
Data Analysis

Patrick Lang and Jürgen Franke

1 Data Sources

Today, due to the continuously advancing digitalization of production and business pro-
cesses, data is being produced and often archived in an amount that only a few years
ago would have been hardly imaginable. The drivers of this trend are the availabil-
ity of numerous new sensor technologies and higher-performance data storage equip-
ment. For many production processes in large industry, all potentially relevant adjust-
ment and equipment parameters are now being recorded at high temporal resolution
and then stored. Moreover, implementation of the Industry 4.0 concept, in which di-
verse, context-specific communication is to flow between production goods and produc-
tion equipment, and between one production step and another, will lead to numerous
additional data streams and, consequently, to a further significant increase in data vol-
ume.

The availability of ever more complex and precise measurement and analysis proce-
dures also leads to the generation of larger quantities of data. One can think, for exam-
ple, of the Next Generation Sequencing Procedure for genome analysis in the context of
personalized medicine. Here, data on the order of terabytes can easily accrue with each
analysis.

A further source for this flood of data is the increased networking of our world. One
only has to consider the many data streams in the Internet, such as real-time stock mar-
ket index updating; numerous social media with their own news channels; on-line ser-
vice providers, such as eBay and Amazon, with their movements of customer data; or
locally-resolved meteorological data streams. Moreover, in addition to current data, for

P. Lang (B) · J. Franke
Kaiserslautern, Germany
e-mail: patrick.lang@itwm.fraunhofer.de

© Springer-Verlag Berlin Heidelberg 2015
H. Neunzert, D. Prätzel-Wolters (eds.), Currents in Industrial Mathematics,
DOI 10.1007/978-3-662-48258-2_4

65

mailto:patrick.lang@itwm.fraunhofer.de
http://dx.doi.org/10.1007/978-3-662-48258-2_4


66 P. Lang and J. Franke

almost any question that can be asked, there exists a data base with corresponding his-
torical data to answer it. Not only is the quantity of data increasing, but the opportuni-
ties of the individual for utilizing the publicly accessible flood of data are increasing as
well.

Data, as it is generally understood, is not necessarily a structured combination of nu-
merical values in the form of vectors, matrices, or time series; it can also refer to semi-
structured or unstructured information, such as a simple piece of text. Due to its nature,
the latter is not directly accessible to mathematical processing. Instead, it must first be pre-
pared appropriately. The methods of information retrieval and text mining deal with this
topic.

Media reports also currently feature the problems associated with “Big Data,” which
is typically characterized by the three “V’s”: volume, velocity, and variety. Volume
refers simply to the size of such data sets, and velocity, to the speed with which
streaming services can supply new data. Variety describes the heterogeneity of the
data that might appear together in a common context. This brief description out-
lines the challenges facing the data analysis procedures that will be needed in the fu-
ture.

2 Data Quality and Informational Content

The enormous amounts of existing and newly arising data remain relatively useless, un-
less we succeed in discovering new connections and knowledge within it. This is the main
task of data mining and statistical learning theory, fields that have provided a multitude of
algorithms for diverse scenarios (see [1] and [14]). Despite the existence of these methods
and the software tools that accompany them, their use in the context of industrial produc-
tion processes, for example, has not yet caught on widely. As shown in a joint project
entitled “Supporting Decisions in Production Using Data Mining Tools,” carried out by a
consortium consisting of the ITWM, other Fraunhofer institutes, and representatives from
the manufacturing industry, the disproportionately large adaptation efforts required for
heterogeneous production domains and communication structures often cause significant
difficulties. The lack of real-time capability for many of the analysis procedures also plays
an important role here.

Generally speaking, especially in the context of dynamic systems, not all arbitrarily
measured combinations of system inputs and outputs contain enough information in and
of themselves to allow for complete identification of the system dynamics and genera-
tion of a corresponding system model. Discussions with customers from the manufac-
turing industry have consistently revealed that, although the adjustment and equipment
parameters, for example, may indeed be highly temporally resolved, the product quali-
ties to which they are assigned are only sampled randomly on a coarse time schedule.
And there is another factor. Because the determination of these quality characteristics is
often not automated, but performed manually in the lab, there are also long time delays
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before the data becomes available. Taken as a whole, this often means that the potential
of high-resolution input data can only be realized in a limited way for modeling product
quality.

