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Preface

This proceedings volume contains papers presented at the Workshop on Algorithms in
Bioinformatics 2015 (WABI 2015) that was held at Georgia Technological Institute,
Atlanta, Georgia, USA, during September 10–12, 2015. WABI was held in conjunction
with the ACM Conference on Bioinformatics, Computational Biology, and Health
Informatics (ACM BCB). WABI is an annual conference series on all aspects of
algorithms and data structures in molecular biology, genomics, and phylogeny data
analysis that was first held in 2001. WABI 2015 was sponsored by the ACM Special
Interest Group in Bioinformatics (ACM SIGBio), the European Association for The-
oretical Computer Science (EATCS), and the International Society for Computational
Biology (ISCB).

In 2015, a total of 57 manuscripts were submitted to WABI from which 26 were
selected for presentation at the conference. Among them 23 were full papers not
previously published in journals, and three were short abstracts for papers published
simultaneously in journals. The papers were selected based on a thorough review from
at least three independent reviewers as well as active discussions between members
of the Program Committee. The selected papers cover a wide range of topics from
networks, to phylogenetic studies, sequence and genome analysis, comparative
genomics, and RNA structure. Extended versions of selected papers will be published
in a thematic series in the journal Algorithms for Molecular Biology (AMB), published
by BioMed Central.

We thank all the authors of submitted papers and the members of the Program
Committee for their efforts that made this conference possible and the WABI Steering
Committee for help and advice. In particular, we are indebted to the keynote speaker
of the conference, Paola Bonizzoni, for her presentation. We are also grateful to
Srinivas Aluru and the local Organizing Committee for their help in making WABI a
success.

September 2015 Mihai Pop
Hélène Touzet
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Reference-free Compression of High
Throughput Sequencing Data

with a Probabilistic de Bruijn Graph

Gaëtan Benoit1, Claire Lemaitre1, Dominique Lavenier1,
Erwan Drezen1, Thibault Dayris2, Raluca Uricaru2,

and Guillaume Rizk1

1 INRIA/IRISA/GenScale, Campus de Beaulieu, 35042 Rennes, France
2 University of Bordeaux, CNRS/LaBRI, 33405, Talence

Abstract. Data volumes generated by next-generation sequencing (NGS)
technologies is now a major concern for both data storage and transmission.
This triggered the need for more efficient methods than general purpose
compression tools, such as the widely used gzip method.

Most de novo methods either use a context-model to predict bases
according to their context, followed by an arithmetic encoder, or re-order reads
to maximize similarities between consecutive reads and therefore boost com-
pression. However, by simply re-ordering reads read-pairing information is
lost, thus many downstream analysis become impossible to run. Existing tools
based on reads re-ordering, either lose the pairing information and achieve high
compression, or provide an option to keep it at the cost of a much lower
compression ratio.

We present a novel reference-free method meant to compress data issued
from high throughput sequencing technologies, in both FASTA and FASTQ
format. Our approach, implemented in the software LEON, employs techniques
derived from existing assembly principles. The method is based on a reference
probabilistic de Bruijn Graph, built de novo from the set of reads and stored in
a Bloom filter. Each read is encoded losslessly as a path in this graph, by
memorizing an anchoring kmer and a list of bifurcations. The same probabi-
listic de Bruijn Graph is used to perform a lossy transformation of the quality
scores, which allows to obtain higher compression rates without losing perti-
nent information for downstream analyses. LEON was run on various real
sequencing datasets (whole genome, exome, RNA-seq or metagenomics). In all
cases, LEON showed higher overall compression ratios than state-of-the-art
compression software.

On a C. elegans whole genome sequencing dataset, LEON divided the
original file size by more than 20, corresponding to 0.67 bits/base for DNA and
0.24 bits/quality score. Leon can compress large datasets, for example a 733
GB FASTQ file (whole human genome sequenced at 102x depth) is com-
pressed in 11h using 9.5 GB of ram and 8 CPU threads.

LEON is an open source software, distributed under GNU affero GPL
License, available for download at http://gatb.inria.fr/software/leon/.

Keywords: Compression • de Bruijn Graph • NGS • Bloom filter

http://gatb.inria.fr/software/leon/


Genome Scaffolding with PE-Contaminated
Mate-Pair Libraries

Kristoffer Sahlin1, Rayan Chikhi2, and Lars Arvestad3

1 KTH Royal Institute of Technology, Science for Life Laboratory,
School of Computer Science and Communication, Solna, Sweden
2 CNRS, CRIStAL, UMR 9189, 59650 Villeneuve d’Ascq, France

3 Swedish e-Science Research Centre,
Science for Life Laboratory, and Department of Numerical Analysis
and Computer Science, Stockholm University, Stockholm, Sweden

Abstract. Scaffolding is often an essential step in a genome assembly process,
in which contigs are ordered and oriented using read pairs from a combination of
paired-ends libraries and longer-range mate-pair libraries. Although a simple
idea, scaffolding is unfortunately hard to get right in practice. One source of
problem is so-called PE-contamination in mate-pair libraries, in which a
non-negligible fraction of the read pairs get the wrong orientation and a much
smaller insert size than what is expected. This contamination has been discussed
in previous work on integrated scaffolders in end-to-end assemblers such as
Allpaths-LG and MaSuRCA but the methods relies on the fact that the orien-
tation is observable, e.g., by finding the junction adapter sequence in the reads.
This is not always the case, making orientation and insert size of a read pair
stochastic. Furthermore, work on modeling PE-contamination has so far been
disregarded in stand-alone scaffolders and the effect that PE-contamination has
on scaffolding quality has not been examined before.

We have addressed PE-contamination in an update of our scaffolder BESST.
We formulate the problem as an Integer Linear Program (ILP) and use char-
acteristics of the problem, such as contig lengths and insert size, to efficiently
solve the ILP using a linear amount (with respect to the number of contigs) of
Linear Programs. Our results show significant improvement over both integrated
and standalone scaffolders. The impact of modeling PE-contamination is
quantified by comparison with the previous BESST model. We also show how
other scaffolders are vulnerable to PE-contaminated libraries, resulting in
increased number of misassemblies, more conservative scaffolding, and inflated
assembly sizes. BESST takes BAM files as input which makes it easily inte-
grated in assembly pipelines. Source code and usage instructions are found at
https://github.com/ksahlin/BESST.

https://github.com/ksahlin/BESST


Network Properties of the Ensemble of RNA
Structures

Peter Clote

Boston College, Chestnut Hill, MA 02467, USA

Abstract. A neighbor of the RNA secondary structure s is obtained by
removing, adding or shifting a base pair in s. Here, we describe the first efficient
algorithm to compute the expected number of neighbors for the collection of all
secondary structures of a given RNA sequence. This surprisingly complex
algorithm permits a better understanding of kinetics of RNA folding when
allowing defect diffusion, helix zippering, and related conformation transfor-
mations. Moreover, only when allowing shift moves does the network of sec-
ondary structures for certain RNAs satisfy the requirements of a small-world
network.

