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Preface

Static Analysis is increasingly recognized as a fundamental tool for program verifi-
cation, bug detection, compiler optimization, program understanding, and software
maintenance. The series of Static Analysis Symposia has served as the primary venue
for the presentation of theoretical, practical, and applicational advances in the area.
Previous symposia were held in Munich, Seattle, Deauville, Venice, Perpignan, Los
Angeles, Valencia, Kongens Lyngby, Seoul, London, Verona, San Diego, Madrid,
Paris, Santa Barbara, Pisa, Aachen, Glasgow, and Namur. This volume contains the
papers presented at SAS 2015, the 22nd International Static Analysis Symposium. The
conference was held on September 9–11, 2015 in Saint-Malo, France.

The conference received 44 submissions, each of which was reviewed by at least
three Program Committee members. The Program Committee decided to accept 18
papers, which appear in this volume. As in previous years, authors of SAS submissions
were able to submit a virtual machine image with artifacts or evaluations presented in
the paper. In accordance with this, 13 submissions came with an artifact. Artifacts were
not formally evaluated but were used as an additional source of information during the
evaluation of the submissions.

The Program Committee also invited three leading researchers to present invited
talks: Josh Berdine (Microsoft Research, UK), Anders Møller (Aarhus University,
Denmark), and Henny Sipma (Kestrel, USA).We thank these speakers for accepting the
invitation and also for contributing articles to these proceedings.

SAS 2015 featured three associated workshops that were held the day before the
conference: the SASB on static analysis and systems biology, TAPAS on tools for
automatic program analysis, and Security, dedicated to static analysis and security of
low-level code.

The work of the Program Committee and the editorial process were greatly facili-
tated by the EasyChair conference management system. We are grateful to Springer for
publishing these proceedings, as they have done for all SAS meetings since 1993.

Many people contributed to the success of SAS 2015. The Program Committee
worked hard at reviewing papers, holding extensive discussions during the on-line
Program Committee meeting, and making final selections of accepted papers and
invited speakers. Thanks are also due to the additional referees enlisted by Program
Committee members. Finally, we would like to thank our sponsors: Inria, the Uni-
versity of Rennes 1, Facebook, Fondation Rennes 1, Région Bretagne, and Springer.

July 2015 Sandrine Blazy
Thomas Jensen
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Static Analysis of x86 Executables
Using Abstract Interpretation

Henny B. Sipma

Kestrel Technology, LLC, Palo Alto, CA 94304, USA
sipma@kestreltechnology.com

Analysis of executables is often a tedious and largely manual process that involves the
application of a variety of static and dynamic analysis tools, such as IDA Pro and
debuggers, to gain insight into the behavior of the executable. We are developing
techniques for static binary analysis that aim to add some automation to this process
and enable more precise analysis, in particular memory safety and information ow
analysis.

The techniques are based on abstract interpretation, a mathematical theory for
sound approximation of program behaviors [2]. Abstract interpretation is used to
incrementally disassemble the executable and construct a higher-level representation in
an iterative process of invariant generation and variable discovery. Invariants are
generated in a variety of abstract domains, of which linear equalities [3] and Value Sets
[1] have been found to be particularly useful in the generation of relationships required
to resolve indirect memory accesses.

The techniques have been implemented in the CodeHawk x86 Binary Analyzer.
Analysis results are saved in xml to enable integration with other static or dynamic
analysis tools and are also accessible via a graphical user interface that shows call
graph, control ow graphs, data propagation graphs, as well as stack layout diagrams,
register contents, and annotated assembly code.

The analyzer is continuously being validated on a corpus of more than 600 exec-
utables and dll’s, up to 8 MB in size, compiled from both C and C++, including several
java native libraries with JNI callbacks.

Acknowledgements. This research was supported in part by IARPA contracts FA8650-10-C-7023
(subcontract P010056114) and FA8650-14-C-7425, and DHS contract FA8750-12-C-0277.
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Static Analysis for JavaScript

Anders Møller

Aarhus University, Denmark
amoeller@cs.au.dk

Abstract. JavaScript supports a powerful mix of object-oriented and functional
programming, which provides flexibility for the programmers but also makes it
difficult to reason about the behavior of the programs without actually running
them. One of the main challenging for static program analysis tools is to handle
the complex programming patterns that are found in widely used libraries, such
as jQuery, without losing critical precision. Another challenge is the use of
dynamic language features, such as ‘eval’. This talk presents an overview of
recent progress towards obtaining sound and effective static analysis techniques
for JavaScript web applications.



The SLAYER Static Analyzer

Josh Berdine

Microsoft Research

SLAYER is a static analyzer intended to prove memory safety properties of
low-level systems code. The code characteristic that has been most influential on
the analyzer’s design is manual memory deallocation, which enables a program
to deallocate a live object, thereby creating a dangling pointer that may later be
erroneously dereferenced. SLAYER attempts to prove that every memory access
falls within the dynamic lifetime of the referenced object, and that every object is
eventually deallocated. This precludes use of uninitialized pointers, use-after-
free and double-free errors, as well as a form of memory leaks. In complement to
several other analysis efforts, the focus for SLAYER has been on linked data
structures, and array accesses are not checked to be within bounds.

The development of SLAYER has been guided by the specific instance of the
memory safety with dangling pointers problem posed by Windows kernel driv-
ers. A consequence of this application choice is that the analyzer need only scale
to moderately sized code bases, on the order of tens of thousands of lines. This is
a valuable application since the driver interface is trusted by the kernel, exposed
to third-party developers, and only very informally documented. While the
overall quality of driver code has improved significantly from that which moti-
vated SLAM fifteen years ago, it remains that drivers are responsible for a
majority of Windows crashes, and memory corruption due to unsafe code is a
leading cause.

Perhaps as important as the code to be analyzed is the development process
into which the analyzer is to be deployed. SLAYER is fully automatic: users are
not expected to write code annotations, and the analyzer includes a specification
of the interface between the kernel and driver. Another point of primary
importance is what feedback from the analyzer is necessary to convince devel-
opers that code is faulty. For application to Windows drivers, this applied
pressure toward full concrete executions. This influenced the design of SLAYER

as a whole- program, flow- and calling-context-sensitive, interprocedural static
analysis with partially relational procedure summaries.

Due to the unbounded nature of dynamically-allocated data structures, where
their size depends on input data, abstraction is required to prove safety properties.
SLAYER performs an abstract interpretation using a fragment of Separation Logic
as an abstract representation of sets of program states. The widening operation
abstracts anonymous objects of linked data structures using recursive predicates,
generalizing from small to unbounded data structure instances. Soundness of the
intraprocedural analysis follows from standard correct over-approximation
results, while the interprocedural analysis also relies on soundness of Separa-
tion Logic’s Frame rule.
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Static Analysis of Non-interference in Expressive
Low-Level Languages

Peter Aldous(B) and Matthew Might

University of Utah, Salt Lake City, USA
{peteya,might}@cs.utah.edu

Abstract. Early work in implicit information flow detection applied
only to flat, procedureless languages with structured control-flow (e.g.,
if statements, while loops). These techniques have yet to be adequately
extended and generalized to expressive languages with interprocedural,
exceptional and irregular control-flow behavior. We present an implicit
information flow analysis suitable for languages with conditional jumps,
dynamically dispatched methods, and exceptions. We implement this
analysis for the Dalvik bytecode format, the substrate for Android. In
order to capture information flows across interprocedural and exceptional
boundaries, this analysis uses a projection of a small-step abstract inter-
preter’s rich state graph instead of the control-flow graph typically used
for such purposes in weaker linguistic settings. We present a proof of
termination-insensitive non-interference. To our knowledge, it is the first
analysis capable of proving non-trivial non-interference in a language
with this combination of features.

1 Introduction

With increasing awareness of privacy concerns, there is a demand for verification
that programs protect private information. Although many systems exist that
purport to provide assurances about private data, most systems fail to address
implicit information flows, especially in expressive low-level languages. Expres-
sive low level languages, such as Dalvik bytecode, do not provide static guaran-
tees about control-flow due to the presence of dynamic dispatch, exceptions and
irregular local jumps.

To demonstrate that a program does not leak information, we prove non-
interference [13]: any two executions of a non-interfering program that vary
only in their “high-security” inputs (the values that should not leak) must exhibit
the same observable behaviors; in other words, high-security values must never
affect observable program behavior. Our analysis proves termination-insensitive
non-interference [2,10,26].

For its foundation, our analysis uses a rich static taint analysis to track high-
security values in a program: high-security values are marked as tainted and, as
(small-step) abstract interpretation proceeds, any values affected by tainted val-
ues are also marked. (Taint analysis is a dynamic technique but an abstract inter-
pretation of a concrete semantics enriched with taint-tracking makes it a static
analysis.)
c© Springer-Verlag Berlin Heidelberg 2015
S. Blazy and T. Jensen (Eds.): SAS 2015, LNCS 9291, pp. 1–17, 2015.
DOI: 10.1007/978-3-662-48288-9 1



2 P. Aldous and M. Might

We enrich the taint analysis to track implicit flows and prove non-interference
by executing the advice of Denning and Denning [7]. Their advice suggested
that languages without statically bounded control-flow structures could precisely
track implicit information flows with a static analysis that calculated the imme-
diate postdominator (or immediate forward dominator) of every branch in the
program’s control-flow graph.1 We show (and prove) that this old and simple
principle fully (and formally) generalizes from flat, procedureless languages to
rich, modern languages by constructing projections of abstract state graphs.

1.1 Contributions

This paper presents an analysis for a summarized version of Dalvik bytecode
that preserves all essential features: conditional jumps, methods, and exceptional
flow. This analysis is similar in spirit to the suggestion of Denning and Denning
but uses an execution point graph instead of the program’s control-flow graph.
The execution point graph is formed by projecting the state graph that results
from an small-step abstract interpreter [27]. Nodes in the execution point graph
contain code points and contextual information such as the height of the stack to
prevent subtle information leaks. Consider, for example, the function in Fig. 1.

static void leak(boolean top) {
if (top) {

leak(false);
} else {

if (sensitive) {
return;

}
}
if (!printed) {

printed = true;
System.out.println(top);

}
}

Fig. 1. A leak after convergence

There are two possible execu-
tions of leak when called when
top is true (and when the cap-
tured value printed is initially set
to false). In each case, leak imme-
diately recurs, this time with top
set to false. At this point, the top-
most stack frame has top set to
false and the other stack frame has
top set to true. This leak exploits
the difference between these stack
frames by returning immediately
(effectively setting top to true) in
one case—and then proceeding to
print the value of top.

The execution point graph
contains just enough information
about the stack to prevent leakages of this variety. During small-step abstract
interpretation, an implicit taint is added to any value that changes after control-
flow has changed due to a high-security value. Convergence in the execu-
tion point graph indicates that control-flow has converged and, consequently,
that no further information can be gleaned from it about high-security values.
This calculation can be done lazily and is fully a posteriori ; as such, it may be
more efficient than performing one abstract interpretation to create the graph
and another to perform taint analysis.

1 A node P postdominates another node A in a directed graph if every walk from A
to the exit node includes P .
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An execution point graph whose nodes consist of a code point and the height
of the stack is preferable to a more precise graph whose nodes contain full stacks;
conflating more execution points means that, in some cases, convergence happens
after fewer execution points. As a result, this less precise graph translates into
more precise tracking of implicit flows.

Section 2 presents a language that summarizes the features of Dalvik byte-
code, gives semantics for the language, and describes the abstraction of this
dynamic analysis to a static analysis. Section 3 presents the proof of termination-
insensitive non-interference. Further discussion and related work follow.

2 Language and Semantics

2.1 Syntax

The abstract syntax for our summarized bytecode language is given in Fig. 2.
In conjunction with this syntax, we need the following metafunctions:

– M : MName → Method for method lookup
– I : CodePoint → Stmt for statement lookup
– next : CodePoint ⇀ CodePoint gives the syntactic successor to the current

code point
– H : CodePoint ⇀ CodePoint gives the target of the first exception handler

defined for a code point in the current function, if there is any.

prgm ∈ Program = ClassDef∗

classdef ∈ ClassDef ::= Class className {field1, . . . , fieldn, m1, . . . , mm}
m ∈ Method ::= Def mName {handler1, . . . ,handlern, stmt1, . . . , stmtm}

handler ∈ Handler ::= Catch(ln, ln, ln)

stmt ∈ Stmt ::= ln Const(r, c)

| ln Move(r, r)

| ln Invoke(mName, r1, . . . , rn)

| ln Return(r)

| ln IfEqz(r, ln)

| ln Add(r, r, r)

| ln NewInstance(r, className)

| ln Throw(r)

| ln IGet(r, r, field)

| ln IPut(r, r, field)

r ∈ Register = {result, exception, 0, 1, . . .}
ln ∈ LineNumber is a set of line numbers

mName ∈ MName is a set of method names

field ∈ Field is a set of field names

cp ∈ CodePoint ::= (ln, m)

Fig. 2. Abstract syntax
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– init : Method → CodePoint gives the first code point in a method.
– jump : CodePoint × LineNumber ⇀ CodePoint gives the code point in the

same method as the given code point and at the line number specified.

2.2 State Space

A state ς contains six members, which are formally defined in Fig. 3:

1. A code point cp.
2. A frame pointer φ. All registers in the machine are frame-local. Frame

addresses are represented as a pair consisting of a frame pointer and an index.
3. A store σ, which is a partial map from addresses to values.
4. A continuation κ.
5. A taint store ts, which is a map from addresses to taint values. It is updated

in parallel with the store. Undefined addresses are mapped to the empty set.
6. A context taint set ct, which is a set of execution points where control-flow

has diverged before reaching the current state.

2.3 Semantics

Our semantics require projection metafunctions. height : Kont → Z calculates
stack height and pς : Σ → ExecPoint uses height to create execution points.

height (κ) =

{
1 + height (κ′) if κ = retk(cp, φ, ct, κ′)
0 if κ = halt

ς ∈ Σ ::= (cp, φ, σ, κ, ts, ct) | errorstate | endstate
φ ∈ FP is an infinite set of frame pointers

σ ∈ Store = Addr → Value

val ∈ Value = INT32+ObjectAddress

κ ∈ Kont ::= retk(cp, φ, ct , κ) | halt
ts ∈ TaintStore = Addr → P (TaintValue)

tv ∈ TaintValue = ExplicitTV + ImplicitTV

etv ∈ ExplicitTV = ExecPoint

itv ∈ ImplicitTV = ExecPoint × ExecPoint

ct ∈ ContextTaint = P (ExecPoint)

ep ∈ ExecPoint ::= ep(cp, z ) | errorsummary | endsummary

z ∈ Z is the set of integers

a ∈ Addr ::= sa | fa | oa | null
sa ∈ StackAddress = FP × Register

fa ∈ FieldAddress = ObjectAddress × Field

oa ∈ ObjectAddress is an infinite set of addresses

Fig. 3. Concrete state space
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pς (ς) =

⎧⎪⎨
⎪⎩
ep(cp, z ) if ς = (cp, φ, σ, κ, ts , ct) and z = height (κ)
endsummary if ς = endstate
errorsummary if ς = errorstate

The concrete semantics for our language are defined by the relation (→) ⊆
Σ × Σ. In its transition rules, we use the following shorthand: epς is a state’s
execution point and itv ς is the set of implicit taint values generated at a state.
For a state ς with context taint set {ep1, . . . , epn},

epς = pς (ς) and itv ς =
{(

ep1, epς

)
, . . . ,

(
epn, epς

)}
The Const instruction writes a constant value to a register. Observe that

implicit taints can be applied to a constant assignment.

I (cp) = Const(r, c)

(cp, φ, σ, κ, ts , ct) → (next (cp) , φ, σ′, κ, ts ′, ct)
, where

sa = (φ, r)
σ′ = σ[sa �→ c]
ts ′ = ts[sa �→ itv ς ]

The Move instruction simulates all of Dalvik bytecode’s move instructions.

I (cp) = Move(rd, rs)
(cp, φ, σ, κ, ts , ct) → (next (cp) , φ, σ′, κ, ts ′, ct)

, where

sad = (φ, rd)
sas = (φ, rs)
σ′ = σ[sad �→ σ (sas)]
ts ′ = ts[sad �→ ts (sas) ∪ itv ς ]

The Invoke instruction simulates Dalvik’s invoke instructions.

I (cp) = Invoke(mName, r1, . . . , rn)

(cp, φ, σ, κ, ts , ct) → (cp′, φ′, σ′, κ′, ts ′, ct′)
, where

cp′ = init (M (mName))
κ′ = retk(cp, φ, ct, κ)
φ′ = is a fresh frame pointer address

for each i from 1 to n,
sadi = (φ′, i − 1) and sasi = (φ, ri)

σ′ = σ[sad1 �→ σ (sas1) , . . . , sadn �→ σ (sasn)]
ts ′ = ts[sad1 �→ ts (sas1) ∪ itv ς , . . . , sadn �→ ts (sasn) ∪ itv ς ]

ct′ =

{
ct if ts (sas0) = ∅
ct ∪ {epς} if ts (sas0) �= ∅



6 P. Aldous and M. Might

The Return instruction summarizes Dalvik’s return instructions. The Return
instruction introduces context taint if invocation occurred in a tainted context.

I (cp) = Return(r) κ = retk(cp, φ′, ctk, κ′)
(cp, φ, σ, κ, ts , ct) → (next (cp′) , φ′, σ′, κ′, ts ′, ct′)

, where

sad = (φ′, result)
sas = (φ, r)
σ′ = σ[sad �→ σ (sas)]
ts ′ = ts[sad �→ ts (sas) ∪ itv ς ]

ct′ =

{
ct if ctk = ∅
ct ∪ {epς} if ctk �= ∅

I (cp) = Return(r) κ = halt
(cp, φ, σ, κ, ts , ct) → endstate

The IfEqz instruction jumps to the given target if its argument is 0:

I (cp) = IfEqz(r, ln)
(cp, φ, σ, κ, ts , ct) → (cp′, φ, σ, κ, ts , ct′)

, where

sas = (φ, r)

cp′ =

{
jump (cp, ln) if σ (sas) = 0
next (cp) if σ (sas) �= 0

ct′ =

{
ct if ts (sas) = ∅
ct ∪

{
epς

}
if ts (sas) �= ∅

The Add instruction represents all arithmetic instructions. Since Java uses 32-
bit two’s complement integers, + represents 32-bit two’s complement addition.

I (cp) = Add(rd, rl, rr)
(cp, φ, σ, κ, ts , ct) → (next (cp) , φ, σ′, κ, ts ′, ct)

, where

sad = (φ, rd)
sa l = (φ, rl)
sar = (φ, rr)
σ′ = σ[sad �→ σ (sa l) + σ (sar)]
ts ′ = ts[sad �→ ts (sa l) ∪ ts (sar) ∪ itv ς ]

Object instantiation is done with the NewInstance instruction:

I (cp) = NewInstance(r, className)
(cp, φ, σ, κ, ts , ct) → (next (cp) , φ, σ′, κ, ts ′, ct)

, where

oa is a fresh object address
sa = (φ, r)
σ′ = σ[sa �→ oa]
ts ′ = ts[sa �→ itv ς ]
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The remaining instructions use an additional metafunction:

T : CodePoint × FP × ContextTaint × Kont ⇀

CodePoint × FP × ContextTaint × Kont

T looks for an exception handler in the current function. If there is a handler,
execution resumes there. If not, searches through the code points in the continu-
ation stack. The accumulation of context taint simulates the accumulation that
would happen through successive Return instructions. Formally:

T (cp, φ, ct, κ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(cph, φ, ct, κ) if H (cp) = cph

T (cpk, φk, ct, κk) if cp /∈ dom (H) and ctk = ∅
and κ = retk(cpk, φk, ctk, κk)

T (cpk, φk, ct ∪ itv ς , κk) if cp /∈ dom (H) and ctk �= ∅
and κ = retk(cpk, φk, ctk, κk)

The Throw instruction requires two cases. One is for continued execution at
the specified handler and one is for an error state when no handler can be found.

I (cp) = Throw(r) (cp, φ, ct, κ) ∈ dom (T )
(cp, φ, σ, κ, ts , ct) → (cp′, φ′, σ′, κ′, ts ′, ct′)

, where

sas = (φ, r)
sad = (φ′, exception)

(cp′, φ′, ct′, κ′) = T (cp, φ, ct, κ)
σ′ = σ[sad �→ σ (sas)]
ts ′ = ts[sad �→ ts (sas) ∪ itv ς ]

I (cp) = Throw(r) (cp, φ, ct, κ) /∈ dom (T )
(cp, φ, σ, κ, ts , ct) → errorstate

The IGet instruction represents the family of instance accessor instructions
in Dalvik bytecode. When the object address is null, it behaves like Throw.

I (cp) = IGet(rd, ro, field) oa �= null

(cp, φ, σ, κ, ts , ct) → (next (cp) , φ, σ′, κ, ts ′, ct)
, where

sad = (φ, rd)
sao = (φ, ro)
oa = σ (sao)
fa = (oa,field)
σ′ = σ[sad �→ σ (fa)]
ts ′ = ts[sad �→ ts (oa) ∪ ts (fa) ∪ itv ς ]

The IPut instruction also represents a family of instructions; IPut stores
values in objects. When the object address is null, IPut behaves like Throw.
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I (cp) = IPut(rs, ro, field) oa �= null

(cp, φ, σ, κ, ts , ct) → (next (cp) , φ, σ′, κ, ts ′, ct)
, where

sas = (φ, rs)
sao = (φ, ro)
oa = σ (sao)
fa = (oa,field)
σ′ = σ[fa �→ σ (sas)]
ts ′ = ts[fa �→ ts (sas) ∪ itv ς ]

2.4 Abstraction

A small-step analyzer as described by Van Horn and Might [27] overapproximates
program behavior and suits our needs. Abstraction of taint stores and context
taint sets is straightforward: they store execution points, which are code points
and stack heights. Code points need no abstraction and the height of abstract
stacks is suitable. Any abstraction of continuations (even that of PDCFA [8])
admits indeterminate stack heights; an abstract execution point with an inde-
terminate stack height cannot be a postdominator.

3 Non-interference

3.1 Influence

The influence of an execution point ep0 is the set of execution points that
lie along some path from ep0 to its immediate postdominator epn (where ep0

appears only at the end) in the execution point graph.
Given the set V of vertices in the execution point graph and the set E of

edges in that same graph, we can define the set P of all paths from ep0 to epn:

P = {〈ep0, . . . , epn〉 | ∀i ∈ {0, . . . ,n − 1},
(
epi, epi+1

)
∈ E ∧ epi �= epn}

With P defined, we can define the influence of ep0 as:

{ep ∈ V | ∃p = 〈ep0, . . . , epn〉 ∈ P : ep ∈ p} − {ep0, epn}

3.2 Program Traces

A program trace π is a sequence 〈ς1, ς2, . . . , ςn〉 of concrete states such that

ς1 → ς2 → . . . → ςn and ςn /∈ dom (→)

3.3 Observable Behaviors

Which program behaviors are observable depends on the attack model and is
a decision to be made by the user of this analysis. In this proof, we consider
the general case: every program behavior is observable. A more realistic model
would be that invocations of certain functions are observable, as well as top-level
exceptions. Accordingly, we define obs ⊆ Σ so that obs = Σ.
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3.4 Valid Taints

The given semantics has no notion of taint removal; instead, some taints are
valid and the others are disregarded. Explicit taints are always valid. Implicit
taints are created when some assignment is made. An implicit taint is valid if and
only if its assignment happens during the influence of its branch. Accordingly,
we define the set of all valid taints:

valid = ExplicitTV ∪ {(epb, epa) ∈ ImplicitTV | epa ∈ influence (epb)}

3.5 Labeled Behaviors

A state ς has a labeled behavior if and only if it reads values at one or more
addresses with valid taint or if it occurs at a state with valid context taint. We
define the function inputs : Σ → Addr∗ and labeled : Σ → P (TaintValue) so
that inputs identifies the addresses read by ς’s instruction and labeled identifies
the valid taints at those addresses. The use of itv ς reflects context taint. The
formal definitions of inputs and labeled are given in Fig. 4.

3.6 Similar Stores

Two stores are similar with respect to two frame pointers, two continuations,
and two taint stores if and only if they differ only at reachable addresses that
are tainted in their respective taint stores. This definition requires some related
definitions, which follow.

Two stores are similar with respect to two addresses and two taint stores iff:

I (cp) = Const(r, c) ⇒ inputs (ς) = 〈〉
I (cp) = Move(rd, rs) ⇒ inputs (ς) = 〈(φ, rs)〉
I (cp) = Invoke(mName, r1, . . . , rn) ⇒ inputs (ς) = 〈(φ, r1) , . . . , (φ, rn)〉
I (cp) = Return(r) ⇒ inputs (ς) = 〈(φ, r)〉
I (cp) = IfEqz(r, ln) ⇒ inputs (ς) = 〈(φ, r)〉
I (cp) = Add(rd, rl, rr) ⇒ inputs (ς) = 〈(φ, rl) , (φ, rr)〉
I (cp) = NewInstance(r, className) ⇒ inputs (ς) = 〈〉
I (cp) = Throw(r) ⇒ inputs (ς) = 〈(φ, r)〉
I (cp) = IGet(rd, ro, field) ⇒ inputs (ς) = 〈(φ, ro) , σ ((φ, ro)) ,

σ (σ ((φ, ro)) ,field)〉
I (cp) = IPut(rs, ro, field) ⇒ inputs (ς) = 〈(φ, rs)〉

labeled (ς) = {tv ∈ TaintValue | ∃ a ∈ inputs (ς) ∪ {itv ς} : tv ∈ ts (a)} ∩ valid

Fig. 4. A definition of addresses read by instruction. ς = (cp, φ, σ, κ, ts, ct)
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1. Both stores are undefined at their respective address, or
2. Either store is tainted at its respective address, or
3. The stores map their respective addresses to the same value, or
4. The stores map respective addresses to structurally identical objects.

Formally,

(σ1, a1, ts1) ≈a (σ2, a2, ts2)
⇔(

a1 /∈ dom (σ1) ∧ a2 /∈ dom (σ2)
)

∨ (1)(
∃ tv ∈ ts1 (a1) : tv ∈ valid ∨ ∃ tv ∈ ts2 (a2) : tv ∈ valid

)
∨ (2)

σ1 (a1) = σ2 (a2) ∨ (3)(
σ1 (a1) = oa1 ∧ σ2 (a2) = oa2 ∧ (4)

∀ field ∈ Field, (σ1, (oa1,field) , ts1) ≈a (σ2, (oa2,field) , ts2)
)

With this definition, we can define similarity with respect to frame pointers.
Two stores are similar with respect to two frame pointers and two taint stores
if and only if they are similar with respect to every address containing the
respective frame pointers.

Formally,
(σ1, φ1, ts1) ≈φ (σ2, φ2, ts2) ⇔ ∀r ∈ Register, (σ1, (φ1, r) , ts1) ≈a (σ2, (φ2, r) , ts2)

Two stores are similar with respect to two frame pointers, two continuations,
and two taint stores iff:
1. The stores are similar with respect to the given pair of frame pointers, and
2. They are recursively similar with respect to the given continuations.

Formally,

(σ1, φ1, κ1, ts1) ≈σ (σ2, φ2, κ2, ts2)
⇔

(σ1, φ1, ts1) ≈φ (σ2, φ2, ts2) ∧ (1)(
κ1 = κ2 = halt ∨ (2)

κ1 = retk(cp1, φ
′
1, ct

′
1, κ

′
1) ∧ κ2 = retk(cp2, φ

′
2, ct

′
2, κ

′
2) ∧

(σ1, φ
′
1, κ

′
1, ts1) ≈σ (σ2, φ

′
2, κ

′
2, ts2)

)

3.7 Similar States

Two states are similar if and only if their execution points are identical and
their stores are similar with respect to their taint stores and frame pointers.

Formally, if ς1 = (cp1, φ1, σ1, κ1, ts1, ct1) and ς2 = (cp2, φ2, σ2, κ2, ts2, ct2),
then ς1 ≈ς ς2 ⇔ pς (ς1) = pς (ς2) ∧ (σ1, φ1, ts1) ≈σ (σ2, φ2, ts2).
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3.8 Similar Traces

Two traces π = 〈ς1, ς2, . . . , ςn〉 and π′ = 〈ς ′
1, ς

′
2, . . . , ς

′
m〉 are similar if and only

if their observable behaviors are identical except for those marked as tainted.
We formulate the similarity of traces using a partial function dual : π ⇀ π′.
Similarity of traces is equivalent to the existence of a function dual such that:

1. dual is injective, and
2. dual maps each state in π to a similar state in π′ if such a state exists, and
3. All states in π not paired by dual occur in a tainted context, and
4. All states in π′ not paired by dual occur in a tainted context, and
5. The pairs of similar states occur in the same order in their respective traces.

Formally,

π ≈π π′ ⇔ ∃ dual :
∀ i , j ∈ 1 . . . n, i �= j ⇒ dual (i) �= dual (j ) ∧ (1)

∀ ςi ∈ dom (dual) , ςi ≈ς dual (ςi) ∧ (2)
∀ ςi /∈ dom (dual) , itv ς ∈ valid ∧ (3)
∀ ς ′

j /∈ range (dual) , itv ς ∈ valid ∧ (4)

∀ i , j ∈ 1 . . . n : dual (ςi) = ς ′
k ∧ dual (ςj) = ς ′

l , (5)
i < j ⇒ k < l ∧ i = j ⇒ k = l ∧ i > j ⇒ k > l

3.9 Transitivity of Similarity

Lemma. If two states ς and ς ′ are similar and if their execution point’s immediate
postdominator in the execution point graph is eppd, the first successor of each
state whose execution point is eppd is similar to the other successor.

Formally, if ς ≈ς ς ′ and
ς → ς1 → . . . → ςn and ς ′ → ς ′

1 → . . . → ς ′
m and

pς (ς) = pς (ς ′) = ep0 and pς (ςn) = pς (ς ′
m) = eppd and

eppd is the immediate postdominator of ep0, and
∀ ςi ∈ {ς1, . . . , ςn−1} ∪ {ς ′

1, . . . , ς
′
m−1}, pς (ςi) �= eppd, then ςn ≈ς ς ′

m

Proof. Without loss of generality,

ς = (cp, φ, σ, κ, ts , ct) and ς ′ = (cp′, φ′, σ′, κ′, ts ′, ct′) and
ςn = (cpn, φn, σn, κn, tsn, ctn) and ς ′

m = (cpm, φm, σm, κm, tsm, ctm)

We refer to ς1, . . . , ςn−1 and ς ′
1, . . . , ς

′
m−1 as intermediate states.

It is given that pς (ςn) = pς (ς ′
m). All that remains is to prove that

(σn, φn, κn, tsn) ≈σ (σm, φm, κm, tsm)

We know by the definitions of influence and of valid and by induction on
the instructions in the language that all changes to the store between ς and ςn
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and between ς ′ and ς ′
m are marked as tainted. Crucially, this includes changes to

heap values as well as to stack values. We state this in four cases, which cover
all possible changes to the stores:

1. Addresses added to σ in some intermediate state,
2. Addresses added to σ′ in some intermediate state,
3. Addresses changed in σ in some intermediate state,
4. Addresses changed in σ′ in some intermediate state.

∀ a ∈ Addr ,
a /∈ dom (σ) ∧ a ∈ dom (σn) ⇒ tsn (a) ∩ valid �= ∅ (1)

a /∈ dom (σ′) ∧ a ∈ dom (σm) ⇒ tsm (a) ∩ valid �= ∅ (2)
σ (a) �= σn (a) ⇒ tsn (a) ∩ valid �= ∅ (3)

σ′ (a) �= σm (a) ⇒ tsm (a) ∩ valid �= ∅ (4)

The only changes that can occur to the continuation stack in any circum-
stance are removal of stack frames (Return, Throw, IGet, and IPut instructions)
and the addition of new stack frames (Invoke instructions).

Since Invoke uses only fresh stack frames, all stack addresses with frames
created in intermediate states (FPf ) are undefined in σ and σ′:

∀ r ∈ Register, φf ∈ FPf , (φf , r) /∈ dom (σ) ∪ dom (σ′)

This, together with our knowledge that all updates to heap values are tainted,
proves that σn and σm are similar with respect to any pair of frame pointers if
one of those is in FPf :

φn ∈ FPf ∨ φm ∈ FPf ⇒ (σn, φn, tsn) ≈φ (σm, φm, tsm)

We know from pς (ς) = pς (ς ′) that the stack heights in ς and ς ′ are equal.
We also know because of the restrictions of stack operations that φn is either φ,
a fresh stack frame, or some stack frame from within κ. Similarly, we know that
φm is either φ′, a fresh stack frame, or some stack frame from within κ′. If φn is
not fresh, we know the continuation stack below it is identical to some suffix of
κ. Crucially, this means that no reordering of existing frame pointers is possible.
The same relationship holds between φm and κ′. As such, φn and φm are either
φ and φ′, some pair from continuations at the same height from halt, or at least
one of them is fresh. The same is true of each pair of frame pointers at identical
height in κn and κm. In all of these cases, the two stores must be similar with
respect to the frame pointers and their taint stores. Accordingly, we conclude:

(σn, φn, κn, tsn) ≈σ (σm, φm, κm, tsm)



Static Analysis of Non-interference in Expressive Low-Level Languages 13

3.10 Global Transitivity of Similarity

Lemma. Any two finite program traces that begin with similar states are similar.
Formally, if π = 〈ς1, . . . , ςn〉 and π′ = 〈ς ′

1, . . . , ς
′
m〉, then ς1 ≈ς ς ′

1 ⇒ π ≈π π′

Proof. By induction on transitivity of similarity.

3.11 Labeled Interference in Similar States

Lemma. Any two similar states exhibit the same behavior or at least one of
them exhibits behavior that is labeled as insecure.

ς1 ≈ς ς2 ⇒ labeled (ς1) �= ∅ ∨ labeled (ς2) �= ∅ ∨
∀i ∈ 〈1, . . . n〉, (σ1, ai, ts1) ≈a (σ2, a

′
i, ts2) , where

inputs (ς1) = 〈a1, . . . , an〉 and inputs (ς2) = 〈a′
1, . . . , a

′
n〉 and

ς1 = (cp1, φ1, σ1, κ1, ts1, ct1) and ς2 = (cp2, φ2, σ2, κ2, ts2, ct2)

Proof. By the definition of similarity, the contents of both states’ stores are
identical at reachable, untainted addresses. Thus, one of the calls labeled must
return an address or the calls to inputs must match.

3.12 Concrete Termination-Insensitive Labeled Interference

Any traces that begin with similar states exhibit the same observable behaviors
except for those labeled as insecure.

Formally, if π = 〈ς1, ς2, . . . , ςn〉 and π′ = 〈ς ′
1, ς

′
2, . . . , ς

′
m〉 and ς1 ≈ς ς ′

1, then

∀ ςi ∈ π, ςi /∈ obs ∨ labeled (ςi) �= ∅ ∨ ∃ ς ′
j ∈ π′ : ςi ≈ς ς ′

j

Observe that because the choice of traces is arbitrary, π′ is also examined.

Proof. By global transitivity of similarity, π and π′ are similar. Every state in π
or π′, then, is similar to a state in the other trace or has a valid context taint. By
the definition of labeled , states with valid context taints report those behaviors.

By the definition of similarity, similar states in similar traces occur in the
same order.

3.13 Abstract Non-interference

Lemma. Abstract interpretation with the given semantics detects all possible
variances in externally visible behaviors.

Proof. Since the abstract semantics are a sound overapproximation of the con-
crete semantics, they capture the behavior of all possible executions. Since con-
crete executions are proven to label all termination-insensitive interference, the
absence of labels reported by abstract interpretation proves non-interference.
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4 Discussion

Our analysis proves termination-insensitive non-interference, which allows diver-
gence leaks; postdominance only considers paths that reach the exit node, so it
excludes infinite paths. With termination analysis (a well understood technique),
this analysis could prove non-interference without qualification. Side channel
attacks, such as timing attacks, are beyond the scope of this paper.

It is possible that precision could be improved with less precise execution
points. This would require a weaker definition of state similarity, such as simi-
larity with respect to frame pointers but not to those in the continuation stacks.

Both the precision and complexity of this analysis depend on those of the
abstract interpreter chosen. Imprecisions inherent to the choice of abstractions
create false positives. For example, an abstract interpreter might simulate mul-
tiple branches executing when only one is possible—and, accordingly, would add
unnecessary taint to values assigned during execution of those branches. Addi-
tionally, convergence admits some overtainting; different branches could assign
identical values to a register. In this case, taint would be assigned unnecessarily.
Accordingly, other improvements to precision may be possible.

5 Related Work

Sabelfeld and Myers [25] summarize the early work on information flows.
Denning [6] introduces the idea of taint values as lattices instead of booleans.

Denning and Denning [7] describe a static analysis on a simple imperative lan-
guage and discuss how it could be applied to a language with conditional jumps.
They do not discuss how it could be applied to a language with procedures and
exceptional flow. Volpano, et al. [29] validate the claims of Denning and Denning
for languages with structured control-flow. Volpano and Smith [30] then extend
it to handle loop termination leaks and some exceptional flow leaks.

Chang and Streiff [5] present a compiler-level tool that transforms untrusted
C programs into C programs that enforce specified policies. Kim et al. [18] per-
form an abstract interpretation on Android programs. Arzt et al. [1] present
FlowDroid, a static analyzer for Android applications. All of these papers limit
their analyses to explicit information flows although the FlowDroid project does
claim in a blog post to have support for implicit information flows.

Xu et al. [31] perform a source-to-source transformation on C programs to
instrument them for taint tracking and track one class of implicit information
flows. Kang et al. [17] perform a dynamic analysis called DTA++ that operates
on Windows x86 binaries and tracks information flows. DTA++ explicitly allows
for false negatives in order to minimize false positives. Liang and Might [20]
present a Scheme-like core calculus for scripting languages like Python. Their
core language is expressive enough to contain not only function calls but also
call/cc as a primitive but do not detect implicit information flows.

Giacobazzi and Mastroeni [12] demonstrate an abstract interpreter on pro-
grams in a simple imperative language that lacks functions and exceptional
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control-flow—the kind of language that the technique suggested by Denning
and Denning [7] addresses. Askarov, et al. [2] also noninterference in a Jif-like
language with syntactic boundaries on its control-flow constructs and that lacks
functions and exceptional control-flow. Liu and Milanova [21] perform a static
analysis on Java programs that tracks implicit information flows. Their analy-
sis does as Denning and Denning [7] suggested; it calculates postdominance to
determine the extent of a conditional statement’s effect on control-flow. However,
they do not present a grammar, prove non-interference, or discuss exceptional
control-flow. Pottier and Simonet [24] present a type system that guarantees
noninterference in an ML-like language. Their technique relies on syntactic struc-
tures. Barthe and Rezk [3] perform an analysis on Java bytecode but assume a
postdominance calculation, even for exceptional control-flow. They also assume
type annotations for functions. Cousot and Radia [11] discuss non-interference
but do not discuss interprocedural flows.

Cavallaro, et al. [4] dismiss the effectiveness of static techniques. They then
discuss the shortcomings of dynamic analyses, particularly against intention-
ally malicious code. Moore, et al. [22] present a type system that, with runtime
enforcement and a termination oracle, guarantees progress-sensitive noninter-
ference (also called termination-sensitive noninterference). TaintDroid [9] is a
dynamic extension to Android’s runtime environment. Being a dynamic analy-
sis, it does not purport to identify all possible program behaviors.

Venkatakrishnan, et al. [28] perform a static pre-pass that adds tracking
instructions to inform a dynamic analysis. This analysis preserves termination-
insensitive noninterference but ignores exceptional control-flow. Jia et al. [16]
present a system that dynamically enforces annotations, including security labels
and declassification. Myers [23] created JFlow, an extension to Java that allows
programmers to annotate values and that uses a type system with both static
and dynamic enforcement. It does not guarantee non-interference.

Liang, et al. [19] introduce entry-point saturation to properly model Android
programs, which use several entry points instead of one. Entry-point satura-
tion injects repeatedly into all entry points until encountering a fixed point and
would allow the analysis in this paper to be applied to full Android programs.
Van Horn and Might [27] demonstrated that abstract interpreters can be con-
structed automatically from concrete interpreters. Earl, et al. [8] demonstrated
an abstract interpretation that operates in a pushdown automaton.

The official specifications for the bytecode language [14] and the dex file
format [15] provide detailed information about Dalvik bytecode.

6 Conclusion

As we claimed, Denning and Denning’s principle does generalize and extend
to expressive low-level languages such as Dalvik bytecode. The key twist was
to extend postdominance from control-flow graphs to interprocedural execution
point graphs, and to extract these graphs as projections from small-step abstract
interpretations over concrete semantics bearing taint-tracking machinery.
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Abstract. We report that the homomorphic encryption scheme can
unleash the possibility of static analysis of encrypted programs. Sta-
tic analysis in cipher-world is desirable in the static-analysis-as-a-service
setting, because it allows the program owners to encrypt and upload
their programs to the static analysis service while the service provider
can still analyze the encrypted programs without decrypting them. Only
the owner of the decryption key (the program owner) is able to decrypt
the analysis result. As a concrete example, we describe how to perform
a pointer analysis in secrecy. In our method, a somewhat homomor-
phic encryption scheme of depth O(log m) is able to evaluate a simple
pointer analysis with O(log m) homomorphic matrix multiplications, for
the number m of pointer variables when the maximal pointer level is
bounded. We also demonstrate the viability of our method by imple-
menting the pointer analysis in secrecy.

1 Introduction

In order for a static-analysis-as-a-service system [1] to be popular, we need to
solve the users’ copy-right concerns. Users are reluctant to upload their source
to analysis server.

For more widespread use of such service, we explored a method of performing
static analysis on encrypted programs. Figure 1 depicts the system.

Challenge. Our work is based on homomorphic encryption (HE). A HE scheme
enables computation of arbitrary functions on encrypted data. In other words,
a HE scheme provides the functions f⊕ and f∧ that satisfy the following homo-
morphic properties for plaintexts x, y ∈ {0, 1} without any secrets:

Enc(x ⊕ y) = f⊕(Enc(x),Enc(y)), Enc(x ∧ y) = f∧(Enc(x),Enc(y))

A HE scheme was first shown in the work of Gentry [14]. Since then, although
there have been many efforts to improve the efficiency [3,4,9,21], the cost is still
too large for immediate applications into daily computations.

Due to the high complexity of HE operation, practical deployments of HE
require application-specific techniques. Application-specific techniques are often
demonstrated in other fields. Kim et al. [8] introduced an optimization tech-
nique to reduce the depth of an arithmetic circuit computing edit distance on
c© Springer-Verlag Berlin Heidelberg 2015
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encrypted DNA sequences. In addition, methods of bubble sort and insertion
sort on encrypted data have been proposed [6]. Also, private database query
protocol using somewhat homomorphic encryption has been proposed [2].

Our Results. As a first step, we propose a pointer analysis in secrecy. As
many analyses depends on the pointer information, we expect our work to have
significant implications along the way to static analysis in secrecy.

We first describe a basic approach. We design an arithmetic circuit of the
pointer analysis algorithm only using operations that a HE scheme supports.
Program owner encrypts some numbers representing his program under the HE
scheme. On the encrypted data, a server performs a series of corresponding homo-
morphic operations referring to the arithmetic circuit and outputs encrypted
pointer analysis results. This basic approach is simple but very costly.

To decrease the cost of the basic approach, we apply two optimization tech-
niques. One is to exploit the ciphertext packing technique not only for perfor-
mance boost but also for decreasing the huge number of ciphertexts required
for the basic scheme. The basic approach makes ciphertexts size grow by the
square to the number of pointer variables in a program, which is far from prac-
tical. Ciphertext packing makes total ciphertexts size be linear to the number of
variables. The other technique is level-by-level analysis. We analyze the pointers
of the same level together from the highest to lowest. With this technique, the
depth of the arithmetic circuit for the pointer analysis significantly decreases:
from O(m2 log m) to O(n log m) for the number m of pointer variables and the
maximal pointer level n. By decreasing the depth, which is the most important
in performance of HE schemes, the technique decreases both ciphertexts size and
the cost of each homomorphic operation.

The improvement by the two optimizations is summarized in Table 1.

Table 1. The comparison between the basic and the improved scheme

Multiplicative depth # Ctxt

Basic O(m2 log m) 4m2

Improved O(n log m) (2n + 2)m

m : the number of pointer variables in the
target program
n : the maximum level of pointer in the
program, which does not exceed 5 in usual

Although our interest in this paper is limited to a pointer analysis, we expect
other analyses in the same family will be performed in a similar manner to our
method. Analyses in the family essentially compute a transitive closure of a
graph subject to dynamic changes; new edges may be added during the analysis.
Our method computes an encrypted transitive closure of a graph when both
edge insertion queries and all the edges are encrypted. Thus, we expect only a
few modifications to our method will make other similar analyses (e.g., 0-CFA)
be in secrecy.
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?

?

Fig. 1. Secure static analysis is performed in 3 steps: (1) target program encryp-
tion (2)analysis in secrecy, and (3) analysis result decryption

2 Background

In this section, we introduce the concept of homomorphic encryption, and
describe the security model of our static analysis in secrecy.

2.1 Homomorphic Encryption

A homomorphic encryption (HE) scheme HE=(KG, Enc, Dec, Eval) is a quadruple
of probabilistic polynomial-time algorithm as follows:

– (pk, evk; sk) ← HE.KG(1λ): The algorithm takes the security parameter λ as
input and outputs a public encryption key pk, a public evaluation key evk,
and a secret decryption key sk.

– c̄ ← HE.Encpk(μ, r): The algorithm takes the public key pk, a single bit mes-
sage μ ∈ {0, 1},1 and a randomizer r. It outputs a ciphertext c̄. If we have no
confusion, we omit the randomizer r.

– μ ← HE.Decsk(c̄): The algorithm takes the secret key sk and a ciphertext
c̄ = HE.Encpk(μ) and outputs a message μ ∈ {0, 1}

– c̄f ← HE.Evalevk(f ; c̄1, . . . , c̄l): The algorithm takes the evaluation key evk, a
function f : {0, 1}l → {0, 1} represented by an arithmetic circuit over Z2 =
{0, 1} with the addition and multiplication gates, and a set of l ciphertexts
{c̄i = HE.Enc(μi)}l

i=1, and outputs a ciphertext c̄f = HE.Enc(f(μ1, · · · , μl)).

We say that a scheme HE=(KG, Enc, Dec, Eval) is f-homomorphic if for any set
of inputs (μ1, · · · , μl), and all sufficiently large λ, it holds that

Pr [HE.Decsk (HE.Evalevk(f ; c̄1, · · · , c̄l)) �= f(μ1, · · · , μl)] = negl(λ),

where negl is a negligible function, (pk, evk; sk) ← HE.KG(1λ), and c̄i ←
HE.Encpk(μi).

If a HE scheme can evaluate all functions represented by arithmetic circuits
over Z2 (equivalently, boolean circuits with AND and XOR gates2), the HE
scheme is called fully homomorphic.
1 For simplicity, we assume that the plaintext space is Z2 = {0, 1}, but extension to

larger plaintext space is immediate.
2 AND and XOR gates are sufficient to simulate all binary circuits.
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To facilitate understanding of HE schemes, we introduce a simple sym-
metric version of the HE scheme [11] based on approximate common divisor
problems [19]:

– sk ← KG(1λ): Choose an integer p and outputs the secret key sk = p.
– c̄ ← Enc(μ ∈ {0, 1}): Choose a random integer q and a random noise integer

r with |r| � |p|. It outputs c̄ = pq + 2r + μ.
– μ ← Decsk(c̄): Outputs μ = ((c̄ mod p) mod 2).
– c̄add ← Add(c̄1, c̄2): Outputs c̄add = c̄1 + c̄2.
– c̄mult ← Mult(c̄1, c̄2): Outputs c̄mult = c̄1 × c̄2.

For ciphertexts c̄1 ← Enc(μ1) and c̄2 ← Enc(μ2), we know each c̄i is of the form
c̄i = pqi +2ri +μi for some integer qi and noise ri. Hence ((c̄i mod p) mod 2) =
μi, if |2ri + μi| < p/2. Then, the following equations hold:

c̄1 + c̄2 = p(q1 + q2) + 2(r1 + r2) + μ1 + μ2︸ ︷︷ ︸
noise

,

c̄1 × c̄2 = p(pq1q2 + · · · ) + 2(2r1r2 + r1μ2 + r2μ1) + μ1 · μ2︸ ︷︷ ︸
noise

Based on these properties,

Decsk(c̄1 + c̄2) = μ1 + μ2 and Decsk(c̄1 × c̄2) = μ1 · μ2

if the absolute value of 2(2r1r2 + r1μ2 + r2μ1) + μ1μ2 is less than p/2 . The
noise in the resulting ciphertext increases during homomorphic addition and
multiplication (twice and quadratically as much noise as before respectively). If
the noise becomes larger than p/2, the decryption result of the above scheme
will be spoiled. As long as the noise is managed, the scheme is able to potentially
evaluate all boolean circuits as the addition and multiplication in Z2 corresponds
to the XOR and AND operations.

We consider somewhat homomorphic encryption (SWHE) schemes that
adopt the modulus-switching [4,5,10,15] for the noise-management. The
modulus-switching reduces the noise by scaling the factor of the modulus in
the ciphertext space. SWHE schemes support a limited number of homomor-
phic operations on each ciphertext, as opposed to fully homomorphic encryption
schemes [7,11,14,23] which are based on a different noise-management tech-
nique. But SWHE schemes are more efficient to support low-degree homomorphic
computations.

In this paper, we will measure the efficiency of homomorphic evaluation by
the multiplicative depth of an underlying circuit. The multiplicative depth is
defined as the number of multiplication gates encountered along the longest
path from input to output. When it comes to the depth of a circuit computing
a function f , we discuss the circuit of the minimal depth among any circuits
computing f . For example, if a somewhat homomorphic encryption scheme can
evaluate circuits of depth L, we may maximally perform 2L multiplications on
the ciphertexts maintaining the correctness of the result. We do not consider
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the number of addition gates in counting the depth of a circuit because the
noise increase by additions is negligible compared with the noise increase by
multiplications. The multiplicative depth of a circuit is the most important factor
in the performance of homomorphic evaluation of the circuit in the view of both
the size of ciphertexts and the cost of per-gate homomorphic computation. Thus,
minimizing the depth is the most important in performance.

2.2 The BGV-type Cryptosystem

Our underlying HE scheme is a variant of the Brakerski-Gentry-Vaikuntanathan
(BGV)-type cryptosystem [4,15]. In this section, we only provide a brief review
of the cryptosystem [4]. For more details, please refer to [4,15]. Let Φ(X) be an
irreducible polynomial over Z. The implementation of the scheme is based on
the polynomial operations in ring R = Z[X]/ (Φ(X)) which is the set of integer
polynomials of degree less than deg(Φ). Let Rp := R/pR be the message space
for a prime p and Rq × Rq be the ciphertext space for an integer q. Now, we
describe the BGV cryptosystem as follows:

– ((a, b); s) ← BGV.KG(1λ, σ, q): Choose a secret key s and a noise polynomial
e from a discrete Gaussian distribution over R with standard deviation σ.
Choose a random polynomial a from Rq and generate the public key (a, b =
a · s + p · e) ∈ Rq × Rq. Output the public key pk = (a, b) and the secret key
sk = s.

– c̄ ← BGV.Encpk(μ): To encrypt a message μ ∈ Rp, choose a random poly-
nomial v whose coefficients are in {0,±1} and two noise polynomials e0, e1.
Output the ciphertext c = (c0, c1) = (bv + pe0 + μ, av + pe1) mod (q, Φ(X)).

– μ ← BGV.Decsk(c̄): Given a ciphertext c̄ = (c0, c1), it outputs μ = (((c0 − c1 ·
s) mod q) mod p).

– c̄add ← BGV.Addpk(c̄1, c̄2; evk): Given ciphertexts c̄1 = BGV.Enc(μ1) and c̄2 =
BGV.Enc(μ2), it outputs the ciphertext c̄add = BGV.Enc(μ1 + μ2).

– c̄mult ← BGV.Multpk(c̄1, c̄2; evk): Given ciphertexts c̄1 = BGV.Enc(μ1) and
c̄2 = BGV.Enc(μ2), it outputs the ciphertext c̄mult = BGV.Enc(μ1 · μ2).

2.3 Security Model

We assume that program owners and analyzer servers are semi-honest. In this
model, the analyzer runs the protocol exactly as specified, but may try to learn
as much as possible about the program information. However, in our method,
since programs are encrypted under the BGV-type cryptosystem which is secure
under the hardness of the ring learning with errors (RLWE) problem (see [4] for
the details), analyzers cannot learn no more information than the program size.

3 A Basic Construction of a Pointer Analysis in Secrecy

In this section, we explain how to perform a pointer analysis in secrecy.
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3.1 A Brief Review of a Pointer Analysis

We begin with a brief review of a pointer analysis. We consider flow- and context-
insensitive pointer analyses. To simplify our presentation, we consider a tiny
language consisting of primitive assignments involving just the operations * and
&. A program P is a finite set of assignments A:

A → x = &y | x = y | ∗x = y | x = ∗y
We present a pointer analysis algorithm with simple resolution rules in a similar
manner to [18]. Given some program P , we construct resolution rules as specified
in Table 2. In the first rule, the side condition “if x = &y in P” indicates that
there is an instance of this rule for each occurrence of an assignment of the form
x = &y in P . The side conditions in the other rules are similarly interpreted.
Intuitively, an edge x −→ &y indicates that x can point to y. An edge x −→ y
indicates that for any variable v, if y may point to v then x may point to v. The
pointer analysis is applying the resolution rules until reaching a fixpoint.

Table 2. Resolution rules for pointer analysis.

x −→ &y
(if x = &y in P )

(New) x −→ y (if x = y in P ) (Copy)

x −→ &z
y −→ z (if y = ∗x in P ) (Load)

x −→ &z
z −→ y (if ∗x = y in P ) (Store)

x −→ z z −→ &y

x −→ &y (Trans)

3.2 The Pointer Analysis in Secrecy

The analysis in secrecy will be performed in the following 3 steps. First, a pro-
gram owner derives numbers that represent his program and encrypt them under
a HE scheme. The encrypted numbers will be given to an analysis server. Next,
the server performs homomorphic evaluation of an underlying arithmetic cir-
cuit representing the pointer analysis with the inputs from the program owner.
Finally, the program owner obtains an encrypted analysis result and recovers a
set of points-to relations by decryption.

Before beginning, we define some notations. We assume a program owner
assigns a number to every variable using some numbering scheme. In the rest of
the paper, we will denote a variable numbered i by xi. In addition, to express
the arithmetic circuit of the pointer analysis algorithm, we define the notations
δi,j and ηi,j in Z for i, j = 1, · · · ,m by

δi,j �= 0 iff An edge xi −→ &xj is derived by the resolution rules.
ηi,j �= 0 iff An edge xi −→ xj is derived by the resolution rules.

for variables xi and xj, and the number m of pointer variables.
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Inputs from Client. A client (program owner) derives the following numbers
that represent his program P (here, m is the number of variables):

{(δi,j , ηi,j , ui,j , vi,j) ∈ Z × Z × {0, 1} × {0, 1} | 1 ≤ i, j ≤ m}

which are initially assigned as follows:

δi,j ←
{

1 if ∃xi = &xj
0 otherwise ηi,j ←

{
1 if ∃xi = xj or i = j
0 otherwise

ui,j ←
{

1 if ∃xj = ∗xi
0 otherwise vi,j ←

{
1 if ∃∗xj = xi
0 otherwise

In the assignment of δi,j , the side condition ∃xi = &xj indicates that there is the
assignment xi = &xj in the program P . The other side conditions are similarly
interpreted.

The program owner encrypts the numbers using a HE scheme and provides
them to the server. We denote the encryption of δi,j , ηi,j , ui,j , and vi,j by δ̄i,j ,
η̄i,j , ūi,j , and v̄i,j , respectively. Therefore, the program owner generates 4 m2

ciphertexts where m is the number of pointer variables.

Server’s Analysis. Provided the set of the ciphertexts from the program owner,
the server homomorphically applies the resolution rules. With a slight abuse of
notation, we will denote + and · as homomorphic addition and multiplication
respectively to simplify the presentation.

We begin with applying the Trans rule in Table 2. For i, j = 1, · · · ,m, the
server updates δ̄i,j as follows:

δ̄i,j ←
∑m

k=1 η̄i,k · δ̄k,j

If edges xi −→ xk and xk −→ &xj are derived by the resolution rules for some
variable xk, then the edge xi −→ &xj will be derived by the Trans rule and the
value δi,j will have a positive integer. If there is no variable xk that satisfies the
conditions for all k = 1, · · · ,m, there will be no update on δi,j (∵ ηi,i = 1).

Next, we describe applying the Load rule.

η̄i,j ← η̄i,j +
∑m

k=1 ūi,k · δ̄k,j

If an edge xk −→ &xj is derived and the program P has a command xi := ∗xk
and for some integer k, then the edge xi −→ xj will be derived and ηi,j will have
a positive value. If none of variables xk satisfies the conditions, there will be no
update on ηi,j .

Finally, to apply the Store rule, the server performs the following operations:

η̄i,j ← η̄i,j +
∑m

k=1 v̄j,k · δ̄k,i
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If an edge xk −→ &xi is derived and the program P has a command ∗xk := xj
for some variable xk, then an edge xi −→ xj will be derived and ηi,j will have a
non-zero value.

Note that the server must repeat applying the rules as if in the worst case
since the server cannot know whether a fixpoint is reached during the operations.
The server may obtain a fixpoint by repeating the following two steps in turn
m2 times:

1. Applying the Trans rule m times
2. Applying the Load and Store rules

The reason for doing step 1 is that we may have a m-length path through edges
as the longest one in the worst case. The reason for repeating the two steps m2

times is that we may have a new edge by applying the Load and Store rules, and
we may have at most m2 edges at termination of the analysis.

We need O(m2 log m) multiplicative depth in total. Because performing the
step 1 entails m homomorphic multiplications on each δ̄i,j , and repeating the
two steps m2 times performs about mm2

homomorphic multiplications on each
δ̄i,j .

Output Determination. The client receives the updated {δ̄i,j | 1 ≤ i, j ≤ m}
from the server and recovers a set of points-to relations as follows:

{xi −→ &xj | HE.Decsk(δ̄i,j) �= 0 and 1 ≤ i, j ≤ m}

Why Do We Not Represent the Algorithm by a Boolean Circuit? One
may wonder why we represent the pointer analysis algorithm by an arithmetic
circuit rather than a Boolean circuit. As an example of applying the Trans rule,
we might update δi,j by δi,j ←

∨
1≤k≤m

ηi,k ∧ δk,j . However, this representation

causes more multiplicative depth than our current approach. The OR operation
consists of the XOR and AND operations as follows: x ∨ y

def= (x ∧ y) ⊕ x ⊕ y.
Note that the addition and multiplication in Z2 correspond to the XOR and AND
operations, respectively. Since the OR operation requires a single multiplication
over ciphertexts, this method requires m more multiplications than our current
method to update δi,j once.

4 Improvement of the Pointer Analysis in Secrecy

In this section, we present three techniques to reduce the cost of the basic app-
roach described in the Sect. 3.2. We begin with problems of the basic approach
followed by our solutions.
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4.1 Problems of the Basic Approach

The basic scheme has the following problems that make the scheme impractical.

– Huge # of homomorphic multiplications: The scheme described in the
Sect. 3.2 can be implemented with a SWHE scheme of the depth O(m2 log m).
Homomorphic evaluation of a circuit over the hundreds depth is regarded unre-
alistic in usual. The depth of the arithmetic circuit described in the Sect. 3.2
exceeds 300 even if a program has only 10 variables.

– Huge # of ciphertexts: The basic approach requires 4m2 ciphertexts, where
m is the number of pointer variables. When a program has 1000 variables,
4 million ciphertexts are necessary. For instance, the size of a single ciphertext
in the BGV cryptosystem is about 2 MB when the depth is 20. In this case,
the scheme requires 7.6 TB memory space for all the ciphertexts.

– Decryption error may happen: In our underlying HE scheme, the message
space is the polynomial ring over modulus p. During the operations, δi,j and
ηi,j increase and may become p which is congruent to 0 modulo p. Since we
are interested in whether each value is zero or not, incorrect results may be
derived if the values become congruent to 0 modulo p by accident.

4.2 Overview of Improvement

For the number m of pointer variables and the maximal pointer level n, the
followings are our solutions.

– Level-by-level Analysis: We analyze pointers of the same level together
from the highest to lowest in order to decrease the depth of the arithmetic
circuit described in the Sect. 3.2. To apply the technique, program owners
are required to reveal an upper bound of the maximal pointer level. By this
compromise, the depth of the arithmetic circuit significantly decreases: from
O(m2 log m) to O(n log m). We expect this information leak is not much com-
promise because the maximal pointer level is well known to be a small number
in usual cases.

– Ciphertext Packing: We adopt ciphertext packing not only for performance
boost but also for decreasing the huge number of ciphertexts required for the
basic scheme. The technique makes total ciphertext sizes be linear to the
number of variables.

– Randomization of Ciphertexts: We randomize ciphertexts to balance the
probability of incorrect results and ciphertext size. We may obtain correct
results with the probability of (1 − 1

p−1 )n(�log m�+3).

The following table summarizes the improvement.

Depth # Ctxt

Basic O(m2 log m) 4m2

Improved O(n log m) (2n + 2)m



Static Analysis with Set-Closure in Secrecy 27

4.3 Level-by-level Analysis

We significantly decrease the multiplicative depth by doing the analysis in a
level by level manner in terms of level of pointers. The level of a pointer is the
maximum level of possible indirect accesses from the pointer, e.g., the pointer
level of p in the definition “int** p” is 2. From this point, we denote the level
of a pointer variable x by ptl(x).

We assume that type-casting a pointer value to a lower or higher-level pointer
is absent in programs. For example, we do not consider a program that has type-
casting from void* to int** because the pointer level increases from 1 to 2.

On the assumption, we analyze the pointers of the same level together from
the highest to lowest. The correctness is guaranteed because lower-level pointers
cannot affect pointer values of higher-level pointers during the analysis. For
example, pointer values of x initialized by assignments of the form x = &y may
change by assignments of the form x = y, x = ∗y, or ∗p = y (∵ p may point to
x) during the analysis. The following table presents pointer levels of involved
variables in the assignments that affects pointer values of x.

Assignment Levels

x = y ptl(x) = ptl(y)

x = ∗y ptl(y) = ptl(x) + 1

∗p = y ptl(p) = ptl(x) + 1 ∧ ptl(y) = ptl(x)

Note that all the variables affect pointer values of x have higher or equal pointer
level compared to x.

Now we describe the level-by-level analysis in secrecy similarly to the basic
scheme. Before beginning, we define the notations δ

(�)
i,j and η

(�)
i,j in Z for i, j =

1, · · · ,m by

δ
(�)
i,j �= 0 iff An edge xi −→ &xj is derived and ptl(xi) = �

η
(�)
i,j �= 0 iff An edge xi −→ xj is derived and ptl(xi) = �.

Inputs from Client. For the level-by-level analysis, a program owner derives
the following numbers that represent his program P (n is the maximal level of
pointer in the program):

{(δ(�)i,j , η
(�)
i,j ) | 1 ≤ i, j ≤ m, 1 ≤ � ≤ n} ∪ {(ui,j , vi,j) | 1 ≤ i, j ≤ m}

where δ
(�)
i,j and η

(�)
i,j are defined as follows.

δ
(�)
i,j =

{
1 if ∃xi = &xj, ptl(xi) = �
0 o.w. η

(�)
i,j =

{
1 if (∃xi = xj or i = j), ptl(xi) = �
0 o.w.
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The definitions of ui,j and vi,j are the same as in the Sect. 3.2. We denote the
encryption of δ

(�)
i,j and η

(�)
i,j by δ̄

(�)
i,j , η̄

(�)
i,j , respectively.

Server’s Analysis. Server’s analysis begins with propagating pointer values of
the maximal level n by applying the Trans rule as much as possible. In other
words, for i, j = 1, · · · ,m, the server repeats the following update m times:

δ̄
(n)
i,j ←

∑m
k=1 η̄

(n)
i,k · δ̄

(n)
k,j

Next, from the level n − 1 down to 1, the analysis at a level � is carried out
in the following steps:

1. applying the Load rule: η̄
(�)
i,j ← η̄

(�)
i,j +

∑m
k=1 ūi,k · δ̄

(�+1)
k,j

2. applying the Store rule: η̄
(�)
i,j ← η̄

(�)
i,j +

∑m
k=1 v̄j,k · δ̄

(�+1)
k,i

3. applying the Trans rule: repeating the following update m times

δ̄
(�)
i,j ←

∑m
k=1 η̄

(�)
i,k · δ̄

(�)
k,j

Through steps 1 and 2, edges of the form xi −→ xj are derived where either
xi or xj is determined by pointer values of the immediate higher level � + 1. In
step 3, pointer values of a current level � are propagated as much as possible.

We need O(n log m) multiplicative depth in total because repeating the above
3 steps n times entails maximally mn homomorphic multiplications on a single
ciphertext.

Output Determination. The client receives the updated {δ̄
(�)
i,j | 1 ≤ i, j ≤

m, 1 ≤ � ≤ n} from the server and recovers a set of points-to relations as follows:

{xi −→ &xj | HE.Decsk(δ̄(�)i,j ) �= 0, 1 ≤ i, j ≤ m, and 1 ≤ � ≤ n}

4.4 Ciphertext Packing

Our use of ciphertext packing aims to decrease total ciphertext size by using
fewer ciphertexts than the basic scheme. Thanks to ciphertext packing, a single
ciphertext can hold multiple plaintexts rather than a single value. For given
a vector of plaintexts (μ1, · · · , μm), the BGV cryptosystem allows to obtain a
ciphertext c̄ ← BGV.Enc(μ1, · · · , μm).

Furthermore, as each ciphertext holds a vector of multiple plaintexts,
homomorphic operations between such ciphertexts are performed component-
wise. For given ciphetexts c̄1 = BGV.Enc(μ1,1, · · · , μ1,m) and c̄2 =
BGV.Enc(μ2,1, · · · , μ2,m), the homomorphic addition and multiplication in the
BGV scheme satisfy the following properties:

BGV.Add(c̄1, c̄2) returns a ciphertext BGV.Enc(μ1,1 + μ2,1, · · · , μ1,m + μ2,m)
BGV.Mult(c̄1, c̄2) returns a ciphertext BGV.Enc(μ1,1 · μ2,1, · · · , μ1,m · μ2,m)
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The BGV scheme provides other homomorphic operations such as cyclic rota-
tion. For example, we can perform cyclic rotation of vector by any amount on
ciphertexts (e.g., BGV.Enc(μm, μ1, · · · , μm−1) from BGV.Enc(μ1, μ2, · · · , μm)).
Using the homomorphic addition, multiplication, and other operations, we can
perform the matrix addition, multiplication and transposition operations on
encrypted matrices.

In this subsection, we describe ciphertext packing and the homomorphic
matrix operations in more detail.

Principle of Ciphertext Packing. We begin with some notations. For an inte-
ger q, Zq

def= [−q/2, q/2) ∩ Z and x mod q denotes a number in [−q/2, q/2) ∩ Z

which is equivalent to x modulo q. Recall that the message space of the BGV
cryptosystem is Rp = Z[X]/ (p, Φ(X)) for a prime p and an irreducible poly-
nomial Φ(X). We identify the polynomial ring Rp with {a0 + a1X + · · · +
adeg Φ−1X

deg Φ−1 | ai ∈ Zp and 0 ≤ i < deg Φ}.
In the basic approach, although the message space of the BGV scheme is

the polynomial ring Rp, we have used only constant polynomials (i.e., numbers)
for plaintexts. Thus, if a vector of plaintexts is represented as a single non-
constant polynomial, a single ciphertext can hold multiple plaintexts rather than
a single value. Therefore we can save the total memory space by using fewer
ciphertexts than the basic scheme. Suppose the factorization of Φ(X) modulo p is
Φ(X) =

∏m
i=1 Fi(X) mod p where each Fi is an irreducible polynomial in Zp[X].

Then a polynomial μ(X) ∈ Rp can be viewed as a vector of m different small
polynomials, (μ1(X), · · · , μm(X)) such that μi(X) = (μ(X) modulo Fi(X)) for
i = 1, · · · ,m.

From this observation, we can encrypt a vector μ = (μ1, · · · , μm) of plain-
texts in

∏m
i=1 Zp into a single ciphertext by the following transitions:

Zp × · · · × Zp −→
∏m

i=1 Zp[X]/ (Fi(X)) −→ Zp[X]/ (Φ(X)) −→ Rq

(μ1, · · · , μm) id�−→ (μ1(X), · · · , μm(X)) CRT�−→ μ(X) BGV.Enc�−→ c̄

First, we view a component μi in a vector μ = (μ1, · · · , μm) as a contant poly-
nomial μi ∈ Zp[X]/ (Fi(X)) for i = 1, · · · ,m. Then, we can compute the unique
polynomial μ(X) ∈ Rp satisfying μ(X) = μi mod (p, Fi(X)) for i = 1, · · · ,m
by the Chinese Remainder Theorem (CRT) of polynomials. Finally, to encrypt
a vector μ = (μ1, · · · , μm) in

∏m
i=1 Zp, we encrypt the polynomial μ(X) ∈ Rp

into a ciphertext c̄ which is denoted by BGV.Enc (μ1, · · · , μm) . For more details
to the ciphertext packing, we suggest that readers see the paper [22].

Homomorphic Matrix Operations. Applying the resolution rules in the
level-by-level analysis in the Sect. 4.3 can be re-written in a matrix form as shown
in Table 3. In Table 3, Δ� = [δ(�)i,j ],H� = [η(�)

i,j ], U = [ui,j ], and V = [vi,j ] are m×m

integer matrices. Let the i-th row of Δ� and H� be δ
(�)
i and η

(�)
i respectively. And

we denote the encryptions as δ̄
(�)
i = BGV.Enc(δ(�)

i ) and η̄
(�)
i = BGV.Enc(η(�)

i ).
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Table 3. Circuit expression of the level-by-level analysis

Rule Integer form Matrix form

Trans δ
(�)
i,j ←∑m

k=1 η
(�)
i,k · δ

(�)
k,j Δ� ← H� · Δ�

Load η
(�)
i,j ← η

(�)
i,j +

∑m
k=1 ui,k · δ

(�+1)
k,j H� ← H� + U · Δ�+1

Store η
(�)
i,j ← η

(�)
i,j +

∑m
k=1 vj,k · δ

(�+1)
k,i H� ← H� + (V · Δ�+1)

T

We follow the methods in [16] to perform multiplication between encrypted
matrices. We use the Replicate homomorphic operation supported by the BGV
scheme [16]. For a given ciphertext c̄ = BGV.Enc(μ1, · · · , μm), the operation
Replicate(c̄, i) generates a ciphertext BGV.Enc(μi, · · · , μi) for i = 1, · · · ,m.
Using the operation, we can generate an encryption of the i-th row of (H� · Δ�)
as follows:

BGV.Mult
(
Replicate(η̄(�)

i , 1), δ̄(�)
1

)
+ · · · + BGV.Mult

(
Replicate(η̄(�)

i ,m), δ̄(�)
m

)
.

Note that this method does not affect the asymptotic notation of the multiplica-
tive depth since the operation Replicate entails only a single multiplication.

To compute a transpose of an encrypted matrix, we use the masking and
cyclic rotation techniques described in [16]. Algorithms for the homomorphic
operations on encrypted matrices are described in Fig. 3 in Appendix A.

4.5 Randomization of Ciphertexts

During the matrix multiplications, components of resulting matrices may become
p by coincidence, which is congruent to 0 in Zp. In this case, incorrect results may
happen. We randomize intermediate results to decrease the failure probability.

To multiply the matrices H� = [η(�)
i,j ] and Δ� = [δ(�)i,j ], we choose non-zero

random elements {ri,j} in Zp for i, j = 1, · · · ,m and compute H ′
� = [ri,j ·

η
(�)
i,j ]. Then, each component of a resulting matrix of the matrix multiplication

(H ′
� · Δ�) is almost uniformly distributed over Zp.
Thanks to the randomization, the probability for each component of H ′ ·Δ of

being congruent to zero modulo p is in inverse proportion to p. We may obtain a
correct component with the probability of (1− 1

p−1 ). Because we perform in total
n(�log m� + 3) − 2 matrix multiplications for the analysis, the probability for a
component of being correct is greater than (1 − 1

p−1 )n(�log m�+3). For example,
in the case where n = 2,m = 1000 and p = 503, the success probability for a
component is about 95%.

Putting up altogether, we present the final protocol in Fig. 2 in Appendix A.

5 Experimental Result

In this section, we demonstrate the performance of the pointer analysis in secrecy.
In our experiment, we use HElib library [16], an implementation of the BGV
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Table 4. Experimental Result

Program LOC # Var Enc Propagation Edge addition Total Depth

toy 10 9 26 s 28m 49 s 5m 58 s 35m 13 s 37

buthead-1.0 46 17 1m 26 s 5 h 41m 36 s 56m 19 s 6 h 39m 21 s 43

wysihtml-0.13 202 32 2m 59 s 18 h 11m 50 s 2 h 59m 38 s 21 h 14m 27 s 49

cd-discid-1.1 259 41 3m 49 s 32 h 22m 33 s 5 h 22m 35 s 37 h 48m 57 s 49

Enc : time for program encryption, Depth : the depth required for the analysis
Propagation : time for homomorphic applications of the Trans rule
Edge addition : time for homomorphic applications of the Load and Store rules

cryptosystem. We test on 4 small C example programs including tiny linux pack-
ages. The experiment was done on a Linux 3.13 system running on 8 cores of
Intel 3.2 GHz box with 24 GB of main memory. Our implementation runs in
parallel on 8 cores using shared memory.

Table 4 shows the result. We set the security parameter 72 which is usually
considered large enough. It means a ciphertext can be broken in a worst case
time proportional to 272. In all the programs, the maximum pointer level is 2.

Why “Basic” Algorithm? Many optimization techniques to scale the pointer
analysis to larger programs [12,13,17,18,20] cannot be applied into our setting
without exposing much information of the program. Two key optimizations are
the cycle elimination and the difference propagation. But neither method is
applicable. The cycle elimination [12,17,18,20] aims to prevent redundant com-
putation of transitive closure by collapsing each cycle’s components into a single
node. The method cannot be applied into our setting because cycles cannot be
detected and collapsed as all the program information and intermediate analy-
sis results are encrypted. The other technique, difference propagation [13,20],
only propagates new reachability facts. Also, we cannot consider the technique
because analysis server cannot determine which reachability fact is new as inter-
mediate analysis results are encrypted.

6 Discussion

By combining language and cryptographic primitives, we confirm that the homo-
morphic encryption scheme can unleash the possibility of static analysis of
encrypted programs. As a representative example, we show the feasibility of
the pointer analysis in secrecy.

Although there is still a long way to go toward practical use, the experi-
mental result is indicative of the viability of our idea. If the performance issue
is properly handled in future, this idea can be used in many real-world cases.
Besides depending on developments and advances in HE that are constantly
being made, clients can help to improve the performance by encrypting only sen-
sitive sub-parts of programs. The other parts are provided in plaintexts. In this
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case, analysis operations with the mixture of ciphertexts and plaintexts should
be devised. This kind of operations are far cheaper than operations between
ciphertexts because they lead to smaller noise increases.

A major future direction is adapting other kinds of static analysis opera-
tions(e.g., arbitrary �, �, and semantic operations) into HE schemes. For now,
we expect other analyses similar to the pointer analysis (such as 0-CFA) will be
performed in a similar manner.
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A Algorithms

Figure 2 describes the protocol. Figure 3 describes the homomorphic matrix oper-
ations and necessary sub algorithms.

Fig. 2. The pointer analysis in secrecy
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Fig. 3. Pseudocode for the homomorphic matrix operations
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Abstract. We present an abstract domain functor whose elements are
binary decision trees. It is parameterized by decision nodes which are a
set of boolean tests appearing in the programs and by a numerical or
symbolic abstract domain whose elements are the leaves. We first define
the branch condition path abstraction which forms the decision nodes
of the binary decision trees. It also provides a new prospective on parti-
tioning the trace semantics of programs as well as separating properties
in the leaves. We then discuss our binary decision tree abstract domain
functor by giving algorithms for inclusion test, meet and join, trans-
fer functions and extrapolation operators. We think the binary decision
tree abstract domain functor may provide a flexible way of adjusting the
cost/precision ratio in path-dependent static analysis.

1 Introduction

In past decades, abstract interpretation [5] has been widely and successfully
applied to the static analysis and verification of programs. Abstract domains,
one of the key concepts in abstract interpretation, aim at collecting informa-
tion about the set of all possible values of the program variables. The biggest
advantage of using abstract domains instead of logic predicates is that they are
fully automatic and can easily scale up. Intervals [4], octagons [14] and polyhe-
dra [6] are the most commonly used numerical abstract domains. These abstract
domains are inferring a conjunction of linear constraints to maintain the informa-
tion of all possible values of program variables and/or the possible relationships
between them. The absence of disjunctions may cause rough approximations and
produce much less precise results, gradually leading to false alarms or even worse
to the complete failure to prove the desired program property.

Let us consider the following example which is modified from the one in [9]:
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Example 1. A motivating example.

x = 0 ; y = 0 ;
lwhile ( y >= 0) {

i f ( x <= 50) y++;
else y−−;
x++;

}
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We know that the strongest invariant at program point l is (0 <= x <= 50 ∧
x = y) ∨ (51 <= x <= 103 ∧ x + y − 102 = 0). When we use the APRON
numerical abstract domain library [12] to generate the invariant at program
point l, we get x >= 0 ∧ y >= −1 with the box (interval) abstract domain and
y >= −1∧x−y >= 0∧x+52y >= 0 with the polka (convex polyhedra) abstract
domain. Both analyses are very imprecise compared to the strongest one. This
is because the true and false branches of “if (x <= 50)” have different behaviors
and those abstract domains do not consider them separately. ��

Hence, we propose the binary decision tree abstract domain that takes those
branches into consideration.

2 Action Path Semantics

We consider the following abstract syntax of commands which describes the
abstract syntax trees (AST) representing the syntactic structure of source code:

C ∈ C:: = skip | x = E | C1 ; C2 | if (B) {C1} else {C2} | while (B) {C}

The trace semantics St[[C]] of a command C describes all possible observations
of executions of the command C. A trace π of length |π| � n ≥ 1 is a pair π =
〈π, π〉 of a finite sequence π = σ0σ1...σn−1 of states separated by a finite sequence
π = A0A1...An−2 of actions. States record the current values of variables in the
environment/memory as well as a label/control point specifying what remains
to be executed while actions record which elementary indivisible elementary
program steps are computed during the execution of commands. An action A
∈ A is either no operation “skip”, an assignment “x = E” or a test which output
is either true (tt) or false (ff). We use action “B” to record that the Boolean
expression B evaluated to true (tt), while action “¬B” records that the Boolean
expression B evaluated to false (ff).

The action path abstraction αa(S) collects the set of action paths, that is
sequences of actions performed along the traces of a trace semantics S. Given
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a trace π = 〈π, π〉, αa(π) � π collects the sequence of actions π executed along
that trace, which may be empty ε for traces reduced to a single state.

Definition 1 (Action Path Abstraction). Given a set of traces S,

αa(S) � {αa(π) | π ∈ S}

collects the sequences of actions executed along the traces of S. ��

Note that αa preserves both arbitrary unions and non-empty intersections.
We then have the following theorem:

Theorem 1 (Homomorphic Abstraction). Given a function h : C 
→ A,
let αh(X) = {h(x) | x ∈ X} and γh(Y ) = {x | h(x) ∈ Y }, then αh and γh form
a Galois connection:

(℘(C),⊆) −−−−→←−−−−
αh

γh

(℘(A),⊆) (1)

Proof. For all X ∈ ℘(C) and Y ∈ ℘(A),

αh(X) ⊆ Y

⇐⇒ {h(x) | x ∈ X} ⊆ Y �definition of αh�

⇐⇒ ∀x ∈ X : h(x) ∈ Y �definition of ⊆�

⇐⇒ X ⊆ {x | h(x) ∈ Y } �definition of ⊆�

⇐⇒ X ⊆ γh(Y ) �definition of γh�

��

Hence, by defining γa(A) � {π | αa(π) ∈ A}, we will have αa and γa form the
Galois connection by Theorem 1 where h is αa.

A control flow graph (CFG) is a directed graph, in which nodes correspond to
the actions in the program and the edges represent the possible flow of control.
The CFG G[[C]] of command C can be built by structural induction on the syntax
of the command C:
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Then the action path semantics Ga[[G[[C]]]] of CFG G[[C]] of command C can be
defined as:

The following Theorem 2 states that the action path semantics of the control
flow graph of a program is an over-approximation, hence a sound abstraction,
of the action paths that would be collected directly from the trace semantics.

Theorem 2. αa(St[[C]]) ⊆ Ga[[G[[C]]]].

Proof. The proof can be done by the structural induction on the syntax of the
command C. More details can be found in the Appendix of [2]. ��

3 Branch Condition Path Abstraction

We introduce branch condition graphs Gb[[C]] of command C which can be viewed
as further abstractions of the control flow graphs G[[C]]. We define the branch
condition path semantics Gb[[Gb[[C]]]] as an abstract interpretation αb of the action
path semantics Ga[[G[[C]]]] of the control flow graph G[[C]] of command C.

3.1 Branch Condition Graph

A branch condition is the test B occurring in a command “if (B) {C1} else {C2}”
while a loop condition is the test B occurring in a command “while (B) {C}”. A
branch condition graph (BCG) of a program is a directed acyclic graph, in which
each node corresponds to a branch condition occurring in the program and has
two outgoing edges representing its true and false branches. An edge from node
A to node B means that the branch condition corresponding to node B occurs
after the branch condition corresponding to node A in the program and there
are no other branch conditions occurring between them. A trace from the entry
point to the exit point of a BCG is called branch condition path. We use B to
denote the true branch while ¬B denotes the false branch.
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Example 2. Consider the following branch condition graph:

x < y

p > 0

q > 0 q > 0

Its branch condition paths include:

(x < y) · (p > 0) · (q > 0), ¬(x < y) · (p > 0) · (q > 0),
(x < y) · (p > 0) · ¬(q > 0), ¬(x < y) · (p > 0) · ¬(q > 0),
(x < y) · ¬(p > 0) · (q > 0), ¬(x < y) · ¬(p > 0) · (q > 0),
(x < y) · ¬(p > 0) · ¬(q > 0), ¬(x < y) · ¬(p > 0) · ¬(q > 0).

��

The branch condition graph Gb[[C]], like the CFG, can be defined by structural
induction on the syntax of the command C:

Note that the concatenation of and is still

3.2 Branch Condition Path Abstraction

We abstract finite action paths A1·A2·...·An, n ≥ 0 by the finite branch condition
path Ab

1 · Ab
2 · ... · Ab

m,m ≤ n where Ab
1 = Ap,Ab

2 = Aq, ...,Ab
m = Ar, 1 ≤ p < q <

... < r ≤ n are distinct branch conditions. The branch condition path is empty
ε when there are no branch conditions occurred in the action path. We say that
two branch conditions Ab

1,A
b
2 are equal if and only if Ab

1 and Ab
2 occur at the

same program point. Moreover, each branch condition in the branch condition
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path must be the last occurrence in the action path being abstracted, that is, if
Ab

i is a branch condition in the branch condition path Ab
1 ·Ab

2 · ... ·Ab
m abstracting

the action path A1 · A2 · ... · An where Ab
i = Aj , then ∀k : j < k ≤ n,Ab

i �= Ak.
Note that we only consider finite action paths hence safety properties.

Condition Path Abstraction. The condition path abstraction collects the
set of finite sequences of conditions performed along the action path π and
ignores any skip and assignment in π. Given an action path π, αc(π) collects the
sequence of conditions in the action path, which may be empty ε when there are
no conditions occurred in the action path, by the following induction rules:

αc(skip) � ε αc(B) � B

αc(x = E) � ε αc(¬B) � ¬B

αc(π1 · π2) � αc(π1) · αc(π2)

Note that ε · πc = πc · ε = πc. Let AC be the set of conditions and (AC)∗ be
the set of finite, possible empty, condition paths. Given a set of action paths A,
αc(A) collects the sequences of conditions in the action paths A:

αc ∈ ℘(A∗) 
→ ℘((AC)∗)

αc(A) � {αc(π) | π ∈ A}

It follows that αc preserves arbitrary unions and non-empty intersections. By
defining γc(C) � {π | αc(π) ∈ C}, we will have:

Corollary 1.

(℘(A∗),⊆) −−−→←−−−
αc

γc

(℘((AC)∗),⊆) (2)

Proof. By Theorem 1 where h is αc. ��

Loop Condition Elimination. Given a finite condition path πc, αd(πc) col-
lects the finite sequence of branch conditions (with duplications) by eliminating
all loop conditions in πc. This sequence may be empty ε when there are no
branch conditions occurred in πc. Let AB be the set of branch conditions and AL

be the set of loop conditions, thus AC � AB ∪ AL and AB ∩ AL = ∅. Note that
we distinguish those conditions by the program points where they occur, not by
themselves.

For all Ab ∈ AB and Al ∈ AL, we have

αd(Ab) � Ab and αd(Al) � ε. (3)

Then given two condition paths πc1
and πc2

, we have

αd(πc1
· πc2

) � αd(πc1
) · αd(πc2

). (4)
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Note that ε · πd = πd · ε = πd. Let (AB)∗ be the set of finite, possible empty,
sequences of branch conditions. Given a set of condition paths C, αd(C) collects
the sequences of branch conditions (with duplications) from the condition paths
C:

αd ∈ ℘((AC)∗) 
→ ℘((AB)∗)

αd(C) � {αd(πc) | πc ∈ C}

It’s easy to see that αd preserves both arbitrary unions and non-empty intersec-
tions. By defining γd(D) � {πc | αd(πc) ∈ D}, we will have:

Corollary 2.

(℘((AC)∗),⊆) −−−→←−−−
αd

γd

(℘((AB)∗),⊆) (5)

Proof. By Theorem 1 where h is αd. ��

Duplication Elimination. The branch condition paths are the sequences of
branch conditions without duplications. In this part, we introduce the abstrac-
tion function that eliminates duplications in any sequence of branch conditions.

We first define two functions that are used in the abstraction function α�.
Given a sequence seq and an element d of seq, erase(seq, d) eliminates all ele-
ments in seq that is equal to d:

erase(d1d2d3...dn, d) � if d1 = d then erase(d2d3...dn, d)
else d1 · erase(d2d3...dn, d)

(6)

Note that erase(seq, d) may return the empty sequence ε. Then fold(seq) elimi-
nates the duplications of each element in seq starting from the last element:

fold(d1d2...dn) � if d1d2...dn = ε then ε
else fold(erase(d1d2...dn−1, dn)) · dn

(7)

Hence, given a sequence of branch conditions πd, α�(πd) = fold(πd) eliminates
duplications of each branch condition while keeping its last occurrence in πd. Let
D be the set of sequences of branch conditions that have duplications. Given a
set of sequences of branch conditions D, α�(D) collects branch condition paths
(sequences of branch conditions without duplications):

α� ∈ ℘((AB)∗) 
→ ℘((AB)∗ \ D)

α�(D) � {α�(πd) | πd ∈ D}
Similarly, we have α� preserves both arbitrary unions and non-empty intersec-

tions. By defining γ�(B) � {πd | α�(πd) ∈ B}, we will have:

Corollary 3.

(℘((AB)∗),⊆) −−−→←−−−
α�

γ�

(℘((AB)∗ \ D),⊆) (8)

Proof. By Theorem 1 where h is α�. ��
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Branch Condition Path Abstraction. The branch condition path abstrac-
tion αb[[A]] collects the branch condition paths, which is the set of sequences of
branch conditions with no duplications along the action paths in A. It can be
defined by the composition of αc, αd, α� defined in the previous sections as:

αb ∈ ℘(A∗) 
→ ℘((AB)∗ \ D)

αb(A) � α� ◦ αd ◦ αc(A)

Respectively, the concretization function γb(B) can be defined by the com-
position of γc, γd, γ� as:

γb ∈ ℘((AB)∗ \ D) 
→ ℘(A∗)

γb(B) � γc ◦ γd ◦ γ�(B)

It follows that αb and γb form a Galois connection:

(℘(A∗),⊆) −−−→←−−−
αb

γb

(℘((AB)∗ \ D),⊆) (9)

Proof. The composition of Galois connections is still a Galois connection. ��

Example 3. In Example 1, let A be all possible action path semantics of its CFG,
then αb(A) = {x ≤ 50,¬(x ≤ 50)}.

4 Binary Decision Tree Abstract Domain Functor

We introduce the binary decision tree abstract domain functor to represent and
manipulate invariants in the form of binary decision trees. The abstract property
will be represented by the disjunction of leaves which are separated by the values
of binary decisions, i.e., boolean tests, which will be organized in the decision
nodes of the binary decision trees.

4.1 Definition

Given the trace semantics St[[P]] of a program P, αb ◦αa(St[[P]]) abstracts St[[P]]
into a finite set B of branch condition paths where B = {πb1

, ..., πbN
}. Then

for πbi
∈ B, we have γa ◦ γb(πbi

) ∩ St[[P]] ⊆ St[[P]] and
⋃

i≤N (γa ◦ γb(πbi
) ∩

St[[P]]) = St[[P]]. Moreover, for all distinct pairs (πb1
, πb2

) ∈ B × B, we have
(γa ◦ γb(πb1

) ∩ St[[P]]) ∩ (γa ◦ γb(πb2
) ∩ St[[P]]) = ∅. Each branch condition path

πbi
defines a subset of the trace semantics St[[P]] of a program P. If we can

generate the invariants for each program point only using the information of one
subset of the trace semantics, then for each program point, we will get a finite
set of invariants. It follows that the disjunction of such set of invariants forms
the invariant of that program point. Hence, we encapsulate the set of branch
condition paths into the decision nodes of a binary decision tree where each
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top-down path (without leaf) of the binary decision tree represents a branch
condition path, and store in each leaf nodes the invariant generated from the
information of the subset of the trace semantics defined by the corresponding
branch condition path.