For successful, data-based system identification, it is also crucial to have data from
different operating points and/or different dynamic excitation states. Otherwise, the result-
ing system models are only valid within a very limited area and are usually not suitable
for use in subsequent optimization or control approaches. The most informative genera-
tion of process data is methodologically supported by the design of experiments (DOE)
framework, which seeks to achieve the largest possible variance reduction in the model
parameters being estimated by means of the smallest possible number of suitably cho-
sen measurement points. In our projects, however, we regularly run up against technical
or economic limits regarding specifications in the experimental design about the amount
of data to be collected and the selected process points. The insertion of appropriate fil-
ters to protect against technically impossible parameter combinations is very helpful, but,
for reasons of complexity, is usually only partly feasible. It should also be noted that the
experimental design only delivers explicit formulas for determining the system input set-
tings for models that are linearly dependent on their parameters. For nonlinear depen-
dencies, no generally valid formulas can be specified in advance. Instead, the DOE plans
themselves depend on the results of the executed measurements and are of an iterative
nature.

In the life sciences–for example, when considering the expression patterns of the more
than 20 000 human genes–there is also often a multitude of potential influencing factors
that might explain a specific disease. However, one has only a small number of patients
available who have been classified and analyzed.

Another crucial point in the evaluation of data quality is the proportion of disturbances
contaminating the observed data. Particularly with measurement data, there is always con-
tamination of this kind caused by the measurement-principle-dependent characteristics of
the sensors being used. If the characteristics of the processes generating the disturbances
are known with sufficient precision, then they can be modeled explicitly, and this model
can be used to correct the data for the impact of the disturbances. In practice, however,
one is often dealing with the simultaneous overlapping of several disturbance sources, and
the resulting complexity often makes mechanistic modeling impossible. Instead, one de-
scribes the disturbances as the result of stochastic processes, which can be characterized
by the appropriate distribution information. The frequently made assumption that this data
follows a normal distribution can indeed be justified in many situations, due to the law
of large numbers. There are, however, very many technical and biological questions for
which this assumption is false. Nonetheless, many well-established procedures presume
a normal distribution, along with the linearity of the underlying data-producing process
dynamics. If one generalizes these assumptions, for example, in the field of state and pa-
rameter estimation, one then moves from the well-known Kalman filter based methods
to the sequential Monte Carlo approach. This is a method that has been actively pursued
for several years in the System Analysis, Prognosis, and Control Department in its work
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with particle filters (see also “The Research—Robust State Estimations of Complex Sys-
tems”).

In many application cases, it is not just disturbances in the data that cause difficul-
ties. Often, the observed data sets are also incomplete, that is, some entries are missing.
The values of some data sets may also be many times higher than the level of compa-
rable data sets. The correct treatment of these defects and outliers, which can be caused
by damaged sensors, for example, plays a decisive role in dealing with industrial data
sources.

3 Data Integration and Pre-processing

The selection and allocation of suitable information-bearing quantities is crucial for the
successful use of data analysis methods. In many industrial cases, this data is not to be
found initially all together in some data warehouse, easily accessible to analysis. It is
more likely to be distributed across different sources. Here, the spectrum runs from di-
verse databases to ASCII and/or Excel files to other, application-specific data formats.
Occasionally, it still happens that certain data is only available in paper form and must
first be digitalized. One initially looks for opportunities to extract the relevant data from
all sources and bring it together into a higher-level data structure. Here, there are often
problems in correctly assigning the data sets. In addition to solving these problems, one
must also find suitable treatments for other incompatibilities, such as differing sampling
rates among sensor data. Organizational challenges can arise when the needed data is dis-
tributed among different spheres of responsibility within different departments of a com-
pany.

As mentioned in the previous section, data sets are generally incomplete. One can al-
most always count on finding discontinuities and outliers. There are various procedures
for identifying and adequately managing such problem cases, which must be chosen and
executed according to the situation.

Along with integrating the data, one generally also subjects it to a normalization
process and, possibly, a disturbance correction. Here as well, there are many proce-
dures available for these work steps. In general, however, our project experience has
taught us that, from the perspective of data analysis, it is desirable to retain as much
control as possible over the entire chain of data processing steps. In accordance with
this goal, one should always try to obtain data from project partners in its “rawest”
form.

Moreover, to optimally select the next processing steps, it helps to first gain an overview
of the data distribution. Especially for highly dimensional problems, one will make deci-
sions on dimension reduction on the basis of the data’s correlation structure and remove
strongly correlated quantities from further consideration. In many cases, it also makes
sense to execute the subsequent modeling steps not on the basis of the original data, but
to draw upon compressed features instead. A well-known example of this is the prin-
cipal component analysis, in which the original data is projected onto those sub-spaces
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that explain the largest portion of variance in the data. If the corresponding background

information is available, one attempts in this step—in the manner of grey box modeling—

to transfer this knowledge into a set of appropriate features. For more on this topic, see

Sect. 5.

