edges
of the matching M has quadratic time complexity and creating the 2-paths in
the fourth phase takes linear time, the �	
���������� algorithm has time
complexity O(k3).

To prove the 3/4-approximation guarantee, we split the analysis into two cases
according to whether the size of M is large (≥ k) or small (< k). Let OPT be
the set of 2-paths of a fixed optimal solution, and let Zopt be the number of edges
of weight 0 used by OPT . The weight of OPT is therefore 2k−Zopt. Moreover,
we partition VW , the set of white vertices of H , into two sets. Let W 1 ⊆ VW be
the set of white vertices incident to at least one edge of OPT of weight 1 and
let W 0 be the remaining white vertices. Let HOPT denote the subgraph of H
obtained by removing from H all edges not corresponding to edges of OPT . I.e.,
HOPT = (VW ∪ VB, E

′′, ω) where E′′ consists of the H edges corresponding to
the edges occurring in the 2-paths of OPT

The following lemma bounds the weight of the second matching N in the case
when the size of the first matching is large.

Lemma 4. If |M | ≥ k, then ω(N) ≥ (2k − 3Zopt)/4.

Proof sketch. By an argument similar to the one of Lemma 3, it can be shown that
there exists a matching in HOPT that has weight at least (k−Zopt)/2. However,
this matching may not satisfy the two conditions imposed on the matching N ,
namely that it contains (a) the maximum number of white-black edges and (b)
an equal number of black-black edges and unmatched black vertices. Let X be a
matching of HOPT of size and weight equal (2k− 3Zopt)/4 ≤ (k−Zopt)/2. This
matching can be modified (without changing its size or weight) to either contain
|W 1|/2 or more white-black edges, or to not contain any black-black edges. Then,
it is possible to add edges (possibly of weight 0) to this new matching, such that
the conditions (a) and (b) imposed on the matching N are satisfied. Since N is
the maximum weight matching satisfying (a) and (b), this proves the lemma.

The proof of the following lemma is based on the observation that every black
vertex has at most two incident white-black edges of weight 1 in HOPT .

Lemma 5. If |M | < k, then ω(N) ≥ |W 1|/2.
Proof. Let X be a maximum weight matching of HOPT among those containing
only white-black edges of weight 1. Let BX be the set of black vertices that are
incident to a white-black edge in X , and let WX be the set of white vertices
that are connected to a vertex in BX by an edge of weight 1 in HOPT . Since a
black vertex cannot be incident to more than 2 white-black edges of weight 1, if
ω(X) < |W 1|/2 then |BX | < |W 1|/2 and therefore |WX | < |W 1| implying that
W 1 \WX is not empty. Let u be a white vertex in W 1 \WX and v a black vertex
such that ω({u, v}) = 1. By adding {u, v} to X we obtain a matching containing
only white-black edges of weight 1 with weight larger than X , contradicting our
assumption. Therefore, ω(N) ≥ ω(X) ≥ |W 1|/2, which proves the lemma.
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Theorem 2. For {0, 1}-edge-weighted graphs there exists a 3/4-approximation
algorithm for the M2PP problem running in time O(k3).

Proof sketch. It is easy to see that if |M | ≥ k the weight of the output solution
is at least ω(M) +ω(N)− (|M | − k). By using Lemma 4 to bound the weight of
N we obtain:

ω(A) ≥ |M |+ 2k − 3Zopt

4
− (|M | − k) =

3

4
(2k − Zopt) =

3

4
ω(OPT ).

If |M | < k, the weight of the output solution is at least ω(M) + ω(N) ≥
ω(M) + |W 1|/2, where the inequality is due to Lemma 5. Since the vertices
of G corresponding to vertices in |W 0| are incident only to weight 0 edges of
OPT , it is not difficult to see that ω(OPT ) ≤ 2 · |V (M) ∪W 1|/3 which equals
4/3(ω(M) + |W 1|/2), and thus proves the claim.

4 MTP on {0, 1}-Edge-Weighted Graphs

In this section we show how an approximation algorithm for the M2PP problem
can be used in combination with a .5-approximation algorithm for the Trian-

gle Packing problem to obtain an approximation algorithm for the Maximum

Triangle Partitioning (MTP) problem on {0, 1}-edge-weighted graphs. The
most efficient .5-approximation algorithm for the Triangle Packing problem
we are aware of is the depth 2 local search algorithm of [12, Theorem 3.4] (see
also [18]) which works for general 3-Set Packing. Our algorithm also relies
on the existence of an α-approximate algorithm ��� for the M2PP problem on
{0, 1}-edge weighted graphs, with α ≥ .5 (e.g., our .75-approximation algorithm).
The ������� algorithm is presented in Fig. 4.

We fix a {0, 1}-edge-weighted graph G = (V,E, ω), and let OPT denote an
optimal solution for MTP. Let A, B and C be the sets of triangles of OPT of
weight 3, 2 and 1 respectively, and let a = |A|, b = |B| and c = |C|. The details
of the proofs in this section are omitted from this extended abstract.

By the definition of a, b and c, clearly ω(OPT ) = 3a+2b+ c. In Lemma 6 we
show that the weight of the algorithm A1 is at least 2a+ b+ c. It is interesting
to note that this approximation bound cannot be improved by simply using an
algorithm for the Triangle Packing problem with an approximation factor
greater than .5.

Lemma 6. ω(A1) ≥ 2a+ b+ c.

It is easy to see that the weight of the algorithm A2 is at least α(2a+2b+ c)
since a 2-path partition of weight 2a + 2b + c can be constructed from OPT .
Proposition 1 below follows from the two bounds for A1 and A2 by applying
standard techniques.

Proposition 1. max{ω(A1), ω(A2)} ≥ 2α

2α+ 1
· ω(OPT ).

Taking �	
���������� as our algorithm ���, with α = 3/4, yields
Theorem 3.
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1. Let G1 = (V,E1) be the unweighted graph
formed by taking E1 = {{u, v} ∈ E | ω({u, v}) = 1}.

2. Find a maximal triangle packing T in G1 such that |T | is at least half of the
maximum triangle packing in G1.

3. Let GT = (VT , ET , ω) be the subgraph of G, induced by the vertices of V \ V (T ).

4. Find a maximum weight matching M of size |VT |/3 in GT .

5. Complete M to a triangle partitioning T ′ in GT by arbitrarily matching each edge
{u, v} in M to an unmatched vertex w in VT and creating a triangle {u, v, w}.

6. Let A1 = T ∪ T ′.

7. Invoke algorithm ��� to get a 2-path partition Π of G.

8. Let A2 be the collection of triangles obtained by adding the missing edge to each
2-path of Π .

9. Return A, the solution of larger weight among A1 and A2.

Fig. 4. The ������	 algorithm.

5 Conclusions

We presented two algorithms that significantly improve the approximation factor
for the M2PP problem and for the MTP problem in {0, 1}-edge-weighted graphs.
For graphs with arbitrary positive weights, the best known approximations for
MTP only incrementally improve upon the approximation algorithms for the
more general weighted 3-Set Packing problem, while the only negative result
is that the problem is NP-complete. Closing the approximation gap for any of
these problems is an interesting open problem.

The triangle partition problem can be generalized to partitioning the graph
into cliques of any fixed size, while the M2PP problem can be generalized to
partitioning the graph into paths of fixed length or stars with a fixed number of
leaves. Although some research has been done in this area (e.g. [13]), there are
many open problems that deserve attention. Moreover, mirroring research in the
graph packing literature, one might be interested in partitioning the graph into
families of structures that maximize the weight of the chosen edges; for example,
partitioning the graph into vertex disjoint edges and 2-Paths.
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LNCS, vol. 1517, pp. 26–37. Springer, Heidelberg (1998)
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Abstract. We introduce a multivariate approach for solving weighted
parameterized problems. Building on the flexible use of certain parame-
ters, our approach defines a new general framework for applying the clas-
sic bounded search trees technique. In our model, given an instance of
size n of a minimization/maximization problem, and a parameter W ≥ 1,
we seek a solution of weight at most/at least W . We demonstrate the
wide applicability of our approach by solving the weighted variants of
Vertex Cover, 3-Hitting Set, Edge Dominating Set and Max In-

ternal Out-Branching. While the best known algorithms for these
problems admit running times of the form aWnO(1), for some constant
a > 1, our approach yields running times of the form bsnO(1), for some
constant b ≤ a, where s ≤ W is the minimum size of a solution of weight
at most (at least) W . If no such solution exists, s = min{W,m}, where m
is the maximum size of a solution. Clearly, s can be substantially smaller
than W . Moreover, we give an example for a problem whose polynomial-
time solvability crucially relies on our flexible (in lieu of a strict) use of
parameters.

We further show, among other results, thatWeightedVertexCover

andWeighted Edge Dominating Set are solvable in times 1.443tnO(1)

and 3tnO(1), respectively, where t ≤ s is the minimum size of a solution.

1 Introduction

Many fundamental problems in graph theory are NP-hard already on unweighted
graphs. This wide class includes, among others, Vertex Cover, 3-Hitting

Set, Edge Dominating Set and Max Internal Out-Branching. Fast
existing parameterized algorithms for these problems, which often exploit the
structural properties of the underlying graph, cannot be naturally extended to
handle weighted instances. Thus, solving efficiently weighted graph problems has
remained among the outstanding open questions in parameterized complexity,
as excellently phrased by Hajiaghayi [10]:

“Most fixed-parameter algorithms for parameterized problems are inher-
ently about unweighted graphs. Of course, we could add integer weights
to the problem, but this can lead to a huge increase in the parame-
ter. Can we devise fixed-parameter algorithms for weighted graphs that
have less severe dependence on weights? Is there a nice framework for
designing fixed-parameter algorithms on weighted graphs?”

c© Springer-Verlag Berlin Heidelberg 2015
N. Bansal and I. Finocchi (Eds.): ESA 2015, LNCS 9294, pp. 965–976, 2015.
DOI: 10.1007/978-3-662-48350-3_80
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We answer these questions affirmatively, by introducing a multivariate ap-
proach for solving weighted parameterized problems. We use this approach to
obtain efficient algorithms for the following fundamental graph problems.

Weighted Vertex Cover (WVC): Given a graph G = (V,E), a weight func-
tion w : V → R

≥1, and a parameter W ∈ R
≥1, find a vertex cover U ⊆ V (i.e.,

every edge in E has an endpoint in U) of weight at most W (if one exists).

Weighted 3-Hitting Set (W3HS):Given a 3-uniform hypergraphG = (V,E),
a weight function w : V → R

≥1, and a parameter W ∈ R
≥1, find a hitting set

U ⊆ V (i.e., every hyperedge in E has an endpoint in U) of weight at most W
(if one exists).

Weighted Edge Dominating Set (WEDS): Given a graph G = (V,E),
a weight function w : E → R

≥1, and a parameter W ∈ R
+, find an edge

dominating set U ⊆ E (i.e., every edge in E touches an endpoint of an edge in
U) of weight at most W (if one exists).

Weighted Max Internal Out-Branching (WIOB): Given a directed graph
G = (V,E), a weight function w : V → R

≥1, and a parameter W ∈ R
≥1, find an

out-branching of G (i.e., a spanning tree having exactly one vertex of in-degree
0) having internal vertices of total weight at least W (if one exists).

Parameterized algorithms solve NP-hard problems by confining the combina-
torial explosion to a parameter k. More precisely, a problem is fixed-parameter
tractable (FPT) with respect to a parameter k if it can be solved in time O∗(f(k))
for some function f , where O∗ hides factors polynomial in the input size n. We
note that it is necessary to assume that element weights are at least 1 in order
to ensure fixed-parameter tractability with respect to W (see, e.g., [20])).

Existing FPT algorithms for the above problems have running times of the
form O∗(aW ), for some constant a > 1. Using our approach (described in Section
3), we obtain faster algorithms, whose running times are of the form O∗(bs),
for some constant b ≤ a, where s ≤ W is the minimum size of a solution of
weight at most (at least) W . If no such solution exists, s = min{W,m}, where
m is the maximum size of a solution (for the unweighted version). Clearly, s
can be significantly smaller than W . Moreover, in most of our results, b < a.
We complement these results by developing algorithms for Weighted Vertex

Cover and Weighted Edge Dominating Set parameterized by t ≤ s, the
minimum size of a solution (for the unweighted version). Any instance of the
problems studied in this paper may satisfy t < s (since if a solution A is smaller
than a solution B, it is possible that the weight of A is larger than the weight
of B).

1.1 Previous Work

Our problems are well known in graph theory and combinatorial optimization.
They were also extensively studied in the area of parameterized complexity. We
mention below known FPT results for their unweighted and weighted variants,
parameterized by t and W , respectively.
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Vertex Cover: VC is one of the first problems shown to be FPT. In the past
two decades, it enjoyed a race towards obtaining the fastest FPT algorithm. The
best FPT algorithm, due to Chen et al. [5], runs in time O∗(1.274t). In a similar
race, focusing on graphs of bounded degree 3, the current winner is an algorithm
of Issac et al. [17], whose running time is O∗(1.153t). For WVC, Niedermeier et
al. [20] proposed an algorithm of O∗(1.396W ) time and polynomial space, and an
algorithm of O∗(1.379W ) time and O∗(1.363W ) space. Subsequently, Fomin et
al. [13] presented an algorithm of O∗(1.357W ) time and space. An alternative
algorithm, using O∗(1.381W ) time and O∗(1.26W ) space, is given in [14].

3-Hitting Set: Several papers study FPT algorithms for 3HS. The best algo-
rithm, by Wahlström [25], has running time O∗(2.076t). For W3HS, Fernau [12]
gave an algorithm which runs in time O∗(2.247W ) and uses polynomial space.

Edge Dominating Set: FPT algorithms for EDS, in general and bounded
degree graphs, are given in several papers. The best known algorithm for general
graphs, by Xiao et al. [26], runs in time O∗(2.315t), and for graphs of bounded
degree 3, the current best algorithm, by Xiao et al. [27], runs in time O∗(2.148t).
ForWEDS in general graphs, the best algorithm, due to Binkele-Raible et al. [2],
has running time O∗(2.382W ) and uses polynomial space.

Max Internal Out-Branching: Although FPT algorithms for minimization
problems are more common than those for maximization problems (see [11]),
IOB was extensively studied in this area. The previous best algorithms run in
time O∗(6.855t) [23], and in randomized time O∗(4t) [9,28] (faster algorithms
are given in [29]). The weighted version, WIOB, was studied in the area of
approximation algorithms (see [21,19]); however, to the best of our knowledge,
its parameterized complexity is studied here for the first time.

We note that well-known tools, such as the color coding technique [1], can be
used to obtain elegant FPT algorithms for some classic weighted graph prob-
lems (see, e.g., [15,16,24]). Recently, Cygan et al. [8] introduced a novel form of
tree-decomposition to develop an FPT algorithm for minimum weighted graph
bisection. Yet, for many other problems, these tools are not known to be useful.
In fact, our flexible use of parameters may be essential for obtaining fast running
times of the forms presented in this paper. We further elaborate in Section 3 on
the limitations of known techniques in solving weighted graph problems.

1.2 Our Results

We introduce a novel multivariate approach for solving weighted parameterized
problems. Our approach yields fast algorithms whose running times are of the
form O∗(cs). We demonstrate its usefulness for the following problems.

• WVC: We give an algorithm that uses O∗(1.381s) time and polynomial
space, or O∗(1.363s) time and space, complemented by an algorithm that
uses O∗(1.443t) time and polynomial space. For graphs of bounded degree
3, this algorithm runs in time O∗(1.415t).1

1 We also give an O∗(1.347W ) time algorithm for WVC.
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Table 1. Known results for WVC, W3HS, WEDS and WIOB, parameterized by t,
W and s.

Problem Unweighted Parameter W Parameter s Parameter (t+s) Comments

WVC O∗(1.274t) [5] O∗(1.396W) [20] O∗(1.381s) O∗(1.443t) O∗(1) space
· O∗(1.357W) [13] O∗(1.363s) ·

O∗(1.153t) [17] · · O∗(1.415t) Δ = 3

W3HS O∗(2.076t) [25] O∗(2.247W) [12] O∗(2.168s) O∗(1.363s−t2.363t)

WEDS O∗(2.315t) [26] O∗(2.382W) [2] O∗(2.315s) O∗(3t)
O∗(2.148t) [27] · · · Δ = 3

WIOB O∗(6.855t) [23] — O∗(6.855s) —

• W3HS: We develop an algorithm which usesO∗(2.168s) time and polynomial
space, complemented by an algorithm which uses O∗(1.381s−t2.381t) time
and polynomial space, or O∗(1.363s−t2.363t) time and O∗(1.363s) space.

• WEDS: We give an algorithm which uses O∗(2.315s) time and polynomial
space, complemented by an O∗(3t) time and polynomial space algorithm.

• WIOB: We present an algorithm that has time and space complexities
O∗(6.855s), or randomized time and space O∗(4sW ).

Table 1 summarizes the known results for our problems. Results given in this
paper are shown in boldface. Entries marked with · follow by inference from the
first entry in the same cell. As shown in Table 1, our results imply that even if W
is large, our problems can be solved efficiently, i.e., in times that are comparable
to those required for solving their unweighted counterparts. Furthermore, most
of the bases in our O∗(cs) running times are smaller than the bases in the
corresponding known O∗(cW ) running times. One may view such fast running
times as somewhat surprising, since WVC, a key player in deriving our results,
seems inherently more difficult than VC. Indeed, while VC admits a kernel of
size 2t, the smallest known kernel for WVC is of size 2W [4,6]. In fact, as shown
in [18], WVC does not admit a polynomial kernel when parameterized by t.

Technical Contribution: A critical feature of our approach is that it allows
an algorithm to “fail” in certain executions, e.g., to return NIL even if there
exists a solution of weight at most (at least) W for the given input (see Section
3). We obtain improved running times for our algorithms by exploiting this
feature, along with an array of sophisticated tools for tackling our problems.
Specifically, in solving minimization problems, we show how the approach can be
used to eliminate branching steps along the construction of bounded search trees,
thus decreasing the overall running time. In solving WIOB, we reduce a given
problem instance to an instance of an auxiliary problem, called Weighted k-
ITree, for which we obtain an initial solution. This solution is then transformed
into a solution for the original instance. Allowing “failures” for the algorithms
simplifies the subroutine which solves Weighted k-ITree, since we do not
need to ensure that the initial solution is not “too big”. Again, this results in
improved running times.
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Furthermore, our approach makes non-standard use of the classic bounded
search trees technique. Indeed, the analysis of an algorithm based on the tech-
nique relies on bounds attained by tracking the underlying input parameter,
and the corresponding branching vectors of the algorithms (see Section 2). In
deriving our results, we track the value of the weight parameter W , but analyze
the branching vectors with respect to a special size parameter k. Our algorithms
may base their output on the value of W only (i.e., ignore k; see, e.g., our algo-
rithms for W3HS and WEDS in [22]), or may decrease k by less than its actual
decrease in the instance (see, e.g., Rules 6 and 8 in Section 4, and Rule 5 of
WVCnoW-Alg2 [22]; observe that when we decrease k by less than necessary, it
is not guaranteed that we next decrease k by more than necessary).

We note that “discounting” analysis (namely, balancing bad cases against
good cases that will inevitably follow) has some history in parameterized com-
plexity. For example, an analysis of this type led to the results of Chen et al.
[5]. Our approach (see Section 3) can both enhance and simplify “discounting”
analysis. Indeed, in some of the algorithms we combine our approach with such
analysis. Due to the general and intuitive nature of the approach, we believe it
will find use in tackling the weighted variants of other classes of graph problems.

Organization: In Section 2, we give some definitions and notation, including
an overview of the bounded search trees technique. Section 3 presents our gen-
eral multivariate approach. In Section 4, we demonstrate the usefulness of our
approach by developing an O∗(1.381s) time and polynomial space algorithm for
WVC. Due to lack of space, all other applications are given in [22].

2 Preliminaries

Definitions and Notation: Given a (hyper)graph G = (V,E) and a vertex
v ∈ V , let N(v) denote the set of neighbors of v; E(v) denotes the set of edges
adjacent to v. The degree of v is |E(v)| (which, for hypergraphs, may not be
equal to |N(v)|). Recall that a leaf is a degree-1 vertex. Given a subgraph H of
G, let V (H) and E(H) denote its vertex set and edge set, respectively. For a
subset U ⊆ V , let N(U) =

⋃
v∈U N(v), and E(U) =

⋃
v∈U E(v). Also, we denote

by G[U ] the subgraph of G induced by U (if G is a hypergraph, v, u ∈ U and
r ∈ V \ U such that {v, u, r} ∈ E, then {v, u} ∈ E(G[U ])). Given a set S and a
weight function w : S → R, the total weight of S is given by w(S) =

∑
s∈S w(s).

Finally, we say that a (hyper)edge e ∈ E containing exactly d vertices is a d-edge.

Bounded Search Trees: The bounded search trees technique is fundamental in
the design of recursive FPT algorithms (see, e.g., [11]). Informally, in applying this
technique, onedefines a list of rules.Each rule is of the formRuleX. [condition]action,
where X is the number of the rule in the list. At each recursive call (i.e., a node in
the search tree), the algorithm performs the action of the first rule whose condi-
tion is satisfied. If, by performing an action, the algorithm recursively calls itself
at least twice, the rule is a branching rule; otherwise, it is a reduction rule. We only
consider polynomial time actions that increase neither the parameter nor the size
of the instance, and decrease at least one of them.
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The running time of an algorithm that uses bounded search trees can be
analyzed as follows. Suppose that the algorithm executes a branching rule which
has � branching options (each leading to a recursive call with the corresponding
parameter value), such that in the ith branch option, the current value of the
parameter decreases by bi. Then, (b1, b2, . . . , b�) is called the branching vector of
this rule. We say that α is the root of (b1, b2, . . . , b�) if it is the (unique) positive
real root of xb∗ = xb∗−b1+xb∗−b2+. . .+xb∗−b� , where b∗ = max{b1, b2, . . . , b�}. If
r>0 is the initial value of the parameter, and the algorithm (a) returns a result
when (or before) the parameter is negative, and (b) only executes branching
rules whose roots are bounded by a constant c > 0, then its running time is
bounded by O∗(cr).

3 A General Multivariate Approach

In our approach, a problem parameterized by the solution weight is solved by
adding a special size parameter. Formally, given a problem instance, and a weight
parameter W > 1, we add an integer parameter 0 < k ≤ W . We then seek a
solution of weight at most (at least) W . The crux of the approach is in allow-
ing our algorithms to “fail” in certain cases. This enables to substantially im-
prove running times, while maintaining the correctness of the returned solutions.
Specifically, our algorithms satisfy the following properties. Given W and k,

(i) If there exists a solution of weight at most (at least) W , and size at most k,
return a solution of weight at most (at least) W . The size of the returned
solution may be larger than k.

(ii) Otherwise, return NIL, or a solution of weight at most (at least) W .

Clearly, the correctness of the solution can be maintained by iterating the above
step, until we reach a value of k for which (i) is satisfied and the algorithm
terminates with “success”. Using our approach, we solve the following problems.

k-WVC: Given an instance of WVC, along with a parameter k ∈ N, satisfy
the following. If there is a vertex cover of weight at most W and size at most k,
return a vertex cover of weight at most W ; otherwise, return NIL, or a vertex
cover of weight at most W .

k-W3HS: Given an instance of W3HS, along with a parameter k ∈ N, satisfy
the following. If there is a hitting set of weight at most W and size at most k,
return a hitting set of weight at most W ; otherwise, return NIL or a hitting set
of weight at most W .

k-WEDS: Given an instance of WEDS, along with a parameter k ∈ N, satisfy
the following. If there is an edge dominating set of weight at most W and size at
most k, return an edge dominating set of weight at most W ; otherwise, return
NIL or an edge dominating set of weight at most W .

k-WIOB: Given an instance of WIOB, along with a parameter k < W , satisfy
the following. If there is an out-branching having a set of internal vertices of
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total weight at least W and cardinality at most k, return an out-branching with
internal vertices of total weight at least W ; otherwise, return NIL or an out-
branching with internal vertices of total weight at least W .2

We develop FPT algorithms for the above variants, which are then used to
solve the original problems. Initially, k = 1. We increase this value iteratively,
until either k = min{W,m}, or a solution of weight at most (at least) W is
found, where m is the maximum size of a solution (for the unweighted version).
Clearly, for WVC and W3HS, m = |V |; for WEDS, m = |E|; and for WIOB,
m is the maximum number of internal vertices of a spanning tree of G. For
WIOB, to ensure that s ≤ min{W,m}, we proceed as follows. Initially, we solve
1-WIOB. While the algorithm returns NIL, before incrementing the value of k,
we solve IOB, in which we seek an out-branching having at least (k+1) internal
vertices (using [23,9]). If k + 1 ≥ W , our algorithm returns the answer to IOB.
Otherwise, our algorithm solves (k+1)-WIOB (i.e., it increments k) only if the
answer (to IOB) was not NIL.

