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Abstract. While abstract interpretation is not theoretically restricted
to specific kinds of properties, it is, in practice, mainly developed to
compute linear over-approximations of reachable sets, aka. the collecting
semantics of the program. The verification of user-provided properties is
not easily compatible with the usual forward fixpoint computation using
numerical abstract domains.

We propose here to rely on sums-of-squares programming to charac-
terize a property-driven polynomial invariant. This invariant generation
can be guided by either boundedness, or in contrary, a given zone of the
state space to avoid.

While the target property is not necessarily inductive with respect
to the program semantics, our method identifies a stronger inductive
polynomial invariant using numerical optimization. Our method applies
to a wide set of programs: a main while loop composed of a disjunction
(if-then-else) of polynomial updates e.g. piecewise polynomial controllers.
It has been evaluated on various programs.

1 Introduction

With the increased need for confidence in software, it becomes more than ever
important to provide means to support the verification of specification of soft-
ware. Among the various formal verification methods to support these analysis,
a first line of approaches, such as deductive methods or SMT-based model check-
ing, provide rich languages to support the expression of the specification and then
try to discharge the associate proof obligation using automatic solvers. The cur-
rent state of the art of these solvers is able to manipulate satisfiability problems
over linear arithmetics or restricted fragments of non linear arithmetics. Another
line of approaches, such as static analysis also known as abstract interpretation,
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restricts, a priori, the kind of properties considered during the computation:
these methods typically perform interval arithmetic analysis or rely on convex
polyhedra computations. In practice this second line of work seems more capable
of manipulating and generating numerical invariants through the computation
of inductive invariants, while the first line of approaches hardly synthesize these
required invariants through satisfiability checks.

However, when it comes to more than linear properties, the state of the
art is not well developed. In the early 2000s, ellipsoid analyses [11], similar to
restricted cases of Lyapunov functions, were designed to support the study of a
family of Airbus controllers. This exciting result was used to provide the analysis
of absence of runtime errors but could hardly be adapted to handle more general
user provided specifications for polynomial programs.

However proving polynomial inequalities is NP-hard and boils down to show
that the infimum of a given polynomial is nonnegative. Still, one can obtain
lower bounds of such infima by decomposing certain nonnegative polynomials
into sums-of-squares (SOS). This actually leads to solve hierarchies of semidefi-
nite relaxations, introduced by Lasserre in [12]. Recent advances in semidefinite
programming allowed to extensively apply these relaxations to various fields,
including parametric polynomial optimization, optimal control, combinatorial
optimization, etc. (see e.g. [13,17] for more details).

While these approaches were mentioned a decade ago in [8] and mainly
applied to termination analysis, they hardly made their way through the software
verification community to address more general properties.

Contributions. Our contribution allows to analyze high level properties defined
as a sublevel set of polynomials functions, i.e. basic semialgebraic sets. This
class of properties is rather large: it ranges from boundedness properties to the
definition of a bad region of the state space to avoid. While these properties,
when they hold, are meant to be invariant, i.e. they hold in each reachable state,
they are not necessarily inductive. Our approach rely on the computation of
a stronger inductive property using SOS programming. This stronger property
is proved inductive on the complete system and, by construction, implies the
target property specified by the user. We develop our analysis on discrete-time
piecewise polynomial systems, capturing a wide class of critical programs, as
typically found in current embedded systems such as aircrafts.

Organization of the paper. The paper is organized as follows. In Sect. 2, we
present the programs that we want to analyze and their representation as piece-
wise polynomial discrete-time systems. Next, we recall in Sect. 3 the collect-
ing semantics that we use and introduce the polynomial optimization problem
providing inductive invariants based on target polynomial properties. Section 4
contains the main contribution of the paper, namely how to compute effectively
such invariants with SOS programming. Practical computation examples are
provided in Sect. 5. Finally, we explain in Sect. 6 how to derive template bases
from generated invariants.
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2 Polynomial Programs and Piecewise Polynomial
Discrete-Time Systems

In this section, we describe the programs which are considered in this paper
and we explain how to analyze them through their representation as piecewise
polynomial discrete-time dynamical systems.

We focus on programs composed of a single loop with a possibly complicated
switch-case type loop body. Moreover we suppose without loss of generality that
the analyzed programs are written in Static Single Assignment (SSA) form, that
is each variable is initialized at most once.

Definitions. We recall that a function f from R
d to R is a polynomial if and

only if there exists k ∈ N, a family {cα | α = (α1, . . . , αd) ∈ N
d, |α| = α1 + . . .+

αd ≤ k} such that for all x ∈ R
d, f(x) =

∑
|α|≤ k cαxα1

1 . . . xαd

d . By extension a
function f : Rd �→ R

d is a polynomial if and only if all its coordinate functions
are polynomials. Let R[x] stands for the set of d-variate polynomials.

In this paper, we consider assignments of variables using only parallel polynomial
assignments (x1, . . . , xd) = T (x1, . . . , xd) where (x1, . . . , xd) is the vector of the
program variables. Tests are either weak polynomial inequalities r(x1, . . . , xd) ≤
0 or strict polynomial inequalities r(x1, . . . , xd) < 0. We assume that assignments
are polynomials from R

d to R
d and test functions are polynomials from R

d to
R. In the program syntax, the notation � will be either <= or <. The form of
the analyzed program is described in Fig. 1.