We denote the binary decision tree in the parenthesized form

[[ B1 : [[ B2 : (|P1 |), (|P2 |) ]], [[ B3 : (|P3 |), (|P4 |) ]] ]]

where B1,B2,B3 are decisions (branch conditions) and P1, P2, P3, P4 are invari-
ants. It encodes the fact that either if B1 and B2 are both true then P1 holds,
or if B1 is true and B2 is false then P2 holds, or if B1 is false and B3 is true
then P3 holds, or if B1 and B3 are both false then P4 holds. The parenthe-
sized representation of binary trees uses (| ... |) for leaves and [[ B : tl, tr ]] for
the decision B and tl (resp. tr) represents its left subtree (resp. right sub-
tree). In first order logic, the above binary decision tree would be be written
as (B1 ∧ B2 ∧ P1) ∨ (B1 ∧ ¬B2 ∧ P2) ∨ (¬B1 ∧ B3 ∧ P3) ∨ (¬B1 ∧ ¬B3 ∧ P4) with
an implicit universal quantification over free variables.

Let D(B) denote the set of all branch conditions appearing in B. Let β =
B or ¬B and B\β denote the removal of β and all branch conditions appearing
before in each branch condition path in B, then we define the binary decision
tree as:

Definition 2. A binary decision tree t ∈ T(B,D�) over the set B of branch
condition paths (with concretization γa ◦ γb) and the leaf abstract domain D�

(with concretization γ�) is either (| p |) with p is an element of D� and B is empty
or [[B : tt, tf ]] where B ∈ D(B) is the first element of all branch condition paths
πb ∈ B and (tt, tf ) are the left and right subtree of t represent its true and false
branch such that tt, tf ∈ T(B\β ,D�). ��

Example 4. In Example 1, the binary decision tree at program point l will be
t = [[x ≤ 50 : (| 0 ≤ x ≤ 50 ∧ x = y |), (| 51 ≤ x ≤ 103 ∧ x + y − 102 = 0 |)]].

Let ρ be the concrete environment assigning concrete values ρ(x) to variables
x and [[e]]ρ for the concrete value of the expression e in the concrete environment
ρ, we can then define the concretization of the binary decision tree as

Definition 3. The concretization of a binary decesion tree γt is either

γt((| p |)) � γ�(p)

when the binary decision tree is reduced to a leaf or

γt([[B : tt, tf ]]) � {ρ | [[B ]]ρ = true =⇒ ρ ∈ γt(tt) ∧
[[B ]]ρ = false =⇒ ρ ∈ γt(tf )}

when the binary decision tree is rooted at a decision node. ��

Given t1, t2 ∈ T(B,D�), we say that t1 ≡t t2 if and only if γt(t1) = γt(t2). Let
T(B,D�)\≡t

be the quotient by the equivalence relation ≡t. The binary decision
tree abstract domain functor is defined as:
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Definition 4. A binary decision tree abstract domain functor is a tuple

〈T(B,D�)\≡t
,�t,⊥t,�t,�t,�t,�t,�t〉

on two parameters, a set B of branch condition paths and a leaf abstract domain
D� where (T is short for T(B,D�)\≡t

)

P,Q, ... ∈ T abstract properties
�t ∈ T × T → {false, true} abstract partial order

⊥t,�t ∈ T infimum, supremum
(∀P ∈ T : ⊥t �t P �t �t) (10)

�t,�t ∈ T × T → T abstract join, meet
�t,�t ∈ T × T → T abstract widening, narrowing

��

The set B of branch condition paths can be constructed from the CFG of the
program. It can be done either in the pre-analysis or on the fly during the
analysis. The static analyzer designer should allow to change the maximal length
of branch condition paths in B so as to be able to adjust the cost/precision ratio
of the analysis. The leaf abstract domain D� for the leaves could be any numerical
or symbolic abstract domains such as intervals, octagons and polyhedra, array
domains, etc., or even the reduced product of two or more abstract domains.
A list of available abstract domains that can be used at the leaves would be
another option of the static analyzer designer. We can use any of these options
to build a particular instance of the binary decision tree abstract functor. The
advantage of this modular approach is that we can change those options to adjust
the cost/precision ratio without having to change the structure of the analyzer.

4.2 Binary Operations

Inclusion and Equality. Given two binary decision tree t1, t2 ∈ T(B,D�) \
{⊥t,�t}, we can check t1 �t t2 by comparing each pair (
1, 
2) of leaves in
(t1, t2) where 
1 and 
2 are defined by the same branch condition path πb ∈ B.
If each pair (
1, 
2) satisfies 
1 �� 
2, we can conclude that t1 �t t2; otherwise,
we have t1 ��t t2.

include(t1 , t2 : binary decision trees )
{

i f (t1 == (|l1|) && t2 == (|l2|)) then return t1 �� t2 ;

let t1 = [[B: t1l , t1r]] and t2 = [[B: t2l , t2r]] ;
return include(t1l , t2l ) & include(t1r , t2r ) ;

}
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Example 5. We have [[x ≤ 50 : (| x = 0 ∧ y = 0 |), (| ⊥� |)]] � [[x ≤ 50 : (| 0 ≤ x ≤
1 ∧ x = y |), (| ⊥� |)]] and [[x ≤ 50 : (| x = 0 ∧ y = 0 |), (| ⊥� |)]] �� [[x ≤ 50 : (| x =
1 ∧ y = 1 |), (| ⊥� |)]].

The equality of t1 and t2 can be tested by the fact t1 =t t2 � t1 �t t2 ∧ t2 �t

t1. When the leaf abstract domain D� has =�, we can also check the equality for
each pair (
1, 
2) of leaves in (t1, t2) where 
1 and 
2 are defined by the same
branch condition path πb ∈ B.

Meet and Join. Given two binary decision tree t1, t2 ∈ T(B,D�), the meet
t = t1 �t t2 can be computed using the meet �� in the leaf abstract domain D�.
Let 
1, 
2 are leaves of t1, t2 respectively, where the same branch condition path
πb ∈ B leads to 
1 and 
2, then 
 = 
1 �� 
2 is the leaf of t led by the same branch
condition path πb ∈ B. After computing each leaf 
 = 
1 �� 
2 in t, we then get
t = t1 �t t2.

meet(t1 , t2 : binary decision trees )
{

i f (t1 == (|l1|) && t2 == (|l2|)) then return t1 �� t2 ;

let t1 = [[B: t1l , t1r]] and t2 = [[B: t2l , t2r]] ;
return [[B: meet( t1l , t2l ) , meet(t1r , t2r)]] ;

}

Similar to the meet, we can compute the join t = t1 �t t2 using the join ��

in the leaf abstract domain D�. But instead of computing the join 
1 �� 
2 for
each pair (
1, 
2) of leaves in (t1, t2) where 
1 and 
2 are led by the same branch
condition path πb ∈ B, we also use the branch conditions in πb as bound to
prevent precision loss. Let πb = β1 · β2 · ... · βn where βi = Bi or ¬Bi, i = 1, ..., n,
we have 
 = (
1 �� 
2) �� D�(β1) �� D�(β2) �� ... �� D�(βn) (D�(β) means the
representation of β in D�, when α� exists in the leaf abstract domain D�, we can
use α�(β) instead).

join (t1 , t2 : binary decision trees , bound = �)
{

i f (t1 == (|l1|) && t2 == (|l2|)) then return (t1 �� t2) �� bound;

let t1 = [[B: t1l , t1r]] and t2 = [[B: t2l , t2r]] ;
return [[B: join (t1l , t2l , bound �� D�(B)) ,

join (t1r , t2r , bound �� D�(¬B))]] ;
}
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Example 6. Let t1 = [[x ≤ 50 : (| x = 0 ∧ y = 0 |), (| ⊥� |)]], t2 = [[x ≤ 50 : (| x =
1 ∧ y = 1 |), (| ⊥� |)]], t3 = [[x ≤ 50 : (| 0 ≤ x ≤ 1 ∧ x = y |), (| ⊥� |)]], we have
t1 �t t2 = ⊥t, t1 �t t3 = t1 and t1 �t t2 = t3, t2 �t t3 = t3.

4.3 Transfer Functions

We define transfer functions for both tests and assignments. The tests either
occur in a loop head or occur in the branch. Hence, we define both loop test
transfer function and branch test abstract function for the binary decision tree
abstract domain.

Loop Test Transfer Function. The transfer function for the loop tests is
simple. Given a binary decision tree t ∈ T(B,D�) and a loop test B, we first
define t �t B as: ⊥t �t B � ⊥t

�t �t B � (| B |)
t �t false � ⊥t

t �t true � t

(| p |) �t B � (| p �� D�(B) |)
[[ B′ : tl, tr ]] �t B � [[ B′ : tl �t D�(B′ ∩ B), tr �t D�(¬B′ ∩ B) ]]

Then the transfer function fL[[B]]t for the loop test B of the binary decision tree
t can be defined as:

fL[[B]]t � t �t B.

Example 7. Let t be the binary decision tree in Example 4, then fL[[y >= 0]]t =
[[x ≤ 50 : (| 0 ≤ x ≤ 50 ∧ x = y |), (| 51 ≤ x ≤ 102 ∧ x + y − 102 = 0 |)]].

Branch Test Transfer Function. The binary decision tree can be constructed
in two different ways. On one hand, it can be generated immediately after the
set B of branch condition paths has been generated in the pre-analysis. In this
way, all leaves of the binary decision tree will be set to �� for the first program
point and ⊥� for others (��,⊥� ∈ D�) at the beginning. On the other hand,
both binary decision tree and B can be constructed on the fly during the static
analysis. In this last case, we have B = ∅ and the binary decision tree t = (| �� |)
for the first program point and t = (| ⊥� |) for others at the beginning.

In the latter case, the branch test transfer function should first construct the
new binary decision tree from the old one by splitting on the branch condition
when it has been first met in the analysis. Given a binary decision condition
t ∈ T(B,D�) and a branch test B that’s been first met, there are two situations.
One situation is that the branch condition B is independent, that is, it does not
occur inside any scope of a branch. In this situation, the new binary decision tree



48 J. Chen and P. Cousot

t′ can be constructed by replacing each leaf p in the binary tree t with a subtree
[[B : (|p��D�(B)|), (|p��D�(¬B)|)]]. We also have B′ = {πb ·B | πb ∈ B}∪{πb ·¬B |
πb ∈ B}. The other situation is that the branch condition B is inside a scope of
a branch. Let B’ be the condition of the branch and there is no other branch
scope between B and B’, if B is inside the true branch of B’, then the new
binary decision tree t′ can be constructed by replacing each left leaf p of B’ in
the binary tree t with a subtree [[B : (|p �� D�(B)|), (|p �� D�(¬B)|)]]. We also have
B′ = {πb ·B′ ·B | πb ·B′ ∈ B}∪{πb ·B′ ·¬B | πb ·B′ ∈ B}∪(B\{πb ·B′ | πb ·B′ ∈ B}).
If B is inside the false branch of B’, the right leaves of B’ instead of left leaves
should be replaced by the same subtrees and B′ = {πb · ¬B′ · B | πb · ¬B′ ∈
B} ∪ {πb · ¬B′ · ¬B | πb · ¬B′ ∈ B} ∪ (B \ {πb · ¬B′ | πb · ¬B′ ∈ B}).

Then in both ways, the branch test transfer function will do the same thing
as loop test transfer function. Given the branch test B and the binary decision
tree t ∈ T(B,D�), we have:

fB [[B]]t � t �t B.

Example 8. Let t be the binary decision tree in Example 4, then fB [[x <= 50]]t =
[[x ≤ 50 : (| 0 ≤ x ≤ 50 ∧ x = y |), (| ⊥� |)]].

Assignment Transfer Function. Given a binary decision tree t ∈ T(B,D�),
the assignment x = E can be performed at each leaf in t by using the assignment
transfer function of D�. E.g., let t = [[x ≤ 50 : (| 0 ≤ x ≤ 50 |), (| ⊥� |)]] and given
an assignment x = x + 1, after performing the assignment transfer function
of Polyhedra abstract domain on each leaf of t, we will get t′ = [[x ≤ 50 :
(| 1 ≤ x ≤ 51 |), (| ⊥� |)]]. Generally, the branch condition paths in B are used as
labels separating the abstract properties in disjunctions which are gathered in
the leaves. But this is not always the case. For example, in the join operator, we
use the branch conditions in B to reduce the result of the join. After performing
the assignment transfer function of leaf abstract domain D� on each leaf, we may
also need to manipulate the leaves using the branch condition paths in B. Let’s
check the above result t′ after the assignment, it appears that some leaves in the
new binary decision tree may not satisfy some branch conditions in the branch
condition paths which are leading to them. For example, 1 ≤ x ≤ 51 is not
satisfying the branch condition x ≤ 50. We know the violation part is actually
satisfying the negation of those branch conditions. Hence we need to use the
branch condition x ≤ 50 to separate 1 ≤ x ≤ 51 into 1 ≤ x ≤ 50 ∨ x = 51 and
update the corresponding leaves. For example, we have t′′ = [[x ≤ 50 : (| 1 ≤ x ≤
50 |), (|x = 51 |) ]].

We call this procedure reconstruction on leaves. Given a binary decision tree
t after an assignment, we define the procedure as follow:

1. Collecting all leave properties in t, let it be {p1, p2, ..., pn};
2. For each leaf in t, let πb = β1 ·β2 · ... ·βn be the branch condition path leading

to it. We then calculate p′
i = pi �� (D�(β1 ∧ β2 ∧ ... ∧ βn)).
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3. For each leaf in t, update it with p′
1 �� p′

2 �� ... �� p′
n.

Correctness. Let p = p1 ∨ p2 ∨ ... ∨ pn be the disjunction of all properties in
leaves before reconstruction on leaves. For each leaf 
i in t, we have 
i = (p1 ��

(D�(βi
1 ∧βi

2 ∧ ...∧βi
n)))�� ...�� (pn �� (D�(βi

1 ∧βi
2 ∧ ...∧βi

n))) = (p1 �� ...�� pn)��

(D�(βi
1∧βi

2∧...∧βi
n)) after reconstruction on leaves. We then have the disjunction

of all properties in leaves after reconstruction on leaves is p′ = 
1 ∨ ... ∨ 
n =
(p1��...��pn)��(D�(β1

1∧β1
2∧...∧β1

n))∨...∨(p1��...��pn)��(D�(βn
1 ∧βn

2 ∧...∧βn
n)) =

(p1 �� ... �� pn) �� ((D�(β1
1 ∧ β1

2 ∧ ... ∧ β1
n)) ∨ ... ∨ (D�(βn

1 ∧ βn
2 ∧ ... ∧ βn

n))) =
(p1�� ...�� pn)�� true = p1�� ...�� pn ≡ p. This shows that the reconstruction on
leaves procedure will not change the result of the assignment transfer function.

4.4 Extrapolation Operators

When the leaf abstract domain D� has strictly increasing and/or strictly decreas-
ing infinite chains, widening and/or narrowing operators are required in the
binary decision tree abstract domain to accelerate the convergence of fixpoint
iterates.

Widening. Given two binary decision tree t1, t2 ∈ T(B,D�), the widening t =
t1 �t t2 can be computed using the widening �� in the leaf abstract domain D�

similar to the join operator, that is, computing the widening 
1 �� 
2 for each
pair (
1, 
2) of leaves in (t1, t2) where 
1 and 
2 are led by the same branch
condition path πb ∈ B while the branch conditions in πb are also used as the
threshold. Let πb = β1 · β2 · ... · βn where βi = Bi or ¬Bi, i = 1, ..., n, we have
each leaf 
 = (
1 �� 
2) �� D�(β1) �� D�(β2) �� ... �� D�(βn).

widening(t1 , t2 : binary decision trees , bound = �)
{

i f (t1 == (|l1|) && t2 == (|l2|)) then return (t1 �� t2) �� bound;

let t1 = [[B: t1l , t1r]] and t2 = [[B: t2l , t2r]] ;
return [[B: widening(t1l , t2l , bound �� D�(B)) ,

widening(t1r , t2r , bound �� D�(¬B))]] ;
}

Narrowing. The narrowing operator in the binary decision tree abstract
domain is very similar to its meet operator. Given two binary decision tree
t1, t2 ∈ T(B,D�), the narrowing t = t1 �t t2 can be computed using the narrow-
ing �� in the leaf abstract domain D�. Let 
1, 
2 are leaves of t1, t2 respectively,
where the same branch condition path πb ∈ B leads to 
1 and 
2, then 
 = 
1 �� 
2
is the leaf of t led by the same branch condition path πb ∈ B. After computing
each leaf 
 = 
1 �� 
2 in t, we then get t = t1 �t t2.
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narrowing(t1 , t2 : binary decision trees )
{

i f (t1 == (|l1|) && t2 == (|l2|)) then return t1 �� t2 ;

let t1 = [[B: t1l , t1r]] and t2 = [[B: t2l , t2r]] ;
return [[B: narrowing(t1l , t2l ) , narrowing(t1r , t2r)]] ;

}

Example 9. Let t1 = [[x ≤ 50 : (| x = 0 ∧ y = 0 |), (| ⊥� |)]] and t2 = [[x ≤ 50 :
(| x = y ∧ 0 ≤ x ≤ 1 |), (| ⊥� |)]]. It’s easy to see that t1 ⊆ t2. In polyhedra, we
have (x = 0 ∧ y = 0)�t (x = y ∧ 0 ≤ x ≤ 1) = x ≥ 0 ∧ x = y. Hence, we have
t1 �t t2 = [[x ≤ 50 : (| 0 ≤ x ≤ 50 ∧ x = y |), (| ⊥� |)]].

4.5 Other Operators

Although the number of branch conditions in a program is always finite, it
may still be a very large number. A large number of branch conditions means
a large binary decision tree, with a potentially exponential growth which is
not acceptable in practice. Hence, we need limit the size (depth) of the binary
decision trees.

One method is to eliminate decision nodes by merging their subtrees when
the binary decision tree grows too deep. This can be done as follow:

1. Pick up a branch condition B. We can simply use the one in the root, or
the nearest one to the leaves, or by random. We can also design a ranking
function based on the information from the analysis for each branch condition
to estimate how likely it is to be eliminated with minimal information loss.
Then we always choose the most likely one.

2. Eliminate B (B or ¬B) from each branch condition path in B.
3. For each subtree of the form [[B : tt, tf ]], if tt and tf have identical decision

nodes, replace it by tt �t tf .
4. Otherwise, there are decision nodes existing only in tt or tf . For each of those

decision nodes, (recursively) eliminate it by merging its subtrees. When no
such decision node exists, we get t′t and t′f , and they must have identical
decision nodes, so [[B : tt, tf ]] can be replaced by t′t �t t′f .

Another method is to generate a smaller B by abstracting the branch condi-
tion paths in B into shorter ones. We may partition the set of branch conditions
by its appearance inside or outside loops and then only keep the ones appeared
inside the loops in B. We may also only keep the branch conditions which have
some particular form, such as ax � b, etc.

The second method is different from the first one because it can be done in
the pre-analysis or on the fly before splitting trees, thus no merging is needed
during the analysis. This reduces the cost of the analysis, thus improves its
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efficiency. But because all the branch conditions being eliminated are not based
on the information that is collected during the static analysis, the result may be
less precise than the one generated from the first method. Moreover, eliminating
branch conditions and merging their subtrees allow us to dynamically change the
binary decision trees on the fly. This provides a more flexible way of adjusting
the cost/precision ratio of the static analysis.

5 Example

Let us come back to Example 1. We choose the polyhedra abstract domain as
the leaf abstract domain and we have B = {x <= 50,¬(x <= 50)}. Initially, we
set t = (| ⊥� |) in the program point l. After the assignment “x = 0; y = 0;”, we
have “t = (| x = 0 ∧ y = 0 |)”. Let ti be the abstract property at program point
l after the i-th iteration, then t0 = (| x = 0 ∧ y = y |). In the first iteration, we
have to construct the binary decision tree when first reaching the branch test “x
<= 50”. In this case, we have t′0 = [[x ≤ 50 : (| x = 0 ∧ y = 0 |), (| ⊥� |)]]. At the
end of the first iteration, we get t′′0 = [[x ≤ 50 : (| x = 1 ∧ y = 1 |), (| ⊥� |)]]. Then
t1 = t0 ∪t t′′0 = [[x ≤ 50 : (| x = y ∧ 0 ≤ x ≤ 1 |), (| ⊥� |)]]. Afterwards, we apply
the widening and get t′1 = t0 � t1 = [[x ≤ 50 : (| 0 ≤ x ≤ 50 ∧ x = y |), (| ⊥� |)]]. In
the second iteration, the assignment “x++;” leads to reconstruction on leaves,
hence we get t′′1 = [[x ≤ 50 : (| 1 ≤ x ≤ 50 ∧ x = y |), (| x = 51 ∧ y = 51 |)]].
Then t2 = t1 ∪t t′′1 = [[x ≤ 50 : (| 0 ≤ x ≤ 50 ∧ x = y |), (| x = 51 ∧ y = 51 |)]].
After the third iteration, t3 = [[x ≤ 50 : (| 0 ≤ x ≤ 50 ∧ x = y |), (| x + y − 102 =
0 ∧ 51 ≤ x ≤ 52 |)]]. We then apply the widening and get t′3 = t2 � t3 = [[x ≤ 50 :
(| 0 ≤ x ≤ 50 ∧ x = y |), (| x + y − 102 = 0 ∧ x ≥ 51 |)]]. One more iteration yields
t4 = [[x ≤ 50 : (| 0 ≤ x ≤ 50 ∧ x = y |), (| x + y − 102 = 0 ∧ 51 ≤ x ≤ 103 |)]]. It
follows that the program analysis converges. Hence t4 is the invariant at program
point l.

6 Related Work

A systematic characterization of the least bases for the disjunctive completion of
abstract domains can be found in [8]. The trace partitioning using control flows
was first introduced in [3]. A static analysis framework via trace partitioning was
proposed by [11]. In this framework, the control flow is used to choose which
disjunctions to keep but it lacks the merge of partitions, which may lead to
exponential cost. In [13], a trace partitioning domain, where the partitioning of
traces are based on the history of the control flow, has been proposed. The main
difference between their partitionings and ours is we only use (part of) branch
conditions while they are considering all conditions and other information.

Decision trees have been used for the disjunctive refinement of an abstract
domain such as [10] for the interval abstract domain based on decision trees.
A general segmented decision tree abstract domain, where disjunctions are
determined by values of variables is introduced in [7]. Moreover, [16] pro-
posed a general disjunctive refinement of an abstract domain based on decision
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trees extended with linear constraints for program termination. The difference
between those works and ours is their partitionings are mainly based on the
value of some variables while ours are directly based on the branch conditions.

There also exist several works on directly allowing disjunction in the domain,
i.e., powerset domain [1]. In [15], the disjunctions are computed on an elabo-
ration, which can be viewed as a multiply duplication, of the programs CFG
structure. Moreover, our binary decision tree abstract domain functor can also
be useful to scale traditional path-sensitive program analysis [17].

7 Conclusion

In this paper, we have introduced a series of abstractions which generates a set of
branch condition paths. Those branch condition paths define a kind of trace par-
titioning on the concrete level (trace semantics of program). By using such infor-
mation for trace partitioning, we proposed a binary decision tree abstract domain
functor that allows finite disjunction of abstract properties generated by existing
abstract domains1. We also discussed the implementation of our binary decision
tree abstract domain functor by providing algorithms for inclusion test, meet
and join, transfer functions and extrapolation operators. Although we bound
the number of disjunctions only to the number of branch conditions in the pro-
gram, the cost of our domain may still be excessive. Thus we also discussed how
to limit the number of disjunctions. Our binary decision tree abstract domain
functor may provide a flexible way of adjusting the cost/precision ratio for static
analysis.
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Abstract. When two methods are invoked on the same object, the dis-
patch behaviours of these method calls will be correlated. If two cor-
related method calls are polymorphic (i.e., they dispatch to different
method definitions depending on the type of the receiver object), a pro-
gram’s interprocedural control-flow graph will contain infeasible paths.
Existing algorithms for data-flow analysis are unable to ignore such infea-
sible paths, giving rise to loss of precision.

We show how infeasible paths due to correlated calls can be elimi-
nated for Interprocedural Finite Distributive Subset (IFDS) problems, a
large class of data-flow analysis problems with broad applications. Our
approach is to transform an IFDS problem into an Interprocedural Dis-
tributive Environment (IDE) problem, in which edge functions filter out
data flow along infeasible paths. A solution to this IDE problem can be
mapped back to the solution space of the original IFDS problem. We for-
malize the approach, prove it correct, and report on an implementation
in the WALA analysis framework.

1 Introduction

A control-flow graph (CFG) is an over-approximation of the possible flows of
control in concrete executions of a program. It may contain infeasible paths that
cannot occur at runtime. The precision of a data-flow analysis algorithm depends
on its ability to detect and disregard such infeasible paths. The Interprocedural
Finite Distributive Subset (IFDS) algorithm [16] is a general data-flow analysis
algorithm that avoids infeasible interprocedural paths in which calls and returns
to/from functions are not properly matched. The Interprocedural Distributive
Environment (IDE) algorithm [18] has the same property, but supports a broader
range of data-flow problems.

This paper presents an approach to data-flow analysis that avoids a type
of infeasible path that arises in object-oriented programs when two or more
methods are dynamically dispatched on the same receiver object. If the method
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calls are polymorphic (i.e., the method invoked depends on the run-time type
of the receiver), then their dispatch behaviours are correlated, and some of the
paths between them are infeasible. A recent paper [21] made this observation
but did not present any concrete algorithm to take advantage of it.

Our approach transforms an IFDS problem into an IDE problem that pre-
cisely accounts for infeasible paths due to correlated calls. The results of this
IDE problem can be mapped back to the data-flow domain of the original IFDS
problem, but are more precise than the results of directly applying the IFDS
algorithm to the original problem. We present a formalization of the transfor-
mation and prove its correctness: specifically, we prove it still soundly considers
all paths that are feasible, and that it avoids flow along all paths that are infea-
sible due to correlated calls.

We implemented the correlated-calls transformation and the IDE algorithm
in Scala, on top of the WALA framework for static analysis of JVM bytecode [5].
Our prototype implementation was tested extensively by using it to transform
an IFDS-based taint analysis into a more precise IDE-based taint analysis, and
applying the latter to small example programs with correlated calls. Our pro-
totype along with all tests will be made available to the artifact evaluation
committee.

The remainder of this paper is organized as follows. Section 2 presents a
motivating example. Section 3 reviews the IFDS and IDE algorithms. Section 4
presents the correlated-calls transformation, states the correctness properties1,
and discusses our implementation. Related work is discussed in Sect. 5. Finally,
Sect. 6 presents conclusions and directions for future work.

2 Motivation

We illustrate our approach using a small example that applies our technique to
improve the precision of taint analysis. A taint analysis computes how string val-
ues may flow from “sources”, which are typically statements that read untrusted
input, to “sinks”, which are typically security-sensitive operations such as calls
to a database. In previous research [2,6], taint analysis algorithms have been
formulated as IFDS problems.

Figure 1 shows a small Java program. The program declares a class A with
a subclass B, where A defines methods foo() and bar() that are overridden in
B. We assume that secret values are created by an unspecified function secret(),
which is called in A.foo() on line 2. Any write to standard output is assumed
to be a sink (e.g., the call to System.out.println() in B.bar()). Depending on the
number of arguments passed to the program, the main() method of the example
program creates either an A-object or a B-object. The program then calls foo()
on this object on line 18, which is followed by a call to bar() on the same object.

We wish to answer the following question: Is it possible for the untrusted
value that is read on line 2 to flow to the print statement? Consider the control-
flow supergraph for the example program that is shown in Fig. 2. The nodes
1 Detailed proofs of our lemmas and theorems can be found in the Technical

Report [15].
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Fig. 1. Example program containing
correlated calls

Fig. 2. Control flow supergraph for the exam-
ple program of Fig. 1. Dashed lines depict
interprocedural edges. An infeasible path is
shown in bold.

in this graph correspond to statements, method entry points (start nodes) and
method exit points (end nodes). For each method call, the graph contains a
distinct call-node and a return-node. Edges in the graph reflect intraprocedural
control flow, flow of control from a caller to a callee (edges from call-nodes to
start-nodes), or flow of control from a callee back to a caller (edges from end-
nodes to return-nodes).

In our example, the control flow within each method is straightforward and
all interesting issues arise from interprocedural control flow. In particular, since a
may point to either an A-object or a B-object, the call on line 18 may dispatch to
either A.foo() or to B.foo(), as is reflected by edges from the node labeled callfoo
to the nodes labeled startA.foo() and startB.foo() and by edges from the nodes
labeled endA.foo and endB.foo to the node labeled returnfoo . Similarly, there are
edges from the node labeled callbar to the nodes startA.bar() and startB.bar() , and
edges from the nodes labeled endA.bar and endB.bar to the node labeled returnbar .

An IFDS analysis propagates data-flow facts along the edges of a control
flow supergraph such as the one in Fig. 2. The IFDS algorithm already avoids
flow along infeasible paths from one call site, through a target method, and
returning to a different call site of the target method. However, in this example,
all methods are called in exactly one place, so IFDS is unable to eliminate data
flow along any of the paths shown in the figure. As a result, IFDS-based taint
analysis algorithms such as [2,6] would report that the secret value read on line 2
might flow to the print statement on line 10.
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As we discussed previously, the calls to foo() and bar() may dispatch to the
implementations in classes A and B, because the receiver variable a may be
bound to objects of type A or B at run time. However, the methods foo() and
bar() are invoked on the same object. Thus the behaviours of the method calls
are correlated : if the call to foo() dispatches to A.foo(), then the call to bar()
must dispatch to A.bar(), and analogously for B.foo() and B.bar(). Consequently,
paths such as the one shown in bold in Fig. 2 where the calls dispatch to A.foo()
and B.bar() are infeasible.

Our main contribution is an algorithm for transforming an IFDS problem
into an IDE problem that expresses the feasibility of paths in light of correlated
calls. The approach associates with each interprocedural CFG edge a function
that records the types of variables that are used as the receiver of correlated
method calls. Paths that are composed of edges in which the same receiver
expression has different types are infeasible, and the propagation of data-flow
facts along such paths is prevented. Applying our technique to an IFDS-based
taint analysis would enable the resulting IDE-based taint analysis to determine
that no secret value can flow from line 2 to the print statement on line 10.

While the discussion in this section has focused on the specific problem of
taint analysis, our technique generally applies to any data-flow-analysis prob-
lem that can be expressed in the IFDS framework. This includes many common
analysis tasks such as reaching definitions, constant propagation, slicing, types-
tate analysis, pointer analysis, and lightweight shape analysis.

2.1 Occurrences of Correlated Calls

How often do correlated calls occur in practice? To assess the benefit of the
correlated-calls analysis, we counted the number of correlated calls that occur in
programs of the Dacapo benchmarks [3], using the WALA framework [5]. Our
goal was to obtain an upper bound on the number of redundant IFDS-result
nodes that could be potentially removed by our analysis. The results are shown
in the Technical Report [15].

In these programs, on average, 3 % of all call sites C are polymorphic call
sites CP . Out of these polymorphic call sites, a significant fraction (39 %) are
correlated call sites C�. We also see that, on average, each correlated-call receiver
is involved in approximately three correlated calls.

2.2 An Example from the Scala Collections Library

The Scala collections library contains the trait TraversableOnce that is shared
by both collections and iterators over them. The toArray method of this trait
creates an array and copies the contents of the collection or iterator into it:

val result = new Array[B](this. size )
this .copyToArray(result , 0)

When this refers to an iterator rather than a collection, the call to this.size
extracts all elements of the iterator to count them. At the call to copyToArray,
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the iterator is already empty, so nothing is copied to the newly created array.
One could design an IFDS analysis to detect this kind of bug.

However, the implementation of TraversableOnce.toArray is actually correct
because the above code is guarded with a test: if (this.isTraversableAgain) ...
When the isTraversableAgain method returns false, as it does for an iterator, the
toArray method uses a different (less efficient) implementation. The bug report
would therefore be a false positive. The isTraversableAgain method is easy to
analyze: it returns the constant true in a collection and the constant false in an
iterator. However, in order to eliminate the false positive bug report, an analysis
would need to rule out infeasible paths using correlated calls. Specifically, the
following path triggers the bug, but is infeasible: first, call isTraversableAgain
on a collection, returning true, then call size and copyToArray on an iterator.
Our correlated calls analysis could determine that this path is infeasible because
it calls the collection version of isTraversableAgain but the iterator versions of
size and copyToArray. The relevant code from TraversableOnce and other related
traits is shown in the Technical Report [15].

3 Background

This section defines terminology and presents the IFDS and IDE algorithms.

3.1 Terminology and Notation

The control-flow graph of a procedure is a directed graph whose nodes are
instructions, which contains an edge from n1 to n2 whenever n2 may execute
immediately after n1. A CFG has a distinguished start node startp and end
node endp. Following the presentation of Reps et al. [16,18], we follow every call
instruction with a no-op instruction, so that every call node is immediately fol-
lowed by a return node in the CFG. The control-flow supergraph of a program
contains the CFGs of all of the procedures as subgraphs. In addition, for each
call instruction c, the supergraph contains a call-to-start edge to the start node
of every procedure that may be called from c, and an end-to-return edge from
the end node of the procedure back to the call instruction.

A call site is monomorphic if it always calls the same procedure. In an object-
oriented language, a call site r.m(. . .) can dynamically dispatch to multiple meth-
ods depending on the runtime type of the object pointed to by the receiver r.
A call site that calls multiple procedures is called polymorphic. We define a func-
tion lookup to specify the dynamic dispatch: if s is the signature of m and t is
the runtime type of the object pointed to by r, lookup(s, t) gives the procedure
that will be invoked by the call r.m(. . .). We also define a function τ that may
be viewed as the inverse of lookup: given a signature s and a specific invoked
procedure f , τ(s, f) gives the set of all runtime types of r that cause r.m(. . .) to
dispatch to f : τ(s, f) = {t | lookup(s, t) = f}.

A path in the control-flow supergraph is valid if it follows the usual stack-
based calling discipline: every end-to-return edge on the path returns to the site
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of the most recent call that has not yet been matched by a return. The set of all
valid paths from the program entry point to a node n is denoted VP(n).

A lattice2 is a partially ordered set (S,�) in which every subset has a least
upper bound, called join or �, and a greatest lower bound, called meet or �.
A meet semilattice is a partially ordered set in which every subset only has a
greatest lower bound. The symbols ⊥ and � are used to denote the greatest
lower bound of S and of the empty set, respectively.

We denote a map m as a set of pairs of keys and values, with each key
appearing at most once. For a map m, m(k) is the value paired with the key k.
We denote by m[x → y] a map that maps x to y and every other key k to m(k).

3.2 IFDS

The IFDS framework [16] is a precise and efficient algorithm for data-flow
analysis that has been used to solve a variety of data-flow analysis prob-
lems [4,9,12,22]. The IFDS framework is an instance of the functional approach
to data-flow analysis [19] because it constructs summaries of the effects of called
procedures. The IFDS framework is applicable to interprocedural data-flow prob-
lems whose domain consists of subsets of a finite set D, and whose data-flow func-
tions are distributive. A function f is distributive if f(x1 � x2) = f(x1) � f(x2).

The IFDS algorithm is notable because it computes a meet-over-valid paths
solution in polynomial time. Most other interprocedural analysis algorithms are
either: (i) imprecise due to invalid paths, (ii) general but do not run in polynomial
time [7,19], or (iii) handle a very specific set of problems [8].

The input to the IFDS algorithm is specified as (G∗, D, F, MF , �), where
G∗ = (N∗, E∗) is the supergraph of the input program with nodes N∗ and
edges E∗, D is a finite set of data-flow facts, F is a set of distributive data-flow
functions of type 2D → 2D, MF : E∗ → F assigns a data-flow function to each
supergraph edge, and � is the meet operator on the powerset 2D, either union
or intersection. In our presentation, the meet operator will always be union, but
all of the results apply dually when the meet is intersection.

The output of the IFDS algorithm is, for each node n in the supergraph, the
meet-over-all-valid-paths solution MVPF (n) =

�
q∈VP(n) MF (q)(�), where MF

is extended from edges to paths by composition.

Overview of the IFDS Algorithm. The key idea behind the IFDS algorithm
is that it is possible to represent any distributive function f from 2D to 2D by a
representation relation Rf ⊆ (D ∪ {0}) × (D ∪ {0}). The representation relation
can be visualized as a bipartite graph with edges from one instance of D∪{0} to
another instance of D ∪ {0}. The IFDS algorithm uses such graphs to efficiently
represent both the input data-flow functions and the summary functions that it
computes for called procedures. Specifically, the representation relation Rf of a
function f is defined as:
2 The definitions that we give here are of complete lattices and semilattices. Since all

of the (semi)lattices discussed in this paper are required to be complete, we omit
the complete qualifier.
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Rf = {(0, 0)} ∪ {(0, dj) | dj ∈ f(∅)} ∪ {(di, dj) | dj ∈ f({di}) \ f(∅)}.

Example 1. Given D = {u, v, w} and f(S) = S \ {v} ∪ {u}, the representation
relation Rf = {(0, 0), (0, u), (w, w)}, which is depicted in Fig. 3.

The representation relation decomposes a flow function into functions (edges)
that operate on each fact individually. This is possible due to distributivity:
applying the flow function to a set of facts is equivalent to applying it on each
fact individually and then taking the union of the results.

The meet of two functions can be computed as simply the union of their
representation functions: Rf�f ′ = Rf ∪ Rf ′ . The composition of two functions
can be computed by combining their representation graphs, merging the range
nodes of the first function with the corresponding domain nodes of the second
function, and finding paths in the resulting graph.

0 u v w

Rf

Fig. 3. Rf = {(0, 0), (0, u), (w, w)}

0 u v w

Rf

Rg

0 u v w

Rg ◦ Rf

Fig. 4. Rg ◦ Rf

Example 2. If g(S) = S \ {w} and f(S) = S \ {v} ∪ {u}, then Rg ◦ Rf =
{(0, 0), (0, u)}, as illustrated in Fig. 4.

Composition of two distributive functions f and f ′ corresponds to finding
reachable nodes in a graph composed from their representation relations Rf

and Rf ′ . Therefore, evaluating the composed data-flow function for a control
flow path corresponds to finding reachable nodes in a graph composed from the
representation relations of the data-flow functions for individual instructions.

It is this graph of representation relations that the IFDS algorithm operates
on. In this graph, called the exploded supergraph, each node is a pair (n, d),
where n ∈ N∗ is a node of the control-flow supergraph and d is an element of
D∪{0}. For each edge (n → n′) ∈ E∗, the exploded supergraph contains a set of
edges (n, di) → (n′, dj), which form the representation relation of the data-flow
function MF (n → n′). The IFDS algorithm finds all exploded supergraph edges
that are reachable by realizable paths in the exploded supergraph. A path is
realizable if its projection to the (non-exploded) supergraph is a valid path (i.e.,
if it is of the form (n0, d0) → (n1, d1) → · · · → (nm, dm) and where n0 → n1 →
· · · → nm is a valid path).

Example 3. The exploded supergraph for Listing 1 is shown in Fig. 5. The labels
on the edges will be explained in Sect. 3.3 We can see that there is a realizable
path, highlighted in bold, from the start node of the exploded graph to the vari-
able s at the node print(s) in the B.bar method. This means that s is considered
secret at that node.
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Fig. 5. An example program demonstrating correlated-call edge functions on the 0-
node path for Listing 1. All non-labeled edges are implicitly labeled with identity
functions id. The variable ret denotes the return value of the A.foo method.

3.3 IDE

The IDE algorithm [18] extends IFDS to interprocedural distributive environment
problems. An IDE problem is one whose data-flow lattice is the lattice Env(D,L)
of maps from a finite set D to a meet semilattice L of finite height, ordered
pointwise. Like IFDS, IDE requires the data-flow functions to be distributive.

The input to the IDE algorithm is (G∗, D, L, MEnv) where G∗ is a control-
flow supergraph, D is a set of data-flow facts, L is a meet semilattice of finite
height, and MEnv : E∗ → (Env(D, L) → Env(D, L)) assigns a data-flow function
to each supergraph edge.

The output of the IDE algorithm is, for each node n in the supergraph, the
meet-over-all-valid-paths solution MVPEnv(n) =

�
q∈VP(n) MEnv(q)(�Env), where

�Env = λd.� is the top element of the lattice of environments, and MEnv is
extended from edges to paths by composition.

Overview of the IDE Algorithm. Just as any distributive function from
2D to 2D can be represented with a representation relation, it is also possible to
represent any distributive function from Env(D,L) to Env(D,L) with a pointwise
representation. A pointwise representation is a bipartite graph with the same
nodes3 and edges as a representation relation, except that each edge is labelled
with a micro-function, which is a function from L to L.

3 The IDE literature uses the symbol Λ for the node that is denoted 0 in the IFDS
literature. We use 0 throughout this paper for consistency.
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Thanks to distributivity, every environment transformer t : Env(D,L) →
Env(D,L) can be decomposed into its effect on �Env and on a set of environments
�Env[di → l] that map every element to � except one (di). Formally,

t(m)(dj) = λl.t(�Env)(dj) �
�

di∈D

λl.t(�Env[di → l])(dj).

The functions λl. · · · in this decomposition are the micro-functions that appear
on the edges of the pointwise representation edges from 0 to each dj and from
each di to each dj .4 The absence of an edge in the pointwise representation from
some di to some dj is equivalent to an edge with micro-function λl.�.

Example 4. In the exploded supergraph in Fig. 5, the micro-functions are shown
as labels on the graph edges. Every edge without an explicit label has the iden-
tity as its micro-function. The micro-functions on the three edges from the node
return secret() to the node endA.foo together represent the environment trans-
former λe.e[ret → λm.⊥ � λm.m].

To eliminate infeasible paths due to correlated calls, we encode the taint
analysis using environments e ∈ Env(D,L), where D is the set of variables and
L is a map from receiver variables to sets of possible types. The interpretation
of such an environment e is that a given variable v ∈ D may contain a secret
value in an execution in which the runtime types of the objects pointed to by
the receiver variables are in the sets specified by e(v).

The meet of two environment transformers t1, t2 is computed as the union
of the edges in their pointwise representations. When the same edge appears in
the pointwise representations of both t1 and t2, the micro-function for that edge
in t1 � t2 is the meet of the micro-functions for that same edge in t1 and in t2.

The composition of two environment transformers can be computed by com-
bining their pointwise representation graphs in the same fashion as IFDS rep-
resentation relations, and computing the composition of the micro-functions
appearing along each path in the resulting graph.

The IDE algorithm operates on the same exploded supergraph as the IFDS
algorithm (but its edges are labelled with micro-functions). For each pair (n, d)
of node and fact, IDE computes a micro-function equal to the meet of the micro-
functions of all the realizable paths from the program entry point to the pair.

In order to do this efficiently, the IDE algorithm requires a representation of
micro-functions that is general enough to express the basic micro-functions of
the data-flow functions for individual instructions, and that supports computing
the meet and composition of micro-functions.

A practical implementation of the IDE algorithm requires the input data-flow
functions to be provided in their pointwise representation as exploded super-
graph edges labelled with micro-functions. Specifically, the input is generally
provided as a function EdgeFn : (N∗ ×D)× (N∗ ×D) → F , where F is the set of

4 The IDE paper defines a more complicated but equivalent set of micro-functions
that eliminate some duplication of computation.
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representations of micro-functions from L to L. Given an exploded supergraph
edge e = (n, d) → (n′, d′), EdgeFn((n, d), (n′, d′)) returns the micro-function
that appears on the exploded supergraph edge e. In an implementation, it can
be convenient to split the function EdgeFn into separate functions that han-
dle the cases when n → n′ is an intraprocedural edge, a call-to-return edge,
a call-to-start edge, or an end-to-return edge.

4 Correlated Calls Analysis

4.1 Transformations from IFDS to IDE

Let G# be the exploded supergraph of an arbitrary IFDS problem. A transfor-
mation T : (G#) → (G#, L, EdgeFn) converts the IFDS problem into an IDE
problem. We consider two IFDS-to-IDE transformations: an equivalence trans-
formation T ≡ (pronounced “t-equiv”) and a correlated-calls transformation T �

S

(pronounced “t-c-c”) for a set of receivers S. Both transformations keep the
exploded supergraph G# the same, and only generate different edge functions.
The solution of the IDE problem can be mapped back to an IFDS solution. If
the equivalence transformation was used, then this solution is identical to the
solution that would be computed by the IFDS algorithm for the original IFDS
problem. If the correlated-calls transformation was used, then this solution is
more precise because it excludes flow along infeasible paths due to correlated
calls.

Equivalence Transformation. The lattice for the equivalence transformation
T ≡ is the two-point lattice L≡ = {⊥, �}, where ⊥ means “reachable”, and �
means “not reachable”. The edge functions EdgeFn≡ are defined as

EdgeFn≡ =

{
λe . λm .⊥ if e = (n1,0) → (n2, d2), where d2 �= 0;
λe . id otherwise.

(1)

At a “diagonal” edge from a 0-fact to a non-0-fact d, the micro function returns ⊥
to make the fact d reachable. All other micro-functions are the identity function.

Correlated-Calls Transformation. In the correlated-calls transformation
T �
R , the lattice elements are maps from receivers to sets of types: L� ={
m : R → 2T

}
, where R is the set of considered receivers and T is the set

of all types. For each receiver r, the map gives an overapproximation of the pos-
sible runtime types of r. Sets of types are ordered by the superset relation, and
this is lifted to maps from receivers to sets of types, so the bottom element ⊥�
maps every receiver to the set of all types, and the top element �� maps every
receiver to the empty set of types. During an actual execution, every receiver r
points to an object of some runtime type. Therefore, a data-flow fact is unreach-
able along a given path if its corresponding lattice element maps any receiver to
the empty set of types.
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A micro-function f ∈ L� → L� defines how the map from receivers to
types should be updated when an instruction is executed. The micro-function
for most kinds of instructions is the identity. On a call to and return from a
specific method m called on receiver r, the micro-function restricts the receiver-
to-type map to map r only to types consistent with the polymorphic dispatch
to method m. Finally, when an instruction assigns an object of unknown type
to a receiver r, the corresponding micro-function updates the map to map r to
the set of all types. This is made precise by the following definition:

Definition 1. Given a previously fixed set S ⊆ R of receivers, the micro-
function εS(e) of a supergraph edge e is defined as:

εS(e) = λm . (2)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m[r → m(r) ∩ τ(s, f)], if e is a call-start edge r.c() → startf that calls
procedure f with signature s, and r ∈ S;

m[r → m(r) ∩ τ(s, f)]
[v1 → ⊥T ] . . . [vk → ⊥T ],

if e is an end-return edge endf → returnr.c() from
method f with signature s to the return node cor-
responding to the call r.c(), v1, . . . , vk ∈ S are
the local variables in f , and r ∈ S;

m [r → ⊥T ] , if e = n1 → n2 and n1 contains an assignment to
r ∈ S;

m otherwise.

In the above definition, the purpose of the set S is to limit the set of consid-
ered receivers. We will use S in Sect. 4.5.

We can now define EdgeFn, which assigns a micro-function to each edge in
the exploded supergraph. Along a 0-edge, the micro function is the identity. On
a “diagonal” edge from 0 to a non-0 fact that corresponds to some data-flow
fact becoming reachable, εS(e) is applied to ⊥� that maps every receiver to an
object of every possible type. On all other edges, εS(e) is applied to the existing
map before the edge. The is formalized in the following definition.

Definition 2. For each edge e = (n1, d1) → (n2, d2), EdgeFn�
S (e) is defined as

follows:

EdgeFn�
S (e) =

⎧⎪⎨
⎪⎩
id if d1 = d2 = 0,

λm . εS(e)(⊥�) if d1 = 0 and d2 �= 0,

λm . εS(e)(m) otherwise.
(3)

Example 5. Consider the program from Fig. 1, whose exploded supergraph
appeared in Fig. 5. Returning a secret value in method A.foo creates a “diago-
nal” edge from the 0-fact to the method’s return value r. The diagonal edge is
labeled with λm .⊥�, so every receiver is mapped to the set of all types ⊥T . On
the end-return edge from A.foo to main, the set of types of a is restricted by the
micro function λm .m[a → m(a) ∩ {A}] corresponding to the assignment of the
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return value r to v. On the call-start edge from main to B.bar, the possible types
of a are further restricted by the micro-function λm .m[a → m(a) ∩ {B}] on the
edge that passes the argument v to the parameter s. The composition of these
micro functions results in the empty set as the possible types of a, indicating
that this path is infeasible.

4.2 Converting IDE Results to IFDS Results

An IFDS solution RIFDS has type N∗ → 2D: it maps each program point n to a
set of facts d that may be reached at n. An IDE solution RIDE pairs each such
fact d with a lattice element �, so its type is N∗ → (D → L).

In the equivalence transformation lattice L≡, ⊥ means reachable and �
means unreachable. Therefore, an IDE solution ρ computed using T ≡ is con-
verted to an IFDS solution as: U≡(ρ) = λn.{d | ρ(n)(d) �= �}. In the correlated-
calls transformation lattice L�, a map that maps any receiver to the empty
set of possible types means that the corresponding data-flow path is infeasi-
ble. Therefore, an IDE solution ρ computed using T �

S is converted to an IFDS
solution as

U�(ρ) = λn.{d | ∀r ∈ S . ρ(n)(d)(r) �= �T }. (4)

4.3 Implementation of Correlated Calls Micro-Functions

Conceptually, micro-functions are functions from L to L, where L is the IDE
lattice, either L≡ or L� in our context. The IDE algorithm requires an efficient
representation of micro-functions. The representation must support the basic
micro-functions that we presented in Sect. 4.1, and it must support function
application, comparison, and be closed under function composition and meet.
We now propose such a representation for the correlated-calls micro-functions.

The representation of a micro-function is a map from receivers to pairs of
sets of types I(r) and U(r), where U(r) is required to be a subset of I(r). We
use the notation 〈I, U〉 to represent such a map, and I(r) and U(r) to look up
the sets corresponding to a particular receiver r. The micro-function takes the
existing set of possible types of the receiver r, intersects it with I(r), then unions
it with U(r): [[〈I, U〉]] = λm . λr . (m(r) ∩ I(r)) ∪ U(r).

All of the basic micro-functions defined in Definition 1 can be expressed
in this representation. The following lemmas show how function comparison,
composition, and meet can be implemented using basic set operations on I and
U . The proofs of all of the lemmas and theorems are in the Technical Report [15].

Lemma 1. For any pair of micro-function representations 〈I, U〉, 〈I ′, U ′〉,

∀r . I(r) = I ′(r) ∧ U(r) = U ′(r) ⇐⇒ [[〈I, U〉]] = [[〈I ′, U ′〉]]. (5)

Lemma 2. For any pair of micro-function representations 〈I, U〉, 〈I ′, U ′〉,

[[〈I, U〉 ◦ 〈I ′, U ′〉]] = [[〈I, U〉]] ◦ [[〈I ′, U ′〉]],
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where the composition of two micro-function representations is defined as follows:

〈I, U〉 ◦ 〈I ′, U ′〉 = 〈λr . (I(r) ∩ I ′(r)) ∪ U(r), λr . (I(r) ∩ U ′(r)) ∪ U(r)〉 .

Lemma 3. Let [[〈I, U〉]] � [[〈I ′, U ′〉]] = λm.λr.[[〈I, U〉]](m)(r) ∪ [[〈I ′, U ′〉]](m)(r).
For any pair of micro-function representations 〈I, U〉, 〈I ′, U ′〉,

[[〈I, U〉 � 〈I ′, U ′〉]] = [[〈I, U〉]] � [[〈I ′, U ′〉]], (6)

where the meet of two micro-function representations is defined as follows:

〈I, U〉 � 〈I ′, U ′〉 = 〈λr . I(r) ∪ I ′(r), λr . U(r) ∪ U ′(r)〉 .

4.4 Theoretical Results

The following lemma shows that our analysis is sound, i.e. that the resulting
IDE problem still considers all data-flow paths that are actually feasible.

Lemma 4 (Soundness). Let P be an IFDS problem and p = [startmain, . . . , n]
a concrete execution path, and let d ∈ D. If d ∈ MF (p)(∅), then

d ∈ U� (
RIDE(T �

R (P ))
)
(n) .

We also show that the result of an IDE problem obtained through a
correlated-calls transformation is a subset of the original IFDS result.

Lemma 5 (Precision). For an IFDS problem P and all n ∈ N∗,

U� (
RIDE(T �

R (P ))
)
(n) ⊆ RIFDS(P )(n) . (7)

4.5 Correlated-Call Receivers

We will now show that in a correlated-calls transformation, it is enough to con-
sider only some of the receivers of set R.

Definition 3. If r ∈ R is the receiver of at least two polymorphic call sites,
then we call r a correlated-call receiver, and we define R� as the set of all such
receivers.

We will show that it is sufficient for the correlated-calls micro-functions to
be defined only on correlated-call receivers. Specifically, a “reduced” correlated-
calls transformation that considers only correlated-call receivers in the micro-
functions yields the same solution as the full correlated-calls transformation (i.e.
no precision is lost).

Lemma 6. Let P be an IFDS problem. Then

U� (
RIDE

(
T �
R�(P )

))
= U�(RIDE

(
T �
R (P )

)
) . (8)
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4.6 Efficiency

Both the IFDS and IDE algorithms have been proven to run in O(ED3)
time [16,18], where E is the number of edges in the (non-exploded) supergraph,
and D is the size of the set of facts. The IDE algorithm may evaluate micro-
functions up to O(ED3) times, so this running time must be multiplied by the
cost of evaluating a micro-function. We show that the micro-functions in the
correlated-calls IDE analysis can be evaluated in time O(R�T ), where R� is
the number of correlated-call receivers R� and the T is the number of run-time
types. Therefore, the overall worst-case cost of the correlated-calls IDE analy-
sis is O(ED3R�T ). In practice, R� is much smaller than R, so Lemma 6 is
significant for performance.

Specifically, the complexity proof for the IDE algorithm requires the imple-
mentation of the micro-functions to be efficient according to a list of specific
criteria. Our micro-function implementation does satisfy the criteria:

Lemma 7. The correlated-call representation of a micro function is efficient
according to the IDE criteria [18] and the required operations on micro-functions
can be computed in time O(R�T ).

4.7 Implementation of the Correlated-Calls Analysis

We implemented the correlated-calls analysis in Scala [14]. Our implementation
analyzes JVM bytecode compiled from input programs written in Java. We use
WALA [5] to retrieve information about an input program, such as its control-
flow supergraph and the set of receivers and their types. Since WALA does
not contain an implementation of the IDE algorithm, we implemented it from
scratch; we are working on contributing our infrastructure to WALA.

We tested our correlated-calls analysis using an IFDS taint-analysis as a
client analysis. To this end, we converted the IFDS taint analysis into an IDE
problem with an implementation of T �

R� . We extensively tested the correlated-
calls analysis to ensure that, in the absence of correlated calls, the analysis
produces the same results as an IFDS-equivalent analysis, and that it produces
more precise results in the presence of correlated calls as expected.

To evaluate the practicality of our approach, we applied two variants of the
IFDS taint analysis to the SPEC JVM98 benchmarks: (i) an equivalent IDE
taint analysis obtained using T ≡, and (ii) an IDE taint analysis obtained using
T �
R� that avoids imprecision due to correlated method calls.

The equivalence analysis is there for two reasons: (i) to explain how a
correlated-calls-IDE problem can be derived from an IDE problem that has the
same meaning as the original IFDS problem, and (ii) to provide a base line
against which to compare the efficiency of the correlated-calls analysis. We com-
pare the efficiency of the correlated-calls analysis against the equivalence-IDE
analysis instead of the IFDS analysis because the time complexities of an IFDS
and an equivalent IDE analysis are the same: an equivalent IDE analysis is just
an IFDS analysis in which all edges are labeled with identity micro functions,
and all operations on those functions are optimized to be constant-time.
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The running times t� of the correlated-calls and t≡ equivalence analyses
are shown in Table 1. In the table, N∗

r is the number of reachable nodes in the
control-flow supergraph, and N#

r the number of reachable nodes in the exploded
supergraph.

Table 1. Running times of the analyses

Benchmark N∗
r N#

r t≡ t�

Compress 2,155 24,730 0:00:02 0:00:04

Db 2,285 22,938 0:00:06 0:00:12

Jack 17,602 284,625 0:06:06 0:11:31

Javac 40,430 510,810 0:46:06 1:45:57

Jess 14,448 316,418 0:10:19 0:13:33

Mpegaudio 11,959 224,886 0:01:57 0:00:54

Mtrt 3,597 88,267 0:00:34 0:00:33

Raytrace 3,597 88,267 0:00:38 0:00:37

The results suggest that the overhead of tracking correlated calls is accept-
able. In particular, the correlated-calls analysis takes at most twice as long as
the equivalence analysis. The absolute times range from a few seconds on the
smaller SPEC programs to about two hours on javac.

Our implementation is a research prototype and many opportunities for opti-
mization remain. For the specific combination of this IFDS client analysis and
these benchmark programs, tracking correlated calls did not impact precision.

5 Related Work

The IFDS algorithm is an instance of the functional approach to data-flow analy-
sis developed by Sharir and Pnueli [19]. IFDS has been used to encode a variety
of data-flow problems such as typestate analysis [12,23] and shape analysis [9].
IFDS has been used [2,22] and extended [10] to solve taint-analysis problems.

Naeem and Lhoták [13] proposed several extensions of IFDS. In particular,
they propose several techniques for improving the algorithm’s efficiency, as well
as a technique that improves expressiveness by extending applicability to a wider
class of dataflow analysis problems. These extensions are orthogonal to, and
could be combined with the approach presented in this paper. Our work differs
from theirs by targeting analysis precision, not efficiency or expressiveness.

Bodden et al. [4] presents a framework for applying IFDS analyses to soft-
ware product lines. Their approach enables the analysis of all possible products
derived from a product line in a single analysis pass. Like our approach, their
approach transforms IFDS problems to IDE problems. The micro-functions keep
track of the possible program variations specified by the product line. Rodriguez
and Lhoták evaluate a parallelized implementation of the IFDS algorithm using
actors [17] that can take advantage of multiple processors.
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The idea of using correlated calls to remove infeasible paths in data-flow
analyses of object-oriented programs was introduced by Tip [21]. The possibility
of using IDE to achieve this is mentioned, but not elaborated upon. Our work
is the first to present and implement a concrete solution.

Recent work on correlation tracking for JavaScript [20] also eliminates infea-
sible paths. Instead of infeasible paths between dynamically dispatched method
calls, their approach eliminates infeasible paths between reads and writes of dif-
ferent properties of an object. The approach differs from ours in that it targets
points-to analysis rather than IFDS analyses, in that it targets infeasible paths
due to different property names rather than different dynamically dispatched
methods, and in that it employs context sensitivity to improve precision.

Our approach superficially resembles, but is orthogonal to, context sensi-
tivity, including the CPA algorithm [1] and such variations as object sensitiv-
ity [11]. Context-sensitive points-to analysis is orthogonal to our work because
it analyzes the flow of data (pointers), whereas we analyze control flow paths.
Also, object-sensitive points-to analysis is flow-insensitive, while IFDS and IDE
are flow-sensitive analyses. Note that our transformation only makes sense in a
flow-sensitive setting since a flow-insensitive analysis already introduces many
infeasible control flow paths.

It would be possible to simulate the effect of our correlated calls transfor-
mation in the following way inspired by context-sensitivity: we could re-analyze
each method in a number of contexts. There would be a separate context for
every possible assignment of concrete types to all of the pointers in the method
that are used as receivers at a call site. The number of such contexts for each
method would be O(RT ), where R is the number of receiver pointers in the
method and T is the number of possible concrete types that could be assigned
to a receiver pointer. Our approach computes equally precise analysis results but
avoids this exponential cost.

6 Conclusions

Previous algorithms for data-flow analysis are unable to avoid propagating data-
flow facts along infeasible paths that arise in the presence of correlated polymor-
phic method calls. We present an approach for transforming an IFDS problem
into an IDE problem in which path feasibility is encoded into functions associ-
ated with edges in an exploded control-flow supergraph. The solution to this IDE
problem can be mapped back to the solution space of the original IFDS problem,
and is more precise for some client programs because data flow along infeasible
paths is prevented. We present a formalization of the transformation, prove its
correctness, and briefly report on preliminary experiments with our prototype
implementation. Full proof details are available in the Technical Report [15]. As
future work, it is possible to adapt our approach to work on IDE problems. We
would convert an initial IDE problem into a more complex IDE problem, such
that the solution of the latter generates a more precise solution to former, by
preventing data flow along infeasible paths.
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Abstract. A may-happen-in-parallel (MHP) analysis computes pairs of
program points that may execute in parallel across different distributed
components. This information has been proven to be essential to infer
both safety properties (e.g., deadlock freedom) and liveness properties
(e.g., termination and resource boundedness) of asynchronous programs.
Existing MHP analyses take advantage of the synchronization points to
learn that one task has finished and thus will not happen in parallel
with other tasks that are still active. Our starting point is an exist-
ing MHP analysis developed for intra-procedural synchronization, i.e.,
it only allows synchronizing with tasks that have been spawned inside
the current task. This paper leverages such MHP analysis to handle
inter-procedural synchronization, i.e., a task spawned by one task can be
awaited within a different task. This is challenging because task synchro-
nization goes beyond the boundaries of methods, and thus the inference
of MHP relations requires novel extensions to capture inter-procedural
dependencies. The analysis has been implemented and it can be tried
online.

1 Introduction

In order to improve program performance and responsiveness, many modern
programming languages and libraries promote an asynchronous programming
model, in which asynchronous tasks can execute concurrently with their caller
tasks, and their callers can explicitly wait for their completion. Our analysis is
formalized for an abstract model that includes procedures, asynchronous calls,
and future variables for synchronization [7,8]. In this model, a method call m on
some parameters x, written as f=m(x) , spawns an asynchronous task. Here, f
is a future variable which allows synchronizing with the termination of the task
executing m. The instruction await f? allows checking whether m has finished,
and blocks the execution of the current task if m is still running. As concurrently-
executing tasks interleave their accesses to shared memory, asynchronous
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programs are prone to concurrency-related errors [6]. Automatically proving
safety and liveness properties still remains a challenging endeavor today.

MHP is an analysis of utmost importance to ensure both liveness and safety
properties of concurrent programs. The analysis computes MHP pairs, which are
pairs of program points whose execution might happen in parallel across differ-
ent distributed components. In this fragment of code f=m(..);...; await f?; the
execution of the instructions of the asynchronous task m may happen in parallel
with the instructions between the asynchronous call and the await. However,
due to the await instruction, the MHP analysis is able to ensure that they will
not run in parallel with the instructions after the await. This piece of informa-
tion is fundamental to prove more complex properties: in [9], MHP pairs are
used to discard unfeasible deadlock cycles; in [4], the use of MHP pairs allows
proving termination and inferring the resource consumption of loops with con-
current interleavings. As a simple example, consider a procedure g that contains
as unique instruction y=-1, where y is a global variable. The following loop
y=1;while(i>0){i=i-y;} might not terminate if g runs in parallel with it, since g
can modify y to a negative value and the loop counter will keep on increasing.
However, if we can guarantee that g will not run in parallel with this code, we
can ensure termination and resource-boundedness for the loop.

This paper leverages an existing MHP analysis [3] developed for intra-
procedural synchronization to the more general setting of inter-procedural syn-
chronization. This is a fundamental extension because it allows synchronizing
with the termination of a task outside the scope in which the task is spawned,
as it is available in most concurrent languages. In the above example, if task g
is awaited outside the boundary of the method that has spawned it, the analysis
of [3] assumes that it may run in parallel with the loop and hence it fails to prove
termination and resource boundedness. The enhancement to inter-procedural
synchronization requires the following relevant extensions to the analysis:

1. Must-Have-Finished Analysis (MHF): the development of a novel MHF analy-
sis which infers inter-procedural dependencies among the tasks. Such depen-
dencies allow us to determine that, when a task finishes, those that are awaited
for on it must have finished as well. The analysis is based on using Boolean
logic to represent abstract states and simulate corresponding operations. The
key contribution is the use of logical implication to delay the incorporation of
procedure summaries until synchronization points are reached. This addresses
a challenge in the analysis of asynchronous programs.

2. Local MHP Phase: the integration of the above MHF information in the local
phase of the original MHP analysis in which methods are analyzed locally, i.e.,
without taking indirect calls into account. This will require the use of richer
analysis information in order to consider the inter-procedural dependencies
inferred in point 1 above.

3. Global MHP phase: the refinement of the global phase of the MHP analysis –
where the information of the local MHP analysis in point 2 is composed– in
order to eliminate spurious MHP pairs which appear when inter-procedural
dependencies are not tracked. This will require to refine the way in which
MHP pairs are computed.
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We have implemented our approach in SACO [2], a static analyzer for concurrent
objects which is able to infer the aforementioned liveness and safety properties.
The system can be used online at http://costa.ls.fi.upm.es/saco/web, where the
examples used in the paper are also available.

2 Language

Our analysis is formalized for an abstract model that includes procedures, asyn-
chronous calls, and future variables [7,8]. It also includes conditional and loop
constructs, however, conditions in these constructs are simply non-deterministic
choices. Developing the analysis at such abstract level is convenient [11], since
the actual computations are simply ignored in the analysis and what is actually
tracked is the control flow that originates from asynchronously calling methods
and synchronizing with their termination. Our implementation, however, is done
for the full concurrent object-oriented language ABS [10] (see Sect. 6).

A program P is a set of methods that adhere to the following grammar:

M : := m(x̄) {s}
s : := ε | b; s
b : := if (∗) then s1 else s2 | while (∗) do s | y = m(x̄) | await x? | skip

Here all variables are future variables, which are used to synchronize with the
termination of the called methods. Those future variables that are used in a
method but are not in its parameters are the local future variables of the method
(thus we do not need any special instruction for declaring them). In loops and
conditions, the symbol ∗ stands for non-deterministic choice (true or false).
The instruction y = m(x̄) creates a new task which executes method m, and
binds the future variable y with this new task so we can synchronize with its
termination later. Inter-procedural synchronization is realized in the language by
passing future variables as parameters, since the method that receives the future
variable can await for the termination of the associated task (created outside its
scope). For simplifying the presentation, we assume that method parameters are
not modified inside each method. For a method m, we let Pm be the set of its
parameters, Lm the set of its local variables, and Vm = Pm ∪ Lm.

The instruction await x? blocks the execution of the current task until the
task associated with x terminates. Instruction skip has no effect, it is simply
used when abstracting from a richer language, e.g., ABS in our case, to abstract
instructions such as assignments. Programs should include a method main from
which the execution (and the analysis) starts. We assume that instructions are
labeled with unique identifiers that we call program points. For if and while the
identifier refers to the corresponding condition. We also assume that each method
has an exit program point �m. We let ppoints(m) and ppoints(P ) be the sets
of program points of method m and program P , resp., I� be the instruction at
program point �, and pre(�) be the set of program points preceding �.

Next we define a formal (interleaving) operational semantics for our language.
A task is of the form tsk(tid , l, s) where tid is a unique identifier, l is a mapping

http://costa.ls.fi.upm.es/saco/web
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Fig. 1. Derivation rules

from local variables and parameters to task identifiers, and s is a sequence of
instructions. Local futures are initialized to the special value ⊥ which is the
default value for future variable (i.e., ⊥ like null for reference variables in Java).
A state S is a set of tasks that are executing in parallel. From a state S we can
reach a state S′ in one execution step, denoted S � S′, if S can be rewritten
using one of the derivation rules of Fig. 1 as follows: if the conclusion of the rule
is A � B such that A ⊆ S and the premise holds, then S′ = (S \ A) ∪ B.
The meaning of the derivation rules is quite straightforward: (skip) advances
the execution of the corresponding task to the next instruction; (if) nondeter-
ministically chooses between one of the branches; (loop) nondeterministically
chooses between executing the loop body or advancing to the instruction after
the loop; (call) creates a new task with a fresh identifier tid ′, initializes the
formal parameters z̄ of m to those of the actual parameters x̄, sets future vari-
able y in the calling task to tid ′, so one can synchronize with its termination
later (other local futures of m are assumed to have the special value ⊥); and
(await) advances to the next instruction if the task associated to x has termi-
nated already. Note that when a task terminates, it does not disappear from the
state but rather its sequence of instructions remains empty.

An execution is a sequence of states S0 � S1 � · · · � Sn, sometimes
denoted as S0 �∗ Sn, where S0 = {tsk(0, l, body(main))} is an initial state
which includes a single task that corresponds to method main, and l is an empty
mapping. At each step there might be several ways to move to the next state
depending on the task selected, and thus executions are nondeterministic.

In what follows, given a task tsk(tid , l, s), we let pp(s) be the program point
of the first instruction in s. When s is an empty sequence, pp(s) refers to the
exit program point of the corresponding method. Given a state S, we define its
set of MHP pairs, i.e., the set of program points that execute in parallel in S, as
E(S) = {(pp(s1), pp(s2)) | tsk(tid1, l1, s1), tsk(tid2, l2, s2) ∈ S, tid1 �= tid2}. The
set of MHP pairs for a program P is then defined as the set of MHP pairs of all
reachable states, namely EP = ∪{E(Sn) | S0 �∗ Sn}.
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Example 1. Figure 2 shows some examples in our language, where m1, m2 and m3

are main methods. The following are some steps in a possible derivation for m2:

S0 ≡ tsk(0, ∅, body(m2)) �∗ S1 ≡ tsk(0, [x �→ 1], {16, . . .}), tsk(1, ∅, body(f)) �∗

S2 ≡ tsk(0, [x �→ 1, z �→ 2], {18, . . .}), tsk(1, ∅, body(f)), tsk(2, [w �→ 1], body(g)) �∗

S3 ≡ tsk(0, [x �→ 1, z �→ 2], {19, . . .}), tsk(1, ∅, ε), tsk(2, [w �→ 1], body(g)) �∗

S4 ≡ tsk(0, [x �→ 1, z �→ 2], {20, . . .}), tsk(1, ∅, ε), tsk(2, [w �→ 1], ε) � . . .

In S1 we execute until the asynchronous call to f which creates a new task
identified as 1 and binds x to this new task. In S2 we have executed the skip
and the asynchronous invocation to g that adds in the new task the binding of
the formal parameter w to the task identified as 1. In S3 we proceed with the
execution of the instructions in m2 until reaching the await that blocks this task
until g terminates. Also, in S3 we have executed entirely f (denoted by ε). S4

proceeds with the execution of g whose await can be executed since task 1 is
at its exit point ε. We have the following MHP pairs in this fragment of the
derivation, among many others: from S1 we have (16,35) that captures that the
first instruction of f executes in parallel with the instruction 16 of m2, from S2

we have (18,35) and (18,38). The important point is that we have no pair (20,35)
since when the await at L19 executes at S4, it is guaranteed that f has finished.
This is due to the inter-procedural dependency at L39 of g where the task f is
awaited: variable x is passed as argument to g, which allows g to synchronize
with the termination of f at L39 even if f was called in a different method.

3 An Informal Account of Our Method

In this section, we provide an overview of our method by explaining the analysis
of m2. Our goal is to infer precise MHP information that describes, among others,
the following representative cases: (1) any program point of g cannot run in
parallel with L20, because at L19 method m2 awaits for g to terminate; (2) L35
cannot run in parallel with L20, since when waiting for the termination of g at
L19 we know that f must-have-finished as well due to the dependency relation
that arises when m2 implicitly waits for the termination of f; and (3) L35 cannot
run in parallel with L40, because f must-have-finished due to the synchronization
on the local future variable w at L39 that refers to future variable x of m2.

Let us first informally explain which MHP information the analysis of [3] is
able to infer for m2, and identify the reasons why it fails to infer some of the
desired information. The analysis of [3] is carried out in two phases: (1) each
method is analyzed separately to infer local MHP information; and (2) the local
information is used to construct a global MHP graph from which MHP pairs are
extracted by checking reachability conditions among the nodes.

The local analysis infers, for each program point, a multiset of MHP atoms
where each atom describes a task that might be executing in parallel when
reaching that program point, but only considering tasks that have been invoked
directly in the analyzed method. An atom of the form x:m̃ indicates that there
might be an active instance of m executing at any of its program points, and is
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Fig. 2. (TOP) Examples for MHP analysis (m1, m2, m3 are main methods). (BOT-
TOM) MHP graph Gi corresponds to analyzing mi, and G0 to analyzing m2 as in [3].
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bound to the future variable x. An atom of the form x:m̂ differs from the previous
one in that m must be at its exit program point, i.e., has finished executing
already. For method m2, the local MHP analysis infers, among others, {x:̃f} for
L16, {x:̃f, z:g̃} for L18, and {x:̃f, z:ĝ} for L20 and L21, because g has been awaited
locally. Observe that the sets of L20 and L21 include x:̃f and not x:̂f, although
method f has finished already when reaching L20 and L21 (since g has finished).
This information cannot be inferred by the local analysis of [3] since it is applied
to each method separately, ignoring (a) indirect (non-local) calls and (b) inter-
procedural synchronizations. In the sequel we let Ψ� be the result of the local
MHP analysis for program point �.

In the second phase, the analysis of [3] builds an MHP graph whose purpose
is to capture MHP relations due to indirect calls (point (a) above). The graph
G0 depicted in Fig. 2 for m2 is constructed as follows: (1) every program point
� contributes a node labeled with � – for simplicity we include only program
points of interest; (2) every method m contributes two nodes m̃ and m̂, where
m̃ is connected to all program point nodes of m to indicate that when m is
active, it can be executing at any of its program points, and m̂ is connected
only to the exit program point of m; and (3) if x:m̃ (resp. x:m̂) is an atom of Ψ�

with multiplicity i, i.e., it appears i times in the multiset Ψ�, we create an edge
from � to m̃ (resp. m̂) and label it with i:x. Note such edge actually represents
i identical edges, i.e., we could copy the edge i times and omit the label i.

Roughly, the MHP pairs are obtained from G0 using the following principle:
program points (�1, �2) might execute in parallel if there is a path from �1 to
�2 or vice versa (direct MHP pair); or if there is a program point �3 such that
there are paths from �3 to �1 and to �2 (indirect MHP pair), and the first edge
of both paths is labeled with two different future variables. When two paths are
labeled with the same future variable, it is because there is a disjunction (e.g.,
from an if-then-else) and only one of the paths might actually occur. Applying
this principle to G0 , we can conclude that L20 cannot execute in parallel with
any program point of g, which is precise as expected, and that L20 can execute
in parallel with L35 which is imprecise. This imprecision is attributed to the fact
that the MHP analysis of [3] does not track inter-method synchronizations.

In order to overcome the imprecision, we develop a must-have-finished analy-
sis that captures inter-method synchronizations, and use it to improve the two
phases of [3]. This analysis would infer, for example, that “when reaching L40,
it is guaranteed that whatever task bound to w has finished already”, and that
“when reaching L20, it is guaranteed that whatever tasks bound to x and z have
finished already”. By having this information at hand, the first phase of [3] can
be improved as follows: when analyzing the effect of await z? at L20, we change
the status of both g and f to finished, because we know that any task bound z
and x has finished already. In addition, we modify the MHP atoms as follows:
an MHP atom will be of the form y:�:m̃(x̄) or y:�:m̂(x̄), where the new infor-
mation � and x̄ are the calling site and the parameters passed to m. The need
for this extra information will become clear later in this section. In summary,
the modified first phase will infer {x:15:̃f()} for L16, {x:15:̃f(), z:17:g̃(x)} for L18,
and {x:15:̂f(), z:17:ĝ(x)} for L20 and L21.
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In the second phase of the analysis: (i) the construction of the MHP graph
is modified to use the new local MHP information; and (ii) the principle used to
extract MHP pairs is modified to make use to the must-have-finished informa-
tion. The new MHP graph constructed for m2 is depicted in Fig. 2 as G2 . Observe
that the labels on the edges include the new information available in the MHP
atoms. Importantly, the spurious MHP information that is inferred by [3] is not
included in this graph: (1) in contrast to G0 , G2 does not include edges from
nodes 20 and 21 to f̃, but to f̂. This implies that L35 cannot run in parallel with
L20 or L21; (2) in G2 , we still have paths from 18 to 35 and 40, which means,
if the old principle for extracting MHP pairs is used, that L35 and L40 might
happen in parallel. The main point is that, using the labels on the edges, we
know that the first path uses a call to f that is bound to x, and that this same x
is passed to g, using the parameter w, in the first edge of the second path. Now
since the must-have-finished analysis tell us that at L40 any task bound w is
finished already, we conclude that f must be at its exit program point when the
execution reaches L40, and thus the MHP pair (35,40) is spurious because L35
is not an exit program point of f. This last point explains why the MHP atoms
are designed to include the actual parameters of method calls.

4 Must-Have-Finished Analysis

In this section we present a novel inter-procedural Must-Have-Finished (MHF)
analysis that can be used to compute, for each program point �, a set of finished
future variables, i.e., whenever � is reached those variables are either not bound
to any task (i.e., have the default value ⊥) or their bound tasks are guaranteed
to have terminated. We refer to such sets as MHF sets.

Example 2. The following are MHF sets for the program points of Fig. 2:

L2: {x,w,z}
L3: {z,w}
L4: {w}
L5: {w}
L6: {w}
L7: {}

L9 : {w}
L10: {}
L11: {}
L12: {x,w}
L14: {x,z}
L15: {x,z}

L16: {z}
L17: {z}
L18: {}
L19: {}
L20: {x,z}
L21: {x,z}

L26: {x,z,w}
L27: {x,w}
L28: {x,w}
L29: {w}
L30: {}
L31: {x,w}

L32: {x,w}
L35: {}
L36: {}
L38: {}
L39: {}
L40: {w}

L41: {w}
L44: {z}
L45: {z}
L46: {}
L47: {}
L48: {a,z}

L50: {}
L51: {}
L52: {a}
L53: {a}
L54: {a,b}
L55: {a,b}

L58: {}
L59: {}

Here, at program points that correspond to method entries, all local variables
(but not the parameters) are finished since they point to no task. For g: at
L38 and L39 no task is guaranteed to have finished, because the task bound to
w might be still executing; at L40 and L41, since we passed through awaitw?
already, it is guaranteed that w is finished. For k: at L50 and L51 no task is
guaranteed to have finished; at L52 and L53 a is finished since we already passed
through await a?; and at L54 and L55 both a and b are finished. For m1: at L12
both w and x are finished. Note that w is finished because of awaitw? , and x is
finished due to the implicit dependency between the termination of x and w.
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4.1 Definition of MHF

By carefully examining the MHF sets of Example 2, we can see that an analysis
that simply tracks MHF sets would be imprecise. For example, since the MHF
set at L11 is empty, the only information we can deduce for L12 is that w is
finished. To deduce that x is finished we must track the implicit dependency
between w and x. Next we define a more general MHF property that captures
such dependencies, and from which we can easily compute the MHF sets.

Definition 1. Given a program point � ∈ ppoints(P ), we let F(�) = {f(Si, l) |
S0 �∗ Si, tsk(tid , l, s) ∈ Si, pp(s) = �} where f(S, l) = {x | x ∈ dom(l), l(x) =
⊥ ∨ (l(x) = tid ′ ∧ tsk(tid ′, l′, ε) ∈ S)}.

Intuitively, f(S, l) is the set of all future variables, from those defined in l, whose
corresponding tasks are finished in S. The set F(�) considers all possible ways of
reaching �, and for each one it computes a corresponding set f(S, l) of finished
future variables. Thus, F(�) describes all possible sets of finished future variables
when reaching �. The set of all finished future variables at � is then defined as
mhf(�) = ∩{F | F ∈ F(�)}, i.e., the intersection of all sets in F(�).

Example 3. The values of F(�) for selected program points from Fig. 2 are:

L5 : {{w,x,z},{w,z},{w,x},{w}}
L11: {{w,x,z},{w,x},{x,z},{z},{x},{}}
L12: {{w,x,z},{w,x}}
L20: {{x,z}}
L27: {{w,x,z},{w,x}}
L30: {{w,x,z},{w,x},{x,z},{x},{z},{}}

L31: {{w,x,z},{w,x}}
L32: {{w,x,z},{w,x}}
L35: {{}}
L38: {{w},{}}
L40: {{w}}

L46: {{a,z},{a},{},
{a,b,z},{a,b},{b}}

L48: {{a,z},{a,b,z}}
L52: {{a},{a,b}}
L54: {{a,b}}
L58: {{}}

In L5 different sets arise by considering all possible orderings in the execution
of tasks f, q and m1, but mhf(L5) = {w}. Note that for any F ∈ F(11), if w ∈ F
then x ∈ F , which means that if w is finished at L11, then x must have finished.

4.2 An Analysis to Infer MHF Sets

Our goal is to infer mhf(�), or a subset of it, for each � ∈ ppoints(P ). Note that
any set X that over-approximates F(�), i.e., F(�) ⊆ X, can be used to compute
a subset of mhf(�), because ∩{F | F ∈ X} ⊆ ∩{F | F ∈ F(�)}. In the rest of this
section we develop an analysis to over-approximate F(�). We will use Boolean
formulas, whose models naturally represent MHF sets, and Boolean connectives
to smoothly model the abstract execution of the different instructions.

An MHF state for the program points of a method m is a propositional
formula Φ : Vm �→ {true, false} of the form ∨i∧j cij , where an atomic proposition
cij is either x or y → x such that x ∈ Vm ∪{true, false} and y ∈ Lm. Intuitively,
an atomic proposition x states that x is finished, and y → x states that if y is
finished then x is finished as well. Note that we do not allow the parameters
of m to appear in the premise of an implication (we require y ∈ Lm). When Φ
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is false or of the form ∨j ∧j xij where xij is a propositional variable, we call
it monotone. Recall that σ ⊆ Vm is a model of Φ, iff an assignment that maps
variables from σ to true and other variables to false is a satisfying assignment
for Φ. The set of all models of Φ is denoted [[Φ]]. The set of all MHF states for
m, together with the formulas true and false, is denoted Am.

Example 4. Assume Vm = {x, y, z}. The Boolean formula x∨y states that either
x or y or both are finished, and that z can be in any status. This information is
precisely captured by the models [[x ∨ y]] = {{x},{y},{x,y},{x,z},{y,z},{x,y,z}}.
The Boolean formula z∧(x → y) states that z is finished, and if x is finished then
y is finished. This is reflected in [[z ∧ (x → y)]] = {{z}, {z, y}, {z, x, y}} since z
belongs to all models, and any model that includes x includes y as well. The
formula false means that the corresponding program point is not reachable. The
following MHF states correspond to some selected program points from Fig. 2:

Φ5 : w
Φ11: w→x

Φ12: w ∧ x
Φ20: x ∧ z

Φ27: w ∧ x
Φ30: w→x

Φ31: w ∧ x
Φ32: w ∧ x

Φ35: true
Φ38: true

Φ40: w
Φ46: z→a

Φ48: a ∧ z
Φ52: a

Φ54: a ∧ b
Φ58: true

Note that the models [[Φ�]] coincide with F(�) from Example 3.

Now, we proceed to explain how the execution of the different instructions can
be modeled with Boolean formulas. Let us first define some auxiliary operations.
Given a variable x and an MHF state Φ ∈ Am, we let ∃x.Φ = Φ[x �→ true]∨Φ[x �→
false], i.e., this operation eliminates variable x from (the domain of) Φ. Note that
∃x.Φ ∈ Am and that [[Φ]] |= [[∃x.Φ]]. For a tuple of variables x̄ we let ∃x̄.Φ be
∃x1.∃x2. . . . .∃xn.Φ, i.e., eliminate all variables x̄ from Φ. We also let ∃̄x̄.Φ stand
for eliminating all variables but x̄ from Φ. Note that if Φ ∈ Am is monotone,
and x ∈ Lm, then x → Φ is a formula in Am as well.

Given a program point �, an MHF state Φ�, and an instruction to execute
I�, our aim is to compute a new MHF state, denoted μ(I�), that represents the
effect of executing I� within Φ�. If I� is skip, then clearly μ(I�) ≡ Φ�. If I� is an
await x? instruction, then μ(I�) is x∧Φ�, which restricts the MHF state of Φ� to
those cases (i.e., models) in which x is finished. If I� is a call y = m(x̄), where
m is a method with parameters named z̄, and, at the exit program point of m
we know that the MHF state Φ�m holds, then μ(I�) is computed as follows:

– We compute an MHF state Φm that describes “what happens to tasks bound
to x̄ when m terminates”. This is done by projecting Φ�m onto the method
parameters, and then renaming the formal parameters z̄ to the actual para-
meters x̄, i.e., Φm = (∃̄z̄.Φ�m)[z̄/x̄] , where [z̄/x̄] denotes the renaming.

– Now assume that ξ is a new (future) variable to which m is bound. Then
ξ → Φm states that “when m terminates, Φm must hold”. Note that it says
nothing about x̄ if m has not terminated yet. It is also important to note that
Φm is monotone and thus ξ → Φm is a valid MHF state.

– Next we add ξ → Φm to Φ�, eliminate (old) y since the variable is rewritten,
and rename ξ to (new) y. Note that we use ξ as a temporary variable just not
to conflict with the old value of y.
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The above reasoning is equivalent to (∃y.(Φ� ∧ (ξ → (∃̄z̄.Φ�m)[z̄/x̄]))[ξ/y], and
is denoted by ⊕(Φ�, y, Φ�m , x̄, z̄). Note that the use of logical implication →,
to abstractly simulate method calls, allows delaying the incorporation of the
method summary Φm until corresponding synchronization point is reached.

Example 5. Let Φ11 = x → w be the MHF state at L11. The effect of executing
I11, i.e., awaitw?, within Φ11 should eliminate all models that do not include w.
This is done using w∧ Φ11 which results in Φ12 = w∧ x. Now let Φ29 = w be the
MHF state at L29. The effect of executing the instruction at L29, i.e., w=h(x,z),
within Φ29 is defined as ⊕(Φ29,w, Φ48, 〈x, z〉, 〈a, b〉) and computed as follows: (1)
we restrict Φ48 = a ∧ z to the method parameters 〈a, b〉, which results in a; (2)
we rename the formal parameters 〈a, b〉 to the actual ones 〈x, z〉 which results in
Φh = x; (3) we compute ∃w.(Φ29 ∧ (ξ → Φh)), which results in ξ → x; and finally
(4) we rename ξ to w which results in Φ30 = w → x.

Next we describe how to generate a set of data-flow equations whose solutions
associate to each � ∈ ppoints(P ) an MHF state Φ� that over-approximates F(�),
i.e., F(�) ⊆ [[Φ�]]. Each � ∈ ppoints(P ) contributes one equation as follows:

– if � is not a method entry, we generate Φ�=∨{μ(�′) | �′ ∈ pre(�)}. This
considers each program point �′ that immediately precedes �, computes the
effect μ(�′) of executing I�′ within Φ�′ , and the takes their disjunction;

– if � is an entry of method m, we generate Φ� = ∧{x | x ∈ Lm}, i.e., all local
variables point to finished tasks (since they are mapped to ⊥ when entering
a method), and we do not know anything about the parameters.

The set of all equations for a program P is denoted by HP .

Example 6. The following are the equations for the program points of m3:

Φ27= ⊕(Φ26, z, Φ36, 〈〉, 〈〉) ∨ Φ31

Φ30= ⊕(Φ29,w, Φ48, 〈x, z〉, 〈a, b〉)
Φ28= Φ27 Φ29= ⊕(Φ28, x, Φ59, 〈〉, 〈〉)

Φ26= w ∧ x ∧ z
Φ31= w ∧ Φ30

Φ32= Φ27

Note the circular dependency of Φ27 and Φ31 which originates from the corre-
sponding while loop. Recall that m3 is a main method.

The next step is to solve HP , i.e., compute an MHF state Φ�, for each � ∈
ppoints(P ), such that HP is satisfiable. This can be done iteratively as follows.
We start from an initial solution where Φ� = false for each � ∈ ppoints(P ). Then
repeat the following until a fixed-point is reached: (1) substitute the current
solution in the right hand side of the equations, and obtain new values for each
Φ�; and (2) merge the new and old values of each Φ� using ∨. E.g., solving the
equation of Example 6, among other equations that were omitted, results in a
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solution that includes, among others, the MHF states of Example 4. In what
follows we assume that HP has been solved, and let Φ� be the MHF state at �
in such solution.

Theorem 1. For any program point � ∈ ppoints(P ), we have F(�) ⊆ [[Φ�]].

In the rest of this article we let mhfα(�) = {x | x ∈ Vm, Φ� |= x}, i.e., the
set of finished future variables at � that is induced by Φ�. Theorem 1 implies
mhfα(�) ⊆ mhf(�). Computing mhfα(�) using the MHF states of Example 4,
among others that are omitted, results exactly in the MHF sets of Example 2.

5 MHP Analysis

In this section we present our MHP analysis, which is based on incorporating
the MHF sets of Sect. 4 into the MHP analysis of [3]. In Sects. 5.1 and 5.2 we
describe how we modify the two phases of the original analysis, and describe the
gain of precision with respect to [3] in each phase.

5.1 Local MHP

The local MHP analysis (LMHP) considers each method m separately, and for
each � ∈ ppoints(m) it infers an LMHP state that describes the tasks that
might be executing when reaching � (considering only tasks invoked in m). An
LMHP state Ψ is a multiset of MHP atoms, where each atom represents a task
and can be: (1) y:�′:m̃(x̄), which represents an active task that might be at any
of its program points, including the exit one, and is bound to future variable y.
Moreover, this task is an instance of method m that was called at program point
�′ (the calling site) with future parameters x̄; or (2) y:�′:m̂(x̄), which differs from
the previous one in that the task can only be at the exit program point, i.e., it
is a finished task. In both cases, future variables y and x̄ can be �, which is a
special symbol indicating that we have no information on the future variable.

