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Abstract. Non-termination of structured imperative programs is pri-
marily due to infinite loops. An important class of non-terminating loop
behaviors can be characterized using the notion of recurrent sets. A recur-
rent set is a set of states from which execution of the loop cannot or might
not escape. Existing analyses that infer recurrent sets to our knowledge
rely on one of: the combination of forward and backward analyses, quan-
tifier elimination, or SMT-solvers. We propose a purely forward abstract
interpretation–based analysis that can be used together with a possibly
complicated abstract domain where none of the above is readily avail-
able. The analysis searches for a recurrent set of every individual loop
in a program by building a graph of abstract states and analyzing it in
a novel way. The graph is searched for a witness of a recurrent set that
takes the form of what we call a recurrent component which is somewhat
similar to the notion of an end component in a Markov decision process.

1 Introduction

Termination is a fundamental property of software routines. The majority of code
is required to terminate, e.g., dispatch routines of device drivers or other event-
driven code, GPU programs – and the existence of non-terminating behaviors is
a severe bug that might freeze a device, an entire system, or cause a multi-region
cloud service disruption [1]. The problem of proving termination has seen much
attention lately [15,16,27] but the techniques are sound and hence necessarily
incomplete. That is, failure to prove termination does not imply the existence of
non-terminating behaviors. Therefore, proving non-termination is an interesting
complementary problem.

Several modern analyses [11,13,14] characterize non-terminating behaviors
of programs or fragments of programs by a notion of recurrent set, i.e., a set of
input states from which execution of the program or fragment cannot or might
not escape (there are different flavors of recurrent sets). The analyses that can
infer recurrent sets to our knowledge rely on one of: the combination of forward
and backward analyses [13], quantifier elimination [11,14], or SMT-solvers [12].
We propose a purely forward abstract interpretation–based analysis that can be
used with a potentially complicated abstract domain where none of the above is
readily available. In our approach, we consider structured imperative programs
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without recursion where loops are the only source of non-termination. Our analy-
sis searches for what we call a universal recurrent set (that cannot be escaped)
of every individual loop in a program by building and analyzing a graph of its
abstract states. The main challenge of a forward approach is that while recur-
rent sets can be characterized by greatest fixed points of backward transformers
(and this gives an intuition into the success of the approach [13] combining for-
ward and backward analyses), we are not aware of a way to characterize them
in terms of forward transformers. Instead, we produce a condition for a set of
states to be recurrent and systematically explore the state space of a program
searching for satisfying sets of abstract states. Our approach is similar to the one
of Brockschmidt et al. [12], but the analysis of the state graph that we employ is
novel. The graph is searched for a witness of a recurrent set that takes the form
of what we call a recurrent component which is somewhat similar to the notion
of an end component in a Markov decision process [8].

Note that finding a recurrent set is a sub-problem of proving non-termination.
To prove non-termination, we would need to show that a recurrent set is reach-
able from the program entry. Also, some divergent behaviors do not fit the form
discussed in this paper, and a non-terminating loop need not necessarily have a
universal recurrent set.

2 Background

We define the analysis for a simple structured language without procedures. For
a set of atomic statements A ranged over by a, statements C of the language
are built as follows:

C ::= a atomic statement
| C1 ; C2 sequential composition: executes C1 and then C2

| C1 + C2 branch: non-deterministically branches to either C1 or C2

| C∗ loop: iterated sequential composition of ≥ 0 copies of C

We assume that A contains the passive statement skip and an assumption state-
ment [θ] for each state formula θ, and that the language of state formulas
is closed under negation. Informally, assumption statements work by filtering
out the violating executions. Standard conditionals if(θ) C1 else C2 can be
expressed by ([θ];C1) + ([¬θ];C2). Similarly, loops while(θ) C can be expressed
by ([θ];C)∗ ; [¬θ].

2.1 Concrete Semantics

We use 1 and 0 to mean logical truth and falsity respectively. For a set S, we
use ΔS to mean the diagonal relation ΔS = {(s, s) | s ∈ S}. For a relation T ,
we use T (s, s′) to mean (s, s′) ∈ T . We use ◦ for right composition of relations:
T2◦T1 = {(s, s′′) | ∃s′. (s, s′) ∈ T1∧(s′, s′′) ∈ T2}. For a function F , we use lfp F
to mean its least fixed point. We use Kleene’s 3-valued logic [21] to represent
truth values of state formulas in abstract, and sets of concrete, states. It uses a
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set of three values K = {1, 0, 1/2} meaning true, false, and maybe respectively.
K is arranged in partial information order �K, s.t. 1 and 0 are incomparable,
1 �K 1/2, and 0 �K 1/2. For k1, k2 ∈ K the least upper bound �K is defined s.t.
k1 �K k2 = k1 if k1 = k2, and 1/2 otherwise.

Let U be the set of all memory states. The concrete domain of the analysis
is the powerset P(U) with least element ∅, greatest element U , partial order ⊆,
and join ∪. This particular concrete domain is used for clarity of presentation,
and another domain can be used if needed. A state formula θ denotes a set of
states �θ� ⊆ U . We say that a state s satisfies θ if s ∈ �θ�. For a state formula
θ and a set of states S, the value of θ over S is defined by: eval (θ, S) = 1 if
S ⊆ �θ�; eval (θ, S) = 0 if S ∩ �θ� = ∅; eval (θ, S) = 1/2 otherwise. That is,
a formula evaluates to 1 in a set of states, if all states in the set satisfy the
formula, to 0 if none satisfy the formula, and to 1/2 if some of the states satisfy
the formula and some do not.

