
Robust State Estimation of Complex Systems

Jan Hauth, Patrick Lang, and Andreas Wirsen

1 Challenges for Industry

The complexity of many technical applications and production processes is continuously
increasing, due to growth in the technological possibilities of the produced goods. For bi-
ological processes, which are inherently very complex to begin with, complexity has quite
different facets, which find their expression, for example, in the linkage of numerous sub-
processes, in nonlinear system dynamics, and in combinations of the two. Moreover, in
many cases, the descriptions of the processes and systems are plagued with significant un-
certainties. In technical systems, these result from uncertainties regarding the parameters
of integrated components and their time-dependent variability during operations, as well
as disturbances originating in the external process environment. In biological systems, the
natural fluctuations and variability typical of living systems mean that these uncertain-
ties often play an even more important role. Therefore, when developing new medical
compounds or devices, or when designing and controlling bioreactors, for example, it is
imperative to take them into account.

Despite the increasing complexity of and unavoidable uncertainties in technically rele-
vant systems, the requirements for ensuring a variety of process and system characteristics
are also becoming increasingly stringent. Some of these characteristics are:

Product Quality The complexity and associated dynamic effects make continuous and
complete monitoring of critical system parameters imperative, in order to be able to react
quickly with suitable control measures to changes in system behavior and thus guarantee
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consistent product quality. The use of automated control methods also requires access to
such system information.

System Reliability When there is a complex interplay of many components and this in-
terplay is very dependent on the system’s various operating modes, it is often impossible to
give a meaningful a priori estimate of the lifetime of the individual components. In order
to (economically) ensure continuous functioning of the total system, permanent monitor-
ing of critical system components is therefore a sensible alternative. The replacement of
components whose operating characteristics are deteriorating can then be scheduled intel-
ligently. Such a predictive maintenance approach allows down time and maintenance costs
to be minimized.

Ensuring both qualities requires access to critical information about dynamic system
events. The most straightforward way to obtain the needed system and process informa-
tion consists of directly measuring the crucial states and parameters using suitable sensor
technology. However, directly monitoring all relevant system quantities is usually impos-
sible, due to technical limitations in the available sensor technology and the limited num-
ber of suitable measurement sites. Moreover, due to the number of sensors that would be
needed, direct measurements of all quantities would often be too expensive. Model-based
state estimation offers one way around this problem. Here, system simulation on the ba-
sis of an existing system model is combined incrementally with each piece of available
measurement information to derive the best possible estimate of the system’s true state.
The system model allows one to calculate the system quantities and parameters that are
actually relevant, on the basis of simple functional inter-relationships, and thus represents
a virtual sensor technology.

The characteristics of modern technical systems result in a variety of challenges for
these state estimators.

Real-Time Capability For many applications requiring interventions to control and reg-
ulate the system, it is essential to deliver the needed system state estimates in what amounts
to real time. Particularly for highly dynamic processes, this is a true challenge that requires
the combined use of dimensionally restricted system models and correspondingly power-
ful (i.e., fast) hardware. Here, one must also ensure that the sensors being used are up to
the dynamic challenges of the process in question.

Robustness Because state estimators often deliver the basis information for associated
system control algorithms, a certain level of robustness must be guaranteed in the face of
changes in system specifications. This applies both to short-term variations in the param-
eter values of particular components due to changing ambient conditions in the process
environment and also to permanent variations in parameter values due to aging processes.
Beyond this, most system parameters are initially specified with only limited exactness
by the equipment suppliers. Nonetheless, one is interested in having the most exact in-
formation possible about the true dynamics of the system. One also wants to guarantee
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the robustness of the state estimations in the face of disturbances arising from outside the
system—which are often only partially known. The reliability of the sensor technology
is another important consideration; occasional faulty measurements or even the complete
loss of a particular sensor signal cannot lead to a collapse of the overall state estimation
procedure. Here, under some circumstances, redundancy concepts must be incorporated to
rule out such scenarios. In this context, the problem of non-synchronized sensor technol-
ogy must also be managed in an appropriate fashion.

2 Challenges for Mathematics

In many technical, medical, and biological processes, mathematical state estimation is an
important tool for determining process states that are hidden or not directly measureable,
based on the synergetic combination of information from a system simulation and real
measurements of various system quantities. When preparing state estimators, the following
challenges present themselves:

System Model On the basis of a suitably defined system state that includes all infor-
mation needed for the further dynamic development of the system, one uses the existing
technical and/or biological understanding of the system, along with the relevant, available
process data, to prepare a model that accurately predicts the future development of the sys-
tem state. In many cases, this modeling leads to a state dynamic in the form of an ordinary
differential equation system or a differential algebraic system. When one uses a purely
knowledge-driven modeling approach, the result is a so-called white box model. As the
proportion of data used in the modeling approach increases, the model is then referred to
as a gray box and, ultimately, a black box model. The model of the state dynamic is supple-
mented by equations that permit calculation of the system quantities that are actually to be
monitored on the basis of the system state. The relationships to the measured system quan-
tities must also be captured appropriately. In particular, when designing a state estimator,
the information content of the possible variants can be appraised and compared on the
basis of the measurements. This supports the selection of the best possible measurement
configuration.

Depending on the characteristics of the underlying application, one must ensure that
the complexity of the model being developed is compatible with the time available for
executing the state estimation. Highly dynamic applications, for example, demand state
estimation in close to real time. If the dimension of the resulting model is too large, model
reduction techniques can be used to generate an error-controlled approximation by means
of a smaller system model. A variety of model reduction methods is available, depending
on the type of state-space model being used.

Any special requirements for preparing the model and the associated state estimator
result primarily from significant nonlinearities in the dynamic behavior of the underlying
system. When dealing with large, networked systems, one must also decide whether to use
a centralized or localized design for the state estimator(s).
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Uncertainties The appropriate treatment of uncertainties during the modeling process
is a key concern. These can be uncertainties in one’s understanding of the physical or
biological relationships that dominate the process or system. Or they can be uncertainties
about parameters used in the model, which may be known with only limited accuracy
and are often subject to short-term fluctuations caused by the process environment. Aging
processes, such as wear and corrosion, also cause parameter values to drift over longer
time periods. If important parameters are not known at all, a suitable parameter estimation
process can be incorporated into an extended state estimation problem.

Along with the uncertainties in parameters, the unavoidable errors associated with mea-
surements also play an important role and must be treated appropriately. The technology
of the sensors being used and the associated signal processing chain offer clues about
how to model the system. Analyzing a sufficient number of measurements is of central
importance for establishing appropriate distribution functions. The characteristics of the
individual sensors, as well as knowledge about the time-points of the measurements and
the relationships between these time-points for the different sensors, are both of central
importance for designing the state estimator. Uncertainties in these quantities must also be
suitably accounted for in the model.

Furthermore, there are almost always external effects or phenomena impacting the sys-
tem that cannot be explicitly accounted for in the model due to a lack of detailed infor-
mation. Here, rough disturbance models are the best one can do to treat these impacts.
Depending on whether deterministic or stochastic phenomena predominate in the model,
the state estimation problem tends to also be viewed in either a deterministic or stochastic
light.

Performance Criteria The appropriate specification of the performance criteria de-
pends on the desired characteristics of the state estimator being designed. Here, of course,
the expected estimation errors play a central role, and special emphases result from the
specifically chosen error norms and signal classes, for which the appropriate optimization
is carried out. In many cases, the estimation errors are not weighted uniformly, since it
proves advantageous to weight by specifying time horizons.

On the basis of the prepared model and the selected performance criterion, the weight-
ing matrices for the combination of model simulation and measurement value can be
defined explicitly in advance by solving the appropriate Riccati equations. This applies
especially in the context of linear, time-invariant system models. Important, well-known
variants here are first the Kalman filter and then the H∞ filter. For nonlinear systems, lin-
earization around certain operating points makes it possible to apply the linear concepts
to a certain degree within the framework of the extended Kalman filter. Here, however,
no optimality characteristics can be shown and the derived confidence intervals are not
valid. Although, in the general nonlinear case, an optimal state estimator can indeed be
specified in theory, direct calculation—as in the case of the Kalman filter—is not possi-
ble. One must therefore rely on approximations. The particle filter accomplishes one such
approximate calculation with the help of a sequential Monte Carlo approach. In princi-
ple, this amounts to simulating in parallel numerous possible system trajectories across
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an appropriate proposal distribution and weighting them by the measurement values with
an importance sampling approach. An additional resampling step prevents degeneration of
this method over time. The filter distribution is then given at every point in time as an em-
pirical distribution (weighted samples), which is used to calculate approximation values
for further quantities of interest, such as averages, variances, or confidence intervals. In
contrast to the extended Kalman filter, this approach ensures mathematical convergence.
On the other hand, the efficiency of the implemented algorithm depends strongly on the
selection of suitable proposal distributions. Finding them is a problem that must be solved
specifically for the application in question when preparing the model.

3 Previous Studies on This Subject

For many years, the System Analysis, Prognosis, and Control Department has been work-
ing in various application contexts with the subject of state estimations. Here, in many
cases, existing methods have been adapted to the specific applications. Extensions and
brand-new solutions for special problems have also been developed, however.

Robust Observers for Elastomechanical Systems The Department’s first studies of
state estimation came in connection with a project to develop an observer for turbo gener-
ator sets in power plants. These turbo generator sets consist of a long shaft on which the
generator and, in general, several turbines are mounted. They are vulnerable to torsional
vibrations, which can be induced by disturbances in the electrical grid. These vibrations
can reach considerable amplitudes due to weak system damping, and the resulting material
fatigue can substantially decrease the turbo generator set’s life expectancy. Thus, the need
arose for a monitoring system to permanently estimate and track the system’s expected
remaining operating life. Because the structures surrounding the turbo generator set limit
access to the actual shaft to only a few places, a state estimator was developed on the basis
of torque measurements at a single shaft position. Here, the starting point for describing the
system dynamic is a high-dimensional, second order, linear state-space model, where the
states describe the torsion angle of the shaft sections relative to the zero position. Whereas
the resulting matrices for the moments of inertia and stiffness are quite well known from
the finite element model, the damping matrix is generally subject to large uncertainties.
At best, one has merely rough estimates for the modal damping. These boundary con-
ditions meant that the project focused on adapting known approaches from the field of
robust state estimation, with regard, in particular, to the high dimensionality. Especially
for weakly damped systems, however, the required solution of certain Riccati equations
is very poorly conditioned and presents problems for traditional solution methods. On the
other hand, explicit formulas for approximation solutions can be specified for special sys-
tem representations resulting from modal state-space transformations. Error estimates for
the approximation quality can be derived from familiar matrix inequalities.
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Fig. 1 Schematic drawing of an observer for power plant turbo generator sets with high-pressure
turbine (HD), intermediate-pressure turbine (MD), low-pressure turbine (ND), Generator (GEN),
and excitation machine (ERR)

To develop the state estimator for turbo generator shaft lines, the Department collab-
orated for many years on the industrial side with Siemens AG, in Mülheim, and service
providers such as E.ON Anlagenservice. On the scientific side, we should mention our
cooperation with the Electrical Drives and Mechatronic Chair, headed by Professor Dr.
Stefan Kulig at the University of Dortmund—a cooperation that is still active today. To-
gether with staff from Professor Kulig’s department, we developed the torque monitoring
and analysis system TorAn (see Fig. 1) introduced in Sect. 6. On the basis of the devel-
oped state estimators, this system delivers on-line predictions of the torsional vibration
behavior of turbo generator sets at critical shaft components and determines the resulting
material fatigue in the case of disturbances [5, 6]. To measure the torques needed to de-
termine the correction term, a contact-free magnetostrictive sensor was further developed
on behalf of the ITWM. In the course of further developments, TorAn was supplemented
with the monitoring systems TorFat and TorStor. Unlike TorAn, however, these systems
do not generate prognoses of the torsional vibrations by means of a state estimator. The
focus of TorFat was to develop methods for rapid detection of highly critical torsional
vibrations, such as sub-synchronous resonances. TorStor was designed to record torques
within experiments and determine as precisely as possible such relevant system quantities
as damping parameters or the resonant frequencies of the shaft line. To accomplish this,
a filter had to be developed to allow for compensation of the periodic disturbances—the
so-called run-out—resulting from the magnetostrictive measurement principle used by the
contact-free torque sensor. The phenomenon of run-out and the possibilities for using a
state estimator to filter these disturbances are described in Sect. 6. The torsional record-
ing and analysis system developed at the ITWM have been adopted by power plants and
large-scale industrial installations and are now in service around the world.

Controller Design for Active Vibration Damping of Elastomechanical Systems
Many model-based control approaches work on the principle of state feedback; that is,
the estimation of the system state is part of the control algorithm. Thus, a close relation-
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ship exists between state estimation and controller design. In this regard, the expertise in
state estimation of elastomechanical systems described in the previous section was fur-
ther pursued in projects involving active vibration damping. Only an optimal interplay
between system structure and system control can produce the best-possible damping of
oscillation behavior in relation to vibrations or noise reverberation, for example. Here too,
for model-based controller design, one starts with the second order differential equation
systems for describing the system dynamics of elastomechanical systems. Based on either
an explicit estimate of the system states—as, for example, in the context of model pre-
dictive control—or an implicit state estimate—as, for example, in the context of optimal
H2 controlling or robust H∞ controlling—the regulating variables for the actuators are
defined in relation to the selected performance goals. Here, the model parameters are ad-
justed to “reality” by means of the state estimations. The estimated states then form the
starting point for calculating the control input needed to achieve the desired performance
behavior. Thus, in comparison with such classical control approaches as PID, model-based
control also permits adjustment of performance quantities that are not directly measurable,
but must be optimized nonetheless.

On behalf of Volkswagen AG, a MATLAB Toolbox was developed for automated con-
troller design of active vibration damping in the drive train of a motor car, taking due
consideration of nonlinear actuator behavior [39]. In other projects, we investigated the
use of new “smart actuators” with nonlinear behaviors, such as hysteresis and saturation,
and developed controller concepts for compensating these effects. Active noise reduction
in vehicle interiors by means of smart actuators was one of our studies in this area [7].

Particle Filters The problem of state estimation in nonlinear system models having non-
Gaussian disturbance processes can be solved approximately with the help of sequential
Monte Carlo methods. Worth mentioning in particular is the particle filter algorithm, which
works on a set of weighted samples (particles). Parameter estimation problems can also be
addressed by including parameters in the state set or by means of additional Markov Chain
Monte Carlo (MCMC) approaches.

