
Maximal Material Yield in Gemstone Cutting

Karl-Heinz Küfer, Volker Maag, and Jan Schwientek

1 Optimum Material Usage—A Must with Expensive Resources

The quest for optimum material cutting is one of the basic principles of industrial produc-
tion, since the sales price of a manufactured good is not only a function of the production
costs, but often depends predominantly on the necessary raw material usage. Hence, the
range of problems involving maximizing material usage is large.

A tradesman papering walls, for example, will seek to minimize the number of rolls
of wallpaper he uses. In so doing, he will try to manage his use of remnants so that the
final waste pieces are as small as possible. A carpenter cutting molding to size deals with
the same challenge, as does a metalworker using ready-made metal profiles. This one-
dimensional problem—only the length of the pieces matters here—is known in the math-
ematical literature as the Cutting Stock Problem (see [18, 38], for example). Even in its
simple form, it proves to be NP-hard, which is the same as saying that there can be no
efficient algorithm for minimizing waste.

Cutting shapes from standard wooden panels, pieces of clothing from fabric rolls, or
shoe elements from leather hides represents an even more difficult material usage opti-
mization problem; here, in addition to the geometry of the cut-outs, one must also consider
their orientation—as with a fiber’s running direction in a fabric—or cut around flaws in the
material—as with knots in a wooden board or injuries to the animal supplying the hide.

Analogous problems also exist in three dimensions: a dispatcher, for example, when
picking and packing goods will search for the smallest package that will hold all the pieces,
in order to minimize shipping costs. A diamond or colored-gemstone producer will also
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Fig. 1 Exploiting gemstones: raw stones and a selection of cut jewels from Paul Wild oHG

Fig. 2 The elements of a
faceted stone

strive to cut the largest and thus most valuable jewels possible from the raw material he
receives from the mine, taking into consideration the preferred orientation and such flaws
as cracks and inclusions (see Fig. 1). In the literature, the optimization task in the 2D or
3D situation is often referred to as a Nesting Problem (see [19], for example).

1.1 Gemstone Production—An Ancient Craft Using Scarce Raw
Materials

This chapter deals with the optimal cutting of gemstones, although most of the methods
developed here can be applied in an analogous manner to the other examples mentioned
earlier. To promote a better understanding of the practical questions, we have compiled
some background information about gemstone cutting.

For more than 500 years, the most common form of jewel has been the faceted stone.
This is a cut and polished gemstone whose surface consists of small, planar areas known as
facets. The gemstone is divided into three elements: the crown, the girdle, and the pavilion
(see Fig. 2).

The crown and pavilion are polyhedral. The girdle is bordered by planar or curved
surfaces and determines the base form of the faceted stone. There are many faceted stone
shapes, the best-known of which are shown in Fig. 3.
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Fig. 3 The best-known faceted stone shapes, from left to right: baguette, emerald, antique, oval,
round, and pear

Fig. 4 The round shape in a
brilliant cut and a step cut;
Fig. 2 depicts the Portuguese
cut.

Along with the base form, there are various basic types of crown and pavilion cuts,
which we will subsequently refer to as facetings (see Fig. 4, [25]). Some are possible for
every base form; others are not. Moreover, with some cuts, the number of facets is pre-
defined, whereas for others, the number of facets depends on the size of the finished stone.

Besides its base form and cut, a faceted stone is also characterized by a variety of size
parameters, such as the height, length, and width of the crown, girdle, and pavilion. For
optical and esthetic reasons, there are upper and lower limits on certain ratios between
these parameters, which we will refer to subsequently as proportions. With diamonds,
for example, the transparency of the material and the laws of optics dictate that faceting
patterns and proportions be held within very narrow limits, in order to promote the most
favorable light transmission paths. Here, it is typical that standard faceted stone shapes
are merely scaled to fit the raw material and rotated in order to maximize yield. With
colored gemstones, the rules for proportions and faceting are significantly less stringent.
This has a favorable impact on the optimization tolerances, but it also makes the resulting
mathematical problem considerably harder to solve. For this reason, we consider the more
general problem of colored gemstone cutting in the following discussion.

In the past, size-dependent cuts and weak constraints on proportions led to the facets
not being cut directly into the raw material. The process chain for producing a faceted
stone contains four steps:

(1) Sectioning: First, the raw material is sectioned into “clean” pieces containing no flaws
or cracks, which we will refer to as rough stones. In the end, each rough stone delivers
one faceted stone.

(2) Pre-forming: Here, the rough stones are coarsely pre-cut, or ebauched. This defines
the base form and the approximate proportions of the subsequent faceted stone.

(3) Grinding: Next, the facets of the preferred cut are applied to these pre-cut forms.
(4) Polishing: Finally, the facets are polished to a high gloss finish.
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A faceted stone is appraised according to four criteria, the so-called Four C’s: Carat,
Clarity, Color, and Cut. The carat is a measure of weight equaling 0.2 grams. The value
of a faceted stone is directly proportional to its weight. The clarity indicates the absence
of inclusions, cracks, and surface flaws. The greater the clarity, the more valuable the
faceted stone. The natural color of a gemstone and/or the enhanced effect created during
its processing also have a substantial impact on the value of a faceted stone. Because this
factor can hardly by influenced, however, it will not be discussed further. The cut of a
faceted stone has a decisive influence on its ability to reflect and refract light. An increase
in a faceted stone’s reflective and refractive characteristics increases its value. Moreover,
the faceting contributes significantly to a stone’s overall esthetic qualities.

The value of a faceted stone is thus appraised according to its weight and its esthetic
qualities.

Today, gemstones and diamonds are still manufactured largely by hand. Although in-
dustrial saws and modern grinding machines are used here, all geometric determinations
rely solely on the practiced eye and skilled craftsmanship of the jewel makers. Because the
processes involved are complex and expensive, and because there are not enough appren-
tices learning the trade in the old industrialized nations, most production has long since
shifted to the countries of South Asia.

In the first processing step, the sectioning of larger stones into rough stones so as to
avoid flaws in the material, about half of the raw material is lost. In converting the rough
stones from step (1) into faceted stones in steps (2)–(4), approximately two-thirds more of
the precious material is lost. Thus, the loss of weight from the original raw material to the
finished product is about five-sixths of the total.

1.2 Automation as a Chance for Better Material Utilization

Given the losses described above, it is natural to ask if mathematical modeling and al-
gorithmic concepts that optimize the sectioning of raw material and the embedding of a
faceted stone in a rough stone might not be able to significantly increase the yield above
that achieved by the skill of the craftsman. In order to answer this question, however,
a number of challenges must be met, the most important of which are mentioned here:

• Data acquisition: The first step toward using mathematical models is collecting input
data. Here, the geometry of the rough stones must be depicted for the entire process
(steps 1–4) by means of 3D imaging. This can be accomplished using CT technology,
for example. However, due to the limited resolution of the available technology, it is
very difficult to represent hairline cracks and very small air inclusions in the material.
If one assumes only clean individual stones (steps 2–4), then the digitalization can
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be limited to depicting the stones’ surfaces, which can be accomplished with stripe
projection or laser scanning technology.

How does one prepare the large data sets so that they are suited for the subsequent
optimization problems?

• Mathematical model: Two questions must be answered when dealing with optimization
problems: What is feasible? and What is good? Neither of these questions can be easily
answered for colored gemstone production. Weak constraints on the proportion rules
and the large variety of base forms and faceting patterns make it hard to completely
describe the alternative sets mathematically. Even harder is bringing the wish for maxi-
mum weight—which is directly proportional to volume—into harmony with minimum
esthetic demands, which depend on individual taste and cultural background.

How does one mathematically formulate esthetic requirements?

• Exploitation algorithms: From a mathematical perspective, the resulting optimization
problems are extremely complex. This is due less to the above-mentioned large data
sets arising from the digitalization of rough stones than to the geometric principles,
which, although actually quite simple, are laborious to mathematize. These principles
demand that the resulting faceted stones must be completely contained within the rough
stone and may not overlap each other. A second issue is the simultaneous existence of
continuous variables, such as size and proportion, and discrete variables, such as the
number of facets.

How does one mathematically model the containment and non-overlapping con-
ditions? Is it conceivable to de-couple the combinatorics of the faceting from the
optimal sizing of the proportions?

• Fully-automated production process: If one wants to use mathematical models and al-
gorithmic concepts to optimize the cutting of rough gemstones, it becomes necessary
to automate production; one cannot simply present a craftsman with a good plan and
then wish him luck with it. Simple studies show that even the smallest deviations from
the optimal positioning of the faceted stones in the rough stone can lead to marked de-
teriorations in yield. Thus, there is no way around the implementation of an industrial
production process involving the use of CNC technology.
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How can one clamp the individual work pieces during processing? How can the ge-
ometry be transferred from one process step to the next with the required precision?
Which handling technology should be used? Which saws, grinders, and polishers
are appropriate? Can one continue to use the techniques of manual production, or
will it be necessary to develop new ways and means?

2 Optimum Volume Yield—Is This a Mathematically Challenging
Problem?

A person less trained in mathematics might think: a problem that is so easy to put into
words and so easy to understand cannot be so difficult to solve. After all, it’s just a matter
of packing a few faceted stones into a rough stone in an economically favorable manner;
what’s so hard about that? Unfortunately, this first impression is deceptive, and a look in
the mathematical literature or a search of the Internet under the keywords Cutting Stock
or Nesting Problem brings a rude awakening. Only the simplest variants, such as rectan-
gular or ball packaging, are well understood mathematically—and even these have only
been partially solved. More generalized problem statements and solution approaches are
extremely rare. Thus, in 2003, as the ITWM began work on this problem, the first task was
to find a model that suited the problem.

2.1 Mathematically Modeling the Optimization Problem—Or, what Is
an Acceptable Design for a Jewel?

The central question for modeling the problem is how to mathematically describe a faceted
stone. The initial idea of describing the most common convex base forms as polyhe-
drons failed, since the girdle that separates the crown from the pavilion is, in many cases,
a smooth, curved surface, whereas the crown and pavilion have a polyhedral structure.
Another question is even more complicated: what is the class of acceptable facet patterns
belonging to a given base form? The craftsmen have rules-of-thumb for the number of
facets on the girdle, and these depend on the size of the stone; they know the approximate
number of facet rows or steps on the crown and pavilion; they know the size of the limiting
angles between the facets and the girdle. Facets should decrease in height as one moves
away from the girdle; they should be kite-shaped on Portuguese cut stones and the half-
axes should divide the kites approximately into golden cuts; and much more. Regarding
the proportions, the following guidelines apply: the crown contributes about one-third of
the total height, the pavilion, about 50–55 %, and the girdle makes up the rest. The pavil-
ion should not be too “bellied,” but not too slender either—otherwise, too much volume is
lost, etc. And the most important point of all is this: at the end of the day, the stone must
be beautiful; rules and guidelines alone are not enough.
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The above discussion indicates the all too typical dilemma of putting mathematical
optimizations into practice: the mathematician needs clear-cut rules to do his work. The
alternative set—in this case, the feasible faceted stones—from which favorable solutions
should ultimately be selected, must be described exactly, according to fixed rules. There
is no room for vagueness. Moreover, to optimize, one also needs a target quantity to help
in comparing the quality of two possible solutions. At first glance, this would seem to be
simple for gemstone cutting: the stones should be as large as possible. This increases the
number of carats, i.e., the weight, thus raising their value. At second glance, however, there
is a problem here as well.

If the stone is merely large, but not beautiful, no one will buy it. Therefore, we
need a definition of “beautiful” that can be incorporated into the description of the
alternative set. Or, at a minimum, we need measurement quantities that correlate
well with “beautiful,” so that we can then optimize them as objectives in balance
with solutions that are “large” or “heavy.”

The geometric problem that seems at first so easy to formulate now proves to be mathe-
matically challenging indeed. Gemstone cutting seems somehow to be an art or perhaps a
craft—in any event, not a science. Peering over the shoulder of the practitioner might pro-
vide us with some clues. How does a cutter answer the above questions? Does he simply
start cutting away, or does he use rules-of-thumb containing mathematical principles that
we can imitate with our models?

Observations of the craftsman at work are quite revealing: after sectioning the raw
material, he then closely inspects the shape of a resulting rough stone to see which base
form the final faceted stone might have and how this base form is oriented inside the rough
stone. Then he starts by cutting the base form’s girdle. The crown and pavilion are coarsely
pre-formed; as of this point, there are no facets. This pre-forming process determines the
proportions of the stone, the height ratio and degree of belliedness as well as the base
angles to the girdle. After pre-forming, the facet rows and counts are assigned and the
crown and pavilion are faceted. Figure 5 shows the pre-cut form and intended proportions
for the faceted stone depicted in Fig. 2.

The manual production process is thus divided into two parts: pre-forming and faceting.
This inspired us, in our mathematical modeling, to de-couple the continuous variables,
such as the height and proportions of the faceted stone, from the discrete variables, such
as the number of rows and facets in a given facet pattern.

The approach of de-coupling continuous and discrete variables simplifies the struc-
ture of the optimization problem significantly and allows the esthetic boundary con-
ditions to be more easily described in the reduced variable sets. But what is the best
way to implement this approach?
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Fig. 5 Pre-cut form and
proportions for a round-cut
stone: table diameter and total
height in relation to girdle
diameter

The implementation involves introducing a parameterized equivalent to the smooth pre-
cut form, which we refer to as the calibration body. This is then optimized toward the
end of maximizing material yield. Considerations regarding the appearance of a suitable
faceting are relegated to a second step, which is discussed in detail in Sect. 5.1

Let us now turn to the optimization problem of the parameterized calibration body. For a
single stone, this is closely related to the design-centering problem known in the literature
(see [30]), when one describes the quantities relevant for the proportions, such as height,
width, and degree of belliedness, as calibration body parameters (i.e., design parameters)
and takes position and scaling as further degrees of freedom for the optimization. If one
now places limits on the proportion parameters so as to ensure a more-or-less satisfactory
esthetic result, then one is left with the question of how to achieve the largest possible
volume of a parameterized gem design.