RNA secondary structure kinetics is plays an essential role in certain biological pro-
cesses, such as the hok/sok host-killing/suppression of killing (hok/sok) system that
kills E. coli replicates if insufficient plasmids are transfered to the new daughter cell
Nevertheless, RNA folding kinetics remains a difficult problem, since it is known that
computation of optimal folding pathways is NP-complete [3].

Due to the biological importance of RNA folding kinetics, users generally run a
secondary structure kinetics program, such as Kinfold, Kinefold, RNAKinetics.
However, repeated simulations must be performed, each requiring lengthy computation
times – for instance, the population occupancy curve for yeast phe-tRNA required
3 months of CPU time on a 2.4 GHz Intel Pentium 4 running linux [4]). Coarse-grained
approaches using spectral methods also exist, such as Treekin, basin hopping with
RNAlocmin, and Hermes.

Shift moves allow a transition from secondary structure s to structure t in which the
base pair (i, j) of s is modified while fixing one base; i.e. base pair transitions of the
form ði; jÞ ! ði; kÞ or ði; jÞ ! ðk; jÞ. Panels (a)-(d) of Fig. 1 depicts a particular type of
shift move known as defect diffusion. Base pair addition, removal and shift moves
constitute the default move set employed by the program Kinfold [2], with respect to
which Wuchty [5] showed that the network of secondary structures of E. coli
phe-tRNA (Sprinzl accession RF6280) is a small-world network.

The move set MS1 [resp. MS2] consists of base pair additions/removals [resp.
additions/removals/shifts]. The network of the toy sequence ACGUACGU is illustrated
in Fig. 1(e), and the distribution of the number of neighbors of each structure for the 32
nt selenocysteine insertion sequence fruA is depicted in Fig. 1(f). In this abstract, we
describe an approach to efficiently compute the expected degree of an RNA network of
secondary structures. Our work generalizes a recent paper [1], which describes a vastly
simpler algorithm to compute the expected degree without consideration of shift



moves. Since our algorithm is surprisingly complex, we state the recursions for the
RNA homopolymer model and leave the extensions to the general Turner nearest
neighbor energy model to the journal version of this paper.

We now sketch the approach taken. Let a ¼ a1; . . .; an be an arbitrary but fixed
RNA sequence. For any 1� i� j� n, let a[i, j] denote the subsequence ai; . . .; aj.
A secondary structure on a[i, j] is a set of non-crossing base pairs (x, y), for
i� x\y� j, where (a, b) and (c, d) are crossing if a\c\b\d. A base pair (x, y) is
external if there is no base pair (u, v) for which u\x\y\v; a position x is visible
if there is no base pair (u, v) such that u� x� v. The set of all secondary structures on
a[i, j] is denoted by SS½i; j�. Define Qi;j ¼

P
s2SS½i;j� expð�EðsÞ=RTÞ � NðsÞ, where

N(s) is the number of secondary structures t of a[i, j] obtained from the structure s by
the addition, deletion or shift of a base pair. The partition function for a[i, j] is defined
by Zi;j ¼

P
s2SS½i;j� expð�EðsÞ=RTÞ. It follows that the expected number of neighbors

(network degree) is Q1;n

Z1;n
.

For simplicity, we state the recursions for Q1;n and Z1;n for the homopolymer model,
in which any two positions 1� i\j� n can form a base pair, provided only that
iþ 1\j. For the homopolymer model, there is no RNA sequence a ¼ a1; . . .; an, but
rather only the interval ½1; n� ¼ f1; . . .; ng. Thus we speak of a structure on [i, j], rather
than on a[i, j]. The energy of each structure in the homopolymer model is zero, so the
probability of each structure s on [i, j] equals one divided by the number of structures
on [i, j].

For 0� n, define Qn to be the sum, taken over all structures s of [1, n], of the
number of base pair additions, removals or shifts of a base pair of s. Let Zn denote the
total number of homopolymer structures on [1, n], where any two positions i, j can
base-pair, as long as j� i[ 1. Define f(n, x) to be the number of secondary structures
s for a length n homopolymer, such that s has x visible positions. Define g(n, x) to be
the number of secondary structures s for the length n homopolymer, such that s has
x visible positions in the interval ½1; n� h� 1� ¼ ½1; n� 2�, and position n is unpaired

Fig. 1. (a-d): Example of successive shift moves, corresponding to defect diffusion (e): Network for
the toy 8-mer ACGUACGU which has 5 nodes and 6 edges (hence 12 directed edges). The expected
network degree is 12

5 ¼ 2:4. Red edges indicate base pair addition or removal, while blue edges indicate
shift moves. (f): Relative frequency for number of neighbors (degree) for the network of all secondary
structures of the 25 nt bistable switch UGUACCGGAA GGUGCGAAUC UUCCG produced by
exhaustive enumeration. The blue [resp. red resp. purple] curve corresponds to move set M2 [resp.
(M2-M1) resp. M1]. Brute force analysis of the collection of all 83725 possible structures yields an
expected network degree of 20:71� 6:91 [resp. 11:94� 3:93 resp. 8:77� 4:30] for move set MS2
[resp. MS2-MS1 resp. MS1] (Color figure online).

XVI Network Properties of the Ensemble of RNA Structures



in s. Define the function En to be the number of external base pairs in all homopolymer
structures on [1, n]. In the journal version of this paper, we give recursions for f, g,
E and prove that

Qn ¼Qn�1 þ 2
Xn�h�2

k¼0

Zk�1 � Zn�k�1 þ 2 En�1 þ En�2 þ
Xn�4

r¼1

Er � Zn�r�3

 !
þ

Xn�h�1

x¼2

xðx� 1Þ � gðn; xÞ þ
Xn�h�1

k¼1

Zk�1 � Qn�k�1ð Þ þ Qk�1 � Zn�k�1ð Þ

thus resulting in a cubic time algorithm to compute the expected network degree with
respect to base pair additions, removals and shifts in the homopolymer case. The full
paper also provides an even more complex extension to the Turner energy model.

Finally, we would like to thank the referees for valuable suggestions in a pre-
liminary version of this abstract. This research was funded by the National Science
Foundation grant DBI-1262439. Any opinions, findings, and conclusions or recom-
mendations expressed in this material are those of the authors and do not necessarily
reflect the views of the National Science Foundation.
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Abstract. The discovery of dense biclusters in biological networks
received an increasing attention in recent years. However, despite the
importance of understanding the cell behavior, dense biclusters can only
identify modules where genes, proteins or metabolites are strongly con-
nected. These modules are thus often associated with trivial, already
known interactions or background processes not necessarily related with
the studied conditions. Furthermore, despite the availability of bicluster-
ing algorithms able to discover modules with more flexible coherency,
their application over large-scale biological networks is hampered by
efficiency bottlenecks. In this work, we propose BicNET (Biclustering
NETworks), an algorithm to discover non-trivial yet coherent modules in
weighted biological networks with heightened efficiency. First, we moti-
vate the relevance of discovering network modules given by constant,
symmetric and plaid biclustering models. Second, we propose a solution
to discover these flexible modules without time and memory bottlenecks
by seizing high efficiency gains from the inherent structural sparsity of
networks. Results from the analysis of protein and gene interaction net-
works support the relevance and efficiency of BicNET.

