
Specifying Efficient Recognizers
for Sketch-Based Rendering

Dan Xiao(&)

Shenzhen Polytechnic, Xili Lake, Nanshan District, Shenzhen 518055
Guangdong, China

xiaodan10@szpt.edu.cn

Abstract. Compared to free sketch, gesture-based sketch recognition can
achieve high accuracy by requiring the user to learn a particular drawing style in
order for shapes to be recognized. In this case, choosing an appropriate classifier
is quite critical. This paper compared three different algorithms for labeling each
drawn stroke as being a particular component in the generic model. Our statistic
shows that K-means classifier yields better results than the other two and we test
that by applying this classifier to rocket sketches.

Keywords: Sketch recognition � Sketch-based rendering

1 Introduction

Because of the increasing use of Table PCs, sketch recognition has become one popular
forms of human-interaction. Its techniques have generally fallen into two camps, free
sketch recognition and gesture-based. Free-sketch recognition allows users to draw
shapes as they would naturally, but most current techniques have low accuracies or
require significant domain-level adjustment to make them usable. On the other hand,
gesture-based require the users to learn a particular drawing style in order for shapes to
be recognized and in this way, it can achieve higher accuracies [1].

Some gesture-based recognition techniques build 2D templates for matching. 3D
SKETCH [2] is a system which limits the domain of renderable sketches and prepares a
template for interpreting sketches. As long as a sketch can be matched to such a
template, the system can reconstruct a mesh model from the sketch. Bartelt et al.
present an approach to use digital whiteboards to transform free hand sketches in
formal models and back again. This approach implemented a collaborate sketch and
modeling infrastructure [3]. Cherlin et al. introduced two parametric surfaces, rotational
and cross sectional blending, that are inspired by this illustration technique. They also
described orthogonal deformation and cross sectional oversketching as editing tools to
complement the modeling techniques [4]. Different methods for sketch recognition are
explored. Deufemia et al. proposed a two-stage method which combines the use of a
discriminative model and a distance-based clustering algorithm for recognizing sket-
ched symbols [5]. Arandjelovic and Sezgin fused an image-based method with a
time-based method to form an effective recognizer in an attempt to combine the
knowledge of how objects look (image data) with the knowledge of how they are

© Springer-Verlag Berlin Heidelberg 2015
Z. Pan et al. (Eds.): Transactions on Edutainment XI, LNCS 8971, pp. 79–89, 2015.
DOI: 10.1007/978-3-662-48247-6_8

drawn (temporal data) [6]. Kim et al. presented a curvature estimation method which
applies new curvature metrics on corner finding based on local shape information. This
method can therefore estimate curvature on-the-fly while user is drawing on a pen-input
display [7].

Shape retrieval requires stroke recognition as well. A system called PaleoSketch [8]
is able to recognize a larger number of primitive shapes and complex shapes consisting
of lines and curves, and at the same time still maintains high recognition accuracy. Eitz
et al. developed a system for 3D object retrieval which takes sketched feature lines as
input with a targeted feature transform based on Gabor filters [9]. Furthermore, the
potential semantic meanings of the user sketch are widely being researched and 3D
models are then matched to 2D within the predicted categories [10]. Ghorbel et al.
proposed an analyzer based on a competitive breadth-first exploration of the analysis
tree. Several possible hypotheses of recognition are then evaluated in a dynamic local
context of document [11].

The rest of this paper is organized as follows. Section 2 introduces the whole
process for 2D template matching and 3D model rendering. Section 3 compares 3
different classifiers on their efficiency of stroke recognition. Section 4 presents results.
Conclusions and future work are discussed in Sect. 5.

2 Sketch Recognition

For user learning sketch rendering, the assumption we made is that the user choose the
class of object they want to draw. The benefit of doing that is we can then apply
corresponding 2D template to those user drawn graphs and then render them. Figure 1
shows the 2D template of a rocket which consists of five strokes. Five components for
building this template are illustrated in Table 1. For a free drawn graph of rocket, once
its five components are recognized, it can then rendered with a 2D template. In order to
recognize those components, we have to find an efficient classifier.

1

2

5 4

3

Fig. 1. Illustration of rocket components.

80 D. Xiao

Each gesture is defined as an array g of coordinate values and time.

gp ¼ ðxp; yp; tpÞ 0� p\P

The gesture recognition problem is stated as follows. There is a gesture set with
C classes. Given a gesture, we need to determine to which class it belongs. This is done
by first extracting a limited set of features. Features are extracted from the gesture g and
are used as the input for classification. The feature vector f = [f1…fp] is taken as the
training data for classification.

