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Abstract. Privacy is a great concern when information are published and shared. 
Privacy-preserving social network data publishing has been studied extensively 
in recent years. Early works had concentrated on protecting sensitive nodes and 
links information to prevent privacy breaches. Recent studies start to focus on 
preserving sensitive edge weight information such as shortest paths. Two types 
of privacy on sensitive shortest paths have been proposed. One type of privacy 
tried to add random noise edge weights to the graph but still maintain the same 
shortest path. The other privacy, k-shortest path privacy, minimally perturbed 
edge weights, so that there exists at least k shortest paths. However, there might 
be insufficient paths that can be modified to the same path length. In this work, 
we extend previously proposed [k1, k2]-shortest path privacy, k1≦k≦k2, to not 
only anonymizing different number of shortest paths for different source and 
destination vertex pair, but also modifying different types of edges, such as par-
tially visited edges. Numerical experiments showing the characteristics of the 
proposed algorithm is given. The proposed algorithm is more efficient in running 
time than the previous work with similar perturbed ratios of edges. 

Keywords: Privacy preservation · Shortest path · Anonymity · k-shortest path 
privacy · [k1, k2]-shortest path privacy 

1 Introduction 

On-line social networking not only shares information with extreme ease, but also  
exposes personal identifiable information such as full name, email address, phone 
numbers, hobbies, and interests to public without notices. Privacy is a great concern 
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when information are published and shared.  In order to protect personal data from 
public breaches, national laws on freedom of information and on-line privacy protec-
tion acts have been proposed and implemented in many countries [4].  However, 
while these laws can deter or punish the offenders, but they cannot completely stop 
the infraction of privacy from publicly available information.  Privacy-preserving 
social network publishing is intended to preserve privacy of individual information on 
on-line social networking websites and is developed to complement the laws on free-
dom of information. 

A social network is a graph structure made up of entities, the connections between 
entities and the strength of connections.  The entities represent the individuals and the 
connections between entities represent the relationships or interactions between entities.  
The edge weights represent the strength of the linked relationships [10], in which the 
positive edge weights express the trust relation, and the negative edge weights express 
the bad relation.  [14] showed a sensitive shortest path protection example on a 
weighted social network, which representing an automotive business network between 
Japanese corporations and American suppliers in North America [9].  The lowest cost 
path (shortest path) might be desired to be preserved by the Japanese corporation as 
well, to receive most competitive suppliers.  How to protect the sensitive business paths 
is a great concern in the competitive business environment these days. 

In this work, we study the problem of anonymizing the sensitive shortest paths be-
tween given pairs of vertices on the weighted directed graph with positive-only edges 
and positive/negative edge weights.  The previous works [19][20], k-shortest path 
privacy and [k1, k2]-shortest path privacy, made minimal perturbation of edge 
weights, so that there exists at least k or k1≦k≦k2 shortest paths for all pairs of source 
and destination vertices respectively.  However, it is quite possible that certain sensi-
tive vertex pairs do not have enough paths (or edge weights) to achieve exactly  
k-shortest paths privacy or [k1, k2]-shortest path privacy.  Current work further ex-
tends the [k1, k2]-shortest path privacy, k1≦k≦k2, to modify edges of different types.  
Based on the greedy approach, we present an algorithm to modify two types of edges, 
namely None-Visited (NV), and partially-visited (PV) edges to achieve the [k1, k2]-
shortest path privacy, k1≦k≦k2. 

The major contributions are summarized as follows:  

• We extend the [k1, k2]-shortest path privacy, k1≦k≦k2, and propose an algorithm 
to modify different types of edges, namely none-visited (NV) and partially-visited 
(PV), on two types of weighted graph, positive-only and positive/negative edge 
weight graphs. 

• Based on two metrics: running time, and ratio of modified edges, we examined 
the performance on two types of weighted graphs, positive-only and posi-
tive/negative edge weight graphs.  Comparison with previous work shows our 
proposed algorithm is more efficient in running time with similar perturbed ratios 
of edges.  

