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1 The Finance Industry as Employer, Supplier of Mathematical
Challenges, and Risk Factor

Over the past 50 years, the growth in complexity of the products offered in the financial
markets has opened up a completely new sub-domain in mathematics—(modern) finan-
cial mathematics—which, in terms of its mathematical sophistication goes far beyond
what used to be understood as financial mathematics, which would be better referred to
as business accounting. The significant role of mathematics in the financial world can be
demonstrated emphatically in a number of ways. The finance and insurance industries
are today, more than ever, the most important employers of graduates from mathemat-
ics curricula, although thorough training in applied mathematics (especially stochastics,
statistics, optimization, and numerics) is an advantage. In the financial field, mathemati-
cians are sometimes employed as traders, as so-called quants (mathematics experts who
implement quantitative methods and models in the investment banking sector), or as ex-
ternal staff for large consulting firms, who offer their competences to banks and insurance
companies. The insurance branch even has its own professional designation—actuary—
awarded by the Deutsche Aktuarvereinigung DAV after completion of an intensive training
and examination.

The new mathematical challenges can be illustrated by means of four significant do-
mains in financial mathematics:
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• Modeling—This is the simulation of price movements of all kinds (stock prices, inter-
est rates, currency exchange rates, etc.). Here, stochastic processes are applied, based
essentially on so-called Itô processes, developed in the middle of the last century. As
functions of time, they are non-differentiable and require their own calculus, the Itô
calculus (see [33] or [4] for an introduction).

• Portfolio optimization—The goal here is to determine an optimal trading strategy for
an investor. Today, this represents one of the main fields of dynamic optimization and
stochastic control (see [1] or [3]).

• Risk management—This deals with measuring and managing the risks associated with
unforeseeable developments in investments. In the past years, the theory of risk mea-
sures has opened up a new field of theoretical research (see [15], the standard reference).

• Option pricing—This is the showpiece of financial mathematics. It deals with deter-
mining the prices of option contracts and has led to numerous new theoretical problems
and results in such fields as martingale theory and the numerics of stochastic processes
(see [4, 34], and [5]). In the following discussion, we will consider this field in greater
depth.

Finally, due to the financial industry’s intrinsic uncertainties, it represents one of the
largest risk factors in modern economies, possibly the largest. The role of mathematics
in this regard can indeed be viewed with some ambivalence. On the one hand, the meth-
ods of mathematical modeling and financial mathematics provide significant support in
recognizing, understanding, and managing risks. On the other hand, the technology of
mathematics can tempt its users into creating new, ever more complicated products, in the
belief that mathematical methods can make their characteristics and risks understandable
and controllable. Here, it is essential for mathematicians to emphasize the limits of mod-
eling and, in particular, to point out the enormous dependency of the models on their input
parameters—a risk that is often largely ignored.

Moreover, it is important to make clear the difference between prediction and simu-
lation. Whereas stock price simulations can indeed be used to calculate risk measures or
options prices by means of Monte Carlo methods, these simulations often have about as
much utility in predicting actual stock prices as the choice of a number 2, . . . ,12 has in
predicting the toss of a pair of dice. The financial crisis of 2007–2012 should be taken
as a strong warning to sharpen the awareness of the limits of mathematical modeling and
simulation. Conversely, however, one should also be aware that mathematical modeling
was not the cause of the financial crisis. This fig leaf—so happily put to use by investment
bankers—is not large enough to cover up the actual causes, such as egregious misjudg-
ments of creditworthiness, the taking of tremendously risky market positions, and, in many
cases, plain ignorance in acquiring products that were not understood.

In the course of this chapter, we will concentrate on the field of option pricing, which
is a central concern of both modern investment banking and financial mathematics theory,
but which is treated quite differently in these two fields. We want to demonstrate that
the popular Black–Scholes model is no longer adequate for many practical purposes and



Option Pricing in Practice—Heston’s Stochastic Volatility Model 353

introduce instead the Heston model (see [29]), an alternative often used in practice that
represents a compromise between practicability and theoretical generality. In so doing, we
will encounter mathematical challenges in the areas of modeling, theoretical stochastics,
and the numerical computation of options prices.

Along the way, we will first introduce the reader to the terminology of the world of
options, describe project collaborations between the financial industry and the Financial
Mathematics Department of the ITWM, and then delve into the theoretical foundations of
stock price modeling and options pricing.

2 Options as Modern Ingredients of the Financial Markets

The terms option and derivative have developed negative connotations in the aftermath
of the great financial crisis of 2007–2012. This is not entirely unjustified, given that
many credit derivatives, in both their form and ultimate impact, were so complicated and
opaque—not only for lay persons—that their trading contributed significantly to the out-
break of the crisis. Ironically, the designation exotic option, applied to many of these se-
curities, seems very aptly chosen, given their mysterious and arcane nature.

In the following section, we first present the basic features of options and option trading
by using the simplest options as examples. We then take a look at more complicated types,
in order to illustrate the necessity of mathematical modeling.

2.1 Simple Options—Call and Put

The word option, in its colloquial sense, stands for an opportunity that one is not com-
pelled to take, but which one may indeed take, if so desired. Having such an opportunity is
always a good thing. Options contracts on the financial market, which represent a similar
opportunity, are therefore to be had only at a price.

Option contracts are securities derived from underlying assets, which explains why
they are also known as derivatives. These securities have been traded for centuries in one
form or another, but they only achieved great economic significance at the beginning of
the 1970s. They are used to secure market positions and design special payoff profiles, as
well as for purposes of pure speculation. As the term itself implies, possession of an option
includes a right of choice that the owner can, but does not have to, exercise.

With the simplest option, the European call on a stock, the buyer has the right (but
not the obligation!) to acquire from the seller a share of a given company at time T (the
maturity) at a fixed price K (the exercise price or strike). He will only do so if it is to his
advantage, that is, if the stock price S(T ) lies above the strike K , since he could otherwise
obtain the same share more cheaply by acquiring it directly in the market. Consequently,
possession of a European call is equivalent to the payment

Ycall = (
S(T ) − K

)+ = max
(
S(T ) − K,0

)
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Fig. 1 Final payoff of a
European call with strike
price K

at time T and is often depicted graphically by means of its payment profile, as in Fig. 1.

Because the amount of the final payment is non-negative and may be positive, the posses-

sion of the option today must have a positive value. Determining this value is the object of

option pricing.

The direct counterpart to the European call is the European put, which is given by the

final payment

Yput = (
K − S(T )

)+

at time T , and which gives the owner the right to sell a share at price K at time T to the

seller of the European put. Here, the owner will only exercise his right if the current market

price of the stock is lower than K . Such simple options as the European call and put are

often referred to in the market as vanilla options.

L.F. Bachelier’s dissertation Théorie de la Spéculation (see [16]), from 1900, may be

regarded as the long-forgotten starting point for option pricing. Bachelier’s idea was to use

asset price modeling to derive theoretical values for different types of options on particular

assets and to compare these values with the actual market prices. As the option price, he

proposed using the expected value of the future payment arising from the option. In so

doing, he used implicitly, for the first time, the so-called Brownian motion (with drift) as

an asset price model (see Sect. 4.1)—albeit, without designating it as such.

One consequence of this modeling, however, was that the prices in the model could

fall below zero. His ideas were taken up again in the 1960s with the introduction of ge-

ometric Brownian motion (see again Sect. 4.1) as a price model. In 1973, Fischer Black

and Myron Scholes achieved the first crucial breakthrough in the field of option pricing

with the derivation of explicit price formulas for European calls and puts (see [20] and

Sect. 4.3).
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2.2 Exotic Options—The Next Stage

For the simple options described above, the payment resulting from ownership depends
only on the stock price S(T ) at the maturity of the option. This need not be the case,
however. The general form of European options is given by a final payment of the form

Y = f
(
S(t), t ∈ [0, T ]),

where f (and thus also Y ) is a function describing the entire price development of the
stock over the time interval [0, T ]. Here, we identify time t = 0 as the present moment
and S0 > 0 as the initial stock price. One then speaks of a path-dependent option. For
the European call and put, this dependency was given simply by the stock price at t = T .
Examples of European options with genuine path dependency are:

• the lookback or maximum option, for which the maximum of the stock price appears in
the final payment as follows:

Ylb =
(

max
t∈[0,T ]

S(t) − K
)+

.

• the Asian option, which is given by a final payment in the form

Yao =
(

1

T

∫ T

0
S(t)dt − K

)+

for example, and similar variants (e.g., as discrete mean).
• or the barrier option class, for which the stock price in the interval [0, T ] may not

exceed or must exceed (depending on the variant) one or more specified barriers Hi , so
that at T , a positive payment flows to the option’s owner. One example is the double
barrier knock out call, with strike K , barriers 0 ≤ H1 < H2, and final payment

Ydbkoc = 1{H1<S(t)<H2∀t∈[0,T ]}
(
S(T ) − K

)+
.

Here, as seen in Fig. 2, there may indeed be price paths that end above the strike K , but
violate a barrier condition beforehand and thus do not lead to a final payoff.

The pricing of such options that are strongly dependent on the stock price path—options
that are often grouped together under the title of exotic options—requires a specialized
and highly efficient numerical method and also demonstrates empirically the need for
more sophisticated stock price models than the geometric Brownian motion (cf. here also
Sect. 4.6).

Remark 1 It is certainly justified to ask why such complicated options are traded at all.
The answer is multi-faceted.
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Fig. 2 Two possible stock
price paths and barriers
H1 = 75 and H2 = 170, as well
as strike K = 100 for a double
barrier knock out call

A barrier option must obviously be cheaper than its counterpart without barriers since,
in order to receive the same payment at the maturity of the option, the barrier conditions
must be fulfilled, which is not always the case. If they are not fulfilled, the buyer of the
barrier option receives nothing, whereas the buyer of the common European variants re-
ceives the full payment. Despite this risk, barrier options are happily bought in preference
to the common variants, due to their lower price.

In the case of the maximum option, the option’s owner wants to secure the largest
possible difference between the option price and the execution price—an advantage for
which he must then also be ready to pay a higher price than for the simple European call.

Finally, the Asian option represents a kind of insurance against short-term market ma-
nipulation. It is quite conceivable that large market players might use their trading power
at the option’s maturity to drive the price of the option’s associated stock in a direction
that works to their own advantage, but this tactic is not possible over a long time period.
Therefore, Asian options typically use an average of stock prices over specified time points
to determine the size of the option payment.

2.3 American Options and More—Free Choice

Another natural variant is the so-called American option, in which the option’s holder can
decide at what time-point t ∈ [0, T ] he exercises his option right. Here, the option can be
identified by a whole family Y(t), t ∈ [0, T ] of possible final payments, from which the
option’s owner can choose one. For each of the above-mentioned European option types,
there is also a corresponding American variant, which, for a call, for example, is given by
the following family of possible final payments:

Ycall(t) = (
S(t) − K

)+
, t ∈ [0, T ].

Generally speaking, there is a tremendous variety of options available in the finan-
cial marketplace. Along with options on stocks, one finds options on bonds, commodi-
ties, loans, options, contracts, foreign currencies, electricity, and virtually any asset that
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is traded. Each of these option classes often generates its own mathematical problems
for price calculation, not least because the underlying assets exhibit completely different
characteristics. For example, electricity is, in general, non-storable, whereas commodities
generate inventory costs but some may offer compensating strategic advantages, etc.

For those interested in more background on options trading, including historical back-
ground, we recommend [4] or [2].

2.4 How Much Do Options Cost?

This fundamental question regarding option pricing cannot be answered without two sig-
nificant ingredients:

• a mathematical model of the price development of the asset underlying each option and
• the insight that, since an option is a derivative, its price must always depend on the

current market price of the underlying asset.

Both ingredients are considered in detail in Sect. 4 and lead to a surprising result—one
that was honored with the Nobel Prize for Economics.