Intuitively, the MHP atoms of Ψ represent (local) tasks that are executing in
parallel. However, since a variable y cannot be bound to more than one task at
the same time, atoms bound to the same variable represent mutually exclusive
tasks, i.e., cannot be executing at the same time. The same holds for atoms that
use mutually exclusive calling sites �1 and �2 (i.e., there is no path from �1 and
�2 and vice versa). The use of multisets allows including the same atom several
times to represent different instances of the same method. We let (a, i) ∈ Ψ
indicate that a appears i times in Ψ . Note that i can be ∞, which happens when
the atom corresponds to a calling site inside a loop, this guarantees convergence
of the analysis. Recall that the MHP atoms of [3] do not use the parameters x̄
and the calling site �′, since they do not benefit from such extra information.
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Example 7. The following are LMHP states for some program points from
Fig. 2:

L5 : {x:2:̃f(),z:3:q̃()}
L7 : {x:2:̃f(),z:3:q̃(),w:6:g̃(x)}
L10: {x:2:̃f(),z:3:q̃(),w:9:k̃(x,z)}
L11: {x:2:̃f(),z:3:q̃(),w:6:g̃(x),w:9:k̃(x,z)}
L12: {x:2:̂f(),z:3:q̃(),w:6:ĝ(x),w:9:k̂(x,z)}
L16: {x:15:̃f()}
L18: {x:15:̃f(),z:17:g̃(x)}
L20: {x:15:̂f(),z:17:ĝ(x)}

L21: {x:15:̂f(),z:17:ĝ(x)}
L27: {z:26:̃f(),(�:28:q̂(),∞),(�:29:ĥ(�,z),∞)}
L29: L27 ∪ {x:28:q̃()}
L30: L29 ∪ {w:29:h̃(x,z)}
L31: {z:26:̃f(),(�:28:q̂(),∞),(�:29:ĥ(�,z),∞)}
L32: {z:26:̃f(),(�:28:q̂(),∞),(�:29:ĥ(�,z),∞)}
L44: {}
L46: {z:45:g̃(a)}
L48: {z:45:ĝ(a)}

Let us explain some of the above LMHP states. The state at L5 includes x:2:̃f()
and z:3:q̃() for the active tasks invoked at L2 and L3. The state at L11 includes
an atom for each task invoked in m1. Note that those of g and h are bound to the
same future variable w, which means that only one of them might be executing
at L11, depending on which branch of the if statement is taken. The state at
L12 includes z:3:q̃() since q might be active at L12 if we take the then branch of
the if statement, and the other atoms correspond to tasks that are finished. The
state at L27 includes z:26:̃f() for the active task invoked at L26, and �:28:q̂()
and �:29:ĥ(�,z) with ∞ multiplicity for the tasks created inside the loop. Note
that the first parameter of h is � since x is rewritten at each iteration.

The LMHP states are inferred by a data-flow analysis which is defined as a
solution of a set of LMHP constraints obtained by applying the following transfer
function τ to the instructions. Given an LMHP state Ψ�, the effect of executing
instruction I� within Ψ�, denoted by τ(I�), is defined as follows:

– if I� is a call y = m(x̄), then τ(I�) = Ψ�[y/�] ∪ {y:�′:m̃(x̄)}, which replaces
each occurrence of y by �, since it is rewritten, and then adds a new atom
y:�:m̃(x̄) for the newly created task. E.g., the LMHP state of L30 in Example 7
is obtained from the one of L29 by adding w:29:h̃(x,z) for the call at L29;

– if I� is await y?, and �′ is the program point after �, then we mark all tasks
that are bound to a finished future variable as finished, i.e., τ(I�) is obtained
by turning each z:�′′:m̃(x̄) ∈ Ψ� to z:�′′:m̂(x̄) for each z ∈ mhfα(�′). E.g., the
LMHP state of L12 in Example 7 is obtained from the one of L11 by turning
the status of g, k, and f to finished (since w and x are finished at L12);

– otherwise, τ(I�) = Ψ�.

The main difference w.r.t. the analysis of [3] is the treatment of await y?: while
we use an MHF set computed using the inter-procedural MHF analysis of Sect. 4,
in [3] the MHF set {y} is used, which is obtained syntactically from the instruc-
tion. Our LMHP analysis, as [3], is defined as a solution of a set of LMHP
constraints. In what follows we assume that the results of the LMHP analysis
are available, and we will refer to the LMHP state of program point � as Ψ�.
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5.2 Global MHP

The results of the LMHP analysis are used to construct an MHP graph, from
which we can compute the desired set of MHP pairs. The construction is exactly
as in [3] except that we carry the new information in the MHP atoms. However,
the process of extracting the MHP pairs from such graphs will be modified.

In what follows, we use y:�:m̆(x̄) to refer to an MHP atom without specifying
if it corresponds to an active or finished task, i.e., the symbol m̆ can be matched
to m̃ or m̂. As in [3], the nodes of the MHP graph consist of two method nodes m̃
and m̂ for each method m, and a program point node � for each � ∈ ppoints(P ).
Edges from m̃ to each � ∈ ppoints(m) indicate that when m is active, it can be
executing at any program point, including the exit, but only one. An edge from
m̂ to �m indicates that when m is finished it can be only at its exit program
point. The out-going edges from a program point node � reflect the atoms of the
LMHP state Ψ� as follows: if (y:�′:m̆(x̄), i) ∈ Ψ�, then there is an edge from node
� to node m̆ and it is labeled with i:y:�′:x̄. These edges simply indicate which
tasks might be executing in parallel when reaching �, exactly as Ψ� does.

Example 8. The MHP graphs G1 , G2 , and G3 in Fig. 2, correspond to methods m1,
m2, and m3, each analyzed together with its reachable methods. For simplicity,
the graphs include only some program points of interest. Note that the out-going
edges of program point nodes coincide with the LMHP states of Example 7.

The procedure of [3] for extracting the MHP pairs from the MHP graph of a
program P , denoted G

P
, is based on the following principle: (�1, �2) is an MHP

pair induced by G
P

iff (i) �1 � �2 ∈ G
P

or �2 � �1 ∈ G
P
; or (ii) there is a program

point node �3 and paths �3 � �1 ∈ G
P

and �3 � �2 ∈ G
P
, such that the first edges

of these paths are different and they do not correspond to mutually exclusive
MHP atoms, i.e., they use different future variables and do not correspond to
mutually exclusive calling sites (see Sect. 5.1). Edges with multiplicity i > 1
represent i different edges. The first (resp. second) case is called direct (resp.
indirect) MHP, see Sect. 3.

Example 9. Let us explain some of the MHP pairs induced by G1 of Fig. 2. Since
11 � 35 ∈ G1 and 11 � 58 ∈ G1 , we conclude that (11,58) and (11,35) are
direct MHP pairs. Moreover, since these paths originate in the same node 11,
and the first edges use different future variables, we conclude that (58,35) is an
indirect MHP pair. Similarly, since 11 � 38 ∈ G1 and 11 � 50 ∈ G1 we conclude
that (11,38) and (11,50) are direct MHP pairs. However, in this case (38,50) is
not an (indirect) MHP pair because the first edges of these paths use the same
future variable w. Indeed, the calls to g and k appear in different branches of an
if statement. To see the improvement w.r.t. to [3] note that node 12 does not
have an edge to f̃, since our MHF analysis infers that x is finished at that L12.
The analysis of [3] would have an edge to f̃ instead of f̂, and thus it produces
spurious pairs such as (12,35). Similar improvements occur also in G2 and G3 .

Now consider nodes 35 and 40, and note that we have 11 � 35 ∈ G1 and
11 � 40 ∈ G1 , and moreover these paths use different future variables. Thus,
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we conclude that (35,40) is an indirect MHP pair. However, carefully looking at
the program we can see that this is a spurious pair, because x (to which task f
is bound) is passed to method g, as parameter w, and w is guaranteed to finish
when executing awaitw? at L39. A similar behavior occurs also in G2 and G3 .
For example, the paths 30 � 58 ∈ G3 and 30 � 40 ∈ G3 induce the indirect
MHP pair (58,40), which is spurious since x is passed to h at L45, as parameter
a, which in turn is passed to g at L45, as parameter w, and w is guaranteed to
finish when executing awaitw? at L39.

The spurious pairs in the above example show that even if we used our
improved LMHP analysis when constructing the MHP graph, using the proce-
dure of [3] to extract MHP pairs might produce spurious pairs. Next, we address
this imprecision by modifying the process of extracting the MHP pairs to have
an extra condition to eliminate such spurious MHP pairs. This condition is based
on identifying, for a given path m̆ � � ∈ G

P
, which of the parameters of m are

guaranteed to finish before reaching �, and thus, any task that is passed to m in
those parameters cannot execute in parallel with �.

Definition 2. Let p be a path m̆ � � ∈ G
P
, z̄ be the formal parameter of m,

and I a set of parameter indices of method m. We say that I is not alive along
p if (i) p has a single edge, and for some i ∈ I the parameter zi is in mhfα(�); or

(ii) p is of the form m̆ −→ �1
k:y:�′:x̄−→ m̆1 � �, and for some i ∈ I the parameter

zi is in mhfα(�1) or I ′ = {j | i ∈ I, zi = xj} is not alive along m̆1 � �.

Intuitively, I is not alive along p if some parameter zi, with i ∈ I, is finished at
some point in p. Thus, any task bound to zi cannot execute in parallel with �.

Example 10. Consider p ≡ g̃ � 40 ∈ G1 , and let I = {1}, then I is not alive
along p since it is a path that consists of a single edge and w ∈ mhfα(40). Now
consider h̃ � 40 ∈ G3 , and let I = {1}, then I is not alive along p since I ′ = {1}
is not alive along g̃ � 40.

The notion of “not alive along a path” can be used to eliminate spurious MHP
pairs as follows. Consider two paths

p1 ≡ �3
i1:y1:�

′
1:w̄−→ m̃1 � �1 ∈ G

P
and p2 ≡ �3

i2:y2:�
′
2:x̄−→ m̆2 � �2 ∈ G

P

such that y1 �= �, and the first node after m̃1 does not correspond to the exit
program point of m1, i.e., m1 might be executing and bound to y1. Define

– F = {y1} ∪ {y | Φ�3 |= y → y1}, i.e., the set of future variables at �3 such that
when any of them is finished, y1 is finished as well; and

– I = {i | y ∈ F, xi = y}, i.e., the indices of the parameters of m2 to which we
pass variables from F (in p2).

We claim that if I is not alive along p2, then the MHP pair (�1, �2) is spurious.
This is because before reaching �2, some task from F is guaranteed to terminate,
and hence the one bound to y1, which contradicts the assumption that m1 is not
finished. In such case p1 and p2 are called mutually exclusive paths.
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Example 11. We reconsider the spurious indirect MHP pairs of Example 9. Con-
sider first (35,40), which originates from

p1 ≡ 11
1:x:2:[]−→ f̃ � 35 ∈ G1 and p2 ≡ 11

1:w:6:[x]−→ g̃ � 40.

We have F = {x,w}, I = {1}, and we have seen in Example 10 that I is not
alive along g̃ � 40 ∈ G1 , thus p1 and p2 are mutually exclusive and we eliminate
this pair. Similarly, consider (58,40) which originates from

p1 ≡ 30
1:x:28:[]−→ q̃ � 58 ∈ G3 and p2 ≡ 30

1:w:29:[x,z]−→ h̃ � 40.

Again F = {x,w}, I = {1}, and we have seen in Example 10 that I is not alive
along h̃ � 40 ∈ G3 , thus p1 and p2 are mutually exclusive and we eliminate this
pair.

Recall that EP is the set of all concrete MHP pairs. Let ẼP be the set of
all MHP pairs obtained by applying the process of [3], modified to eliminate
indirect pairs that correspond to mutually exclusive paths.

Theorem 2. EP ⊆ ẼP .

6 Conclusions, Implementation and Related Work

The main contribution of this work has been the enhancement of an MHP analy-
sis that could only handle a restricted form of intra-procedural synchronization
to the more general inter-procedural setting, as available in today’s concurrent
languages. Our analysis has a wide application scope on the inference of the main
properties of concurrent programs, namely the new MHP relations are essential
to infer (among others) the properties of the termination, resource usage and
deadlock freedom of programs that use inter-procedural synchronization.

The analysis has been implemented in SACO [2], a S tatic Analyzer for
Concurrent Objects, which is able to infer deadlock, termination and resource
boundedness of ABS programs [10] that follow the concurrent objects paradigm.
Concurrent objects are based on the notion of concurrently running objects,
similar to the actor-based and active-objects approaches [12,13]. These mod-
els take advantage of the concurrency implicit in the notion of object to provide
programmers with high-level concurrency constructs that help in producing con-
current applications more modularly and in a less error-prone way. Concurrent
objects communicate via asynchronous method calls and use await instructions
to synchronize with the termination of the asynchronous tasks. Therefore, the
abstract model used in Sect. 2 fully captures the MHP relations arising in ABS
programs.

The implementation has been built on top of the original MHP analysis in
SACO. The MHF analysis has been implemented and its output has been used
within the local and global phases of the MHP analysis, which have been adapted
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to this new input as described in the technical sections. The remaining analyses in
SACO did not require any modification and now they work for inter-procedural
synchronization as well. Our method can be tried online at: http://costa.ls.fi.
upm.es/saco/web by enabling the option Inter-Procedural Synchronization
of the MHP analysis in the Settings section. One can then apply the MHP
analysis by selecting it from the menu for the types of analyses and then clicking
on Apply. All examples used in the paper are available in the folder SAS15
adapted to the syntax of the ABS language. In the near future, we plan to apply
our analysis to industrial case studies that are being developed in ABS but that
are not ready for experimentation yet.

There is an increasing interest in asynchronous programming and in con-
current objects, and in the development of program analyses that reason on
safety and liveness properties [6]. Existing MHP analyses for asynchronous pro-
grams [1,3,11] lose all information when future variables are used as parameters,
as they do not handle inter-procedural synchronization. As a consequence, exist-
ing analysis for more advanced properties [4,9] that rely on the MHP relations
do all lose the associated analysis information on such futures. In future work
we plan to study the complexity of our analysis, which we conjuncture to be in
the same complexity order as [3]. In addition, we plan to study the computa-
tional complexity of deciding MHP, for our abstract models, with and without
inter-procedural synchronizations in a similar way to what has been done in [5]
for the problem of state reachability.

References

1. Agarwal, S., Barik, R., Sarkar, V., Shyamasundar, R.K.: May-happen-in-parallel
analysis of X10 programs. In: Yelick, K.A., Mellor-Crummey, J.M. (ed.), Proceed-
ings of PPOPP 2007, pp. 183–193. ACM (2007)

2. Albert, E., Arenas, P., Flores-Montoya, A., Genaim, S., Gómez-Zamalloa, M.,
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Abstract. Shape analysis aims to infer precise structural properties of
imperative memory states and has been applied heavily to verify safety
properties on imperative code over pointer-based data structures. Recent
advances in shape analysis based on separation logic has leveraged sum-
marization predicates that describe unbounded heap regions like lists
or trees using inductive definitions. Unfortunately, data structures with
unstructured sharing, such as graphs, are challenging to describe and rea-
son about in such frameworks. In particular, when the sharing is unstruc-
tured, it cannot be described inductively in a local manner. In this paper,
we propose a global abstraction of sharing based on set-valued variables
that when integrated with inductive definitions enables the specification
and shape analysis of structures with unstructured sharing.

1 Introduction

Many recent advances in shape analysis have been made by building on separa-
tion logic [24] with inductive definitions. Such frameworks (e.g., [1,7,14]) lever-
age (1) separating conjunction ∗ to enable local reasoning and strong updates
by combining properties holding over disjoint memory regions and (2) inductive
definitions to summarize recursive structures of unbounded size. While this app-
roach has been effective for many applications, a significant limitation has been
its inability to effectively handle unstructured sharing.

We say that a data structure has sharing whenever a given cell in the data
structure may be pointed to by several other cells. Singly-linked lists and trees
are unshared data structures, while other important structures, such as directed-
acyclic graphs (DAGs) and graphs in general, are shared data structures. Certain
shared data structures have regular sharing patterns that can be described using
a bounded number of constraints on each cell. For example, doubly-linked lists
can be summarized using the following inductive definition:

α · dll(δ) :: = (emp ∧ α = 0) ∨ (α.prev �→ δ ∗ α.next �→ β ∗ β · dll(α) ∧ α �= 0)
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This definition states that α is a doubly-linked list pointer if and only if it is
either null (0) or a pointer to a list element; in the latter case, the prev field of
α points to δ, and the tail β should be a doubly-linked list such that the prev
field of its first element should point back to α itself. We say that doubly-linked
lists have structured sharing—sharing occurs because each cell points back to
its predecessor, but since each cell has exactly one predecessor (except for the
first cell), it can be specified by the parameter δ. A skip list is another such
example [7].

On the other hand, the case of structures with unstructured sharing, such as
general graphs, is much more challenging since the number of predecessors of a
node is unbounded and since the predecessors could be anywhere in the struc-
ture. To make the challenges more concrete, consider the representation of graphs
shown in Fig. 1. Figure 1(a) shows a type definition for representing graphs as
adjacency lists: a graph is a list of nodes, each node has a list of edges, and an
edge is a pointer to its destination node. Figure 1(c) shows a representation of
the graph of Fig. 1(b), where node i is described at address ni. To extend shape
analysis techniques to this structure (and prove memory safety or functional

Fig. 1. Graph represented by adjacency lists and traversal function.
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properties of algorithms manipulating it), we need an effective method to sum-
marize instances of this structure and to manipulate such summaries. A natural
approach to summarization is to exploit the list-of-lists inductive skeleton of
adjacency lists, as hinted at in Fig. 1(d): at node n0, the list of its adjacent
nodes is inductively summarized in the green region, while the adjacency list
of the other nodes in the graph are summarized in the purple region. What is
implicit in this informal diagram is that these summarized regions must, for pre-
cision, capture complex, unstructured, cross pointer relations (i.e., the curving
lines in Fig. 1(c)).

To capture this unstructured sharing precisely, we observe that the correct-
ness of the structure stems from the fact that each edge pointer points to an
address in E = {n0, n1, n2, n3}. Thus, the absence of dangling edges can be cap-
tured by adjoining a set property to a conventional list predicate. We need to
capture that all edge pointers point to nodes belonging to the set E of valid
nodes in the graph for each node’s adjacency list. To give an inductive definition
for the outer list of nodes, we need to ensure that this list of nodes is consis-
tent with the set E of valid nodes, and thus we require a second set variable F
that captures the nodes summarized in this list region. For example, in the node
list summary of Fig. 1(d) (shown in purple), this variable F should be the set
{n1, n2, n3}.

While we have hinted at an approach to summarize adjacency lists using
a combination of an inductive skeleton and relations over set-valued variables,
using such summaries poses significant algorithmic challenges, including both
unfolding from and folding into such summaries. To be more concrete, consider
the traversal algorithm shown in Fig. 1(e) that is representative of graph oper-
ations that manipulate paths. Following graph edges amounts to traversing the
cross pointers. This traversing of cross pointers makes the shape analysis of such
programs tricky, since this step does not follow the inductive skeleton of the
adjacency list—instead, it “jumps” to some other node in the structure.

In this paper, we propose a shape analysis that tracks set properties to infer
precise invariants about data structures with unstructured sharing. Our contri-
butions are as follows:

– The formalization of inductive predicates with set-valued parameters (Sect. 3).
Such predicates enable a definition for the adjacency lists representation of
graphs described here.

– A shape abstraction using such inductive definitions that is parameterized by
a set abstract domain to track and infer relations over set-valued variables
(Sect. 4).

– Static analysis algorithms to infer invariants over data structures with
unstructured sharing (Sect. 5). These algorithms rely on novel notions of non-
local unfolding to address the issue of “jumps” and inductive set parame-
ter synthesis to enable folding into summaries with set-valued parameters.
We then report on a preliminary empirical evaluation of these algorithms in
Sect. 6.
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2 Overview

Graph Inductive Predicate. The first step towards an analysis to verify graph
algorithms is to set up inductive predicates to summarize the structure of Fig. 1.
Such predicates are based on generic inductive definitions, which describe a
disjunction of cases, each of which consists of a memory formula (a separating
conjunction F0 ∗ . . . ∗ Fn of points-to predicates of the form α · f �→ β and
inductive predicates of the form α · ι, where ι is another inductive definition)
and a pure formula (a conjunction of value properties, such as pointer equalities).
The set of outgoing edges of a node consists of a list of records, thus the predicate
to summarize such a region can be based on a classical list inductive definition,
such as α · list, as shown in the top of Fig. 2(a). This inductive definition states
that α is either a null pointer (the list then spans over an empty region), or a non-
null pointer to a record made of two fields but it does not further characterize
the dest field.

However, this definition does not express that all instances of field dest con-
tain a pointer to a node of the graph as the value β of that field is unconstrained.
To resolve this issue, we simply need to add the constraint β ∈ E , where E should
denote the set of all node addresses in the graph. The abstract domain should
also keep track of those predicates through folding and unfolding steps. There-
fore, we obtain inductive definition edges shown in Fig. 2(a), which takes the
additional parameter E , and where the value predicate of the non-empty case
has been strengthened with set predicate β ∈ E .

Moreover, the inductive definition of a graph needs to capture two set prop-
erties: (1) the destination of all edges are in set E (as described by inductive
definition edges) and (2) the set of nodes in the adjacency list should correspond
exactly to E . Thus, inductive definition nodes shown in Fig. 2(a) takes two set
parameters: (1) E is constant over the whole induction and (2) F stands for the
set of nodes described in the graph fragment described by an nodes instance.
We note that the set predicates F = ∅ (base case) and F = F ′ 
 {α} (induc-
tive case) guarantee that F is exactly the set of nodes described by predicate
α · nodes(E ,F ).

Abstraction of Memory States. Using these definitions, a complete graph with
set of nodes E can be fully summarized by inductive predicate α · nodes(E ,E ),
where symbolic variable E denotes all the nodes of the concrete graph. Simi-
larly, Fig. 2(b) displays a partially summarized abstraction, following the split-
ting of Fig. 1(d), where thin edges denote points-to predicates and bold edges
stand for inductive predicates, annotated by inductive definition instances, with
arguments denoting sets of concrete values. Colors are consistent with Fig. 1(d)
to highlight the memory region each edge describes. Additional set predicates
(E = F ′ 
 {α} . . .) are represented in a set abstract domain [11]. This means,
that a concrete state represented by this state should bind α to an address and
E ,F ′ to sets of addresses satisfying the aforementioned property, in the same
way as the numerical constraint α �= 0 specifies α should be bound to a non-null
pointer value.
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Fig. 2. Summarizing graph data-structures using inductive predicates

Shape Analysis Extension. We now discuss automatic shape analysis algorithms
to verify programs manipulating such graphs. Properties of interest include mem-
ory safety (absence of null or dangling pointer dereferences) and the preservation
of structural invariants. As a benchmark property, we consider the verification
of the memory safety of the random traversal algorithm of Fig. 1(e).

In particular, to establish no dangling pointer is dereferenced, the analysis
should precisely track the fact that c should point to a valid node of the graph, or
be the null pointer (which causes the program to exit) at all times. Figure 3 shows
the main local abstract invariant involved in the verification of this property,
described as shapes. For the sake of concision, only parts of the shapes that play
a role in the analysis are shown, and we discuss mainly the novel parts of the
analysis. We use the same conventions as in Fig. 2(b). The pre-condition shown
at line 0 specifies that the function starts with a correct graph, with set of nodes
E . At line 1, cursor c is initialized to h. The analysis of the loop body requires the
analysis to unfold [5] summaries to perform mutation over summarized regions,
at lines 6 and 7, and to utilize a widening [5] operator for the convergence of
the abstract iterates over both nested loops. The invariant at the head of the
main loop, at line 3, shows a node list segment between nodes α and α′ that
denote the respective values of h and c. This segment describes a memory region
encompassing a set of nodes of the graph together with their adjacency list. The
segment predicate parameters are most interesting: the first specifies that all
edges from nodes allocated in that region point to an address in E (global graph
correctness property) whereas the second states that the set of the addresses of
the nodes represented in that region is exactly F . The side property E = F 
F ′

states that the splitting of the graph into the two summaries partitions its nodes.
The abstract state at line 7 is significantly more complex, and c does not

immediately appear to point in the nodes inductive backbone anymore. Yet,
the dereference of c -> id requires the materialization of an edge from that
node, although no edge (points-to or summary) starts from node β. However,
the analysis infers that β ∈ E (i.e., β is the address of an element of the graph
adjacency list), and E = F 
 {α′} 
 F ′′. Thus, either β ∈ F , or β = α′,
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Fig. 3. Abstract pre-condition and local invariants

or β ∈ F ′′. If β ∈ F , then it is the address of a node in the segment from
α to α′, and it can be materialized as such, by splitting the segment (the case
β ∈ F ′′ is similar, and means that c points in the tail of the structure). This form
of unfolding is much more complex than more conventional forms of inductive
predicates unfolding [5] as it needs to utilize the set properties to localize β.
To achieve this, the analysis needs to track all set predicates shown in Fig. 3,
through unfolding, updates and widening steps.

3 Inductive Definitions with Set Predicates

The analysis presented in this paper is parameterized by a set of inductive defini-
tions, which means the abstract domain is generic, and can deal with a wide fam-
ily of data-structures. We extend the relational inductive definitions of [5] with
set predicates. A concrete memory m ∈ M = Vaddr −→ V maps addresses into
values. Structure fields are considered numerical offsets, so that a+ f denotes the
address at base address a and offset f. In the abstract level, symbolic variables
(α, β, . . . ∈ V�) abstract numerical values. A valuation ν is a function that maps
each numerical variable α ∈ V� (resp., set variable E ∈ T�) to a numerical value
ν(α) (resp., set of numerical values ν(E )). We write Val for the set of valuations.

Inductive Definitions. An inductive definition
α·ι(E1, . . . ,En)::= r0 ∨ r1 ∨ . . . ∨ rk takes a pointer
parameter α and a list of set parameters E1, . . . ,En

and defines a scheme to summarize heap regions
that satisfy some inductive property, specified as a
disjunction of rules, which comprise a heap part and
a pure part, as described in the inset. The heap part
is a separating conjunction of memory cells (predi-
cates of the form α · f �→ β) and recursive calls to
inductive definitions. The pure part comprises not
only numerical constraints, but also set constraints, over the symbolic variables
exposed in the heap part, and the set parameters E1, . . . ,En, as shown in FPure.
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The intuitive meaning of a set constraint such as α ∈ E is that the concretization
will map α into a numerical value that belongs to the concretization of E . As a
simple example, the inductive definition below characterizes the singly linked list
starting at address α, such that the set of addresses of list elements is exactly E :

α · ls(E ) ::= (emp, α = 0 ∧ E = ∅)
∨ (α · n �→ β0 ∗ α · v �→ β1 ∗ β0 · ls(E ′), α �= 0 ∧ E = {α} 
 E ′)

Inductive definitions edges and nodes (Fig. 2(a)) capture set constraints over
the nodes and edges of graphs in a similar way: nodes collects exactly the set
of all nodes of the graph, whereas edges asserts all edges should point to one of
the nodes of the graph.

Properties of Set Parameters. Analysis algorithms (Sect. 5) need to infer
instances of inductive definitions, including their set parameters. Computing set
parameters accurately is a very hard task, as it depends on complex properties of
the data-structures shapes and contents. Yet, properties of set parameters may
make their computation simpler. We define the following set parameters kinds:

– Constant Parameters. In definition edges (Fig. 2(a)), the set parameter
is propagated with no modification to the recursive call of the inductive def-
inition. We call it a constant parameter, that is a parameter E of inductive
definition ι such that any recursive call α′ · ι(E ′) in the definition of α · ι(E ) is
such that E = E ′. We note that the first parameter (E ) of nodes also satisfies
this property.

– Head Parameters: The second parameter of nodes is clearly not constant,
but it satisfies another interesting property: it collects the set of head nodes
in all recursive inductive calls, and can be computed exactly from the values
of the same parameters in the recursive calls, since F = ∅ in the empty rule
and F = {α} 
 F ′ in the second rule, where α is the address of the head of
the structure and F ′ is the parameter of the tail. We call such a parameter a
head parameter. This definition generalizes to non-linear structures (i.e., with
several recursive calls, corresponding to distinct sub-structures). Parameter E
of the ls definition also satisfies this property.

These set parameter kinds are computed by a very simple analysis of inductive
definitions. In the following, we write ι � E : cst (resp., ι � E : head) to denote
that parameter E of inductive definition ι is constant (resp., head).

In this paper, we provide static analysis algorithms that are sound whatever
the properties of the set parameters. However, precise folding and materialization
will only be supported for constant and head parameters. Note that other kinds of
set parameters may be proposed though, so as to recover precise static analyses
even when the above properties are not satisfied.

4 Composite Memory Abstraction with Set Predicates

We now formalize our shape abstract domain M�, that is parameterized by the
inductive predicates of Sect. 3, and an abstract domain S� for constraints over
value and set symbolic variables.
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Abstract States. An abstract state is a pair (G,S) made
of a shape G ∈ G� and an element S ∈ S�. The syntax
of shapes is shown in the inset: a shape is either empty,
or a single points-to edge α · f �→ β, or an inductive
predicate α · ι( �E ) (instantiating an inductive definition
ι defined as in Sect. 3), or a segment α · ι( �E ) ∗= β · ι( �E )
describing an incomplete inductive structure, or a separating product of such
predicates. Intuitively, a segment describes incomplete induction, with a missing
sub-structure, hence a segment of an list structure effectively describes a con-
ventional list segment (similarly, a tree segment would describe a “tree minus a
subtree”). Inductive and segment predicates comprise a number of parameters
that matches their definition (Sect. 3). Our analysis supports inductive predi-
cates with any number of set parameters (although, in the rest of the paper, we
sometimes write properties in the case of definitions using a single parameter,
for the sake of readability).

Concretization. We assume that elements of S� concretize into sets of valuations,
satisfying both sets and value constraints, thus γS : S� → P(Val). Similarly, the
concretization of a shape is a set of memory states together with value and set valu-
ations, thus γG : G� → P(M×Val). Figure 4(a) displays the concretization rules for
shapes. The first three rules describe the usual concretization for empty shapes,
single points-to edges and separating conjunction [24]. The last rule defines the
concretization for inductive and segment predicates using the standard notion of
syntactic unfolding: the unfolding of an inductive or segment predicate selects a

Fig. 4. Shapes and their concretizations
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rule r in the corresponding inductive definition, and replaces the predicate with
the heap part of r and constrains value and set valuations with the pure part of r.
This construction is standard and is fully described in [7].

Examples. Fig. 4 shows a few abstractions of the concrete memory state m shown
in Fig. 4(b), where l stores a pointer to a list of length 3, and where a0, a1, . . . , a7

denote numerical values/addresses. The shape of Fig. 4(c) abstracts this state
without any summarization (it contains no inductive predicate). Its concretiza-
tion into m results in ∀i, ν(αi) = ai (in particular, ν(α6) = a6 = 0x0), and can
be fully expressed using the points-to and separating product rules of Fig. 4(a).
The shape of Fig. 4(d) summarizes the list completely into a single inductive
predicate α1 · ls(E0). In this case, the concretization also needs to bind E0 to
a set of concrete addresses: by the definition of ls (Sect. 3), this boils down to
ν(E0) = {a1, a2, a4}. Moreover, this concretization needs to trigger the unfolding
rule (last rule in Fig. 4(a)) in order to produce the shape of Fig. 4(c). The shape
of Fig. 4(e) summarizes only the last two elements of the list (in purple) while the
first element (in red) is preserved in its unfolded form. Similarly to the previous
case, the unfolding of this shape needs to trigger three times the unfolding rule
in order to get the shape of Fig. 4(c) and to map E1 to ν(E1) = {a2, a4}.

Finally, the shape of Fig. 4(f) summarizes two list elements with inductive
predicate α2 · ls(E3) (in purple) and the rest of the list with a segment predicate
(in red). This segment predicate should take a form α1 · ls(F1) ∗= α2 · ls(F2),
where F1,F2 describe two sets of addresses such that the set of addresses of
the list elements summarized in the segment is exactly ν(F1) \ ν(F2), by the
definition of ls. The fact that only the difference of these two sets matters is
actually a direct consequence of the fact that the parameter of ls is head (Sect. 3).
Therefore, when an inductive definition parameter is head, segment predicates
are decorated with only one parameter. In the example of Fig. 4(f), the segment
predicates writes down α1 · ls ∗=(E2) α2 · ls; the graphical notation in the figure
condenses this slightly, into a single ls(E2) parameter. The concretization of this
shape produces the memory of Fig. 4(b) with ν(E2) = {a1} and ν(E3) = {a2, a4}.

Properties of Constant and Head Parameters. The parameters kinds introduced
in Sect. 3 allow to prove properties allowing to fold segment and inductive pred-
icates, such as the following concretization inclusions/implications:

– if ι � E : cst, then γG(α0 · ι ∗=(E ) α1 · ι ∗ α1 · ι(E )) ⊆ γG(α0 · ι(E )), and
γG(α0 · ι ∗=(E ) α1 · ι ∗ α1 · ι ∗=(E ) α2 · ι) ⊆ γG(α0 · ι ∗=(E ) α2 · ι);

– if ι � E : head, (m, ν) ∈ γG(α0 ·ι ∗=(E0) α1 ·ι ∗ α1 ·ι(E1)) and ν � E = E0
E1,
then (m, ν) ∈ γG(α0 · ι(E )).

As an example, the last of these rules allows to show that the shape in Fig. 4(d)
over-approximates that of Fig. 4(f) under the condition that E0 = E2 
 E3.

Abstraction of Constraints Over Sets and Addresses. Abstract domain S� should
provide an abstraction for constraints over set variables and symbolic variables.
For instance, the constraints of the invariant of Fig. 3 corresponding to line
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3 in the program of Fig. 1(e) collects value constraints α �= 0, α′ �= 0 and set
constraints α, α′ ∈ E , E = F 
 F ′, thus abstract domain S� should be able to
express these constraints. A suitable such abstract domain can be obtained as a
reduced product [10] of the interval abstract domain [9], of a domain representing
inequalities and of a set abstract domain (two set domains were used in the
evaluation—see Sect. 6 for discussion). For more expressiveness, more powerful
numerical/set abstract domains can be used instead.

Combined Abstract Domain. The concretization of an abstract memory state
M = (G,S) ∈ M� is defined as the set of memory states for which a pair of
valuations can be found, that satisfy all constraints from G and S:

γM(G,S) = {m ∈ M | ∃ν ∈ γS(S), (m, ν) ∈ γG(G)}

While this concretization looks similar to that of a reduced product [9], the
composite abstract domain actually has the structure of a cofibered abstract
domain [29], since the set of symbolic variables present in the S component are
exactly the nodes in shape G, and the analysis should maintain this consistency
at all times.

5 Static Analysis Algorithms

We now describe algorithms to infer invariants involving inductive predicates
with set parameters. Extending [5], it inputs an abstract pre-condition, and
performs a forward abstract interpretation to compute a sound abstract post-
condition satisfied by any execution starting from the pre-condition. We empha-
size the novel aspects of this analysis, namely non-local unfolding (in Sect. 5.1)
and set parameters synthesis during folding (in Sect. 5.2). Our analysis assumes
abstract domain S� provide sound abstract join �S, abstract inclusion test
�S, widening �S, supremum � and sound transfer functions: guardS inputs an
abstract value S and a set constraint C, and returns an abstract value refined
with C and proveS inputs an abstract value S and a set constraint and returns
true when it successfully establishes that S entails C.

5.1 Transfer Functions, Local and Non-local Unfolding

Given a concrete post-condition function f : P(M) → P(M), the corresponding
abstract transfer function f� : M� → M� should over-approximate the effect of
f, in the sense that f ◦ γM ⊆ γM ◦ f�. In this section, we consider the case of a
pointer assignment and let f be [[l := e]] since condition tests, allocation, and
deallocation follow similar principles. We assume pre-condition M = (G,S). If l-
value l evaluates to points-to edge α ·f �→ β in M , r-value e evaluates to node β′

in M and G = α·f �→ β ∗ G′, then the abstract assignment should simply replace
the old edge with a new one and produce [[l := e]](M) = (α · f �→ β′ ∗ G′, S).
The local reasoning principle [18,24] ensures the soundness of this mechanism.
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As an example, Fig. 5(a) and (b) display the pre and post-condition of assign-
ment s = s -> next in the program of Fig. 1(e), at line 5 (for the sake of clar-
ity, shapes are simplified to the relevant memory regions). In pre-condition M
(Fig. 5(a)), the modified memory cell corresponds to edge α0 �→ α1, and the
r-value describes node α2. Thus, abstract transfer function [[s := s -> next]]�

simply returns the shape of Fig. 5(b).

Fig. 5. Assignment and (local) unfolding

The Unfolding Transformation. However, the above scheme cannot work when
the over-written memory cell or the memory read in the r-value is part of an
inductive predicate. This case actually happens in the analysis of the program
of Fig. 1(e), since the actual pre-condition is shown in Fig. 5(c) and does not
allow to evaluate s->next into a node. Unfolding [1,5,14] resolves this issue, by
replacing the inductive predicate α1 · edges(E ) with its inductive definition and
producing a disjunction of two cases (one per inductive rule).

Theorem 1 (Unfolding Soundness). Given inductive definition α · ι(E ):: =∨
{(FHeap,i, FPure,i) | 1 ≤ i ≤ k}:

γM(α · ι(E ) ∗ G,S) ⊆
k⋃

i=1

γM(FHeap,i ∗ G, guardS(FPure,i, S))

In the example of Fig. 5, the inductive rule corresponding to the empty list of
edges is ruled out, since M ′ contains constraint α1 �= 0 in the S� component, thus
unfolding produces M (Fig. 5(a)) as a single disjunct. Thus, when applied to M ′

abstract transfer function [[s := s->next]]� first invokes the unfolding procedure,
and then proceeds as explained above. Theorem1 ensures the soundness of the
resulting abstract operations. We write G �U (Gu, FPure) when a predicate of
G can be unfolded so as to produce Gu with side constraints FPure.

Non-local Unfolding. The unfolding case studied so far is quite straightforward
as the node at which inductive predicate should be unfolded is well specified, by
the transfer function (α1 in Fig. 5). The analysis of an instruction reading c->id
from the abstract state corresponding to line 7 appears in Fig. 3: in this state c
points to β in the abstract level, but node β is neither the origin of a points-to
predicate nor that of an inductive predicate that could be unfolded. Intuitively, β
could be any node in the graph as shown by the set property β ∈ F 
{α′}
F ′′,
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thus we expect the abstract memory state to reflect this. This intuition is for-
malized as follows: the second parameter of nodes is a head parameter (Sect. 3),
and the side predicates carry out the fact that β ∈ F 
 {α′} 
 F ′′, where F
and F ′′ appear as a second parameter for both nodes predicates in the shape,
which allows to localize β. This principle is a direct consequence of a property
of head parameters:

Fig. 6. Non-local unfolding

Theorem 2 (Non-local Unfolding Principle). Let ι be a single parameter
inductive, such that α · ι(E ) � E : head. Let (m, ν) ∈ γG(α · ι(E )) such that
ν(β) ∈ ν(E ). Given E0,E1 fresh set variables, ν can be extended into ν′, such
that (m, ν′) ∈ γG(α · ι ∗=(E0) β · ι ∗ β · ι(E1)), ν′(E ) = ν′(E0) 
 ν′(E1) and
ν′(β) ∈ ν′(E1).

The proof follows directly from the definition of head parameters. Figure 6 illus-
trates this non-local unfolding principle. While Theorem2 states the result for
inductive definitions with a single set parameter, the result generalizes directly
to the case of definitions with several parameters (only the parameter supporting
non-local unfolding is then required to be a head parameter). It also generalizes
to segments.

To conclude, the analysis of an assignment proceeds along the following steps:

1. it attempts to evaluate all l-values to edges and r-values to symbolic variables;
2. when step 1 fails as no points-to edge can be found at offset α · f, it searches

for a local unfolding at α, that is either a segment or an inductive predicate
starting from α;

3. when no such local unfolding can be found, it searches for predicates of the
form α ∈ {α0, . . . , αk} 
 E0 
 . . . 
 El, where E0, . . . ,El appear as head para-
meters; when it finds such a predicate, the analysis produces a disjunction of
cases, where either α = αi (and it goes back to step 1), or where α ∈ Ei and
it performs non-local unfolding of the corresponding predicate (Theorem1);

4. last, it performs the abstract operation on the unfolded disjuncts

Note that failure to fully materialize all required nodes would produce imprecise
results; thus, in absence of information about parameters, the analysis may fail
to produce a precise post-condition.

5.2 Folding of Inductive Summaries: Inclusion Test,
Join and Widening

While transfer functions unfold inductive predicates, inclusion checking, join and
widening operators need to discover valid set parameters so as to fold them back.
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Inclusion Checking. The inclusion checking abstract operation � inputs two
abstract memory states Ml,Mr and returns true if it successfully establishes
that γM(Ml) ⊆ γM(Mr) (it is conservative) using inclusion testing functions �G,
�S. It attempts to construct a proof of inclusion, following a set of logical rules
an excerpt of which is shown in Fig. 7(a). Some rules were already introduced
in [5]. For instance, the bottom left rule states that any shape is included in
itself; the inclusion checking algorithm actually applies it to single predicates
(points-to, inductives or segments). Inclusion checking splits shapes according
to the separation principle. It may unfold the right hand side shape and try to
match the left hand side with one of the disjuncts. Last, it returns true when
both the comparison of shapes and of side predicates return true.

Fig. 7. Inclusion checking

However, the matching of segments and inductive predicates with set para-
meters requires some specific rules. Figure 7(a) shows two such rules, that apply
when trying to compare a segment on the left and an inductive predicate on the
right, that correspond to the same definition and the same origin:

– The bottom middle rule applies to the case of a constant set parameter and
simply requires inductive and segment to share the same set parameter.

– The middle rule applies to the case of a head set parameter and enforces its
additiveness by checking E0 ⊆ E and choosing fresh E1 so that E = E0 
 E1,
following the properties of head parameters shown in Sect. 4.

Similar rules apply to the comparison of segments in both sides. Soundness
follows from the soundness of each rule:
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Theorem 3 (Inclusion Checking Soundness). If Sl � Gl �G Gr, (m, ν) ∈
γG(Gl), and ν ∈ γS(Sl), then (m, ν) ∈ γG(Gr). Moreover, if � (Gl, Sl) �
(Gr, Sr), then γM(Gl, Sl) ⊆ γM(Gr, Sr).

Fig. 7(b) illustrates this algorithm on an example based on the ls definition,
which behaves similarly to nodes in its second parameter (it resembles inclusion
tests ran in the analysis of the program of Fig. 1(e)). The inclusion proof search
starts from the bottom shapes, where α0 is the origin of a segment in the left,
and of an inductive predicate in the right. Since ls has a head parameter, the
rule specific to this case applies, and the inclusion test “consumes” the segment,
effectively removing it from the left argument, and adding a fresh E2 variable,
such that E = E0 
 E2 (thus, constraint E2 = {α1} 
 E1 is added). Then, the
algorithm derives inclusion holds after unfolding and matching three pairs of
identical predicate.

Join and Widening. In the shape domain G�, join and widening rely on
the same algorithm. A basic version of this algorithm is formalized in [5],
and we extend it here so as to handle set parameters. To over-approximate
Ml = (Gl, Sl) and Mr = (Gr, Sr), the join algorithm starts from a configuration
[Ml �G Mr|emp], and incrementally selects components of both inputs that can
be over-approximated likewise, and moves their common over-approximation to
the third (output) element. The two fundamental rules are shown in Fig. 8(a).
The first rule states that, if both inputs contain a same region G, then these
regions can be joined immediately (it is applied incrementally for points-to,
inductive and segment predicates). The second rule states that, if a common
over-approximation Go for Gl, Gr can be found and checked with �G, abstract
join can rewrite these into Go. This algorithm is a widening: it ensures termina-
tion of sequences of abstract iterates.

Novel rules are needed to introduce segments and inductive predicates. Let ι
be an inductive definition with a single set parameter. Then, a segment predicate
α · ι ∗=(E ) β · ι (where E is fresh) can be introduced when Gl = emp, S � α = β,
Sr � Gr �G α · ι ∗=(E ) β · ι, and when:

– either E is constant (α · ι(E ) � E : cst);
– or E is a head parameter (α · ι(E ) � E : head), and S′

l = guardS(Sl,E = ∅);

The inclusion checking algorithm may then discover new constraints between
fresh variable E and the other set variables, and enrich Sr accordingly. These
constraints indirectly stem from the constant or head kind of the set parameters.
Additional rules allow to introduce inductive predicates, and extend segment or
inductive predicates in a similar way, as the above segment weakening. Sound-
ness follows from step by step preservation of concretization (the convergence
property of the shape join is proved in [5]):

Theorem 4 (Soundness of Join). If [(Gl, Sl)�G(Gr, Sr)|Go] �� [(G′
l, S

′
l)�G

(G′
r, S

′
r)|G′

o], then, ∀i ∈ {l, r}, γM(Gi ∗ Go, Si) ⊆ γM(G′
i ∗ G′

o, S
′
i).

Therefore, if [Ml �G Mr|emp] ��
� [(emp, S′

l) �G (emp, S′
r)|G′

o], then (G′
o,

S′
l �SS′

r) (resp., (G
′
o, S

′
l�SS′

r)) provides a sound join (resp., widening) forMl,Mr.
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Fig. 8. Join and widening algorithms

Figure 8(b) shows a simplified instance of a join taken from the analysis of the
program of Fig. 1(e). Initially, both inputs contain very similar nodes inductive
predicates at α0, thus the first step moves these predicates into the output
component. The first parameter is constant, and is equal to E everywhere. The
second parameter is a head parameter, so a new variable X1 is introduced, and
Sl (resp., Sr) is enriched with constraint X1 = F (resp., X1 = F1). In the
second step, a segment is introduced. Again, the constant parameter is equal to
E everywhere. In the left, constraint X0 = ∅ is added. In the right, inclusion
check discovers constraint X0 = {α0}
F0. This configuration is final, and allows
to compute the set constraints E = X0 
 X1.

6 Empirical Evaluation

We implemented inductive definitions with set predicates into the MemCAD
static analyzer [26,27] and integrated set constraints as part of the numerical
domain [6], so as to assess (1) whether it achieves the verification of structure
preservation in the presence of sharing, and (2) if the memory abstract domain
efficiency is preserved. The analysis takes a set abstract domain as a parameter
to represent set constraints. We have considered two set abstract domains:

– the first one is based on an encoding of set constraints into BDDs, and utilizes
a BDD library [17], following an idea of [11] (this domain is called “BDD” in
the results table);
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– the second one relies on a compact representation of constraints of the form
Ei = {α0, . . . , αn} 
 F0 
 . . . 
 Fm as well set equalities, inclusion and
membership constraints (this domain is called “LIN” in the results table,
since the main set constraints expressed here are of “linear” form).

Both abstract domains were implemented in OCaml, and integrated into the
MemCAD static analyzer.

Table 1. Analysis of a set of fundamental graph manipulation functions. Analysis
times (in milliseconds) are measured on one core of an Intel Xeon at 3.20GHz with
16GB of RAM running Ubuntu 14.04.2 LTS (we show overall time including front-end
and iterator shape domain and set domain), with “BDD” and “LIN” set domains.
“Property” columns: inference of structural properties.

Description LOCs Nested loops “BDD” time (ms) “BDD” “LIN” time (ms) “LIN”

Total Shape Set Property Total Shape Set Property

Node: add 27 0 44 0.3 11 yes 28 0.3 0.2 yes

Edge: add 26 0 31 0.2 4 yes 27 0.2 0.1 yes

Edge: delete 22 0 45 0.4 16 yes 30 0.3 0.2 yes

Node list

traversal

25 1 117 1.5 87 yes 28 0.5 0.3 yes

Edge list

iteration +

dest. read

34 1 332 2.7 293 yes 36 3.5 2.4 yes

Graph path:

deterministic

31 2 360 2.7 323 yes 35 2.4 2 yes

Graph path:

random

43 2 765 7.1 711 yes 41 4.1 3 yes

The analysis inputs inductive definition parameters, a C program, and a
pre-condition, and computes and verifies abstract post-conditions. We ran the
analysis on a basic graph library, chosen to assess specifically the handling of
shared structures (addition or removal operations, structure traversals, and tra-
versals following paths including the program of Fig. 1(e)). Results are shown in
Table 1. In all cases, the analysis successfully establishes memory safety (absence
of null/dangling pointer dereference), structural preservation for the graph mod-
ifying functions, and precise cursor localization for the traversal functions, with
both set domains. Note that, in the case of path traversals, memory safety
requires the analysis to localize the cursor as a valid graph node, at all times (the
strongest set property, captured by the graph inductive definitions of Fig. 2). The
analysis time spent in the shape domain is in line with those usually observed
in the analyzer [26,27], yet the BDD-based set domain proves inefficient in this
situation and accounts for most of the analysis time for two reasons: (1) it is far
too expressive and keeps properties that are not relevant to the analysis and (2)
set variables renaming (required after joins) necessitate full recomputation of
BDDs. By contrast, the “LIN” set domain is tailored for the predicates required
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in the analysis, and produces very quick analysis run-times. In several cases, the
time spent in the shape domain is even reduced compared to “BDD”, due to
shorter iteration sequences.

7 Related Work

A wide family of shape analysis techniques have been proposed so as to deal
with inductive structures, often based on 3-valued logic [21,25] or on sepa-
ration logic [1,2,4,5,14,23]. Such analyses often deal very well with list and
tree like structures, but are often challenged with unbounded sharing. In this
paper, we augmented a separation logic based analysis [5,7] with set predicates
to account for unbounded sharing, both in summaries and in unfolded regions,
and retain the parameterizability of this analysis. A shape analysis tracking
properties of structure contents was presented in [28], although with a less gen-
eral set abstraction interface, and without support for unfolding guided by set
parameters. Another related approach was proposed in [8], that utilizes a set
of data-structure specific analysis rules and encodes sharing information into
instrumentalized variables in order to analyze programs manipulating trees and
graphs. By contrast, our analysis does no such instrumentation and requires
no built-in inductive definitions. Recently, a set of works [15,19,20,26] targeted
overlaid structures, which feature some form of structured sharing, such as a
tree overlaid on a list. Typically, these analyses combine several abstractions
specific to the different layer. We believe that problem is orthogonal to ours,
since we consider a form of sharing that is not structured, and need to achieve
non-local materialization. Another line of work that is slightly related to ours
are the hybrid analyses that aim at discovering relations between the structures
and their contents [3,5,16]. Our set predicates actually fit in the domain product
formalized in [5], and can also indirectly capture through sets relations between
structures and their contents. Abstractions of set properties have recently been
used in order to capture relations between sets of keys of dictionaries [12,13]
or groups of array cells [22]. A noticeable result is that our analysis tracks very
similar predicates, although for a radically different application.

8 Conclusion

In this paper, we have set up a shape analysis able to cope with unbounded
sharing. This analysis combines separation logic based shape abstractions and a
set abstract domain, that tracks pointer sharing properties. Reduction across
domains is done lazily at non-local materialization and join. This abstrac-
tion was implemented into the MemCAD static analyzer and could cope
with graphs described with adjacency lists. Future works will experiment with
other set abstract domains and combine this abstraction with other memory
abstractions [26,27].
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tool support. We also thank Tie Cheng, Antoine Toubhans and the anonymous referees
for comments helping us improve this paper.

References

1. Berdine, J., Calcagno, C., Cook, B., Distefano, D., O’Hearn, P.W., Wies, T., Yang,
H.: Shape analysis for composite data structures. In: Damm, W., Hermanns, H.
(eds.) CAV 2007. LNCS, vol. 4590, pp. 178–192. Springer, Heidelberg (2007)

2. Berdine, J., Calcagno, C., O’Hearn, P.W.: Symbolic execution with separation
logic. In: Yi, K. (ed.) APLAS 2005. LNCS, vol. 3780, pp. 52–68. Springer,
Heidelberg (2005)
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Abstract. Writing heap manipulating programs is hard. Even though
the high-level algorithms may be simple, it is often tedious to express
them using low-level operations. We present a new tool — Synlip —
that uses expression of intent in the form of concrete examples drawn
using box-and-arrow diagrams to synthesize heap-manipulations auto-
matically. Instead of modeling the concrete examples in a monolithic
manner, Synlip attempts to extract a set of patterns of manipulation
that can be applied repeatedly to construct such programs. It, then,
attempts to infer these patterns as linear transformations, leveraging the
power of ILP solvers for program synthesis.

In contrast to many current tools, Synlip does not need a bound on
the number of statements and the number of temporaries to be used in
the desired program. Also, it is almost insensitive to the size of the con-
crete examples and, thus, tends to be scalable. Synlip was found to be
quite fast; it takes less than 10 seconds for most of our benchmark tasks
spanning data-structures like singly and doubly linked-lists, AVL trees
and binary search trees.

1 Introduction

Writing heap manipulating programs is hard. Even though the high-level algo-
rithms may be simple, it is often tedious to express them using low-level opera-
tions like putfield, getfield and pointer assignments. Consider the following task:
split a singly linked-list L into two linked-lists L1, L2 such that:

– All nodes in L1 have values less than or equal to a specified value stored in a
variable y, while all nodes in L2 have values larger than y;

– In the lists L1 and L2, the nodes must appear in the reverse order of the nodes
in the input linked-list.

A high-level algorithm for the above task is not difficult to design: iterate
through each node of L and insert a node in L1 or L2 (in the reverse order)
depending on the value of y. Let us explain this high level algorithm using box
and arrow diagrams: Fig. 1 illustrates our high-level algorithm on a concrete
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Fig. 1. Box-and-arrow diagrams for segregating nodes by the value in a given variable

example of six nodes. The round entities represent heap nodes, diamonds denote
integer nodes and squares imply a program variable. The new lists L1, L2 are
to be pointed to by program variables x1, x2 (respectively). The first diagram
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shows the initial state while the subsequent diagrams show the state of the heap
and variables after each iteration of the program. For the first node n0, its value
field n0.value is equal to y, so node n0 is added to the list pointed to by x1. For
the second node, n1.value is less than y, so it is also added to the same list. Note
that n1 is made to point to n0 so that in L1 the nodes appear in the reverse
order of that in L (in accordance to the problem statement). Next, n2.value
is greater than y, so n2 is added to the list pointed to by x2. It can be seen
that the program would need six iterations to get to the desired output, thereby
producing an output state as shown in the final diagram.

Now consider implementing the same solution using low-level pointer
manipulations — not a task, it is an ordeal! Previous work [6] has attempted to
build a tool, Synbad, that uses such expressions of intent in the form of concrete
examples drawn using box-and-arrow diagrams to synthesize heap-manipulations
automatically. However, the work had certain limitations:

– firstly, it required that the programmer provides a bound on the number of
instructions in the program; such hints, in general, are difficult to provide.
The time to synthesis was highly correlated with the looseness of this bound.

– secondly, it also required that the programmer provides a bound on the num-
ber of temporary variables used in the program. Again, providing tight bounds
for the same is often a non-trivial effort.

– finally, as the whole example was modeled monolithically by Synbad to syn-
thesize a correct program, the time to synthesis was quite sensitive to the size
of the concrete examples (number of nodes in a concrete example).

Fig. 2. Generated program from
Synlip for the task in Fig. 1

Our current work attempts to circumvent
the above limitations. Our system automati-
cally infers the number of statements required
by the solution program, thereby relieving the
programmer of having to estimate the size of the
desired program. Moreover, instead of modeling
the whole example monolithically, we attempt
to identify a set of patterns of manipulation,
synthesize each such pattern independently,
and finally combine these patterns into a final
solution.

We have built a tool — Synlip (Program
SYNthesizer via Linear Integer Programming)
— that synthesizes programs as a set of lin-
ear transformations. To the best of our knowl-
edge, this is the first attempt at powering syn-
thesis from concrete examples via integer linear
programming (ILP). Synlip consumes specifi-
cation of intent expressed using box-and-arrow
diagrams of concrete examples, attempts to identify repeated patterns that can
describe the program, and then, synthesizes each pattern as a Linear Transforma-
tion. This makes Synlip almost insensitive to the size of the concrete examples
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but only to the complexity of the task. Also, Synlip tends to be more scalable
as the size of the patterns is much smaller than the size of the overall program.

For instance, for the task of reversing a linked-list on a concrete example with
five nodes, Synbad takes 6.2 seconds when the best bound on the number of
statements (seven statements) is provided. However, the synthesis time increases
to 32.1 seconds when a looser bound of 10 statements is provided [6]. In
contrast, with the same specification, Synlip does not require any bound
on the number of statements and takes a mere 1.16 s (on an older machine
configuration). Moreover, when the size of the example is doubled, the time just
increases to 1.26 s (i.e. by 0.1 s).

We have used Synlip to synthesize programs for many heap manipulating
tasks involving linked-lists, doubly linked-lists, AVL trees and binary search
trees. Synlip takes less than 10 seconds on most of our benchmarks. Synlip is
also available as an Eclipse IDE plugin that provides a visual editor to specify
examples and synthesizes Java code that appears on the programming editor.
However, we skip details of the plugin in this current article for brevity.

Figure 2 shows the output program that Synlip synthesizes for our example
(Fig. 1) of splitting a list on a specified value. As can be seen, in addition to the
provided program variables {x1, x2, y}, new temporary variables {temp0, t0, t1}
have also been generated — automatically synthesized by Synlip.

Following are our primary contributions in this work:

– We recognize that programs in many domains can be synthesized by combining
operations that are easily expressible as linear transformations. This allows
us to apply the power of fast ILP solvers to program synthesis. To the best of
our knowledge, this is the first attempt at powering synthesis from concrete
examples using Integer Linear Programming.

– We design an algorithm to recognize these operations or patterns of manipu-
lations, and combine them efficiently into a program for the domain of heap
manipulations. This allows us to relieve the programmer from having to spec-
ify the approximate number of statements and temporaries to use.

– We apply the above ideas in building a tool, Synlip, that is capable of syn-
thesizing heap manipulating programs from concrete examples expressed as
box-and-arrow diagrams. The tool is available as an eclipse plugin that emits
Java code snippets for the synthesis tasks.

– We evaluate Synlip by synthesizing a few heap manipulating programs: we
found Synlip to be quite fast at generating programs for our benchmark
tasks, taking less than 10 seconds on most of our benchmarks.

2 Preliminaries

2.1 Notations

We use the notation Δi to denote the state of the program at a point i in an
execution: the program state is described via points-to relations (→) in terms of
values assigned to a set of variables λV , heap nodes λH (we treat the value null
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Fig. 4. Template relocators

as a special heap node with no fields), and fields λF of these heap nodes. C refers
to a set of integer constants mined from the concrete examples; note that the
points-to relation allows variables and fields of heap-nodes to “point-to” integer
constants (which implies that these variables and fields contain the respective
integer values). To summarize, we describe the state Δ of a program as:
Δ : V ∪ H where V : λV → (λH ∪ C), and H : (λH × λF ) → (λH ∪ C)

For the example shown in Fig. 1, the initial program state Δ0 is as follows:
Δ0 : V0 ∪ H0 where V0 : {x0 → n0, x1 → null, x2 → null, y → 100}, and,
H0 : {(n0, next) → n1, (n1, next) → n2, . . . , (n5, next) → null, (n0, value) →
100, . . . , (n5, value) → 230}

We also define the difference operator (−) which allows us to compute the
change from one state to the other. For example, in Fig. 1, Δ1 −Δ0 = (V1 \V0)∪
(H1 \ H0) where V1 \ V0 = {x1 → n0} and H1 \ H0 = {(n0, next) → null}.

We use primed versions of variable to refer to the state of the variable in the
next step. For example, {x’ = y} means that the new state of variable x is same
as the old state of the variable y.

2.2 Intuition

h0 h1
next

x1

Fig. 5. Template

Our method is based on identifying operations on tem-
plates. We define an (abstract) template (Θ) as a set of
representatives for heap nodes — that we refer to as holes
— along with a set of points-to relations that must hold
amongst these holes. A template can be concretized by
“filling” the holes with heap nodes from a concrete exam-
ple to form a frame. The relations on the holes specified
in the template form a precondition: a frame can fill a tem-
plate if and only if the set of concrete nodes satisfy the relations specified on the
holes. A template Θ instantiated on frame f is denoted as Θ[f ]. A Template
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Fig. 6. Template transformer and relocator for the example in Fig. 1

Transformer (T) is a function that maps an input template to an output tem-
plate. A Template Relocator (R) is a function that provides a new assignment
of concrete nodes to holes when provided with the current assignment.

Figure 5 shows a template: the boxes h0 and h1 denote the holes and the
arrow next denotes the precondition, i.e. the holes h0 and h1 can be filled by
heap nodes n0 and n1 only if n0 points to n1 via the field next. Figure 3 shows
two template transformers (T1 and T2): the transformer T1 takes a template
(with precondition true as it imposes no relations on the holes), and transforms
it to an output template by adding the relations {h0.next → h1, x1 → h0}, i.e.
assigning h0.next to h1 via field next, and making x1 point to h0. As shown in
Fig. 6, for our motivating example (Fig. 1), the transformer T1 mutates the input
state, having h0 as n0, and h1 as null, to an output state in which n0.next points
to null and x1 points to n0. Figure 4 shows two template relocators (R1 and R2):
the relocator R1 takes the holes for the current state {h0, h1} and provides their
relocation in the next state (denoted as {h′

0, h
′
1}): h0 is relocated to the node

pointed to by its next pointer (h0.next) in its current state; h1 is moved to
whatever node x1 points-to in the next state (i.e. after T1 is applied). Figure 6
shows an application of the template relocator R1 on our example (Fig. 1): the
relocator accepts an input frame, where the holes h0 and h1 contain n0 and null
respectively, to return a new frame where the holes h′

0 and h′
1 contain n1 (as

n0.next points-to n1 in the current state) and n0 (as x1 points-to n0 in the next
state) respectively.

The core idea driving our proposal is that most heap manipulation tasks can
be described via the following steps:

– Frame Identification: Identify a (small) set of nodes for mutation;
– Template Transformation: Mutate the selected set of nodes (frame) via

the template transformer;
– Template Relocation: Move the template to capture a new frame for the

next step of the task;
– Repeat: Repeat the application of the template transformations and the

template relocations till the task is accomplished.
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Fig. 7. Linked list reversal (few initial steps)

Consider the task of revers-
ing a linked-list (Fig. 7): the
template transformation for this
task corresponds to changing
the link from the second node
in the template to point to
the first; the template reloca-
tion corresponds to “moving”
the holes via their next point-
ers. For the first frame, we select
the first two nodes, i.e. n0 and
n1; the template transforma-
tion manipulates the template
by adding a relation (n1.next →
n0), i.e. assigning n1.next to n0; the template relocation moves the holes, thereby
selecting the nodes n1 and n2 for the next frame. It is easily seen that this strat-
egy, if continued till a null is encountered, will reverse the list.

Our algorithm is based to two hypotheses:

– Heap Manipulations Have Small Descriptions: For most heap manipu-
lation tasks, we can capture the essence of the task by a finite (and reasonably
small) set of Template Transformers and Template Relocators. The task makes
progress by applying one of these Transformer and Relocator functions at each
step; this process is repeated till the task is accomplished. A selection logic dic-
tates the selection of an appropriate Transformer and Relocator at each step.
This assumption of an existence of a finite number of Transformers and Relo-
cators should not be a surprise as such programs manipulate an unbounded
number of heap objects, but with only a finite number of program variables
and statements at their disposal.

– Heap Manipulations are Linear Transformations: In many domains
(including heap manipulations expressed as concrete examples), the Trans-
formers and Relocators can be expressed as linear transformations. This allows
us to leverage the power of ILP solvers to synthesize these functions and, thus,
programs in these domains.

Our synthesis strategy attempts to generate a program that is divided into
three parts: loop prologue (head statements), loop body (loop statements) and
loop epilogue (tail statements). Note that it is possible to extend our algorithm
for other control-flow structures; however, our current implementation as well as
the algorithms discussed in this paper are restricted to a single loop.

3 The Algorithm

In this section, we provide an overview of our synthesis algorithm; the detailed
ILP formulations are provided in Sect. 4.
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3.1 Identify the Frames at Each Step

The frame at each step is identified by noting the heap nodes whose states
undergo a change from the previous step to the current step. For example,
between the first two diagrams in Fig. 1, Δ1 − Δ0 = {(n0, next) → null, x1 →
n0}, i.e. the next field of n0 is set to null and the variable x1 is made to point
to n0. Hence, in the relation ((n0, next) → null), the nodes n0 and null are
affected; in the relation (x1 → n0), the node n0 is affected. Thus, overall, the set
of affected nodes comprises of {n0, null}.

Table 1. Affected Nodes

Holes 1 2 3 4 5 6
h0 n0 n1 n2 n3 n4 n5

h1 null n0 null n2 n1 n3

The templates are inferred by generalizing
the difference between the states of affected
nodes of consecutive steps. For example, the
template for Δ1 − Δ0 = {(n0, next) →
null, x1 → n0} can be obtained by abstracting
n0 and null by holes h0 and h1 (respectively),
to obtain the abstract template {(h0, next) → h1, x1 → h0} (see Fig. 5). Table 1
shows the concrete nodes that fill this template at each step.

3.2 Infer the Transformation Function

We set up the problem of inferring a set of statements that transforms an input
state (expressed as an input vector S1) to an output state (as another vector
S2) as a linear algebraic problem of inferring a linear transformation T such
that:

T S1 = S2 [
0 1
1 0

] [
x

x.next

]
=

[
x′

(x.next)′

]
For example, the set of assignments
{x’=x.next; (x.next)’=x;} can represented

in the following manner:
Hence, the transformer T can be seen as a 0–1 matrix that assigns values

amongst fields of heap nodes. Intuitively, one can view the scalar multiplication
operation as selection (i.e. if multiplied by 1, a value is selected else it is not)
and scalar addition as set union. In abstract domains, the final state of an entity
in S2 can be represented as a union over multiple input values in S1. However,
on concrete examples the set of all possible values that is assigned to the final
state must be a singleton set; hence, all the rows in T must sum exactly to 1.

The template transformer T is inferred as a generalization that explains the
frame transformations at each step. To begin with, we extract the frames from
each diagram. Going by our hypothesis that these transformations are linear, we
set up the problem of inferring the template transformer as the following linear
algebraic problem: infer a linear transformer T such that all the input templates
are transformed to the respective output templates. That is, infer T such that
T ζi = ζi+1 (using the notation ζi = Θ[fi]) holds for all (relevant) i, where ζi is
a column vector comprising the state of the nodes in the frame in the ith step.
This is same as setting it up as inferring T such that:

T
[
ζ1|ζ2| . . . |ζk-1

]
=

[
ζ2|ζ3| . . . |ζk

]
(1)
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Here, T is constrained to be a 0-1 matrix where each row vector sums to 1. Note
that T models a set of assignments that can transform the input template to the
output template. New temporary variables are used to point to the holes in
the template. All pointer variables and all fields of the affected nodes appear in
both the input and output states while computing T.

For example, consider the task of reversing a linked-list (Fig. 7): we allocate
new temporary variables t0 and t1 that always point to the nodes that fill the
holes h0 and h1 (respectively) in each frame. We set this problem up as inferring
T such that:

[
T
]

⎛

⎜
⎜
⎜
⎜
⎜
⎝

ζ1 ζ2 ζ3 ζ4 ζ5

t0.next n1 n2 n3 n4 null

t1.next undef null n0 n1 n2

t0 n0 n1 n2 n3 n4

t1 null n0 n1 n2 n3

⎞

⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎝

ζ2 ζ3 ζ4 ζ5 ζ6

t0.next null n0 n1 n2 n3

t1.next undef null n0 n1 n2

⎞

⎠

On solving the same (on an ILP solver), we get the following solution for T:

T =

( t0.next t1.next t0 t1

(t0.next)′ 0 0 0 1
(t1.next)′ 0 1 0 0

)

The above transformer explains that the required state transforma-
tions can be reached by the following assignments: {(t0.next)’=t1,
(t1.next)’=t1.next}.

However, in general, a single transformation function is often not capable
of explaining each step in the task. For example, in Fig. 1, we need two trans-
formation functions to explain the task: T1, that explains the transformation
corresponding to the case when the value at a node is higher than the value in y,
in which case the node is added to the list pointed to by x1; the transformation
T2 handles the other case when the node is added to the list pointed to by x2.

In such cases, we attempt to infer a minimal set of transformation functions
{T1,T2, . . . ,Tn}, such that, at least one of them is capable of explaining the
transformation at each step. Our algorithm applies a greedy strategy where we
employ an objective function that strives to satisfy the maximum number of
the yet-to-be-satisfied rows of the output matrix. For example, in Fig. 1, on the
states {0,1,4}, the assignment to x1 is inferred as {x1’ = t0}, while on the
states {2,3,5}, the same is inferred as {x1’ = x1}. We use a selection operator
(denoted by ⊗) that selects the right transformation at each step. So, in general,

T Sin =
[
T1 ⊗ T2 ⊗ · · · ⊗ Tn

]
Sin = Sout (2)

3.3 Infer the Relocation Function

The relocation function moves each temporary variable ti, that points to the
node that fills the hole hi in the current state, so as to point to the node that
fills the same hole in the template in the next step.
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Our algorithm for inferring the relocation function is very similar to inferring
the transformation function. However, in this case, in addition to all the tempo-
rary variables ti (corresponding to the holes hi), all program variables, and all
the fields of each affected node, we also provide the output states of all pointer
variables computed by applying the transformation function on the input state.
The reason behind it is that often the relocation depends both on the current
and the next state (an example for the same was discussed in Sect. 2.2). Also,
as relocation does not make sense for the final iteration of the loop, the state
matrices Sin and Sout have one less column than the state matrices used while
computing the transformation function.

For the example in Fig. 1, we need two relocation matrices (R1,R2) to capture
the cases corresponding to the value at a node being greater-than-or-equal or
less than the value contained in y; the selection operator ⊗ selects the right
relocation function at each step:

[R1 ⊗ R2]Sin = Sout

Sin =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

t0.n n1 n2 n3 n4 n5

t1.n undef null undef null n0

t0.v 100 70 180 105 7
t1.v undef 100 undef 180 70
y 100 100 100 100 100
x0 n0 n0 n0 n0 n0

x1 null n0 n1 n1 n1

x2 null null null n2 n3

(x0)′ n0 n0 n0 n0 n0

(x1)′ n0 n1 n1 n1 n4

(x2)′ null null n2 n3 n3

t0 n0 n1 n2 n3 n4

t1 null n0 null n2 n1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Sout =
(

t0 n1 n2 n3 n4 n5

t1 n0 null n2 n1 n3

)

In the state matri-
ces (Sin and Sout) shown,
the primed variables are
the values of these vari-
ables in the next state
(i.e. after application of
the transformation func-
tion T on the input
state). We abbreviate the
fields next and value to
n and v.

On solving with the
required constraints, the
ILP solver returns matri-
ces for R1 and R2 as
shown below:

R1 =

(
t0.n t1.n t0.v t1.v y x0 x1 x2 (x0)

′ (x1)
′ (x2)

′ t0 t1

t′0 1 0 0 0 0 0 0 0 0 0 0 0 0

t′1 0 0 0 0 0 0 0 0 0 1 0 0 0

)

,

R2 =

(
t0.n t1.n t0.v t1.v y x0 x1 x2 (x0)

′ (x1)
′ (x2)

′ t0 t1

t′0 1 0 0 0 0 0 0 0 0 0 0 0 0

t′1 0 0 0 0 0 0 0 0 0 0 1 0 0

)
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3.4 Infer Selection Logic

The selection logic (denoted by the operator ⊗) dictates the selection of a trans-
formation and relocation function at each step (i.e. loop iteration). The first step
in inferring the selection logic is to construct a selection vector associated with
each transformer Ti that records the loop iterations at which this transformer
needs to be applied. Continuing with our running example (Fig. 1), the trans-
former T1 needs to be applied for the iterations {0,1,4}; we can represent the
same as a 0–1 selection vector V 1 = [1 1 0 0 1 0], where 1 at a position i
implies that T1 needs to be applied for step i.

Corresponding to each relational operator op ∈ {=, �=,≤,≥, <,>}, we con-
struct a vector Pop according to the selection vector Vk for the respective
transformer Tk. On our example in Fig. 1: for the selection vector [1 1 0 0 1 0]
and the operator ≤, the vector P≤ is formed as:

P≤ = (∃α ≤ 0, β > 0 : [α α β β α β])

The intuition behind constructing the vector Pop is as follows: with a and b as
the candidate operands, and ≤ as the relational operator, at the positions {0,1,4}
the variables a and b must satisfy (a <= b); that is, (a − b ≤ 0) must hold. At
the same time, at the other positions, (a − b > 0) must hold to prevent the
application of the respective transformer at these steps.

The conditional is synthesized via a search for candidate row vectors bi and
bj from the matrix B = [ ζ1 |ζ1 | . . . | ζn ], where ζk contains the states of all
variables, temporaries and fields of the affected nodes (in terms of the variables
pointing to them) for the frame in the kth loop-iteration. To construct the con-
ditional, we set up the following search:

FIND(i, j, op) such that [bi − bj ] satisfies Pop

where bi , bj ∈ row-vectors of B and
Pop ∈ {[P>], [P<], [P=], [P �=], [P≤], [P≥]}.

For our running example (Fig. 1), with the selection vector [1 1 0 0 1 0], the
above search yields the solution (2,5,≤) implying that b2 −b5 satisfies P≤. The
rows 2 and 5 correspond to t0.value and y (respectively), thus generating the
condition (t0.value <= y).

However, as the search over each pair of row vectors is combinatorially expen-
sive, we offload the search to the ILP solver by the following reformulation:

FIND(σ0, σ1, ..., σn−2, op) such that
n−2∑
i=0

σi[bi − bi+1] satisfies Pop

where σi are scalars in {0, 1} and n is the number of rows in B . The scalars σi

are selected in a manner that only one stretch of consecutive σi can be 1.
Hence, any solution (i,j,op) is essentially of the form: [bi−bj ] satisfies Pop .
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Fig 8. Loop statements
inferred from T and R (the
primed/unprimed variables refer
to the current/next state).

The search over Pop is done exhaustively.
Synlip is capable of constructing a conjunction
of predicates as the condition by performing a
bounded depth-first search (see Sect. 4.3).

The loop condition is synthesized in a sim-
ilar manner as branch conditions. However, as
the loop condition is true for all invocations
except the last, the selection vector has a size
one more than the number of loop iterations,
where all except the last entry is 1. This is to
enforce that the conditional should evaluate to
true for all loop iterations except the last, for
which it evaluates to false and exits the loop.
For the same reason, the state matrix for infer-
ring the loop condition also has an additional
column that corresponds to the state at the end
of the last iteration of the loop (i.e. just before
exiting the loop); this state is constructed by
simulating the execution of the synthesized loop
statements on the concrete example. As there
are six steps in our example (Fig. 1), the selec-
tion vector will be [1 1 1 1 1 1 0] and the
loop condition is synthesized as (t0 �= null); the
fully synthesized loop is shown in Fig. 8.

3.5 Sequentialization and Dead-Code Elimination

The transformation matrices T and R attempt to transform a non-mutable input
state to an output state. However, as imperative languages have mutable states,
we need to arrange the set of inferred statements in a valid order. Synlip essen-
tially performs a topological sort over the dependence graph of the statements to
arrive at a sequential list of statements. In the process, new temporaries may be
introduced to break cycles in the dependency graph (notice the introduction of
temp0 in Fig. 2). We, then, perform dead-code elimination to remove statements
that do not affect the program states.

3.6 Constructing the Prologue and Epilogue for the Loop

The loop prologue is inferred as the required change in program state from the
initial state to the state at the beginning of the first iteration. Similarly, the
epilogue is synthesized as the required state change from the end of the last
iteration to the final state of the program (see Fig. 2).
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4 The Integer Linear Programming (ILP) Formulation

4.1 Inferring Transformation and Relocation Functions

As discussed in Sect. 3.2, the formulation for the case when a single transforma-
tion function suffices is as follows:

T
[
ζ1|ζ2| . . . |ζk-1

]
=

[
ζ2|ζ3| . . . |ζk

]
(3)

To solve it with an ILP solver, we rewrite it: ζᵀ
in[W 1|W 2| . . . |Wn ] = ζᵀ

out,
where,
ζin =

[
ζ1|ζ2| . . . |ζk-1

]
, ζout =

[
ζ2|ζ3| . . . |ζk

]
, and, [W 1|W 2| . . . |Wn ] = T

ᵀ

Note that each vector Wi corresponds to a single instruction (pointer assign-
ment, get-field or put-field). So as to represent a valid set of instructions, the
constraints on Wi are: for all wj ∈ Wi,

∑
j wj = 1.

In case the above set of equations have no solution, the synthesis algorithm
proceeds to infer multiple transformations. In that case, to infer each vector Wi ,
we apply the ILP formulation as shown.

Minimize Ψ =
m∑
j=1

pj ∈ P (4a)

Subject To

ζᵀ
inW i ≤ ζ

ᵀ(i)
out + (∞P) (4b)

ζᵀ
inW i ≥ ζ

ᵀ(i)
out .(1 − P) (4c)

n∑
j=1

wj = 1 (4d)

Here n, m denote the number of rows
and columns (respectively) in the input
matrix. 1 is an m sized vector of all-1s.
The notation X(i) fetches the ith column
vector of matrix X and ∞ denotes a very
large scalar.

P is an m-sized vector of 0–1 variables
pj , and is used to control the number of
concrete examples that are explained by
the vector Wi . The dot product ζ

ᵀ(i)
out .(1 −

P) allows the system of equations to relax
by allowing some of the concrete examples to violate the transformation dic-
tated by Wi . We attempt to minimize the number of 1s (the examples it fails
to explain) as a greedy attempt at explaining the maximum number of concrete
examples, and hence, minimizing on the branching in the program.

After a solution is obtained, the examples that are explained by Wi are set
to don’t-care, and the solver is invoked with the modified equations till all exam-
ples are satisfied for some {W 0

i ,W 1
i , . . . } ∈ Wi. The inference of the relocation

functions is also set up in a similar manner; we skip details for want of space.

4.2 Synthesizing Branch and Loop Conditions

Synthesizing a conditional entails a search for two operands for comparison and
a suitable relational operator. As explained in Sect. 3.4, we search for predicates
participating in a conditional expression by solving for:

FIND(σ0, σ1, ..., σn−2, op) such that
n−2∑
i=0

σi[bi − bi+1] satisfies Pop
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where bi , bj ∈ row-vectors of B and
Pop ∈ {[P>], [P<], [P=], [P �=], [P≤], [P≥]}. The vectors Pop are constructed
by considering the high level idea that the generated condition (ζf op ζs = vi)
can also be written as (ζf − ζs op 0) if vi = 1, otherwise ¬(ζf − ζs op 0); here ζf
denotes the first selected row vector, ζs denotes the second selected row vector
and op denotes the relational operator.

The entities σi ∈ {0, 1} are scalar variables and n is the number of rows in
B. We allow for only one stretch of consecutive σi to be 1. Hence, any solution
(i,j,op) is essentially of the form: [bi − bj ]ᵀsatisfiesPop .

We model the above constraint by introducing r fresh variables γi ∈ {0, 1},∑r−1
j=0 γj = 1, such that each γi corresponds to such a valid sequence that has

a single stream of contiguous 1. For example, if there are three rows in B, the
possible valid sequences are 100, 010, 001, 110, 011, and 111. The kth sequence
that has exactly q contiguous 1s from position i to (i+q-1) is constrained as:

(
∑i+q−1

j=i σj) ≥ qγk, and (
∑n−1

j=0 σj) − (
∑i+q−1

j=i σj) ≤ (1 − γk)∞

Required type safety constraints also need to be imposed:

– Type Safety for Operands: Only variables of the same types can be com-
pared; for instance, we cannot compare an integer with a pointer.

– Type Safety for Operator: The set of relational operators allowed for a
condition depends on the type of the operands; for example, the operator ≥
cannot be allowed with pointer variables.

The above constraints make some of the patterns of σi invalid; this is handled
by forcing the respective γi to 0. Finally, a search over all possible relational
operators is unleashed by constructing an appropriate vector Pop in each case.

4.3 Synthesizing a Conjunction of Conditions

Consider the following task on a linked-list: print the value field of a node if
it lies between the values stored in variables x1 and x2. Let us assume that the
concrete example dictates that this print operation is enabled in loop iterations
0, 1 and 4; so our selection vector in this case would be v = 110010 (i.e. v =
[1 1 0 0 1 0]). However, as this condition requires a conjunction of multiple
predicates, the formulation in Sect. 4.2 will provide no solution.

In this case, we relax our ILP formulation on each conditional for the case
when vi = 0, thereby allowing it to miss the constraint for some of the iterations.
Consider the case of the relational operator ≤ for the loop iteration i: instead
of requiring pi ≥ 1 (where pi is the ith element in the vector Pop), we allow it
to violate this constraint by introducing variables δi ∈ {0, 1} by changing the
constraint pi > 0 to pi + δi∞ > 0 (if δi = 1 , the condition pi ≥ 1 may be
violated). However, we enforce our greedy strategy of attempting to satisfy as
many cases as possible by minimizing on the objective function

∑n−1
j=0 δj . This

attempts to select the best pair of operand vectors for this operator.
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For this relational operator ≤, the best operand vectors correspond to
t0.value and x2. The decisions (i.e. when to apply the print operation) dic-
tated by this single conditional is described by the decision vector d=111010:
this corresponds to the boolean values evaluated by the conditional (t0.value ≤
x2). This leaves the residual conditions to be satisfied, i.e. the target decision
vector t=110?1?. Here, the ? refer to don’t care conditions.

The target decision vector t is constructed according to the following cases
(let ti denote the ith element of vector t):

1. If {di = 1, vi = 0}: In this case, di needs to be strengthened to 0. So, the
target decision vector ti = 0 for the next conditional.

2. If {di = 0, vi = 1}: Note that this case should not be allowed, as no strength-
ening can restore di to 1.

3. If {di = 1, vi = 1}: In this case, di needs to be retained at 1. So, the target
decision vector ti = 1 for the next conditional.

4. If {di = 0, vi = 0}: In this case, no more strengthening is required, and so,
the states of the subsequent conditionals does not matter. Hence, we set the
target decision vector ti =? (don’t care) for the next conditional.

For case 1, we would like the strengthening to happen with the very next
predicate, but we may allow to pend the strengthening to subsequent predicates.
Due to conditions imposed by cases 2 and 3, we do not allow any relaxation of
our constraints from Sect. 4.2 when vi = 1. For case 4, we simply omit generating
any constraints as the required strengthening has already been achieved.

!= >= > <

== > <

<= ==

!=
>= <=

1

2
3

4
5

found!

6

Fig 9. Conditionals with conjunctions

We perform a bounded depth-first
search on the operators to select the
next conditional in the conjunction
(see Fig. 9). For the example outlined
above, selecting a relational opera-
tor == for the second operator is
not able to satisfy the target vector;
hence, we backtrack. Selecting the
relational operator ≥ for the second
conditional is able to infer operand
vectors such that the target decision vector t is satisfied. This produces the final
condition, ((t0.value ≤ x2) ∧ (t0.value ≥ x1)), that would dictate the applica-
tion of print in this example.

In case this bounded depth-first search does not yield a solution, we attempt
again after extending the vectors ζi to also contain the values of longer deferences
on the pointer fields of the temporaries (like t0.next.next).

5 Experimental Results

We have implemented Synlip in Java and used GNU Octave [1] for solving
the ILP formulations. We have used Synlip to synthesize a variety of iterative
programs. We report our timing statistics on a laptop of moderate configuration
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(as we target its use by common users in an IDE environment), running on Intel
Core 2 Duo 2.20 GHz with 2 GB RAM. Table 2 describes each task and time
taken by Synlip to synthesize each of the program.

– Column Tasks describes the heap manipulation task.
– Column S represents the size of the specification in terms of the number of

loop iterations needed to accomplish the task for this concrete example.
– Column C shows the number of conditionals in the synthesized program.
– Column A shows the number of holes in the template.
– Column Time shows the total time (in seconds) taken by Synlip for each

task. Tinst is the time taken in constructing program statements inside the
loop, Tcond is the time taken in generating conditions and Ttotal is total time
taken in synthesizing the complete program.

– Column Time 2*S shows the total time (in seconds) taken by Synlip to
synthesize the complete program when the size of the specification is doubled.

Synlip is quite fast, taking less than 10 seconds on most of our benchmarks.
On benchmarks where Synlip is slow, most of the time is spent in searching for
the right conditionals. We have certain plans of improving these timings in the
future by offloading the searching to an SMT solver.

As synthesizing conditions is the more expensive phase, the benchmarks with
more conditions are seen to stretch Synlip on time. It can be observed that the
tasks requiring no conditionals are synthesized in a couple of second, the tasks
having only the loop condition take very few seconds, while for the tasks such
as T11 and T12 the time increases due to a large number of branch conditions.
For instance, the task T11 needs four conditions to be inferred (three inside the
loop and one for the loop condition); for the task T12 though the number of
affected nodes is smaller, the state of each node is larger as each node contains
three fields value, left and right in contrast to T11 which has only two fields
value and next.

In contrast to [6], Synlip is almost insensitive to the size of the specification
as can be seen by the difference in the columns TTotal and Time (2*S).

6 Related Work

The storyboard tool (SPT) [10] allows data-structure manipulations to be syn-
thesized from abstract examples provided in 3-valued logic [7]. As abstract exam-
ples can correspond to multiple (possibly an unbounded number of) concrete
examples, the users were supposed to provide fold and unfold operations to
describe the possible concrete examples that an abstract example represents.
SPT does not work well when only concrete examples are provided (as remarked
in Sect. 6 of the article).

Synbad [6] allows the programmer to describe her intention simply using
concrete examples. Synbad would appeal to frenzied programmers on their IDE
who would shy away from structuring a formal abstract description that would
have been required by SPT. Unlike SPT, Synbad rides on off-the-shelf SMT
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Table 2. Experimental results

Tasks S C A Time(in secs) Time

Tinst Tcond Ttotal 2∗S

(T1) Reversing a linked-list 4 1 2 0.763 0.403 1.166 1.267

(T2) Reversing a doubly linked-list 5 1 3 0.909 1.314 2.223 2.594

(T3) Change pointer of linked-list nodes
s.t. nodes are made to point to specially
marked red and black nodes alternately

5 2 2 1.273 0.545 1.818 2.055

(T4) Change value fields of all nodes of a
linked-list to a specified value y

5 1 1 0.697 0.352 1.049 1.118

(T5) Print all nodes of a linked-list 7 1 1 1.273 0.389 1.076 1.212

(T6) Print all nodes of a linked-list which
have value greater than a specified
value

6 2 1 0.838 0.835 1.673 1.941

(T7) AVL-Tree Single Rotation
(Left-Left)

1 0 3 0.752 0 0.752 NA

(T8) AVL-Tree Single Rotation
(Right-Right)

1 0 4 0.908 0.005 0.913 NA

(T9) AVL-Tree Double Rotation
(Left-Right)

1 0 3 0.968 0.007 0.975 NA

(T10) AVL-Tree Double Rotation
(Right-Left)

1 0 3 0.752 0 0.752 NA

(T11) Segregating nodes according to a
specified value in a linked-list (Fig. 1)

6 4 2 0.942 17.371 18.313 18.916

(T12) Search for an item in a Binary
Search Tree

5 3 1 0.695 22.069 22.764 23.298

(T13) Print all nodes of a linked-list
which have value greater than a
specified value x and less than a
specified value y

6 2 1 0.705 7.379 8.084 8.292

(T14) Change pointers of linked-list
nodes s.t. if node value is greater then a
specified value y then it points to
(specially marked) red node o.w.
(specially marked) black node

6 2 2 0.895 28.243 29.138 30.436

(T15) Insert a node in a sorted linked-list 5 5 3 4.317 4.871 9.188 9.711

solvers to efficiently synthesize programs from concrete examples expressed as
box-and-arrow diagrams. Synbad achieves impressive run-times on similar syn-
thesis tasks over SPT. However, such comparisons on the run-times is not fair as
the difference in the format of the specifications causes SPT to explore a much
larger search space. Synbad also provided a user-interaction model by exploit-
ing techniques from automated test-case generation to help the users refine their
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specification, thereby, assisting them converge to their desired program. How-
ever, Synbad had a few weaknesses as described in our introduction section
(which Synlip overcomes). Synlip adopts a new strategy for synthesis by lever-
aging ILP solvers rather than SMT solvers. However, we feel that integration of
ILP- and SMT-based strategies (especially while synthesizing conditionals for
branches and loops) can yield a more effective synthesis algorithm. We are keen
to investigate this direction in the near future.

Use of linear algebra in programming languages has also seen many propos-
als. Coln et al. [2] exploit Farkas’s Lemma to propose a method of inferring
program invariants. Sharma et al. [9] reduce the problem of mining candidate
invariants from concrete executions to computing the basis of the null space of a
matrix. Ganapathy et al. [3] modeled C string manipulations as a linear program
to detect vulnerabilities in programs. Markus Muller-Olm et al. [5] applied lin-
ear algebra for precise inter-procedural flow analysis. In the domain of synthesis,
Kuncak et al. [4] essentially apply Fourier-Motzkin [8] style elimination tech-
niques to synthesize program fragments from complete functional specifications
in the domain of linear arithmetic. To the best of our knowledge, Synlip is the
first attempt at using linear algebraic techniques to synthesize programs from
concrete examples.

7 Conclusions

In this paper, we attempt to assert that, in many domains, programs can be
efficiently synthesized as a set of linear transformations. This allows us to bring
the power of the state-of-the-art advances in solvers for integer linear program-
ming to solving synthesis tasks. Our tool, Synlip, exploits these ideas en route
to synthesizing heap manipulating programs efficiently from concrete box and
arrow diagrams. We envision the utility of such tools in Integrated Development
Environments and thus, also build an Eclipse IDE plugin for our tool. In the
future, we are interested in investigating on the possibility of applying a synergy
of multiple solvers (primarily ILP and SMT solvers) to program synthesis.
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Abstract. Safety property (i.e., reachability) verification is undecid-
able for Turing-complete programming languages. Nonetheless, recent
progress has lead to heuristic verification methods, such as the ones
based on predicate abstraction with counterexample-guided refinement
(CEGAR), that work surprisingly well in practice. In this paper, we
investigate the effectiveness of the small refinement heuristic which, for
abstraction refinement in CEGAR, uses (the predicates in) a small proof
of the given counterexample’s spuriousness [3,12,17,22]. Such a method
has shown to be quite effective in practice but thus far lacked a theo-
retical backing. Our core result is that the heuristic guarantees certain
bounds on the number of CEGAR iterations, relative to the size of a
proof for the input program.