The rest of the paper is organized as follows. Section 2 describes the related works. 
Section 3 gives the problem description. Section 4 presents the proposed algorithm. 
Section 5 reports the numerical experiments. Section 6 concludes the paper. 
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2 Related Works 

Privacy preserving on social networks has concentrated on dealing with re-
identification attacks of nodes and links [3][5][6][8][11][12][13][14][24][25].  In 
order to protect the nodes and link relationships before data is published, most of the 
techniques modify the graph by adding/deleting nodes/edges.  The attackers basically 
use the background knowledge to attack the published networks, such as passive and 
active attack [1][2].  The passive attack doesn’t change the structure of graph, and the 
active attack changes the structure of graph. 

Weighted graphs can be used for analyzing the formation of communities within 
the network, business transaction networks, viral and targeted marketing and advertis-
ing [6][13][14][18][19][22].  Depending on the applications, the edge weights could 
be used to represent “degree of friendship”, “ratios of opinion”, and “business trans-
action”, etc.  In addition, edges in a social network could be directed with positive 
and negative weights that show complex linked relationships [10], with negative links 
representing the relationships as ‘dislike”, “distrust”, “foes”, and so on. 

In order to protect the privacy of sensitive edges, four types of works have been 
proposed on weighted graphs.  The first type of works tries to protect the shortest 
path characteristic between pairs of source and destination vertices.  The shortest 
path remains to be the shortest path after all edge weights are minimally modified 
[6][14].  The second type of works tries to preserve the privacy of the weights of 
edges emitting from a given vertex within a predefined parameter, called k-
anonymous weight privacy [13].  The third type of works studies the shortest distance 
computing in the cloud which aims at preventing outsourced graphs from neighbor-
hood attacks [7].  The adversary in an outsourced graph cannot calculate the shortest 
path or shortest distance between neighboring nodes.  The fourth type of works stu-
died the k-shortest path privacy anonymization on social networks [19][20].  It ex-
tends k-anonymity concept on relational data to graph data and minimally perturbed 
edge weights so that there exists at least k shortest paths.  There are other works on 
weighted graphs [15][21] that preserve the node identities.  Liu et al. [15] proposed a 
generalization based anonymization approach to achieve k-possible anonymity, which 
used the edges generalization to achieving generalized anonymization groups, on 
weighted social networks.  Yuan et al. [21] proposed a k-weighted-degree anonym-
ous model and it prevented the attacks using the node’s degree and weight informa-
tion on the edges adjacent to the nodes as the background knowledge. 

For the first two types of works that preserve the shortest paths between pairs of 
vertices, Gaussian randomization perturbation and greedy perturbation techniques that 
minimally modify the edge weights without adding or deleting any vertices and edges 
have been proposed [14].  A linear programming abstract model that can preserve 
linear properties of edge weights (including shortest paths) after anonymization is 
presented in [6].  These works do not change the property of the selected shortest 
path on the anonymized graph.  Our work is similar to fourth type of works, but is an  
extension and more flexible.  In our work, we achieve the shortest path privacy for 
sensitive vertex pairs by modifying two different types of edges simultaneously. 
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3 Problem Description 

In this work, we study the problem of how to flexibly achieve anonymization of sensi-
tive shortest paths between specified source and destination vertices on directed 
weighted graphs.  An information network is represented as a graph G=(V, E, W), 
where V={v1, v2, …, vn} represents a set of entities, and E={e1i, e2i, …, enn} represents 
relationship between entities and W={w1i, w2i, …, wnn} represents strength of the rela-
tionships, which could be positive or negative.  

For given target source and destination vertex pairs in H, the edges on the shortest 
paths may overlap with each other.  Three types of edges can be classified according 
to their involvement in the shortest paths on a weighted graph [13][19]: None-Visited 
(NV) edges, Partially-Visited (PV) edges, and All-Visited (AV) edges.  An edge ei,j is 
a None-Visited (NV) edge if the edge ei,j does not belong to any shortest path to be 
preserved.  An edge ei,j is a Partially-Visited (PV) edge if some shortest paths (in-
cluding those modified), but not all shortest paths, pass through the edge.  An edge 
ei,j is an All-Visited (AV) edge if all shortest paths (including those modified) from all 
pairs of source and destination vertices pass through the edge.  In this work, we use 
the definition in [19] and consider two types of edges, NV and PV edges, and each 
edge can be anonymized only once. 