Within the Department, the methodology of particle filters was initially investigated and
adapted for state estimation on the basis of hysteresis-prone, nonlinear component models
from the automobile industry. Subsequently, these techniques were then used primarily in
the context of state and parameter estimation in biological systems. New methodological
developments took place in connection with the explicit treatment of uncertainties in the
measurement time-points in the particle filter approach. It was also shown that a model
predictive controller (MPC) can be realized by suitably coupling two particle filters.

In this field of endeavor, the Department has worked together for years with the System
Biology Department of Professor Mats Jirstrand, from the Fraunhofer Chalmers Center in
Gothenburg. Here, the particular focus of activity was the development of a Mathematica-
based system biology toolbox.



298 J. Hauth et al.

4 Modeling Principles

In this section, we will present filtering theory from the standpoint of a very general
stochastic approach. Stochastic state-space models form the basis for these reflections.
They separate the modeling of non-observable, internal system states from those system
quantities observed by means of measurements. Both are modeled using coupled stochas-
tic processes. Here, the stochastics is used to model disturbances and uncertainties, as well
as intrinsic system variability. The state process models the dynamics of the system, while
the measuring process describes the measurement/observation procedure. The underlying
spaces for state and measuring processes are kept very general: they are not restricted to
discrete or real spaces, and mixtures are also possible. Nor are there restrictions on the
time-points at which measurements may take place: multiple measurements with different
sampling times can be modeled, along with uncertainties in measurement time-points. The
advantage of this approach is that it makes possible a very flexible mathematical modeling;
models do not have to be restricted to a particular model class in advance. The disadvan-
tage is that drawing inferences about internal states on the basis of observed measurements
on real systems becomes very difficult and can only be made in this generality using Monte
Carlo approaches.

4.1 Inference in Complex Systems

Real systems always exhibit a certain variability. Whereas, in technical systems, one
uses design and control mechanisms to try and keep this variance small—or at least un-
der control—in biological systems, this is not feasible in most cases. Living cells, for
example—even those of the same type and age—differ greatly from one another in their
characteristics: they are different in size and shape, or they are at different developmental
stages. When using such microorganisms in bioreactors to produce pharmaceutical ingre-
dients, this variability is also ultimately transmitted to the technical systems involved. But
even in non-biological technical systems, (mostly undesired) variabilities can also arise,
through aging and wear, for example, or through faulty system behavior.

The appropriate mathematical tool for dealing with these uncertainties is probability
theory. While it often suffices in simple (mostly technical) systems to calculate using av-
erages, and one can therefore limit oneself to deterministic calculations (i.e., the solution
of differential equations), in many naturally-arising complex systems, this is not justified.
In these cases, therefore, we choose a stochastic approach right from the start.

We obtain qualitative information about technical or natural systems by observing them;
we obtain quantitative information by making measurements. The measurement process
itself should always be viewed independently from the actual system (see Fig. 2). The
actual state of the system at any point in time is not apparent to us. In this sense, the pro-
cess that describes the state of the system is hidden from our view. The measurements
serve to nonetheless make indirect quantitative statements about the current state of the
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Fig. 2 A state-space model in discrete time. Here, xk is the state vector at time k, yk is the mea-
surement at time k, dependent only on state xk at the same time. The stochastic dependencies are
given here by conditioned densities: ak(xk | xk−1) describes the dependency of the current state
xk exclusively on the basis of the previous state xk−1 (Markov property of the state process) and
bk(yk | xk), the dependency of the measurement yk exclusively from the current state xk . Only the
measurements are observable; the states xk themselves are hidden (non-observable)

system we are studying. Both processes—the hidden state process and also the observa-
tion process—must be viewed as having uncertainties: the state process, due to internal
variabilities in the system or unobservable and/or unmodeled external disturbances; the
measurement process, due to measurement errors or inaccuracies.

As a result of these multiple stochastic dependencies, the measurement results collected
over time for a dynamic, changing system exhibit complicated correlations among one
another, so that simple statistical evaluations of the measurements are not adequate.

The key that allows us to draw any inferences at all from noisy measurements about
the internal system states lies in the stochastic dependencies of both processes. These de-
pendencies affect, first, the time dependencies of the system states among each other and,
second, the stochastic dependencies of the measurement process on the system process.
Here, as well, probability theory offers a self-contained and extremely efficient tool that
allows us to both model such systems and also draw inferences in a rigorous and unam-
biguous manner.

The Bayesian approach, in particular, which allows each quantity to be equipped with
distributions, delivers here via Bayes’s law a universal tool with which any inference prob-
lem subject to uncertainty can be at least theoretically solved in a transparent and simple
fashion. This last trait—the simplicity of the theoretical solution—does not necessarily
transfer to practical calculations. Here, one finds analytical and, thus, easily calculable
solutions in only very few instances. In the case of state filtering, there are exactly two:
systems with a finite number of discrete states and linear systems with Gaussian distur-
bances. For the latter, the solution is given by the familiar Kalman filter.

In all other cases, the calculation proves difficult. Only two developments in the sec-
ond half of the 20th century—powerful computers and Monte Carlo methods—finally
made it possible to execute these calculations for complex cases as well. This advance
has not nearly run its course. Many algorithms, particularly in the area of state filtering
or parameter estimation in dynamic systems, are new. The particle filter for state estima-
tion in nonlinear systems, for example, is not yet 20 years old, and a promising method
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for joint Bayes estimation of states and parameters—supported by convergence proofs—
seems only to have recently been found in the form of the new PMCMC approach [16].

4.2 A Posteriori Path and Filter Distributions

The question arises as to what the existing measurement data allows one to claim, in the
best case, about a system’s internal states. In dynamic systems that are mathematically
represented by means of state-space models, the trajectories (paths) of the internal (cur-
rent) system states play an important role. Because we are considering stochastic systems,
the paths are not defined deterministically, but are subject to random distributions. These
random distributions are initially specified by the system model and define the possible
temporal developments of the system. One sometimes speaks of the prior or a priori dis-
tributions of the system trajectories (paths), since these are the probability distributions
that are valid before the measuring process begins. In systems with a large proportion of
stochastic disturbances, the system’s range of possibilities is typically very broad, that is,
the prior probability distribution of the path is very wide. It is the task of the filter to
modify the system’s prior probabilities with the help of the likewise randomly disturbed
measurement data, so that system paths that do not fit the data become less probable and
system paths that explain the measurements satisfactorily become more probable. These
probability distributions, which describe the system states and/or trajectories after mea-
surement data collection, are then referred to as posterior or a posteriori distributions.
These are conditional probabilities that are dependent on the measurements. The selection
of both the prior distributions for the system’s state trajectories and the distributions for the
measurements as functions of the state trajectories belongs to the model design process.
Once these distributions have been defined, the posterior distribution of the states is—from
a probability theory standpoint—the best possible information that one can obtain about
the system’s development on the basis of the measurement data. The mathematical result
delivering the posterior distribution is Bayes’s Theorem.

Thus, we are actually interested in the posterior distributions of the state trajectories.
Although these path distributions are often very difficult to treat, under certain circum-
stances, it is not even necessary to consider complete paths. This is so when the current
system states at each point in time already contain all the information about the future de-
velopment of the system. In this instance, it is no longer necessary to consider past states
(or entire past paths), since this would deliver no additional information. One then de-
scribes the system as having the Markov property. In systems having the Markov property,
it therefore suffices to consider the current distributions of the states over time, instead
of the path distributions. If one now calculates the corresponding posterior distributions
of the current system states at a given time t , taking only into consideration those mea-
surements made before or at time t , then one obtains exactly the filter distributions. The
filter distribution at each time t is therefore the posterior distribution of the states at time t ,
given the measurements up to time t . It turns out that the filter distributions for consecutive
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measurement time-points can be calculated recursively. At this level of generality, the state
filtering can then be performed with sequential Monte Carlo methods, the most important
of which is the particle filter, a combination of importance sampling and re-sampling over
time. Here, theoretical convergence results are available. The filter distribution serves as
the foundation for further important applications, such as parameter estimation and con-
trol.

4.3 Parameter Estimation with the Maximum Likelihood Approach

Parameter estimation in stochastic state-space systems is an extremely difficult problem.
In cases where the system dynamics can simply be modeled using ordinary differential
equations—that is, without stochastic noise in the states and/or correlated noise in the
measurements—the problem is often considered as a deterministic optimization problem
on the basis of a Maximum Likelihood (ML) approach. An overview of these approaches
having a focus on biological applications can be found in [38] and [22]; see [17] also,
where other aspects are considered, such as identifiability. A generalization of the ML
approach via introduction of more flexible cost functions is offered by the Prediction Er-
ror Estimation methods [20]. In contrast, if one takes as a basis a model that assumes
additional stochastic disturbances in the state dynamics, then one arrives at an optimiza-
tion problem with constraints, where these constraints are given by stochastic differential
equations (SDEs). In this case, the internal system states can no longer be directly ob-
served or calculated and must therefore be estimated, along with the parameters, on the
basis of existing measurement data. Toward this end, the method used for parameter es-
timation must be supplemented by the appropriate state filter methods. An overview of
ML estimation for this case is found in [40]. If the underlying SDEs are linear, then the
Kalman filter delivers an exact solution of the filter distribution. If the SDEs are nonlinear,
then one typically relies on linearized versions of the Kalman filter, such as the Extended
Kalman Filter (EKF) or the Unscented Kalman Filter (UKF), in order to obtain approxi-
mations of average values and co-variances of the filter distribution over time. All these
approximations based on the Kalman filter have a crucial disadvantage, however: they
approximate the filter distribution over time, in the best case, only with a Gaussian nor-
mal distribution. Therefore, they cannot properly approximate multi-modal distributions
(that is, those with multiple local maxima in the probability density) or skewed distri-
butions. Better approximations are given by simulation-based methods (sequential Monte
Carlo, SMC), to which the particle filter also belongs. Good convergence results have been
achieved here [24]. However, these algorithms still exhibit significant problems when ap-
plied to simultaneous estimation of dynamic states and fixed parameters ([15, 31, 45];
see [16] also).
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4.4 Parameter Estimation with the Bayesian Approach

The Bayesian context differs from the “classical” ML approach in that a prior probabil-

ity distribution is assigned to the parameter vector. The parameters are thus treated as

random variables, just like the state and measurement variables. The prior distribution

reflects knowledge about the parameters before considering the measurements. The esti-

mation problem thus consists of determining the posterior distribution, that is, the proba-

bility distribution that describes knowledge about the parameters after incorporation of the

measurement results (observations). At least theoretically, this can be calculated with the

aid of Bayes’s Theorem, if the prior distribution and the observations are given. For non-

trivial problems, however, this requires calculating high-dimensional integrals, for which

there are no analytical solutions. In practice, then, calculation presents great difficulties.

Simulation-based methods once again offer a remedy—in this case, Markov Chain Monte

Carlo (MCMC) methods. They represent a generally applicable tool for approximating

posterior distributions. Here as well, however, problems arise with the joint estimation of

dynamic states and fixed parameters. For example, the design of good distribution propos-

als for standard MCMC methods, such as the Metropolis-Hastings sampler, is practically

impossible. Therefore, these methods cannot be used profitably for estimations in stochas-

tic state-space models.

It would therefore be desirable to find an approach that combines the dynamic SMC

method with the static MCMC method—with SMC as a suitable tool for estimating the

states, and MCMC as a suitable tool for estimating the posterior distribution of the pa-

rameters. One would then have at one’s disposal a general tool for estimating parameters

in stochastic state-space models. For a long time, this combination approach remained

unattainable, since calculating the acceptance probabilities of the MCMC methods presup-

poses knowledge of the density function of the particle distributions. Andrieu et al. [16]

were the first to succeed, when they used an auxiliary variable approach (extension of

the state-space by the ancestral path distributions) to show that knowledge of the approx-

imate data likelihoods alone suffices; the particle filter delivers this knowledge for free,

so to speak. Their promising approach, known as Particle Markov Chain Monte Carlo

(PMCMC), is generally applicable and is backed up by good convergence results.

An alternative to PMCMC remains an established approach in which the fixed states

are provided with an artificial dynamic by allowing the parameters to change their values

slightly over time in a stochastic way. Thus, in the Bayesian context, states and parameters

are placed on the same level conceptually: parameters can be added to the system states

(augmented states) and estimated jointly via filter methods. In order for this approach to

work well, however, it is important for the variances of the artificial parameter dynamics

to be well chosen, a task that is quite difficult in many instances.
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4.5 Nonlinear Mixed Effects Models

Estimating in Nonlinear Mixed Effects Models (NLME) requires estimating both global
and individual parameters. With classical Maximum Likelihood estimations, there is a
large conceptual difference between these two types of parameters. Whereas the individ-
ual parameters are conceived as random variables that are appropriately outfitted with
probability distributions, the global parameters remain pure constants whose “true” val-
ues are simply unknown. If the equations underlying the model are nonlinear, this leads
to likelihood functions that can no longer be directly evaluated. In this case, one must
work with approximations. The tool NONMEM [18] has become established for certain
application areas in cases where the state dynamics are modeled using deterministic ODE.
In [41], in contrast, for NLME models based on stochastic differential equations (SDE),
an estimation algorithm is proposed that relies on the Extended Kalman Filter (EKF) for
filtering SDE. This approach was added to NONMEM [46]. In [19], a comparison was per-
formed between ODE-based and SDE-based methods for parameter estimation in NLME
models. The result here was that the estimations of the variabilities between the individual
parameters generally assume smaller values for the SDE model. Donnet and Samson [27]
propose combining a stochastic version of the Expectation Maximization Algorithm (for
estimating global parameters) with MCMC methods (for estimating the states and the in-
dividual parameters). However, because MCMC methods exhibit problems regarding the
use of joint state and parameter estimation (as mentioned above), the MCMC approach
was replaced in [28] by the more suitable PMCMC method of Andrieu et al. [16].

In contrast to the Maximum Likelihood approach, in the Bayesian context, the global
parameters are also supplied with (prior) probabilities, and the conceptual differences be-
tween global and individual parameters do not exist. The Mixed Effects model can be un-
derstood here simply as a hierarchical stochastic model with independent and dependent
parameters [14, 43, 44]. Simulation-based (Monte Carlo) methods can be easily adapted
to this case. However, the above-mentioned difficulties and requirements for the SMC and
MCMC methods (or combinations of the two) become even more pronounced due to the
correspondingly larger number of states and parameters in NLME models, since the num-
ber of states and individual parameters must be multiplied by the number of individual
parameters.