4 Data-Based Modeling

In almost all mathematical modeling questions arising from practical applications, the

existence of an adequate amount of real, measured data plays a decisive role in the suc-

cess of the model design. Depending on the type of modeling, however, the requirements

for the quantity and information content of the needed data fluctuate markedly. With

so-called white box modeling, in which the model design is strongly guided by the ex-

plicit implementation of physical, biological, or economic laws, the data requirements

are rather moderate and serve primarily scaling and calibration purposes. In contrast, so-

called black box approaches assume purely data-driven modeling, with correspondingly

high requirements on the quantity and information content of the available data. With

so-called grey box modeling, a hybrid form of knowledge-driven and data-driven mod-

eling, the data requirements lie somewhere in between. For the remainder of this chap-

ter, we will be concerned primarily with questions of purely data-driven modeling. For

further discussion of white box and black box modeling, refer also to “The Concepts—

Modeling.”

Data-driven modeling approaches come into consideration primarily when suffi-

ciently informative measurement data is available and the interrelations and dynam-

ics of the observed systems or processes resist explicit description due to their com-

plexity. Two examples here are the extrusion of plastic components, including varia-

tion in the material recipe, and the crash behavior of carbon-fiber composite materi-

als.

In general, data mining includes procedures with which relevant information can be

extracted from complex data. Here, statistical learning methods model the data as results

from random experiments. This perspective makes it possible to derive, verify, and bet-

ter understand procedures for gaining information on the basis of statistical theory and

intuition.

Statistical learning has a great deal in common with machine learning. With com-

plex data, statistics must rely on appropriate, computationally intensive learning algo-

rithms. Conversely, the statistical perspective in machine learning often allows one to

understand when and why data analysis algorithms function and how they can be ex-

tended.
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An important distinction of data mining problems lies in the type of data being ob-
served. So-called structure-describing procedures, such as regression and classifica-
tion, are normally confronted with the problem of approximating a target quantity Y

(output, dependent variable) as accurately as possible using a function of the input
quantity U (input, independent variable, predictor). The data forms a random sam-
pling or training set (U1, Y1), . . . , (UN,YN) of input variables Uj , together with the
output variables Yj . When learning the connections between input and output, one
can therefore judge and optimize the system’s performance on the basis of correct,
observed values Yj . In this case, one speaks of supervised learning.

With so-called structuring problems, in contrast, one has only input data
U1, . . . ,UN , in which one wishes to identify structures such as clusters or low-
dimensionality. Because there are no output variables that can serve as starting
points for correcting errors in the learning results, this is also described as unsuper-
vised learning. The features Uj are generally high-dimensional, and their structures
usually cannot be simply visualized. Graphically representable projections onto two
or three coordinate dimensions do not typically show the structures of interest. To
make cluster formation or low dimensionality graphically visible, one must identify
the most informative projections possible for this data.

5 Unsupervised Learning

With unsupervised learning, the focus is on characterizing the distribution and structure

of the existing data. Along with observing standard quantities from the descriptive statis-

tics, one is especially interested in discovering clusters and low-dimensional structures in

the data. Here, there is also a strong overlap with the goals of data pre-processing, and

unsupervised learning is therefore often used as a preparatory step in supervised learning

problems.

One class of structuring problems arising in practice contains so-called variant manage-

ment problems. Here, the input data describes the composition of complex products, such

as commercial vehicles, for example, on the basis of their structural components. The goal

is to find a sensible way to structure the product space, as defined by the customers of the

associated company by means of the purchased products.

Here, the space should be approximated by the smallest possible number of represen-

tative products. This then allows one, in a subsequent step, to derive a plan for revising

and reducing the necessary component spectrum and thus, decreasing inventory costs. The

so-called cluster analysis is one method suitable for working on this question.
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5.1 Cluster Analysis

One considers a finite set U of objects, each of which is described by the characteristics
U1, . . . ,Um of a number of attributes. The central prerequisite for the grouping of data
is the existence of a dissimilarity or distance measure d : U × U → R≥0, which permits
measurement of the similarity between two objects; the larger the value d(Ui,Uj ), the
more dissimilar are the objects Ui and Uj . In the cluster analysis, the goal is now to
decompose the finite set U into pairwise disjoint groups or clusters C1, . . . ,Cr :

U =
r⋃

i=1

Ci, Ci

⋂
Cj = ∅, for i �= j.