1 Introduction

The increasing precision and completeness of biological networks from diverse
organisms provide an unprecedented opportunity to understand the organization
and dynamics of the cell [2]. In particular, the discovery of functional network
modules has been largely used to characterize, discriminate and predict biological
functions [2,25,28,29]. The task of discovering such modules can be mapped into
the discovery of coherent regions in weighted graphs, where nodes represent the
molecular units (typically genes, proteins or metabolites) and the edges’ weights
represent the strength of the interactions between the biological molecules. In
this context, a large focus has been placed on the identification of dense regions
[1,9,11,12], where each region is given by a statistically significant set of highly
interconnected nodes. In recent years, a high number of biclustering algorithms
has been proposed to discover dense regions from (bipartite) graphs by mapping
them as adjacency matrices and searching for dense submatrices [1,3,9,22,25].
A bicluster is then given by two subsets of strongly connected nodes. Despite
c© Springer-Verlag Berlin Heidelberg 2015
M. Pop and H. Touzet (Eds.): WABI 2015, LNBI 9289, pp. 1–15, 2015.
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the effectiveness of biclustering to model local interactions, the focus on dense
regions comes with key drawbacks. First, such regions are usually associated
with either trivial or already well-known putative modules. Second, the weights
of the interactions associated with less studied genes, proteins and metabolites
have lower confidence (with penalizations highly dependent on the organism
under study) and may not reflect the true role of these molecular interactions
in certain cellular processes [31]. In particular, the presence of (well-studied)
regular/background cellular processes may mask the discovery of sporadic or
less-trivial processes.

Although many biclustering algorithms are able to find flexible coherencies
in (adjacency) matrices [23], two major challenges have been preventing their
application to biological networks. First, the generalized lack of understand-
ing on the relevance and biological meaning of network modules with flexible
coherency (given by plaid models, for example). Second, the hard combinatorial
nature of biclustering regions with flexible coherency, together with the high
dimensionality of matrices derived from biological networks are often associated
with memory and time bottlenecks, and/or undesirable restrictions on the struc-
ture and quality of biclusters. This work aims to answer these problems by: (1)
pinpointing the biological relevance of modeling non-dense regions in a network,
and (2) enabling the efficient learning of flexible biclustering models from large
biological networks.

To address these challenges we propose the algorithm BicNET (Biclustering
NETworks). BicNET integrates contributions from pattern-based biclustering
algorithms [14,15] for the exhaustive discovery of biclusters with parameterizable
coherency and quality, and adapts their data structures and searches to explore
efficiency gains from the inherent sparsity of biological networks. Furthermore,
we motivate the relevance of finding non-dense yet coherent modules and provide
a meaningful analysis of BicNET’s outputs. Results gathered from synthetic and
real data show: the relevance of the proposed efficiency principles for biclustering
large (possibly dense) networks, and the effectiveness of BicNET to discover a
complete set of non-trivial yet coherent and biologically significant modules.

The paper is organized as follows. Section 2 provides background on the target
task of modeling functional modules given by regions with flexible coherency
criteria and surveys major contributions from related work. Section 3 proposes
the BicNET algorithm. Section 4 provides empirical evidence for the relevance
of BicNET to unravel non-trivial yet relevant modules in synthetic and real
networks. Finally, we draw conclusions and highlight directions for future work.

2 Background

Biclustering can be applied to different types of networks: homogeneous net-
works, given for instance by protein-protein interactions (PPI) and gene inter-
actions (GI); and heteregeneous networks, capturing interactions between dis-
tinct molecular entities (proteins, protein complexes, metabolites, genes, etc.),
between host and viral molecules, or between biological entities and certain



BicNET: Efficient Biclustering of Biological Networks 3

terms/properties. These networks can be mapped into (bipartite) graphs for the
subsequent discovery of highly interconnected regions associated with modules.

Definition 1. Given a weighted bipartite graph with two sets of nodes
X={x1, .., xn} and Y ={y1, .., ym}, and interactions aij∈R relating nodes xi

and yj, biclustering aims to find a set of biclusters B={B1, .., Bm}, where
each bicluster Bk=(I, J) is a subgraph (module) given by two subsets of nodes,
I⊆X ∧ J⊆Y , satisfying specific criteria of coherency, quality, and significance.

This task can be solved with traditional biclustering on real-valued matri-
ces by mapping the bipartite graph into an adjacency matrix, where rows and
columns are given by the nodes and the values by the weighted interactions.
In this case, subsets of rows and columns define a bicluster associated with a
network module with coherent interactions. The structure of a set of biclusters
is defined by their number, size and positioning. Flexible structures are char-
acterized by an arbitrary-high number of (possibly overlapping) biclusters. The
coherency of a bicluster is defined by the observed correlation of values. Defini-
tion 2 introduces dense, constant, symmetric and plaid coherencies. The quality
of a bicluster is defined by the type and amount of tolerated noise. The sta-
tistical significance of a bicluster determines the deviation of its probability of
occurrence from expectations.

Definition 2. Let the elements in a bicluster aij∈(I, J) have specific
coherency. A bicluster is dense when the average strength of its interactions,

1
|I||J|Σi∈IΣj∈J |aij |, is significantly high. A constant coherency is observed when
aij=kj where kj is the expected strength of interactions between nodes in I and
yj node from J . In the presence of symmetries, aij=kjci where ci∈{−1, 1}.
A plaid coherency considers cumulative contributions on the elements where
biclusters/subgraphs overlap.

Related Work on Biclustering Biological Networks. A large number of algo-
rithms has been proposed to find modules in unweighted and/or weighted graphs
mapped from homogeneous and/or heterogeneous biological networks [6,25,29].
In unweighted graphs, clique detection with Monte Carlo optimization [30],
probabilistic motif discovery [5] and clustering on graphs [6] have been, respec-
tively, applied to discover modules in PPIs (yeast), GIs (E. coli) and metabolic
networks. In unweighted bipartite graphs, the densest regions correspond to
bicliques. Bicliques can be efficiently mined using density-constrained biclus-
tering [8], Motzkin-Straus optimization [11], formal concepts and pattern-based
biclustering [3,22,25,34]. In weighted graphs, the density of a module is given by
the average strength of interactions. Strength is either determined by a measure
of confidence (when it is predicted from literature or diverse data sources) or
by the functional correlation between nodes (when it is derived from experimen-
tal data). Densely weighted modules have been discovered with betweenness-
based partitioning [6], graph flow-based clustering [27] and several biclustering
approaches, including SAMBA [32], multi-objective searches [24] and pattern-
based biclustering [1,9,10]. The application of these methods over homogeneous
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and viral-host PPIs show that protein complexes largely match the found mod-
ules [6,24,27].