4.6 The State-Space Model

We now want to provide the mathematical foundations that give a concrete form to our
descriptions of the previous sections, and do so in a very generalized context. We consider
the state-space models in continuous time, that is, we take as given that the state process,
in particular, is a continuous-time Hidden Markov process with corresponding continuous-
time transition kernels.
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4.6.1 The State Process

Let (Ω,A ,P) be a probability space, and for each t ∈ [t0,∞) with t0 ∈ R, let
(Xt ,BXt

) be an arbitrary measurable space. Furthermore, for each t ∈ [t0,∞),
let Xt : Ω → Xt be a A − BXt

measurable random variable, such that X[t0,∞) :=
(Xt )t∈[t0,∞) is a continuous-time Markov process with general state-space

X[t0,∞) :=
∏

t0≤s

Xs .

For each t ∈ [t0,∞), LXt denotes the pushforward measure of P under Xt , that is,
LXt (B) := P(X−1

t (B)) for all B ∈ BXt
. Moreover, LX[t0,∞)

denotes the pushfor-
ward measure of P under X[t0,∞) := (Xs)s∈[t0,∞) (with the corresponding product
algebra). Analogously,

X[t0,t] :=
∏

t0≤s≤t

Xs for each t ≥ t0

denotes the state-space restricted to the interval [t0, t], and LX[t0,t] denotes the cor-
responding pushforward measure. For each s and t , with t > s ≥ t0, let Ks,t (xs,dxt )

be the Markov kernel of the process X[t0,∞) from time s to time t .

An important special case for X[t0,∞) is given by a multi-dimensional Itô process on
Xt = Rn (equipped with the corresponding Borel σ -algebra), defined by a stochastic dif-
ferential equation (SDE)

dXt = a(Xt , t)dt + B(Xt , t)dWt ,

with drift a(x, t), diffusion matrix B(x, t), multi-dimensional standard Wiener process Wt ,
and initial value given by the random variable Xt0 . In this case, it is possible to sample di-
rectly (at least approximately) from the kernels Ks,t , when a suitable discretization method
is applied, for instance, the Euler–Maruyama method.

4.6.2 Observations/Measurements

Let the process X[t0,∞) be observed via M random variables Y1:M with values in the
measurable spaces (Yj ,BYj

). Each single observation (measurement) Yj depends
on the state variable Xtj at some time tj and on the observation time (measure-
ment time) tj itself. We assume that, given the observation time tj and the state
Xtj = xtj , the variable Yj is independent of all other variables, and that the condi-
tional probability measure can be expressed via some conditional probability den-
sity gj (yj | xtj , tj ) with respect to a given reference measure μYj

on (Yj ,BYj
). We
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place no further conditions on g, such as linear dependence on the states, a normal
distribution, or the like.

4.6.3 Observation Times/Measurement Times
The observation times (measurement times) tj for j = 1, . . . ,M are typically assumed to

be deterministically given and known. At the ITWM, a variant of the particle filter was

developed that is able to directly account for uncertainties in the measurement times them-

selves [1, 8]. Here, it is assumed that the observation times tj are realizations of the ran-

dom variables Tj . These variables thus model the uncertainty about the exact measurement

times.

We will consider initially the standard case, which presupposes that all tj are deter-

ministically given and known. Formally, this corresponds to the case in which all tj are

random, but observed, so that all other emerging probabilities can be seen as conditionally

depending on them. Therefore, we will always express this dependence on the time-points

in our notation gj (yj | xtj , tj ) for the observation density. For simplicity’s sake, we also

presuppose that the observation times t1:M are strictly arranged in ascending order, so that

t0 < t1 < · · · < tM .

The standard particle filter is usually formulated for discrete-time Markov processes

Xt0:M := (Xtj )j∈{0,...,M} with general state-space, so that the state variables are only de-

fined for the initial time t0 and those time-points t1, . . . , tM for which measurements exist.

This case is included as a special case in a more generalized framework, however, in which

the state variable Xt is defined for all times t ≥ t0 (one only has to pick out the states at

the discretely given measurement times and ignore the others).

4.6.4 Full Model and Filter Model

The full model is given by the joint density of the variables Xt0:M and Y1:M (con-
ditioned on the observation times T1:M = t1:M ) with respect to the product measure
LXt0:M

∏M
j=1 μYj

:

f Xt0:M ,Y1:M |T1:M (xt0:M ,y1:M | t1:M) :=
M∏

j=1

gj (yj | xtj , tj ). (1)

The filter distribution at time tk , in contrast, is based on a reduced model.
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This filter model is given by the joint distribution density of the variables Xt0:k and
Y1:k (given that T1:M = t1:M ) with respect to the product measure LXt0:k

∏k
j=1 μYj

:

f Xt0:k ,Y1:k |T1:M (xt0:k , y1:k | t1:M) :=
k∏

j=1

gj (yj | xtj , tj ). (2)

This probability density is based on the state sequence Xt0:k . In contrast, we can concen-
trate on the single state Xtk by considering the joint density of the variables Xtk and Y1:k
(given that T1:M = t1:M ) with respect to LXtk

∏k
j=1 μYj

. This density can be calculated
by marginalization as follows:

f Xtk
,Y1:k |T1:M (xtk , y1:k | t1:M)

:=
∫

{x̃t0:k ∈Xt0:k : x̃tk
=xtk

}
f Xt0:k ,Y1:k |T1:M (x̃t0:k , y1:k | t1:M)dLXt0:k (x̃t0:k ). (3)

The filter density at time tk with respect to LXtk
can be calculated by means of Bayes’s

Theorem:

f Xtk
|Y1:k,T1:M (xtk | y1:k, t1:M) := f Xtk

,Y1:k |T1:M (xtk , y1:k | t1:M)

f Y1:k |T1:M (y1:k | t1:M)
(4)

with

f Y1:k |T1:M (y1:k | t1:M) :=
∫

Xt0:k
f Xt0:k ,Y1:k |T1:M (xt0:k , y1:k | t1:M)dLXt0:k (xt0:k ). (5)

For general (nonlinear) models, the practical calculation of the filter density is extremely
difficult. Nonetheless, a Monte Carlo approximation can be calculated with the help of the
particle filter. This is based on the crucial fact that filter densities f Xtk

|Y1:k,T1:M , in contrast
to the density of the full model, can be calculated recursively over time. This takes place
in two steps. First, we consider the filter distribution at time tk−1 given by the probabilities

P(Xtk−1 ∈ B | Y1:k−1 = y1:k−1, T1:M = t1:M)

=
∫

B

f
Xtk−1 |Y1:k−1,T1:M (xtk−1 | y1:k−1, t1:M)dLXtk−1

(xtk−1) (6)

for each set B ∈ BXtk−1
. We initially obtain the prediction distribution, that is, the distri-

bution of Xtk given by the data Y1:k−1 and T1:M by using the Markov kernel Ktk−1,tk :

P(Xtk ∈ B | Y1:k−1 = y1:k−1, T1:M = t1:M)

=
∫

B

∫

Xtk−1

f
Xtk−1 |Y1:k−1,T1:M (xtk−1 | y1:k−1, t1:M)dLXtk−1

(xtk−1)Ktk−1,tk (xtk−1 ,dxtk )

(7)

for each set B ∈ BXtk
.
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In the second step, we then use Bayes’s Theorem to obtain the filter distribution at
time tk :

P(Xtk ∈ B | Y1:k = y1:k, T1:M = t1:M)

=
∫

B

gk(yk | xtk , tk)

f Yk |Y1:k−1,T1:M (yk | y1:k−1, t1:M)

×
∫

Xtk−1

f
Xtk−1 |Y1:k−1,T1:M (xtk−1 | y1:k−1, t1:M)dLXtk−1

(xtk−1)

× Ktk−1,tk (xtk−1 ,dxtk ) (8)

for each set B ∈ BXtk
, with the normalizing constant

f Yk |Y1:k−1,T1:M (yk | y1:k−1, t1:M)

:=
∫

Xtk

gk(yk | xtk , tk)

×
∫

Xtk−1

f
Xtk−1 |Y1:k−1,T1:M (xtk−1 | y1:k−1, t1:M)dLXtk−1

(xtk−1)

× Ktk−1,tk (xtk−1 ,dxtk ). (9)

4.7 Particle Filter Algorithms for State Estimation

Particle filters [21, 30, 32] belong to the class of SMC methods used for state filtering
in state-space models. Thus, with the appropriate adaptations and/or extensions, they also
form the basis for parameter estimations. The standard particle filter works on discrete-
time, nonlinear and non-Gaussian models and can be easily adapted for use on continuous-
time systems with discrete-time measurements. The idea of the particle filter is to store
a representation of the current filter distribution at each time-point by means of a set
of weighted realizations (weighted samples or particles). This particle set is propagated
through time in a suitable manner by adapting the realizations and the particle weights via
the system dynamics and/or the measurements available at each time-point.

4.7.1 Importance Sampling
A key element of the particle filter is sequential importance sampling. We assume that a
second Markov chain X̃t0:M is given for the same state-space with pushforward measure
L

X̃tj
and Markov kernels K̃tj−1,tj (xtj−1 ,dxtj ) for j = 1, . . . ,M . We also assume that for

each xtj−1 ∈ Xtj−1 , the measure Ktj−1,tj (xtj−1 , ·) is absolutely continuous with respect to

the measure K̃tj−1,tj (xtj−1 , ·).



308 J. Hauth et al.

It follows that the Radon–Nikodym derivative (written as a conditional probability
density)

�tj |tj−1(xtj | xtj−1) := Ktj−1,tj (xtj−1 ,dxtj )

K̃tj−1,tj (xtj−1 ,dxtj )

exists. We also require that the pushforward measure LXt0
under Xt0 is absolutely

continuous with respect to the corresponding pushforward measure L
X̃t0

under X̃t0

with the Radon–Nikodym derivative

�t0(xt0) := dLXt0
(xt0)

dL
X̃t0

(xt0)
.

Sequential importance sampling can be performed under those circumstances in which
we are able to draw random realizations from both the initial distribution L

X̃t0
and the

kernels

K̃tj−1,tj (xtj−1 , ·)

for each xtj−1 ∈ Xtj−1 , and when we can calculate �t0(xt0) and �tj |tj−1(xtj | xtj−1) point-
wise.

Using

Ktk−1,tk (xtk−1 ,dxtk ) = �tk |tk−1(xtk | xtk−1)K̃tk−1,tk (xtk−1 ,dxtk ),

we can then rewrite the recursive formula (8) for the filter distribution at time tk as
follows:

P(Xtk ∈ B | Y1:k = y1:k, T1:M = t1:M)

=
∫

B

gk(yk | xtk , tk)

f Yk |Y1:k−1,T1:M (yk | y1:k−1, t1:M)

×
∫

Xtk−1

f
Xtk−1 |Y1:k−1,T1:M (xtk−1 | y1:k−1, t1:M)

× �tk |tk−1(xtk | xtk−1)dLXtk−1
(xtk−1)

× K̃tk−1,tk (xtk−1 ,dxtk ) (10)

for each B ∈ BXtk
.
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The direct calculation of the normalizing constants

f Yk |Y1:k−1,T1:M (yk | y1:k−1, t1:M)

(while the values y1:M are considered to be fixed) is unnecessary.

Sequential importance sampling is then performed as follows: we randomly draw a
number N of realizations xi

t0
from L

X̃t0
and calculate the corresponding unnormal-

ized weights

wi
t0

:= �t0

(
xi
t0

)
for all i = 1, . . . ,N.

We then randomly draw for all k = 1, . . . ,M realizations xi
tk

from the kernel

K̃tk−1,tk

(
xi
tk−1

,dxtk

)

for each i = 1, . . . ,N and calculate the unnormalized weights

wi
tk

:= �tk |tk−1

(
xi
tk

| xi
tk−1

)
gk

(
yk | xi

tk
, tk

)
wi

tk−1
for all i = 1, . . . ,N.

For suitable integrable functions h (for example, when certain restrictions are fulfilled
on the rate with which h may increase relative to x; see [34] for details), one can ap-
proximate the expected value of h with respect to the filter density conditioned on the
observations Y1:k = y1:k , given by

E
[
h(Xtk )

∣∣ Y1:k = y1:k, T1:M = t1:M
]

:= E
f

Xtk
|Y1:k=y1:k ,T1:M=t1:M (·|y1:k,t1:M)

[
h(Xtk )

]

=
∫

f Xtk
|Y1:k,T1:M (xtk | y1:k, t1:M)h(xtk )dLXtk

(xtk ), (11)

by means of

Etk,N

[
h(Xtk )

∣∣ Y1:k = y1:k, T1:M = t1:M
] :=

∑N
i=1 wi

tk
h(xi

tk
)

∑N
i=1 wi

tk

(12)

where N is the number of particles. It can be shown that as N approaches infinity, these
empirical expected values converge to the expected values from the filter distribution:

lim
N→∞ Etk,N

[
h(Xtk )

∣∣ Y1:k = y1:k, T1:M = t1:M
] = E

[
h(Xtk )

∣∣ Y1:k = y1:k, T1:M = t1:M
]
.

(13)
If we are in a position to sample from the Markov kernels Xtj of the states them-

selves, then we can select X̃tj = Xtj (at least in distribution), from which �t0(xt0) ≡ 1
and �tj |tj−1(xtj | xtj−1) ≡ 1 follow. This selection is indeed standard, but it is not always
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the best choice with regard to the effectiveness of the particle filter algorithm. Finding a
Markov chain X̃t0:M different than Xt0:M that can improve the effectiveness of the algo-
rithm, however, is an application-specific, and not always simple, task.

4.7.2 Resampling
Sequential importance sampling converges when the number of samples (particles) in-
creases exponentially over time. This is not practicable; typically, N is even held constant
over time. However, when the number N of particles remains constant over time, the par-
ticles propagated by sequential importance sampling quickly degenerate, since most of the
normalized weights converge rapidly toward 0.

The degree of degeneracy of the particle set is often measured by an estimator for
the so-called Effective Sample Size (ESS). This estimator at time t is given by

nESS := 1
∑N

i=1(w̃
i
t )

2
, (14)

where

w̃i
t := wi

t∑N
i=1 wi

t

(15)

refer to the normalized weights.

The ESS estimator assumes its maximum value N (number of particles), when all
weights are equal, and it approaches 1 when the variance of the weights, and thus the
degree of degeneracy, becomes large. To avoid this degeneration, one must insert a resam-
pling step in the algorithm, to be performed when the ESS drops below a certain threshold
NThreshold (usually selected to be N/2).