The semantics of a statement C is a relation �C� ⊆ U × U . For a state s,
�C�(s, s′) holds for every state s′ that it is possible to reach by executing C from
s. For an atomic statement a, we assume that �a� is pre-defined. Then �C� is
defined as follows:

�skip� =ΔU �C1 ; C2� =�C2� ◦ �C1�

�[θ]� ={(s, s) | s ∈ �θ�} �C1 + C2� =�C1� ∪ �C2�

�C∗� =lfpλ X.ΔU ∪ (X ◦ �C�)

If for a state s, there exists no state s′ s.t. �C�(s, s′), we say that the execution
of C diverges from s. For “normal” programs, this definition agrees with the
common one based on a small-step semantics: all traces starting from s are
infinite, and there exists at least one. That is, if assumption statements appear
only at the start of a branch or at the entry or exit of a loop (they cannot be
used as normal atomic statements):

C ::= a | C1 ; C2 | ([ϕ] ; C1) + ([ψ] ; C2) | ([ψ] ; C)∗ ; [ϕ]

and branch and loop guard assumptions are exhaustive: ϕ∨ψ = 1, then the only
way for an execution to diverge is to get stuck in an infinite loop.

As standard, we define a state transformer, post , that for a statement C and
a set of states S, gives the states a program might reach after executing C from
a state in S: post(C,S) = {s′ | ∃s ∈ S. �C�(s, s′)}.

In what follows, we focus on the loop statement:

Cloop = ([ψent] ; Cbody)∗ ; [ϕexit] (1)

where Cbody is the loop body ; if ψent holds the execution may enter the loop
body; if ϕexit holds the execution may exit the loop; and ψent ∨ ϕexit = 1.
What is important for us is that this form of loop has a single point serving as
both the entry and the exit. As currently formulated, our analysis relies on this
property, although we anticipate that more complicated control flow graphs can
be analyzed in a similar way.
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For a loop as in (1), a universal recurrent set is a set R∀, s.t.,

R∀ ⊆ �¬ϕexit� ∀s ∈ R∀.
(∀s′ ∈ U . �Cbody�(s, s′) ⇒ s′ ∈ R∀

)

These are states that must cause non-termination, i.e., must cause the com-
putation to stay inside the loop forever. Chen et al. [13] call a similar notion
closed recurrence set. There is also a related notion of an existential, or open,
recurrent set, i.e., a set of states that may cause non-termination, but it is not
discussed here. Thus, in what follows, by just recurrent set we mean universal
recurrent set.

Lemma 1. For a loop as in (1), the set R ⊆ U is universally recurrent iff
eval (¬ϕexit, R) = 1 and post(Cbody, R) ⊆ R.

Proof. Follows from the definitions of eval , post , and universal recurrent set. ��

2.2 Recurrent Sets in the Abstract

It is standard for forward program analyses to introduce an abstract domain
D with least element ⊥D, greatest element �D, partial order �D, and join �D.
Every element of the abstract domain d ∈ D represents the set of concrete states
γ(d) ⊆ U . Then, over-approximate versions of post and eval , are introduced, s.t.
for a statement C, state formula θ and abstract element d,

γ(postD(C, d)) ⊇ post(C, γ(d)) evalD(θ, d) �K eval (θ, γ(d))

We require that evalD is homomorphic: for a formula θ and d1, d2 ∈ D, d1 � d2 ⇒
evalD(θ, d1) �K evalD(θ, d2). Normally, evalD is given for atomic statements,
and for arbitrary formulas it is defined by induction over the formula structure,
using 3-valued logical operators, possibly over-approximate with respect to �K.

Theorem 1. For a loop as in (1), an abstract domain D, and an element d ∈
D, if evalD(¬ϕexit, d) = 1 and postD(Cbody, d) �D d, then γ(d) is universally
recurrent.

For proofs, please, see the companion technical report [9].
Note that in Theorem 1, the post-condition is taken with respect to the loop

body without the preceding assumption statement.

3 Finding a Universal Recurrent Set

We define our analysis for a finite powerset domain P(L), where the underly-
ing set L of abstract elements is partially ordered by �L with least element
⊥L. For example, in a numeric analysis, L may be the domain of intervals or
polyhedra [17]. We call the elements of L abstract states. We assume that P(L)
uses the Hoare order, and that concretization is defined as shown below. For
L,L1, L2 ⊆ L,

γ(L) =
⋃

{γ(l) | l ∈ L} L1 �P(L) L2 iff ∀l1 ∈ L1. ∃l2 ∈ L2. l1 �L l2
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We assume that evaluation function evalP(L) and forward transformers postP(L)

for all statements (e.g. Cbody in (1)) are given. We assume that ⊥L repre-
sents unreachability, and is transformed and evaluated precisely: γ(⊥L) = ∅,
postP(L)(C, {⊥L}) = ∅, and evalP(L)(θ, {⊥L}) = 1. Then, we define pointwise
transformers eval � and post� as follows. For L ⊆ L, statement C, and state
formula θ,

post�(C,L) =
⋃

l∈L

postP(L)(C, {l}) eval �(θ, L) =
⊔

K
l∈L

evalP(L)(θ, {l})

