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Abstract. In constructing a parametric curve interpolating a set of data points,
one of the key problems is to specify a parameter value (node) for each data
point. A new method of choosing knots is presented. For each data points, the
new method constructs a quadratic polynomial curve by three adjacent data
points. The node parameters of the quadratic curve are determined by mini-
mizing the second derivative of the quadratic curve. And the knot interval
between two adjacent data points is determined by two quadratic curves asso-
ciated with the two adjacent data points. Experiments showed that the curves
constructed using the knots by the new method generally have better interpo-
lation precision.
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1 Introduction

The problem of describing objects in three dimensional is a fundamental issue and a
core problem in computer aided geometric design/modeling, scientific computing and
computer graphics. The key to 3D objects’ expression is the construction of curves and
curved surfaces. Having the advantage of easily geometric expression, efficient com-
putation, convenience display and control, and geometrical invariability, parametric
curves and curved surfaces become the most common way in 3D expressions. The
constructed curves and curved surfaces are often required to have a certain smoothness
or higher fitting accuracy [1–6]. In the constructing of curves and curved surfaces, the
various objective functions (such as minimizing the energy of the curve, length of the
curves, or integral of second derivative’s square, etc.) are often used as constraints, so
that the constructed curves/curved surfaces have the higher accuracy or the shape
suggested by the data points.

Each data point’s parameter value (node value) should be known before con-
structing a parameter curve. In practice application, however, these values are usually
not given. Therefore, to construct a nice parameter curve not only need a good inter-
polation method, but also a good method to determine the appropriate parameter node.
The simplest way to choose node is the uniform parameterization. But if the distance
between the data points is uneven, the uniform parametrization generally leads to
unsatisfactory results. For non-uniform distribution data points, there are usually three
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ways of parameterization, which are the chord length method, the Foley’s method [7]
and the centripetal method [8]. But our experiments show that, in terms of interpolation
error, none of these methods has a distinct advantage over the others. Although these
methods are widely used to construct the parametric curve, in some cases, none of them
can produce a satisfactory result. In papers [9], a new method for choosing knots is
presented. The knots are chosen using a global method. The chosen knots can be used
to construct interpolants which reproduce parametric quadratic curves, if the interpo-
lation scheme has quadratic polynomials. In papers [10–13], choosing knots by opti-
mized methods has been discussed. Theses methods choosing knots by objective
function that are defined. There are also articles discussing parameterization problems
of spatial data points [14–16], the parameterized results are used to construct a para-
metric surface.

For given planar data points, a new method of choosing knots is presented in this
paper. The new method is a local method, thus it is easily to modify the curves
alternately, and hence provides conveniences for the designers. New method assumes
that the curve between the data points can be approximated by a quadratic polynomial
curve. And the node parameters of the quadratic curve are determined by minimizing
the square of the curves’ second derivative.

2 Basic Idea

Let Pi = (xi, yi), i = 1, 2, …, n be a set of distinct data points. The goal is to determine a
knot ti for each point, Pi, i = 1, 2, …, n. After the knots being determined for the data
points, existing methods for constructing parameter fitting curve could be used to
construct a parameter curve P(t) with Pi = (xi, yi), 1 ≤ i ≤ n.

Suppose the data points are taken from a parameter curve, the part of it between Pi

and Pi+1 could be approximate by a curve segment Pi(t) passing four points, Pi−1,
Pi, Pi+1 and Pi+2, as shown in Fig. 1. So, for Pi and Pi+1, the corresponding knots ti and
ti+1 could be computed by Pi(t) approximately. The knots ti and ti+1 will be determined
by the following process. To make the process of computing ti and ti+1 easier, Pi(t) is
approximated by two quadratic curves Qi(t) and Qi+1(t). Qj(t), j = i, i + 1 is constructed
by passing Pj−1, Pj and Pj+1. With Qi(t) and Qi+1(t), two groups of ti and ti+1 can be
determined, the combination of the two groups of ti and ti+1 is used to determine their

Fig. 1. Four points and αi.
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end values. First of all, how to construct quadratic curve Qi(t) that interpolates Pi−1, Pi

and Pi+1 will be discussed.
For Pi−1, Pi and Pi+1’s three knots, ti−1, ti and ti+1, there is only one free degree

between them. To reduce the constructing process of Qi(t), following parameter
transformation will be done to t.