Resampling at time-point s� is based on given, non-negative (unnormalized) selec-
tion weights vi

s�
for each particle index i. One repeats random selections (with re-

placement) of particles having probabilities pi
� given by the normalized selection

weights

pi
� := vi

s�∑N
ν=1 vν

s�

. (16)

This is referred to as multinomial resampling. There are also procedures in which each
individual particle continues to be selected with probability pi

�, but which exhibit a re-
duced overall variance, such as Stratified Resampling or Systematic Resampling, and these
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should be chosen in preference to multinomial resampling (see [29, 33]). In any case, re-
sampling defines a (random) selection function ι� : I → I on the index set I := {1, . . . ,N}.

The resampling step is then performed in two phases:

• Replacement of the state samples (xi
s�

)i=1,...,N by the selected state samples

(x
ι�(i)
s� )i=1,...,N .

• Replacement of the unnormalized weights (wi
s�

)i=1,...,N by the corrected unnor-

malized weights (w
ι�(i)
s� /v

ι�(i)
s� )i=1,...,N .

It is necessary to correct the weights in the final step in order to compensate for the
bias introduced in the particle distribution by the selection process. This bias results from
the following consideration: Before sampling, the selection probability for particle i (at
each draw) is given by pi

�. The expected value for the number of times that particle i will

actually be drawn after N samplings is therefore Np
ι�(i)
� .

As a result, each normalized weight w̃i
s�

, for each selected particle i, must be cor-
rected by replacing it with the weight

w̃
ι�(i)
s�

Np
ι�(i)
�

/ N∑

ν=1

w̃
ι�(ν)
s�

Np
ι�(ν)
�

= w
ι�(i)
s�

v
ι�(i)
s�

/ N∑

ν=1

w
ι�(ν)
s�

v
ι�(ν)
s�

(17)

(using (16)).

Note that in the original particle filter, the selection weights vi
s�

at time s� are chosen so
that they are given by the particle weights (before the replacement), that is,

vi
s�

= wi
s�

for i = 1, . . . ,N,

so that after the resampling step, the unnormalized weights are all equal to 1. Nonethe-
less, in general, their choice is free and may be influenced by the system observations
(measurements), for example (as used in the so-called Auxiliary Particle Filter [42]).

4.7.3 Particle Filter Algorithm
The particle filter calculates the state realizations and weights recursively through time. In
its standard form, the particle filter can be specified as pseudo code, as in Algorithm 1.
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Algorithm 1 Standard particle filter

1: {At time t0:}
2: Randomly sample N state realizations (xi

t0
)i=1,...,N of X̃t0 with large N .

3: for all i = 1, . . . ,N do
4: Set the weight wi

t0
= �t0(x

i
t0

).
5: end for
6: for all times tk , k = 1, . . . ,M do
7: {Resample the particles (xi

tk−1
)i=1,...,N , if necessary (e.g., if the ESS drops below a

threshold):}
8: Randomly generate a selection function ι according to certain selection weights

(vi
tk−1

)i=1,...,N .
9: for i = 1, . . . ,N do

10: Replace the state realization xi
tk−1

by the selection x
ι(i)
tk−1

.

11: Replace the unnormalized weight wi
tk−1

by the corrected weight w
ι(i)
tk−1

/v
ι(i)
tk−1

.
12: end for
13: for i = 1, . . . ,N do
14: Randomly sample a realization xi

tk
from the Markov kernel

K̃tk−1,tk

(
xi
tk−1

, ·).
15: Update the weight by:

wi
tk

= �tk |tk−1

(
xi
tk

| xi
tk−1

)
gk

(
yk | xi

tk
, tk

)
wi

tk−1
.

16: end for
17: For given suitable integrable functions h, calculate the estimates

Etk,N

[
h(Xtk ) | Y1:k = y1:k, T1:M = t1:M

] :=
∑N

i=1 wi
tk

h(xi
tk

)
∑N

i=1 wi
tk

.

18: end for

Note that, in choosing X̃[t0,∞) = X[t0,∞) (in distribution), the identity

�tk |tk−1

(
xi
tk

| xi
tk−1

) ≡ 1

holds, and the updating of the weights simplifies to

wi
tk

= gk

(
yk | xi

tk
, tk

)
wi

tk−1
.

4.7.4 Data Likelihood
The model validation and discrimination are generally based on the data likelihood

Ztk (t1:M) := f Y1:k |T1:M (y1:k | t1:M) =
∫

Xt0:k
f Xt0:k ,Y1:k |T1:M (xt0:k , y1:k | t1:M)dLXt0:k (xt0:k )

= E
[
f Xt0:k ,Y1:k |T1:M (·, y1:k | t1:M)

]
(18)
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for given observations y1:k . Without resampling, the data likelihood could be approximated
by the empirical average of the unnormalized weights, that is, by

Ẑtk (t1:M) := 1

N

N∑

i=1

wi
tk
, (19)

since this is the empirical estimate of the above expected value. After a resampling step,
this no longer holds true.

In any case (with or without resampling), the ratio estimator

Ztk (t1:M)/Ztk−1(t1:M)

can be used to recursively approximate the data likelihood:

̂Ztk (t1:M)

Ztk−1(t1:M)
:=

∑N
i=1 �tk |tk−1(x

i
tk

| xi
tk−1

)gk(yk | xi
tk
, tk)w

i
tk−1∑N

i=1 wi
tk−1

, (20)

with the initial estimator Ẑt0(t1:M) = 1 (see [25], for example).

4.8 Kalman Filter

As mentioned, the explicit formulaic calculation of the filter distributions is only possible
in a very few instances. This is due to the recursively nested, high-dimensional integrals,
which, in general, cannot be analytically solved. In two cases, however, this is still possible
and practicable. In the first case, one assumes that the state-space can only jump between
a finite number of discrete states (here, one is also usually working with a discrete-time
model). The measurement disturbances have a normal distribution. One speaks here of
a hidden Markov model in the narrower sense. One is dealing with a finite number of
transitional probabilities, which can be directly calculated, and the filter distributions can
be determined accordingly via a recursive procedure by means of direct computation. The
second case, which is far more important for modeling, is given by linear systems with
exclusively Gaussian disturbances. Gauss distributions are characterized solely by the first
two moments (average and variance). Moreover, in linear systems, the Gaussian form is
retained for all other relevant distributions. The appropriate state filter is the Kalman filter:
The average and variance can be recursively calculated, simply and directly, using matrix
operations.

Based on the terminology developed in the previous section, the Kalman filter can be
derived as a special case without much effort. The Kalman filter is only correct as a state
filter when we subject our system to certain restrictions: linearity and Gaussian normality
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in the state and measurement processes. The assumption of linearity in the entire system
means that all system disturbances remain normally distributed, regardless of whether one
propagates them forward or backward through the system. This is evident by the corre-
sponding property of the multivariate Gauss distribution.

Here, we consider only the discrete-time case.

4.8.1 Multivariate Normal Distribution and Linearity
A random variable X has a multivariate normal distribution (multivariate Gauss distribu-
tion), denoted X ∼ Nd(μ,Σ), with average μ ∈ Rd and positive-semi-definite covariance
matrix Σ ∈ Rd×d , when there is a random �-vector Z with standard, normally-distributed
coefficients and a matrix A ∈ Rk×� with AA	 = Σ , such that

X = AZ + μ.

If the covariance matrix Σ is positive-definite rather than positive-semi-definite, then there
exists a corresponding probability density, and it is given by

1

(2π)d/2|Σ |1/2
exp

(
−1

2
(x − μ)	Σ−1(x − μ)

)
.

An affine-linear transformation Y = BX + c, with B ∈ Rm×d and c ∈ Rm, leads to a vari-
able Y , which also has a multivariate normal distribution:

Y ∼ Nm

(
Bμ + c,BΣB	)

.

Special cases are given by:

• Marginalization: Let X = (X1,X2)
	. Then X1 (and X2) are normally distributed, since

X1 = BX with B =
(

I 0
0 0

)
.

• Let Y = BX +V , with V ∼ Nm(0,R). It then follows that Y ∼ N (BX,BΣB	 +R),
since

Y = (
B I

)(
X

V

)
.

Note that, when

• p(x) is normally distributed,

X ∼ Nd(μ,Σ),

• p(y | x) is conditionally normally distributed to a given x,

Y | (X = x) ∼ Nm

(
ŷ(x),R

)
,
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and
• the average ŷ is affine-linearly dependent on x,

ŷ(x) = Bx + c,

then

• the joint distribution density p(x, y) = p(y | x)p(x) is normal and
• the marginal distribution density p(y) = ∫

p(x, y)dx is normal.

Here, the joint distribution density p(x, y) is given by

(
X

Y

)
∼ Nd+m

((
1
B

)
μ +

(
0
c

)
,

(
1
B

)
Σ

(
1
B

)	
+

(
0 0
0 R

))

= Nd+m

((
μ

Bμ + c

)
,

(
Σ ΣB	

BΣ BΣB	 + R

))
,

and the marginal distribution density p(y) is given by

Y ∼ Nm

(
Bμ + c,BΣB	 + R

)
.

In the following treatment, we denote the average and covariance matrix of Y as

μy = Bμ + c, and Σy = BΣB	 + R.

4.8.2 Bayes’s Theorem for Normal Distributions: Kalman Gain
Let us consider Bayes’s Theorem

p(y | x)p(x) = p(x, y) = p(x | y)p(y)

under the prerequisites listed above. All distribution densities that occur are thus normal.
It remains to be shown that this is also correct for the posterior distribution p(x | y). Let
us take the approach

X | (Y = y) ∼ Nd(Ky + e,G),

and consider both the left and right sides of the previous equation. In so doing, we obtain
the equation

Nd+m

((
μ

Bμ + c

)
,

(
Σ ΣB	

BΣ BΣB	 + R

))

= Nd+m

((
Kμy + e

μy

)
,

(
KΣyK

	 + G KΣy

ΣyK
	 Σy

))
.
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Solving for K , G and e leads to:

K = ΣB	Σ−1
y (Kalman gain),

G = Σ − KΣyK
	 = Σ − KΣyΣ

−1
y BΣ = (I − KB)Σ,

e = μ − Kμy = μ − K(Bμ + c).

The last equation yields:

Ky + e = μ + K
(
y − (Bμ + c)

)
.

4.8.3 Application to Recursive State Filtering: the Kalman Filter
As just shown, the posterior distribution p(x | y) is given by

Nd

(
μ + K

(
y − (Bμ + c)

)
, (I − KB)Σ

)
with K = ΣB	Σ−1

y .

We now consider the linear, normal, dynamic model:

x0 ∼ Nd(x̂0,Q0), xt ∼ Nd

(
Atxt−1 + b(ut−1),Qt

)
, yt ∼ Nm(Ctxt ,Rt ).

We further assume that p(xt−1 | y1:t−1) is recursively given by

Nd(x̂t−1|t−1,Pt−1|t−1),

starting with p(x0), that is, x̂0|0 = x̂0 and P0|0 = Q0. We must now show that p(xt | y1:t )
is also normally distributed, that is, it is given by

Nd(x̂t |t , Pt |t ).

The Kalman filter is calculated in two steps:

• Prediction:

p(xt | y1:t−1) =
∫

p(xt | xt−1)p(xt−1 | y1:t−1)dxt−1

is given by Nd(x̂t |t−1,Pt |t−1), with

x̂t |t−1 = At x̂t−1|t−1 + b(ut−1), and Pt |t−1 = AtPt−1|t−1A
	
t + Qt.
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• Update:

p(xt | y1:t ) = p(yt | xt )p(xt | y1:t−1)

p(yt | y1:t )
is given by Nd(x̂t |t , Pt |t ), with

St = CtPt |t−1C
	
t + Rt, Kt = Pt |t−1C

	
t S−1

t ,

x̂t |t = x̂t |t−1 + Kt

(
yt − (Ct x̂t |t−1)

)
, Pt |t = (I − KtCt )Pt |t−1.

In the continuous-time case, we have a similar situation for the solution of the corre-
sponding differential equations.

4.9 Extended Kalman Filter

As mentioned above, in linear systems with normally distributed disturbances, the normal
distribution is also transferred to all other relevant distributions, including the filter dis-
tribution. This is not so for nonlinear systems, even when all disturbances are assumed
to be normally distributed. The filter distribution, in particular, can be arbitrarily complex
in these cases. Except for the simple cases, in which merely an additional asymmetry ap-
pears in the distribution, there can also be filter distributions with multiple local maxima
(modes). Although such distributions can only be very poorly approximated by the single-
mode Gauss distribution, this type of approximation is standard and is applied in the vast
majority of cases. One does so by linearizing the nonlinear system for the current state
values and then applying the Kalman filter to this linearized system. The resulting filter is
then called an Extended Kalman Filter (EKF). However, due to the aforementioned poor
approximation of Gauss distributions for multi-mode filter distributions, general conver-
gence results for this filter are not to be expected. One often tries to improve at least the
covariance values of the EKF estimator by increasing computational efforts, which occurs
in the case of the Unscented Kalman Filter, for example. However, the fundamental prob-
lem of approximating complex filter distributions using unimodal Gauss distributions still
remains.

4.10 MTU-PF: Accounting for Uncertainties in the Measurement
Time-Points when State Filtering with the Particle Filter

We now return to the general case of the stochastic state-space and want to dispense
with the assumption that the observation time-points (measurement time-points) tj for
j = 1, . . . ,M are given and known deterministically. Instead, we want to assume that the
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observation times tj are realizations of random variables Tj . These variables thus model

the uncertainty about the exact measurement time-points. In contrast to the observation

variables Yj themselves, the observation times Tj are never directly observed (measured).

Instead, we assume that the only information we have at our disposal is their probabil-

ity distribution on the half-axis [t0,∞) itself, whereas, for the observations Yj , we know

both the densities gj (yj | xtj , tj ) and the observed values yj themselves. Consequently,

we have here a significant conceptual difference.

We consider here only the simplest case, in which each time variable Tj is independent

from each other time variable. Indeed, this contradicts the fact that measurement values

typically follow a prescribed chronology, such as T1 < T2 < T3 < · · · , which would imply

a stochastic dependency between the variables Tj . However, this would lead to substan-

tially more complicated algorithms. Moreover, dependencies in the chronology can also

be simply introduced via appropriate restrictions to the support suppTj of the random

variables Tj , for example, by requiring that all elements of suppTj are smaller than all

elements of suppTj+1. In this way, the independence of the variables from one another is

preserved. In general, the probability distribution of each individual variable Tj should be

given by a density γj (tj ) relative to the Lebesgue measure λ[t0,∞) on the interval [t0,∞).