Note that post� and eval � are sound over-approximations of concrete post and
eval . Also, if postP(L) and evalP(L) distribute over set union, then post� =
postP(L) and eval � = evalP(L). For a single state l ∈ L, we overload post�(C, l)
to mean post�(C, {l}) and eval �(θ, l) to mean eval �(θ, {l}). We use [θ, l]� and
[θ, L]� to mean post�([θ], l) and post�([θ], L) respectively.

We use a powerset domain for the following reason. Only a subset of the
loop invariant belongs to a recurrent set, so there needs to be a mechanism in
the abstract domain to partition the “interesting” and “not interesting” states.
Therefore, we search for a recurrent set in the form of a set of abstract elements.
We use Theorem 1 to show soundness: P(L) is D for its purposes; post� and eval �

are postD and evalD.

3.1 Idea of the Algorithm

while
if

if

Fig. 1. Program for Example 1.

For a loop as in (1), if we find X ⊆ L, s.t.
eval �(¬ϕexit,X) = 1 and post�(Cbody,X) � X,
then γ(X) is definitely a recurrent set. The idea
is to explore the state space of the program with
forward analysis until such an X is found. We
proceed as follows. Separately for every loop, we
build a graph where vertices are abstract ele-

ments, or states, from L, all representing sets of concrete states at the loop
head. We initialize the graph with some set of states I ⊆ L and then repeatedly
apply the transformer for the whole loop body, post�(Cbody, · ), to the vertices
and add the elements of the resulting set to the graph as successors. Our experi-
ments suggest that in many cases a subset X of vertices satisfying the conditions
of Theorem 1 will emerge as a result. To be able to efficiently find such a subset,
we remember which elements are related w.r.t. abstract order �, as a second
kind of edges in the graph. Note that in case of nested loops, we analyze inner
and outer loops separately; when analyzing the outer one, the effect of the inner
needs to be summarized in an over-approximating way.
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Fig. 2. Graph of the states of the program
in Fig. 1.

We use a number of heuristics
to help the analysis. First, we try
to distinguish states that took dif-
ferent paths through the loop body.
Currently, we take a simplistic app-
roach: when possible, we prefer power-
set domains where join is set union, s.t.
states produced by different branches
are not joined, and post�(C1 +C2, l) =
post�(C1, l) ∪ post�(C2, l). If needed, a
more involved trace partitioning [24]
could be introduced instead. Second,
with a similar intent, we compute the
post-conditions with respect to a mod-
ified loop body Cbody

′ = Cbody ;
([ψent]+[¬ψent]). This is sound since in
the concrete case, for every set S ⊆ U ,

post(Cbody
′, S) = post(Cbody, S). Also, for a set of initial states I, we initial-

ize the graph with a set I ′ = [ψent, I]� ∪ [¬ψent, I]�. This is helpful when (as is
often the case) there is a specific path through the loop body that infinite traces
take. The heuristics introduce control-flow distinctions and enable states taking
such path to be partitioned from others. But these heuristics may not be helpful
when additional distinguishing power is needed for the data in states, e.g., when
certain kinds of non-determinism are present, when non-termination depends on
the properties of mathematical functions that the program implements, or when
the abstract domain is not expressive enough to capture the states that take the
interesting control paths.

Example 1. Consider the loop shown in pseudocode in Fig. 1. The loop does
not terminate for some inputs, and the maximal recurrent set is (1 ≤ x ≤
60) ∨ (x ≥ 100). Let us informally demonstrate how the algorithm that we pro-
pose works, assuming that x ranges over integers and using intervals to represent
its values. Since we do not know the initial value of x, we start with a graph
consisting of a pair of states: {(−∞; 0], [1;+∞)} – one represents the loop con-
dition and another represents its complement. We then start adding new states
to the graph by computing post� as described above, s.t. paths through the loop
body are represented in a post-condition of a state by different disjuncts. For
example, let us see what happens to [1;+∞) when it enters the loop. In line
2, we consider three cases. If x < 60, then the conditional body in line 2 is
skipped, x is incremented at line 3, the conditional body in line 4 is skipped,
and the output state is [2, 60]. If x = 60, the conditional body in line 2 sets
x to 50, at line 3 x is incremented, the conditional body in line 4 is skipped,
and the output state is 51. If x > 60, the conditional body at line 2 is skipped
and at line 3 x is incremented to [62;+∞). Then, if x < 100, the conditional
body at line 4 is skipped, and the output state is [62, 99]. If x = 100, the con-
ditional body at line 4 sets x to 0, and the output state is 0. If x > 100, the
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conditional body at line 4 is skipped, and the output state is [101;+∞). Thus,
post�(Cbody, [1;+∞)) = {[3, 60], 51, [62, 99], 0, [101;+∞)}. We add these states
to the graph and continue the exploration. Figure 2 shows a state graph that
could be produced this way after a number of steps. In the graph, boxes repre-
sent states, and solid edges represent post-conditions. Note that in the graph,
there exists a subset of states X = {[2, 60], [101;+∞)} has the desired property:
eval �(¬ϕexit,X) = 1 and post�(Cbody,X) � X, thus γ(X) is a recurrent set. In
what follows, we discuss how to efficiently find such subset of states if it exists.
We revisit this example in Sect. 4.