The discovery of dense network modules has been largely accomplished with
pattern-based biclustering algorithms [1,3,9,10,22,25,34] due to their intrinsic
ability to exhaustively discover flexible structures of biclusters. Frequent pat-
terns in discrete networks can be mapped1 as biclusters with specific coherency
strength determined by the number of symbols (ranges of weights) assigned
to the interactions. In unweighted graphs, closed frequent itemset mining and
association rule mining were applied to study interactions between proteins and
protein complexes in yeast proteome network [34] and between HIV-1 and human
proteins [22,25]. More recently, association rules were also used to obtain a mod-
ular decomposition of positive and negative GIs (aij ∈ {−1, 0, 1}) [3]. In weighted
graphs, Dao et. al [10] and Atluri et. al [1] relied on the loose antimonotone prop-
erty of density to propose weight-sensitive pattern mining searches. DECOB [9],
originally applied to PPIs and GIs from human and yeast, uses an additional
filtering step to output of non-similar modules only.

Some of these works have been extended to discover discriminative modules,
often referred as multigenic markers, for classification tasks such as function pre-
diction [10,22,29]. Network-based (bi)clustering methods for function prediction
have been comprehensively reviewed by Sharan et al. [29].

Related Work on Biclustering Modules with Flexible Coherency. Although the
state-of-the-art is focused on the discovery of dense network modules, slight
variants of this coherency have been proposed [1,19,32]. Despite the large avail-
ability of biclustering algorithms able to find biclusters with flexible coherency
[23], empirical evidence shows that they are not prepared to deal with the spar-
sity and/or high-dimensionality of adjacency matrices mapped from networks.
A first attempt towards this end was presented by Tomaino et al. [33] for small
networks.

3 Solution

In what follows, we first show how biclustering can be applied to discover coher-
ent modules following constant, symmetric and plaid models, possibly contain-
ing noisy and missing interactions. Second, we extend pattern-based searches to
optimally handle the inherent structural sparsity of biological networks.

1
Let L be a finite set of items, and P an itemset P ⊆ L. A discrete matrix D is a set of transactions
in L, {P1, .., Pn}. Let the coverage ΦP of an itemset P be the set of transactions in D in which
P occurs, {Pi ∈ D | P ⊆ Pi}, and its support supP be the coverage size, |ΦP |. Given D and a
minimum support θ, the frequent itemset mining task aims to compute: {P | P ⊆ L, supP ≥ θ}.

Given D, let a matrix A be the concatenation of D elements with their column indexes. Let ΨP

of an itemset P in A be its indexes, and ΥP be its original items in L. A set of biclusters ∪k(Ik, Jk)
can be derived from frequent itemsets ∪kPk by mapping (Ik, Jk)=(ΦPk

, ΨPk
) to compose constant

biclusters with coherency across rows ((Ik, Jk)=(ΨPk
, ΦPk

) for column-coherency) with pattern
ΥP .
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3.1 Network Modules with Flexible Coherency

Biclustering Weighted Graphs. For an effective application of state-of-the-art
biclustering algorithms to (weighted) graphs derived from biological networks,
two principles should be satisfied. First, the weighted graph should be mapped
into a minimal bipartite graph. In heterogeneous networks, multiple bipartite
graphs are created (each with two disjoint sets of nodes with heterogeneous
interactions). The minimality requirement can be satisfied by identifying subsets
of nodes with cross-set interactions but without intra-set interactions to avoid
unnecessary duplicated nodes in the disjoint sets of nodes (see Fig. 1). This is
essential to avoid the generation of large bipartite graphs and subsequent very
large matrices.

Second, when targeting non-dense coherencies, two real-valued adjacency
matrices need to be derived from the bipartite graph (a matrix with rows and
columns mapped from the disjoint sets of nodes and its transpose) for an exhaus-
tive space exploration. This is different from using all nodes as rows and columns
in a single matrix and then filling the upper and lower triangular matrices, which
can can lead to inconsistencies when a bicluster has elements from both the upper
and lower triangular matrices. Also, the larger size and density of such matrix
can significantly hamper the efficiency of the biclustering task. The few attempts
to find non-dense biclusters in biological networks fail to satisfy this principle
[33], thus delivering incomplete and often inconsistent solutions.

Pattern-based Biclustering. Under the satisfaction of the previous principles, a
wide-range of biclustering algorithms can be applied to discover modules with
flexible coherencies [23]. Yet, to our knowledge, only pattern-based bicluster-
ing [14–16] is able to guarantee an exhaustive yet efficient discovery of flexible
structures of biclusters with parameterizable coherency and quality criteria. This
provides the necessary context to measure the relevance and impact of discov-
ering modules with non-dense coherency and noise-tolerance. In particular, we

Fig. 1. Pattern-based biclustering of (heterogeneous) biological networks.
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rely on BicPAM and BiP algorithms [13,15]. These algorithms, respectively,
use frequent itemset mining and association rule mining to find biclusters with
constant/symmetric and plaid coherencies. Furthermore, they integrate the dis-
persed contributions from previous pattern-based algorithms and address some
of their limitations, providing key principles to surpass discretization problems
(by introducing the possibility to assign multiple symbols to a single element)
and robustly handle noise and missing values. Figure 1 provides a view on how
transactions can be derived from (heterogeneous) biological networks for the dis-
covery of constant modules (see [15] for details on the itemization, mining and
postprocessing steps).

Constant Model. Given a bicluster defining a module with coherent interac-
tions between two sets of nodes, the constant coherency (Definition 2) implies
that the nodes in one set show a single type of interaction with the nodes in
the remaining set. Illustrating, consider a set of interactions between genes and
proteins, where their absolute weight defines the strength of the association and
their sign determines whether the association corresponds to activation or repres-
sion mechanisms. The constant model guarantees that when a gene is associated
with a group of proteins, it establishes the same type of interaction with all these
proteins (such as heightened activation of the transcription of a complex of pro-
teins). When analyzing the transposed matrix (by switching the disjoint sets
of the bipartite graph), similar relations can be observed: a protein coherently
affects a set of genes (softly repressing their expression, for example). The con-
stant model can also disclose relevant interactions between homogeneous groups
of genes, proteins and metabolites. Figure 2 provides an illustrative constant
module.

The constant model can be further applied to networks with qualitative inter-
actions capturing distinct types of regulatory relations, such as binds, activates
or enhances associations, common in a wide-variety of PPIs [22,25].

The constant model is essential to guarantee that molecular units with non-
necessarily high (yet coherent) influence on another set of molecular units are
not excluded. The constant coherency is in general more flexible than the dense
coherency, leading to the discovery of larger modules. The exception is when the
dense coherency is not given by highly weighted interactions, but instead by all
interactions independently of their weight (extent of interconnected nodes).

Fig. 2. Biclustering (noise-tolerant) modules with the constant model.
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Fig. 3. Biclustering modules with the symmetric and plaid models.

Symmetric Model. The presence of symmetries is key to simultaneously cap-
ture activation and repression mechanisms associated with the interactions of
a single node [15]. The symmetric model introduces a new degree of flexibility
by enabling the discovery of more complex regulatory modules, where a spe-
cific gene/protein may show symmetric regulatory behavior according to the
expected pattern, yet still respect the observed coherency. Figure 3 illustrates
the symmetric model, where rows with symmetries are identified with dashed
lines.