A single stroke can be characterized by a set of 11 geometric and 2 dynamic
features. This is the set of features we shall use for testing several classification
algorithms. The description of features is:

• Feature 1 (f1): the cosine of the initial angle of the gesture.
• Feature 2 (f2): the sine value of the initial angle of the gesture.
• Feature 3 (f3): the length of the bounding box diagonal.
• Feature 4 (f4): the angle of the bounding box diagonal.
• Feature 5 (f5): the distance between the first and the last point.
• Feature 6 (f6): the cosine of the angle between the first and last point.
• Feature 7 (f7): the sine of the angle between the first and last point.
• Feature 8 (f8): the total gesture length.
• Feature 9 (f9): the total angle traversed.
• Feature 10 (f10): the sum of the absolute value of the angle at each mouse point.
• Feature 11 (f11): the sum of the squared value of those angles.
• Feature 12 (f12): the maximum speed (squared) of the gesture.
• Feature 13 (f13): the duration of the gesture.

3 Methods for Stroke Classification

Three machine learning classification schemes are used in order to determine which
one works best in our case: least squares method, k-means clustering and
expectation-maximization method.

Table 1. Description of components for rocket

Order Components Shapes

1 head triangle
2 body open triangle
3 tail open triangle
4 left wing open triangle
5 right wing open triangle

Specifying Efficient Recognizers for Sketch-Based Rendering 81

3.1 Least Squares Method

Rubine uses a linear machine algorithm for strokes classification, which is a kind of
least square approach [12].

Given C as the number of total classes and F is the number of features, each gesture
class c has parameters xci for 0 ≤ i≤F. The evaluation vc is calculated as follows:

mc ¼ xc0 þ
XF

i¼1

xcifi 0� c\C

The class of a gesture g is the c which maximizes vc.
During the training process, we need to determine the weights xci from the example

gestures. Let fcei be the feature of the example of gesture class c, 0 ≤ e≤Ec, where Ec is
the number of training examples of class c.

The sample estimate of the mean feature vector per class fc is defined as:

fci ¼ 1
Ec

XEc�1

e¼0

fcei

The sample estimate of the covariance matrix of class c, ∑cij, is computed as:

Rcij ¼
XEc�1

e¼0

ðfcei � fciÞðfcei � fciÞ

The ∑cij are averaged to yield ∑ij, an estimate of the common covariance matrix.

Rij ¼
PC�1

c¼0 Rcij

�C þPC�1
c¼0 Ec

We can invert the common covariance matrix and use it to get the weights xci as
follows:

xcj ¼
XF

i¼1

ðR�1Þijfci 1� j�F

xc0 ¼ � 1
2

XF

i¼1

xcifci

82 D. Xiao

3.2 K-Means Method

We use K-means clustering introduced in [13] for classification. In K-means clustering,
K, needs to be determined at the onset. The goal is to divide the objects into K clusters
such that some metric relative to the centroids of the clusters is minimized. Various
metrics related to the centroids can be minimized, including:

The maximum distance to its centroid for any object.

• The sum of the average distance to the centroids over all clusters.
• The sum of the variance over all clusters.
• The total distance between all objects and their centroids.
• The metric to minimize and the choice of a distance measure will determine the

shape of the optimum clusters.

Two different algorithms are available to search for the optimum set of clusters. In
the first procedure, the objects are randomly assigned to one of the K clusters. Once this
is done, the position of the K centroids is determined, as is the value of the metric to
minimize. A global optimization method is then used to reassign some of the objects to
different clusters. New centroids are determined, as is the metric to minimize. This
procedure is continued until the optimum assignment of objects to clusters is found.

In the second procedure for K-means clustering, placement of the K centroids can
be done by the following procedure. Place K points into the space represented by the
objects that are being clustered. These points represent initial group centroids.

1. Assign each object to the group that has the closest centroid.
2. When all objects have been assigned, recalculate the positions of the K centroids.
3. Repeat Steps 2 and 3 until the centroids no longer move. This produces a separation

of the objects into groups from which the metric to be minimized can be calculated.

A global optimization method is then used to move the position of one or more of
the centroids. The above procedure is repeated and new metric value is determined. The
object is to move the centroids into a position such that an optimum separation of
objects into groups occurs.

For K-Means clustering, it is necessary to calculate a “distance” between either two
objects (one of which may be a cluster seed point) or an object and a group centroid. In
this discussion, it is assumed that each object is described by an array of real-valued
metrics.

Since we need to minimize the largest or average distance, or the variance, during
clustering, it is important that each metric contribute equally to the total distance. In
other words, if one metric spans the range [0.0,0.5] and another spans [0.0,100.0], the
maximum deviation in the first would have little effect on the total distance, while even
a modest separation in the second would have a much larger effect. To remove this
dependency on the range spanned by each metric, it is important to first standardize the
values. This means that each metric, when compared over the full set of objects should
have a mean of 0.0 and a variance (or standard deviation) of 1.0. For each metric, the
following steps should be taken to standardize each metric describing the objects.