We note that some weighted variants of parameterized problems were stud-
ied in the following restricted form. Given a problem instance, along with the
parameters W ≥ 1 and k ∈ N, find a solution of weight at most (at least) W
and size at most k; if such a solution does not exist, return NIL (see, e.g., [3,7]).
Clearly, an algorithm for this variant can be used to obtain running time of
the form O∗(cs), for some constant c > 1, for the original weighted instance.
However, the efficiency of our algorithms crucially relies on the flexible use of
the parameter k. In particular (as we show in the full version [22]), for some
of the problems, the restricted form becomes NP-hard already on easy classes
of graphs, as opposed to the above problems, which remain polynomial time
solvable on such graphs.

4 An O∗(1.381s) Time Algorithm for WVC

In this section, we present our first algorithm, WVC-Alg. This algorithm em-
ploys the bounded search trees technique, described in Section 2. It builds upon
rules used by the O∗(1.396W ) time and polynomial space algorithm for WVC

proposed in [20]. However, we also present new rules, including, among others,
reduction rules that manipulate the weights of the vertices in the input graph.
This allows us to easily and efficiently eliminate leaves and certain triangles (see,
in particular, Rules 6 and 8). Furthermore, Rules 6 and 8 demonstrate the power
of flexible use of parameters.3 Thus, we obtain the following.

Theorem 1. WVC-Alg solves k-WVC in O∗(1.381k) time and polynomial space.

By the discussion in Section 3, this implies the desired result:

Corollary 2. WVC can be solved in O∗(1.381s) time and polynomial space.

2 If k ≥ W , assume that k-WIOB is simply WIOB.
3 Excluding Rules 6 and 8, and the analysis of Rule 5, the rules in the extended
abstract build upon the rules in [20].
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Next, we present each rule within a call WVC-Alg(G = (V,E), w : V →
R

≥0,W, k). Recall that a rule can be performed only if its condition is true and
the conditions of all of the rules preceding it are false. Initially, WVC-Alg is
called with a weight function w, whose image lies in R

≥1. After presenting a
rule, we argue its correctness. For each branching rule, we also give the root of
the corresponding branching vector (with respect to k). Since the largest root
we shall get is bounded by 1.381, and the algorithm stops if k < 0, we have the
desired running time.

Reduction Rule 1. [min{W,k} < 0] Return NIL.

If min{W,k} < 0, there is no vertex cover of weight at mostW and size at most k.

Reduction Rule 2. [E = ∅] Return ∅.

Since E = ∅, an empty set is a vertex cover.

Reduction Rule 3. [There is a connected component H with at most one ver-
tex of degree at least 3, where |E(H)| ≥ 1] Use dynamic programming to com-
pute a minimum-weight vertex cover U of H (see [20]). Return WVC-Alg(G[V \
V (H)], w,W− w(U), k − 1) ∪ U .4

Since H is a connected component, any minimum-weight vertex cover of G con-
sists of a vertex cover of H of weight w(U), and a minimum-weight vertex cover
of G[V \ V (H)]. Furthermore, any vertex cover of G contains a vertex cover of
H of size at least 1. Therefore, we return a solution as required: if there is a
solution of size at most k and weight at most W , we return a solution of weight
at most W , and if there is no solution of weight at most W , we return NIL.

Reduction Rule 4. [There is a connected component H such that |V (H)| ≤
100 and |E(H)| ≥ 1] Use brute-force to compute a minimum-weight vertex cover
U of H . Return WVC-Alg(G[V \ V (H)], w,W− w(U), k − 1) ∪ U .

The correctness of the rule follows from the same arguments as given for Rule
3. The next rule, among other rules, clarifies the necessity of Rule 4, and, in
particular, the choice of the value 100.5

Branching Rule 5. [There is a vertex of degree at least 4, or all vertices have
degree 3 or 0] Let v be a vertex of maximum degree.

1. If the result of WVC-Alg(G[V \ {v}], w,W−w(v), k − 1) is not NIL: Return
it along with v.

2. Else: Return WVC-Alg(G[V \ N(v)], w,W − w(N(v)), k − max{|N(v)|, 4}),
along with N(v).

4 We assume that adding elements to NIL results in NIL.
5 Choosing a smaller value is possible, but it is unnecessary and complicates the proof.
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This branching is exhaustive. If the degree of v is at least 4, the rule is clearly
correct; else, the degree of any vertex in G is 3 or 0. Then, we need to argue
that decreasing k by 4 in the second branch, while |N(v)| = 3, leads to a correct
solution.6 Let C be the connected component that contains v. Since the previous
rule did not apply, |V (C)| > 100. As we continue making recursive calls, as long
as G contains edges from E(C), it also contains at least one vertex of degree 1
or 2. For example, after removing v, it contains a neighbor of v whose degree is
1, and after removing N(v), it contains a neighbor of a vertex in N(v) whose
degree is 1 or 2. Now, before we remove all the edges in E(C), we encounter
a recursive call where G contains a connected component of size at least 5, for
which Rule 3 or 4 is applicable.7 Therefore, if we apply Rule 5 again (and even
if we do not, but there is a solution as required), we first apply Rule 3 or 4
which decrease k by 1, although the actual decrease is at least by 2. Indeed, 2
is the minimum size of any vertex cover of a connected component on at least
5 vertices and of maximum degree 3. Thus, it is possible to decrease k by 4 in
Rule 5. By the definition of this rule, its branching vector is at least as good as
(1, 4), whose root is smaller than 1.381.

Reduction Rule 6. [There are v, u ∈ V such that N(v) = {u}]

1. If w(v) ≥ w(u): Return WVC-Alg(G[V \ {v, u}], w,W− w(u), k − 1) ∪ {u}.
2. Else if there is r∈V such that N(u)={v, r}:

(a) Let w′ be w, except for w′(r) = w(r)−(w(u)−w(v)).

(b) If w′(r) ≤ 0: Return WVC-Alg(G[V \{v, u, r}], w′,W−w(v)−w(r), k−1),
along with {v, r}.

(c) Else: Return WVC-Alg(G[V \{v, u}], w′,W−w(u), k−1), along with v if
r is in the returned result, and else along with u.

3. Else: Let w′ be w, except for w′(u) = w(u) − w(v). Return WVC-Alg(G[V \
{v}], w′,W− w(v), k), along with v iff u is not in the returned result.

This rule, illustrated below, omits leaves (i.e., if there is a leaf, v, it is omitted
from G in the recursive calls performed in this rule). Clearly, to obtain a solution,
we should choose either u or N(u). If w(v) ≥ w(u) (Case 1), we simply choose
u (it is better to cover the only edge that touches v, {v, u}, by u).

Now, suppose that there is r ∈ V such that N(u) = {v, r}. If w′(r) ≤ 0 (Case
2b), it is better, in terms of weight, to choose {v, r}; yet, in terms of size, it
might be better to choose u. In any case, k should be decreased by at least 1.
Our flexible use of the parameter k allows us to decrease its value by 1, which is

6 One cannot decrease k by 3, claiming that the case of a 3-regular connected com-
ponent is negligible (this is done, e.g., in [20]), since during the execution of the
algorithm, we can encounter many such components.

7 The removal of N(v)∪{v} from C, which has maximum degree 3 and contains more
than 100 vertices, generates at most 6 connected components; thus, it results in at
least one component of at least �(101− 4)/6� = 17 vertices.
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less than its actual decrease (2 = |{v, u}|) in the instance.8 Next, suppose that
w′(r) > 0 (Case 2c). In (G[V \ {v, u}], w′,W− w(u), k − 1), choosing r reduces
W−w(u) to W−w(u)−w′(r) = W−w(v)−w(r) and k− 1 to k− 2, which has
the same effect as choosing N(u) in the original instance. On the other hand,
not choosing r has the same effect as choosing u in the original instance.

Finally, suppose that such r does not exist (Case 3). In (G[V \ {v}], w′,W−
w(v), k), choosing u reduces W− w(v) to W− w(v) − w′(u) = W− w(u) and k
to k − 1, which has the same effect as choosing u in the original instance. On
the other hand, not choosing u has almost the same effect as choosing v in the
original instance: the difference lies in the fact that we do not decrease k by 1.
However, our flexible use of the parameter k allows us to decrease its value by
less than necessary (as in Case 2b).9

Fig. 1. Rule 6 of WVC-Alg.

Reduction Rule 7. [There are v, u such that v ∈ N(u),N(u)\{v} ⊆ N(v)\{u}
and w(v) ≤ w(u)] Return WVC-Alg(G[V \ {v}], w,W− w(v), k − 1) ∪ {v}.

The vertices v and u are neighbors; thus, we should choose at least one of them.
If we do not choose v, we need to choose N(v), in which case we can replace u
by v and obtain a vertex cover (since N(u)\{v} ⊆N(v)\{u}) of the same or
better weight (since w(v) ≤ w(u)). Thus, in this rule, we choose v. Note that,
if there is a triangle with two degree-2 vertices, or exactly one degree-2 vertex
that is heavier than one of the other vertices in the triangle, this rule deletes a
vertex of the triangle. Thus, in the following rules, such triangles do not exist.

Reduction Rule 8. [There are v, u, r such that {v, u} = N(r), {v, r} ⊆ N(u)]
Let w′ be w, except w′(v) = w(v)−w(r) and w′(u) = w(u)−w(r). Return
WVC-Alg(G[V \ {r}], w′,W −2w(r), k), along with r iff not both v and u are
in the returned result.

8 In this manner, we may compute a vertex cover whose size is larger than k (since
we decrease k only by 1), but we may not compute a vertex cover of weight larger
than W . We note that if we decrease k by 2, we may overlook solutions: if there is a
solution of size at most k and weight at most W that contains u, there is a solution
of weight at most W that contains {v, r}, but there might not be a solution of size
at most k and weight at most W that contains {v, r}.

9 WVC-Alg is not called with k−1, as then choosing u overall decreases k by 2, which is
more than required (thus we may overlook solutions, by reaching Rule 1 too soon).
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The rule is illustrated below. First, note that w′(v), w′(u)>0 (otherwise Rule 7
applies), and thus calling WVC-Alg with w′ is possible.

We need to choose exactly two vertices from {v, u, r}: choosing less than two
vertices does not cover all three edges of the triangle, and choosing r, if v and
u are already chosen, is unnecessary. In WVC-Alg(G[V \ {r}], w′,W − 2w(r), k),
choosing only v from {v, u} reduces W − 2w(r) to W − 2w(r) − w′(v) = W −
w(r) − w(v) and k to k − 1, which has almost the same effect as choosing r
and v in the original instance, where the only difference lies in the fact that
k is reduced by 1 (rather than 2). However, our flexible use of the parameter
k allows us to decrease it by less than necessary. Symmetrically, choosing only
u from {v, u} has almost the same effect as choosing r and u in the original
instance, and again, our flexible use of the parameter k allows us to decrease
it by less than necessary. Finally, choosing both v and u reduces W − 2w(r) to
W − 2w(r) − w′(v) − w′(u) = W − w(v) − w(u) and k to k − 2, which has the
same effect as choosing v and u in the original instance. Thus, we have shown
that each option of choosing exactly two vertices from {v, u, r} is considered.

Fig. 2. Rule 8 of WVC-Alg.

From now on, since previous rules did not apply, there are no connected compo-
nents on at most 100 vertices (by Rule 4), no leaves (by Rule 6), no vertices of
degree at least 4 (by Rule 5), and no triangles that contain a degree-2 vertex (by
Rules 7 and 8); also, there is a degree-2 vertex that is a neighbor of a degree-3
vertex (by Rules 3 and 5). We give the remaining rules in [22].
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Abstract. We prove that the number of incidences between m points
and n bounded-degree curves with k degrees of freedom in R

d is I(P ,C) =
O

(

m
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+εn
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+m+ n) , where the constant of proportionality depends on k, ε and d,
for any ε > 0, provided that no j-dimensional surface of degree cj(k, d, ε),
a constant parameter depending on k, d, j, and ε, contains more than qj
input curves, and that the qj ’s satisfy certain mild conditions.

This bound generalizes a recent result of Sharir and Solomon [20]
concerning point-line incidences in four dimensions (where d = 4 and
k = 2), and partly generalizes a recent result of Guth [8] (as well as
the earlier bound of Guth and Katz [10]) in three dimensions (Guth’s
three-dimensional bound has a better dependency on q). It also improves
a recent d-dimensional general incidence bound by Fox, Pach, Sheffer,
Suk, and Zahl [7], in the special case of incidences with algebraic curves.
Our results are also related to recent works by Dvir and Gopi [4] and
by Hablicsek and Scherr [11] concerning rich lines in high-dimensional
spaces.

1 Introduction

Let C be a set of curves in R
d. We say that C has k degrees of freedom with

multiplicity s if (i) for every k points in R
d there are at most s curves of C that

are incident to all k points, and (ii) every pair of curves of C intersect in at most
s points. The bounds that we derive depend more significantly on k than on
s—see below.
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In this paper we derive sharp upper bounds on the number of incidences
between a set P of m points and a set C of n bounded-degree algebraic curves
that have k degrees of freedom (with some multiplicity s). We denote the number
of these incidences by I(P , C).

Before stating our results, let us put them in context. The basic and most
studied case involves incidences between points and lines. In two dimensions,
writing L for the given set of n lines, the classical Szemerédi–Trotter theorem [27]
yields the worst-case tight bound

I(P , L) = O
(
m2/3n2/3 +m+ n

)
. (1)

In three dimensions, in the 2010 groundbreaking paper of Guth and Katz [10],
an improved bound has been derived for I(P , L), for a set P of m points and a
set L of n lines in R

3, provided that not too many lines of L lie in a common
plane. Specifically, they showed:

Theorem 1 (Guth and Katz [10]). Let P be a set of m distinct points and
L a set of n distinct lines in R

3, and let q2 ≤ n be a parameter, such that no
plane contains more than q2 lines of L. Then

I(P,L) = O
(
m1/2n3/4 +m2/3n1/3q

1/3
2 +m+ n

)
.

This bound was a major step in the derivation of the main result of [10], an
almost-linear lower bound on the number of distinct distances determined by any
set of n points in the plane, a classical problem posed by Erdős in 1946 [6]. Their
proof uses several nontrivial tools from algebraic and differential geometry, most
notably the Cayley–Salmon theorem on osculating lines to algebraic surfaces in
R

3, and additional properties of ruled surfaces. All this machinery comes on top
of the main innovation of Guth and Katz, the introduction of the polynomial
partitioning technique; see below.
In four dimensions, Sharir and Solomon [21] have obtained a still sharper bound:

Theorem 2 (Sharir and Solomon [21]). Let P be a set of m distinct points
and L a set of n distinct lines in R

4, and let q2, q3 ≤ n be parameters, such that
(i) each hyperplane or quadric contains at most q3 lines of L, and (ii) each 2-flat
contains at most q2 lines of L. Then

I(P , L) ≤ 2c
√
logm

(
m2/5n4/5 +m

)
+A

(
m1/2n1/2q

1/4
3 +m2/3n1/3q

1/3
2 + n

)
,

(2)
where A and c are suitable absolute constants. When m ≤ n6/7 or m ≥ n5/3, we
get the sharper bound

I(P , L) ≤ A
(
m2/5n4/5 +m+m1/2n1/2q

1/4
3 +m2/3n1/3q

1/3
2 + n

)
. (3)

In general, except for the factor 2c
√
logm, the bound is tight in the worst case,

for any values of m,n, with corresponding suitable ranges of q2 and q3.
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This improves, in several aspects, an earlier treatment of this problem in Sharir
and Solomon [20].

Another way to extend the Szemerédi–Trotter bound is for curves in the plane
with k degrees of freedom (for lines, k = 2). This has been done by Pach and
Sharir, who showed:1

Theorem 3 (Pach and Sharir [17]). Let P be a set of m points in R
2 and

let C be a set of bounded-degree algebraic curves in R
2 with k degrees of freedom

and with multiplicity s. Then

I(P , C) = O
(
m

k
2k−1n

2k−2
2k−1 +m+ n

)
,

where the constant of proportionality depends on k and s.

Several special cases of this result, such as the cases of unit circles and of arbitrary
circles, have been considered separately [3,25].

Here too one can consider the extension of these bounds to higher dimen-
sions. The literature here is rather scarce, and we only mention here the work
of Sharir, Sheffer and Zahl [19] on incidences between points and circles in three
dimensions; an earlier study of this problem by Aronov et al. [1] gives a different,
dimension-independent bound.

The bounds given above include a “leading term” that depends only on m and
n (like the term m1/2n3/4 in Theorem 1), and, except for the two-dimensional

case, a series of “lower-dimensional” terms (like the term m2/3n1/3q
1/3
2 in Theo-

rem 1 and the terms m1/2n1/2q
1/4
3 and m2/3n1/3q

1/3
2 in Theorem 2). The leading

terms, in the case of lines, become smaller as d increases. Informally, by placing
the lines in a higher-dimensional space, it should become harder to create many
incidences on them.

Nevertheless, this is true only if the setup is “truly d-dimensional”. This means
that not too many lines or curves can lie in a common lower-dimensional space.
The lower-dimensional terms handle incidences within such lower-dimensional
spaces. There is such a term for every dimension j = 2, . . . , d − 1, and the “j-
dimensional” term handles incidences within j-dimensional subspaces (which,
as the quadrics in the case of lines in four dimensions in Theorem 2, are not
necessarily linear and might be algebraic of low constant degree). Comparing the
bounds for lines in two, three, and four dimensions, we see that the j-dimensional
term in d dimensions, for j < d, is a sharper variant of the leading term in j
dimensions. More concretely, if that leading term is manb then its counterpart
in the d-dimensional bound is of the form mantqb−t

j , where qj is the maximum
number of lines that can lie in a common j-dimensional flat or low-degree variety,
and t depends on j and d.
Our Results. In this paper we consider a grand generalization of these results,
to the case where C is a family of bounded-degree algebraic curves with k degrees
of freedom (and some multiplicity s) in R

d. This is a very ambitious and difficult

1 Their result holds for more general families of curves, not necessarily algebraic, but,
since algebraicity will be needed in higher dimensions, we assume it also in the plane.
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project, and the challenges that it faces seem to be enormous. Here we make
the first, and fairly significant, step in this direction, and obtain the following
bounds. As the exponents in the bounds are rather cumbersome expressions in
d, k, and j, we first state the special case of d = 3 (and prove it separately), and
then give the general bound in d dimensions.

Theorem 4 (Curves in R
3). Let k ≥ 2 be an integer, and let ε > 0. Then

there exists a constant c(k, ε) that depends on k and ε, such that the following
holds. Let P be a set of m points and C a set of n irreducible algebraic curves of
constant degree with k degrees of freedom (and some multiplicity s) in R

3, such
that every algebraic surface of degree at most c(k, ε) contains at most q2 curves
of C, for some given q2 ≤ n. Then

I(P , C) = O

(
m

k
3k−2+εn

3k−3
3k−2 +m

k
2k−1+εn

3k−3
4k−2 q

k−1
4k−2

2 +m+ n

)
,

where the constant of proportionality depends on k, s, and ε (and on the degree
of the curves).

The corresponding result in d dimensions is as follows.

Theorem 5 (Curves in R
d). Let d ≥ 3 and k ≥ 2 be integers, and let ε > 0.

Then there exist constants cj(k, d, ε), for j = 2, . . . , d− 1, that depend on k, d,
j, and ε, such that the following holds. Let P be a set of m points and C a set of
n irreducible algebraic curves of constant degree with k degrees of freedom (and
some multiplicity s) in R

d. Moreover, assume that, for j = 2, . . . , d − 1, every
j-dimensional algebraic variety of degree at most cj(k, d, ε) contains at most qj
curves of C, for given parameters q2 ≤ . . . ≤ qd−1 ≤ n.

I(P ,C)=O

(

m
k

dk−d+1
+εn

dk−d
dk−d+1 +

d−1∑

j=2

m
k

jk−j+1
+εn

d(j−1)(k−1)
(d−1)(jk−j+1) q

(d−j)(k−1)
(d−1)(jk−j+1)

j +m+n

)

,

where the constant of proportionality depends on k, s, d, and ε (and on the
degree of the curves), and provided that, for any 2 ≤ j < l ≤ d, we have (with
the convention that qd = n)

qj ≥
(
ql−1

ql

)l(l−2)

ql−1. (4)

Discussion. The advantages of our results are obvious: They provide the first
nontrivial bounds for the general case of curves with any number of degrees of
freedom in any dimension (with the exception of one previous study of Fox et
al. [7], in which weaker bounds are obtained, for arbitrary varieties instead of
algebraic curves). Apart for the ε in the exponents, the leading term is “best
possible,” in the sense that (i) the polynomial partitioning technique [10] that
our analysis employs (and that has been used in essentially all recent works on
incidences in higher dimensions) yields a recurrence that solves to this bound,
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and, moreover, (ii) it is (nearly) worst-case tight for lines in two, three, and four
dimensions (as shown in the respective works cited above), and in fact is likely
to be tight for lines in higher dimensions too, using a suitable extension of a
construction, due to Elekes and used in [10,21].

Nevertheless, our bounds are not perfect, and tightening them further is a
major challenge for future research. Specifically:
(i) The bounds involve the factor mε. As the existing works indicate, getting
rid of this factor is no small feat. Although the factor does not show up in the
cases of lines in two and three dimensions, it already shows up (sort of) in four
dimensions (Theorem 2), as well as in the case of circles in three dimensions [19].
(A recent study of Guth [8] also pays this factor for the case of lines in three
dimensions, in order to simplify the analysis.) See the proofs and comments
below for further elaboration of this issue.
(ii) The condition that no surface of degree cj(k, d, ε) contains too many curves
of C, for j = 2, . . . , d− 1, is very restrictive, especially since the actual values of
these constants that arise in the proofs can be quite large. Again, earlier works
also “suffer” from this handicap, such as Guth’s work [8] mentioned above, as
well as an earlier version of Sharir and Solomon’s four-dimensional bound [20].
(iii) Finally, the lower-dimensional terms that we obtain are not best possible.
For example, the bound that we get in Theorem 4 for the case of lines in R

3

(k = 2) is O(m1/2+εn3/4 + m2/3+εn1/2q
1/6
2 + m + n). When q2 � n, the two-

dimensional term m2/3+εn1/2q
1/6
2 in that bound is worse than the corresponding

term m2/3n1/3q
1/3
2 in Theorem 1 (even when ignoring the factor mε).

Our results are also related to recent works by Dvir and Gopi [4] and by
Hablicsek and Scherr [11], that study rich lines in high dimensions. Specifically,
let P be a set of n points in R

d and let L be a set of r-rich lines (each line
of L contains at least r points of P). If |L| = Ω(n2/rd+1) then there exists a
hyperplane containing Ω(n/rd−1) points of P . Our bounds might be relevant for
extending this result to rich curves. Concretely, for a set P of n points in R

d and
a collection C of r-rich constant-degree algebraic curves, if |C| is too large then
the incidence bound becomes larger than our “leading term”, indicating that
some lower-dimensional surface must contain many curves of C, from which it
might be possible to also deduce that such a surface has to contain many points
of P . While such an extension is not straightforward, we believe that it is doable,
and plan to investigate it in our future work.

As in the classical work of Guth and Katz [10], and in the numerous follow-up
studies of related problems, here too we use the polynomial partitioning method,
as pioneered in [10]. The reason why our bounds suffer from the aforementioned
handicaps is that we use a partitioning polynomial of (large but) constant degree.
When using a polynomial of a larger, non-constant degree, we face the difficult
task of bounding incidences between points and curves that are fully contained in
the zero set of the polynomial, where the number of curves of this kind can be large,
because the polynomial partitioning technique has no control over this value. We
remark that for lines we have the classical Cayley–Salmon theorem (see, e.g., Guth
and Katz [10]), which essentially bounds the number of lines that can be fully
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contained in an algebraic surface of a given degree, unless the surface is ruled by
lines. However, such a property is not known formore general curves (see Nilov and
Skopenkov [16] for an interesting exception involving circles inR3). Handling these
incidences requires heavy-duty machinery from algebraic geometry, and leads to
profound new problems in that domain that need to be tackled.