Fig. 1. One-loop programs with nested conditional branches

A set C ⊆ R
d is said to be a basic semialgebraic set if there exist g1, . . . , gm ∈

R[x] such that C = {x ∈ R
d | gj(x) � 0,∀ j = 1, . . . ,m}, where � is used to

encode either a strict or a weak inequality.
As depicted in Fig. 1, an update T i : Rd → R

d of the i-th condition branch is
executed if and only if the conjunction of tests ri

j(x) � 0 holds. In other words,
the variable x is updated by T i(x) if the current value of x belongs to the basic
semialgebraic set

Xi := {x ∈ R
d | ∀j = 1, . . . , ni, ri

j(x) � 0}. (1)
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Piecewise Polynomial Systems. Consequently, we interpret programs as con-
strained piecewise polynomial discrete-time dynamical systems (PPS for short).
The term piecewise means that there exists a partition {Xi, i ∈ I} of Rd such
that for all i ∈ I, the dynamics of the system is represented by the following
relation, for k ∈ N:

if xk ∈ Xi ∩ X0, xk+1 = T i(xk) . (2)

We assume that I is finite and that the initial condition x0 belongs to some
compact basic semialgebraic set X in. For the program, X in is the set where
the variables are supposed to be initialized in. Since the test entry for the loop
condition can be nontrivial, we add the term constrained and X0 denotes the
set representing the conjunctions of tests for the loop condition. The iterates of
the PPS are constrained to live in X0: if for some step k ∈ N, xk /∈ X0 then the
PPS is stopped at this iterate with the terminal value xk.

We define a partition as a family of nonempty sets such that:
⋃

i∈I
Xi = R

d, ∀ i, j ∈ I, i 
= j,Xi ∩ Xj 
= ∅ . (3)

From Eq. (3), for all k ∈ N
∗ there exists a unique i ∈ I such that xk ∈ Xi. A set

Xi can contain both strict and weak polynomial inequalities and characterizes
the set of the ni conjunctions of tests polynomials ri

j . Let ri = (ri
1, . . . , r

i
ni

) stands
for the vector of tests functions associated to the set Xi. We suppose that the
basic semialgebraic sets X in and X0 also admits the representation given by
Eq. (1) and we denote by r0 the vector of tests polynomials (r01, . . . , r

0
n0

) and by
rin the vector of test polynomials (rin1 , . . . , rinnin

). To sum up, we give a formal
definition of PPS.

Definition 1 (PPS). A constrained polynomial piecewise discrete-time dynam-
ical system (PPS) is the quadruple (X in,X0,X ,L) with:

– X in ⊆ R
d is the compact basic semialgebraic set of the possible initial

conditions;
– X0 ⊆ R

d is the basic semialgebraic set where the state variable lives;
– X := {Xi, i ∈ I} is a partition as defined in Eq. (3);
– L := {T i, i ∈ I} is the family of the polynomials from R

d to R
d, w.r.t. the

partition X satisfying Eq. (2).

From now on, we associate a PPS representation to each program of the
form described at Fig. 1. Since a program admits several PPS representations,
we choose one of them, but this arbitrary choice does not change the results
provided in this paper. In the sequel, we will often refer to the running example
described in Example 1.

Example 1 (Running example). The program below involves four variables and
contains an infinite loop with a conditional branch in the loop body. The update
of each branch is polynomial. The parameters cij (resp. dij) are given parameters.
During the analysis, we only keep the variables x1 and x2 since oldx1 and oldx2

are just memories.
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x1, x2 ∈ [a1, a2] × [b1, b2] ;
oldx1 = x1 ;
oldx2 = x2 ;
whi l e (−1 <= 0){

oldx1 = x1 ;
oldx2 = x2 ;
ca se : oldx1ˆ2 + oldx2ˆ2 <= 1 :

x1 = c11 ∗ oldx1ˆ2 + c11 ∗ oldx2 ˆ3 ;
x2 = c21 ∗ oldx1ˆ3 + c22 ∗ oldx2 ˆ2 ;

case : −oldx1ˆ2 − oldx2ˆ2 < −1
x1 = d11 ∗ oldx1ˆ3 + d12 ∗ oldx2 ˆ2 ;
x2 = d21 ∗ oldx1ˆ2 + d22 ∗ oldx2 ˆ2 ;

}
}

The associated PPS corresponds to the quadruple (X in,X0, {X1,X2},
{T 1, T 2}), where the set of initial conditions is:

X in = [a1, a2] × [b1, b2],

the system is not globally constrained, i.e. the set X0 in which the variable
x = (x1, x2) lies is:

X0 = R
d,

the partition verifying Eq. (3) is:

X1 = {x ∈ R
2 | x2

1 + x2
2 ≤ 1}, X2 = {x ∈ R

2 | −x2
1 − x2

2 < −1},

and the polynomials relative to the partition {X1,X2} are:

T 1(x) =
(

c11x
2
1 + c12x

3
2

c21x
3
1 + c22x

2
2

)

and T 2(x) =
(

d11x
3
1 + d12x

2
2

d21x
2
1 + d22x

2
2

)

.