3 Options at the ITWM

Because option pricing is one of the central domains of financial mathematics and so
important for trading in modern financial markets, it also plays a central role in the work
of the Financial Mathematics Department at the Fraunhofer ITWM. Our non-disclosure
agreements with customers in the finance and insurance industries require us to remain
somewhat vague in our descriptions of the associated projects, but we do want to give our
readers an impression of what sort of work a mathematics research institute can undertake
in this field.

The essential components underlying all the projects in the field of option pricing are:

• the development of new, and appropriate modification of existing, dynamic stock price
models, toward the end of achieving realistic modeling (do the price movements in the
model have the same characteristics as the empirically observed ones?) and numerical
tractability (can parameters be stably and efficiently calculated?),

• the derivation of explicit analytical pricing formulas for special, exotic options,
• the development of numerical algorithms for pricing exotic options without explicit

price formulas, for which new Monte Carlo methods, tree methods, and solution meth-
ods for differential equations are put to use,

• and the implementation of the developed algorithms in modern software for direct ap-
plication by the trader or for risk management.
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The years 2000 to 2013 witnessed the successful completion of many industrial
projects. Among our clients were banks, such as the Hypovereinsbank and the Landes-
bank Baden-Württemberg; insurers, such as the R+V Versicherung; and financial services
providers, such as Assenagon Asset Management S.A. The projects varied greatly in size
and ranged from pricing a single options class to preparing complete software libraries for
pricing exotic options. The latter was of a scale to incorporate all the above-mentioned
research and development aspects and draw upon the complete spectrum of applied finan-
cial mathematics; it also led to publications in top-flight journals (see e.g., [6, 8, 26, 35],
or [9]).

In order to remain continuously abreast of scientific developments in the field of option
pricing, a multitude of PhDs were completed during this same time period relating to its
various aspects. Often, algorithmic aspects were paramount, in order to make a satisfactory
model fit for service in the first place. Consequently, in [11], the numerical pricing of so-
called barrier options was investigated; in [12], new tree methods for pricing exotic options
in the field of interest rates were developed; in [13], tree methods for option pricing in the
Heston model were derived (see Sect. 6 also); and in [10], Monte Carlo methods for special
multi-asset barrier options were examined.

4 The Foundations of Stock Price Modeling and Option Pricing

Modeling the development of the basic processes underlying the financial markets repre-
sents the foundation of financial mathematics. Depending on the market segment, these
might be stock prices, indices (such as the DAX or Dow Jones), interest rates, exchange
rates, or other indicators. In this section, we initially restrict ourselves to modeling only
stock prices as stochastic processes and assume all other influencing quantities to be con-
stant. For the technical bases, we refer the reader to [4].

4.1 Modeling Stock Prices

We wish to examine a financial market in which trading takes place in continuous time, any
desired division of shares is permissible, and ancillary costs (broker and transaction fees,
etc.) do not exist. As basis investment opportunities, we take the investment in a fixed-term
deposit account and in (initially) one stock (or stock index).

We assume that a fixed-term deposit B(t) accrues interest continuously at a constant
rate r , which leads to the temporal development

B(t) = B0e
rt (1)

for an initial deposit of B0 at initial time-point t = 0.
The significant ingredient for modeling the stock price is the selection of the stochastic

process. Motivated by the central limit theorem, according to which the (centered and stan-
dardized) sum of many independent, identically-distributed random variables is asymptot-
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Fig. 3 Four simulated paths of
a Brownian motion with
n = 500 and T = 1

ically normally distributed, we select a Brownian motion as the random driver of the stock
price.

Definition 1 Let (Ω,F ,P ) be a complete probability space. A Brownian motion
{(W(t),Ft ), t ∈ [0,∞)} is a real-valued stochastic process with W(0) = W0 = 0 and con-
tinuous paths with stationary and independent increments, that is

W(t) − W(s) ∼ W(t − s) ∀t > s ≥ 0,

W(t) − W(s) is independent of Fu for t ≥ s ≥ u ≥ 0.

Here, {Ft , t ∈ [0,∞)} is a right-continuous filtration for which F0 already contains all
P -null sets. The filtration is called natural filtration if it is the filtration generated by the
Brownian motion.

Remark 2 It can be shown that the requirements placed on the Brownian motion in
Definition 1 already yield W(t) ∼ N (0, t). From this, an algorithm follows directly to
(approximately) simulate a Brownian motion. To this end, for n ∈ N and T > 0, let
0 = t0 < t1 < · · · < tn = T define a separation of the interval [0, T ]. We then proceed
as follows:

1. Set W(0) = 0.
2. Generate n independent N (0,1)-distributed random numbers Z1, . . . ,Zn.
3. For i = 1, . . . , n, set

W(ti) = W(ti−1) + √
ti − ti−1Zi

and interpolate linearly between W(ti) and W(ti−1).

Several of the (discretized) paths generated for T = 1, n = 500, and tj = j/n according
to the above algorithm are shown in Fig. 3. Here, another characteristic of the paths of
Brownian motion can also be detected; they are nowhere differentiable with respect to
time. This is very significant for modeling a stock price as a function St = f (Wt), since
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Fig. 4 Simulated stock price
paths and mean E(S(t)) for
b = 0.2 and σ = 0.4

this is then also not differentiable with respect to time. This characteristic is indispensable
from a modeling perspective, if one sticks to the continuity of the price over time. Were
the stock price to be differentiable with respect to time, then it would also be locally
predictable, and, as a result, no trading would take place.

With the help of the Brownian motion, the stock price S(t) is modeled as a geometric
Brownian motion

S(t) = S0e
(b− 1

2 σ 2)t+σW(t), (2)

that is, its logarithmized increments are assumed to be normally distributed. Here, b and σ

are real numbers that describe the mean rate of return and the volatility of the stock price.
Furthermore,

E
(
S(t)

) = S0e
bt ,

Var
(
S(t)

) = S2
0e2bt

(
eσ 2t − 1

)
,

ln

(
S(t)

S0

)
∼ N

((
b − 1

2
σ 2

)
t, σ 2t

)
.

Figure 4 shows the price paths S(t) associated with the paths of the Brownian mo-
tion for the parameters b = 0.2, σ = 0.4, and S0 = 1, along with the course of the mean
E(S(t)).

Remark 3 To formulate the model thus derived for multiple stocks, one introduces, for
d stocks, an n-dimensional (n ≥ d) Brownian motion W(t) := (W(1)(t), . . . ,W(n)(t)),
whose components are each independent, one-dimensional Brownian motions according
to Definition 1, and models the price of the j -th stock S(j)(t) as

S(j)(t) = S
(j)

0 e
(b(j)− 1

2

∑n
k=1 σ 2

j,k)t+
∑n

k=1 σj,kW
(k)(t)

, j = 1, . . . , d,

where b(j), σj,k , and S
(j)

0 are suitable constants. Due to the characteristics of the normal
distribution, the stock prices remain log-normally distributed, and the expectations and
variances can also be determined analogously.



Option Pricing in Practice—Heston’s Stochastic Volatility Model 361

As our next ingredient, we introduce the investors by means of the trading strategy,
where the information structure of the investors is given by the filtration {Ft }t∈[0,T ] corre-
sponding to the Brownian motion. Here, a trading strategy is a two-dimensional stochastic
process, whose components specify the number of units of each security being held.

Definition 2

(a) A trading strategy ϕ is an R2-valued process ϕ(t) := (ϕ0(t), ϕ1(t))
′ that is progres-

sively measurable with regard to {Ft }t∈[0,T ]. Moreover, we require

∫ T

0

∣∣ϕ0(t)
∣∣dt < ∞ P -almost surely,

∫ T

0

(
ϕ1(t)S(t)

)2dt < ∞ P -almost surely.

The value x := ϕ0(0)B0 + ϕ1(0)S0 is called initial value of ϕ.
(b) Let ϕ be a trading strategy with initial value x ≥ 0. The process

X(t) := ϕ0(t)B(t) + ϕ1(t)S(t)

is then called the wealth process corresponding to ϕ with initial wealth X(0) = x.
(c) A trading strategy ϕ is called self-financing if, for the associated wealth process X(t),

t ∈ [0, T ],

X(t) = x +
∫ t

0
ϕ0(s)dB(s) +

∫ t

0
ϕ1(s)dS(s)

P -almost surely, that is, the current wealth is yielded by the sum of the initial wealth
and the profits/losses from investments in the time period [0, t]. It is then called ad-
missible when its associated wealth process is non-negative.

Note that the requirement of progressive measurability of the strategy means that the
investor has no information about the future development of the stock price. The econom-
ically natural requirement that the investor behaves in a self-financing way is a genuine
requirement and does not result mathematically from parts (a) and (b) of the definition.
For information on the analogous definition of a trading strategy in more generalized mar-
kets (see above), we refer the reader to [4].

4.2 Option Pricing and the Arbitrage Principle

With the mathematical market model developed in the previous section, we are now in a
position to tackle the problem of option pricing. The essential idea behind option pricing
is, first, that an option is a derived security (derivative) having no existence of its own
independent from its underlying asset; the movement of the asset price also determines
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the price of the option. The second central principle that applies in option pricing is that
of absence of arbitrage. Here, one considers an arbitrage opportunity to be a transaction
involving the possibility of a profit without the risk of a loss, where none of the investor’s
own money must be used.

A typical example of such an arbitrage opportunity is a free ticket in a lottery. Here,
although one may seldom win, neither must one put up one’s own money to acquire the
ticket.

An arbitrage opportunity of this type is such a good “deal” that every market partici-
pant would instantly take advantage of it. The resulting infinite demand would immedi-
ately trigger a corresponding price adjustment on the market and the arbitrage opportu-
nity would disappear. Therefore, for theoretical deliberations, one only considers financial
market models that are free from arbitrage opportunities. This assumption alone makes it
possible in any arbitrary financial market model to set lower and upper bounds for option
prices (as a function of each option type). See, for example, Chap. 3 in [4].

Definition 3 An arbitrage opportunity is an admissible trading strategy ϕ whose associ-
ated wealth process X(t) fulfills the conditions

X(0) = 0, X(T ) ≥ 0 P -almost surely, P
(
X(T ) > 0

)
> 0.

In the market we are considering here, with prices according to Eqs. (1) and (2), an even
stronger variant of the absence-of-arbitrage principle can be shown, namely, the validity
of the replication principle. This stipulates that two investments with identical future cash
flows must have the identical price today. If this were not so, one could buy the cheaper
of the two alternatives today and simultaneously sell the more expensive. The future cash
flows arising from this transaction neutralize one another, but one has already accrued
today an increase in wealth from the price difference, which could then simply be invested
in a money market account. Because one needs no starting capital to pursue this strategy,
but the final wealth is strictly positive, this represents an arbitrage opportunity.

The following is a central theorem in the theory of option pricing.

Theorem 1 (Completeness of the market) Using the notation θ = (b − r)/σ , then
H(t) := exp(−(r + θ2/2)t − θW(t)).

(a) Let x ≥ 0. For an admissible trading strategy ϕ with wealth process X(t), we have

E
(
H(t)X(t)

) ≤ x ∀t ∈ [0, T ].

(b) Let Y ≥ 0 be a FT -measurable random variable with

x̃ := E
(
H(T )Y

)
< ∞. (3)
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Then, there is an admissible trading strategy ϕ with initial value x̃, wealth process
X(t) and

X(T ) = Y P -almost surely.

The complete market theorem seems unspectacular at first blush, but it is extremely
significant for option pricing. Part (b) says that a non-negative final payment Y (that fulfills
condition (3)), which can be secured via possession of an option, for example, can be
synthetically generated by pursuing a suitable trading strategy ϕ in the money market
account and the stock. Thus, from the perspective of the final payment, it is irrelevant
whether one physically possesses the option or whether it is synthetically replicated. If
there is no arbitrage opportunity in the market, then Eq. (3) yields the option price x̃.
The non-existence of an arbitrage opportunity follows immediately from part (a) of the
theorem, however (see [4]).