In the following discussion, the requirement that the faceted stone be completely
contained within the rough stone is called the containment condition. This is simple
and easy to understand, but how can it be mathematically implemented?

Putting it another way, the containment condition requires that each point of the design,
that is, the calibration body, must also be a point of the container, that is, the rough stone.
We have here, then, an infinite number of constraints for a finite number of parameters,
which must be fulfilled for a feasible calibration body. Problems of this sort are referred to
as semi-infinite optimization problems. Further challenges revolve around the questions of
whether one can mathematically describe in a similar manner the localization of flaws in
the resulting jewel or the non-overlapping of two faceted stones in cases where more than
one jewel is embedded in a single rough stone. This non-overlapping condition is closely
allied to the containment condition. The approach to dealing with both of these questions
is discussed in Sect. 4.
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A generalization results when one also requires minimum separation distances. Thus,
when sectioning raw material into blanks or embedding multiple stones in one rough stone,
it is important to arrange the blanks or stones so as to maintain the minimum separation
distances required for the production process. Moreover, the production process may also
demand adherence to other arrangement principles. For example, if circular saw technol-
ogy is being used, one must ensure that the arrangement allows for consecutively executed
through-cuts, also known as guillotine cuts (for more, see Sect. 6.2).

2.2 The Algorithms—How to Find Optimal Solutions

If one keeps to the above modeling approach, the algorithmic challenge in gaining an
optimal calibration body then becomes developing numerical solution concepts for semi-
infinite optimization problems that robustly solve high-dimensional, non-convex problems
in an acceptable computation time.

To do so, one must first work on reducing the problem size. Here, the goal is to depict
the rough stone—discretized via volume or surface data—using the most economical rep-
resentation possible. Ideally, this is accomplished in a model-friendly form that allows for
reduction to a finite problem (see Sect. 5.1.3). To depict the rough stone, one enlists the
smallest possible number of simple, smooth parametrical functions that permits numeri-
cally non-problematical evaluation.

What remains is a global optimization problem, which commonly has numerous local
extreme solutions. If one can characterize the local extremes in the general case using
a first-degree optimality condition—such as the Karush–Kuhn–Tucker condition (KKT
condition)—then the challenge is to select a suitable strategy for finding an approxi-
mately globally optimal solution. Here, there is no generic approach. A hybrid strategy
must be found for enumerating favorable local extremes and/or excluding unfavorable
ones.

When one has found good calibration bodies for approximating feasible faceted stones,
then one can turn to the second optimization task: finding a favorable faceting; that is, one
that both follows the standard rules of the gemstone cutter’s art and minimizes volume
reduction of the calculated calibration body. At first, it seems obvious that using enough
small facets should guarantee such an approximation. However, upon closer inspection,
it becomes clear that the standard facet patterns used in the gemstone industry do not al-
low every calibration body to be approximated adequately. Thus, a certain coupling of
faceting and base form once again sneaks in through the back door, so to speak. For fixed
facet patterns, the problem of faceting can also be modeled as a non-linear global op-
timization problem. Here, the question arises as to how one can suitably integrate into
the optimization problem the number of facets and facet rows as free optimization vari-
ables.
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3 ITWM Projects Dealing with This Topic

3.1 Projects with the Gemstone Industry

The idea of increasing material yield during gemstone production by using mathematical
optimization methods and automation was prompted by Paul Wild oHG (oHG = general
partnership). This family-managed, mid-sized firm located in Kirschweiler, Rheinland-
Pfalz, near Idar-Oberstein, is one of Europe’s leading producers of precious colored gem-
stones. The Company has its own mines in Africa, South America, and Asia, which ensure
its supply of raw materials. Production of jewelry stones takes place predominantly in
Asia, whereas administration and sales are headquartered in Kirschweiler.

As is typical for the industry, Wild’s jewelry stone production was carried out exclu-
sively by hand until 2003. Up to that point, there had been no significant attempts to in-
dustrialize or automate production processes. Some experiments in improving yields in
the 1990’s using a semi-automatic installation from Israel gave managing director Markus
P. Wild the idea that it ought to indeed be possible to produce colored gemstones in a
fully-automated industrial process, one optimized for each individual rough stone. Since
2003, Markus P. Wild has been pursuing this vision, in collaboration with the Fraunhofer-
Gesellschaft and other partners from the machine engineering sector.

3.1.1 First Steps—Preliminary Feasibility and Profitability Studies
The Spring of 2003 marked the first contact between Markus P. Wild and the Fraunhofer-
Gesellschaft. As a result, the Fraunhofer Institute for Industrial Mathematics ITWM, in
Kaiserslautern, the Fraunhofer Institute for Applied Optics and Precision Engineering IOF,
in Jena, and the Fraunhofer Institute for Manufacturing Technology and Advanced Materi-
als IFAM, in Bremen, were commissioned in the Fall of 2003 and 2004 to conduct a series
of preliminary studies toward the end of preparing a concept for the automatic production
of colored jewelry stones:

• A study into 3D measurement of raw gemstones by means of the stripe projection
method (Fraunhofer IOF, Jena)

• A study into calculating optimal cutting volumes of colored raw gemstones (Fraunhofer
ITWM, Kaiserslautern)

• A study into bonding colored gemstones to metallic processing pins by means of UV-
hardened or hot-melt adhesives (Fraunhofer IFAM, Bremen)

In the course of these preliminary studies, the basic feasibility of colored gemstone pro-
duction with regard to pre-forming, grinding, and polishing in an industrial process was
adequately verified. Thus, the development of an automatic cutting process in the context
of an industrial research project could be started with acceptable prospects for success.
This project was funded from 2005 to 2007 by the mid-sized company promotion foun-
dation of Rheinland-Pfalz via the Investitions- und Strukturbank (ISB). An experimental



Maximal Material Yield in Gemstone Cutting 239

setup was developed that was able to demonstrate, with scientific rigor, the feasibility of

fully-automated colored gemstone processing.

3.1.2 Pioneer Work—The First Industrial Automation of Pre-forming,
Grinding, and Polishing

The preliminary results were promising, and considerably higher volume yields could be

achieved while still retaining excellent quality for the automatically processed jewelry

stones. Thus, as a follow-up to the ISB-sponsored R&D endeavor, Wild oHG commis-

sioned the construction of a fully-automated CNC-controlled production line. Although

the most significant technological risks had been dealt with in the context of the ISB

project, there were still some hurdles to overcome before a practicable industrial process

could be implemented on the new production equipment. These were indeed overcome

and, since 2008, the world’s first fully automated production line for colored gemstones

has been in operation at Wild oHG.

The operation of the production line quickly showed that, for efficient utilization, an

integrated, multi-criteria decision-making process would be needed that considers all of

the four C’s–carat, color, clarity, and cut. In cooperation with the Fraunhofer ITWM in

Kaiserslautern, in the course of a project sponsored by the German Economics Ministry

from 2009 to 2011, a novel decision-support system was developed that facilitates the dif-

ferent types of production decisions: Proposals resulting from the cutting optimization are

visualized within the rough stones before production starts; interactive 3D representation

permits comparisons of the variants of proportion and faceting; production supervisors can

check the quality of the variants before cutting begins; and the marketing department can

integrate customers into the decision-making process via the Internet.

The research work in the Fraunhofer ITWM-Wild consortium was praised in the press

and described as trailblazing. More than 70 articles appeared in such newspapers and jour-

nals as Die Zeit, FAZ (Frankfurter Allgemeine Zeitung), Handelsblatt, and Bild der Wis-

senschaft. Moreover, the accomplishments of the research consortium were honored in

2009 with the Joseph-von-Fraunhofer prize in a ceremony attended by the German Chan-

cellor Angela Merkel.

The decision was finally made at the end of 2009 to guide the gemstone production

machine to series maturity and bring it to market. In 2010, a modular pilot machine was

built at the Fraunhofer Center in Kaiserslautern and, starting in the same year, control

software was developed (see Fig. 6). The machine has been ready for marketing since the

autumn of 2013, and is now being shown to potential buyers. The statements of interest that

have already been received from more than 70 companies and technology brokers around

the world are indeed very promising. Property rights that protect the machine concept have

been granted. To this point, demonstrations at trade fairs have been avoided, so as not to

aid potential product counterfeiters located in areas outside the patent protection zone.
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Fig. 6 Pilot-production
prototype developed at the
Fraunhofer ITWM (Photo:
G. Ermel, Fraunhofer ITWM)

3.1.3 The New Horizon—Automating the Sectioning Process
The earlier projects, dating from the years up to 2008, revolved primarily around the ques-
tion of how to garner a single faceted stone from a rough stone. Beginning in 2009, how-
ever, the question of how to automate the sectioning process moved into the sights of the
project group gathered around Wild oHG. Although one can produce individual stones
from clean raw material by merely collecting data about the stone surface, one must col-
lect volume data for the sectioning process, in order to distinguish between exploitable
material and impurities, inclusions, and cracks. The method of choice for gaining such 3D
data is high-resolution computer tomography (CT). Thus, Wild oHG commissioned testing
of CT devices for their suitability for collecting volume data about colored raw gemstones.
In 2010, a suitable system based on a two-frequency measurement process was located in
the industry. The system was not yet being produced serially, however.

In addition to collecting volumetric data, automating the sectioning process also re-
quired a comprehensive study into which cutting technology would be appropriate for
such automation. As with the cutting of individual stones, imitation of the manual produc-
tion process seemed to be the safest path. To this point in time, raw material had always
been sectioned by the most experienced craftsmen with the aid of diamond-studded circu-
lar saws. In 2009, Wild oHG and the Fraunhofer ITWM initiated the project “Development
of a fully-automated sectioning process for colored gemstones,” which was sponsored by
the ISB Rheinland-Pfalz and concluded in late June, 2011. The results confirmed that one
can indeed use a circular saw to section a colored gemstone in a fully automated pro-
cess. A prototype of a sectioning machine was then built in the manufacturing center in
Kirschweiler. During the actual operation of this machine, however, several obstacles be-
came apparent that made its practical use uneconomical. Thus, some other technologies
were also taken into consideration. In 2013, Wild oHG eventually bought a high-pressure
waterjet cutting machine. An extension of the ISB-sponsored sectioning project, conducted
in cooperation with the Fraunhofer ITWM, is now aiming for a fully-automated sectioning
process based on the use of CT and waterjet cutting technologies. A detailed discussion of
the sectioning process can be found in Sect. 6.
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3.2 Relevant Competences of the ITWM Optimization Department and
Related Projects

Since the beginning of its cooperation with Wild oHG, the Fraunhofer ITWM’s Opti-
mization Department has been systematically expanding its competences in modeling and
solving industrial problems with semi-infinite optimization. Alongside the main project of
gemstone cutting, questions stemming from other domains having comparable structures
are also being treated with the help of these techniques.

In the area of nonlinear optimization, the Department has been utilizing its own al-
gorithms from its inception. But it has also drawn upon commercial methods stemming
mainly from the academic world, which are each adapted individually to the problem be-
ing treated. Here, a broad field of work is the hierarchic decomposition of problems into
simpler sub-problems, or complexity reduction by means of adaptive discretization, or
model reduction in optimization problems through the use of simplified/surrogate models.

In addition to those of the gemstone project, the following problems have been modeled
and solved with the aid of semi-infinite optimization methods:

• Optimizing cooling systems of injection molds and pressure casting dies
• Optimizing the applicator position for radio frequency ablation

Both of these optimization problems deal with how to optimally distribute heat in a
geometrically complex environment. With injection and pressure casting, a cavity must be
cooled as homogeneously as possible; with radio frequency ablation, tumor tissue must be
heated as homogeneously as possible. In each case, a suitable, enveloping isotherm must
be established around the cooling or heating zone. If one models the heat distribution at
equilibrium, then the requirement that the cooling or heating zone lie within the suitable
isotherm is analogous to the containment condition of a faceted stone within a rough stone.
Moreover, as with the gemstone problem, one can describe the non-overlapping of cool-
ing channels and mold cavities or the non-puncturing of blood vessels by the applicator
using semi-infinite constraints, which permits usage of the algorithm from the gemstone
application.

Along with the above-mentioned semi-infinite modeling examples, the Fraunhofer
ITWM’s Optimization Department also considers numerous other decomposition prob-
lems from various industrial branches. Due to their character, however, these are solved
using discrete enumeration techniques:

• Optimal arrangement of electronic components and switches for system-in-package ap-
plications

• Optimal cross-sections for cutting conifer woods in large sawmills
• Optimal cutting patterns for pants in the textile industry
• Optimal layouts for photovoltaic installations
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3.3 Scientific Studies and Collaborations Involving Optimal Volume
Yield

A whole series of scientific inquiries from the aforementioned domains led to graduate
theses and publications. In a seminal degree thesis, semi-infinite optimization methods
were applied for the first time to the problem of optimizing the material yield of gemstones.
More specifically, [11] deals with the approximation of the rough stone using planes and
quadrics and the volume optimization of a faceted stone using generalized semi-infinite
optimization on the basis of a simple calibration-body model. The ideas originating here
were then further developed and supplemented in a dissertation [16]. The topics of this
work are volume optimization using realistic calibration-body models, as well as modeling
multi-body embedding problems as a generalized semi-infinite optimization problem and
developing a feasible method for generalized semi-infinite optimization problems. The
most significant results were published in [2, 10, 12].

Other sub-problems were treated in three degree theses. In [6], the authors calculated
the faceting for a given calibration body using methods of 3D-body reconstruction from
two-dimensional drawings. The goal in [3] was to improve the rough stone approximation
using splines. The topic in [7] was generating better starting points by comparing the rough
stone geometries.

An alternative to the semi-infinite modeling approach for volume optimization of a
faceted stone is described in [4]. Here, the idea was to apply methods of collision detection
from algorithmic geometry to triangulations of the rough and faceted stones.