Normally, the uncertainty in the measurement time-points is incorporated into the un-

certainty of the measurement value by increasing the latter’s variance (lumped measure-

ment disturbances; see Fig. 3). This generally leads to parameters that can only be very

conservatively estimated (with large uncertainties); for rapidly changing states, however,

this procedure can also lead to really erroneous estimates (see Fig. 4(b)–(d)).

The standard particle filter can be extended appropriately (see [1, 8]). If there re-

ally are uncertainties in the measurement time-points, the resulting Measurement Time

Uncertainty-Particle Filter (MTU-PF) delivers substantially better estimates than the stan-

dard particle filter (see Fig. 4 (a)).

The main difference between the MTU and the standard particle filter is that the weights

are not just updated at discrete time-points (in the standard filter, at the exact measurement

time-points); in principle, they are updated continuously, over all time-points. This results

from the fact that the measurement time-points themselves are “smeared” across the time

axis due to the densities γj (tj ). This opens up a much broader range of possibilities for

stabilizing the algorithm—for example, by choosing an adaptive increment control based

on the development of the ESS estimator. With strongly decreasing ESS (i.e., high risk

of algorithm degeneration), a smaller time increment (step size) can be selected so that

early, repeated resampling can keep the particle set in good condition (at least from the

standpoint of a high ESS value) (see Fig. 5). This is not possible in the standard case, since

here, the algorithm’s step size is fixed by the measurement intervals. More details can be

found in [1] and [8]. In Sect. 7, we will introduce a biomedical application of this MTU

particle filter and compare it to the standard particle filter.
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Fig. 3 Monte Carlo simulation of measurement values for a simple model consisting of one state
with exponential growth and normally-distributed disturbances, as well as normally-distributed dis-
turbances in the measurement values. The dashed green lines represent the nominal development
(average) of the state over time. The green shaded areas show the distribution of the measurement
times and values. (a) Separate modeling of uncertainty in measurement time-points (horizontal) and
values (vertical); variance of the measurement values σy = 0.005. (b)–(d) Without special model-
ing of the uncertainty in the measurement time-points; scattering only in the measurement values
(vertical). Here, to compensate, the variance σy of the measurement values is gradually increased. It
shows that this compensation in (b)–(d) cannot adequately reproduce the distribution of the measure-
ment values in case (a). This is especially visible for areas with steep increases (early time-points).
Whereas in (a), the distributions in the y-direction scatter more here than where the state is constant
(later time-points), in (b)–(d), the scattering in the y-direction is equally pronounced everywhere, as
dictated by the model
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Fig. 4 Simulated distributions of measurement values after estimating parameters and states in the
sample model with various filters. The yellow points correspond to the measurements used for the es-
timates, which were generated as random realizations of the distribution shown in Fig. 3(a). (a) MTU
particle filter; (b)–(d) standard particle filter with different measurement value variances σy . The
purple shaded areas show the distributions of the measurements that would result from the various
estimates of the particle filters. The actual distribution of the measurement values can be seen in
Fig. 3(a). The estimates with the MTU particle filter deliver clearly better matching distributions
than the standard particle filter

4.11 PF-MPC as a Particle Filter-Based MPC Approach

At the ITWM, we developed a generalized, stochastic, nonlinear Model Predictive Control
(MPC) approach based on a double application of the particle filter [3]. Model Predic-
tive Control refers to a class of model-based controllers whose development began in the
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Fig. 5 Comparison of ESS estimates during filtering. (a) MTU particle filter; (b)–(d) standard par-
ticle filter with different measurement value variances σy . Clearly, the ESS in the standard filters
(b)–(d) falls off significantly at the discrete time-points for which a measurement is available. In (a),
this is prevented by early resampling

1970s. Unlike traditional control approaches, such as PID controllers, the control signal
is not determined solely by the current state (or an estimate thereof). Instead, the MPC
controller makes use of a system model to enable predictive calculation of the system’s
development under the influence of the control signal uj . Based on these predictions, the
control signal is defined over a particular time period (horizon) Tp , so as to minimize a
given target function J . Then, the first value of this calculated control signal is delivered
to the system as a control input. This procedure is continually repeated over time.

In the past, the particle filter was often used for state estimation in the context of an
MPC approach. Our approach is new in the sense that our controller not only uses the
particle filter for state estimation, but also for solving the optimization problem. This is
accomplished by considering the control targets as virtual measurements. After adding
the control variable to the state variables, the optimization problem reduces to a filter
problem: the conditioned distributions of the control signal under given targets can thus
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Fig. 6 Schematic diagram of the PF-MPC controller. Here, x(i)
k

is the state vector of the i-th particle

with weight w
(i)
k

at time k in the first particle filter for state estimation; yk is the measurement at

time k; ū
(i)
k

is the value of the control variable of the i-th particle with weight w̄
(i)
k

, as output of
the second particle filter. This particle set serves to calculate the optimal control value u∗

k
; Ns is the

number of particles in each filter

be understood as a filter distribution and can therefore be calculated with a second particle
filter. On the basis of these filter distributions for the control signal, the filtering trajectory
most likely to lead to good system behavior can then be selected (see Fig. 6). The first
value of this trajectory then serves as the next control input.

In the standard MPC approach, the target function J = J (xk, ūk:(k+Tp), Tp) is usually
of the form

J =
k+Tp∑

j=k

‖ūj − ūj−1‖2
Q +

k+Tp∑

j=k+1

‖sj − xj‖2
R.

Here, the norms refer to weighted Euclidian norms with the weighting matrices Q and R.
The first term ensures that the difference between consecutive control values ūj−1 and
ūj remains small. The second term penalizes deviations of the system states xj from the
target states sj ; these target states describe those state trajectories that the system is to
preferentially follow. The trick is that a minimization of J corresponds to a maximization
of exp−1/2J , that is—except for a normalizing constant—to a multivariate Gauss distribu-
tion density. For given states xj , this can be viewed as a joint distribution of the control
signal transition probabilities and the observation probabilities of sj . But the variant of the
particle filter introduced above realizes just that. The treatment of the target function as, in
its essence, a distribution density immediately opens the possibility of lifting the restric-
tion to Gauss distributions and permitting general, complex probability densities. In this
way, one can incorporate very complex strategies in the control system, along with, in a
very free manner, restrictions and constraints. These only have to be appropriately repro-
duced in probability distributions, which can then be treated, so to speak, as the preferred
distributions of the system states. Here, however, problems can arise from the possible
degeneration of the particle filter algorithm; the control strategy must be well designed in
order to keep the degeneration as small as possible. Real-time controlling on the basis of
nonlinear models is then quite feasible. As an example, Fig. 7 shows the control system
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Fig. 7 Controlling a simulated inverted pendulum. (a) Movement of the pendulum over time, as
indicated by color transition from black to red to yellow. Black: Start, with pendulum hanging
below. Red: Swinging the pendulum into inverted position. Yellow: Inverted, balanced pendulum.
The movement of the pendulum in the x-direction (cart movement) remains within narrow bounds.
(b) Progression of the states p1 (position, blue) and φ1 (deflection angle, black) of the pendulum
over time. (c) Prediction of the marginal distribution of the position p1 (magenta) across the time
horizon (j = k, . . . , k + Tp with Tp = 21) in the second particle filter at time-point k = 25. The
green line describes the estimated average. (d) Progression of the state φ2 (velocity of the deflection
angle, black) in comparison with the specified progression of the corresponding set-point f3 (blue),
as a function of the deflection angle φ1 and its velocity φ2

for a nonlinear, inverted pendulum mounted on a cart that is sitting on a track. By moving
the cart along the track, the pendulum is to be first swung into a vertical position and then
held in this balanced state. As a supplementary constraint, the cart is not to drive across
specified boundaries as it is moved along the track. It was possible to design the controls so
simply that the computer-simulated system could be controlled in real-time (on a normal
PC). Because the original, non-linearized model is used, both control tasks—swinging the
pendulum into the vertical position and keeping it balanced there—can be accomplished
with a single controller. More details can be found in [3].

5 Relationship to Simulation

As shown in the previous sections, one can estimate the hidden states of a process at
prescribed measurement time-points by combining just a small amount of measurement
data and a suitable mathematical system model. To do so, one performs a single system
simulation step and then appropriately adapts the resulting calculated system state on the
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basis of the new measurement information that has arrived during this time step. In addition
to the actual process dynamic, another significant factor in choosing and implementing a
state estimator is the computation time available for the algorithm and/or the level of real-
time capability required for the application.

5.1 Requirements Relating to the Application

The amount of computation time available depends primarily on the application context of
the state estimation. One must first decide whether it is to be performed online or offline,
that is, in real-time or not.

For offline state estimations, the amount of computation time required is usually not a
critical factor; the differential equation systems to be solved in the course of the simulation
“simply” need to be solvable. The required computation time plays a subordinate role,
since data acquisition and state estimation are not temporally linked to one another. This
approach is frequently used when performing state estimations in connection with the
identification of process parameters.

For online applications, however, such as safety systems, process monitoring and/or
diagnosis, and process control, real-time capability is required for state estimating. Here,
the real-time capability is assessed in relation to the updating time required for the state
estimation. Depending on the process dynamic and the application, this can range from
milliseconds to minutes. The requirements resulting from the three above-mentioned ap-
plications are discussed in the following sections:

• For critical situations in safety systems, the state estimation, the simultaneous pro-
cess analysis for risk assessment, and the protective response trigger must be accom-
plished on the order of milliseconds. Even with very fast hardware systems, this speed
is frequently impossible. Therefore, when developing such a system, the algorithms
for risk analysis and protective response should be implemented on their own very
high-speed hardware platform. For storage and diagnosis of events categorized as rel-
evant by the safety system, one can then use a downstream monitoring system based
on a state estimator on independent hardware. One can justify this separation, since,
for system diagnosis, one is generally interested only in conspicuous and/or critical
events and the upstream safety mechanism functions as a corresponding event detec-
tor.

• In addition to their downstream use in safety systems, independent monitoring sys-
tems are also frequently used for process behavior analysis or system diagnosis.
Here as well, slight time delays in the analysis of the results are often permissi-
ble. In this case, one performs a delayed execution of the state estimation for mea-
surements collected within a specified time window, while, in parallel, data for the
next time window is being collected and stored. To prevent data loss, however, ex-
ecution of both the state estimation and the diagnosis or evaluation algorithms must
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be completed within the time required to store the measurement data. The ITWM’s
torque monitoring systems introduced in Sect. 6 also work according to this princi-
ple.

• In the course of process management and control, a controller must optimally adjust
the performance of the process and, in particular, maintain process stability. In cases
where there are no directly measureable performance variables, the optimal control
inputs are calculated on the basis of the system state determined by a model-based
state estimator. The execution of the state estimation must take into account the up-
dating rate of the controller. Here, one must allow for the fact that additional com-
puting capacity is needed for the controller to calculate the control inputs for the
system. State estimation and calculation of the control signals must both take place
within the available updating time. In connection with the BMWI project “Devel-
opment of an energy-efficient furnace concept for the heat treatment of glass,” this
concept was used at the Fraunhofer ITWM on behalf of Schott AG to design a con-
troller for the energy-efficient management of the glass cooling process. Here, in
each time step, measurement information from a few air temperature sensors was
used to estimate the temperature distribution in the entire furnace with a Kalman fil-
ter.

The computing time required for the state estimation depends on the time needed to per-
form the system simulation step and on the subsequent adaptation of the state. In many
control engineering applications, system behavior is modeled by means of finite element
approaches. Even at moderate resolution, these lead to high-dimensional models and, thus,
to correspondingly long simulation times. Therefore, in many applications, regardless of
the state estimator being used, one must initially reduce model complexity with mathemat-
ical model order reduction methods, so that the model-based state estimation is possible
within the available computing time. The challenge with model order reduction is gen-
erating a less complex model that still approximates the dynamic of the real process in
the relevant working areas as well as possible. The errors resulting from the model order
reduction must then be accounted for in the state estimation in the form of process un-
certainties. In this field, the Fraunhofer ITWM develops symbolic and numerical model
reduction algorithms for parametric nonlinear systems.

Another component with a comparable impact on simulation time is the computa-
tional and storage capacity of the hardware platform being used. Along with the avail-
able working memory, the processing power must also be taken into consideration when
implementing the selected filter. While today’s typical PC processors or modern embed-
ded systems exhibit no computation time problems for many applications when suit-
ably reduced models are used, low cost processors with very low computing power
and storage capacity are still often utilized for industrial mass-produced goods to save
money.
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5.2 Implementations at the ITWM

5.2.1 Linear State Estimators
Various linear state estimators have already been put to use at the Fraunhofer ITWM for
diverse industrial projects and products. The starting point for the following treatment is a
linear, time-variant state-space model of the form

ẋ(t) = A(t)x(t) + B(t)u(t) + Q(t)w(t)

z(t) = C1(t)x(t)

y(t) = C2(t)x(t) + M(t)v(t) (21)

for the technical or biological process under consideration. Here, A(t) ∈ R

n×n is the state
matrix and B(t) ∈ R

n×q is the input matrix, with which the measured system inputs u(t)

are assigned to the states and, where necessary, also converted into the needed physical
quantities. The outputs of actual interest z(t) are calculated from the states with the ma-
trix C1(t) ∈R

k×n. These outputs can be any of the states themselves, that is, k = n and
C1 = In×n, or physical quantities converted from one or more states, such as torque cal-
culated from the twisting angles (states x(t)) for a shaft. The outputs z(t) thus calculated
are frequently used as virtual sensors for process analysis or control. State estimation also
requires a comparison of the simulation result with the real measurement information in
order to calculate the correction terms. Therefore, one must determine from the model the
physical quantities corresponding to the sensor measurement values. This is done by trans-
forming the states x(t) with the matrix C2(t) ∈ R

p×n. Moreover, in (21), w(t) and v(t) are
stochastic disturbances that are modeled by the matrices Q(t) and M(t) and which impact
the system and/or the measurements. Selection of the appropriate state estimator now de-
pends on the assumptions made and/or on the process characteristics.