Specifying Efficient Recognizers for Sketch-Based Rendering 83

1. Sum the values of the metric over all objects and divide the sum by the number of
objects.

2. Subtract this average value from the metric in all objects.
3. Sum the square of these new values over all objects, divide the sum by the total

number of objects, and take its square-root. This is the standard deviation of the new
values.

4. Divide the metric by the standard deviation in each object.

3.3 Expectation-Maximization Method

This method supposes that the stroke features have normal Gaussian distributions.
The EM method can be applied to build a gesture classifier. The detailed steps are given
by Jordan [14]:

1. Initialize.
2. E Step: At iteration t, compute the expectation of the indicators for each i and c:

fic ¼ pðcÞNðxijlc;RcÞ
Rk
c0pðc0ÞNðxijlc0 ;Rc0 Þ

and normalize it.

3. M Step: Update the parameters p(c), lc, R
c
.

lc ¼
Pn

i¼1 ficxiP
i¼1 nfic

R
c
¼

Pn
i¼1 ficðxi � lcÞðxi � lcÞ0Pn

i¼1 fic

pðcÞ ¼ 1
n

Xn

i¼1

fic

The EM method is used to find the parameters for the normal distribution of each
class and then apply this distribution to classify new, unseen feature vectors. The
distribution with the highest probability is defined to be the class to which the gesture
belongs.

84 D. Xiao

3.4 Classifier Comparison

The gestures used for evaluation of the three classification algorithms are shown in
Fig. 2 In this figure, four different gesture styles of each class are given.

Performance is evaluated on 3 gesture classes. Figure 3 shows the results using the
least square method. The plot demonstrates the recognition rate as a function of the
number of training examples per class for evaluation gestures. One line is for 2 classes
and the other one is for 3 classes. Figure 4 illustrates the results with k-means. The
results when applying EM are shown in Fig. 5.

Fig. 2. Examples from the gesture set used for evaluation.

Fig. 3. Recognition rate vs. training size for least square method.

Specifying Efficient Recognizers for Sketch-Based Rendering 85

From the above three figures, we can see that the K-means method gives the best
performance. For the K-means method, in the cases where 3 gesture classes are rec-
ognized by a classifier trained with 10 or more examples per class, at least 96 % of the
test gestures are classified correctly. When there are only 2 gesture classes, the classifier
trained with 10 or more examples per class yields 100 % correct classification.

The linear machine classifier used by Rubine that is trained with 10 or more examples
can recognize 3 gesture classes with correctness >60 %, and for 2 gesture classes, the
adequacy is >85 %. This method gives better performance when there are 40 training
examples per class, but the correctness falls after increasing the number of examples.

The recognition adequacy of EM method is low when the number of training
examples is less than 30 per class, however, it increases when more training examples
added. The more training examples per class, the higher the correctness at recognizing
gestures. The classifier trained with 30 or more examples can recognize 3 gesture
classes at above 85 % correctness, and for 2 gesture classes above 80 % correctness. It

Fig. 5. Recognition rate vs. training size for EM method.

Fig. 4. Recognition rate vs. training size for K-means method.

86 D. Xiao

is surprising to note that it will give better performance for 3 gesture classes than 2
gesture classes for large number of training examples.

4 Results

Sketch recognition consists of assigning feature labels to individual pen strokes, i.e.,
identifying the object features they corresponded to. We have chosen K-means method
for stroke classification and we will show how we select features and apply this
classifier to stroke matching.

Four features as the intrinsic properties of a stroke are defined to interpret one
single stroke, including:

• Feature 1 (f1): f1 = α, α is the angle of the straight line between the curve endpoints
with respect to the horizontal.

• Feature 2 (f2): f2 = 1/d, 1 is the length of the curve, d is the straight-line distance
between the endpoints.

• Feature 3 (f3): f3 = A/d2, A is the signed area between the curve and the straight-line.
• Feature 4 (f4): the duration of drawing.

Figure 6 shows the key parameters used to computer the four features of a stroke.
A rocket is described by 5 strokes that can be drawn in any order: head, body, tail, left wing
and rightwing.After we acquire all the features for each stroke,we use aK-mean classifier
to distinguish them. Figure 7 show the 3D rockets rendered from simple sketches.

d

l

α
A

Fig. 6. Key parameters used to computer stroke features.

 (a) (b) (c)

Fig. 7. Rocket modeling (a) original sketch of a rocket. (b) (c) synthesized 3D models, taking
from different angles.