The more complex problems of sectioning and embedding multiple designs in one con-
tainer are probed in the dissertation [14]. This study involved volume optimizing multiple
calibration bodies using generalized semi-infinite optimization; extending the modeling of
multi-body embedding problems as a generalized semi-infinite optimization problem; and
developing two methods for generalized semi-infinite optimization problems.

One method used in this context to solve the semi-infinite optimization problems is
to reformulate them as usual nonlinear problems (see Sect. 4.5.1). These are ill-posed,
however, in the sense that the usual regularity requirements are not all fulfilled. As a con-
sequence, the customary solution methods don’t work directly; first, a regularization is
required, that is, a softening of the original problem to a similar one having better char-
acteristics. In [5], this idea of softening was transferred to the surface-minimized packing
of rectangles, formulated as a nonlinear optimization problem to prevent the optimization
from getting stuck in local optima.

The related thematic areas of cooling systems and radio frequency ablation mentioned
in the previous section each yielded a dissertation [13, 15], and the latter also resulted in a
publication [1].

Our studies into gemstone cutting also resonated strongly in the mathematical com-
munity. Along with a cover story in the SIAM news on gemstone cutting, the work was
reported on in the American Mathematical Society’s Mathematical Moments and a podcast
was created.
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In addition to the already mentioned Joseph von Fraunhofer Prize, awarded for the
gemstone project, the two first-mentioned dissertations were also honored with a prize
by the Kreissparkassen Foundation of the University City of Kaiserslautern for the best
dissertations of the year in the field of mathematics.

4 Modeling and Solving Maximum Material Yield Problems

From a mathematical perspective, volume optimization in gemstone cutting represents
a cutting and packing problem, more precisely, a maximum material yield problem
(MaxMY).

In maximum material yield problems, the goal is to work out from a large body—the
so-called container—a set of smaller bodies—the so-called designs–so that as little
of the container material as possible is left over as scrap. If the container has flaws
in it, the designs must also avoid these.

When modeling such problems, two different types must be distinguished:

(1) If the designs are fixed in size, then one searches within the set of all designs that can
be generated from the container for the subset that best exploits it.

(2) If the designs are variable in size and possibly also in shape, then one searches for the
variant of the designs that fits in the container and possesses the largest total volume.

Notation Conventions Let N be the set of natural numbers {1,2, . . .}, N0 := N ∪ {0},
R+, the set of non-negative real numbers, and R++, the set of positive real numbers.

We denote the set of real m-dimensional vectors as Rm. The denotations Rm+ and R
m++

transfer accordingly. Vectors are essentially column vectors and printed in lower-case, bold
type: a. We denote the null vector with 0.

We denote the set of real m×n matrices with R
m×n. Matrices are printed in upper-case,

bold type: A. The matrix diag(a) is the diagonal matrix, which possesses the components
of the vector a as diagonal elements.

Sets (of scalars, vectors, etc.) are printed in upper-case, normal type: A. We denote the
cardinality with |A|, the interior with int(A), and the power set of a set A with 2A.

We denote the gradients of a differentiable function f : Rm → R at the point x̄ with
∇f (x̄). If the function depends on two (or more) vectors, that is, f : Rm ×R

n → R, then
∇xf (x̄, ȳ) is the vector of the first-order derivatives of f in (x̄, ȳ) with regard to the x
variables. Optimization problems are printed in upper-case, sans serif type: P.
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4.1 Set-Theoretical Models

In the following section, we formalize the verbal description and derive a set-theoretical
model for both types of maximum material yield problems.

4.1.1 Problems with Fixed Designs
We first turn to type (1) problems, which we call maximum material yield problems with
fixed designs (MaxMY-FD). With C, we denote the container, with Fk , k ∈ K := {1, . . . , r},
the flaws, and with Dl , l ∈ L := {1, . . . , s}, the designs. Each of these objects is represented
by a non-empty, compact subset of Rn, n ∈N (in general n ∈ {2,3}).

While the container can be given with its flaws in an arbitrary position, we assume that
the designs are located in a defined position. In order to be able to verify whether a design
can be arranged in the container without overlapping the other designs and the flaws, the
designs must be transformed into the container. For a maximum material yield problem
with fixed designs, for which design rotations are not allowed, we search for a subset
L∗ ⊆ L of designs and translation vectors σ l ∈ Σl ⊆ R

n, l ∈ L∗, such that the design Dl

translated by σ l (see Fig. 7, left) fulfills for l ∈ L∗ all arrangement conditions (containment
in the container, non-overlapping with flaws, and non-overlapping with other designs).

If design rotation is allowed, one also searches for parameters θ l ∈ Θl , l ∈ L∗, of a
rotation matrix R = R(θ l ) ∈ R

n×n, so that the design Dl , which is rotated by means of
R(θ l ) and translated by σ l (see Fig. 7, right), fulfills the arrangement conditions for l ∈ L∗.
In many practical applications, the ranges Θl , l ∈ L, of the rotation parameters are severely
restricted or even finite sets.

This therefore yields the following set-theoretical model for maximum material yield
problems with fixed designs:

Fig. 7 Left, translation, right, rotation and translation of a triangular design D
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MaxMY-FD: max
L∗⊆L
σ l∈Σl
θ l∈Θl

∑

l∈L∗
Vol(Dl)

s.t. R(θ l )Dl + σ l ⊆ C,

l ∈ L∗, (1)

R(θ l )Dl + σ l ∩ int(Fk) = ∅,

l ∈ L∗, k ∈ K, (2)

R(θ l1)Dl1 + σ l1 ∩ int
(
R(θ l2)Dl2 + σ l2

) = ∅,

l1, l2 ∈ L∗, l1 < l2, (3)

where int(A) refers to the interior of the set A, thus allowing the designs to contact one
another as well as the flaws.

4.1.2 Problems with Variable Designs
We now consider type (2) problems, which we call maximum material yield problems
with variable designs (MaxMY-VD). In addition to the previously introduced notation, we
use pl ∈ R

dl to denote the size and form parameters of the l-th design and Pl to denote
the associated set of the feasible parameter values. The simplest example of a purely size-
variable design is a circle with variable radius. An example of a design that is both size
and form variable is a so-called superellipse:

DSE(p) :=
{

y ∈R
2
∣∣∣∣

(
y2

1

p2
1

)p3

+
(

y2
2

p2
2

)p3

≤ 1

}
, p ∈ P = R

3++. (4)

Variations in p1 or p2 yield changes in size; variations in p3 yield changes in form. For
p3 = 1/3, DSE(p) is a generalized astroid; for p3 = 1/2, a rhombus; for p3 = 1, a usual
ellipse; and for p3 → ∞, DSE(p) approaches a rectangle (see Fig. 8).

Because the designs are now at least size-variable, the search for an optimal subset of
the set of all designs no longer makes sense, since, in principle, the designs of each subset
can be arranged in the container if they are only made small enough.

Fig. 8 Superellipse for p1 = 2 and p2 = 1 and various values of p3, from left to right: p3 = 1/3,
p3 = 1/2, p3 = 1, and p3 = 50



246 K.-H. Küfer et al.

Therefore, for maximum material yield problems with variable designs, we have the
following set-theoretical model:

MaxMY-VD: max
σ l∈Σl
θ l∈Θl
pl∈Pl

∑

l∈L

Vol
(
Dl(pl )

)

s.t. R(θ l )Dl(pl ) + σ l ⊆ C,

l ∈ L, (5)

R(θ l )Dl(pl ) + σ l ∩ int(Fk) = ∅,

l ∈ L, k ∈ K, (6)

R(θ l1)Dl1(pl1) + σ l1 ∩ int
(
R(θ l2)Dl2(pl2) + σ l2

) = ∅,

l1, l2 ∈ L, l1 < l2. (7)

Whereas the model MaxMY-FD possesses a combinatorical component, the model
MaxMY-VD does not. Nonetheless, it is also conceivable here that one might vary over
subsets of the set of considered designs or various design numbers. What the two models
have in common is the structure of the constraints, which we now turn to in the following
discussion.

4.2 Handling Containment and Non-overlapping Conditions

The set-theoretical constraints (1) to (3) or (5) to (7) are of two different types. Whereas
constraints (1) and (5) represent containment conditions, the other equations represent
non-overlapping conditions. However, each type can be transformed into the other: A set
A ⊆ R

n is contained in a set B ⊆ R
n if and only if it does not overlap with the complement

R
n \ B of set B:

A ⊆ B ⇐⇒ A ∩ int
(
R

n \ B
) = ∅.

Therefore, in the following discussion, we will also use the expression “non-overlapping”
as a substitute for “containment.”

However, the abstract formulation of the constraints (1) to (3) or (5) to (7) isn’t numer-
ically tractable.

In order to obtain computable problems, the set-theoretical constraints must be trans-
formed into usual constraints of mathematical optimization.

In some cases, this is possible on the basis of geometrical considerations. For example,
a circle is contained within a second circle if and only if the distance between their centers
is less than or equal to the difference between the radii of the second and first circles (see
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Fig. 9 Positional relationship of two circles: left, containment; right, non-overlapping

Fig. 9, left). Moreover, two circles do not overlap if and only if the distance between their
centers is greater than or equal to the sum of their radii (see Fig. 9, right).

In cases involving complicated objects, this kind of approach is usually fruitless. In
the following discussion, we describe two generally valid solution approaches. The first
approach uses the methods of computational geometry, more precisely, collision detection.
The second approach presupposes a functional description of the objects and transforms
the set-theoretical constraints into semi-infinite ones.

4.3 Treating the Non-overlapping Constraints Using Collision
Detection Methods

In the present context, we understand the term “collision detection” (see [24], for ex-
ample) to refer to methods used primarily in the fields of computer games and physical
simulations to quickly establish whether two objects are overlapping or not. The methods
were developed for three-dimensional space and presuppose that the objects are given ex-
plicitly as either triangulations—where an object’s surface is approximated by means of
triangles—or as polyhedrons. The critical feature of these methods is the efficiency with
which non-overlapping can be tested. One way to make the test as efficient as possible
is to pre-process the triangulations by placing a box around each triangle. The boxes are
then, in turn, repeatedly pooled together in an appropriate fashion. The result is a tree of
boxes, a so-called bounding box tree (BBT), in which each box covers one part of the ob-
ject, and the box at the root of the tree covers it entirely (see Fig. 10). If a triangulation is
now given, one can use the tree to quickly determine which of its triangles might possibly
be intersected by the surface of a second object. In this way, one must usually only test a
relatively small number of triangles, even when the triangulation contains many of them,
as is typically the case for the triangulation of rough stone, for example. For problems
with fixed designs, one can directly verify non-overlapping in this fashion, since transla-
tion and rotation can be applied directly to the triangulation and the BBT. For problems
with variable designs, the triangulation and associated BBT must be newly generated each
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Fig. 10 Design of a BBT in 2D: each line of the starting object is covered by a box. These are then
iteratively pooled together—pair-wise, for example—and covered by another box, until only one
remains. To check whether the point at the upper right is contained within the object, one need only
test the shaded boxes.

time. Often, this can prove too costly. In our case, however, the complex triangulation of
the rough stone remains unchanged, and the triangulation of a faceted stone and its corre-
sponding BBT can be generated quickly. The application of this idea to gemstone cutting
is described in detail in [4].

4.4 Transforming the Non-overlapping Conditions into Semi-Infinite
Constraints

Let us turn now to the re-formulation of non-overlapping conditions as semi-infinite con-
straints. First, we introduce our understanding of the latter. Let 2A denote the power set,
i.e., the set of all subsets, of a set A and let |A| denote its cardinality.

Definition 1 (Semi-infinite constraint, infinite index set) Let m,n ∈N, g : Rm ×R
n → R

be a scalar-valued function, and let Y : Rm → 2R
n

be a set-valued mapping with |Y(x)| =
∞ for all x ∈ R

m. Then, the condition

g(x,y) ≤ 0 for all y ∈ Y(x) (8)

is called a general semi-infinite constraint. If Y(x) ≡ Ȳ ⊂ R
n for all x ∈ R

m, then the
condition (8) is called a standard semi-infinite constraint. In both cases, the set Y(x) is
referred to as the infinite index set.

If the function g does not depend on x, this does not affect the terminology.
For our subsequent analysis, we summarize the translation, rotation, and size/shape

parameters for each design Dl , l ∈ L in a vector p̃l ; introduce the set of feasible parameter
values P̃l := Σl × Θl × Pl ; and write Dl(p̃l ) instead of R(θ l)Dl(pl ) + σ l .

If the container can be represented as the solution set of a system of inequalities, that
is, if

C = {
y ∈R

n
∣∣ ci(y) ≤ 0, i ∈ I0

}
,
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Fig. 11 Transformation of a
containment condition into a
semi-infinite constraint

where I0 is a finite index set and ci , i ∈ I0, are real-valued functions, then the transforma-
tion of the containment conditions (1) or (5) into semi-infinite constraints is straightfor-
ward (see Fig. 11 for a graphical illustration):

Dl(p̃l ) ⊆ C ⇔ ci(y) ≤ 0 for all y ∈ Dl(p̃l ), i ∈ I0.

For the semi-infinite reformulation of the non-overlapping conditions, two approaches
were introduced and investigated in [16] and [14]: mutual separation and separation by
hyperplane. Because only the second approach can be applied in cases where there are
additional, relevant requirements stemming from the production technology (see Sect. 6.2)
we will restrict our discussion to this approach. The foundation for this discussion consists
of a so-called separation theorem:

Theorem 1 (Separation theorem, see [20], for example) Let A,B ⊂ R
n be two non-

empty, convex sets, of which at least one is open. Then A and B are non-overlapping
if and only if a vector η ∈ R

n \ {0} and a number β ∈ R exist, such that the following
holds:

ηT y ≤ β for all y ∈ A

and

ηT z ≥ β for all z ∈ B.