t ¼ ti�1 þ ðtiþ1 � ti�1Þs ð1Þ

So the knots ti−1, ti and ti+1 will be transformed into 0, si and 1, where

si ¼ ðti � ti�1Þ=ðtiþ1 � ti�1Þ ð2Þ

Therefore, quadratic Lagrangian curve Qi(s) = (xi(s), yi(s)) that interpolates Pi−1, Pi

and Pi+1 can be defined by

QiðsÞ ¼ ðs� siÞðs� 1Þ
si

ðPi�1 � PiÞ þ sðs� siÞ
1� si

ðPiþ1 � PiÞ þ Pi; ð3Þ

where si is a unknown to be determined, which satisfies 0 < si < 1.
Physically, the curve Qi(s) can be viewed as a path that a proton moves from point

Pi−1 through Pi to Pi+1. Q0
iðsÞ and Q00

i ðsÞ are the proton’s velocity and acceleration,
respectively. As si is a variable, Qi(s) is actually a family of curves. Our aim is to select
a perfect curve from the family. If the proton’s speed in point Pi−1 is fixed, one of the
conditions that it moves from point Pi−1 through Pi to Pi+1 smoothly is that its
acceleration should be as small as possible. The smaller the acceleration of protons, the
velocity of the proton will be more close to the constant. And its orbit will be closer to
the polygon composed of Pi−1 Pi Pi+1. The movement path of Qi(s) will also be shorter,
which means Qi(s) has the shape suggested by Pi�1PiPiþ1. So, Qi(s) is the perfect
shape. Based on the above discussion, we’ll use a method that minimizes the accel-
eration to select the perfect curve from Qi(s)’s family of curves. That is, si in Qi(s) will
be determined by minimizing the following objective function

jQ00
i ðsÞj ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2i�1

s2i
� 2 cos ai
sið1� siÞ di�1di þ d2i

ð1� siÞ2
s

ð4Þ

where di ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxiþ1 � xiÞ2 þ ðyiþ1 � yiÞ2

q
:

3 Determining si

Since jQ00
i ðsÞj and jQ00

i ðsÞj2 have the same extreme point, jQ00
i ðsÞj’s extreme point will be

solved by minimizing
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jQ00
i ðsiÞj2 ¼ 4ðd

2
i�1

s2i
� 2 cos ai
sið1� siÞ di�1di þ d2i

ð1� siÞ2
Þ ð5Þ

So, si is the function of di−1, di and ai, which could be expressed as

Fðdi�1; di; ai; siÞ ¼ 0 ð6Þ

For any di−1, di and ai, computing si in (6) involves solving nonlinear equations,
and hence there is no explicit function for defining si. We’ll seek its approximation
function by the following way. Firstly, for ai = 0, π/2, π, three particular values of si are
computed, which are used to construct an interpolant which is used as an approxi-
mation to si. How to compute the three particular values of si in (6) will be discussed
below.

Case 1. When ai = 0, (5) can be written as

jjQ00
i ðsÞjj2 ¼ 4ðdi�1

si
� di
1� si

Þ2 ð7Þ

It follows from di�1
si

� di
1�si

¼ 0 that

si ¼ di�1

di�1 þ di
ð8Þ

This means that if si is defined by (8), the acceleration of the proton is zero.
Case 2. When ai = π/2, (5) can be written as

jjQ00
i ðsÞjj2 ¼ 4ðd

2
i�1

s2i
þ d2i
ð1� siÞ2

Þ ð9Þ

the solution of (6) is

si ¼ di�1
2
3

di�1
2
3 þ d

2
3
i

ð10Þ

Case 3. When ai = π, (5) can be written as

jjQ00
i ðsÞjj2 ¼ 4ðdi�1

si
þ di
1� si

Þ2 ð11Þ

the solution of (6) is

si ¼ d
1
2
i�1

d
1
2
i�1 þ d

1
2
i

ð12Þ
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It follows from (8), (10) and (12) that si in (6) could be expressed in the general
form as

si ¼ dqi�1

dqi�1 þ dqi
ð13Þ

where ρ is a function of ai.
Now, we are in the position on constructing the function ρ. For ρ in (13), we have