Specifying Efficient Recognizers for Sketch-Based Rendering 87

The matching process employs a normalization metric that is based on stroke
feature vectors, and the search space of possible correspondences is restricted by
encoding knowledge about relative part locations into the 2D template. Once every
stroke is matched to this 2D template, a 3D object is constructed using a series of data
that are extracted from the labeled 2D sketch. We apply our sketch-recognition and
modeling algorithms to sketches of rocket and this system allows non-experts to use
drawings to quickly create 3D models of specific object classes.

5 Conclusions

In user learning rendering system, a 2D template is applied for certain class of object.
Several machine learning methods are tested to find the best-fit classifier for sketch
recognition. As a result, K-means classifier gives the best performance and is used to
render rocket 3D models. Since the 3D model rendering is based on a certain 2D
template, every time a new class of objects is induced in this system, we have to build a
new 2D template for it. This will limit the scope of system’s application. One possible
way to solve this problem is taking on a user learning process to form a 2D template.
With this information, the system can create 2D template from simple sketches.

Another important research direction is to improve the recognition algorithm, such
as curve features identification. Identify more shapes to be recognized using geometric
characteristics or other features. In addition, support multiple-stroke drawing by
determining time interval between two continuously drawn strokes may improve the
algorithm efficiency.

References

1. Tracy, H., Eoff, B., Paulson, B., Wolin, A., Dahmen, K., Johnston, J., Rajan, P.: Free-sketch
recognition: putting the CHI in sketching. In: CHI 2008, Florence, Italy (5 April–10 April
2008)

2. Mitani, J., Suzuki, H., Kimura, F.: 3D sketch: sketch-based model reconstruction and
rendering. In: Cugini, U., Wozny, M. (eds.) From Geometric Modeling to Shape Modeling.
IFIP, vol. 80, pp. 85–98. Springer, Heidelberg (2002)

3. Bartelt, C., Vogel, M., Warnecke, T.: Collaborative creativity: from hand drawn sketches to
formal domain specific models and back again. In: MoRoCo@ ECSCW, pp. 25–32 (2013)

4. Cherlin, J.J., Samavati, F., Sousa, M.C., Jorge, A.: Sketch-based modeling with few strokes.
In: Proceeding SCCG 2005 Proceedings of the 21st Spring Conference on Computer
Graphics, pp. 137–145. ACM, New York (2005)

5. Deufemia, V., Risi, M., Tortora, G.: Sketched symbol recognition using latent-dynamic
conditional random fields and distance-based clustering. Pattern Recogn. 47(3), 1159–1171
(2014)

6. Arandjelovic, R., Sezgin, T.M.: Sketch recognition by fusion of temporal and image-based
features. Pattern Recogn. 44(6), 1225–1234 (2011)

7. Kim, D.H., Kim, M.J.: A curvature estimation for pen input segmentation in sketch-based
modeling. Comput. Aided Des. 38, 238–248 (2006)

88 D. Xiao

8. Brandon, P., Hammond, T.: PaleoSketch: accurate primitive sketch recognition and
beautification. In: Proceedings of the 13th International Conference on Intelligent User
Interfaces, pp. 1–10. ACM, New York (2008)

9. Eitz, M., Richter, R., Boubekeur, T., Hildebrand, K., Alexa, M.: Sketch-based shape
retrieval. ACM Trans. Graph. 31(4), 31 (2012)

10. Li, B., Lu, Y., Fares, R.: Semantic sketch-based 3D model retrieval. In: 2013 IEEE
International Conference on Multimedia and Expo Workshops (ICMEW), pp. 1–4. IEEE
(2013)

11. Ghorbel, A., Anquetil, E., Camillerapp, J., et al.: IMISketch: an interactive method for
sketch recognition. Pattern Recogn. Lett. 35, 78–90 (2014)

12. Rubine, D.: Specifying gestures by example. In: SIGGRAPH 1991, Computer Graphics
Proceedings, vol. 25, pp. 329–337 (1991)

13. Moore, A.: K-means and Hierarchical Clustering - Tutorial Slides. http://www-2.cs.cmu.edu/
*awm/tutorials/kmeans.html

14. Jordan, M.I.: An Introduction to Probabilistic Graphical Models (2004)

Specifying Efficient Recognizers for Sketch-Based Rendering 89

http://www-2.cs.cmu.edu/%7eawm/tutorials/kmeans.html
http://www-2.cs.cmu.edu/%7eawm/tutorials/kmeans.html

	Specifying Efficient Recognizers for Sketch-Based Rendering
	Abstract
	1 Introduction
	2 Sketch Recognition
	3 Methods for Stroke Classification
	3.1 Least Squares Method
	3.2 K-Means Method
	3.3 Expectation-Maximization Method
	3.4 Classifier Comparison

	4 Results
	5 Conclusions
	References