The hyperplane H(η, β) := {y ∈ R
n | ηT y = β}, which separates the sets A and B , is

called a separating hyperplane.
If the flaws and designs are convex, the above theorem delivers a semi-infinite formula-

tion of the non-overlapping conditions (2) and (3) or (6) and (7) (for a graphical illustration,
see Fig. 25, right, with δ = 0):
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(1) Dl(p̃l ) ∩ int(Fk) = ∅ if and only if a vector ηDF
l,k ∈ R

n \ {0} and a number βDF
l,k exist,

such that
(
ηDF

l,k

)T y ≤ βDF
l,k for all y ∈ Dl(p̃l ) (9)

and
(
ηDF

l,k

)T z ≥ βDF
l,k for all z ∈ Fk. (10)

(2) Dl1(p̃l1)∩ int(Dl2(p̃l2)) = ∅ if and only if a vector ηDD
l1,l2

∈ R
n \ {0} and a number βDD

l1,l2
exist, such that

(
ηDD

l1,l2

)T y ≤ βDD
l1,l2

for all y ∈ Dl1(p̃l1) (11)

and
(
ηDD

l1,l2

)T z ≥ βDD
l1,l2

for all z ∈ Dl2(p̃l2). (12)

Whereas the conditions (9), (11), and (12) represent general semi-infinite constraints, con-
dition (10) is a standard semi-infinite one. The condition η �= 0 is problematic from an
optimization perspective, but can be suitably reformulated by means of normalization, for
example, ‖η‖2

2 = 1, where ‖ · ‖2 is the Euclidean norm.
Let

x := (
p̃1, . . . , p̃s ,η

DF
1,1, β

DF
1,1, . . . ,η

DF
s,r , β

DF
s,r ,ηDD

1,2 , βDD
1,2 , . . . ,ηDD

s−1,s , β
DD
s−1,s

)

be the vector of all parameters (design and hyperplane parameters) and let

X :=

⎧
⎪⎪⎨

⎪⎪⎩
x

∣∣∣∣∣∣∣∣

p̃l ∈ P̃l, l ∈ L,
∥∥ηDF

l,k

∥∥2
2 = 1, l ∈ L, k ∈ K,

∥∥ηDD
l1,l2

∥∥2
2 = 1, l1, l2 ∈ L, l1 < l2

⎫
⎪⎪⎬

⎪⎪⎭

be the set of feasible parameter values. Then, the reformulation of a maximum material
yield problem with variable designs as a so-called general semi-infinite optimization prob-
lem using the separation by hyperplanes approach becomes:

GSIPMaxMY-VD: max
x∈X

∑

l∈L

Vol
(
Dl(pl )

)

s.t. ci(y) ≤ 0 for all y ∈ Dl(p̃l ),

i ∈ I0, l ∈ L, (13)
(
ηDF

l,k

)T y − βDF
l,k ≤ 0 for all y ∈ Dl(p̃l),

(
ηDF

l,k

)T z − βDF
l,k ≥ 0 for all z ∈ Fk,

}

l ∈ L, k ∈ K, (14)
(
ηDD

l1,l2

)T y − βDD
l1,l2

≤ 0 for all y ∈ Dl1(p̃l1),(
ηDD

l1,l2

)T z − βDD
l1,l2

≥ 0 for all z ∈ Dl2(p̃l2),

}

l1, l2 ∈ L, l1 < l2. (15)
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4.5 Solution Methods for General Semi-Infinite Optimization
Problems

Now that we know how a maximum material yield problem can be transformed into a
general semi-infinite optimization problem, the question arises as to how such problems
can be solved numerically. We now want to answer this question.

Let us consider optimization problems of the following form:

GSIP: min
x∈X⊆Rm

f (x)

s.t. gi(x,y) ≤ 0 for all y ∈ Y(x), i ∈ I, (16)

with

Y(x) := {
y ∈R

n
∣∣ vj (x,y) ≤ 0, j ∈ J

}
and

∣∣Y(x)
∣∣ = ∞ for all x ∈ X, (17)

I := {1, . . . , p} and J := {1, . . . , q}, as well as real-valued, sufficiently smooth func-
tions f , gi , i ∈ I , and vj , j ∈ J . According to Definition 1, we identify such an opti-
mization problem either as:

• a general(ized) semi-infinite program, if the set-valued mapping Y depends on x, or as
• a (standard) semi-infinite program, if the set-valued mapping Y is constant.

The latter is then referred to as an SIP, rather than a GSIP.
The consideration of multiple infinite index sets, a situation that arises for maximum

material yield problems, can proceeded directly. For clarity’s sake, we will restrict our-
selves in the following discussion to one infinite index set.

For a comprehensive introduction to semi-infinite optimization, we refer the reader to
the review article [29] and the book [36] for the SIP problem class and to the review articles
[28, 40] and the monographs [39, 50] for the more general GSIP problem class.

Even if the difference between general and standard semi-infinite problems initially
appears to be minimal, the former are substantially more complicated structurally
and much more difficult to solve numerically.

For the remainder of this section, we make the following assumptions, which we need
for our further considerations and which can be fulfilled very easily for maximum material
yield problems by means of a suitable modeling approach.

Assumption 1 For all x ∈ X, the set Y(x) is non-empty and compact.

Assumption 2 For all x ∈ X, the functions gi(x, ·), i ∈ I , are concave and the set Y(x) is
convex.
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Assumption 3 For all x ∈ X, the set Y(x) possesses a Slater point, that is, a point ŷ(x),
such that vj (x, ŷ(x)) < 0, j ∈ J , holds.

The key to both the theoretical and the numerical treatment of semi-infinite optimization
problems lies in their two-level structure. The parametric lower-level problems from GSIP
are given by

Qi (x): max
y∈Rn

gi(x,y)

s.t. vj (x,y) ≤ 0, j ∈ J. (18)

The term ϕi(x) denotes the optimal value of Qi (x). Accordingly, the function ϕi is
called the optimal value function. Obviously, a point x ∈ X is feasible for GSIP if and only
if ϕi(x) ≤ 0 for all i ∈ I . The main challenge for the numerical solution of semi-infinite
optimization problems is that evaluating ϕi(x) ≤ 0 requires computing a global solution
of the problem Qi (x). This is a very difficult task in general. Under Assumptions 2 and 3,
however, the lower-level problems are convex, regular optimization problems. This makes
a global solution computable. Moreover, under Assumptions 1 to 3, the optimal value
functions ϕi , i ∈ I , are well defined and continuous. Thus, the feasible set of GSIP

M := {
x ∈ X

∣∣ gi(x,y) ≤ 0 for all y ∈ Y(x), i ∈ I
}

= {
x ∈ X

∣∣ ϕi(x) ≤ 0, i ∈ I
}

is closed, and a minimum value exists.
To date, solution methods for general semi-infinite optimization problems have been

developed primarily from a conceptual perspective. To the best of our knowledge, compre-
hensive numerical evaluations exist only for the explicit smoothing approach from [39, 42].
These evaluations can be found in [39], [16], and [12]. All in all, the methods developed
so far are based on two concepts:

(1) the generalization of methods for standard semi-infinite optimization problems and
(2) the transformation of a general semi-infinite optimization problem into a standard

semi-infinite optimization problem.

The methods stemming from concept (1) can be further subdivided:

(A) discretization and exchange methods (see [46, 47]),
(B) methods based on local reduction of the general semi-infinite problem (see [43–45,

48]), and
(C) methods based on the reformulation of GSIP into a related problem, so-called lift-&-

project approaches (see [23, 42] and [10]).

We now introduce two methods that were developed at the ITWM in connection with
two dissertations [14, 16] and tested by means of gemstone cutting problems.
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4.5.1 A Feasible, Explicit Smoothing Method
The first method (see [16] and [10]) consists of a modification of the explicit smoothing
approach from [39, 42]. With this modification, the solutions generated in the method for
the surrogate problem are feasible for the original problem. We first introduce briefly the
explicit smoothing approach and then take a closer look at the aforementioned modifica-
tion.

Explicit Smoothing Approach Under Assumption 1, the semi-infinite constraints (16)
are equivalent to the conditions

max
y∈Y(x)

gi(x,y) ≤ 0, i ∈ I

(see [41]). Thus, GSIP can be written as a bi-level program:

BLPGSIP: min
x,

y1,...,yp

f (x)

s.t. gi(x,yi ) ≤ 0, (19)

yi solves Qi (x), i ∈ I. (20)

Under Assumptions 2 and 3, each global solution yi of the lower-level problem Qi (x),
i ∈ I , can be characterized by the first-order optimality conditions:

∇yLi (x,yi ,μi ) = 0,

diag(μi )v(x,yi ) = 0,

μi ≥ 0,

v(x,yi ) ≤ 0,

where

Li (x,y,μ) := gi(x,y) − μT v(x,y)

is the Lagrangian function of problem Qi (x), μi is the yi -associated vector of Lagrange
multipliers, diag(μi ) is the diagonal matrix with diagonal elements μi

j , j ∈ J , and

v(x,y) := (
v1(x,y), . . . , vq(x,y)

)T
.

Therefore, BLPGSIP can be written as a mathematical program with complementarity
constraints:
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MPCCGSIP: min
x,

y1,...,yp,
μ1,...,μp

f (x)

s.t. gi(x,yi ) ≤ 0, (21)

∇yLi (x,yi ,μi ) = 0, (22)

−diag(μi )v(x,yi ) = 0, (23)

μi ≥ 0, (24)

−v(x,yi ) ≥ 0, i ∈ I. (25)

At this point, we do indeed have a reformulation of GSIP as a finite, one-level opti-

mization problem. However, for optimization problems with complementarity constraints,

classical regularity conditions such as MFCQ—which are of tremendous significance for

numerical methods—are generally not fulfilled at any feasible point (see [37]). (Explicit)

smoothing represents one possibility of regularization. The idea here is to replace the “ma-

lignant” conditions (23) with the conditions

−diag(μi )v(x,yi ) = τ 21, i ∈ I, (26)

where τ > 0 is a perturbation parameter and 1 = (1, . . . ,1)T ∈R
q . In this way, MPCCGSIP

is embedded into a parametric family of optimization problems

Pτ : min
x,

y1,...,yp,
μ1,...,μp

f (x)

s.t. gi(x,yi ) ≤ 0,

∇yLi (x,yi ,μi ) = 0,

−diag(μi )v(x,yi ) = τ 21,

μi ≥ 0,

−v(x,yi ) ≥ 0, i ∈ I.

In [42], the authors show that the degenerateness of the complementarity constraints (23) is

eliminated via the regularization described above, and that Pτ can be solved using standard

software for nonlinear optimization problems. A solution of P0 = MPCCGSIP can now be

found by solving a sequence of problems Pτk
, where {τk}k∈N0 ⊂ R++ is a monotonically

decreasing null sequence:
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Algorithm 1 Explicit smoothing method, [39, 42]
1: Choose a monotonically decreasing null sequence {τk}k∈N0 ⊂ R++ and a starting

point x0 ∈ X ⊆ R
m.

2: Compute a starting point (x0,0,y0,0
1 , . . . ,y0,0

p ,μ0,0
1 , . . . ,μ0,0

p ) of Pτ0 .
3: Set k := 0.
4: while a termination criterion is not fulfilled, do
5: Compute a solution (xk,∗,yk,∗

1 , . . . ,yk,∗
p ,μk,∗

1 , . . . ,μk,∗
p ) of Pτk

using (xk,0,yk,0
1 ,

. . . ,yk,0
p ,μk,0

1 , . . . ,μk,0
p ) as starting point.

6: Set (xk+1,0,yk+1,0
1 , . . . ,μk+1,0

p ) := (xk,∗,yk,∗
1 , . . . ,μk,∗

p ).
7: Replace k by k + 1.
8: end while
9: return xk,0

Whereas problem MPCCGSIP is an equivalent formulation for GSIP, the parametric
problem Pτ represents for τ > 0 merely an approximation.

In [39], the author shows that the explicit smoothing approach possesses an external
approximation property (see Fig. 12 also):

Theorem 2 ([39]) Let Mτ be the projection of the feasible set of Pτ in the x-space. Then:

(i) For all 0 < τ1 < τ2, Mτ1 ⊂ Mτ2 .
(ii) For all τ > 0, M ⊂ Mτ .

A negative effect of this external approximation property is that the x-components of
the solutions of Pτ can be infeasible for GSIP for all τ > 0, although the infeasibility
vanishs in the limiting case. This is a serious problem when the feasibility of the
iterates plays a role.

Feasibility in the Explicit Smoothing Approach The dissertation [16] (and the article
[10]) show how the drawback of the iterates’ infeasibility can be redressed by a simple
modification of the conditions (21). We will now outline how this works.

Whereas the conditions (23) to (25) characterize the global solutions of the lower-level
problems, the conditions (24) to (26) describe for τ > 0 the global solutions of the so-
called log-barrier problems (see [39, 42]):

Qτ
i (x) : max

y∈Rn
bτ
i (x,y) := gi(x,y) + τ 2

q∑

j=1

ln
(−vj (x,y)

)
, i ∈ I. (27)
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Fig. 12 Under- and
over-estimation of the optimal
value function ϕ by ϕτ and
ϕτ + qτ2

Using the duality theory of convex optimization, the optimal value functions ϕi , i ∈ I ,
can be estimated from above and thus the feasible set of GSIP can be approximated from
the interior (see Fig. 12).

Lemma 1 ([16]) For τ > 0 and i ∈ I , let yτ
i (x) be a global solution of Qτ

i (x). Then,

ϕi(x) = max
y∈Y(x)

gi(x,y) ≤ gi

(
x,yτ

i (x)
) + qτ 2,

where q is the number of functions vj , j ∈ J , describing the index set Y(x).

Thus, the original constraints of the upper level (21) can be replaced by the conditions

gi(x,yi ) + qτ 2 ≤ 0, i ∈ I, (28)

which yields the parametric optimization problem

P̂τ : min
x,

y1,...,yp,
μ1,...,μp

f (x)

s.t. gi(x,yi ) + qτ 2 ≤ 0,

∇yLi (x,yi ,μi ) = 0,

−diag(μi )v(x,yi ) = τ 21,

μi ≥ 0,

−v(x,yi ) ≥ 0, i ∈ I.