In contrast, using a polynomial of constant degree makes this part of the anal-
ysis much simpler, as can be seen below, but then handling incidences within the
cells of the partition becomes non-trivial, and a naive approach yields a bound that
is too large. To handle this part, one uses induction within each cell of the parti-
tioning, and it is this induction process that is responsible for the weaker aspects
of the resulting bound. Nevertheless, with these “sacrifices” we are able to obtain
a “general purpose” bound that holds for a broad spectrum of instances. It is our
hope that this study will motivate further research on this problem that would
improve our results along the “handicaps” mentioned earlier. Recalling how in-
accessible were these kinds of problems prior to Guth and Katz’s breakthroughs
seven and five years ago, it is quite gratifying that so much new ground can be
gained in this area, including the progress made in this paper.

Background. Incidence problems have been a major topic in combinatorial and
computational geometry for the past thirty years, starting with the aforemen-
tioned Szemerédi-Trotter bound [27] back in 1983. Several techniques, interesting
in their own right, have been developed, or adapted, for the analysis of incidences,
including the crossing-lemma technique of Székely [26], and the use of cuttings as
a divide-and-conquer mechanism (e.g., see [3]). Connections with range searching
and related algorithmic problems in computational geometry have also been noted
and exploited, and studies of the Kakeya problem (see, e.g., [28]) indicate the con-
nection between this problem and incidence problems. See Pach and Sharir [18]
for a comprehensive (albeit a bit outdated) survey of the topic.

The landscape of incidence geometry has dramatically changed in the past
seven years, due to the infusion, in two groundbreaking papers by Guth and
Katz [9,10], of new tools and techniques drawn from algebraic geometry. Al-
though their two direct goals have been to obtain a tight upper bound on
the number of joints in a set of lines in three dimensions [9], and a near-
linear lower bound for the classical distinct distances problem of Erdős [10],
the new tools have quickly been recognized as useful for incidence bounds. See
[5,13,14,19,24,29,30] for a sample of recent works on incidence problems that use
the new algebraic machinery.

The present paper continues this line of research, and aims at extending the
collection of instances where nontrivial incidence bounds in higher dimensions
can be obtained.

2 The Three-Dimensional Case

Proof of Theorem 4. We prove by induction on m+ n that

I(P , C) ≤ α1

(
m

k
3k−2+εn

3k−3
3k−2 +m

k
2k−1+εn

3k−3
4k−2 q

k−1
4k−2

)
+ α2(m+ n), (5)
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where α1, α2 are sufficiently large constants, α1 depends on ε and k (and s), and
α2 depends on k (and s).

For the induction base, the case where m,n are sufficiently small can be
handled by choosing sufficiently large values of α1, α2.

Since the incidence graph, as a subgraph of P × C, does not contain Kk,s+1

as a subgraph, the Kővári-Sós-Turán theorem (e.g., see [15, Section 4.5]) implies
that I(P , C) = O(mn1−1/k + n), where the constant of proportionality depends
on k (and s). When m = O(n1/k), this implies the bound I(P , C) = O(n), which
is subsumed in (5) if we choose α2 sufficiently large. We may thus assume that
n ≤ cmk, for some absolute constant c.

Applying the Polynomial Partitioning Technique. We construct an r-
partitioning polynomial f for P , for a sufficiently large constant r. That is, as
established in Guth and Katz [10], f is of degree2 O(r1/3), and the complement
of its zero set Z(f) is partitioned into u = O(r) open connected cells, each
containing at most m/r points of P . We impose the asymptotic relations 21/ε �
r � α2 � α1 between the various constants. Denote the (open) cells of the
partition as τ1, . . . , τu. For each i = 1, . . . , u, let Ci denote the set of curves of C
that intersect τi and let Pi denote the set of points that are contained in τi. We
set mi = |Pi| and ni = |Ci|, for i = 1, . . . , u, and m′ =

∑
i mi, and notice that

mi ≤ m/r for each i (and m′ ≤ m). An obvious property (which is a consequence
of Bézout’s theorem, see, e.g., [24, Theorem A.2] or [14]) is that every curve of
C intersects O(r1/3) cells of R3 \Z(f). Therefore,

∑
i ni ≤ bnr1/3, for a suitable

absolute constant b > 1 (that depends on the degree of the curves in C). Using
Hölder’s inequality, we have

∑

i

n
3k−3
3k−2

i ≤
(
∑

i

ni

) 3k−3
3k−2

(
∑

i

1

) 1
3k−2

≤ b′
(
nr

1
3

) 3k−3
3k−2

r
1

3k−2 = b′n
3k−3
3k−2 r

k
3k−2 ,

∑

i

n
3k−3
4k−2

i ≤
(
∑

i

ni

) 3k−3
4k−2

(
∑

i

1

) k+1
4k−2

≤ b′
(
nr

1
3

) 3k−3
4k−2

r
k+1
4k−2 = b′n

3k−3
4k−2 r

k
2k−1 ,

for another absolute constant b′. Combining the above with the induction hy-
pothesis, applied within each cell of the partition, implies

∑

i

I(Pi, Ci) ≤
∑

i

(
α1

(
m

k
3k−2+ε

i n
3k−3
3k−2

i +m
k

2k−1+ε

i n
3k−3
4k−2

i q
k−1
4k−2

2

)
+ α2(mi+ni)

)

≤ α1

⎛

⎝m
k

3k−2+ε

r
k

3k−2+ε

∑

i

n
3k−3
3k−2

i +
m

k
2k−1+εq

k−1
4k−2

2

r
k

2k−1+ε

∑

i

n
3k−3
4k−2

i

⎞

⎠+
∑

i

α2(mi + ni)

2 The implied constants of proportionality in the O(·) notation are absolute constants.
In contrast, r is a constant that depends on ε and on the other problem parameters.
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≤ α1b
′

⎛

⎝m
k

3k−2+εn
3k−3
3k−2

rε
+

m
k

2k−1+εn
3k−3
4k−2 q

k−1
4k−2

2

rε

⎞

⎠+ α2

(
m′ + bnr1/3

)
.

Our assumption that n = O(mk) implies that n = O
(
m

k
3k−2n

3k−3
3k−2

)
(with an

absolute constant of proportionality). Thus, when α1 is sufficiently large with
respect to r, k, and α2, we have

∑

i

I(Pi, Ci) ≤ 2α1b
′

⎛

⎝m
k

3k−2+εn
3k−3
3k−2

rε
+

m
k

2k−1+εn
3k−3
4k−2 q

k−1
4k−2

2

rε

⎞

⎠+ α2m
′.

When r is sufficiently large, so that rε ≥ 6b′, we have

∑

i

I(Pi, Ci) ≤ α1

3

(
m

k
3k−2+εn

3k−3
3k−2 +m

k
2k−1+εn

3k−3
4k−2 q

k−1
4k−2

2

)
+ α2m

′. (6)

Incidences on the Zero Set Z(f). It remains to bound incidences with points
that lie on Z(f). Set P0 := P ∩Z(f) and m0 = |P0| = m−m′. Let C0 denote the
set of curves that are fully contained in Z(f), and set C′ := C \ C0, n0 := |C0|,
and n′ := |C′| = n−n0. Since every curve of C′ intersects Z(f) in O(r1/3) points,
we have, taking α1 to be sufficiently large, and arguing as above,

I(P0, C′) = O(nr1/3) ≤ α1

3
m

k
3k−2+εn

3k−3
3k−2 . (7)

Finally, we consider the number of incidences between points of P0 and curves
of C0. For this, we set c(k, ε) to be the degree of f , which is O(r1/3), and can
be taken to be O((6b′)1/ε). Then, by the assumption of the theorem, we have
|C0| ≤ q2. We consider a generic plane π ⊂ R

3 and project P0 and C0 onto two
respective sets P∗ and C∗ on π. Since π is chosen generically, we may assume
that no two points of P0 project to the same point in π, and that no pair of
distinct curves in C0 have overlapping projections in π. Moreover, the projected
curves still have k degrees of freedom, in the sense that, given any k points on
the projection γ∗ of a curve γ ∈ C0, there are at most s−1 other projected curves
that go through all these points. This is argued by lifting each point p back to
the point p̄ on γ in R

3, and by exploiting the facts that the original curves have
k degrees of freedom, and that, for a sufficiently generic projection, any curve
that does not pass through p̄ does not contain any point that projects to p. The
number of intersection points between a pair of projected curves may increase but
it must remain a constant since these are intersection points between constant-
degree algebraic curves with no common components. By applying Theorem 3,
we obtain

I(P0, C0) = I(P∗, C∗) = O(m
k

2k−1

0 q
2k−2
2k−1

2 +m0 + q2),

where the constant of proportionality depends on k (and s). Since q2 ≤ n and

m0 ≤ m, we have m
k

2k−1

0 q
2k−2
2k−1

2 ≤ m
k

2k−1n
3k−3
4k−2 q

k−1
4k−2

2 . We thus get that I(P0, C0)
is at most
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O

(
m

k
2k−1n

3k−3
4k−2 q

k−1
4k−2

2 + n+m0

)
≤ α1

3
m

k
2k−1n

3k−3
4k−2 q

k−1
4k−2

2 + b2n+ α2m0, (8)

for sufficiently large α1 and α2; the constant b2 comes from Theorem 3, and is
independent of ε and of the choices for α1, α2 made so far.

By combining (6), (7), and (8), including the case m = O(n1/k), and choosing
α2 sufficiently large, we obtain

I(P , C) ≤ α1

(
m

k
3k−2+εn

3k−3
3k−2 +m

k
2k−1+εn

3k−3
4k−2 q

k−1
4k−2

2

)
+ α2(m+ n).

This completes the induction step and thus the proof of the theorem. �

Example 1: The case of lines. Lines in R
3 have k = 2 degrees of freedom,

and we almost get the bound of Guth and Katz in Theorem 1. There are three
differences that make this derivation somewhat inferior to that in Guth and
Katz [10], as detailed in items (i)–(iii) in the discussion in the introduction. We
also recall the two follow-up studies of point-line incidences in R

3, of Guth [8]
and of Sharir and Solomon [22]. Guth’s bound suffers from weaknesses (i) and
(ii), but avoids (iii), using a fairly sophisticated inductive argument. Sharir and
Solomon’s bound avoids (i) and (iii), and almost avoids (ii), in a sense that we do
not make explicit here. In both cases, considerably more sophisticated machinery
is needed to achieve these improvements.
Example 2: The case of circles. Circles in R

3 have k = 3 degrees of freedom,
and we get the bound

I(P , C) = O
(
m3/7+εn6/7 +m3/5+εn3/5q

1/5
2 +m+ n

)
.

The leading term is the same as in Sharir et al. [19], but the second term is
weaker, because it relies on the general bound of Pach and Sharir (Theorem 3),
whereas the bound in [19] exploits an improved bound for point-circle incidences,
due to Aronov et al. [1], which holds in any dimension. If we plug that bound
into the above scheme, we obtain an exact reconstruction of the bound in [19].
In addition, considering the items (i)–(iii) discussed earlier, we note: (i) The
requirements in [19] about the maximum number of circles on a surface are
weaker, and are only for planes and spheres. (ii) The mε factors are present
in both bounds. (iii) Even after the improvement noted above, the bounds still
seem to be weak in terms of their dependence on q2, and improving this aspect,
both here and in [19], is a challenging open problem.

Theorem 4 can easily be restated as bounding the number of rich points.

Corollary 1. For each ε > 0 there exists a parameter c(k, ε) that depends on
k and ε, such that the following holds. Let C be a set of n irreducible algebraic
curves of constant degree and with k degrees of freedom (with some multiplicity
s) in R

3. Moreover, assume that every surface of degree at most c(k, ε) contains
at most q2 curves of C. Then, there exists some constant r0(k, ε) depending on
ε, k (and s), such that for any r ≥ r0(k, ε), the number of points that are incident
to at least r curves of C (so-called r-rich points), is
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O

(
n3/2+ε

r
3k−2
2k−2+ε

+
n3/2+εq

1/2+ε
2

r
2k−1
k−1 +ε

+
n

r

)
, where the constant of proportionality de-

pends on k, s and ε.

Proof. Denoting by mr the number of r-rich points, the corollary is obtained
by combining the upper bound in Theorem 4 with the lower bound rmr. �

3 Incidences in Higher Dimensions

Due to lack of space, we omit the proof of Theorem 5, which is provided in the
full version of the paper. It follows the proof of Theorem 4 rather closely, with
appropriate modifications, and exploits the special assumption (4) on the values
qj to carry out the induction process successfully.

As a consequence of Theorem 5, we have:

Example: Incidences between Points and Lines in R
4. In the earlier

version [20] of our study of point-line incidences in four dimensions, we have
obtained the following weaker version of Theorem 2.

Theorem 6. For each ε > 0, there exists an integer cε, so that the following
holds. Let P be a set of m distinct points and L a set of n distinct lines in R

4,
and let q, s ≤ n be parameters, such that (i) for any polynomial f ∈ R[x, y, z, w]
of degree ≤ cε, its zero set Z(f) does not contain more than q lines of L, and
(ii) no 2-plane contains more than s lines of L. Then,

I(P,L) ≤ Aε

(
m2/5+εn4/5 +m1/2+εn2/3q1/12 +m2/3+εn4/9s2/9

)
+A(m+ n),

where Aε depends on ε, and A is an absolute constant.

This result follows from our main Theorem 5, if we impose Equation (4) on
q2 = s, q3 = q, and n, which in this case is equivalent to s ≤ q ≤ n and
q9

n8 < s. This illustrates how the general theory developed in this paper extends
similar results obtained earlier for “isolated” instances. Nevertheless, as already
mentioned earlier, the bound for lines in R

4 has been improved in Theorem 2 of
[21], in its lower-dimensional terms.

Discussion. We first notice that similarly to the three-dimensional case, The-
orem 5 implies an upper bound on the number of k-rich points in d dimensions
(see Corollary 1 in three dimensions), and the proof thereof applies verbatim.

Second, we note that Theorems 4 and 5 have several weaknesses. The obvious
ones are the items (i)–(iii) discussed in the introduction. Another, less obvious
weakness, which has to do with the way in which the qj-dependent terms in the
bounds are derived. Specifically, these terms facilitate the induction step, when
the constraining parameter q is passed unchanged to the inductive subproblems.
Informally, since the overall number of lines in a subproblem goes down, one
would expect q to decrease too, but so far we do not have a clean mechanism
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for doing so. This weakness is manifested, e.g., in Corollary 1, where one would
like to replace the second term by one with a smaller exponent of n and a
larger one of q. Specifically, for lines in R

3, one would like to get a term close
to O(nq2/k

3). This would yield O(n3/2/k3) for the important special case q2 =
O(n1/2) considered in [10]; the present bound is weaker.

A final remark concerns the relationships between the qj , as set forth in Equa-
tion (4). These conditions are forced upon us by the induction process. As noted
above, for incidences between points and lines in R

4, the bound derived in our
main theorem 5 is (asymptotically) the same as that of the main result of Sharir
and Solomon in [20]. The difference is that there, no restrictions on the qj are
imposed. Their proof is facilitated by the so called “second partitioning poly-
nomial” (see [13,20]). Recently, Basu and Sombra [2] proved the existence of a
third partitioning polynomial (see [2, Theorem 3.1]), and conjectured the exis-
tence of a k-partitioning polynomial for general k > 3 (see [2, Conjecture 3.4]
for an exact formulation); for completeness we refer also to [7, Theorem 4.1],
where a weaker version of this conjecture is proved. Building upon the work of
Basu and Sombra [2], the proof of Sharir and Solomon [21] is likely to extend
and yield the same bound as in our main theorem 5, for the more general case
of incidences between points and bounded degree algebraic curves in dimensions
at most five, and, if [2, Conjecture 3.4] holds, in every dimension, without any
conditions on the qj .
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13. Kaplan, H., Matoušek, J., Safernová, Z., Sharir, M.: Unit distances in three dimen-

sions. Combinat. Probab. Comput. 21, 597–610 (2012); Also in arXiv:1107.1077
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25. Spencer, J., Szemerédi, E., Trotter, W.T.: Unit distances in the Euclidean plane.
In: Bollobás, B. (ed.) Graph Theory and Combinatorics, pp. 293–303. Academic
Press, New York (1984)
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Abstract. We present D3-Tree, a dynamic deterministic structure for
data management in decentralized networks, by engineering and further
extending an existing decentralized structure. D3-Tree achieves O(logN)
worst-case search cost (N is the number of nodes in the network),O(logN)
amortized load-balancing cost, and it is highly fault-tolerant. A particu-
lar strength of D3-Tree is that it achieves O(logN) amortized search cost
under massive node failures. We conduct an extensive experimental study
verifying that D3-Tree outperforms other well-known structures and that
it achieves a significant success rate in element queries in case of massive
node failures.

1 Introduction

Decentralized systems are ubiquitous and are encountered in various forms and
structures. They are widely used for sharing resources and store very large data
sets, using systems of small computers instead of large costly servers. Typical
examples include cloud computing environments, peer-to-peer systems and the
internet. In decentralized systems, data are stored at the network nodes and the
most crucial operations are data search and data updates. A decentralized system
is typically represented by a graph, a logical overlay network, where its N nodes
correspond to the network nodes, while its edges may not correspond to existing
communication links, but to communication paths. The complexity (cost) of
an operation is measured in terms of the number of messages issued during its
execution (internal computations at nodes are considered insignificant).

With respect to its structure, the overlay supports the operations Join (of a
new node v; v communicates with an existing node u in order to be inserted into
the overlay) and Departure (of an existing node u; u leaves the overlay announc-
ing its intent to other nodes of the overlay). Moreover, the overlay implements
an indexing scheme for the stored data, supporting the operations Insert (a
new element), Delete (an existing element), Search (for an element), and Range
Query (for elements in a specific range).

c© Springer-Verlag Berlin Heidelberg 2015
N. Bansal and I. Finocchi (Eds.): ESA 2015, LNCS 9294, pp. 989–1000, 2015.
DOI: 10.1007/978-3-662-48350-3�82
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Related Work. Considerable work has been done recently in order to build
efficient decentralized systems with effective distributed search and update op-
erations. In general, decentralized networks can be classified into two broad
categories: distributed hash table (DHT)-based systems and tree-based systems.
Examples of the former, which constitute the majority, include Chord, CAN,
Pastry, Symphony, Tapestry (see [7] for an overview), Pagoda [1], SHELL [9]
and P-Ring [3]. In general, DHT-based systems support exact match queries well
and use (successfully) probabilistic methods to distribute the workload among
nodes equally. Since hashing destroys the ordering on keys, DHT-based systems
typically do not possess the functionality to support straightforwardly range
queries, or more complex queries based on data ordering (e.g., nearest-neighbour
and string prefix queries). Some efforts towards addressing range queries have
been made in [4,8], getting however approximate answers and also making exact
searching highly inefficient. Pagoda [1] achieves constant node degree but has
polylogarithmic complexity for the majority of operations. SHELL [9] maintains
large routing tables of O(log2 N) space complexity, but achieves constant amor-
tized cost for the majority of operations. Both are complicated hybrid structures
and their practicality (especially concerning fault tolerant operations) is ques-
tionable. The most recent effort towards range queries is the P-Ring [3], a fully
distributed and fault-tolerant system that supports both exact match and range
queries, achieving O(logd N+k) range search performance (d is the order1 of the
ring and k is the answer size). It also provides load-balancing by maintaining a
load imbalance factor of at most 2+ ε of a stable system, for any given constant
ε > 0, and has a stabilization process for fixing inconsistencies caused by node
failures and updates, achieving an O(d · logdN) performance for load-balancing.

Tree-based systems are based on hierarchical structures. They support range
queries more naturally and efficiently as well as a wider range of operations, since
they maintain the ordering of data. On the other hand, they lack the simplicity
of DHT-based systems, and they do not always guarantee data locality and
load balancing in the whole system. Important examples of such systems include
Family Trees [7], BATON [6], BATON∗ [5] and Skip List-based schemes like
Skip Graphs (SG), NoN SG, SkipNet (SN), Bucket SG, Skip Webs, Rainbow
Skip Graphs (RSG) and Strong RSG [7] that use randomized techniques to
create and maintain the hierarchical structure. We should emphasize that w.r.t.
load-balancing, the solutions provided in the literature are either heuristics, or
provide expected bounds under certain assumptions, or amortized bounds but at
the expense of increasing the memory size per node. In particular, in BATON [6],
a decentralized overlay is provided with load-balancing based on data migration.
However, their O(logN) amortized bound is valid only subject to a probabilistic
assumption about the number of nodes taking part in the data migration process,
and thus it is in fact an amortized expected bound. Moreover, its successor
BATON∗[5], exploits the advantages of higher fanout (number of children per
node), to achieve reduced search cost of O(logm N), where m is the fanout.

1 Maximum fanout of the hierarchical structure on top of the ring. At the lowest level
of the hierarchy, each node maintains a list of its first d successors in the ring.
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However, the higher fanout leads to a higher update and load-balancing cost of
O(m · logm N). Recently, a deterministic decentralized tree structure, called D2-
Tree [2], was presented that overcomes many of the aforementioned weaknesses
of tree-based systems. In particular, D2-Tree achieves O(logN) searching cost,
amortized O(logN) update cost both for element updates and for node joins and
departures, and deterministic amortized O(logN) bound for load-balancing. Its
practicality, however, has not been tested so far.

Regarding fault tolerance, P-Ring [3] is considered highly fault-tolerant, using
the Chord’s Fault Tolerant Algorithms [11]. BATON [6] maintains vertical and
horizontal routing information not only for efficient search, but to offer a large
number of alternative paths between two nodes. In BATON∗ [5], fault tolerance
is greatly improved due to higher fanout. D2-Tree can tolerate the failure of a
few nodes, but cannot afford a massive number of O(N) node failures.

Our Contribution. In this work, we focus on hierarchical tree-based decen-
tralized systems and introduce D3-Tree (cf. Section 2), a dynamic deterministic
decentralized structure. D3-Tree is an extension of D2-Tree [2] that adopts all
of its strengths and extends it in two respects: it introduces an enhanced fault-
tolerant mechanism and it is able to answer efficiently search queries when mas-
sive node failures occur. D3-Tree achieves the same deterministic (worst-case or
amortized) bounds as D2-Tree for search, update and load-balancing operations,
and answers search queries in O(logN) amortized cost under massive node fail-
ures. A comparison of D3-Tree with state-of-the-art decentralized structures is
given in Table 1. Note that all previous structures provided only empirical evi-
dence of their capability to deal with massive node failures; no previous structure
provided a theoretical guarantee for searching in such a case.

Our second contribution is an implementation of theD3-Tree and a subsequent
comparative experimental evaluation (cf. Section 3) with itsmain competitorsBA-
TON, BATON∗, and P-Ring. Our experimental study verified the theoretical re-
sults (as well as those of theD2-Tree) and showed thatD3-Tree outperforms other
state-of-the-art hierarchical tree-based structures. Our experiments demonstrated

Table 1. Comparison of BATON, BATON∗, P-Ring, D2-Tree, and D3-Tree.

Structures Search Search with Node Updates Element Updates
massive failures (updating rout. tables) (load balancing)
Theor. Exp.

BATON O(logN) — Yes O(logN) O(logN)

BATON∗ O(logm N) — Yes O(m · logm N) O(m · logm N)

P-Ring O(logd N) — Yes Õ(d · logd N) Õ(d · logd N)

D2-Tree O(logN) — No Õ(logN) Õ(logN)

D3-Tree O(logN) Õ(logN) Yes Õ(logN) Õ(logN)

N : number of nodes; m: fanout; d: order of the ring; Õ: amortized bound; O: expected
amortized bound; Theor: theoretical bound; Exp: empirical evidence.
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thatD3-Tree has a significantly small redistribution rate (structure redistributions
after node joins or departutes), while element load-balancing is rarely necessary.
We also investigated the structure’s fault tolerance in case of massive node failures
and show that it achieves a significant success rate in element queries. Omitted de-
tails can be found in [10].

2 The D3-Tree

In this section, we present D3-Tree. A key feature is the weight-based mech-
anism (adopted from [2]), used for node redistribution after node updates and
data load-balancing after element updates. The main idea is the almost equal dis-
tribution of elements among nodes, using weights, a metric showing how uneven
is the load among nodes. The mechanism lazily updates the weight information
on nodes, so load-balancing is performed only when it is absolutely necessary.