Plaid Model. The plaid assumption [13] is essential to describe overlapping reg-
ulatory behavior associated with cumulative effects in the strength of interactions
between nodes that appear in multiple functional modules. Illustrating, consider
that two genes interact in the context of multiple biological processes, a plaid
model can consider their cumulative effect on their interaction’s weights (based
on the expected weight associated with each active process). This is also valid
for the regulatory influence between proteins and for heterogeneous networks.
The plaid assumption of GIs and PPIs also provides insights on the network
topology and molecular functions, revealing hubs and core interactions (based
on the amount of overlapping interactions), and between- and within-pathway
interactions (based on the interactions inside and outside of the overlapping
areas). Figure 3 illustrates a plaid model associated with two overlapping mod-
ules. These modules could not be discovered without a plaid assumption.

Handling Noisy and Missing Interactions. An undesirable restriction of
exhaustive searches for dense modules is that they may exclude relevant nodes
associated with a bicluster if those nodes do not interact with all of the nodes
in one subset of nodes from the bicluster. Understandably, meaningful modules
with missing interactions are common since the majority of existing biological
networks are still largely incomplete. Pattern-based biclustering is able to recover
missing interactions recurring to well-established and efficient postprocessing
procedures (based on the merging and extension of the discovered modules) [15].

Furthermore, the scoring scheme of interactions might be prone to experi-
mental noise, preprocessing biases and structural noise (particularly common for
less studied and stable genes or proteins), not always reflecting the true interac-
tions. Pattern-based biclustering also allows the assignment of multiple symbols
to specific interactions [15], thus avoiding the exclusion of noisy interactions
(see Fig. 1). Although default parameterizations are provided to guarantee an
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adequate tolerance to noise, the level of sparsity and noise of the discovered
modules can be parametrically controlled using thresholds based on quality
expectations. Figure 2 shows an illustrative coherent module with corrections
associated with missing interactions (red dashed lines) and noisy interactions
(red continuous lines).

3.2 BicNET: Efficient Biclustering of Biological Networks

Understandably, the task of discovering modules with the introduced coheren-
cies is more complex than finding dense modules (complexity discussed in [15]).
Empirical evidence shows that state-of-the-art biclustering algorithms are only
scalable for biological networks up to a few hundreds of nodes (see Results). Nev-
ertheless, a key property distinguishing biological networks from gene expression
or clinical data is their underlying sparsity. Illustrating, some of the densest PPI
and GI networks from well-studied organisms still have a density below 5 % (ratio
of interconnected nodes after excluding nodes without interactions). While tra-
ditional biclustering depends on operations over matrices, pattern-based biclus-
tering algorithms are prepared to mine transactions of varying length. This
property makes pattern-based biclustering able to exclude missing interactions
from searches and thus surpass memory and efficiency bottlenecks. Based on
this observation, we propose BicNET (BiClustering Biological NETworks), a
pattern-based biclustering algorithm for the discovery of network modules with
non-trivial coherencies and robustness to noise. Additionally, BicNET relies on
the following principles to explore further efficiency gains.

We propose a new data structure to efficiently preprocess data: an array,
where each position (node from a disjoint set in the bipartite graph) has a
list of pairs, each pair representing an interaction (corresponding node and the
interaction weight). Discretization and itemization procedures are performed
by linearly scanning this structure three times. Thus, their time and memory
complexity is linear on the number of interactions.

Pattern-based searches commonly rely on bitset vectors due to the need to
retrieve not only the frequent patterns but also their supporting transactions in
order to compose biclusters. However, bitset vectors are costly in terms of mem-
ory, and the associated intersection operations are computationally expensive
for large-scale networks. For this reason, we rely on the recently proposed F2G
miner [17] and on revised implementations of Eclat and Charm miners where diff-
sets are used to address the bottlenecks of bitsets. These pattern-based searches
guarantee an efficient discovery of constant, symmetric and plaid models.

Furthermore, the underlying pattern mining searches of BicNET are dynam-
ically selected based on the properties of the network to optimize their efficiency.
Horizontal versus vertical data formats [15] are selected based on the ratio of
rows and columns from the mapped matrix. Apriori (candidate generation) ver-
sus pattern-growth (tree projection) searches [15] are selected based on network
density (pattern-growth searches are preferable for dense networks). We also
push the computation of similarities between all pairs of biclusters (the most
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expensive postprocessing procedure) into the mining step by checking similari-
ties with distance operators on a compact data structure to store the frequent
patterns.

4 Results and Discussion

Results are organized as follows. First, we compare the performance of BicNET
against state-of-the-art biclustering algorithms using synthetic networks. Second,
we use BicNET for the analysis of large-scale PPI and GI networks to show the
relevance of discovering modules with flexible coherencies and parameterizable
levels of noise and sparsity. BicNET is implemented in Java (JVM v1.6.0-24).
Experiments were computed using an Intel Core i5 2.30 GHz with 6 GB of RAM.

Synthetic Data. Networks with planted biclusters were generated respecting
the commonly observed topological statistics of biological networks. Variables:

– number of nodes, density and distributions of the weight (positive and negative
ranges revealing the interaction strength);

– degree of noisy and missing interactions (from 0 % to 20 %).
– number, size (Uniform distribution on the number of nodes), shape (imbalance

on the size of the disjoint sets of each subgraph), overlapping, and coherency
(dense, constant, symmetric and plaid) of the planted biclusters:

Network nodes (10% density) Network density (2000 nodes)

200 500 1000 2000 10000 1% 5% 10% 25%

� Hidden modules 5 10 15 20 30 3 5 10 20

� Nodes per module [20,30] [30,40] [40,50] [50,70] [100,140] [50,70] [50,70] [50,70] [50,70]

% Interactions in modules 19,5% 12,2% 7,6% 4,5% 1,1% 22,5% 9,0% 4,5% 2,3%

Real Data. We used four biological networks: GIs in yeast from DryGIN [21]
and STRING v10 [31] databases, and two licensed PPIs in human and E. coli
from STRING v10 [31] database. The scores in these networks show the expected
strength of influence/physical interaction between genes/proteins (see Table 1 for
statistics).

Performance Metrics. Given the set of planted modules H in a synthetic
network, the accuracy of the retrieved modules B is given by two match scores

Table 1. Biological networks used to assess the relevance and efficiency of BicNET.

Type Organism �Nodes �Interactions Density Notes on the weight of interactions

GI Yeast 4455 191309 1.0% Weights (65% negative) from double-mutant arrays [21].

GI Yeast 6314 423335 1.1% Known and predicted associations benchmarked
from multiple data sources and text mining,
and combined through an integrative score [31].

PPI E. Coli 8428 3293416 4.6%
PPI Human 19247 8548002 2.3%
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(1): MS(B,H) defining the extent to what the found biclusters cover the hidden
biclusters (completeness), and MS(H,B) reflecting how well the hidden biclus-
ters are recovered (precision). We present the average of matches collected from
10 instantiations of synthetic networks. These accuracy criteria surpass the prob-
lems of Jaccard matches (only focused on one of the two subsets of nodes at a
time [15]) and RNIA (loose matching criteria [15]). Efficiency and significance
are used to complement this analysis.