computed three points ðq; aiÞ ¼ fð1; 0Þ; ð2=3; p=2Þ; ð1=2; pÞg. These three points will
be used to construct quadratic polynomial to define ρ. By Lagrange formula, ρ which
passes the three points can be defined by

q ¼ 1
3
� ðai � p=2Þðai � pÞ

p � p=2 � 1
6
� aiðai � p=2Þ

p � p=2 þ 2
3

ð14Þ

4 Merging Local Knots Sequences

So far we have computed the local knots 0, si, 1 for the three points Pi−1, Pi, Pi+1, and 0,
si+1, 1 for the three points Pi, Pi+1, Pi+2 with respect to the two locally interpolating
quadratic curves Qi(s) and Qi+1(s). These knots define the knot interval [0, si] between
Pi−1 and Pi, and the knot interval [si, 1] between Pi and Pi+1; we will associate the
lengths of these two intervals, i.e., si and 1 − si, with the point Pi, and still call them
knot intervals. Even when all the data points Pi are taken from the same quadratic
curve, the knot intervals associated with different points may not be equal due to the
different linear scales of different parameterizations. In this section, we introduce a
normal form of a quadratic curve and use it to merge all the knot intervals associated
with different points Pi, i = 2, 3, … n − 1, into a consistent global knot sequence with
respect to the same parameterization of a quadratic curve.

Let Pi(s) = (xi(s), yi(s)) be a quadratic curve, which is defined by

xi sð Þ ¼ Xi;2s
2 þ Xi;1sþ Xi;0

yi sð Þ ¼ Yi;2s
2 þ Yi;1sþ Yi;0

ð15Þ

where Xi,2 ≠ 0 or Yi,2 ≠ 0.
By a rigid transformation and a linear reparameterization, Pi(s) can be transformed

into the following normal form

�xi tð Þ ¼ t2 þ �X1t þ �X0

�yi tð Þ ¼ t2 þ �Y1t þ �Y0
ð16Þ
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Where

�X0 ¼ cos biXi;0 þ sin biYi;0
�Y0 ¼ � sin biXi;0 þ cos biYi;0

�X1 ¼ cos biXi;1 þ sin biYi;1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos biXi;2 þ sin biYi;2

p

�Y1 ¼ � sin biXi;1 þ cos biYi;1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos biXi;2 þ sin biYi;2

p

ð17Þ

The transformation and reparameterization required are

�x ¼ x cos bi þ y sin bi
�y ¼ �x sin bi þ y cos bi

ð18Þ

where

cos bi ¼
Xi;2 þ Yi;2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2
i;2 þ Y2

i;2

q ; sin bi ¼
Yi;2 � Xi;2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2
i;2 þ Y2

i;2

q

and

t ¼ X2
i;2 þ Y2

i;2

� �1
4
s ð19Þ

For Pi−1, Pi and Pi+1, i = 2, 3, …, n − 1, the parametric quadratic polynomial
Qi(s) = (xi(s), yi(s)) which interpolates Pi−1, Pi and Pi+1 at 0, si and 1, respectively, is

xi sð Þ ¼ Xi;2s
2 þ Xi;1sþ xi�1

yi sð Þ ¼ Yi;2s
2 þ Yi;1sþ yi�1

ð20Þ

where

Xi;2 ¼ xi�1 � xi
si

þ xiþ1 � xi
1� si

Xi;1 ¼ � xi�1 � xið Þ si þ 1ð Þ
si

� xiþ1 � xið Þsi
1� si

Yi;2 ¼ yi�1 � yi
si

þ yiþ1 � yi
1� si

Yi;1 ¼ � yi�1 � yið Þ si þ 1ð Þ
si

� yiþ1 � yið Þsi
1� si

ð21Þ
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When we convert the quadratic curve Qi(s) in Eq. (20) to the normal form in
Eq. (16), by the reparameterization (19), the knot intervals si and 1 − si associated with
Pi become

Di
i�1 ¼ X2

i;2 þ Y2
i;2

� �1
4
si

Di
i ¼ X2

i;2 þ Y2
i;2

� �1
4
1� sið Þ

ð22Þ

Where Xi,2 and Yi,2 are defined in (21).
If Pi−1, Pi and Pi+1 are on a straight line, then with (7) and (8), it is easy to prove

that

Di
i�1 ¼ Pi�1Pij j
Di
i ¼ PiPiþ1j j ð23Þ

Hence, by mapping each Qi(s) into the normal form, for each pair of consecutive
points Pi and Pi+1 there are two knot intervals Di

i and Diþ1
i , 26i6n� 1. We have

Di
i ¼ Diþ1

i if all the data points are taken from the same quadratic curve. But in general,
Di
i 6¼ Diþ1

i . Furthermore, for end data points, there is only one knot interval, D1
1, for the

pair P1 and P2; and there is one knot interval, Dn�2
n�1, for the pair Pn−1 and Pn.