Discrete Kalman Filter Due to its simple iterative calculation scheme, the linear dis-
crete Kalman filter, along with its diverse variations, is the most widely used algorithm for
state estimations of linear systems (see Sect. 4.8). In particular, it can also be used in cases
of non-steady-state noise or with time-variant systems. In order to apply it to the continu-
ous model being treated here (21), one must first discretize it, reduce it to an appropriate
dimension, and implement the iterative, discrete Kalman filter specified in Sect. 4.8. One
such application at the ITWM involved the aforementioned BMWI project “Development
of an energy-efficient furnace concept for the heat treatment of glass,” where we estimated
the temperature distribution in a passive glass annealing furnace on the basis of the time
variance of the underlying linear model.

Continuous-Time Filter The Kalman-Bucy filter is the continuous form of the Kalman
filter. Analogously to the discrete Kalman filter, the disturbances are handled purely by
means of the expectation value and covariances, so that one can assume M(t) = I for the
continuous state-space system (21) without any restrictions. Here, we let w(t) represent
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normally-distributed process noise with expectation value 0 and covariance matrix Rw(t),
and we let v(t) represent normally-distributed measurement noise with expectation value
0 and covariance matrix Rv(t).

Using the previous assumptions, the continuous Kalman filter is given by

˙̂x(t) = A(t)x̂(t) + B(t)u(t) + K(t)
(
y(t) − C2 ˆx(t)

)
(22)

where K(t) = P(t)C2(t)
T R−1

v (t) and P(t) is the solution of the differential equa-
tion

Ṗ = A(t)P + PA(t)T − PCT
2 R−1

v (t)C2(t)P + QRw(t)QT (23)

with P(0) = E{x(0)xT (0)}.
Due to the time-dependency of the noise and the time-variance of the model,

calculating the solution of the differential equation (23) for each time-step is
very computationally intensive and, in many cases, cannot be done online. This
is not so for a time-invariant system, that is, one in which the state matrices A,
B and C2 in (21) are constant. For the underlying process, one frequently as-
sumes steady-state measurement and process noise, along with time-invariance.
In this case, the Kalman gain K converges to a constant matrix and is given
by

K = PCT
2 R−1

v ,

where P is the stabilizing solution of the Riccati equation

AP + PAT − PCT
2 R−1

v C2P + QRwQT = 0. (24)

The resulting filter can then be represented as a linear state-space system, with
(AKF,BKF,CKF) given by

AKF = A − PCT
2 R−1

v C2

BKF = [
PCT

2 R−1
v B

]

CKF = C1. (25)

To implement this filter, one can now perform a single a priori offline calculation of the
Kalman gain and the error covariance estimation before the actual state estimation. Then,
one determines the desired states online for each time-step by solving the differential equa-
tion system. Here, one can either discretize the system a priori or calculate the solution of
the differential equation system stepwise using a suitable algorithm. This separation into
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offline and online calculation steps makes implementation possible even for short updating
times.

As described in Sect. 4, the Kalman filter offers, in the form of the error covariance
matrix, a confidence measure for the estimated states under the assumed stochastic in-
fluences. From a systems theory perspective, the Kalman filter is the state estimator that
delivers optimal estimates, in the sense that it averages across all frequencies. An estimator
that focuses on critical frequencies is the H∞-filter [48], which is based on the H∞-norm.
For a well-defined, stable, time-invariant system G, this is defined by

∥∥G(s)
∥∥∞ := ess sup

ω
σ̄
(
G(jω)

)

with the maximum singular value

σ̄
(
G(jω)

) := max
u(ω)�=0

‖z(ω)‖2

‖u(ω)‖2

and z(ω) = G(jω)u(ω). For linear systems with one input and one output, the norm de-
scribes the maximum gain factor across all frequencies. Choosing the ∞-norm shifts the
focus from the simultaneous minimization of the energy of the transfer functions for all
frequencies to the most critical frequency of the system. In other words, it deals with a
worst-case scenario.

As the starting point for calculating the filter, we take a time-invariant linear state-
space system; that is, the matrices A, B , C1, and C2 in (21) are constant. With H∞-filter
problems, one assumes that the disturbances have limited energy. The actual information
about the intensity of the disturbances is captured by the time-invariant matrices in (21),
Q and M [2]. On the basis of the H∞-norm, the H∞-filter problem can be formulated as
follows [48]:

H∞-Filter Problem For a given γ > 0, find a causal filter F(s) ∈ H∞, where
H∞ is the set of all well-defined and real-rational, stable transfer functions, so that

sup
w∈L2[0,∞)

‖z̃ − ẑ‖2
2

‖w‖2
2

< γ 2.

Here z̃ denotes the real system output and ẑ, the estimated filter output.
One then obtains the desired gain-matrix for a linear, robust H∞-filter by solving

the following algebraic Riccati equation:

PAT + AP + P
(
γ −2CT

1 C1 − CT
2 MMT C2

)
P + QQT = 0. (26)
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If the positive, semi-definite stabilizing solution P exists, then the desired filter
F(s) ∈ H∞ can be represented in the state-space representation and the system
matrices (AHF,BHF,CHF) are given by

AHF = A − PCT
2

(
MMT

)−1
C2

BHF = [
PCT

2 (MMT )−1 B
]

CHF = C1. (27)

The difference between the Riccati equation (26) and the Riccati equation (24) for cal-
culating the Kalman gain is essentially the additional term γ −2CT

1 C1 resulting from the
robustness requirement. Here, the existence of a solution to the Riccati equation (26) is
not guaranteed for each γ . To obtain the most robust estimator possible, γ is iteratively
reduced until the solution of the algebraic Riccati equation exists. Therefore, as with the
Kalman filter (25), implementation of the robust linear H∞-filter (27) also involves first
solving an algebraic Riccati equation offline for the underlying linear, time-invariant state-
space model. The resulting H∞-filter is also given in the form of a dynamic continuous-
time state-space system (27). However, minimizing the H∞-norm results in more robust-
ness relative to unstructured disturbances and/or model uncertainties than exists for the
Kalman filter. The μ-synthesis, also used at the ITWM, delivers extensions relating to
structured uncertainties. The decision whether to use the H∞-filter or the Kalman filter
depends on the model uncertainties and the resulting robustness requirements.

The torque detection and analysis system TorAn described in Sect. 6 is an ITWM mon-
itoring system based on an online-capable, robust H∞-filter or the continuous Kalman
filter. On the basis of the measured mechanical torque signals of the energizing drive train
components, such as the motor or generator torque, and a direct torsion measurement with
a torque sensor, TorAn uses the selected filter to estimate the states given in the form of
the twisting angle of the rotating shaft. TorAn also uses the estimated states to predict and
analyze the torque characteristics for other critical, inaccessible shaft components. The al-
gorithms for data acquisition and state estimation and the criteria monitoring and fatigue
analysis were implemented as a real-time-capable C-Library with a link to an analog-
digital converter.

5.2.2 Nonlinear State Estimator

Constrained Extended Kalman Filter The extended Kalman filter is the extension of
the discrete Kalman filter to nonlinear systems. As with the previously described linear
state estimator, these filters do not initially allow for consideration of physical constraints.
However, there are some approaches that do make this possible, such as the Moving Hori-
zon Estimation or the Constrained Extended Kalman Filter (CEKF) proposed in [47]. The



330 J. Hauth et al.

basic idea of the CEKF is to initially perform a general state estimation with a first ex-
tended Kalman filter. Then, in a second extended Kalman filter, a correction to the first
estimation is undertaken so that the states lie within the permissible value range. Particu-
larly for nonlinear systems, one can frequently limit the states’ solution space by means of
physically motivated restrictions and, thus, prevent a possible divergence in the state es-
timation. The ITWM uses this filter to compensate rpm-dependent, periodic disturbances
in connection with torque measurements using an inductive torque sensor based on the
magnetostrictive effect (see Sect. 6.2).

Particle Filter Algorithm As described in detail in Sect. 4, the standard particle filter
works on discrete-time, nonlinear, non-Gaussian models and can be easily adapted for use
with continuous-time systems with discrete-time measurements. The particle filter algo-
rithm has already been used in diverse application areas in the form of prototype imple-
mentations. Among the applications are the measurement-based model identification of
a shock absorber with hysteresis effects, the estimation of gene copies (copy number) in
tumor DNA, and the estimation of parameters in the biomedical field (see Sect. 7). There
are implementations in Java and in the statistical programming language R, which is often
used in biomedicine. In addition, the particle filter algorithm has been implemented as an
element of a system-biology toolbox being developed at the Fraunhofer Chalmers Centre
(FCC) in Gothenburg on the basis of the symbolic programming environment Mathemat-
ica. Extensions to the particle filter algorithm have also been developed at the ITWM, in
particular, the adaptation of the algorithm to uncertainties in measurement time-points and
its double-use in a new nonlinear Model Predictive Control (MPC) approach.

6 Online Monitoring of Torsional Vibrations in Power Plant
Turbine Generator Shaft Lines

6.1 Problem Description

The first of what have become many endeavors involving state estimation in the System
Analysis, Prognosis, and Control Department began with a project to develop a state ob-
server for power plant turbine sets. These turbine sets consist of a long shaft on which are
mounted a generator for electricity generation and one or more turbines to drive the shaft
(see Fig. 8). Grid malfunctions or operational errors can trigger torsional vibrations in a
turbine set, which lead to fatigue in the shaft components and may even result in serious
mechanical damage. In some cases, the latter can induce additional, permanent torsional
vibrations at the rotational frequency and its harmonics. It is therefore necessary to ensure
continuous monitoring of turbine generator shaft lines for torsional vibrations. For many
years, the Fraunhofer ITWM has worked to develop methods for online monitoring of
torsional vibrations and has developed procedures for model-based prognosis of torsional
vibrations and run-out compensation of inductive magnetostrictive sensors. These results
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Fig. 8 Schematic of a power plant turbine set with generator (GEN), low-pressure turbine (ND),
intermediate-pressure turbine (MD), and high-pressure turbine (HD)

have been put into service around the world by such customers as E.ON Anlagenservice,
Siemens Energy, and ABB Utilities.

The challenges associated with the torsion monitoring of power plant turbine generator
shaft lines are diverse. The methods and products developed at the Fraunhofer ITWM to
meet these challenges include systems for the following:

• Experimental torsional analysis with which, for example, torsional natural frequencies
from turbine generator shaft lines can be determined (TorStor),

• Measurement-data-based detection and assessment of critical torsional vibrations, such
as sub-synchronous oscillations (TorFat),

• Targeted monitoring of at-risk locations in a turbine set—the shaft couplings, for
example—using model-based state estimators (TorAn), and

• Detection and classification of shaft damage.

All systems require torque measurements from at least one position on the drive train.
Here, one can make use of the magnetostrictive effect, which describes the relationship
between the magnetic permeability change and a change in strain when external loads are
applied. The measurement systems function with no shaft contact and can be positioned
flexibly. On the basis of the inverse magnetostrictive effect of ferromagnetic shafts, they
detect changes in the torsional stress on the shaft surface by means of induction and mag-
netic field measurements. Thus, they represent a useful alternative to traditional torque
sensing technology. The great advantage of these sensors is that their use requires no
structural modifications to the shaft itself. They can therefore be flexibly implemented
without influencing the dynamics of the shaft. The magnetostrictive sensor developed on
behalf of the Fraunhofer ITWM for torsion monitoring in power plants inductively mea-
sures the difference in magnetic permeability, which is proportional to the torsional stress
on the shaft surface across a large measurement range. Here, a primary coil in the center
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of the measurement head is excited with high frequency alternating current, thus produc-
ing a magnetic field. The magnetic field passes through the air gap between sensor and
shaft and penetrates the shaft’s surface. Depending on the magnetic permeability, the field
spreads out over the shaft surface and is assessed by four measurement coils within the
sensor head, which are positioned at a 45-degree angle to the main axis of the shaft. With
this measurement arrangement, the signal resulting from the measurement coil circuitry is
proportional to the torsional stress on the shaft surface. The sensor’s output voltage/current
SV (t) is converted into torque SM(t) by means of

SM(t) = gain ∗ (
SV (t)−offset

)
.

The quantities offset and gain needed for the conversion must be determined in a cali-
bration step using measurements from two known load points. After calibration, the sensor
can then be used for torque measurements.

6.2 Run-out Compensation Using the Constrained Extended Kalman
Filter

In addition to the torsional stresses resulting from external loads, there are always perma-
nent, frozen stresses on the shaft surface that arise during the manufacturing process. These
so-called inhomogeneities vary locally, and it is impossible to make any general a priori
statement about their shape and size. Therefore, when performing torsional measurements
on a rotating shaft with an inductive magnetostrictive sensor, one must take into consid-
eration that these inhomogeneities along the measurement track lead to varying magnetic
flows around the entire circumference. However, the rotation of the shaft causes the signals
resulting from the inhomogeneities along the measurement track around the shaft circum-
ference to always recur in the same sequence. Thus, one obtains a deterministic, periodic
disturbance signal yInhom(t), referred to as the run-out signal. Because one is dealing with
localized characteristics distributed around the circumference, the frequencies of the var-
ious elements of the disturbance signal correspond to whole-numbered multiples of the
shaft’s rotational frequency f (t). However, for state evaluations of industrial turbines, for
example, it is often exactly these frequencies that are of interest. Thus, the run-out masks
the significant system information, and determinations of the torsional load made without
signal correction always contain errors. Due to their characteristics, run-out signals can
be modeled with the time-dependent rotational frequency f (t) as the basic frequency of a
Fourier sum at time tk as follows:

yInhom(tk) =
n∑

l=1

al(tk) sin
(
l2πf (tk)tk

) + bl(tk) cos
(
l2πf (tk)tk

)
. (28)

The amplitudes al(tk) and bl(tk) do not change relative to a fixed reference point on the
shaft’s circumference, even when the rotational speed varies. For a non-changing mea-
surement track, they can be assumed to be constant. When the shaft is loaded with an
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external torque yT (tk), the disturbance signal is then superimposed on the torque signal.
The measurement noise of the measurement system v(t) must also be considered, so that
the measurement signal yMess(tk) of the torque sensor at time tk thus becomes

yMess(tk) = yT (tk) + yInhom(tk) + v(tk). (29)

In some applications, one can resort to classical signal filters, such as high-pass, low-pass,
or notch filters, to compensate the run-out signal. In the context of detecting critical tor-
sional frequencies for turbine sets, for example, one encounters mostly an excitation of the
critical excitable torsional natural frequencies, which do not correspond to the shaft rpm
and its harmonics for standard grid operation. By means of frequency-selective analysis
or band-pass filtering of the relevant frequency zones, one can therefore isolate the tor-
sional vibrations of interest yT (tk) from the measurement signal yMess(tk) for subsequent
analysis. If a disturbance frequency should correspond to one of the critical torsional fre-
quencies of interest, however, these torsional vibration signals would either be completely
eliminated with the aforementioned filter, or be at least strongly distorted. Therefore, one
should use a filter that eliminates the run-out signal, but leaves the actual relevant vibration
information unchanged—also for the shaft rpm and its whole-numbered multiples.