Figure 1 shows a weighted graph with seven vertices. There are two sensitive 
shortest paths, SP1 and SP2, for two specified sensitive vertex pairs in H = {(v3, v5), 
(v2, v6)} respectively.  The first shortest path, SP1, is between v3 and v5, {e3,2, e2,5}.  
The second shortest path, SP2, is between v2 and v6, {e2,5, e5,6}.  The edges e1,2, e1,3, 
e2,7, e3,5, e4,5, e4,6 are NV edges in the initial state, in which they are not passed by any 
of the shortest paths SP1 and SP2 from target node pairs in H.  The PV edges are 
those edges that are passed through by only one of the shortest paths SP1 or SP2, but 
not both, such as e3,2, e5,6, in the initial state.  In this example, there is only one AV 
edge, e2,5, as it is on both shortest paths SP1 and SP2.  In practices, the NV edges 
could be the majority edge on a graph.  Intuitively, AV edges could be rare in a graph.  
There are more NV edges than PV edges and more PV edges than AV edges.  In addi-
tion, modifying the weights of NV edges only change the length of specific path, and 
modifying the weights of PV edges have side effects on other already anonymized 
shortest paths and perhaps new paths to be anonymized.  In addition, the modified 
edges of each path might be overlapped and required the cyclic check process [18]. 

 

Fig. 1. The Original Network G 
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For previously proposed k-shortest path privacy [19] and with k=4 on Figure 1, 
there are only three paths each for both of two sensitive node pairs and there is no 
available NV edges to be modified for second sensitive vertex pair on its second 
shortest path.  In such case, k-shortest path privacy cannot be achieved, unless artifi-
cial edges or vertices are added so that more paths become available for modification.  
For previous work [20] of [k1, k2]-shortest path privacy, when 2≤k≤4 on Figure 1, 
both of these two nodes pairs have two paths respectively. However, there are no NV 
edges available to be modified.  

As such, in this work, we propose to extend the [k1, k2]-shortest path privacy, in 
previous work, so that, when modifying edge weights, NV edges and PV edges can be 
considered simultaneously.  The [k1, k2]-shortest path privacy and its privacy value 
are given as follows. 

Definition 1. ([k1, k2]-shortest path privacy)  
Given a graph G, a set of source and destination vertices H, a privacy level k, the 

graph G* satisfies [k1, k2]-shortest path privacy if there exists ki shortest paths, 
k1≦ki≦k2, for i-th vertex pair specified in H. 

According to the definition of [k1, k2]-shortest path privacy, k1≦k≦k2, there might 
exist different numbers of anonymized paths for different source and destination ver-
tex pair, so that we use the privacy value to evaluate the level of privacy as follows.   

Definition 2. (Privacy value of [k1, k2]-shortest path privacy)  
Given a graph G, a set of source and destination vertices H, a privacy level k, the 

privacy value of an anonymized graph G* that satisfies [k1, k2]-shortest path privacy 
is defined as:  

=
i ikn

valueprivacy
11

   

The [k1, k2]-shortest path privacy, k1≦k≦k2, can be applied to multiple sensitive 
vertex pairs on both weighted un-directed/directed graphs, and prevent the adversary 
to infer the true sensitive shortest path relationship between any vertex pair.  In other 
words, we try to hide the true sensitive information by cloaking with other shortest 
paths, depending on how many paths exist between the given vertex pair. 

According to the definition, the higher k value will result in lower privacy value, 
which implies more private and secure. If there is less than k shortest paths for certain 
vertex pair, compared to k-shortest path privacy, [k1, k2]-shortest path privacy can be 
anonymized, but k-shortest path privacy could not be anonymized by its definition.  