This modification leads to an internal approximation of the feasible set of GSIP (see
Fig. 12 also):
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Theorem 3 ([16]) Let M̂τ be the projection of the feasible set of P̂τ in the x-space. Then,
for all τ > 0, M̂τ ⊂ M .

A combination of the internal approximation property of M̂τ with the external one of
Mτ leads to a “sandwiching result:”

Corollary 1 ([16]) Let {τk}k∈N0 ⊂ R be a monotonically decreasing null sequence. Then,

⋃

k∈N0

M̂τk
⊆ M ⊆

⋂

k∈N0

Mτk
.

This result significantly improves the termination criteria, which depend on the problem
structure: For a given τ > 0, the objective function value for each point in M̂τ is an up-
per bound on the optimum value of GSIP, while the global minimum value of f delivers
a lower bound over Mτ . Thus, in cases where the latter minimum value is numerically
available, the difference between the upper and lower bounds can be used as a termination
criterion.

Analogously to Algorithm 1, an optimal solution of GSIP is to be found by solving
the problems P̂τk

for a monotonically decreasing null sequence {τk}k∈N0 ⊂ R+. What is
problematical here, however, is the fact that the set M̂τ can be empty for large values of τ ,
due to the modification employed. For example, this occurs when the set defined by the
tightened constraints (28)

Gτ (x) := {
y ∈ R

n
∣∣ gi(x,y) ≤ −qτ 2, i ∈ I

}
,

which, in the context of maximum material yield problems with only one design and no
flaws, corresponds to a “shrunken” container,

Cτ := {
y ∈R

n
∣∣ ci(y) ≤ −qτ 2, i ∈ I0

}
, (29)

is empty. Therefore, in a first phase, one must find a threshold value τ̄ with M̂τ �= ∅ for all
τ ≤ τ̄ and a x ∈ M̂τ̄ , before one then, in the second phase, proceeds as in Algorithm 1. For
details, please refer to [16] and [10].

Finally, we want to graphically illustrate how the explicit smoothing method (Algo-
rithm 1) and its feasible variant work, by means of a design centering problem:

DC : max
x∈X⊆Rm

Vol
(
D(x)

)
s.t. D(x) ⊆ C,

that is, by means of a maximum material yield problem with one variable design and no
flaws. Here, an ellipse is to be embedded with maximal area in the following container
(see Fig. 13):

CCT :=
⎧
⎨

⎩y ∈ R
2

∣∣∣∣∣∣

−y1 − y2
2 ≤ 0,

1/4y1 + y2 − 3/4 ≤ 0,

−y2 − 1 ≤ 0.

⎫
⎬

⎭ (30)



258 K.-H. Küfer et al.

Fig. 13 The container CCT

One possible description of an ellipse is as the affine image of the unit circle:

DE(x) := {
A(x)y + c(x) ∈ R

2
∣∣‖y‖2

2 ≤ 1
}

= {
y ∈R

2
∣∣[y − c(x)

]T [
A(x)A(x)T

]−1[y − c(x)
] − 1 ≤ 0

}
(31)

with

c(x) :=
(

x1

x2

)
, A(x) :=

(
x3 x5

0 x4

)
, and x ∈ X := R

2 ×R
2++ ×R+.

The area of an ellipse with this parameterization is:

Vol2(x) = πx3x4.

The formulation of the design-centering problem DCE-CT as a general semi-infinite op-
timization problem becomes:

GSIPDCE-CT : −min
x∈X

−πx3x5

s.t. −y1 − y2
2 ≤ 0 for all y ∈ DE(x),

1/4y1 + y2 − 3/4 ≤ 0 for all y ∈ DE(x),

−y2 − 1 ≤ 0 for all y ∈ DE(x).

We turn first to the explicit smoothing method (Algorithm 1). We have chosen as null
sequence the geometrical sequence {1/2k}k∈N0 and as starting point x0 the (infeasible)
point (0,0,1,1,0); that is, the unit circle (see Fig. 14(a) also). We have obtained an initial
configuration for the solutions of the lower-level problems and the associated Lagrange
multipliers by solving the log barrier problems (27). Algorithm 1 terminates when the
relative error in either the solutions or the associated function values is less than or equal
to 10−6 and the violation of the feasibility of the solution with regard to the underlying
general semi-infinite problem is less than or equal to 10−6. Figure 14 graphically illustrates
the iterative solution of the problems Pτk

, k ∈ N0.
Using the same example, we want to now look at the feasible variant of the explicit

smoothing method. To do so, we use the same null sequence and starting point. The ini-
tialization of the solutions of the lower-level problems, as well as of the associated La-
grange multipliers, takes place as above. For termination, we now only have to consider
the relative error in the solutions and in the “optimum values,” since a feasible solution
of a problem P̂τk

is, per construction, also feasible for the next problem P̂τk+1 . Figure 15
graphically illustrates the algorithmic procedure. Both the actual container (in light blue)
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Fig. 14 Area-maximal design-centering of an ellipse into the container CCT using the explicit
smoothing method (Algorithm 1) [light blue-container, green-design, red-solutions of the log barrier
problems (27)]: (a) initial situation (τ = 0.5), (b) after solution of problem P0.5, (c) after solution of
problem P0.25, and (d) final situation (after a total of 12 iterations, that is, for τ = 0.000244140625).

Fig. 15 Area-maximal design-centering of an ellipse into the container CCT using the feasible
explicit smoothing method [light blue-container, dark blue-“shrunken” container, green-design,
red-solutions of the log barrier problems (27)]: (a) initial situation (τ = 0.5), (b) after solution of
problem P̂0.5, (c) after solution of problem P̂0.25, and (d) final situation (after a total of 7 iterations,
that is, for τ = 0.0078125)

and the “shrunken” container Cτ (in dark blue; see (29)) are depicted. With this example, it
is not necessary to execute a first phase for finding a suitable threshold value τ̄ and feasible
solution for GSIPDCE-CT , since the “shrunken” container is not empty.

4.5.2 A Transformation-Based Discretization Method
We now introduce a second method developed at the ITWM for solving general semi-
infinite optimization problems with convex lower-level problems. This method cleverly
combines the solution approaches “discretization of infinite index sets” and “transforma-
tion into a standard semi-infinite problem,” thereby circumventing the weak points of each
approach. We will first discuss the two solution approaches separately.
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Discretization Methods for Standard Semi-Infinite Optimization Problems In this
section, we consider standard semi-infinite optimization problems, that is, optimization
problems of the form

SIP: min
x∈X⊆Rm

f (x)

s.t. gi(x,y) ≤ 0 for all y ∈ Y, i ∈ I,

where I := {1, . . . , p}, Y is a non-empty, compact, infinite (index) set, and f , gi , i ∈ I ,
are real-valued, sufficiently smooth functions. For Ŷ ⊂ Y , we introduce the optimization
problem

SIP(Ŷ ): min
x∈X⊆Rm

f (x)

s.t. gi(x,y) ≤ 0 for all y ∈ Ŷ , i ∈ I,

If the set Ŷ is finite, SIP(Ŷ ) is referred to as a discretized SIP problem.
The basic idea of discretization methods is to successively calculate solutions of dis-

cretized SIP problems SIP(Ẏ k), k ∈ N0, using a solution method for finite optimization
problems, where {Ẏ k}k∈N0 is a sequence of finite subsets of Y that converges to the set Y

in the Hausdorff distance. The sequence {Ẏ k}k∈N0 is either established a priori or defined
adaptively. In the latter case, information from the k-th discretization step is enlisted for
defining Ẏ k+1. These considerations can be algorithmically applied as follows:

Algorithm 2 General discretization method for SIP problems, [34, 35]

1: Choose a sequence {Y k}k∈N0 of non-empty, compact subsets of Y , such that |Y 0| < ∞,
Y k ⊆ Y k+1 for all k ∈ N0 and the sequence converges to Y in the Hausdorff distance;
a starting point x0 ∈ X ⊆ R

m; and a feasibility tolerance ε > 0.
2: Set Ẏ 0 := Y 0, x0,0 := x0, and k := 0.
3: repeat
4: Compute a solution xk,∗ of the discretized SIP problem SIP(Ẏ k) using xk,0 as start-

ing point.
5: Choose a set Ẏ k+1 with Ẏ k ⊆ Ẏ k+1 ⊆ Y k+1.
6: for i = 1 → p do
7: Compute a global solution yk,∗

i of maxy∈Y k+1 gi(xk,∗,y).

8: if gi(xk,∗,yk,∗
i ) > ε then

9: Set Ẏ k+1 := Ẏ k+1 ∪ {yk,∗
i }.

10: end if
11: end for
12: Set xk+1,0 := xk,∗ and replace k by k + 1.
13: until maxi=1,...,p gi(xk−1,∗,yk−1,∗

i ) ≤ ε

14: return x∗ = xk−1,∗.
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It is not necessary that the starting point x0 in step 1 is feasible for SIP. In the simplest
case, Y k+1 := Y can be chosen in steps 1 and 5. In step 4, essentially any method for
solving finite optimization problems can be used. The only two requirements here are that
it can handle infeasible starting points and high-dimensional problems. Except for small
m and |Ẏ k|, however, it is not appropriate to use a generic solution method, since such
methods often solve sub-problems having the same number of constraints as the problem
itself. Thus, they do not take advantage of the fact that the constraints of a discretized SIP
problem stem from only a few functions. For this reason, proprietary methods have been
developed to solve these special finite optimization problems (see, for example, [27, 31,
32]).

In order for the method to converge, it is crucial in step 7 to compute a global solu-
tion, or at least a good approximation.

Transformation of a General into a Standard Semi-Infinite Problem In order to be
able to use discretization techniques for solving general semi-infinite optimization prob-
lems, the methods must either be generalized for the case of variable index sets or the
general semi-infinite optimization problem must be transformed into an equivalent stan-
dard problem.

In principle, it is possible to generalize discretization and exchange methods for stan-
dard semi-infinite optimization problems to the general semi-infinite case. An additional
challenge here, however, along with the rapidly growing size of the induced finite prob-
lems, is the x-dependency of the index set Y(x), and, thus, of its discretization. In order
to guarantee that the feasible sets of the optimization problems induced by the discretiza-
tions are closed, the discretization points must be so designed that they depend at least
continuously on x, which is non-trivial (see [47]).

Using suitable assumptions, the transformation of a general into a standard semi-infinite
optimization problem is, in principle, at least locally possible (see [45, 49]). However, such
a transformation is only of practical use when it is globally defined. The ideal situation is
as follows:

Assumption 4 Let there be a non-empty, compact set Z ⊂ R
ñ and a mapping t : Rm ×

Z →R
n that is at least continuous, such that t(x,Z) = Y(x) for all x ∈ X ⊆ R

m.

Under this assumption, the general semi-infinite constraints

gi(x,y) ≤ 0 for all y ∈ Y(x), i ∈ I,

are clearly equivalent to the standard semi-infinite constraints

g̃i (x, z) := gi

(
x, t(x, z)

) ≤ 0 for all z ∈ Z, i ∈ I.
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For one-dimensional index sets Y(x) = [a(x), b(x)], with a(·) ≤ b(·), such a transfor-
mation can be designed simply by means of a convex combination of the interval limits;
for higher dimensional index sets, there exists such a transformation when it is star-shaped
(see [45]), which is the case under Assumptions 1 to 3.

However, the transformation entails a serious disadvantage: it can destroy the con-
vexity in the lower-level that is so important for the convergence of the discretization
method (see [14], for example).

Combination of Both Techniques We now outline how the above-mentioned disadvan-
tage can be circumvented, thus allowing the solution of transformable general semi-infinite
optimization problems using discretization methods. For details, the reader is referred to
[14] (along with [8] and [9]).

We begin by introducing the standard semi-infinite optimization problem induced by
the transformation:

S̃IP : min
x∈X⊆Rm

f (x)

s.t. g̃i (x, z) ≤ 0 for all z ∈ Z, i ∈ I,

with g̃i (x, z) := gi(x, t(x, z)), i ∈ I . We denote its lower-level problems by

Q̃i (x) : max
z∈Z

g̃i(x, z), i ∈ I.

As already seen, the feasible sets, and thus the local and global solutions of GSIP and
S̃IP, coincide. Consequently, a solution for the underlying general semi-infinite problem
can be obtained by solving the induced standard problem. A similar result is also obtained
with the global solutions of the corresponding lower-level problems.

Theorem 4 ([14]) Let x ∈ X and i ∈ I . Then, the point z∗ is a global solution of Q̃i (x) if
and only if y∗ = t(x, z∗) is a global solution of Qi (x).

One can thus calculate a global solution for the non-convex problem Q̃i (x) by find-
ing a global solution of the convex problem Qi (x) and transforming it via t(x, ·)
in Z. This makes it unnecessary to solve the non-convex problems Q̃i (x), i ∈ I ,
using time-consuming methods of global optimization.

Using the insights from Theorem 4, we can now adapt the relevant steps in Algorithm 2
and obtain a discretization method for transformable general semi-infinite optimization
problems:
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Algorithm 3 Transformation-based discretization method for GSIP problems, [14] and [8]

1: Choose a starting point x0 ∈ X and a feasibility tolerance ε > 0.
2: Choose/calculate a starting discretization Ẏ 0(x0) ⊂ Y(x0) and determine Ż0 such that

t(x0, Ż0) = Ẏ 0(x0).
3: Set x0,0 := x0 and k := 0.
4: repeat
5: Compute a solution xk,∗ of S̃IP(Żk) using xk,0 as starting point.
6: for i = 1 → p do
7: Compute a (global) solution yk,∗

i of Qi (xk,∗).
8: if gi(xk,∗,yk,∗

i ) > ε then
9: Determine zk,∗

i such that t(xk,∗, zk,∗
i ) = yk,∗

i and set Żk+1 := Żk ∪ {zk,∗
i }.