Corollary 1 (Absence of arbitrage) In the market model under consideration here, there
is no arbitrage opportunity.

Consequently, Theorem 1 and Corollary 1 together lead directly to the main result for
option pricing in this market model.

Corollary 2 (Fair price) In the market model under consideration here, the fair price of
an option with final payment Y , which is compatible with the arbitrage principle, is given
by

xY := E
(
H(T )Y

)
(4)

when this value is finite.

Remark 4 (Option price, risk-neutral pricing, equivalent martingale measure) If one con-
siders H(t) to be a discount factor process, with which one discounts future payments,
then Eq. (4) says that one obtains the price of the option with final payment Y by calculat-
ing the expectation of the final payment discounted by H(T ). This means, first, that the net
present value principle, under which the price is defined as the future payment discounted
to today, is valid here with a stochastic discount factor. It can also be shown, however, that

E
(
H(T )Y

) = EQ

(
exp(−rT )Y

)
(5)

holds true, where the second expectation with regard to the (unique) probability measure
Q is formed in the probability space being considered, for which

EQ

(
exp(−rt)S(t)

) = S0

holds true. Because, as a consequence, S(t)/S0 and B(t)/B0 possess the same expectation
under Q, regardless of whether one is dealing with a risky or a risk-free investment, Q

is also called the risk-neutral measure, and one speaks of risk-neutral pricing, since the
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option price is given by the right side of Eq. (5). The existence of the risk-neutral measure
Q follows from the Girsanov theorem (see [4], Chap. 3), which also states that, under Q,
the process

WQ(t) = W(t) + θt,

with θ from Theorem 1, is a Brownian motion. If one inserts this in the stock price equa-
tion (2), then one obtains

S(t) = S0 exp

((
r − 1

2
σ 2

)
t + σWQ(t)

)
,

from which it once again follows, with the defining characteristics of the Brownian motion,
that the discounted stock price process S(t)/B(t) is a martingale. Since it is also true
that the measure Q is equivalent to P (i.e., both measures possess the same null sets),
one also refers to Q as the equivalent martingale measure. The relationship between the
existence of such equivalent martingale measures and the absence of arbitrage in a market
model is also referred to as the first fundamental theorem of option pricing (see [25]). In
general, it can be shown in an elementary fashion for analogous, arbitrage-free financial
market models that establishing an option price by the right side of Eq. (5) does not lead
to arbitrage opportunities when Q is an equivalent martingale measure.

4.3 The Black–Scholes Formula: Nobel Prize for Mathematics

For the special case of the European call option, one can explicitly calculate the expecta-
tion that determines the option price. This then yields the famous Black–Scholes formula
(see [20] or [4]).

Theorem 2 (Black–Scholes formula) In the market model given by the price equa-
tions (1) and (2), the price Xcall(t, S(t),K,T ) of a European call option at time
t ∈ [0, T ] with maturity T and strike K > 0 is given by

Xcall
(
t, S(t),K,T

) = S(t)Φ
(
d1(t)

) − Ke−r(T −t)Φ
(
d2(t)

)
(6)

where Φ(.) is the distribution function of the standard normal distribution and where
we use the abbreviations

d1(t) = ln(S(t)/K) + (r + σ 2/2)(T − t)

σ
√

T − t
, d2(t) = d1(t) − σ

√
T − t .

Using the same notation, the price of the corresponding European put is given by

Xput
(
t, S(t),K,T

) = Ke−r(T −t)Φ
(−d2(t)

) − S(t)Φ
(−d1(t)

)
.
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Remark 5 (Characteristics, applications, and consequences of the Black–Scholes for-
mula)

(a) The outstanding quality of the Black–Scholes formula is not simply that it allows a
closed analytical form of the price of the European call, but that it allows this price to
be independent from b, the stock’s mean rate of return. Because this parameter is far
more critical for estimating the future development of the stock price, which can only
be poorly estimated from past stock prices (although one can efficiently estimate the
volatility σ , at least as σ 2, from historical data), it is precisely the absence of b that is
one of the main reasons for the market’s acceptance of the Black–Scholes formula—
aside from its elegant and convincing mathematical derivation. Its standing was further
underscored in 1997 with the awarding of the Nobel Prize for Economics to Robert C.
Merton and Myron Scholes for their work on it. Fischer Black had already died in
1995 and could therefore no longer be honored for his contribution.

(b) In the market, the Black–Scholes formula is not generally used to calculate call prices,
but rather in a manner indicating that the market does not fully believe in the Black–
Scholes model. Closed pricing formulas, including those in other models, are fre-
quently used for parameter calibration, that is, the input parameters for each model
are defined so that the associated model prices for each derivative coincide as well as
possible with the prices observed in the market. In the case of the Black–Scholes for-
mula, this is taken a step further, in that a positive volatility is defined for all calls with
different maturities and different strikes on the same stock, such that the price observed
in the market coincides exactly with the model price (see Sect. 4.3.1). This volatility
is called the implied volatility of the particular call. If one joins the resulting points
by means of a suitable interpolation procedure, one then obtains a so-called implied
volatility surface. If the Black–Scholes model corresponded exactly to the market data,
then all of the implied volatilities would have to be (at least) virtually identical. In the
following section, we make clear that this is not so by defining in detail the implied
volatility and implied volatility surface and illustrating them with an example.

Other weaknesses of the Black–Scholes model regarding characteristic empirical prop-
erties of stock and option prices (so-called stylized facts) are treated in Sect. 4.6.

4.3.1 Implied Volatility
According to Theorem 2, the price of a European call is a function with six arguments, all
of which are observable except for the volatility. Consequently, if the volatility is known,
the option price can be calculated. Conversely, if the option price is known, one can easily
show that the volatility can be uniquely determined under the assumption that it is positive.
Therefore, it is possible to determine the implied volatility σimp from the option prices
quoted in the market.

For i = 1, . . . ,N , we let Xmarket
call (Ki, Ti) denote the market price of a European call

with exercise price Ki and maturity Ti , where the same strike may very well be paired with
different maturities and vice versa. If one sets these market prices equal to the theoretical
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Fig. 5 Implied volatility
surface on 14 December 2011,
from European calls on the
stock of Allianz SE

prices of the corresponding call options in the Black–Scholes model, then σimp can be
uniquely determined from

Xcall
(
t, S(t),Ki, Ti

) != Xmarket
call (Ki, Ti),

for i = 1, . . . ,N . Because the market prices are dependent on the exercise prices and ma-
turities, the implied volatilities are dependent on them also.

Definition 4 The representation of the implied volatility σimp as a function of the exercise
price K and the maturity T is referred to as the implied volatility surface.

Figure 5 shows the implied volatility surface on 14 December 2011, as obtained from
European calls on the stock of Allianz SE. As the graphic shows, contrary to the assump-
tion in the Black–Scholes model, options having different execution prices and maturities
possess different implied volatilities.

4.4 Alternative Stock Price Models: Theoretical Aspects

There are several ways to redress the deficits of the Black–Scholes model, and these are
often resorted to when modeling problems. Among others, they are:

• Moving from a linear to nonlinear stochastic dynamics, as introduced, for example, in
Sect. 4.4.1.

• Introducing further stochastic components, such as a stochastic, rather than constant,
volatility (see Sect. 4.4.2 and, particularly, Sects. 5 and 6).

• Considering a more general class of stochastic processes for modeling the uncertainty
in the stock price process, such as the class of Lévy models in Sect. 4.4.3.



Option Pricing in Practice—Heston’s Stochastic Volatility Model 367

4.4.1 Local Volatility Models
Local volatility models utilize the first of the above-mentioned ideas. To avoid the prob-
lem of non-constant volatility, the volatility of the stock price is permitted to be time and
location dependent. As before, a simple one-dimensional Brownian motion W(t) is used
as the underlying stochastic process. This is done in the hope of thereby maintaining the
completeness of the market. The replication principle of option pricing would then remain
valid. In point of fact, an astounding result is attained in this regard, which we will present
in Theorem 3.

We consider a market model consisting of the usual money market account with interest
rate r (see Eq. (1)) and a stock whose price is modeled with the aid of the stochastic
differential equation

dS(t) = rS(t)dt + σ
(
S(t), t

)
S(t)dW(t), S(0) = S0. (7)

Here, we let σ(x, t) be a non-negative, real-valued function of such a form that Eq. (7)
possesses a unique (non-negative) solution. One sees immediately that, for the constant
function σ(x, t) ≡ σ , one obtains the Black–Scholes model.

Now, instead of prescribing a parametric form of the volatility function, Dupire [27]
takes an entirely different approach. Motivated by the terminology of the implied volatility
surface, he looks for a volatility function that ensures, for a specified set of call prices,
that the associated theoretical option prices (calculated as the discounted expectation of
the final payoff under the unique equivalent martingale measure) coincide with the given
market prices. And this is precisely the assertion of the following theorem.

Theorem 3 ([27]) Let today’s market prices Xmarket
call (0, S,K,T ) of European calls for all

possible choices of strikes K ≥ 0 and maturities T ≥ 0 be known, be once differentiable
as functions of the maturity, and be twice differentiable as functions of the strike. With the
choice of the volatility function σ(x, t) via

σ(K,T ) = 1

K

√√√√√
2

∂Xmarket
call
∂T

+ rK
∂Xmarket

call
∂K

K2 ∂2Xmarket
call

∂K2

, (8)

the market prices coincide with the theoretical call prices obtained in the corresponding
local volatility model according to

Xcall(0, S,K,T ) = E
(
e−rT

(
S(T ) − K

)+) ∀(T ,K) ∈ [0,∞)2.

Here, it is implicitly assumed that the call prices are furnished in such a way that all
expressions appearing in Eq. (8) are defined.

Theorem 3 presents exactly the desired result. Consequently, there exists for any given
set of market prices for European calls, a volatility function σ(x, t) that generates them.
Thus, one has found a model in which the theoretical model prices coincide with the given
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market prices for simple options. It is therefore plausible to use this model for calculating
the prices of more complicated options for which there are no market prices. The problem
with the theorem, however, is its practical applicability; some prerequisites and assump-
tions that enter the result cannot be verified and/or can hardly be implemented in practice:

• To design the volatility function, one needs a continuous set of market prices. Due to
the discreteness of the set of strikes and maturities, however, there is none. Therefore,
the volatility function must be obtained with the help of interpolation and extrapolation
methods, but is then dependent on the method being used and, in particular, is no longer
unique.

• In a local volatility model generated in this fashion, there are generally no closed, ana-
lytical price formulas, even for simple standard options.

• The form of the local volatility function has no intuitive economical interpretation or
motivation, but is based purely on data.

For further general aspects, we refer the reader to [27].
A popular parametrical model, which, however, represents no substantial improve-

ment over the Black–Scholes model, is the CEV model (Constant-Elasticity-of-Variance
model), for which the stock price equation is given as

dS(t) = rS(t)dt + σS(t)αdW(t), S(0) = S0

with α ∈ [0,1] and r, σ ∈ R. For the special choice of α = 0 and α = 1, it admits explicit
solutions:

• For α = 1, one then obtains the already familiar geometric Brownian motion (Black–
Scholes case), that is, log-normally distributed stock prices.

• For α = 0, one obtains

S(t) = S0 exp(rt) + σ

∫ t

0
exp

(
r(t − u)

)
dW(u),

from which follows that the stock price is normally distributed with

E
(
S(t)

) = S0 exp(rt), Var
(
S(t)

) = σ 2

2r

(
exp(2rt) − 1

)
.