Such a decomposition is also called a partition of U . Each two objects within a cluster
should be as similar as possible, whereas two objects from different clusters should be
highly dissimilar. There are numerous algorithms for determining an optimal partition
of U , which differ in search strategy and in the data types permissible for the features. The
algorithms themselves frequently need specifications for the values of control parameters,
such as the number of clusters to be sought, the minimal number of elements in a cluster,
or the minimum dissimilarity between the objects of different clusters. Some algorithms
also assume the specification of a start partition. This multitude of choices militates in
favor of an external evaluation of the result partitions (in contrast to an evaluation within
the algorithm regarding optimality) [8]. By comparing the results of a cluster algorithm
for different parameter settings or start partitions, one can draw conclusions about, among
other things, the stability of a result partition, the optimal number of clusters, and the
coarse structure of the similarity space (U,d). The comparison of partitions can itself be
accomplished by means of a distance measure

D : P(U) × P(U) → R≥0

which is defined on the set P(U) of all partitions of the set U . Such measures have been
used for many years in biology and the social sciences. One possibility for comparing
partitions is the information variation introduced in [11], which represents a metric based
on an entropy approach.

5.2 Feature Selection

During the process of preparing a data-based regression model, the choice of which fea-
tures one uses to build up the model is crucial. In our experience, this decision is signif-
icantly more important for successful modeling than the choice of a special model class.
Although individual input quantities can be used as features, in many cases, one relies
instead on the functional linking of different input quantities. Clues as to how one arrives
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at the definition of the most information-rich features often come in the form of problem-
specific expertise. Our project experience has shown us that these clues should definitely
be followed. This helps to turn the original black box modeling at least partially grey.

Particularly in cases where there are no application-specific clues about feature defi-
nition, there is indeed in many applications the problem of a disparity between the high
dimension of the input space and the relatively small number of existing input-output data
pairs. Here, a dimension reduction is necessary, and one often carries out a principal com-
ponent analysis of the input data. Restricting oneself to the principal components assigned
to the largest singular values then delivers a corresponding subspace that is defined by the
selected principal components. Another advantage of this approach is that the transformed
data is uncorrelated and thus, in the case of normally distributed data, is even independent.
Data that is given as a linear mixture of independent, arbitrarily distributed data sources
can be decomposed into independent individual components using entropy based methods,
such as independent component analysis (ICA) [9]. Entropy-based measures for quantify-
ing the independence of two random variables, such as Mutual Information, are also often
suitable for evaluating the explanatory power of a feature or a collection of features with
regard to a given output quantity. On the basis of corresponding ranking criteria, one can
then derive a variety of selection strategies for building up information-rich feature sets.

6 Supervised Learning

In the remainder of this section, we will consider supervised learning on the basis of input-
output pairs (Uj ,Yj ), j = 1, . . . ,N , which are modeled as independent and identically
distributed (i.i.d.) realizations of random variables. For the sake of simplicity, we will only
look at the case in which Yj is one-dimensional. In contrast, the features Uj used to predict
Yj are typically highly dimensional in data mining. (U,Y ) stands for a representative
input-output pair that has the same distribution and is independent from the observed data.

The goal of the learning is to find a mapping f , so that f (u) approximates or predicts
“as well as possible” a new value Y , when the associated input value U = u is known.
In order to refine this, a loss function Lf (u, y) is specified that measures the quality of
the approximation. The most widely used loss function for regression problems is the
quadratic forecasting error Lf (u, y) = (y − f (u))2.

Statistical learning now attempts to find a classification or prediction function f (u) that
delivers a good approximation on average, i.e., for which the expectation value R(f ) =
ELf (U,Y ) is as small as possible. For regression problems with quadratic loss functions,
the optimal prediction is

f (u) = m(u) = E{Y | U = u}
of the conditional expectation value of Y , given that U = u is known. Because the distribu-
tion of the data (Uj ,Yj ) is unknown and can be quite arbitrary, the conditional expectation
value m(u), in practice, cannot be calculated. The goal of statistical learning is therefore
to use the data to calculate approximations or estimators for this optimal function.
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One demanding regression problem from the area of production is the quality prognosis
of extruded plastic components. During extrusion, a mixture of plastic granules and other
raw materials is melted in an extruder under the influence of temperature and pressure and,
with the help of the extruder screw, pressed through an application-dependent mold. Such
processes are used to manufacture window frame stock and insulation sheets, for example.
Here, one is interested in the functional dependency of the thermal conductivity coefficient
and the compressive strength of the extruded insulation sheets on the starting recipe and
the settings of the equipment parameters, as well as on the various temperature zones
along the extruder and the rotation speed of the extruder screw. Due to the complexity of
the dependencies, an explicit modeling of the interactions is futile, and one resorts instead
to historical production data and regression methods. The identified transformations then
serve as the starting point for a subsequent process optimization by means of suitable
Pareto optimization methods. For more, see “The Concepts—Optimization Processes”.