10: end if
11: end for
12: Set xk+1,0 := xk,∗ and replace k by k + 1.
13: until maxi=1,...,p gi(xk−1,∗,yk−1,∗

i ) ≤ ε

14: return x∗ = xk−1,∗.

The requirements for the transformation-based discretization method are the same as
those for Algorithm 2. If no starting discretization Ẏ 0(x0) from Y(x0) is available for
step 2, one can be obtained by solving the lower-level problems and transforming the
solutions. A feasible starting point for step 7 can be calculated from a feasible point from
Z via the transformation t(x, ·). With regard to the curvature behavior of the involved
functions, only the convexity of the lower-level problems is presupposed in the above
method, and not the convexity of the objective function f and the functions gi(·,y), i ∈ I ,
for all y. Therefore, the result x∗ of Algorithm 3 is only as “optimal” as the results of the
method used to solve the discretized SIP problems in step 5. Incidentally, this is also the
case for the explicit smoothing method (Algorithm 1) and its feasible variant.

Finally, we want to illustrate how the transformation-based discretization method
works, by means of an example. And here, we’ll employ the same example used for the ex-
plicit smoothing method. Our goal, therefore, is once again the area-maximal embedding
of an ellipse in the container CCT. For the transformation-based discretization method,
we not only need a function to describe the ellipse and an area computation formula, we
also need a description of the ellipse as an image of a compact set under a continuously
differentiable mapping. As mentioned previously, we model the ellipse as a translated and
distorted unit circle. Accordingly, one possible transformation is

t : R5 × [0,1]2 → R
2 with t(x, z) := A(x)

(
z1 cos(2πz2)

z1 sin(2πz2)

)
+ c(x),

where A(x) and c(x) are chosen as above.
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Fig. 16 Area-maximal design-centering of an ellipse into the container CCT using the transforma-
tion-based discretization method (Algorithm 3) [light blue-container, green-design, red-points of the
current discretization, dark blue-points of the greatest violation of the container constraints, which
are added to the current discretization for the next calculation]: (a) initial situation with calculated
starting discretization, (b) after solving problem S̃IP(Ż0), (c) after solving S̃IP(Ż1), and (d) final
situation (after a total of 30 refinements)

As starting point x0, we have again selected the (infeasible) point (0,0,1,1,0) (see Fig.
16(a), also), and as feasibility tolerance, ε = 10−6. The initial discretization Ẏ 0(x0) con-
sists of the solutions of the lower-level problems. Figure 16 illustrates graphically the suc-
cessively refined discretization and the solution of the discretized SIP problems S̃IP(Żk),
k ∈ N0.

5 Industrial Project I—Automation of Pre-forming, Grinding, and
Polishing

In Sect. 1.1, we described how gemstones are processed by hand in the traditional manu-
facturing setting and outlined the new automated approach developed for producing col-
ored gemstones over the past decade—an approach derived from the traditional jewel-
maker’s craft. In this section, we elaborate on the resulting modeling questions and algo-
rithmic solution approaches and discuss the implementation of the automating equipment
and software.

5.1 Questions for Modeling an Optimization Problem—Describing
Alternative Sets and Quality Measures

In order to make mathematical optimization methods of practical use, one needs an avail-
able feasibility or alternative set and well-defined target quantities, which should be char-
acterized as favorably as possible. An easily formulated optimization goal is to maximize
the material yield, that is, the sellable volume fraction of a rough stone. A simple feasi-
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bility requirement is the containment condition, that is, the requirement that the desired
faceted stone is completely contained within the rough stone and that there exists, where
necessary for processing reasons, an additional safety buffer between the faceted stone and
the edge of the rough stone.

The esthetic requirements are markedly more difficult. For example, the cut pattern
of a stone has a significant impact on the final appearance of the faceted stone. Here,
a constellation of problems becomes apparent: First, beauty, as the saying goes, is in the
eye of the beholder; that is, it is subjective. Second, the subjective appraisal of a person,
a jeweler for example, is elusive and difficult to fix precisely. Thus, the esthetic aspect
represents one of the greatest modeling challenges.

Basic Approach For a given rough stone, esthetically motivated conditions are placed on
the proportions, and volume optimal solutions are then defined for each faceted stone base
form being considered (round, oval, octagonal, etc.). The variously shaped and propor-
tioned faceted stones thus calculated are then presented to a decision-maker via a graphic
user interface. On the basis of what he considers to be the most favorable combination of
material yield and esthetic considerations, the decision-maker then selects a faceted stone
shape for production.

As described in Sect. 2.1, the division of the manual production process into two parts,
pre-forming and faceting, motivated us to divide the modeling into two parts as well, by
decoupling the continuous and discrete variables. We accomplish this by introducing the
calibration body as a parameterized equivalent to the smooth pre-grinding form. We can
optimize the calibration body, with an eye on the material yield and proportions, without
first having to commit to a particular faceting pattern. In the following subsections, we
discuss in greater detail the description of the calibration body, the faceting, and the rough
stone modeling.

5.1.1 Faceted Stone Shapes and Calibration Body
A calibration body is characterized in part by its parameterization; parameters include, for
example, position in rough stone, height, length, width, and degree of belliedness. Some
are generic parameters that are independent of the faceted stone shape and others are shape
specific. The parameters’ feasibility domains ensure that the proportions remain within
zones that result in esthetically appealing jewels. After one has defined specific values for
the parameters, then the most appropriate faceting pattern can be chosen.

The calibration body is also characterized by smooth functions v : Rm × R
3 → R

q ,
which establish, in dependency on the parameters x ∈ R

m, whether a point y ∈R
3 is indeed

located within the calibration body (vj (x,y) ≤ 0 for all j = 1, . . . , q), or whether it is not
(vj (x,y) > 0 for at least one j ∈ {1, . . . , q}). The choice of functions depends of course
on the shape of the faceted stone.

On the basis of a simple faceted stone shape with a circular girdle base form, we will
now explain how a calibration body can be described and parameterized and how the
esthetic requirements fit into the analysis.
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Fig. 17 Parameterization of
the round faceted stone shape
using heights and radii and
degree of belliedness for
pavilion and crown

Parameterizing a Calibration Body With the help of six real-valued parameters and
a suitable coordinate system, one can represent the absolute position and rotation of a
calibration body within the rough stone. The description of the actual extent of the faceted
stone shape depends on the base form. For a round stone it can be described using seven
more parameters, as depicted in Fig. 17. For the three faceted stone elements—crown,
girdle, and pavilion—the three heights hC , hG, and hP are further parameters; for the
crown and girdle, there is a radius rT and a radius rG for the table and the girdle; and for
the crown and pavilion, there is one more parameter each, τC and τP , which describe the
degree of belliedness or curvature. For other, more complicated faceted stone shapes, there
are additional parameters, such as the ratio of the length to the height of the girdle base
form.

Alternatively, one can also choose a scaling-invariant parameterization. Here, the radius
of the girdle is set to 1, and all other parameters that specify a length are replaced by the
ratio of that length to the girdle radius. Thus, we obtain the new parameters h̃C := hC

rG
,

h̃G := hG

rG
, h̃P := hP

rG
, and r̃T := hC

rG
. The parameters τC and τP remain unchanged. Later,

in the algorithmic section, we will make use of the advantages of this scaling-invariant
parameterization.

Calibration Body Proportions The feasible value domain of the parameters is very
important for the esthetic appearance of the final faceted stone. For example, parameters
that specify lengths must fulfill certain proportion requirements. The ratio of the girdle
radius to the crown radius, for example, is restricted by both an upper and a lower bound.
The same holds true for the ratio of the total calibration body height to the girdle radius
or to the individual heights of the pavilion, girdle, and crown. Likewise, there are upper
and lower bounds for the belliedness parameters τP and τC . It is not easy to make a good
choice for the combination of these bounds, since this choice depends very strongly on
the esthetic sensibilities of the decision-maker. A guideline for the mathematical model
should be to not make the feasibility intervals too small, otherwise the latitude for volume
optimization and the incorporation of esthetic considerations becomes too limited.
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Fig. 18 Calibration body of
the round faceted stone

Functions for Describing a Calibration Body In order to be able to use the methods
from Sect. 4.5, the calibration body must be described by convex, differentiable functions.
Using the parameters described above, we specify for our example of the round faceted
stone a corresponding description. Here, the calibration body is given as DRound(x) :=
{y ∈R

3 | v(x,y) ≤ 0} and we define v as follows:

v :R7 ×R
3 → R

5 : y �→

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

y2
1 + y2

2 − rP (y3) lateral boundary of the pavilion

y2
1 + y2

2 − rC(y3) lateral boundary of the crown

y2
1 + y2

2 − r2
G lateral boundary of the girdle

y3 − hC − hG boundary of the table

−y3 − hP boundary at the pavilion apex

(32)

The functions rP and rC specify the radius for a given height y3 and are dependent upon
τP , τC , rC , and rG. The curvatures of pavilion and crown depend upon τP and τC , re-
spectively. We refer the reader to [16] for a more detailed description of rP and rC . There,
and in [14] as well, one can find formulas for calculating calibration body volumes via the
appropriate integrations. Figure 18 shows an approximation of the set DRound.

5.1.2 Calculating the Facetings
The step from a calibration body to a beautiful faceting is more complex than one might
imagine. The obvious idea of simply laying the corners of the facets on the margin of the
calibration body won’t work, since the resulting system of equations is over-defined, at
least for the Portuguese cut.

As already hinted in Sect. 2.1, the challenges of defining suitable facetings result from
numerous aspects that must be considered: The faceting determines the reflection of light
and thus the stone’s sparkle and inner flame. Here, the setting angles are crucial. These
angles must be neither too sharp nor too shallow, in order to ensure optimal reflection. The
number of rows and the number of facets per row are also important criteria and depend
on the size and material characteristics of the stone. In general, the larger the stone, the
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Fig. 19 2D projection of a
pavilion faceting pattern for the
antique stone shape: left, using
the iterative approach, which
delivers an unsatisfactory
result; right, using the explicit
approach

more facets it should have. The faceting must have the same axes of symmetry as the
corresponding faceted stone shape. Moreover, an attractive cut pattern is one in which all
the facets in a given row have approximately the same setting angle and are about the
same height and width. The facets should also decrease in size as one moves away from
the girdle.

Two approaches have proven successful for calculating the faceting. The first consists
of iteratively adding rows of facets, starting at the girdle and working outwards towards
the pavilion’s apex and the crown’s table. Here, a shallower setting angle is specified for
each succeeding row. With this approach, however, the possibilities for influencing the
faceting pattern are limited. In the second approach, the desired final facets are given at
the start and parameterized via their corner points and the normals of the associated levels.
If one now formulates as equations the fact that two neighboring facets share two corners
or that all the facets in a given row are to have the same setting angle, then one obtains a
system of equations that, although over-defined, can nevertheless be solved approximately
after appropriate relaxation. This approach is explicit and allows one to exactly control the
resulting faceting pattern. It also requires substantially more effort, since a different type of
equation system must be set up for each faceted stone shape. Under some circumstances,
however, as depicted in Fig. 19, it delivers clearly more attractive faceting than the first
approach, which cannot always guarantee good results.

5.1.3 Describing the Rough Stone
The geometric shape of the rough stone must be captured in a suitable manner in order to
make it accessible to the optimization algorithms. One possibility for digitalizing the rough
stone utilizes data about its surface. Using a 3D scanner with either the stripe projection
or laser scanning procedure, surface point clouds are recorded for the rough stone, which
one can then convert to a surface model by means of triangulation.

In the terminology of the material cutting field, the rough stone forms the container.
If we want to use the solution method from Sect. 4.5, however, then triangulation as a
description of the container is hardly suited, since tremendous point clouds arise on the
surface for exactness requirements of about 5–10 micrometers. Instead, the convex hull of
the net is used, and larger indentations, that is, differences between the rough stone net
and the convex hulls, are additionally described by means of quadrics. Because one can
represent the inside of the convex hulls by a potentially large number of linear inequalities,
this method yields a description of the container consisting of linear and convex quadratic
functions.



Maximal Material Yield in Gemstone Cutting 269

5.2 Algorithmic Implementation

In the following, we introduce two alternative methods for achieving a maximum material
yield.

The first method is based on Algorithm 1 from Sect. 4.5.1. We consider a hierarchic
formulation of the problem: First, optimize the volume of the calibration body; then, ap-
proximate this calibration body using a suitable faceting pattern with as little volume loss
as possible. In a post-optimization step, we can scale and/or rotate the resulting faceted
stone into the rough stone in a volume-optimized manner.

The calibration body modeling described in Sect. 5.1.1 conforms to the formal design
description requirements needed for the algorithm. The container is likewise described
functionally, as discussed in the previous section. In principle, then, Algorithm 1 can be
applied. In practice, however, the problem arises that, due to the many functions describing
the container—hereafter referred to as container functions—the algorithm becomes very
slow. This problem is dealt with by initially considering only a very small portion of the
container functions. One iteratively applies the algorithm to the selected subset of con-
tainer functions, calculates a solution for this relaxed problem, and checks to see whether
the resulting faceted stone is feasible with regard to all container functions. If not, one
expands the selected subset by including the violated container functions. Using this new,
expanded selection, one then re-calculates and begins the next iteration. In practice, this
procedure leads to a solution after a few iterations. This solution is feasible for the start-
ing problem, but nonetheless, even in the final iteration, only a small number of container
functions must be taken into consideration. Using the calibration body parameters found
in this way, one now calculates the faceting. Because the container functions do not map
the rough stone exactly and only the calibration body is considered in the optimization, the
faceted stone must be adjusted by slight translation, rotation, and scaling operations in a
final step, in order to ensure that it lies completely within the rough stone surface described
by the triangulation.