For all values α ∈ [0,1), the CEV model admits a quite complicated, albeit closed, for-
mula for the price of a European call (see [5]), which we will not reproduce here. The
additional parameter α does indeed yield, in comparison with the Black–Scholes model,
a somewhat better fit to option market prices, but one that is still far from perfect. More-
over, for 0 < α < 1, the model is numerically difficult to manage. For these reasons, we do
not recommend it for practical application.
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4.4.2 Stochastic Volatility Models
The economic idea behind stochastic volatility models is that price fluctuations are deter-
mined by supply and demand and, depending on the trading intensity, may be stronger or
weaker. Since the intensity of the price fluctuations in the Black–Scholes model is deter-
mined by the value of the constant volatility σ , one assumes here a trading intensity that
is (on average) constant.

If, on the other hand, one wishes to model a non-constant trading intensity whose vari-
ability cannot be predicted, then it makes sense to model the volatility by a stochastic
process also. Such a stochastic volatility model is then given by price and variance process
equations having the form

dS(t) = bS(t)dt + √
ν(t)S(t)dW1(t), S(0) = S0, (9)

dν(t) = α(t)dt + β(t)dW2(t), ν(0) = ν0, (10)

where α(t) and β(t) are suitable stochastic or deterministic processes that are progres-
sively measurable relative to the filtration generated from the two-dimensional Brownian
motion (W1(t),W2(t)). Furthermore, we let ν0 be the initial value of the variance process
and ρ ∈ [−1,1] be the correlation of the Brownian motions W1(t) and W2(t),

Corr
(
W1(t),W2(t)

) = ρ. (11)

Analogously to σ in the Black–Scholes model, we call
√

ν(t) the volatility process.
Moreover, all of the processes described above should be selected so that the coupled
stochastic differential equations (9) and (10) possess a unique solution.

In practice, one tends to be less interested in the economic motivation behind stochastic
volatility models. The decisive factors are the free parameters and/or processes arising
from the introduction of the stochastic differential equation (10), with whose help one
hopes to obtain a model that can much more accurately replicate the option prices observed
in the market.

Among the various choices found in the literature for modeling the volatility process,
the choice of Heston (see [29]) has proved especially effective in practice and has, in many
fields, replaced the Black–Scholes model as the standard. At the ITWM, we have already
successfully applied the Heston model in several industrial projects. In Sects. 5 and 6, we
offer an extensive theoretical description of the model and take a closer look at the details
of its application for modeling variants and pricing algorithms.

4.4.3 Lévy Models
In the class of Lévy models, a Lévy process Z(t) essentially takes over the role of the Brow-
nian motion W(t) from the Black–Scholes model. A Lévy process is a stochastic process
with independent and stationary increments that starts with Z(0) = Z0 = 0 and possesses
paths that are almost surely continuous. Thus, a Brownian motion is also a Lévy process,
but a significant majority of Lévy processes possess paths exhibiting jumps. Lévy models
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are determined by their characteristics. They typically exhibit a large number of param-
eters and their distributions, in comparison with a normal distribution, possess markedly
sharper densities with heavier tails. These can therefore explain even extreme stock price
movements, for which the Black–Scholes model has no explanation (or only an explana-
tion such as: “In the credit crisis, we have observed 10σ -events”).

For an overview of the application of Lévy processes in financial mathematics, we re-
fer the reader to the monographs [23] and [40]. Other models known in the theory that
have also been applied to market data include the hyperbolic model (see [28]), the vari-
ance gamma model (see [37]), and the NIG model (see [17]). To date, however, the Lévy
models have been unable to make large-scale breakthroughs in practical application, since
the extensive parameterization is connected with greater estimation effort and larger esti-
mation error.

4.5 Further Application Aspects

The given application is a crucial factor in choosing a stock price model. A simple model,
such as the Black–Scholes, often suffices to price relatively simple derivatives. For compli-
cated, strongly path-dependent exotic options, however, the Black–Scholes model is gen-
erally inadequate. It is somewhat paradoxical, then, that when pricing options based on
multiple assets (so-called basket options), one often resorts to the Black–Scholes model
again in its multi-dimensional variant. The explanation here is that there are no suitable
multi-dimensional variants of the above-mentioned, more realistic models, or none that
would be numerically and statistically manageable.

Finally, the computation time required to determine an individual option price is another
crucial argument. Banks often carry out sensitivity analyses when selling large amounts
of a particular derivative. This involves varying all possible input parameters, which can
quickly lead to an exponentially increasing number of different scenarios, for which the
option prices must then be calculated. Hence, research into faster algorithms and new
hardware concepts, such as the use of graphic cards or so-called FPGA as computational
accelerators, remains an active field.

4.6 Effects with Real Data: Stylized Facts as an Argument Against the
Black–Scholes Model

Stock prices, interest rates, exchange rates, and many other financial time series exhibit
typical empirical characteristics that distinguish them from other time series. These char-
acteristics are referred to as stylized facts. In the following analysis, we will present those
characteristics in particular which suggest that the assumption of constant volatility in
the Black–Scholes model is too restrictive. Here, we take the term discrete time series to
mean an ordered sequence of observations at discrete time-points, such as exists with stock
prices, for example.
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Fig. 6 Daily log returns of the
DAX between January 2008
and December 2013

Definition 5 Let S(t) be the price of a stock. We define the return R(s, t) between the
time points s and t > s as

R(s, t) := S(t) − S(s)

S(s)
,

and the logarithmized return (log return) r(s, t) as

r(s, t) := ln

(
S(t)

S(s)

)
.

With regard to a stock’s daily return, we define r(n) := r(n − 1, n) for n ∈ N.

Remark 6 In the following discussion, we present the typical characteristics of the daily,
and thus discrete, time series of the log return r(n), n ∈ N. For small price changes, as are
the norm with stock data, the log returns are a good approximation of the returns. The time
series relevant to the investigation relate to the daily closing prices between January 2008
and December 2013.

Let the sample mean μ̂N and the sample variance V̂arN of the log return be defined as

μ̂N = 1

N

N∑

n=1

r(n), V̂arN = 1

N − 1

N∑

n=1

(
r(n) − μ̂N

)2
.

4.6.1 Volatility Clustering
Figure 6 shows the daily log returns of the DAX for the relevant time period. The graphic
clearly illustrates that there are phases with both large and small price changes, which
alternate with each other. This phenomenon is referred to as volatility clustering.

4.6.2 The Leverage Effect
Empirical data shows that, for returns on stocks, negative reports in the form of higher
losses have a stronger impact on the perception of risk (and thus of volatility) than posi-
tive reports in the form of higher profits. The volatility thus reacts asymmetrically to the
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Table 1 Sample skewness
γ̂N=1527 of the DAX and
various DAX stocks for log
returns from January 2008
through December 2013

Sample skewness

DAX 0.1028

BASF 0.0594

BMW 0.0861

Deutsche Bank 0.3028

Deutsche Telekom −0.0379

signs of shocks. This phenomenon is known as the leverage effect. In 1976, Fischer Black
commented on this as follows: “A drop in the value of the firm will cause a negative re-
turn on its stock, and will usually increase the leverage of the stock. [. . . ] That rise in the
debt-equity ratio will surely mean a rise in the volatility of the stock.” Therefore, price and
volatility changes are usually negatively correlated.

4.6.3 The Skewness—A Measure for the Symmetry of a Distribution
The empirical distribution of logarithmized stock price returns is often asymmetric. One
measure for this asymmetry is the skewness of a random variable.

Definition 6 Let X be a real-valued random variable with E(X3) < ∞. The skewness
γ (X) of X is defined as

γ (X) := E((X − E(X))3)

(Var(X))3/2
.

Remark 7 For the discrete log returns, the skewness is estimated by means of the sample
skewness

γ̂N = 1

V̂ar
3/2
N

1

N

N∑

n=1

(
r(n) − μ̂N

)3
.

The sample skewness of a normally distributed random variable is equal to zero. The
more γ̂N deviates from zero, the more asymmetric is the empirical distribution of the data.
If γ̂N < 0 (left-skewed), the left tail of the distribution is heavier than the right. Conversely,
for γ̂N > 0 (right-skewed), the right tail is heavier than the left.

Table 1 shows the sample skewness of the DAX and some of its individual components.
All observed values are non-zero and the associated time series are accordingly asymmet-
ric. This in turn suggests considering alternative stock price models that do not assume a
normal distribution.

4.6.4 Kurtosis—Emphasized Peaks and Tails
Figure 7 shows the histogram of the log returns of the DAX for the relevant time period,
along with the density of the adjusted normal distribution. As the graphic indicates, the
density of the log returns has a higher peak in the middle and heavier tails than the density
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Fig. 7 Empirical distribution
of the DAX log returns and
density of the fitted normal
distribution

Fig. 8 Q-Q plot of the log
returns for the DAX

of the normal distribution. The quantile-quantile diagram (Q-Q plot) in Fig. 8 makes clear
how heavy the tails of the empirical distribution are in comparison to the normal distri-
bution. If the historical data had been normally distributed, it would lie on the dashed red
line.

Definition 7 Let X be a real-valued random variable with E(X4) < ∞. The kurtosis κ(X)

of X is defined as

κ(X) := E((X − E(X))4)

Var(X)2
.

Remark 8 The kurtosis for the discrete log returns is estimated on the basis of the sample
kurtosis

κ̂N = 1

V̂ar
2

1

N

N∑

n=1

(
r(n) − μ̂N

)4
.

Normally distributed random variables have a kurtosis of 3. If the kurtosis is larger, then
the distribution of the associated random variable is leptokurtic. The distribution then has
a narrower peak than that of a normal distribution.
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Table 2 Sample kurtosis
κ̂N=1527 for the DAX and
various DAX stocks for the log
returns from January 2008
through December 2013

Sample kurtosis

DAX 8.6948

BASF 10.1601

BMW 6.5074

Deutsche Bank 9.3832

Deutsche Telekom 12.8838

Table 2 shows the sample kurtosis of the DAX and various stocks for the time period
January 2008 through December 2013. All observed values are significantly larger than 3;
the associated time series thus exhibit pronounced tails and high peaks. These character-
istics are typical for mixtures of distributions with different variances. Therefore, these
results also indicate that the assumption of constant volatility is not appropriate.

4.6.5 The Volatility Reverts to Its Mean
Another empirical characteristic of the volatility is that it reverts to its mean. To investi-
gate this behavior, we consider the historical standard deviation of the log returns. This is
referred to as the historical volatility.

Definition 8 The historical N-days volatility σhist is defined as the annualized standard
deviation

σhist(N) :=
√√√√ D

N − 1

N∑

n=1

(
r(n) − μ̂N

)2
.

Here, D stands in general for a days convention, which specifies the number of days used
to approximate a year, since weekends and holidays cause the exact number to fluctuate.
In practice, D = 252 is often used.

In order to study the historical volatility, we consider the rolling historical volatility
over a longer time period.

Definition 9 For l ∈ Z, one takes the rolling historical N-days volatility to be the time
series

σhist(N, l) :=
√√√√ D

N − 1

l+N∑

n=l+1

(
r(n) − μ̂N (l)

)2
,

where the sample mean μ̂N (l) on the basis of N is calculated for the observed data points,
starting at 1, and then slides over the data.
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Fig. 9 Historical rolling
one-year volatility for the DAX

Figure 9 shows the rolling historical volatility on a one-year basis σhist(252, l) for the
DAX from January 2008 through January 2013. One can observe that the historical volatil-
ity, after reaching high (low) values, tends to fall (climb). Empirically, the volatility reverts
to its mean.

In summary, one can state that both the stylized facts and the implied volatility observed
in the market (see Sect. 4.3.1) militate against the assumption of constant volatility in
the model. Instead, the volatility itself should be modeled as a random variable that is
correlated with the stock price. One model that does so is Heston’s stochastic volatility
model (cf. [29]); this will be analyzed in depth in the following discussion, along with its
variants—some of which we have put to use in industrial projects.