The new features of D3-Tree are its enhanced fault-tolerant and search mech-
anisms, in case of node failures. The enhanced search operation is successful even
when a considerable number of nodes fails. D3-Tree is highly fault tolerant, since
it supports a procedure of node withdrawal when a node is found unreachable,
regardless of its position (internal node, leaf, bucket node). The success of these
two operations is due to a small number of additional links a node maintains,
through which it can reconstruct the routing table of a failed node.

2.1 The Structure

Let N be the number of nodes present in the network and let n denote the size
of data elements residing in the nodes (N � n). The structure consists of two
levels. The upper level is a Perfect Binary Tree (PBT) of height O(logN). The
leaves of this tree are representatives of the buckets that constitute the lower level
of the D3-Tree. Each bucket is a set of O(logN) nodes which are structured as
a doubly linked list.

Each node v of the D3-Tree maintains an additional set of links (described
below) to other nodes apart from the standard links which form the tree. The
first four sets are inherited from the D2-Tree, while the fifth set is a new one
that contributes in establishing a better fault-tolerance mechanism.

1. Links to its father and its children.
2. Links to its adjacent nodes based on an in-order traversal of the tree.
3. Links to nodes at the same level as v. The links are distributed in exponential

steps; the first link points to a node (if there is one) 20 positions to the left
(right), the second 21 positions to the left (right), and the i-th link 2i−1

positions to the left (right). These links constitute the routing table of v and
require O(logN) space per node.

4. Links to leftmost and rightmost leaf of its subtree. These links accelerate
the search process and contribute to the structure’s fault tolerance when a
considerable number of nodes fail.
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5. For leaf nodes only, links to the buckets of the nodes in their routing tables.
The first link points to a bucket 20 positions left (right), the second 21

positions to the left (right) and the i-th link 2i−1 positions to the left (right).
These links require O(logN) space per node and keep the structure fault
tolerant, since each bucket has multiple links to the PBT.

The next lemma [2] captures some important properties of the routing tables.

Lemma 1. (i) If a node v contains a link to node u in its routing table, then
the parent of v also contains a link to the parent of u, unless u and v have the
same father. (ii) If a node v contains a link to node u in its routing table, then
the left (right) sibling of v also contains a link to the left (right) sibling of u,
unless there are no such nodes. (iii) Every non-leaf node has two adjacent nodes
in the in-order traversal, which are leaves.

Regarding the index structure of the D3-Tree, the range of all values stored
in it is partitioned into sub-ranges each one of which is assigned to a node
of the overlay. An internal node v with range [xv, x

′
v] may have a left child

u and a right child w with ranges [xu, x
′
u] and [xw , x

′
w] respectively such that

xu < x′
u < xv < x′

v < xw < x′
w. Ranges are dynamic in the sense that they

depend on the values maintained by the node.

2.2 Node Joins and Departures

When a node z makes a join request to v, v forwards the request to an adjacent
leaf u. If v is a PBT node, the request is forwarded to the left adjacent node,
w.r.t. the in-order traversal, which is definitely a leaf (unless v is a leaf itself).
In case v is a bucket node, the request is forwarded to the bucket representative,
which is leaf. Then, node z is added to the doubly linked list of the bucket
represented by u. In node joins, we make the simplification that the new node
is clear of elements and we place it after the most loaded node of the bucket.
Thus, the load is shared and the new node stores half of the elements of the
most loaded node.

When a node v leaves the network, it is replaced by an existing node, so
as to preserve the in-order adjacency. All navigation data are copied from the
departing node v to the replacement node, along with the elements of v. If v is
an internal PBT node, then it is replaced by its right adjacent node, which is a
leaf and which in turn is replaced by the first node z in its bucket. If v is a leaf,
then it is directly replaced by z. Then v is free to depart.

After a node join or departure, the modified weight-based mechanism [2] is
activated and updates the sizes by ±1 on the path from the leaf u to the root.
Afterwards, the mechanism traverses the path from u to the root, in order to find
the first unbalanced node (if such a node exists) and performs a redistribution
in its subtree. The redistribution guarantees that if there are x nodes in total
in the y buckets of the subtree of v, then after the redistribution each bucket
maintains either �x/y� or �x/y�+ 1 nodes. The redistribution cost is O(logN)
[2], which is indeed verified by our experiments.
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The redistribution of nodes in the subtree of v starts from the rightmost
bucket b and it is performed in an in-order fashion so that elements in the nodes
are not affected. The transfer of nodes is accomplished by maintaining a link,
called dest, to the bucket representative b′ in which nodes should be put or taken
from. In case b has q extra nodes, the nodes are removed from b and are added
to b′. Finally, bucket b informs b′ to take over and the same procedure applies
again with b′ as the source bucket. The case where q nodes must be transferred
to bucket b from bucket b′ is completely symmetric.

Throughout joins and departures of nodes, the size of buckets can increase
undesirably or can decrease so much that some buckets may become empty. The
structure guarantees that each bucket contains O(logN) nodes, throughout joins
or departures of nodes, by employing two operations on the PBT, the contraction
and the extension.

2.3 Single and Range Queries

The search for an element a may be initiated from any node v at level l. If v is
a bucket node, then if its range contains a the search terminates, otherwise the
search is forwarded to the bucket representative, which is a binary node. If v is a
PBT node, then let z be the node with range of values containing a, a ∈ [xz , x

′
z ]

and assume w.l.o.g. that x′
v < a. The case where xv > a is completely symmetric.

First, we perform a horizontal binary search at the level l of v using the routing
tables, searching for a node u with right sibling w (if there is such sibling) such
that x′

u < a and xw > a.
Having located nodes u and w, the horizontal search is terminated and a

vertical search is initiated. Node z will either be the common ancestor of u and
w, or it will be in the right subtree rooted at u, or in the left subtree rooted at w.
Node u contacts the rightmost leaf y of its subtree. If xy > a then an ordinary
top down search from node u will suffice to find z. Otherwise, node z is in the
bucket of y, or in its right in-order adjacent (this is also the common ancestor
of u and w), or in the subtree of w.

When z is located, if a is found in z then the search was successful, otherwise
a is not stored in the structure. The search for an element a is carried out in
O(logN) steps [2], and it is indeed verified by our experiments.

A range query [a, b] initiated at node v, invokes a search operation for element
a. Node z that contains a returns to v all elements in its range. If all elements
of u are reported then the range query is forwarded to the right adjacent node
(in-order traversal) and continues until an element larger than b is reached for
the first time.

2.4 Element Insertions and Deletions

Assume that an update operation (insertion/deletion) is initiated at node v in-
volving element a. By invoking a search operation, node u with range containing
element a is located and the update operation is performed on u.
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In order to apply the weight-based mechanism for load balancing, the element
should be inserted in a bucket node (similar to node joins) or in a leaf. If u is
an internal node of the PBT, then element a is inserted in u and then the first
element of u (note that elements into nodes are sorted) is removed from u and it
is inserted into node q, which is the last node of the bucket of the left adjacent
of u, in order to preserve the sequence of elements in the in-order traversal. This
way, the insertion has been shifted to a bucket node. The case of element deletion
is similar.

After an element update in leaf u or in its bucket, the weight-based mechanism
is activated and updates the weights by ±1 on the path from leaf u to the root.
Afterwards, the mechanism traverses the path from leaf u to the root, in order
to find the first node (if such a node exists) which is unbalanced and performs a
load-balancing in its subtree.

The load-balancing mechanism guarantees that if there are w(v) elements
in total in the subtree of v of size |v| (total number of nodes in the subtree

of v including v), then after load-balancing each node stores either
⌊
w(v)
|v|

⌋
or

⌊
w(v)
|v|

⌋
+ 1 elements. The load-balancing cost is O(logN) [2], which is indeed

verified by our experiments. The load-balancing mechanism is similar to the
redistribution mechanism described above, so its description is omitted.

2.5 Fault Tolerance

Searches and updates in the D3-Tree do not tend to favour any node, and in
particular nodes near the root. However, a single node can be easily disconnected
from the overlay, when all nodes with which it is connected fail. This means that
4 failures (two adjacent nodes and two children) are enough to disconnect the
root. The most easily disconnected nodes are those which are near the root, since
their routing tables are small in size.

When a node w discovers that v is unreachable, the network initiates a node
withdrawal procedure by reconstructing the routing tables of v, in order for v
to be removed smoothly, as if v was departing. If v belongs to a bucket, it is
removed from the structure and the links of its adjacent nodes are updated.
In case v is an internal binary node, its right adjacent node u is first located,
making use of Lemma 1, in order to replace v.

If v is a leaf, then it should be replaced by the first node u in its bucket.
In the D2-Tree, if a leaf was found unreachable, contacting its bucket would be
infeasible, since the only link between v and its bucket would have been lost. This
weakness was eliminated in the D3-Tree, by maintaining multiple links towards
each bucket, distributed in exponential steps (in the same way as the horizontal
adjacency links). This way, when w is unable to contact v, it contacts directly
the first node of its bucket u and u replaces v. Regardless of node’s v position
in the structure, the elements stored in v are lost.
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2.6 Single Queries with Node Failures

In a network with node failures, an unsuccessful search for element a refers
to the cases where either z (the node with range of values containing a, i.e.,
a ∈ [xz , x

′
z]) is unreachable, or there is a path to z but the search algorithm

can not follow it to locate z due to failures of intermediate nodes. The D2-Tree
provides a preliminary fault-tolerant mechanism that succeeds only in the case
of a few node failures. That mechanism cannot deal with massive node failures
(also known as churn), i.e., its search algorithm may fail to locate a. In the
following, we present the key features of our D3-Tree efficient search algorithm
in case of massive node failures.

The search procedure is similar to the simple search described in Section 2.3.
One difference in horizontal search lies in the fact that if the most distant right
adjacent of v is unreachable, v keeps contacting its right adjacent nodes by
decreasing the step by 1, until it finds node q which is reachable.

In case x′
q < a the search continues to the right using the most distant right

adjacent of q, otherwise the search continues to the left and q contacts its most
distant left adjacent p which is in the right of v. If p is unreachable, q doesn’t
decrease the travelling step by 1, but contacts directly its nearest left adjacent
(at step = 0) and asks it to search to the left. This improvement reduces the
number of messages that are meant to fail, because of the exponential positions of
nodes in routing tables and the nature of binary horizontal search. For example,
in Fig. 1, the search starts from v0 and v8 contacts v7, since v4 has failed. No
node contacts v4 from then onwars and the number of messages is reduced by 2.

A vertical search to locate z is always initiated between two siblings u and w,
which are either both active, or one of them is unreachable, as shown in Fig. 2
where the left sibling u is active and w, the right one, is unreachable. In both
cases, first we search into the subtree of the active sibling, then we contact the
common ancestor and then, if the other sibling is unreachable, the active sibling
tries to contact its corresponding child (right child for left sibling and left child
for right sibling). When the child is found the search is forwarded to its subtree.

In general, when node u wants to contact the left (right) child of unreachable
node w, the contact is accomplished through the routing table of its own left

74 5 6 8 150 321

i = 1 i = 2
i = 3

i = 0

Simple Search Improved Search
Source Step Destination Source Step Destination

0 3 → 8 0 3 → 8
8 2 ← 4 8 2 ← 4
8 1 ← 6 8 0 ← 7
6 2 ← 2 7 2 ← 3
2 1 → 4 3 1 → 5
2 0 → 3
3 1 → 5

Unreachable

Final Destination

Fig. 1. Example of binary horizontal search with node failures



D3-Tree: A Dynamic Deterministic Decentralized Structure 997

u w

y

Root

p q

uf wf

Fig. 2. Example of vertical search between u and unreachable w

(right) child. If its child is unreachable (Fig. 2), then u contacts its father uf and
uf contacts the father of w, wf , using Lemma 1(i). Then wf , using Lemma 1(ii)
twice in succession, contacts its grandchild through its left and right adjacents
and their grandchildren.

In case initial node v is a bucket node, then if its range contains a the search
terminates, otherwise the search is forwarded to the bucket representative. If the
bucket representative has failed, the bucket contacts its other representatives
right or left, until it finds a representative that is reachable. The procedure
continues as described above for the case of a binary node.

The following lemma gives the amortized upper bound for the search cost in
case of massive failures of O(N) nodes.

Lemma 2. The amortized search cost in case of massive node failures isO(logN).

3 Experimental Study

We have built a simulator2 with a user friendly interface and a graphical repre-
sentation of the structure, to evaluate the performance of D3-Tree. To evaluate
the cost of operations, we ran experiments with different number of nodes N
from 1,000 to 10,000, in order to be directly compared to BATON, BATON∗

and P-Ring. BATON∗ is a state-of-the-art decentralized architecture and P-
Ring outperforms DHT-based structures in range queries and achieves a slightly
better load-balancing performance compared to BATON∗. For a structure of
N nodes, 1000 x N elements where inserted. We used the number of passing
messages to measure the performance of the system.

Cost of Node Joins/Departures: To measure the network performance for
the operation of node updates, in a network of N initial nodes, we performed
2N node updates. In a preliminary set of experiments with mixed operations
(joins/departures), we observed that redistributions rarely occurred, thus lead-
ing in negligible node update costs. Hence, we decided to perform only one type

2 Our simulator is a standalone desktop application, developed in Visual Studio 2010,
available in https://github.com/sourlaef/d3-tree-sim

https://github.com/sourlaef/d3-tree-sim
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(a) average messages of node updates (b) average messages of element updates

Fig. 3. Node and Element Update operations

of updates, 2N joins, that are expected to cause several redistributions. Fig. 3a
shows average case (nodes where joins occur are chosen randomly) and worst case
(joins occur only in the leftmost leaf), and in both cases the curves represent
the average amortized redistribution cost.

We observed that even for the worst case scenario, the D3-Tree node update
and redistribution mechanism achieves a better amortized redistribution cost,
compared to that of BATON, BATON∗ and P-Ring. In the average case, dur-
ing node joins, redistribution is rarely necessary (about 3% of join operations
lead to redistributions). However, in the worst case, during node joins, a great
number of nodes are accumulated into the bucket of the leftmost leaf, leaving
the other buckets unchanged. This naturally leads to more frequent and costly
redistributions (about 9% of join operations lead to redistributions).

Cost of Element Insertions/Deletions: To measure the network performance
for the operation of element updates, in a network ofN nodes and n elements, we
performed n element updates. In a preliminary set of experiments with mixed
operations (insertions/deletions), we observed that load-balancing operations
rarely occurred, thus leading in negligible node update costs. Hence, we decided
to perform only one type of updates, n insertions. Fig. 3b shows average case
(element insertions occur at nodes chosen randomly) and worst case (element
insertions occur only in the leftmost leaf), and in both cases the curves represent
the average amortized load-balancing cost.

Conducting experiments, we observed that in the average case, the D3-Tree
outperforms BATON, BATON∗ and P-Ring. However, in D3-Tree’s worst case,
the load-balancing performance is degraded compared to BATON∗ of fanout =
10 and P-Ring. In the average case, during element insertions, load-balancing
is rarely necessary (about 15% of insertions lead to load-balancing operations).
However, in worst case, a great number of element insertions take place into the
bucket of the leftmost leaf, leaving the other nodes unaffected, thus rendering the
subtree imbalanced very often. This leads to more frequent and costly operations
of load-balancing (about 50% of insertions evoke load-balancing).

Cost of Element Search with/without Node Failures. To measure the network
performance for the operation of single queries, we conducted experiments in
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which for eachN , we performed 2M (M is the number of binary nodes) searches.
The search cost is depicted in Fig. 4a. An interesting observation here was that
although the cost of search in D3-Tree doesn’t exceed 2 · logN , it is higher that
the cost of BATON, BATON∗ and P-Ring. This is due to the fact that when the
target node is a Bucket node, the search algorithm, after locating the correct
leaf, performs a serial search into its bucket to locate it.

To measure the network performance for the operation of element search with
node failures, we conducted experiments for different percentages of node fail-
ures: 10%, 20%, 30%, 50% and 75%. For each N and node failure percentage,
we performed 2M searches divided into 4 groups, each of M/2 searches. In order
to get a better estimation of the search cost, we forced a different set of nodes
to fail in each group. Fig. 4b depicts the increase in search cost when massive
node failures take place in D3-Tree, BATON, different fanouts of BATON∗ and
P-Ring. We observe that D3-Tree maintains low search cost, compared to the
other structures, even for a failure percentage ≥ 30%.

Describing the effect of the enhanced search mechanism of D3-Tree in case
of massive failures in more detail, we must note that when the node failure
percentage is small (10% to 15%), the majority of single queries that fail are the
ones whose elements belong to failed nodes. When the number of failed nodes
increases, single queries are not always successful, since the search mechanism
fails to find a path to the target node although the node is reachable. However,
even for the significant node failure percentage of 30%, our search algorithm is
85% successful, confirming thus our claim about the structure’s fault tolerance.

(a) average messages without failures (b) effect of massive failures

Fig. 4. Single Queries without/with node failures

4 Conclusions

We presented D3-Tree, a dynamic distributed deterministic structure, that turns
out to be very efficient in practice and outperforms other state-of-the-art struc-
tures. Our experimental study showed (among others) that the O(logN) amor-
tized bound for load balancing (the most costly operation) is achieved even for
the worst case scenario. Moreover, investigating the structure’s fault tolerance,
we showed that D3-Tree is highly fault tolerant, since even for a substantial



1000 S. Sioutas et al.

amount of 30% node failures it achieves a significant success rate of 85% in
element search, without increasing the search cost considerably.
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Abstract. We start with an unknown binary n×m matrix, where the
entries correspond to the preferences of n users on m items. The goal
is to find at least one item per user that the user likes, with as few
queries as possible. Since there are matrices where any algorithm per-
forms badly without any preliminary knowledge of the input matrix, we
reveal an anonymized version of the input matrix to the algorithm in
the beginning of the execution. The input matrix is anonymized by shuf-
fling the rows according to a randomly chosen hidden permutation. We
observe that this anonymous recommendation problem can be seen as
an adaptive variant of the Min Sum Set Cover problem and show that
the greedy solution for the original version of the problem provides a
constant approximation for the adaptive version.

1 Introduction

Algorithmic research studies a variety of models that are beyond the traditional
input-output paradigm, where the whole input is given to the algorithm. Exam-
ples of such unconventional models are distributed, streaming, and multiparty
algorithms (where the input is distributed in space), or regret, stopping, and on-
line algorithms (where the input is distributed in time). Not having all the input
initially is a drawback, and one will generally not be able to produce the optimal
result. Instead, the algorithm designer often compares the result of the restricted
online/distributed algorithm with the result of the best offline/centralized algo-
rithm by means of competitive analysis.

However, it turns out, this is sometimes not possible. In particular, if the
hidden input contains more information than we can learn within the execution
of the algorithm, we might be in trouble. This is generally an issue in the domain
of recommendation and active learning algorithms. In this paper, we study the
following example. We are given an unknown binary matrix, where the entries
correspond to preferences of n users on m items, i.e., entry (i, j) corresponds to
whether user i likes item j. Thus, row i in the matrix can be seen as the taste
vector of user i. In each round, the algorithm is allowed to reveal one entry in
the matrix, i.e., query one user about one specific preference. The goal is to find
at least one 1-entry in each row with a minimum number of queries. We call this
problem the ignorant recommendation problem, since initially, the algorithm
knows nothing about the taste matrix, and only over time (hopefully) learns
about the taste of the users.

c© Springer-Verlag Berlin Heidelberg 2015
N. Bansal and I. Finocchi (Eds.): ESA 2015, LNCS 9294, pp. 1001–1012, 2015.
DOI: 10.1007/978-3-662-48350-3_83
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In the domain of recommendation and active learning, competitive analysis
is still waiting to make its outburst. The approach is often to assume certain
properties about the tastes of people, e.g., the users are partitioned into a small
number of classes with very similar taste or, more abstractly, that the underlying
taste matrix features certain algebraic properties such as low rank. Competitive
analysis seems to be out of reach, exactly because a ignorant algorithm cannot
compete against an algorithm that knows everything about the taste of the users.

Since we do not want to change the ignorant recommendation problem, our
only hope is to make the competition weaker. What is the strongest model for
the adversary that allows reasonable (or non-trivial) results? In this paper, we
propose an anonymous version of the problem. In the anonymized problem, the
adversarial algorithm knows the whole taste matrix, but the users are anony-
mous, i.e., the rows of the taste matrix have been permuted arbitrarily. We call
this the anonymous recommendation problem.

We build on two previous results: First, a result that studies a oblivious version
of the problem, called Min Sum Set Cover (mssc) [5]. The input for mssc is
a collection of elements and a set of subsets of these elements, similarly to the
classical Set Cover problem. The output is a linear order of these sets where the
ordinal of the set that first covers an element e induces a cost f(e) for e. The
goal is to minimize the sum

∑
e f(e) of the costs of the elements.

The mssc problem is oblivious in the sense that the strategy of an algorithm
solving themssc problem is independent of the recommendation history. In other
words, the algorithm chooses an ordering of the items in the beginning of the
execution and each user is recommended items according to this ordering. Our
setting on the other hand allows the algorithm to be adaptive and change the
strategy after each recommendation. In the oblivious setting, it is known that the
greedy algorithm is a 4-approximation [5]. The second previous result compares
the ignorant problem to the oblivious problem [19]. We strengthen this result
by showing that the bounds hold (asymptotically) even when comparing the
ignorant problem to the anonymous problem, instead of the oblivious problem.
The relations between the aforementioned problems are illustrated in Figure 1.

The core of this paper hence deals with the power of anonymous input, show-
ing that a good solution for the oblivious problem also yields a good result for
the anonymous problem. In particular, we show that the greedy algorithm for

[5][19]

?
This paper

O(1)O(
√
n log2 n)

︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸

Oblivious
Opt

Anonymous
Opt

Ignorant
Opt

Oblivious
Greedy

Fig. 1. We show that the greedy algorithm, and thus also the optimal algorithm,
for the oblivious recommendation problem provide a constant approximation to the
anonymous recommendation problem.
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mssc yields a constant approximation to the anonymous problem. In this sense,
our problem is an anonymous and adaptive variant of the mssc problem.

2 Related Work

The classic result related to the Min Sum Set Cover problem is that the greedy
algorithm provides a constant approximation. It was shown by Bar-Noy, Bel-
lare, Halldórsson, Shachnai, and Tamir [5] that the greedy solution is a 4-
approximation. Feige, Lovász, and Tetali gave a simpler proof for this result
and showed that getting an approximation ratio of 4 − ε for any ε > 0 is NP-
hard [9]. Our work extends their results from the oblivious and offline setting
into an adaptive and online setting, where the algorithm is allowed to change its
strategy during the execution but is not given full information in the beginning.
Online variants of the mssc problem have been studied before for example by
Munagala et al. [17], who showed that even if the elements contained in the sets
are hidden from the algorithm, one can achieve an O(log n)-approximation.

Also other variations of mssc have been considered. As an example, Azar
and Gamzu studied ranking problems, where the goal is to maintain an adaptive
ranking, i.e., an ordering of the sets that can change over time, while learning in
an active manner [4]. They provided an O(log(1/ε))-approximation algorithm for
ranking problems, where the cost functions have submodular valuations. Golovin
and Krause [12] studied problems with submodular cost functions further and in
particular, they considered them in an adaptive environment. Furthermore,mssc
is not the only classic optimization problem studied in an active or an adaptive
environment. There exists work on adaptive and active versions of, for example,
the well-known Set Cover [10,16], Knapsack [7], and Traveling Salesman [14]
problems.

The input for the anonymous recommendation problem is a binary rela-
tion. Learning binary relations has been studied for example by Goldman et
al [11]. They studied four different learning models: adversarial, random, a help-
ful teacher and similar to ours, a setting where the learner can choose which
entry to look at. They studied upper and lower bounds on the number of mis-
takes the learner makes when predicting the entries in the input matrix. As a
byproduct, they showed there are inputs where any algorithm can be forced to
make Ω(k ·m) mistakes given a matrix with k different row types. In our setting,
different row types correspond to users with different taste vectors and therefore,
their bound immediately gives us a corresponding lower bound for any recom-
mendation algorithm without any preliminary knowledge of the input, including
mssc based solutions.

A common way to overcome such lower bounds is to perform a competitive
analysis. However, an offline algorithm that sees the whole input for the ignorant
recommendation problem can always solve the problem with 1 query per user. It
was shown recently that if an online algorithm for the ignorant recommendation
problem is compared to the optimal solution formssc, the analysis becomes non-
trivial [19]. Our results extend this work by showing that the quasi-competitive
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ratio stays asymptotically the same if we compare the online solution to the
optimal anonymous algorithm. We also improve the results from previous work
by allowing the recommendation algorithms to choose the sequence according
to which the users are picked. In the previous work, the sequence was chosen
uniformly at random. Another way to relax the competitive analysis is to give
the online algorithm more power. For example the list update and bin packing
problems have been studied under more powerful online algorithms [1,13].