1 Introduction

The safety property (i.e., reachability) verification problem asks, given a pro-
gram, if an error state (e.g., given as a line number in the program text) is
unreachable for every execution of the program. The problem is undecidable for
Turing-complete programming languages (and intractably hard for many natural
decidable fragments – e.g., PSPACE-complete for Boolean programs). Despite
the staggering complexity, recent research has lead to heuristic verification meth-
ods that work surprisingly well in practice. They have been used to verify non-
trivial real-world programs such as operating system device drivers [4,11], and
the yearly held software verification competition [1] shows an ever increasing vari-
ety of programs efficiently verified by the state-of-the-art automated software
verifiers. By contrast, there has been comparatively less progress on explain-
ing why such heuristics work. As a step toward bridging the gap, we present
a theoretical explanation for the effectiveness of a heuristic used in predicate
abstraction with counterexample-guided refinement (CEGAR).

CEGAR is a verification method that iteratively updates a finite set of predi-
cates from some first-order logic (FOL) theory, called the candidate predicate set,
until the candidate set forms sufficient proof of the given program’s safety (i.e.,
an inductive invariant). In each iteration, a process called abstraction checks if
the current candidate set is sufficient, and if not, a counterexample is gener-
ated. A process called refinement infers a proof of the counterexample’s safety

c© Springer-Verlag Berlin Heidelberg 2015
S. Blazy and T. Jensen (Eds.): SAS 2015, LNCS 9291, pp. 128–144, 2015.
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(i.e., spuriousness) whereby the predicates in the proof are added as new candi-
dates, and the iteration repeats.

In general, there is more than one proof that refutes the same counterex-
ample, and which proof is inferred by the refinement process can significantly
affect the performance of the overall verification process (cf. Sect. 2.2 for an
example). A heuristic often used in practice is to infer a small proof (e.g., mea-
sured by the sum of the syntactic size of the predicates), and researchers have
proposed methods for inferring a small proof of the given counterexample’s spu-
riousness [3,12,17,22].1 This paper analyzes the effect such a small refinement
heuristic has on the overall verification performance.

As safety property verification is undecidable, we cannot establish any (fini-
tary) complexity result without some assumption on the input problem instances.
In general, we will state our results relative to the size of a proof of safety for the
input program, and we will try to show that the verification converges quickly
assuming that the input program has a small proof (e.g., polynomial in the size
of the program). The assumption captures the conventional wisdom that correct
programs are often correct for simple reasons, per Occam’s razor.

Overview of the Main Results. We formalize the small refinement heuristic to
be a refinement process that infers a proof of size at most polynomial in that of the
smallest proof for the given counterexample. Let CegVerifSR be a CEGAR veri-
fication with such a refinement process. Let mpfsize(P ) be the size of the smallest
proof of safety for a program P . Our first main result is the following.

Theorem 1. CegVerifSR converges in at most exp(mpfsize(P )) many CEGAR
iterations given a program P .

Theorem 1 implies that CegVerifSR is able to verify a program in an exponen-
tial number of iterations under the promise that the program has a polynomial
size proof of safety. We prove Theorem 1 under a rather general setting.

Next, we consider a more concrete setting where a program is represented by
a control flow graph (CFG) such that the program’s proof is a Floyd-style node-
wise inductive invariant [9], the abstraction process uses the Cartesian predicate
abstraction, and the size of a proof is measured by the sum of the syntactic
size of the predicates. We also assume that counterexamples are generated by
unfolding each loop an arbitrary but the same number of times (copies of nested
subloops are also unfolded the same number of times) which we show to be
sufficient for the setting (cf. Theorem 9). Under such a setting, we show that
CegVerifSR converges in at most poly(mpfsize(P ))maxhds(P ) many iterations
where maxhds(P ) is the maximum number of loop entries per loop of the CFG
(e.g., maxhds(P ) ≤ 1 for reducible CFGs) (Theorem 10). The result implies that,
under such a setting, CegVerifSR is able to verify a program with a constant
number of loop entries per loop in a polynomial number of iterations under the
promise that the program has a polynomial size proof of safety.

1 In this paper, a “proof” is a set of predicates. Note that this differs from the notion
of proofs and proof sizes used in proof complexity [6].
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The rest of the paper is organized as follows. We discuss related work next.
Section 2 gives preliminary definitions pertaining to generic CEGAR verification
and proves the first main result (Theorem 1). Section 3 gives additional prelimi-
nary definitions pertaining to CFG programs and proves the main result on CFG
programs (Theorem 10). We discuss some limitations of our results in Sect. 4,
and conclude the paper in Sect. 5. The extended report [20] contains the omitted
proofs and extra materials.

Related Work. Previous works on the small refinement heuristic [3,12,17,22]
have presented empirical evidences of the heuristic’s effectiveness in the form
of experiments. To our knowledge, this paper is the first work on a theoretical
explanation for the heuristic’s effectiveness.

A related but somewhat different heuristic proposed for CEGAR is the strat-
ified refinement approach [13,15,21] where the proofs inferred in each refinement
step is restricted to some finite set of proofs that is enlarged when the refinement
fails to find a proof in the current set. The proof set is enlarged in such a way
to ensure that the growing strata of proof sets eventually cover the underlying
(possibly infinite) space of possible proofs. The stratified approach ensures an
eventual convergence of CEGAR iterations under the promise that a proof of
the program’s safety exists in the underlying proof space, but the previous works
give no results on the iteration bound.

2 Iteration Bound Under a Generic Setting

2.1 Preliminaries

Formulas and Predicates. We write finite sequences in boldface (e.g., x for
x1, . . . , xn). Let T be a FOL theory. A term a and formula φ in the signature of
T is defined as follows.

term a : := x | f(a)
formula φ : := p(a) | ¬φ | φ ∧ φ′ | φ ∨ φ′ | φ ⇒ φ′ | ∃x.φ | ∀x.φ

Here, x is a variable, f is an arity |a| function symbol, and p is an arity |a|
predicate symbol of T . As usual, ⇒ binds weaker than ∧ or ∨. For a formula φ,
we write fv(φ) for the set of free variables in φ. A predicate in T is of the form
λx.φ where φ is a formula such that {x} = fv(φ). We often omit the explicit
λ abstraction and treat a formula φ as the predicate λx.φ where {x} = fv(φ).
We overload T for the set of predicates in T , and write T (x) for the set of T -
predicates of arity |x|. We write |=T φ if φ is valid in T . We write � for tautology
and ⊥ for contradiction. (Note that the term “predicate” is not limited to just
atomic predicates as sometimes is in the literature on CEGAR.)

Generic CEGAR. To state Theorem 1 for a general setting, following the
style of [21], we give a definition of CEGAR in terms of generic properties that
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1: procedure CegVerif(P )
2: Cands := ∅;
4: repeat
3: match Abs(P ,Cands) with
4: safe → return safe
5: | π → match Ref(π) with
6: unsafe → return unsafe
7: | F → Cands := Cands ∪ F
8: end repeat

Fig. 1. CegVerif

abstraction and refinement processes are assumed to satisfy, but without specify-
ing exactly when predicates form a proof of a program or how counterexamples are
generated and refuted (we concretize such notions for CFG programs in Sect. 3.1).

In general, a counterexample is an “unwound” slice of the given program and
is itself considered a program (typically, without loops or recursion). Let γ range
over programs and counterexamples. For a finite set of predicates F ⊆ T , we
write F � γ to mean that F is a proof of safety of γ. We often simply say that F is
a proof of γ when F � γ (i.e., omitting “of safety”), and if γ is a counterexample
in addition, we sometimes say that F refutes γ, or F is a proof of spuriousness
of γ. We require the proof relation � to be monotonic on the predicate set, that
is, if F � γ and F ⊆ F ′, then F ′ � γ (i.e., having more predicates can only
increase the ability to prove). We use F , F ′, F1, etc. to range over finite sets of
predicates.

Figure 1 shows the overview of the verification process. CegVerif takes as
input the program P be verified, and initializes the candidate predicate set
Cands to ∅ (line 2). Then, it repeats the abstract-and-refine loop (lines 4–8) until
convergence. Abs is the abstraction process which takes as input a program and a
finite set of T -predicates. For a program P and a finite F ⊆ T , Abs(P, F ) either
returns safe, indicating that P has been proved safe using the predicates from F ,
or returns a counterexample. In the former case, the verification process halts,
returning safe. Ref is the refinement process, which, given a counterexample π,
either returns a proof of π’s safety, or detects that π is irrefutable and returns
unsafe. In the former case, the proof is added to the candidates, and in latter case,
the verification halts by returning unsafe. For a run of CegVerif, the number of
CEGAR iterations is defined to be the number of times the abstract-and-refine
loop (lines 4–8) iterated.

We state the required assumptions on the abstraction and refinement
processes. We require that if F � γ then Abs(γ, F ) = safe, and that if Abs(P, F )
returns a counterexample π then Abs(π, F ) = safe (i.e., Abs proves the safety of
the program given a sufficient set of predicates, and otherwise returns a coun-
terexample that it cannot prove safe with the given predicates). We also require
that if F � P and Abs(P, F ′) returns π, then F � π (i.e., a proof for a program
is also a proof for any counterexample of the program). We require that Abs is
sound in that it only proves safe programs safe, that is, Abs(γ, F ′) = safe only if
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∃F ⊆ T .F � γ. For the refinement process Ref, we require that Ref(π) returns F
only if F � π (i.e., the returned proof is actually a proof for the counterexample),
and that Ref(π) returns unsafe only if ∀F ⊆ T .F � π (i.e., only irrefutable coun-
terexamples are detected irrefutable). Finally, we requireAbs andRef to halt on all
inputs. We note that these assumptions are quite weak and satisfied by virtually
any CEGAR verifiers.2

It is easy to see that CegVerif is sound in that it only proves safe pro-
grams safe.

Theorem 2 (Soundness). CegVerif(P ) returns safe only if ∃F ⊆ T .F � P .

Note that Theorem 2 says nothing about how fast (or whether) CegVerif
converges. The main results of the paper (Theorems 1 and 10) show that, when
Ref is made to return a small proof of the given counterexample, CegVerif is
guaranteed to converge in a number of iterations bounded by the size of a proof
for the given program.

It is also easy to see that CegVerif is “complete” in the sense that it only
detects unprovable programs unprovable.

Theorem 3 (Completeness). CegVerif(P ) returns unsafe only if ∀F ⊆
T .F � P .

Since the paper is only concerned with analyzing the behavior of CEGAR when
given a provably safe program, in what follows, we disregard the situation where
the given program is unprovable with the predicates from the background theory.

2.2 Main Result

1: int a = ndet(); int b = ndet();
2: int x = a; int y = b; int z = 0;
3: while (ndet()) {
4: y++;z++;
5: }
6: while (z != 0) {
7: y--;z--;
8: }
9: assert (a!=b || y=x);

Fig. 2. Pex

To demonstrate the usefulness of the
small refinement heuristic, we start
with an example on which CegVerif
(without the heuristic) may fail to con-
verge despite the program having a
small proof of safety (taken from [21]).
Figure 2 shows the program Pex . Here,
ndet() returns a non-deterministic
integer. The goal is to verify that the
assertion failure is unreachable, that is,
a = b ⇒ y = x whenever line 9 is reached. We define a proof of the program
to be the set of predicates that can be used as loop invariants at each of the
loop heads (lines 3 and 6) and are sufficient to prove the unreachability (i.e.,
“safe” inductive invariant). For example, a possible proof is the singleton set
Finv = {a = b ⇒ y = x + z}.

2 We do not impose F � P ⇔ Abs(P, F ) = safe to allow modeling verifiers whose
abstraction process can prove more from the same predicates than the refinement
process (cf. Sect. 3.1).
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1: int a=ndet(); int b=ndet();
2: int x=a; int y=b; int z=0;
3: if (ndet()) {
4: y++;z++;
5: }
6: if (z!=0) {
7: y--;z--;
8: }
9: assert (a!=b||y=x);

1: int a=ndet(); int b=ndet();
2: int x=a; int y=b; int z=0;
3: if (ndet()) {
4: y++;z++;
5: }
6: if (ndet()) {
7: y++;z++;
8: }
9: if (z!=0) {

10: y--;z--;
11: }
12: if (z!=0) {
13: y--;z--;
14: }
15: assert (a!=b||y=x);

π1 π2

Fig. 3. Counterexamples of Pex

Running CegVerif on the program, Abs may return the counterexample
π1 shown in Fig. 3 in the first iteration, obtained by unfolding each loop once.
Viewing the unfolded if statements at lines 3 and 6 as one-iteration loops, it
can be seen that Finv is a proof of π1’s safety. Thus, Ref(π1) may return Finv ,
which is also a proof for Pex and would allow CegVerif to converge in the next
iteration.

Unfortunately, the refinement process is not guaranteed to return Finv but
may choose any set of predicates that forms a proof of π1’s safety. For example,
another possibility is F1 = {φ0, φ1, φ0 ∨ φ1} where

φ0 ≡ x = a ∧ y = b ∧ z = 0
φ1 ≡ x = a ∧ y = b + 1 ∧ z = 1

Adding F1 to the candidates is sufficient for proving the safety of π1 but not
that of Pex , and so the abstraction process in the subsequent iteration would
return yet another counterexample. For example, it may return π2 shown in
Fig. 3 obtained by unfolding each loop twice. Then, Ref may choose the proof
F2 = {

∨
F | F ⊆ {φ0, φ1, φ2}} where φ2 ≡ x = a∧y = b+2∧z = 2 to prove the

spuriousness of this new counterexample, which is still insufficient for proving
Pex . The abstract-and-refine loop may repeat indefinitely in this manner, adding
to the candidates the predicates Fk = {

∨
F | F ⊆ {φi | 0 ≤ i ≤ k}} where φi ≡

x = a ∧ y = b + i ∧ z = i in each k-th run of the refinement process.
Here, a key observation is that Finv is a proof of safety for every counterex-

ample π1, π2, . . . of Pex . Because the size of Finv is “small” (under a suitable
proof size metric – made more precise below), when using the small refinement
heuristic, the refinement process would have to infer Finv (or other small proof
of Pex ) before producing a large number of incorrect proofs (such as F1, F2, . . . ).

Our first main result, Theorem 1, states that the above observation holds
in general. The result can be proved for a rather generic notion of proof size.
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We assumed that size(·) satisfies the following: there is a constant c > 1 such
that for all n ≥ 0, |{F ⊆ T | size(F ) ≤ n}| ≤ cn (i.e., there are at most cn proofs
of size less than or equal to n). We call such a proof size metric generic. The size
of the smallest proof for γ, mpfsize(γ), is defined to be minF∈{F⊆T |F�γ} size(F ).

Definition 1 (Small Refinement Heuristic). We define CegVerifSR to be
CegVerif with the refinement process Ref satisfying the following property:
there is a polynomial f such that for all π and F , if Ref(π) returns F then
size(F ) ≤ f(mpfsize(π)) (i.e., the refinement process returns proofs of size poly-
nomially bounded in that of the smallest proof for the given counterexample).

We are now ready to prove Theorem 1.

Theorem 1. Let the proof size metric be generic. Then, CegVerifSR converges
in at most exp(mpfsize(P )) many CEGAR iterations given a program P .

We informally describe the intuition behind the proof of the result. First, as
remarked above, a proof of a program is also a proof of any of its counterexam-
ples. Therefore, under the small refinement heuristic, the inferred proof in each
refinement step is at most polynomially larger than the smallest proof of the
program. Then, the result follows from the definition of the generic proof size
metric and the fact that the proofs inferred in the refinement process runs must
be distinct.

3 Iteration Bound for CFG-Represented Programs

The exponential bound shown in Theorem 1 still seems to have a gap from
the performance observed with using the small refinement heuristic in practice.
The observation is the motivation for studying a more concrete setting such as
CFG-represented programs.

3.1 Preliminaries

Graphs. A finite directed graph G = (V,E) consists of a finite set of nodes
V and edges E ⊆ V ×V . We write v(G) for V and e(G) for E. For an edge
e = (v, v′), we write sc(e) for v (the source of e) and tg(e) for v′ (the target of
e). Since we only work with finite directed graphs, in what follows, we omit the
adjectives and simply write graphs.

We write G\E for (v(G), e(G)\E), and G\V for (V ′, e(G)∩V ′×V ′) where
V ′ = v(G) \ V . For E ⊆ v(G)×v(G), we write G ∪ E for (v(G), e(G) ∪ E). A
path of G is a finite sequence nodes � = v1v2 . . . vn such that (vi, vi+1) ∈ e(G)
for each i ∈ {1, . . . , n − 1}. We write |�| for the length of � and �(i) for the
i-th node visited (i.e., � = �(1)�(2) . . . �(|�|)).
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CFG Programs. We consider programs represented by control flow graphs
(also known as control flow automata [5]). Formally, a control flow graph (CFG)
is a tuple (G,T, vini , verr ) where G is a graph, vini ∈ v(G) is the initial
node, verr ∈ v(G) is the error node, and T : e(G) → T (x,x′) is the transi-
tion relation where |x| = |x′|. Roughly, each v ∈ v(G) represents a program
location (e.g., a basic block), and for e ∈ E, T (e)(x,x′) expresses the state
transition from the location sc(e) to tg(e) where x (resp. x′) represents the
values of the program variables before (resp. after) the transition. A path of
the CFG is a path of G. Without loss of generality, we assume that vini has
no incoming edges, verr has no outgoing edges, and all nodes are reachable
from vini . Let Vals be the set of values. The set of states of the program is
States = Vals|x|. The set of states reached from S ⊆ States by taking an edge
e ∈ e(G) is defined to be PostT [e](S) = {s′ ∈ States | s ∈ S∧ |=T T (e)(s, s′)}.
The set of states reached from S ⊆ States by taking a path �, Post∗

T [�](S), is
defined inductively as Post∗

T [v1v2�](S) = Post∗
T [v2�](PostT [(v1, v2)](S)) and

Post∗
T [v](S) = Post∗

T [ε](S) = S.
We say that a program P = (G,T, vini , verr ) is safe if for all paths � of P

such that �(1) = vini and �(|�|) = verr , Post∗
T [�](States) = ∅. In what follows,

we often implicitly assume that |x,x′| is the arity of the predicates in the range
of the transition relation of the CFG being discussed where x and x′ are distinct
variables such that |x| = |x′|.

We note that the class of CFG programs is already Turing complete when T
is the set of quantifier-free predicates in the theory of linear rational arithmetic
(QFLRA – quantifier-free theory of linear rational arithmetic) (and is equivalent
to Boolean programs when T is propositional), taking the reachable states from
States as the computation result. Checking the safety of CFG programs when
T = QFLRA is undecidable.

Loops. We review the notion of loops in a CFG [2]. A loop decomposition of G
is a set {L0, . . . , Ln} with each Li = (Gi, hdsi) satisfying 1.) G0 = G, 2.) each
Gi, Gj are either disjoint or one is a subgraph of the other, 3.) each hdsi, hdsj

for i = j are disjoint, and 4.) each Li satisfies the following:

– Gi is a non-empty subgraph of G;
– Gi \ ({e ∈ e(Gi) | tg(e) ∈ hdsi} ∪

⋃
j∈Sub(i) e(Gj)) ∪

⋃
j∈Sub(i) flatten(Gi, Gj)

is acyclic;
– hdsi = {v ∈ v(Gi) | v′ /∈ v(Gi) ∧ (v′, v) ∈ e(G)}; and
– Gi is strongly connected except for G0

where flatten(Gi, Gj) = {(sc(e1), tg(e2)) | e1 ∈ e(Gi) ∧ e2 ∈ e(Gi) ∧ tg(e1) ∈
v(Gj) ∧ tg(e2) ∈ v(Gj)} (i.e., the edges formed by “flattening” Gj in Gi) and
Sub(i) = {j | Gj is a proper subgraph of Gi}.

Roughly, each loop Li is a subgraph of G comprising the “back edges” Bi =
{e ∈ e(Gi) | tg(e) ∈ hdsi} that take the control flow back to one of the loop
entries, and the “loop body” Gi \ Bi that is acyclic when the nested subloops
are flattened. Note that the loop entries hdsi are the nodes in Gi with incoming
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edges from nodes outside of the loop. A loop decomposition forms a tree with
L0 as the root and nested subloops as children.3

A graph is rooted if there is a node with no incoming edges and from which
every node in the graph is reachable. Clearly, the graph underlying a CFG is
rooted. The following is a folk theorem (cf. the extended report [20] for a proof).

Theorem 4. A rooted graph has a loop decomposition.

We define a loop decomposition of a CFG (G,T, vini , verr ) to be a loop decom-
position of G. In the following, we assume that each CFG P is associated with
its loop decomposition loops(P ) (e.g., constructed by the algorithm given in
the extended report [20]). We write maxhds(P ) for max( ,hds)∈loops(P ) |hds|. We
remark that maxhds(P ) ≤ 1 if P is reducible [2].

Proofs and Counterexamples for CFG Programs. Informally, a coun-
terexample of a CFG is an acyclic CFG obtained by unfolding the loops of the
CFG. To formalize loop unfolding, we introduce a simple graph grammar below.

instr : := v0 �→ (φ1 :v1, φ2 :v2, . . . , φn :vn)
t : := ∅ | {instr} | t1 ∪ t2 | loop (h1, . . . , hm) t

Here, in each instruction v0 �→ (φ1 : v1, . . . , φn : vn), v1, . . . , vn are distinct and
φi ∈ T (x,x′) for each i ∈ {1, . . . , n}. We call v0 the source and v1, ..., vn the
targets of the instruction. Roughly, v0 �→ (φ1 :v1, . . . , φn :vn) expresses the set of
edges {(v0, v1), . . . , (v0, vn)} such that the transition relation of (v0, vi) is φi. A
term t expresses the CFG comprising the edges represented by the instructions
occurring in t. The loop annotations mark subparts of the CFG that correspond
to loops, so that loop (h) t expresses a loop with h being the entry nodes and
t representing the union of the loop body, the back edges, and the edges from
the loop body to the outer loops. We require the sources of the instructions
occurring in a term to be distinct. We refer to the extended report [20] for
the formal correspondence between CFGs and graph grammar terms. In what
follows, we equate a CFG with the corresponding graph grammar term.

We overload t for the set of instructions occurring in t. We let sc(v0 �→ (φ1 :
v1, . . . , φn : vn)) = {v0}, and tg(v0 �→ (φ1 : v1, . . . , φn : vn)) = {v1, . . . , vn}.
We let sc(t) =

⋃
instr∈t sc(instr), and tg(t) =

⋃
instr∈t tg(instr). We let v(t) =

sc(t) ∪ tg(t). For sets of nodes V1 and V2, we write t〈V1, V2〉 for t with each
source occurrence of v ∈ V1 replaced by ‘v and each target occurrence of v ∈ V2

replaced by ‘v. For instance, for t = {v0 �→ (�:v1,�:v2), v1 �→ (�:v0,�:v3)},
t〈{v0}, {v1, v3}〉 = {‘v0 �→ (�:‘v1,�:v2), v1 �→ (�:v0,�:‘v3)}. We write t\V for
t with each instruction v0 �→ (v1 : φ1, . . . , vn : φn) replaced by v0 �→ (vi1 :
φi1, . . . , vim :φim) where {vi1, . . . , vim} = {v1, . . . , vn}\V , treating an instruction
with empty targets as ∅. For h = h1, . . . , hn, we write ‘h for ‘h1, . . . , ‘hn.

3 In the literature, L0 is typically not treated as a loop, and a loop decomposition
forms a forest.



Explaining the Effectiveness of Small Refinement Heuristics 137

Let rewriting contexts be defined as follows.

C: := [ ] | C ∪ t | loop (h1, . . . , hm) C

Loop unfolding is defined by the following rewriting rules.

C[loop (h) t] ��� C[t〈v(t)\{h}, sc(t)〉 ∪ loop (‘h) t〈{h}, {h}〉]
C[loop (h) t] ��� C[t\{h}]

The first rule unfolds the loop once, whereas the second rule “closes” the loop by
removing the back edges. We formalize the counterexamples of a CFG P , cex(P ),
to be the acyclic CFGs obtained by applying the above rewriting an arbitrary
number of times, that is, cex(P ) = {π | P ���∗ π ∧ π is acyclic}.

A proof of a CFG program or counterexample is a set of predicates that
forms a Floyd-style node-wise inductive invariant [9]. More formally, we say that
σ : v(G) → T (x) is a node-wise inductive invariant of γ = (G,T, vini , verr ),
written σ �cfg γ, if 1.) σ(vini) = �, 2.) σ(verr ) = ⊥, and 3.) for each e ∈ e(G),
|=T σ(sc(e))(x) ∧ T (e)(x,x′) ⇒ σ(tg(e))(x′). We say that F is a proof of γ,
written F �cfg γ, if there exists σ : v(G) → F ∪ {⊥,�} such that σ �cfg γ. The
following are immediate from the definition of �cfg .

Theorem 5 (Soundness of �cfg). If F �cfg γ then γ is safe.

Theorem 6 (Monotonicity of �cfg). If F �cfg γ and F ⊆ F ′, then F ′ �cfg γ.

Theorem 7. Suppose F �cfg P . Then, for any π ∈ cex(P ), F �cfg π.

Theorems 5, 6 and 7 justify us to use �cfg for the proof relation � of CegVerif
(cf. Sect. 2.1).

Next, we concretize the abstraction process and counterexample generation
for CFGs. We present the Cartesian predicate abstraction, a form of predicate
abstraction used in CEGAR, as the abstraction process. Then, we present a
counterexample set that is sound for the abstraction process to generate and
refute (made precise below). We note that, because our result is shown for the
Cartesian predicate abstraction, it also holds for stronger abstraction processes
such as the Boolean predicate abstraction.

We write F∧ for the ∧-closure of F (i.e., {
∧

F ′ | F ′ ⊆ F}) and F∧∨ for
the ∧∨-closure of F (i.e., {

∨
F ′ | F ′ ⊆ F∧}). We write F⊥ for F ∪ {⊥}. For

γ = (G,T, vini , verr ), σ : v(G) → T , and F ⊆ T , we say that σ is a F -Cartesian
predicate abstraction node-wise inductive invariant of γ, written σ �F

crt γ, if 1.)
σ(vini) = �, 2.) σ(verr ) = ⊥, and 3.) for each e ∈ e(G), we have σ(sc(e)) =

∨
F1,

σ(tg(e)) =
∨

F2 for some F1 ⊆ F⊥∧ and F2 ⊆ F⊥∧ such that for each φ ∈ F1,
there is ψ ∈ F2 where |=T φ(x)∧T (e)(x,x′) ⇒ ψ(x′). We write F �crt γ if there
exists σ such that σ �F

crt γ. Clearly, F �cfg γ implies F �crt γ, and F �crt γ
implies F∧∨ �cfg γ.

The Cartesian predicate abstraction abstraction process Abscrt(·, F ) is an
abstract interpretation [7] over the finite lattice (F∧∨, |=T · ⇒ ·) with the
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abstract state transformer αF (Post) that computes the strongest cube over F⊥
implied in the next state (from the initial abstract state �):

αF (Post)T [e](φ) =
∧

{ψ ∈ F⊥ | |=T φ(x) ∧ T (e)(x,x′) ⇒ ψ(x′)}

The abstraction process guarantees 1.) F �crt γ if and only if Abscrt(γ, F ) returns
safe, and 2.) if Abscrt(P, F ) returns a counterexample π, then F �crt π.

We show that Abscrt satisfies the requirements of the abstraction process
given in Sect. 2.1.

Theorem 8. Abscrt satisfies the requirements for Abs. That is,

– If F �cfg γ then Abscrt(γ, F ) = safe;
– If Abscrt(γ, F ) returns π then Abscrt(π, F ) = safe;
– If F �cfg P and Abscrt(P, F ′) returns π then F �cfg π; and
– If Abscrt(γ, F ) = safe then ∃F ′ ⊆ T .F ′ �cfg γ.

We say that the set of counterexamples X (P ) ⊆ cex(P ) is sound for Abs if
Abs(P, F ) = safe implies that there exists π ∈ X (P ) such that F �cfg π (i.e.,
generating and refuting only the counterexamples from X (P ) is sufficient for
verifying P ). We say X is sound for Abs if X (P ) is sound for Abs for each P .
Let cexsyn(P ) ⊆ cex(P ) be the set of counterexamples obtained by unfolding the
loops loops(P ) an arbitrary but the same number of times for each loop (copies
of nested subloops are also unfolded the same number of times – cf. the extended
report [20] for the formal definition). We show that cexsyn is sound for Abscrt .

Theorem 9. cexsyn is sound for Abscrt .

Theorems 8 and 9 justify us to use Abscrt with cexsyn as the counterexample
generator for the abstraction process of CegVerif (cf. Sect. 2.1).

We note that, in the setting described above, a counterexample can be a gen-
eral dag-shaped CFG. While early CEGAR verifiers often restricted the coun-
terexamples to paths [4,11], more recent verifiers also use dag counterexamples,
and researchers have proposed methods for inferring small refinements from such
counterexamples [8,10,16,19,22]. Also, we note that, when T is QFLRA, checking
the provability for a dag CFG γ (i.e., checking if ∃F ⊆ T .F �cfg γ) is decidable,
whereas it is undecidable for an arbitrary (i.e., cyclic) CFG [14].4

3.2 Main Result

We define the syntactic size of F to be the sum of the syntactic sizes of the
predicates, that is, size(F ) =

∑
φ∈F |φ| where |φ| is the number of (logical and

non-logical) symbols in φ. We state the main result.

Theorem 10. Let the proof size metric be syntactic, �cfg be the proof relation,
and Abscrt be the abstraction process with cexsyn as the counterexample genera-
tor. Then, CegVerifSR converges in poly(mpfsize(P ))maxhds(P ) many CEGAR
iterations given a CFG program P .
4 The decidability holds for any theory with effective interpolation (cf. the extended

report [20]).
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Fig. 4. (a) CFG representation of Pex and (b) CFG representation of cexsyn(Pex )

We informally describe the intuition behind the proof of the result by ana-
lyzing the behavior of CegVerifSR on the program Pex from Fig. 2, treated as a
CFG program. Figure 4 (a) shows the CFG representation of the program. Here,
node 1 is the initial node, node 4 is the error node, and the transition relation
is as follows.

φ1(x,x′) ≡ x′ = a′ ∧ y′ = b′ ∧ z′ = 0
φ2(x,x′) ≡ z′ = z + 1 ∧ y′ = y + 1 ∧ x′ = x ∧ a′ = a ∧ b′ = b
φ3(x,x′) ≡ x′ = x ∧ y′ = y ∧ z′ = z ∧ a′ = a ∧ b′ = b
φ4(x,x′) ≡ z = 0 ∧ z′ = z − 1 ∧ y′ = y − 1 ∧ x′ = x ∧ a′ = a ∧ b′ = b
φ5(x,x′) ≡ z = 0 ∧ a = b ∧ x = y

where x = x, y, z, a, b and x′ = x′, y′, z′, a′, b′. Pex has two non-root loops L1

and L2 such that L1 corresponds to the first loop (lines 3–5) and L2 corresponds
to the second loop (lines 6–8) of Fig. 2. An element of cexsyn(Pex ) is a CFG of
the form shown in Fig. 4 (b) where each loop is unfolded k times for some k > 0.
Nodes 21, . . . , 2k (resp. 31, . . . , 3k) are the copies of the entry node of L1 (resp.
L2) created by the unfolding.

Recall that the small refinement heuristic returns a proof of polynomially
bounded in the size of the smallest proof of the given counterexample. Let f
be the polynomial factor (i.e., Ref returns proofs of size at most f(mpfsize(π))
given a counterexample π). Then, because Finv is a proof of any counterexample
of Pex , a proof returned by Ref in a run of CegVerifSR(Pex ) would be of size
at most f(size(Finv )). Consider the counterexample πn ∈ cexsyn(Pex ) obtained
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by unfolding each loop n times where n > f(size(Finv )). It can be seen that
any proof F of πn such that size(F ) ≤ f(size(Finv )) must form a Cartesian
predicate abstraction node-wise inductive invariant of Pex (i.e., F �crt Pex ).
This is because for such a F to not be a �crt -proof of Pex , it must assign distinct
predicates to the unfolded loop heads of each loop, but that is not possible when
the proof size must be at most f(size(Finv )).

More generally, as in Theorem 1, the first key observation used to prove
Theorem 10 is the fact that a proof for the program is a proof for any coun-
terexample of the program. As before, this implies that the small refinement
heuristic ensures that the proofs inferred in the refinement are only polynomi-
ally larger than the smallest proof for the program. Then, we use the observation
that, for a CFG program, if a counterexample is “sufficiently large”, then any
small proof for the counterexample becomes a Cartesian predicate abstraction
node-wise inductive invariant for the program, and so CEGAR will have to halt
in the next iteration. Finally, the iteration bound follows from the number of
counterexamples in cexsyn that are within such a sufficiently large size.

We remark that it is actually sufficient for the proof size metric to only sat-
isfy size(F ) ≥ |F | for Theorem 10 to hold (i.e., at least the number of predicates
in F ). Also, as remarked before, the result also holds for stronger abstraction
processes such as the Boolean predicate abstraction. Meanwhile, as we shall
further discuss in Sect. 4, a limitation of the result is that it only considers coun-
terexamples where all loops are unfolded the same number of times. This implies
that the abstraction process may generate large counterexamples in relatively
early stages of the verification, especially when the program contains nested
loops (cf. the extended report [20]).

We end the section by showing that the proof size metric is crucial to the
result. That is, under the generic proof size metric (cf. Sect. 2.2), we can only
guarantee an exponential bound (which is ensured by the generic result of The-
orem 1), even when the rest of the setting is left unchanged from Theorem 10.

Theorem 11. Let the proof size metric be generic, �cfg be the proof relation,
and Abscrt be the abstraction process with cexsyn as the counterexample gen-
erator. Then, there exists a CFG program P with a proof F �cfg P on which
CegVerifSR may take exp(size(F )) many CEGAR iterations to converge.

4 Limitations

While we believe that the paper’s results are a step toward understanding the
effectiveness of the small refinement heuristic, we still have ways to go to get the
whole picture. Below, we discuss some limitations of our work.

First, we do not account for the cost of the abstraction process and the refine-
ment process (i.e., we only show bounds on the number of CEGAR iterations).
For instance, the running time of the abstraction process typically grows as the
number of candidate predicates grows. Also, previous work has suggested that
inferring a small proof of a counterexample may be computationally expensive
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(cf. Appendix F of [21]), and while there has been much progress on efficient algo-
rithms for inferring a small proof of a counterexample [3,12,17,22], explaining
why such algorithms work well in practice seems to be no easier than explaining
the efficiency of the overall verification process.5

Secondly, in our setting of CFG programs, the counterexample form is rather
restricted. That is, we only consider counterexamples obtained by unfolding the
program’s loops, and unfolding only the same number of times for every (copy
of) loops (i.e., cexsyn). By contrast, an actual CEGAR verifier is often more
liberal about the counterexample forms, and for example, may allow arbitrary
unfoldings or paths as counterexamples.6

5 Conclusion

We have presented a theoretical explanation for the effectiveness of the small
refinement heuristic used in program verification with CEGAR, which, to our
knowledge, is the first of its kind. Specifically, we have formalized the small
refinement heuristic to be a refinement process that returns a proof whose size is
polynomially bounded in that of the smallest proof for the given counterexample,
and shown that CEGAR with such a refinement is guaranteed to converge in a
number of iterations bounded by the size of a proof of the given program. We
have presented the results under a rather generic setting of CEGAR, and under
a more concrete setting for CFG-represented programs.

Acknowledgements. We thank the anonymous reviewers for useful comments. This
work was supported by MEXT Kakenhi 26330082 and 25280023, and JSPS Core-to-
Core Program, A.Advanced Research Networks.

A Proofs of the Main Results

A.1 Proof of Theorem 1

The following lemma states that each run of the refinement process returns a
new proof.

Lemma 1 (Progress). Suppose Abs(P, F ) returns π and Ref(π) returns F ′.
Then, F ′ ⊆ F .

5 In a sense, this paper poses and studies the question “assuming we have such algo-
rithms for inferring small refinements, what can be said about the overall verification
efficiency?”. Note that a possible outcome of the study can be a negative result; for
example, showing that inferring small refinements is hard because otherwise it would
give an efficient algorithm to some provably hard verification problem.

6 It is easy to reduce any CFG program to an equivalent one whose unfoldings/paths
would coincide with cexsyn (e.g., by encoding program locations in transition relation
– cf. the extended report [20]). But, such a reduction is likely to affect the cost of
the abstraction process and the refinement process.
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Proof. Because Ref(π) returns F ′, we have F ′ � π. Also, because Abs(P, F )
returns π, we have Abs(π, F ) = safe, and so F � π. Therefore, F = F ′, and by
the monotonicity of �, it follows that F ′ ⊆ F . ��
Theorem 1. Let the proof size metric be generic. Then, CegVerifSR converges
in at most exp(mpfsize(P )) many CEGAR iterations given a program P .

Proof. Let FP be a proof of P such that mpfsize(P ) = size(FP ). Then, for any
counterexample π of P (i.e., Abs(P, F ′) returns π for some F ′), FP � π, and
therefore mpfsize(π) ≤ size(FP ). There are at most cf(mpfsize(P )) proofs of size
at most f(size(FP )). Therefore, by Lemma 1, CegVerifSR converges in at most
exp(mpfsize(P )) many CEGAR iterations. ��

A.2 Proof of Theorem 10

Theorem 10. Let the proof size metric be syntactic, �cfg be the proof relation,
and Abscrt be the abstraction process with cexsyn as the counterexample genera-
tor. Then, CegVerifSR converges in poly(mpfsize(P ))maxhds(P ) many CEGAR
iterations given a CFG program P .

Proof. Let FP be a proof of P = (G,T, vini , verr ) such that mpfsize(P ) =
size(FP ). Then, for any counterexample π of P (i.e., Abscrt(P, F ) returns π
for some F ), FP � π, and so mpfsize(π) ≤ size(FP ). Let lim = (f(size(FP )) +
2)maxhds(P ) + 1 (“+2” accounts for {⊥,�}). Let πlim be a counterexample in
cexsyn(P ) obtained by unfolding the loops at least lim many times. We show
that for any F such that F �cfg πlim and size(F ) ≤ f(size(FP )), F �crt P . (We
call such a counterexample πlim sufficiently large.) Then, the result follows from
the fact that there are only lim many counterexamples in cexsyn(P ) that are
obtained by unfolding the loops at most lim many times, and the fact that no
counterexample is returned more than once by the refinement process in a run
of CegVerifSR.

Let πlim = (Glim , Tlim , vini , verr ). Let σlim : v(Glim) → F ∪ {⊥,�} be such
that size(F ) ≤ f(size(FP )) and σlim �cfg πlim . Let k ≥ lim be the number of
times the loops are unfolded in πlim . We construct σ : v(G) → F∧∨ such that
σ �F

crt P by “folding” the unfolded loops in a bottom up manner. We initialize
σ = σlim , and γ = πlim . We iteratively fold γ from leaf loops, while maintaining
the property that σ �F

crt γ. Then, the result follows from the fact that γ becomes
P at the root of the folding process.

Let γ and σ be the current CFG and its Cartesian predicate abstraction node-
wise inductive invariant (i.e., σ �F

crt γ). Let γ = C[t′1∪t′2∪. . . t′k∪tk\{hk})] where
h0 = h, t0 = t, hi+1 = ‘(hi), ti

′ = ti〈v(ti)\{hi}, sc(ti)〉, and ti+1 = ti〈hi,hi〉
for each i ∈ {0, . . . , k − 1}. Let γ′ = C[loop (h) t]. That is, γ′ is obtained
by folding the unfolded loop of γ. We construct σ′ : v(γ′) → F∧∨ such that
σ′ �F

crt γ′ as follows. Because ran(σlim) = F ∪ {⊥,�}, for some 1 ≤ i1 <
i2 ≤ (f(size(FP )) + 2)|h| + 1 ≤ k, σlim(hi1) = σlim(hi2) for each h ∈ {h}. By
construction, σlim(hi) = σ(hi) for each i ∈ {1, . . . , k} and h ∈ {h}. We set
σ′(v) =

∨i2
i=1 σ(vi) for each v ∈ sc(t), and σ′(v) = σ(v) for each v ∈ v(γ) \ sc(t).

Then, it can be seen that σ′ �F
crt γ′. ��
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A.3 Proof of Theorem 11

Theorem 11. Let the proof size metric be generic, �cfg be the proof relation,
and Abscrt be the abstraction process with cexsyn as the counterexample gen-
erator. Then, there exists a CFG program P with a proof F �cfg P on which
CegVerifSR may take exp(size(F )) many CEGAR iterations to converge.

Proof. We show that Pex from Fig. 4 is such a program. As remarked before,
we have Finv �cfg Pex where Finv = {a = b ⇒ y = x + z}. For each k > 0, let
πk ∈ cexsyn(Pex ) be the counterexample obtained by unfolding each loop k times,
and let Fk = {

∨
F | F ⊆ {φi | 0 ≤ i ≤ k}} where φi ≡ x = a ∧ y = b + i ∧ z = i.

Then, Fk �cfg πk for each k > 0, and
⋃j

i=1 Fi �crt πk for each k > j > 0.
Let � > 0. Define size as follows: size(Finv ) = �, size(Fk) = �log k� for

k ∈ {1, . . . , 2� − 1}, and size(F ′) = � + syntactic(F ′) for F ′ ∈ P(T ) \ ({Finv} ∪
{Fk | 1 ≤ k ≤ 2� − 1}) where syntactic(F ′) is the syntactic size of F ′. Note that
size is a generic proof size metric. Then, CegVerifSR takes 2size(Finv ) iterations
to converge when Abscrt returns the counterexamples π1, ...π2�−1 in the first 2�−1
iterations and Ref returns the proofs F1, . . . , F2�−1 before returning Finv . ��
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Abstract. Most software verification tools can be classified into one of
a number of established families, each of which has their own focus and
strengths. For example, concrete counterexample generation in model
checking, invariant inference in abstract interpretation and completeness
via annotation for deductive verification. This creates a significant and
fundamental usability problem as users may have to learn and use one
technique to find potential problems but then need an entirely different
one to show that they have been fixed. This paper presents a single,
unified algorithm kIkI, which strictly generalises abstract interpretation,
bounded model checking and k-induction. This not only combines the
strengths of these techniques but allows them to interact and reinforce
each other, giving a ‘single-tool’ approach to verification.

1 Introduction

The software verification literature contains a wide range of techniques which
can be used to prove or disprove safety properties. These include:

Bounded Model Checking. Given sufficient time and resource, BMC will
give counterexamples for all false properties, which are often of significant
value for understanding the fault. However only a small proportion of true
properties can be proven by BMC.

k-Induction. Generalising Hoare logic’s ideas of loop invariants, k-induction
can prove true properties, and, in some cases provide counterexamples to
false ones. However it requires inductive invariants, which can be expensive
(in terms of user time, expertise and maintenance).

Abstract Interpretation. The use of over-approximations makes it easy to
compute invariants which allow many true propositions to be proven. How-
ever false properties and true-but-not-provable properties may be indistin-
guishable. Tools may have limited support for a more complete analysis.
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The range and variety of tools and techniques available is a sign of a healthy
and vibrant research community but presents challenges for non-expert users.
The choice of which tools to use and where to expend effort depends on whether
the properties are true or not – which is exactly what they want to find out.

To build a robust and usable software verification system it is necessary
to combine a variety of techniques. One option would be to run a series of
independent tools, in parallel (as a portfolio, for example) or in some sequential
order. However this limits the information that can be exchanged between the
algorithms – what is needed is a genuine compound rather than a simple mixture.
Another option would be to use monolithic algorithms such as CEGAR [5],
IMPACT [20] or IC3/PDR [2,17] which combine some of the ideas of simpler
systems. These are difficult to implement well as their components interact in
complex and subtle ways. Also they require advanced solver features such as
interpolant generation that are not widely available for all theories (bit-vectors,
arrays, floating-point, etc.). In this paper, we argue for a compound with simple
components and well-understood interaction.

This paper draws together a range of well-known techniques and combines
them in a novel way so that they strengthen and reinforce each other. k-induction
[26] uses syntactically restricted or simple invariants (such as those generated by
abstract interpretation) to prove safety. Bounded model checking [1] allows us
to test k-induction failures to see if they are real counter-examples or, if not, to
build up a set of assumptions about system behaviour. Template-based abstract
interpretation is used for invariant inference [15,23,24] with unrolling produc-
ing progressively stronger invariants. Using a solver and templates to generate
invariants allows the assumptions to be used without the need for backwards
propagators and ‘closes the loop’ allowing the techniques to strengthen each
other. Specifically, the paper makes the following contributions:

1. A new, unified, simple and elegant algorithm, kIkI, for integrated invariant
inference and counterexample generation is presented in Sect. 2. Incremen-
tal bounded model checking, k-induction and classical over-approximating
abstract interpretation are shown to be restrictions of kIkI.

2. The techniques required to efficiently implement kIkI are given in Sect. 3 and
an implementation, 2LS, is described in Sect. 4.

3. A series of experiments are given in Sect. 5. We show that kIkI verified more
programs and is faster than a portfolio approach using incremental BMC,
k-induction and abstract interpretation, showing genuine synergy between
components.

2 Algorithm Concepts

This section reviews the key concepts behind kIkI. Basic familiarity with tran-
sition systems and first and second order logic will be assumed. As we intend to
use kIkI to verify software using bit-vectors, we will focus on finite state systems.
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2.1 Program Verification as Second Order Logic

To ease formalisation we view programs as symbolic transition systems. The
state of a program is described by a logical interpretation with logical variables
corresponding to each program variable, including the program counter. Formu-
lae can be used to describe sets of states – the states in the set are the models of
the formulae. Given x, a vector of variables, Start(x) is the predicate describing
the start states. A transition relation, Trans(x,x′) is formula describing a rela-
tion between pairs of such interpretations which describes the (potentially non-
deterministic) progression relations between states. From these we can derive the
set of reachable states as the least fixed-point of the transition relation starting
from the states described by Start(x). Although this set is easily defined, com-
puting a predicate that describes it (from Start and Trans) is often difficult and
we will focus on the case when it is not practical. Instead inductive invariant are
used; Inv is an inductive invariant if it has the following property:

∀x0,x1 � (Inv(x0) ∧ Trans(x0,x1) ⇒ Inv(x1)) (1)

Each inductive invariant is a description of a fixed-point of the transition relation
but is not necessarily guaranteed to be the least one, nor is it guaranteed to
include Start(x) although many of the inductive invariants we use will do. For
example, the predicate true is an inductive invariant for all systems as it describes
the complete state space. From an inductive invariant we can find loop invariants
and function and thread summaries by projecting on to a subset of variables x.

Many verification tasks can be reduced to showing that the reachable states
do not intersect with a set of error states, denoted by the predicate Err(x). Tech-
niques for proving systems safe can be seen as computing an inductive invariant
that is disjoint from the error set. Using existential second order quantification
(denoted ∃2) we can formalise this as:

∃2Inv � ∀x0,x1� (Start(x0) ⇒ Inv(x0))∧
(Inv(x0) ∧ Trans(x0,x1) ⇒ Inv(x1))∧
(Inv(x0) ⇒ ¬Err(x0))

(2)

Alternatively, if the system is not safe, then there is a reachable error state. One
way of showing this is to find a concrete, n-step counterexample1:

∃x0, . . . ,xn � Start(x0) ∧
∧

i∈[0,n−1]

Trans(xi,xi+1) ∧ Err(xn) (3)

2.2 Existing Techniques

Viewing program verification as existential second-order logic allows a range of
existing tools to be characterised in a common framework and thus compared
1 If the state space is finite and the system is not safe there is necessarily a finite,

concrete counterexample. For infinite state spaces there are additional issues such
as errors only reachable via infinite counterexamples and which fixed-points can be
described by a finite formulae.
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and contrasted. This section reviews some of the more widely used approaches.
The following abbreviations, corresponding to k steps of the transition system
and the first k states being error free, will be used:

T [k] =
∧

i∈[0,k−1]

Trans(xi,xi+1) P [k] =
∧

i∈[0,k−1]

¬Err(xi)

Bounded Model Checking (BMC). [1] focuses on refutation by picking a unwind-
ing limit k and solving:

∃x0, . . . ,xk � Start(x0) ∧ T [k] ∧ ¬P [k + 1] (4)

Models of this formula correspond to concrete counterexamples of some length
n � k. The unwinding limit gives an under-approximation of the set of reach-
able states and thus can fail to find counterexamples that take a large number
of transition steps. In practice BMC works well as the formula is existentially
quantified and thus is in a fragment handled well by SAT and SMT solvers.
There are also various simplifications that can reduce the number of variables
(see Sect. 3.1).

Incremental BMC (IBMC) (e.g. [9]) uses repeated BMC (often optimised by
using the solver incrementally) checks with increasing bounds to avoid the need
for a fixed bound. If the bound starts at 0 (i.e. checking ∃x0 �Start(x0)∧Err(x0))
and is increased linearly (this is the common use-case), then it can be assumed
that there are no errors at previous states, giving a simpler test:

∃x0, . . . ,xk � Start(x0) ∧ T [k] ∧ P [k] ∧ Err(xk) (5)

K-Induction [26] can be viewed as an extension of IBMC that can show system
safety as well as produce counterexamples. It makes use of k-inductive invariants,
which are predicates that have the following property:

∀x0 . . . xk � I [k] ∧ T [k] ⇒ KInv(xk) (6)

where
I [k] =

∧
i∈[0,k−1]

KInv(xi)

k-inductive invariants have the following useful properties:

– Any inductive invariant is a 1-inductive invariant and vice versa.
– Any k-inductive invariant is a (k + 1)-inductive invariant.
– A (finite) system is safe if and only if there is a k-inductive invariant KInv

which satisfies:

∀x0 . . . xk� (Start(x0) ∧ T [k] ⇒ I [k]) ∧
(I [k] ∧ T [k] ⇒ KInv(xk)) ∧
(KInv(xk) ⇒ ¬Err(xk))

(7)
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Showing that a k-inductive invariant exists is sufficient to show that an induc-
tive invariant exists but it does not imply that the k-inductive invariant is an
inductive invariant. Often the corresponding inductive invariant is significantly
more complex. Thus k-induction can be seen as a trade-off between invariant
generation and checking as it is a means to benefit as much as possible from
simpler invariants by using a more complex property check.

Finding a candidate k-inductive invariant is hard so implementations often
use ¬Err(x). Similarly to IBMC, linearly increasing k can be used to simplify
the expression by assuming there are no errors at previous states:

∃x0, . . . ,xk� (Start(x0) ∧ T [k] ∧ P [k] ∧ Err(xk))∨
(T [k] ∧ P [k] ∧ Err(xk)) (8)

A model of the first part of the disjunct is a concrete counterexample (k-
induction subsumes IBMC) and if the whole formula has no models, then
¬Err(x) is a k-inductive invariant and the system is safe.

Abstract Interpretation. [6] While BMC and IBMC compute under-
approximations of the set of reachable states, the classical use of abstract inter-
pretation is to compute inductive invariants that include Start(x) and thus
are over-approximations of the set of reachable states. Elements of an abstract
domain can be understood as sets or conjuncts of formulae [8], so abstract inter-
pretation can be seen as:

∃2AInv ∈ A � ∀x,x1� (Start(x) ⇒ AInv(x))∧
(AInv(x) ∧ Trans(x,x1) ⇒ AInv(x1))

(9)

where A is the set of formulae described by the chosen abstract domain. As a
second step then one checks:

∀x � AInv(x) ⇒ ¬Err(x) (10)

If this has no models then the system is safe, otherwise the safety cannot be
determined without finding a more restrictive AInv or increasing the set A , i.e.
choosing a more expressive abstract domain.

2.3 Our Algorithm: kIkI

The phases of the kIkI algorithm are presented as a flow chart in Fig. 1 with
black arrows denoting transitions. Initially, k = 1 and T is a set of predicates
that can be used as invariant with � ∈ T (see Sect. 3 for details of how this is
implemented).

After an initial test to see if any start states are errors2, kIkI computes a
k-inductive invariant that covers the initial state and includes the assumption

2 If the transition system is derived from software and the errors are generated from
assertions this will be impossible and the check can be skipped.
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Test ∃x0

Start(x0) ∧ Err(x0)

Find KInv ∈ ∀x0, . . . ,xk

(Start(x0) ∧ P [k] ∧ T [k] ⇒ I [k])∧
(P [k] ∧ I [k] ∧ T [k] ⇒ KInv(xk))

Test ∃xo, . . . ,xk

P [k] ∧ I [k + 1] ∧ T [k] ∧ Err(xk)

Test ∃x0, . . . ,xk Start(x0)∧
P [k] ∧ I [k + 1] ∧ T [k] ∧ Err(xk)

k + +

C/E ? Safe

UNSAT

SAT

UNSAT

UNSATSAT

SAT

Fig. 1. The kIkI algorithm (colours in online version)

that there are no errors in earlier states. The invariant is then checked to see
whether it is sufficient to show safety. If there are possible reachable error states
then a second check is needed to see if the error is reachable in k steps (a genuine
counterexample) or whether it is a potential artefact of a too weak invariant. In
the latter case, k is incremented so that a stronger (k-)invariant can be found
and the algorithm loops.

Also displayed in Fig. 1 are the steps of incremental BMC, k-induction and
classical over-approximating abstract interpretation, given, respectively by the
red dotted, blue dashed and green dashed/dotted boxes and arrows. kIkI can
simulate k-induction by having T = {�} and incremental BMC by over-
approximating the first SAT check. Classical over-approximate abstract inter-
pretation can be simulated by having T = A and terminating with the result
“unknown” if the first SAT check finds a model. These simulations give an intu-
ition for the proof of the following results:

Theorem 1.

– When kIkI terminates it gives either a k-inductive invariant sufficient to show
safety or a length k counterexample.



Safety Verification and Refutation by k-Invariants and k-Induction 151

void main ( )
{

unsigned x = 0 ;

while ( x<10)
{

++x ;
}

a s s e r t ( x ==10) ;
}

(a) The program

guard#0 == TRUE
x#0 == 0u

guard#1 == guard#0
x#phi1 == ( guard# l s 0 ? x# lb1 : x #0)
guard#2 == ( x#phi1 < 10) && guard#1
x#2 == 1u + x#phi1

guard#3 == ! ( x#phi1 < 10) && guard#1
x#phi1 == 10u | | ! guard#3

(b) The annotated SSA

Fig. 2. Conversation from program to SSA

– If IBMC or k-induction terminate with a length k counterexample, then kIkI
will terminate with a length k counterexample.

– If k-induction terminates with a k-inductive invariant sufficient to show
safety, then kIkI will terminate with a k-inductive invariant sufficient to show
safety.

– If an (over-approximating) abstract interpreter returns an inductive invariant
AInv that is sufficient to show safety and A ⊆ T , then kIkI will terminate
with k = 1 and an inductive invariant sufficient to show safety.

Hence kIkI strictly generalises its components by exploiting the following
synergies between them: unrolling k times helps abstract interpretation to gen-
erate stronger invariants, namely k-invariants, which are further strengthened
by the additional facts known from not having found a counterexample for k −1
iterations; stronger invariants help k-induction to successfully prove properties
more often; and constraining the state space by invariants ultimately accelerates
the countermodel search in BMC. We will observe these synergies also experi-
mentally in Sect. 5.

3 Algorithm Details

Section 2 introduced kIkI but omitted a number of details which are important
for implementing the algorithm efficiently. Key amongst these are the encoding
from program to transition system and the generation of k-inductive invariants.

3.1 SSA Encoding

The presentation of kIkI used transition systems and it is possible to implement
this directly. However the symbolic transition systems generated by software
have structural properties that can be exploited. In most states the value of
the program counter uniquely identifies its next value (i.e. most instructions
do not branch) and most transitions update a single variable. Thus states in
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)

loop body

end of loop body (x#2)

after loop

(x#lb1)

(a) The SSA form of a loop.

loop body 1

end of loop body 1 (x#2%0)

loop head 0 (x#phi1%1 = x#2%0)

loop body 0

)

(x#lb1)

(b) The SSA loop unwinding

Fig. 3. Illustrations of various SSA encodings

the transition can be merged by substituting in the symbolic values of updated
variables, so reducing the size of the formulae generated.

Rather than building the transition system and then reducing it, it is equiv-
alent and more efficient to convert the program to single static assignment
form (SSA). For acyclic code, the SSA is a formula that exactly represents the
strongest post condition of running the code and generation of this is a stan-
dard technique found in most software BMC and Symbolic Execution tools. We
extend this with an over-approximate conversion of loops so that the SSA allows
us to reason about abstractions of a program with a solver.

Figure 2 gives an example of the conversion. The SSA has been made acyclic
by cutting loops at the end of the loop body: the variable3 x#2 at the end of the
loop body (“poststate”) corresponds to x#lb1, which is fed back into the loop
head (“prestate”). A non-deterministic choice (using the free Boolean variable
guard#ls0) is introduced at the loop head in order to join the values coming
from before the loop and from the end of the loop body. Figure 3a illustrates
how the SSA statements express control flow.

It is easy to see that this representation “havocs” loops because x#lb1 is a
free variable – this is why its models are an over-approximation of actual program
traces. Precision can be improved by constraining the feedback variable x#lb1
by means of a loop invariant which we are going to infer. Any property that
holds at loop entry (x#0) and at the end of the body (x#2) can then be assumed
to hold on the feedback variable x#lb1.

Loop unwinding is performed in the usual fashion; the conversion to SSA
simply repeats the conversion of the body of the loop. Figure 3b illustrates an
example of this. The top-most loop head multiplexer is kept and its feedback
variable is constrained with the bottom-most loop unwinding. The only subtlety

3 Variable name suffixes are use to denote the multiple logical variables that correspond
to a single program variable at different points in the execution.
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is that the value of variables from different loop exits must be merged. This
can be achieved by use of the guard variables which track the reachability of
various program points for a given set of values. The unwinding that we perform
is incremental, in the sense that the construction of the formula is monotonic.
Assumptions have to be used to deal with the end of loop merges as there always
has to be a case for “value is merged from an unwinding that has not been added
yet” and this has to be assumed false.

A more significant example is given in the extended version [3].

3.2 Invariant Inference via Templates

A key phase of kIkI is the generation of KInv , a k-inductive invariant. Per-
haps the most obvious approach is to use an off-the-shelf abstract interpreter.
This works but will fail to exploit the real power of kIkI. Each iteration, kIkI
unrolls loops one more step (which can improve the invariant given by an
abstract interpreter) and adds assumptions that previous unwindings do not
give errors. Without backwards propagation it is difficult for an abstract inter-
preter to make significant use of these assumptions. For example, an abstract
interpretation with intervals would need backwards propagation to make use of
assume(x + y < 10). Thus we use a solver-based approach to computing KInv
as it can elegantly exploit the assumptions that are added without needing to
(directly) implement transformers.

Directly using a solver we would need to handle (the existential fragment of)
second-order logic. As these are not currently available, we reduce to a problem
that can be solved by iterative application of a first-order solver. We restrict
ourselves to finding invariants KInv of the form T (x, δ) where T is a fixed
expression, a so-called template, over program variables x and template para-
meters δ (see Sect. 3.3). This restriction is analogous to choosing an abstract
domain in an abstract interpreter and has similar effect – T only contains a
the formulae that can be described by the template. Fixing a template reduces
the second-order search for an invariant to the first-order search for template
parameters:

∃δ� ∀x0 . . . xk� (Start(x0) ∧ T [k] ⇒ T [k](δ)) ∧
(T [k](δ) ∧ T [k] ⇒ T (xk, δ)) (11)

with T [k](δ) =
∧

i∈[0,k−1] T (xi, δ). Although the problem is now expressible
in first-order logic, it contains quantifier alternation which poses a problem for
current SMT solvers. However, we can solve this problem by iteratively checking
the negated formula (to turn ∀ into ∃) for different choices of constants d for the
parameters δ; as for the second conjunct in (11):

∃x0 . . . xk � ¬
(
T [k](d) ∧ T [k] ⇒ T (xk,d)

)
(12)

The resulting formula can be expressed in quantifier-free logics and efficiently
solved by SMT solvers. Using this as a building block, one can solve this ∃∀
problem (see Sect. 3.4).
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3.3 Guarded Template Domains

As discussed in the previous section, we use templates and repeated calls (with
quantifier-free formulae) to a first-order solver to compute k-inductive invariants.

An abstract value d represents, i.e. concretises to, the set of all x that satisfy
the formula T (x,d). We require an abstract value ⊥ denoting the empty set
T (x,⊥) ≡ false, and � for the whole domain of x: T (x,�) ≡ true.

Template Polyhedra. We use template polyhedra [24], a class of templates for
numerical variables which have the form T = (Ax ≤ δ) where A is a matrix with
fixed coefficients. Subclasses of such templates include Intervals, which require

constraints
(

1
−1

)
xi ≤

(
δi1

δi2

)
for each variable xi, Zones (differences), and

Octagons [21]. The rth row of the template are the constraint generated by the
rth row of matrix A.

In our template expressions, variables x are bit-vectors representing signed
or unsigned integers. These variables can be mixed in template constraints. Type
promotion rules are applied such that the bit-width of the types of the expres-
sions are extended in order to avoid arithmetic under- and overflows in the
template expressions. � corresponds to the respective maximum values in the
promoted type, whereas ⊥ must be encoded as a special symbol.

Guarded Templates. Since we use SSA form rather than control flow graphs, we
cannot use numerical templates directly. Instead we use guarded templates. In a
guarded template each row r is of the form Gr ⇒ T̂r for the rth row T̂r of the
base template domain (e.g. template polyhedra). Gr is the conjunction of the
SSA guards gi associated with the definition of variables xi occurring in T̂r. Gr

denotes the guard associated to variables x appearing at the loop head, and G′
r

the guard associated to the variables x′ at the end of the respective loop body.
Hence, template rows for different loops have different guards.

A guarded template in terms of the variables at the loop head is hence of the
form T (x0, δ) =

∧
r Gr(x0) ⇒ T̂r(x0, δ). Replacing parameters δ by the values

d we get the invariants T (x,d) at the loop heads.
For the example program in Sect. 3.1, we have the following guarded interval

template:

T (x#lb1, (δ1, δ2)) =
{
guard#1 ∧ guard#ls0 ⇒ x#lb1 ≤ δ1
guard#1 ∧ guard#ls0 ⇒ −x#lb1 ≤ δ2

We denote T ′(x1, δ) =
∧

r G′
r(x1) ⇒ T̂r(x1, δ) the guarded template

expressed in terms of the variables at the end of the loop body. Here, we have
to express the join of the initial value at the loop head (like x#0) and the val-
ues that are fed back into the loop head (like x#2). For the example above, the
corresponding guarded template is as follows:

T ′(x#2, (δ1, δ2)) =

⎧⎨
⎩

(pg ⇔ guard#2) ∧ (ig ⇔ guard#1 ∧ ¬guard#ls0)∧
((ig ⇒ x′ = x#0) ∧ (pg ∧ ¬ig ⇒ x′ = x#2))∧
(pg ∨ ig ⇒ x′ ≤ δ1) ∧ (pg ∨ ig ⇒ −x′ ≤ δ2)
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3.4 Accelerated Solving of the ∃∀ Problem

As discussed in Sect. 3.2, it is necessary to solve an ∃∀ problem to find values
for template parameters δ to infer invariants.

Model Enumeration. The well-known method [4,23] for solving this problem in
formula (12) using SMT solvers repeatedly checks satisfiability of the formula
for an abstract value d (starting with d = ⊥):

T [k](d) ∧ T [k] ∧ ¬T ′(xk,d) (13)

If it is unsatisfiable, then we have found an invariant; otherwise we join the
model returned by the solver with the previous abstract value d.

However, this method corresponds to performing a classical Kleene iteration
on the abstract lattice up to convergence. Convergence is guaranteed because
our abstract domains are finite. Though, the height of the lattice is enormous
and even for a one loop program incrementing an unconstrained 64-bit integer
variable the näıve algorithm will not terminate within human life time. Hence,
we are not going to use this method.

Optimisation. What we need is a convergence acceleration that makes the com-
putational effort independent from the number of states and loop iterations. To
this end, we use a technique that is inspired by an encoding used by max-strategy
iteration methods [11,12,22]. These methods state the invariant inference prob-
lem over template polyhedra as a disjunctive linear optimisation problem, which
is solved iteratively by an upward iteration in the lattice of template polyhedra:
using SMT solving, a conjunctive subsystem (“strategy”) whose solution extends
the current invariant candidate is selected. This subsystem is then solved by an
LP solver; the procedure terminates as soon as an inductive invariant is found.

This method can only be used if the domain is convex and the parameter
values are ordered and monotonic w.r.t. concretisation, which holds true, for
example, for template polyhedra Ax ≤ d where d is a parameter, but not
for those where A is a parameter. If the operations in the transition relation
satisfy certain properties such as monotonicity of condition predicates, then the
obtained result is the least fixed point, i.e. the same result as the one returned
by the näıve model enumeration above, but much faster on average.

Our Algorithm. We adapt this method to our setting with bit-vector variables
and guarded templates. Since we deal with finite domains (bit-vectors) we can
use binary search as optimisation method instead of an LP solver.

The algorithm proceeds as follows: We start by checking whether the current
abstract value d (starting from d = ⊥) is inductive (Eq. (13)). If so, we have
found an invariant; otherwise there are template rows R whose values are not
inductive yet. We construct the system

∧

i∈[0,k−1]

{ ∧
r/∈R Gr(xi) ⇒ (er(xi) ≤ dr)

∧ ∧r∈R Gr(xi) ⇒ (er(xi) ≤ δr)

}
∧ T [k] ∧

∧

r∈R

G
′
r(xk) ∧ (δr ≤ er(xk)) (14)
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where er is the left-hand side of the inequality corresponding to the rth row of
the template. Then we start the binary search for the optimal value of

∑
r∈R δr

over this system. The initial bounds for
∑

r∈R δr are as follows:

– The lower bound � is
∑

r∈R d′
r where d′

r is the value of er(xk) in the model of
the inductivity check (13) above;

– The upper bound u is
∑

r∈R max value(r) where max value returns the max-
imum value that er(xk) may have (dependent on variable type).

The binary search is performed by iteratively checking (14) for satisfiability
under the assumption

∑
r∈R δr ≥ m where m = median(�, u). If satisfiable, set

� := m, otherwise set u := m and repeat until � = u. The values of δr in the
last satisfiable query are assigned to dr to obtain the new abstract value. The
procedure is then repeated by testing whether d is inductive (13). Note that this
algorithm uses a similar encoding for bound optimisation as strategy iteration,
but potentially requires a higher number of iterations than strategy iteration.
This choice has been made deliberately in order to keep the size of the generated
SMT formulas small, at the cost of a potentially increased number of iterations.

A worked example is given in the extended version [3].

4 Implementation

We implemented kIkI in 2LS,4 a verification tool built on the CPROVER frame-
work, using MiniSAT-2.2.0 as a back-end solver (although other SAT and SMT
solvers with incremental solving support can also be used). 2LS currently inlines
all functions when running kIkI. The techniques described in Sect. 3 enable a
single solver instance to be used where constraints and unwindings are added
incrementally. This is essential because kIkI makes thousands of solver calls for
invariant inference and property checks.

Our implementation is generic w.r.t. matrix A of the template polyhedral
domain. In our experiments, we observed that very simple matrices A generating
interval invariants are sufficient to compete with other state-of-the-art tools.

The tool can handle unrestricted sequential C programs (with the exception
of programs with irreducible control flow). However, currently, invariants are not
inferred over array contents or dynamically allocated data structures.

5 Experiments

We performed a number of experiments to demonstrate the utility and applica-
bility of kIkI. All experiments were performed on an Intel Xeon X5667 at 3 GHz
running Fedora 20 with 64-bit binaries. Each individual run was limited to 13 GB

4 Version 0.2. The source code of the tool and instructions for its usage can be found on
http://www.cprover.org/wiki/doku.php?id=2ls for program analysis. In the experi-
ments we ran it with the option --competition-mode.

http://www.cprover.org/wiki/doku.php?id=2ls_for_program_analysis
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of memory and 900 seconds of CPU time, enforced by the operating system ker-
nel. We took the loops meta-category (143 benchmarks) from the SV-COMP’15
benchmark set.5

5.1 kIkI Verifies More Programs Than the Algorithms It Simulates

Table 1 gives a comparison between 2LS running kIkI (column 6) and the same
system running as an incremental bounded model checker (IBMC) (column 2),
incremental k-induction (i.e. without invariant inference, column 3) and as an
abstract interpreter (AI) (column 4). kIkI is more complete than each of the
restricted modes. This is not self-evident since it could be much less efficient
and, thus, fail to solve the problems within the given time or memory limits. k-
induction can solve 60.8 % of the benchmarks, 13 more than IBMC. 32 % of the
benchmarks can be solved by abstract interpretation (bugs are only exposed if
they are reachable with 0 loop unwindings). kIkI solves 62.9 % of the benchmarks,
proving 3 more properties than k-induction.

Table 1. Comparison between kIkI, the algorithms it subsumes, the portfolio, and
CPAchecker. The rows false alarms and false proofs indicate soundness bugs of the
tool implementations.

IBMC k-induction AI portfolio kIkI CPAchecker ESBMC

Counterexamples 38 38 17 38 38 36 35

Proofs 36 49 30 51 52 59 91

False proofs 0 0 0 0 0 2 12

False alarms 2 2 0 2 2 2 0

Inconclusive 0 0 93 0 0 4 2

Timeout 65 53 3 50 51 38 2

Memory out 2 1 0 2 0 2 1

Total runtime 17.1 h 13.8 h 0.89 h 13.3 h 13.2 h 10.9 h 0.54 h

5.2 kIkI Is at Least as Good as Their Näıve Portfolio

To show that kIkI is more than a mixture of three techniques and that they
strengthen each other, consider column 5 of Table 1. This gives the results of
an ideal portfolio in which the three restricted techniques are run in parallel
on and the portfolio terminates when the first returns a conclusive result. Thus
the CPU time taken is three times the time taken by the fastest technique for
each benchmark (in practice these could be run in parallel, giving a lower wall
clock time). In our setup, kIkI had a disadvantage as each component of virtual
portfolio had the same memory restriction as kIkI, thus effectively giving the
portfolio three times as much memory.

5 http://sv-comp.sosy-lab.org/2015/benchmarks.php.

http://sv-comp.sosy-lab.org/2015/benchmarks.php
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Fig. 4. Runtime comparison

Still, kIkI is slightly faster and more accurate than the portfolio as can be
seen in Table 1. The scatter plot in Fig. 4a shows the results for each benchmark:
one can observe that kIkI is up to one order of magnitude slower on many unsafe
benchmarks, which is obviously due to the additional work of invariant inference
that kIkI has to perform in contrast to IBMC. However, note that kIkI is faster
than the portfolio on some safe and even one unsafe benchmarks. This suggests
that kIkI is more than the sum of its parts.

5.3 kIkI Is Comparable with State-of-the-Art Approaches

We compared our implementation of kIkI with CPAchecker6, and ESBMC7,
which uses k-induction. The results are shown in the last three columns in Table 1
and in the scatter plot in Fig. 4b. Additional results are given in the extended
version [3]. In comparison to CPAchecker, the winner of SVCOMP’15, our pro-
totype of kIkI is overall a bit slower and proves fewer properties (due to more
timeouts), but as Fig. 4b shows, it significantly outperforms CPAchecker on most
benchmarks. ESBMC exposes fewer bugs, but proves many more properties and
is significantly faster. However, it has 6 times more soundness bugs than our
implementation.8 These results show that our prototype implementation of kIkI
can keep up with state-of-the-art verification tools.

6 Related Work

Our work elucidates the connection between three well-studied techniques. Hence
we can only give a brief overview of the vast amount of relevant literature.
6 SVCOMP’15 version, http://cpachecker.sosy-lab.org/.
7 SVCOMP’15 version, http://www.esbmc.org/.
8 The two false alarms in our current implementation are due to limited support for

dynamic memory allocation.

http://cpachecker.sosy-lab.org/
http://www.esbmc.org/
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Since it was observed [26] that k-induction for finite state systems (e.g. hard-
ware circuits) can be done by using an (incremental) SAT solver [9], it has become
more and more popular also in the software community as a tool for safety proofs.
Using SMT solvers, it has been applied to Lustre models [16] (monolithic tran-
sition relations) and C programs [7] (multiple and nested loops).

The idea of synthesising abstractions with the help of solvers can be traced
back to predicate abstraction [13]; Reps et al. [23] proposed a method for
symbolically computing best abstract transformers; these techniques were later
refined [4,18,27] for application to various template domains. Using binary search
for optimisation in this context was proposed by Gulwani et al. [15]. Similar tech-
niques using LP solving for optimisation originate from strategy iteration [12].
Recently, SMT modulo optimisation [19,25] techniques were proposed that foster
application to invariant generation by optimisation.

k-induction often requires additional invariants to succeed, which can be
obtained by abstract interpretation. For example, Garoche et al. [10] use SMT
solving to infer intermediate invariants over templates for the use in k-induction
of Lustre models. As most of these approaches (except [4]), they consider (linear)
arithmetic over rational numbers only, whereas our target are C programs with
bit-vectors (representing machine integers, floating-point numbers, etc.). More-
over, they do not exploit the full power of the approach because they compute
only 1-invariants instead of k-invariants. Another distinguishing feature of our
algorithm is that it operates on a single logical representation and hence enables
maximum information reuse by incremental SAT solving using a single solver.

Formalising program analysis problems such as invariant inference in second
order logic and suggesting to solve these formulae with generic solvers has been
considered by [14]. In this paper we provide an implementation that solves the
second order formula describing the invariant inference problem by reduction
to quantifier elimination of a first order formula. Our approach can also solve
other problems stated in [14], e.g., termination, by considering different abstract
domains, e.g., for ranking functions.

7 Conclusions

This paper presents kIkI and shows that it can simulate incremental BMC, k-
induction and classical, over-approximating abstract interpretation. Experiments
performed with an implementation, 2LS, show that it is not only “more” com-
plete than each individual technique – but it also suggests that it is stronger than
their näıve combination. In other words, the components of the algorithm syner-
gistically interact and enhance each other. Moreover, our combination enables a
clean, homogeneous, tightly integrated implementation rather than a loose, het-
erogeneous combination of isolated building blocks or a pipeline of techniques
where each only strengthens the next.

There are many possible future directions for this work. Enhancing 2LS to
support additional kinds of templates, possibly including disjunctive template
and improving the optimisation techniques used for quantifier elimination is one
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area of interest. In another direction, kIkI could be enhance to support function
modular, intraprocedural, thread modular and possibly multi-threaded analysis.
Automatic refinement of the template domains is another tantalising possibility.
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Abstract. We introduce Solar, the first reflection analysis that allows
its soundness to be reasoned about when some assumptions are met
and produces significantly improved under-approximations otherwise. In
both settings, Solar has three novel aspects: (1) lazy heap modeling
for reflective allocation sites, (2) collective inference for improving the
inferences on related reflective calls, and (3) automatic identification of
“problematic” reflective calls that may threaten its soundness, precision
and scalability, thereby enabling their improvement via lightweight anno-
tations. We evaluate Solar against two state-of-the-art solutions, Doop
and Elf, with the three treated as under-approximate reflection analyses,
using 11 large Java benchmarks and applications. Solar is significantly
more sound while achieving nearly the same precision and running only
several-fold more slowly, subject to only 7 annotations in 3 programs.

1 Introduction

Reflection is increasingly used in a range of software and framework architectures,
allowing a software system to choose and change implementations of services at
run-time, but posing significant challenges to static program analysis. In the case
of Java programs, reflection has always been an obstacle for pointer analysis [1–
10], a fundamental static analysis on which virtually all others [11–16] are built.
All pointer analysis tools for Java [2,17–19] either ignore reflection or handle it
partially since their underlying best-effort reflection analyses [5,17,18,20–22] pro-
vide only under-approximated handling of reflection heuristically.

However, such unsoundness can render much of the codebase invisible for
analysis. There is a recent community initiative [23] calling for the develop-
ment of soundy analysis to handle “hard” language features (such as reflection).
A soundy analysis is one that is as sound as possible without excessively compro-
mising precision and/or scalability. Thus, improving or even achieving soundness
in reflection analysis will provide significant benefits to many clients, such as pro-
gram verifiers, optimizing compilers, bug detectors and security analyzers.

In this paper, we make the following contributions:

– We introduce Solar, the first reflection analysis that allows its soundness to
be reasoned about when some reasonable assumptions are met and yields sig-
nificantly improved under-approximations otherwise (Sect. 2). We have devel-
oped Solar by adopting three novel aspects in its design: (N1) lazy heap

c© Springer-Verlag Berlin Heidelberg 2015
S. Blazy and T. Jensen (Eds.): SAS 2015, LNCS 9291, pp. 162–180, 2015.
DOI: 10.1007/978-3-662-48288-9 10
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modeling for reflective allocation sites, (N2) collective inference for related
reflective calls, and (N3) automatic identification of “problematic” reflective
calls that may threaten its soundness, precision and scalability.

– We formalize Solar as part of a pointer analysis for Java (including a small
core of its reflection API) and reason about its soundness under a set of
assumptions (Sect. 3). We have produced an open source implementation on
top of Doop [18], which is a modern pointer analysis tool for Java.

– We evaluate Solar against two state-of-the-art reflection analyses, Doop [5]
and Elf [21], with 11 large Java benchmarks/applications (Sect. 4), where
all the three are treated as under-approximate analyses (due to, e.g., native
code). By instrumenting these programs under their associated inputs (when
available), Solar is the only one to achieve total recall (for all reflective tar-
gets accessed), with 371 % (148 %) more target methods resolved than Doop
(Elf) in total, which translates into 49700 (40570) more true caller-callee
relations statically calculated w.r.t. these inputs alone. Solar has done so by
maintaining nearly the same precision as and running only several-fold more
slowly than Elf and Doop, subject to only 7 annotations in 3 programs.

2 Methodology

Figure 1 illustrates an example of reflection usage abstracted in real code. In
line 2, a Class metaobject c1 is created by calling Class.forName(cName) to
represent the class named cName, where cName, i.e., cName1 in line 10 is an
input string to be read from a command line or a configuration file. In line 3, an
object o is reflectively created as an instance of c1 by calling c1.newInstance()
and then assigned to v with the declared type as Java.lang.Object in line 10.
Subsequently, o is used in two common scenarios. In the if branch, o is downcast
to a specific type, A, and then used appropriately. The else branch is more
interesting. In line 14, a Method metaobject m is created by calling getMethod()
indirectly in line 7, with its class name, method name and formal parameters
specified by cName2, mName2 and “. . . ” (elided) in line 7, respectively. In line 15,
this method is called reflectively on the receiver object o (pointed to by v) with
the actual argument being passed in an array, new Object[] {x, y}.

1  Object createObj(String cName) {
2     Class c1 = Class.forName(cName);
3     return c1.newInstance(); 
4  }

5  Method getMtd(String cName, String mName) {
6     Class c2 = Class.forName(cName);
7     return c2.getMethod(mName, ... ); 
8  }

9  void foo(X x, Y y,  ) {
10     Object v = createObj(cName1); //cName1 is an input string
11     if (  ) {
12         A a = (A) v; 
13     } else { 

14         Method m = getMtd(cName2, mName2);
15         m.invoke(v, new Object[] {x, y});
16     }
17  }

  
  

Fig. 1. An example of reflection usage abstracted from JDK 1.6.0 45.
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A reflection analysis infers, i.e., resolves statically the reflective targets
accessed at reflective call sites. As usual, soundnesss demands over-approximation.
Reflection introduces many challenges for static analysis. First, a modern reflec-
tion API is large and complex. Second, reflection is typically used as a means of
supporting dynamic adaptation of object-oriented software. As such, metaobjects
are often created reflectively as shown in Fig. 1 from input strings. Thus, reflective
object creation via newInstance() is hard to model statically. Finally, picking
judicious approximations to balance soundness, precision and scalability is non-
trivial. A simple-minded sound modeling of a reflective call (e.g., by assuming arbi-
trary behaviour) would destroy precision. Imprecision, in turn, often destroys scal-
ability because too many spurious results would be computed.

Solar automates reflection analysis for Java by working with a pointer
analysis. We first define some assumptions (Sect. 2.1). We then look at the three
limitations of the prior work (Sect. 2.2). Finally, we introduce Solar to address
these limitations by adopting three novel aspects in its design (Sect. 2.3).

2.1 Assumptions

The first three are made previously on reflection analysis for Java [20,21]. The
last one is introduced to allow reflective allocation sites to be modeled lazily.

Assumption 1 (Closed-World). Only the classes reachable from the class path
at analysis time can be used during program execution.

This assumption is reasonable since we cannot expect static analysis to handle
all classes that a program may conceivably download from the net and load at
runtime. In addition, Java native methods are excluded as well.

Assumption 2 (Well-Behaved Class Loaders). The name of the class returned
by a call to Class.forName(cName) equals cName.

Assumption 3 (Correct Casts). Type cast operations applied to the results of
reflective calls are correct, without throwing a ClassCastException.

Assumption 4 (Object Reachability). Every object o created reflectively in a
call to newInstance() flows into (i.e., is used in) either (1) a type cast operation
...= (T) v or (2) a call to invoke(v,...), get(v) or set(v,...), where v

points to o, along every execution path in the program.

As discussed in Sect. 4.2, Assumption 4 is found to hold for most reflective allo-
cation sites in real code (as illustrated in Fig. 1). Here, (1) and (2) represent two
kinds of usage points at which the class types of object o will be inferred lazily.
This makes it possible to handle reflective allocation sites more accurately than
before and to reason about the soundness of Solar for the first time.
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2.2 Past Work: Best-Effort Reflection Resolution

All the existing solutions [5,17,18,20–22] adopt a best-effort approach to reflec-
tion analysis, and consequently, suffer from the following three limitations:

L1. Eager Heap Modeling. An abstract object o created at a call to, e.g.,
c.newInstance() is modeled eagerly if its type c can be inferred from a string
constant or intraprocedural post-dominant cast, and ignored otherwise. Specifi-
cally, if c represents a known class name, e.g., “A”, then o’s type is “A”. Other-
wise, an intraprocedurally post-dominating cast operation (T) operating on the
result of the newInstance() call will allow c to be over-approximated as T or
any of its subtypes. This eager approach often fails in real code shown in Fig. 1,
where cName1 is an input string and the cast is not post-dominating. Thus,
its newInstance() call is ignored. Recently, in Doop (r5459247-beta) [18], the
objects created in line 10 (or line 3) are assumed to be of type A by taking advan-
tage of the non-post-dominating cast (A) in line 12 to analyze more code. How-
ever, the objects with other types created along both the if and else branches
are ignored. In prior work, such under-approximate handling of newInstance()
is a significant source of unsoundness, as a large part of the program called on
the thus ignored objects has been rendered invisible for analysis.

L2. Isolated Inferences. Many reflective calls (e.g., those in Fig. 1) are related
but analysed mostly in isolation, resulting in under-approximated behaviours. In
[21], we presented a self-inferencing reflection analysis, called Elf, that can infer
more targets at a reflective call site than before [5,17,18,20,22], by exploiting
more information available (e.g., from its arguments and return type). However,
due to eager heap modeling, Elf will still ignore the invoke() call in line 15 as
v points to objects of unknown types as discussed above.

L3. Design-Time Soundness, Precision and Scalability. When analysing
a program heuristically, a best-effort approach does not know which reflective
calls may potentially affect its soundness, precision and scalability. As a result,
a developer is out of luck with a program if such best-effort analysis is either
unscalable or scalable but with undesired soundness or precision or both.

2.3 Solar: Soundness-Guided Reflection Resolution

Figure 2 illustrates the Solar design, with its three novel aspects marked by N1 –
N3, where Ni is introduced to overcome the afore-mentioned limitation Li.

N1. Lazy Heap Modeling (LHM). Solar handles reflective object creation
lazily by delaying the creation of objects at their usage points where their types
may be inferred, achieving significantly improved soundness and precision.

Let us describe the basic idea behind using the example in Fig. 1. As cName at
c1 = Class.forName(cName) in line 2 is unknown, Solar will create a Class
metaobject c1u that represents this unknown class and assign it to c1. As c1
points to c1u at the allocation site v = c1.newInstance() in line 3, Solar will
create an abstract object ou3 of an unknown type for the site to mark it as being
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Impreicse Unsound 

Lazy Heap ModellingN1 Soundness Criteria
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( by Customized Thresholds )

PROBE
Collective InferenceN2

N3

Fig. 2. Solar: A soundness-guided analysis with three novel aspects, N1 – N3.

unresolved yet. Subsequently, ou3 will flow into two usage points: Case (I) a type
cast operation in line 12 and Case (II) a reflective method call site in line 15.

In Case (I), where ou3 is downcast to A, its type u is inferred to be A or any
of its subtypes. Let t1, . . . , tn be all the inferred types. Then ou3 is split into n
distinct objects ot13 ,. . . , otn3 to be assigned to a in line 12. In Case (II), Solar
will infer u by performing a collective inference as described below, based on the
information available in line 15. Let t′1, . . . , t

′
m be all the inferred types. Then ou3

is split into m distinct objects o
t′
1
3 ,. . . , ot

′
m
3 to be assigned to v in line 15.

According to Assumption 4 that states a key observation validated later, a
reflectively created object like ou3 is typically used in either Case (I) or Case (II)
along every program path. The only but rare exception is that ou3 is created but
never used later. Then the corresponding constructor must be annotated to be
analyzed statically unless ignoring it will not affect the points-to information.

N2. Collective Inference. Solar builds on the prior work [5,17,18,20–22] by
relying on collective inference emphasized for the first time in reflection analysis.
Let us return to the invoke() call, which cannot be analyzed previously. As v
points to ou3 , Solar can infer u based on the information available at the call site.
This happens when Case (1) cName2 is known or Case (2) cName2 is unknown
but mName2 is known. In Solar, inference is performed “collectively”, whereby
inferences on related reflective calls (lines 3, 6 and 15 for Case (1) and lines 3,
7 and 15 for Case (2)) can mutually reinforce each other. We will examine the
second case, i.e., the more complex of the two, in Sect. 3.4.3. This paper is the
first to do so by exploiting the connection between newInstance() (via LHM)
and reflective calls for manipulating methods and fields.

N3. Automatic Identification of “Problematic” Reflective Calls. Due
to this capability, Solar is the first that can reason about its soundness. When
such reasoning is not possible due to, e.g., native code, Solar reduces to an
effective under-approximate analysis due to its soundness-guided design, allowing
a disciplined tradeoff to be made among soundness, precision and scalability.

If Solar is scalable for a program, Solar can automatically identify “prob-
lematic” reflective calls (as opposed to reporting input strings as in [20]) that may
threaten its soundness and precision to enable both to be improved with light-
weight annotations. If Solar is unscalable for a program, a simplified version of
Solar, denoted Probe in Fig. 2, is called for next. With some “problematic”
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reflective calls to be annotated, Solar will re-analyze the program, scalably
after one or more iterations of this “probing” process. We envisage providing
a range of Probe variants with different tradeoffs among soundness, precision
and scalability, so that the scalability of Probe is always guaranteed.

Consider Fig. 1 again. If both cName2 and mName2 are unknown (given that
the type of ou3 is unknown), then Solar will flag the invoke() call in line
15 as being potentially unsoundly resolved, detected automatically by verifying
Condition (3) in Sect. 3.5. In addition, Solar will also automatically highlight
reflective calls that may be potentially imprecisely resolved. Their lightweight
annotations will allow Solar to yield improved soundness and precision.

Discussion. Under Assumptions 1 – 4, we can establish the soundness of Solar
by verifying a soundness criterion (given in Sect. 3.5). Otherwise, our soundness-
guided approach has made Solar demonstrably more effective than existing
under-approximate reflection analyses [5,17,20,21] as validated later.

3 Formalism

We formalise Solar, illustrated in Fig. 2, for RefJava, which is Java restricted
to a small core of its reflection API. Solar is flow-insensitive but context-
sensitive. However, our formalisation is context-insensitive.

3.1 The RefJava Language

RefJava consists of all Java programs (under Assumptions 1 – 4) except that the
Java reflection API is restricted to the four methods in Fig. 1: Class.forName(),
newInstance(), getMethod() and invoke(). Our formalism is designed to allow
its straightforward generalization to the entire API. For example, reflective field
accesses via getField(), get() and set() can be handled similarly. As is stan-
dard, a Java program is represented only by five kinds of statements in the SSA
form, as shown in Fig. 5. For simplicity, we assume that all the methods of a class
accessed reflectively are its instance members, i.e., v �= null in invoke(v,...)
in Fig. 1. We will discuss how to handle static members in Sect. 3.9.

3.2 Road Map

Inference

Transformation

Pointer 
Analysis

Propagation

Lazy
Heap

Modeling

Target
Search

1

4

23 5a

b

Fig. 3. Solar’s inference system.

As depicted in Fig. 3, Solar’s inference
system, which consists of five components,
works together with a pointer analysis. The
arrow ←→ between a component and the
pointer analysis indicates that each is both
a producer and consumer of the other.

Let us see how Solar resolves the
invoke() call in Fig. 1. If cName2 and
mName2 are string constants, Propagation
will create a Method metaobject (pointed to
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by m) carrying its known class and method information and pass it to Target
Search ( 1©). If cName2 or mName2 is not a constant, a Method metaobject marked
as such is created and passed to Inference ( 2©), which will infer the missing
information and pass a freshly generated Method metaobject enriched with the
missing information to Target Search ( 3©). Then Target Search maps a Method
metaobject to its reflective target mtd in its declaring class ( 4©). Finally, Trans-
formation turns the reflective call in line 15 into a regular call v.mtd(...) and
pass it to the pointer analysis ( 5©). Lazy Heap Modeling handles newInstance()
in Fig. 1 to resolve the dynamic type of v based on the information discovered
by Propagation ( a©) or Inference ( b©).

3.3 Notations

We will use the notations in Fig. 4. A method signature consists of the method
name and descriptor (i.e., return type and parameter types) and, a method is
specified by its method signature and the class where it is declared or inherited.
CO and MO represent the set of Class and Method metaobjects, respectively.
In particular, ct denotes a Class metaobject of a known class t and cu a Class
metaobject of an unknown class u. As illustrated earlier with Fig. 1, we write oti
to represent an abstract object created at an allocation site i if it is an instance
of a known class t and oui of (an unknown class type) otherwise. For a Method
metaobject, we write mts if it is a member in a known class t and mus otherwise,
with its signature being s. In particular, we write mu as a shorthand for ms when s
is unknown (with the return type s.tr being ignored), i.e., when s.nm = s.p = u.

3.4 The SOLAR’S Inference System

We present the inference rules used by all the components in Fig. 3, starting with
the pointer analysis and moving to the five components of Solar.