MS(B, H) =
1

|B|Σ(I1,J1)∈Bmax(I2,J2)∈H

√
|I1 ∩ I2|
|I1 ∪ I2|

|J1 ∩ J2|
|J1 ∪ J2| (1)

4.1 Results on Synthetic Data

Figure 4 compares the efficiency of BicNET with state-of-the-art biclustering
algorithms with flexible coherence criteria using networks with varying size and
density and planted modules with constant coherency. We selected FABIA2 [18],
ISA [20], xMotifs [26], CC [7] and OPSM [4] to discover modules with flexible
coherency. BicNET shows heightened efficiency levels. Understandably, as most
of the remaining algorithms are only prepared to analyze (non-sparse) matri-
ces, they show efficiency bottlenecks for even small networks. Furthermore, the
majority is not able to accurately recover the planted modules as they cannot
interpret missing interactions. Although SAMBA [32] and some pattern-based
biclustering algorithms, such as BiMax and DECOB [9,25], are able to discover
dense models efficiently, they are not prepared to discover modules with alter-
native coherence criteria.

Figure 5 zooms-in on the performance of BicNET by quantifying the efficiency
gains in memory and time from using adequate data structures (replacing the
need to use matrices) and searches (replacing the need to rely on bitset vectors).
It also shows that the cost of assigning multiple symbols per interaction are
moderate, despite resulting in an increased network density.

Figure 6 compares the performance of BicNET with peer algorithms for dis-
covering dense network modules (hypercliques) in the presence of noisy and miss-
ing interactions. This analysis clearly shows that existing pattern-based searches
for hypercliques have no tolerance to errors since their accuracy rapidly degrades

Fig. 4. Efficiency of flexible biclustering algorithms to discover constant modules in
synthetic networks with varying size and density.

2
Sparse prior equation with decreasing sparsity until able to retrieve a non-empty set of biclusters.
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Fig. 5. Efficiency gains of BicNET when using sparse data structures, pattern mining
searches providing robust alternatives to bitset vectors, and noise handlers.

Fig. 6. Accuracy of BicNET against peer pattern-based searches to discover dense
modules on networks (2000 nodes, 10 % density) with varying degree of noise and
missings.

for an increased number of planted noisy/missing interactions. Thus, they are
not able to deal with the natural incompleteness and scoring uncertainty associ-
ated with biological networks. On the other hand, the observed accuracy levels
of BicNET demonstrate its robustness to noise (validating the importance of
assigning multiple ranges of weights for some interactions) and to missing inter-
actions (showing the effectiveness of BicNET’s postprocessing procedures).

4.2 Results on Real Data

The biological significance of the modules discovered in real data was computed
by assessing the over-representation of Gene Ontology (GO) terms with an
hypergeometric test. A module is significant when its genes show enrichment
for one or more terms by having a (Bonferroni corrected) p-value below 0.01.
Figure 7 shows the properties of BicNET’s solutions for the four biological net-
works in Table 1. 94 % of the modules discovered in DRYGIN’s yeast GIs were
significantly enriched. All the modules discovered in STRING’s yeast GIs were
significantly enriched. BicNET was able to discover the largest number of (non-
similar and statistically significant) biclusters. The analysis of the enriched terms
for these modules against the enriched terms found in other biclustering solu-
tions supports the completeness, exclusivity and relevance of BicNET’s solutions
(Table 2). The significance of peer solutions from unweighted graphs is penalized
by the inability to remove nodes with either low or non-coherent weights, while
the significance of peer solutions focused on dense regions is additionally ham-
pered by noise and discretization errors (Fig. 7).
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Fig. 7. Properties of BicNET’s solutions with varying coherency against peer pattern-
based searches for dense modules (hypercliques) in networks from DRYGIN and
STRING.

Table 2 shows the properties of an illustrative set of significantly enriched
modules. We can observe that such biclusters could hardly be discovered by
peer methods due to their non-dense coherency. All of the illustrated modules
show coherent patterns of interaction between nodes combining both differential
and non-differential weights. The provided modules have an average of 5 to 10 %
of missing interactions. BicNET is well positioned to find modules with varying
size, coherency and quality. Illustrating, the constant modules D6 and D7 have,
respectively, 23 and 47 nodes and distinct quality, being D7 more tolerant to
noisy interactions. Understandably, the number of nodes per module is naturally
affected by the size and sparsity of the target network. Most of the discovered
modules clearly show non-trivial yet meaningful correlations, whose relevance is
pinpointed by the number of highly enriched terms after correction.

Table 3 lists some of the enriched terms for the modules in Table 2, show-
ing their functional coherence and role to unravel putative biological processes.
Interesting, some of the identified modules are part of an additive plaid model
(with in-between condition [13]). Illustrating, modules D6 and S4 share, respec-
tively, 21 % and 36 % of their interactions with modules D7 and S4 under a

Table 2. Exclusivity and relevance of BicNET solutions: properties of found modules.

ID Type
�Nodes
|I|×|J| Items

�Terms
p<1E-15

Notes

D
ry

G
IN

D1 constant 18×9 {-4,..,4} 27 Module with coherent strong (-4) and soft (-1) negative interactions.
D2 symmetric 4×9 {-3,..,3} 13 Varying levels of strong (mainly positive) interactions ({±3,±2}).
D3 symmetric 5×6 {-2,-1,1,2} 12 Module with either all positive or negative interactions per ”row”-node ({±1,±2}).
D4 constant 7×5 {1,2} 12 Module with coherent strong (2) and soft (1) positive interactions.
D5 symmetric 7×5 {-2,-1,1,2} 11 Module with either all positive or negative interactions per ”row”-node ({±1,±2}).
D6 constant 13×10 {-2,-1,1,2} 24 Module with mostly strong negative interactions per ”row”-node.
D7 constant 39×8 {-2,-1,1,2} 47 Noise-tolerant module with positive and negative interactions.

S
T
R
IN

G

S1 constant 148×13 {1,2} 169 Noise-tolerant module with positive interactions of varying strength ({1,2}).
S2 constant 80×18 {1,2,3} 98 Module with mostly of non-dense interactions ({1,2}).
S3 constant 83×10 {1,2} 93 Module with non-dense positive interactions before postprocessing ({1}).
S4 constant 50×20 {1,2,3} 70 Module with non-dense positive interactions ({1,2}) before postprocessing.
S5 constant 45×31 {1,2,3} 76 Module with mostly dense interactions (weights in {2,3}).
S6 constant 55×85 {1,2} 143 Module with mostly dense interactions ({2}).
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Table 3. Illustrative set of biologically significant BicNET’s modules: description of
the highly enriched terms in the modules presented in Table 2.