The task we are considering can also be seen as a relaxed version of learning
the identities of the users, that is, we wish to classify the unknown users into
groups according to their preferences. Since the users are determined by their
preferences, this can further be seen as finding a matching between the users and
the preferences. The matching has to be perfect, i.e., in the end every user has to
be matched to a unique preference. A similar setting was studied in economics,
where the basic idea is that each buyer and seller have a hidden valuation on the
goods that they are buying or selling and the valuations are learned during the
execution. Then the goal is to find a perfect matching between a set of buyers
and a set of sellers, where an edge in the matching indicates a purchase between
the corresponding agents [6,15].

The main motivation for our work comes from the world of recommendations
and the main interpretation of our variation of mssc is an online recommenda-
tion problem. Models of recommendation systems close to ours were studied by
Drineas et al. [8], Awerbuch et al. [3] and Nisgav and Patt-Shamir [18], where the
recommendation system wishes to find users that have interests in common or
good items for users. One of their real life examples are social networks. In their
works, the users are assumed to have preferences in common, whereas we study
an arbitrary feasible input. With an arbitrary input, Alon et al. [2] showed that
one can learn the whole preference matrix with minimal error in polylogarithmic
time in a distributed setting.

3 Model

The input for the anonymous recommendation problem is a pair (U, V ) consisting
of a set of users U = {u1, . . . , un} and a set of preference vectors V = {v1, . . . , vn}
of length m, where preference vector v ∈ V corresponds to the (binary) pref-
erences of some user u ∈ U on m items. Each user ui is assigned exactly one
preference vector vj according to a hidden bijective mapping π : U → V . By
identifying the users with the preference vectors, π is a permutation of the users.
The permutation π is chosen uniformly at random from the set of all possible
permutations.

The execution of a recommendation algorithm works in rounds. In each round,
a recommendation algorithm first picks a user u ∈ U and then recommends some
item b to this user. Recommending item b to user u is equivalent to checking
whether user u likes b or not, i.e., the corresponding entry is revealed to the
algorithm immediately after the recommendation. A recommendation algorithm
is allowed to pick the user and the item at random.
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We say that user u is satisfied after she has been recommended an item that
she likes. The goal is to satisfy all users which corresponds to finding at least
one 1-entry from each preference vector. The algorithm terminates when all
users are satisfied. The runtime of a recommendation algorithm is measured as
the expected number of queries. In other words, the runtime corresponds to the
number of rounds until all users are satisfied. Therefore, the trivial upper and
lower bound for the runtime are n · m and n, respectively, since it takes n · m
queries to learn every element of every preference vector and n queries to learn
one entry from each preference vector.

We assume that for any user u, there is always at least one item that she likes
but we do not make any further assumptions on the input. Let OPT be the op-
timal recommendation algorithm for the anonymous recommendation problem.
We measure the quality of a recommendation algorithm A by its approximation
ratio, i.e., the maximum ratio between the expected number of queries by A and
by OPT for any input I.

An important concept throughout the paper is the popularity of an item. The
popularity of an item corresponds to the number of users that like it.

Definition 1. Let b be an item. The popularity |b| of item b is the number of
users that like this item, i.e., |b| = |{v ∈ V | v(b) = 1}|.

4 Anonymous Recommendations

The main goal of this paper is to show that from an asymptotic perspective, the
anonymous and the oblivious recommendation problems are equally hard. Recall
that in the oblivious setting, the algorithm sees a probability distribution D
over the set of possible preference vectors for the users and must fix an ordering
O of the items before the first query. Then, each user is recommended items
according to O until she is satisfied. Otherwise, the oblivious model is similar
to the anonymous model. To achieve our goal, we first observe that solving the
oblivious recommendation problem takes at least as much time as solving the
anonymous recommendation problem for any instance of preferences selected
according to D. Clearly, an anonymous algorithm that chooses the best fixed
ordering of books is at least as fast as any oblivious algorithm for this instance.

Then we show that the greedy algorithm for the oblivious recommendation
problem is a 20-approximation to the anonymous recommendation problem. We
follow the general ideas of the analysis of the greedy algorithm for mssc by Feige
et al. [9], where they show that the greedy algorithm provides a 4-approximation.
The fundamental difference between our analysis and theirs comes from bound-
ing from below the number of recommendations needed to satisfy a given set
U ′ ⊆ U of users. In the oblivious setting, it is easy to get a lower bound on the
number of recommendations needed per user. Given the most popular item b∗

among users in U ′, Ω(|U ′|2/|b∗|) recommendations are needed, since one item
can satisfy at most |b∗| users, and each item is recommended to all unsatisfied
users. In the adaptive setting, this is not necessarily the case.
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We first give a lower bound on the amount of queries that are needed to
satisfy any group of users as a function of the best item within this group.
In essence, we show that from an asymptotic and amortized perspective, any
adaptive algorithm also needs Ω(|U ′|2/|b∗|) rounds to satisfy all users in U ′.
Then, we utilize our lower bound and get that the greedy algorithm for mssc
yields a constant approximation to the anonymous recommendation problem.

4.1 Consistency Graph

We identify the users with their preference vectors, which indicates that each
user u ∈ U corresponds to an (initially) unknown binary preference vector of
length m. Therefore, each user can be seen as a preference vector that denotes
the information we have gained about user u. We also identify the items with
their corresponding indices, i.e., for an item b that has been recommended to
u, u(b) denotes the entry in the preference vector of user u that corresponds to
whether u likes b or not. We call u ∈ U and v ∈ V consistent, if u(i) = v(i) for
every revealed entry u(i).

Let OPT be the optimal anonymous recommendation algorithm. We model
the state of an execution of OPT as a bipartite graph G = (U ∪ V,E), where
(u, v) ∈ E iff u ∈ U and v ∈ V are consistent. We refer to G as the consistency
graph. The purpose of the consistency graph is to model the uncertainty that
OPT has on the preferences of the users. To simplify our analysis, we provide
OPT with the following advantage. Whenever OPT recommends user u an item
b that u likes, we identify u ∈ U with v ∈ V in permutation π, i.e., OPT learns
that π(u) = v. We note that this advantage can only improve the runtime of
OPT, i.e., if we prove a lower bound for the performance of this “stronger”
version of OPT, the same bound immediately holds for the optimal anonymous
recommendation algorithm.

Now since the connection is revealed after finding a 1-entry and thus, the
complete preference vector of u is learned, nothing further can be learned by
recommending u more items. Therefore, we can simply ignore u ∈ U and π(u) ∈
V for the rest of the execution. Thus, upon recommending user u an item that
she likes, we simply remove u from U and the corresponding preference vector
π(u) from V . The modification also implies that the termination condition, i.e.,
all users being satisfied, is equivalent to the sets U and V becoming empty.

The construction of G is illustrated in Figure 2. We emphasize that the graph
G changes over time and we denote the state of G in round r ≥ 0 by Gr = (Ur ∪
Vr, Er), where Ur and Vr are the users and their preference vectors remaining
in round r, respectively, and Er is the set of edges between consistent nodes
in round r. Notice that G0 = (U0 ∪ V0, E0) is a complete bipartite graph. We
omit the index from the consistency graph whenever the actual round number
is irrelevant. In addition, we note that even if the identity of a certain user u is
clear (see user u3 in Figure 2 for an example), the edges connected to u and π(u)
are only removed from G when the corresponding users and preference vectors
become inconsistent.
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v1 1 1 0 0 0
v2 0 1 1 0 0
v3 0 0 0 1 1
v4 1 1 1 1 0
v5 0 0 0 0 1

u1 0 0
u2

u3 0 0
u4 0
u5 0

v1

v2

v3

v4

v5

u1

u2

u3

u4

u5

Ur Vr

Gr

Fig. 2. A matrix representation of the unknown and the known entries of an input are
given on the left and right, respectively. The consistency graph constructed based on
Vr and the state of Ur is denoted by Gr. Nodes ui and vj are connected if and only if
the corresponding rows are consistent.

5 Learning the Preferences

The goal of this section is to quantify the amount of knowledge OPT can gain per
round. The intuition behind modeling the anonymous recommendation problem
as a bipartite graph is that the number of remaining edges correlates with the
amount of uncertainty OPT has. In other words, by querying the preferences of
the users OPT can exclude inconsistent edges in G. When a 0-entry is discovered
by recommending item b to user u, at most |b| preference vectors can become
inconsistent with u since there are |b| vectors v ∈ V such that v(b) = 1. On
the other hand, when discovering a 1-entry, up to 2|U | edges might get removed
due to removing u, π(u) and all edges adjacent to them from G. Note that the
consistency graph is simply a representation of the knowledge OPT has about
the preference vectors, i.e., excluding the edges from the consistency graph only
happens implicitly according to the revealed entries.

We employ an amortized scheme, where we pay in advance for edges that get
removed by discovering 1-entries. Consider the case where a 0-entry is revealed
from u(b). Now all the edges (u, v) ∈ E, where u(b) �= v(b), are removed. For
every edge (u, v) removed this way, we give both node u and node v two units of
money that can be used later when their corresponding connections are revealed.
Since at most |b| edges are removed, we pay at most 2|b| + 2|b| = 4|b| units of
money in total in a round where OPT discovers a 0-entry.

As an example, consider the graph illustrated in Figure 2 and assume that a
0 is revealed from u4(5). Now u4 becomes inconsistent with v3 and v5, and the
corresponding edges are removed. Upon removing these edges, we give two units
of money to v3, two units of money to v5 and four units of money to u4.

5.1 Finding a 1-Entry

Now we look at the case of discovering a 1-entry. In the following, we consider
the consistency graph Gr for an arbitrary round r but omit the index when it is
irrelevant for the proofs. Consider user u ∈ U and let π(u) = v. Upon discovering
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the 1-entry from user u, we reveal that π(u) = v and all the edges adjacent to u
and v are removed. We divide the analysis into two cases. Consider first the case
where |Γ (u)|+ |Γ (v)| ≤ 4|U |/3, where Γ (u) denotes the exclusive neighborhood
of u. The exclusive neighborhood of node u ∈ U in graph G = (U ∪ V,E)
contains all the nodes in the 1-hop neighborhood of u except node u itself, i.e.,
Γ (u) = {v ∈ V | (u, v) ∈ E} and analogously for v ∈ V .

Note that since satisfied users are removed from U , G = (U ∪ V,E) is a
complete bipartite graph if there are no revealed 0-entries. Therefore, any edge
(u, v) �∈ E, where u ∈ U = Ur, v ∈ V = Vr, was removed by revealing a 0-entry.
Given that |Γ (u)|+ |Γ (v)| ≤ 4|U |/3, we know that at least 2|U | − 4|U |/3 of the
edges adjacent to u or v were removed by revealing 0-entries. We pay two units
of money to either u or v, for every edge removed from the set of edges adjacent
to nodes in Γ (u)∪Γ (v) and therefore, the combined money that the nodes have
is at least 2(2|U | − 4|U |/3) = 4|U |/3. Therefore, the money “pays” for all edges
that are removed due to revealing the connection between u and v.

We use the rest of this section to study the second case, that considers the
case where the sum of degrees of nodes u and v is high, i.e., larger than 4|U |/3.
The aim is to show that it is unlikely that v is the preference vector of u,
since there are many consistent nodes with u and v and thus, there has to be
considerably more valid permutations π′, where π′(u) �= v, than permutations,
where π′(u) = v. This in turn implies that a randomly chosen permutation is
likely not to have u connected to v.

We call a matching σ compatible with an edge e = (u, v) if (u, v) ∈ σ and
incompatible with e otherwise. In the following lemma, we bound the number of
perfect matchings that are compatible with a given edge e in G. Note that every
perfect matching in G corresponds to some permutation of the users.

U

u v

Γ(u)Γ(v)

V

U ′

(a)

U

u v

V

u′

v′

︸
︷︷

︸

Γσ(Γ(u))

(b)

Fig. 3. The consistency graph is illustrated on the left. On the right, we show a perfect
matching compatible with (u, v) with the solid lines. For every node u′ ∈ U ′, we have
a valid perfect matching that is incompatible with (u, v) if we use edges (u, v′) and
(u′, v) instead of (u, v) and (u′, v′).
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Lemma 1. Assume that |Γ (u)| + |Γ (v)| > 4|U |/3 for some nodes u and v in
G. Let h be the total number of perfect matchings in G. Then there are at most
3h/|U | perfect matchings that are compatible with (u, v).

Proof. Let σ be a perfect matching that is compatible with (u, v) in G. Let

U ′ = {u′ ∈ Γ (v) | (u′, v′) ∈ σ and v′ ∈ Γ (u)} \ {u} ,

|Γ (u)| = k and let Γσ(Γ (u)) = {u′ ∈ U | (u′, v′) ∈ σ and v′ ∈ Γ (u)} be the
set of nodes matched to Γ (u) by σ. See Figure 3 for an illustration. Since σ is
a matching, we get that k = |Γ (u)| = |Γσ(Γ (u))|. Also, we know that |Γ (v)| +
|Γ (u)| > 4|U |/3 and therefore |Γ (v)| ≥ 4|U |/3− k + 1.

By taking a closer look at the definition of U ′, we see that U ′ = Γ (v) ∩
Γσ(Γ (u)) \ {u} and by re-writing, we get that U ′ = Γ (v) \ (U \ Γσ(Γ (u))) \ {u}.
From the equations above, it follows that

|U ′| ≥ |Γ (v)| − (|U | − k)− 1 ≥ 4|U |
3

− k + 1− (|U | − k)− 1 =
|U |
3

.

For each node u′ ∈ U ′, we have a perfect matching σu′ that is incompatible
with (u, v) in G, where (u, v) and (u′, v′) ∈ σ are replaced by (u, v′) and (u′, v).
In addition, the incompatible perfect matching σu′ is different for every u′ ∈ U ′,
since (u′, v) �∈ σz for any u′ �= z ∈ U ′. Therefore, we have at least |U |/3 perfect
matchings incompatible with (u, v) for every perfect matching that is compatible
with (u, v). Note that no matchings are counted twice. The claim follows. 
�

In the beginning of the execution, the probability of user u ∈ U to be matched
to vector v ∈ V is simply 1/n. When revealing the unknown entries, these
probabilities change. The next step is to bound the probability of user u ∈ U
to be matched to vector v ∈ V given the state of the consistency graph G.
We identify the randomly chosen permutation π with a perfect matching σπ

where (u, v) ∈ σπ iff π(u) = v. Since the permutation π was chosen uniformly
at random, any valid permutation, i.e., a permutation that does not contradict
the revealed entries, is equally likely to be σπ. Therefore, the probability that
an edge (u, v) is in matching σπ corresponds to the ratio of perfect matchings
in G that are compatible with (u, v) and the number of all perfect matchings in
G. We denote the event that edge (u, v) is in σπ by A(u, v) and the probability
of A(u, v) given G by P[A(u, v) | G].

Lemma 2. (Proof deferred to the full version) Let G = (U ∪ V,E) be the con-
sistency graph. For any nodes u ∈ U and v ∈ Γ (u), such that |Γ (u)|+ |Γ (v)| >
4|U |/3, P[A(u, v) | G] ≤ 4

|Γ (u)|+|Γ (v)| .

5.2 Progress

Now, we define the progress c(u, b, r) for recommending item b to user u in round
r ≥ 0. Informally, the idea of the progress value is to employ the money paid
during the execution to bound the expected number of edges removed per round.
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Consider any round r and let wr(z) denote the wealth of node z ∈ Ur ∪ Vr ,
where wealth refers to the amount of money z has in round r. In the case of
revealing a 0-entry, the progress indicates the number of removed edges and the
money that is paid to the nodes adjacent to the removed edges. When finding a
1-entry and revealing the connection between u and π(u), the progress indicates
the number of removed edges minus the money already paid to u and π(u). Let
Γr(u) = {v ∈ Vr | (u, v) ∈ Er} and Γ b

r (u) denote the neighbors of u that like
item b, i.e., Γ b

r (u) = {v ∈ Vr | (u, v) ∈ Er ∧ v(b) = 1}. Then, for entry u(b)
revealed in round r, the progress is given by

c(u, b, r) =

{∑
v∈Γ b

r (u)
5 if u(b) = 0

|Γr(u)|+ |Γr(π(u))| − (wr(u) + wr(π(u))) if u(b) = 1 .

An illustration of the wealth and progress concepts is given in Figure 4. In
the example given in Figure 4, revealing entry u2(1) = 1, denoted by x, has a
progress value of |Γ (u2)| + |Γ (v4)| − (w(u2) + w(v4)) = 5 + 2 − 0 − 6 = 1 and
revealing entry u4(5) = 0, denoted by y, yields a progress of

∑
v3,v5

5 = 10.
Next, we show that the total progress value counted from the first round up to

any round r is never smaller than the number of edges removed from G within
the first r rounds. We denote an execution of an algorithm until round r by
Er = (u1, b1), (u2, b2), . . . , (ur−1, br−1), where ui corresponds to the user selected
in round i < r and similarly for item bi.

v1 1 1 0 0 0
v2 0 1 1 0 0
v3 0 0 0 1 1
v4 1 1 1 1 0
v5 0 0 0 0 1

u1 0 0
u2 x
u3 0 0
u4 0 y
u5 0

v1

v2

v3

v4

v5

u1

u2

u3

u4

u5

G = (U ∪ V, E)
w(v1) = 4

w(v2) = 6

w(v3) = 4

w(v4) = 6

w(v5) = 2

w(u1) = 6

w(u2) = 0

w(u3) = 8

w(u4) = 4

w(u5) = 4

G′ = (U ∪ V, E0 \ E)

Fig. 4. In graph G′ the dashed lines indicate the edges removed from the consistency
graph during the execution of an algorithm. The wealth of each node is illustrated next
to the corresponding node. The bold lines denote the underlying permutation π that
connects users in U with their preference vectors in V .

Lemma 3. (Proof deferred to the full version) For any round r and execution

Er, it holds that
∑r−1

i=0 c(ui, bi, i) ≥ |E0| − |Er|.
The last thing we need to show is an upper bound on the expected progress

per round for any round r. For ease of notation, we omit the round index for the
rest of the section. In addition, we identify c(u, b) with a random variable that
equals to the progress gained by revealing entry (u, b).

Lemma 4. Let b∗ be the most popular item among the set U of unsatisfied users.
Then for any user u ∈ U and item b, E[c(u, b)] ≤ 5|b∗|.
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Proof. Consider any user u ∈ U and any item b. We partition the event space
into three disjoint parts according to the outcome of querying user u for item b
and show that for each part, E[c(u, b)] ≤ 5|b∗|. First, consider the case where a 0-
entry is revealed. By definition, we get E[c(u, b) | u(b) = 0] ≤ 5|b∗|. Furthermore,

E
[
c(u, b) | (u(b) = 1) ∧ (|Γ (u)|+ |Γ (π(u))| ≤ 4|U |/3)] ≤ 0 ,

since w(u) + w(π(u)) ≥ 4|U |/3 given that |Γ (u)|+ |Γ (π(u))| ≤ 4|U |/3.
Let us then consider the third part of the event space, where u(b) = 1 and

|Γ (u)|+ |Γ (π(u))| > 4|U |/3 and let us denote this event by B. Let

E′ = {(u, v) ∈ E | |Γ (u)|+ |Γ (π(u))| > 4|U |/3)]}
and Γ̂ (u) = {v ∈ Γ (u) | (u, v) ∈ E′ ∧ v(b) = u(b) = 1}. Then, by Lemma 2,

E[c(u, b) | B] ≤
∑

v∈Γ̂ (u)

(|Γ (u)|+ |Γ (v)|) · P[A(u, v) | G]

≤
∑

v∈Γ̂ (u)

(|Γ (u)|+ |Γ (v)|) 4

|Γ (u)|+ |Γ (v)| =
∑

v∈Γ̂ (u)

4 ≤ 4|b∗| ,

where |b∗| ≥ |b| ≥ |Γ̂ (u)|, since b∗ is the most popular item. Since the three
aforementioned parts span the whole probability space, E[c(u, b)] is bounded by
the maximum of the three cases and thus, the claim follows. 
�
Theorem 1. (Proof deferred to the full version) Let R ⊆ U0 be a set of users
and b∗ the most popular item among these users. Any algorithm requires at least
|R|2/(5|b∗|) queries to users in R in expectation to satisfy all users in R.

As the last step, we establish that the greedy algorithm for the mssc problem
provides an O(1)-approximation for the anonymous recommendation problem.
Due to the space constraints, we defer the proof of the theorem to the full version.

Theorem 2. (Proof deferred to the full version) The greedy mssc algorithm
provides a 20-approximation for the anonymous recommendation problem.
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Abstract. In the last decade, there has been a substantial amount of
research in finding routing algorithms designed specifically to run on
real-world graphs. In 2010, Abraham et al. showed upper bounds on the
query time in terms of a graph’s highway dimension and diameter for
the current fastest routing algorithms, including contraction hierar-

chies, transit node routing, and hub labeling. In this paper, we
show corresponding lower bounds for the same three algorithms. We also
show how to improve a result by Milosavljević which lower bounds the
number of shortcuts added in the preprocessing stage for contraction
hierarchies. We relax the assumption of an optimal contraction order
(which is NP-hard to compute), allowing the result to be applicable to
real-world instances. Finally, we give a proof that optimal preprocess-
ing for hub labeling is NP-hard. Hardness of optimal preprocessing is
known for most routing algorithms, and was suspected to be true for
hub labeling.

1 Introduction

The problem of finding shortest paths in road networks has been well-studied in
the last decade, motivated by the application of computing driving directions.
Although Dijkstra’s algorithm runs in small polynomial time, for applications
involving continental-sized road networks, Dijkstra’s algorithm is simply not
fast enough. There have been many different approaches to find algorithms that
specifically run fast on real-world graphs.

Most recent innovations involve a two-stage algorithm: a preprocessing stage
and a query stage. The preprocessing stage runs once and can spend hours
calculating data. Then the query stage uses this data to find shortest paths very
fast, often several orders of magnitude faster than Dijkstra’s algorithm for a
continental query. Once the preprocessing stage is completed, the users can run
as many queries as they want. For a query between two nodes s and t (an s–t
query), the algorithm returns dist(s, t), the cost of the shortest path between s
and t. Most algorithms can also return the vertices on the shortest path using
an extra data structure.

The current fastest routing algorithm on real-world graphs is hub labeling

[2], which achieves a speedup of six orders of magnitude over Dijkstra’s algo-
rithm. The transit node routing algorithm is second-fastest, and requires
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an order of magnitude less space than hub labeling. contraction hierar-

chies is also a fast routing algorithm, which was state of the art in 2008. For a
comprehensive overview of the best routing algorithms, see [6].

Until recently, it was known that these algorithms performed very well on
real-world maps, but there were no theoretical guarantees. In fact, it is not hard
to construct specific graphs for which these algorithms perform no faster than
Dijkstra’s algorithm. So, an interesting theoretical question is to find properties
present in all real-life graphs that explain why these algorithms work so well.

With this motivation in mind, Abraham et al. defined the notion of highway
dimension [1], intuitively, the extent to which all shortest paths are hit by at
least one of a small set of access nodes. Although it is too computationally
intensive to calculate the exact highway dimension for a continental road map,
there is evidence that the highway dimension h is at most polylogarithmic in
the number of vertices. It is conjectured that real-world routing networks always
have low highway dimension, based on experimental evidence [3]. Abraham et
al. were able to prove strong upper bounds on the query times in terms of
highway dimension and diameter d for four of the fastest routing algorithms: hub
labeling, contraction hierarchies, transit node routing, and reach.

1.1 Our Results

In this paper, we are interested in finding lower bounds for the current state-of-
the-art routing algorithms. We show tight or near-tight bounds on the runtime
for hub labeling, contraction hierarchies, and transit node routing.

Our lower bounds may facilitate proving better guarantees of these algorithms,
or provide intuition for new routing algorithms, if one can find differences be-
tween the graphs we use and real world instances. For example, the graphs we
use have low highway dimension, but they do not have small separators and are
nonplanar, so perhaps there is a way to modify hub labeling to take this into
account.

We show a tight lower bound for hub labeling, the fastest routing algorithm
to date [6]. For contraction hierarchies and transit node routing, the
definition of highway dimension in the lower bound versus upper bound is slightly
different (because of a recent redefinition by Abraham et al. ), so we cannot quite
say the bounds are tight.