5 Theoretical Foundations of the Heston Model

The Heston model is a stochastic volatility model in which the functions α(t) and β(t)

from Eq. (10) possess a special form. Here, the stock price and the variance both follow
the stochastic differential equations

dS(t) = bS(t)dt + √
ν(t)S(t)dW1(t), S(0) = S0, (12)

dν(t) = κ
[
θ − ν(t)

]
dt + σ

√
ν(t)dW2(t), ν(0) = ν0. (13)

As in Eq. (11), the Brownian motions W1(t) and W2(t) have a correlation of ρ. Moreover,
b denotes the stock drift; κ , the reversion speed of the variance to the mean reversion
level θ > 0; and σ , the volatility of the variance. The process ν(t) from Eq. (13) is called
the square root diffusion process, or Cox-Ingersoll-Ross (CIR) process. It is the path-
wise unique, weak solution of Eq. (13) and is almost surely non-negative. It is not given
explicitly, but has a non-central chi-square distribution and, in particular, is finite. If the
Feller condition

2κθ ≥ σ 2 (14)
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also holds, then the process is strictly positive, that is, P(ν(t) > 0) = 1 = Q(ν(t) > 0) for
all t ≥ 0. Furthermore, the variance process reverts to its mean reversion level θ , which—
as described in Sect. 4.6—is an empirical characteristic of the volatility. The correlation
of the Brownian motions is in a position to replicate the leverage effect described earlier,
and is thus generally negative (sometimes even very close to −1!). All in all, the Heston
model thus models all the characteristics of the volatility that were described as stylized
facts.

As does W1(t), the Brownian motion W2(t) also represents a source of uncertainty.
However, because the volatility is not an asset that can be traded in the market, the replica-
tion principle—which is based on the completeness of the market (see Theorem 1)—can
no longer be applied. In such an incomplete market, the risk-neutral pricing measure Q is
no longer unique. Moreover, there are infinitely many equivalent martingale measures (see
[19] or [18]).

Up to this point, the Heston model has been considered under the physical measure P ,
which is supposed to describe the price movements in the real market. The dynamics under
an equivalent martingale measure Q can be derived from the dynamics (12) and (13). For
a positive constant λ, the risk-neutral parameters

κ� = κ + λ, θ� = κθ

κ + λ
,

and the Girsanov transformations

dW
Q
1 (t) = dW1(t) + (b − r)

∫ t

0

1√
ν(s)

ds,

dW
Q
2 (t) = dW2(t) + λ

σ

∫ t

0

√
ν(s)ds,

can be used to define the risk-neutral form of the Heston model as follows:

dS(t) = rS(t)dt + √
ν(t)S(t)dW

Q
1 (t), S(0) = S0, (15)

dν(t) = [
κ
(
θ − ν(t)

) − λν(t)
]
dt + σ

√
ν(t)dW

Q
2 (t)

= κ�
[
θ� − ν(t)

]
dt + σ

√
ν(t)dW

Q
2 (t), ν(0) = ν0. (16)

Here, W
Q
1 (t) and W

Q
2 (t) denote Q-Brownian motions with correlation ρ.

Remark 9 In Heston’s original work (cf. [29]), the term λν(t) is referred to as the market
price of the volatility risk Φ . This (and therefore the associated Girsanov transformation,
also) can be a priori freely selected. Both economic and mathematical arguments militate
for modeling proportional to variance ν(t); only for this choice is there a known semi-
closed formula for the price of European calls and puts.
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In closing, we want to point out that the choice of a particular equivalent martingale
measure equates to the choice of a market price for the volatility risk, which is ultimately
determined by the choice of the positive constant λ. Consequently, we must also pose the
question of which measure is to be used in the specific application. The answer to this
question is revealed in Sect. 6.1.

5.1 Closed Form Solution for the Price of European Calls

One of the main reasons for the success of the Heston model in practice is a semi-closed
price formula for European calls and puts that allows one to efficiently determine the
model parameters from market prices, and thus, to calibrate the model (see Sect. 6.1).
Using classical arbitrage arguments, one obtains the following partial differential equation
for determining the price of a European call Xcall(t, S,K,T ):

0 = ∂Xcall

∂t
+ νS2

2

∂2Xcall

∂S2
+ ρσνS

∂2Xcall

∂ν∂S
+ σ 2ν

2

∂2Xcall

∂ν2
+ rS

∂Xcall

∂S

− rXcall +
[
κ(θ − ν) − λν

]∂Xcall

∂ν
, (17)

where it is assumed that the market price of the volatility risk is proportional to the vari-
ance, according to the relationship Φ = λν(t). There is no known explicit solution for the
partial differential equation (17). However, Heston found a way to express the solution
with the aid of characteristic functions. Analogously to the Black–Scholes formula (6), he
chooses the approach

Xcall
(
t, S(t),K,T

) = S(t)P1
(
S(t), ν(t), t, ln(K)

)

− Ke−r(T −t)P2
(
S(t), ν(t), t, ln(K)

)

for the solution, where P1(S(t), ν(t), t, ln(K)) and P2(S(t), ν(t), t, ln(K)) describe
the probabilities that the stock finishes above the strike. Both probabilities fulfill
the partial differential equation. If the characteristic functions ϕ1(S(t), ν(t), t, u) and
ϕ2(S(t), ν(t), t, u) belonging to the probabilities exist, then P1(S(t), ν(t), t, ln(K)) and
P2(S(t), ν(t), t, ln(K)) are given by their inverse Fourier transforms

Pj

(
S(t), ν(t), t, ln(K)

) = 1

2
+ 1

π

∫ ∞

0
�

[
e−iu ln(K)ϕj (S(t), ν(t), t, u)

iu

]
du (18)

for j = 1,2, where �(.) denotes the real part. The linearity of the coefficients then suggests
the approach

ϕj

(
S(t), ν(t), t, u

) = exp
(
Cj (τ,u) + νDj (τ,u) + iu ln

(
S(t)

))
, (19)
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for j = 1,2 and τ := T − t for the characteristic functions. Utilizing ϕ1(S(t), ν(t), t, u)

and ϕ2(S(t), ν(t), t, u) in Eq. (17) then delivers the following system of linear differential
equations

0 = −u2

2
+ ρσuiDj + σ 2

2
D2

j + ujui − bjDj − ∂Dj

∂τ
, (20)

0 = rui + aDj − ∂Cj

∂τ
(21)

for the unknowns Cj (τ,u) and Dj(τ,u) with initial conditions

Cj (0, u) = 0, Dj (0, u) = 0 (22)

and

u1 = 1

2
, u2 = −1

2
, a = κθ, b1 = κ + λ − ρσ, b2 = κ + λ. (23)

The solution of the system (20), (21) and (22) is given by

Cj (τ,u) = ruiτ + a

σ 2

[
(bj − ρσui + dj )τ − 2 ln

[
1 − gj e

dj τ

1 − gj

]]
,

Dj (τ,u) = bj − ρσui + dj

σ 2

[
1 − edj τ

1 − gj e
dj τ

]
(24)

with

gj = bj − ρσui + dj

bj − ρσui − dj

, dj =
√

(ρσui − bj )2 − σ 2
(
2ujui − u2

)
. (25)

The following theorem summarizes the results.

Theorem 4 (Heston’s price formula) Let the market price of the volatility risk be
given by Φ = λν(t). Then, in the Heston model, which is specified by Eqs. (12), (13),
and (11), the arbitrage-free price of a European call is given by

Xcall
(
t, S(t),K,T

) = S(t)P1
(
S(t), ν(t), t, ln(K)

)

− Ke−r(T −t)P2
(
S(t), ν(t), t, ln(K)

)
.

The probabilities Pj (S(t), ν(t), t, ln(k)) and the associated characteristic functions
ϕj (S(t), ν(t), t, u) are given by Eqs. (18) and (19). The further quantities are defined
in Eqs. (23), (24), and (25).
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5.2 Variants of the Heston Model—Requirements Arising
from Practice

On the basis of the acceptance and popularity of the Heston model in practice, the Fi-
nancial Mathematics Department of the Fraunhofer ITWM received numerous research
commissions from the financial and insurance industries, whose goals were the model’s
theoretical generalization and algorithmic implementation. In the wake of these projects,
new and innovative variants of the closed formula from Theorem 4 were developed and
implemented. In this section, we treat several of these variants—particularly those that
resulted in publications in relevant journals.

5.2.1 The Heston Model with Time-Dependent Coefficients
The partial differential equation (20) is a nonlinear differential equation of the Riccati
type. Therefore, generalizing the Heston model for non-constant parameters is non-trivial.
The work of Mikhailov and Nögel (cf. [38]) considers diverse variants for treating time-
dependent coefficients. For example, since Eq. (20) is not dependent on the mean reversion
level θ , a general solution for a time-dependent enhancement θ(t) can be found. Other spe-
cial cases include solutions with the help of hyper-geometric functions, for cases in which
the reversion speed is modeled as κ(t) = at + b or κ(t) = ae−αt . Strictly speaking, how-
ever, one must resort to other techniques. By numerically solving Eqs. (20) and (21), the
model’s application can be extended with relative ease to the situation of time-dependent
parameters. Here, Runge–Kutta algorithms are good candidates. The use of semi-closed
price formulas arises for the algorithmic implementation—especially for calibrating the
model.

Asymptotic Expansion Because an analytical solution for the partial differential equa-
tion (20) can only be found for a few special cases, it seems appropriate to apply
asymptotic methods. We therefore assume that ρ(t) results from a superposition of time-
dependent functions and, for small variations ε, possesses a potential series expansion
around a constant value ρ0:

ρ(t) = ρ0 + ερ1(t) + ε2ρ2(t) + · · · .

Using the approach

Dj(t) = Dj,0(t) + εDj,1(t) + ε2Dj,2(t) + · · ·
the first order approximation delivers a linear equation with time-dependent coefficients,
whose solution is given by

Dj,1(t) = −σuj i

∫ t

0
ρ1(τ )Dj,0(τ ) exp

(∫ τ

0
Dj,0(ξ)dξ − (−ρ0σuj i + bj )τ

)
dτ

× exp

(
−

∫ t

0
Dj,0(τ )dτ + (−ρ0σuj i + bj )t

)
.
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As an alternative to the above asymptotic approach, one could perform an asymptotic
analysis of the system with slowly changing parameters.

Piece-Wise Constant Parameter If one sub-divides the time interval [t, T ] into n sub-
intervals [t, t1], . . . , [ti , tj ], . . . , [tn−1, T ] and defines the model parameters to be constant
in each sub-interval, then a closed solution can be found for Eq. (20), even for different
parameters in different sub-intervals. With the help of the time inversion τk = T − tn−k ,
k = 1, . . . , n − 1, the initial condition for the first sub-interval [0, τ1] is exactly zero. For
this interval, one can then use the solution (24) of the Heston model. For the second sub-
interval, we need solutions for the differential equations (20) and (21) with arbitrary initial
conditions

Cj (0, u) = C0
j , Dj (0, u) = D0

j , (26)

which are given by

Cj (τ,u) = ruiτ + a

σ 2

[
(bj − ρσui + dj )τ − 2 ln

[
1 − gj e

dj τ

1 − gj

]]
,

Dj (τ,u) = bj − ρσui + dj − (bj − ρσui + dj )gj e
dj τ

σ 2(1 − gj e
dj τ )

(27)

with

gj = bj − ρσui + dj − D0
j σ

2

bj − ρσui − dj − D0
j σ

2
, dj =

√
(ρσui − bj )2 − σ 2

(
2ujui − u2

)
(28)

and (23). The continuity requirement for the functions Cj (τ,u) and Dj(τ,u) at the in-
tersection of the first and the second sub-interval τ1 delivers the initial conditions for the
second sub-interval as

Cj(0, u) = C0
j = CH

j (τ1, u), Dj (0, u) = D0
j = DH

j (τ1, u), (29)

where CH
j (τ1, u) and DH

j (τ1, u) refer to the Heston solution with the initial condi-

tions (22). If one solves the above equations relative to the initial conditions C0
j and D0

j ,
one obtains the initial conditions for the second sub-interval. The procedure is then re-
peated for each jump point of the parameters τk , for k = 2, . . . , n − 1. Summarizing, the
calculation of the option price in the Heston model with piece-wise constant parameters
consists of 2 phases:

1. Determine the initial conditions for each sub-interval with the aid of the formulas
in (29).

2. Determine the functions Cj (τ,u) and Dj(τ,u) using the solutions (27) and (28) with
the initial conditions (26).
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5.2.2 Forward Starting Options in the Heston Model
For pricing many exotic options in the Heston model, one must often resort to numerical
methods, such as a Monte Carlo simulation or tree method (cf. Sect. 6). There are also
instances, however, where closed formulas have been derived for complex derivatives. One
example is the so-called forward starting option, which is treated in the work of Kruse and
Nögel (cf. [35]).