3 Program Invariants as Sublevel Sets

The main goal of the paper is to decide automatically if a given property holds
for the analyzed program, i.e. for all its reachable states. We are interested in
numerical properties and more precisely in properties on the values taken by the
d-uplet of the variables of the program. Hence, in our point-of-view, a property
is just the membership of some set P ⊆ R

d. In particular, we study properties
which are valid after an arbitrary number of loop iterates. Such properties are
called loop invariants of the program. Formally, we use the PPS representation
of a given program and we say that P is a loop invariant of this program if:

∀ k ∈ N, xk ∈ P ,

where xk is defined at Eq. (2) as the state variable at step k ∈ N of the PPS
representation of the program. Our approach addresses any property expressible
as a polynomial level set property. This section defines formally these notions
and develop our approach: synthesize a property-driven inductive invariant.
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3.1 Collecting Semantics as Postfixpoint Characterization

Now, let us consider a program of the form described in Fig. 1 and let us denote
by S the PPS representation of this program. The set R of reachable values is
the set of all possible values taken by the state variable along the running of S.
We define R as follows:

R =
⋃

k∈N

T k
|X0

(X in) (4)

where T|X0 is the restriction of T on X0 and T|X0 is not defined outside X0. To
prove that a set P is a loop invariant of the program is equivalent to prove that
R ⊆ P . We can rewrite R inductively:

R = X in ∪
⋃

i∈I
T i

(
R ∩ Xi ∩ X0

)
. (5)

Let us denote by ℘(Rd) the set of subsets of R
d and introduce the map F :

℘(Rd) → ℘(Rd) defined by:

F (C) = X in ∪
⋃

i∈I
T i

(
C ∩ Xi ∩ X0

)
(6)

We equip ℘(Rd) with the partial order of inclusion. The infimum is understood
in this sense i.e. as the greatest lower bound with respect to this order. The
smallest fixed point problem is:

inf
{
C ∈ ℘(Rd) | C = F (C)

}
.

It is well-known from Tarski’s theorem that the solution of this problem exists,
is unique and in this case, it corresponds to R. Tarski’s theorem also states that
R is the smallest solution of the following Problem:

inf
{
C ∈ ℘(Rd) | F (C) ⊆ C

}
.

Note also that the map F corresponds to a standard transfer function (or
collecting semantics functional) applied to the PPS representation of a program.
We refer the reader to [9] for a seminal presentation of this approach.

To prove that a subset P is a loop invariant, it suffices to show that P satisfies
F (P ) ⊆ P . In this case, such P is called inductive invariant.

3.2 Considered Properties: Sublevel Properties Pκ,α

In this paper, we consider special properties: those that are encoded with sublevel
sets of a given polynomial function.

Definition 2 (Sublevel Property). Given a polynomial function κ ∈ R[x]
and α ∈ R ∪ {+∞}, we define the sublevel property Pκ,α as follows:

Pκ,α := {x ∈ R
d | κ(x) � α} .

where � denotes ≤ when α ∈ R and denotes < for +∞. The expression κ(x) <
+∞ expresses the boundedness of κ(x) without providing a specific bound α.
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Example 2 Sublevel property examples.

Boundedness. When one wants to bound the reachable values of a system, we
can try to bound the l2-norm of the system: P‖·‖2

2,∞ with κ(x) = ‖x‖22. The use
of α = ∞ does not impose any bound on κ(x).

Safe set. Similarly, it is possible to check whether a specific bound is matched.
Either globally using the l2-norm and a specific α: P‖·‖2

2,α, or bounding the
reachable values of each variable: Pκi,αi

with κi : x �→ xi and αi ∈ R.

Avoiding bad regions. If the bad region can be encoded as a sublevel property
k(x) ≤ 0 then its negation −k(x) ≤ 0 characterize the avoidance of that bad
zone. Eg. if one wants to prove that the square norm of the program variables
is always greater than 1, then we can consider the property Pκ,α with κ(x) =
1 − ‖x‖22 and α = 0.

A sublevel property is called sublevel invariant when this property is a
loop invariant. This turns out to be difficult to prove loop invariant properties
while considering directly R, thus we propose to find a more tractable over-
approximation of R for which such properties hold.

3.3 Approach: Compute a Pκ,α-Driven Inductive Invariant P

In this subsection, we explain how to compute a d-variate polynomial p ∈ R[x]
and a bound w ∈ R, such that the polynomial sublevel sets P := {x ∈ R

d |
p(x) ≤ 0} and Pκ,w satisfy:

R ⊆ P ⊆ Pκ,w ⊆ Pκ,α . (7)

The first (from the left) inclusion forces P to be valid for the whole reachable
values set. The second inclusion constraints all elements of P to satisfy the
given sublevel property for a certain bound w. The last inclusion requires that
the bound w is smaller than the desired level α. When α = ∞, any bound w
ensures the sublevel property.