For some domains (e.g., for shape analysis with 3-valued logic [26]), the analy-
sis benefits from case splits that post� naturally performs. For example, when
a program traverses a potentially cyclic list, post� would consider a definitely
cyclic list as a separate case. If the abstraction is expressive enough, the cyclic
list case will appear as a separate vertex and become part of a recurrent set.

Finally, the choice of the set of initial states I may matter. When the abstract
domain is finite (and no widening is required) and the loop is not nested, we
initialize the graph with the states that reach the loop via the rest of the program,
i.e., produced by the standard forward analysis of the preceding part of the
program. In this case, the analysis will explore all the states reachable at the
head of the loop, and the success relies only on how refined the resulting graph
is. When the abstract domain is infinite (e.g., for intervals or polyhedra) or for
inner nested loops, we normally initialize the graph with a pre-fixpoint of post�.
That is, we assume that initially, a standard forward analysis is run to produce a
pre-fixpoint for every loop. Starting with a state below (w.r.t. �) a pre-fixpoint
makes it less likely that the analysis terminates, as our procedure does not
include widening. Starting with a state above a pre-fixpoint is more likely to
drive the search towards the states unreachable from the program entry. Note
that it is sound to start with any set of states, and we sometimes use �.

Our procedure is sound (by Theorems 1 and 2), but incomplete: if we do not
find a recurrent set after a number of steps, we do not know the reason: whether
the loop does not have a universal recurrent set; or the abstraction and post� are
not expressive enough; or we did not explore enough states. And for an infinite
domain, the procedure might not terminate. So, we perform the exploration
incrementally: we proceed breadth-first until some recurrent set is found. Then,
we may decide to stop or to continue the search for a larger recurrent set.

3.2 Abstract State Graph

For a loop as in (1), an abstract state graph is a graph G = 〈V,Ep, Ec〉, s.t.,

– V is finite non-empty set of vertices which are abstract elements, or states:
V ⊆ L. All states belong to the loop entry location.

– There are two independent sets of edges: Ec, Ep ⊆ V × V .
– Ep is a set of post-edges. For every state l ∈ V , one of the following holds:

(i) there are no outgoing post-edges: ({l}× V ) ∩ Ep = ∅; or
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(ii) ψent may hold in l, eval �(ψent, l) �= 0; post-condition of l with respect to
the loop body is not empty, post�(Cbody, l) �= ∅; the whole post-condition
is in the graph, post�(Cbody, l) ⊆ V , and connected to l by post-edges,
({l}× V ) ∩ Ep = {l}× post�(Cbody, l); or

(iii) ψent may hold in l, eval �(ψent, l) �= 0; post-condition of l is empty,
post�(Cbody, l) = ∅; l has ⊥L as the only post-successor, {l}× V ∩ Ep =
{(l,⊥L)}; and ⊥L has a post-self-loop (⊥L,⊥L) ∈ Ep.

– Ec is a set of containment-edges. For l1, l2 ∈ V , (l1, l2) ∈ Ec ⇔ (l1 �= l2∧l1 � l2).

This forbids self-loops. Due to properties of �, G may not have containment
cycles.

Note that this is similar to the notion of termination graph of [12]. For a loop as
in (1), a state graph G = 〈V,Ep, Ec〉, a state l ∈ V , and a set of states L ⊆ V , let

postG(l) = {l′ ∈ V | (l, l′) ∈ Ep} postG(L) = {l′ ∈ V | ∃l ∈ L. (l, l′) ∈ Ep}
For a loop as in (1) and a graph G = 〈V,Ep, Ec〉, a recurrent component

is a set of states R ⊆ V , s.t. for every state l ∈ R, l cannot exit the loop,
eval �(¬ϕexit, l) = 1, l has at least one outgoing edge, ∃l′ ∈ V. (l, l′) ∈ Ep ∪ Ec,
and at least one is true:

(i) l has a containment-edge into R, ∃l′ ∈ R. (l, l′) ∈ Ec; or
(ii) the outgoing post-edges of l lead exclusively into R, postG(l) �= ∅ ∧

postG(l) ⊆ R.

Lemma 2. The union of two recurrent components is a recurrent component.

Lemma 3. In a state graph G, there exists a unique maximal (possibly, empty)
recurrent component.

Proof. Lemma 2 follows from the definition of recurrent component. Lemma 3
follows from Lemma 2 and finiteness of G. ��
Theorem 2. For a loop as in (1) and a state graph G = 〈V,Ep, Ec〉 we say
X ⊆ V is fully closed if eval �(¬ϕexit,X) = 1, ∀l ∈ X. postG(l) �= ∅, and
post�(Cbody,X) � X. Note that in this case, γ(X) is a recurrent set. Then, for
every state graph G:

(i) For a recurrent component R, there exists a fully closed X ⊆ R s.t.
γ(X) = γ(R).