The second approach is based on the treatment of the non-overlapping condition de-
scribed in Sect. 4.3 and works directly with the triangulation of the rough stone. This
allows the original surface description to be used directly. The faceting can also be under-
stood as a triangulation if the girdle is suitably discretized. The main challenge inherent in
this second approach is to quickly develop a faceting when the calibration body parameters
change. Here, one advantage is that the triangulation resulting from a faceting is very small
relative to the triangulation of the rough stone. A second advantage is that a change affect-
ing the position of the faceted stone does not lead to a re-calculation of the faceting. For the
algorithmic implementation of this approach, one now uses the scaling-invariant parame-
terization described above with scaling parameter s. The problem of maximum material
yield can now be described as the search for a maximum scaling parameter s∗. Because
the containment of the design within the container for a given s can be quickly verified, the
optimal value s∗ can also be quickly determined—for example using a bisection approach.
In general, as shown in [4], s∗ depends continuously on the scaling-invariant parameters,
so that common optimization methods can be used for the resulting optimization problem.
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Fig. 20 A rough stone glued
to a measurement pin and the
re-gluing procedure

5.3 Automating the Grinding and Polishing Process—The Technical
Challenges

In addition to the virtualization of design and container required to make the maximum
material yield problem mathematically and informationally accessible, there are also tech-
nical challenges to be mastered, such as holding and guiding the stone during the work
steps and automating the grinding and polishing processes.

The starting point for successfully industrializing gemstone production is the approach
used in the hand manufacturing process, which is to be suitably refined and automated.
The entire process consists of the following steps:

1. The rough stone is manually glued to a measurement pin.
2. It is then measured and digitalized using a 3D scanner (see Fig. 21).
3. An optimal faceted stone is virtually embedded in the measured rough stone via math-

ematical optimization, as described in Sect. 5.2.
4. The corresponding difference images are converted into re-gluing, grinding, and pol-

ishing plans and transferred to the machines.
5. The rough stone is transferred from the measurement pin to a processing pin, while

preserving the coordinate system (see Fig. 20).
6. Transfer to the processing station; grinding and polishing of the girdle and the front

side (see Fig. 22).
7. Transfer to the pin re-positioning station; axial re-positioning on a second processing

pin.
8. Transfer to the processing station; grinding and polishing of the back side.
9. The processing pin is removed by hand; the faceted stone is now finished.

The goal in designing the process was a level of accuracy in all steps such that an
absolute accuracy of 5–10 micrometers could be achieved for the overall production. To
describe here in detail all of the technical requirements and their mechanical engineer-



Maximal Material Yield in Gemstone Cutting 271

Fig. 21 A configuration for
generating a three-dimensional
representation of the rough
stone via the stripe projection
method (Photo: G. Ermel,
Fraunhofer ITWM)

Fig. 22 Grinding a stone’s
first processing side

ing solutions would exceed the scope of our discussion. The pictures, however, do offer
some impressions of the pre-series prototype at the Fraunhofer ITWM, which fulfilled the
targeted requirements.

5.4 Automating the Grinding and Polishing Processes—The Software
Challenges

Along with the technical challenges, there were also five software development problems
to be solved:

1. Implementing the optimization algorithm: Here, the primary challenge is to efficiently
implement the above-described approaches and to ensure that they are also robust in the
face of very rare, pathological, numerical cases that might not arise until the process has
been in operation for a length of time.
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2. Scalable parallelization: Due to the high computing time requirements—about ten
faceted stone shapes must be calculated for each stone—parallel execution of the opti-
mization is necessary. Here, the calculations are distributed on multiple CPUs.

3. Centralized data-keeping is a critical element: It not only has to support the paralleliza-
tion of the calculations, it must also maintain in readiness a consistent view of the
data for machine controlling and the user interface. Here, the extensive functionality of
modern databases is very helpful.

4. The machine control system must manage the various stations of the machines for
grinding, polishing, pin re-positioning, scanning, and transporting the stone and must
pick up error functions and breakdowns.

5. As the interface between operator and machine, the user display must include compo-
nents for controlling and configuring the machines, for showing the virtual rough stones
and calculated faceted stones with hardware-optimized 3D depictions, and for starting
and configuring the optimization calculations. Here, the ease-of-use of the software and
the resulting user experience—hopefully, a positive one—play an important role.

Because of the variety of functions, a professional software design is indispensable.
Although the code was created originally in a dissertation according to purely scientific
considerations, the current process software now has a modular, maintainable, and extend-
able structure, in which the individual components can be added or removed, as needed.

6 Industrial Project II—Gemstone Sectioning

After looking at the optimal conversion (with respect to cut and volume) of a rough stone
to a faceted one in Industrial Project I, we now turn to the “gemstone sectioning” project.
Here, several faceted stones are to be produced from a single rough stone, while maximiz-
ing the total volume of the final jewels and avoiding flaws. With this endeavor, we move
one step closer to the goal of solving the complete gemstone cutting problem.

6.1 Description of the Problem

We recall that the (main) task of gemstone cutting consists of transforming a rough stone
marred with surface flaws, inclusions, and cracks into faceted stones in such a way that
their total value is as high as possible. Here, we consider only the volume as value-
determining criterion and require that the finished faceted stones be free of flaws. The
implementation of the esthetic requirements can be accomplished analogously to Sect. 5.

In order to produce several faceted stones from a single rough stone, the latter must first
be sectioned into blanks, each of which yields one faceted stone. This raises the following
two questions:
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How many faceted stones should be produced from the rough stone, that is, into how
many blanks should the rough stone be sectioned? What does such a sectioning look
like?

Although, in the manual production process, “sectioning” and “grinding” are separate
work steps, generally performed by different persons, the sawyer is already giving some
thought to how the blanks should look in order to yield large-volume and esthetically
pleasing faceted stones.

The standard tool for sectioning rough stones is the circular saw, with which only
straight cuts are possible. While it is indeed possible to cut out a wedge-shaped blank
using a circular saw, we want to assume that each cut is a through-cut, which is referred to
in the trade as a guillotine cut. Moreover, since each cut consumes valuable material, one
uses narrow-kerf blades and tries to keep the cuts short and few in number when sectioning
the rough stone.

6.2 Modeling

From a mathematical perspective, the above problem is once again of the maximum mate-
rial yield type. Here, however, we need to generalize the non-overlapping condition, since
the faceted stones must have a specified minimum distance from one another to allow for
the kerf width. As an additional requirement, they must also be present in a guillotine
arrangement in order to be amenable to circular saw technology (see Fig. 23). In the fol-
lowing discussion, we illustrate how both requirements can be mathematically modeled in
the context of Sects. 4.1 and 4.4, that is, for arbitrarily shaped containers and designs.

Fig. 23 Guillotine
arrangement of five elliptical
designs with minimum
distances in a container
described by lines and quadrics



274 K.-H. Küfer et al.

6.2.1 Minimum Distance Between the Designs
We first look at the requirement that the designs must have a specified minimum distance
δ > 0 from each other.

In some cases, geometrical considerations allow one to deduce practicable conditions.
For example, two circles have at least the distance δ between them if and only if the
distance between their centers is greater than or equal to the sum of their radii plus δ (see
Fig. 24).

For more complicated designs, this approach is not usually expedient. However, as
with the non-overlapping condition, describing the designs by means of functions also
allows one here to implement this requirement using semi-infinite constraints. In [14], two
modeling approaches were proposed for accomplishing this aim: via Euclidean (norm)
distance and via separating hyperplane.

The first approach is intuitive. Two designs have a minimum distance δ between them
if and only if each point of one design has at least a distance δ from each point of the other
design (see Fig. 25, left). The mathematical formulation for this is

‖y − z‖2 ≥ δ for all (y, z) ∈ D1(p̃1) × D2(p̃2),

which is clearly of semi-infinite nature.
The second approach, as the name implies, is based on the separation of the designs

by means of hyperplanes. On the one hand, we know that the non-overlapping of two
convex designs can be guaranteed by means of a separating hyperplane (see Sect. 4.4).

Fig. 24 Two circles with
distance δ

Fig. 25 Ensuring a minimum distance between two elliptical designs: left, using the Euclidean
(norm) distance; right, using a separating hyperplane
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On the other hand, the distance of a point from a hyperplane can be directly calculated
by inserting the point into the hyperplane equation ηT y = β , if the normal vector η of the
hyperplane is normalized to 1, that is, if ‖η‖2 = 1. If we now require that all points of
one design lie on one side of the hyperplane and are at least a distance δ/2 away from it,
and that all points of the other design lie on the other side of the hyperplane and are at
least the same distance away from it, then the designs have a minimum distance δ between
them (see Fig. 25, right). These requirements can be formulated mathematically as the
inequalities

ηT
0 y − β ≤ − δ

2
for all y ∈ D1(p̃1)

and

ηT
0 z − β ≥ δ

2
for all z ∈ D2(p̃2),

which are both semi-infinite in nature. Here, η0 denotes the normalized unit vector.

6.2.2 Guillotine Arrangements of Designs
We now show how the requirement of a guillotine arrangement can be implemented for
maximum material yield problems.

In order to take advantage of such an arrangement using a saw, it is necessary, of course,
to leave space for the saw kerf between the planned designs. However, in the following
considerations, for clarity’s sake, we require no minimum distance between the designs.
As shown in the previous section, this requirement can be easily integrated into the model
at a later stage.

Guillotine cutting problems have been investigated mathematically since the mid-1960s
([26]). The most frequently considered problem is the so-called two-dimensional orthog-
onal guillotine cutting problem (see Fig. 26):

2DOGCP: Can a given set of orthogonally rotatable rectangles be cut out of a large rectan-
gle by a series of linear cuts that run either parallel or orthogonal to the sides of the large
rectangle, i.e., by a series of guillotine cuts?

Fig. 26 Arrangement of smaller rectangles in a larger rectangle: guillotine arrangement, left;
non-guillotine arrangement, right
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To date, only minor modifications of this standard problem have been investigated:

guillotine arrangement of equally sized circles in a rectangle (see [21, 22]) and guillotine

cuts of cuboids (see [33]), as well as hyper-cuboids (see [17]).

All familiar models and solution methods take advantage of the simple and fixed ge-

ometry of the designs and the container. The designs are translatable; rotation, in contrast,

when allowed at all, is only permitted in 90◦ steps. The guillotine cuts run orthogonal or

parallel to each other.

For the gemstone cutting problem, however, these kinds of guillotine arrangements are

not suitable, due to the irregularity of the rough stone and the shape and parametrization of

the faceted stones; they would lead to smaller jewels and, thus, lower yields. Instead, we

want here to allow the guillotine cuts to be made in an arbitrary position, both absolutely

and relative to one another, so that we can “generate” more jewel volume.

In keeping with 2DOGCP, we can, however, introduce our understanding of a guillotine

arrangement of arbitrary convex designs (general guillotine cutting problem; see Fig. 23,

also) and how one achieves it:

GGCP: Let there be an arrangement of a set of convex designs in a container. The
arrangement is call a general guillotine arrangement when the container can be
sectioned into pieces by a series of straight, through-cuts, i.e., guillotine cuts, such
that each piece contains exactly one design and no design is cut into during the
sectioning of the container.

A guillotine cut is therefore a hyperplane, which not only separates two designs from

each other, but also one set of designs from another set of designs. In other words, in guil-

lotine arrangements, the non-overlapping of the designs (and maintenance of a minimum

distance) is always guaranteed by separating hyperplanes. Here, however, fewer hyper-

planes are required than for an arbitrary arrangement. Thus, the number of optimization

parameters is smaller. The number and structure of the semi-infinite constraints, however,

is the same for guillotine arrangements as for arbitrary arrangements.

The procedure in GGCP generates a fully binary tree, whose nodes correspond to the

container portions resulting from the successive sectioning process. Here, the inner nodes

represent the guillotine cuts and the leaves represent the designs (see Fig. 27).

When the number of designs reaches four or more, then there will be at least two pos-

sible guillotine arrangements. Here, to find the best one, all the structurally different ar-

rangements must be calculated. The number of possible guillotine arrangements increases

exponentially with the number of designs.
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Fig. 27 Representation of the
guillotine arrangement from
Fig. 23 using a fully binary tree

6.3 Algorithmic Implementation

To numerically solve this problem, we have chosen to use the transformation-based dis-
cretization method introduced in Sect. 4.5.2, since this works very nicely when most of the
constraint functions are affine linear and the infinite index sets are very close to polyhedral.
For gemstone cutting problems involving a guillotine arrangement of the faceted stones,
these prerequisites are either met outright, or can be contrived (see [14]).

6.3.1 Modeling the Faceted Stones
For the transformation-based discretization method, one needs a functional description of
the faceted stone shape and a representation of this description as the image of a compact
set under a continuously differentiable mapping. Due to the complexity of the faceted stone
shapes, it is impossible to represent any shape as the image of a single set. However, if one
considers the crown, girdle, and pavilion separately, then this can indeed be done. If the
shapes are very complex, further subdivisions may even be necessary.

For illustration purposes, we want to consider the girdle of a round shaped stone. For
representations of the crown and pavilion—along with other shapes—as the image of one
or more compact sets under continuously differentiable mapping, we refer the reader to
[14]. As we know from Eq. (32), the girdle of the round shape

{
y ∈R

3
∣∣∣∣
y2

1 + y2
2 − r2

G ≤ 0
0 ≤ y3 ≤ hG

}

is a cylinder with radius rG and height hG. Using the polar coordinate representation of a
cylinder, this is, accordingly, the image of the set [0,1]3 under the mapping t((hG, rG), ·) :
R

3 → R
3, with

t(x, z) :=
⎛

⎝
z2rG cos(2πz1)

z2rG sin(2πz1)

z3hG

⎞

⎠ .
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Fig. 28 Enclosing a flaw: from left to right, triangulation of its surface, smallest enclosing sphere,
Löwner–John ellipsoid, convex hull of the triangulation

6.3.2 Modeling the Rough Stone and Its Flaws
From Sect. 5.1.3, we already know how to model the rough stone surface so that the above
problem can be (re-)formulated and solved as a general semi-infinite optimization prob-
lem. Therefore, in this section, we will only describe how to model the flaws. We recall
that for the convexity of the lower-level problems, which result from reformulating the
non-overlapping conditions between the designs and the flaws, both the designs and the
flaws must be convex (see Sect. 4.4). While the former always are, the latter may not be.
Thus, they must be approximated by convex sets. The simplest such approximation con-
sists of enclosing a flaw, or enclosing the triangulation of its surface, by means of a sphere
with minimal radius. A better external approximation is delivered by a so-called Löwner–
John ellipsoid. This is an ellipsoid that encloses a set of points and has minimal volume.
Finally, the convex hull of each flaw triangulation is calculated. Due to the multi-step na-
ture of the problem solution (see Sect. 6.3.3), one approximates the flaws with various
bodies, as illustrated in Fig. 28.