Now, we derive sufficient conditions on p and w to satisfy Eq. (7). We decom-
pose the problem in two parts. To satisfy the first inclusion, i.e. ensure that P
is a loop invariant, it suffices to guarantee that F (P ) ⊆ P , namely that P is an
inductive invariant. Using Eq. (5), P is an inductive invariant if and only if:

X in ∪
⋃

i∈I
T i

(
P ∩ Xi ∩ X0

) ⊆ P ,

or equivalently: {
X in ⊆ P ,
∀ i ∈ I, T i

(
P ∩ Xi ∩ X0

) ⊆ P .
(8)

Thus, we obtain:

{
p(x) ≤ 0 , ∀x ∈ X in ,

∀ i ∈ I , p (T i(x)) ≤ 0 , ∀x ∈ P ∩ Xi ∩ X0 .
(9)



242 A. Adjé et al.

Now, we are interested in the second and third inclusions at Eq. (7) that is the
sublevel property satisfaction. The condition P ⊆ Pκ,w ⊆ Pκ,α can be formulated
as follows:

κ(x) ≤ w ≤ α , ∀x ∈ P . (10)

We recall that we have supposed that P is written as {x ∈ R
d | p(x) ≤ 0}

where p ∈ R[x]. Finally, we provide sufficient conditions to satisfy both (9)
and (10), gathered in (11), so one can find a polynomial p ensuring the constraint
involving κ:

⎧
⎪⎪⎨

⎪⎪⎩

infp∈R[x],w∈R w ,
s.t. p(x) ≤ 0 , ∀x ∈ X in ,

∀ i ∈ I , p (T i(x)) ≤ p(x) , ∀x ∈ Xi ∩ X0 ,
κ(x) ≤ w + p(x) , ∀x ∈ R

d .

(11)

We remark that α is not present in Problem (11). Indeed, since we mini-
mize w, either there exists a feasible w such that w ≤ α and we can exploit
this solution or such w is not available and we cannot conclude. However, from
Problem (11), we can extract (p,w) and in the case where the optimal bound w
is greater than α, we could use this solution with another method such as policy
iteration [2].

Lemma 1. Let (p,w) be any feasible solution of Problem (11) with w ≤ α or
w < ∞ in the case of α = ∞. Then (p,w) satisfies both (9) and (10) with
P := {x ∈ R

d | p(x) ≤ 0}. Finally, P and Pκ,w satisfy Eq. (7).

In practice, we rely on sum-of-squares programming to solve a strengthened
version of Problem (11).

4 SOS Programming for Invariant Generation

We first recall some basic background about sums-of-squares certificates for poly-
nomial optimization. Let R[x]2m stands for the set of polynomials of degree at
most 2m and Σ[x] ⊂ R[x] be the cone of sums-of-squares (SOS) polynomials,
that is Σ[x] := {∑

i q2i , with qi ∈ R[x] }. Our work will use the simple fact that
for all p ∈ Σ[x], then p(x) ≥ 0 for all x ∈ R

d i.e. Σ[x] is a restriction of the
set of the nonnegative polynomials. For q ∈ R[x]2m, finding a SOS decomposi-
tion q =

∑
i q2i valid over R

d is equivalent to solve the following matrix linear
feasibility problem:

q(x) = bm(x)T Qbm(x) , ∀x ∈ R
d, (12)

where bm(x) := (1, x1, . . . , xd, x
2
1, x1x2, . . . , x

m
d ) (the vector of all monomials

in x up to degree m) and Q being a semidefinite positive matrix (i.e. all the
eigenvalues of Q are nonnegative). The size of Q (as well as the length of bm) is(

d + m
d

)

.
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Example 3. consider the bi-variate polynomial q(x) := 1+x2
1−2x1x2+x2

2. With
b1(x) = (1, x1, x2), one looks for a semidefinite positive matrix Q such that the
polynomial equality q(x) = b1(x)T Qb1(x) holds for all x ∈ R

2. The matrix

Q =

⎛

⎝
1 0 0
0 1 −1
0 −1 1

⎞

⎠

satisfies this equality and has three nonnegative eigenvalues, which are 0, 1, and
2, respectively associated to the three eigenvectors e0 := (0, 1/

√
2, 1/

√
2)ᵀ, e1 :=

(1, 0, 0)ᵀ and e2 := (0, 1/
√

2,−1/
√

2)ᵀ. Defining the matrices L := (e1 e2 e0) =
⎛

⎝
1 0 0
0 1√

2
1√
2

0 − 1√
2

1√
2

⎞

⎠ and D =

⎛

⎝
1 0 0
0 2 0
0 0 0

⎞

⎠, one obtains the decomposition Q = Lᵀ D L

and the equality q(x) = (Lb1(x))T D (Lb1(x)) = σ(x) = 1 + (x1 − x2)2, for all
x ∈ R

2. The polynomial σ is called a SOS certificate and guarantees that q is
nonnegative.

In practice, one can solve the general problem (12) by using semidefinite pro-
gramming (SDP) solvers (e.g. Mosek [5], SDPA [26]). For more details about
SDP, we refer the interested reader to [24].

Problem (11) is infinite dimensional, thus difficult to handle in practice. We
solve a more tractable problem (13), obtained by strengthening the constraints
of (11). One way to strengthen the three nonnegativity constraints of Prob-
lem (11) is to consider the following hierarchy of SOS programs, parametrized
by the integer m representing the half of the degree of p:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

inf
p∈R[x]2m,w∈R

w ,

s.t. − p = σ0 −
nin∑

j=1

σjr
in
j ,

∀ i ∈ I, p − p ◦ T i = σi −
ni∑

j=1

μi
jr

i
j −

n0∑

j=1

γi
jr

0
j ,

w + p − κ = ψ ,

∀ j = 1, . . . , nin , σj ∈ Σ[x] , deg(σjr
in
j ) ≤ 2m ,

σ0 ∈ Σ[x] , deg(σ0) ≤ 2m ,

∀ i ∈ I , σi ∈ Σ[x] , deg(σi) ≤ 2m deg T i ,

∀ i ∈ I , ∀ j = 1, . . . , ni , μi
j ∈ Σ[x] , deg(μi

jr
i
j) ≤ 2m deg T i,

∀ i ∈ I , ∀ j = 1, . . . , n0 , γi ∈ Σ[x] , deg(γi
jr

0
j ) ≤ 2m deg T i,

ψ ∈ Σ[x] , deg(ψ) ≤ 2m.