We average the two sequences of knot intervals, Di
i

� �
and Diþ1

i

� �
, into a single

sequence of knot intervals, {△i}, i = 1, 2,…, n − 1, as follows.

D1 ¼ D1
1;

Di ¼ 2Di
iD

iþ1
i

Di
i þ Diþ1

i

; i ¼ 2; 3; . . .; n� 2;

Dn�1 ¼ Dn�2
n�1

ð24Þ

From the knot intervals {△i}, we compute the global knot sequence {ti}, i = 1, 2,
…, n, as follows.

t1 ¼ 0;

tiþ1 ¼ ti þ Di; i ¼ 1; 2; . . .; n� 1
ð25Þ

5 Experiments

In this section, the new method is compared with the chord length method, the Foley’s
method and the centripetal method by experiments. The data points used in comparison
are taken from the given primitive curves. The four methods are used to compute knots
to construct cubic spline curves which interpolate the data points, the comparison is
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carried out by comparing the interpolation precision of the cubic spline curves. The
primitive curves are a set of cubic curves, F(K, t) = (x(F, t), y(K, t)), which is defined by

xðK; tÞ ¼ tðt � 1Þð2t � 1ÞK þ 3t2ð3� 2tÞ
yðK; tÞ ¼ tð1� tÞK ð26Þ

where K = 1, 2, …12.
The cubic curve F(K, t) has the following properties: it is convex when K = 1, 2, 3,

4, it has two inflection points when K = 5, 6, 7, 8, it has one cusp when K = 9, and it has
one loop when K = 10, 11, 12. When K = 3, 6, 9, 12, the figures of F(K, t) on the region
[0, 1] are shown in Fig. 2.

The interval [0, 1] used in comparison is divided into 20 subinterval to define the
data points Pi = F(K, ti), i = 0, 1, 2, … 20, where ti is defined by

ti ¼ ½iþ k sinðð20� iÞiÞ�=20 i ¼ 0; 1; 2; . . .; 20 ð27Þ

where 0\k� 0:2 to make the data points satisfying non-uniform distribution.
The tangent vectors of F(K, t) at the end points t = 1 and t = 1 are used to construct

the cubic splines. The four methods are evaluated in terms of absolute error curve E(K,
t) which is defined by

EðK; tÞ ¼ PðsÞ � FðK; tÞj j ¼ min PiðsÞ � FðK; tÞj j; si � s� siþ1f g
i ¼ 0; 1; 2; . . .; 19

ð28Þ

where P(s) denotes one of the cubic spline curves constructed by the four methods.
F(K, t) is defined by (25), and Pi(s) denotes the part of P(s) on [si, si+1],
PðsÞ � FðK; tÞj j the distance from P(s) to F(K, t).

When k ¼ 0:1; 0:2 in (26), the maximum values of the error curve E(t) generated
by the four methods are shown in Table 1, the enlarged error curve E(t)’s by the four
methods are shown in Figs. 3, 4, 5 and 6.

Fig. 2. F(K, t).
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Results in Table 1 and Figs. 3, 4, 5 and 6 showed that compared with the three
methods, the precision of the curves constructed by new method is higher. The four
methods have also been compared on data points which divide [0, 1] into 10, 40, …
etc. subintervals. The results are basically the same as those shown in Table 1 and
Figs. 3, 4, 5 and 6.