A further example of a complicated regression problem from business economics is
the calculation of the expected residual value of a leasing vehicle according to the spec-
ified duration of the contract. The value depends on numerous predictor variables, such
as distance driven, vehicle model, engine, color, diverse equipment options, vehicle age,
etc. If one knows the dependence of the residual value on this vehicle data, then one can
estimate the capital value of the leasing inventory, plan future equipment packages so as
to optimize the residual value, and so on. A similar regression problem is estimating the
value of a house as a function of square footage, lot size, roof style, location, number of
separate apartments, age and condition of the house, etc. What we are looking for is a
forecasting function that predicts the price obtainable on the market as a function of all
this data. In addition to providing support for specific purchase and sales decisions, this
value information also plays an important role in appraising and mortgaging larger real
estate projects.

In addition to regression problems for which the target quantity is continuous, so-called
classification problems are also of practical importance. Here the Yj only assume values
in a finite set K, which, for the sake of simplicity, correspond to the numbers 1, . . . ,K of
the K classes. Figure 1 shows an example of a classification problem for two classes that
is not separable by a linear classifier, but by a nonlinear one. Classification problems can
be represented mathematically as special regression problems and thus will not be treated
as a topic in their own right in the following discussion.

A challenging classification problem from economics is automatic fraud detection
within the very large number of invoices that contracting firms submit to a company. On
the basis of extensive information about the accounting data, such as amount and scope
of the individual items, the identity of the invoicing party, etc., one uses statistical learn-
ing to decide whether there are any grounds for suspecting fraud and whether the invoice
must therefore be examined more closely. An everyday example for the use of statistical-
learning-based classification procedures are the spam filters in email accounts, which de-
cide, on the basis of a large set of features, whether an incoming item is spam or a genuine
email.
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Fig. 1 Nonlinear classification problem: class 1: blue, class 2: red

A representative classification problem from the field of bio-informatics is identifying
a so-called biomarker for a particular disease within a set of gene expression data. In other
words, one searches for genes whose common expression pattern is characteristic for the
presence and severity of the disease in question. If such a biomarker is found, then it can
be used to manufacture disease-specific test kits, which allow one to quickly verify the
presence of the disease.

6.1 Non-parametric Regression

If one defines the residuals εj = Yj − m(Uj ), j = 1, . . . ,N , then they have conditional
expectation values E{εj | Uj = u} = 0. That is, Uj contains no information about which
average value εj will assume. One usually assumes that the εj are i.i.d., which means that
the following standard model of non-parametrical regression [3, 6] applies for the data:

Yj = m(Uj ) + εj , j = 1, . . . ,N, Eεj = 0, (1)

where U1, . . . ,UN are i.i.d. and independent from the likewise i.i.d. ε1, . . . , εN . Moreover,
one also usually assumes that the residuals possess a finite variance: var εj < ∞.

In contrast to classical regression analysis, where the regression function m(u) is as-
sumed to be known except for a few parameters, non-parametric regression, and thus sta-
tistical learning as well, does not need these restrictive pre-requisites. Weak regularity
assumptions about m(u), such as twice continuous differentiability or quadratic integra-
bility with respect to the distribution of Uj , are sufficient. The estimation procedure makes
it possible to use the data to “learn” a predictive function that is largely unknown at the
start.
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Non-parametric regression approaches are not restricted to the standard model (1). For
example, the residuals εj can also depend on the independent variables Uj . One example
is the heteroscedastic regression model

Yj = m(Uj ) + εj = m(Uj ) + σ(Uj )ηj , j = 1, . . . ,N, (2)

with i.i.d. ηj , for which Eηj = 0 and var ηj = 1. Here, it is not only the average, but
also the variability of Yj that depends on Uj . The term σ 2(u) is the conditional variance
var{Yj | Uj = u} of Yj , given that Uj = u, and it can also be estimated using the same
procedures as for m(u).

An important class of problems that one repeatedly encounters in practice is character-
ized by dynamic developments in the target quantity over time. The above methods are also
used in the corresponding non-parametrical time series analysis; one merely abandons the
assumption that the Uj are independent. For example, if one sets Uj = (Yj−1, . . . , Yj−p),
then the result is a non-parametrical auto-regression model

Yj = m(Yj−1, . . . , Yj−p) + εj , j = 1, . . . ,N, ε1, . . . , εN i.i.d. with Eεj = 0.

In this case, the auto-regression function m delivers the best prediction of the value Yj

of the time series at time j , using the last p observations Yj−1, . . . , Yj−p , inasmuch as
the average quadratic prediction error is minimized. Correspondingly, one obtains non-
parametrical versions of the ARCH models from (2), which play an important role in risk
measurement in financial statistics.