3.4.1 Pointer Analysis. Fig. 5 gives a standard formulation of a flow-
insensitive Andersen’s pointer analysis for RefJava. pt(x) represents the points-
to set of a pointer x. An array object is analyzed with its elements collapsed to
a single field, denoted arr. For example, x[i] = y can be seen as x.arr = y.
In [A-New], oti uniquely identifies the abstract object created as an instance of
t at this allocation site, labeled by i. In [A-Ld] and [A-St], the field accesses are
handled.

Fig. 4. Notations (X̂ = X ∪ {u}, where u is an unknown class type or an unknown
method signature). A superscript ‘*’ marks a domain that contains u.
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Fig. 5. Rules for Pointer Analysis.

Fig. 6. Rules for Propagation.

In [A-Call] (for non-reflective calls), the function dispatch(oi ,m) is used to
resolve the virtual dispatch of method m on the receiver object oi to be m′ (when
m is invokable on oi ). Following [24], we assume that m′ has a formal parameter
m′

this for the receiver object and m′
p1, . . . ,m

′
pn for the remaining parameters,

and a pseudo-variable m′
ret is used to hold the return value of m′.

3.4.2 Propagation. Figure 6 gives the rules for forName() and getMethod()
calls. Depending on whether their arguments are string constants or not, different
kinds of Class and Method metaobjects are created. SC is a set of string con-
stants and toClass returns a Class metaobject ct, where t is the class specified
by the string value returned by val(oi) (with val : H → java.lang.String).

By design, ct and mts will flow to Target Search but all the others, i.e., cu, mu

and mu will flow to Inference, where the missing information is inferred. During
Propagation, only the name of a method signature s (i.e., s.nm) can be discovered
but its other parts are unknown: s.tr = s.p = u.

3.4.3 Inference. Figure 7 gives three rules to infer the reflective target meth-
ods for x = (A) m.invoke(y,args), where A indicates a post-dominating cast
on its result. If A = Object, then no such cast exists. In [I-InvTp], we use the
types of the objects pointed to by y to infer the class types of the target meth-
ods called. Note that mt represents a freshly generated Method metaobject. In
[I-InvSig], we use the information available at a call site (excluding y) to infer the
descriptor in the signature of a target method. In [I-InvS2T], we use the signature
of a method to infer the class types of the method.

As is standard, t <: t′ holds when t is t′ or a subtype of t′. In [I-InvSig] and
[I-InvS2T], �: is used to take advantage of the post-dominating cast (A) during
inference when A is not Object. By definition, u �: Object holds. If t′ is not
Object, then t �: t′ holds if and only if t <: t′ or t′ <: t holds. The information
on args is also exploited, where args is an array of type Object[], only when
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Fig. 7. Rules for Inference.

it can be analyzed exactly element-wise by an intraprocedural analysis. In this
case, suppose that args is an array of n elements. Let Ai be the set of types of
the objects pointed to by its i-th element, args[i]. Let Pi = {t′ | t ∈ Ai, t <: t′}.
Then Ptp(args) = P0 × · · · × Pn−1. Otherwise, Ptp(args) = ∅, implying that
args is ignored as it cannot be exploited effectively during inference.

To maintain precision in [I-InvS2T], we use a method signature to infer its
classes when both its name and descriptor are known. In this rule, the function
M(str , s.nm, s.p) returns the set of class types where the method with the speci-
fied signature s is declared if s.nm �= u and s.p �= u, and ∅ otherwise. The return
type of the matching method is ignored if s.tr = u.

Let us illustrate some of our rules by considering our example in Fig. 1.

Example 1. Note that cName1 is an input string. Suppose that cName2 is also an
input string but mName2 is a string constant. By applying [P-ForName], [P-GetMtd]

and [L-UkwTp] (in Fig. 9) to the calls to forName() in lines 2 and 6, getMethod()
and newInstance(), respectively, we obtain c1u ∈ pt(c1), c2u ∈ pt(c2), mus ∈
pt(m) and oui ∈ pt(v), where s is a signature with a known method name in mName2.
Given args = new Object[] {x,y}, Ptp(args) is built as described earlier. Solar
can infer the classes t where this method is declared by [I-InvS2T]. Finally, Solar
will add all inferred Method objects mts to pt(m) at the call site.

3.4.4 Target Search. For a Method object mts in a known class t (with s being
possibly u), we define MTD : MO → P(M) to find all target methods matched:

MTD(mts) =
⋃
t<:t′

mtdLookUp(t′, s.tr, s.nm, s.p) (1)

wheremtdLookUp is the standard lookup function for finding the methods accord-
ing to a declaring class t′ and a signature s except that (1) the return type s.tr is
also considered and (2) any u that appears in s is treated as a wild card.

3.4.5 Transformation. Figure 8 gives the rules used for transforming a reflec-
tive call into a regular statement, which will be analyzed by the pointer analysis.

Let us examine [T-Inv] in more detail. The second argument args points to a
1-D array of type Object[], with its elements collapsed to a single field arr
during the pointer analysis, unless args can be analyzed exactly intraprocedu-
rally in our current implementation. Let arg1,. . . , argn be the n freshly created
arguments to be passed to each potential target method m′ found by Target
Search. Let m′

p1, . . . ,m
′
pn be the n parameters (excluding this) of m′, such that
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Fig. 8. Rules for Transformation.

Fig. 9. Rules for Lazy Heap Modeling.

the declaring type of m′
pk is t′′. We include ot

′
j to pt(argk) only when t′ <: t′′

holds in order to filter out the objects that cannot be assigned to m′
pk. Finally,

the regular call obtained can be analyzed by [A-Call] in Fig. 5.

3.4.6 Lazy Heap Modeling. Figure 9 gives the rules for resolving
newInstance() lazily. In [L-KwTp], for each Class object ct pointed to by c′,
an object, oti, is created as an instance of this known type at allocation site i
straightaway. In [L-UkwTp], as illustrated with Fig. 1, oui is created to enable LHM
if c′ points to a cu instead. Then its lazy object creation happens at a type cast
by applying [L-Cast] (with oui blocked from flowing from x to a) and an invoke()
call site by applying [L-Inv]. Note that A is assumed not to be Object in [L-Cast].

3.5 Soundness Criterion

RefJava consists of the four methods from the Java reflection API as shown in
Fig. 1. Solar is sound if their calls are resolved soundly under Assumptions 1 – 4.
By construction, calls to Class.forName() and getMethod() are always soundly
resolved (with the metaobjects created being modelled appropriately). Due to
Assumption 4, there is no need to consider newInstance() calls since they are
soundly resolved if all invoke() calls are. For convenience, we define:

AllKwn(v) = � oui ∈ pt(v) (2)

which means that the dynamic type of every object pointed to by v is known.
Consider Fig. 7. For the Method metaobjects mts with known classes t, these

targets can be soundly resolved by Target Search, except that the signatures
s can be further refined by applying [I-InvSig]. For the Method objects mus with
unknown class types u, the targets accessed are inferred by [I-InvTp] and [I-InvS2T].
Let us consider a call to (A) m.invoke(y, args). Solar attempts to infer the
missing classes of its Method metaobjects in two ways, by applying [I-InvTp] and
[I-InvS2T]. Such a call is soundly resolved if the following condition holds:

SC(m.invoke(y,args)) = AllKwn(y) ∨ ∀ mus ∈ pt(m) : s.nm �= u ∧ Ptp(args) �= ∅ (3)
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If the first disjunct holds, applying [I-InvTp] to invoke() can over-approximate
its target methods from the types of all objects pointed to by y. Thus, every
Method metaobject mu ∈ pt(m) is refined into a new one mt for every oti ∈ pt(y).

If the second disjunct holds, then [I-InvS2T] comes into play. Its targets are
over-approximated based on the known method names s.nm and the types of
the objects pointed to by args. Thus, every Method metaobject mus ∈ pt(m) is
refined into a new one mts, where s.tr �: A and s.p ∈ Ptp(args) �= ∅. Note that
s.tr is leveraged only when it is not u. The post-dominating cast (A) is considered
not to exist if A = Object. In this case, u �: Object holds (only for u).

Theorem 1. Solar is sound for RefJava if SC(c) holds at every reflective call
c of the form “(A) m.invoke(y, args)” under Assumptions 1 – 4.

3.6 Identifying Unsoundly Resolved Reflective Calls

Solar flags a call c to invoke() as resolved unsoundly if SC(c) is false. This
can be conservative as some points-to information at c can be over-approximate.
However, our evaluation shows that Solar can analyze 7 out of the 10 large pro-
grams considered scalably with full automation, implying that its inference sys-
tem is powerful and precise. In addition, all 13 unsound calls reported by Solar
in the remaining three programs are truly unsound, as discussed in Sect. 4.4,
validating Solar’s effectiveness in identifying unsoundness.

3.7 Identifying Imprecisely Resolved Reflective Calls

Presently, Solar performs this task depicted in Fig. 2, by simply ranking the
reflective call sites according to the number of reflective targets inferred. This
simple metric often gives a good indication about the sources of imprecision.

3.8 Probe

For evaluation purposes, we instantiate Probe, as shown in Fig. 2, from Solar
as follows. We refrain from performing Solar’s LHM (by retaining [L-UkwTp] but
ignoring [L-Cast] and [L-Inv]) and abandon some of Solar’s sophisticated inference
rules (by disabling [I-InvS2T]). In Target Search, Probe will restrict itself to only
Method metaobjects mts, where the signature s is at least partially known.

3.9 Static Class Members

To handle static class members, our rules can be modified. In Fig. 7, y = null.
[I-InvTp] is not needed (by assuming pt(null) = ∅). In (3), the first disjunct is
removed. [I-InvS2T] is modified with oui ∈ pt(y) replaced by y = null. The rules
in Fig. 8 are modified to deal with static members. In Fig. 9, [L-Inv] is no longer
relevant. The static initializers for the classes in the closed world are analyzed.
This can happen at, say, loads/stores for static fields as is the standard but also
when some classes are discovered in [P-ForName], [L-Cast] and [L-Inv].
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4 Evaluation

We have implemented Solar on top of Doop [18], a modern pointer analysis
tool for Java. We compare Solar with two state-of-the-art under-approximate
reflection analyses, Elf [21] and the reflection analysis provided in Doop (also
referred to as Doop). In some programs, Assumptions 1 – 4 may not hold. Thus,
Solar is also treated as being under-approximate. Due to its soundness-guided
design, however, Solar can yield significantly better under-approximations than
Doop and Elf. Like Doop and Elf, Solar is also implemented in the Datalog
language. As far as we know, Solar is more comprehensive in handling the Java
reflection API than the prior reflection analyses [2,5,17,18,20,21].

In particular, our evaluation addresses the following research questions
(RQs):

– RQ1. How well does Solar achieve full automation without using Probe?
– RQ2. How does Solar identify automatically “problematic” reflective calls

affecting its soundness, precision and scalability, thereby facilitating their
improvement by means of some lightweight annotations?

– RQ3. How significantly does Solar improve recall compared to Doop [18]
and Elf [21], while maintaining nearly the same precision?

– RQ4. How does Solar scale in analysing large reflection-rich applications?

4.1 Experimental Setup

The three reflection analyses are compared by running each together with the
same Doop pointer analysis framework (using its stable version r160113) [18].
For the Doop framework, we did not use its beta release (r5459247). The beta
release handles a larger part of the Java reflection API but discovers fewer reflec-
tive targets in our recall experiment, since it ignores reflective targets whose class
types are in the libraries (for efficiency reasons). All the three reflection analyses
operate on the SSA form of a program emitted by Soot [19], context-sensitively
under selective-2-type-sensitive+heap provided by Doop.

We use the LogicBlox Datalog engine (v3.9.0) on a Xeon E5-2650 2 GHz
machine with 64 GB of RAM. We consider 7 large DaCapo benchmarks (2006-10-
MR2) and 4 real-world applications, avrora-1.7.115 (a simulator), checkstyle-
4.4 (a checker), freecs-1.3.20111225 (a server) and findbugs-1.2.1 (a bug detec-
tor), under a large reflection-rich Java library, JDK 1.6.0 45.

4.2 Assumptions

When analysing real code under-approximately, we accommodate Assumptions
1 – 4 as follows. For Assumption 1, we rely on Doop’s pointer analysis to sim-
ulate the behaviors of Java native methods. Dynamic class loading is assumed
to be resolved separately [25]. To simulate its effect, we create a closed world
for a program, by locating the classes referenced with Doop’s fact generator
and adding additional ones found through program runs under TamiFlex [22].
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For the DaCapo benchmarks, avrora and checkstyle, their associated inputs
are used. For findbugs, one Java program is developed as its input. For freecs,
a server requiring user interactions, we only initialize it as the input in order to
ensure repeatability. Assumptions 2 and 3 are taken for granted.

As for Assumption 4, we validate it for all reflective allocation sites where
oui is created in the application code of the 10 programs that can be analyzed
scalably. This assumption is found to hold at 75 % of these sites automatically
by performing a simple intraprocedural analysis. We have inspected the remain-
ing 25 % interprocedurally and found only two violating sites (in eclipse and
checkstyle), where oui is never used. In the other sites inspected, oui flows
through only local variables with all the call-chain lengths being at most 2.

4.3 RQ1: Full Automation

Fig. 10. The number of annotations required
for improving the soundness of unsoundly
resolved reflective calls.

Figure 10 compares Solar and
existing reflection analyses [5,17,18,
20–22] denoted by “Others” by the
degree of automation achieved. For
an analysis, this is measured by the
number of annotations required in
order to improve the soundness of
the reflective calls identified to be
potentially unsoundly resolved.

Solar analyzes 7 out of the
11 programs scalably with full
automation. For hsqldb, xalan and
checkstyle, Solar is unscalable
(under 3 hours). With Probe, 13 reflective calls are flagged as being poten-
tially unsoundly resolved. After 7 annotations, 2 in hsqldb, 2 in xalan and 3
in checkstyle, Solar is scalable, as discussed in Sect. 4.4. However, Solar,
like Doop and Elf, is unscalable (under 3 hours) for jython, an interpreter for
Python in which the Java libraries and application code are invoked reflectively
from the Python code.

“Others” cannot identify which reflective calls may be unsoundly resolved.
However, they may improve soundness by requiring users to annotate the string
arguments of calls to, e.g., Class.forName() and getMethod(), as suggested
in [20]. As shown in Fig. 10, “Others” will require 338 annotations initially and
possibly more in the subsequent iterations (when more code is discovered). As
discussed in Sect. 2.3, Solar’s annotation approach is also iterative. However,
for these programs, Solar requires only 7 annotations in one iteration.

Solar outperforms “Others” due to its powerful inference system for per-
forming reflection resolution and effective mechanism in identifying unsoundness.
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4.4 RQ2: Automatically Identifying “Problematic” Reflective Calls

Solar is unscalable for hsqldb, xalan and checkstyle (under 3 hours). Probe
is then run to identify their “problematic” reflective calls, reporting 13 poten-
tially unsound calls: 1 in hsqldb, 12 in xalan and 0 in checkstyle. Their han-
dling is all unsound by code inspection, highlighting the effectiveness of Solar
in pinpointing a small number of right parts of the program to improve unsound-
ness.

In addition, we presently adopt a simple approach to alerting users for poten-
tially imprecisely resolved reflective calls. Probe sorts all the newInstance()
call sites according to the number of objects lazily created at the cast operations
operating on the result of a newInstance() call (by [L-Cast]) in non-increasing
order. In addition, Probe ranks the remaining reflective call sites according to
the number of reflective targets resolved, also in non-increasing order.

By focusing on unsoundly and imprecisely resolved reflective calls (as opposed
to input strings), only lightweight annotations are needed as shown in Fig. 10,
with 2 in hsqldb, 2 in xalan and 3 in checkstyle, as explained below. For the
concepts of entry, member-introspecting and side-effect methods mentioned in
Figs. 11 and 12, we refer to [21].

Unsound List:
org.hsqldb.Function:getValue/invoke/1

org.hsqldb.Function:<init>/getMethods/0
org.hsqldb.Function:<init>/forName/0

org.hsqldb.Function:getValue/invoke/1
org.hsqldb.Function:<init>/getMethods/0
Targets: 244

java.io.ObjectStreamClass.newInstance
                              /Constructor.newInstance/0

java.io.ObjectInputStream.resolveClass

java.io.Serializable: 1391
 10 items in total 

/forName/0

      

Imprecise List:
newInstance (Type Casting)

 Other Side-Effect Methods 

147 Function (    ) {

343 Objecct getValue( ) {

mtd.invoke(null, arg); }
   

    c = Class.forName(cn);
  

  
    Method[] mtds = 

                     c.getMethods();

    for(;i<mtds.length;i++) {
  

        Method m = mtds[i];
       if(m.getName().

            mtd = m;
  

Class: org.hsqldb.Function

185

352
  

169

179

181
182
184

equals(mn) && )

186

Fig. 11. Probing hsqldb.

4.4.1 hsqldb. Figure 11 shows the
unsound and imprecise lists automat-
ically generated by Probe, together
with the suggested annotation points
(found by tracing value flow). All the
call sites to the same method are
numbered from 0.

The unsound list contains one
invoke(), with its relevant code
contained in class org.hsqldb.
Function as shown. After Probe has
finished, mtd in line 352 points to a
Method metaobject muu that is initially
created in line 179 and later flows into line 182, indicating that the class type of
muu is unknown since cn in line 169 is unknown. By inspecting the code, we find
that cn can only be java.lang.Math or org.hsqldb.Library, read from some
hash maps or obtained by string manipulations. So it has been annotated this
way afterwards. The imprecise list for hsqldb is divided into two sections. In
“newInstance (Type Casting)”, there are 10 listed cast operations (T ) reached by
an oui object such that the number of types inferred from T is larger than 10. The
top cast java.io.Serializable has 1391 subtypes and is marked to be reached
by a newInstance() call site in java.io.ObjectStreamClass. However, this is a
false positive for the harness used due to imprecision in pointer analysis. Thus, we
have annotated its corresponding forName() call site in method resolveClass
of class java.io.ObjectInputStream to return nothing. With the two annota-
tions, Solar terminates in 45 min with its unsound list being empty.
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4.4.2 xalan. Probe reports 12 unsoundly resolved invoke() calls. All
Method objects flowing into these call sites are created at two getMethods() call
sites in class extensions.MethodResolver. By inspecting the code, we find that
the string arguments for the two getMethods() calls and their corresponding
entry methods are all read from a file with its name hard-wired as xmlspec.xsl
in this benchmark. For this particular input file provided by DaCapo, these two
calls are never executed and thus annotated to be disregarded. With these two
annotations, Solar terminates in 28 min with its unsound list being empty.

4.4.3 checkstyle. Probe reports no unsoundly resolved call. To see
why Solar is unscalable, we examine one invoke() call in line 1773 of Fig. 12
found automatically by Probe that stands out as being possibly imprecisely
resolved.

Class: org.apache.commons.beanutils.PropertyUtilsBean
921 PropertyDescriptor[] getPropertyDescriptors(Object b) { 
926     return getPropertyDescriptors(b.getClass());             }

Class: java.beans.Introspector.getPublicDeclaredMethods
1275 Method[] getPublicDeclaredMethods(Class clz) { 
1294     return clz.getMethods();

Class: org.apache.commons.beanutils.PropertyUtilsBean
1764 Object invokeMethod(Method m, Object o, Object[] v) { 
1773     return m.invoke(o, v);

<Entry>

<Member-Introspecting>

<Side-Effect>

[Annotation Point]

[Imprecise Location]

}

}

Fig. 12. Probing checkstyle.

There are 962 target meth-
ods inferred at this call site.
Probe highlights its correspond-
ing member-introspecting method
clz.getMethods() (in line 1294)
and its entry methods (with one
of these being shown in line 926).
Based on this, we find easily
by code inspection that the tar-
get methods called reflectively at
the invoke() call are the set-
ters whose names share the prefix
“set”. As a result, the clz.getMethods() call is annotated to return 158 “setX”
methods in all the subclasses of AutomaticBean.

In addition, the Method objects created at one getMethods() call
and one getDeclaredMethods() call in class *.beanutils.MappedProperty
Descriptor$1 flow into the invoke() call in line 1773 as false positives due
to imprecision in the pointer analysis. These Method objects have been anno-
tated away.

After the three annotations, Solar is scalable, terminating in 38 minutes.
Given the same annotations, existing reflection analyses [5,17,20,21] still can-

not handle the invoke() call in line 1773 soundly, because its argument o points
to the objects that are initially created at a newInstance() call and then flow
into a non-post-dominating cast operation (like the one in line 12 Fig. 1). How-
ever, Solar has handled this invoke() call soundly by using LHM, highlighting
once again the importance of collective inference in reflection analysis.

4.5 RQ3: Recall and Precision

To compare the effectiveness of Doop, Elf and Solar as under-approximate
reflection analyses, it is the most relevant to compare their recall, measured by
the number of true reflective targets discovered at reflective call sites that are
dynamically executed under certain inputs. In addition, we also compare their
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(static) analysis precision with two clients, but the results must be looked at
with one caveat. Existing reflection analyses can happen to be “precise” due to
their highly under-approximated handling of reflection. Therefore, our precision
results are presented to show that Solar exhibits nearly the same precision as
prior work despite its significantly improved recall achieved for real code.

Unlike Doop and Elf, Solar can automatically identify “problematic”
reflective calls for lightweight annotations. To ensure a fair comparison, the three
annotated programs shown in Fig. 10 are used by all the three analyses.

4.5.1 Recall. We use TamiFlex [22] to find the targets accessed at reflective
calls in our programs under the inputs described in Sect. 4.2. Solar is the only
one to achieve total recall for all reflective targets accessed.

Fig. 13. More true caller-callee relations found
in recall by Solar than Elf (Solar−Elf) and
by Elf than Doop (Elf − Doop).

Here, we demonstrate one
significant benefit of achiev-
ing higher recall, in practice.
Figure 13 compares Doop, Elf
and Solar in terms of true
caller-callee relations statically
calculated and obtained by an
instrumental tool written in
terms of Javassist [26]. Solar
recalls a total of 371 % (148 %)
more targets than Doop (Elf)
at the calls to newInstance()
and invoke(), translating into
49700 (40570) more true caller-
callee relations found for the 10 programs. These numbers are expected to
improve when more inputs are used. Note that all targets recalled by Doop are
recalled by Elf and all targets recalled by Elf are recalled by Solar. These
results demonstrate the effectiveness of our LHM and collective inference.

4.5.2 Precision. Table 1 compares the precision of Doop, Elf and Solar
with two popular clients. Note that Doop is unscalable for chart and hsqldb
(under 3 hours) in our setting. Despite achieving better recall (Fig. 13), Solar
maintains nearly the same precision as Doop and Elf, which tend to be more

Table 1. Precision comparison. There are two clients: DevirCall denotes the percentage
of the virtual calls whose targets can be disambiguated and SafeCast denotes the
percentage of the casts that can be statically shown to be safe.

chart eclipse fop hsqldb pmd xalan avrora checkstyle findbugs freecs Average

Devir Doop – 94.94 93.04 – 92.65 93.49 94.79 93.16 92.32 95.46 93.72

Call Elf 93.53 88.07 92.34 94.80 92.87 92.70 94.50 93.19 92.53 94.94 92.93

(%) Solar 93.51 87.69 92.26 94.51 92.39 92.65 92.43 93.39 92.37 95.26 92.63

Safe Doop – 59.34 53.68 – 45.40 57.97 56.12 50.19 45.78 59.71 53.24

Cast Elf 49.80 40.71 55.40 53.65 48.24 59.24 57.27 51.79 48.54 59.14 52.07

(%) Solar 49.53 38.04 54.21 53.11 44.53 59.11 52.56 49.40 43.60 57.96 49.79
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under-approximate than Solar. This suggests that Solar’s soundness-guided
design is effective in balancing soundness, precision and scalability.

4.6 RQ4: Efficiency

Table 2 compares the analysis times of Doop, Elf and Solar. Despite pro-
ducing significantly better under-approximations than Doop and Elf, Solar
is only several-fold slower. When analysing hsqldb, xalan and checkstyle,
Solar requires some lightweight annotations. Their analysis times are the ones
consumed by Solar on analysing the annotated programs. Note that these
annotated programs are also used by Doop and Elf (as discussed earlier).

Table 2. Efficiency comparison (secs).

chart eclipse fop hsqldb pmd xalan avrora checkstyle findbugs freecs Average

Doop – 321 779 – 226 254 188 256 718 422 –

Elf 3434 5496 2821 1765 1363 1432 932 1463 2281 1259 1930

Solar 4543 10743 4303 2695 2156 1701 3551 2256 8489 2880 3638

5 Related Work

In addition to the prior work already discussed in Sect. 2.2, we highlight below a
few open-source static reflection analysis tools available. bddbddb [2] represents
a partial implementation of the reflection analysis introduced in [20].

Doop [5,18] is a pointer analysis framework for Java programs writ-
ten in Datalog. Its reflection handling was similar to the reflection analysis
in [20] except that it is done context-sensitively. Doop can now accept the
analysis results of TamiFlex [22] on a program while analyzing the placeholder
library generated by Averroes [27], which presently models only newInstance()
and invoke().

Elf [21] represents a recent reflection analysis, implemented in Doop, for
Java, by leveraging a so-called self-inferencing property inherent in a program.
However, Elf opts to trade soundness for precision by inferring a target at
a reflective call if and only if both its signature and declaring class can be
inferred. Building on this, Solar advocates collective inference to improve and
even achieve soundness under Assumptions 1 – 4, facilitated by lazy heap mod-
eling for reflective object creation. Solar benefits greatly from the open-source
code of Elf and Doop. However, to the best of our knowledge, Solar is the
most comprehensive analysis in handling the Java reflection API.

Wala [17] provides static analysis capabilities for Java and other languages
like JavaScript. Its reflection handling is similar to [20] (by resolving values of
string arguments of reflective calls) but does not handle Field-related methods.
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6 Conclusion

Achieving soundness in reflection analysis can improve the effectiveness of many
clients such as program verifiers, compilers, bug detectors and security analyzers.
However, reflection is very challenging to analyze effectively, particularly for
reflection-heavy applications. In this paper, we make one significant step forward
by introducing a new reflection analysis that can reason about its soundness
when certain assumptions are met and produce significantly improved under-
approximations than prior art otherwise. We hope that our framework (www.
cse.unsw.edu.au/∼corg/solar) will be useful in future research.
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Abstract. We propose a static type system for a significant subset of
JavaScript, dubbed SJS, with the goal of ensuring that objects have a sta-
tically known layout at the allocation time, which in turn can enable an
ahead-of-time (AOT) compiler to generate efficient code.The main tech-
nical challenge we address is to ensure fixed object layout, while support-
ing popular language features such as objects with prototype inheritance,
structural subtyping, and method updates, with the additional constraint
that SJS programs can run on any available standard JavaScript engine,
with no deviation from JavaScript’s standard operational semantics. The
core difficulty arises from the way standard JavaScript semantics imple-
ments object attribute update with prototype-based inheritance. To our
knowledge, combining a fixed object layout property with prototype
inheritance and subtyping has not been achieved previously.

1 Introduction

JavaScript is the most popular programming language for writing client-side web
applications. Over the last decade it has become the programming language for
the web, and it has been used to write large-scale complex web applications
including Gmail, Google docs, Facebook.com, Cloud9 IDE. The popularity of
JavaScript is due in part to the fact that JavaScript can run on any platform
that supports a modern web browser, and that applications written in JavaScript
do not require to go through an installation process.

Given the breadth of applications written nowadays in JavaScript, significant
effort has been put into improving JavaScript execution performance. Modern
JavaScript engines implement just-in-time (JIT) compilation techniques com-
bined with inline caching, which rely, among other things, on the fact that
the layouts of most JavaScript objects do not change often. These optimization
heuristics are ineffective when new fields and method are added to an object [16].

A promising alternative to JIT optimization is to use an ahead-of-time (AOT)
compiler backed by a static type system. asm.js [2] pioneered this direction in
the domain of JavaScript. asm.js is a statically-typed albeit low-level subset of
JavaScript designed to be used as a compiler target, not by a human program-
mer. One of the lessons learned from asm.js is that a promising strategy for
c© Springer-Verlag Berlin Heidelberg 2015
S. Blazy and T. Jensen (Eds.): SAS 2015, LNCS 9291, pp. 181–198, 2015.
DOI: 10.1007/978-3-662-48288-9 11
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improving JavaScript is to design a subset of JavaScript that has strong type-
safety guarantees, so that it can be compiled into efficient code if a compiler is
available, and yet, in the absence of a compiler, can also be run with the same
semantics on any standard JavaScript engine.

Recently, we started to design a new subset of JavaScript [12], dubbed
SJS, that can be compiled efficiently by AOT compilers. Unlike asm.js, our
design includes popular high-level features of JavaScript, such as objects with
prototype-based inheritance, structural subtyping, closures, and functions as
first-class objects. Like asm.js, an important goal is to enable an AOT com-
piler to translate attribute accesses into direct memory accesses, which requires
that objects have statically known layouts.

The first major technical challenge that we face is how to ensure fixed object
layout, in the presence of a rich set of high-level language features, while also
retaining the operational semantics as given by standard JavaScript engines.
The challenge is due in large part to the way standard JavaScript semantics
implements object attribute update. JavaScript allows writing to attributes that
are unknown at object creation; a new attribute can be inserted into an object
simply by writing to it, thereby altering the object’s layout. Even if we addressed
this issue, e.g. by having a type system disallow writes to unknown attributes,
the problem does not go away, due to JavaScript’s treatment of prototype inher-
itance. For read operations, an attribute that cannot be found in the object itself
is looked-up recursively in the object’s prototype chain. However, when updat-
ing an attribute, a new attribute is created in the inheritor object itself, even
if the attribute is present in the prototype chain. Essentially, attribute updates
do not follow the prototype chain. This can lead to objects changing their lay-
out even for programs that update attributes that seemingly are already available
for reading. We elaborate in Sect. 2 how this particular semantics interacts with
high-level features such as structural subtyping and method updates.

Contributions. In this paper, we propose the underlying type system of SJS,
with the following main contributions:

– The type system of SJS supports many attractive and convenient high-level
features, such as prototype-based inheritance, closures, structural subtyping,
and functions as first-class objects, and ensures that all objects have a stati-
cally known attribute layout once initialized. This makes SJS a good candidate
for AOT compilation and optimization. As far as we know, this is the first
type system ensuring fixed object layout for JavaScript programs with this
combination of features.

– The type system of SJS is described as a composition of a standard base type
system for records, along with qualifiers on object types designed to ensure the
fixed object layout. This presentation of the type system highlights the design
of the type qualifiers for fixed object layout, which is a novel contribution of
this type system.

In this paper we focus on the design of the type system and the type check-
ing algorithm. The paper also includes a brief summary of implementation and
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evaluation results. We refer to the companion technical report [12] for the other
interesting aspects of the SJS language, such as type inference, typing declara-
tions, type-directed compilation. The full details of the preliminary performance
evaluation results and how the top-level language (SJS) integrates the proposed
type system into JavaScript are also available in the technical report.

Comparison with Related Designs. A number of efforts are underway to
design statically-typed languages for the web where programs could be type-
checked statically and maintained easily. TypeScript [4,21] is a typed superset
of JavaScript designed to simplify development and maintenance. Unlike SJS’s
type system, TypeScript’s type system does not guarantee the fixed object layout
property. Therefore, TypeScript programs cannot be compiled into efficient code
ahead of time in the way SJS programs can.

As mentioned earlier, asm.js [2] is a statically-typed subset of JavaScript
aimed at AOT compilation. If a program is written in asm.js, it can run effi-
ciently in the Firefox browser with performance comparable with equivalent C
programs. A key advantage of asm.js, is that being a strict subset of JavaScript,
it can run on any JavaScript engine, even if the engine is not tuned for asm.js,
albeit at a regular JavaScript speed. However, since asm.js only supports primi-
tive types and operations, the language is not suitable for regular object-oriented
programming. SJS intends to offer the same kind of performance advantage,
while mostly retaining the expressivity of JavaScript.

RPython [6] is a typed subset of Python designed for AOT compilation to
efficient low-level code. Like SJS, RPython fixes object layouts statically in order
to enable optimization. However, RPython’s type system does not face the same
challenges that we address in SJS, because Python does not use prototype-based
inheritance. For a language not using a delegation-based prototype inheritance,
a traditional notion of object type is sufficient to ensure the fixed object layout
property.

2 Design Rationale for the SJS Type System

To illustrate the issues with dynamic object layout in JavaScript as well as our
proposed type system, we consider the example program shown in Fig. 1.

Fig. 1. Example JavaScript program to demonstrate dynamic object layout.

In this example, in line 1 we create an object o1 with a field a and a method
f. In line 2 we create another object with a field b and with the prototype o11.
1 Good programming practices of JavaScript discourage the use of non-standard

proto field; however, we use this field to keep our examples concise.



184 W. Choi et al.

Fig. 2. Program state diagrams for Fig. 1. The dotted line is the prototype reference.
The asterisk (*) is a function value

According to JavaScript semantics, the object o2 will include a reference to the
prototype object o1, as shown in Fig. 2(a). The value of o2.a in this state would
be 1, which is found by searching for the nearest definition of the field a in the
prototype chain for o2. Furthermore, since the value of the field a is aliased
between o1 and o2, the update to o1.a from line 3 results in the state shown in
Fig. 2(b), and is immediately visible to o2.a.

The interesting behavior in this program is in line 4. According to JavaScript
semantics, when an inherited field is updated in an object, the field is added to
the object itself, and the update happens in the newly added field, resulting in
the state shown in Fig. 2(c).

Note that the same effect of object changing its layout would happen at line 5
with the method call o2.f(). This method call would first resolve the method
o2.f to the method f inherited from the prototype o1, and would then invoke
the method with the implicit parameter this set to o2. We say that o2 is the
receiver object for this method invocation.

This example illustrates that in general we cannot assign fixed offsets relative
to the location of the object in memory where to find attributes (e.g. o2.a refers
to different locations at different times.) This poses challenges to efficient execu-
tion of JavaScript. A naive implementation would use potentially multiple memory
accesses to retrieve the intended attribute value. Modern JavaScript JIT-compilers
attempt to optimize attribute lookup computation by caching lookup computation
for frequently appearing object layouts at each object operation.2 Without stati-
cally known offset, an AOT compiler would have to either generate inefficient code
for attribute lookup, or encode a JIT-compiler-like strategy at runtime.

2.1 Type System for Enforcing Static Object Layout

We propose a type system for a subset of JavaScript to ensure that well-typed
programs have the following properties (hereon, we use the term attribute to
refer to either a field or a method. In standard JavaScript, the term property is
used instead of the term attribute.):
2 This representation is called hidden class representation and the caching technique is

called inline caching [11]. As noted before, this optimization can fail to apply under
certain conditions [16].
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– Prop. 1. All accesses must be to attributes that have been previously defined (in
self or in a prototype.)

– Prop. 2. The layout of objects does not change after allocation, both in terms of
the set of attributes, and in terms of their types.

– Prop. 3. Allow prototype inheritance as a language feature, as implemented in
standard JavaScript runtime systems.

– Prop. 4. Allow subtyping in assignments, so a subtype instance can be used in
contexts in which a base type instance can be used.

In addition, primitive operations do not result in runtime type errors. We
believe that these properties are important for program maintainability, as well
as for performance on modern JavaScript runtimes. At the same time we believe
that it is important to enforce these properties without changes to JavaScript
interpreters and just-in-time compilers, so we designed SJS as a subset of
JavaScript that preserves standard behavior.

The safety of accessing an attribute (Prop. 1) can be enforced with standard
static typing techniques that assign fixed static types to variables and attributes.
The type of an object must mention the attributes inherited from the prototype
chain to allow access to them. However, such a type system would be too for-
giving: it would accept the program shown in Fig. 1, violating the fixed layout
requirement (Prop. 2).

To support fixed layout (Prop. 2) and prototype inheritance (Prop. 3),
while using the standard JavaScript execution model, we need to ensure that:
for any field update statement, e1.a = ... , the object denoted by e1 must define
the field a . We say that an object owns the attributes that are defined in the
object itself, as opposed to those that are inherited from a prototype. To enforce
this property, the types of objects will include the list of attributes guaranteed
to be owned by the object, in addition to the list of all attributes guaranteed to
be accessible in the object.

Returning to the example from Fig. 1, the type of o1 will mention that the
field a and f are owned, while the type of o2 will mention only b as owned.
Based on these types, the assignment o2.a = 2 from line 4 will be ill-typed, as
we intended.

However, this is not enough to ensure static object layout. Consider replacing
line 4 with the method invocation o2.f(). This would also attempt to set the
field a for object o2, and should be disallowed. The problem is, however, that
the body of the method f is type checked in the context of the receiver object
o1, where it is defined, and in that context the assignment this.a is allowed.

There are several options here. One is to require that an object must own
all attributes owned by its prototype, such that a function inherited from the
prototype can assume that all attributes it may want to update are owned. In
the context of our example, this would force us to redefine the fields a and f
in o2. This is not a good option because it essentially disables completely the
prototype inheritance mechanism and the flexibility it gives.

We therefore decided to allow the set of owned attributes to be different
for an object and its prototype. The option that we propose is based on the
observation that only a subset of the owned attributes are updated in methods
using the receiver syntax, i.e., this.a. These are the only attributes that must
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be owned by all inheriting objects. We therefore propose to maintain a second
set of attribute names for an object type: the subset of the owned attributes that
must be owned also by its inheritors. We call these attributes inheritor-owned
attributes. For the example in Fig. 1, the attribute a of o1 is updated using
receiver syntax, i.e., this.a, which means that a should be an inheritor-owned
attribute of o1. This means that a should be an owned attribute for inheritors,
e.g., o2. This, in turn, means that we should disallow the definition of o2 in line 2.

We can summarize the requirements of our type system as follows. Object
types are annotated with a set of owned attributes and a set of inheritor-owned
attributes, with the following rules:

– Rule 1: Owned attributes are defined directly in an object.
– Rule 2: Only owned attributes of an object can be updated.
– Rule 3: Methods can only update inheritor-owned attributes of their receiver object

(using this.a notation).
– Rule 4: Inheritor-owned attributes are among the owned attributes.
– Rule 5: The inheritor-owned attributes of an object include all the inheritor-owned

attributes of the prototype object.

Applying these ideas to our example program, we assign the following type
to variable o1:

o1 : {a : Int, f : Int ⇒ Int}P({a,f},{a})

This type is composed of the base record type and the object-type qualifier
written as superscript. The base record type says that the attributes a and f are
all the accessible attributes. The double arrow in the type Int ⇒ Int marks that
this is the type of a method (i.e., a function that takes an implicit receiver object
parameter), and distinguishes the type from Int → Int, which we reserve for
function values; we do not make the receiver type a part of the method type.3 The
object-type qualifier part of o1 says that the object is precisely typed (marked
as P, explained later), is guaranteed to own the attributes a and f, and all of
its inheritors must own at least attribute a.

In our type system line 2 is ill-typed because it constructs an object that owns
only the attribute b, yet it inherits from object o1 that has an inheritor-owned
attribute a (Rule 5). This is reasonable, because if we allow the definition of o2,
say with type {a : Int, b : Int, f : Int ⇒ Int}P({b},{}), then it would be legal to
invoke o2.f(), which we know should be illegal because it causes the layout of
o2 to change. To fix this type error we need to ensure that o2 also owns a. Note
that the assignment in line 3 (o1.a = 3) is well-typed, as it should, because a
is among the owned fields mentioned in the static type of o1.

2.2 Subtyping

Consider again the example in Fig. 1 with the object layouts as shown in
Fig. 2(a). The assignment o1.a = 3 from line 3 is valid, but the assignment o2.a
= 2 from line 4 is not, even though o2 inherits from its prototype o1. This shows
3 This is to allow comparison of method attribute types in subtyping.
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Fig. 3. Example JavaScript program (continued from Fig. 1).

that inheritance does not automatically create a subtype relationship when fixed
object layout is a concern.

In the spirit of a dynamic language like JavaScript, we propose to use a
structural subtyping relationship between types, generated by the structure of
the types and not by their prototype relationships.

Consider, for example, a new object o3 such that the assignment o1 = o3 is
safe. The object o3 would have to contain the attributes a and f. Furthermore,
o3 must own all the attributes owned by o1, so that it can be used in all the
attribute-update operations where o1 can be used. An example is available in
line 6–7 of Fig. 3. The type of o3 is

o3 : {a : Int, c : Int, f : Int ⇒ Int}P({a,c,f},{c})

To support subtyping (Prop. 4), the general rule is that an object type A
is a subtype of B, if and only if (a) A contains all the attributes of B with the
same type (as in the usual width subtyping), and (b) the owned attributes of A
include all the owned attributes of B. However, this is still not enough to support
fixed layout (Prop. 2), in presence of prototype inheritance as implemented in
JavaScript (Prop. 3), and subtyping (Prop. 4).

Challenge: Subtyping and Prototype Inheritance. In our example, after
the assignment o1 = o3 the static type of o1 suggests that the set of inheritor-
owned attributes is {a}, while the true inheritor-owned attributes of the runtime
object are {c}. This suggests that it would be unsafe to use the object o1 as
a prototype in a new object creation, as in the continuation of our example in
line 8–9 of Fig. 3. If the object creation in line 8 is well typed, with the type:

o4 : {a : Int, f : Int ⇒ Int}P({a},{a})

then, when executing line 9 the field c would be added to the receiver object o4.
One way to get out of this impasse is to restrict the subtype relationship to

pay attention also to the inheritor-modified attributes. In particular, to allow
the assignment o1 = o3 followed by a use of o1 as a prototype, we must ensure
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that the static type of o1 includes all the inheritor-owned attributes from the
type of o3. This would mean that the inheritor-owned attributes in a supertype
must be a superset of the inheritor-owned attributes in the subtype.

However, we show next that this is not enough if we want to allow method
updates.

Challenge: Subtyping and Method Update. It is common in JavaScript
to change the implementation of a method, especially on prototype objects, e.g.,
in order to change the behavior of a library. This technique is sometimes called
monkey patching.Consider the code fragment in line 10–15 of Fig. 3. In our type
system, the types of o5 and o6 can be:

o5 : {a : Int, b : Int, f : Int ⇒ Int}P({a,b,f},{a})

o6 : {a : Int, b : Int, f : Int ⇒ Int}P({a,b,f},{b})

The method update in line 12 is safe because it updates the method f of o6,
with a method that modifies the same set of receiver fields, which are owned by
o6 and all objects that may be inheriting from it. This can be verified statically
by comparing the receiver attributes that may be changed by the new method
(b) with the list of inheritor-owned fields listed in the type of o6.

In this example, subtyping arises in line 13. Notice that the type of o7 must be
a supertype of the type of both o5 and o6. The access in line 15 is safe. However, the
assignment in line 14 is unsafe, because it may associate with object o5 a method
that changes the field b of the receiver object. This is unsafe since b is not listed
as inheritor-owned, so the updated method is not safe for inheritance.

This example suggests that one way to ensure soundness of the assignment
of o5 to o7 is to ensure that the inheritor-owned attributes in a supertype (e.g.,
type of o7, which is used for checking statically the safety of method update)
must be a subset of the inheritor-owned attributes in the subtype, e.g., type of
o5. In this particular case, the inheritor-owned attributes of the static type of o7
must be empty, i.e. a strict subset of that of the static types of o5 and o6. This is
exactly opposite of the inclusion direction between the inheritor-owned attributes
in a subtype relation proposed in the previous section to handle subtyping and
prototype inheritance.

Solution: Subtyping with Approximate Types. We saw that a type system
that supports fixed layout (Prop. 2) and prototype inheritance (Prop. 3) must
reject the use of subtyping in line 13. We feel that this would be extremely
restrictive, and not fulfill subtyping (Prop. 4). Moreover, prototype inheritance,
method update, and the inheritor-owned fields, are about inheriting and sharing
implementations, while subtyping is about interface compatibility. There are
many more occurrences in practice of subtyping in assignments and method
calls than there are prototype assignments and method updates.

Therefore, we propose to relax the subtyping relation to make it more flexible
and more generally usable, but restrict the contexts where it can be used. In
particular, for prototype definition or method update, we only allow the use of
objects for which we know statically the dynamic type.
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To implement this strategy, we use two kinds of object types. The precise
object type that we used so far (marked as P), which includes a set of all
attributes and their types, along with a set of owned attributes, and a set of
inheritor-owned attributes. A precise object type means that the static type of
the object is the same as the dynamic type, i.e., no subtyping has been used since
the object construction. Expressions of precise type can appear in any context
where an object is expected.

We also introduce an approximate object type, written as {Attr}A({Own}),
also including a set of attributes and their types, and a set of owned attribute
names, but no inheritor-owned attributes. Approximate types allow subtyping,
and are only an approximate description of the actual dynamic type of the
object. These objects can be used for read/write attribute access and for method
invocation, but cannot be used as prototypes or for method updates. Therefore,
we do not need to track the inheritor-owned attributes for approximate types.

We can summarize the additional rules in our type system for dealing with
subtyping

– Rule 6: There is no subtyping relation on precise object types.
– Rule 7: An approximate object type is a supertype of the precise object type with

the same attributes and the same owned attributes.
– Rule 8: An approximate object type A is a subtype of another approximate object

type B as long as the subtype A has a superset of the attributes and a superset of
the owned attributes of the supertype B (as in standard width subtyping).

– Rule 9: Only objects with precise type can be used as prototypes.
– Rule 10: Method update can only be performed on objects of precise type, and only

when the method writes only inheritor-owned attributes of the object (extension of
Rule 3).

Returning to our motivating example, both o1 and o3 have precise distinct
types, which do not allow subtyping, so the assignment o1 = o3 from line 6 is
ill-typed. However, the assignment at line 16 of Fig. 3 will be legal if the static
type of o8 is the following approximate type:

o8 : {a : Int, c : Int, f : Int ⇒ Int}A({a,c,f})

Moreover, we can perform attribute lookup and method invocation via o8 as
shown in line 17–18 of Fig. 3, because these operations are allowed on approx-
imate types. However, it would be illegal to use o8 as prototype, as in line 19
of Fig. 3. This is because an object with approximate type cannot be used as a
prototype.

With approximate types, the subtyping assignment at line 13 can be well-
typed: by giving the static type of o7 the approximate type

o7 : {a : Int, b : Int, f : Int ⇒ Int}A({a,b,f})

The method update from line 14 will still be ill-typed because method update
cannot be applied to an object with approximate type. This shows how the
introduction of approximate types supports subtyping in certain contexts, while
avoiding the unsoundness that can arise due to interaction of subtyping and
prototype inheritance.
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We have shown informally a type system that fulfills all of access safety
(Prop. 1), fixed layout (Prop. 2), prototype inheritance (Prop. 3), and sub-
typing (Prop. 4), while placing few restrictions. We discuss this type system
formally in Sect. 3.

3 A Formal Account of the Type System

This section provides a formal definition of the type system of SJS and a proof of
the fixed object layout property. Throughout this section, we use a simplified core
language that is designed to capture the essence of the prototype-based object-
oriented programming in JavaScript. The language supports mutable objects,
prototype inheritance, dynamic method updates, higher-order functions, and
local variable bindings. To simplify the presentation, we do not include in the
language: functions as objects, constructor functions, accessing undefined vari-
ables, and lookup of fields by dynamic names (e.g., obj[‘‘key’’]). Furthermore,
we postpone the introduction of a number of other features to the compan-
ion technical report [12]: first-class method functions, recursive data types, and
accessing this in a non-method function.

3.1 Expression

The syntax definition of the core language expressions is shown in Fig. 4.
We are going to use the metavariables e for an expression, n for an integer
number, x for a variable identifier, and a for an attribute identifier. A few
expression types have type annotations in order to simplify type checking. The
expression {a1 :e1, . . . , an :en}T defines a new object with attributes a1, . . . , an

initialized with expressions e1, . . . , en, respectively. T is the type of the result-
ing object. The expression e1.a=e2 updates attribute a of the object e1 with
the value of e2. The expression e1.a(e2) invokes method a of object e1 with
argument e2. The expression this accesses the receiver object. The expres-
sion {a1 :e1, . . . }T prototype ep creates a new object with prototype ep. T
is the expected type of the resulting object.4

3.2 Types and Qualifiers

Figure 4 also defines the types. The novel elements in this type system are the
object-type qualifiers (q). If we erase the object-type qualifiers we are left with
a standard object type system [5] with few modifications. Object-type qualifiers
track the layout information required to constrain object operations in order to
guarantee the fixed layout property in the presence of the JavaScript operational
semantics.
4 Please note that deviating from JavaScript (prototype expression) is for the clear

presentation. The SJS language itself supports the usual prototyping mechanism of
JavaScript, which is based on a prototype attribute of constructors. We refer to the
companion technical report [12] for more details.
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Fig. 4. Syntax: expressions and types. The highlighted items are specific to our object-
type qualifiers.

Fig. 5. Well-formed types and subtyping. The highlighted items are specific to our
object-type qualifiers.

Types (T ) include the integer type (Int), object types (O), function types
(T → T ), method types (T ⇒ T ), and the top type (�). A receiver type (R) is
either the top type, when typing a non-method function, or an object type, when
typing a method function. A type environment (Γ ) is a map from variables to
types. Object types are composed of a base object type (ρ) and an object-type
qualifier (q). Object types can have either a precise qualifier (P(own, iown)) or
an approximate qualifier (A(own)). Owned attribute sets (own), and inheritor-
owned attribute sets (iown) are subsets of corresponding objects’ attributes.

Operations on Object Types. dom(ρ) denotes all attributes of the base object
type ρ. We write own(q) to denote the owned attribute set of the qualifier q
We similarly define iown(q) to denote the inheritor-owned attribute set of the
qualifier q when q is precise. We are also going to use ρ(a) to denote the type of
attribute a in ρ.
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Well-Formed Types. Figure 5 defines the rules to check well-formedness
of a type, especially for object types. An object type with a precise quali-
fier is well-formed if all the inheritor-owned attributes are among the owned
attributes, all owned attributes are among the attributes, and all attributes have
well-formed types. The well-formedness check for an object type with an approxi-
mate qualifier is similarly defined without the check for inheritor-owned attributes.

Subtyping and Type Equality. Figure 5 also defines the subtyping relation.
There is no subtyping between precise objects. However, precise objects can
be relaxed to an approximate object having the same base object type and
owned set ([ObjPA<:]). This ensures that any read and write operation that is
allowed by a precise type is still available after relaxed to an approximate type.
Subtyping between approximate objects ([ObjAA<:]) is defined as a traditional
width-subtyping extended with an additional inclusion check between own sets:
a subtype should own strictly more than a supertype. This ensures that any read
and write operation allowed by a supertype can be safely performed on an object
with a subtype.5 We also have transitivity ([Trans<:]), function ([Fun<:]). We
do not need subtyping among method types because that method types only
appears as an attribute type (we will see this in the type system section), and only
the equivalence of attributes are checked. Type equivalence (≡) is a syntactic
equivalence check.

3.3 Typing Rules

The static typing rules are defined in Fig. 6. The type system is composed of two
kinds of rules: expression typing judgment and attribute-update typing judgment.

Expression Typing. The expression typing judgment R,Γ � e : T means that
expression e under receiver type R and type environment Γ has type T .

Variables and Functions. Rules [T-Var], [T-VarUpd], and [T-LetVar] handle
variable lookup, variable update, and local binding. [T-This] applies to the
this expression when the current receiver type is an object type. this cannot
be used when the current receiver type is �.

Functions. [T-Fun] extends the traditional typed lambda calculus with a
receiver type in the context. Since functions, unlike methods, are invoked with-
out a receiver object, the function body is type checked with the receiver type
set to the top type (�). As a consequence, accessing the this variable within a
function is not allowed.

Objects. [T-Obj] types an object literal without inheritance. The created object
has a well-formed type ρq as annotated in the expression. Each attribute of ρq

should be an owned attribute and should appear in the object literal expression.
The safety of initialization expressions and initialization operations are delegated
5 Allowing depth-subtyping between mutable objects will make the type system

unsound. We refer to Abadi and Cardell’s work [5] for more details.
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Fig. 6. Type system. The highlighted items are specific to object-type qualifiers.

to the attribute-update typing judgments, [T-AttrUpdV] and [T-AttrUpdM]
described in the next section. [T-Attr] types an attribute read access.
The rule restricts the reading of a method attribute. It is well-known that sub-
typing along with escaping methods can break the soundness of a type system [5].
[T-MCall] handles method calls. The rule checks only the parameter type and
the return type since the safety of passing the receiver object is already dis-
charged when the method is attached. [T-AttrUpd] types an attribute update.
The rule requires the target attribute to be owned by the base object type. The
determination of the type and type safety of the attribute-update operation is
delegated to the attribute-update typing judgments. Note that the attribute-
update typing judgment does not provide a type for the assignment result to
prevent methods from escaping an object.

Inheritance. [T-Proto] types an object literal with inheritance. The rule is
basically an extension of [T-Obj], with the following new checks: (1) attributes
should be either owned fields of ρq or fields inherited from ρ

qp
p , (2) the type of

an attribute defined in prototype should remain the same in the newly defined
object, and (3) inheritor-owned attributes of the newly defined object should



194 W. Choi et al.

include all the inheritor-owned attributes of the prototype object. The rule also
requires ρ

qp
p to be a precise object type. Like in [T-Obj], the type safety of initial-

ization expressions and initialization operations are delegated to the attribute-
update typing rules.

Attribute-Update Typing. Attribute updates are handled by a different set of
judgment rules. The attribute-update typing judgment R,Γ �AU O.a=e means
that “expression e is well typed under receiver type R (for the current method
or function body) and type environment Γ , and the value of e can be safely
assigned to attribute a of an object of type O. The judgment has two rules.

Field Update. If a non-method attribute is updated ([T-AttrUpdV]), the rule
just typechecks the expression e.

Method Update. The method-update rule ([T-AttrUpdM]) requires the right-
hand side expression to be a function literal6 and the base object type to be
a precise object type (we can only perform method update on objects whose
type is known precisely, and in particular whose inheritor-owned set is known).
This rule addresses the situations when the method is inherited and the receiver
object is some subtype of the receiver type O. The method body is checked with
an approximate version of the receiver type O whose owned attributes set is
restricted to the inheritor-owned attributes of O. This ensures that the function
body can only update the iown attributes of the receiver object.

3.4 Properties of the Type System

Theorem (Fixed Object Layout). A well-typed program never modifies object
layouts after object construction.

Proof. (Sketch) To show this property, we first define an operational semantics
of the core language such that any attempt to modify an object layout will result
in the execution getting stuck. Then we show the usual type soundness property,
i.e., a well-typed program never gets stuck. The fixed object layout property is a
corollary of the soundness theorem. The full version of the proof and necessary
definitions, such as operational semantics and value typing, are available in the
companion technical report [12] (Section B).

4 Summary of Implementation and Evaluation

We have implemented a proof-of-concept type checker and compiler for SJS
to evaluate the language. The SJS prototype supports the core type system
described in this paper, along with typed arrays, hash tables, integer and float-
ing point numbers, first-class methods, and recursively-defined object types.
6 This syntactic restriction is posed to keep the presentation simple. The companion

technical report [12] (Section A.2) extends the type system to remove this restriction.
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We evaluate the usability of the language and the feasibility of type-based compi-
lation. This section provides a short summary of the evaluation. The full details
are in the companion technical report [12]. The programs used in this section
can be found at http://goo.gl/nBtgXj.

Usability. We considered two programs from the octane benchmark suite [3]
and two webapps from 01.org [1] to evaluate the usability of the type system.
Programs are moderate-sized (about 500 to 2000 lines of code) and use objects
extensively. We managed to typecheck all four programs, after commenting out
small portions of code handling Ajax communication, because we do not have
enough contextual information to decide the types for this part.

SJS requires programmers to provide type annotations to infer the base type
(type qualifiers are inferred without any user interaction). For the benchmarks,
one type annotation is required per 8.34 lines of code. The majority of the anno-
tations (86.5 %) are for function parameters, since SJS requires every function
parameter to be annotated. The rest of the annotations are for local variables,
this variables, attributes, returns, and some assignments when there is an ambi-
guity that the type inference engine cannot handle. Overall, we found that only
2.8 % of expressions and local variables need annotations.

Performance. We wrote a prototype ahead-of-time compiler to translate SJS
to C. The compiler uses a flat object representation, which ensures at most two
indirections when accessing an object attribute. Then it invokes an off-the-shelf C
compiler to produce an executable binary. Besides the flat object representation,
and the standard optimizations performed by the C compiler, the SJS compiler
does not perform any high-level optimizations.

In our experiment, we used eight programs to evaluate the potential perfor-
mance benefits of statically-known object layout. We compared the execution time
of the output of our compiler with the execution time when using the just-in-
time compiler from node.js version 0.10.29. On programs using prototype-based
inheritance and subtpying, the executables produced by the SJS compiler showed
notably better performance (1.5–2.5x). For programs using objects without inher-
itance, the binaries generated by the SJS compiler showed some improvement
(1.02–1.25x). Finally, SJS showed poorer performance (0.65–0.87x) than node.js
on programs with mostly numeric and array operations. We refer to the compan-
ion technical report [12] for more details on the evaluation. Considering the fact
that the prototype SJS compiler does not perform any high-level optimizations, we
believe that the results show that knowing statically the layout of objects can allow
an ahead-of-time compiler to generate faster code for programs that use objects
extensively.

5 Related Work

Inheritance Mechanism and Object Layout. There is a strong connection
between the inheritance mechanism a language uses and the way a language

http://goo.gl/nBtgXj
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ensures a fixed object layout property, which enables static compilation. Com-
mon inheritance mechanisms include class-based inheritance (e.g., SmallTalk,
C++, Java, and Python), cloning-based prototype inheritance (Cecil [10])7, and
delegation-based prototype inheritance (e.g., Self [11], JavaScript, and Cecil).

Plain object types can be used to ensure fixed object layout property for a
language using either class-based inheritance or cloning/sharing-based prototype
inheritance. In both cases, it is impossible to change the offset of an attribute
of an object once it is computed. Therefore, the type system only needs to
ensure the following two requirements: (i) all objects generated using the same
constructor should have the same layout, and (ii) an attribute cannot be added
or removed once an object is created. Indeed, statically-typed languages in this
category exactly implements these restrictions through their type system. Even
static type systems proposed to enable static compilation of dynamic languages,
such as StrongTalk [9] and RPython [6], impose these requirements.

However, these requirements are not enough for a language using a delegation-
based inheritance mechanism, as we discussed in Sect. 2. Cecil solves this problem
by making delegation explicit. When inheritance happens, attributes to be del-
egated to the prototype are marked with the keyword share. Then, updating a
delegated attribute of an inheritor object changes the original owner of the
attribute, rather than adding the attribute to the inheritor object.

Object Calculus. Our base type system borrows several ideas from the typed
imperative object calculus of Abadi and Cardelli [5], especially subtyping of
object types and how to handle method detachment in the existence of sub-
typing. Unfortunately, we could not use the type system as is because it uses
cloning-based inheritance rather than prototype-based inheritance. Our notion
of method type is also different from theirs in that ours exclude a receiver type
from attached method types to have a simple formalism at the cost of not sup-
porting recursive data types. We refer to the companion technical report [12]
(Section A.1) for an extension of SJS to support recursive data types.

The type system proposed by Bono and Fisher [8], based on Fisher et al.’s
earlier work [14], separates objects into prototype objects and proper objects sim-
ilar to precise objects and approximate objects in SJS. Prototype/proper objects
are similar to precise/approximate objects except in the context of subtyping.
Despite the similarity, the two systems achieve opposite goals: Bono and Fisher’s
calculus is designed to support extensible (i.e., flexible) objects, while our type
system tries to ensure that objects have a fixed layout. Moreover, their notion
of prototyping is not based on delegation. Thus, the calculus is not suitable for
JavaScript programs.

7 A cloning-based inheritance approach populates inherited attributes to an inheritor
object when extending the inheritor object with a prototype. After that, all read and
write operations are performed local to the inheritor object, without consulting the
prototype object. This approach has an effect of fixing object layout at the object
creation time.
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Type Systems for Dynamically Typed Language. Several static type sys-
tems for dynamically typed languages have been proposed [6,9,15,24,25] as well
as for JavaScript [2,4,7,13,17–23]. However, only asm.js [2] and RPython [6],
which we already discussed in Sect. 1, have the same goals as SJS: to define a
typed subset of the base language, which can be compiled efficiently. Other type
systems are designed to provide type safety and often to retrofit an existing code
base. Therefore, it is difficult to compare them directly with SJS type system.
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Abstract. We propose a novel method for inferring refinement types of
higher-order functional programs. The main advantage of the proposed
method is that it can infer maximally preferred (i.e., Pareto optimal)
refinement types with respect to a user-specified preference order. The
flexible optimization of refinement types enabled by the proposed method
paves the way for interesting applications, such as inferring most-general
characterization of inputs for which a given program satisfies (or vio-
lates) a given safety (or termination) property. Our method reduces such
a type optimization problem to a Horn constraint optimization problem
by using a new refinement type system that can flexibly reason about
non-determinism in programs. Our method then solves the constraint
optimization problem by repeatedly improving a current solution until
convergence via template-based invariant generation. We have imple-
mented a prototype inference system based on our method, and obtained
promising results in preliminary experiments.

1 Introduction

Refinement types [5,20] have been applied to safety verification of higher-order
functional programs. Some existing tools [9,10,16–19] enable fully automated
verification by refinement type inference based on invariant generation tech-
niques such as abstract interpretation, predicate abstraction, and CEGAR. The
goal of these tools is to infer refinement types precise enough to verify a given
safety specification. Therefore, types inferred by these tools are often too specific
to the particular specification, and hence have limited applications.

To remedy the limitation, we propose a novel refinement type inference
method that can infer maximally preferred (i.e., Pareto optimal) refinement
types with respect to a user-specified preference order. For example, let us con-
sider the following summation function (in OCaml syntax)

let rec sum x = if x = 0 then 0 else x + sum (x - 1)

A refinement type of sum is of the form (x : {x : int | P (x)}) → {y : int |
Q(x, y)}. Here, P (x) and Q(x, y) respectively represent pre and post conditions
of sum. Note that the postcondition Q(x, y) can refer to the argument x as well
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as the return value y. Suppose that we want to infer a maximally-weak predicate
for P and maximally-strong predicate for Q within a given underlying theory. Our
method allows us to specify such preferences as type optimization constraints:

maximize(P ), minimize(Q).

Here, maximize(P ) (resp. minimize(Q)) means that the set of the models of P (x)
(resp. Q(x, y)) should be maximized (resp. minimized). Our method then infers
a Pareto optimal refinement type with respect to the given preferences.

In general, however, this kind of multi-objective optimization involves a
trade-off among the optimization constraints. In the above example, P may
not be weakened without also weakening Q. Hence, there often exist multiple
optima. Actually, all the following are Pareto optimal refinement types of sum.1

(x : {x : int | x = 0}) → {y : int | y = x} (1)
(x : {x : int | true}) → {y : int | y ≥ 0} (2)
(x : {x : int | x < 0}) → {y : int | false} (3)

Our method further allows us to specify a priority order on the predicate
variables P and Q. If P is given a higher priority over Q (we write P � Q),
our method infers the type (2), whereas we obtain the type (3) if Q � P .
Interestingly, (3) expresses that sum is non-terminating for any input x < 0.

The flexible optimization of refinement types enabled by our method paves
the way for interesting applications, such as inferring most-general characteri-
zation of inputs for which a given program satisfies (or violates) a given safety
(or termination) property. Furthermore, our method can infer an upper bound
of the number of recursive calls if the program is terminating, and can find a
minimal-length counterexample path if the program violates a safety property.

Internally, our method reduces such a refinement type optimization prob-
lem to a constraint optimization problem where the constraints are expressed
as existentially quantified Horn clauses over predicate variables [1,11,19]. The
constraint generation here is based on a new refinement type system that can
reason about (angelic and demonic) non-determinism in programs. Our method
then solves the constraint optimization problem by repeatedly improving a cur-
rent solution until convergence. The constraint optimization here is based on an
extension of template-based invariant generation [3,7] to existentially quantified
Horn clause constraints and prioritized multi-objective optimization.

The rest of the paper is organized as follows. Sections 2 and 3 respectively
formalize our target language and its refinement type system. The applications
of refinement type optimization are explained in Sect. 4. Section 5 formalizes
Horn constraint optimization problems and the reduction from type optimization
problems. Section 6 proposes our Horn constraint optimization method. Section 7
reports on a prototype implementation of our method and the results of prelimi-
nary experiments. We compare our method with related work in Sect. 8 and con-
clude the paper in Sect. 9. An extended version of the paper with proofs is available
online [8].
1 Here, we use quantifier-free linear arithmetic as the underlying theory and consider

only atomic predicates for P and Q.
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Fig. 1. The operational semantics of our language L

2 Target Language L

This section introduces a higher-order call-by-value functional language L, which
is the target of our refinement type optimization. The syntax is defined as
follows.

(programs) D ::= {fi �→ λx̃i.ei}m
i=1

(expressions) e ::= x | e1 e2 | n | op(e1, . . . , ear(op)) | ifz e1 then e2 else e3
| let x = e1 in e2 | let x = ∗∀ in e | let x = ∗∃ in e

(values) v ::= n | f ṽ
(eval. contexts) E ::= [ ] | E v | let x = E in e

Here, x and f are meta-variables ranging over variables. n and op respectively
represent integer constants and operations such as + and ≥. ar(op) expresses
the arity of op. We write x̃ (resp. ṽ) for a sequence of variables xi (resp. values
vi) and |x̃| for the length of x̃. For simplicity of the presentation, the language L
has integers as the only data type. We encode Boolean values true and false
respectively as non-zero integers and 0. A program D = {fi �→ λx̃i.ei}m

i=1 is a
mapping from variables fi to expressions λx̃i.ei, where λx̃.e is an abbreviation
of λx1. . . . λx|x̃|.e. We define dom(D) = {f1, . . . , fm} and ar(fi) = |x̃i|. A value
f ṽ is required to satisfy 1 ≤ |ṽ| < ar(f).

The call-by-value operational semantics of L is given in Fig. 1. Here, �op�
represents the integer function denoted by op. Both expressions let x = ∗∀ in e
and let x = ∗∃ in e generate a random integer n, bind x to it, and evalu-
ate e. They are, however, interpreted differently in our refinement type system
(see Sect. 3). We support these expressions to model various non-deterministic
behaviors caused by, for example, user inputs, inputs from communication chan-
nels, interrupts, and thread schedulers. We write −→∗

D to denote the reflexive
and transitive closure of −→D.

3 Refinement Type System for L

In this section, we introduce a refinement type system for L that can reason about
non-determinism in programs. We then formalize refinement type optimization
problems (in Sect. 3.1), which generalize ordinary type inference problems.
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The syntax of our refinement type system is defined as follows.

(refinement types) τ ::= {x | φ} | (x : τ1) → τ2
(type environments) Γ ::= ∅ | Γ, x : τ | Γ, φ

(formulas) φ::= t1 ≤ t2 | � | ⊥ | ¬φ | φ1 ∧ φ2 | φ1 ∨ φ2 | φ1 ⇒ φ2

(terms) t::= n | x | t1 + t2 | n · t
(predicates) p::= λx̃.φ

An integer refinement type {x | φ} equipped with a formula φ for type refinement
represents the type of integers x that satisfy φ. The scope of x is within φ.
We often abbreviate {x | �} as int. A function refinement type (x : τ1) → τ2
represents the type of functions that take an argument x of the type τ1 and
return a value of the type τ2. Here, τ2 may depend on the argument x and
the scope of x is within τ2. For example, (x : int) → {y | y > x} is the type
of functions whose return value y is always greater than the argument x. We
often write fvs(τ) to denote the set of free variables occurring in τ . We define
dom(Γ ) = {x | x : τ ∈ Γ} and write Γ (x) = τ if x : τ ∈ Γ .

In this paper, we adopt formulas φ of the quantifier-free theory of linear
integer arithmetic (QFLIA) for type refinement. We write |= φ if a formula φ is
valid in QFLIA. Formulas � and ⊥ respectively represent the tautology and the
contradiction. Note that atomic formulas t1 < t2 (resp. t1 = t2) can be encoded
as t1 + 1 ≤ t2 (resp. t1 ≤ t2 ∧ t2 ≤ t1) in QFLIA.

The inference rules of our refinement type system are shown in Fig. 2. Here,
a type judgment � D : Γ means that a program D is well-typed under a refinement
type environment Γ . A type judgment Γ � e : τ indicates that an expression e has
a refinement type τ under Γ . A subtype judgment Γ � τ1 <: τ2 states that τ1 is
a subtype of τ2 under Γ . �Γ � occurring in the rules ISub and Rand∃ is defined
by �∅� = �, �Γ, x : {ν | φ}� = �Γ � ∧ [x/ν]φ, �Γ, x : (ν : τ1) → τ2� = �Γ �,
and �Γ, φ� = �Γ � ∧ φ. In the rule Op, �op�Ty represents a refinement type
of op that soundly abstracts the behavior of the function �op�. For example,
�+�Ty = (x : int) → (y : int) → {z | z = x + y}.

All the rules except Rand∀ and Rand∃ for random integer generation are
essentially the same as the previous ones [18]. The rule Rand∀ requires e to have
τ for any randomly generated integer x. Therefore, e is type-checked against τ
under a type environment that assigns int to x. By contrast, the rule Rand∃
requires e to have τ for some randomly generated integer x. Hence, e is type-
checked against τ under a type environment that assigns a type {x | φ} to x
for some φ such that fvs(φ) ⊆ dom(Γ ) ∪ {x} and |= �Γ � ⇒ ∃x.φ. For example,
x : int � let y = ∗∃ in x + y : {r | r = 0} is derivable because we can derive
x : int, y : {y | y = −x} � x + y : {r | r = 0}. Thus, our new type system
allows us to reason about both angelic ∗∃ and demonic ∗∀ non-determinism in
higher-order functional programs.

We now discuss properties of our new refinement type system. We can prove
the following progress theorem in a standard manner.

Theorem 1 (Progress). Suppose that we have � D : Γ , dom(Γ ) = dom(D),
and Γ � e : τ . Then, either e is a value or e −→D e′ for some e′.
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Fig. 2. The inference rules of our refinement type system

We can also show the type preservation theorem in a similar manner to [18].

Theorem 2 (Preservation). Suppose that we have � D : Γ and Γ � e : τ . If
e is of the form let x = ∗∃ in e0, then we get Γ � e′ : τ for some e′ such that
e −→D e′. Otherwise, we get Γ � e′ : τ for any e′ such that e −→D e′.

3.1 Refinement Type Optimization Problems

We now define refinement type optimization problems, which generalize refine-
ment type inference problems addressed by previous work [9,10,15–19].

We first introduce the notion of refinement type templates. A refinement type
template of a function f is the refinement type obtained from the ordinary ML-
style type of f by replacing each base type int with an integer refinement type
{ν | P (x̃, ν)} for some fresh predicate variable P that represents an unknown
predicate to be inferred, and each function type T1 → T2 with a (dependent)
function refinement type (x : τ1) → τ2. For example, from an ML-style type
(int → int) → int → int, we obtain the following template.

(f : (x1 : {x1 | P1(x1)}) → {x2 | P2(x1, x2)}) →
(x3 : {x3 | P3(x3)}) → {x4 | P4(x3, x4)}
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Note here that the first argument f is not passed as an argument to P3 and
P4 because f is of a function type and never occurs in QFLIA formulas for
type refinement. A refinement type template of a program D with dom(D) =
{f1, . . . , fm} is the refinement type environment ΓD = f1 : τ1, . . . , fm : τm,
where each τi is the refinement type template of fi. We write pvs(ΓD) for the
set of predicate variables that occur in ΓD. A predicate substitution θ for ΓD

is a map from each P ∈ pvs(ΓD) to a closed predicate λx1, . . . , xar(P ).φ, where
ar(P ) represents the arity of P . We write θΓD to denote the application of a
substitution θ to ΓD. We also write dom(θ) to represent the domain of θ.

We can define ordinary refinement type inference problems as follows.

Definition 1 (Refinement Type Inference). A refinement type inference
problem of a program D is a problem to find a predicate substitution θ such
that � D : θΓD.

We now generalize refinement type inference problems to optimization problems.

Definition 2 (Refinement Type Optimization). Let D be a program, ≺ be
a strict partial order on predicate substitutions, and Θ = {θ | � D : θΓD}. A pred-
icate substitution θ ∈ Θ is called Pareto optimal with respect to ≺ if there is no
θ′ ∈ Θ such that θ′ ≺ θ. A refinement type optimization problem (D,≺) is a
problem to find a Pareto optimal substitution θ ∈ Θ with respect to ≺.

In the remainder of the paper, we will often consider type optimization problems
extended with user-specified constraints and/or templates for some predicate
variables (see Sect. 4 for examples and Sect. 5 for formal definitions).

The above definition of type optimization problems is abstract in the sense
that ≺ is only required to be a strict partial order on predicate substitutions. We
below introduce an example concrete order, which is already explained informally
in Sect. 1 and adopted in our prototype implementation described in Sect. 7.
The order is defined by two kinds of optimization constraints: the optimization
direction (i.e. minimize/maximize) and the priority order on predicate variables.

Definition 3. Suppose that

– P = {P1, . . . , Pm} is a subset of pvs(ΓD),
– ρ is a map from each predicate variable in P to an optimization direction d

that is either ↑ (for maximization) or ↓ (for minimization), and
– � is a strict total order on P that expresses the priority.2 We below assume

that P1 � · · · � Pm.

We define a strict partial order ≺(ρ,�) on predicate substitutions that respects ρ
and � as the following lexicographic order:

θ1 ≺(ρ,�) θ2 ⇐⇒ ∃i ∈ {1, . . . , m} . θ1(Pi) ≺ρ(Pi) θ2(Pi) ∧ ∀j < i. θ1(Pj) ≡ρ(Pj) θ2(Pj)

Here, a strict partial order ≺d and an equivalence relation ≡d on predicates are
defined as follows.
2 If � were partial, the relation ≺(ρ,�) defined shortly would not be a strict partial

order. Our implementation described in Sect. 7 uses topological sort to obtain a strict
total order � from a user-specified partial one.
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– p1 ≺d p2 ⇐⇒ p1 �d p2 ∧ p2 ��d p1,
– p1 ≡d p2 ⇐⇒ p1 �d p2 ∧ p2 �d p1,
– λx̃.φ1 �↑ λx̃.φ2 ⇐⇒|= φ2 ⇒ φ1, and λx̃.φ1 �↓ λx̃.φ2 ⇐⇒|= φ1 ⇒ φ2.

Example 1. Recall the function sum and its type template with the predicate
variables P,Q in Sect. 1. Let us consider optimization constraints ρ(P ) =↑,
ρ(Q) =↓, and P � Q, and predicate substitutions

– θ1 = {P �→ λx. x = 0, Q �→ λx, y. y = x},
– θ2 = {P �→ λx.�, Q �→ λx, y. y ≥ 0}, and
– θ3 = {P �→ λx. x < 0, Q �→ λx, y.⊥}.

We then have θ2 ≺(ρ,�) θ1 and θ2 ≺(ρ,�) θ3, because (λx.�) ≺↑ (λx. x = 0) and
(λx.�) ≺↑ (λx. x < 0). ��

4 Applications of Refinement Type Optimization

In this section, we present applications of refinement type optimization to the
problems of proving safety (in Sect. 4.1) and termination (in Sect. 4.3), and dis-
proving safety (in Sect. 4.4) and termination (in Sect. 4.2) of programs in the
language L. In particular, we discuss precondition inference, namely, inference
of most-general characterization of inputs for which a given program satisfies (or
violates) a given safety (or termination) property.

4.1 Proving Safety

We explain how to formalize, as a type optimization problem, a problem of
inferring maximally-weak precondition under which a given program satisfies
a given postcondition. For example, let us consider the following terminating
version of sum.

let rec sum’ x = if x <= 0 then 0 else x + sum’ (x-1)

In our framework, a problem to infer a maximally-weak precondition on the argu-
ment x for a postcondition x = sum′ x is expressed as a type optimization prob-
lem to infer sum′’s refinement type of the form (x : {x | P (x)}) → {y | x = y}
under an optimization constraint maximize(P ). Our type optimization method
described in Sects. 5.2 and 6 infers the following type.

(x : {x | 0 ≤ x ≤ 1}) → {y | x = y}

This type says that the postcondition holds if the actual argument x is 0 or 1.

Example 2 (Higher-Order Function). For an example of a higher-order function,
consider the following.

let rec repeat f n e = if n<=0 then e else repeat f (n-1) (f e)
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By inferring repeat’s refinement type of the form

(f : (x :{x | P1(x)})→{y | P2(x, y)})→(n :int)→(e :{e | P3(n, e)})→{r | r ≥ 0}

under optimization constraints ρ(P1) =↓, ρ(P2) = ρ(P3) =↑, and P3 � P2 � P1,
our type optimization method obtains

(f : (x : {x | x ≥ 0}) → {y | y ≥ 0}) → (n : int) → (e : {e | e ≥ 0}) → {r | r ≥ 0}

Thus, our type optimization method can infer maximally-weak refinement types
for the function arguments of a given higher-order function that are sufficient
for it to satisfy a given postcondition. ��

4.2 Disproving Termination

In a similar manner to Sect. 4.1, we can apply type optimization to the problems
of inferring maximally-weak precondition for a given program to violate the
termination property. For example, consider the function sum in Sect. 1. For
disproving termination of sum, we infer sum’s refinement type of the form (x :
{x | P (x)}) → {y | ⊥} under an optimization constraint maximize(P ). Our type
optimization method infers the following type.

(x : {x | x < 0}) → {y | ⊥}

The type expresses that sum returns no value (i.e., sum is non-terminating) if
called with an argument x that satisfies x < 0.

Example 3 (Non-Deterministic Function). For an example of non-deterministic
function, let us consider a problem of disproving termination of the following.

let rec f x = let n = read_int () in if n<0 then x else f x

Here, read int () is a function to get an integer value from the user and is
modeled as ∗∃ in our language L. Note that the termination of f does not depend
on the argument x but user inputs n. Our type optimization method successfully
disproves termination of f by inferring a refinement type (x : int) → {y | ⊥}
for f and {n | n ≥ 0} for the user inputs n. These types mean that f never
terminates if the user always inputs some non-negative integer. ��

4.3 Proving Termination

Refinement type optimization can also be applied to bounds analysis for inferring
upper bounds of the number of recursive calls. Our bounds analysis for functional
programs is inspired by a program transformation approach to bounds analy-
sis for imperative programs [6,7]. Let us consider sum in Sect. 1. By inserting
additional parameters i and c to the definition of sum, we obtain

let rec sum_t x i c = if x=0 then 0 else x + sum_t (x-1) i (c+1)
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Here, i and c respectively represent the initial value of the argument x and the
number of recursive calls so far. For proving termination of sum, we infer sum t’s
refinement type of the form

(x : {x | P (x}) → (i : int) → (c : {c | Inv(x, i, c)}) → int

under optimization constraints maximize(P ), minimize(Bnd), P � Bnd , and
additional constraints on the predicate variables P,Bnd , Inv

∀x, i, c. (Inv(x, i, c) ⇐ c = 0 ∧ i = x) (4)
∀x, i, c. (Bnd(i, c) ⇐ P (x) ∧ Inv(x, i, c)) (5)

Here, Bnd(i, c) is intended to represent the bounds of the number c of recursive
calls of sum with respect to the initial value i of the argument x. We therefore
assume that Bnd(i, c) is of the form 0 ≤ c ≤ k0 + k1 · i, where k0, k1 represent
unknown coefficients to be inferred. The constraint (4) is necessary to express the
meaning of the inserted parameters i and c. The constraint (5) is also necessary
to ensure that the bounds Bnd(i, c) is implied by a precondition P (x) and an
invariant Inv(x, i, c) of sum. Our type optimization method then infers

(x : {x | x ≥ 0}) → (i : int) → (c : {c | x ≤ i ∧ i = x + c}) → int

and Bnd(i, c) ≡ 0 ≤ c ≤ i. Thus, we can conclude that sum is terminating for
any input x ≥ 0 because the number c of recursive calls is bounded from above
by the initial value i of the argument x.

Interestingly, we can infer a precondition for minimizing the number of recur-
sive calls of sum by replacing the priority constraint P � Bnd with Bnd � P ,
assuming that Bnd(i, c) is of the form 0 ≤ c ≤ k0 for some unknown constant k0,
and adding an additional constraint ∃x.P (x) (to avoid a meaningless solution
P (x) ≡ ⊥). In fact, our type optimization method obtains

(x : {x | x = 0}) → (i : int) → (c : {c | c = 0}) → int

and Bnd(i, c) ≡ c = 0. Therefore, we can conclude that the minimum number of
recursive calls is 0 when the actual argument x is 0.

We expect that our bounds analysis for functional programs can further be
extended to infer non-linear upper bounds by adopting ideas from an elaborate
transformation for bounds analysis of imperative programs [6].

4.4 Disproving Safety

We can use the same technique in Sect. 4.3 to infer maximally-weak precondition
for a given program to violate a given postcondition. For example, let us consider
again the function sum. A problem to infer a maximally-weak precondition on
the argument x for violating a postcondition sum x ≥ 2 can be reduced to a
problem to infer sum t’s refinement type of the form

(x : {x | P (x)}) → (i : int) → (c : {c | Inv(x, i, c)}) → {y | ¬(y ≥ 2)}



208 K. Hashimoto and H. Unno

under the same constraints for bounds analysis in Sect. 4.3. The refinement type
optimization method then obtains

(x : {x | 0 ≤ x ≤ 1}) → (i : int) → (c : {c | 0 ≤ x ∧ i = x + c}) → {y | ¬(y ≥ 2)}

and Bnd(i, c) ≡ 0 ≤ c ≤ i. This result says that if the actual argument x is 0 or 1,
then sum terminates and returns some integer y that violates y ≥ 2. In other
words, x = 0, 1 are counterexamples to the postcondition sum x ≥ 2.

We can instead find a minimal-length counterexample path3 violating the
postcondition sum x ≥ 2 by replacing the priority constraint P � Bnd with
Bnd � P , assuming that Bnd(i, c) is of the form 0 ≤ c ≤ k0 for some unknown
constant k0, and adding an additional constraint ∃x.P (x). Our type optimization
method then infers

(x : {x | x = 0}) → (i : int) → (c : {c | 0 ≤ x ∧ i = x + c}) → {y | ¬(y ≥ 2)}

and Bnd(i, c) ≡ c = 0. From the result, we can conclude that a minimal-length
counterexample path is obtained when the actual argument x is 0.

5 Horn Constraint Optimization and Reduction
from Refinement Type Optimization

We reduce refinement type optimization problems into constraint optimization
problems subject to existentially-quantified Horn clauses [1,11,19]. We first for-
malize Horn constraint optimization problems (in Sect. 5.1) and then explain the
reduction (in Sect. 5.2).

5.1 Horn Constraint Optimization Problems

Existentially-Quantified Horn Clause Constraint Sets (∃HCCSs) over QFLIA are
defined as follows.

(∃HCCSs) H ::= {hc1, . . . , hcm}
(Horn clauses) hc ::= h ⇐ b

(heads) h ::= P (t̃) | φ | ∃x̃.(P (t̃) ∧ φ)
(bodies) b ::= P1(t̃1) ∧ . . . ∧ Pm(t̃m) ∧ φ

We write pvs(H) for the set of predicate variables that occur in H.
A predicate substitution θ for an ∃HCCS H is a map from each P ∈ pvs(H)

to a closed predicate λx1, . . . , xar(P ).φ. We write ΘH for the set of predicate
substitutions for H. We call a substitution θ is a solution of H if for each hc ∈ H,
|= θhc. For a subset Θ ⊆ ΘH, we call a substitution θ ∈ Θ is a Θ-restricted
solution if θ is a solution of H. Our constraint optimization method described
in Sect. 6 is designed to find a Θ-restricted solution for some Θ consisting of
3 Here, minimality is with respect to the number of recursive calls within the path.
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substitutions that map each predicate variable to a predicate with a bounded
number of conjunctions and disjunctions. In particular, we often use

Θatom =
{

P �→ λx1, . . . , xar(P ).n0 + Σ
ar(P )
i=1 ni · xi ≥ 0 | P ∈ pvs(H)

}
consisting of atomic predicate substitutions.

Example 4. Recall the function sum and the predicate substitutions θ1, θ2, θ3 in
Example 1. Our method reduces a type optimization problem for sum into a
constraint optimization problem for the following HCCS Hsum (the explanation
of the reduction is deferred to Sect. 5.2).{

Q(x, 0) ⇐ P (x) ∧ x = 0, P (x − 1) ⇐ P (x) ∧ x �= 0,
Q(x, x + y) ⇐ P (x) ∧ Q(x − 1, y) ∧ x �= 0

}
Here, θ1 is a solution of Hsum, and θ2 and θ3 are Θatom -restricted solutions of

Hsum. If we fix Q(x, y) ≡ ⊥ (i.e., infer sum’s type of the form (x : {x | P (x)}) →
{y | ⊥}) for disproving termination of sum as in Sect. 4.2, we obtain the following
HCCS H⊥

sum.

{⊥ ⇐ P (x) ∧ x = 0, P (x − 1) ⇐ P (x) ∧ x �= 0}
H⊥

sum has, for example, Θatom -restricted solutions {P �→ λx.x < 0} and {P �→
λx.x < −100}. ��
We now define Horn constraint optimization problems for ∃HCCSs.

Definition 4. Let H be an ∃HCCS and ≺ be a strict partial order on predicate
substitutions. A solution θ of H is called Pareto optimal with respect to ≺ if
there is no solution θ′ of H such that θ′ ≺ θ. A Horn constraint optimization
problem (H,≺) is a problem to find a Pareto optimal solution θ with respect
to ≺. A Θ-restricted Horn constraint optimization problem is a Horn con-
straint optimization problem with the notion of solutions replaced by Θ-restricted
solutions.

Example 5. Recall Hsum and its solutions θ1, θ2, θ3 in Example 1. Let us consider
a Horn constraint optimization problem (Hsum,≺(ρ,�)) where ρ(P ) = ↑, ρ(Q) = ↓,
and Q � P . We have θ3 ≺(ρ,�) θ1 and θ3 ≺(ρ,�) θ2. In fact, θ3 is a Pareto optimal
solution of Hsum with respect to ≺(ρ,�). ��
In general, an ∃HCCS H may not have a Pareto optimal solution with respect to
≺(ρ,�) even though H has a solution. For example, consider a Horn constraint
optimization problem (Hsum,≺(ρ,�)) where ρ(P ) =↑, ρ(Q) =↓, and P � Q.
Because the semantically optimal solution Q(x, y) ≡ y = x(x+1)

2 is not express-
ible in QFLIA, it must be approximated, for example, as Q(x, y) ≡ y ≥ 0 ∧ y ≥
x ∧ y ≥ 2x − 1. The approximated solution, however, is not Pareto optimal
because we can always get a better approximation like Q(x, y) ≡ y ≥ 0 ∧ y ≥
x ∧ y ≥ 2x − 1 ∧ y ≥ 3x − 3 if we use more conjunctions.

We can, however, show that an ∃HCCS has a Θatom -restricted Pareto optimal
solution with respect to ≺(ρ,�) if it has any Θatom -restricted solution. Interested
readers are referred to the extended version [8]. For the above example, θ2 in
Example 1 is a Θatom -restricted Pareto optimal solution.
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Fig. 3. Pseudo-code of the constraint optimization method for ∃HCCSs

5.2 Reduction from Refinement Type Optimization

Our method reduces a refinement type optimization problem into an Horn con-
straint optimization problem in a similar manner to the previous refinement
type inference method [18]. Given a program D, our method first prepares a
refinement type template ΓD of D as well as, for each expression of the form
let x = ∗∃ in e, a refinement type template {x | P (ỹ, x)} of x, where P is a fresh
predicate variable and ỹ is the sequence of all the integer variables in the scope.
Our method then generates an ∃HCCS by type-checking D against ΓD and col-
lecting the proof obligations of the forms �Γ �∧φ1 ⇒ φ2 and �Γ � ⇒ ∃ν.φ respec-
tively from each application of the rules ISub and Rand∃. We write Gen(D,ΓD)
to denote the ∃HCCS thus generated from D and ΓD.

We can show the soundness of our reduction in the same way as in [18].

Theorem 3 (Soundness of Reduction). Let (D,≺) be a refinement type opti-
mization problem and ΓD be a refinement type template of D. If θ is a Pareto
optimal solution of Gen(D,ΓD), then θ is a solution of (D,≺).

6 Horn Constraint Optimization Method

In this section, we describe our Horn constraint optimization method for
∃HCCSs. The method repeatedly improves a current solution until convergence.
The pseudo-code of the method is shown in Fig. 3. The procedure Optimize
for Horn constraint optimization takes a (Θ-restricted) ∃HCCS optimization
problem (H,≺) and returns any of the following: Unknown (which means the
existence of a solution is unknown), NoSol (which means no solution exists),
Sol(θ) (which means θ is a possibly non-Pareto optimal solution), or OptSol(θ)
(which means θ is a Pareto optimal solution). The sub-procedure Solve for Horn
constraint solving takes an ∃HCCS H and returns any of Unknown, NoSol, or
Sol(θ). The detailed description of Solve is deferred to Sect. 6.1.

Optimize first calls Solve to find an initial solution θ0 of H (line 2). Opti-
mize returns Unknown if Solve returns Unknown (line 3) and NoSol if Solve
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returns NoSol (line 4). Otherwise (line 5), Optimize repeatedly improves a cur-
rent solution θ starting from θ0 until convergence (lines 6 – 13). To improve θ,
we call a sub-procedure Improve≺(θ,H) that generates an ∃HCCS H′ from H
by adding constraints that require any solution θ′ of H′ satisfies θ′ ≺ θ (line 8).
Optimize then calls Solve to find a solution of H′. If Solve returns Unknown,
Optimize returns Sol(θ) as a (possibly non-Pareto optimal) solution (line 10). If
Solve returns NoSol, it is the case that no improvement is possible, and hence
the current solution θ is Pareto optimal. Thus, Optimize returns OptSol(θ) (line
11). Otherwise, we obtain an improved solution θ′ ≺ θ (line 12). Optimize then
updates the current solution θ with θ′ and repeats the improvement process.