(13)
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The variables of Problem (13) are w, the coefficients of p and of the SOS polyno-
mials σj , μ

i
j , γ

i
j , ψ, whose degrees are fixed to yield finite dimensional problems.

Proposition 1. For a given m ∈ N, let (pm, wm) be any feasible solution of
Problem (13). Then (pm, wm) is also a feasible solution of Problem (11). More-
over, if wm ≤ α then both Pm := {x ∈ R

d | pm(x) ≤ 0} and Pκ,wm
satisfy

Eq. (7).

Proof. The feasible solution (pm, wm) is associated with SOS certificates ensur-
ing that the three equality constraints of Problem (13) hold: {σ0, σj} is associated
to the first one, {σi, μi

j , γ
i
j} is associated to the second one and ψ is associated

to the third one. We recall that the set X in admits a representation similar to
the one given by Eq. (1): X in := {x ∈ R

d | ∀j = 1, . . . , nin, r
in
j (x) ≤ 0}. The first

equality constraint, namely

−pm(x) = σ0(x) −
nin∑

j=1

σj(x)rinj (x) , ∀x ∈ R
d ,

implies that ∀x ∈ X in , pm(x) ≤ 0. Similarly, recalling the definition Xi := {x ∈
R

d | ∀j = 1, . . . , ni, ri
j(x) ≤ 0}, one has ∀i ∈ I,∀x ∈ Xi ∩ X0, pm (T i(x)) ≤

pm(x) and ∀x ∈ R
d, κ(x) ≤ wm + pm(x). Then (pm, wm) is a feasible solution of

Problem (11). The second statement comes directly from Lemma 1.

While increasing 2m, we obtain a sequence of abstractions, called a hierarchy
of SOS problems in optimization (see [12]). Polynomials pm and bounds wm are
related through their dependencies to the PPS input data.

Computational considerations. Define t := max{deg T i, i ∈ I}. At step m of
this hierarchy, the number of SDP variables is proportional to

(
d+2mt

d

)
and the

number of SDP constraints is proportional to
(
d+mt

d

)
. Thus, one expects tractable

approximations when the number d of variables (resp. the degree 2m of the
template p) is small. However, one can handle bigger instances of Problem (13)
by taking into account the system properties. For instance one could exploit
sparsity as in [25] by considering the variable sparsity correlation pattern of the
polynomials {T i, i ∈ I}, {ri

j , i ∈ I, j = 1, . . . , ni}, {r0j , j = 1, . . . , n0}, {rinj , j =
1, . . . , nin} and κ.

5 Benchmarks

Here, we perform some numerical experiments while solving Problem (13) (given
in Sect. 4) on several examples. Different properties yield different instances of
Problem (13). In Sect. 5.1, we verify that the program of Example 1 satisfies some
boundedness property. We also provide examples involving higher dimensional
cases. Then, Sect. 5.2 focuses on other properties, such as checking that the set
of variable values avoids an unsafe region. Numerical experiments are performed
on an Intel Core i5 CPU (2.40GHz) with Yalmip being interfaced with the SDP
solver Mosek.
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5.1 Checking Boundedness of the Set of Variables Values

Example 4. Following Example 1, we consider the constrained piecewise discrete-
time dynamical system S = (X in,X0, {X1,X2}, {T 1, T 2}) with X in =
[0.9, 1.1] × [0, 0.2], X0 = {x ∈ R

2 | r0(x) ≤ 0} with r0 : x �→ −1, X1 =
{x ∈ R

2 | r1(x) ≤ 0} with r1 : x �→ ‖x‖2 − 1, X2 = {x ∈ R
2 | r2(x) < 0} with

r2 = −r1 and T 1 : (x1, x2) �→ (c11x2
1 + c12x

3
2, c21x

3
1 + c22x

2
2), T 2 : (x1, x2) �→

(d11x3
1+d12x

2
2, d21x

2
1+d22x

2
2). We are interested in showing that the boundedness

property P‖·‖2
2,α holds for some positive α.