6.2 Empirical Risk Minimization

The predictive function m(u) = E{Yj | Uj = u} minimizes the expected loss R(f ) =
E(Y − f (U))2 (also known as risk) relative to f . With empirical risk minimization, in
order to estimate m(u), the risk is first estimated from the data, taking reference here to
the law of large numbers, by

R̂(f ) = 1

N

N∑

j=1

(
Yj − f (Uj )

)2
. (3)

Depending on the application, other loss functions might be more suitable, such as the L1-
risk, as defined by adding the absolute deviations of the amounts. Particularly for multi-
dimensional target quantities, the search for an optimal loss function is commensurately
complex. One must also consider that many prominent learning algorithms take advantage
of the special characteristics of a quadratic loss function, in particular for the derivative
formation. Thus, one must assume that there are significantly fewer suitable learning al-
gorithms for more general loss functions. Particularly with classification problems, one
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is also often dealing with the kinds of problems for which the costs caused by a mis-
classification depend on the original class affiliation; that is, they are often particularly
non-symmetric. Let us consider here a healthy person who is incorrectly classified as sick,
and a sick person who is classified as healthy. While in the former case, a superfluous
therapy is prescribed that is possibly accompanied by quite unpleasant side effects and
unnecessary monetary costs, in the latter case, a possibly life-saving treatment is withheld
from a sick person who requires it to survive. Arriving at a loss function that accurately
reflects the characteristics of the problem under investigation and that can also be effi-
ciently minimized is, in many cases, a key milestone in a successful data-based modeling
endeavor.

One then attains an estimator for m by minimizing the empirical risk R̂(f ). Minimizing
across all measurable functions, or even merely across all twice continuously differentiable
functions, leads to a function f̂ , however, that interpolates the data, that is, Yj = f̂ (Uj ),
j = 1, . . . ,N . Such a solution is unserviceable for use in predicting future data, since it
models exactly the random disturbances εj in the collected random samples, instead of
adequately reflecting the general form of dependency between the random quantities U

and Y .

There are three strategies that allow empirical risk minimization to circumvent this
problem:

• Localization, that is, restricting the averaging in the empirical risk to those Uj

lying in the neighborhood of that point u, at which one wants to estimate m(u);
• Regularization, that is, imposing variation limitations on f that rule out interpo-

lating solutions;
• Restricting the set of functions across which (3) is minimized, which leads to the

class of sieve estimators.

In the following sections, we will discuss important further aspects and implemen-
tations of these strategies.

6.3 Local Smoothing and Regularization

The idea of local smoothing for the estimation of a largely arbitrary regression function
m(x) can be derived directly from the law of large numbers: when Y1, . . . , YN i.i.d., with
expectation value EYj = m0, then the random sample average for N → ∞ converges al-
most surely toward m0:

1

N

N∑

j=1

Yj −→
a.s.

m0.
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If, in regression model (1), m(u) is smooth–for example, twice continuously differentia-
ble—then m is approximately constant within a small neighborhood around u. This means
that, for small h > 0

m(z) ≈ m(u), when ‖z − u‖ < h. (4)

If one now averages only those observations Yj in the neighborhood of u, that is, with
‖Uj − u‖ < h, then, for all EYj ≈ m(u), that is, for large N ,

m̂(u,h) = 1

N(u,h)

N∑

j=1

1h

(‖Uj − u‖)Yj ≈ m(u), with N(u,h) =
N∑

j=1

1h

(‖Uj − u‖)

(5)

in which 1h(z) = 1 for −h ≤ z ≤ h, and = 0 otherwise. N(u,h) is the number of obser-
vations in the neighborhood of u. Local smoothing of the data, that is, averaging of the
data in the neighborhood of u, delivers a convenient estimator for m(u). One obtains a
convergence of m̂(u,h) towards m(u) for one-dimensional Uj , for example, for N → ∞,
h → 0 and Nh → ∞.

The local averaging is based on assumption (4), for z = Uj , an assumption that becomes
better and better as the distance between Uj and u decreases. This suggests therefore the
idea of weighting the contribution of Yj to the local averaging according to how closely
Uj lies to u. Instead of a simple average, one then obtains a weighted local average. One
example of this is the kernel estimator, in which the weights are generated by a function
K(u) known as a kernel. Typical choices for K are probability densities, that is, K(u) ≥ 0
and

∫
K(u)du = 1.