(ii) For a fully closed X, there exists a recurrent component R ⊇ X, s.t.
γ(R) = γ(X).

3.3 The Algorithm

The algorithm, whose main body is shown in pseudocode in Fig. 3, is applied
individually to every loop in a program. Initially, we call FindFirst giving it the
set of elements I ⊆ L to start the search from (normally, a loop invariant). After
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performing initialization, FindFirst calls FindNext once. FindNext contains a
loop in which we build the state graph G = 〈V,Ep, Ec〉. In every iteration,
proceeding in breadth-first order, we pick from the worklist F a state without
post-edges and add its successors to the graph, together with relevant post- and
containment-edges. This happens in lines 12–17 of Fig. 3; new states and post-
edges are created by MakeStates shown in Fig. 4. We choose not to explore the
successors of a state belonging to a recurrent component (line 13) even though
when post� is non-monotonic, they might lie outside the recurrent component.
Similarly, we do not explore the successors of a must-exiting state, even if ψent

may hold in it. If adding new states and edges could create a larger recurrent
component, we call FindRecComp to search for it (lines 20–21). If a new recurrent
component is found, we return 1, and Rec contains those states of the component
found so far that have no outgoing containment-edges (lines 22–27). If we wish
to find a larger recurrent component, we can call FindNext again to resume the
search. If the search terminates and no new recurrent component can be found,
the procedure returns 0.

For every abstract state l ∈ V , we maintain the status as follows.
The state l ∈ V must exit, mustE (l) = 1, if all executions starting in it exit

the loop, i.e., if it is definitely the case that for every concrete state s ∈ γ(l) the
loop eventually terminates. We mark l as must-exiting if

(i) eval �(ψent, l) = 0; or if
(ii) All post-successors of l are already must-exiting; or if
(iii) There exists a larger (w.r.t. �) state that is already must-exiting.

The state l ∈ V may exit, mayE (l) = 1, if we know that it cannot be part of
a recurrent component. We mark l as may-exiting if

(i) it is must-exiting or if eval �(¬ϕexit, l) �= 1; or if
(ii) post� is monotonic and l has a post-successor that is already may-exiting;

or if
(iii) post� is monotonic, and there exists a smaller (w.r.t. �) already may-exiting

state.

The state l ∈ V is recurrent, rec(l) = 1, if it is a part of a recurrent com-
ponent. If post� is monotonic, we also mark as recurrent all successors of a
recurrent state. Note that here, the term recurrent is overloaded. For a recur-
rent state l ∈ V , γ(l) is in general not a recurrent set itself, but is included in
some recurrent set.

Otherwise, the state l ∈ V is unknown, unk(l) = 1, i.e., unk(l) ⇒ (¬mayE (l)∧
¬rec(l)). This is the case if eval �(¬ϕexit, l) = 1, and the state may potentially
be a part of a recurrent component, but is not part of the recurrent component
found so far.

Lemma 4. May-exiting states cannot be part of a recurrent component.

When searching for a recurrent component, it is only necessary to consider
unknown and recurrent states, therefore every step of the algorithm only cre-
ates new containment-edges between unknown states or from an unknown to a
recurrent state.
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while

while

if

if

if

if
return

return

for

proc

proc

for

continue

Fig. 3. Main algorithm

Note that when new states or edges are added to the graph, or the status of an
existing state changes, we make a call to PropagateStatus. For brevity, we do not
show the pseudocode, and only informally describe its effect. PropagateStatus
propagates the statuses through the edges of the graph according to the following
rules. For a state l:

1. if postG(l) �= ∅ ∧ ∀l′ ∈ postG(l). mustE (l′), then mustE (l)
2. if mustE (l), then ∀l′. (l′, l) ∈ Ec ⇒ mustE (l′)
3. if postG(l) �= ∅ ∧ ∀l′ ∈ postG(l). rec(l′), then rec(l)
4. if rec(l), then ∀l′. (l′, l) ∈ Ec ⇒ rec(l′)

Additionally, if post� is monotonic:

5. if ∃l′ ∈ postG(l). mayE (l′), then mayE (l)
6. if mayE (l), then ∀l′. (l, l′) ∈ Ec ⇒ mayE (l′)
7. if rec(l), then ∀l′ ∈ postG(l). rec(l′)
8. if mustE (l), then ∀l′ ∈ postG(l). mustE (l′)
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proc

if

if
if

if

return

if

elif

else

Fig. 4. Adding new states. New states
are unknown unless marked otherwise.

proc

While

if break

return

Fig. 5. Finding a recurrent component

Rules 1 and 2 are derived from the definition of must-exiting state. Rules 3 and 4
mark as recurrent those states that would be included in a recurrent component
next time FindRecComp is called. Rules 5 and 6 are derived from the definition of
may-exiting states. Rule 7 is for the case when for some l, first its post-condition
is computed, and later, l is marked as recurrent by rule 4. If post� is monotonic,
the successors of l would eventually become part of a recurrent component. Sim-
ilarly, rule 8 is for the case when for some l, first its post-condition is computed,
and later, l is marked as must-exiting by rule 2. If post� is monotonic, the suc-
cessors of l would eventually be marked as must-exiting. This is not necessary
for the correctness: every state that PropagateStatus marks as may- or must-
exiting, cannot be part of a recurrent component, and every state that it marks
as recurrent would eventually become a part of a recurrent component. But this
allows to eliminate unknown states earlier, create fewer containment-edges, and
search for recurrent component in a smaller portion of the graph.