A forward starting option is one whose exercise price is not completely determined until
a time-point t�. This time-point lies between the issuing date and the option’s maturity,
and is referred to as the starting point. Here, one can see that the forward starting option
belongs to the class of path-dependent options. The payoff function for this option is given
by

Yfso = (
S(T ) − kS

(
t�

))+
, (30)

where k ∈ [0,1] denotes a percentage.
Using the principle of risk-neutral pricing, a semi-closed pricing formula can be ob-

tained for the option. The derivation goes beyond this discussion, however, so that we
refer the interested reader to [35] for more information and present only the result here.

Theorem 5 (Forward starting option in the Heston model) Let κ ≥ ρσ and 0 ≤ t <

t� < T . If the stock price and the variance fulfill the risk-neutral dynamics (15) and (16),
and if the Feller condition (14) also holds, then the price of a forward starting option at
time t with payoff (30) is given by

Xfso
(
t, S(t),K,T

) = S(t)P̂1(t) − ke−r(T −t�)S(t)P̂2(t), (31)

where

P̂j (t) :=
∫ ∞

0
Pj

(
1, ξ, t�, k

)
p
(
ξ, ν(t)

)
dξ

and the probabilities Pj are given in Eq. (18). Moreover,

p
(
ξ, ν(t)

) = B

2
e−(Bξ+Λ)/2

(
Bξ

Λ

)(R/2−1)/2

IR/2−1(
√

ΛBξ)1{ξ>0},

Λ = Be−(κ−ρσ)(t�−t)ν(t), (32)

B = 4(κ − ρσ)

σ 2

(
1 − e−(κ−ρσ)(t�−t)

)−1
, (33)

and

R = 4κθ

σ 2
,

where IR/2−1(.) denotes the modified Bessel function of the first kind.
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For a forward starting option on the return of a stock with payoff function

Yrfso =
(

S(T )

S(t�)
− K

)+
, (34)

a corresponding variant of the option price formula (31) can be specified on the basis of

(
S(T )

S(t�)
− K

)+
= (S(T ) − KS(t�))+

S(t�)
.

In the Heston model, the option price belonging to the payoff (34) is given by

Xrfso
(
t, S(t),K,T

) = e−r(t�−t)
(
P̂1(t) − Ke−r(T −t�)P̂2(t)

)
, (35)

where the expression κ − ρσ is replaced by κ in Eqs. (32) and (33).

Remark 10 For the numerical implementation of the option price formulas (31) and (35),
we refer in particular to the calculation of the modified Bessel function of the first kind,
which can be approximated by the following series expansion:

IR/2−1
(√

ΛBξ
(
t�

)) ≈
N∑

n=0

(ΛBξ(t�))n

22nn!Γ (n + R/2)
.

For practical applications, it turns out that the series converges with sufficient speed, so
that even relatively small values of N are acceptable.

With the aid of the closed formulas (31) and (35), we have the efficient tools we need
in order to price forward starting options.

5.2.3 A Sparsely Parameterized Multi-Asset Heston Model
In order to price options based on several underlying assets, a multi-dimensional version
of the Heston model was developed at the Fraunhofer ITWM by Dimitroff, Lorenz, and
Szimayer (cf. [26]). We now wish to present this work. We first point out that, with the
help of the Cholesky decomposition, the risk-neutral dynamics of the Heston model (15)
and (16) can be represented as follows:

dS(t) = rS(t)dt + √
ν(t)S(t)dW(t), S(t) = S0,

dν(t) = κ
[
θ − ν(t)

]
dt + σ

√
ν(t)

[
ρdW(t) +

√
1 − ρ2dW̃ (t)

]
, ν(t) = ν0,

where, for simplicity’s sake, we dispense with the notation � and Q, and start directly with
the risk-neutral parameterization relevant for the pricing.

Multi-Dimensional Generalization In the following treatment, we describe a parsimo-
nious, multi-dimensional extension of the one-dimensional Heston model, in which each
one-dimensional sub-model is a classical one-dimensional Heston model, although the
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price processes may exhibit correlations to each other. Consequently, the model is parsi-
monious in the sense that for a d-dimensional model, only d(d −1)/2 correlations between
the risky securities are needed. For i = 1, . . . , d ,

(
dSi(t)

dνi(t)

)
=

(
rSi(t)

κi(θi − νi(t))

)
dt

+
(√

νi(t)Si(t) 0
0 σi

√
νi(t)

)(
1 0

ρi

√
1 − ρ2

i

)(
dWi(t)

dW̃i(t)

)
(36)

denotes the Heston model in vectorized form, where Wi(t) and W̃i(t) describe the uncor-
related Brownian motions.

The model is thus defined, except for its dependency structure. Let W(t) = (W1(t), . . . ,

Wd(t)) and W̃ (t) = (W̃1(t), . . . , W̃d(t)) now be d-dimensional Brownian motions. For i =
1, . . . , d and j = 1, . . . , d , we assume that W(t) and W̃ (t) are described by the following
dependency structure:

1. W(t) has the correlation matrix ΣS = (ρi,j ), i.e., 〈Wi(t),Wj (t)〉 = ρi,j ,
2. W̃ (t) has the correlation matrix Id , i.e., 〈W̃i(t), W̃j (t)〉 = δi,j ,
3. W(t) and W̃ (t) are independent.

The complete correlation matrix of (W(t), W̃ (t)) is thus given by

Σ = Σ(W,W̃) =
(

ΣS 0
0 Id

)
. (37)

The first assumption allows for an arbitrary correlation structure between the risky securi-
ties. In contrast, the second and third assumptions stipulate that the dependency structure
of the variance processes is determined by the corresponding correlations of the Brownian
motions, which are transferred to the variance processes by the parameters ρi and ρj .

The model specification (36) and the assumed form of the correlation matrix (37) thus
define the following correlation structure:

dSi(t)dSj (t)√
(dSi(t))2(dSj (t))2

= ρi,j ,

dSi(t)dνj (t)√
(dSi(t))2(dνj (t))2

= ρi,j ρj ,

dνi(t)dνj (t)√
(dνi(t))2(dνj (t))2

=
{

ρi,j ρiρj , for i �= j,

1, for i = j.
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Remark 11 The one-dimensional models presented here (Si(t), νi(t)) are affine with the
corresponding closed formulas, according to Theorem 4. However, the multi-dimensional
generalization is not affine, and as a consequence, its characteristic function cannot be
simply determined. Therefore, Monte Carlo methods and tree methods—as described in
Sect. 6—are generally required for pricing options with multiple underlying investment
assets.

Empirical Correlations and Correlation Adjustment Under the assumption that the
parameters of the one-dimensional sub-models are known, there are additional (d − 1)d/2
free parameters from the matrix ΣS that must be determined in order to correlate the
risky securities. If there is sufficient data available, this is accomplished with the help of
the implied correlations of multi-asset options. If this data is not available, the empirical
correlations Σ̂emp from the time series of the risky securities can be estimated and adjusted
to the model correlations ΣS . Here, it is known that Σ̂emp is an unbiased estimator for the
correlation matrix Σemp of the investment assets, which is evidently strongly dependent
on the non-observed quantity ΣS .

The idea is now to adjust the correlation matrix ΣS so that it fits Σemp, which, in turn,
is estimated by Σ̂emp. Here, it is important to point out that ΣS describes the infinitesi-
mal correlation of the Brownian motion W(t) and Σemp describes the correlation of the log
returns. We refer to the adjustment of ΣS to Σemp as the correlation adjustment. In the fol-
lowing treatment, we now formally define the estimator Σ̂emp. Let ri(k) for k = 1, . . . ,K

be discrete log returns of the i-th stock. Moreover, let

ν̂
emp
i,j,T ,K(Σ) = 1

K − 1

K∑

k=1

(
ri(k) − μ̂i

K

)(
rj (k) − μ̂

j
K

)
. (38)

Then, the empirical correlation matrix of the log returns is defined as

Σ̂
emp
T ,K(Σ) = (

ρ̂
emp
i,j,T ,K(Σ)

)
1≤i,j≤d

and its elements, as

ρ̂
emp
i,j,T ,K(Σ) = ν̂

emp
i,j,T ,K(Σ)

√
ν̂

emp
i,i,T ,K(Σ)ν̂

emp
j,j,T ,K(Σ)

. (39)

It can now be shown that the entries ρ̂
emp
i,j,T ,K(Σ) of the empirical correlation matrix con-

verge suitably to the entries ρi,j of the model correlation matrix ΣS . That is, the model
correlations Σ can be determined by calculating the historical, empirical correlations
Σ̂

emp
T ,K(Σ) using (38) and (39). This makes it possible to develop a procedure for estimating

the unknown correlations. If we assume that the empirical correlations are observed under
the risk-neutral measure Q, then, if T and K are large, the observed sample correlations
are good approximations for the expected sample correlations, given the true correlation
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structure of the Brownian motions; that is,

Σ̂
emp
T ,K ≈ EQΣ̂

emp
T ,K

(
Σ true) =: ΣQ

(
Σ true).

The unknown correlations can thus be determined by means of a minimization problem:

min
Σ∈Cor(d)

∥
∥ΣQ(Σ) − Σ̂

emp
T ,K

∥
∥, (40)

where Cor(d) denotes the space of the d × d-dimensional correlation matrices and ‖.‖,
a suitable matrix norm. The solution of the minimization problem (40) is not trivial; how-
ever, it can be solved using standard software. We denote the solution as Σ�.

Generating an Admissible Correlation Matrix It is possible that the correlations esti-
mated with the above algorithm may not lead to a valid (positive semi-definite) correlation
matrix. In this case, a transformation is required. One possible algorithm that generates a
genuine correlation matrix from an estimated one is the following (see [32] also):

1. Determine an eigenvalue decomposition of Σ� as Σ� = SΛST , where Λ = diag(λi).
2. Define the diagonal matrix Λ̃ with entries

λ̃i =
{

λi if λi ≥ 0
0 if λi < 0.

3. Generate the diagonal matrix T with entries

ti :=
(∑

m

s2
imλ̃m

)−1

.

4. Define B := √
T S

√
Λ̃ and obtain a new positive semi-definite correlation matrix as

Σ̂� := BBT with Σ̂�
ii = 1.

For other relevant algorithms, we refer to [39], for example. Finally, then, with the gen-
eration of the correlation matrix, the sparsely parameterized multi-asset Heston model is
completely defined.

6 The Heston Model in Action—Algorithmic Implementation

In this section, we turn to the questions that are relevant for implementing the Heston
model.
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6.1 Problems of Calibration

As previously shown, in a complete, arbitrage-free market, a derivative can be uniquely
replicated by other investments available in the market. Therefore, in the theory of finan-
cial mathematics, the equivalent martingale measure and/or the market price of risk, is
uniquely given by the model. As a consequence, the price of the derivative is also uniquely
determined.