ID Terms description (�)
�Terms
p<1E-15

�Nodes

D
ry

G
IN

D1 Histone modification; regulation of histones: H3-K79/H3-K4 methylation, H2B ubiquitination, etc. (5); 6 27
D2 Gluconeogenesis; glutamate metabolic/catabolic processes (2); nicotinamide metabolism/biosynthesis (2); 6 13

D3
Positive and negative regulation of transcription from RNA polymerase II; Invasive growth response to
glucose limitation and hyperosmotic salinity response by regulating RNA polymerase II (5);

5 12

D4 Meiotic anaphase I; activation of anaphase-promoting complex activity involved in meiotic cell cycle; 4 12
D5 Negative reg. of phospholipid biosynthesis; lipid homeostasis; isopropylmalate and oxaloacetate transport; 4 11

D6
Cotranslational protein targeting to membrane; protein insertion into mitochondrial membrane; protein
import into peroxisome membrane; reg. sporulation; actin filament bundle assembly involved in cytokinesis;

5 25

D7 Acetate fermentation, acetyl-CoA biosynthesis (from acetate), reg. transcription on exit from mitosis; 7 50

S
T
R
IN

G

S1
Response to hypoxia; oxidation-dependent protein catabolic process; anaerobic respiration; age-dependent
response to reactive oxygen species; cellular response to oxidative stress;

36 169

S2 Positive & negative reg. of mitotic and nuclear cell cycle, DNA replication, budding cell apical bud growth; 16 98
S3 Transport of aerobic e-, acetyl-CoA, vacuolar transm., amine (5); ribose phosphate & D-ribose processes (2); 22 93
S4 Heterochromatin maintenance involved in chromatin silencing; sister chromatid segregation; 6 70
S5 Cytoplasmic and mitochondrial translation (4); regulation of translational fidelity; ADP biosynthesis; 6 76
S6 rRNA processing; separation, cleavage & maturation of SSU-rRNA (5); ribosomal (large subunit) biogenesis; 14 143

plaid assumption. Without this assumption, only smaller modules (excluding
key nodes) could be obtained, resulting in a lower enrichment of their terms.

In a concluding note, when analyzing networks derived from knowledge-based
repositories and literature (such as networks from STRING [31]), the flexibil-
ity of coherence and noise-robustness is critical to deal with uncertainty and
regions where weights may be affected due to the unbalanced focus of research
studies. When analyzing networks derived from data experiments (such as GIs
from DRYGIN [21]), the discovery of modules with non-necessarily strong inter-
actions (given by the constant model, for example) can be critical to identify
less-predominant (yet key) biological processes, such as the ones associated with
early stages of stimulation or disease.

5 Conclusions and Future Work

This work motivates and answers the task of biclustering large-scale biological
networks to discover modules with flexible yet meaningful coherency and robust-
ness to noise. In particular, we explored the relevance of mining non-trivial mod-
ules in both homogeneous and heterogeneous networks, and assessed the limits in
efficiency of existing biclustering algorithms targeting non-dense models. Com-
bining state-of-the-art contributions on pattern-based biclustering with efficient
searches on networks, we propose BicNET algorithm for the exhaustive discov-
ery of constant, symmetric and plaid models in biological networks. Additional
strategies are further incorporated to retrieve modules with noisy and missing
interactions, thus addressing the limitations of the existing exhaustive searches
on networks. BicNET enables the analysis of dense networks with up to 50000
nodes. Results on synthetic and real networks confirm its efficiency and relevance
to discover non-trivial (yet coherent and significant) modules.

Six possible directions are identified for future work: to consider further
coherencies such as order-preserving and scale factors; enhance searches with
scalability principles from pattern mining (data partitioning strategies and
search for approximate patterns [14]); extend the proposed contributions for
the integrative mining of network and expression data; explore the relevance of
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the plaid model to identify and characterize hubs; enlarge the experimental ana-
lyzes towards biological molecules with yet unclear roles; and embrace predictive
tasks.
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Abstract. Network alignment can be used to transfer functional knowl-
edge between conserved regions of different networks. Existing methods
use a node cost function (NCF) to compare nodes across networks and
an alignment strategy (AS) to find high-scoring alignments with respect
to total NCF over all aligned nodes (or node conservation). Then, they
evaluate alignments via a measure that is different than node conser-
vation used to guide alignment construction. Typically, one measures
edge conservation, but only after alignments are produced. Hence, we
recently directly maximized edge conservation while constructing align-
ments, which improved their quality. Here, we aim to maximize both node
and edge conservation during alignment construction to further improve
quality. We design a novel measure of edge conservation that (unlike
existing measures that treat each conserved edge the same) weighs con-
served edges to favor edges with highly NCF-similar end-nodes. As a
result, we introduce a novel AS, Weighted Alignment VotEr (WAVE),
which can optimize any measures of node and edge conservation. Using
WAVE on top of well-established NCFs improves alignments compared
to existing methods that optimize only node or edge conservation or treat
each conserved edge the same. We evaluate WAVE on biological data,
but it is applicable in any domain.

1 Introduction

1.1 Motivation

Network alignment aims to find topologically or functionally similar regions
between different networks. It has applications in different areas, including com-
putational biology [1–7], ontology matching [8–11], pattern recognition [12,13],
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social networks [14,15], language processing [16], and others [17–20]. Our study
focuses mainly on the computational biology domain.

Protein-protein interaction (PPI) networks have been the main focus of net-
work alignment research among all biological networks. PPI network alignment
can be used to transfer biological knowledge from the network of a poorly studied
species to the network of a well studied species. This is of importance because
not all cellular processes can easily be studied via biological experiments. For
example, studying aging in human has to rely on across-species transfer of
aging-related knowledge from model species [21]. And network alignment can
be (and has been) used for this [6,7]. However, the problem is computationally
intractable, as the underlying subgraph isomorphism problem is NP-complete
[22]. Thus, network alignment methods are heuristics.

Network alignment can be local or global. Local network alignment aims to
align well local network regions [23–31]. As such, it often fails to find large con-
served regions between networks. Hence, majority of recent research has focused
on global network alignment [1–7,32–42], which can find large conserved regions
between networks. Typically, global network alignment aims to generate one-to-
one node mapping between two networks [41] (although exceptions exist that
produce many-to-many node mappings or that align more than two networks
[3], but such methods are out of the scope of our study).

Of one-to-one global network alignment methods, many consist of two algo-
rithmic components, namely, a node cost function (NCF) and an alignment
strategy (AS) [7,42]. NCF captures pairwise similarities between nodes in dif-
ferent networks, and AS then searches for good alignments based on the NCF
information. It has already been recognized that when two methods of this two-
component NCF-AS type are compared, to fairly evaluate the methods, one
should mix and match the different methods’ NCFs and ASs, because NCF of
one method and AS of another method could lead to a new method that is
actually superior to the original methods [7,42].

We base our work on established state-of-the-art NCFs of existing methods.
Then, we propose a novel AS, Weighted Alignment VotEr (WAVE), which when
used on top of the established NCFs leads to a new superior method for global
network alignment. And while we evaluate our new method in the computational
biology domain, the method is easily applicable in any domain.

1.2 Related Work

We focus on NCFs of two popular existing methods, MI-GRAAL [4] and GHOST
[5], and we aim to improve with our new WAVE AS upon these methods’ ASs.