Figure 4 shows the procedure MakeStates that adds new states to the graph.
Given a set of abstract elements L ⊆ L and a predecessor state lp ∈ V , it adds
abstract states corresponding to L to the graph and creates post-edges from lp to
them. Every l ∈ L is split into a pair of states with [ · ]�, then is possibly marked
as may- or must- exiting depending on the values of ϕexit and ψent and added
to the graph together with a post-edge from lp. The procedure returns the set
N of new states produced from L that were not present in the graph before.

Figure 5 shows the procedure FindRecComp that finds a recurrent component
among the unknown states. It is called from FindNext when a new containment-
edge is created or a state is discovered such that all its outgoing post-edges lead
to existing unknown or recurrent states (i.e., when a larger recurrent component
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could emerge). It starts the search with the whole set of unknowns as the can-
didate C and iteratively removes the states C− that make the candidate violate
the definition of recurrent component. Note that FindRecComp works incremen-
tally: assuming that R is a set of states that are currently marked as recurrent
(i.e., R is the recurrent component found so far), the procedure produces a set
C, s.t. C ∪ R is a recurrent component. In general, C might not be a recurrent
component by itself.

Theorem 3. For an abstract state graph G = 〈V,Ep, Ec〉 and some recurrent
component R ⊆ V , FindRecComp produces C ⊆ V such that C ∪ R is the
maximal recurrent component of G.

4 Examples

In this section, we demonstrate how our analysis can be successfully applied to
numeric and heap-manipulating programs. Examples 1 and 2 present Numeric
Programs. Program variables range over integers, and we use intervals to rep-
resent their values.

Example 1 (Continued). Let us revisit Fig. 2. The figure displays a state
graph of the program in Fig. 1 at a stage when the algorithm cannot find a
larger recurrent component, and FindNext returns 0. The recurrent component
is shown grayed, post-edges are solid, containment edges are dotted, and for
clarity, containment-edges to and from may-exiting states are not displayed.
The state [1;+∞) is may-exiting, and must-exiting states are marked with a
cross. The resulting recurrent set is {[2, 60], [101;+∞)}. Note that the states
x = 1 and x = 100 are lost compared to the maximal recurrent set, and the
discovered recurrent set is closed under application of the forward transformer,
but not the backward transformer. This can be the case for some other tools
based on forward semantics. For example, E-HSF [11] when presented with this
example, may report the recurrent set to be {[4, 60], [100;+∞)}. Also, note the
set of must-exiting states (on the right in Fig. 2). While our algorithm often
succeeds in proving that a recurrent set exists, it behaves badly when no recur-
rent set can be found. For example, in this case, it had to enumerate all states
of the form [62, 99], [63, 99], [64, 99], and so on. Finally, note that our procedure
did terminate, although the domain is infinite and no measures were taken to
guarantee termination.

Example 2. Figure 6 demonstrates a bug in the software of Zune players that
on 31 Dec 2008 caused many devices to freeze [2]. The example is extracted
from a procedure that was used to calculate the year based on the number of
days passed since 1 Jan 1980. The loop repeatedly subtracts 365 or 366 from
the number of days depending on whether the year is leap and increases the
year by 1. Due to a logical error, if the year is leap and the number of days is
366, the variables are not updated, and the program goes into an infinite loop.
We presented this program to our tool with the starting state being the loop
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invariant: year ≥ 1980 ∧ days ≥ 0. Every call to FindNext extends the recurrent
set with a single state: year = 1980 ∧ days = 366, year = 1984 ∧ days = 366,
year = 1988 ∧ days = 366, and so on. The abstract domain was not strong
enough to infer that every leap year causes non-termination. Also, because the
analysis is forward-only, it did not explore the predecessors of those states: e.g.,
from the state year = 1983 ∧ days = 731, the loop also diverges, but this was
not discovered by the tool. Still, we count this result as success: our tool does
expose the bug even if it does not find all inputs for which the bug manifests.

while
if

if

else

Fig. 6. A potentially non-
terminating loop in Zune soft-
ware (simplified).

Shape Analysis. Examples 3 and 4 present
heap-manipulating programs. We use 3-valued
logic [26] to represent heaps, and build the analy-
sis on top of TVLA [3,23]. For more information
on shape analysis with 3-valued logic, please refer
to Sagiv et al. [26] and related papers [7,23,25].
In this framework, abstract heaps are represented
by 3-valued structures, i.e., models of 3-valued
first-order logic with transitive closure. Every
individual represents either a single heap cell or
a set of heap cells that share some properties.
Pointer variables are represented by unary pred-
icates: the predicate is true for the cell where the
variable points. Pointer fields are represented by
binary predicates: the predicate is true for those