With a simple local average (5) and, in general, with kernel estimators, the bandwidth h

determines the size of the area used for local averaging. This leads to problems in estimat-
ing m(u) when there are only a few observations Uj in the neighborhood of u. Therefore,
drawing on the same insight, k-nearest-neighbor estimators do not average across a fixed
neighborhood surrounding u. Instead, they average across a fixed number k of data points.
Those data points Yj are chosen for which Uj lies closest to u, that is, the averaging is
performed across the k nearest neighbors to u.

At first glance, regularization estimators appear to follow an entirely different approach
than localized smoothing procedures for ruling out interpolation when minimizing an em-
pirical risk. In (3), R̂(f ) measures how well the function values f (Uj ) fit to the obser-
vations Yj . In order to avoid over-fitting, an auxiliary condition r(f ) ≤ c is placed on the
minimization of R̂(f ), where r(f ) is a measure for the variation of the function f . As a
result, when N is large, the strongly-fluctuating interpolating functions or nearly interpo-
lating functions are ruled out as solutions. For some regularization estimators, an asymp-
totic equivalence to special kernel estimators can be shown (see [10] and [13]). Because
the latter allow for a simple asymptotic theory, corresponding distribution approximations
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can be transferred to the regularization estimators and used for hypothesis tests and the
calculation of confidence intervals and quantiles.

A recognized problem with the use of local smoothing procedures, one that, unfortu-
nately, arises frequently with applications relevant to practice, is the so-called “curse of
dimensionality.” When these procedures are applied in the direct form described here for
input spaces U with high dimension d , then, except for extremely large random samples,
the neighborhoods determined by h are almost empty for many values of u. As a result,
the random error is not averaged out. With k-nearest-neighbor estimators, the design does
indeed ensure that averaging is always performed across k values. But here, when the
number of dimensions is large, the adaptively selected neighborhoods are necessarily very
large. This corresponds to the choice of a very large bandwidth h for kernel estimators,
which leads to a systematic distortion of the estimator.

Especially when working on attractors of nonlinear dynamic systems that have been
reconstructed using phase space methods, the above next neighbor methods can often be
used successfully. Indeed, here, we have relevant project experience in connection with
the risk evaluation of electrocardiogram data. In this context, the dimensions d being ob-
served are small to medium in size, and there is a relatively large data set. Nevertheless,
it is definitely advisable to use efficient procedures when searching for each of the near-
est neighbors; a naive implementation quickly reaches its performance limits. See [7],
also.

6.4 Sieve Estimators

Sieve estimators dispense with localization or regularization as a means of avoiding over-
adaptation or, worse, interpolation of the data. Instead, they achieve this by restricting
the function class across which the empirical risk (3) is to be minimized. In order to still
achieve the necessary flexibility and avoid limiting assumptions about the estimated func-
tion m(x), the function class FN being considered here grows with the random sample
size N . A sieve estimator therefore solves the minimization problem

min
f ∈FN

R̂(f ).

To ensure that the resulting function estimator m̂N(x) converges to m(x), the function
classes F1 ⊂ F2 ⊂ · · · must possess a universal approximation characteristic. That is, for
each regression function m being considered, there must be a suitable N and an mN ∈FN ,
so that mN approximates the function m with sufficient accuracy. There are various pos-
sibilities for refining this requirement. The function classes FN are typically paramet-
ric, that is, they contain only functions that have been specified, except for a single pa-
rameter θ ∈ Rp . Actually, just as in classical statistics, one adapts a parametric model
to the data, but allows the model to be mis-specified. That is, one allows the function
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m being estimated to lie outside of FN . The non-parametric consistency of the proce-
dure is achieved by allowing the parameter dimension p = p(N) to grow as the num-
ber N of data grows. Next, we will briefly discuss the three most important function
classes.

As a starting point for designing the function classes FN , one often resorts to series
expansions relative to orthogonal basis functions. Accordingly, the number of summands
then depends on N . Sieve estimators can also be derived for non-orthogonal functions,
provided that a universal approximation characteristic applies. In order to guarantee the
stability of the estimator, one usually carries out an additional regularization of the coeffi-
cients of the series expansion. For corresponding convergence results, see [3].

The starting point for partition estimators is a disjoint decomposition of the domain of
the input variables. Each of the estimators is then constant on each set of this partition, and
the corresponding values are calculated as the average of the observations lying within the
set. If the partitions become finer and finer as N grows, then FN possesses the univer-
sal approximation characteristic. A data-adaptive choice of partitions is advantageous. In
many cases, tree-based methods are used here, and the corresponding estimators are then
called classification or regression trees. See [2]. These approaches are useful for practical
applications requiring the estimator to be interpretable, such as is almost always the case
in medical applications, for example. Here, in very rare cases, one accepts a black box
whose decisions may indeed be correct, but cannot necessarily be explained or argued sat-
isfactorily. In particular, rule bases for decision-making can also be derived directly from
the classification trees. This allows the plausibility of this procedure to then be evaluated
in discussions with experts in the application domain.