Because Heston’s stochastic volatility model defines an incomplete financial market,
the absence of arbitrage alone here does not suffice to uniquely determine a price; there
are infinitely many equivalent martingale measures that define infinitely many arbitrage-
free product prices. So-called lower and upper arbitrage bounds can then be specified
for a financial product and, ultimately, all prices lying within these bounds are correct—
according to financial mathematics theory.

In practice, these price bounds are insufficient. For the specific pricing of products,
a single equivalent martingale measure must be chosen, which raises the following inter-
esting question:

“Who determines the martingale measure?”

The short and amazing answer is (cf. [19]):

“The market does!”

The implication of the answer is simple: in determining the measure, one should include
information available in the market in the form of traded products. This process, known as
model calibration, uses the option prices observed in the market as input parameters. The
goal is to use them to determine the model parameters so that the model prices correspond
as closely as possible to the observed market prices.

However, since the number of traded products typically exceeds the number of model
parameters by a wide margin, it frequently happens that not all market prices can be repli-
cated exactly. The following algorithm uses the least squares method to calibrate the model
for European calls.

For i = 1, . . . ,N , let Xmarket
call (Ki, Ti) be the prices of N European calls observed in

the market for various exercise prices Ki and maturities Ti , and let ω1, . . . ,ωN be pos-
itive weights that add up to 1. We then obtain the simple calibration algorithm for the
parameters (ν0, κ, θ, σ,ρ) describing the Heston model:

1. Solve the minimization problem

min
(ν0,κ,θ,σ,ρ)

N∑

i=1

ωi

(
Xmarket

call (Ki, Ti) − Xcall
(
t, S(t),Ki, Ti

))2
.

The (calibrated) parameter set found here offers the best possible explanation for the ob-
served market situation.
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Here, one sees the decisive advantage of the Heston model. Since there are semi-closed
calculations for the prices of European options, the required model prices do not have
to be determined by means of laborious methods. In each iteration of the minimization
algorithm, the N model prices can thus be obtained very quickly.

Remark 12

(a) Because the above minimization problem is highly nonlinear, one needs methods of
nonlinear optimization to find a solution. Here, one must take particular care that the
solution algorithm for the global optimization problem can terminate in a local min-
imum. This makes it absolutely essential to check the resulting parameters for plau-
sibility and, if needed, to start the optimization again using different initial values or
different minimization algorithms.

(b) There are both deterministic and stochastic algorithms available for solving the opti-
mization problem, and each type has specific advantages and disadvantages. For exam-
ple, deterministic algorithms lend themselves to situations in which good initial values
for the calibration exist. Based on the initial solution, these then attempt to minimize
the target function by locally changing the parameters. As a result, the deterministic
methods often converge very quickly, but do not leave the neighborhood of a local
optimum. In contrast here, the stochastic optimization methods offer the possibility
of abandoning an already discovered local minimum and continuing the search for
a better solution. Implementing these algorithms is typically more laborious, but the
calibration results are often superior to those obtained via deterministic methods.

(c) In addition to the option prices observed in the market, the market prices of other
products can be used for calibration purposes. If these products do not have closed
form solutions in the model, however, laborious numerical simulations are needed to
determine the prices, and these are frequently very time-consuming. Therefore, the
market prices of derivatives for which analytical solutions exist in the model form the
basis for a satisfactory model calibration.

(d) For practically relevant applications, the prices observed in the market exert differing
influences on the calibration. This might be a function of the product-specific bid/ask
spread, for example, which is a sign of a product’s liquidity. For this reason, when
calibrating, practitioners often use various weights ωi to weight the individual input
prices, in order to emphasize relevant situations or reduce the influence of less signifi-
cant ones.

For realistic applications, the calibrated parameters typically vary over time. This means
that it may be necessary to re-calibrate the model repeatedly within a short time period
(within a single day, for example). For these applications, the calibrated parameters are
often used as the new initial values for the re-calibration.
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6.2 Pricing Complicated Products; Aspects of Numerical Simulation

In practice, pricing simple products such as European calls and puts is generally not a
problem. In the following section, we consider the pricing of more complicated deriva-
tives using numerical methods such as Monte Carlo simulations and tree approximations.
While the Monte Carlo simulation for determining option prices is based on the strong
law of large numbers, tree pricing relies on the central limit theorem. Each method has
its advantages and disadvantages, so that, in practice, it has proved to be effective to im-
plement both methods. In addition to these methods, there are other numerical methods,
such as those for solving partial differential equations or Fourier techniques. We will not
discuss these further here, but instead, refer the interested reader to [4] or [22] for more
information.

6.2.1 Variants of the Euler Discretization
In order to price complex products traded in non-liquid markets, it is necessary to simulate
the stock and variance paths of the Heston model.

Although the variance does not have a closed solution, its distribution—the non-central
chi-squared distribution—is known. Thus, a promising approach might be to exactly sim-
ulate variance values ν(t) directly with the aid of the distribution. Such an approach is
presented in [21]. With the exactly simulated variance process, the stock price process can
then be determined using a suitable discretization method.

These methods function well for independent and therefore uncorrelated Brownian mo-
tions. However, problems arise in the generalized case for high absolute values of the cor-
relation. For this case, an unbiased method is described in [21] that includes an inverted
Fourier transformation. However, this method is much more time intensive than simpler
discretization methods (see [36]).

The following algorithm introduces a naive discretization method suited to the Heston
model that is based on the Euler–Maruyama method for the numerical solution of stochas-
tic differential equations.

1. Initialize the variance and stock price approximation by ν(0) = ν0 and S(0) = S0.
2. Define � = T/n, where T denotes the product maturity and n the number of discretiza-

tion steps.
3. Repeat for j = 1, . . . , n:

(a) Simulate independent random variables Z1,Z2 ∼ N (0,1).
(b) Define Z3 = ρZ1 + √

1 − ρ2Z2.
(c) Discretize the stochastic differential equation of the variance and iterate

ν(j�) = ν
(
(j − 1)�

) + κ
(
θ − ν

(
(j − 1)�

))
� + σ

√
ν
(
(j − 1)�

)
�Z3.
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(d) Discretize the stochastic differential equation for the logarithmized stock price
X (t) = ln(S(t)) and iterate

X (j�) = X
(
(j − 1)�

) +
(

r − ν((j − 1)�)

2

)
� +

√
ν
(
(j − 1)�

)
�Z1.

4. Determine the path X (t) as a linear approximation between the discrete time-points
X (j�) for j = 0,1, . . . , n. Then, S(t) = exp(X (t)) is the stock price path.

Although the continuous-time solution of the variance process assumes only non-negative
values, the approximation can indeed generate negative values. Here, however, the root
terms that must be determined in steps 3(c) and 3(d) are complex and unusable for the
next iteration.

Various methods are described in the literature that compensate for this obvious weak-
ness. For a systematic investigation of the methods presented below, we refer the reader
to [36], which is based on empirical results.

1. Absorption (A): Use the positive part of the predecessor of the variance iteration
ν((j − 1)�)+ to approximate the variance

ν(j�) = ν
(
(j − 1)�

)+ + κ
(
θ − ν

(
(j − 1)�

)+)
� + σ

√
ν
(
(j − 1)�

)+
�Z3

and to determine X (j�) in the simulation step.
2. Reflection (R): Use the absolute amount of the predecessor of the variance iteration,

that is,

ν(j�) = ∣∣ν
(
(j − 1)�

)∣∣ + κ
(
θ − ∣∣ν

(
(j − 1)�

)∣∣)� + σ

√∣∣ν
(
(j − 1)�

)∣∣�Z3

to determine the variance value. Use the absolute amount also for X (j�) in the simu-
lation step.

3. Higham and Mao (HM): Use the absolute amount |ν((j − 1)�)| only in the root terms,
that is, once each for calculating the succeeding value of the variance and the stock
price. The other expressions of ν((j − 1)�) remain unchanged (see [30]).

4. Partial truncation (PT): Use the positive part ν((j −1)�)+ of the preceding value of the
variance approximation only in the root terms to calculate the succeeding value of the
variance and the stock price. The other incidences of ν((j − 1)�) remain unchanged
(see [24]).

5. Full truncation (FT): Use the positive part of the predecessor of the variance iteration
in the drift and diffusion component of the variance approximation, that is,

ν(j�) = ν
(
(j − 1)�

) + κ
(
θ − ν

(
(j − 1)�

)+)
� + σ

√
ν
(
(j − 1)�

)+
�Z3

and for X (j�) in the simulation step (see [36]).
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Table 3 Simulated prices and standard deviations (in parentheses) for a European call in the Heston
model with S0 = K = 100, T = 1, ν0 = θ , r = 0.05, and ρ = −0.9. Moreover, n = 100 000. The
exact value corresponds to the analytical price

κ θ σ exact A R HM PT FT

2.0 0.04 0.2 9.349 9.328 (0.037) 9.328 (0.037) 9.328 (0.037) 9.328 (0.037) 9.328 (0.037)

0.5 8.881 8.890 (0.029) 8.919 (0.029) 8.871 (0.029) 8.890 (0.029) 8.859 (0.029)

0.01 0.2 5.594 5.584 (0.017) 5.585 (0.017) 5.582 (0.017) 5.584 (0.017) 5.582 (0.017)

0.5 5.156 5.512 (0.014) 5.862 (0.016) 5.593 (0.019) 5.516 (0.014) 5.149 (0.012)

0.5 0.04 0.2 9.278 9.255 (0.034) 9.255 (0.034) 9.255 (0.034) 9.255 (0.034) 9.255 (0.034)

0.5 8.317 8.467 (0.024) 8.633 (0.025) 8.534 (0.027) 8.468 (0.024) 8.307 (0.023)

0.01 0.2 5.507 5.515 (0.014) 5.533 (0.015) 5.515 (0.014) 5.515 (0.014) 5.496 (0.014)

0.5 4.723 5.352 (0.012) 6.041 (0.016) 5.852 (0.027) 5.355 (0.012) 4.743 (0.009)

The example in Table 3 confirms the result in [36]; namely, of all the methods described
above, full truncation functions best. Here, we consider a European call with a residual
term of one year, and use n = 100 000 paths for the Monte Carlo simulation. The remaining
parameters are chosen so that, for falling κ and θ and rising σ , the discretized variance
process becomes more frequently negative and the various truncation methods must be
applied. In the table, we present the analytical value, the simulated option price, and, in
parentheses, the standard deviation of the option price estimator.

One notices here—especially in cases where the variance process must be modified
frequently—considerable price differences for similarly small and therefore unremark-
able standard deviations. Thus, the danger for practical application is that incorrect option
prices having small standard deviations might mistakenly be considered good. All told, we
can propose the following simple procedure:

1. Repeat for i = 1, . . . ,N :
(a) Simulate one path each of the Heston price process S(t) and the variance process

ν(t), t ∈ [0, T ] as described above, using the Euler–Maruyama scheme and the FT
variant for the variance process.

(b) Calculate the corresponding option payoff Y (i).
2. Estimate the option price XY as

XY := e−rT 1

N

N∑

i=1

Y (i).

6.2.2 Tree Approaches
The Monte Carlo simulation technique, which simulates stock price paths successively, is
especially well suited for pricing path-dependent derivatives.
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Fig. 10 Example of a two-step
binomial approximation

When pricing products that allow for multiple exercise times or even for a permanent
possibility to exercise the option—so-called Bermuda or American options—tree meth-
ods offer simpler and more efficient approaches than Monte Carlo methods. Here, for
each time increment, one assumes several possible developments—the next points or next
nodes—and assigns them transition probabilities. The next nodes therefore represent pos-
sible future stock prices, each of which has a different probability. To determine the option
prices, the nodes are then processed from the leaves toward the root using backward in-
duction. Analogously to the algorithm of the Euler–Maruyama method for path generation,
� = T/n.