We can also use our analysis to generalize a known result by Milosavljević,
which lower bounds the number of shortcut edges in the preprocessing stage
of contraction hierarchies [12]. This result assumes an optimal contraction
order which is NP-hard to compute [7]. So for real-world instances, we rely on us-
ing contraction orders based on heuristics. We show how to relax the assumption
about the contraction order, which means the result can be applied to real-world
instances.

We also contribute a hardness result for optimal preprocessing of hub la-

beling. In 2010, Bauer et al. established hardness for optimal preprocessing for
a variety of the best routing algorithms, including contraction hierarchies

and transit node routing. In this paper, we show that in hub labeling
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preprocessing, the problem of minimizing the maximum label size over all ver-
tices is NP-hard.

This paper will proceed as follows. Section 2 will provide preliminary informa-
tion, specifically about highway dimension, and also the graph construction used
in our main theorems. In Section 3, we show a lower bound on the query time of
the hub labeling algorithm, and prove that optimal preprocessing is NP-hard.
In Section 4, we establish a lower bound on the query time for contraction

hierarchies, and generalize a lower bound on the number of shortcut edges
added in the preprocessing phase. Section 5 establishes a lower bound on the
query time of transit node routing. We conclude and discuss future direc-
tions in Section 6.

Due to space constraints, we provide proof sketches. See the full version of
this paper on arxiv for the complete proofs.

2 Preliminaries

In this paper, we assume nonnegative integral edge lengths and unique shortest
paths. We will also assume graphs are undirected in all sections except for the
hardness result. These are standard assumptions to make when proving bounds
on routing algorithms, for example, [3] and [12].

Br(v) represents all nodes u such that dist(u, v) < r. We say a set of nodes
covers a set of paths if each path has at least one of its vertices in the set of nodes.

2.1 Highway Dimension

Now we will formally define the notion of highway dimension.

The highway dimension of a graph G = (V,E) is the smallest h such that
for all r > 0 and for all B4r(v), there exists a set H ⊆ V , such that |H | ≤ h and
H covers all shortest paths of length ≥ r in B4r(v).

Highway dimension was specifically designed to explain why the best rout-
ing algorithms perform well on real-world graphs but do not perform well on
arbitrary graphs. Although it is too computationally intensive to calculate the
exact highway dimension of a continental-sized road network, it is conjectured
that the highway dimension of real-world graphs is at most polylogarithmic in
the number of vertices [3].

Abraham et al. introduced a slightly refined version of the original highway
dimension in 2013 [1].

The difference in the new definition versus the old one is that instead of having
to hit all local shortest paths of length ≥ r, we have to hit all paths P where
there is a shortest path P ′ with endpoints s and t such that l(P ′) > r, P ⊆ P ′,
and P ′ \ P ∈ {∅, {s}, {t}, {s, t}}. That is, we have to hit all paths that can be
obtained by removing zero, one, or both endpoints of a shortest path with length
> r. We will refer to a graph’s highway dimension as h for the first definition,
and ĥ for the second definition.
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The two definitions of highway dimension are very similar but have a few key
differences. Most notably, the new definition bounds the degree of the graph,
which was not true before [3]. The new definition of highway dimension allowed
Abraham et al. to improve their results on the runtime of routing algorithms.

2.2 Definition of Gt,k,q

Now we will define the family of graphs Gt,k,q that will be used in many of our
proofs. Gt,k,q was designed to by Milosavljević to show a lower bound on the
number of shortcuts created during the preprocessing stage of contraction
hierarchies [12].

Consider a complete t-ary tree of height k for integers t, k ≥ 2. Let λ(v) denote
the height of node v, and let λ(u, v) denote the height of the lowest common
ancestor between two nodes u and v.

Now define the edges as follows: for all nodes v and w such that w is a proper
ancestor of v, there is an edge between v and w with length 16λ(w)−1. This means
the edge length from a node w to one of its descendants v is independent of λ(v).
Furthermore, edge lengths increase for nodes higher up in the tree.

Denote this graph by Gt,k = (Vt,k, Et,k). See Figure 1 for an example. For
convenience, we will still refer to this graph as a tree, even though the additional
edges create cycles.

Now we will define Gt,k,q = (Vt,k,q , Et,k,q) by taking q copies of Gt,k, and

naming them G
(a)
t,k = (V

(a)
t,k , E

(a)
t,k ) for a = 1, 2, ..., q. The copy of a node v ∈ Gt,k

in G
(a)
t,k is denoted v(a).

For all v ∈ Gt,k and a �= b, we add edge v(a)–v(b) to Et,k,q with length
2λ(v)−k−1. This ensures that switching copies has a low penalty (2λ(v)−k−1 is
always less than 1), and it is always cheaper to switch among copies lower down
in the tree. See Figure 1 for an example.

Fig. 1. The left graph is G3,3, and the right graph is G2,3,2
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2.3 Properties of Gt,k,q

We will now discuss properties of Gt,k,q. The following three lemmas are proven
in [12].

Lemma 1. Given s, t ∈ Vt,k with lowest common ancestor w, the unique short-
est s–t path is s–w–t.

Lemma 2. Given s(a) and t(b) in Gt,k,q, let w be the lowest common ancestor
between s and t. Then the shortest s(a)–t(b) paths are:

s(a)–s(b)–w(b)–t(b), if λ(s) ≤ λ(t), and/or
s(a)–w(a)–t(a)–t(b), if λ(t) ≤ λ(s).

Lemma 3. The highway dimension h of Gt,k,q is equal to q, the diameter D is
Θ(16k), and |Vt,k,q | = Θ(qtk).

It is worth noting that at the start we assumed graphs have unique short-
est paths, but now many shortest paths in our main family of graphs are not
unique. However, this is a common assumption in routing algorithm proofs be-
cause it is not hard to perturb the input to make all shortest paths unique while
maintaining the validity of the proofs.

Additionally, integrality of edge lengths is violated. Since the smallest edge is
2−k (and all edge lengths are multiples of this), all of the edge weights can be
multiplied by 2k to create integral lengths. This will increase D by a factor of
k, doubling logD, which will not affect our results.

3 Hub Labeling

The hub labeling algorithm was first devised in 2004 by Gavoille et al. [10],
and further studied by Cohen et al. [8]. However, the algorithm was not practical
for continental routing queries until 2011, when Abraham et al. came up with
an efficient way to perform the preprocessing and query phases, which made it
the fastest routing algorithm to date [2].

In this section, we will first give an introduction to the hub labeling algo-
rithm. Then we will present a lower bound on the query time. Finally, we will
show the preprocessing phase is NP-hard to optimize.

3.1 The Algorithm

hub labeling relies on the concept of labeling. Each node stores information
about its shortest paths that allows us to reconstruct the shortest path during
a query. This idea is used in a clever way to make queries run very fast.

In the hub labeling algorithm, we give each node v ∈ V a label consisting
of other nodes (the hubs of v), and we store the shortest distances to the hubs
from v. We define a labeling L as the set of labels L(v) for all v ∈ V .

We construct the labeling in such a way that for any pair of nodes s and t, L(s)∩
L(t) contains at least one node on the shortest path from s to t.When satisfied, this
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is called the cover property. Then in order to perform an s–t query, we only need to
find the v ∈ L(s)∩L(t) that minimizes dist(s, v) + dist(v, t). This can be made to
takeO(|L(s)|+ |L(t)|) time if the labels are sorted with some arbitrary node order.
This process returns dist(s, t). To return the nodes on this shortest path, we need
to add another data structure in the preprocessing stage, which does not increase
the space complexity by more than a constant factor [2].

In Section 2, we will show that it is NP-hard to find the labeling that minimizes
the maximum label size for all vertices. This was suspected to be true. Therefore,
in practice we must rely on heuristics in the preprocessing stage.

Abraham et al. showed that the query time of hub labeling is O(ĥ logD),

using a specific labeling [1]. The proof did not use any properties of ĥ that are
different from h, so we can also say that the query time is O(h logD).

It is not known how to construct the labeling used in their proof in polynomial
time, so they showed a corollary that uses a polynomial preprocessing algorithm
and permits queries to be handled in O(h log h logD) time.

3.2 Lower Bounding the Query Time

We cannot prove a lower bound on the minimum query time, since labelings can
be constructed to make any one query run in constant time. Instead, we will
prove a bound on the average query time by bounding the sum of all label sizes.

Theorem 1. For all h, D, n, there is a graph G = (V,E) with highway dimen-
sion h, diameter Θ(D), and |V | ≥ n, such that for any choice of labeling L, the
average query requires Ω(h logD) time.

Proof (sketch). It suffices to show that for any h, D, and n, there exists a graph
that fits the parameters of the theorem, and given any labeling L, the sum of
the label size for all vertices is Ω(h|V | logD).

We use Gt,k,q for this task, where k = O(logD), q = h, and t is large enough
such that |V | ≥ n.

Leaf-leaf queries make up a constant fraction of all queries, so we limit our
analysis to these queries.

The idea is to group leaf-leaf shortest paths by their lowest common ancestor:
For 0 ≤ i ≤ k, let Pi = {s–t | s and t are leaves, and λ(s, t) = i}.

Then we show that for k
2 ≤ i ≤ k, the shortest paths in Pi contribute Ω(q2tk)

distinct nodes to the total sum of label sizes. We establish this by showing that
for a leaf-leaf shortest path s–t in Pi for i ≥ k

2 , it is always best for s and t
to choose their common ancestor as a hub, because this hub hits the greatest
amount of shortest paths stemming from s and t. Despite this overlap, we are
able to show Ω(q2tk) distinct hubs are needed for each set Pi, which proves the
theorem. 	


With this theorem, the upper bound presented in [1] becomes tight.
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3.3 Hardness of Preprocessing

In 2010, Bauer et al. established hardness for optimal preprocessing for a vari-
ety of the best routing algorithms, including contraction hierarchies and
transit node routing [7]. We provide hardness for optimal preprocessing in
hub labeling which was suspected to be true [3]. By optimal preprocessing, we
mean minimizing the maximum hub size over all vertices. Babenko et al. very
recently established hardness for nearly the same problem, but they defined op-
timal preprocessing as minimizing over the total label size [5]. Our definition of
optimal corresponds to minimizing the maximum query time, whereas the other
definition corresponds to minimizing the average query time. We believe our def-
inition is more motivated because minimizing the average query time does not
take into account outlier queries that run for a long time.

We will switch to directed graphs, which was the original setting of hub

labeling [2]. The main difference is that each node v has a forward label Lf (v)
and a reverse label Lr(v), and the cover property states that for a directed s–t
query, Lf(s) ∩ Lr(t) is not empty.

Nowwe formally define the problemminimumhub labeling (MHL) as follows:

Problem (MHL). Given a directed graph G = (V,A) and an integer k, find a
labeling L satisfying the cover property such that maxv∈V (max(|Lf (v)|, |Lr(v)|))
≤ k.

Theorem 2. Minimum hub-labeling is NP-hard.

Here is a proof outline. We show a reduction from a classical NP-hard problem,
exact cover by 3-sets (X3C). In an X3C instance (U,C), U is a set of elements,
3 divides |U |, and C is a set of triples of U . The problem is whether there exists

a set C′ ⊆ C, |C′| = |U|
3 such that C′ covers U (an exact 3-covering of U).

Given an X3C instance (U,C), we create an MHL instance (G, k) where G =
(V,E), U ∪ C ⊆ V and for c ∈ C, u ∈ U , c–u ∈ E iff u ∈ c.

We also add a clique of vertices {b1, . . . , b2k−1} = B with arcs to nodes in U ,
whose sole purpose is to fill up the reverse labels of nodes in U . Finally, we add
two vertices {a1, a2} = A with arcs to every node in C.

By filling up the reverse labels of nodes u ∈ U , we force the nodes a ∈ A to
use nodes in C or U for the hubs of a–u shortest paths. And it is too inefficient
to use nodes in U for the hubs, so nodes in C must act as the hubs. Then in
order for A’s label size to stay ≤ k, there must be an exact cover for U .

4 Contraction Hierarchies

Contraction hierarchies [11] is a shortcut-based algorithm, making it fun-
damentally different from hub labeling. It works by running bidirectional Di-
jkstra search, pruning the searches based on a node’s importance.

In this section, we explain how the contraction hierarchies algorithm
works, prove a lower bound on the query time, and then generalize a result
about the number of shortcut edges added in the preprocessing phase.
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4.1 The Algorithm

In the preprocessing stage for contraction hierarchies, we iteratively con-
tract nodes using a predefined ordering, called a contraction ordering. The con-
traction operation called on v first deletes v from the graph, and then may
add edges between v’s neighbors if they are needed to preserve the shortest path
lengths. Any such edge is put into a set E+. We contract every node in the graph
based on the ordering, and we are left with the set E+ of “shortcut edges”.

To run an s–t query, run bidirectional Dijkstra search from s and t on the
graph G+ = (V,E ∪ E+), except at node v, only consider edges v–w in which
w was contracted after v. When there are no more nodes to consider in either
direction, find the node v that minimizes the sum of its distances to s and to t.

In [11], it is proven that v is guaranteed to be on the shortest path between
s and t, which means that dist(s, t) = dist(s, v) + dist(v, t), so the query returns
the shortest s–t path.

Note that any contraction ordering will give correct queries, but a better con-
traction ordering will make |E+| small, decreasing time and space requirements.
Finding the optimal ordering is NP-hard [7], but there are fast heuristics that
make |E+| within log h of optimal [1].

Abraham et al. showed an upper bound on the query time of contrac-

tion hierarchies that depends on Δ: O((Δ+ h logD)(h logD)) [3]. Using the
new definition of highway dimension, Abraham et al. achieved the better bound
of O((ĥ logD)2) time. Both of these assume optimal preprocessing. If a poly-
nomial time preprocessing algorithm is required, the bounds are modified to
O((ĥ log ĥ logD)2) and O((Δ+ h log h logD)(h log h logD)).

4.2 Lower Bounding the Query Time

We show a lower bound using the old definition of highway dimension.

Theorem 3. For all h, D, n, there is a graph G = (V,E) with highway di-
mension h, diameter Θ(D), and |V | ≥ n such that the average query time is
Ω((h logD)2) for contraction hierarchies.

Our strategy will be to find a lower bound assuming Abraham et al.’s (opti-
mal) ordering, and then show that modifying the ordering can only increase the
runtime.

[12] provided a criterion for shortcut paths in the optimal ordering: the path
s(a)–s(b)–w(b)–t(b) is shortcut if and only if a �= b, w is a proper ancestor of s,
and s(b) is contracted before s(a).

Proof (sketch). Again we will use Gt,k,q , setting k ∈ O(logD), q = h, and t large
enough such that |V | ≥ n, and we limit our analysis to leaf-leaf queries, which
make up the majority of all queries.

First we prove the theorem assuming Abraham et al.’s contraction order.
For Gt,k,q , this means nodes are contracted based on their height in the tree.
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Then we show that veering away from this ordering will only increase the number
of shortcut edges produced, slowing the algorithm down.

The first claim can be established without too much work. We show that in
the forward search of a leaf-leaf query s(a)–t(b), the only nodes we may visit are
ancestors v(c) of s such that v(c) is contracted after v(a). Then half of these nodes
will have lower contraction order than the other half, and so it can be shown
that the shortcut criterion guarantees Ω(q2k2) edges will be created along half
of the forward searches.

The case of a general ordering is more technical. The main idea is to carefully
examine the effects of contracting a node higher up in the tree, before all of its
descendants were contracted. Although contracting a higher node v decreases
some of the paths from any descendant u to v, it creates shortcuts between all
pairs of descendants which have not yet been contracted, which could cause an
exponential number of extra edges to be created. There is an overall net loss in
time in the algorithm, which finishes the proof. 	


4.3 Lower Bounding the Size of E+

Abraham et al.́s upper bound of O((ĥ logD)2) on the query time involves proving

that |E+| ∈ O(nĥ logD). The latter bound was proven tight in [12]. However,
the proof assumes the contraction order from the algorithm in Abraham et al.
which is thought to be NP-hard to compute. We show a new proof of this lower
bound generalized to any contraction order.

Theorem 4. For all h, D, n, there is a graph G = (V,E) with highway dimen-
sion h, diameter Θ(D), and |V | ≥ n such that for any contraction ordering,
|E+| ∈ Ω(h|V | logD).

Due to space constraints, we refer the reader to the full version of this paper
(on arxiv) for the proof.

5 Transit Node Routing

transit node routing [4] was devised in 2007 by Bast et al., and it (and vari-
ants) remain the second-fastest family of routing algorithms, behind hub label-

ing [6]. However, transit node routing requires about an order of magnitude
less space than hub labeling. In this section, we first review the transit node

routing algorithm, and then we give a lower bound on the query time.
The algorithm works by picking a set T ⊂ V of transit nodes that hits many

long-distance shortest paths. |T | is often chosen to be in Θ(
√|V |), which makes

the algorithm run fastest while maintaining that additional memory require-
ments are bounded by the input graph size. Usually, the contraction order is
used to pick T (since contraction order essentially seeks to measure a node’s
importance with respect to shortest paths), which works well in practice.

Next, given any node v, A(v) ⊂ T is the set of that node’s access nodes, which
are chosen to hit the long-distance queries stemming from v. This usually means
that we want to pick nodes in T that are close to v.
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The distances between all pairs of transit nodes are computed and stored, as
well as the distances between a node v and each of its access nodes. A query
is called a global query if min(dist(s, u) + dist(u, v) + dist(v, t) | u ∈ A(s), v ∈
A(t)) = dist(s, t). Otherwise, it is a local query. To run an s–t query, first run
a quick locality filter that determines whether the query is local. This filter
is allowed to make one-sided errors; it can misclassify a global query as local,
but not the other way around. Locality filters are historically calculated using
the coordinates of the vertices. If it is a global query, calculate the minimum
dist(s, u) + dist(u, v) + dist(v, t) by trying all combinations of access nodes from
A(s) and A(t). Local queries are handled by a fast local search such as con-

traction hierarchies.
Abraham et al. use a choice of T based on multiscale shortest-path covers

to prove that access nodes are bounded in size by O(ĥ), from which it follows

that global queries can be handled in O(ĥ2) time. Local queries done using

contraction hierarchies can be handled in O((ĥ logD)2) time as we saw in
the previous section (however, local queries tend to be small, making the queries
run much faster than the average contraction hierarchies query).

This bound is not possible without the new definition of highway dimension.
Again, if we want polynomial time preprocessing, the query time bound for
global queries increases to O((ĥ log ĥ)2).

5.1 Lower Bounding the Query Time

While the upper bound for transit node routing was for global queries only,
our lower bound will include both local and global searches. We will use con-

traction hierarchies for local queries.

Theorem 5. For all h, D, n, there is a graph G = (V,E) with highway dimen-
sion h, diameter Θ(D), and |V | ≥ n such that for any choice of transit nodes T
and access nodes A, the average query time is Ω(h2).

Proof (sketch). First, we define a leaf-leaf shortest path as regular if the shortest
path is global, and neither endpoint is a transit node. We are able to exclude
irregular shortest paths from our analysis, for the following reasons. First, short-
est paths with a transit node do not make up a constant fraction of all shortest
paths. Second, if a constant fraction of all shortest paths were local, then we can
use Theorem 4.2 and we are done.

So, we can assume a constant fraction of all leaf-leaf shortest paths are regular.
Again we will use Gt,k,q such that k ∈ O(logD), q = h, and t large enough so
that |V | ≥ n.

There is a simple intuition for the rest of the proof. Given a leaf-leaf shortest
path s(a)–t(b), either s(a) or t(b) must have an access node in the other’s copy,
since the non-endpoint vertices on the shortest path all come from one copy.

From here, the proof gets technical because we must show that a constant
fraction of leaves have a large amount of access nodes in distinct copies and
subtrees. But we are able to show that a constant fraction of the nodes need
Ω(q2) access nodes, and the proof follows. 	
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6 Conclusions and Future Work

We proved lower bounds on the query time of hub labeling, contraction
hierarchies, and transit node routing. The proofs are all quite different,
despite using the same family of graphs for each proof. We also generalized a
lower bound on the size of E+ in contraction hierarchies preprocessing,
and established hardness for optimal preprocessing in hub labeling.

Although we have proven lower bounds for the query times of three state-of-
the-art algorithms, the graphs used in the arguments are not representative of
real-world graphs. For instance, the graphs do not have small separators and are
not planar. This implies it may be possible to circumvent this lower bound using
different properties that better capture the structure of real-world graphs.

Another way to work with more realistic road networks is to use the idea
of multiscale dispersed graphs, defined in [9], as a new model for graphs that
simulate real-world graphs. One may be able to obtain better bounds on the
query time with this model.

Throughout this paper, we assumed undirected graphs, so future work could
extend these results to the directed case. Furthermore, apart from hub label-

ing, the upper and lower bounds are not tight because of the different definitions
of highway dimension. Ideally, we would find a way to prove the lower bounds
using the more recent definition of highway dimension. However, we cannot use
Gt,k,q for this task. Under the new definition, Gt,k,q has highway dimension at
least q + k, since the new definition guarantees a graph’s degree is bounded by
its highway dimension.
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Abstract. We study the problem of computing all Pareto-optimal jour-
neys in a public transit network regarding the two criteria of arrival time
and number of transfers taken. We take a novel approach, focusing on
trips and transfers between them, allowing fine-grained modeling. Our
experiments on the metropolitan network of London show that the algo-
rithm computes full 24-hour profiles in 70ms after a preprocessing phase
of 30 s, allowing fast queries in dynamic scenarios.

1 Introduction

Recent years have seen great advances in route planning on continent-sized road
networks [2]. Unfortunately, adapting these algorithms to public transit net-
works is harder than expected [4]. On road networks, one is usually interested
in the shortest path between two points, according to some criterion. On public
transit networks, several variants of point-to-point queries exist. The simplest is
the earliest arrival query, which takes a departure time as an additional input
and returns a journey that arrives as early as possible. A natural extension is
the multi-criteria problem of minimizing both arrival time and the number of
transfers, resulting in a set of journeys. A profile query determines all optimal
journeys departing during a given period of time.

In the past, these problems have been solved by modeling the timetable in-
formation as a graph and running Dijkstra’s algorithm or variants thereof on
that graph. Traditional graph models include the time-expanded and the time-
dependent model [14]. More recently, algorithms such as RAPTOR [10] and
Connection Scan [11] have eschewed the use of graphs (and priority queues) in
favor of working directly on the timetable.

In this work, we present a new algorithm that uses trips (vehicles) and the
transfers between them as its fundamental building blocks. Unlike existing al-
gorithms, it does not assign labels to stops. Instead, trips are labeled with the
stops at which they are boarded. Then, a precomputed list of transfers to other
trips is scanned and newly reached trips are labeled. When a trip reaches the
destination, a journey is added to the result set. The algorithm terminates when
all optimal journeys have been found.

A motivating observation behind this is the fact that labeling stops with
arrival (or departure) times is not sufficient once minimum change times are
introduced. Some additional information is required to track which trips can
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be reached. For example, the realistic time-expanded model of Pyrga et al. [16]
introduces additional nodes to deal with minimum change times, while Connec-
tion Scan [11] uses additional labels for trips. In contrast, once we know pas-
sengers boarded a trip at a certain stop, their further options are fully defined:
Either they transfer to another trip using one of the precomputed transfers, or
their current trip reaches the destination, in which case we can look up the ar-
rival time in the timetable. In either case, there is no need to explicitly track
arrival times at intermediary stops.

The core of the algorithm is similar to a breadth-first search, where levels
correspond to the number of transfers taken so far. As a result, it is inherently
multi-criterial, similar to RAPTOR [10]. Although a graph-like structure is used,
there is no need for a priority queue. A preprocessing step is required to compute
transfers, but can be parallelized trivially and only takes a few minutes, even on
large networks (Section 4). By omitting unnecessary transfers, both space usage
and query times can be improved at the cost of increased preprocessing time.

Section 2 introduces necessary notations and definitions, before Section 3 de-
scribes the algorithm and its variants. Section 4 presents the experimental eval-
uation. Finally, Section 5 concludes the paper.

2 Preliminaries

2.1 Notation

We consider public transit networks defined by an aperiodic timetable, consisting
of a set of stops, a set of footpaths and a set of trips. A stop p represents a
physical location where passengers can enter or exit a vehicle, such as a train
station or a bus stop. Changing vehicles at a stop p may require a certain amount
of time Δτch(p) (for example, in order to change platforms).1 Footpaths allow
travelers to walk between two stops. We denote the time required to walk from
stop p1 to p2 by Δτfp(p1, p2) and define Δτfp(p, p) = Δτch(p) to simplify some
algorithms. A trip t corresponds to a vehicle traveling along a sequence of stops
p(t) =

〈
p0t , p

1
t , . . .