Table 1. The maximum errors by the four methods for λ = 0.1

E(K, t) New Centripetal Foley Chord length

K = 1 1.90e-004 3.16e-004 1.65e-004 5.16e-004
K = 2 3.47e-005 3.37e-004 6.58e-005 4.99e-005
K = 3 2.13e-005 4.53e-004 1.08e-004 4.19e-005
K = 4 6.23e-005 5.96e-004 2.12e-004 1.08e-004
K = 5 1.36e-004 7.10e-004 3.31e-004 2.19e-004
K = 6 2.50e-004 7.11e-004 4.83e-004 4.82e-004
K = 7 5.54e-004 8.50e-004 6.07e-004 1.15e-003
K = 8 6.17e-004 7.86e-004 4.37e-004 2.54e-003
K = 9 3.93e-004 6.43e-004 4.67e-004 4.80e-004
K = 10 5.80e-004 1.35e-003 1.04e-003 3.01e-003
K = 11 4.18e-004 1.62e-003 1.41e-003 2.00e-003
K = 12 4.29e-004 1.64e-003 1.55e-003 1.58e-003

Fig. 3. 1300E(t) by four methods for K = 3.

Fig. 4. 900E(t) by four methods for K = 6.
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6 Conclusion

The new method for choosing knots in this paper presents is a local one. It allows the
designers to change the shape of the curve through the adjusting the nodes, which is
very important in producing and engineering design. Therefore, the new method is
particularly suitable for interactive design of the parametric curve, thus has a high value
in the construction of the curve. The innovations of the new method are as follows: for
each two adjacent data points, the new method assumes that the curve between data
points can be approximated by quadratic polynomial curve, and the node of the qua-
dratic curve is determined by minimizing the curve’s second derivative. So the new
method is based on better mathematical foundation.

References

1. Brodlie, K.W.: A review of methods for curve and function drawing. In: Brodlie, K.W. (ed.)
Mathematical Methods in Computer Graphics and Design, pp. 1–37. Academic Press,
London (1980)

2. Su, B., Liu, D.: Computational Geometry, p. 49. Shanghai Academic Press, Shanghai
(1982). (in Chinese)

3. Li, W., Xu, S., Zheng, S., Zhao, G.: Target curvature driven fairing algorithm for planar
cubic B-spline curves. Comput. Aided Geom. Des. 21(5), 499–513 (2004)

Fig. 5. 1000E(t) by four methods for K = 9.

Fig. 6. 400E(t) by four methods for K = 12.

136 F. Zhang and X. Qin



4. Ahlberg, J.H., Nilson, E.N., Walsh, J.L.: The Theory of Splines and Their Applications,
p. 51. Academic Press, New York (1967)

5. De Boor, C.: A practical Guide to Splines, p. 318. Springer, New York (1978)
6. Faux, I.D., Pratt, M.J.: Computational Geometry for Design and Manufacture, p. 176. Ellis

Horwood, New York (1979)
7. Farin, G.: Curves and Surfaces for Computer Aided Geometric Design: A Practical Guide,

p. 111. Academic press, New York (1989)
8. Lee, E.T.Y.: Choosing nodes in parametric curve interpolation. CAD 21(6), 363–370 (1989)
9. Zhang, C., Cheng, F., Miura, K.: A method for determining knots in parametric curve

interpolation. CAGD 15, 399–416 (1998)
10. Zhang, C., Han, H., Cheng, F.: Determining knots by minimizing energy. J. Comput. Sci.

Technol. 21(6), 261–264 (2006)
11. Hartley, P.J., Judd, C.J.: Parametrization and shape of B-spline curves for CAD. CAD 12(5),

235–238 (1980)
12. Marin, S.P.: An approach to data parametrization in parametric cubic spline interpolation

problems. J. Approximation Theor. 41, 64–86 (1984)
13. Xie, H., Qin, H.: A novel optimization approach to the effective computation of NURBS

knots. Int. J. Shape Model. 7(2), 199–227 (2001)
14. Gotsman, C., Gu, X., Sheffer, A.: Fundamentals of spherical parameterization for 3D

meshes. In: Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH,
pp. 358–363. ACM Press, San Diego (2003)

15. Gu, X., Yau, S.-T.: Global conformal surface parameterization. In: ACM Symposium on
Geometry Processing, pp. 127–137. ACM Press, San Diego (2003)

16. Floater, M.S.: Reimers M1 meshless parameterization and surface reconstruction. Comput.
Aided Geom. Des. 18(2), 77–92 (2001)

Determining Knots by Minimizing the Second Derivative 137


	Determining Knots by Minimizing the Second Derivative
	Abstract
	1 Introduction
	2 Basic Idea
	3 Determining si
	4 Merging Local Knots Sequences
	5 Experiments
	6 Conclusion
	References