Fig. 2. A hierarchy of sublevel sets Pm for Example 4

Here we illustrate the method by instantiating the program of Example 1 with the
following input: a1 = 0.9, a2 = 1.1, b1 = 0, b2 = 0.2, c11 = c12 = c21 = c22 = 1,
d11 = 0.5, d12 = 0.4, d21 = −0.6 and d22 = 0.3. We represent the possible
initial values taken by the program variables (x1, x2) by picking uniformly N

points (x(i)
1 , x

(i)
2 ) (i = 1, . . . , N) inside the box X in = [0.9, 1.1] × [0, 0.2] (see

the corresponding square of dots on Fig. 2). The other dots are obtained after
successive updates of each point (x(i)

1 , x
(i)
2 ) by the program of Example 1. The

sets of dots in Fig. 2 are obtained with N = 100 and six successive iterations.
At step m = 3, Program (13) yields a solution1 (p3, w3) ∈ R[x]6 ×R together

with SOS certificates, which guarantee the boundedness property, that is x ∈
R =⇒ x ∈ P3 := {p3(x) ≤ 0} ⊆ P‖·‖2

2,w3
=⇒ ‖x‖22 ≤ w3. The corresponding

instance of Problem (13) is
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

inf w,

s.t. − p(x1, x2) = σ0(x1, x2) − σ1(x1, x2)(1.1 − x1)(0.9 − x1) − σ2(x1, x2)(x2 − 0.2)x2 ,

p(x1, x2) − p(x2
1 + x3

2, x3
1 + x2

2) = σ1 − μ1(‖x‖2 − 1) ,

p(x1, x2) − p(0.5x2
1 + 0.4x3

2, −0.6x3
1 + 0.3x2

2) = σ2 − μ2(1 − ‖x‖2) ,

w + p(x) − ‖x‖2 = ψ(x) ,

w ∈ R , p ∈ R[x]6 , σ0, σ1, σ2, ψ ∈ Σ[x]6 , σ1, σ2, μ1, μ2 ∈ Σ[x]4 .

1 Note that most existing SDP solvers are implemented based on inexact computation.
In practice, we perform post-processing verification (Yalmip command “checkset”),
ensuring that computed polynomials are SOS.
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One has p3(x) := −2.510902467 − 0.0050x1 − 0.0148x2 + 3.0998x2
1 − 0.8037x3

2 −
3.0297x3

1 +2.5924x2
2 +1.5266x1x2 −1.9133x2

1x2 −1.8122x1x
2
2 +1.6042x4

1 +0.0512x3
1x2 −

4.4430x2
1x

2
2−1.8926x1x

3
2+0.5464x4

2−0.2084x5
1+0.5866x4

1x2+2.2410x3
1x

2
2+1.5714x2

1x
3
2−

0.0890x1x
4
2−0.9656x5

2+0.0098x6
1−0.0320x5

1x2−0.0232x4
1x

2
2+0.2660x3

1x
3
2+0.7746x2

1x
4
2+

0.9200x1x
5
2 + 0.6411x6

2 (for the sake of conciseness, we do not display p4 and p5).
Figure 2 displays in light gray outer approximations of the set of possible values
X1 taken by the program of Example 4 as follows: (a) the degree six sublevel set
P3, (b) the degree eight sublevel set P4 and (c) the degree ten sublevel set P5. The
outer approximation P3 is coarse as it contains the box [−1.5, 1.5]2. However,
solving Problem (13) at higher steps yields tighter outer approximations of R
together with more precise bounds w4 and w5 (see the corresponding row in
Table 2). We also succeeded to certify that the same property holds for higher
dimensional programs, described in Example 5 (d = 3) and Example 6 (d = 4).

Example 5. Here we consider X in = [0.9, 1.1] × [0, 0.2]2, r0 : x �→ −1, r1 :
x �→ ‖x‖22 − 1, r2 = −r1, T 1 : (x1, x2, x3) �→ 1/4(0.8x2

1 + 1.4x2 − 0.5x2
3, 1.3x1 +

0.5x2
3, 1.4x2+0.8x2

3), T 2 : (x1, x2, x3) �→ 1/4(0.5x1+0.4x2
2,−0.6x2

2+0.3x2
3, 0.5x3+

0.4x2
1) and κ : x �→ ‖x‖22.

Example 6. Here we consider X in = [0.9, 1.1] × [0, 0.2]3, r0 : x �→ −1, r1 : x �→
‖x‖22 − 1, r2 = −r1, T 1 : (x1, x2, x3, x4) �→ 0.25(0.8x2

1 + 1.4x2 − 0.5x2
3, 1.3x1 +

0.5, x2
2 − 0.8x2

4, 0.8x2
3 + 1.4x4, 1.3x3 + 0.5x2

4), T 2 : (x1, x2, x3, x4) �→ 0.25(0.5x1 +
0.4x2

2,−0.6x2
1 + 0.3x2

2, 0.5x3 + 0.4x2
4,−0.6x3 + 0.3x2

4) and κ : x �→ ‖x‖22.
Table 1 reports several data obtained while solving Problem (13) at step m, (2 ≤
m ≤ 5), either for Examples 4, 5 or 6. Each instance of Problem (13) is recast as
a SDP program, involving a total number of “Nb. vars” SDP variables, with a
SDP matrix of size “Mat. size”. We indicate the CPU time required to compute
the optimal solution of each SDP program with Mosek.

The symbol “−” means that the corresponding SOS program could not be
solved within one day of computation. These benchmarks illustrate the computa-
tional considerations mentioned in Sect. 4 as it takes more CPU time to analyze
higher dimensional programs. Note that it is not possible to solve Problem (13) at
step 5 for Example 6. A possible workaround to limit this computational blow-up
would be to exploit the sparsity of the system.

5.2 Other Properties

Here we consider the program given in Example 7. One is interested in showing
that the set X1 of possible values taken by the variables of this program does
not meet the ball B of center (−0.5,−0.5) and radius 0.5.