4 Proposed Algorithm 

This section presents an algorithm, EKMP, to achieve the [k1, k2]-shortest path priva-
cy, k1≦k≦k2, by considering and modifying two types of edges, NV and PV at the 
same time.  The proposed greedy-based algorithm try to modify the NV and PV edge 
weights from the top k, k1≦k≦k2, shortest paths so that they all possess the same path 
length after modification.  We use the weighed-proportional-based strategy to modify 
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Algorithm. [k1, k2]-Multiple Paths Anonymization Algorithm (EKMP) 
Input:W, weighted adjacency matrix of a given graph G, 

H, the set of source and destination vertices for which the shortest paths are to be 
anonymized, 

k1, the minimum number of shortest path between each pair of source and destination 
vertices, 

k2, the maximum number of shortest path between each pair of source and destination 
vertices, 

Output:anonymized weighted adjacency matrix W*, 
 
for (each distinct start vertices vi of H)  
//find the shortest path and top-k’ shortest paths, where k1≦k’≦k2  
{SPL := SPL + shortest path pi,j;//SPL: shortest path list for (vi, vj) in H 
  DL := DL + di,j;  //DL: shortest paths length list for (vi, vj) in H 
   If   ( k1≦|top-k’ shortest paths|≦k2 ) 
   { APL := APL + top-k’ shortest paths tpi,j;  //APL: top-k’ shortest paths list for (vi, vj) in 

H order by path length increasing 
PDL := PDL + top-k’ shortest path lengths tdi,j;   //PDL: top-k2 shortest path lengths list 

for each pair (vi, vj) in H order by path length increasing 
       kp := |top-k’ shortest paths|; 
    } 

   Else { //|top-k’ shortest paths|>k2 or |top-k’ shortest paths|<k1 
 If ( |top-k’ shortest paths|>k2 ) 

{  APL := APL + top-k2 shortest paths tpi,j;  //APL: top-k’ shortest paths list for (vi, 
vj) in H order by path length increasing, where k’=k2 

     PDL := PDL + top-k2 shortest path lengths tdi,j;    
//PDL: top-k’ shortest path lengths list for each pair (vi, vj) in H order by path 
length increasing, where k’=k2 

     kp := |top-k’ shortest paths|; 
  } 
 Else  { continue;  } 
}//end of for, finding the shortest paths and top-k’ shortest paths in H, where k1≦k’≦k2 
while (H  ≠  φ) { 

jiHsr dd ,, min:= ;  //minimum of all shortest paths 

H := H – (vr, vs);  
while (|TSPL| < kp ) {       //TSPL: there are at most k paths for current vertex pair 

 d’r,s  := pop up first of PDLr,s;  
 p’r,s  := pop up first of APLr,s ; 
 If (d’r,s = dr,s) {   //same length 
     TSPL := TSPL + p’r,s ;  // add to anonymized list 
     continue; }   //to find next shortest path 
  Else {    // different length 
    If ( d’r,s and dr,s satisfy cyclic check) then continue; 
                   // d’r,s cannot be anonymized  
    let diff := d’r,s - dr,s;   //the weight to be reduced 
    modified_Process(p’r,s, diff) ; 

  //call a modifying procedure to do the weighted-proportional-process 
  };  //end of else, different length 

};   // end of while (|TSPL|< k ) 
   SPL := SPL + TSPL; 
};   // end of while (H ≠ φ) 
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modified_Process(p’r,s, diff) 
ML = NVL := p’r,s – {edges in SPL and TSPL};   //NVL: the NV edges list 
If (ML ≠ φ) {   //exist NV edges to be modified 
    for (each edge (eML)i,j on the ML ) {  //reduce proportionally 
       

diff
w

w
ww

ji

ji
jiji ×−=
 ,

,
,

'
,

; 

        update the adjacency matrix; 
        TSPL := TSPL + p’r,s ;  //save the modified path 
      };   // end of for each edge (eML)i,j 
  } ;   // end of if, check NV edges to be modified 
Else { //Use the PV edges to be modified 
           PV_Process(); // end of check PV edges to be modified 
}; //end of if , check NV edges to be modified 
 
PV_Process (p’r,s, diff)  
PVL := edges in SPL – edges in TSPL; //find the PV edges that are not used;  
PML := PVL ∩ p’r,s;    //consider the PV edges that are not modified in the selected path 
If  (PML ≠ φ)  {    // Use PV edges to be modified 
   for (each edge (eML)i,j on the PML ) {  // modified proportionally 
  

diff
w

w
ww

ji

ji
jiji ×−=
 ,

,
,

'
,

; 

update the adjacency matrix; 
TSPL := TSPL + p’r,s ;     //save the modified path 