Neural networks (see [4, 5], and [12]), originally developed as models for signal pro-
cessing in the brain, represent an important class of sieve estimators. The best known of
these are the feed-forward networks. In addition to the input and output layers, these net-
works possess at least one nonlinear, hidden layer of so-called neurons. These lead with
the activation function ψ to the following class of functions:

FN =
{

f (x) = v0 +
H∑

k=1

vkψ

(
w0k +

d∑

�=1

w�kx�

)
;vk,w�k ∈ R

}

with the parameter θ = (v0, . . . , vH ,w01, . . . ,wdH )′ ∈ R(d+2)H+1. The classes FN of out-
put functions of feed-forward networks possess the universal approximation characteristic
when the number H of neurons grows as a function of N . The practical success of neural
networks is the result of the existence of fast algorithms, particularly the back propaga-
tion algorithm and suitable modifications [15], which allow the network parameters to be
learned within an acceptable time, even for large data sets N . An important point for suc-
cessfully learning the underlying dependencies in the given data is the selection of a neural
network whose size is adapted to the informational content of the data. The next section
describes approaches for doing this.
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7 Data-Adaptive Complexity Selection

All non-parametrical regression estimators contain tuning parameters with which the vari-
ation or complexity of the function can be controlled. They are utilized to force the esti-
mation procedure to adapt to an adequate description of the actual dependency structure
between input Uj and output Yj , instead of reproducing irrelevant random effects that
are inconsequential for the prediction of future data. With kernel estimators, the tuning
parameter is the bandwidth h; with next-neighbor estimators, it is the number k of neigh-
bors; and with sieve estimators, it is basically the number of free parameters of the function
class FN . There is a variety of procedures that allow for data-adaptive selection of these
tuning parameters.

The choice of tuning parameters is closely connected with the bias-variance dilemma
and the problem of finding a balance between over-adaptation (overfitting) to the data and
insufficient adaptation (underfitting) to the data. If the estimator is allowed too much free-
dom, overfitting will result; the estimator m̂ adapts itself not only to the desired function m,
but also tries to model parts of the random error εj . Conversely, if the estimator is allowed
too little freedom, the result is underfitting. Here, the variability of the function estimator
m̂ is indeed small, but it deviates systematically from the function m being estimated, since
the bias Em̂(u,h) − m(u) is large. Accordingly, it is also unsuitable for predicting future
data.

The goal of the data-adaptive selection of tuning parameters is an estimator of the func-
tion m that is as good as possible and that delivers optimal predictions. The average es-
timation error should be as small as possible, but is unknown. Therefore, one generally
proceeds by splitting the data into training data and validation data; the training data is
then used to calculate the estimator and the validation data is used to compare different
estimators with different tuning parameters or complexity. When there is only a small
amount of data available, and the estimation quality suffers significantly because some of
the data must be put aside for validation purposes instead of being used for the estima-
tion, then the cross-validation approach can be used [6]. This approach uses the data more
efficiently, but at the cost of appreciably higher computation time.

8 Concluding Remarks

Our experience with industrial data analysis questions shows that an application-specific
problem formulation, combined with the selection of suitable data sources and the features
derived from them, plays the central role. Here, as much expertise as possible from every
application domain should be brought to bear on the modeling process. The success of
the endeavor generally depends more on this expertise than on the choice of a special
machine-learning procedure.

Nonetheless, in all cases, the quality and informational content of a given data set also
implicitly set an upper limit to the maximum attainable quality for learning a dependency
structure based on the data. Here, it is very important to suitably adapt the complexity of
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Fig. 2 Data mining platform “Design”

the chosen model approach to this informational content. Acknowledging and integrating
any additionally available expertise and domain-specific knowledge is always beneficial.

To promote acceptance of data mining procedures in industry, it is important, on the
one hand, to supply high-performance algorithms that take into account the correspond-
ing requirements and restrictions regarding run-time or data volume. At the same time, it
is also crucial to support the user in selecting procedure parameters and interpreting and
evaluating the results. Toward this end, we in the System Analysis, Prognosis, and Con-
trol Department have developed the analysis platform “Design” (Fig. 2). It can be easily
adapted to diverse application contexts and data structures, and it contains a selection of
effective machine learning algorithms. At the same time, however, it relieves the user of
much of the work of setting critical procedure parameters.
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