pairs of cells where the corresponding field of one cell points to another. The
analysis also maintains in the form of predicates additional information about
the heap: whether the cells are reachable from each other, whether some con-
dition is true of the cells, and so on. Three-valued structures can be displayed
as shape graphs, and an example is shown in Fig. 7. The graph represents an
acyclic singly-linked list with two or more elements and is read as follows. Left
node represents a single cell which is the head of the list and is pointed to by
pointer variables x and y. The text c = 1/2 means that some condition c might
or might not be true for the head – we do not know. The right node displayed
with double border represents a finite non-empty set of cells that are the tail of
the list. The dotted edge annotated by n between the head and the tail means
that the pointer field n of the head points to some node of the tail, but not to
all of them. The analysis is usually instructed that predicate n induces a func-
tion, but this is not reflected in the shape graph. The analysis also keeps track
of reachability between cells with the predicate tn. Solid tn-edge between the
head and the tail means that all cells of the tail are reachable from the head by
traversing the n-pointers. Dotted n- and tn-loops on the tail mean that there are
pointers and reachability between some pairs of cells in the tail but not between
all of them. Absence of n- and tn edges from the tail to the head means that
no cell in the tail points to or can reach head. In this case, the analysis is also
instructed that there are no shared cells, i.e., every cell is pointed to by at most
one cell. The above is sufficient for Fig. 7 to represent exactly the set of acyclic
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Fig. 7. Acyclic list with 2+ elements. Fig. 8. Cyclic list with 2+ elements.

while

Fig. 9. Search in a list.

while
new

if

Fig. 10. Prepending to a non-empty
list.

singly-linked lists with two or more elements. Similarly, Fig. 8 represents a set
of cyclic lists with two or more elements.

Example 3. One source of non-termination in heap-manipulating programs is
incorrect traversal of cyclic data structures. The companion technical report
[9] discusses such non-termination bug in a device driver that was found by a
termination prover [10]. Figure 9 shows a procedure that searches a list pointed
to by x for an element y s.t. the condition c(y) holds. The search terminates
when such y is found or when the end of the list is reached, and it does not
handle cyclic lists correctly. In this and the next example, the initial statement:
y ← x – is disregarded by the analysis and only emphasizes that when the loop
is reached for the first time, both x and y point to the head of the list. Due
to canonical abstraction [26], the set of 3-valued structures that we can explore
is finite, and there is no need to perform pre-analysis for the loop invariant.
Thus, we analyze the loop starting with the set of states containing cyclic and
acyclic lists with both x and y pointing to the head and with unknown value
of c for all the cells: the structures shown in Figs. 7 and 8, plus structures to
represent single-element lists and an empty list. This way, our tool reports as
the recurrent set all the heaps that cause non-termination of the loop, i.e., the
cyclic lists where the condition c is false for all the elements. One of such lists
(with three or more elements, y pointing into the list) is shown in Fig. 11.

Example 4. Another interesting class of bugs in heap-manipulating programs
is related to heap allocation. Sometimes, models of programs do not take into
account that heap allocation can fail. For example, in a real program, an infinite
loop performing allocation would usually lead to an out-of-memory error and
may consume much time and system resources. But in a model of the program
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Fig. 11. Example of a cyclic list where
c is false for all elements.

Fig. 12. State graph for the program
in Fig. 10. State 1 is shown in Fig. 7.
Grayed are recurrent states and must-
exiting state is marked with a cross.

this may appear as potential non-termination. Figure 10 shows a program that
repeatedly prepends a newly allocated element to a (non-empty) list. The loop is
supposed to terminate if the allocation fails, but this is not possible in our TVLA
model. The state space for the example is shown in Fig. 12. The initial states are:
a list with two or more elements (state 1, as shown in Fig. 7), an empty heap (2),
and a single-element list (3). The empty heap is must-exiting, and the states 1,
3, and 4 (list with exactly two elements) form the recurrent set. State 4 does not
have an outgoing post-edge as the algorithm finishes before the post-condition
of the state is computed. Note the post-loop on state 1. Because of canonical
abstraction [26], the post-condition of a list with two or more elements is again
a list with two or more elements, i.e., the analysis loses track of the length of
the list.

5 Experiments

We implemented our technique in a prototype tool that supports numeric and
3-valued programs. The analysis of 3-valued programs is based on TVLA [23],
and for numeric programs, we use interval domain with ad hoc support for mod-
ulo operation: we perform some artificial case splits when modulo operation is
invoked. We applied our analysis to the test set [4] of Invel [28], and to the
non-terminating programs from the Ultimate Büchi Automizer [20] test set [5].
For detailed test results, please, see the companion technical report [9]. Out of 52
non-terminating Invel programs, our tool was able to find recurrent sets in 39.
For the remaining 13, the analysis either terminates without producing a result
or diverges. We attribute 8 cases of failure to the lack of expressiveness in the
abstract domain. In those programs, successful analysis would require relational
reasoning, e.g., with polyhedra [17]. Another two cases of failure come from
the limitations of our prototype tool that does not support nested loops (while
the approach does). In one case, the program uses a break statement which
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is not currently supported by our technique. Finally, two cases of failure seem
problematic for our general approach. Those programs implement mathematical
functions (least common multiplier and k-th Fibonacci number respectively) and
their termination depends on the relation between the properties of those func-
tions and program input, e.g., whether there exists such k that k-th Fibonacci
number is equal to the argument of the function. As a result, we fail to isolate
the path through the program that is taken by non-terminating traces. We may
speculate that for a forward analysis to succeed, it needs to perform some artifi-
cial case splits, but we are not aware of a possible heuristic at this point. While
specialized numeric tools (e.g., AProVE with SMT backend [12]) handle more
of the Invel test programs [6], they do not subsume our tool. We believe, our
approach can complement existing numeric tools in cases when the underlying
linear solvers struggle.