Example 7. Let consider the PPS S = (X in,X0, {X1,X2}, {T 1, T 2}) with X in =
[0.5, 0.7] × [0.5, 0.7], X0 = {x ∈ R

2 | r0(x) ≤ 0} with r0 : x �→ −1, X1 = {x ∈
R

2 | r1(x) ≤ 0} with r1 : x �→ ‖x‖22 − 1, X2 = {x ∈ R
2 | r2(x) ≤ 0} with

r2 = −r1 and T 1 : (x1, x2) �→ (x2
1 + x3

2, x
3
1 + x2

2), T 2 : (x, y) �→ (0.5x3
1 +

0.4x2
2,−0.6x2

1 + 0.3x2
2). With κ : (x1, x2) �→ 0.25 − (x1 + 0.5)2 − (x2 + 0.5)2,
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Table 1. Comparison of timing results for Examples 4, 5 and 6

Degree 2m 4 6 8 10

Example 4 Nb. vars 1513 5740 15705 35212

Mat. size 368 802 1404 2174

(d = 2) Time 0.82 s 1.35 s 4.00 s 9.86 s

Example 5 Nb. vars 2115 11950 46461 141612

Mat. size 628 1860 4132 7764

(d = 3) Time 0.84 s 2.98 s 21.4 s 109 s

Example 6 Nb. vars 7202 65306 18480 −
Mat. size 1670 6622 373057 −

(d = 4) Time 2.85 s 57.3 s 1534 s −

Table 2. Hierarchies of bounds obtained for various properties

Benchmark κ w2 w3 w4 w5

Example 4 ‖ · ‖2
2 639 17.4 2.44 2.02

Example 7 x �→ 0.25 − ‖x + 0.5‖2
2 0.25 0.249 0.0993 -0.0777

Example 8 ‖ · ‖2
2 10.2 2.84 2.84 2.84

x �→ ‖T 1(x) − T 2(x)‖2
2 5.66 2.81 2.78 2.78

one has B := {x ∈ R
2 | 0 ≤ κ(x)}. Here, one shall prove x ∈ R =⇒ κ(x) < 0

while computing some negative α such that R ⊆ Pκ,α. Note that κ is not a
norm, by contrast with the previous examples.

At step m = 3 (resp.m = 4), Program (13) yields a nonnegative solution w3

(resp. w4). Hence, it does not allow to certify that R ∩ B is empty. This is
illustrated in both Fig. 3 (a) and (b), where the light grey region does not avoid
the ball B. However, solving Program (13) at step m = 5 yields a negative
bound w5 together with a certificate that R avoids the ball B (see Fig. 3 (c)).
The corresponding values of wm (m = 3, 4, 5) are given in Table 2.

Fig. 3. A hierarchy of sublevel sets Pm for Example 7
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Finally, one analyzes the program given in Example 8.

Example 8. (adapted from Example 3 in [4])
Let S be the PPS (X in,X0, {X1,X2}, {T 1, T 2}) with X in = [−1, 1]× [−1, 1],

X0 = {x ∈ R
2 | r0(x) ≤ 0} with r0 : x �→ −1, X1 = {x ∈ R

2 | r1(x) ≤ 0} with
r1 : x �→ x2 − x1, X2 = {x ∈ R

2 | r2(x) ≤ 0} with r2 = −r1 and T 1 : (x1, x2) �→
(0.687x1+0.558x2−0.0001∗x1x2,−0.292x1+0.773x2), T 2 : (x, y) �→ (0.369x1+
0.532x2−0.0001x2

1,−1.27x1+0.12x2−0.0001x1x2). We consider the boundedness
property κ1 := ‖ · ‖22 as well as κ2(x) := ‖T 1(x) − T 2(x)‖22. The function κ2 can
be viewed as the absolute error made by updating the variable x after a possibly
“wrong” branching. Such behaviors could occur while computing wrong values
for the conditionals (e.g. r1) using floating-point arithmetics. Table 2 indicates
the hierarchy of bounds obtained after solving Problem (13) with m = 3, 4, 5, for
both properties. The bound w5 = 2.84 (for κ1) implies that the set of reachable
values may not be included in the initial set X in. A valid upper bound of the
error function κ2 is given by w5 = 2.78.

6 Templates Bases

We finally present further use of the set P defined at Eq. (7). This sublevel set
can be viewed as a template abstraction, following from the definition in [3],
with a fixed template basis p and an associated 0 bound. This representation
allows to develop a policy iteration algorithm [2] to obtain more precise inductive
invariants.

We now give some simple method to complete this template basis to improve
the precision of the bound w found with Problem (13).

Proposition 2 (Template Basis Completions). Let (p,w) be a solution of
Problem (13) and Q be a finite subset of R[x] such that for all q ∈ Q, p−q ∈ Σ[x].
Then R ⊆ {x ∈ R

d | p(x) ≤ 0, q(x) ≤ 0, ∀ q ∈ Q} ⊆ Pκ,w ⊆ Pκ,α and
{x ∈ R

d | p(x) ≤ 0, q(x) ≤ 0, ∀ q ∈ Q} is an inductive invariant.