〉
. Note that stops may occur multiple times in a sequence. For

each stop pit, the timetable contains the arrival time τarr(t, i) and the departure
time τdep(t, i) of the trip at this stop. Additionally, we group trips with identical
stop sequences into lines2 such that all trips t and u that share a line can be
totally ordered by

t � u ⇐⇒ ∀i ∈ [0, |p(t)|) : τarr(t, i) ≤ τarr(u, i) (1)

and define

t ≺ u ⇐⇒ t � u ∧ ∃i ∈ [0, |p(t)|) : τarr(t, i) < τarr(u, i) . (2)
1 More fine-grained models, such as different change times for specific platforms, can

be used without affecting query times, since minimum change times are only relevant
during preprocessing (Section 3.1).

2 Line and route have both been previously used for this concept; we opted for line to
avoid confusion with routing and the usage of route in the context of road networks.
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If two trips have the same stop sequence, but cannot be ordered (because one
overtakes the other), we assign them to different lines. We denote the line of a
trip t by Lt and define p(Lt) = p(t). We also define the set of lines at stop p as

L(p) =
{
(L, i)

∣∣ p = piL where L is a line and p(L) =
〈
p0L, p

1
L, . . .

〉}
. (3)

A trip segment pbt → pet represents a trip t traveling from stop pbt to stop pet . A
transfer between trips t and u (t �= u) is denoted by pet → pbu, where passengers
exit t at the eth stop and board u at the bth. For all transfers,

pet → pbu =⇒ τarr(t, e) +Δτfp
(
pet , p

b
u

) ≤ τdep(u, b) (4)

must hold. Finally, a journey is a sequence of alternating trip segments and
transfers, with optional footpaths at the beginning and end. Each leg of a journey
must begin at the stop where the previous one ended.

We consider two well-known problems. Since both of them are multi-criteria
problems, the results are Pareto sets representing non-dominated journeys. A
journey dominates another if it is no worse in any criterion; if they are equal
in every criterion, we break ties arbitrarily. Although multi-criteria Pareto op-
timization is NP-hard in general, it is efficiently tractable for natural criteria
in public transit networks [15]. In the earliest arrival problem, we are given a
source stop psrc, a target stop ptgt, and a departure time τ . The result is a Pareto
set of tuples (τjarr, n) of arrival time and number of transfers taken during non-
dominated journeys from psrc to ptgt that leave no earlier than τ . For the profile
problem, we are given source stop psrc, target stop ptgt, an earliest departure time
τedt, and a latest departure time τldt. Here, we are asked to compute a Pareto set
of tuples (τjdep, τjarr, n) representing non-dominated journeys between psrc and
ptgt with τedt ≤ τjdep ≤ τldt. Note that for Pareto-optimality, later departure
times are considered to be better than earlier ones.

2.2 Related Work

Some existing approaches solve these problems by modeling timetable informa-
tion as a graph, using either the time-expanded or the time-dependent model. In
the (simple) time-expanded model, a node is introduced for each event, such as
a train departing or arriving at a station. Edges are then added to connect nodes
on the same trip, as well as between nodes belonging to the same stop (corre-
sponding to a passenger waiting for the next train). To model minimum change
times, additional nodes and edges are required [16]. One advantage of this model
is that all edge weights are constant, which allows the use of speedup techniques
developed for road networks, such as contraction. Unfortunately, it turns out
that due to different network structures, these techniques do not perform as well
for public transit networks [4]. Also, time-expanded graphs are rather large.

The time-dependent approach produces much smaller graphs in comparison.
In the simple model, nodes correspond to stops. Edges no longer have con-
stant weight, but are instead associated with (piecewise linear) travel time func-
tions, which map departure times to travel times (or, equivalently, arrival times).
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The weight then depends on the time at which this function is evaluated. This
model can be extended to allow for minimum change times by adding a node for
each line at each stop [16]. Some speedup techniques have been applied success-
fully to time-dependent graphs, such as ALT [6] and Contraction [12], although
not for multi-criteria problems. For these, several extensions to Dijkstra’s al-
gorithm exist, among them the Multicriteria Label-Setting [13], the Multi-Label
Correcting [7], the Layered Dijkstra [5], and the Self-Pruning Connection Set-
ting [9] algorithms. However, as Dijkstra-variants, each of them has to perform
rather costly priority queue operations.

Other approaches do not use graphs at all. RAPTOR (Round-bAsed Public
Transit Optimized Router) [10] is a dynamic program. In each round, it com-
putes earliest arrival times for journeys with n transfers, where n is the current
round number. It does this by scanning along lines and, at each stop, checking
for the earliest trip of that line that can be reached. It outperforms Dijkstra-
based approaches in practice. The Connection Scan Algorithm [11] operates on
elementary connections (trip segments of length 1). It orders them by departure
time into a single array. During queries, this array is then scanned once, which
is very fast in practice due to the linear memory access pattern.

A number of speedup techniques have been developed for public transit rout-
ing. Transfer Patterns [1,3] is based on the observation that for many optimal
journeys, the sequence of stops where transfers occur is the same. By precom-
puting these transfer patterns, journeys can be computed very quickly at query
time. Public Transit Labeling [8] applies recent advances in hub labeling to public
transit networks, resulting in very fast query times. Another example is the Ac-
celerated Connection Scan Algorithm [17], which combines CSA with multilevel
overlay graphs to speed up queries on large networks. The algorithm presented
in this work, however, is a new base algorithm; development of further speedup
techniques is a subject for future research.

3 Algorithm

3.1 Preprocessing

We precompute transfers so they can be looked up quickly during queries. A
key observation is that the majority of possible transfers is not needed in order
to find Pareto-optimal journeys, and can be safely discarded. Preprocessing is
divided into several steps: Initial computation and reduction. Initial computation
of transfers is relatively straightforward. For each trip t and each stop pit of that
trip, we examine pit and all stops reachable via (direct) footpaths from pit. For
each of these stops q, we iterate over (L, j) ∈ L(q) and find the first trip u of line
L such that a valid transfer pit → pju satisfying (4) exists. Since, by definition,
trips do not overtake other trips of the same line, we can discard any transfers
to later trips of line L. Additionally, we do not add any transfers from the first
stop (i = 0) or to the last stop (j = |p(L)| − 1) of a trip. Furthermore, transfers
to trips of the same line are only kept if either u ≺ t or j < i; otherwise, it is
better to simply remain in the current trip.
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After initial computation is complete, we perform a number of reduction steps,
where we discard transfers that are not necessary to find Pareto-optimal jour-
neys. First, we discard any transfers pit → pju where pj+1

u = pi−1
t (we call these

U-turn transfers) as long as

τarr(t, i− 1) +Δτch
(
pi−1
t

) ≤ τdep(u, j + 1) (5)

holds. In this case, we can already reach u from t at the previous stop, and
because

τarr(t, i− 1) ≤ τdep(t, i− 1) ≤ τarr(t, i)

≤ τdep(u, j) ≤ τarr(u, j + 1) ≤ τdep(u, j + 1) ,
(6)

all trips that can reach t at the previous stop can also reach u, and all trips
reachable from u are also reachable from t. Equation (5) may not hold if the
stops in question have different minimum change times.

Next, we further reduce the number of transfers by analyzing which transfers
lead to improved arrival times. We do this by moving backwards along a trip,
keeping track of where and when passengers in that trip can arrive, either by
simply exiting the trip or by transferring to another trip reachable from their
current position. Again, we iterate over all trips t. For each trip, we maintain
two mappings τA and τC from stops to arrival time and earliest change time,
respectively. Initially, they are set to ∞ for all stops. During execution of the
algorithm, they are updated to reflect when passengers arrive (τA) or can board
the next trip (τC) at each stop.3 We then iterate over stops pit of trip t in
decreasing index order, meaning we examine later stops first. At each stop, we
update the arrival time and change time for that stop if they are improved:

τA
(
pit
) ← min

(
τA

(
pit
)
, τarr(t, i)

)
and

τC
(
pit
) ← min

(
τC

(
pit
)
, τarr(t, i) +Δτch

(
pit
))

.

Similarly, we update τA and τC for all stops q reachable via footpaths from pit:

τA(q) ← min
(
τA(q), τarr(t, i) +Δτfp

(
pit, q

))
and

τC(q) ← min
(
τC(q), τarr(t, i) +Δτfp

(
pit, q

))
.

We then determine, for each transfer pit → pju from t at that stop, if u improves
arrival and/or change times for any stop. To do this, we iterate over all stops pku
of u with k > j and perform the same updates to τA and τC as we did above, this
time for pku and all stops reachable via footpaths from pku. If this results in any
improvements to either τA or τC, we keep the transfer, otherwise we discard it.
Discarded transfers are not required for Pareto-optimal journeys, since we have
shown that (a) taking later transfers (or simply remaining in the current trip)
leads to equal or better arrival times (τA), and (b) all trips reachable via that
transfer can also be reached via those later transfers (τC).

All these algorithms are trivially parallelized, since each trip is processed
independently. Also, there is no need to perform them as separate steps; they
3 If there are no minimum change times, then τA = τC and we only maintain τA.
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can easily be merged into one. We decided to keep them distinct to showcase the
separation of concerns. Furthermore, more complex reduction steps are possible,
where there are dependencies between trips. For example, to minimize the size of
the transfer set, one could compute full profiles between all stops (all-to-all), then
keep only those transfers required for optimal journeys. However, that would be
computationally expensive. In contrast, the comparatively simple computations
presented here can be performed within minutes, even for large networks, while
still resulting in a greatly reduced transfer set (see Section 4 for details).

Note that this explicit representation of transfers allows fine-grained control
over them. For instance, one can easily introduce transfers between specific trips
that would otherwise violate the minimum change time or footpath restrictions,
or remove transfers from certain trips. Transfer preferences are another example.
If two trips travel in parallel (for part of their stop sequence), there may be mul-
tiple possible transfers between them. The algorithm described above discards
all but the last of them; by modifying it, preference could be given to transfers
that are more accessible, for instance. Since this only has to be considered during
preprocessing, query times are unaffected.

3.2 Earliest Arrival Query

As a reminder, the input to an earliest arrival query consists of the source stop
psrc, the target stop ptgt, and the (earliest) departure time τ , and the objective is
to calculate a Pareto set of (τjarr, n) tuples representing Pareto-optimal journeys
arriving at time τjarr after n transfers. During the algorithm, we remember which
parts of each trip t have already been processed by maintaining the index R(t)
of the first reached stop, initialized to R(t) ← ∞ for all trips. We also use a
number of queues Qn of trip segments reached after n transfers and a set F of
tuples (L, i,Δτ). The latter indicates lines reaching the target stop ptgt, and is
computed by

F = {(L, i, 0) | (L, i) ∈ L(ptgt)}
∪ {(L, i,Δτfp(q, ptgt)) | (L, i) ∈ L(q) ∧ ∃ a footpath from q to ptgt}

We start by identifying the trips travelers can reach from psrc at time τ . For
this, we examine psrc and all stops reachable via footpaths from psrc. For each
of these stops q, we iterate over (L, i) ∈ L(q) and find the first trip t of line L
such that

τdep(t, i) ≥
{
τ if q = psrc,
τ +Δτfp(psrc, q) otherwise.

For each of those trips, if i < R(t), we add the trip segment pit → pR(t)
t to queue

Q0 and then update R(u) ← min(R(u), i) where t � u ∧ Lt = Lu, meaning
we update the first reached stop for t and all later trips of the same line. Due
to the way � is defined in (1), none of these later trips u can improve upon
t. By marking them as reached, we eliminate them from the search and avoid
redundant work.
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After the initial trips have been found, we operate on the trip segments in
Q0, Q1, . . . until there are no more unprocessed elements. For each trip segment
pbt → pet ∈ Qn, we perform the following three steps. First, we check if this
trip reaches the target stop. For each (Lt, i,Δτ) ∈ F with i > b, we generate
a tuple (τarr(t, i) +Δτ, n) and add it to the result set, maintaining the Pareto
property. Second, we check if this trip should be pruned because it cannot lead
to a non-dominated journey. This is the case if we already found a journey with
τjarr < τarr(t, b+ 1). Third, if the trip is not pruned, we examine its transfers.
For each transfer pit → pju with b < i ≤ e, we check if j < R(u). If so, we add
pju → pR(u)

u to Qn+1 and update R(v) ← min(R(v), j) for all v with u � v∧Lu =
Lv. Otherwise, we already reached u or an earlier trip of the same line at j or
an earlier stop, and we skip the transfer.

The main loop is similar to a breadth-first search: First, all trips reachable
directly from the source stop are examined, then all trips reached after a transfer
from those, etc. Therefore, we find journeys with the least number of transfers
first. Any non-dominated journey discovered later cannot have a lower number of
transfers and must therefore arrive earlier. This property enables the pruning in
step two, which prevents us from having to examine all reachable trips regardless
of the target. However, it also means that the journey with the earliest arrival
time is the last one discovered, and all journeys with less transfers are found
beforehand. This is why we only consider the multi-criteria problem variants.

3.3 Profile Query

We perform profile queries by running the main loop of an earliest arrival query
for each distinct departure time in the given interval, preserving labels between
runs to avoid redundant work. Later journeys dominate earlier journeys, pro-
vided arrival time and number of transfers are equal or better, while earlier
journeys never dominate later ones. Therefore, we process later departures first.
However, in order to reuse labels across multiple runs, we need to keep multiple
labels for each trip, consisting of the index of the first reached stop and the
number of transfers required to reach it. Since the number of transfers is lim-
ited in practice, we use Rn(t) to denote the first stop reached on trip t after at
most n transfers and update Rn+1(t) (and following) whenever we update Rn(t).
To decide if a trip segment should be queued while processing Qn, we compare
against and update Rn+1(t). We also change the pruning step so we compare
against the minimum arrival time of journeys with no more than n+1 transfers.

To see why labels can be reused, consider two runs with departure times τ1 and
τ2, where τ1 < τ2, which both reach trip t at stop i after n transfers. Continuing
from this point, both will reach the destination at the same time and after the
same number of transfers. However, since τ1 < τ2, the journeys departing at τ2
dominate the journeys departing at τ1. Knowing this, we can avoid computing
them in the first place by computing τ2 first and keeping the labels.
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3.4 Implementation

We improve the performance of the algorithm by taking advantage of SIMD
(single instruction, multiple data) instructions, avoiding dynamic memory allo-
cations and increasing locality of reference (reducing cache misses). In our data
instances, all lines have less than 200 stops. Also, none of our tests found Pareto-
optimal journeys with 16 or more transfers. Thus, we set the maximum number
of transfers to 15. During profile queries, we can then update R0(t) to R15(t)
using a single 128-bit vector minimum operation.

To avoid memory allocations during query execution, we replace the n queues
with a single, preallocated array. To see why this is possible, note that the max-
imum number of trip segments queued is bounded by the number of elementary
connections. We use pointers to keep track of the current element, the end of the
queue, and the level boundaries (where the number of transfers n is increased).

We improve locality of reference by splitting the steps of the inner loop into
three separate loops. Thus, we iterate three times over each level, each time
updating the elements in the “queue”, before increasing n and moving on to
the next level. In the first iteration, we look up τarr(t, b+ 1) and store it next
to the trip segment into the queue. Additionally, we check F to see if the trip
reaches the destination, and update arrival times as necessary. In the second
iteration, we perform the pruning step by comparing the time stored in the
queue with the arrival time at the destination. If the element is not pruned, we
replace it with two indices into the array of transfers, indicating the transfers
corresponding to the trip segment. If the element is pruned, we set both indices
to 0, resulting in an empty interval. Finally, in the third iteration, we examine
this list of transfers and add new trip segments to the queue as necessary. Thus,
arrival times τarr(·, ·) are required only in the first loop, transfer indices only in
the second loop, and transfers and reached stops Rn(·) only in the final loop.
This leads to reduced cache pressure and therefore to less cache misses, which
in turn results in improved performance (see Section 4).

3.5 Journey Descriptions

So far, we only described how to compute arrival time and number of transfers
of journeys, which is enough for many applications. However, we can retrieve the
full sequence of trip segments as follows. Whenever a trip segment is queued, we
store with it a pointer to the currently processed trip segment. Since we replaced
the queue with a preallocated array, all entries are preserved until the end of the
query. Therefore, when we find a journey reaching the destination, we simply
follow this chain of pointers to reconstruct the sequence of trip segments. If
required, the appropriate transfers between the trips can be found by rescanning
the list of transfers.

4 Experiments

We ran experiments on a dual 8-core Intel Xeon E5-2650 v2 processor clocked
at 2.6 GHz, with 128 GB of DDR3-1600 RAM and 20 MB of L3 cache. Our code
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Table 1. Instances used for experiments

20 764 249 724
129 263 2 389 253

4 991 130 46 116 453
45 624 100 470
2 161 232 644

121 339 213 1 826 424 894
19 502 791 186 296 771

115.5 1 140.9

Table 2. Preprocessing times for transfer computation and reduction

1 16 1 16

18 3 177 37
357 27 2 174 183

375 30 2 351 220

was compiled using g++ 4.9.2 with optimizations enabled. We used two test
instances, summarized in Table 1. The first, available at data.london.gov.uk,
covers Greater London and includes data for underground, bus, and Docklands
Light Railway services for one day. The second consists of data used by bahn.de
during winter 2011/2012, containing European long distance trains, German
local trains, and many buses over two days.

Table 1 also reports the number of transfers before and after reduction, as
well as the total space consumption (for the reduced transfers and all timetable
data). Reduction eliminates about 84% of transfers for London, and almost 90%
for Germany. The times required for preprocessing can be found in Table 2.

Running times reported for queries are averages over 10 000 queries with
source and target stops selected uniformly at random. For profile queries, the
departure time range is the first day covered by the timetable; for earliest arrival
queries, the departure time is selected uniformly at random from that range. We
do not compute full journey descriptions (Section 3.5).

We evaluated the optimizations described in Section 3.4, as well as the effect
of transfer reduction, on the London instance (Table 3). SIMD instructions are
only used in profile queries and enabling them has no effect on earliest arrival
queries. With all optimizations, running time for profile queries is improved by
a factor of 2. Transfer reduction improves running times by a factor of 3.

We compare our new algorithm to the state of the art in Table 4. We distin-
guish between algorithms which optimize arrival time only (◦) and those that
compute Pareto sets optimizing arrival time and number of transfers (•), and
between earliest arrival (◦) and profile (•) queries. We report the average number
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Table 3. Evaluation of optimizations in Section 3.4, using the London instance

1.7 145.9
1.7 113.2
1.2 70.0

3.5 226.0

4 6 8 10 12 14 16

10

100

2r

Fig. 1. Earliest arrival query times by geo-
rank on Germany

4 6 8 10 12 14 16

10

100

1 000

2r

Fig. 2. Profile query times by geo-rank on
Germany

of label comparisons per stop4, where available, and the average running time.
Direct comparison with the Accelerated Connection Scan Algorithm (ACSA) [17]
and Contraction Hierarchies (CH) [12] is difficult, since they do not support bicri-
teria queries.5 We have faster query times than CSA [11] and RAPTOR [10], at
the cost of a few minutes of preprocessing time. Transfer Patterns (TP) [1,3] and
Public Transit Labeling (PTL) [8] have faster query times (especially on larger
instances), however, their preprocessing times are several orders of magnitude
above ours.

To examine query times further, we ran 1 000 geo-rank queries [17]. A geo-rank
query picks a stop uniformly at random and orders all other stops by geographical
distance. Queries are run from the source stop to the 2r-th stop, where r is the
geo-rank. Results for the Germany instance are reported in Figure 1 (earliest
arrival queries) and Figure 2 (profile queries). Note the logarithmic scale on
both axes. Query times for the maximum geo-rank are about the same as the
average query time when selecting source and target uniformly at random, since
randomly selected stops are unlikely to be near each other. Local queries, which
4 Note that in our algorithm, labels are not associated with stops, but with trips

instead. For better comparison with previously published work, we divided the total
number of label comparisons by the number of stops.

5 ACSA uses transfers to break ties between journeys with equal arrival times.
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Table 4. Comparison with the state of the art. Results taken from [2,3,8,17]. Bicrite-
ria algorithms computing a set of Pareto-optimal journeys regarding arrival time and
number of transfers are marked in column “tr.” (others only optimize arrival time).
Profile queries are marked in column “pr.”.

·103 ·106

20.8 5.0 < 0.1 23.3 1.2
4.6 4.8 3.1

20.8 5.1 0.03
20.8 5.1 10.9 5.4
20.8 4.9 26.6 1.8
30.5 1.7 < 0.1 0.3

249.7 46.1 < 0.1 41.4 40.8
248.4 13.9 0.3
252.4 46.2 298.6
252.4 46.2 8.7

20.8 5.0 < 0.1 1 061.7 70.0
4.6 4.8 3.1

20.8 5.1 1 634.0 922.0
20.8 4.9 3 824.9 466.0

249.7 46.1 < 0.1 228.0 301.7
248.4 13.9 5.0
252.4 46.2 171.0

are often more relevant in practice, are generally much faster (by an order of
magnitude), although there is a significant number of outliers, since physically
close locations do not necessarily have direct or fast connections.

5 Conclusion

We presented a novel algorithm for route planning in public transit networks.
By focusing on trips and transfers between them, we computed multi-criteria
profiles optimizing arrival time and number of transfers on a metropolitan net-
work in 70ms with a preprocessing time of just 30 s, occupying a Pareto-optimal
spot among current state of the art algorithms. The explicit representation of
transfers allows fine-grained modeling, while the short preprocessing time allows
the use in dynamic scenarios. In addition, localized changes (such as trip delays
or cancellations) do not necessitate a full rerun of the preprocessing phase. In-
stead, only a subset of the data needs to be updated. Development of suitable
algorithms is a subject of future studies. Future work also includes efficiently
extending the covered period of time by exploiting periodicity in timetables,
making the algorithm more scalable by using network decomposition, and ex-
tending it to support more generic criteria such as fare zones or walking distance.
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Abstract. Narrow sieves, representative sets and divide-and-color are
three breakthrough techniques related to color coding, which led to the
design of extremely fast parameterized algorithms. We present a novel
family of strategies for applying mixtures of them. This includes: (a)
a mix of representative sets and narrow sieves; (b) a faster computation
of representative sets under certain separateness conditions, mixed with
divide-and-color and a new technique, called “balanced cutting”; (c) two
mixtures of representative sets and a new technique, called “unbalanced
cutting”. We demonstrate our strategies by obtaining, among other re-
sults, significantly faster algorithms for k-Internal Out-Branching

andWeighted 3-Set k-Packing, and a general framework for speeding-
up the previous best deterministic algorithms for k-Path, k-Tree, r-
Dimensional k-Matching, Graph Motif and Partial Cover.

1 Introduction

A problem is fixed-parameter tractable (FPT) with respect to a parameter k
if it can be solved in time O∗(f(k)) for some function f , where O∗ hides fac-
tors polynomial in the input size. The color coding technique, introduced by
Alon et al. [1], led to the discovery of the first single exponential time FPT
algorithms for many subcases of Subgraph Isomorphism. In the past decade,
three breakthrough techniques improved upon it, and led to the development of
extremely fast FPT algorithms for many fundamental problems. This includes
the combinatorial divide-and-color technique [7], the algebraic multilinear detec-
tion technique [20,21,35] (which was later improved to the more powerful narrow
sieves technique [2,3]), and the combinatorial representative sets technique [16].

Divide-and-color was the first technique that resulted in (both randomized
and deterministic) FPT algorithms for weighted problems that are faster than
those relying on color coding. Later, representative sets led to the design of
deterministic FPT algorithms for weighted problems that are faster than the
randomized ones based on divide-and-color. The fastest FPT algorithms, how-
ever, rely on narrow sieves. Unfortunately, narrow sieves is only known to be
relevant to the design of randomized algorithms for unweighted problems.1

We present novel strategies for applying these techniques, combining the fol-
lowing elements (see Section 3).

1 More precisely, when used to solve weighted problems, the running times of the re-
sulting algorithms have exponential dependencies on the length of the input weights.

c© Springer-Verlag Berlin Heidelberg 2015
N. Bansal and I. Finocchi (Eds.): ESA 2015, LNCS 9294, pp. 1037–1049, 2015.
DOI: 10.1007/978-3-662-48350-3_86
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• Mixing narrow sieves and representative sets, previously considered to be
two independent color coding-related techniques.