Out of 18 Automizer programs that we considered, our tool handles 10
successfully. Among the remaining 8 programs, five use unsupported features
(arrays, break statements, recursion), one would require additional case splits
that our tool does not perform, and two have non-terminating behaviors, but
do not have universal recurrent sets (non-termination relies on making a specific
series of non-deterministic choices in the loop body). The latter points to a limi-
tation of universal recurrent sets. Though a non-termination bug may cause the
program to have one, it may be hard to build an abstraction that preserves it
and does not introduce spurious terminating traces from every interesting state.

In some of the test programs, the main loop was preceded by a loop-free
stem that performed initialization of the variables. We observed that in all cases
(where our tool was able to find a recurrent set) this initial state had non-
empty intersection with the recurrent set produced by the tool. For example,
the program ‘GCD’ from the Invel test set, has two integer valuables: a an b –
and the stem sets up the initial state a ≥ b. The recurrent set that our tool
finds is of the form (a ≥ 1 ∧ b ≤ −1) ∨ (a ≤ −1 ∧ b ≥ 1). The fact that this
recurrent set has non-empty intersection with the initial state can be checked
using the operations of the polyhedral abstract domain. This result is specific to
the tests programs and the choice of abstract domain. In general, it might not
be possible to check the recurrent sets for concrete reachability using standard
forward analysis techniques.

6 Related Work

The approach [12] implemented in AProVE [18] is similar to ours in that it builds
and analyzes an abstract state graph (termination graph, in their terms). How-
ever, they are interested in proving the existence of at least one non-terminating
trace (which is dual to the notion of universal recurrent set) and they analyze
the graph differently. They relate cycles in the graph to loops in the program and
either try to prove that some loop does not modify the variables affecting ter-
mination, or employ SMT-based analysis (available when non-termination relies
on integer arithmetic) to show that for some loop, at least one path through
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it is always enabled. In contrast, we introduce a notion of recurrent component
which witnesses a recurrent set and search the graph for those.

Cook et al. [14] analyze linear over-approximations of programs and use
Farkas’ lemma to find universal recurrent sets. Their soundness result is similar
to ours and is more general: they state it for arbitrary transition systems and
require a property of upward termination (for every concrete final state, the
corresponding abstract state is also final) which for us implicitly holds. Note that
linear abstractions have not yet demonstrated to be very effective for analyzing
heap-manipulating programs.

The analysis of Chen et al. [13] combines a forward model checker and back-
wards analysis of single traces to modify the original program and turn it into a
non-terminating one, by adding assumption statements. On the low level their
approach is dual to ours, as they work with under-approximations of programs
and try to prove the existence of at least one infinite trace.

The above analyses are predated by that of Gupta et al. [19] where existential
recurrent sets are produced from lasso-shaped symbolic executions using Farkas’
lemma.

Velroyen and Rümmer developed their analysis [28] independently of Gupta
et al. [19]. They propose a template and a refinement scheme to infer invariants
proving that terminating states of a program are unreachable.

Larraz et al. [22] use the notion of an edge-closed quasi-invariant (a set of
states that, one reached, cannot be escaped) as a generalization of recurrent set.
They encode the search for such set as a max-SMT problem.

We note that the above analyses focus on proving non-termination, while we
consider a sub-problem of finding a recurrent set. To prove non-termination of
a program we would need to show that a recurrent set is reachable from the
program entry.

The analysis implemented in E-HSF [11] allows to specify the semantics
of programs and express verified properties in the form of ∀∃ quantified Horn
clauses extended with well-foundedness conditions. In particular, the input lan-
guage allows to query for the existence of universal and existential recurrent sets.
The implementation is to our knowledge targeted at linear programs and relies
on Farkas’ lemma.

7 Conclusion and Future Work

We have described a forward technique for finding recurrent sets in imperative
programs where loops of a specific form are the source of non-termination. The
recurrent sets that we produce are genuine, but may not be reachable from
the program entry. We applied our analysis to numeric and heap-manipulating
programs and were successful if (i) we were able to capture the paths through
the program that infinite traces take, and (ii) we were able to perform enough
case splits to isolate the recurrent set into a separate set of abstract states. The
latter point can benefit from heuristics in some cases.
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Our analysis only admits structured programs without goto statements and a
restricted form of loops: while-loops without statements that affect control flow
(break, continue, etc.). One direction for future work is to enable the analysis of
a larger class of loops: either by introducing relevant program transformations
and studying their effect on the outcome of the analysis or by extending the
technique to handle more complicated control flow graphs. Another direction is
to solidify the analysis: eliminate the need for a separate forward pre-analysis by
weaving it into the main algorithm, introduce a proper trace partitioning, etc.
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