Proof Let Q be the set {x ∈ R
d | p(x) ≤ 0, q(x) ≤ 0, ∀ q ∈ Q}. It is obvious

that Q ⊆ P = {x ∈ R
d | p(x) ≤ 0} and hence Q ⊆ Pκ,w. Now let us prove that

Q is an inductive invariant. We have to prove that Q satisfies Eq. (8) that is: (i)
For all x ∈ X in, q(x) ≤ 0; (ii) For all i ∈ I, for all x ∈ Q∩Xi ∩X0, q(T i(x)) ≤ 0.
For all q ∈ Q, we denote by ψq the element of Σ[x] such that p − q = ψq. Let us
show (i) and let x ∈ X in. We have q(x) = p(x) − ψq(x) and since ψq ∈ Σ[x], we
obtain, q(x) ≤ p(x). Now from Proposition 1 and Lemma 1 and since (p,w) is a
solution of Problem (13), we conclude that q(x) ≤ p(x) ≤ 0.

Now let us prove (ii) and let i ∈ I and x ∈ Q ∩ Xi ∩ X0. We get q(T i(x)) =
p(T i(x))−ψq(T i(x)) and since ψq ∈ Σ[x], we obtain q(T i(x)) ≤ p(T i(x)). Using
the fact that (p,w) is a solution of Problem (13) and using Proposition 1 and
Lemma 1, we obtain q(T i(x)) ≤ p(T i(x)) ≤ p(x). Since x ∈ Q ⊆ P = {y ∈ R

d |
p(y) ≤ 0}, we conclude that q(T i(x)) ≤ 0.
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Actually, we can weaken the hypothesis of Proposition 2 to construct an inductive
invariant. Indeed, after the computation of p following Problem (13), it suffices to
take a polynomial q such that p− q ≥ 0. Nevertheless, we cannot compute easily
such a polynomial q. By using the hypothesis p− q ∈ Σ[x], we can compute q by
sum-of-squares. Proposition 2 allows to define a simple method to construct a
basic semialgebraic inductive invariant set. Then the polynomials describing this
basic semialgebraic set defines a new templates basis and this basic semialgebraic
set can be used as initialisation of the policy iteration algorithm developed in [2].
Note that the link between the templates generation and the initialisation of
policy iteration has been addressed in [1].

Example 9 Let us consider the property P‖·‖2
2,∞ and let (p,w) be a solution of

Problem (13). We have κ(x) =
∑

1≤j≤k x2
j and w + p − κ = ψ where ψ ∈ Σ[x].

In [21], the templates basis used to compute bounds on the reachable values set
consists in the square variables plus a Lyapunov function. Let us prove that,
in our setting, Q = {x2

k − w, k = 1, . . . , d} can complete {p} in the sense of
Proposition 2. Let k ∈ {1, . . . , d} and let x ∈ R

d, p(x)−(x2
k −w) = p(x)−κ(x)+

w +
∑

j 	=k x2
j = ψ(x) +

∑
j 	=k x2

j ∈ Σ[x].

7 Related Works and Conclusion

Roux et al. [21] provide an automatic method to compute floating-point certified
Lyapunov functions of perturbed affine loop body updates. They use Lyapunov
functions with squares of coordinate functions as quadratic invariants in case
of single loop programs written in affine arithmetic. In the context of hybrid
systems, certified inductive invariants can be computed by using SOS approxi-
mations of parametric polynomial optimization problems [14]. In [18], the authors
develop a SOS-based methodology to certify that the trajectories of hybrid sys-
tems avoid an unsafe region.

In the context of static analysis for semialgebraic programs, the approach
developed in [8] focuses on inferring valid loop/conditional invariants for semial-
gebraic programs2. This approach relaxes an invariant generation problem into
the resolution of nonlinear matrix inequalities, handled with semidefinite pro-
gramming. Our method bears similarities with this approach but we generate
a hierarchy of invariants (of increasing degree) with respect to target polyno-
mial properties and restrict ourselves to linear matrix inequality formulations.
In [6], invariants are given by polynomial inequalities (of bounded degree) but
the method relies on a reduction to linear inequalities (the polyhedra domain).
Template polyhedra domains allow to analyze reachability for polynomial sys-
tems: in [22], the authors propose a method that computes linear templates
to improve the accuracy of reachable set approximations, whereas the proce-
dure in [10] relies on Bernstein polynomials and linear programming, with linear
templates being fixed in advance. Bernstein polynomials also appear in [20]
as polynomial templates but they are not generated automatically. In [23],
2 This approach also handles semialgebraic program termination.
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the authors use SMT-based techniques to automatically generate templates
which are defined as formulas built with arbitrary logical structures and predicate
conjunctions. Other reductions to systems of polynomial equalities (by contrast
with polynomial inequalities, as we consider here) were studied in [16,19] and
more recently in [7].

In this paper, we give a formal framework to relate the invariant generation
problem to the property to prove on analyzed program. We proposed a prac-
tical method to compute such invariants in the case of polynomial arithmetic
using sums-of-squares programming. This method is able to handle non trivial
examples, as illustrated through the numerical experiments. Topics of further
investigation include refining the invariant bounds generated for a specific sub-
level property, by applying the policy iteration algorithm. Such a refinement
would be of particular interest if one can not decide whether the set of variable
values avoids an unsafe region when the bound of the corresponding sums-of-
squares program is not accurate enough. For the case of boundedness property,
it would allow to decrease the value of the bounds on the variables. Finally,
our method could be generalized to a larger class of programs, involving semi-
algebraic or transcendental assignments, while applying the same polynomial
reduction techniques as in [15].
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