In a compensation method developed at the ITWM, the run-out signal yInhom(tk) is
estimated online relative to the circumference for each time-step tk and subtracted from
the measurement value yMess(tk). Here, however, the influences of all transfer functions,
such as phase shifts and amplitude attenuations from signal filters, must be taken into
consideration within the measurement chain.

The parameters to be determined in the run-out function (28) are described by the dy-
namic discrete state-space model

x(tk+1) = Ax(tk) + w(tk) (30)

y(tk) = h
(
x(tk)

) + v(tk) (31)

with x(tk) = [a0(tk), . . . , an(tk), b1(tk), . . . , bn(tk), f (tk),Θ(tk)]T ∈R

2n+3 and

A =

⎡

⎢⎢⎣

I1 0 0 0
0 I2 0 0
0 0 1 0
0 0 2π�t 1

⎤

⎥⎥⎦ ∈R

(2n+3)×(2n+3)

where I1 ∈ R

(n+1)×(n+1), I2 ∈ R

n×n are unit matrices. Moreover, w(tk) and v(tk) in
Eqs. (30) and (31) are normally-distributed, white process and measurement noise, re-
spectively, while h(x(tk)) represents the use of the states x(tk) in Eq. (28) and the subse-
quent signal filtering. The states x(t) are estimated by a mathematical state observer online
from the measurements by comparing yMess(tk) and y(tk). Here, in particular, constraints
resulting from the technical and physical boundary conditions of the measurements are
taken into account in the form of upper and lower bounds for each physical quantity. As
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Fig. 9 Run-out compensation
result with Constrained
Extended Kalman Filter
(CEKF)

the state estimator, the Constrained Extended Kalman Filter (CEKF) proposed in [47] was
adapted to the given run-out compensation problem. The CEKF allows one to distinguish
between the run-out signal and torsional vibrations, even when the torsional natural fre-
quency corresponds to the rotational frequency. Figure 9 shows the results of a CEKF
run-out compensation for a measurement with constant load. After the compensation, one
obtains the load value with sensor noise, which in this case is less than 0.5 %. Along with
the run-out compensation, the method also estimates the rotational frequency f (tk) and the
current position Θ(tk) of the shaft in relation to the sensor. Both this and other methods
have been used successfully for run-out filtering on magnetostrictive torque measurements
in industrial installations.

6.3 Prognosis of Torsional Vibrations for Inaccessible Components on
a Turbine Generator Shaft Line

During state monitoring of torsional vibrations on a power plant turbine generator shaft
line, one must be able to guarantee uninterrupted surveillance of the drive train’s critical
components. However, technical restrictions and cost concerns sometimes prevent place-
ment of torque sensors on all the critical shaft components one would like to observe. In
order to nonetheless be able to make a statement about the torsional oscillations and their
influence on any given shaft component, one must use a suitable, model-based prognosis
system. Older torsional oscillation monitoring systems are based on a pure system sim-
ulation, in which modeling errors, estimated initial conditions, and model uncertainties
during the simulation can lead unavoidably to deviations from true system behavior. An
overview of the existing systems can be found in [35]. Use of a mathematically robust,
online-capable state estimator represents an extension of the pure simulation approach.
This approach was first introduced by the Fraunhofer ITWM in collaboration with the
Electrical Drives and Mechatronics Chair of the Technical University of Dortmund, un-
der the supervision of Professor Stephan Kulig, for the torsion monitoring of power plant
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turbine generator shaft lines. Along with the measurement data needed for the simulation,
the state estimator receives a torque measurement for one component as an additional in-
put quantity. The mathematical state estimator then implicitly compares the real, measured
data with the time-series predicted by the simulation for the measurement site. Information
obtained on the difference between the measured torque signal and the system simulation
is integrated—as described in Sect. 5—into the prediction of the torsional vibration behav-
ior of the remaining components in the form of a correction term for error compensation.
Depending on the quality of the available physical information, either a Kalman filter or
a robust H∞-filter (see Sect. 5.2.1) is used for the torsion monitoring. The filter design is
accomplished at the ITWM by following the steps outlined below.

On the basis of the geometric and physical information available for the given drive
train, the finite element method is used to generate the Newtonian equations of motion—
a system of 2nd order ordinary differential equations—for the torsional behavior of the
drive train:

J ϕ̈(t) + Kϕ(t) = B̄u(t); y(t) = C̄ϕ(t). (32)

Here, 0 < JT = J ∈ R

n×n is the matrix of the mass moment of inertia and 0 ≤ KT =
K ∈ R

n×n, the torsional stiffness matrix of the system. Moreover, B̄ ∈ R

n×q is the in-
put matrix, which contains information about the position and conversion factors for the
externally applied torques of the generator and the turbines u(t). The matrix C̄ ∈ R

p×n

transforms the angular displacements ϕ(t) into torques y(t) for the targeted system com-
ponents, for example, the coupling between the turbine trains. The torque at the sensor’s
measurement site is another output, which is then used in the state estimators to compare
simulation and measurement. One knows that the matrices J and K can be diagonalized
by an equivalence transformation with the modal matrix V = [v1 · · ·vn] and a suitable
norming of the modes vi ∈R

n, i = 1, . . . , n. This then yields:

V T JV = I, V T KV = Λ, (33)

where I ∈ R

n×n is the unit matrix. The diagonal matrix Λ ∈R

n×n contains the generalized
eigenvalues of the undamped system, that is, KV = JV Λ.

To account for the damping neglected up to this point in Eq. (32), one usually has only
rough approximations regarding the modal damping. Therefore, Eq. (32), as will be now
demonstrated, is first modally transformed and then augmented by a modal damping term
Dẋ(t) with the modal damping matrix D ∈R

n×n. Because of this simplification, and also
because the modal damping coefficients are usually not known exactly for turbine gener-
ator shaft lines, one must treat these as model uncertainties during the subsequent filter
design. With these damping assumptions, and with the substitution of ϕ(t) = V x(t), one
obtains, taking into account the specified orthogonality conditions, the following system
of decoupled 2nd order differential equations:

ẍ(t) + Dẋ(t) + Λx(t) = V T B̄u(t); y(t) = C̄V x(t) (34)
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If one now also substitutes z(t) = [ x(t)

ẋ(t)

]
in (34), one obtains the following state-space

model:

ż(t) = Az(t) + Bu(t);
y(t) = Cz(t); (35)

with

A =
[

0 I

−Λ −D

]
∈ R

2n×2n, B =
[

0
V T B̄

]
∈R

2n×q and

C = [
C̄V 0

] ∈ R

p×2n.

In order for the state estimator to achieve real-time capability, that is, in order to be able to
calculate one time-step of the state estimation within the real time sampling interval, the
dimension of the state-space model (35) is reduced using a model order reduction method.
Here, the system model is transformed using the appropriate projection matrices TR,TL ∈
R

n×s with s � n. This yields

żr (t) = Arz(t) + Bru(t)

y(t) = Crzr(t); (36)

with

z(t) = TRzr(t), Ar = T T
L ATR, Br = T T

L B, Cr = CTR.

Especially for the reduction of weakly damped, 2nd order systems—as we have with the
torsion model for power plant turbine shaft lines —the Fraunhofer ITWM has developed
efficient methods for an approximated, frequency-weighted, balanced reduction [9]. With
regard to the quality of the approximation, special emphasis is placed here on specifying
a frequency range in advance. For the torsion monitoring of turbine generator shaft lines,
this is the low-frequency range from 0 to 200 Hz, since most malfunctions in the electrical
grid result primarily in an excitation of the torsional natural frequency of the power plant
turbine shaft line below the grid frequency.

When designing the state estimator, one must then consider both the above-mentioned
modeling assumptions and also the uncertainties resulting from the model reduction.
Therefore, one adapts the model using suitable methods based on measurements, such
as the modal data of the real system. Here, one must consider that the torsional natural
frequencies cannot be excited experimentally at will for power plant turbine generator
shaft lines. Thus, the modal data must often be determined from actual grid disturbances
by means of permanent monitoring and analysis. Moreover, one only has torsion mea-
surements for a few shaft components. All told, one has usually measured only a few
natural frequencies from the low-frequency range, and measurement values are available
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Fig. 10 Schematic of the test rig showing the division into finite elements

Fig. 11 Torque test rig (©Chair Electrical Drives and Mechatronics, TU Dortmund)

for few of the nodes for the corresponding modes. In contrast, the analytical model con-
tains significantly more natural frequencies, depending on the model dimension. How-
ever, many of these “extra” natural frequencies are in the high-frequency range. To the
extent that one has modal information, that is, measurements of natural frequencies and
modes, one then uses model updating methods to improve model quality. Using the iter-
ative model updating methods [10] developed for this problem at the Fraunhofer ITWM,
the model parameters are adapted so as to achieve the desired correspondence between the
model’s modal data and the measured data. The reduced and adapted model then serves
as the basis for the filter design (e.g., Kalman filter or H∞-filter; see Sect. 5.2.1), which
is then used in the monitoring system TorAn for the state estimation and torsional vibra-
tion prognosis. Extensive descriptions of the design steps outlined here can be found in
[4–6].

The functionality of the prediction of the mathematical, robust state observer for tor-
sional vibration prognosis is demonstrated using the example of the test stand from the
Electrical Drives and Mechatronics Chair of the TU Dortmund. In contrast to a real power
plant turbine generator shaft line, it was a simple procedure to install extra sensors here
to assess the quality of the state estimator. Figure 10 shows a schematic diagram of the
test rig; Fig. 11, a photo; and Fig. 12, the torque sensor positioned at node 7. The test rig
was designed to exhibit the typical natural frequency and mode data of a turbine generator



338 J. Hauth et al.

Fig. 12 Contact-free torque
sensor on element 7 (©Chair
Electrical Drives and
Mechatronics, TU Dortmund)

Fig. 13 Comparison of
measurement (blue), state
estimation (red), and pure
simulation (green) at node 7

shaft line, and thus a similar dynamic. According to the previously described modeling
steps, an online-capable, robust H∞-filter was designed for the test rig. As measurement
quantities, that is, as input for the filter, we used the mechanical moment of the asyn-
chronous drive machine (obtained via power and rpm measurements)—node 2—and the
DC machine—node 31—along with a measurement from the contact-free torque sensor—
node 7. As explained earlier, the state observer, unlike a pure simulation, uses the compar-
ison of measurement signal and simulation as a central quantity for determining the torque
estimates.

For the disturbance scenario referred to as a “short interruption,” the torsional vibrations
for nodes 7 (Fig. 13) and 21 (Fig. 14) were predicted on the basis of the pure finite element
model and also using the filter generated from this model. In order to be able to assess
the results of the pure system simulation and the state estimation, the torsional vibrations
on node 21 were measured with another sensor. Unlike the measurement from node 7,
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Fig. 14 Comparison of
measurement (blue), state
estimation (red), and pure
simulation (green) at node 21

the measurement from node 21 is not used as an input quantity for the state estimator.
The correspondence between measurement and state estimation is, as expected, clearly
better than that between system simulation and measurement. The cause of the overall
poor correspondence for the system simulation is the erroneous modeling of the drive
train damping. With the state estimation, this leads to short-lived errors at the beginning of
the short interruption. However, this prediction error is corrected by the filter within one
to two cycles, which highlights the capability of a robust mathematical state estimator to
compensate for model uncertainties.

7 Application of the MTU Particle Filter to a Plasma-Leucine
Model with Population Data

In this section, we describe an application of the MTU-PF algorithm, a version of the
particle filter developed at the ITWM that allows for inclusion of uncertainties in the mea-
surement time-points (MTU stands for Measurement Time Uncertainties; see Sect. 4.11).
The results are based on a collaboration between the ITWM and Mats Jirstrand, from
the Fraunhofer Chalmers Center (FCC) in Gothenburg, Sweden, Martin Adiels, from the
Sahlgrenska Center for Cardiovascular Research in Gothenburg, and Marja-Riitta Taski-
nen, from the medical faculty of the University of Helsinki, Finland [1, 8]. In this project,
we apply the MTU-PF to a study that analyzes the kinetics of the amino acid leucine in
blood plasma by means of so-called tracer/tracee experiments. This plasma-leucine is a
component of certain lipoproteins, which serve as fat transporters in blood and play an im-
portant role in cardiovascular disorders. Specifically, in the course of our project, we were
asked to confirm a hypothesis about the deviation of a rate parameter for diabetes patients,
in comparison with test subjects from a control group. The difficulties in performing the
corresponding estimates result, on the one hand, from the assumption of hierarchically ar-
ranged parameters (global, group-specific, individual parameters), which lead to so-called
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mixed effects in the models, and, on the other hand, from uncertainties in the measurement
values (blood samples), missing measurements, and, in particular, from uncertainties in the
measurement time-points.

Tracer/tracee experiments were carried out in the study to analyze the plasma-leucine
kinetics. The kinetics of the actual substance of interest—plasma-leucine—in this case
referred to as the tracee, are determined by observing a labeled leucine added in the ex-
periment, referred to as the tracer. The underlying model for the plasma-leucine kinetics
comes from Demant et al. [26] and is based, in turn, on Cobelli et al. [23]. The data is taken
from a clinical study on diabetes patients [12, 13]. In [1] and [8], both model and data are
used to perform a Bayesian population-based parameter estimation, and were already used
earlier for a maximum likelihood estimation [19]. In this case, the original model, based on
ordinary differential equations (ODE), had to be supplemented with a stochastic element,
with the result that the kinetics are now modeled using stochastic differential equations
(SDE). The approach in [19] differs from ours also in that it assumes the stochastic fluctu-
ations to be in the plasma-leucine (tracee), whereas we place the variability in the labeled
leucine (tracer). In point of fact, stochastic variability should be assumed for both concen-
trations; for simplicity’s sake, however, we limit ourselves to just one.

The negative effects on the estimates of uncertainties or inaccuracies in determining the
measurement time-points are to be expected primarily at the beginning of the measurement
series, since it is here, directly after addition of the tracer, that the concentrations change
most abruptly. Our algorithm has the ability to counteract this problem.