To approximate efficiently, it is crucial to be able to calculate both the nodes of the
tree and the transition probabilities before the actual backward induction. Moreover, if
the probabilities are chosen so that the first two moments of the price increments of the
continuous and the approximated models coincide, then, according to Donsker’s theorem,
the tree approximation converges to the continuous process. For a detailed examination of
both the standard approximation methods in the Black–Scholes model and the theory of
convergence, we refer the reader to [4]. Figure 10 shows a two-period binomial tree.

We now present an algorithm developed at the ITWM by Ruckdeschel, Sayer, and Sz-
imayer (see [9]) that achieves an efficient tree approximation in the Heston model. The
method’s fundamental idea is to model the variance and stock price processes as separate
trees and to incorporate the correlation of the Brownian motions via a modification of the
resulting transition probabilities.

However, because the variance process is mean stationary and its diffusion component
depends on the current value ν(t), a naive approximation of the process leads to difficul-
ties during implementation. The tendency to revert to the mean causes the process drift to
become larger as the process moves further away from θ . For large trends, however, one
sees negative and thus non-admissible transition probabilities. On the other hand, the de-
pendency of the diffusion component on the current state leads to jump heights that depend
on the starting level.
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Fig. 11 Binomial
approximation of the variance
process

For such a tree approximation, the number of nodes increases exponentially, the com-
putational effort increases, and the tree becomes inefficient, that is, useless for practical
application. Here, the Itô transformation

R(t) = 2
√

ν(t)

σ
,

offers a remedy, since the variance of the resulting process

dR(t) =
((

2κθ

σ 2
− 1

2

)
1

R(t)
− κ

2
R(t)

)
dt + dW2(t), R(0) = 2

√
ν0

σ

is constant and a binomial approximation re-combines, since all approximation nodes ex-
hibit the distance

√
�. Inversion of the transformation allows one to then determine the

variance values for the detected nodes. If, for each of these nodes, one now chooses suc-
cessors that surround the drift, one can ensure that the transition probabilities are positive
and add up to one, and that the approximation converges to the continuous model.

Figure 11 shows a variance approximation. Note, first, that the state-dependent diffusion
causes the node intervals to increase as one moves upward and, second, that one sees
irregular jumps—that is, jumps with multiple jump heights—for small variances, due to
the tendency to revert to the mean.

To approximate the stock price, [9] uses a trinomial tree. Although this increases the
computational effort, it also improves the accuracy of the approximation. Analogously
to the variance approximation, the diffusion component of the logarithmized stock price
process is not constant, but depends instead on the current variance value, that is, on the
current node of the variance approximation. Therefore, a naive approximation also leads
here to a non-efficient (from a numerical perspective) tree.

One possible way around this problem is to define a constant ν̃, which describes the
smallest variance unit allowed for the approximation. Possible approximation nodes then
exhibit the distance

√
ν̃�. If one also defines all needed stock jumps as integer multiples

of this unit, then the nodes of the stock price approximation lie on a uniform grid and
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the approximation re-combines. In order to ensure convergence, one determines the tran-
sition probabilities in the model such that the first two moments in the continuous and
approximated models coincide.

In summary, with this approach, one has determined the tree approximation for the vari-
ance and stock price processes, since the node set, each successor node, and the transition
probabilities are known.

The next step is to combine both separate approximations into one tree model. Here,
one must determine the successor nodes and transition probabilities for each possible com-
bination of the two node sets.

The successor nodes for a node combination of the stock and variance approximations
are given by the six combinations of each successor node of the separate approximations.
For uncorrelated Brownian motions, each transition probability is calculated as the product
of the separate probabilities. For a non-zero correlation, the authors of [9] introduce an ad-
justment of the product probabilities that retains the marginal moments already determined
in the course of preparing the separate trees. Because the adjustment of the probabilities
can be determined before the actual backward induction and the tree approximation is
re-combining, the resulting approximation method is fast and accurate, even for high cor-
relation values.

[13] presents an application of the algorithm described here. In this application, the
author prices employee stock options having permanent exercise rights and specific exe-
cution hurdles.

6.3 The Complex Logarithm—An Important Detail for Implementation

In financial mathematics, the use of characteristic functions for product pricing is based,
in particular, on the very generally applicable price formula from [22], which is, in turn,
based on a fast Fourier transformation. This representation also forms the theoretical basis
of Theorem 4 for analytical solutions in the Heston model. Implementing and numerically
evaluating this semi-closed formula requires the use of complex values, which for our
purposes, are incorrectly treated under some circumstances.

In order to permit a detailed investigation of the problem in the following discussion,
we waive the case distinction from Theorem 4 by defining

ϕ(u) = ϕ2
(
S(t), ν(t), t, u

)

and using the relationship

ϕ1
(
S(t), ν(t), t, u

) = e−r(T −t)

S(t)
ϕ(u − i).

The characteristic function then becomes
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Fig. 12 Real part of the
complex logarithm for a
complex number z

Fig. 13 Imaginary part of the
complex logarithm for a
complex number z

ϕ(u) = exp
(
iu

(
ln

(
S(t)

) + rτ
))

× exp

(
κθ

σ 2

(
(κ − ρσui + d)τ − 2 ln

(
1 − gedτ

1 − g

)))

× exp

(
ν(t)

σ 2
(κ − ρσui + d)

1 − edτ

1 − gedτ

)

with

τ = T − t, g = κ − ρσui + d

κ − ρσui − d

and

d =
√

(ρσui − κ)2 + σ 2
(
ui + u2

)
. (41)

A significant problem with the implementation is the complex logarithm, which, in con-
trast to a real logarithm, is not unique. The standard software systems used for pricing
financial products typically implement the principal value of the complex logarithm. Fig-
ures 12 and 13 show the real and imaginary parts of the complex logarithm for different
branches.
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Fig. 14 Trajectory of
(1 − gedτ )/(1 − g) in the
complex plane

Due to the non-continuity described earlier, the integration of the characteristic
function—which must be performed to determine the price in Theorem 4—is not stable
starting at a certain residual time-to-maturity τ . Frequently, the problem of the ambiguity
leads to large price differences that are hard to locate as numerical difficulties. Numerical
problems automatically arise for sufficiently large residual time-to-maturity if the Heston
parameters are chosen such that κθ �= mσ 2 for an integer m (see [14]). This is because the
trajectory of (1 − gedτ )/(1 − g) describes a spiral around the origin with an exponentially
increasing radius (see Fig. 14).

If the residual time-to-maturity is large enough, the trajectory inevitably crosses the
negative real axis, thus producing a discontinuity. One remedy is to add 2π to the imagi-
nary part of the result for each crossing of the negative real axis. A more elegant variant is
to modify the characteristic function. To do so, one takes

ϕ̃(u) = exp
(
iu

(
ln

(
S(t)

) + rτ
))

× exp

(
κθ

σ 2

(
(κ − ρσui − d)τ − 2 ln

(
1 − g̃e−dτ

1 − g̃

)))

× exp

(
ν(t)

σ 2
(κ − ρσui − d)

1 − e−dτ

1 − g̃e−dτ

)

with

g̃ = κ − ρσui − d

κ − ρσui + d
= 1

g

as the modified characteristic function. The only difference between ϕ̃ and ϕ is the negative
sign of d , that is, the choice of the negative root in Eq. (41). Since

dτ − 2 ln

(
1 − gedτ

1 − g

)
= dτ − 2 ln

(
edτ

) − 2 ln

(
1 − e−dτ /g

1 − 1/g

)

= −dτ − 2 ln

(
1 − g̃e−dτ

1 − g̃

)
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Table 4 Initial values of the
calibration and calibrated
parameters

ν0 κ θ σ ρ

Initial value 0.12 3.00 0.09 0.10 −0.95

Calibration 0.28 1.01 0.21 1.50 −0.79

and

d(1 − edτ )

1 − gedτ
= d(1 − e−dτ )

g − e−dτ
= −d(1 − e−dτ )

1 − g̃e−dτ

are valid, ϕ̃ is equivalent to ϕ. The trajectory of (1 − g̃e−dτ )/(1 − g̃), however, does
not cross the real negative axis and the modification ϕ̃ is thus more stable numerically.
To implement the analytical solution, it is therefore advisable to use the characteristic
function ϕ̃.

6.4 Empirical Quality of the Heston Model

In this section, we want to illustrate the empirical quality of the Heston model, that is, its
ability to replicate reality, by calibrating a real volatility surface. The stock of Allianz SE
will serve as our example.

The corresponding volatility surface from 14 December 2011, obtained from the im-
plied volatilities of European calls, is shown in Fig. 5 in Sect. 4.3.1. The shape of the
surface is characteristic for volatility surfaces in general. Thus, for a fixed maturity, an
option’s implicit volatility is typically lower, the closer the strike lies to the current stock
price. One also observes that, for a fixed exercise price, the implied volatility declines as
the term of the option increases.

The freely chosen initial values for the calibration of the Heston parameters and the
calibrated results obtained by applying a deterministic minimization algorithm are listed
in Table 4. Figure 15 shows the calibrated surface that results when the implicit volatilities
for given maturities and execution prices are calculated and presented with the help of the
calibrated Heston parameters. Typically, the calibrated surface is considerably smoother
than the original, but the characteristics of the real volatility surface are retained.

7 Mathematical Modeling and Algorithmic Implementation in
the Financial Market—A Few Closing Remarks

This example of option pricing in connection with the Heston model is but one of many
similar research and implementation projects that have been successfully dealt with by the
Financial Mathematics Department of the Fraunhofer ITWM in cooperation with partners
from the financial and insurance industries. Some examples of other projects involving
innovative in-house developments and algorithmic implementations are:
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Fig. 15 Calibrated implied
volatility surface

• development of a new stock price model based on the explicit modeling of future divi-
dend payments, in cooperation with the University of Cambridge (see [8]);

• development of a dynamic mortality model for evaluating longevity bonds, together
with the Hypovereinsbank (see [7]);

• algorithmic implementation of robust statistics in the field of operational risk (see [31]),
honored with a “best paper award”;

• development of a completely new approach for efficient, multi-dimensional binomial
trees (see [6]).

In addition, many of the algorithms used in the daily work of the ITWM are described
extensively in [5].

There are several components common to all these projects and developments that are
typical for implementations in the financial and insurance markets:

1. In general, the methods used are based on continuous-time stochastic processes and
require thorough training in the fields of Itô calculus, martingale theory, and stochastic
processes.

2. The client’s wish for the best possible explanation of observed market prices leads to a
wish for the generalization of existing models. Here, one must always make sure that
the introduction of further parameters (e.g., by replacing a constant with a deterministic
function) does not lead to numerical or statistical instability.

3. The use of a variety of numerical methods (e.g., Monte Carlo simulation, tree methods,
Fourier transformation) is necessary in order to be able to calculate the prices of the
diverse (exotic) options. Here, the character of the option determines the choice of the
numerical algorithm. There is no universal, standard algorithm that performs well for
all option types.

4. Calibration of the parameters plays a very significant role. While it’s true that no spec-
tacular theoretical results can be achieved in this domain, reliably calibrated parameters
form the basis of all mathematical modeling and calculation that succeeds in the market.
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5. Theoretical understanding of the models is indispensable if one is to calculate those
values that are actually desired. The lack of understanding in shifting between the risk-
neutral and the physical model worlds, in particular, is a frequent source of error.

Finally, it is important to emphasize the responsibility of the financial mathematician to
help ensure a correct—and above all, wise—application of his models. Particularly with a
view toward the financial crisis of these recent years, the financial mathematician must

• warn against mistaking the model for the reality,
• point out the inability of most models to predict, and
• avoid bringing excessive complexity into derivative products.

It was precisely the successful mathematical treatment of ever newer and more com-
plex problems in the financial market that encouraged product designers to offer ever more
complexly structured products—products whose effects were, in large measure, incompre-
hensible to customers but were bought anyway, despite this lack of understanding. Here
too, the financial mathematician has a responsibility to warn against such dangerous de-
velopments.
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