Example 6. Recall H⊥
sum in Example 4 and consider an optimization problem

(H⊥
sum,≺(�,ρ)) where ρ(P ) =↑. We below explain how Optimize

(
H⊥

sum,≺(�,ρ)

)
proceeds. First, Optimize calls Solve and obtains an initial solution, e.g., θ0 =
{P �→ λx.⊥} of H⊥

sum. Optimize then calls Improve≺(�,ρ)(θ0,H⊥
sum) and obtains

an ∃HCCS H′ = H⊥
sum∪{P (x) ⇐ ⊥, ∃x.¬(P (x) ⇒ ⊥)} that requires any solution

θ of H′ satisfies θ(P ) ≺ρ(P ) θ0(P ) = λx.⊥. Optimize then calls Solve(H′) and
obtains an improved solution, e.g., θ1 = {P �→ λx.x < 0}. In the next iteration,
Optimize returns θ1 as a Pareto optimal solution because Improve≺(θ1,H⊥

sum)
has no solution. ��

We now discuss properties of the procedure Optimize under the assumption of
the correctness of the sub-procedure Solve (i.e., θ is a Θ-restricted solution of
H if Solve(H) returns Sol(θ), and H has no Θ-restricted solution if Solve(H)
returns NoSol). The following theorem states the correctness of Optimize.

Theorem 4 (Correctness of the Procedure Optimize). Let (H,≺) be a
Θ-restricted Horn constraint optimization problem. If Optimize(H,≺) returns
OptSol(θ) (resp. Sol(θ)), θ is a Pareto optimal (resp. possibly non-Pareto opti-
mal) Θ-restricted solution of H with respect to ≺.

The following theorem states the termination of Optimize for Θatom -
restricted Horn constraint optimization problems.

Theorem 5 (Termination of the Procedure Optimize). Let (H,≺(�,ρ))
be a Θatom -restricted Horn constraint optimization problem. Suppose that

(a) for any P such that ρ(P ) =↓, P is not existentially quantified in H and
(b) if Solve returns θ, for any P , θP defined as θ {P �→ λx̃.φ} (where φ ≡ �

if ρ(P ) =↑ and φ ≡ ⊥ if ρ(P ) =↓) is either not a solution or θP �≺(�,ρ) θ.

It then follows that Optimize(H,≺(�,ρ)) always terminates.

6.1 Sub-Procedure Solve for Solving ∃HCCSs

The pseudo-code of the sub-procedure Solve for solving ∃HCCSs is presented in
Fig. 4. Here, Solve uses existing template-based invariant generation techniques
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Fig. 4. Pseudo-code of the constraint solving method for ∃HCCSs based on template-
based invariant generation

based on Farkas’ lemma [3,7] and ∃HCCS solving techniques based on Skolem-
ization [1,11,19]. Solve first generates a template substitution θ that maps
each predicate variable in pvs(H) to a template atomic predicate with unknown
coefficients c0, . . . , car(P ) (line 2).4 Solve then applies θ to H and obtains a ver-
ification condition of the form ∃c̃.∀x̃.∃ỹ.φ without predicate variables (line 3).
Solve applies Skolemization [1,11,19] to the condition and obtains a simpli-
fied condition of the form ∃c̃, z̃.∀x̃.φ′ (line 4). Solve further applies Farkas’
lemma [3,7] to eliminate the universal quantifiers and obtains a condition of
the form ∃c̃, z̃, w̃.φ′′ (line 5). Solve then uses an SMT solver that supports the
quantifier-free theory of non-linear integer arithmetic (QFNIA) to find a satis-
fying assignment to φ′′ (line 6). If such an assignment σ is found, Solve returns
σ(θ) as a solution (line 7). Otherwise (no assignment is found),5 Solve uses
an SMT solver that supports the quantified theory of non-linear integer arith-
metic (NIA) to check the absence of a Θatom -restricted solution by checking the
unsatisfiability of ∀x̃.∃ỹ.φ (line 9). Solve returns NoSol if Unsat is returned
(line 10) and Unknown if Unknown is returned (line 11). Otherwise (a satisfying
assignment σ is found), Solve returns σ(θ) as a solution (line 12).

Example 7. We explain how Solve proceeds for H′ in Example 6. Solve first
generates a template substitution θ = {P �→ λx.c0 + c1 · x ≥ 0} with unknown

4 The presented code here is thus specialized to solve Θatom -restricted Horn constraint
optimization problems. To solve Θ-restricted optimization problems for other Θ, we
need here to generate templates that conform to the shape of substitutions in Θ
instead. Our implementation in Sect. 7 iteratively increases the template size.

5 Note here that even though no assignment is found, H may have a Θatom -restricted
solution because Farkas’ lemma is not complete for QFLIA formulas [3,7] and
Skolemization of ∃c̃.∀x̃.∃ỹ.φ into ∃c̃, z̃.∀x̃.φ′ here assumes that ỹ are expressed as
linear expressions over x̃ [1,11,19].
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coefficients c0, c1 and applies θ to H′. As a result, we get a verification condition

∃c0, c1.

⎛
⎝∀x.

(
(⊥ ⇐ c0 + c1 · x ≥ 0 ∧ x = 0)∧
(c0 + c1 · (x − 1) ≥ 0 ⇐ c0 + c1 · x ≥ 0 ∧ x �= 0)

)
∧

∃x. c0 + c1 · x ≥ 0

⎞
⎠

By applying Farkas’ lemma, we obtain

∃c0, c1.

⎛
⎜⎜⎜⎜⎜⎜⎝

∃w1, w2, w3 ≥ 0. (c0 · w1 ≤ −1 ∧ c1 · w1 + w2 − w3 = 0)∧
∃w4, w5, w6 ≥ 0.

(
(−1 − c0 + c1) · w4 + c0 · w5 − w6 ≤ −1∧
c1 · (−w4 + w5) + w6 = 0

)
∧

∃w7, w8, w9 ≥ 0.

(
(−1 − c0 + c1) · w7 + c0 · w8 − w9 ≤ −1∧
c1 · (−w7 + w8) − w9 = 0

)
∧

∃x. c0 + c1 · x ≥ 0

⎞
⎟⎟⎟⎟⎟⎟⎠

By using an SMT solver, we obtain, for example, a satisfying assignment σ
such that σ(c0) = σ(c1) = −1, σ(w1) = σ(w2) = σ(w5) = σ(w6) = σ(w7) =
σ(w9) = 1, and σ(w3) = σ(w4) = σ(w8) = 0. Thus, Solve returns σ(θ) =
{P �→ λx. − 1 − x ≥ 0} ≡ θ1 in Example 6. ��

The following theorem states the correctness of the sub-procedure Solve.

Lemma 1 (Correctness of the Sub-Procedure Solve). Let H be an
∃HCCS. θ is a Θatom -restricted solution of H if Solve(H) returns Sol(θ), and
H has no Θatom -restricted solution if Solve(H) returns NoSol.

7 Implementation and Experiments

We have implemented a prototype refinement type optimization tool for OCaml
based on the method presented in this paper. Our tool uses Z3 (https://z3.
codeplex.com/) as its underlying SMT solver. We conducted preliminary exper-
iments on a machine with Intel Core i7-3770 3.40GHz, 16GB of RAM.

Table 1. The results of a non-termination
verification benchmark set used in [2,11,13].

Verified TimeOut Other
Our tool 41 27 13
CppInv [13] 70 6 5
T2-TACAS [2] 51 0 30
MoCHi [11] 48 26 7
TNT [4] 19 3 59

The experimental results are
summarized in Tables 1 and 2.
Table 1 shows the results of an exist-
ing first-order non-termination veri-
fication benchmark set used in [2,11,
13]. Because the original benchmark
set was written in the input lan-
guage of T2 (http://mmjb.github.
io/T2/), we used an OCaml transla-
tion of the benchmark set provided by [11]. The results for CppInv, T2-TACAS,
and TNT are according to Larraz et al. [13]. The result for MoCHi is according
to [11]. Our tool was able to successfully disprove termination of 41 programs
(out of 81) in the time limit of 100 seconds. Our prototype tool was not the best
but performed reasonably well compared to the state-of-the-art tools dedicated
to non-termination verification.

https://z3.codeplex.com/
https://z3.codeplex.com/
http://mmjb.github.io/T2/
http://mmjb.github.io/T2/
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Table 2. The results of maximally-weak precondition inference.

Table 2 shows the results of maximally-weak precondition inference for
proving safety (P/S) and termination (P/T), and disproving safety (D/S) and
termination (D/T). We used non-termination (resp. termination) verification
benchmarks for higher-order functional programs from [11] (resp. [12]). The col-
umn “#I” shows the number of optimization iterations, and the column “Time”
shows the running time in seconds. The column “Op.” shows whether Pareto
optimal refinement types are inferred: (resp. ) indicates that the Pareto
optimality of inferred types is checked automatically by our tool (resp. manually
by us). The results show that our prototype tool is reasonably efficient for prov-
ing safety (P/S) and disproving termination (D/T) of higher-order functions.
Further engineering work, however, is required to make the tool more efficient
for proving termination (P/T) and disproving safety (D/S).

8 Related Work

Type inference problems for refinement type systems [5,20] have been intensively
studied [9,10,15–19]. To our knowledge, this paper is the first to address type
optimization problems, which generalize ordinary type inference problems. As we
saw in Sects. 4 and 7, this generalization enables significantly wider applications
in the verification of higher-order functional programs.

For imperative programs, Gulwani et al. have proposed a template-based
method to infer maximally-weak pre and maximally-strong post conditions [7].
Their method, however, cannot directly handle higher-order functional pro-
grams, (angelic and demonic) non-determinism in programs, and prioritized
multi-objective optimization, which are all handled by our new method.

Internally, our method reduces a type optimization problem to a constraint
optimization problem subject to an existentially quantified Horn clause con-
straint set (∃HCCS). Constraint solving problems for ∃HCCSs have been studied
by recent work [1,11,19]. They, however, do not address constraint optimization
problems. The goal of our constraint optimization is to maximize/minimize the
set of the models for each predicate variable occurring in the given ∃HCCS. Thus,
our constraint optimization problems are different from Max-SMT [14] problems
whose goal is to minimize the sum of the penalty of unsatisfied clauses.
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9 Conclusion

We have generalized refinement type inference problems to type optimization
problems, and presented interesting applications enabled by type optimization
to inferring most-general characterization of inputs for which a given functional
program satisfies (or violates) a given safety (or termination) property. We have
also proposed a refinement type optimization method based on template-based
invariant generation. We have implemented our method and confirmed by exper-
iments that the proposed method is promising for the applications.
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Abstract. We present an approach for the static analysis of programs
handling arrays, with a Galois connection between the semantics of the
array program and semantics of purely scalar operations. The simplest
way to implement it is by automatic, syntactic transformation of the
array program into a scalar program followed analysis of the scalar pro-
gram with any static analysis technique (abstract interpretation, accel-
eration, predicate abstraction,. . . ). The scalars invariants thus obtained
are translated back onto the original program as universally quantified
array invariants. We illustrate our approach on a variety of examples,
leading to the “Dutch flag” algorithm.

1 Introduction

Static analysis aims at automatically discovering program properties. Tradition-
ally, it has focused on dataflow properties (e.g. “can this pointer be null?”), then
on numerical properties (e.g. “2x+y ≤ 45 at every iteration of this loop”). When
it comes to programs operating over arrays, special challenges arise. For instance,
the Astrée static analyzer,1 based on abstract interpretation and commercially
used in the avionics, automotive and other industries, supports arrays simplisti-
cally: it either “smashes” all cells in a single array into a single abstract value, or
expands an array of n cells into n variables; in many cases it is necessary to fully
unroll loops operating over an array in order to prove the desired property2.
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In general, however, analyzing arrays programs entails exhibiting inductive
loop invariants with universal quantification over array indices. Neither smashing
nor expansion can prove, in general, that a simple initialization loop truly does
work:

Listing 1.1. Simple array initialization

i n t t [ n ] ; for ( i n t i =0 ; i<n ; i ++) t [ i ] = 0 ;

To derive the postcondition ∀k.0 ≤ k < n → t[k] = 0, one uses the loop invariant
(in the Floyd-Hoare sense) 0 ≤ i ≤ n ∧ ∀k.0 ≤ k < i → t[k] = 0. The 0 ≤ i ≤ n
part (or generalizations, e.g., filling the upper triangular part of a matrix) can be
automatically inferred by many existing numeric analysis techniques. In contrast,
the ∀k.0 ≤ k < i → t[k] = 0 part is trickier and is the focus of this article.

Contribution. We propose a generic method for analyzing array programs, which
can be implemented (i) as a normal abstract domain (ii) or by translating
the program with arrays into a scalar program (a program without arrays),
analyzing this program by any method producing invariants (back-end), and then
recovering the array properties. Its precision depends on the back-end analysis.
Our method has tunable precision and is formalized by Galois connections [12]
and, contrary to most others, is not guided by a target property (here ∀k.0 ≤
k < n → t[k] = 0), though it can take advantage of it. It can therefore be used
to supply information to the end-user “what does this program do?” as opposed
to be useful only for proving properties. We demonstrate the flexibility of our
approach on examples, using the acceleration procedure Flata, the abstract
interpreter ConcurInterproc and CPAChecker as back-ends.

We also show a form of completeness: for any loop-free program, the precision
of the analysis can be chosen so that it is exact with respect to universally
quantified array properties (Sect. 4.3).

Our approach also applies to general maps keys → values, though certain
optimizations apply only to totally ordered index types.

Contents. Section 2 introduces our approach on one example. Section 3 discusses
the Galois connections, and Sect. 4 gives the formal definition of our transfor-
mation algorithm and associated correctness and partial completeness proofs.
Section 5 discusses the use of various backends on more examples. We discuss
the relevant related work in Sect. 6 and conclude in Sect. 7.

2 Example: The Sentinel

Our program transformation consists in (i) a replacement of reads and writes
parameterized by a number of distinguished indices, formalized in Sect. 4 (ii)
optionally, some “focusing” on a subset of index values (iii) for certain backends
(ConcurInterproc), the addition of observer variables implementing a form
of partitioning.
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Listing 1.2. A “sentinel value” marks the penultimate array cell

const i n t N=1000; i n t i = 0 , t [N] ;
i n i t i a l i z e (N, t ) ; t [N−2] = −1;
while ( t [ i ]>=0) i ++;

Obviously to us humans, this program cannot crash with an array access out of
bounds, and the final value of i is, at most, 998 (its value depends on how the
“ initialize ” procedure works). How can we obtain this result automatically?

Let x be a symbolic constant in {0, . . . , N − 1}. We abstract array t by the
single cell t [x], represented by variable tx: reads and writes at position x in
t translates to reads and writes to variable tx and reads and writes at other
positions are ignored. Program1.2 is thus abstracted as:3

const i n t N=1000 , x = random ( ) ; assume ( x >= 0 && x < N) ;
i n t i = 0 , tx = random ( ) ; i f (N−2 == x ) tx =−1;
while ( 1 ) { i n t read = random ( ) ; i f ( i == x ) { read = tx ; }

i f ( read < 0) { break ; } i = i +1; }
Flata [10,27] can compute an exact input/output relation of this program

(to demonstrate generality, we left N unfixed and replaced N−2 by a parameter
p; we thus use a precondition 0 ≤ x < N ∧ 0 ≤ p < N):

(p = x ∧ i ≤ x − 1 ∧ i ≥ 0 ∧ N ≥ x + 1) ∨ (i = x ∧ i ≥ 0 ∧ N ≥ p + 1 ∧ i ≤ p − 1)∨
(x ≥ p + 1 ∧ i ≤ x − 1 ∧ i ≥ 0 ∧ N ≥ x + 1 ∧ p ≥ 0) ∨ (i = x ∧ i ≤ N − 1 ∧ i ≥ p + 1 ∧ p ≥ 0)∨
(i ≥ x + 1 ∧ N ≥ p + 1 ∧ i ≤ N − 1 ∧ x ≤ p − 1 ∧ x ≥ 0)∨
(i ≤ x − 1 ∧ i ≥ 0 ∧ N ≥ p + 1 ∧ x ≤ p − 1)∨
(i = x ∧ i = p ∧ i ≥ 0 ∧ i ≤ N − 1) ∨ (x ≥ p + 1 ∧ i ≥ x + 1 ∧ i ≤ N − 1 ∧ p ≥ 0)

(F )

Note that our abstraction is valid whatever the value of x. This means that
(i, p,N) should be a solution of N > 0 ∧ ∀x (0 ≤ x < N ⇒ F ). One can check
that this quantified formula entails i ≤ p.

Arguably, we have done too much work: the only cell in the array whose
content matters much is at index p (N−2 in the original program). Running
Flata with x = p yields a postcondition implying i ≤ p. Again, this is sound,
because any choice of x yields a valid postcondition on (i, p).

3 Galois Connections

We shall now see that, for any choice of indices, there is a Galois connection −−−→←−−−
α

γ

[12] between the concrete (the set of possible values of the vector of variables of
the original program) and the abstract set of states (the set of possible values
of the vector of variables in the transformed program). In general, this Galois
connection is not onto: there are abstract elements x� that include “spurious”
states, and which may be reduced to a strictly smaller α ◦ γ(x�).

3 We have left out, for the sake of brevity, tests for array accesses out of bounds.
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If A and B are sets, A → B denotes the set of total functions from A to B,
and P (A) the set of parts of A. If A is finite, A → B denotes the set of arrays
indexed by A; specifically, if A is {1, . . . , l1} × · · · × {1, . . . , ld} then A → B
denotes the d-dimensional arrays of size (l1, . . . , ld). f [x] denotes the application
f(x) where f is a program array or map.

Our constructions easily generalize to arbitrary combinations of numbers of
arrays and numbers of indices; let us see a few common cases.

3.1 Single Index

Applied with a single index, our map abstraction is classical [14, Sect. 2.1].

Definition. Let f ∈ A → B, we abstract it by its graph α1(f) = {(a, f [a]) |
a ∈ A}; e.g., a constant array {1, . . . , n} → Z with value 42 is abstracted as
{(i, 42) | 1 ≤ i ≤ n}.

We lift α1 (while keeping the same notation) to a function from P (A → B)
to P (A × B): for F � ⊆ A → B, α1(F �) =

⋃
f∈F α1(f), otherwise said

α1(F �) =
{

(a, f [a]) | a ∈ A, f ∈ F �
}

(1)

Let F � ⊆ A × B. Then we define its concretization γ1(F �):

γ1(F �) =
{
f ∈ A → B | ∀a ∈ A (a, f [a]) ∈ F �

}
(2)

It is easy to see that (P (A → B) ,⊆) −−−→←−−−
α1

γ1 P (A × B) is a Galois connection.

Non-surjectivity and Reduction. Remark that α1 is not onto (if |A| > 1 and
|B| > 0): there exist multiple F � such that γ1(F �) = ∅, namely all those such
that ∃a ∈ A∀b ∈ B (a, b) /∈ F �. For instance, if considering arrays of two integer
elements (A = {0, 1}, B = Z), then F � = {(1, 0)} yields γ1(F �) = ∅: there is no
way to fill the array at index 0.

Let us now see the practical implication. Assume that the program has a
single array in A → B and a vector of scalar variables ranging in S, then the
memory state is an element of X� �= S × (A → B). The scalar variables are
combined into our abstraction as follows:

P (S × (A → B)) ∼= S → P (A → B) −−−−→←−−−−
αS
1

γS
1

S → P (A × B) ∼= P (S × A × B)
�
= X�,

(3)
where αS

1 and γS
1 lift α1 and γ1 pointwise. Let s ∈ S. While the absence of

any (s, a, b) ∈ x� (x� ∈ X�) indicates that there is no (s, f) ∈ γS
1 (x�), that is,

scalar state s is unreachable, the converse is not true. Consider a single integer
scalar variable s and an array a of length 2, and x� = {(0, 0, 1), (1, 0, 0), (1, 1, 2)},
representing the triples (s, i, a[i]). It would seem that s = 0 is reachable, but it
is not, because there is no way to fill the array at position 1: there is no element
in x� of the form (0, 1, b).
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A reduction is a function ρ : X� → X� such that γ ◦ ρ = γ and ρ(x�) ⊆ x�

for all x�. The strongest reduction ρopt (the minimum for the pointwise ordering
induced by ⊆) is α ◦ γ. In the above, ρopt(x�) = {(1, 0, 0), (1, 1, 2)}; intuitively,
the strongest reduction discards all superfluous elements from the abstract value.

Class of Formulas. Assume now that the vector of scalar variables s1, . . . , sm

lies within S = Z
m, the index a lies in {1, . . . , l1} × · · · × {1, . . . , lD}, and the

values f [a] also lie in Z. Consider a formula ψ of the form

∀a1, . . . , ad φ(s1, . . . , sm, a1, . . . , ad, f [a1, . . . , ad]) (4)

where φ is a first-order arithmetic formula (say, Presburger).
Then, f |= ψ if and only if αS

1 (f) ⊆ {((s1, . . . , sm), (a1, . . . , ad), b) | φ(s1, ,
. . . , , sm, a1, , . . . , , ad, b)}. The sets of program states expressible by formu-
las of form 4 thus map through the Galois connection to a sub-lattice of
P

(
Z

m × Z
d × Z

)
. This construction may be generalized to any theory or com-

bination of theories over the sorts used for scalar variables, array indices, and
array contents.

Checking that an invariant γS
1 (G) entails ψ, when the set G is defined by a

formula Γ , just amounts to checking that Γ ∧ ¬ψ is unsatisfiable.

3.2 Several Indices, One Per Array

The above settings can be extended to several arrays. Let f, g ∈ A → B, we
abstract them by the product of their graphs α1(f, g) = {(a, f [a], a′, g[a′]) |
a, a′ ∈ A}, γ1(x�) = {(f, g) ∈ (A → B)2 | ∀a, a′ ∈ A (a, f [a], a′, g[a′]) ∈ x�}.
This abstraction can express properties of the form

∀a1, . . . , ad, a′
1, . . . , a

′
d φ(s1, . . . , sm, a1, . . . , ad, f [a1, . . . , ad], a′

1, . . . , a
′
d, g[a′

1, . . . , a
′
d])

As an example, the property that up to index k, monodimensional array f of
length n has been copied into array g can be expressed as ∀a, a′ ∈ {1, . . . , n} a <
k ∧ a = a′ ⇒ f [a] = g[a′] within that class.

3.3 Dual Indices, Same Array

Definition. Let f ∈ A → B, pose α2(f) = {(a, f [a], a′, f [a′]) | a, a′ ∈ A} and lift
it to a function from P (A → B) to P

(
(A × B)2

)
. Let F � ⊆ (A × B)2. Then we

define its concretization γ2(F �):

γ2(F �) =
{
f ∈ A → B | ∀a, a′ ∈ A (a, f [a], a′, f [a′]) ∈ F �

}
(5)

It is easy to see that (P (A → B) ,⊆) −−−→←−−−
α2

γ2 P (A × B) is a Galois connection.
If A is totally ordered, it seems a waste to include both (a, f [a], a′, f [a′])

and (a′, f [a′], a, f [a]) in the abstraction for a < a′. We thus define α2<(f) =
{(a, f [a], a′, f [a′]) | a < a′ ∈ A} and γ2<(x�) = {f ∈ A → B | ∀a, a′ ∈ A , a <
a′ ⇒ (a, f [a], a′, f [a′]) ∈ x�}.



222 D. Monniaux and F. Alberti

Non-surjectivity. Remark, again, that α2 is not onto. Consider an array of inte-
gers of length 3, that is, a function f : {1, 2, 3} → Z. An analysis computes its
abstraction as x� = {(1, 0, 2, 0), (1, 0, 3, 0), (2, 0, 3, 0), (1, 0, 3, 1)}; recall that each
element of that set purports to denote (a, f [a], a′, f [a′]) for a < a′. At first sight,
it seems that f(3) = 1 is possible, as witnessed by the last element. Yet, there is
then no way to fill a[2]: there is no x such that (2, x, 3, 1) ∈ x�. This last element
is therefore superfluous, and we can conclude that ∀x f [x] = 0. (See Sect. 5.5 for
a real-life example.)

If x� is defined by a first-order formula (x� = {(a, b, a′, b′) | φ(a, b, a′, b′)}),
then this reduction (removing all a′, b′ such that for some a < a′ there is no way
to fill f [a]) is obtained as: ∀a∃b a < a′ ⇒ φ(a, b, a′, b′).

Class of Formulas. Assume now that the vector of scalar variables s1, . . . , sm

lies within S = Z
m, the indices a < a′ lie in {1, . . . , n}, and the values f [a], f [a′]

also lie in Z. Consider a formula ψ of the form ∀a, a′ a < a′ ⇒ φ(s1, . . . , sm, a,
f [a], a′, f [a′]) where φ is a first-order arithmetic formula (say, Presburger). For
instance, one may express sortedness: ∀a, a′ a < a′ ⇒ f [a] ≤ f [a′].

Then, f |= ψ if and only if αS
2<(f) ∈ {((s1, . . . , sm), a, b, a′, b′) | φ(s1, . . . ,

sm, a, b, a′, b′)}. The sets of program states expressible by formulas of the form
∀a, a′ a < a′ ⇒ φ(s1, . . . , sm, a, f [a], a′, f [a′]) thus map through the Galois con-
nection to a sub-lattice of P

(
Z

m × (Z × Z)2
)
.

4 Abstraction of Program Semantics

Our analysis may be implemented by a syntactic transformation of array oper-
ations into purely scalar operations. In this section, for each operation (read,
write) we describe the transformed operation and demonstrate the correctness
of the transformation. We then discuss precision.

Without loss of generality, we consider only elementary reads and writes (r=
f[ i ]; and f [ i]=r ; with i a variable). More complex constructs, e.g. f [e]=r; with e
an expression, can always be decomposed into a sequence of scalar operations and
elementary read and writes, using temporary variables.

4.1 Transformation and Correctness

Reading from the Array. Consider a program state composed of (s, r, i, f) where
r ∈ B, i ∈ A are scalars, s ∈ S is the rest of the state, and f ∈ A → B. Consider
the instruction r=f[ i ]; , its semantics is:

(s, r, i, f)
r=f[ i ];−−−−−→ (s, f(i), i, f) (6)

We wish to abstract it by the program fragment:

Listing 1.3. Read from array

r = random ( ) ; i f ( i ==a ) { r=b ; }



A Simple Abstraction of Arrays and Maps by Program Translation 223

Lemma 1. The forward and backward semantics of Program 1.3 abstract the
forward and backwards semantics of r=f[ i ]; by the (αS

1 , γS
1 ) Galois connection.

More generally, a read with several indexes a1, a2, . . . is abstracted by

r=random ( ) ; i f ( i ==a1 ) assume ( r==b1 ) ; i f ( i ==a2 ) assume ( r==b2 ) ; . . .

The same lemma and proof carry to that setting.

Writing to the Array. Consider the instruction f [ i]=r ; , its semantics is:

(s, r, i, f)
f [ i]=r ;−−−−−→ (s, r, i, f [i → r]) (7)

We wish to abstract it by the program fragment:

Listing 1.4. Write to array

i f ( i ==a ) { b=r ; }

Lemma 2. The forward and backward semantics of Program 1.4 abstract the
forward and backwards semantics of f [ i]=r ; by the (αS

1 , γS
1 ) Galois connection.

The same carries over to writing to an array with several indices, abstracted as:

Listing 1.5. Write to array, multiple indexes

i f ( i ==a1 ) { b1=r ; } i f ( i ==a2 ) { b2=r ; } . . .

Operations on Scalars. Consider a program state composed of (s, f) where f ∈
A → B is an array and s ∈ S is the rest of the state. Consider a scalar instruction

s
P−→ s′ and thus (s, f) P �

−−→ (s′, f). We abstract P as: (s, a, b) P �

−−→ (s′, a, b) if
s → Ps′. Essentially, operations on scalars are abstracted by themselves. The
following result generalizes immediately to (α2, γ2) etc.

Lemma 3. The forward and backward semantics of P �

−−→ abstract those of P �

−−→
by the (αS

1 , γS
1 ) Galois connection.

4.2 Precision Loss

“Forgetting” the value of a scalar variable v corresponds to (s, v, f) →
(s, f). This scalar operation may be correctly abstracted, as in Lemma 3, by
(s, v, a, b) → (s, a, b). Surprisingly, applying this operation not only forgets the
value of v, it may also enlarge the set of represented f .

Example: x� = {(0, v, a, v) | a ∈ A ∧ v ∈ B} abstracts by (αS
1 , γS

1 ) the set of
triples (0, v, f) where f is a constant function of value v. Forgetting v yields the
set of pairs (0, f) where f is a constant function. Applying (s, v, a, b) → (s, a, b)
to x� yields y� = {(0, a, v) | A ∈ A ∧ v ∈ B}, which concretizes to the set
{(0, f) | f ∈ A → B}. We have completely lost the “constantness” property.
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4.3 Relative Completeness

We now consider the problem of completeness of this abstraction, assuming that
the back-end analysis is perfectly precise (thus relative completeness).

Our analysis is incomplete in general. Consider the following program:

Listing 1.6. Fill with zero, test zero

i n t t [N] ; for ( i n t i =0 ; i<N; i ++) t [ i ] = 0 ;
for ( i n t i =0 ; i<N; i ++) i f ( t [ i ] ! = 0 ) break ;

In the second loop, the break statement is never reached and thus at the end
of the loop, i = N . Yet, if we distinguish n < N different indices i1, . . . , in,
we cannot prove that this statement is never reached: for there will exist i ∈
{0, . . . , N − 1} \ {i1, . . . , in} such that t [ i ] returns, in the abstracted program,
an arbitrary value and thus the break statement is considered possibly reachable.

In contrast, when the program is loop-free, the abstraction is exact with
respect to the scalar variables, provided the number of indices used for the
abstraction is at least the number of array accesses:

Theorem 1. Consider a loop-free array program P with arrays a1, . . . , ad such
that the number of accesses to these arrays are respectively α1, . . . , αd. By
abstracting these arrays with, respectively, n1, . . . , nd indices such that ni ≥ αi

for all i, we obtain a Galois connection −−−→←−−−
α

γ
such that πS ◦ γ ◦ P � ◦ α = πS ◦ P �

where πS is the projection of the state to the scalar variables.

This completeness results extends to universally quantified array properties
∀i1, . . . P (i1, . . . ) → Q(a1[i1], . . . ): one appends to the original program (assum-
ing i1, . . . , in are fresh, nondeterministically initialized):

assume ( (P (i1, . . . ) ) ; a s s e r t (Q(i1, . . . ) ) ;

5 More Examples

5.1 Matrix Initialization

Listing 1.7. Initialization of m × n matrix a with value v

void a r r a y i n i t 2 d ( i n t m, i n t n , i n t a [m] [ n ] , i n t v ) {
for ( i n t i = 0 ; i < m; i ++) {

for ( i n t j = 0 ; j < n ; j ++) a [ i ] [ j ] = v ; } }

Again, we consider cell a[x, y], where 0 ≤ x < m and 0 ≤ y < n, and
disregard all other cells. One should not convert this procedure into a single
control-flow graph, because the resulting numerical transition system does not
have the “flat” structure expected by Flata [11]. Instead, one must encode the
inner loop as a separate procedure:
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void a r r a y i n i t 2 d ( i n t m, i n t n , i n t a , i n t v , i n t x , i n t y ) {
assume ( x >= 0 && x < m) ;
assume ( y >= 0 && y < n ) ;
for ( i n t i =0 ; i<m; i ++) innerloop ( n , a , v , x , y , i ) ; }

void inner loop ( i n t n , i n t a , i n t v , i n t x , i n t y , i n t i ) {
for ( i n t j =0 ; j<n ; j ++) i f ( x== i && y== j ) a = v ; }

Flata then computes the exact input-output relation of inner loop, and finally
the exact input-output relation of array init 2d:

(x = 0 ∧ m = 1 ∧ a
′
= v ∧ y ≥ 0 ∧ n ≥ y + 1) ∨ (a

′
= v ∧ x ≥ 1 ∧ y ≥ 0 ∧ m ≥ x + 1 ∧ n ≥ y + 1)∨

(n = 1 ∧ x = 0 ∧ y = 0 ∧ a
′
= v ∧ m ≥ 2) ∨ (x = 0 ∧ a

′
= v ∧ y ≥ 0 ∧ m ≥ 2 ∧ n ≥ 2 ∧ n ≥ y + 1)

Each disjunct implies a′ = v, i.e., the final value of a[x, y] is v. Again, because
(x, y) are symbolic constants with no assumption except that they are valid
indices for a, this proves that all cells contain v. Assuming 0 ≤ x < m∧0 ≤ y < n
this formula may indeed be simplified automatically into a′ = v.4

5.2 Slice Initialization

Listing 1.8. Initialize a[low . . . high − 1] to v

void s l i c e i n i t ( i n t n , i n t a [ n ] , i n t low , i n t high , i n t v ) {
for ( i n t i =low ; i<high ; i ++) a [ i ] = v ; }
Again, we transform the program using a single index:

for ( i n t i =low ; i<high ; i ++) i f ( x == i ) a = v ;

Flata produces as postcondition (assuming 0 ≤ x < n ∧ 0 ≤ low ≤ high ≤ n):

(high = low ∧ a′ = a ∧ high ≥ 0 ∧ n ≥ high ∧ n ≥ x + 1 ∧ x ≥ 0)∨
(a′ = v ∧ low ≤ x ∧ n ≥ high ∧ high ≥ x + 1 ∧ low ≥ 0)∨

(a′ = a ∧ n ≥ high ∧ high ≥ low + 1 ∧ low ≥ x + 1 ∧ x ≥ 0)∨
(a′ = a ∧ high ≤ x ∧ n ≥ x + 1 ∧ high ≥ low + 1 ∧ low ≥ 0) (8)

Again, under the assumptions 0 ≤ x < n and 0 ≤ low ≤ high ≤ n, this
formula is equivalent to: ((low ≤ x < high) → a′ = v) ∧ (¬(low ≤ x < high) →
a′ = a). Thus by quantification, the expected outcome:

(∀x ∈ [low , high) a′[x] = v) ∧ (∀x /∈ [low , high) → a′[x] = a[x]) (9)

5.3 Array Copy

Listing 1.9. Copy array a into array b

void array copy ( i n t n , i n t a [ n ] , i n t b [ n ] ) {
for ( i n t i =0 ; i<n ; i ++) b [ i ] = a [ i ] ; }

4 We implemented a simplification algorithm for quantifier-free Presburger arithmetic
inspired by [37] so as to understand the output of Flata and ConcurInterproc.
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Take a single cell a[x] in a and a single cell b[y] in b; after transformation:

i n t n , a , b , x , y , tmp ;
assume (0 <= x && x < n && 0 <= y && y < n ) ;
for ( i n t i =0 ; i<n ; i ++) { i f ( x== i ) tmp=a ; i f ( y== i ) b=tmp ; }

Flata. Flata yields: (y ≥ x + 1 ∧ n ≥ y + 2 ∧ x ≥ 0) ∨ (n = y + 1 ∧ y ≥
x + 1 ∧ x ≥ 0) ∨ (n = x + 1 ∧ y ≥ 0 ∧ y ≤ x − 1) ∨ (y ≥ 0 ∧ y ≤ x − 1 ∧ n ≥
x+2)∨ (y = x∧ b′ = a∧n ≥ x+2∧x ≥ 0)∨ (y = x∧ b′ = a∧n = x+1∧x ≥ 0).
Assuming 0 ≤ x < n ∧ 0 ≤ y < n, this is equivalent to x = y → a = b. Thus by
quantification, ∀x, y.x = y → a[x] = b[y], simplifiable into ∀x.a[x] = b[x].

Software Model Checking. Many software model checkers, including
CPAChecker5, do not handle universally quantified array properties; yet we
can use them as back-end analyses! We translate the target property (here
∀x.0 ≤ x < n → a[x] = b[x]) into a precondition x = y and an assertion on
the postcondition a = b. CPAChecker then proves the property.6

i n t main ( ) {
i n t n , a , b , x , y ;
i f (0 <= x && x < n && 0 <= y && y < n && x==y ) {

for ( i n t i =0 ; i<n ; i ++) {
i n t tmp ; i f ( x== i ) tmp=a ; i f ( y== i ) b=tmp ; }

a s s e r t ( a==b ) ; } }

5.4 In-Place Array Reversal

Listing 1.10. Array reversal

void a r r a y r e v e r s e i n p l a c e ( i n t n , contents t [ n ] ) {
i n t i =0 , j =n−1;
while ( i < j ) {

contents tmp1 = t [ i ] , tmp2 = t [ j ] ;
t [ i ] = tmp2 ; t [ j ] = tmp1 ; i ++; j −−; } }

For this program, we need to distinguish the initial values in the array from
the values during the computation (which finally yield the final values). We use
three indices 0 ≤ x < n, 0 ≤ y ≤ z < n: a is the initial value of t[x], b the current
value of t[y], c the current value of t[z].

For each read, we check if the index of the read is equal to y (respectively,
z) and return b (respectively, c) if this is the case. If the index is equal to both
y and z, it is sound to return either b or c; we chose to return b. For each write,
we test if the index is equal to y, in which case we write to b, and equal to z, in
which case we write to c. If it is equal to both y and z, we write to both b and c.

5 http://cpachecker.sosy-lab.org/.
6 scripts/cpa.sh -predicateAnalysis after preprocessing with assert.h.

http://cpachecker.sosy-lab.org/
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Listing 1.11. Array reversal, transformed

contents a , b , c ;
i n t x , y , z , i =0 , j =n−1;
i f ( y == x ) b = a ; i f ( z == x ) c = a ;
while ( i < j ) { contents tmp1 , tmp2 ;

i f ( i == y ) tmp1 = b ; else i f ( i == z ) tmp1 = c ;
i f ( j == y ) tmp2 = b ; else i f ( j == z ) tmp2 = c ;
i f ( i == y ) b = tmp2 ; i f ( i == z ) c = tmp2 ;
i f ( j == y ) b = tmp1 ; i f ( j == z ) c = tmp1 ; i ++; j −−; }

Flata. Flata takes 480 s7 to process this program, and outputs an input-output
relation φ in disjunctive normal form with 292 disjuncts (not reprinted). The
output formula is very complicated, with explicit enumeration of many particular
cases; the reason for the slowness and the size of the output formula seems to be
that Flata explicitly enumerates many cases up to saturation, with no attempt
at intermediate simplifications. We shall now explain what this formula entails.

Let U be 0 ≤ x, y, z < n ∧ y + z = n − 1. Let U< be U ∧ y < z ∧ z =
x ∧ y + z = n − 1, then φ ∧ U< is equivalent to a = b ∧ U<. This means
that under the precondition U<, Prog. 1.11 has exact postcondition a = b. By
universal quantification, this means that ∀x, y, z.U< → t[x] = t′[y], where t is
the input array to Prog. 1.10 and t′ the output. This formula may be simplified
into ∀x.0 ≤ x∧2x ≤ n−2 → t[x] = t′[n−1−x]; We can obtain similar formulas
for the cases y > z and y = z. The three cases can can be summarized into

∀x.0 ≤ x < n → t[x] = t′[n − 1 − x] (10)

Flata, Focused. The above execution time and the complexity of the resulting
formula seem excessive, if all that matters is when (x = y∨x = z)∧y+z = n−1.
Indeed, some easy static analysis (by Flata or another tool) shows that the array
accesses within the loop are done at indices i and j that satisfy 0 ≤ i ≤ j < n
and i + j = n − 1. Such a pre-analysis suggests to target the main analysis to
two positions t[y] and t[z] in the current array, satisfying 0 ≤ y ≤ z < n and
y + z = n−1. The only positions a[x] that matter in the original array are those
that can be read precisely, that is, x = y and x = z.

We therefore re-run the analysis with precondition U : (0 ≤ y ≤ z < n∧y+z =
n − 1 ∧ x = y). Flata runs for 6 s and outputs a formula with 8 disjuncts, with
a = c in all disjuncts. We thus have proved that ∀x, y, z.U → t[x] = t′[z], which
can be simplified into ∀z.2z ≥ n − 1 ∧ z < n → t′[z] = t[n − 1 − z].

We may also run with the precondition, (0 ≤ y ≤ z < n∧y+z = n−1∧x = z)
and get the remainder of the cases to conclude as in Formula 10.

To summarize, when the exact analysis of the transformed program (that
is, an exact analysis in the back-end) is too costly, one may choose to focus
the analysis by restricting the range of the indices (x, y, z, . . . ) to some area U
considered to be “meaningful”, for instance obtained by pre-analysis of the rela-
tionships between the indices of the array accesses in the program. This is sound,
7 All timings using one core of a 2.4 GHz Intel � CoreTM i3 running 32-bit Linux.
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since the quantification in the resulting formula is over the indices satisfying U .
Thus, a bad choice for U may only result in a sound, but uninteresting invariant
(the worst case is to take an unsatisfiable U : we then obtain a formula talking
about an empty set of positions in the arrays, thus a tautology).

ConcurInterproc, Focused. Interproc8 applies classical abstract interpretation
(Kleene iteration accelerated with widenings, with possible narrowing iterations)
over a variety of numerical abstract domains provided by the Apron [29] library9

(intervals, “octagons” [36], convex polyhedra [13,22]. . . ).
ConcurInterproc10 extends it to concurrency (which we will not use here)

and partitioning of the state space according to enumerated types, including
Booleans. In a nutshell, while Interproc assigns a single abstract element
(product of intervals, octagon, polyhedron) to each program location, Concur-
Interproc attaches 2n abstract elements, where n is the number of Booleans
(or,more generally, one per concrete instantiation of the enumerated variables).
In order to achieve this at reasonable cost, the BDDApron library uses a com-
pact representation, where identical abstract elements are shared and the asso-
ciated set of concrete instantiations is represented by a binary decision diagram.

Program 1.11 contains no Boolean variable (or of any other enumerated type),
thus directly applying ConcurInterproc over it will yield one convex poly-
hedron at the end; yet we need to express a disjunction of such polyhedra (e.g.
there is the case where x = y, and the case where x �= y, which may be sub-
divided into x < y and y < z). Furthermore, inside the loop one would have
to distinguish i < y, i = y, i > y. This is where, in other analysis of array
properties by abstract interpretation [16,21,23,38,39] one introduces “slices” or
“segments” of programs, often according to syntactic criteria. In our case, we
wish to distinguish certain locations in the array (or combinations of several
locations, as here with three indices x, y, z) according to more semantic criteria.

Our solution is to introduce observer variables, which are written to but
never read and whose final value is discarded, but which will guide the analysis
and the partitioning performed. Here, we choose to have one flag variable per
access, initially set to “false”, and set to “true” when the access has taken place.
As previously, we use a precondition y + z = n − 1 ∧ x = z.

Listing 1.12. Array reversal, transformed and instrumented
contents a , b , c ;
i n t x , y , z ;
bool y0 , z0 , y1 , z1 , y2 , z2 , y3 , z3 , y4 , z4 ;
x0=y0=y1=z1=y2=z2=y3=z3=y4=z4= f a l s e ;
i n t i =0 , j =n−1;
assume ( y+z == n−1) ; assume ( x==z ) ;
i f ( y == x ) { b = a ; y0 = true ; } i f ( z == x ) { c = a ; z0 = true ; }
while ( i < j ) {

contents tmp1 , tmp2 ;
i f ( i == y ) {tmp1 = b ; y1 = true ;} e lse i f ( i == z ) {tmp1 = c ; z1 = true ;}
i f ( j == y ) {tmp2 = b ; y2 = true ;} e lse i f ( j == z ) {tmp2 = c ; z2 = true ;}

8 http://pop-art.inrialpes.fr/people/bjeannet/bjeannet-forge/interproc/.
9 http://apron.cri.ensmp.fr/library/.

10 http://pop-art.inrialpes.fr/interproc/concurinterprocweb.cgi.

http://pop-art.inrialpes.fr/people/bjeannet/bjeannet-forge/interproc/
http://apron.cri.ensmp.fr/library/
http://pop-art.inrialpes.fr/interproc/concurinterprocweb.cgi


A Simple Abstraction of Arrays and Maps by Program Translation 229

i f ( i == y ) {b = tmp2 ; y3 = true ;} i f ( i == z ) {c = tmp2 ; z3 = true ;}
i f ( j == y ) {b = tmp1 ; y4 = true ;} i f ( j == z ) {c = tmp1 ; z4 = true ;}
i ++; j −−; }

ConcurInterproc, within 0.16 s, concludes that a = b.

5.5 Dutch National Flag

Quicksort is a divide-and-conquer sorting algorithm: pick a pivot, swap array
cells until the array is divided into two areas: elements less than the pivot, and
elements greater than or equal to it; then recurse in both areas. An improvement,
in case many elements may be identical, is to swap the array into three areas:
elements less than the pivot, equal to it, and greater than it, and recurse in the
“less” and “greater” areas. This three-way partition is equivalent to the “Dutch
national flag problem” [18, ch. 14], of swapping pebbles of colors red, white and
blue (corresponding to “less”, “equal” and “greater”) into three segments.

Listing 1.13. Dutch flag(Courtesy of Wikipedia.)

void threeWayPart i t ion ( i n t data [ ] , i n t s ize , i n t low , i n t high ) {
i n t p = −1, q = s i z e ;
for ( i n t i = 0 ; i < q ; ) {

i f ( data [ i ] < low ) {swap(&data [ i ] , &data [++p ] ) ; ++ i ;}
else i f ( data [ i ]>=high ) {swap(&data [ i ] , &data[−−q ] ) ;} else ++ i ;

}}
We transform this program with two indices 0 ≤ x < y < n (remark that this

is valid only if n ≥ 2) with associated values datax and datay , and instrument
it with Boolean observer variables: for each read or write access to an index i,
we keep a Boolean recording the value of predicate x ≤ i and one for x ≥ i
(respectively for y). The values in the array are encoded as pebble colors LOW,
MIDDLE, HIGH.

ConcurInterproc computes a postcondition within 1 min. The resulting
formula φ has 52 cases; we will not print it here. We check that φ ∧ x ≤ p →
datax = BLUE, meaning that finally, ∀x.0 ≤ x ≤ p → t[x] = BLUE. Sim-
ilarly, φ ∧ y ≥ q → datay = RED, thus ∀y.q ≤ y < n → t[y] = RED. We
would expect as well that ∀x.p < x < q → t[x] = WHITE. Yet, this does not
immediately follow from φ: φ ∧ p < y < q ∧ datay = RED is satisfiable! Could
there be red cells in the supposedly white area?

Note that φ, for fixed values of n, p, q, encodes quadruples (x, datax , y, datay),
which encompass all possible values of (x, t[x], y, t[y]) for x < y. In particular,
for t[y] = RED to be possible for given n, p, q, one must have suitable t[x] for all
x < y, such that (x, t[x], y,RED) satisfies φ for the same n, p, q. In other words, to
have a cell t[y] = RED one must be able to find values t[x] for all cells to the left
of it. We check that, indeed, p < y < q ∧ datay �= WHITE ∧ (∀x.0 ≤ x < y → φ)
is unsatisfiable,11 meaning that ∀y.(p < y < q ∧ y > 0) → t[y] = WHITE.
Furthermore, φ ∧ x = 0 ∧ x < q ∧ datax �= WHITE has no solution. We can thus
conclude ∀y.p < y < q → t[y] = WHITE.
11 From Presburger arithmetic, a decidable theory.
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Thus, we encountered a case of “spurious” solutions in the abstract element,
due to the fact that the abstraction is not onto and that certain abstract elements
can be reduced to a smaller element with the same concretization; which was
achieved through quantification (see Subsect. 3.3). This reduction can thus be
performed through some form of quantifier elimination.

6 Related Work

Acceleration. For certain classes of loops, it is possible to compute exactly the
transitive closure τ+ of the relation τ encoding the semantics of the loop, within
a decidable class. Acceleration for arrays has been studied by Bozga et al. [9],
who obtain the transitive closure in the form of a counter automaton. The trans-
lation from counter automaton to array properties expressed in first-order logic
then requires an abstraction step, resulting in a loss of precision. Alberti et al.
[1,3] proposed a template-based solution. Certain classes of τ ’s admit a definable
acceleration in Presburger arithmetic augmented with free function symbols, at
the price of nested quantifiers. The ∃∗∀∗ fragment of this theory is undecid-
able [24]; thus again abstraction is needed to apply this technique in practice.
Yet, there are cases where exact acceleration is possible [4]. Contrary to these
approaches, (i) ours does not put restrictions on the shape of the loop (and
the program in general) (ii) we perform the tunable abstraction first, with the
rest of the analysis being delegated to a back-end (which can possibly use exact
acceleration on scalar programs [10]).

Abstract Interpretation. Various array abstractions [16,21,23,38,39] distinguish
slices or segments, whose contents is then abstracted by another abstract domain.
Depending on the approach, relationships between several slices may or may
not be expressed, and the partitioning may be syntactic or based on some pre-
analysis. To our best knowledge, none of these approaches work on multidimen-
sional arrays or on maps, contrary to ours. One major difference between these
approaches and ours is that ours separates the analysis, both in theory and imple-
mentation, into an abstraction that maps array programs to scalar programs and
an analysis for the scalar programs, while theirs are more “monolithic”. Even
though they are parametric in abstract domains for values and possibly indexes,
they must be used inside an abstract interpreter based on Kleene iterations with
widening. In contrast, ours can use any back-end analysis for scalar programs,
including exact acceleration, abstract interpretation with Kleene iterations, pol-
icy iteration, and even, if a target property is supplied, predicate abstraction
(see CEGAR below).

Cox et al. [17] do not target array programs per se, but programs in highly
dynamic object-oriented languages such as Javascript, where an object is a map
from fields to values and the set of possible field names is not fixed. Dillig et
al. [19] overcome the dichotomy of strong vs weak updates with liquid updates.
Their approach is monolithic and cannot express properties such as sortedness.
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Predicate Abstraction and CEGAR. Predicate abstraction starts from the con-
trol structure of a program and incrementally refines it by splitting control
states according to predicates chosen by the user [20] or, commonly, obtained
by counterexample/guided abstraction refinement (CEGAR). From an abstract
counterexample trace not corresponding to a concrete counterexample, they
refine the model using local predicates constituting a step-by-step proof that
this abstract trace does not match any concrete trace. The hope is that this
proof generalizes to more counterexample traces and that the predicates even-
tually converge to define an inductive invariant. The predicates are obtained
from Craig interpolants [32,34,35] extracted from the proof of unsatisfiability
produced by a satisfiability modulo theory (SMT) solver. The difficulty here is
to generate Craig interpolants that tend to generalize to inductive invariants, on
quantified formulas involving arrays [33]. We are interested in predicates such
as ∀0 ≤ k < i, t[k] = 0, which generalizes to an inductive invariant on Pro-
gram 1.1, as opposed to, say, t[0] = 0∧ t[1] = 0, which is equivalent for i = 2 but
does not generalize to arbitrary i. In order to achieve practical scalability, some
work restrict themselves to the inference of array predicates to certain forms,
e.g. range predicates [30]. Others tune the interpolating procedure towards the
generation of better interpolants [2,5]. A major difference between our approach
and those based on CEGAR is that we do not require a “target” property to
prove, which is necessary for having counterexamples, though we can use one if
needed. If such a property is provided, our approach can use as a back-end a
CEGAR system limited to scalar variables.

Theorem Proving and SMT-Based Approaches. The generation of invariants for
programs with arrays has been also studied using automated theorem proving
[25,26]; this approach is generally limited by the fact that theory reasoning (e.g.
arithmetic) and superposition-based deductive reasoning (on which the Vampire
first-order theorem prover is based [31]) are not yet efficiently integrated. As
opposed to [6], we do not rely on quantifier-instantiation procedures.

Quantification. Flanagan et al. [20] also use Skolem constants that they quantify
universally after analysis steps. As opposed to us, they require the user to specify
the predicates on which the program will be abstracted.

Abstraction of Sets of Maps. Our approach generalizes a classical abstraction of
sets of maps [14, Sect. 2.1]. Jeannet et al. [28] considered the problem of abstract-
ing sets of functions of signature D1 → D2, assuming a finite abstract domain A1

of cardinality n abstracting subsets of D1 and an abstract domain A2 abstracting
subsets of Dn

2 . In contrast, we do not make any cardinality assumption.

Partitioning. Rival et al. [40] introduced partitioning according to an abstrac-
tion of the history of the computation. Our approach using observer variables for
using ConcurInterproc (Subsect. 5.4) is akin to considering a finite abstrac-
tion of the trace of read/writes into a given array.
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7 Conclusion and Future Work

We have shown that a number of properties of array programs can be proved by
abstracting the array a using a few symbolic cells a[x], a[y], . . . by automatically
translating the program into a scalar program, running a static analyzer over the
scalar program and translating back the invariant for the original program. In
some cases, a form of quantifier elimination is used over the resulting formulas.

Our approach is not specific to arrays, and can be applied to any map struc-
ture X → Y (e.g. hash tables and other container classes). A possible future
extension is multiset properties, a multiset being map X → N.

The main weakness of our approach is the need for a rather precise back-end
analysis (for the scalar program obtained by translation). Our experiments high-
lighted some inefficiencies in e.g. Flata and ConcurInterproc: in the former,
many paths can be enumerated and complicated formulas generated even though
a much simpler equivalent form exists; in the latter, polyhedra that are only
slightly different (say, one constraint is different) are handled wholly separately.
This gives immediate directions for research for improving exact acceleration,
as in Flata, or disjunctions of polyhedra, as in ConcurInterproc. Another
difficulty, if using ConcurInterproc or other tools focusing on convex sets of
integer vectors, is the need to use observer variables and/or an auxiliary pre-
analysis to “focus” the main analysis.

We stress again that we obtained our results using unmodified versions of very
different back-end analyzers (ConcurInterproc, Flata, CPAChecker),
which testifies to the flexibility of our approach. Performance and precision
improvements can be expected by modifying the back-end analyzers (e.g. preci-
sion could be improved by performing reduction steps during the analysis, rather
than after the computation of the invariants).
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cation of integer array programs. In: Bouajjani, A., Maler, O. (eds.) CAV 2009.
LNCS, vol. 5643, pp. 157–172. Springer, Heidelberg (2009)
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(eds.) FM 2012. LNCS, vol. 7436, pp. 247–251. Springer, Heidelberg (2012)

28. Jeannet, B., Gopan, D., Reps, T.: A relational abstraction for functions. In: Hankin,
C., Siveroni, I. (eds.) SAS 2005. LNCS, vol. 3672, pp. 186–202. Springer, Heidelberg
(2005)
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Abstract. While abstract interpretation is not theoretically restricted
to specific kinds of properties, it is, in practice, mainly developed to
compute linear over-approximations of reachable sets, aka. the collecting
semantics of the program. The verification of user-provided properties is
not easily compatible with the usual forward fixpoint computation using
numerical abstract domains.

We propose here to rely on sums-of-squares programming to charac-
terize a property-driven polynomial invariant. This invariant generation
can be guided by either boundedness, or in contrary, a given zone of the
state space to avoid.

While the target property is not necessarily inductive with respect
to the program semantics, our method identifies a stronger inductive
polynomial invariant using numerical optimization. Our method applies
to a wide set of programs: a main while loop composed of a disjunction
(if-then-else) of polynomial updates e.g. piecewise polynomial controllers.
It has been evaluated on various programs.

1 Introduction

With the increased need for confidence in software, it becomes more than ever
important to provide means to support the verification of specification of soft-
ware. Among the various formal verification methods to support these analysis,
a first line of approaches, such as deductive methods or SMT-based model check-
ing, provide rich languages to support the expression of the specification and then
try to discharge the associate proof obligation using automatic solvers. The cur-
rent state of the art of these solvers is able to manipulate satisfiability problems
over linear arithmetics or restricted fragments of non linear arithmetics. Another
line of approaches, such as static analysis also known as abstract interpretation,
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restricts, a priori, the kind of properties considered during the computation:
these methods typically perform interval arithmetic analysis or rely on convex
polyhedra computations. In practice this second line of work seems more capable
of manipulating and generating numerical invariants through the computation
of inductive invariants, while the first line of approaches hardly synthesize these
required invariants through satisfiability checks.

However, when it comes to more than linear properties, the state of the
art is not well developed. In the early 2000s, ellipsoid analyses [11], similar to
restricted cases of Lyapunov functions, were designed to support the study of a
family of Airbus controllers. This exciting result was used to provide the analysis
of absence of runtime errors but could hardly be adapted to handle more general
user provided specifications for polynomial programs.

However proving polynomial inequalities is NP-hard and boils down to show
that the infimum of a given polynomial is nonnegative. Still, one can obtain
lower bounds of such infima by decomposing certain nonnegative polynomials
into sums-of-squares (SOS). This actually leads to solve hierarchies of semidefi-
nite relaxations, introduced by Lasserre in [12]. Recent advances in semidefinite
programming allowed to extensively apply these relaxations to various fields,
including parametric polynomial optimization, optimal control, combinatorial
optimization, etc. (see e.g. [13,17] for more details).

While these approaches were mentioned a decade ago in [8] and mainly
applied to termination analysis, they hardly made their way through the software
verification community to address more general properties.

Contributions. Our contribution allows to analyze high level properties defined
as a sublevel set of polynomials functions, i.e. basic semialgebraic sets. This
class of properties is rather large: it ranges from boundedness properties to the
definition of a bad region of the state space to avoid. While these properties,
when they hold, are meant to be invariant, i.e. they hold in each reachable state,
they are not necessarily inductive. Our approach rely on the computation of
a stronger inductive property using SOS programming. This stronger property
is proved inductive on the complete system and, by construction, implies the
target property specified by the user. We develop our analysis on discrete-time
piecewise polynomial systems, capturing a wide class of critical programs, as
typically found in current embedded systems such as aircrafts.

Organization of the paper. The paper is organized as follows. In Sect. 2, we
present the programs that we want to analyze and their representation as piece-
wise polynomial discrete-time systems. Next, we recall in Sect. 3 the collect-
ing semantics that we use and introduce the polynomial optimization problem
providing inductive invariants based on target polynomial properties. Section 4
contains the main contribution of the paper, namely how to compute effectively
such invariants with SOS programming. Practical computation examples are
provided in Sect. 5. Finally, we explain in Sect. 6 how to derive template bases
from generated invariants.
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2 Polynomial Programs and Piecewise Polynomial
Discrete-Time Systems

In this section, we describe the programs which are considered in this paper
and we explain how to analyze them through their representation as piecewise
polynomial discrete-time dynamical systems.

We focus on programs composed of a single loop with a possibly complicated
switch-case type loop body. Moreover we suppose without loss of generality that
the analyzed programs are written in Static Single Assignment (SSA) form, that
is each variable is initialized at most once.

Definitions. We recall that a function f from R
d to R is a polynomial if and

only if there exists k ∈ N, a family {cα | α = (α1, . . . , αd) ∈ N
d, |α| = α1 + . . .+

αd ≤ k} such that for all x ∈ R
d, f(x) =

∑
|α|≤ k cαxα1

1 . . . xαd

d . By extension a
function f : Rd �→ R

d is a polynomial if and only if all its coordinate functions
are polynomials. Let R[x] stands for the set of d-variate polynomials.

In this paper, we consider assignments of variables using only parallel polynomial
assignments (x1, . . . , xd) = T (x1, . . . , xd) where (x1, . . . , xd) is the vector of the
program variables. Tests are either weak polynomial inequalities r(x1, . . . , xd) ≤
0 or strict polynomial inequalities r(x1, . . . , xd) < 0. We assume that assignments
are polynomials from R

d to R
d and test functions are polynomials from R

d to
R. In the program syntax, the notation � will be either <= or <. The form of
the analyzed program is described in Fig. 1.

Fig. 1. One-loop programs with nested conditional branches

A set C ⊆ R
d is said to be a basic semialgebraic set if there exist g1, . . . , gm ∈

R[x] such that C = {x ∈ R
d | gj(x) � 0,∀ j = 1, . . . , m}, where � is used to

encode either a strict or a weak inequality.
As depicted in Fig. 1, an update T i : Rd → R

d of the i-th condition branch is
executed if and only if the conjunction of tests ri

j(x) � 0 holds. In other words,
the variable x is updated by T i(x) if the current value of x belongs to the basic
semialgebraic set

Xi := {x ∈ R
d | ∀j = 1, . . . , ni, ri

j(x) � 0}. (1)
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Piecewise Polynomial Systems. Consequently, we interpret programs as con-
strained piecewise polynomial discrete-time dynamical systems (PPS for short).
The term piecewise means that there exists a partition {Xi, i ∈ I} of Rd such
that for all i ∈ I, the dynamics of the system is represented by the following
relation, for k ∈ N:

if xk ∈ Xi ∩ X0, xk+1 = T i(xk) . (2)

We assume that I is finite and that the initial condition x0 belongs to some
compact basic semialgebraic set X in. For the program, X in is the set where
the variables are supposed to be initialized in. Since the test entry for the loop
condition can be nontrivial, we add the term constrained and X0 denotes the
set representing the conjunctions of tests for the loop condition. The iterates of
the PPS are constrained to live in X0: if for some step k ∈ N, xk /∈ X0 then the
PPS is stopped at this iterate with the terminal value xk.

We define a partition as a family of nonempty sets such that:⋃
i∈I

Xi = R
d, ∀ i, j ∈ I, i 
= j,Xi ∩ Xj 
= ∅ . (3)

From Eq. (3), for all k ∈ N
∗ there exists a unique i ∈ I such that xk ∈ Xi. A set

Xi can contain both strict and weak polynomial inequalities and characterizes
the set of the ni conjunctions of tests polynomials ri

j . Let ri = (ri
1, . . . , r

i
ni

) stands
for the vector of tests functions associated to the set Xi. We suppose that the
basic semialgebraic sets X in and X0 also admits the representation given by
Eq. (1) and we denote by r0 the vector of tests polynomials (r01, . . . , r

0
n0

) and by
rin the vector of test polynomials (rin1 , . . . , rinnin

). To sum up, we give a formal
definition of PPS.

Definition 1 (PPS). A constrained polynomial piecewise discrete-time dynam-
ical system (PPS) is the quadruple (X in,X0,X ,L) with:

– X in ⊆ R
d is the compact basic semialgebraic set of the possible initial

conditions;
– X0 ⊆ R

d is the basic semialgebraic set where the state variable lives;
– X := {Xi, i ∈ I} is a partition as defined in Eq. (3);
– L := {T i, i ∈ I} is the family of the polynomials from R

d to R
d, w.r.t. the

partition X satisfying Eq. (2).

From now on, we associate a PPS representation to each program of the
form described at Fig. 1. Since a program admits several PPS representations,
we choose one of them, but this arbitrary choice does not change the results
provided in this paper. In the sequel, we will often refer to the running example
described in Example 1.

Example 1 (Running example). The program below involves four variables and
contains an infinite loop with a conditional branch in the loop body. The update
of each branch is polynomial. The parameters cij (resp. dij) are given parameters.
During the analysis, we only keep the variables x1 and x2 since oldx1 and oldx2

are just memories.
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x1, x2 ∈ [a1, a2] × [b1, b2] ;
oldx1 = x1 ;
oldx2 = x2 ;
whi l e (−1 <= 0){

oldx1 = x1 ;
oldx2 = x2 ;
ca se : oldx1ˆ2 + oldx2ˆ2 <= 1 :

x1 = c11 ∗ oldx1ˆ2 + c11 ∗ oldx2 ˆ3 ;
x2 = c21 ∗ oldx1ˆ3 + c22 ∗ oldx2 ˆ2 ;

case : −oldx1ˆ2 − oldx2ˆ2 < −1
x1 = d11 ∗ oldx1ˆ3 + d12 ∗ oldx2 ˆ2 ;
x2 = d21 ∗ oldx1ˆ2 + d22 ∗ oldx2 ˆ2 ;

}
}

The associated PPS corresponds to the quadruple (X in,X0, {X1,X2},
{T 1, T 2}), where the set of initial conditions is:

X in = [a1, a2] × [b1, b2],

the system is not globally constrained, i.e. the set X0 in which the variable
x = (x1, x2) lies is:

X0 = R
d,

the partition verifying Eq. (3) is:

X1 = {x ∈ R
2 | x2

1 + x2
2 ≤ 1}, X2 = {x ∈ R

2 | −x2
1 − x2

2 < −1},

and the polynomials relative to the partition {X1,X2} are:

T 1(x) =
(

c11x
2
1 + c12x

3
2

c21x
3
1 + c22x

2
2

)
and T 2(x) =

(
d11x

3
1 + d12x

2
2

d21x
2
1 + d22x

2
2

)
.

3 Program Invariants as Sublevel Sets

The main goal of the paper is to decide automatically if a given property holds
for the analyzed program, i.e. for all its reachable states. We are interested in
numerical properties and more precisely in properties on the values taken by the
d-uplet of the variables of the program. Hence, in our point-of-view, a property
is just the membership of some set P ⊆ R

d. In particular, we study properties
which are valid after an arbitrary number of loop iterates. Such properties are
called loop invariants of the program. Formally, we use the PPS representation
of a given program and we say that P is a loop invariant of this program if:

∀ k ∈ N, xk ∈ P ,

where xk is defined at Eq. (2) as the state variable at step k ∈ N of the PPS
representation of the program. Our approach addresses any property expressible
as a polynomial level set property. This section defines formally these notions
and develop our approach: synthesize a property-driven inductive invariant.
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3.1 Collecting Semantics as Postfixpoint Characterization

Now, let us consider a program of the form described in Fig. 1 and let us denote
by S the PPS representation of this program. The set R of reachable values is
the set of all possible values taken by the state variable along the running of S.
We define R as follows:

R =
⋃
k∈N

T k
|X0

(X in) (4)

where T|X0 is the restriction of T on X0 and T|X0 is not defined outside X0. To
prove that a set P is a loop invariant of the program is equivalent to prove that
R ⊆ P . We can rewrite R inductively:

R = X in ∪
⋃
i∈I

T i
(
R ∩ Xi ∩ X0

)
. (5)

Let us denote by ℘(Rd) the set of subsets of R
d and introduce the map F :

℘(Rd) → ℘(Rd) defined by:

F (C) = X in ∪
⋃
i∈I

T i
(
C ∩ Xi ∩ X0

)
(6)

We equip ℘(Rd) with the partial order of inclusion. The infimum is understood
in this sense i.e. as the greatest lower bound with respect to this order. The
smallest fixed point problem is:

inf
{
C ∈ ℘(Rd) | C = F (C)

}
.

It is well-known from Tarski’s theorem that the solution of this problem exists,
is unique and in this case, it corresponds to R. Tarski’s theorem also states that
R is the smallest solution of the following Problem:

inf
{
C ∈ ℘(Rd) | F (C) ⊆ C

}
.

Note also that the map F corresponds to a standard transfer function (or
collecting semantics functional) applied to the PPS representation of a program.
We refer the reader to [9] for a seminal presentation of this approach.

To prove that a subset P is a loop invariant, it suffices to show that P satisfies
F (P ) ⊆ P . In this case, such P is called inductive invariant.

3.2 Considered Properties: Sublevel Properties Pκ,α

In this paper, we consider special properties: those that are encoded with sublevel
sets of a given polynomial function.

Definition 2 (Sublevel Property). Given a polynomial function κ ∈ R[x]
and α ∈ R ∪ {+∞}, we define the sublevel property Pκ,α as follows:

Pκ,α := {x ∈ R
d | κ(x) � α} .

where � denotes ≤ when α ∈ R and denotes < for +∞. The expression κ(x) <
+∞ expresses the boundedness of κ(x) without providing a specific bound α.
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Example 2 Sublevel property examples.

Boundedness. When one wants to bound the reachable values of a system, we
can try to bound the l2-norm of the system: P‖·‖2

2,∞ with κ(x) = ‖x‖22. The use
of α = ∞ does not impose any bound on κ(x).

Safe set. Similarly, it is possible to check whether a specific bound is matched.
Either globally using the l2-norm and a specific α: P‖·‖2

2,α, or bounding the
reachable values of each variable: Pκi,αi

with κi : x �→ xi and αi ∈ R.

Avoiding bad regions. If the bad region can be encoded as a sublevel property
k(x) ≤ 0 then its negation −k(x) ≤ 0 characterize the avoidance of that bad
zone. Eg. if one wants to prove that the square norm of the program variables
is always greater than 1, then we can consider the property Pκ,α with κ(x) =
1 − ‖x‖22 and α = 0.

A sublevel property is called sublevel invariant when this property is a
loop invariant. This turns out to be difficult to prove loop invariant properties
while considering directly R, thus we propose to find a more tractable over-
approximation of R for which such properties hold.

3.3 Approach: Compute a Pκ,α-Driven Inductive Invariant P

In this subsection, we explain how to compute a d-variate polynomial p ∈ R[x]
and a bound w ∈ R, such that the polynomial sublevel sets P := {x ∈ R

d |
p(x) ≤ 0} and Pκ,w satisfy:

R ⊆ P ⊆ Pκ,w ⊆ Pκ,α . (7)

The first (from the left) inclusion forces P to be valid for the whole reachable
values set. The second inclusion constraints all elements of P to satisfy the
given sublevel property for a certain bound w. The last inclusion requires that
the bound w is smaller than the desired level α. When α = ∞, any bound w
ensures the sublevel property.

Now, we derive sufficient conditions on p and w to satisfy Eq. (7). We decom-
pose the problem in two parts. To satisfy the first inclusion, i.e. ensure that P
is a loop invariant, it suffices to guarantee that F (P ) ⊆ P , namely that P is an
inductive invariant. Using Eq. (5), P is an inductive invariant if and only if:

X in ∪
⋃
i∈I

T i
(
P ∩ Xi ∩ X0

)
⊆ P ,

or equivalently: {
X in ⊆ P ,
∀ i ∈ I, T i

(
P ∩ Xi ∩ X0

)
⊆ P .

(8)

Thus, we obtain:

{
p(x) ≤ 0 , ∀x ∈ X in ,

∀ i ∈ I , p (T i(x)) ≤ 0 , ∀x ∈ P ∩ Xi ∩ X0 .
(9)
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Now, we are interested in the second and third inclusions at Eq. (7) that is the
sublevel property satisfaction. The condition P ⊆ Pκ,w ⊆ Pκ,α can be formulated
as follows:

κ(x) ≤ w ≤ α , ∀x ∈ P . (10)

We recall that we have supposed that P is written as {x ∈ R
d | p(x) ≤ 0}

where p ∈ R[x]. Finally, we provide sufficient conditions to satisfy both (9)
and (10), gathered in (11), so one can find a polynomial p ensuring the constraint
involving κ:⎧⎪⎪⎨

⎪⎪⎩
infp∈R[x],w∈R w ,

s.t. p(x) ≤ 0 , ∀x ∈ X in ,
∀ i ∈ I , p (T i(x)) ≤ p(x) , ∀x ∈ Xi ∩ X0 ,
κ(x) ≤ w + p(x) , ∀x ∈ R

d .

(11)

We remark that α is not present in Problem (11). Indeed, since we mini-
mize w, either there exists a feasible w such that w ≤ α and we can exploit
this solution or such w is not available and we cannot conclude. However, from
Problem (11), we can extract (p,w) and in the case where the optimal bound w
is greater than α, we could use this solution with another method such as policy
iteration [2].

Lemma 1. Let (p,w) be any feasible solution of Problem (11) with w ≤ α or
w < ∞ in the case of α = ∞. Then (p,w) satisfies both (9) and (10) with
P := {x ∈ R

d | p(x) ≤ 0}. Finally, P and Pκ,w satisfy Eq. (7).

In practice, we rely on sum-of-squares programming to solve a strengthened
version of Problem (11).

4 SOS Programming for Invariant Generation

We first recall some basic background about sums-of-squares certificates for poly-
nomial optimization. Let R[x]2m stands for the set of polynomials of degree at
most 2m and Σ[x] ⊂ R[x] be the cone of sums-of-squares (SOS) polynomials,
that is Σ[x] := {

∑
i q2i , with qi ∈ R[x] }. Our work will use the simple fact that

for all p ∈ Σ[x], then p(x) ≥ 0 for all x ∈ R
d i.e. Σ[x] is a restriction of the

set of the nonnegative polynomials. For q ∈ R[x]2m, finding a SOS decomposi-
tion q =

∑
i q2i valid over R

d is equivalent to solve the following matrix linear
feasibility problem:

q(x) = bm(x)T Q bm(x) , ∀x ∈ R
d, (12)

where bm(x) := (1, x1, . . . , xd, x
2
1, x1x2, . . . , x

m
d ) (the vector of all monomials

in x up to degree m) and Q being a semidefinite positive matrix (i.e. all the
eigenvalues of Q are nonnegative). The size of Q (as well as the length of bm) is(

d + m
d

)
.
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Example 3. consider the bi-variate polynomial q(x) := 1+x2
1−2x1x2+x2

2. With
b1(x) = (1, x1, x2), one looks for a semidefinite positive matrix Q such that the
polynomial equality q(x) = b1(x)T Q b1(x) holds for all x ∈ R

2. The matrix

Q =

⎛
⎝1 0 0

0 1 −1
0 −1 1

⎞
⎠

satisfies this equality and has three nonnegative eigenvalues, which are 0, 1, and
2, respectively associated to the three eigenvectors e0 := (0, 1/

√
2, 1/

√
2)ᵀ, e1 :=

(1, 0, 0)ᵀ and e2 := (0, 1/
√

2,−1/
√

2)ᵀ. Defining the matrices L := (e1 e2 e0) =⎛
⎝1 0 0

0 1√
2

1√
2

0 − 1√
2

1√
2

⎞
⎠ and D =

⎛
⎝1 0 0

0 2 0
0 0 0

⎞
⎠, one obtains the decomposition Q = Lᵀ D L

and the equality q(x) = (Lb1(x))T D (Lb1(x)) = σ(x) = 1 + (x1 − x2)2, for all
x ∈ R

2. The polynomial σ is called a SOS certificate and guarantees that q is
nonnegative.

In practice, one can solve the general problem (12) by using semidefinite pro-
gramming (SDP) solvers (e.g. Mosek [5], SDPA [26]). For more details about
SDP, we refer the interested reader to [24].

Problem (11) is infinite dimensional, thus difficult to handle in practice. We
solve a more tractable problem (13), obtained by strengthening the constraints
of (11). One way to strengthen the three nonnegativity constraints of Prob-
lem (11) is to consider the following hierarchy of SOS programs, parametrized
by the integer m representing the half of the degree of p:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

inf
p∈R[x]2m,w∈R

w ,

s.t. − p = σ0 −
nin∑
j=1

σjr
in
j ,

∀ i ∈ I, p − p ◦ T i = σi −
ni∑

j=1

μi
jr

i
j −

n0∑
j=1

γi
jr

0
j ,

w + p − κ = ψ ,

∀ j = 1, . . . , nin , σj ∈ Σ[x] , deg(σjr
in
j ) ≤ 2m ,

σ0 ∈ Σ[x] , deg(σ0) ≤ 2m ,

∀ i ∈ I , σi ∈ Σ[x] , deg(σi) ≤ 2m deg T i ,

∀ i ∈ I , ∀ j = 1, . . . , ni , μi
j ∈ Σ[x] , deg(μi

jr
i
j) ≤ 2m deg T i,

∀ i ∈ I , ∀ j = 1, . . . , n0 , γi ∈ Σ[x] , deg(γi
jr

0
j ) ≤ 2m deg T i,

ψ ∈ Σ[x] , deg(ψ) ≤ 2m.

(13)
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The variables of Problem (13) are w, the coefficients of p and of the SOS polyno-
mials σj , μ

i
j , γ

i
j , ψ, whose degrees are fixed to yield finite dimensional problems.

Proposition 1. For a given m ∈ N, let (pm, wm) be any feasible solution of
Problem (13). Then (pm, wm) is also a feasible solution of Problem (11). More-
over, if wm ≤ α then both Pm := {x ∈ R

d | pm(x) ≤ 0} and Pκ,wm
satisfy

Eq. (7).

Proof. The feasible solution (pm, wm) is associated with SOS certificates ensur-
ing that the three equality constraints of Problem (13) hold: {σ0, σj} is associated
to the first one, {σi, μi

j , γ
i
j} is associated to the second one and ψ is associated

to the third one. We recall that the set X in admits a representation similar to
the one given by Eq. (1): X in := {x ∈ R

d | ∀j = 1, . . . , nin, r
in
j (x) ≤ 0}. The first

equality constraint, namely

−pm(x) = σ0(x) −
nin∑
j=1

σj(x)rinj (x) , ∀x ∈ R
d ,

implies that ∀x ∈ X in , pm(x) ≤ 0. Similarly, recalling the definition Xi := {x ∈
R

d | ∀j = 1, . . . , ni, ri
j(x) ≤ 0}, one has ∀i ∈ I,∀x ∈ Xi ∩ X0, pm (T i(x)) ≤

pm(x) and ∀x ∈ R
d, κ(x) ≤ wm + pm(x). Then (pm, wm) is a feasible solution of

Problem (11). The second statement comes directly from Lemma 1.

While increasing 2m, we obtain a sequence of abstractions, called a hierarchy
of SOS problems in optimization (see [12]). Polynomials pm and bounds wm are
related through their dependencies to the PPS input data.

Computational considerations. Define t := max{deg T i, i ∈ I}. At step m of
this hierarchy, the number of SDP variables is proportional to

(
d+2mt

d

)
and the

number of SDP constraints is proportional to
(
d+mt

d

)
. Thus, one expects tractable

approximations when the number d of variables (resp. the degree 2m of the
template p) is small. However, one can handle bigger instances of Problem (13)
by taking into account the system properties. For instance one could exploit
sparsity as in [25] by considering the variable sparsity correlation pattern of the
polynomials {T i, i ∈ I}, {ri

j , i ∈ I, j = 1, . . . , ni}, {r0j , j = 1, . . . , n0}, {rinj , j =
1, . . . , nin} and κ.

5 Benchmarks

Here, we perform some numerical experiments while solving Problem (13) (given
in Sect. 4) on several examples. Different properties yield different instances of
Problem (13). In Sect. 5.1, we verify that the program of Example 1 satisfies some
boundedness property. We also provide examples involving higher dimensional
cases. Then, Sect. 5.2 focuses on other properties, such as checking that the set
of variable values avoids an unsafe region. Numerical experiments are performed
on an Intel Core i5 CPU (2.40GHz) with Yalmip being interfaced with the SDP
solver Mosek.
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5.1 Checking Boundedness of the Set of Variables Values

Example 4. Following Example 1, we consider the constrained piecewise discrete-
time dynamical system S = (X in,X0, {X1,X2}, {T 1, T 2}) with X in =
[0.9, 1.1] × [0, 0.2], X0 = {x ∈ R

2 | r0(x) ≤ 0} with r0 : x �→ −1, X1 =
{x ∈ R

2 | r1(x) ≤ 0} with r1 : x �→ ‖x‖2 − 1, X2 = {x ∈ R
2 | r2(x) < 0} with

r2 = −r1 and T 1 : (x1, x2) �→ (c11x2
1 + c12x

3
2, c21x

3
1 + c22x

2
2), T 2 : (x1, x2) �→

(d11x3
1+d12x

2
2, d21x

2
1+d22x

2
2). We are interested in showing that the boundedness

property P‖·‖2
2,α holds for some positive α.

Fig. 2. A hierarchy of sublevel sets Pm for Example 4

Here we illustrate the method by instantiating the program of Example 1 with the
following input: a1 = 0.9, a2 = 1.1, b1 = 0, b2 = 0.2, c11 = c12 = c21 = c22 = 1,
d11 = 0.5, d12 = 0.4, d21 = −0.6 and d22 = 0.3. We represent the possible
initial values taken by the program variables (x1, x2) by picking uniformly N

points (x(i)
1 , x

(i)
2 ) (i = 1, . . . , N) inside the box X in = [0.9, 1.1] × [0, 0.2] (see

the corresponding square of dots on Fig. 2). The other dots are obtained after
successive updates of each point (x(i)

1 , x
(i)
2 ) by the program of Example 1. The

sets of dots in Fig. 2 are obtained with N = 100 and six successive iterations.
At step m = 3, Program (13) yields a solution1 (p3, w3) ∈ R[x]6 ×R together

with SOS certificates, which guarantee the boundedness property, that is x ∈
R =⇒ x ∈ P3 := {p3(x) ≤ 0} ⊆ P‖·‖2

2,w3
=⇒ ‖x‖22 ≤ w3. The corresponding

instance of Problem (13) is
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

inf w,

s.t. − p(x1, x2) = σ0(x1, x2) − σ1(x1, x2)(1.1 − x1)(0.9 − x1) − σ2(x1, x2)(x2 − 0.2)x2 ,

p(x1, x2) − p(x2
1 + x3

2, x3
1 + x2

2) = σ1 − μ1(‖x‖2 − 1) ,

p(x1, x2) − p(0.5x2
1 + 0.4x3

2, −0.6x3
1 + 0.3x2

2) = σ2 − μ2(1 − ‖x‖2) ,

w + p(x) − ‖x‖2 = ψ(x) ,

w ∈ R , p ∈ R[x]6 , σ0, σ1, σ2, ψ ∈ Σ[x]6 , σ1, σ2, μ1, μ2 ∈ Σ[x]4 .

1 Note that most existing SDP solvers are implemented based on inexact computation.
In practice, we perform post-processing verification (Yalmip command “checkset”),
ensuring that computed polynomials are SOS.
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One has p3(x) := −2.510902467 − 0.0050x1 − 0.0148x2 + 3.0998x2
1 − 0.8037x3

2 −
3.0297x3

1 +2.5924x2
2 +1.5266x1x2 −1.9133x2

1x2 −1.8122x1x
2
2 +1.6042x4

1 +0.0512x3
1x2 −

4.4430x2
1x

2
2−1.8926x1x

3
2+0.5464x4

2−0.2084x5
1+0.5866x4

1x2+2.2410x3
1x

2
2+1.5714x2

1x
3
2−

0.0890x1x
4
2−0.9656x5

2+0.0098x6
1−0.0320x5

1x2−0.0232x4
1x

2
2+0.2660x3

1x
3
2+0.7746x2

1x
4
2+

0.9200x1x
5
2 + 0.6411x6

2 (for the sake of conciseness, we do not display p4 and p5).
Figure 2 displays in light gray outer approximations of the set of possible values
X1 taken by the program of Example 4 as follows: (a) the degree six sublevel set
P3, (b) the degree eight sublevel set P4 and (c) the degree ten sublevel set P5. The
outer approximation P3 is coarse as it contains the box [−1.5, 1.5]2. However,
solving Problem (13) at higher steps yields tighter outer approximations of R
together with more precise bounds w4 and w5 (see the corresponding row in
Table 2). We also succeeded to certify that the same property holds for higher
dimensional programs, described in Example 5 (d = 3) and Example 6 (d = 4).

Example 5. Here we consider X in = [0.9, 1.1] × [0, 0.2]2, r0 : x �→ −1, r1 :
x �→ ‖x‖22 − 1, r2 = −r1, T 1 : (x1, x2, x3) �→ 1/4(0.8x2

1 + 1.4x2 − 0.5x2
3, 1.3x1 +

0.5x2
3, 1.4x2+0.8x2

3), T 2 : (x1, x2, x3) �→ 1/4(0.5x1+0.4x2
2,−0.6x2

2+0.3x2
3, 0.5x3+

0.4x2
1) and κ : x �→ ‖x‖22.

Example 6. Here we consider X in = [0.9, 1.1] × [0, 0.2]3, r0 : x �→ −1, r1 : x �→
‖x‖22 − 1, r2 = −r1, T 1 : (x1, x2, x3, x4) �→ 0.25(0.8x2

1 + 1.4x2 − 0.5x2
3, 1.3x1 +

0.5, x2
2 − 0.8x2

4, 0.8x2
3 + 1.4x4, 1.3x3 + 0.5x2

4), T 2 : (x1, x2, x3, x4) �→ 0.25(0.5x1 +
0.4x2

2,−0.6x2
1 + 0.3x2

2, 0.5x3 + 0.4x2
4,−0.6x3 + 0.3x2

4) and κ : x �→ ‖x‖22.

Table 1 reports several data obtained while solving Problem (13) at step m, (2 ≤
m ≤ 5), either for Examples 4, 5 or 6. Each instance of Problem (13) is recast as
a SDP program, involving a total number of “Nb. vars” SDP variables, with a
SDP matrix of size “Mat. size”. We indicate the CPU time required to compute
the optimal solution of each SDP program with Mosek.

The symbol “−” means that the corresponding SOS program could not be
solved within one day of computation. These benchmarks illustrate the computa-
tional considerations mentioned in Sect. 4 as it takes more CPU time to analyze
higher dimensional programs. Note that it is not possible to solve Problem (13) at
step 5 for Example 6. A possible workaround to limit this computational blow-up
would be to exploit the sparsity of the system.

5.2 Other Properties

Here we consider the program given in Example 7. One is interested in showing
that the set X1 of possible values taken by the variables of this program does
not meet the ball B of center (−0.5,−0.5) and radius 0.5.

Example 7. Let consider the PPS S = (X in,X0, {X1,X2}, {T 1, T 2}) with X in =
[0.5, 0.7] × [0.5, 0.7], X0 = {x ∈ R

2 | r0(x) ≤ 0} with r0 : x �→ −1, X1 = {x ∈
R

2 | r1(x) ≤ 0} with r1 : x �→ ‖x‖22 − 1, X2 = {x ∈ R
2 | r2(x) ≤ 0} with

r2 = −r1 and T 1 : (x1, x2) �→ (x2
1 + x3

2, x
3
1 + x2

2), T 2 : (x, y) �→ (0.5x3
1 +

0.4x2
2,−0.6x2

1 + 0.3x2
2). With κ : (x1, x2) �→ 0.25 − (x1 + 0.5)2 − (x2 + 0.5)2,



Property-based Polynomial Invariant Generation Using Sums-of-Squares 247

Table 1. Comparison of timing results for Examples 4, 5 and 6

Degree 2m 4 6 8 10

Example 4 Nb. vars 1513 5740 15705 35212

Mat. size 368 802 1404 2174

(d = 2) Time 0.82 s 1.35 s 4.00 s 9.86 s

Example 5 Nb. vars 2115 11950 46461 141612

Mat. size 628 1860 4132 7764

(d = 3) Time 0.84 s 2.98 s 21.4 s 109 s

Example 6 Nb. vars 7202 65306 18480 −
Mat. size 1670 6622 373057 −

(d = 4) Time 2.85 s 57.3 s 1534 s −

Table 2. Hierarchies of bounds obtained for various properties

Benchmark κ w2 w3 w4 w5

Example 4 ‖ · ‖2
2 639 17.4 2.44 2.02

Example 7 x �→ 0.25 − ‖x + 0.5‖2
2 0.25 0.249 0.0993 -0.0777

Example 8 ‖ · ‖2
2 10.2 2.84 2.84 2.84

x �→ ‖T 1(x) − T 2(x)‖2
2 5.66 2.81 2.78 2.78

one has B := {x ∈ R
2 | 0 ≤ κ(x)}. Here, one shall prove x ∈ R =⇒ κ(x) < 0

while computing some negative α such that R ⊆ Pκ,α. Note that κ is not a
norm, by contrast with the previous examples.

At step m = 3 (resp.m = 4), Program (13) yields a nonnegative solution w3

(resp. w4). Hence, it does not allow to certify that R ∩ B is empty. This is
illustrated in both Fig. 3 (a) and (b), where the light grey region does not avoid
the ball B. However, solving Program (13) at step m = 5 yields a negative
bound w5 together with a certificate that R avoids the ball B (see Fig. 3 (c)).
The corresponding values of wm (m = 3, 4, 5) are given in Table 2.

Fig. 3. A hierarchy of sublevel sets Pm for Example 7
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Finally, one analyzes the program given in Example 8.

Example 8. (adapted from Example 3 in [4])
Let S be the PPS (X in,X0, {X1,X2}, {T 1, T 2}) with X in = [−1, 1]× [−1, 1],

X0 = {x ∈ R
2 | r0(x) ≤ 0} with r0 : x �→ −1, X1 = {x ∈ R

2 | r1(x) ≤ 0} with
r1 : x �→ x2 − x1, X2 = {x ∈ R

2 | r2(x) ≤ 0} with r2 = −r1 and T 1 : (x1, x2) �→
(0.687x1+0.558x2−0.0001∗x1x2,−0.292x1+0.773x2), T 2 : (x, y) �→ (0.369x1+
0.532x2−0.0001x2

1,−1.27x1+0.12x2−0.0001x1x2). We consider the boundedness
property κ1 := ‖ · ‖22 as well as κ2(x) := ‖T 1(x) − T 2(x)‖22. The function κ2 can
be viewed as the absolute error made by updating the variable x after a possibly
“wrong” branching. Such behaviors could occur while computing wrong values
for the conditionals (e.g. r1) using floating-point arithmetics. Table 2 indicates
the hierarchy of bounds obtained after solving Problem (13) with m = 3, 4, 5, for
both properties. The bound w5 = 2.84 (for κ1) implies that the set of reachable
values may not be included in the initial set X in. A valid upper bound of the
error function κ2 is given by w5 = 2.78.

6 Templates Bases

We finally present further use of the set P defined at Eq. (7). This sublevel set
can be viewed as a template abstraction, following from the definition in [3],
with a fixed template basis p and an associated 0 bound. This representation
allows to develop a policy iteration algorithm [2] to obtain more precise inductive
invariants.

We now give some simple method to complete this template basis to improve
the precision of the bound w found with Problem (13).

Proposition 2 (Template Basis Completions). Let (p,w) be a solution of
Problem (13) and Q be a finite subset of R[x] such that for all q ∈ Q, p−q ∈ Σ[x].
Then R ⊆ {x ∈ R

d | p(x) ≤ 0, q(x) ≤ 0, ∀ q ∈ Q} ⊆ Pκ,w ⊆ Pκ,α and
{x ∈ R

d | p(x) ≤ 0, q(x) ≤ 0, ∀ q ∈ Q} is an inductive invariant.

Proof Let Q be the set {x ∈ R
d | p(x) ≤ 0, q(x) ≤ 0, ∀ q ∈ Q}. It is obvious

that Q ⊆ P = {x ∈ R
d | p(x) ≤ 0} and hence Q ⊆ Pκ,w. Now let us prove that

Q is an inductive invariant. We have to prove that Q satisfies Eq. (8) that is: (i)
For all x ∈ X in, q(x) ≤ 0; (ii) For all i ∈ I, for all x ∈ Q∩Xi ∩X0, q(T i(x)) ≤ 0.
For all q ∈ Q, we denote by ψq the element of Σ[x] such that p − q = ψq. Let us
show (i) and let x ∈ X in. We have q(x) = p(x) − ψq(x) and since ψq ∈ Σ[x], we
obtain, q(x) ≤ p(x). Now from Proposition 1 and Lemma 1 and since (p,w) is a
solution of Problem (13), we conclude that q(x) ≤ p(x) ≤ 0.