7.1 The Leucine Model

In [13] (see [11] also), a new, combined multi-compartmental model for apolipoprotein
B-100 (apoB) and triglyceride metabolism in very low density lipoprotein (VLDL) sub-
fractions was developed (see Fig. 15). VLDL serve as transporters of triglycerides and
cholesterol from the liver to the periphery. Elevated values are associated with an increased
risk of cardiovascular disorders. Each VLDL particle contains exactly one apoB molecule,
which makes apoB a suitable marker for triglyceride transport. The secreted particles be-
come denser and denser as more triglycerides are delivered to target sites, such as muscles
and adipose tissue, so that the relative protein content increases. As the density increases,
the VLDL becomes an intermediate density lipoprotein (IDL) and, finally, a low density
lipoprotein (LDL).

For our purposes, we use only the portion of the model that concerns the leucine pool,
that is, compartments 1–4 (see Fig. 16). The fluxes exiting the subsystem are located in
compartments 1 and 2. The flux entering compartment 1 is designated U1.

The data is obtained from tracer/tracee experiments. Here, the tracee (i.e., the concen-
tration we are actually interested in) consists of the leucine amino acids as components
of the apoB molecule. Additional, labeled leucine (the tracer) is injected as a bolus infu-
sion. Knowledge about the kinetics (fluxes between the compartments) of the tracee can
be gained by studying the kinetics of the tracer.
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Fig. 15 Multi-compartmental model for the metabolism of apolipoprotein B-100 (apoB) and
triglycerides (TG) in very low density lipoprotein (VLDL) subfractions. This multi-compartment
model was developed in [13]

Fig. 16 Schematic depiction of the restricted model (leucine pool) [11]. This scheme is a sub-
scheme of Fig. 15. Circles depict compartments. Arrows depict fluxes between compartments and are
labeled with the corresponding fractional transfer coefficients. Compartment 1 is the plasma-leucine
compartment, into which the leucine is injected. Compartment 2 is an intrahepatic compartment
and source of the apoB synthesis. Compartments 3 and 4 are body protein pools. The output is
from compartment 1. Compartment 11 is a delay compartment, used here only as an output from
compartment 2

For each compartment i, with i = 1, . . . ,4, Qi and qi now refer to the concentrations of
tracee and tracer, respectively. Similarly, Ui and ui refer to the input of tracee and tracer,
respectively. For tracer/tracee experiments, a steady-state is generally assumed for the con-
centration Qi of the tracee. If the concentration of the labeled injection is small compared
with the overall concentration levels, and if the model is linear, than the following holds
approximately:

dq(t)

dt
= K(t)q(t) + u(t)
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with q(t) = (qi(t))
T
i=1,2,3,4, u(t) = (u1(t),0,0,0)T, and

K(t) = (kj,i)j,i=1,2,3,4.

Here, kj,i for i �= j is the transfer coefficient of the tracer from compartment i to compart-
ment j . Compartment 0 is, in general, the output compartment (not shown in the figures).
Here, compartment 11 is also considered to be an output compartment. Moreover, for each
i = 1, . . . ,4,

ki,i := −
∑

j=0,1,2,3,4,11
j �=i

kj,i .

As time unit, we always assume 1 hour (h); all transfer coefficients are given in the
unit h−1, and the amount of material in the compartments, in mg. In our model, only k0,1,
k1,2, k1,3, k2,1, k3,1, k3,4, k4,3, and k11,2 are assumed to be non-zero, while the following
dependencies between the transfer coefficients are also assumed to be valid:

k1,2 = k2,1,

k3,4 = 0.1 · k4,3.

The transfer coefficient k11,2 must be fixed and specified in order for the system to be
identifiable. We set k11,2 = 0.01 h−1 as an estimated average from earlier measurements.
We generate stochastic differential equations (SDE) based on the resulting ordinary dif-
ferential equations by adding stochastic noise terms. These are given by standard Wiener
processes W1,t , . . . ,W4,t , multiplied by the corresponding diffusion parameters σ1, . . . , σ4.
All fluxes that occur within the subsystem should follow the principle of mass conserva-
tion. We therefore depart from the usual procedure and add the stochastic terms in the
following manner:

dq(t) = K(t)q(t)(dt + ΣdWt ) + u(t)dt

with Σ = diag(σ1, σ2, σ3, σ4) and Wt = (W1,t , . . . ,W4,t )
T. We fix the diffusion parameters

thus: σ1 = σ2 = σ3 = σ4 = 3. The initial conditions are given by

q2(0) = q3(0) = q4(0) = 0.

The test subjects receive a bolus injection with labeled leucine, so that we can fix the initial
condition

q1(0) = u1,0

and simultaneously assume u1(t) = 0 in the differential equation.
We assume identical differential equations, without the stochastic noise terms, however,

for the states Qi and the input U1 of the tracee:

dQ(t)

dt
= K(t)Q(t) + U(t)
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with Q(t) = (Qi(t))
T
i=1,2,3,4, U(t) = (U1(t),0,0,0)T. Here, the tracee input U1(t) = U1

is presumed to be constant, but unknown. We therefore want to estimate this value along
with the transfer parameters. Because a steady-state is presumed for the tracee (i.e.,
dQi(t)/dt = 0), we can solve the equations for Q1(t) and thus obtain:

Q1(t) = (k11,2 + k1,2)U1

k0,1(k11,2 + k1,2) + k11,2k1,2
.

Each measurement is given by a value that is proportional to the ratio of tracer and
tracee, with additional log-normal disturbances:

y1(t) = p1
q1(t)

Q1(t)
ξt , ξt ∼ Log-N

(
0, σ 2

y1

)
independently for each t,

where we assume the value of the variance parameter (this denotes the variance of log ξt )
to be σ 2

y1
= 0.52. The parameter p1 denotes the unknown proportion of plasma-leucine

that is actually in the plasma. Since the parameters p1 and U1 are not jointly identifiable,
we specify p1 = 0.65 (on the basis of previous knowledge). More details concerning the
deterministic model (without stochastic disturbances) can be found in [13] and [11]. Note
that the stochastic disturbances are not part of the original model, but are our subsequent
enhancements.

7.2 The Mixed-Effects Model

The model, as it was presented in the previous paragraphs, contains only flux parame-
ters kj,i that are the same for each individual. In this form, the model does not account
for individual differences between the various persons, nor does it consider group-specific
differences between the patients and the control group. In the latter case, differences in
flux parameters may arise when the persons examined belong in part to a group whose
members are affected by a disease or have received a special treatment, while other per-
sons belong to a control group. In order to account for these differences, we now introduce
group-specific and patient-specific parameters into the model. Specifically, we split the
transfer coefficients k0,1 into a group-dependent and a patient-dependent part. In this fash-
ion, we introduce so-called mixed effects into the model. Mixed effects generally make it
more difficult to perform the estimates, since they not only increase the number of parame-
ters to be estimated, but also result in a hierarchical ranking among the parameters. For the
following estimates, we use measurement data collected in a study involving 34 persons—
data that was already used in another context [12, 13]. From these 34 persons, 15 belong
to the group of diabetes patients, while the other 19 belong to the control group. From
earlier experiments, one sees that the degradation rate k0,1 of the plasma-leucine differs
significantly for persons with and without diabetes. We therefore assume that the expected
value of k0,1 is different in each group, that is, has either a value kd

0,1 or a value kc
0,1, de-

pending on whether the person belongs to the diabetes or the control group. Moreover, we
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also assume patient-dependent random factors ζp that reflect the parameter uncertainties
among the individuals. In the end, we obtain

k
(p)

0,1 =
{

ζpkd
0,1 if patient p belongs to the diabetes group,

ζpkc
0,1 if patient p belongs to the control group,

where all ζp are assumed to be static and independently log-normally distributed:

ζp = exp(ηp) with ηp ∼ N
(
0, σ 2

ηp

)
independently for all p

for p = 1, . . . ,34. Consequently, each state q1, . . . , q4 must be considered separately for
each patient p. We indicate this in the notation by means of indices q

(p)

1 , . . . , q
(p)

4 , p =
1, . . . ,34.

The goal of our investigations, apart from estimating the remaining parameters, is thus
to show that the group-dependent parameters kd

0,1, kc
0,1 are indeed different. To do so, we

use the Bayesian approach for parameter estimation. For this reason, we treat the parame-
ters essentially like state variables in the particle filter. Because the estimation of constant
parameters is problematic with particle filter methods, it is standard to introduce a small,
artificial stochastic dynamic so that the parameters can change slightly over time. This
is done by allowing normally or log-normally distributed increments with decaying vari-
ances for the parameters in each time-step [36]. We also introduce corresponding dynamics
for the static individual parameters ηp , which must also be estimated. Our process Xt is
therefore given as an augmented state vector

Xt = (
q

(1:34)
1:4 (t), kc

0,1(t), k
d
0,1(t), k1,2(t), k1,3(t), k3,1(t), k4,3(t),U1(t), η1:34(t)

)T
.

The complete model is thus a nonlinear mixed-effects model with three levels of effects
(parameters), namely, global parameters, group-dependent parameters kd

0,1, kc
0,1, and indi-

vidual parameters ζp .

7.3 Estimation Results

In this section, we compare the results of parameter estimations with the MTU particle fil-
ter and the standard particle filter. We performed estimations and subsequent test runs with
the estimated parameters, using the data from all 34 patients (19 in the control group and
15 in the diabetes group). Specifically, we carried out the following computer experiments:
In the first phase, we estimated the parameters with the MTU particle filter; for comparison
purposes, we also separately estimated the parameters with the standard particle filter—
under the same conditions and with the same seed value for the random number generator.
The initial distribution of the particles was thus the same in both cases. For each run, we
also calculated estimators for the effective sample size (ESS) and the data likelihood over
time. These estimators allow a performance comparison for the MTU and the standard par-
ticle filters. In a second phase, we then used the empirical medians of the final parameter
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Fig. 17 Development of the Effective Sample Size (ESS) and the data likelihood over time during
the parameter estimation. Standard particle filter (top) and MTU particle filter (bottom)

distributions in test runs, separately for each case. Both versions of the particle filter were
used in these runs for state filtering and calculating the data likelihood—this time with
fixed parameters given by the estimated values. In this manner, the resulting simulated
distributions of the measurement values can be compared with the actual measurement
values, both visually and quantitatively, by examining the data likelihood.

We performed our calculations with 10 000 particles and a resampling threshold of
7500. The step-size in the MTU filter was between 10−7 h and 10−3 h, adaptively calcu-
lated on the basis of the ESS estimate. In the standard filter, we used a fixed step-size of
10−3 h. Although the data contains measurements up to time t = 8 h, we only used values
up to time t = 1 h for our estimates and test runs, mainly to save computing time. In any
event, after time t = 1 h, the tracer concentrations are quite small and almost static, so it is
not to be expected that including the later data would alter the estimates significantly. In our
implementation of the particle filters, we sample directly from the (augmented) states Xt

(i.e., X̃[t0,∞) = X[t0,∞) in distribution), with the aid of the Euler–Maruyama method for
discretizing the SDE over time [37].

Figure 17 shows the development over time t of the estimated value of the effective
sample size ESS and the estimated data likelihood. Figures 18 and 19 are box plots show-
ing the posterior distributions of the global/group parameters and the individual parame-
ters, respectively, in the final time-step of the estimation.
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Fig. 18 Estimated global and group parameters. Box plots of the estimated posterior distributions
for the global parameters and the group-dependent parameters. The medians are depicted with tri-
angles (standard particle filter) or circles (MTU particle filter). The bottom and top of the box are
the 0.25-quantile and the 0.75-quantile; i.e., 50 % of the values lie within the box. The whiskers
mark the 0.025-quantile and the 0.975-quantile; i.e., 95 % of the values lie between the whiskers.
The values for U1 have been scaled by a factor of 0.01

Fig. 19 Estimated individual parameters. Box plots of the estimated posterior distributions for the
individual parameters. The medians are depicted with triangles (standard particle filter) or circles
(MTU particle filter). The bottom and top of the box are the 0.25-quantile and the 0.75-quantile; i.e.,
50 % of the values lie within the box. The whiskers mark the 0.025-quantile and the 0.975-quantile;
i.e., 95 % of the values lie between the whiskers

A comparison of the results of the MTU-PF and the standard particle filter shows that
both algorithms deliver very similar performance with regard to the quality of the estimated
parameters; in each case, the development of the data likelihood is very similar, both dur-
ing the estimation and the test run. The estimated log-likelihood of the data in the final
estimation step is 137.239 for the MTU particle filter and 136.207 for the standard case;
in other words, for all practical purposes, they are equal. The computation time for the
MTU-PF is only slightly longer than that of the standard filter. A visual inspection of the
test runs shows that the predicted distribution of the measurement values based on param-
eters estimated by both filters fits the data equally well. This impression is reinforced by
the values of the estimated data likelihood. In the final step, the MTU particle filter deliv-
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ers a log-likelihood value of 157.622, which is very similar to the 155.952 value delivered
by the standard filter. The difference is insignificant; the uncertainty in the measurement
time-points thus appears not to lead to differences in the actual estimation results, at least
in this case.

In contrast to the insignificant differences in the likelihoods between the MTU-PF and
the standard PF, the development of the ESS estimate in the estimation runs differs re-
markably. The runs with the MTU particle filter deliver an ESS estimate with very high
values throughout the estimation, and a minimum of 7032.661. This value lies just slightly
under the resampling bound of 7500 (see Fig. 17, top). In contrast, the standard particle
filter shows a substantially worse performance. One can see from the bottom of Fig. 17
that the ESS drops repeatedly to very low values, with a minimum of 101.102. Here, the
MTU particle filter avoids degeneration of the particle cloud by holding the ESS at a high
value at all time-points. This indicates that these results have been obtained on a sound
basis and may be considered more reliable than those delivered by the standard algorithm.

A glance at the estimated values of the group parameters kc
0,1 and kd

0,1 (see Fig. 18)

shows that, in both estimation cases (standard PF and MTU-PF), the rate kd
0,1 for diabetes

patients is only about 60 % of the rate kc
0,1 for the control group (standard PF: 0.337 h−1

vs. 0.557 h−1; MTU-PF: 0.346 h−1 vs. 0.577 h−1). The good performance of the MTU
particle filter, in particular, strengthens one’s confidence in the results obtained and leads
to the conclusion that the secretion rate k0,1 is, in fact, lower for the group of diabetes
patients than for the control group.
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