• Under certain “separateness conditions”, speeding-up the best known com-
putation of representative sets.

• Mixing divide-and-color-based preprocessing with the computation in the
previous item, speeding-up standard representative sets-based algorithms.

• Cutting the universe into small pieces in two special manners, one used in
the mix in the previous item, and the other mixed with a non-standard rep-
resentative sets-based algorithm to improve its running time (by decreasing
the size of the partial solutions it computes).

To demonstrate our strategies, we consider the following well-studied problems.

k-Internal Out-Branching (k-IOB): Given a directed graph G = (V,E) and
a parameter k ∈ N, decide if G has an out-branching (i.e., a spanning tree with
exactly one node of in-degree 0) with at least k internal nodes.

Weighted k-Path: Given a directed graph G = (V,E), a weight function w :
E → R, W ∈ R and a parameter k ∈ N, decide if G has a simple directed path
on exactly k nodes and of weight at most W .

Weighted 3-Set k-Packing ((3, k)-WSP): Given a universe U , a family S of
subsets of size 3 of U , a weight function w : S → R, W ∈ R and a parameter
k ∈ N, decide if there is a family S ′ ⊆ S of k disjoint sets and weight at least W .

The k-IOB problem is NP-hard since it generalizes Hamiltonian Path. It is
of interest, for example, in database systems [10], and for connecting cities with
water pipes [31]. Many FPT algorithms were developed for k-IOB and related
variants (see, e.g., [8,9,13,14,18,22,30,32,36]). We solve it in deterministic time
O∗(5.139k) and randomized time O∗(3.617k), improving upon the previous best
deterministic time O∗(6.855k) [32] and randomized time O∗(4k) [9,36]. To this
end, we establish a relation between certain directed trees and paths on 2 nodes.
This shows how certain partial solutions to k-IOB can be completed efficiently
via a computation of a maximum matching in the underlying undirected graph.

We also present a unified approach for speeding-up standard representative
sets-based algorithms. It can be used to modify the previous best deterministic
algorithms (that already rely on the best known computation of representative
sets) for k-Path, k-Tree, r-Dimensional k-Matching ((r, k)-DM), Graph

Motif with Deletions (GMD) and Partial Cover (PC), including their
weighted variants, which run in times O∗(2.6181k) [15,32], O∗(2.6181k) [15,32],
O∗(2.6181(r−1)k) [17], O∗(2.61812k) [29] and O∗(2.6181k) [32], to run in times
O∗(2.5961k), O∗(2.5961k), O∗(2.5961(r−1)k), O∗(2.59612k) and O∗(2.5961k), re-
spectively. To demonstrate our approach, we use Weighted k-Path.

In the past decade, (3, k)-WSP and (3, k)-SP enjoyed a race towards ob-
taining the fastest FPT algorithms (see [3,5,6,7,11,12,19,20,23,24,33,34,37]). We
solve (3, k)-WSP in deterministic time O∗(8.097k), improving upon O∗(12.155k),
which is both the previous best running time of an algorithm for (3, k)-WSP

and the previous best running time of a deterministic algorithm for (3, k)-SP
[37]. The full version [38] also solves P2-Packing, a special case of (3, k)-WSP.
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2 Color Coding-Related Techniques

In this paper, we use a known algorithm based on narrow sieves as a black box;
thus, we avoid describing this technique. We proceed by giving a brief description
of divide-and-color, followed by a more detailed one of representative sets.

Divide-and-Color: Divide-and-color is based on recursion; at each step, we
color elements randomly or deterministically. In our strategies, we are interested
in applying only one step, which can be viewed as using color coding with only
two colors. In such a step, we have a set A of n elements, and we seek a certain
subset A∗ of k elements in A. We partition A into two (disjoint) sets, B and C,
by coloring its elements. Thus, we get the problem of finding a subset B∗ ⊆ A∗ in
B, and another problem of finding the subset C∗ = A∗ \B∗ in C. The partition
should be done in a manner that is efficient and results in easier problems, which
does not necessarily mean that we get two independent problems (of finding B∗

in B and C∗ in C). Deterministic applications of divide-and-color often use a
tool called an (n, k)-universal set [28]. We need its following generalization:

Definition 1. Let F be a set of functions f : {1, 2, . . . , n} → {0, 1}. We say
that F is an (n, k, p)-universal set if for every subset I ⊆ {1, 2, . . . , n} of size k
and a function f ′ : I → {0, 1} that assigns ’1’ to exactly p indices, there is a
function f ∈ F such that for all i ∈ I, f(i) = f ′(i).

The next result (of [16]) asserts that small universal sets can be computed fast.

Theorem 1. There is an algorithm that, given integers n, k and p, computes an
(n, k, p)-universal set F of size O∗(

(
k
p

)
2o(k)) in deterministic time O∗(

(
k
p

)
2o(k)).

Representative Sets: We first give the definition of a representative family,
and then discuss its relevance to the design of FPT algorithms. We note that a
more general definition, not relevant to this paper, is given in [16,26].

Definition 2. Given a universe E, a family S of subsets of size p of E, a
function w : S → R and k ∈ N, we say that a subfamily Ŝ ⊆ S max (min)
(k−p)-represents S if for any pair X ∈ S and Y ⊆ E \X such that |Y | ≤ k−p,

there is X̂ ∈ Ŝ disjoint from Y such that w(X̂) ≥ w(X) (w(X̂) ≤ w(X)).

Informally, Definition 2 implies that if a set Y can be extended to a set of size
at most k by adding a set X ∈ S, then it can also be extended to a set of the
same size by adding a set X̂ ∈ Ŝ that is at least as good as X . The special case
where the sets in S have the same weight is the unweighted version Definition 2.

Many FPT algorithms are based on dynamic programming, where after each
stage, the algorithm computes a family S of sets that are partial solutions. At this
point, we can compute a subfamily Ŝ ⊆ S that represents S. Then, each reference
to S can be replaced by a reference to Ŝ. The representative family Ŝ contains
“enough” sets from S; therefore, such replacement preserves the correctness of
the algorithm. Thus, if we can efficiently compute representative families that are
small enough, we can substantially improve the running time of the algorithm.
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The Two Families Theorem of Bollobás [4] implies that for any universe E, a
family S of subsets of size p of E and a parameter k (≥ p), there is a subfamily

Ŝ ⊆ S of size
(
k
p

)
that (k−p)-represents S. Monien [27] computed representative

families of size
∑k−p

i=0 pi in time O(|S|p(k − p)
∑k−p

i=0 pi), and Marx [25] com-

puted such families of size
(
k
p

)
in time O(|S|2pk−p). Recently, Fomin et al. [16]

introduced a powerful technique that enables to compute representative fami-
lies of size

(
k
p

)
2o(k) log |E| in time O(|S|(k/(k− p))k−p2o(k) log |E|). We need the

following tradeoff-based generalization of their computation, given in [15,32]:

Theorem 2. Given a fixed c ≥ 1, a universe E, a family S of subsets of
size p of E, a function w : S → R and a parameter k ∈ N, a family Ŝ ⊆
S of size (ck)k

pp(ck−p)k−p 2
o(k) log |E| that max (min) (k − p)-represents S can be

found in time O(|S|(ck/(ck − p))k−p2o(k) log |E|+ |S| log |S| logW ), where W =
maxS∈S |w(S)|.

3 Our Mixing Strategies

We give an overview of our mixing strategies in the context of the problems
solved in this paper. The technical details, as well as another strategy (used to
solve P2-Packing), are given in [38]. The first strategy builds upon the approach
used in [16] to solve Long Directed Cycle, and it does not involve a mixture
of techniques, but it is relevant to this paper since the second strategy builds
upon it; the other strategies are novel and involve mixtures of techniques.

3.1 Strategies I and II

Strategy I: Our deterministic k-IOB algorithm follows Strategy I in Fig. 1. The
first reduction (of [8]) allows to focus on finding a small out-tree (i.e., a directed
tree with exactly one node of in-degree 0) rather than an out-branching, while
the second allows to focus on finding an even smaller out-tree, but we need to
find it along with a set of paths on 2 nodes. The second reduction might be
of independent interest. We then use a representative sets-based procedure in a
manner that does not directly solve the problem, but returns a family of partial
solutions that are trees. We try to extend the trees to solutions in polynomial
time via computations of maximum matchings, which leads to the result below.

Theorem 3. k-IOB is solvable in deterministic time O∗(5.139k).

Generally, Strategy I is relevant to the following scenario. We are given a problem
which can be reduced to two suproblems whose solutions should be disjoint. If we
could disregard the disjointness condition, the first subproblem is solvable using
representative sets, and the second subproblem is solvable in polynomial time.
Then, we modify the representative sets-based procedure to compute a family
of solutions (rather than one solution), such that for any set that might be a
solution to the second subproblem, there is a solution in the family that is disjoint
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Fig. 1. Strategies for mixing color coding-related techniques, used to develop a deter-
ministic algorithm for k-IOB (I), a randomized algorithm for k-IOB (II), deterministic
algorithms for k-Path, k-Tree, (r, k)-DM, GMD and PC, including their weighted
versions (III), and a deterministic algorithm for (3, k)-WSP (IV).

from this set. Thus, we can iterate over every solution A in the family, remove
its elements from the input, and attempt to find a solution B to the second
subproblem in the remaining part of the input—if we succeed, the combination
of A and B should solve the original problem.

Strategy II: Our second result, a randomized FPT algorithm for k-IOB, builds
upon our first algorithm and follows Strategy II in Fig. 1. This strategy shows the
usefulness of mixing narrow sieves and representative sets, previously considered
to be two independent tools for developing FPT algorithms. Strategy II indicates
that the representative sets technique is relevant to the design of fast randomized
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Algorithm 1. Strategy II (I)
1: Let MIN and MAX be the minimum and maximum possible sizes of a solution.
2: for size = MIN,MIN + 1, . . . ,MAX do
3: if size is “small” then
4: Call a narrow sieves-based procedure, NarSie, with the input (I, size).
5: if NarSie accepts the input then accept. end if
6: else
7: Call a representative sets-based procedure, RepSet, with the input (I, size),

to compute a family F of partial solutions.
8: for all F ∈ F do
9: Call a polynomial-time procedure, PolTim, with the input (I, size, F ).
10: if PolTim accepts the input then accept. end if
11: end for
12: end if
13: end for
14: Reject.

FPT algorithms, even for unweighted problems. We thus obtain the following
theorem, which breaks, for the first time, the O∗(4k)-time barrier for k-IOB.2

Theorem 4. There is a randomized algorithm for k-IOB that runs in time
O∗(3.617k). The algorithm never decides that a no-instance is a yes-instance,
but with probability ≤ 1

3 , it decides that a yes-instance is a no-instance.3

Generally, this strategy may be relevant to the scenario of Strategy I (in the con-
text of randomized algorithms). Now, when we handle this scenario, we “guess”
what fraction of the solution solves the harder subproblem (i.e., the one that we
need to solve using a color coding-related technique). If this fraction is small, it
is advised to follow Strategy I (since representative sets are efficient in finding
a family of partial solutions that are significantly smaller than the size of the
entire solution); otherwise, we need to rely on a condition stating that if this
fraction is large, then the size of the entire solution is actually small—then, we
can efficiently find it by using a narrow sieves-based procedure. Given a problem
instance I, Algorithm 1 summarizes the framework underlying Strategy II.

3.2 Strategy III

Our third result, a deterministic FPT algorithm for Weighted k-Path, follows
Strategy III in Fig. 1. This strategy can be used to speed-up algorithms for other
problems based on a standard application of representative sets, such as the
k-Tree, (r, k)-DM, GMD and PC algorithms of [15,17,29,32], including their

2 Previous algorithms obtained solutions in time O∗(2k) to a problem generalizing
(directed) k-Path, and could thus solve k-IOB in time O∗(22k). Thus, it seemed
that an O∗((4 − ε)k) time algorithm for k-IOB would imply an O∗((2 − ε)k) time
algorithm for (directed) k-Path, which is a problem that is open for several decades.

3 Clearly, the success probability can be increased through multiple runs.
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weighted variants, where: (1) elements are never deleted from partial solutions
(this is not the case in our (3, k)-WSP algorithm); (2) the solution is one of the
computed representative sets (this is not the case in our k-IOB and P2-Packing

algorithms). We rely on a generalization of Definition 2 and Theorem 2:

Definition 3. Let E1, E2, . . . , Et be disjoint universes, p1, p2, . . . , pt ∈ N, and S
be a family of subsets of (

⋃t
i=1 Ei) such that [∀S ∈ S, i ∈ {1, 2, . . . , t}: |S∩Ei| =

pi]. Given a function w : S → R and parameters k1, k2, . . . , kt ∈ N, we say that a

subfamily Ŝ ⊆ S max (min) (k1 − p1, k2− p2, . . . , kt− pt)-represents S if for any
pair X ∈ S and Y ⊆ (

⋃t
i=1 Ei)\X such that [∀i ∈ {1, 2, . . . , t} : |Y ∩Ei| ≤ ki−pi],

there is X̂ ∈ Ŝ disjoint from Y such that w(X̂) ≥ w(X) (w(X̂) ≤ w(X)).

Theorem 5. Given fixed c1, c2, . . . , ct ≥ 1, and E1, . . . , Et, p1, . . . , pt, S, w

and k1, . . . , kt as in Definition 3, a family Ŝ ⊆ S of size
∏t

i=1(
(ciki)

ki

pi
pi (cki−pi)ki−pi

2o(ki) log |Ei|) that max (min) (k1 − p1, k2 − p2, . . . , kt − pt)-represents S can be
found in time O(|S|∏t

i=1

(
(ciki/(ciki − pi))

ki−pi2o(ki) log|Ei|
)
+|S| log|S| logW ),

where W = maxS∈S |w(S)|.
Relying on the proof of Theorem 2, we construct a separate data structure
for each universe Ei; then, we combine information stored in these structures to
compute a representative family. The details are given in [38]. We use Theorem 5
to efficiently solve a subcase of Weighted k-Path. We translate Weighted k-
Path to this subcase via divide-and-color preprocessing, mixed with a technique
that we call balanced cutting. The intuition underlying the translation process is
explained below (the full version [38] also contains illustrations).

Consider some solution, which is a path P = (VP , EP ) (of minimal weight)
on k nodes. Suppose that we have a set E1 ⊆ V such that when we look at
P , starting from its first node (i.e., the node that does not have an ingoing
neighbor), we count exactly (i− 1) nodes that belong to E2 = V \E1, then one
node that belongs to E1, then (i − 1) nodes that belong to E2, and so on. The
computation of E1 is discussed later. We call E1 (E2) the blue (red) part of the
universe, and E1 ∩ VP (E2 ∩ VP ) the blue (red) part of P .

Suppose we try to find P by using a simple dynamic programming-based
procedure, Simple, embedded with (standard) computations of representative
sets. That is, at each stage, for every node v ∈ V , we have a family S of partial
solutions such that each of them is a path that ends at v, and all of these paths
have the same size (between 1 and k, depending on the stage). We decrease the
size of S by computing a family that represents it. To advance to the next stage,
we try to extend each of the remaining partial solutions, which is a path, by
using every possible neighbor of its last node (that does not already belong to
the path). Since i is large, to obtain an efficient algorithm, it is necessary to
progress by adding nodes one-by-one. However, for the sake of clarity (of this
explanation), suppose that we add i nodes at once (at each stage).

Now, consider a partition of the blue part of the universe into two sets, L
and R, whose computation is discussed later. Visualize the nodes in L (R) as
colored in dark (light) blue. We assume that if there is a solution, then there
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is also a solution, say P , such that L captures the first k
2i elements of the blue

part of P and R captures the remaining k
2i elements of the blue part of P . Thus,

when we look at a partial solution in the first half of the execution (of Simple),
it should only contain dark blue and red elements. Moreover, we need to ensure
that we have a partial solution that does not contain a certain set (using which
it might be completed to a solution) of only dark blue and red elements—we do
not need to ensure that it does not contain a certain set of light blue, dark blue
and red elements, since we simply do not use any light blue element up to this
point. When we reach the second half of the execution, we attempt to add to our
partial solutions only light blue and red elements. Thus, we can ignore all of the
dark blue elements in our partial solutions (we will not encounter them again),
and we need to ensure that we have a partial solution that does not contain a
certain set of only light blue and red elements.

We have shown that L (R) should be considered only in the first (second) half
of the execution. Thus, in the first half of the execution, we compute representa-
tive families faster, since there are less elements in the sets to which we need to
ensure separateness; in the second half of the execution, we also compute them
faster, since we have smaller partial solutions. However, the time saved by faster
computations of representative families does not justify the time necessary to
obtain L and R. Fortunately, we save more time by using generalized representa-
tive families (Theorem 5). The slowest computation of a representative family for
some family S (by [15,32]) occurs when each set in S contains slightly more than
k/2 elements. We benefit from the usage of generalized representative sets, since
the worst running times in the context of L and R actually occur at a point that
is good with respect to the red part, and the worst running time in the context
of the red part actually occurs at a point that is good with respect to L and R.
For example, when we look at a partial solution that contains slightly more than
50%, say 55%, of the number of dark blue elements in a solution, it only contains
(55/2)% = 27.5% of the number of red elements in a solution; also, when we
look at a partial solution that contains 55% of the number of light blue elements
in a solution, it already contains 50 + (55/2)% = 77.5% of the number of red
elements in a solution; finally, when we look at a partial solution that contains
55% of the number of red elements in a solution, it already contains 100% of the
number of dark blue elements in a solution, and only 2 · (55 − 50)% = 10% of
the number of light blue elements in a solution. The computation in Theorem 5
is significantly faster under such distortion.

Still, letting L and R have the same size is not good enough (recall that the
slowest computation of a representative family for some family S occurs when
each set in S contains slightly more than k/2 elements). We will let the red part
be significantly larger than the blue part (otherwise the computation of L and
R is inefficient); thus, it seems reasonable that the separation between L and
R should take place at the point corresponding to the slowest computation of a
representative family with respect to the red part. In the algorithm, the choice
is more complicated, since L, R and E2 have different tradeoff parameters c (in
fact, E2 has two “main” tradeoff parameters, as well as a set of “transition”
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tradeoff parameters), and the choice effects the time required to compute L and
R. Having E1 (the blue part of the universe), it is easy to compute L and R by
using a single divide-and-color step (see Section 2). That is, we compute many
pairs (L,R), and ensure that at least one of them is good (i.e., captures the
blue elements of a solution as described earlier). More precisely, assuming that
we have some arbitrary association between indices and elements, we compute a
(|V |, |L ∪R|, |R|)-universal set (see Theorem 1); for each function, we let L (R)
contain the elements corresponding to indices to which the function assigns ’0’
(’1’). To ensure that the size of the universal set is not too large (which results
in a slow running time), we let |L ∪R| be significantly smaller than k.

Our computation of E1 actually results in a set that may be very different
from the nicely organized blue part described earlier (since obtaining such a part
is inefficient). We only demand that E1 contains exactly |L ∪ R| elements from
some solution (if one exists). This can be accomplished in polynomial time: we
define an arbitrary order on V , say v1, v2, . . . , v|V |, and for each node vi, we let
the (current) blue part contain all the elements that are greater or equal to vi.
We thus encounter at least one blue part that has the above mentioned desired
property. Next, assume that we have such a blue part, E1.

The blue part may be congested at some locations, and sparse in others, along
the solution (since it contains the desired number of elements from a solution,
regardless of their location in the path that is a solution). This is problematic
with respect to generalized representative sets. For example, if the blue part
is congested slightly after the middle of the solution, the point corresponding
to the worst computation time for L (or R) is also the point corresponding to
the worst computation time with respect to E2. We do not need to ensure that
E1 is exactly as nicely ordered as described earlier, but we still need to ensure
that congestions of the dark (light) blue part are as close as possible to the
beginning (end) of the solution. Observe that the more the dark (light) blue
part is congested at the beginning (end) of the solution, we gain more from
our computation of generalized representative sets. We will only ensure that at
worst, the blue part is approximately balanced along the solution. To this end, we
cut the solution into a fixed number of small pieces of the same size (apart from
one piece, which for the sake of clarity, this explanation ignores). We reorder
the pieces, so that pieces that contain many blue elements are located closer to
the beginning and the end of the solution. Now, we can benefit from the usage
of generalized representative sets—of course, we no longer seek a directed path,
but a collection of small directed paths (which is not a problem, since we can
use their original order to obtain a directed path). Using the divide-and-color
step described earlier, the dark blue part should appear only in “early” pieces,
and the light blue part should appear only in the latter pieces.

Since we do not know the solution in advance, we cannot explicitly cut it into
small pieces (and order them). Moreover, we cannot explicitly partition V into
the set of elements that should be considered in the first piece, the set of elements
that should be considered in the second piece, and so on, since this is inefficient.
However, we can implicitly cut the universe as follows. We “guess” which are the
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Algorithm 2. Strategy III (I)
1: Let e1, e2, . . . , en define an order on the elements of the universe E.
2: Compute an (n, |L ∪R|, |R|)-universal set F by using Theorem 1.
3: for i = 1, 2, . . . , n do
4: for all f ∈ F do
5: Let L = {ej ∈ E : j ≥ i, f(ej) = 0} and R = {ej ∈ E : j ≥ i, f(ej) = 1}.
6: for all functions �1, �2, r1, r2 that implicitly cut the universe E do
7: Associate a “distorted” problem instance, I′, with (I, L,R, �1, �2, r1, r2).
8: Call a generalized representative sets-based procedure, GenRepSet, with the

input I′.
9: if GenRepSet accepts the input then accept. end if
10: end for
11: end for
12: end for
13: Reject.

nodes that are the first and last in every piece, according to the desired order
of the pieces (more precisely, we iterate over every option of choosing these
nodes—there is a polynomial number of options since there is a fixed number of
pieces). The algorithm uses functions, �1, �2, r1 and r2, which indicate (via their
images) which are the nodes that we guessed; the functions �1 and �2 belong
to the first half of the execution, and for an index j, �1 (�2) assigns the first
(last) node in the path that we are currently seeking; the functions r1 and r2
are similar, relating to the second half of the execution. Each node (besides two
nodes) should appear exactly twice, both as a node that should start a piece
and as a node that should end a piece (to ensure that the pieces form a path);
observe that the pieces should be disjoint excluding the nodes connecting them,
and that the node that ends piece j does not necessarily begins piece j + 1.

Algorithm 2 summarizes the framework underlying Strategy III. Overall, we
obtain the following result.

Theorem 6. Weighted k-Path is solvable in deterministic time O(2.59606k ·
poly(|V |) · log W̃ ) = O∗(2.59606k), where W̃ = maxe∈E |w(e)|.

3.3 Strategy IV

Our fourth result, a deterministic FPT algorithm for (3, k)-WSP, follows Strat-
egy IV in Fig. 1. Here we also cut the universe into small parts, though in a
different manner, which allows us to delete more elements from partial solutions
than [37]. We call this technique unbalanced cutting. Roughly speaking, unbal-
anced cutting explicitly partitions the universe into small pieces, using which it
orders the entire universe (the order is only partially arbitrary), such that at
certain points during the computation, we are “given” an element e that implies
that from now on, we should not try to add (to partial solutions) elements that
are “smaller” than e—thus, we can delete (from our partial solutions) all the
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elements that are smaller than e (since we will not encounter them again). Since
we are handling smaller partial solutions, we get a better running time. The
number of elements that we can delete at each point where we are “given” an
element is computed by defining a recursive formula.

Due to lack of space, further explanations are omitted, and can be found in
the full version [38]. Overall, we obtain the following result.

Theorem 7. (3, k)-WSP is solvable in deterministic time O(8.097k · poly(|S|) ·
log W̃ ) = O∗(8.097k), where W̃ = maxS∈S |w(S)|.
Generally, this strategy may be relevant to cases where we can isolate a layer
of elements in a partial solution (in the case of k-WSP, this layer consists of
the smallest element in each set of 3 elements in the partial solution) such that
as the computation progresses, we can remove (from partial solutions) elements
from this layer. Strategy IV attempts to allow us to delete elements not only
from the isolated layer, but also from the other layers.
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Cohen-Addad, Vincent 386
Cording, Patrick Hagge 142
Coudert, David 215
Crescenzi, Pierluigi 215

de Berg, Mark 25
De Carufel, Jean-Lou 203
Dehghani, Sina 95
de Mesmay, Arnaud 386
de Verdière, Éric Colin 373
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