Now let us prove (ii) and let i ∈ I and x ∈ Q ∩ Xi ∩ X0. We get q(T i(x)) =
p(T i(x))−ψq(T i(x)) and since ψq ∈ Σ[x], we obtain q(T i(x)) ≤ p(T i(x)). Using
the fact that (p,w) is a solution of Problem (13) and using Proposition 1 and
Lemma 1, we obtain q(T i(x)) ≤ p(T i(x)) ≤ p(x). Since x ∈ Q ⊆ P = {y ∈ R

d |
p(y) ≤ 0}, we conclude that q(T i(x)) ≤ 0.
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Actually, we can weaken the hypothesis of Proposition 2 to construct an inductive
invariant. Indeed, after the computation of p following Problem (13), it suffices to
take a polynomial q such that p− q ≥ 0. Nevertheless, we cannot compute easily
such a polynomial q. By using the hypothesis p− q ∈ Σ[x], we can compute q by
sum-of-squares. Proposition 2 allows to define a simple method to construct a
basic semialgebraic inductive invariant set. Then the polynomials describing this
basic semialgebraic set defines a new templates basis and this basic semialgebraic
set can be used as initialisation of the policy iteration algorithm developed in [2].
Note that the link between the templates generation and the initialisation of
policy iteration has been addressed in [1].

Example 9 Let us consider the property P‖·‖2
2,∞ and let (p,w) be a solution of

Problem (13). We have κ(x) =
∑

1≤j≤k x2
j and w + p − κ = ψ where ψ ∈ Σ[x].

In [21], the templates basis used to compute bounds on the reachable values set
consists in the square variables plus a Lyapunov function. Let us prove that,
in our setting, Q = {x2

k − w, k = 1, . . . , d} can complete {p} in the sense of
Proposition 2. Let k ∈ {1, . . . , d} and let x ∈ R

d, p(x)−(x2
k −w) = p(x)−κ(x)+

w +
∑

j 	=k x2
j = ψ(x) +

∑
j 	=k x2

j ∈ Σ[x].

7 Related Works and Conclusion

Roux et al. [21] provide an automatic method to compute floating-point certified
Lyapunov functions of perturbed affine loop body updates. They use Lyapunov
functions with squares of coordinate functions as quadratic invariants in case
of single loop programs written in affine arithmetic. In the context of hybrid
systems, certified inductive invariants can be computed by using SOS approxi-
mations of parametric polynomial optimization problems [14]. In [18], the authors
develop a SOS-based methodology to certify that the trajectories of hybrid sys-
tems avoid an unsafe region.

In the context of static analysis for semialgebraic programs, the approach
developed in [8] focuses on inferring valid loop/conditional invariants for semial-
gebraic programs2. This approach relaxes an invariant generation problem into
the resolution of nonlinear matrix inequalities, handled with semidefinite pro-
gramming. Our method bears similarities with this approach but we generate
a hierarchy of invariants (of increasing degree) with respect to target polyno-
mial properties and restrict ourselves to linear matrix inequality formulations.
In [6], invariants are given by polynomial inequalities (of bounded degree) but
the method relies on a reduction to linear inequalities (the polyhedra domain).
Template polyhedra domains allow to analyze reachability for polynomial sys-
tems: in [22], the authors propose a method that computes linear templates
to improve the accuracy of reachable set approximations, whereas the proce-
dure in [10] relies on Bernstein polynomials and linear programming, with linear
templates being fixed in advance. Bernstein polynomials also appear in [20]
as polynomial templates but they are not generated automatically. In [23],
2 This approach also handles semialgebraic program termination.
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the authors use SMT-based techniques to automatically generate templates
which are defined as formulas built with arbitrary logical structures and predicate
conjunctions. Other reductions to systems of polynomial equalities (by contrast
with polynomial inequalities, as we consider here) were studied in [16,19] and
more recently in [7].

In this paper, we give a formal framework to relate the invariant generation
problem to the property to prove on analyzed program. We proposed a prac-
tical method to compute such invariants in the case of polynomial arithmetic
using sums-of-squares programming. This method is able to handle non trivial
examples, as illustrated through the numerical experiments. Topics of further
investigation include refining the invariant bounds generated for a specific sub-
level property, by applying the policy iteration algorithm. Such a refinement
would be of particular interest if one can not decide whether the set of variable
values avoids an unsafe region when the bound of the corresponding sums-of-
squares program is not accurate enough. For the case of boundedness property,
it would allow to decrease the value of the bounds on the variables. Finally,
our method could be generalized to a larger class of programs, involving semi-
algebraic or transcendental assignments, while applying the same polynomial
reduction techniques as in [15].
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89–109 (2014)

8. Cousot, P.: Proving program invariance and termination by parametric abstraction,
lagrangian relaxation and semidefinite programming. In: Cousot, R. (ed.) VMCAI
2005. LNCS, vol. 3385, pp. 1–24. Springer, Heidelberg (2005)



Property-based Polynomial Invariant Generation Using Sums-of-Squares 251

9. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Conference
Record of the Fourth Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, pp. 238–252. ACM Press, Los Angeles, California,
New York (1977)

10. Dang, T., Testylier, R.: Reachability analysis for polynomial dynamical systems
using the bernstein expansion. Reliab. Comput. 17(2), 128–152 (2012)

11. Feret, J.: Static analysis of digital filters. In: Schmidt, D. (ed.) ESOP 2004. LNCS,
vol. 2986, pp. 33–48. Springer, Heidelberg (2004)

12. Lasserre, J.B.: Global optimization with polynomials and the problem of moments.
SIAM J. Optim. 11(3), 796–817 (2001)

13. Laurent, M.: Sums of squares, moment matrices and optimization over polynomials.
In: Putinar, M., Sullivant, S. (eds.) Emerging Applications of AlgebraicGeometry.
The IMA Volumes in Mathematics and its Applications, vol. 149, pp. 157–270.
Springer, New York (2009)

14. Lin, W., Wu, M., Yang, Z., Zeng, Z.: Exact safety verification of hybrid systems
using sums-of-squares representation. Sci. China Inf. Sci. 57(5), 1–13 (2014)

15. Magron, V., Allamigeon, X., Gaubert, S., Werner, B.: Certification of real inequal-
ities - templates and sums of squares. Math. Program. Ser. B 151, 1–30 (2014).
Volume on Polynomial Optimization

16. Müller-Olm, M., Seidl, H.: Computing polynomial program invariants. Inf. Process.
Lett. 91(5), 233–244 (2004)

17. Parrilo, P.A.: Semidefinite programming relaxations for semialgebraic problems.
Math. Program. 96(2), 293–320 (2003)

18. Prajna, S., Jadbabaie, A.: Safety verification of hybrid systems using barrier certifi-
cates. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 477–492.
Springer, Heidelberg (2004)
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Abstract. Interprocedural analyses are compositional when they com-
pute over-approximations of procedures in a bottom-up fashion. These
analyses are usually more scalable than top-down analyses, which com-
pute a different procedure summary for every calling context. However,
compositional analyses are rare in practice as it is difficult to develop
them with enough precision.

We establish a connection between compositional analyses and mod-
ular lattices, which require certain associativity between the lattice join
and meet operations, and use it to develop a compositional version of
the connection analysis by Ghiya and Hendren. Our version is slightly
more conservative than the original top-down analysis in order to meet
our modularity requirement. When applied to real-world Java programs
our analysis scaled much better than the original top-down version: The
top-down analysis times out in the largest two of our five programs, while
ours incurred only 2–5% of precision loss in the remaining programs.

1 Introduction

Scaling program analysis to large programs is an ongoing challenge for program
verification. Typical programs include many relatively small procedures. There-
fore, a promising direction for scalability is analyzing each procedure in isolation,
using pre-computed summaries for called procedures and computing a summary
for the analyzed procedure. Such analyses are called bottom-up interprocedural
analysis or compositional analysis. Notice that the analysis of the procedure itself
need not be compositional and can be costly. Indeed, bottom-up interprocedural
analyses have been found to scale well [3,5,11,20,32].

The theory of compositional analysis has been studied in [6,10,15,16,18].
However, designing and implementing such an analysis is challenging, for several
reasons: it requires accounting for all potential calling contexts of a procedure
in a sound and precise way; the summary of the procedures can be quite large
leading to infeasible analyzers; and it may be costly to instantiate procedure

c© Springer-Verlag Berlin Heidelberg 2015
S. Blazy and T. Jensen (Eds.): SAS 2015, LNCS 9291, pp. 252–274, 2015.
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summaries. An example of these challenges is the unsound original formula-
tion of the compositional pointer analysis algorithm in [32]. A modified version
of the algorithm was subsequently proposed in [29] and, more recently, proven
sound in [23] using abstract interpretation. In contrast, top-down interproce-
dural analysis [8,27,30] is much better understood and has been integrated into
existing tools such as SLAM [1], Soot [2], WALA [12], and Chord [26].

Our goal is to contribute to a better understanding of bottom-up inter-
procedural analysis. Specifically, we aimed to characterize cases under which
bottom-up and top-down interprocedural analysis yield the same results when
both analyses use the same underlying abstract domains. We partially achieved
our goal by formulating a sufficient condition on the effect of primitive com-
mands on abstract states that guarantees bottom-up and top-down interpro-
cedural analyses will yield the same results. The condition is based on lattice
theory. Informally, the idea is that the abstract semantics of primitive commands
can only use meet and join operations with constant elements, and that elements
used in the meet must be modular in a lattice theoretical sense [19].

The description of the general framework and proofs of soundness and pre-
cision can be found in [4]. For space reasons, we do not provide the general
theory here. Instead, we present our results by means of an application: We
present a variant of connection analysis [14] which we developed using our app-
roach. Connection analysis is a kind of pointer analysis that aims to prove that
two references can never point to the same undirected heap component. It thus
ignores the direction of pointers. This problem arose from the need to automat-
ically parallelize sequential programs. Despite its conceptual simplicity, connec-
tion analysis is flow- and context-sensitive, and the effect of program statements
is non-distributive. In fact, the top-down interprocedural connection analysis is
exponential; indeed our experiments indicate that this analysis scales poorly.

More specifically, in this paper, we present a formulation of a variant of the
connection analysis in a way that satisfies the requirements of our general frame-
work. Intuitively, the main difference from the original analysis is that we had
to over-approximate the treatment of variables that point to null in all pro-
gram states that occur at a program point. We implemented two versions of
the top-down interprocedural connection analysis for Java programs in order to
measure the extra loss of precision of our over-approximation. We also imple-
mented the bottom-up interprocedural analysis for Java programs. We report
empirical results for five benchmarks of sizes 15 K–310 K bytecodes for a total of
800 K bytecodes. The original top-down analysis times out in over six hours on
the largest two benchmarks. For the remaining three benchmarks, only 2–5% of
precision was lost by our bottom-up analysis due to the modularity requirement.

2 Informal Overview and Running Example

In this section, we illustrate the use of modular lattices in the design of our
compositional connection analysis, focusing on the use of modular elements to
ensure precision.
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Definition 1. An element dp in a lattice D is (right) modular if

∀d, d′ ∈ D. d′ � dp ⇒ dp � (d � d′) = (dp � d) � d′ .

We call a lattice D modular if all of its elements are modular.

One way to understand the modularity condition in lattices is to think about it as
a requirement of commutativity between two operators (dp�−) and (−�d′) [19].
A particular case in which this condition holds for every element dp is if the lattice
meet operation distributes over the join operation, e.g., as in the powerset lattice
(P(S),⊆).

Consider a program in Fig. 1. It consists of procedures main() and p1(), . . . ,
pn(). The main() procedure first allocates four objects and connects them into
two disjoint pairs. Then, it invokes p1() using either a0 or b0 as the actual
parameter. This invocation triggers subsequent calls to p2(), . . . , pn(), where all
the invoked procedures behave almost the same as p1: procedure pi() assigns its
formal parameter ci-1 either to ai or to bi, and then calls pi+1 using ci-1 as the
actual parameter, unless i = n.

We say that two heap objects are connected in a state when it is possible
to reach from one object to the other, following paths in the heap ignoring
pointer direction. Two variables are connected when they point to connected
heap objects. Connection analysis soundly estimates the connection relationships
between variables. The abstract states d of the analysis are families {Xi}i∈I of
disjoint sets of variables ordered by refinement: Two variables x, y are in the
same set Xi, which we call a connection set, when x and y may be connected,
and d1 � d2 ⇐⇒ ∀X1 ∈ d1.∃X2 ∈ D2.X1 ⊆ X2.

Example 1. Figure 1 depicts the two possible concrete states, σ1 and σ2, that
can occur at the entry to p1(), and their respective connection abstractions.
In the concrete states, variables a1, . . . , b1 . . . point to null. Hence, they are
represented by separate connection sets.

The abstract states α({σ1}) and α({σ2}) are incomparable. However, both
are more precise than the abstraction of a state in which all the variables point
to the same object and less precise than that of state where the values of all the
variables is null.

A standard approach for an interprocedural analysis is to follow the execution
flow of a program top-down (i.e., from callers to callees), and to re-analyze each
procedure for every different calling context. This approach often suffers from the
scalability issue. One reason is the explosion of different calling contexts. Indeed,
note that in our example program, each procedure pi() calls the procedure pi+1()
with two different calling contexts. As a result, a top-down connection analysis,
e.g., [14], computes 2i abstract states at the entry to procedure pi().

Example 2. The abstract state dt shown below arises at the entry to pn() when
the then-branch is always selected, while de arises when only pn-1() selects the
else-branch.

dt = {{g1, a0, a1, . . . , an-2, an-1, cn-1}, {g2, b0}, {an}, {b1}, . . . , {bn-1}, {bn}}
de = {{g1, a0, a1, . . . , an-2, bn-1, cn-1}, {g2, b0}, {an-1}, {an}, {b1}, . . . , {bn-2}, {bn}}
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Fig. 1. First row: example program. All of g1, g2, a1, . . . , b1 . . . are global variables.
Second row: the concrete states at the entry of p1() and the corresponding connection
abstractions.

The bottom-up (compositional) approach avoids the explosion of the call-
ing contexts that occur in the top-down analysis. It does so by analyzing each
procedure independently to compute a summary, which is then instantiated as
a function of a calling context. Unfortunately, it is rather difficult to analyze a
procedure independently of its calling contexts and at the same time compute
a summary that is sound and precise enough. One of the reasons is that the
abstract transformers may depend on the input abstract state, which is often
unavailable for the compositional analysis.

We formulate a precise compositional connection analysis. The key feature
of the analysis is that the abstract transformers of primitive commands a have
the form

[[a]]� = λd. (d � dp) � dg ,

where dp and dg are some constant abstract states, independent of the input,
and dp is a modular element in the lattice of all abstract states. For example, the
abstract transformer of the statement x = y has the form above with dp = Sx′

and dg = Ux′y′ , where Sx′ consists of two connection sets, {x′} and the set of
all the other variables, and Ux′y′ has the set {x′, y′} of x′, y′ and the singleton
sets {z} for all variables z other than x′, y′. Intuitively, taking the meet with Sx′

separates out the variable x from its connection set in d, and joining the result
with Ux′y′ adds x to the connection set of y.1

1 The subscripts p and g are used as mnemonics: dp is used to partition a connection
set and dg to group two connection sets together.
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Note that the abstract domain is not distributive.2 However it does con-
tain modular elements. In particular, dp in the abstract transfer for a above is
modular. This implies that for all d, d′ ∈ D such that d′ � dp,

[[a]]�(d � d′) = dp � (d � d′) � dg = (dp � d) � d′ � dg = [[a]]�(d) � d′

where the modularity is used in the second equality. Intuitively, [[a]]�(d � d′)
represents the computation of the top-down analysis, and [[a]]�(d)�d′ that of the
bottom-up analysis. In the former case, the analysis of a uses all the information
available in the input abstract state d�d′, whereas in the latter case, the analysis
ignores the additional information recorded in d′ and just keeps d′ in its outcome
using the join operation. The equality between [[a]]�(d�d′) and [[a]]�(d)�d′ means
that both approaches lead to the same outcome, as long as d′ � dp holds. This
equality is the basis of our coincidence result between top-down and bottom-up
analyses.

Concretely, consider the case that a is the assignment ai=ci-1 in the body
of the procedure pi. Let {dk}k be all the abstract states at the entry of pi
encountered during the top-down analysis. Suppose that there exists d such that
∀k : ∃d′

k � Sai′ : dk = d � d′
k. Our compositional approach analyzes ai = ci-1

only once with the abstract state d, and computes d′ = [[ai = ci-1]]�(d). Later
when pi gets called with dk’s, the analysis adapts d′ by simply joining it with
d′

k, and returns this outcome of this adaption as a result. This adaptation of
the bottom-up approach gives the same result as the top-down approach, which
applies [[ai = ci-1]]� on dk directly:

[[ai=ci-1]]�(dk) = (dk � Sai′) � Uai′ci-1′ = ((d � d′
k) � Sai′) � Uai′ci-1′

= (d � Sai′) � d′
k � Uai′ci-1′ = [[ai=ci-1]]�(d) � d′

k .

The third equality holds due to the modularity property.

3 Programming Language

We formalize our results for a simple imperative procedural programming
language.

Primitive commands a ::= x = null | x = new | x.f = y | x = y | x = y.f

Commands C ::= skip | a | C; C | C + C | C∗ | p()

Declarations D ::= proc p() = {var x; C}
Programs Pr ::= var g; C | D;Pr

We denote by PComm,G, L, and PName the sets of primitive commands, global
variables, local variables, and procedure names, respectively. We use the following
symbols to range over these sets: a ∈ PComm, g ∈ G, x, y, z ∈ G ∪ L, and p ∈
PName. We assume that L and G are fixed arbitrary finite sets. Also, we consider
only well-defined programs where all the called procedures are defined.
2 For example, let d1 = {{x, z}, {y}}, d2 = {{x, y}, {z}}, and d3 = {{y, z}, {x}}).

Then d1�(d2�d3) = d1�{{x, y, z}} = d1, but (d1�d2)�(d1�d3) = {{x}, {y}, {z}}.
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Syntax. A program Pr in our language is a sequence of procedure declarations,
followed by a sequence of declarations of global variables and a main command.
Commands contain primitive commands a ∈ PComm, sequential composition
C;C ′, nondeterministic choice C +C ′, iteration C∗, and procedure calls p(). We
use + and ∗ instead of conditionals and while loops for theoretical simplicity:
given appropriate primitive commands, conditionals and loops can be easily
defined. We use the standard primitive commands for pointer programs.

Declarations D give the definitions of procedures. A procedure p is comprised
of a sequence of local variables declarations x and a command, denoted by Cbodyp,
which we refer to as procedure p’s body. Procedures do not take any parameters or
return any values explicitly; values can instead be passed to and from procedures
using global variables. To simplify presentation, we do not consider mutually
recursive procedures in our language; direct recursion is allowed.

Operational Semantics. A state σ = 〈sg, sl, h〉 is a triplet comprised of a global
environment sg, a local environment sl and an heap h mapping locations and
field names to values. For simplicity, values are either locations in the heap or
the special value null. We say that locations o1 and o2 are connected in heap
h, denoted by o1 �h o2, if there exists an undirected path of pointer fields
between o1 and o2. We use a relational (input-output tracking) store-based large
step operational semantics which manipulates pairs of states 〈σ̄, σ′〉: σ̄ records
the state of the program at the entry to the active procedure and σ′ records the
current state. For further details see [4].

4 Intraprocedural Connection Analysis

We first show how the modular elements can help in intraprocedural analysis. For
simplicity, we use in this section a non-relational semantics, i.e., the semantics
only tracks the current state. In Sect. 5, we adapt the analysis to abstract the
relational semantics.

Partition Domains. We first define a general notion of partition domains, and
then instantiate it to an abstract domain suitable for connection analysis of
programs without procedures. (Sect. 5 defines the general setup.) We denote by
Equiv(Υ ) ⊆ P(Υ ) the set of equivalence relations over a set Υ , ranged over by
metavariable d. We use v1 ∼=d v2 to denote that 〈v1, v2〉 ∈ d, and [v]d to denote
the equivalence class of v ∈ Υ induced by d. We omit the d subscript when it is
clear from context. (d1 ∪d2)+ denotes the transitive closure of d1 ∪d2. By abuse
of notation, we sometimes treat an equivalence relation d as the partitioning
{[v]d | v ∈ Υ} of Υ into equivalence classes it induces.

Definition 2. The partition lattice Dpart(Υ ) over a set Υ is a 6-tuple

Dpart(Υ ) = 〈Equiv(Υ ), �, ⊥part = {{a} | a ∈ Υ}, �part = {Υ}, � = (− ∪ −)+, 	 = − ∩ − 〉
where d1 � d2 ⇔ ∀v1, v2 ∈ Υ, v1 ∼=d1 v2 ⇒ v1 ∼=d2 v2 .
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Fig. 2. Abstract transfer functions for primitive commands in the connection analysis
where d �= ⊥. For d = ⊥, the transfer function of any primitive command a ∈ PComm
is [[a]]�(d) = d.

The connection abstract domain D(Υ ) is an extension of the partition domain
Equiv(Υ ) to include a bottom element ⊥ in its carrier set, i.e., ⊥ � d for every
⊥ �= d ∈ D(Υ ), with the lattice operations extended in the obvious way. We refer
to the equivalence class [x]d of x ∈ Υ as the connection set of x in ⊥ �= d ∈ D(Υ ).

The connection abstract domain D(Υ ) is parametrized by a set Υ pertaining to
the set G ∪ L of pointer variables. For example, in the intraprocedural settings
we use Υ = {x′ | x ∈ G∪ L} . Intuitively, x′ and y′ belong to different partitions
in an abstract state d ∈ D(Υ ) that arises as at a program point pt during the
analysis if the pointer variables x and y never point to connected heap objects
when the execution of the program reaches pt . For instance, if there is a program
state occurring at pt in which x.f and y point to the same heap object, then it
must be that x′ and y′ belong to the same connection set in d. In the following,
we omit Υ when it is clear from context. More formally, the abstraction map
α is defined as follows: α(∅) = ⊥ and α(S) = {[x]dS

| x ∈ G ∪ L} for any
other set of states, where dS is the reflective transitive closure of the relation⋃

σ∈S{(x, y) | {x, y} ⊆ G ∪ L, σ = 〈sg, sl, h〉, and (sg ∪ sl)x �h (sg ∪ sl)y}.

Abstract Semantics. The abstract semantics of primitive commands is defined
in Fig. 2 using meet and join operations with constant elements to conform with
the requirement of Definition 3. (Note that, as expected, the functions are strict,
i.e., they map ⊥ to ⊥.)

Assigning null or a fresh object to a variable x separates x′ from its connec-
tion set. Therefore, the analysis takes the meet of the current abstract state with
Sx′ — the partition with two connection sets {x′} and the rest of the variables.
The concrete semantics of x.f = y redirects the f-field of the object pointed to
by x to the object pointed to by y. The abstract semantics treats this statement
quite conservatively, performing “weak updates”: It merges the connection sets
of x′ and y′ by computing the least upper bound of the current abstract state
with Ux′y′ — a partition with {x′, y′} as a connection set and singleton connec-
tion sets for the other variables. The effect of the statement x = y is to separate
the variable x′ from its connection set and to add x′ to the connection set of y′.
This is realized by performing a meet of the current abstract state with Sx′ , and
then joining the result with Ux′y′ . Following [14], the effect of the assignment
x = y.f is handled in a very conservative manner, treating y and y.f in the same
connection set since the abstraction does not distinguish between the objects
pointed to by y and y.f. Thus, the same abstract semantics is used for x = y.f
and x = y.
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The transformers defined in Fig. 2 are in fact the best transformers [9]: For
every abstract state d, there exists a concrete state σ which has an object oX

for every partition X in d which is pointed to by all the variables in X and has
a pointer field pointing to itself. It easy to verify that it holds that α(σ) = d
and α([[a]](σ)) = [[a]]�(α(σ)), where [[a]] is the concrete operational semantics of
command a. The abstract semantics of composite commands is standard, and
omitted [4].

Conditionally Compositional Intraprocedural Analysis. In the following we show
that under certain restrictions it is possible to utilize the modularity property
to compute summaries of intraprocedural commands.

Definition 3. A function f : D → D is conditionally adaptable if f(⊥) = ⊥
and for every d �= ⊥, f(d) = (d�dp)�dg for some dp, dg ∈ D and the element dp

is modular. We refer to dp as f ’s meet element and to dg as f ’s join element.

Lemma 1. All the abstract transfer functions of the primitive commands in the
intraprocedural connection analysis (shown in Fig. 2) are conditionally adaptable.

We denote the meet and join elements of the abstract transformer [[a]]� of a prim-
itive command a by P [[a]]� and G[[a]]�, respectively. For a command C, we denote
by P [[C]]� the set of the meet elements of the primitive commands occurring in C.

Lemma 2. Let C be a command composed of primitive commands whose trans-
fer functions are conditionally adaptable and which does not contain procedure
calls. For every d1, d2 ∈ D such that d1 �= ⊥, if d2 �

�
P [[C]]� then

[[C]]�(d1 � d2) = [[C]]�(d1) � d2.

Intraprocedural Summaries. Lemma 2 can justify the use of compositional sum-
maries in intraprocedural analyses in certain conditions: Take a command C and
an abstract value d2 such that the conditions of the lemma hold. An analysis
that needs to compute the abstract value [[C]]�(d1 � d2) can do so by computing
d = [[C]]�(d1), possibly caching (d1, d) in a summary for C, and then adapting
the result by joining d with d2.

Lemmas 1 and 2 allow only for conditional intraprocedural summaries to be
used in the connection analysis; a summary for a command C can be used only
when d2 � dp for all dp ∈ P [[C]]�. In contrast, and perhaps counter-intuitively,
the interprocedural analysis has non-conditional summaries, which do not have
a proviso like d2 � P [[C]]�. It achieves this by requiring certain properties of the
abstract domain used to record procedures summaries, which we now describe.

5 Interprocedural Connection Analysis

In this section we define top-down and bottom-up interprocedural connection
analyses, and prove that their results coincide. The main message of this section is
that we can summarize the effects of procedures in a bottom-up manner, and use
the modularity property to prove that the results of the bottom-up and top-down
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Fig. 3. Example program annotated with abstract states. Abstract state dli is com-
puted by the interprocedural top-down analysis at program point li. All the variables
are globals.

analyses coincide. This coincidence, together with the soundness of the top-down
analysis (Lemma 3), ensures the soundness of the bottom-up analysis.3

5.1 Abstract Domain

The abstract domain D of the interprocedural connection analyses is obtained
by lifting the one used for the intraprocedural analysis to the interprocedural
setting. Technically, it is an instantiation of the connection abstract domain
D(Υ ) with Υ = G ∪ G′ ∪ Ġ ∪ L′, where G′ = {g′ | g ∈ G}, G = {ḡ | g ∈ G},
Ġ = {ġ | g ∈ G}, and L′ = {x′ | x ∈ L}.

The set Υ contains four kinds of elements. Intuitively, the analysis computes
at every program point a relation between the objects pointed to by global
variables at the entry to the procedure, represented by G, and the ones pointed
to by global variables and local variables at the current state, represented by
G′ and L′, respectively. As before, abstract states represent partitioning over
variables. For technical reasons, described later, Υ also includes the set Ġ. The
latter is used to compute the effect of procedure calls.

5.2 Interprocedural Top-Down Connection Analysis

The abstract semantics of procedure calls in the top-down analysis is defined
in Fig. 4, which we explain below. Intraprocedural commands are handled as
described in Sect. 4.
3 We analyze recursive procedures in a standard way using a fixpoint computation. As a

result, a recursive procedure might be analyzed more than once. However, and unlike
in top-down analyses, the procedure is analyzed only using a single input, namely ιentry,
defined in Sect. 5.2.
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When a procedure is entered, local variables of the procedure and all the
global variables g at the entry to the procedure are initialized to null. This is
realized by applying the meet operation to d with RG′ , effectively, refining the
partitioning of d by placing every non-current variable in its own connection set.
(We use d|S = d � RS as a shorthand, and say that d is projected on S.) The
result, d|G′ , represents the connection relation in d between the objects pointed-
to by global variables at the call-site. Then, d|G′ is joined with (the particular
constant abstract state) ιentry.

The ιentry element abstracts the identity relation between input and output
states. It is defined as a partition containing {g, g′} connection sets for all global
variables g. Intuitively, the aforementioned join operation records the current
value of variable g into g. Recall that at the entry to a procedure, the “old”
value of every global variable is the same as its current value.

[[return]]� computes the return value at the caller after the callee returns. It
takes two arguments: dcall, which represents the partition of variables into connec-
tions sets at the call-site, and dexit, which represents the partition at the exit-site
of the callee, projected on G ∪ G′. This projection emulates the nullification of
local variables when exiting a procedure. [[return]]� emulates the composition of
the input-output relation of the call-site with that of the exit-site using a natural
join. The latter is implemented using variables of the form ġ: fcall(dcall) renames
global variables from g′ to ġ and fexit(dexit) renames global variables from g to
ġ. The renamed relations are then joined. Intuitively, the old values g of the
callee at the exit-site are matched with the current values g′ of the caller at the
call-site. Finally, the temporary variables are projected away.

Example 3. In Fig. 3, dl13 = {{u′, u, v}, {v′}, {w′, w, x′, x, y′, y, z′, z}} is the
abstract state at l13, q()’s call-site in p(), and dl14 is the abstract state at q()’s
exit-site.
[[q()]]�(dl13

) = [[return]]�(([[Cbodyq
]]� ◦ [[entry]]�)(dl13

), dl13
)

= [[return]]�([[Cbodyq
]]�({{u′, u}, {v′, v}, {w′, w, x′, x, y′, y, z′, z}}), dl13

)

= [[return]]�({{u′, u}, {v′, v, z′}, {w′, w, x′, x, y′, y, z}}, {{u′, u, v}, {v′}, {w′, w, x′, x, y′, y, z′, z}})
= (fexit({{u′, u}, {v′, v, z′}, {w′, w, x′, x, y′, y, z}}|

G∪G′ )�
fcall({{u′, u, v}, {v′}, {w′, w, x′, x, y′, y, z′, z}}))|

G∪G′∪L
= ({{u′, u̇}, {v′, v̇, z′}, {w′, ẇ, x′, ẋ, y′, ẏ, ż}} � {u̇, u, v}, {v̇}, {ẇ, w, ẋ, x, ẏ, y, ż, z}})|

G∪G′∪L
= {{u′, u̇, u, v}, {v′, v̇, z′}, {w′, ẇ, w, x′, ẋ, x, y′, ẏ, y, ż, z}}|

G∪G′∪L
= {{u′, u, v}, {v′, z′}, {w′, w, x′, x, y′, y, z}} = dl14

Fig. 4. The abstract semantics of procedure calls in the top-down analysis. The con-
stant elements Ug′g are defined in Fig. 2. Note that the renaming functions fcall(-) and
fcall(-) are isomorphisms.
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Lemma 3 (Soundness of the Top-Down Analysis). The abstract semantics
of the top-down interprocedural connection analysis is an over-approximation of
the standard concrete semantics for heap manipulating programs [4].

The crux of the proof is the observation that the abstract transfer of the return
statements is sound because the “old” values of the global variables of a proce-
dure are never modified and are the same as their “current” values when it was
invoked.

5.3 Bottom Up Compositional Connection Analysis

The abstract semantics [[−]]�BU(−) of procedure calls in the bottom-up analysis
is defined in Eq. 1. Again, intraprocedural commands are handled as described
in Sect. 4.

[[p()]]�BU(d) = [[return]]�([[Cbodyp]]
�(ιentry), d) (1)

[[p()]]�BU(d) and [[p()]]�(d), defined in Fig. 4, differ in the way in which the
value of the first argument to [[return]]�(·, d) is computed: [[p()]]�BU(d) uses the
abstract state resulting at the exit of p’s body when it is analyzed with state
ιentry. Hence, it uses the same value at every call. In contrast, [[p()]]�(d) computes
that argument by analyzing the call to p() with the particular call state d. Note
that as a corollary of the theorem we get that the bottom-up interprocedural
connection analysis is sound.

Theorem 1 (Coincidence). ∀C ∈ Commands.∀d ∈ D. [[C ]]�BU(d) = [[C ]]�(d) .

In the rest of the section, we sketch the main arguments in the proof of
Theorem 1, in lieu of more formal mathematical arguments, which are shown
in the proof of [4, Theorem 22]. We focus on the case where C is a procedure
invocation, i.e., C = p().

Notation. We denote by DX the sublattice representing the closed interval
[⊥, RX ] for a set ∅ �= X ⊆ Υ , which consists of all the elements between ⊥
and RX . For example, DG includes only partitions where all the variables not in
G are in singleton sets. We define the sets Sx̂ and Ux̂ŷ, where x̂ is either x′, x,
or ẋ in the same way as Sx′ and Ux′y′ are defined in Fig. 2. For example, Uxy′

= {{x, y′}} ∪ {{α} | α ∈ Υ \ {x, y′}}.

5.3.1 Uniform Representation of Entry Abstract States
The abstract states at the entry to procedures in the top-down analysis are
uniform: for every global variable g, we have a connection set containing only g
and g′. This is a result of the definition of function entry, which projects abstract
call states on G′ and then joins the result with the ιentry element. The projection
results in an abstract state where all connection sets containing more than a
single element are comprised only of primed variables. Then, after joining d|G′

with ιentry, each old variable g resides in the same partition as its corresponding
current primed variable g′. For example, see dl10 in Fig. 3.
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We point out that the uniformity of the entry states is due to the property
of ιentry that its connection sets are comprised of pairs of variables of the form
{x′, x}. One important implication of this uniformity is that every entry abstract
state d to any procedure has a dual representation. In one representation, d is
the join of ιentry with some elements Ux′y′ ∈ DG′ . In the other representation, d is
expressed as the join of ιentry with some elements Uxy ∈ DG. In the following, we
use the function o that replaces relationships among current variables by those
among old ones: o(Ux′y′) = Uxy; and o(d) is the least upper bounds of ιentry and
elements Uxy for all x, y such that x′ and y′ are in the same connection set of d.

Example 4. dl10 is the abstract element at the entry point of procedure p of

Fig. 3. ιentry � (Uu′v′ � Uw′z′ ) = o(ιentry � (Uu′v′ � Uw′z′ )) = ιentry � o(Uu′v′ � Uw′z′ )
= ιentry � (Uuv � Uwz) = {{u′, u, v′, v}, {w′, w, z′, z}, {x′, x}, {y′, y}} = dl10 .

Delayed Evaluation of the Effect of Calling Contexts. Elements of the form Uxy,
coming from DG, are smaller than or equal to the meet elements Sx′ of intrapro-
cedural statements. This is because for any x, y ∈ G it holds that

Sx′ = {{x′}} ∪ {{z|z ∈ Υ \ {x′}}} � {{x, y}} ∪ {{z}|z ∈ Υ \ {x, y}} = Uxy .

In Lemma 1 of Sect. 4 we proved that the semantics of the connection analysis is
conditionally adaptable. Thus, computing the composed effect of any sequence τ
of intraprocedural transformers on an entry state of the form d0�Ux1y1

. . .�Uxnyn

results in an element of the form d′
0 � Ux1y1

. . . � Uxnyn
, where d′

0 results from
applying the transformers in τ on d0. Using the observations made in Sect. 5.3.1,
this means that for any abstract element d resulting at a call-site there exists
an element d2 ∈ DG which is a join of elements of the form Uxy ∈ DG, such that
d = d1 � d2, and d1 = [[τ ]]�(ιentry).

d = d1 � Ux1y1
. . . � Uxnyn

. (2)

Example 5. The abstract state at entry point of p is dl10 = ιentry�(Uuv�Uwz) . (See
Example 4.) The sequence of commands at l10 is C := v = null; x.f = z; y.f = w .
Thus, dl13 = [[C]]�(dl10). Note that dl13 can also be computed using the effect of C
to ιentry:

[[C]]�(ιentry) � (Uwz � Uuv) = {{u′, u}, {v′}, {v}, {w′, w, y′, y}, {x′, x, z′, z}} � (Uuv � Uwz)
= {{u′, u, v}, {v′}, {w′, w, x′, x, y′, y, z′, z}} = dl13

[[C]]�(ιentry) = [[v = null; x.f = z; y.f = w]]�({{u′, u}, {v′, v}, {w′, w}, {x′, x}, {y′, y}, {z′, z}})
= {{u′, u}, {v′}, {v}, {w′, w, y′, y}, {x′, x, z′, z}}

5.3.2 Counterpart Representation for Calling Contexts
The previous reasoning ensures that any abstract value at the call-site to a
procedure p() is of the form d1 � d2, where d2 ∈ DG and, thus, is a join of
elements of form Uxy. Furthermore, the state resulting at the entry of p() when
the calling context is d1 � Uxy can be obtained either directly from d1 or after
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merging two of d1’s connection sets. Note that the need to merge occurs only if
there are variables w′ and z′ such that w′ and x are in one of the connection
sets and z′ and y are in another. This means that the effect of Uxy on the entry
state can be expressed via primed variables: d1 � Uxy = d1 � Uw′z′ . Thus, if
the abstract state at the call-site is d1 � d2, then there is an element d′

2 ∈ DG′

such that
(d1 � d2)|G′ = d1|G′ � d′

2 (3)

We refer to the element d′
2 ∈ DG′ , which can be used to represent the effect of

d2 ∈ DG at the call-site as d2’s counterpart, and denote it by d̂2.

Example 6. Let d1 = {{u′, u}, {v′}, {v}, {w′, w, y′, y}, {x′, x, z′, z}} and d2 =
Uwz. Joining d1 with Uwz causes connection sets [w] and [z] to be merged,
and, consequently, [y′] and [x′] are merged, since [y′] = [w] and [x′] = [z].
Therefore, for d̂2 = Ux′z′ it holds that (d1 � d2)|G′ = {{u′, u}, {v′}, {v}, {w′, w, y′,
y, x′, x, z′, z}}|G′ = {{u′}, {v′}, {w′, y′, x′, z′}}. Similarly, d1|G′ � d̂2 = {{u′},
{v′}, {w′, y′}, {x′, z′}} � Ux′z′ = {{u′}, {v′}, {w′, y′, x′, z′}}.

Representing Entry States with Counterparts. The above facts imply that we can
represent an abstract state d at the call-site as d = d1 � d2, where d2 = d3 � d4

for some d3, d4 ∈ DG such that: (i) d3 is a join of the elements of the form Uxy

such that x and y reside in d1 in different partitions, which also contain current
(primed) variables, and thus possibly affect the entry state, and (ii) d4 is a join
of all the other elements Uxy ∈ DG, which are needed to represent d in this
form, but either x̄ or ȳ resides in the same partition in d1 or one of them is in a
partition containing only old variables. Recall that there is an element d′

3 = d̂3

that joins elements of the form Ux′y′ such that d1 � d3 = d1 � d′
3, and therefore

d = d1 � d3 � d4 = d1 � d′
3 � d4 . (4)

Thus, after applying the entry’s semantics, we get that abstract states at the
entry point of procedure are always of the form

[[entry]]�(d) = (d1 � d′
3 � d4)|G′ � ιentry = (d1 � d′

3)|G′ � ιentry = (d1|G′ � d′
3) � ιentry

where d′
3 represents the effect of d3 � d4 on partitions containing current variables

g′ in d1. The second equality holds because the modularity of RG′ : d′
3 joins

elements of form Ux′y′ and Ux′y′ � RG′ . This implies that every state d0 at an
entry point to a procedure is of the following form:

d0 = ιentry �
d1|G′︷ ︸︸ ︷

(Ux′y′ . . . � Ux′
ly

′
l
) �

d′
3︷ ︸︸ ︷

(Ux′
l+1y′

l+1
. . . � Ux′

ny′
n
)

= ιentry � o(Ux′
1y′

1
. . . � Ux′

ny′
n
) = ιentry � Ux1y1

� . . . � Uxnyn
(5)

The second equality is obtained using the dual representation of entry state (see
Sect. 5.3.1) and the third one is justified because o(-) is an isomorphism.
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Example 7. The abstract state at the call-site of procedure q() is dl13 = d1 � d2
where d1 = {{u′, u}, {v′}, {v}, {w′, w, y′, y}, {x′, x, z′, z}} and d2 = Uuv � Uwz.
(See the first equality in Example 5.) In Example 6 we showed that Uwz affects
the relations in d1 between current variables and that Ûwz = Ux′y′ . In contrast,
joining the result with Uuv has no effect on relations between current variables,
because the connection set [v] does not contain any current variable. Indeed,
d1 � Uwz � Uuv = d1 � Ux′y′ � Uuv. Following the reasoning above, consider the
abstract state at the entry to procedure q()

dl15 = {{u′, u}, {v′, v}, {w′, w, x′, x, y′, y, z′, z}}
= ιentry � {{u′}, {u}, {v′}, {v}, {w′, y′}, {w}, {x′, z′}, {x}, {y}, {z}} � Uwz

= ιentry � d1|G′ � Ux′y′

Adapting the Result for Different Contexts. We now show that the interproce-
dural connection analysis can be done compositionally. Intuitively, we show that
the effect of the caller’s calling context can be carried over procedure invoca-
tions. Alternatively, the effect of the callee on the caller’s context can be adapted
unconditionally for different caller’s calling contexts. The proof goes by induc-
tion on the structure of the program. We sketch the proof for the case where
C = p().

In Eq. 4 we showed that every abstract value that arises at the call-site is
of the form d1 � d3 � d4, where d3, d4 ∈ DG. Thus, we need to show for any
d1 �= ⊥ that

[[p()]]�(d1 � d3 � d4) = [[p()]]�(d1) � d3 � d4 . (6)

According to the top-down abstract semantics the effect of invoking p() is

[[p()]]�(d) = [[return]]�(dexit, d) = [[return]]�
((

([[Cbodyp]]
� ◦ [[entry]]�)(d)

)
, d

)
.

Because d is of the form d1 � d3 � d4, we can write dexit as below, where first
equalities are mere substitutions based on observations we made before and the
last one comes from the induction assumption.

dexit = [[Cbodyp]]
�([[entry]]�(d1 � d3 � d4)) = [[Cbodyp]]

�(((d1 � d3 � d4)|G′) � ιentry)

= [[Cbodyp]]
�(((d1 � d3)|G′) � ιentry) = [[Cbodyp]]

�(d1|G′ � d′
3 � ιentry)

= [[Cbodyp]]
�(d1|G′ � o(d′

3) � ιentry) = [[Cbodyp]]
�(d1|G′ � ιentry) � o(d′

3) (7)

When applying the return semantics, we first compute the natural join and
then remove the temporary variables. Therefore, we get

[[p()]]�(d) = (fcall(d1 � d3 � d4) � fexit([[Cbodyp]]
�(d1|G′ � ιentry) � o(d′

3)))|G∪G′∪L .
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Equation 8 shows the result of computing the inner parentheses. The first
equality is by the definition of d′

3 and the last equality is by the isomorphism of
fcall(-) and fexit(-).

fcall(d1 � d3 � d4) � fexit([[Cbodyp]]
�(d1|G′ � ιentry) � o(d′

3))

= fcall(d1 � d′
3 � d4) � fexit([[Cbodyp]]

�(d1|G′ � ιentry) � o(d′
3))

= fcall(d′
3) � fcall(d1 � d4) � fexit(o(d′

3)) � fexit([[Cbodyp]]
�(d1|G′ � ιentry)) (8)

Note, among the join arguments, fexit(o(d′
3)) and fcall(d′

3). Let’s look at the
first element. o(d′

3) replaces all the occurrences of Ux′y′ in d′
3 with Uxy. fexit

replaces all the occurrences of Uxy in o(d′
3) with Uẋẏ. Thus, the first element is

Uẋ1ẏ1�. . .�Uẋnẏn
which is the result of replacing in d′

3 all the occurrences of Ux′y′

with Uẋẏ. Let’s look now at the second element. fcall replaces all occurrences of
Ux′y′ in d′

3 with Uẋẏ. Thus, also the second element is Uẋ1ẏ1 � . . . � Uẋnẏn
, i.e.,

fcall(d′
3) = fexit(o(d′

3)), and we get

(8) = fcall(d′
3) � fcall(d1 � d4) � fexit([[Cbodyp]]

�(d1|G′ � ιentry))
= fcall(d3 � d1 � d4) � fexit([[Cbodyp]]

�(d1|G′ � ιentry))
= fcall(d1) � fexit([[Cbodyp]]

�(d1|G′ � ιentry) � (d3 � d4) = [[p()]]�(d1) � d3 � d4

The first equality is by the idempotence of �. The second equality is by the
isomorphism of fcall and Eq. 4. To justify the third equality, recall (Eq. 2) that
d3 and d4 are both of form Ux1y1

� . . . � Uxnyn
and that fcall(d) only replaces g′

occurrences in d; and thus fcall(Ux1y1
� . . . � Uxnyn

) = Ux1y1
� . . . � Uxnyn

.

Example 8. By Example 5, dl13 = {{u′, u}, {v′}, {v}, {w′, w, y′, y}, {x′, x, z′, z}}
� (Uuv � Uwz). Let d1 = {{u′, u}, {v′}, {v}, {w′, w, y′, y}, {x′, x, z′, z}} and d2 =
Uuv � Uwz. Thus, dl13 = d1 � d2 and d2 ∈ DG. Let’s compute (i) [[q()]]�(d1) and
(ii) [[q()]]�(d1) � d2.

[[q()]]
�
(d1) = [[return]]�(([[Cbodyq

]]
� ◦ [[entry]]�)(d1), d1)

= [[return]]�(([[Cbodyq
]]
� ◦ [[entry]]�)({{u

′
, u}, {v

′}, {v}, {w
′
, w, y

′
, y}, {x

′
, x, z

′
, z}}), d1)

= [[return]]�([[Cbodyq
]]
�
({{u

′
, u}, {v

′
, v}, {w

′
, w, y

′
, y}, {x

′
, x, z

′
, z}}), d1)

= [[return]]�({{u
′
, u}, {v

′
, v, z

′}, {w
′
, w, y

′
, y}, {x

′
, x, z}}, {{u

′
, u}, {v

′}, {v},

{w
′
, w, y

′
, y}, {x

′
, x, z

′
, z}})

= (fexit({{u
′
, u}, {v

′
, v, z

′}, {w
′
, w, y

′
, y}, {x

′
, x, z}}|

G∪G′ ) �
fcall({{u

′
, u}, {v

′}, {v}, {w
′
, w, y

′
, y}, {x

′
, x, z

′
, z}}))|

G∪G′∪L

= ({{u
′
, u̇}, {v

′
, v̇, z

′}, {w
′
, ẇ, y

′
, ẏ}, {x

′
, ẋ, ż}} � {{u̇, u}, {v̇}, {v}, {ẇ, w, ẏ, y}, {ẋ, x, ż, z}})

G∪G′∪L

= ({{u
′
, u̇, u}, {v

′
, v̇, z

′}, {v}, {w
′
, ẇ, w, y

′
, ẏ, y}, {x

′
, ẋ, x, ż, z}})|

G∪G′∪L

= {{u
′
, u}, {v

′
, z

′}, {v}, {w
′
, w, y

′
, y}, {x

′
, x, z}}

[[q()]]
�
(d1) � d2 = {{u

′
, u}, {v

′
, z

′}, {v}}, {w
′
, w, y

′
, y}, {x

′
, x, z}} � (Uuv � Uwz)

= {{u
′
, u, v}, {z

′
, v

′}, {w
′
, w, x

′
, x, y

′
, y, z}}dl14

= [[q()]]
�
(dl13

) = [[q()]]
�
(d1 � d2)

Precision Coincidence. We combine the observations we made to informally
show the coincidence result between the top-down and the bottom-up semantics
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(Theorem 1). By Eq. 4, every state d at a call-site can be represented as d =
d1 � d3 � d4, where d3, d4 ∈ DG. Furthermore, there exists d′

3 = d̂3 ∈ DG′ such
that d1 � d3 � d4 = d1 � d′

3 � d4. We also showed that for every command C and
every d = d1 � d3 � d4, such that d3, d4 ∈ DG, it holds that [[C]]�(d1 � d3 � d4) =
[[C]]�(d1) � d3 � d4 . Finally,

[[p()]]�(d) = [[return]]�([[Cbodyp
]]�([[entry]]�(d)), d)

= [[return]]�([[Cbodyp
]]�(d1|G′ � ιentry � d′

3), d)

= [[return]]�([[Cbodyp
]]�(ιentry � o(d1|G′) � o(d′

3)), d)

= [[return]]�([[Cbodyp
]]�(ιentry) � o(d1|G′) � o(d′

3), d1 � d3 � d4)

= [[return]]�([[Cbodyp
]]�(ιentry), d1 � d3 � d4) = [[p()]]�BU(d) .

The second equality is by Eq. 7. The third equality holds because d′
3, d1|G′ ∈ DG′

and by Eq. 5. The forth equality holds since o(d′
3), o(d1|G′) ∈ DG and by Eq. 8.

The fifth equality holds because we can remove o(d′
3) as fexit(o(d′

3)) is redundant
in the natural join. Using a similar reasoning, we can remove fexit(o(d1|G′)), since
fexit is an isomorphism and fexit(o(d1|G′)) = fcall(d1|G′) � fcall(d1).

Example 9. Let’s compute the result of applying p() to dl8 using the bottom-up
semantics, starting by computing [[Cbodyp

]]�(ιentry) and then [[p()]]�BU(dl8).

[[Cbodyp
]]�(ιentry) = {{u′, u}, {v}, {v′, z′}, {w′, w, y′, y}, {x′, x, z}}

[[p()]]�BU(dl8) = [[return]]�([[Cbodyp
]]�(ιentry), dl8)

= (fexit({{u′, u}, {v′, z′}, {v}, {w′, w, y′, y}, {x′, x, z}})
�fcall({{u′, v′}, {u}, {v}, {w}, {x′}, {x}, {y′}, {y}, {w′, z′}, {z}}|G∪G′))|G∪G′∪L

= ({{u′, u̇}, {v′, z′}, {v̇}, {w′, ẇ, y′, ẏ}, {x′, ẋ, ż}}
�{{u̇, v̇}, {u}, {v}, {w}, {ẋ}, {x}, {ẏ}, {y}, {ẇ, ż}, {z}})|G∪G′∪L

= ({{u′, u̇, v̇}, {v′, z′}, {u}, {v}, {w′, ẇ, x′, ẋ, y′, ẏ, ż}, {w}, {x}, {y}, {z}})|G∪G′∪L

= {{u′}, {v′, z′}, {u}, {v}, {w′, x′, y′}, {w}, {x}, {y}, {z}} = dl9 = [[p()]]�(dl8)

6 Implementation and Experimental Evaluation

We implemented three versions of the connection analysis: the original top-down
version [14], our modified top-down version, and our modular bottom-up version
that coincides in precision with the modified top-down version. We next describe
these versions.

The abstract transformer of the destructive update statements x.f = y in [14]
does not satisfy the requirements described in Sect. 4; its effect depends on the
abstract state. Specifically, the connection sets of x and y are not merged if x
or y points to null in all the executions leading to this statement. We therefore
conservatively modified the analysis to satisfy our requirements, by changing the
abstract transformer to always merge x’s and y’s connection sets. Our bottom-up
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Table 1. Benchmark characteristics for reachable code. (Reachable methods computed
by a static 0-CFA call-graph analysis.) The “total” columns report numbers for all
reachable code, whereas the “app only” columns report numbers for only application
code (excluding JDK library code).

Description # of classes # of methods # of bytecodes

app only total app only total app only total

grande2 Java Grande kernels 17 61 112 237 8,146 13,724

grande3 Java Grande
large-scale
applications

42 241 231 1,162 27,812 75,139

antlr Parser and translator
generator

116 358 1,167 2,400 128,684 186,377

weka Machine-learning
library for
data-mining tasks

62 530 575 3,391 40,767 223,291

bloat Java bytecode
optimization and
analysis tool

277 611 2,651 4,699 194,725 311,727

modular analysis that coincides with this modified top-down analysis operates
in two phases. The first phase computes a summary for every procedure by
analyzing it with an input state ιentry. The summary over-approximates relations
between all possible inputs of this procedure and each program point in the
body of the procedure. The second phase is a chaotic iteration algorithm which
propagates values from callers to callees using the precomputed summaries, and
is similar to the second phase of the interprocedural functional algorithm of [28,
Fig. 7].

We implemented the aforementioned versions of connection analysis using
Chord [26] and applied them to the five Java benchmark programs listed
in Table 1. (For space reasons, however, we do not discuss the modified top-
down version of connection analysis.) They include two programs (grande2 and
grande3) from the Java Grande benchmark suite and two (antlr and bloat) from
the DaCapo benchmark suite. We excluded programs from these suites that
use multi-threading, since our analyses assume sequential programs. Our larger
three benchmark programs are commonly used in evaluating pointer analyses.
All our experiments were performed using Oracle HotSpot JRE 1.6.0 on a Linux
machine with Intel Xeon 2.13 GHz processors and 128 Gb RAM.

We omit the modified top-down version of connection analysis from further
evaluation, as its performance is similar to the original top-down version and its
precision is (provably, and experimentally confirmed) identical to our bottom-up
version.

Precision. Following [14], we measure precision by the size of the connection
sets of pointer variables at program points of interest. Each pair of variable and
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program point can be viewed as a separate query to the connection analysis. To
obtain such queries, we chose the parallelism client proposed in the original work
of [14], which demands the connection set of each dereferenced pointer variable
in the program. In Java, this corresponds to variables of reference type that
are dereferenced to access instance fields or array elements. More specifically,
our queries constitute the base variable in each occurrence of a getfield, putfield,
aload, or astore bytecode instruction in the program. The number of such queries
for our five benchmarks are shown in the “# of queries”column of Table 2. To
avoid counting the same set of queries across benchmarks, we only consider
queries in application code, ignoring those in JDK library code. This number of
queries ranges from around 0.6 K to over 10 K for our benchmarks.

Figure 5 provides a detailed comparison of precision, based on the above
metric, of the original top-down and bottom-up versions of connection analysis
when applied to the antlr benchmark. Each graph in columns (a) and (b) plots,
for each distinct connection set size (on the X axis), the fraction of queries (on the
Y axis) for which each analysis computed connection sets of equal or smaller size.
The graph shows that the precision of our modular bottom-up analysis closely
tracks that of the original top-down analysis: the points for the bottom-up and
top-down analyses, denoted � and ◦, respectively, overlap almost perfectly in
each of the six graphs. The ratio of the connection set size computed by the top-
down analysis to that computed by the bottom-up analysis on average across all
queries is 0.952 for antlr (and 0.977 for grande2 and 0.977 for grande3). We do
not, however, measure the impact of this precision loss of 2–5% on a real client.
Note that for the largest two benchmarks, the top-down analysis timed-out.

Scalability. Table 2 compares the scalability of the top-down and bottom-up
analyses in terms of three different metrics: running time, memory consumption,
and the total number of computed abstract states. As noted earlier, the bottom-
up analysis runs in two phases: a summary computation phase followed by a
summary instantiation phase. The above data for these phases is reported in
separate columns of the table. On our largest benchmark (bloat), the bottom-
up analysis takes around 50 min and 873 Mb memory, whereas the top-down
analysis times out after six hours, not only on this benchmark but also on the
second largest one (weka).

(a) Precision of field accesses. (b) Precision of array accesses. (c) Scalability.

Fig. 5. Comparison of the precision and scalability of the original top-down and our
modular bottom-up versions of connection analysis for the antlr benchmark.
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The “# of abstract states” columns provide the sum of the sizes of the
computed abstractions in terms of the number of abstract states, including only
incoming states at program points of queries (in the “queries”sub-column), and
incoming states at all program points, including the JDK library (in the “total”
sub-column). Column (c) of Fig. 5 provides more detailed measurements of the
latter numbers. The graph shows, for each distinct number of incoming states
computed at each program point (on the X axis), the fraction of program points
(on the Y axis) with equal or smaller number of incoming states. The graphs
clearly show the blow-up in the number of states computed by the top-down
analysis over the bottom-up analysis.

7 Related Work, Discussion and Conclusions

The main technical observation in our work is that using right-modular abstract
domains can help develop modular analyses. This observation is, in a way, sim-
ilar to the frame rule in separation logic, in the sense that the join (resp. ∗)
distributes over the transfer functions, and to the notion of condensation in
logic programs [21].

The first compositional analysis framework was introduced in [6], and served
as the basis for the concept of abductive analysis [15]. In [16], it has been
shown that the semantic construction in [6] necessitates abstract domains which
include functional objects and to a generalization of the reduced cardinal power
domain [7] to arbitrary spaces of functions over a lattice. The latter was used to
provide compositional semantics of logic programs [16]. These works paved the
way to establishing the connection between modularity of analyses and conden-
sation [17,18].

Condensation is an algebraic property of abstract unification that ensures
that it is possible to approximate the behavior of a query and then unify it with
a given context and the obtained results are as precise as the ones obtained
by analyzing the query after instantiating it in that specific context. Abstract
domain which have this property are called condensing. Intuitively, in condensing
domains it is possible to derive context-independent interprocedural (bottom-up)
analyses with the same precision as the corresponding context-dependent (top-
down) analysis. Examples for such domains are Boolean functions [24], Herbrand
abstractions [17], equality based domain [25], or combinations of thereof [31].
(See [17] for further discussion.)

A lattice theoretic characterization of condensing abstract domains was sug-
gested in [18] and later generalized in [17]. Intuitively, let C be an abstract
domain, S : C → C the abstract semantics used in the analysis, and ⊗ an asso-
ciate commutative binary operator ⊗, e.g., unification. S is said to be condensing
for ⊗ if S(a ⊗ b) = a ⊗ S(b) for any a and b in C [17, Definition 4.1]. In fact,
a weaker characterization of condensation is given in [18] which, by using the
notion of weak completeness [18, Definition 3.8] requires the equality to hold only
for ordered pairs, i.e., when either a � b or b � a [18, Theorem 4.7]. However,
when the order of the lattice is induced by the binary operator, as it is in our
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case where ⊗ = �, the equality has to hold for any pair of elements. Thus, our
requirements are less restrictive than theirs, as shown by the following example:
Let d1 = d2 = {{x̄, x′}, {ȳ, y′}}, then [[x = null]]�(d1 � d2) = {{x̄}, {x′}, {ȳ, y′}}
but [[x = null]]�(d1) � d2 = (d1 � Sx′) � d2) = {{x̄, x′}, {ȳ, y′}}.

The above example points to, what is arguably, the most subtle part of our
work. Note that d2 �� Sx′ . Hence, although [[x = null]]� is conditionally adapt-
able (see Defnition 3 and Lemma 1), we cannot take advantage of the modularity
of Sx′ . Surprisingly, we can benefit from the modularity of Sx′ when we adapt
the result of the analysis of a procedure p (with ιentry as input) to an arbitrary
calling context. This is possible because the counterpart representation of call-
ing contexts. Specifically, we can represent any calling context as a join between
ιentry and elements of the form Uxy. Recall that Uxy = {{x̄, ȳ}{x′}{y′}. Thus, it
holds that Uxy � Sx′ . In fact, for every x, y and z, it holds that Uxy � Sz′ (see
Sect. 5.3.1).4

Conclusions. This paper shows that the notion of modularity from lattice the-
ory can help for developing a precise bottom-up program analysis. In lieu of
discussing the general framework [4], we illustrated the point by developing a
compositional bottom-up connection analysis that has the same precision as
the top-down counterpart, while enjoying the performance benefit of typically
bottom-up analyses. Our analysis heavily uses modular elements in the abstract
semantics of primitive commands, and their modularity property plays the key
role in our proof that the precision of the compositional analysis coincides with
that of the top-down counterpart. We also derived a new compositional analy-
sis for a variant of the copy-constant propagation problem [13]. (See [4].) Our
connection analysis can be used as a basis for a simple form of compositional
taint analysis [22], essentially, by adding taint information to every partition. We
hope that the connection we found between modularity in lattices and program
analyses can help design precise and efficient compositional bottom-up analyses.
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4 We note that if we only use elements in the analysis which are smaller than all the
meet elements, then our analysis would become flow-insensitive. Let d, P1, G1, P2, G2

be abstract elements such that P1 and P2 are modular elements, d � P1, ((d � P1) �
G1) � P2, ((d � P2) � G2) � P1. It holds that G1 � P2, G2 � P1, and thus
(((d�P1)�G1)�P2)�G2 = (((d�P1)�P2)�G1)�G2 = (d�P2 �P1)�G2 �G1 =
((d�P2)�G2)�P1)�G1 . (This is in fact the case if the meet elements are �.) Note
that this would imply that [[x = null]]� ◦ [[x = y]]� = [[x = y]]� ◦ [[x = null]]�, which is
neither desired nor the case in our analysis.
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Abstract. We present a novel static analysis to infer the parallel cost
of distributed systems. Parallel cost differs from the standard notion of
serial cost by exploiting the truly concurrent execution model of distrib-
uted processing to capture the cost of synchronized tasks executing in
parallel.It is challenging to analyze parallel cost because one needs to
soundly infer the parallelism between tasks while accounting for waiting
and idle processor times at the different locations. Our analysis works in
three phases: (1) It first performs a block-level analysis to estimate the
serial costs of the blocks between synchronization points in the program;
(2) Next, it constructs a distributed flow graph (DFG) to capture the
parallelism, the waiting and idle times at the locations of the distrib-
uted system; Finally, (3) the parallel cost can be obtained as the path
of maximal cost in the DFG. A prototype implementation demonstrates
the accuracy and feasibility of the proposed analysis.

1 Introduction

Welcome to the age of distributed and multicore computing, in which soft-
ware needs to cater for massively parallel execution. Looking beyond parallelism
between independent tasks, regular parallelism involves tasks which are mutu-
ally dependent [17]: synchronization and communication are becoming major
bottlenecks for the efficiency of distributed software. This paper is based on a
model of computation which separates the asynchronous spawning of new tasks
to different locations, from the synchronization between these tasks. The extent
to which the software succeeds in exploiting the potential parallelism of the
distributed locations depends on its synchronization patterns: synchronization
points between dynamically generated parallel tasks restrict concurrency.

This paper introduces a novel static analysis to study the efficiency of compu-
tations in this setting, by approximating how synchronization between blocks of
serial execution influences parallel cost. The analysis builds upon well-established
static cost analyses for serial execution [2,8,21]. We assume that a serial cost
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analysis returns a “cost” for the serial blocks which measures their efficiency. Tra-
ditionally, the metrics used in cost analysis [19] is based on counting the number
of execution steps, because this cost model appears as the best abstraction of
time for software. Our parallel cost analysis could also be used in combination
with worst-case execution time (WCET) analysis [1] by assuming that the cost
of the serial blocks is given by a WCET analysis.

Previous work on cost analysis of distributed systems [2] accumulates costs
from different locations, but ignores the parallelism of the distributed execution
model. This paper presents, to the best of our knowledge, the first static analysis
to infer the parallel cost of distributed systems which takes into account the
parallel execution of code across the locations of the distributed system, to infer
more accurate bounds on the parallel cost. Our analysis works in the following
steps, which are the main contributions of the paper:

1. Block-level cost analysis of serial execution. We extend an existing cost analy-
sis framework for the serial execution of distributed programs in order to infer
information at the granularity of synchronization points.

2. Distributed flow graph (DFG). We define the notion of DFG, which allows us
to represent all possible (equivalence classes of) paths that the execution of
the distributed program can take.

3. Path Expressions. The problem of finding the parallel cost of executing the
program boils down to finding the path of maximal cost in the DFG. Paths in
the DFG are computed by means of the single-source path expression problem
[18], which finds regular expressions that represent all paths.

4. Parallel cost with concurrent tasks. We leverage the previous two steps to
the concurrent setting by handling tasks whose execution might suspend and
interleave with the execution of other tasks at the same location.

We demonstrate the accuracy and feasibility of the presented cost analysis by
implementing a prototype analyzer of parallel cost within the SACO system,
a static analyzer for distributed concurrent programs. Preliminary experiments
on some typical applications for distributed programs achieve gains up to 29 %
w.r.t. a serial cost analysis. The tool can be used online from a web interface
available at http://costa.ls.fi.upm.es/web/parallel.

2 The Model of Distributed Programs

We consider a distributed programming model with explicit locations. Each loca-
tion represents a processor with a procedure stack and an unordered buffer of
pending tasks. Initially all processors are idle. When an idle processor’s task
buffer is non-empty, some task is selected for execution. Besides accessing its own
processor’s global storage, each task can post tasks to the buffer of any processor,
including its own, and synchronize with the reception of tasks (synchronization
will be presented later in Sect. 6). When a task completes, its processor becomes
idle again, chooses the next pending task, and so on.

http://costa.ls.fi.upm.es/web/parallel
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2.1 Syntax

The number of distributed locations need not be known a priori (e.g., locations
may be virtual). Syntactically, a location will therefore be similar to an object and
can be dynamically created using the instruction newLoc. The program consists
of a set of methods of the form M ::=T m(T x){s}. Statements s take the form
s::=s; s | x=e | if e then s else s | while e do s | return x | x=newLoc | x.m(z̄), where
e is an expression, x, z are variables and m is a method name. The notation z
is used as a shorthand for z1, . . . , zn, and similarly for other names. The special
location identifier this denotes the current location. For the sake of generality,
the syntax of expressions e and types T is left open.

2.2 Semantics

A program state S has the form loc1‖ . . . ‖locn, denoting the currently existing
distributed locations. Each location is a term loc(lid , tid ,Q) where lid is the
location identifier, tid the identifier of the active task which holds the location’s
lock or ⊥ if the lock is free, and Q the set of tasks at the location. Only the task
which holds the location’s lock can be active (running) at this location. All other
tasks are pending, waiting to be executed, or finished, if they have terminated
and released the lock. A task is a term tsk(tid ,m, l, s) where tid is a unique task
identifier, m the name of the method executing in the task, l a mapping from
local variables to their values, and s the sequence of instructions to be executed
or s = ε(v) if the task has terminated and the return value v is available.

The execution of a program starts from a method m, in an initial state with
an initial location with identifier 0 executing task 0 of the form S0=loc(0, 0,
{tsk(0,m, l, body(m))}). Here, l maps parameters to their initial values and local
references to null (standard initialization), and body(m) refers to the sequence of
instructions in the method m. The execution proceeds from S0 by evaluating in
parallel the distributed locations. The transition → denotes a parallel transition
W in which we perform an evaluation step � (as defined in Fig. 1) at every dis-
tributed location loci with i=1, . . . , n, i.e., W≡loc1‖ . . . ‖locn → loc′

1‖ . . . ‖loc′
m.

Fig. 1. Summarized semantics for distributed execution
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If a location is idle and its queue is empty, the evaluation simply returns the
same location state. Due to the dynamic creation of distributed locations, we
have that m ≥ n.

The transition relation � in Fig. 1 defines the evaluation at each distributed
location. The treatment of sequential instructions is standard and thus omitted.
In NewLoc, an active task tid at location lid creates a location lid ′ with a free
lock, which extends the program state. This explains that m≥n. Async spawns
a new task (the initial state is created by buildLocals) with a fresh task identifier
tid1 in a singleton queue for the location lid1 (which may be lid). We here
elide the technicalities of remote queue insertion in the parallel transition step,
which basically merges locations with the same identifier by taking the union
of the queues. Rule Select returns a task that is not finished, and it obtains
the lock of the location. When Return is executed, the return value is stored in
v. In addition, the lock is released and will never be taken again by that task.
Consequently, that task is finished (marked by adding instruction ε(v)).

3 Parallel Cost of Distributed Systems

The aim of this paper is to infer an upper bound which is an over-approximation
of the parallel cost of executing a distributed system.Given a parallel transition
W ≡ loc1‖ . . . ‖locn → loc′

1‖ . . . ‖loc′
m, we denote by P(W ) the parallel cost

of the transition W .If we are interested in counting the number of executed
transitions, then P(W ) = 1. If we know the time taken by the transitions,
P(W ) refers to the time taken to evaluate all locations. Thus, if two instructions
execute in parallel, the parallel cost only accumulates the largest of their times.
For simplicity, we assume that all locations execute one instruction in one cost
unit. Otherwise, it must be taken into account by the cost analysis of the serial
cost (see Sect. 8). Given a trace t ≡ So→ . . . →Sn+1 of the parallel execution,
we define P(t) =

∑n
i=0 P(Wi), where Wi ≡ Si→Si+1. Since execution is non-

deterministic in the selection of tasks, given a program P (x), multiple (possibly

Fig. 2. Motivating example
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infinite) traces may exist. We use executions(P (x)) to denote the set of all
possible traces for P (x).

Definition 1 (Parallel Cost). The parallel cost of a program P on input values
x, denoted P(P (x)), is defined as max({P(t)|t ∈ executions(P (x))}).

Example 1. Figure 2 (left) shows a simple method m that spawns two tasks by
calling p and q at locations x and y, resp. In turn, p spawns a task by calling
s at location y. This program only features distributed execution, concurrent
behaviours within the locations are ignored for now. In the sequel we denote by
m̂ the cost of block m. m̂1, m̂2 and m̂3 denote, resp., the cost from the beginning
of m to the call x.p(), the cost between x.p() and y.q(), and the remaining cost of
m. p̂1 and p̂2 are analogous. Let us assume that the block m1 contains a loop that
performs n iterations (where n is equal to the value of input parameter n if it is
positive and otherwise n is 0) and at each iteration it executes 10 instructions,
thus m̂1=10 ∗ n. Let us assume that block m2 contains a loop that divides the
value of n by 2 and that it performs at most log2(n+1) iterations. Assume that
at each iteration it executes 20 instructions, thus m̂2=20 ∗ log2(n + 1). These
expressions can be obtained by cost analyzers of serial execution [2]. It is not
crucial for the contents of this paper to know how these expressions are obtained,
nor what the cost expressions are for the other blocks and methods. Thus, in
the sequel, we simply refer to them in an abstract way as m̂1, m̂2, p̂1, p̂2 etc. �

The notion of parallel cost P corresponds to the cost consumed between the
first instruction executed by the program at the initial location and the last
instruction executed at any location by taking into account the parallel execution
of instructions and idle times at the different locations.

Example 2. Figure 2 (right) shows three possible traces of the execution of this
example (more traces are feasible). Below the traces, the expressions P1, P2 and
P3 show the parallel cost for each trace. The main observation here is that the
parallel cost varies depending on the duration of the tasks. It will be the worst
(maximum) value of such expressions, that is, P=max(P1, P2, P3, . . . ). In 2©
p1 is shorter than m2, and s executes before q. In 3©, q is scheduled before s,
resulting in different parallel cost expressions. In 1©, the processor of location y
becomes idle after executing s and must wait for task q to arrive. �

In the general case, the inference of parallel cost is complicated because: (1) It
is unknown if the processor is available when we spawn a task, as this depends
on the duration of the tasks that were already in the queue; e.g., when task q is
spawned we do not know if the processor is idle (trace 1©) or if it is taken (trace
2©). Thus, all scenarios must be considered; (2) Locations can be dynamically
created, and tasks can be dynamically spawned among the different locations
(e.g., from location o we spawn tasks at two other locations). Besides, tasks can
be spawned in a circular way; e.g., task s could make a call back to location
x; (3) Tasks can be spawned inside loops, we might even have non-terminating
loops that create an unbounded number of tasks. The analysis must approximate
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(upper bounds on) the number of tasks that the locations might have in their
queues. These points make the static inference of parallel cost a challenging
problem that, to the best of our knowledge, has not been previously addressed.
Existing frameworks for the cost analysis of distributed systems [2,3] rely on a
serial notion of cost, i.e., the resulting cost accumulates the cost executed by all
locations created by the program execution. Thus, we obtain a serial cost that
simply adds the costs of all methods: m̂1+m̂2+m̂3+p̂1+p̂2+q̂+ŝ.

4 Block-Level Cost Analysis of Serial Execution

The first phase of our method is to perform a block-level cost analysis of serial
execution. This is a simple extension of an existing analysis in order to provide
costs at the level of the blocks in which the program is partitioned, between
synchronization points. In previous work, other extensions have been performed
that use costs at the level of specific program points [4] or at the level of complete
tasks [3], but the partitioning required by our parallel cost analysis is different.
Later, we need to be able to cancel out the cost associated to blocks whose
execution occurs in parallel with other blocks that have larger cost. The key
notion of the extension is block-level cost centers, as defined below.

Block Partitioning. The need to partition the code into blocks will be clear
when presenting the second phase of the analysis. Essentially, the subsequent
analysis needs to have cost information for the following sets of blocks: Binit, the
set of entry blocks for the methods; Bexit, the set of exit blocks for the methods,
and Bcall, the set of blocks ending with an asynchronous call. Besides these blocks,
the standard partitioning of methods into blocks used to build the control flow
graph (CFG) for the method is performed (e.g., conditional statement and loops
introduce blocks for evaluating the conditions, edges to the continuations, etc.).
We use B to refer to all block identifiers in the program. Given a block identifier
b, pred(b) is the set of blocks from which there are outgoing edges to block b in
the CFG. Function pred can also be applied to sets of blocks. We write pp ∈ b
(resp. i ∈ b) to denote that the program point pp (resp. instruction i) belongs
to the block b.

Example 3. In Fig. 2, the traces show the partitioning in blocks for the methods
m, p, q and s. Note that some of the blocks belong to multiple sets as defined
above, namely Binit = {m1, p1, s, q}, Bexit={m3, p2, s, q}, Bcall={m1,m2, p1}. For
instance, m1 is both an entry and a call block, and s, as it is not partitioned, is
both an entry and exit block. �

Points-to Analysis. Since locations can be dynamically created, we need an
analysis that abstracts them into a finite abstract representation, and that tells
us which (abstract) location a reference variable is pointing-to. Points-to analy-
sis [2,13,14] solves this problem. It infers the set of memory locations which
a reference variable can point-to. Different abstractions can be used and our
method is parametric on the chosen abstraction. Any points-to analysis that pro-
vides the following information with more or less accurate precision can be used
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(our implementation uses [2,13]): (1) O, the set of abstract locations; (2) M, the
set of abstract tasks of the form o.m where o ∈ O and m is a method name; (3)
a function pt(pp, v) which for a given program point pp and a variable v returns
the set of abstract locations in O to which v may point to.

Example 4. In Fig. 2 we have three different locations, which are pointed to by
variables o, x, y. For simplicity, we will use the variable name in italics to refer
to the abstract location inferred by the points-to analysis. Thus, O={o, x, y}.
The abstract tasks spawned in the program are M={o.m, x.p, y.s, y.q}. In this
example, the points-to abstraction is very simple. However, in general, locations
can be reassigned, passed in parameters, have multiple aliases, etc., and it is
fundamental to keep track of points-to information in an accurate way. �

Cost Centers. The notion of cost center is an artifact used to define the gran-
ularity of a cost analyzer. In [2], the proposal is to define a cost center for
each distributed component; i.e., cost centers are of the form c(o) where o ∈ O
and c( ) is the artifact used in the cost expressions to attribute the cost to the
different components. Every time the analyzer accounts for the cost of execut-
ing an instruction inst at program point pp, it also checks at which location the
instruction is executing. This information is provided by the points-to analysis as
Opp = pt(pp, this). The cost of the instruction is accumulated in the cost centers
of all elements in Opp as

∑
c(o)∗cost(inst),∀o ∈ Opp, where cost(inst) expresses

in an abstract way the cost of executing the instruction. If we are counting steps,
then cost(inst) = 1. If we measure time, cost(inst) refers to the time to exe-
cute inst. Then, given a method m(x̄), the cost analyzer will compute an upper
bound for the serial cost of executing m of the form Sm(x̄) =

∑n
i=1 c(oi)∗Ci,

where oi ∈ O and Ci is a cost expression that bounds the cost of the compu-
tation carried out by location oi when executing m. Thus, cost centers allow
computing costs at the granularity level of the distributed components. If one
is interested in studying the computation performed by one particular compo-
nent oj , we simply replace all c(oi) with i 
= j by 0 and c(oj) by 1. The idea
of using cost centers in an analysis is of general applicability and the different
approaches to cost analysis (e.g., cost analysis based on recurrence equations
[19], invariants [8], or type systems [9]) can trivially adopt this idea in order to
extend their frameworks to a distributed setting. This is the only assumption
that we make about the cost analyzer. Thus, we argue that our method can work
in combination with any cost analysis for serial execution.

Example 5. For the code in Fig. 2, we have three cost centers for the three
locations that accumulate the costs of the blocks they execute; i.e., we have
Sm(n) = c(o)∗m̂1 + c(o)∗m̂2 + c(o)∗m̂3 + c(x)∗p̂1 + c(x)∗p̂2 + c(y)∗ŝ + c(y)∗q̂. �

Block-level Cost Centers. In this paper, we need block-level granularity in
the analysis. This can be captured in terms of block-level cost centers B which
contain all blocks combined with all location names where they can be exe-
cuted. Thus, B is defined as the set {o:b ∈ O × B | o ∈ pt(pp, this) ∧ pp ∈
b}. We define Binit and Bexit analogously. In the motivating example, B =
{o:m1, o:m2, o:m3, x:p1, x:p2, y:q, y:s}. Every time the analyzer accounts for the
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cost of executing an instruction inst, it checks at which location inst is executing
(e.g., o) and to which block it belongs (e.g., b), and accumulates c(o:b)∗cost(inst).
It is straightforward to modify an existing cost analyzer to include block-level
cost centers. Given a method m(x̄), the cost analyzer now computes a block-
level upper bound for the cost of executing m. This upper bound is of the form
Sm(x̄) =

∑n
i=1 c(oi:bi) ∗ Ci, where oi:bi ∈ B, and Ci is a cost expression that

bounds the cost of the computation carried out by location oi while executing
block bi. Observe that bi need not be a block of m because we can have transi-
tive calls from m to other methods; the cost of executing these calls accumulates
in Sm. The notation Sm(x̄)|o:b is used to express the cost associated to c(o:b)
within the cost expression Sm(x̄), i.e., the cost obtained by setting all c(o′:b′)
to 0 (for o′ 
= o or b′ 
= b) and setting c(o:b) to 1. Given a set of cost centers
N = {o0:b0, . . . , ok:bk}, we let Sm(x̄)|N refer to the cost obtained by setting to
one the cost centers c(oi:bi) such that oi:bi ∈ N . We omit m in Sm(x̄)|N when
it is clear from the context.

Example 6. The cost of the program using the blocks in B as cost centers, is
Sm(n)=c(o:m1)∗m̂1+c(o:m2)∗m̂2+c(o:m3)∗m̂3+c(x:p1)∗p̂1+c(x:p2)∗p̂2+c(y:s)∗ŝ+
c(y:q)∗q̂. We can obtain the cost for block o:m2 as Sm(n)|o:m2 = m̂2. With the
serial cost assumed in Sect. 3, we have Sm(n)|o:m2 = 20 ∗ log2(n + 1). �

5 Parallel Cost Analysis

This section presents our method to infer the cost of executing the distributed
system by taking advantage of the fact that certain blocks of code must execute
in parallel, thus we only need to account for the largest cost among them.

5.1 Distributed Flow Graph

The distributed flow graph (DFG), introduced below, aims at capturing the dif-
ferent flows of execution that the program can perform. According to the dis-
tributed model of Sect. 2, when the processor is released, any pending task of the
same location could start executing. We use an existing may-happen-in-parallel
(MHP) analysis [5,12] to approximate the tasks that could start their execution
when the processor is released. This analysis infers pairs of program points (x, y)
whose execution might happen in parallel. The soundness of the analysis guaran-
tees that if (x, y) is not an MHP pair then there are no instances of the methods
to which x or y belong whose program points x and y can run in parallel. The
MHP analysis can rely on a points-to analysis in exactly the same way as our
overall analysis does. Hence, we can assume that MHP pairs are of the form
(x:p1, y:p2) where x and y refer to the locations in which they execute. We use
the notation x:b1 ‖ y:b2, where b1 and b2 are blocks, to denote that the program
points of x:b1 and y:b2 might happen in parallel, and, x:b1 ∦ y:b2 to indicate that
they cannot happen in parallel.
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Example 7. The MHP analysis of the example shown in Fig. 2 returns that y:s ‖
y:q, indicating that s and q might happen in parallel at location y. In addition,
as we only have one instance of m and p, the MHP guarantees that o:m1 ∦ o:m3

and x:p1 ∦ x:p2. �

The nodes in the DFG are the cost centers which the analysis in Sect. 4 has
inferred. The edges represent the control flow in the sequential execution (drawn
with normal arrows) and all possible orderings of tasks in the location’s queues
(drawn with dashed arrows). We use the MHP analysis results to eliminate the
dashed arrows that correspond to unfeasible orderings of execution.

Definition 2 (Distributed Flow Graph). Given a program P , its block-level
cost centers B, and its points-to analysis results provided by function pt, we
define its distributed flow graph as a directed graph G = 〈V,E〉 with a set of
vertices V = B and a set of edges E = E1 ∪ E2 ∪ E3 defined as follows:

E1 ={o:b1 → o:b2 | b1 → b2 exists in CFG}
E2 ={o1:b1 → o2:minit | b1 ∈ Bcall, pp : x.m() ∈ b1, o2 ∈ pt(pp, x)}
E3 ={o:b1 ��� o:b2 | b1 ∈ Bexit, b2 ∈ Binit, o:b1 ‖ o:b2}

o:m1

o:m2

o:m3

x:p1

x:p2

y:s

y:q

Fig. 3. DFG for Fig. 2

Here, E1 is the set of edges that exist in the
CFG, but using the points-to information in B
in order to find out at which locations the blocks
are executed. E2 joins each block that contains
a method invocation with the initial block minit

of the invoked method. Again, points-to infor-
mation is used to know all possible locations
from which the calls originate (named o1 above)
and also the locations where the tasks are sent
(named o2 above). Arrows are drawn for all pos-
sible combinations. These arrows capture the
parallelism in the execution and allow us to gain
precision w.r.t. the serial execution. Intuitively, they allow us to consider the
maximal cost of the path that continues the execution and the path that goes
over the spawned tasks. Finally, dashed edges E3 are required for expressing
the different orderings of the execution of tasks within each abstract location.
Without further knowledge, the exit blocks of methods must be joined with the
entry blocks of others tasks that execute at the same location. With the MHP
analysis we can avoid some dashed edges in the DFG in the following way: given
two methods m, whose initial block is m1, and p, whose final block is p2, if we
know that m1 cannot happen in parallel with p2, then we do not need to add a
dashed edge between them. This is because the MHP guarantees that when the
execution of p finishes there is no instance of method m in the queue of pending
tasks. Thus, we do not consider this path in E3 of the DFG.

Example 8. Figure 3 shows the DFG for the program in Fig. 2. The nodes are
the cost centers in Example 6. Nodes in gray are the nodes in Bexit, and it implies



284 E. Albert et al.

that the execution can terminate executing o:m3, x:p2, y:s or y:q. Solid edges
include those existing in the CFG of the sequential program but combined with
the location’s identity (E1) and those derived from calls (E2). Since y:s ‖ y:q
(see Example 7), the execution order of s and q at location y is unknown (see
Sect. 3). This is modelled by means of the dashed edges (E3). In contrast, since
o:m1 ∦ o:m3 and x:p1 ∦ x:p2, we neither add a dashed edge from o:m3 to o:m1

nor from x:p2 to x:p1. �

5.2 Inference of Parallel Cost

The next phase in our analysis consists of obtaining the maximal parallel cost
from all possible executions of the program, based on the DFG. The execution
paths in the DFG start in the initial node that corresponds to the entry method
of the program, and finish in any node in Bexit. The first step for the inference is
to compute the set of execution paths by solving the so-called single-source path
expression problem [18], which finds a regular expression (named path expression)
for each node v ∈ Bexit representing all paths from an initial node to v. Given
a DFG G, we denote by pexpr(G) the set of path expressions obtained from the
initial node to all exit nodes in G.

Example 9. To compute the set pexpr for the graph in Fig. 3, we compute the
path expressions starting from o:m1 and finishing in exit nodes, that is, the
nodes in Bexit. In path expressions, we use o:m1·o:m2 to represent the edge from
o:m1 to o:m2. Thus, for the nodes in Bexit we have eo:m3 = o:m1·o:m2·o:m3,
ex:p2 = o:m1·x:p1·x:p2, ey:s = o:m1·(x:p1·y:s | o:m2·y:q·y:s)·(y:q·y:s)∗ and ey:q =
o:m1·(x:p1·y:s·y:q | o:m2·y:q)·(y:s·y:q)∗. �

The key idea to obtain the parallel cost from path expressions is that the cost
of each block (obtained by using the block-level cost analysis) contains not only
the cost of the block itself but this cost is multiplied by the number of times
the block is visited. Thus, we use sets instead of sequences since the multiplicity
of the elements is already taken into account in the cost of the blocks. Given
a path expression e, we define sequences(e) as the set of paths produced by e
and elements(p) as the set of nodes in a given path p. We use the notions of
sequences and elements to define the set N (e).

Definition 3. Given a path expression e, N (e) is the following set of sets:

{s | p ∈ sequences(e) ∧ s = elements(p)}.

In practice, this set N (e) can be generated by splitting the disjunctions in e into
different elements in the usual way, and adding the nodes within the repeatable
subexpressions once. Thus, to obtain the parallel cost, it is sufficient to compute
N+(e), the set of maximal elements of N (e) with respect to set inclusion, i.e.,
those sets in N (e) which are not contained in any other set in N (e). Given a
graph G, we denote by paths(G) =

⋃
N+(e), e ∈ pexpr(G), i.e., the union of the

sets of sets of elements obtained from each path expression.
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Example 10. Given the path expressions in Example 9, we have the following
sets:

N+(eo:m3) = {{o:m1, o:m2, o:m3}︸ ︷︷ ︸
N1

}, N+(ex:p2) = {{o:m1, x:p1, x:p2}︸ ︷︷ ︸
N2

}

N+(ey:s) = N+(ey:q) = {{o:m1, x:p1, y:s, y:q}︸ ︷︷ ︸
N3

, {o:m1, o:m2, y:s, y:q}︸ ︷︷ ︸
N4

}

Observe that these sets represent traces of the program. The execution captured
by N1 corresponds to trace 1© of Fig. 2. In this trace, the code executed at
location o leads to the maximal cost. Similarly, the set N3 corresponds to trace
2© and N4 corresponds to trace 3©. The set N2 corresponds to a trace where
x:p2 leads to the maximal cost (not shown in Fig. 2). Therefore, the set paths is
{N1, N2, N3, N4}. �

Given a set N ∈ paths(G), we can compute the cost associated to N by using
the block-level cost analysis, that is, S(x̄)|N . The parallel cost of the distrib-
uted system can be over-approximated by the maximum cost for the paths in
paths(G).

Definition 4 (Inferred Parallel Cost). The inferred parallel cost of a
program P (x) with distributed flow graph G, is defined as P̂(P (x̄)) =

max
N∈paths(G)

S(x̄)|N .

Although we have obtained the parallel cost of the whole program, we can easily
obtain the parallel cost associated to a location o of interest, denoted P̂(P (x̄))|o,
by considering only the paths that lead to the exit nodes of this location. In par-
ticular, given a location o, we consider the set of path expressions pexpr(G, o)
which are the subset of pexpr(G) that end in an exit node of o. The above defi-
nition simply uses pexpr(G, o) instead of pexpr(G) in order to obtain P̂(P (x̄))|o.

Example 11. The cost is obtained by using the block-level costs for all nodes that
compose the sets in paths. With the sets computed in Example 10, the overall par-
allel cost is: P̂(m(n)) = max(S(n)|N1 ,S(n)|N2 ,S(n)|N3 ,S(n)|N4). Importantly,
P̂ is more precise than the serial cost because all paths have at least one missing
node. For instance, N1 does not contain the cost of x:p1, x:p2, y:s, y:q and N3 does
not contain the cost of o:m2, o:m3, x:p2. Additionally, as o:m3 is the only final node
for location o, we have that P̂(m(n))|o = S(n)|N1 . Similarly, for location y we have
two exit nodes, y:s and y:q, thus P̂(m(n))|y = max(S(n)|N3 ,S(n)|N4). �

Recall that when there are several calls to a block o:b the graph contains only
one node o:b but the serial cost S(x̄)|o:b accumulates the cost of all calls. This
is also the case for loops or recursion. The nodes within an iterative construct
form a cycle in the DFG and by setting to one the corresponding cost center,
the serial cost accumulates the cost of all executions of such nodes.
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Example 12. The program to the right shows a modification of method m that
adds a loop which includes the call y.q(). The DFG for this code contains a
cycle caused by the loop, composed by the nodes o:w, o:m3 and o:m4, where
o:w represents the entry block to the while loop. The execution might traverse
such nodes multiple times and consequently multiple instances of y:q might be
spawned.

A serial cost analyzer (e.g. [2]) infers that the loop is traversed at most n
times and obtains a block-level serial cost of the form:

S(n) = c(o:m1)∗m̂1 + c(o:m2)∗m̂2 + n∗c(o:w)∗ŵ + n∗c(o:m3)∗m̂3 + n∗c(o:m4)∗m̂4+
c(o:m5)∗m̂5 + c(x:p1)∗p̂1 + c(x:p2)∗p̂2 + n∗c(y:q)∗q̂ + c(y:s)∗ŝ

void m (int n) {
. . . // m1 instr
x. p();
. . . //m2 instr
while(n > 0) {

n=n−1;
. . . //m3 instr
y. q();
. . . //m4 instr

}
. . . // m5 instr

}

o:m1

o:m2

o:w

o:m3

o:m4

o:m5

y:s

y:q

. . .For the DFG we obtain some
interesting sets that traverse the
loop: N1 = {o:m1, o:m2, o:w, o:m3,
o:m4, o:m5} and N2 = {o:m1, o:m2,
o:w, o:m3, o:m4, y:q, y:s}. Observe
that N1 represents a trace that
traverses the loop and finishes in
o:m5 and N2 represents a trace
that reaches y:q by traversing
the loop. The cost associated to
N1 is computed as S(n)|N1 =
m̂1+m̂2+n∗ŵ+n∗m̂3+n∗m̂4+m̂5.
Note that S(n)|N1 includes the cost
of executing the nodes of the loop multiplied by n, capturing the iterations of the
loop. Similarly, for N2 we have S(n)|N2=m̂1+m̂2+n∗ŵ+n∗m̂3+n∗m̂4+n∗q̂+ŝ,
which captures that q might be executed n times. �

Theorem 1. P(P (x̄)) ≤ P̂(P (x̄)).