}; // end of for each edge (eML)i,j 
Update the path lengths in TSPL and new length uadi,j; 
Update the path lengths in PDL and DL; 
for (each path APi,j in (TSPL ∪ SPL) )   
{  // updated the path lengths which had be reduced 

let PVdiff = di,j – uadi,j ; 
If (PVdiff > 0)  {   // re-modified the NV edges 

RML := edge (eRML)i,j on the path APi, j in (TSPL+SPL-H); 
 for (each edge (eRML)i,j on the RML) { 
    

PVdiff
w

w
ww

ji

ji
jiji ×−=
 '

,

'
,'

,
"
,

; 

    update the adjacency matrix; 
}; //end of for each edge (eRML)i,j 

}; //end of if, check the PVdiff 
};  //end of for each APi,j 

}; // check PV edges to be modified 

 
In lines 1 to 16 of the EKMP algorithm, it first finds all the shortest paths and top-

k’ shortest paths for all source and destination vertices in H, where k1≦k’≦k2.  In 
lines 17 to 33, it performs the anonymization process using the first path of APL in 
increasing order of the path lengths for the selected vertices pair (vr, vs).  In the mod-
ified_Process() procedure, it applies the weighted-proportional strategy to modify the 
edges weights for NV and PV edges.  In the modified_Process() procedure, it applied 
the NV edges to modify the edges weights firstly.  If certain path does not have any 
NV edges, then it called PV_Process() procedure to process this situation.  In the  
PV_Process(), it applied the PV edges firstly in line 1 to 10, and after modifying PV 
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edges, due to the side effect, it only modifies the NV edges in lines 11 to 21. The PV 
edges are only used one time.   

5 Numerical Experiments 

To evaluate the performance of the proposed algorithm, we run simulations on a real 
world dataset, hep-th [16].  In the experiments, we randomly generate four target 
vertex pairs and construct sets of vertex pairs H for |H|=2, 3, respectively.  All expe-
riments reported in here were carried out on Intel core i7 CPU, 2.67GHz machine 
with 4GB RAM, running Microsoft Windows 7 operating system.  The algorithm 
was implemented in Microsoft Visual Studio 2005.  We fixed the k1, k1=2, and varied 
the k2 values of anonymity in the range of 3 and 20.   

The following experimental results demonstrate the performance of proposed algo-
rithm.  We evaluated the running times, and the ratios of modified edges of our pro-
posed algorithm on two types of graphs: positive/negative edge weight graph and  
positive-only edge weight graph.  We also compare with previous work in [20], 
namely K1K2MPN on both positive and negative edges and, K1K2MPP on positive-
only edges, with two metrics: running time and the ratio of modified edges. 

A. Dataset 

To demonstrate the characteristics and evaluate the performance of proposed algo-
rithm, we run simulations on one real world dataset, hep-th.  The hep-th dataset was a 
weighted network that describes a co-authorship network of high energy physics 
scientists, which was compiled by M. Newman in 2001 [16].  The hep-th dataset 
contains 7,610 scientists (nodes) and 15,751 co-authorships (edges), and each edge is  
assigned with a real value weight.   

B. Performance Analysis 

We examine the performance of our proposed algorithm with two metrics: running 
times, ratios of modified edges.  The running time indicates the computation effi-
ciency of the algorithm.  The ratios of modified edges indicate the percentage of 
edges affected and modified by the algorithm.  It is defined as the number of mod-
ified edges over the total number of edges on the k’ shortest paths, k1≦k≦k2, for ver-
tices specified in H.  In the experiments, our algorithm run simulation on two types 
of graphs, the first type allows both positive and negative edge weights, namely 
EKMPN, and the second type allows positive-only edges, namely EKMPP.   

C. Discussion 

To compare the performance of EKMPN and EKMPP, Figure 3 shows the results of 
running times on different types of graphs for different sizes of H.  On positive-edge-
weight-only graphs, there exist paths that cannot be modified to the same length as 
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