6.3.3 Determining the Starting Point
We now describe how to initialize the transformation-based discretization method (Algo-
rithm 3, Sect. 4.5.2) for gemstone cutting problems. In this context, the starting point
in step 1 of the method corresponds to assigning the initial translation, rotation, and
size/shape parameters of all faceted stone designs, along with the parameters of all sepa-
rating planes. The starting discretizations in step 2 correspond to an initial discretization
of the faceted stone designs and flaws.

When calculating the initial faceted stone designs and separating plane parameters, we
are motivated by the fact that this is a maximum material yield problem. For this reason,
we proceed as follows: The problem of volume-maximal embedding of a given number of
spheres in a polyhedral container with spherical surfaces and internal cavities (flaws) rep-
resents the simplest maximum material yield problem in R

3 and can be reduced directly to
a finite optimization problem, that is, a problem with a finite number of constraints. There-
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fore, in the first step, we solve such a problem. Except when centering a single sphere, we
are dealing here with a non-convex optimization problem. Therefore, in general, a stan-
dard solution method for nonlinear problems will find no global solution. Hence, a calcu-
lated solution is repeatedly disturbed and re-optimized (a technique of global optimization
known as Monotonic Basin Hopping (MBH)), so as to find a best possible local, perhaps
even global, solution.

Unlike spheres, faceted stones have different extensions in the directions of the three
main axes. For this reason, spheres are not very well suited for use as surrogate models.
Therefore, in the second step, we shift to an elliptical representation of the various objects
and solve the corresponding multi-body design centering problem. This, too, can still be
formulated as a finite optimization problem. Due to its non-convexity, we use MBH here
as well, so as to find the best possible local solution.

We ultimately obtain an initial assignment of the faceted stone design parameters by
embedding their discretization in the arranged design ellipsoid while maximizing the vol-
ume of the faceted stone design. To solve the semi-infinite reformulation of the gemstone
cutting problem, we shift to a polyhedral representation of the surfaces and inner cavities.
We refer the reader to [14] for details regarding the entire starting point calculation (see
Fig. 31, also, for a graphical illustration).

6.3.4 A Numerical Example
In conclusion, we want to use a numerical example to illustrate the problem dimensions
of the resulting optimization problems, as well as the run-times and iteration counts of the
transformation-based discretization method.

We implemented both the multi-body design centering problems and the transforma-
tion-based discretization method in MATLAB (R2012a). To solve the finite reformulations
of the multi-body design centering problems and the discretized SIP problems in the con-
text of the transformation-based discretization method, we used the SQP method of the
fmincon routine of the Optimization Toolbox V6.1, with standard settings and
first-order derivatives. The calculations were performed on a 32 bit Windows laptop PC
with Intel Core Duo T2500 2.0 GHz processor and 2.0 GB RAM.

In this example, we do not consider the requirement of maintaining a minimum dis-
tance, since it is difficult for the observer to verify this in the two-dimensional representa-
tion of the three-dimensional situation. For the same reason, we have dispensed with the
requirement that only a guillotine arrangement is allowed.

The rough stone we have selected contains three inclusions. We consider a triangulation
of the rough stone surface with 576 triangles (see Fig. 29, left). We approximate these with
9 planes and one quadric (see Fig. 29, right). The convex hull of the approximated surface
cavity has 24 corner points. We have enclosed the surface triangulations of each of the
three inclusions in one sphere and one ellipsoid (see Fig. 29, right). Their convex hulls
have 25, 38, and 50 corner points, respectively.

Within this rough stone, we want to embed one to five faceted stone designs of the
baguette shape (see Fig. 3) with maximum total volume. We let 3 be the maximum number
of non-improvements in the MBH for the design centering of both spheres and ellipsoids.
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Fig. 29 Rough stone with three inclusions: left, surface triangulation; right, approximating the
rough stone surface with planes and a sphere, and enclosing the inclusions using spheres

Fig. 30 The initial discretization of a baguette-shaped faceted stone design: left, top view; right,
side view

The transformation-based discretization method terminates when the maximum violation
of the solution feasibility with regard to the underlying general semi-infinite problem is
less than or equal to 10−3. The initial discretization of a baguette-shaped faceted stone
design consists of 10 points and is shown in Fig. 30.

Table 1 shows the problem dimensions of the general semi-infinite optimization prob-
lems resulting from the maximal material yield problems. Table 2 shows the results of
the calculations for the embedding of one to five baguette-shaped faceted stone designs in
the rough stone approximation under consideration. The abbreviations in the tables can be
deciphered as follows:

# D : Number of designs
D : Designs: S = Sphere(s), E = Ellipsoid(s), FD = Faceted Stone Designs
# V : Number of problem variables
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# FC : Number of finite constraints
# g’s : Number of constraint functions of the semi-finite constraints
# IIS : Number of infinite index sets
# SIC : Number of semi-infinite constraints
# I : Number of loop executions for monotonic basin hopping or transformation-

based discretization method for refining the discretization
t : CPU-time in seconds
MBH-V : Absolute improvement of objective function value in percent as a result of

MBH
Vol : Volume yield in percent

Figures 31, 32, and 33 illustrate the calculated solutions.

Table 1 Problem dimensions
of the resulting general
semi-infinite optimization
problems for the embedding of
one to five faceted stone
designs in the rough stone
approximation

# D # V # g’s # IIS # SIC

1 30 13 5 17

2 64 18 6 36

3 102 24 7 54

4 144 31 8 80

5 190 39 9 105

Table 2 Embedding of one to five spheres, ellipsoids, and baguette-shaped faceted stone designs in
the rough stone approximation: problem dimensions of the finite problems, CPU-times, and volume
yields

# D D # V # FC # I t MBH-V Vol

1 S 4 21 5 1.465 <0.01 12.20

E 25 35 9 7.815 3.03 22.40

FD 30 182 ↗ 472 7 14.159 – 35.66

2 S 8 43 11 2.476 8.11 20.04

E 54 73 5 17.873 <0.01 32.46

FD 64 385 ↗ 1605 6 67.419 – 56.37

3 S 12 66 6 2.169 4.64 29.39

E 87 114 6 31.214 <0.01 45.63

FD 102 609 ↗ 2274 6 93.905 – 62.93

4 S 16 90 12 4.191 10.71 36.64

E 124 158 5 46.495 <0.01 48.68

FD 144 854 ↗ 3554 7 335.644 – 69.39

5 S 20 115 10 4.658 1.30 37.49

E 165 205 7 132.598 <0.01 50.79

FD 190 1120 ↗ 5383 9 545.305 – 73.02
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Fig. 31 Multi-step procedure for solving gemstone cutting problems: from spherical to elliptical to
polyhedral shaped objects

Fig. 32 Calculated solution for three baguette-shaped faceted stone designs, as viewed from two
perspectives

Fig. 33 Calculated solutions for two, four, and five baguette-shaped faceted stone designs
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Fig. 34 Milled-to-size resin
cuboid with enclosed rough
stone

6.4 Automating the Sectioning Process

The technical goal of this project was to automate the sectioning of raw material into
blanks that can be further processed. Here, we wanted to carry over as many of the manual
processing steps as possible into the automated process.

The sawing technology used in the manual process is the circular saw. Here, wooden
clamps are used to hold the rough stones in place for sawing. This holding technology is
not suited for automation, however, since it is impossible to predict how deeply the rough
stone will sink into the wooden clamps. For an automated process, the stone must adhere
precisely to the coordinate system, a problem that was ultimately solved in the following
manner: The rough stone is cast in synthetic resin and the resulting block then milled down
to a cuboid (see Fig. 34). The resin cuboid is glued to a cutting underlay into which the
cutting disc is free to penetrate. The cutting underlay is clamped to a T-grooved plate,
which is then fixed in a vice.

The circular saw is designed so that the cutting disc remains stationary, and the resin
cuboid is aligned according to the cut to be executed. To allow this alignment, the vice
is mounted on a rotary-swivel table that can be shifted orthogonally and parallel to the
cutting disc. The cut is then made by guiding the clamping system against the cutting disc
(see Fig. 35).

For this project, we needed to be able to detect flaws in the interior of the rough stone,
which ruled out stripe projection as a means of data collection. Instead, we decided upon
computer tomography. The rough stones, including resin cuboids, were digitalized using
the ITWM’s own computer tomography equipment.

Along with the optimization algorithms, we implemented two other modules that deal
with the execution of the guillotine cuts: The first is a program for virtually executing
the guillotine cuts and then visualizing the resulting blanks. The second is a program for
calculating the machine data (angle settings of the rotation axes and position of the linear
axes) for the saw prototypes in preparation for performing the actual cutting sequence.
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Fig. 35 Sawing by guiding the
properly aligned resin cuboid
into the cutting disc

The original plan was to have the cuts automatically executed once the resin cuboid
was aligned properly. This proved to be impracticable, however, due to two problems that
arose with the very first cutting trials: When initiating the cut, if the cutting disc penetrates
too quickly into the resin surface or at too obtuse an angle, it can slide off and tilt. The
same thing can happen when the resin work piece is withdrawn from the cutting disc.
Therefore, cut initiation and work piece withdrawal must both be performed manually
under the guidance of an experienced cutter.

Ultimately, the sectioning process was carried out as follows:

1. Preparation: encasing the rough stone in synthetic resin and milling the resulting resin
cast into cuboid form

2. Computer tomography and preparation of volume data: photographing the resin
cuboid, segmenting the resin cuboid and rough stone, and analyzing flaws

3. Intermediate check 1: re-adjusting the flaw classification
4. Preparation of volume data for optimization: generating surface data and approxi-

mating the resin cuboid, the rough stone surface, and the flaws
5. Optimization: calculating the optimum sectioning plan with respect to volume
6. Intermediate check 2: selecting a sectioning plan
7. Generation of machine data
8. Preparation of the cut: Gluing resin cuboid to an acrylic glass plate, fastening the

acrylic glass plate to a aluminum T-groove plate with clamping jaws, clamping the
aluminum T-groove plate in the vice of the retaining jig, aligning the retaining jig ac-
cording to the calculated angles and translations

9. Sawing the resin cuboid: manual cut initiation, further cutting with automatic feed-in,
manual withdrawal of work piece

10. Detaching resin cuboid
11. Repetition of steps 7/8 to 10 until all calculated cuts have been performed
12. Final check
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Fig. 36 Two polyhedral
designs separated by a
developable surface

One problem with this process is the difficulty of guaranteeing sufficient workplace safety.
Given the large forces generated by the cutting disc, manual guidance of the resin cuboid
is simply too dangerous. Therefore, alternative approaches must be considered. One such
alternative that appears promising is the use of high-pressure waterjet cutting for the sec-
tioning process. This approach is discussed below.

6.5 Sectioning by Waterjet Cutting

In our deliberations over the best way to section the raw material, we initially rejected wa-
terjet cutting technology, since the cutting kerfs generated by the waterjet were too wide.
In 2011, however, innovations in this technology rendered its use in the gemstone indus-
try feasible. A series of test runs commissioned by Wild oHG in Sweden and Switzer-
land demonstrated that a high-pressure waterjet, when combined with the correct abra-
sive, could indeed be used to cut gemstones without transferring significant forces into the
stones, and at the same time keeping the kerf width and the depth-of-cut within acceptable
bounds. Therefore, high-pressure waterjet cutting technology continues to be investigated
within the framework of a current research project.

The powerful waterjet used to section the material has considerably more degrees of
freedom than the guillotine cuts. As a consequence, the cut surfaces resulting from water-
jet cutting are not necessarily planar, but are, in general, so-called developable surfaces,
as depicted in Fig. 36. To model this approach for sectioning and solving the associated
maximum material yield problem, the approaches used so far will have to be generalized
in future research projects.
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7 Outlook

The problem of optimum material yield in gemstone cutting is an outstanding example
of using mathematical methods in the age of computer-supported, customized production.
Here, one must not only master the challenges of the machine and software technology, but
also the challenges presented by the mathematics involved. When Paul Wild oHG commis-
sioned the Fraunhofer ITWM to initiate this work, there was no practicable mathematical
method for calculating optimum faceted stone designs that could simply be taken off the
shelf and applied to solving the problems posed in this project. It was necessary to take
available algorithmic concepts for problems having containment and non-overlapping con-
ditions and develop or alter them, so as to produce numerically robust methods that could
produce results for the complex problems existing here in a reasonable amount of time.

New mathematics resulted from the ITWM projects through the development of a
method of feasible solutions for general semi-infinite problems (GSIP), and a new class
of methods for solving GSIPs was developed, to wit, the transformation-based discretiza-
tion method. Moreover, it was demonstrated that sectioning problems and the treatment of
inclusions can also be handled using the GSIP model class.

Despite these visible successes, there are still many fascinating questions waiting to be
answered and problems that have not been adequately solved.

One exciting example is the sectioning of stones using waterjet technology. To date,
we have only investigated guillotine cuts, as executed with circular saw technology. The
new technology offers more freedom to design the cuts, which leads to the question of
how this more generalized sectioning technology can be described mathematically. How
can one calculate optimal sectioning processes? Which is better suited, the semi-infinite
formulation or the method based on collision detection? In a new project, planned together
with Wild oHG, there are exactly these questions that we will be tackling in our continuing
effort to use the tools of mathematics to optimize the cutting of precious stones.
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