6 Parallel Cost Analysis with Cooperative Concurrency

We now extend the language to allow cooperative concurrency between the tasks
at each location, in the style of concurrent (or active) object systems such as
ABS [11]. The language is extended with future variables which are used to
check if the execution of an asynchronous task has finished. In particular, an
asynchronous call is associated with a future variable f as follows f=x.p(). The
instruction await f? allows synchronizing the execution of the current task with
the task p to which the future variable f is pointing; f.get is used to retrieve the
value returned by the completed task. The semantics for these instructions is
given in Fig. 4. The semantics of Async+Fut differs from Async in Fig. 1 in that
it stores the association of the future variable to the task in the local variable
table l. In Await1, the future variable we are awaiting points to a finished task
and await can be completed. The finished task t1 is looked up at all locations in
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Fig. 4. Summarized semantics of concurrent execution

the current state (denoted by Locs). Otherwise, Await2 yields the lock so any
other task at the same location can take it. In Get1 the return value is retrieved
after the task has finished and in Get2 the location is blocked allowing time to
pass until the task finishes and the return value can be retrieved.

Handling concurrency in the analysis is challenging because we need to model
the fact that we can lose the processor at the await instructions and another pend-
ing task can interleave its execution with the current task. The first extension
needed is to refine the block partitioning in Sect. 4 with the set of blocks: Bget,
the set of blocks starting with a get; and Bawait, the set of blocks starting with an
await. Such blocks contain edges to the preceding and subsequent blocks as in the
standard construction of the CFG (and we assume they are in the set of edges
E1 of Definition 2). Fortunately, task interleavings can be captured in the graph
in a clean way by treating await blocks as initial blocks, and their predecessors
as ending blocks. Let b be a block which contains a f.get or await f? instruction.
Then awaited(f, pp) returns the (set of) exit blocks to which the future variable
f can be linked at program point pp. We use the points-to analysis results to
find the tasks a future variable is pointing to. Furthermore, the MHP analysis
learns information from the await instructions, since after an await f? we know
that the execution of the task to which f is linked is finished and thus it will not
happen in parallel with the next tasks spawned at the same location.

Definition 5 (DFG with Cooperative Concurrency). We extend
Definition 2:

E4 ={o1:mexit → o2:b2 | either pp:f.get or pp:await f? ∈ b2,mexit ∈ awaited(f, pp)}
E5 ={o:b1 ��� o:b2 | b1 ∈ pred(Bawait), b2 ∈ Bawait ∪ Binit, o:b1 ‖ o:b2}
E6 ={o:b1 ��� o:b2 | b1 ∈ Bexit, b2 ∈ Bawait, o:b1 ‖ o:b2}
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Here, E4 contains the edges that relate the last block of a method with the
corresponding synchronization instruction in the caller method, indicating that
the execution can take this path after the method has completed. E5 and E6

contain dashed edges that represent the orderings between parts of tasks split
by await instructions and thus capture the possible interleavings. E5 considers
the predecessor as an ending block from which we can start to execute another
interleaved task (including await blocks). E6 treats await blocks as initial blocks
which can start their execution after another task at the same location finishes.
As before, the MHP analysis allows us to discard those edges between blocks
that cannot be pending to execute when the processor is released. Theorem 1
also holds for DFG with cooperative concurrency.

Example 13. Figure 5 shows an example where the call to method p is syn-
chronized by using either await or get. Method p then calls method q at
location o. The synchronization creates a new edge (the thick one) from
x:p2 to the synchronization point in block o:m3. This edge adds a new
path to reach o:m3 that represents a trace in which the execution of m
waits until p is finished. For the graph in Fig. 5 we have that paths is
{{o:m1, x:p1, x:p2, o:m3, o:q}, {o:m1, o:m2, o:m3, o:q}}. Observe that the thick
edge is crucial for creating the first set in paths. The difference between the
use of await and get is visible in the edges labelled with ∗©, which are only added
for await. They capture the traces in which the execution of m waits for the
termination of p, and q starts its execution interleaved between o:m2 and o:m3,
postponing the execution of o:m3. In this example, the edges labelled with ∗© do
not produce new sets in paths. �

Fig. 5. DCG with synchronization

Finally, let us remark that our
work is parametric in the underly-
ing points-to and cost analyses for
serial execution. Hence, any accu-
racy improvement in these auxiliary
analyses will have an impact on the
accuracy of our analysis. In par-
ticular, a context-sensitive points-
to analysis [15] can lead to big
accuracy gains. Context-sensitive
points-to analyses use the program
point from which tasks are spawned
as context information. This means
that two different calls o.m, one
from program point p1 and another from p2 (where p1 
= p2) are distinguished
in the analysis as o:p1:m and o:p2:m. Therefore, instead of representing them
by a single node in the graph, we will use two nodes. The advantage of this
finer-grained information is that we can be more accurate when considering task
parallelism. For instance, we can have one path in the graph which includes a sin-
gle execution of o:p1:m (and none of o:p2:m). However, if the nodes are merged
into a single one, we have to consider either that both or none are executed.
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There are also techniques to gain precision in points-to analysis in the presence
of loops [16] that could improve the precision of our analysis.

7 Experimental Evaluation

We have implemented our analysis in SACO and applied it to some distributed
based systems: BBuffer, the typical bounded-buffer for communicating several
producers and consumers; MailServer, which models a distributed mail server
system with multiple clients; Chat, which models chat application; DistHT, which
implements and uses a distributed hash table; BookShop, which models a web
shop client-server application; and P2P, which represents a peer-to-peer network
formed by a set of interconnected peers. Experiments have been performed on
an Intel Core i7 at 2.0 GHz with 8 GB of RAM, running Ubuntu 14.04. Table 1
summarizes the results obtained for the benchmarks. Columns Benchmark and
loc show, resp., the name and the number of program lines of the benchmark.
Columns #N and #E show the number of nodes and edges of the DFG with
concurrency (Definition 5). Columns #F and #P contain the number of terminal
nodes in the DFG and the number of elements in the set paths. Columns TS and
TP̂ show, resp., the analysis times for the serial cost analysis and the additional
time required by the parallel cost analysis (in milliseconds) to build the DFG
graphs and obtain the cost from them. The latter includes a simplification of
the DFG to reduce the strongly connected components (SCC) to one node. Such
simplification significantly reduces the time in computing the path expressions
and we can see that the overall overhead is reasonable.

Column %P̂ aims at showing the gain of the parallel cost P̂ w.r.t. the serial
cost S by evaluating P̂(ē)/S(ē)∗100 for different values of ē. Namely, %P̂ is the
average of the evaluation of the cost expressions P̂(ē) and S(ē) for different values
of the input arguments ē to the programs. The number of evaluations performed
is shown in column #I. The accuracy gains range from 4.8 % in P2P to 28.9 %
in BookShop. The gain of more than 20 % for DistHT, BookShop and BBuffer is
explained by the fact that these examples take advantage of parallelism: the dif-
ferent distributed locations execute a similar number of instructions and besides
their code mostly runs in parallel. MailServer, Chat and P2P achieve smaller gains

Table 1. Experimental results (times in ms)

Benchmark loc #N #E #F #P TS TP̂ #I %m %a %P̂
BBuffer 105 37 50 7 50 256 26 1000 3.0 19.7 77.4

MailServer 115 28 35 6 36 846 12 1000 61.1 68.6 88.5

Chat 302 84 245 25 476 592 126 625 5.7 56.0 85.4

DistHT 353 38 47 6 124 950 49 625 3.7 25.5 76.3

BookShop 353 60 63 7 68 2183 214 2025 9.2 50.9 71.1

P2P 240 168 533 27 730 84058 1181 512 13.0 85.9 95.2
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because the blocks that are not included in the path (those that are guaran-
teed to happen in parallel with longer blocks) are non-recursive. Thus, when the
number of instructions is increased, the improvements are reduced proportion-
ally. Moreover, Chat and P2P create very dense graphs, and the paths that lead to
the maximum cost include almost all nodes of the graph. Column %m shows the
ratio obtained for the location that achieves the maximal gain w.r.t. the serial
cost. In most examples, except in MailServer, such maximal gain is achieved in
the location that executes the entry method. MailServer uses synchronization in
the entry method that leads to a smaller gain. Column %a shows the average
of the gains achieved for all locations. The average gain ranges from 80.3 % to
31.4 %, except for P2P, which has a smaller gain 14.1 % due to the density of its
graph as mentioned above.

8 Conclusions and Related Work

We have presented what is to the best of our knowledge the first static cost
analysis for distributed systems which exploits the parallelism among distrib-
uted locations in order to infer a more precise estimation of the parallel cost.
Our experimental results show that parallel cost analysis can be of great use to
know if an application succeeds in exploiting the parallelism of the distributed
locations. There is recent work on cost analysis for distributed systems which
infers the peak of the serial cost [3], i.e., the maximal amount of resources that
a distributed component might need along its execution. This notion is differ-
ent to the parallel cost that we infer since it is still serial; i.e., it accumulates
the resource consumption in each component and does not exploit the overall
parallelism as we do. Thus, the techniques used to obtain it are also different:
the peak cost is obtained by abstracting the information in the queues of the
different locations using graphs and finding the cliques in such graphs [3]. The
only common part with our analysis is that both rely on an underlying resource
analysis for the serial execution that uses cost centers and on a MHP analysis,
but the methods used to infer each notion of cost are fundamentally different.
This work is improved in [4] to infer the peak for non-cumulative resources that
increase and decrease along the execution (e.g., memory usage in the presence of
garbage collection). In this sense, the notion of parallel cost makes sense only for
cumulative resources since its whole purpose is to observe the efficiency gained by
parallelizing the program in terms of resources used (and accumulated) in par-
allel by distributed components. Recent work has applied type-based amortized
analysis for deriving bounds of parallel first-order functional programs [10]. This
work differs from our approach in the concurrent programming model, as they
do not allow explicit references to locations in the programs and there is no dis-
tinction between blocking and non-blocking synchronization. The cost measure
is also quite different from the one used in our approach.

To simplify the presentation, we have assumed that the different locations
execute one instruction in one cost unit. This is without loss of generality because
if they execute at a different speed we can weight their block-level costs according
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to their relative speeds. We argue that our work is of wide applicability as it can
be used in combination with any cost analysis for serial execution which provides
us with cost information at the level of the required fragments of code (e.g.,
[8,9,21]). It can also be directly adopted to infer the cost of parallel programs
which spawn several tasks to different processors and then use a join operator to
synchronize with the termination of all of them (the latter would be simulated
in our case by using a get instruction on all spawned tasks). As future work, we
plan to incorporate in the analysis information about the scheduling policy used
by the locations (observe that each location could use a different scheduler).
In particular, we aim at inferring (partial) orderings among the tasks of each
location by means of static analysis.

Analysis and verification techniques for concurrent programs seek finite repre-
sentations of the program traces to avoid an exponential explosion in the number
of traces (see [7] and its references). In this sense, our DFG’s provide a finite rep-
resentation of all traces that may arise in the distributed system. A multithread
concurrency model entails an exponential explosion in the number of traces,
because task scheduling is preemptive. In contrast, cooperative concurrency as
studied in this paper limits is gaining attention both for distributed [11] and for
multicore systems [6,20], because the amount of interleaving between tasks that
must be considered in analyses is restricted to synchronization points which are
explicit in the program.
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Abstract. Non-termination of structured imperative programs is pri-
marily due to infinite loops. An important class of non-terminating loop
behaviors can be characterized using the notion of recurrent sets. A recur-
rent set is a set of states from which execution of the loop cannot or might
not escape. Existing analyses that infer recurrent sets to our knowledge
rely on one of: the combination of forward and backward analyses, quan-
tifier elimination, or SMT-solvers. We propose a purely forward abstract
interpretation–based analysis that can be used together with a possibly
complicated abstract domain where none of the above is readily avail-
able. The analysis searches for a recurrent set of every individual loop
in a program by building a graph of abstract states and analyzing it in
a novel way. The graph is searched for a witness of a recurrent set that
takes the form of what we call a recurrent component which is somewhat
similar to the notion of an end component in a Markov decision process.

1 Introduction

Termination is a fundamental property of software routines. The majority of code
is required to terminate, e.g., dispatch routines of device drivers or other event-
driven code, GPU programs – and the existence of non-terminating behaviors is
a severe bug that might freeze a device, an entire system, or cause a multi-region
cloud service disruption [1]. The problem of proving termination has seen much
attention lately [15,16,27] but the techniques are sound and hence necessarily
incomplete. That is, failure to prove termination does not imply the existence of
non-terminating behaviors. Therefore, proving non-termination is an interesting
complementary problem.

Several modern analyses [11,13,14] characterize non-terminating behaviors
of programs or fragments of programs by a notion of recurrent set, i.e., a set of
input states from which execution of the program or fragment cannot or might
not escape (there are different flavors of recurrent sets). The analyses that can
infer recurrent sets to our knowledge rely on one of: the combination of forward
and backward analyses [13], quantifier elimination [11,14], or SMT-solvers [12].
We propose a purely forward abstract interpretation–based analysis that can be
used with a potentially complicated abstract domain where none of the above is
readily available. In our approach, we consider structured imperative programs
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without recursion where loops are the only source of non-termination. Our analy-
sis searches for what we call a universal recurrent set (that cannot be escaped)
of every individual loop in a program by building and analyzing a graph of its
abstract states. The main challenge of a forward approach is that while recur-
rent sets can be characterized by greatest fixed points of backward transformers
(and this gives an intuition into the success of the approach [13] combining for-
ward and backward analyses), we are not aware of a way to characterize them
in terms of forward transformers. Instead, we produce a condition for a set of
states to be recurrent and systematically explore the state space of a program
searching for satisfying sets of abstract states. Our approach is similar to the one
of Brockschmidt et al. [12], but the analysis of the state graph that we employ is
novel. The graph is searched for a witness of a recurrent set that takes the form
of what we call a recurrent component which is somewhat similar to the notion
of an end component in a Markov decision process [8].

Note that finding a recurrent set is a sub-problem of proving non-termination.
To prove non-termination, we would need to show that a recurrent set is reach-
able from the program entry. Also, some divergent behaviors do not fit the form
discussed in this paper, and a non-terminating loop need not necessarily have a
universal recurrent set.

2 Background

We define the analysis for a simple structured language without procedures. For
a set of atomic statements A ranged over by a, statements C of the language
are built as follows:

C ::= a atomic statement
| C1 ; C2 sequential composition: executes C1 and then C2

| C1 + C2 branch: non-deterministically branches to either C1 or C2

| C∗ loop: iterated sequential composition of ≥ 0 copies of C

We assume that A contains the passive statement skip and an assumption state-
ment [θ] for each state formula θ, and that the language of state formulas
is closed under negation. Informally, assumption statements work by filtering
out the violating executions. Standard conditionals if(θ) C1 else C2 can be
expressed by ([θ];C1) + ([¬θ];C2). Similarly, loops while(θ) C can be expressed
by ([θ];C)∗ ; [¬θ].

2.1 Concrete Semantics

We use 1 and 0 to mean logical truth and falsity respectively. For a set S, we
use ΔS to mean the diagonal relation ΔS = {(s, s) | s ∈ S}. For a relation T ,
we use T (s, s′) to mean (s, s′) ∈ T . We use ◦ for right composition of relations:
T2◦T1 = {(s, s′′) | ∃s′. (s, s′) ∈ T1∧(s′, s′′) ∈ T2}. For a function F , we use lfp F
to mean its least fixed point. We use Kleene’s 3-valued logic [21] to represent
truth values of state formulas in abstract, and sets of concrete, states. It uses a
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set of three values K = {1, 0, 1/2} meaning true, false, and maybe respectively.
K is arranged in partial information order �K, s.t. 1 and 0 are incomparable,
1 �K 1/2, and 0 �K 1/2. For k1, k2 ∈ K the least upper bound �K is defined s.t.
k1 �K k2 = k1 if k1 = k2, and 1/2 otherwise.

Let U be the set of all memory states. The concrete domain of the analysis
is the powerset P(U) with least element ∅, greatest element U , partial order ⊆,
and join ∪. This particular concrete domain is used for clarity of presentation,
and another domain can be used if needed. A state formula θ denotes a set of
states �θ� ⊆ U . We say that a state s satisfies θ if s ∈ �θ�. For a state formula
θ and a set of states S, the value of θ over S is defined by: eval (θ, S) = 1 if
S ⊆ �θ�; eval (θ, S) = 0 if S ∩ �θ� = ∅; eval (θ, S) = 1/2 otherwise. That is,
a formula evaluates to 1 in a set of states, if all states in the set satisfy the
formula, to 0 if none satisfy the formula, and to 1/2 if some of the states satisfy
the formula and some do not.

The semantics of a statement C is a relation �C� ⊆ U × U . For a state s,
�C�(s, s′) holds for every state s′ that it is possible to reach by executing C from
s. For an atomic statement a, we assume that �a� is pre-defined. Then �C� is
defined as follows:

�skip� =ΔU �C1 ; C2� =�C2� ◦ �C1�

�[θ]� ={(s, s) | s ∈ �θ�} �C1 + C2� =�C1� ∪ �C2�

�C∗� =lfpλ X.ΔU ∪ (X ◦ �C�)

If for a state s, there exists no state s′ s.t. �C�(s, s′), we say that the execution
of C diverges from s. For “normal” programs, this definition agrees with the
common one based on a small-step semantics: all traces starting from s are
infinite, and there exists at least one. That is, if assumption statements appear
only at the start of a branch or at the entry or exit of a loop (they cannot be
used as normal atomic statements):

C ::= a | C1 ; C2 | ([ϕ] ; C1) + ([ψ] ; C2) | ([ψ] ; C)∗ ; [ϕ]

and branch and loop guard assumptions are exhaustive: ϕ∨ψ = 1, then the only
way for an execution to diverge is to get stuck in an infinite loop.

As standard, we define a state transformer, post , that for a statement C and
a set of states S, gives the states a program might reach after executing C from
a state in S: post(C,S) = {s′ | ∃s ∈ S. �C�(s, s′)}.

In what follows, we focus on the loop statement:

Cloop = ([ψent] ; Cbody)∗ ; [ϕexit] (1)

where Cbody is the loop body ; if ψent holds the execution may enter the loop
body; if ϕexit holds the execution may exit the loop; and ψent ∨ ϕexit = 1.
What is important for us is that this form of loop has a single point serving as
both the entry and the exit. As currently formulated, our analysis relies on this
property, although we anticipate that more complicated control flow graphs can
be analyzed in a similar way.
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For a loop as in (1), a universal recurrent set is a set R∀, s.t.,

R∀ ⊆ �¬ϕexit� ∀s ∈ R∀.
(
∀s′ ∈ U . �Cbody�(s, s′) ⇒ s′ ∈ R∀

)
These are states that must cause non-termination, i.e., must cause the com-
putation to stay inside the loop forever. Chen et al. [13] call a similar notion
closed recurrence set. There is also a related notion of an existential, or open,
recurrent set, i.e., a set of states that may cause non-termination, but it is not
discussed here. Thus, in what follows, by just recurrent set we mean universal
recurrent set.

Lemma 1. For a loop as in (1), the set R ⊆ U is universally recurrent iff
eval (¬ϕexit, R) = 1 and post(Cbody, R) ⊆ R.

Proof. Follows from the definitions of eval , post , and universal recurrent set. ��

2.2 Recurrent Sets in the Abstract

It is standard for forward program analyses to introduce an abstract domain
D with least element ⊥D, greatest element �D, partial order �D, and join �D.
Every element of the abstract domain d ∈ D represents the set of concrete states
γ(d) ⊆ U . Then, over-approximate versions of post and eval , are introduced, s.t.
for a statement C, state formula θ and abstract element d,

γ(postD(C, d)) ⊇ post(C, γ(d)) evalD(θ, d) �K eval (θ, γ(d))

We require that evalD is homomorphic: for a formula θ and d1, d2 ∈ D, d1 � d2 ⇒
evalD(θ, d1) �K evalD(θ, d2). Normally, evalD is given for atomic statements,
and for arbitrary formulas it is defined by induction over the formula structure,
using 3-valued logical operators, possibly over-approximate with respect to �K.

Theorem 1. For a loop as in (1), an abstract domain D, and an element d ∈
D, if evalD(¬ϕexit, d) = 1 and postD(Cbody, d) �D d, then γ(d) is universally
recurrent.

For proofs, please, see the companion technical report [9].
Note that in Theorem 1, the post-condition is taken with respect to the loop

body without the preceding assumption statement.

3 Finding a Universal Recurrent Set

We define our analysis for a finite powerset domain P(L), where the underly-
ing set L of abstract elements is partially ordered by �L with least element
⊥L. For example, in a numeric analysis, L may be the domain of intervals or
polyhedra [17]. We call the elements of L abstract states. We assume that P(L)
uses the Hoare order, and that concretization is defined as shown below. For
L,L1, L2 ⊆ L,

γ(L) =
⋃

{γ(l) | l ∈ L} L1 �P(L) L2 iff ∀l1 ∈ L1. ∃l2 ∈ L2. l1 �L l2
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We assume that evaluation function evalP(L) and forward transformers postP(L)

for all statements (e.g. Cbody in (1)) are given. We assume that ⊥L repre-
sents unreachability, and is transformed and evaluated precisely: γ(⊥L) = ∅,
postP(L)(C, {⊥L}) = ∅, and evalP(L)(θ, {⊥L}) = 1. Then, we define pointwise
transformers eval � and post� as follows. For L ⊆ L, statement C, and state
formula θ,

post�(C,L) =
⋃
l∈L

postP(L)(C, {l}) eval �(θ, L) =
⊔

K
l∈L

evalP(L)(θ, {l})

Note that post� and eval � are sound over-approximations of concrete post and
eval . Also, if postP(L) and evalP(L) distribute over set union, then post� =
postP(L) and eval � = evalP(L). For a single state l ∈ L, we overload post�(C, l)
to mean post�(C, {l}) and eval �(θ, l) to mean eval �(θ, {l}). We use [θ, l]� and
[θ, L]� to mean post�([θ], l) and post�([θ], L) respectively.

We use a powerset domain for the following reason. Only a subset of the
loop invariant belongs to a recurrent set, so there needs to be a mechanism in
the abstract domain to partition the “interesting” and “not interesting” states.
Therefore, we search for a recurrent set in the form of a set of abstract elements.
We use Theorem 1 to show soundness: P(L) is D for its purposes; post� and eval �

are postD and evalD.

3.1 Idea of the Algorithm

while
if

if

Fig. 1. Program for Example 1.

For a loop as in (1), if we find X ⊆ L, s.t.
eval �(¬ϕexit,X) = 1 and post�(Cbody,X) � X,
then γ(X) is definitely a recurrent set. The idea
is to explore the state space of the program with
forward analysis until such an X is found. We
proceed as follows. Separately for every loop, we
build a graph where vertices are abstract ele-

ments, or states, from L, all representing sets of concrete states at the loop
head. We initialize the graph with some set of states I ⊆ L and then repeatedly
apply the transformer for the whole loop body, post�(Cbody, · ), to the vertices
and add the elements of the resulting set to the graph as successors. Our experi-
ments suggest that in many cases a subset X of vertices satisfying the conditions
of Theorem 1 will emerge as a result. To be able to efficiently find such a subset,
we remember which elements are related w.r.t. abstract order �, as a second
kind of edges in the graph. Note that in case of nested loops, we analyze inner
and outer loops separately; when analyzing the outer one, the effect of the inner
needs to be summarized in an over-approximating way.
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Fig. 2. Graph of the states of the program
in Fig. 1.

We use a number of heuristics
to help the analysis. First, we try
to distinguish states that took dif-
ferent paths through the loop body.
Currently, we take a simplistic app-
roach: when possible, we prefer power-
set domains where join is set union, s.t.
states produced by different branches
are not joined, and post�(C1 +C2, l) =
post�(C1, l) ∪ post�(C2, l). If needed, a
more involved trace partitioning [24]
could be introduced instead. Second,
with a similar intent, we compute the
post-conditions with respect to a mod-
ified loop body Cbody

′ = Cbody ;
([ψent]+[¬ψent]). This is sound since in
the concrete case, for every set S ⊆ U ,

post(Cbody
′, S) = post(Cbody, S). Also, for a set of initial states I, we initial-

ize the graph with a set I ′ = [ψent, I]� ∪ [¬ψent, I]�. This is helpful when (as is
often the case) there is a specific path through the loop body that infinite traces
take. The heuristics introduce control-flow distinctions and enable states taking
such path to be partitioned from others. But these heuristics may not be helpful
when additional distinguishing power is needed for the data in states, e.g., when
certain kinds of non-determinism are present, when non-termination depends on
the properties of mathematical functions that the program implements, or when
the abstract domain is not expressive enough to capture the states that take the
interesting control paths.

Example 1. Consider the loop shown in pseudocode in Fig. 1. The loop does
not terminate for some inputs, and the maximal recurrent set is (1 ≤ x ≤
60) ∨ (x ≥ 100). Let us informally demonstrate how the algorithm that we pro-
pose works, assuming that x ranges over integers and using intervals to represent
its values. Since we do not know the initial value of x, we start with a graph
consisting of a pair of states: {(−∞; 0], [1;+∞)} – one represents the loop con-
dition and another represents its complement. We then start adding new states
to the graph by computing post� as described above, s.t. paths through the loop
body are represented in a post-condition of a state by different disjuncts. For
example, let us see what happens to [1;+∞) when it enters the loop. In line
2, we consider three cases. If x < 60, then the conditional body in line 2 is
skipped, x is incremented at line 3, the conditional body in line 4 is skipped,
and the output state is [2, 60]. If x = 60, the conditional body in line 2 sets
x to 50, at line 3 x is incremented, the conditional body in line 4 is skipped,
and the output state is 51. If x > 60, the conditional body at line 2 is skipped
and at line 3 x is incremented to [62;+∞). Then, if x < 100, the conditional
body at line 4 is skipped, and the output state is [62, 99]. If x = 100, the con-
ditional body at line 4 sets x to 0, and the output state is 0. If x > 100, the
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conditional body at line 4 is skipped, and the output state is [101;+∞). Thus,
post�(Cbody, [1;+∞)) = {[3, 60], 51, [62, 99], 0, [101;+∞)}. We add these states
to the graph and continue the exploration. Figure 2 shows a state graph that
could be produced this way after a number of steps. In the graph, boxes repre-
sent states, and solid edges represent post-conditions. Note that in the graph,
there exists a subset of states X = {[2, 60], [101;+∞)} has the desired property:
eval �(¬ϕexit,X) = 1 and post�(Cbody,X) � X, thus γ(X) is a recurrent set. In
what follows, we discuss how to efficiently find such subset of states if it exists.
We revisit this example in Sect. 4.

For some domains (e.g., for shape analysis with 3-valued logic [26]), the analy-
sis benefits from case splits that post� naturally performs. For example, when
a program traverses a potentially cyclic list, post� would consider a definitely
cyclic list as a separate case. If the abstraction is expressive enough, the cyclic
list case will appear as a separate vertex and become part of a recurrent set.

Finally, the choice of the set of initial states I may matter. When the abstract
domain is finite (and no widening is required) and the loop is not nested, we
initialize the graph with the states that reach the loop via the rest of the program,
i.e., produced by the standard forward analysis of the preceding part of the
program. In this case, the analysis will explore all the states reachable at the
head of the loop, and the success relies only on how refined the resulting graph
is. When the abstract domain is infinite (e.g., for intervals or polyhedra) or for
inner nested loops, we normally initialize the graph with a pre-fixpoint of post�.
That is, we assume that initially, a standard forward analysis is run to produce a
pre-fixpoint for every loop. Starting with a state below (w.r.t. �) a pre-fixpoint
makes it less likely that the analysis terminates, as our procedure does not
include widening. Starting with a state above a pre-fixpoint is more likely to
drive the search towards the states unreachable from the program entry. Note
that it is sound to start with any set of states, and we sometimes use �.

Our procedure is sound (by Theorems 1 and 2), but incomplete: if we do not
find a recurrent set after a number of steps, we do not know the reason: whether
the loop does not have a universal recurrent set; or the abstraction and post� are
not expressive enough; or we did not explore enough states. And for an infinite
domain, the procedure might not terminate. So, we perform the exploration
incrementally: we proceed breadth-first until some recurrent set is found. Then,
we may decide to stop or to continue the search for a larger recurrent set.

3.2 Abstract State Graph

For a loop as in (1), an abstract state graph is a graph G = 〈V,Ep, Ec〉, s.t.,

– V is finite non-empty set of vertices which are abstract elements, or states:
V ⊆ L. All states belong to the loop entry location.

– There are two independent sets of edges: Ec, Ep ⊆ V × V .
– Ep is a set of post-edges. For every state l ∈ V , one of the following holds:

(i) there are no outgoing post-edges: ({l}× V ) ∩ Ep = ∅; or
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(ii) ψent may hold in l, eval �(ψent, l) �= 0; post-condition of l with respect to
the loop body is not empty, post�(Cbody, l) �= ∅; the whole post-condition
is in the graph, post�(Cbody, l) ⊆ V , and connected to l by post-edges,
({l}× V ) ∩ Ep = {l}× post�(Cbody, l); or

(iii) ψent may hold in l, eval �(ψent, l) �= 0; post-condition of l is empty,
post�(Cbody, l) = ∅; l has ⊥L as the only post-successor, {l}× V ∩ Ep =
{(l,⊥L)}; and ⊥L has a post-self-loop (⊥L,⊥L) ∈ Ep.

– Ec is a set of containment-edges. For l1, l2 ∈ V , (l1, l2) ∈ Ec ⇔ (l1 �= l2∧l1 � l2).

This forbids self-loops. Due to properties of �, G may not have containment
cycles.

Note that this is similar to the notion of termination graph of [12]. For a loop as
in (1), a state graph G = 〈V,Ep, Ec〉, a state l ∈ V , and a set of states L ⊆ V , let

postG(l) = {l′ ∈ V | (l, l′) ∈ Ep} postG(L) = {l′ ∈ V | ∃l ∈ L. (l, l′) ∈ Ep}

For a loop as in (1) and a graph G = 〈V,Ep, Ec〉, a recurrent component
is a set of states R ⊆ V , s.t. for every state l ∈ R, l cannot exit the loop,
eval �(¬ϕexit, l) = 1, l has at least one outgoing edge, ∃l′ ∈ V. (l, l′) ∈ Ep ∪ Ec,
and at least one is true:

(i) l has a containment-edge into R, ∃l′ ∈ R. (l, l′) ∈ Ec; or
(ii) the outgoing post-edges of l lead exclusively into R, postG(l) �= ∅ ∧

postG(l) ⊆ R.

Lemma 2. The union of two recurrent components is a recurrent component.

Lemma 3. In a state graph G, there exists a unique maximal (possibly, empty)
recurrent component.

Proof. Lemma 2 follows from the definition of recurrent component. Lemma 3
follows from Lemma 2 and finiteness of G. ��

Theorem 2. For a loop as in (1) and a state graph G = 〈V,Ep, Ec〉 we say
X ⊆ V is fully closed if eval �(¬ϕexit,X) = 1, ∀l ∈ X. postG(l) �= ∅, and
post�(Cbody,X) � X. Note that in this case, γ(X) is a recurrent set. Then, for
every state graph G:

(i) For a recurrent component R, there exists a fully closed X ⊆ R s.t.
γ(X) = γ(R).

(ii) For a fully closed X, there exists a recurrent component R ⊇ X, s.t.
γ(R) = γ(X).

3.3 The Algorithm

The algorithm, whose main body is shown in pseudocode in Fig. 3, is applied
individually to every loop in a program. Initially, we call FindFirst giving it the
set of elements I ⊆ L to start the search from (normally, a loop invariant). After
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performing initialization, FindFirst calls FindNext once. FindNext contains a
loop in which we build the state graph G = 〈V,Ep, Ec〉. In every iteration,
proceeding in breadth-first order, we pick from the worklist F a state without
post-edges and add its successors to the graph, together with relevant post- and
containment-edges. This happens in lines 12–17 of Fig. 3; new states and post-
edges are created by MakeStates shown in Fig. 4. We choose not to explore the
successors of a state belonging to a recurrent component (line 13) even though
when post� is non-monotonic, they might lie outside the recurrent component.
Similarly, we do not explore the successors of a must-exiting state, even if ψent

may hold in it. If adding new states and edges could create a larger recurrent
component, we call FindRecComp to search for it (lines 20–21). If a new recurrent
component is found, we return 1, and Rec contains those states of the component
found so far that have no outgoing containment-edges (lines 22–27). If we wish
to find a larger recurrent component, we can call FindNext again to resume the
search. If the search terminates and no new recurrent component can be found,
the procedure returns 0.

For every abstract state l ∈ V , we maintain the status as follows.
The state l ∈ V must exit, mustE (l) = 1, if all executions starting in it exit

the loop, i.e., if it is definitely the case that for every concrete state s ∈ γ(l) the
loop eventually terminates. We mark l as must-exiting if

(i) eval �(ψent, l) = 0; or if
(ii) All post-successors of l are already must-exiting; or if
(iii) There exists a larger (w.r.t. �) state that is already must-exiting.

The state l ∈ V may exit, mayE (l) = 1, if we know that it cannot be part of
a recurrent component. We mark l as may-exiting if

(i) it is must-exiting or if eval �(¬ϕexit, l) �= 1; or if
(ii) post� is monotonic and l has a post-successor that is already may-exiting;

or if
(iii) post� is monotonic, and there exists a smaller (w.r.t. �) already may-exiting

state.

The state l ∈ V is recurrent, rec(l) = 1, if it is a part of a recurrent com-
ponent. If post� is monotonic, we also mark as recurrent all successors of a
recurrent state. Note that here, the term recurrent is overloaded. For a recur-
rent state l ∈ V , γ(l) is in general not a recurrent set itself, but is included in
some recurrent set.

Otherwise, the state l ∈ V is unknown, unk(l) = 1, i.e., unk(l) ⇒ (¬mayE (l)∧
¬rec(l)). This is the case if eval �(¬ϕexit, l) = 1, and the state may potentially
be a part of a recurrent component, but is not part of the recurrent component
found so far.

Lemma 4. May-exiting states cannot be part of a recurrent component.

When searching for a recurrent component, it is only necessary to consider
unknown and recurrent states, therefore every step of the algorithm only cre-
ates new containment-edges between unknown states or from an unknown to a
recurrent state.
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while

while

if

if

if

if
return

return

for

proc

proc

for

continue

Fig. 3. Main algorithm

Note that when new states or edges are added to the graph, or the status of an
existing state changes, we make a call to PropagateStatus. For brevity, we do not
show the pseudocode, and only informally describe its effect. PropagateStatus
propagates the statuses through the edges of the graph according to the following
rules. For a state l:

1. if postG(l) �= ∅ ∧ ∀l′ ∈ postG(l). mustE (l′), then mustE (l)
2. if mustE (l), then ∀l′. (l′, l) ∈ Ec ⇒ mustE (l′)
3. if postG(l) �= ∅ ∧ ∀l′ ∈ postG(l). rec(l′), then rec(l)
4. if rec(l), then ∀l′. (l′, l) ∈ Ec ⇒ rec(l′)

Additionally, if post� is monotonic:

5. if ∃l′ ∈ postG(l). mayE (l′), then mayE (l)
6. if mayE (l), then ∀l′. (l, l′) ∈ Ec ⇒ mayE (l′)
7. if rec(l), then ∀l′ ∈ postG(l). rec(l′)
8. if mustE (l), then ∀l′ ∈ postG(l). mustE (l′)
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proc

if

if
if

if

return

if

elif

else

Fig. 4. Adding new states. New states
are unknown unless marked otherwise.

proc

While

if break

return

Fig. 5. Finding a recurrent component

Rules 1 and 2 are derived from the definition of must-exiting state. Rules 3 and 4
mark as recurrent those states that would be included in a recurrent component
next time FindRecComp is called. Rules 5 and 6 are derived from the definition of
may-exiting states. Rule 7 is for the case when for some l, first its post-condition
is computed, and later, l is marked as recurrent by rule 4. If post� is monotonic,
the successors of l would eventually become part of a recurrent component. Sim-
ilarly, rule 8 is for the case when for some l, first its post-condition is computed,
and later, l is marked as must-exiting by rule 2. If post� is monotonic, the suc-
cessors of l would eventually be marked as must-exiting. This is not necessary
for the correctness: every state that PropagateStatus marks as may- or must-
exiting, cannot be part of a recurrent component, and every state that it marks
as recurrent would eventually become a part of a recurrent component. But this
allows to eliminate unknown states earlier, create fewer containment-edges, and
search for recurrent component in a smaller portion of the graph.

Figure 4 shows the procedure MakeStates that adds new states to the graph.
Given a set of abstract elements L ⊆ L and a predecessor state lp ∈ V , it adds
abstract states corresponding to L to the graph and creates post-edges from lp to
them. Every l ∈ L is split into a pair of states with [ · ]�, then is possibly marked
as may- or must- exiting depending on the values of ϕexit and ψent and added
to the graph together with a post-edge from lp. The procedure returns the set
N of new states produced from L that were not present in the graph before.

Figure 5 shows the procedure FindRecComp that finds a recurrent component
among the unknown states. It is called from FindNext when a new containment-
edge is created or a state is discovered such that all its outgoing post-edges lead
to existing unknown or recurrent states (i.e., when a larger recurrent component
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could emerge). It starts the search with the whole set of unknowns as the can-
didate C and iteratively removes the states C− that make the candidate violate
the definition of recurrent component. Note that FindRecComp works incremen-
tally: assuming that R is a set of states that are currently marked as recurrent
(i.e., R is the recurrent component found so far), the procedure produces a set
C, s.t. C ∪ R is a recurrent component. In general, C might not be a recurrent
component by itself.

Theorem 3. For an abstract state graph G = 〈V,Ep, Ec〉 and some recurrent
component R ⊆ V , FindRecComp produces C ⊆ V such that C ∪ R is the
maximal recurrent component of G.

4 Examples

In this section, we demonstrate how our analysis can be successfully applied to
numeric and heap-manipulating programs. Examples 1 and 2 present Numeric
Programs. Program variables range over integers, and we use intervals to rep-
resent their values.

Example 1 (Continued). Let us revisit Fig. 2. The figure displays a state
graph of the program in Fig. 1 at a stage when the algorithm cannot find a
larger recurrent component, and FindNext returns 0. The recurrent component
is shown grayed, post-edges are solid, containment edges are dotted, and for
clarity, containment-edges to and from may-exiting states are not displayed.
The state [1;+∞) is may-exiting, and must-exiting states are marked with a
cross. The resulting recurrent set is {[2, 60], [101;+∞)}. Note that the states
x = 1 and x = 100 are lost compared to the maximal recurrent set, and the
discovered recurrent set is closed under application of the forward transformer,
but not the backward transformer. This can be the case for some other tools
based on forward semantics. For example, E-HSF [11] when presented with this
example, may report the recurrent set to be {[4, 60], [100;+∞)}. Also, note the
set of must-exiting states (on the right in Fig. 2). While our algorithm often
succeeds in proving that a recurrent set exists, it behaves badly when no recur-
rent set can be found. For example, in this case, it had to enumerate all states
of the form [62, 99], [63, 99], [64, 99], and so on. Finally, note that our procedure
did terminate, although the domain is infinite and no measures were taken to
guarantee termination.

Example 2. Figure 6 demonstrates a bug in the software of Zune players that
on 31 Dec 2008 caused many devices to freeze [2]. The example is extracted
from a procedure that was used to calculate the year based on the number of
days passed since 1 Jan 1980. The loop repeatedly subtracts 365 or 366 from
the number of days depending on whether the year is leap and increases the
year by 1. Due to a logical error, if the year is leap and the number of days is
366, the variables are not updated, and the program goes into an infinite loop.
We presented this program to our tool with the starting state being the loop



A Forward Analysis for Recurrent Sets 305

invariant: year ≥ 1980 ∧ days ≥ 0. Every call to FindNext extends the recurrent
set with a single state: year = 1980 ∧ days = 366, year = 1984 ∧ days = 366,
year = 1988 ∧ days = 366, and so on. The abstract domain was not strong
enough to infer that every leap year causes non-termination. Also, because the
analysis is forward-only, it did not explore the predecessors of those states: e.g.,
from the state year = 1983 ∧ days = 731, the loop also diverges, but this was
not discovered by the tool. Still, we count this result as success: our tool does
expose the bug even if it does not find all inputs for which the bug manifests.

while
if

if

else

Fig. 6. A potentially non-
terminating loop in Zune soft-
ware (simplified).

Shape Analysis. Examples 3 and 4 present
heap-manipulating programs. We use 3-valued
logic [26] to represent heaps, and build the analy-
sis on top of TVLA [3,23]. For more information
on shape analysis with 3-valued logic, please refer
to Sagiv et al. [26] and related papers [7,23,25].
In this framework, abstract heaps are represented
by 3-valued structures, i.e., models of 3-valued
first-order logic with transitive closure. Every
individual represents either a single heap cell or
a set of heap cells that share some properties.
Pointer variables are represented by unary pred-
icates: the predicate is true for the cell where the
variable points. Pointer fields are represented by
binary predicates: the predicate is true for those

pairs of cells where the corresponding field of one cell points to another. The
analysis also maintains in the form of predicates additional information about
the heap: whether the cells are reachable from each other, whether some con-
dition is true of the cells, and so on. Three-valued structures can be displayed
as shape graphs, and an example is shown in Fig. 7. The graph represents an
acyclic singly-linked list with two or more elements and is read as follows. Left
node represents a single cell which is the head of the list and is pointed to by
pointer variables x and y. The text c = 1/2 means that some condition c might
or might not be true for the head – we do not know. The right node displayed
with double border represents a finite non-empty set of cells that are the tail of
the list. The dotted edge annotated by n between the head and the tail means
that the pointer field n of the head points to some node of the tail, but not to
all of them. The analysis is usually instructed that predicate n induces a func-
tion, but this is not reflected in the shape graph. The analysis also keeps track
of reachability between cells with the predicate tn. Solid tn-edge between the
head and the tail means that all cells of the tail are reachable from the head by
traversing the n-pointers. Dotted n- and tn-loops on the tail mean that there are
pointers and reachability between some pairs of cells in the tail but not between
all of them. Absence of n- and tn edges from the tail to the head means that
no cell in the tail points to or can reach head. In this case, the analysis is also
instructed that there are no shared cells, i.e., every cell is pointed to by at most
one cell. The above is sufficient for Fig. 7 to represent exactly the set of acyclic
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Fig. 7. Acyclic list with 2+ elements. Fig. 8. Cyclic list with 2+ elements.

while

Fig. 9. Search in a list.

while
new

if

Fig. 10. Prepending to a non-empty
list.

singly-linked lists with two or more elements. Similarly, Fig. 8 represents a set
of cyclic lists with two or more elements.

Example 3. One source of non-termination in heap-manipulating programs is
incorrect traversal of cyclic data structures. The companion technical report
[9] discusses such non-termination bug in a device driver that was found by a
termination prover [10]. Figure 9 shows a procedure that searches a list pointed
to by x for an element y s.t. the condition c(y) holds. The search terminates
when such y is found or when the end of the list is reached, and it does not
handle cyclic lists correctly. In this and the next example, the initial statement:
y ← x – is disregarded by the analysis and only emphasizes that when the loop
is reached for the first time, both x and y point to the head of the list. Due
to canonical abstraction [26], the set of 3-valued structures that we can explore
is finite, and there is no need to perform pre-analysis for the loop invariant.
Thus, we analyze the loop starting with the set of states containing cyclic and
acyclic lists with both x and y pointing to the head and with unknown value
of c for all the cells: the structures shown in Figs. 7 and 8, plus structures to
represent single-element lists and an empty list. This way, our tool reports as
the recurrent set all the heaps that cause non-termination of the loop, i.e., the
cyclic lists where the condition c is false for all the elements. One of such lists
(with three or more elements, y pointing into the list) is shown in Fig. 11.

Example 4. Another interesting class of bugs in heap-manipulating programs
is related to heap allocation. Sometimes, models of programs do not take into
account that heap allocation can fail. For example, in a real program, an infinite
loop performing allocation would usually lead to an out-of-memory error and
may consume much time and system resources. But in a model of the program
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Fig. 11. Example of a cyclic list where
c is false for all elements.

Fig. 12. State graph for the program
in Fig. 10. State 1 is shown in Fig. 7.
Grayed are recurrent states and must-
exiting state is marked with a cross.

this may appear as potential non-termination. Figure 10 shows a program that
repeatedly prepends a newly allocated element to a (non-empty) list. The loop is
supposed to terminate if the allocation fails, but this is not possible in our TVLA
model. The state space for the example is shown in Fig. 12. The initial states are:
a list with two or more elements (state 1, as shown in Fig. 7), an empty heap (2),
and a single-element list (3). The empty heap is must-exiting, and the states 1,
3, and 4 (list with exactly two elements) form the recurrent set. State 4 does not
have an outgoing post-edge as the algorithm finishes before the post-condition
of the state is computed. Note the post-loop on state 1. Because of canonical
abstraction [26], the post-condition of a list with two or more elements is again
a list with two or more elements, i.e., the analysis loses track of the length of
the list.

5 Experiments

We implemented our technique in a prototype tool that supports numeric and
3-valued programs. The analysis of 3-valued programs is based on TVLA [23],
and for numeric programs, we use interval domain with ad hoc support for mod-
ulo operation: we perform some artificial case splits when modulo operation is
invoked. We applied our analysis to the test set [4] of Invel [28], and to the
non-terminating programs from the Ultimate Büchi Automizer [20] test set [5].
For detailed test results, please, see the companion technical report [9]. Out of 52
non-terminating Invel programs, our tool was able to find recurrent sets in 39.
For the remaining 13, the analysis either terminates without producing a result
or diverges. We attribute 8 cases of failure to the lack of expressiveness in the
abstract domain. In those programs, successful analysis would require relational
reasoning, e.g., with polyhedra [17]. Another two cases of failure come from
the limitations of our prototype tool that does not support nested loops (while
the approach does). In one case, the program uses a break statement which



308 A. Bakhirkin et al.

is not currently supported by our technique. Finally, two cases of failure seem
problematic for our general approach. Those programs implement mathematical
functions (least common multiplier and k-th Fibonacci number respectively) and
their termination depends on the relation between the properties of those func-
tions and program input, e.g., whether there exists such k that k-th Fibonacci
number is equal to the argument of the function. As a result, we fail to isolate
the path through the program that is taken by non-terminating traces. We may
speculate that for a forward analysis to succeed, it needs to perform some artifi-
cial case splits, but we are not aware of a possible heuristic at this point. While
specialized numeric tools (e.g., AProVE with SMT backend [12]) handle more
of the Invel test programs [6], they do not subsume our tool. We believe, our
approach can complement existing numeric tools in cases when the underlying
linear solvers struggle.

Out of 18 Automizer programs that we considered, our tool handles 10
successfully. Among the remaining 8 programs, five use unsupported features
(arrays, break statements, recursion), one would require additional case splits
that our tool does not perform, and two have non-terminating behaviors, but
do not have universal recurrent sets (non-termination relies on making a specific
series of non-deterministic choices in the loop body). The latter points to a limi-
tation of universal recurrent sets. Though a non-termination bug may cause the
program to have one, it may be hard to build an abstraction that preserves it
and does not introduce spurious terminating traces from every interesting state.

In some of the test programs, the main loop was preceded by a loop-free
stem that performed initialization of the variables. We observed that in all cases
(where our tool was able to find a recurrent set) this initial state had non-
empty intersection with the recurrent set produced by the tool. For example,
the program ‘GCD’ from the Invel test set, has two integer valuables: a an b –
and the stem sets up the initial state a ≥ b. The recurrent set that our tool
finds is of the form (a ≥ 1 ∧ b ≤ −1) ∨ (a ≤ −1 ∧ b ≥ 1). The fact that this
recurrent set has non-empty intersection with the initial state can be checked
using the operations of the polyhedral abstract domain. This result is specific to
the tests programs and the choice of abstract domain. In general, it might not
be possible to check the recurrent sets for concrete reachability using standard
forward analysis techniques.

6 Related Work

The approach [12] implemented in AProVE [18] is similar to ours in that it builds
and analyzes an abstract state graph (termination graph, in their terms). How-
ever, they are interested in proving the existence of at least one non-terminating
trace (which is dual to the notion of universal recurrent set) and they analyze
the graph differently. They relate cycles in the graph to loops in the program and
either try to prove that some loop does not modify the variables affecting ter-
mination, or employ SMT-based analysis (available when non-termination relies
on integer arithmetic) to show that for some loop, at least one path through
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it is always enabled. In contrast, we introduce a notion of recurrent component
which witnesses a recurrent set and search the graph for those.

Cook et al. [14] analyze linear over-approximations of programs and use
Farkas’ lemma to find universal recurrent sets. Their soundness result is similar
to ours and is more general: they state it for arbitrary transition systems and
require a property of upward termination (for every concrete final state, the
corresponding abstract state is also final) which for us implicitly holds. Note that
linear abstractions have not yet demonstrated to be very effective for analyzing
heap-manipulating programs.

The analysis of Chen et al. [13] combines a forward model checker and back-
wards analysis of single traces to modify the original program and turn it into a
non-terminating one, by adding assumption statements. On the low level their
approach is dual to ours, as they work with under-approximations of programs
and try to prove the existence of at least one infinite trace.

The above analyses are predated by that of Gupta et al. [19] where existential
recurrent sets are produced from lasso-shaped symbolic executions using Farkas’
lemma.

Velroyen and Rümmer developed their analysis [28] independently of Gupta
et al. [19]. They propose a template and a refinement scheme to infer invariants
proving that terminating states of a program are unreachable.

Larraz et al. [22] use the notion of an edge-closed quasi-invariant (a set of
states that, one reached, cannot be escaped) as a generalization of recurrent set.
They encode the search for such set as a max-SMT problem.

We note that the above analyses focus on proving non-termination, while we
consider a sub-problem of finding a recurrent set. To prove non-termination of
a program we would need to show that a recurrent set is reachable from the
program entry.

The analysis implemented in E-HSF [11] allows to specify the semantics
of programs and express verified properties in the form of ∀∃ quantified Horn
clauses extended with well-foundedness conditions. In particular, the input lan-
guage allows to query for the existence of universal and existential recurrent sets.
The implementation is to our knowledge targeted at linear programs and relies
on Farkas’ lemma.

7 Conclusion and Future Work

We have described a forward technique for finding recurrent sets in imperative
programs where loops of a specific form are the source of non-termination. The
recurrent sets that we produce are genuine, but may not be reachable from
the program entry. We applied our analysis to numeric and heap-manipulating
programs and were successful if (i) we were able to capture the paths through
the program that infinite traces take, and (ii) we were able to perform enough
case splits to isolate the recurrent set into a separate set of abstract states. The
latter point can benefit from heuristics in some cases.
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Our analysis only admits structured programs without goto statements and a
restricted form of loops: while-loops without statements that affect control flow
(break, continue, etc.). One direction for future work is to enable the analysis of
a larger class of loops: either by introducing relevant program transformations
and studying their effect on the outcome of the analysis or by extending the
technique to handle more complicated control flow graphs. Another direction is
to solidify the analysis: eliminate the need for a separate forward pre-analysis by
weaving it into the main algorithm, introduce a proper trace partitioning, etc.
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Abstract. Linear Time Invariant (LTI) systems are ubiquitous in soft-
ware systems and control applications. Unbounded-time reachability
analysis that can cope with industrial-scale models with thousands of
variables is needed. To tackle this general problem, we use abstract accel-
eration, a method for unbounded-time polyhedral reachability analysis
for linear systems. Existing variants of the method are restricted to closed
systems, i.e., dynamical models without inputs or non-determinism. In
this paper, we present an extension of abstract acceleration to linear
loops with inputs, which correspond to discrete-time LTI control sys-
tems, and further study the interaction with guard conditions. The new
method relies on a relaxation of the solution of the linear dynamical equa-
tion that leads to a precise over-approximation of the set of reachable
states, which are evaluated using support functions. In order to increase
scalability, we use floating-point computations and ensure soundness by
interval arithmetic. Our experiments show that performance increases by
several orders of magnitude over alternative approaches in the literature.
In turn, this tremendous speedup allows us to improve on precision by
computing more expensive abstractions. We outperform state-of-the-art
tools for unbounded-time analysis of LTI system with inputs in speed as
well as in precision.

1 Introduction

Linear loops are an ubiquitous programming template. Linear loops iterate over
continuous variables, which are updated with a linear transformation. Linear
loops may be guarded, i.e., terminate if a given linear condition holds. Inputs
from the environment can be modelled by means of non-deterministic choices
within the loop. These features make linear loops expressive enough to capture
the dynamics of many hybrid dynamical models. The prevalence of such models
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in safety-critical embedded systems makes linear loops a fundamental target for
formal methods.

Many high-level requirements for embedded control systems can be modelled
as safety properties: the problem is deciding reachability of certain “bad states”,
in which the system exhibits unsafe behaviour. In linear loops, bad states may
be represented by guard assertions.

Reachability in linear programs, however, is a formidable challenge for auto-
matic analysers: the problem is undecidable despite the restriction to linear
transformations (i.e., linear dynamics) and linear guards. Broadly, there are two
principal approaches to solving reachability problems.

The first approach is to surrender exhaustive analysis over the infinite time
horizon, and to restrict the exploration to system dynamics up to some given
finite time bound. Bounded-time reachability is decidable, and decision proce-
dures for the resulting satisfiability problem have made much progress in the
past decade. The precision related to the bounded analysis is offset by the price
of uncertainty: behaviours beyond the given time bound are not considered, and
may thus violate a safety requirement. Representatives are STRONG [11] and
SpaceEx [16].

The second approach is to attempt to infer a loop invariant, i.e., an inductive
set of states that includes all reachable states. If the computed invariant is dis-
joint from the set of bad states, this proves that the latter are unreachable and
hence that the loop is safe. However, analysers frequently struggle to obtain an
invariant that is precise enough with acceptable computational cost. The prob-
lem is evidently exacerbated by non-determinism in the loop, which corresponds
to the case of open systems. Prominent representatives of this analysis approach
include Passel [30], Sting [7], and abstract interpreters such as Astrée [2] and
InterProc [28].

The goal of this paper is to push the frontiers of unbounded-time reachabil-
ity analysis: we aim at devising a method that is able to reason soundly about
unbounded trajectories. We present a new approach for performing abstract
acceleration. Abstract acceleration [21,22,29] captures the effect of an arbitrary
number of loop iterations with a single, non-iterative transfer function that is
applied to the entry state of the loop (i.e., to the set of initial conditions of the
linear dynamics). The key contribution of this paper is to lift the restriction
of [29] to closed systems, and thus to allow non-deterministic choice or inputs.

In summary, the contributions of this work are as follows:

1. We present a new technique to include inputs (non-determinism) in the
abstract acceleration of general linear loops, thus overcoming its greatest
limitation.

2. We introduce the use of support functions in complex spaces, in order to
increase the precision of previous abstract acceleration methods.

3. By extending abstract acceleration and combining it with the use of support
functions, we produce a time-unbounded reachability analysis that overcomes
the main barrier of state-of-the-art techniques and tools for linear hybrid
systems with inputs.
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4. We employ floating-point computations associated to bounded error quantifi-
cation, to significantly increase the speed and scalability of previous abstract
acceleration techniques, while retaining soundness.

Related Work. We review contributions within the two main perspectives in
reachability analysis of hybrid systems, dealing respectively with bounded- and
unbounded-time problems.

The first approach deals with bounded-time horizons: set-based simulation
methods generalise guaranteed integration [32] from enclosing intervals to rela-
tional domains. They use precise abstractions with low computational cost to
over-approximate sets of reachable states up to a given time horizon. Early tools
used polyhedral sets (HyTech [26] and PHAVer [15]), polyhedral flow-pipes [5],
ellipsoids [3] and zonotopes [19]. A breakthrough has been achieved by [20,23],
with the representation of convex sets using template polyhedra and support
functions. This method is implemented in the tool SpaceEx [16], which can
handle dynamical systems with hundreds of variables. It performs computations
using floating-point numbers: this is a deliberate choice to boost performance,
which, although quite reasonable, is implemented in a way that is unsound and
that does not provide genuine formal guarantees. Other approaches use spe-
cialised constraint solvers (HySAT [14], iSAT [12]), or SMT encodings [6,24] for
bounded model checking of hybrid automata.

The second approach, epitomised in static analysis methods [25], explores
unbounded-time horizons. It employs conservative over-approximations to
achieve completeness and decidability over infinite time horizons. Early work in
this area has used implementations of abstract interpretation and widening [8],
which are still the foundations of most modern tools. The work in [25] uses
abstract interpretation with convex polyhedra over piecewise-constant differen-
tial inclusions. Dang and Gawlitza [10] employ optimisation-based (max-strategy
iteration) with linear templates for hybrid systems with linear dynamics. Rela-
tional abstractions [33] use ad-hoc “loop summarisation” of flow relations, whilst
abstract acceleration focuses on linear relations analysis [21,22], which is com-
mon in program analysis. Abstract acceleration has been extended from its orig-
inal version to encompass inputs over reactive systems [35] but restricted to
subclasses of linear loops, and later to general linear loops but without
inputs [29]. This paper lifts these limitations by presenting abstract accelera-
tion for general linear loops with inputs.

2 Preliminaries

Abstract acceleration [21,22] is a key technique for the verification of programs
with loops. The state of the art for this technique has reached the level where
we can perform abstract acceleration of general linear loops without inputs [29],
and of some subclasses of linear loops with inputs [34,35], to an acceptable
degree of precision. We develop an abstract acceleration technique for general
linear loops with bounded inputs, whilst improving the precision and ease of
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computation, in order to overcome the negative effects on the precsion caused
by non-determinism.

2.1 Model Syntax

We are interested in loops expressed in the following form:

while(Gx ≤ h) x := Ax + Bu,

where x ∈ R
p are the state variables, ψ := Gx ≤ h is a linear constraint on the

states (with G ∈ R
r×p and h ∈ R

r), u ∈ R
q is a non-deterministic input, and

A ∈ Rp×p and B ∈ R
p×q are linear transformations characterising the dynamics

of the system. In particular, the special instance where ψ = � (i.e., “while true”)
represents a time-unbounded loop with no guards, for which the discovery of a
suitable invariant (when existing) is paramount. As evident at a semantical level
(see next), this syntax can be interpreted as the dynamics of a discrete-time LTI
model with inputs, under the presence of a guard set which, for ease of notation,
we denote as G = {x | Gx ≤ h}.

2.2 Model Semantics

The traces of the model starting from an initial set X0 ⊆ R
p, with inputs

restricted to U ⊆ R
q, are sequences x0

u0−−→ x1
u1−−→ x2

u2−−→ . . ., where x0 ∈ X0

and ∀n ≥ 0,xn+1 = τ(xn,un), where

τ(xn,un) =
(
Axn + Bun | Gxn ≤ h ∧ un ∈ U

)
. (1)

We extend the notation above to convex sets of initial conditions and inputs
(X0 and U), and write τ(X0, U) to denote the set of states {x | x0 ∈ X0 ∧ u ∈
U ∧ x = τ(x0,u)} reached from X0 by τ in one step. We furthermore write
τn(X0, U) to denote the set of states reached from X0 via τ in n steps (n-reach
set), i.e. for n ≥ 1

τn(X0, U) = {xn | x0 ∈ X0 ∧∀k ∈ [0, n−1] : uk ∈ U ∧xk+1 = τ(xk,uk)} . (2)

Since the transformations A and B are linear and vector sums preserve con-
vexity, the sets Xn = τn(X0, U) are also convex. We define the n-reach tube
X̂n = τ̂n(X0, U) =

⋃
k∈[0,n] τ

k(X0, U) as the union of the reachable sets over n

iterations. Moreover, X̂ =
⋃

n≥0 τn(X0, U) extends the previous notion over an
unbounded time horizon.

2.3 Abstract Acceleration

Abstract Acceleration [22] is a method to over-approximate the reach tube of
linear systems over any given time interval, including the infinite time horizon.
The work in [29] discusses this abstraction technique for systems without inputs,
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where an abstract matrix An is synthesised to encompass the combined dynamics
generating all reach sets up to the nth iteration. The abstract matrix An over-
approximates the set of matrices

⋃
k∈[0,n] A

k. The reach tube τ̂n(X0) (tailoring
the notation above to a system without inputs) can then be over-approximated
via the abstract matrix multiplication AnX0 [29]. We will employ the notation
A (rather than A∞) to represent this notion over an infinite time horizon.

In this paper we extend this approach to systems with inputs, so that

τ̂n(X0, U) ⊆ AnX0 ⊕ BnU , (3)

where A ⊕ B represents the Minkowski sum of two sets, namely {a + b | a ∈
A∧b ∈ B}, whereas the abstract matrix Bn over-approximates the set of matrices⋃

k∈[0,n](I − Ak)(I − A)−1B, where I is a properly-sized identity matrix – this
second approximation will be discussed in detail in Sect. 3.

2.4 Support Functions

There exist many over-approximating abstract domains for representing sets of
states that are suitable for systems with linear dynamics, of which by far the
most popular is that of convex polyhedra [9]. Rectangular abstractions are easy
to process [36], but the over-approximations may be too coarse, a problem which
is exacerbated by non-deterministic inputs.

Abstract acceleration requires two abstract domains: the first to abstract the
model dynamics – the original approach for abstract acceleration [29] uses loga-
hedra [27] – and the second to represent spatial sets (convex polyhedra in [29]).
In [29] the estimation of the number of loop iterations (time steps) leverages
abstractions of initial sets as hypercubes, which is a source of imprecision that
our method will not exhibit.

In this work, we use support functions [18,31] for the abstract domains.
Support functions have proven to be one of the most successful abstractions for
the representation of reachability sets for dynamical and hybrid linear systems.
A general assertion Cx ≤ d (of which the guard Gx ≤ h is just an example)
entails a set of states that is a convex polyhedron, where each row in C is a
direction orthogonal to a face in the polyhedron, and the corresponding value in
d is the distance of that face to the origin.

Support functions represent a set by defining the distance of its convex hull
with respect to a number of given directions. More specifically, the distance from
the origin to the hyperplane that is orthogonal to the given direction and that
touches its convex hull at its farthest. Finitely sampled support functions are
template polyhedra in which the directions are not fixed, which helps avoiding
wrapping effects [20]. The larger the number of directions provided, the more
precisely represented the set will be. In more detail, given a direction v ∈ R

p, the
support function of a non-empty set X ⊆ R

p in the direction of v is defined as

ρX : Rp → R, ρX(v) = sup{< x,v >: x ∈ X} .

where < x,v > is the dot product of the two vectors.



Unbounded-Time Analysis of Guarded LTI Systems with Inputs 317

Support functions do not exclusively apply to convex polyhedra, but in fact
to any set X ⊆ R

p represented by a general assertion θ(X). We will restrict
ourselves to the use of convex polyhedra, in which case the support function
definition translates to solving the linear program

ρX(v) = max{< x,v >| Cx ≤ d} . (4)

Several properties of support functions allow us to reduce operational com-
plexity. The most significant are [18]:

ρkX(v) = ρX(kv) = kρX(v) : k ≥ 0 ρAX(v) = ρX(AT v) : A ∈ R
p×p

ρX1⊕X2(v) = ρX1(v) + ρX2(v) ρX(v1 + v2) ≤ ρX(v1) + ρX(v2)
ρconv(X1∪X2)(v) = max{ρX1(v), ρX2(v)} ρX1∩X2(v) ≤ min{ρX1(v), ρX2(v)}

As can be seen by their structure, some of these properties reduce complexity
to lower-order polynomial or even to constant time, by turning matrix-matrix
multiplications (O(p3)) into matrix-vector (O(p2)), or into scalar multiplications.

3 Abstract Acceleration with Inputs

3.1 Overview of the Algorithm

Our algorithm takes as input the set of initial states X0, the set of bounded
inputs U and the dynamics of a linear loop characterised by G,h,A, and B. It
returns as output an over-approximation X̂� of the reach tube X̂ (or correspond-
ing quantities for the bounded-horizon case). We over- and under-approximate
the number of loop iterations n that are required to first intersect and completely
go beyond the guard set G, respectively, by means of the reach sets computed
with the model dynamics: we denote these two quantities by n and n. In the
following we employ the notations � for intersection of polyhedra, and � for the
convex hull conv(X1 ∪ X2).

If n or n are unbounded, we compute the abstract matrices A and B (as
defined shortly), and return the quantity

X̂� = X0 � (A(X0 � G) ⊕ BU) � G (5)

as the resulting reach tube, where again G = {x | Gx ≤ h}. Otherwise, in the
finite case, we compute the abstract matrices An and An−n and set

X̂�
n = X0 �

((
An(X0 � G) ⊕ BnU

)
� G

)
�

((
An−n(Xn � G) ⊕ (Bn−nU)

)
� G

)
.

(6)
In this formula, the abstract matrices An and Bn are obtained as an over-

approximation of sets of matrices, as described in Sect. 3.3.
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3.2 Abstract Acceleration Without Guards

With reference to (3), we now detail the abstract acceleration with inputs.
Unfolding (2), we obtain

xn = Anx0+An−1Bu0+An−2Bu1+...+Bun−1 = Anx0+
∑

k∈[1,n]

An−kBuk−1 .

Let us now consider the following over-approximation for τ on sets:

τ �(X0, U) = A(X0 ∩ G) ⊕ BU . (7)

Then the reach set (as said, we ignore the presence of the guard set G for the
time being) can be computed as

Xn = AnX0 ⊕ An−1BU + An−2BU ⊕ ... ⊕ BU = AnX0 ⊕
∑

k∈[0,n−1] A
kBU.

What is left to do is to further simplify the sum
∑

k∈[0,n−1] A
kBU . We can

exploit the following simple results from linear algebra.

Lemma 1. If I − A is invertible, then
∑n−1

k=0 Ak = (I − An)(I − A)−1. If
furthermore limn→∞ An = 0, then limn→∞

∑n
k=0 Ak = (I − A)−1.

It is evident that there are some restrictions on the nature of matrix A: since
we need to calculate the inverse (I −A)−1, A must not include the eigenvalue 1,
i.e. 1 /∈ σ(A), where σ(A) is the spectrum (the set of all the eigenvalues) of matrix
A. In order to overcome this problem, we introduce the eigen-decomposition of
A = SJS−1, and setting trivially I = SIS−1, by the distributive and transitive
property we obtain

(I − An)(I − A)−1 = S(I − Jn)(I − J)−1S−1 .

While this does not directly eliminate the problem of the inverse for eigenvalues
equal to 1, it allows us to set

n−1∑
k=0

λk =
{

n λ = 1
1−λn

1−λ λ �= 1 ⇒ (I −An)(I −A)−1 = S diag

(
n λi = 1

1−λn
i

1−λi
λi �= 1

)
S−1 .

(8)
In the case of Jordan blocks of size > 1, the entries in the kth upper diagonal of
the block are filled with the value: −1k

k+1
1−λn

(1−λ)k+1 +
∑k

j=1
−1k−j

k−j

(
n

j−1

)
λn−j−1

(1−λ)k−j .
This result can be only directly applied under restricted conditions, for

instance whenever ∀k > 0 : uk = uk−1. In order to generalise it (in particu-
lar to non-constant inputs), we will over-approximate BU over the eigenspace
by a spheral enclosure with centre u′

c and radius U ′
b. To this end, we first rewrite

U ′
J = S−1BU = {u′

c} ⊕ U ′
d , with u′

c[i] =
1

2
(ρU′

J
(vi) + ρU′

J
(−vi)), vi[j] =

{
1 j = i
0 j �= i
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Fig. 1. Relaxation of an input set in a complex subspace making it invariant to matrix
rotations. The dashed orange line is the red circle translated onto the origin (Color
figure online).

We then over-approximate U ′
d via U ′

b, by the maximum radius in the directions of
the complex eigenvalues and non-singular Jordan blocks, as illustrated in Fig. 1:

U ′
b ⊇ U ′

d : ∀i, j, ρU′
b
(v) =

{
max(ρU′

d
(v′)) if λi = λ∗

j ∧ |v′| = |v| ∧ (v′[j] �= 0 ∨ v′[i] �= 0)

ρU′
d
(v) otherwise

Since the description of U ′
b is no longer polyhedral, we will also create an image

Ab of A that describes non-polyhedral faces in the directions of the complex
eigenvectors (λbi = ||A||).

Returning to our original equation for the n-reach set, we obtain1

Xn ⊆ AnX0 ⊕ (I − An)(I − A)−1BUc ⊕ (I − An
b )(I − Ab)−1BUb, (9)

with Uc = {uc}
Shifting the attention from reach sets to tubes, we can now over-approximate

the reach tube by abstract acceleration of the three summands in (9), as follows.

Theorem 1. The abstract acceleration τ �n(X0, U) =def AnX0 ⊕ Bn
c Uc ⊕ Bn

b Ub

is an over-approximation of the n-reach tube, namely X̂n ⊆ τ �n(X0, U).

We will discuss in the next section how to compute the abstract matrices
An, Bn

c , and Bn
b , with focus in particular on An.

3.3 Computation of Abstract Matrices

We define the abstract matrix An as an over-approximation of the union of
the powers of matrix Ak: An ⊇

⋃
k∈[0,n] A

k. Next we explain how to compute

1 Note that ∀U ′
b , U ′

c , U ′
d ; ∃Ub , Uc , Ud : U ′

b = S−1BUb so that U ′
c = S−1BUc and

U ′
d = S−1BUd. Hence, this inclusion is also valid in the original state space.
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such an abstract matrix. For simplicity, we first describe this computation for
matrices A with real eigenvalues, whereas the extension to the complex case will
be addressed in Sect. 3.5. Similar to [29], we first have to compute the Jordan
normal form of A. Let A = SJS−1 where J is the normal Jordan form of A, and
S is made up by the corresponding eigenvectors. We can then easily compute
An = SJnS−1, where

Jn =

⎡

⎢
⎢
⎣

Jn
1

. . .

Jn
r

⎤

⎥
⎥
⎦ , Jn

s =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

λn
s

(n
1

)
λn−1
s · · · ( n

ps−1

)
λn−ps+1
s

λn
s

(n
1

)
λn−1
s

.

.

.

.

..
. . .

.

..
λn
s

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

for s ∈ [1, r] . (10)

The abstract matrix An is computed as an abstraction over a vector m of non-
constant entries of Jn. The vector m is obtained by a transformation ϕ such
that Jn = ϕ(m). If Jn is diagonal [29], then m equals the vector of powers of
eigenvalues (λn

0 , . . . , λn
r ). An interval abstraction can thus be simply obtained

by computing the intervals [min{λ0
s, λ

n
s }, max{λ0

s, λ
n
s }], s ∈ [1, r]. We observe

that the spectrum of the interval matrix σ(An) (defined as intuitively) is an
over-approximation of

⋃
k∈[0,n] σ(Ak).

In the case of the sth Jordan block Js with geometric non-trivial multiplicity
ps (λi = λi−1 = . . .), observe that the first row of Jn

s contains all (possibly) dis-
tinct entries of Jn

s . Hence, in general, the vector section ms is the concatenation

of the (transposed) first row vectors
(
λn

s ,
(
n
1

)
λn−1

s , · · · ,
(

n
ps−1

)
λn−ps+1

s

)T

of Jn
s .

Since the transformation ϕ transforms the vector m into the shape of (10)
of Jn, it is called a matrix shape [29]. We then define the abstract matrix as

An = {S ϕ(m) S−1 | Φm ≤ f} , (11)

where the constraint Φm ≤ f is synthesised from intervals associated to the
individual eigenvalues and to their combinations. More precisely, we compute
polyhedral relations: for any pair of eigenvalues (or binomials) within J , we
find an over-approximation of the convex hull containing the points ∪{mk |
1≤k≤n} ⊆ {m | Φm≤f} with component-wise exponentiation mk.

As an improvement over [29], the rows in Φ and f are synthesised by discover-
ing support functions in these sets. The freedom of directions provided by these
support functions results in an improvement over the logahedral abstractions
used in previous papers (see Fig. 2).

An additional drawback of [29] is that calculating the exact Jordan form
of any matrix is computationally expensive and hard to achieve for large-
dimensional matrices. We will instead use numerical algorithms in order to
get an approximation of the Jordan normal form and account for numerical
errors. In particular, if we examine the nature of (5)–(6), we find out that the
numerical operations are not iterative, therefore the errors do not accumulate
with time. We use properties of eigenvalues to relax f by finding the maxi-
mum error in the calculations that can be determined by computing the norm
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Fig. 2. Polyhedral faces from an R
2 subspace, where (λn

1 , λn
2 ) so that

λ1=2, λ2=3, 1≤n≤5. Bold purple lines represent supports found by this paper.
The dotted grey and dashed red polytopes show logahedral approximations (box and
octagon) used in [29]. Note the scales (sloped dashed lines are parallel to the x=y
line, and dashed red polytope hides two small sides yielding an octagon) (Color figure
online).

δmax = |A−SJestS
−1|. The constraints Φm < f are then computed by consid-

ering the ranges of eigenvalues λs ± δmax (represented in Fig. 2 as the diameter
of the blue dots). The outward relaxation of the support functions (f), which
follows a principle similar to that introduced in [17], reduces the tightness of
the over-approximation, but ensures the soundness of the abstract matrix An

obtained. One can still use exact arithmetic with a noticeable improvement over
previous work; however, for larger-scale systems the option of using floating-point
arithmetic, while taking into account errors and meticulously setting round-
ing modes, provides a 100-fold plus improvement, which can make a difference
towards rendering verification practically feasible.

The abstract matrices Bn
c and Bn

d (see Theorem 1), as well as Bn, are defined
similarly but using a similar assertion for the eigenvalues based on the transfor-
mations described in (8).

3.4 Abstract Acceleration with Guards: Estimation of the Number
of Iterations

The most important task remaining is how to calculate the number of iterations
dealing with the presence of the guard set G.

Given a convex polyhedral guard expressed as the assertion {x | Gx ≤ h},
we define Gi as the ith row of G and hi as the corresponding element of h. We
denote the normal vector to the ith face of the guard as gi = GT

i . The distance
of the guard to the origin is thus γi = hi

|gi| .
Given a convex set X, we may now describe its position with respect to each

face of the guard through the use of its support function alongside the normal
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vector of the hyperplane (for clarity, we assume the origin to be inside set X):

ρX(gi) ≤ γi, inside the hyperplane,
−ρX(−gi) ≥ γi, outside the hyperplane.

From the inequalities above we can determine up to which number of iterations
ni the reach tube remains inside the corresponding hyperplane, and starting
from which iteration ni the corresponding reach set goes beyond the guard:

ρX0(A
nigi) + ρU ′((I − Ani)gi) ≤ γi, (12)

ρX0(−Anigi) + ρU ′((Ani − I)gi) ≤ −γi.

In order for a reach set to be inside the guard it must therefore be inside all of
its faces, and we can ensure it is fully outside of the guard set when it is fully
beyond any of them. Thus, we have n = min{ ni }, and n = min{ ni }.

Computing the maximum ni such that (12) is satisfied is not easy, because
the unknown ni occurs in the exponent of the equation. However, if gi was
an eigenvector vj of A, we would have that Anivj = λ

ni

j vj , which turns a p-
dimensional problem into a 1-dimensional problem. However, since it is unlikely
that the guards will be aligned to the eigenvectors, thus, we will use our support
function properties to under- and over-approximate the number of iterations.

Let gi =
∑p

j=1 aijvj , where vj are generalised eigenvectors of A. For simplic-
ity we assume that all aijvj are positive, extending the procedure for the general
case through the development of the complex case in the extended version [4].
Then Angi =

∑p
j=1 λn

j aijvj where λj is the corresponding eigenvalue of vj .
This way we can bound the first summand in (12) by ρX0(A

ngi) ≤∑p
j=1 λn

j aijρX0(vj). Using the support function properties detailed in Sect. 2.4,
we obtain for (12):

ρX0(A
ngi) + ρU ′((I − An)gi) ≤

∑p
j=1 λn

j aijρX0(vj) + (λn
j aij − 1)ρU ′(−vj)

−ρU ′(−res(gi)) ≤ γi

In order to solve for n we transfer the constant terms to one side, taking into
account that

∑p
j=1 −ρU ′(−vj) − ρU ′(−res(gi)) = −ρU ′(−gi), as

∑p
j=1 λn

j aij(ρX0(vj) + ρU ′(−vj)) ≤ γi + ρU ′(−gi).

To separate the divergent element of the dynamics from the convergent one, let
us define bij = aij(ρX0(vj) + ρU ′(−vj)) and λm = max(λj) for all j ∈ [1, p].
Replacing, we obtain

λn
m

∑p
j=1 bij

(
λj

λm

)n

≤ γi + ρU ′(−gi) ,

which allows to finally formulate an iteration scheme for approximating n.
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Proposition 1. An iterative under-approximation of the number of iterations
n can be computed by starting with ni = 0 and iterating over

ni ≥ logλm
(γi + ρU ′(−gi)) − logλm

(∑p
j=1 bij

(
λj

λm

)ni
)

,

substituting the value of ni on the right-hand side and repeating a given number
of times or up to convergence.

In the case of ni we must invert the eigenvectors and approximate from above,
starting at a sufficiently large number (e.g. ni = 1015), thus

ni ≤ logλm
(γi − ρU ′(gi)) − logλm

(∑p
j=1 cij

(
λj

λm

)ni
)

.

where cij = aij(ρX0(−vj) − ρU ′(vj)). If the initial ni is not large enough, we
simply double the exponent until the left hand side yields a smaller number than
the one chosen originally.

3.5 Abstract Matrices for Complex Eigenvalues

To deal with complex numbers in eigenvalues and eigenvectors, [29] employs the
real Jordan form for conjugate eigenvalues λ = reiθ and λ∗ = re−iθ (θ ∈ [0, π]),
so that (

λ 0
0 λ∗

)
is replaced by r

(
cos θ − sin θ
sin θ cos θ

)
.

Although this equivalence will be of use once we evaluate the progression of
the system, calculating powers under this notations is often more difficult than
handling directly the original matrices with complex values.

In Sect. 3.3, in the case of real eigenvalues we have abstracted the entries in
the power matrix Jn

s by ranges of eigenvalues [min{λ0
s, λ

n
s } ,max{λ0

s, λ
n
s }]. In

the complex case we can do something similar by rewriting eigenvalues into polar
form λs = rse

iθs and abstracting by [min{r0s , rn
s } , max{r0s , rn

s }]ei[0 , min(θs,2π)].
What is left to do is to evaluate the effect of complex numbers on support

functions: to the best of the authors’ knowledge, there is no definition in the
literature for support functions on complex numbers. We will therefore extend
the manipulations for the real case directly to the complex one. For lack of space,
please refer to extended version of this paper [4].

4 Case Study

We have selected a known benchmark to illustrate the discussed procedure: the
room temperature control problem [13]. The temperature (variable temp) of a
room is controlled to a user-defined set point (set), which can be changed at any
time through a heating (heat) element, and is affected by ambient temperature
(amb) that is out of the control of the system.
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We formalise the description of such a system both via a linear loop and via
hybrid dynamics. Observe that since such a system may be software controlled,
we assume that part of the system is coded, and further assume that it is possible
to discretise the physical environment for simulation. A pseudo-code fragment
for the temperature control problem follows:

temp=5+read(35);
heat=read(1);
while(temp<400 && heat<300)
{

amb=5+read(35);
set=read(300);
temp=.97 temp + .02 amb + .1 heat;
heat=heat + .05(set-temp);

}

We use the read function to represent non-deterministic values between 0 and
the maximum given as argument. Alternatively, this loop corresponds to the
following hybrid dynamical model:[

temp
heat

]
k+1

=
[

0.97 0.1
−0.05 1

] [
temp
heat

]
k

+
[

0.02 0
0 0.05

] [
amb
set

]
k

,

with initial condition
[

temp
heat

]
0

∈
[

[5 40]
[0 1]

]
,

non-deterministic inputs
[

amb
set

]
k

∈
[

[5 40]
[0 300]

]
,

and guard set G =
{[

temp
heat

]
:
[

1 0
0 1

] [
temp
heat

]
<

[
400
300

]}
.

In this model the variables are continuous and take values over the real line,
whereas within the code they are represented as long double precision floating-
point values, with precision of ±10−19, moreover the error of the approximate
Jordan form computation results in δmax < 10−17. Henceforth we focus on the
latter description, as in the main text of this work. The eigen-decomposition of
the dynamics is (the values are rounded to three decimal places):

A = SJS−1 ⊆
[

0.798 0.173
0 0.577

] [
0.985 ± 10−16 0.069 ± 10−17

−0.069 ± 10−17 0.985 ± 10−16

] [
1.253 −0.376

0 1.732

]
.

The discussed over-approximations of the reach-sets indicate that the tempera-
ture variable intersects the guard at iteration n = 32. Considering the pseudo-
eigenvalue matrix (described in the extended version for the case of complex
eigenvalues) along these iterations, we use Equation (11) to find that the corre-
sponding complex pair remains within the following boundaries:
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A32 =

[
r i
−i r

]
⎧
⎪⎪⎨

⎪⎪⎩

0.4144 < r < 0.985
0.0691 < i < 0.7651
0.1082 < r + i < 1.247
0.9159 < i − r < 0.9389

B32 =

[
r i
−i r

]
⎧
⎪⎪⎨

⎪⎪⎩

1 < r < 13.41
0 < i < 17.98
1 < r + i < 29.44

6.145 < i − r < 6.514

The reach tube is calculated by multiplying these abstract matrices with the initial
sets of states and inputs, as described in Equation (3), by the following inequalities:

X̂#
32 = A32

[
[5 40]
[0 1]

]

+ B32

[
[5 40]
[0 300]

]

=

[
temp
heat

]
⎧
⎪⎪⎨

⎪⎪⎩

−24.76 < temp < 394.5
−30.21 < heat < 253
−40.85 < temp + heat < 616.6
−86.31 < temp − heat < 843.8

The negative values represent the lack of restriction in the code on the lower side and
correspond to system cooling (negative heating). The set is displayed in Fig. 3, where
for the sake of clarity we display only 8 directions of the 16 constraints. This results in
a rather tight over-approximation that is not much looser than the convex hull of all
reach sets obtained by [16] using the given directions. In Fig. 3, we can see the initial
set in black colour, the collection of reach sets in white, the convex hull of all reach
sets in dark blue (as computed by [16]), and finally the abstractly accelerated set in
light yellow (dashed lines). The outer lines represent the guards.

Fig. 3. The abstractly accelerated tube (yellow, dashed boundary), representing an
over-approximation of the thermostat reach tube (dark blue). The set of initial condi-
tions is shown in black, whereas successive reach sets are shown in white. The guards
and the reach set that crosses them are close to the boundary in red (Color figure
online).
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Table 1. Experimental comparison of unbounded-time analysis tools with inputs

Characteristics Improved Analysis time [sec]

name type dim inputs bounds IProc Sti IProc Sti J+I

parabola i1 ¬s,¬c,g 2 1 80 +25 +28 0.007 237 0.049

parabola i2 ¬s,¬c,g 2 1 80 +24 +35 0.008 289 0.072

cubic i1 ¬s,¬c,g 3 1 120 +44 +50 0.015 704 0.097

cubic i2 ¬s,¬c,g 3 1 120 +35 +55 0.018 699 0.124

oscillator i0 s,c,¬g 2 0 56 +24 +24 0.004 0.990 0.021

oscillator i1 s,c,¬g 2 0 56 +24 +24 0.004 1.060 0.024

inv pendulum s,c,¬g 4 0 16 +8 +8 0.009 0.920 0.012

convoyCar2 i0 s,c,¬g 3 2 12 +9 +9 0.007 0.160 0.043

convoyCar3 i0 s,c,¬g 6 2 24 +15 +15 0.010 0.235 0.513

convoyCar3 i1 s,c,¬g 6 2 24 +15 +15 0.024 0.237 0.901

convoyCar3 i2 s,c,¬g 6 2 24 +15 +15 0.663 0.271 1.416

convoyCar3 i3 s,c,¬g 6 2 24 +15 +15 0.122 0.283 2.103

type: s – stable loop, c – complex eigenvalues, g – loops with guard; dim: sys-
tem dimension (variables); bounds: nb. of half-planes defining the polyhedral
set; IProc is [28]; Sti is [7]; J+I is this work; improved: number of bounds
newly detected by J+I over the existing tools (IProc, Sti)

5 Implementation and Experimental Results

The algorithm has been implemented in C++ using the eigen-algebra package (v3.2),
with double precision floating-point arithmetic, and has been tested on a 1.6 GHz core 2
duo computer.

Comparison with other unbounded-time approaches. In a first experiment we have
benchmarked our implementation against the tools InterProc [28] and Sting [7]. We
have tested these tools on different scenarios, including guarded/unguarded, stable/un-
stable and complex/real loops with inputs (details in Table 1).2 It is important to note
that in many instances, InterProc and Sting are unable to infer finite bounds at all.

Table 2 gives the comparison of our implementation using different levels of pre-
cision (long double, 256 bit, and 1024 bit floating-point precision) with the original
abstract acceleration for linear loops without inputs (J) [29] (where inputs are fixed
to constants). This shows that our implementation gives tighter over-approximations
on most benchmarks (column ‘improved’). Whilst on a limited number of instances
the current implementation is less precise (Fig. 2 gives a hint why this is happening),
the overall increased precision is owed to lifting the limitation on directions caused
by the use of logahedral abstractions.

At the same time, our implementation is faster – even when used with 1024 bit
floating-point precision – than the original abstract acceleration (using rationals).
The fact that many bounds have improved with the new approach, while speed has
increased by several orders of magnitude, provides evidence of the advantages of the new
approach.

2 The tool and the benchmarks are available from http://www.cprover.org/LTI/.

http://www.cprover.org/LTI/


Unbounded-Time Analysis of Guarded LTI Systems with Inputs 327

Table 2. Experimental comparison with previous work

The speed-up is due to the faster Jordan form computation, which takes between
2 and 65 seconds for [29] (using the ATLAS package), whereas our implementation
requires at most one second. For the last two benchmarks, the polyhedral computa-
tions blow up in [29], whereas our support function approach shows only moderately
increasing runtimes. The increase of speed is owed to multiple factors, as detailed in
Table 3. The difference of using long double precision floating-point vs. arbitrary pre-
cision arithmetic is negligible, as all results in the given examples match exactly to 9
decimal places. Note that, as explained above, soundness can be ensured by appropriate
rounding in the floating-point computations.

Table 3. Performance improvements by feature

Optimization Speed-up

Eigen vs. ATLAS (http://eigen.tuxfamily.org/index.php?title=Benchmark) 2–10

Support functions vs. generators for abstract matrix synthesis 2–40

long double vs. multiple precision arithmetic 5–200

Total 20–80000

Comparison with bounded-time approaches. In a third experiment, we compare our
method with the LGG algorithm [23] used by SpaceEx [16]. In order to set up a fair
comparison we have provided the implementation of the native algorithm in [23]. We
have run both methods on the convoyCar example [29] with inputs, which presents
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an unguarded, scalable, stable loop with complex dynamics, and focused on octahe-
dral abstractions. For convex reach sets, the approximations computed by abstract
acceleration are quite tight in comparison to those computed by the LGG algorithm.
However, storing finite disjunctions of convex polyhedra, the LGG algorithm is able to
generate non-convex reach tubes, which are arguably more proper in case of oscillating
or spiralling dynamics. Still, in many applications abstract acceleration can provide a
tight over-approximation of the convex hull of those non-convex reach sets.

Table 4 gives the results of this comparison. For simplicity, we present only the pro-
jection of the bounds along the variables of interest. As expected, the LGG algorithm
performs better in terms of tightness, but its runtime increases with the number of
iterations. Our implementation of LGG using Convex Polyhedra with octagonal tem-
plates is slower than the abstractly accelerated version even for small time horizons
(our implementation of LGG requires ∼ 4 ms for each iteration on a 6-dimensional
problem with octagonal abstraction). This can be improved by the use of zonotopes,
or by careful selection of the directions along the eigenvectors, but this comes at a
cost on precision. Even when finding combinations that outperform our approach, this
will only allow the time horizon of the LGG approach to be slightly extended before
matching the analysis time from abstract acceleration, and the reachable states will
still remain unknown beyond the extended time horizon.

The evident advantage of abstract acceleration is its speed over finite horizons with-
out much precision loss, and of course the ability to prove properties for unbounded-
time horizons.

Table 4. Comparison on convoyCar2 benchmark, between this work and the LGG
algorithm [23]

This paper LGG

name 100 iterations unbounded 100 iterations 200 iterations 300 iterations

run time 5ms 5ms 50ms 140ms 195ms

car acceleration [-0.895 1.34] [-1.038 1.34] [-0.802 1.31] [-0.968 1.31] [-0.968 1.31]

car speed [-1.342 5.27] [-4.059 5.27] [-1.331 4.98] [-3.651 4.98] [-3.677 4.98]

car position [42.66 83.8] [42.66 90.3] [43.32 95.5] [43.32 95.5] [43.32 95.6]

Scalability. Finally, in terms of scalability, we have an expected O(n3) complexity
worst-case bound (from the matrix multiplications in Eq. 3). We have parameterised the
number of cars in the convoyCar example [29] (also seen in Table 2), and experimented
with up to 33 cars (each car after the first requires 3 variables, so that for example
(33 − 1) × 3 = 96 variables), and have adjusted the initial states/inputs sets. We
report an average of 10 runs for each configuration. These results demonstrate that our
method scales to industrial-size problems.

# of variables 3 6 12 24 48 96

runtime 4 ms 31 ms 62 ms 477 ms 5.4 s 56 s

6 Conclusions and Future Work

We have presented an extension of the Abstract Acceleration paradigm to guarded LTI
systems (linear loops) with inputs, overcoming the limitations of existing work that is
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restricted to closed systems. We have decisively shown the new approach to outperform
state-of-the-art tools for unbounded-time reachability analysis in both precision and
scalability. The new approach is capable of performing general unbounded-time safety
analysis for large scale open systems with reasonable precision and fast computation
times. Conditionals inside loops and nested loops are out of the scope of this paper.

Work to be done is extending the approach to non-linear dynamics, which we
believe can be explored via hybridisation techniques [1], and to formalise the frame-
work for general hybrid models with multiple guards and location-dependent dynamics,
with the aim to accelerate transitions across guards rather than integrate individual
accelerations on either side of the guards.
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