MI-GRAAL improves upon its predecessors, GRAAL [1] and H-GRAAL [2],
by using the same NCF but by combining their ASs (see below). MI-GRAAL’s
NCF computes topological similarity between extended network neighborhoods
of two nodes [43–46]. It does so by relying on the concept of small induced sub-
graphs called graphlets (e.g., a triangle or a square) [47,48], which are used to
summarize the topology of up to 4-deep network neighborhood of a node into
its graphlet degree vector (GDV) [43,49,50]. Then, GDV-similarity is used as
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MI-GRAAL’s NCF, which compares nodes’ GDVs to compute their topologi-
cal similarity. MI-GRAAL also allows for integration of other node similarity
measures into its NCF, such as protein sequence similarity. We showed [7] that
MI-GRAAL’s NCF is superior to another, Google PageRank algorithm-based
NCF, which is used by IsoRank [32] and IsoRankN [3]. Regarding AS [42], MI-
GRAAL combines GRAAL’s greedy seed-and-extend AS with H-GRAAL’s opti-
mal AS that uses the Hungarian algorithm to solve linear assignment problem
of maximizing total NCF over all aligned nodes.

GHOST’s NCF is conceptually similar to MI-GRAAL’s, as it also assumes
two nodes from different networks to be similar if their neighborhoods are simi-
lar. However, the mathematical and implementation details of the two NCFs are
different. Namely, GHOST’s NCF takes into account a node’s k-hop neighbor-
hood, (in this study, k = 4). Then, its NCF computes topological distance (or
equivalently, similarity) between two nodes by comparing the nodes’ “spectral
signatures”. We recently fairly compared MI-GRAAL’s GDV-similarity-based
NCF with GHOST’s “spectral signature”-based NCF within our above mix-and-
match framework, concluding that MI-GRAAL’s NCF is superior or comparable
to GHOST’s NCF, depending on data [42]. Hence, since none of the two NCFs
was dominant in all cases, we consider both NCFs in our study. Just as MI-
GRAAL, GHOST also allows for integration of protein sequence information
into its NCF. Regarding AS, GHOST is also a seed-and-extend algorithm, like
MI-GRAAL. However, GHOST’s AS considers the quadratic (instead of linear)
assignment problem. When we evaluated the two ASs, their performance was
data-dependent [42]. Hence, we consider both ASs in our study.

There exist additional more recent network alignment methods [41], both
those that also belong to the category of NCF-AS methods, such as NETAL [36],
and those that do not, such as MAGNA [6]. These methods became available
close to completion of our study, and as such, we were not able to include them
into the design of our new method. (Hence, NETAL implements a different
NCF compared to NCFs of MI-GRAAL and GHOST, along with a different
AS compared to ASs of MI-GRAAL, GHOST, and WAVE.) However, we still
consider these methods in our evaluation. Importantly, our goal is to show that
when we use under an existing NCF (such as MI-GRAAL’s or GHOST’s) our
new WAVE AS, we get alignments of higher quality compared to when using an
existing AS (such as MI-GRAAL’s or GHOST’s) on the same NCF. This would
be sufficient to illustrate the superiority of WAVE. If in the process we also
improve upon the more recent methods, such as those that use a different NCF
and especially those that do not belong to the NCF-AS category, that would
further demonstrate WAVE’s superiority.

1.3 Our Contributions and Significance

We introduce WAVE, a novel, general, and as we will show well-performing AS,
which can be combined with any NCF. WAVE is applicable to any domain. In
this study, we evaluate it on biological networks.
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Its novelty and significance is as follows. The existing ASs use NCF scores
to rapidly identify from possible alignments the high-scoring alignments with
respect to the overall NCF (henceforth also referred to as node conservation).
But, their alignment accuracy is then evaluated with some other measure that
is different than NCF used to construct the alignments [6]. Typically, one mea-
sures the amount of conserved (i.e., aligned) edges. Hence, a recent attempt
aimed to directly maximize edge conservation during alignment construction [6].
Here, we aim to optimize both node and edge conservation while constructing
an alignment, as also recognized by a recent effort [36]. In the process, unlike
the existing methods that treat each conserved edge the same, we aim to favor
conserved edges with NCF-similar end nodes over those with NCF-dissimilar
end nodes. And we design WAVE with these goals in mind.

We combine WAVE with NCF of MI-GRAAL as well as with NCF of
GHOST. We denote the resulting network aligners as M-W and G-W, respec-
tively. We compare M-W and G-W against the original MI-GRAAL (henceforth
also denoted by M-M) and GHOST (henceforth also denoted by G-G), which use
MI-GRAAL’s NCF and AS and GHOST’s NCF and AS, respectively. Further,
we compare M-W and G-W with a new method introduced recently [42], which
is the combination of GHOST’s NCF and MI-GRAAL’s AS (henceforth also
denoted by G-M). This allows us to test the performance of WAVE against the
performance of MI-GRAAL’s and GHOST’s ASs, under each of MI-GRAAL’s
and GHOST’s NCF. We note that we cannot compare M-W and G-W against
the combination of MI-GRAAL’s NCF and GHOST’s AS (i.e., M-G), as the
current implementation of GHOST does not allow for plugging MI-GRAAL’s
NCF into GHOST’s AS [42]. Finally, we compare M-W and G-W against the
very recent NETAL and MAGNA methods.

We evaluate all methods on synthetic and real-world PPI networks, relying on
established data and performance measures [1,2,4–7]. We find that WAVE AS is
overall superior to the existing ASs, especially in terms of topological alignment
quality. Also, WAVE overall performs comparably to or better than NETAL and
MAGNA, especially on synthetic data. This further validates WAVE, because
NETAL implements a newer and thus possibly more efficient NCF compared to
NCFs of M-W or G-W, which might give NETAL unfair advantage over WAVE.

2 Methods

2.1 Data

We evaluate WAVE on two popular network sets [1,2,4–7]: (1) “synthetic” net-
works with known node mapping, and (2) real-world networks with unknown
node mapping.

The “synthetic” data consists of a high-confidence yeast PPI network [51]
with 1,004 nodes and 8,323 PPIs, and of five noisy networks constructed by
adding to the high-confidence network a percentage of low-confidence PPIs from
the same data set [51]; we vary the percentage from 5% to 25% in increments
of 5%. We align the original high-confidence network to each of the five noisy
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networks, resulting in five network pairs to be aligned. Since we know the cor-
rect node correspondence, we can measure to what extent an aligner correctly
reconstructs the correspondence.

The real-world set contains binary (yeast two-hybrid, Y2H) PPI networks
of four species: S. cerevisiae (yeast/Y), with 3,321 nodes and 8,021 edges,
D. melanogaster (fly/F), with 7,111 nodes and 23,376 edges, C. elegans (wor-
m/W), with 2,582 nodes and 4,322 edges, and H. sapiens (human/H), with 6,167
nodes and 15,940 edges. We align each pair of the networks, resulting in six pairs.
If we aimed to predict new biological knowledge, we would have evaluated our
method on additional PPIs, such as those obtained via affinity purification fol-
lowed by mass spectrometry (AP/MS). However, since our main focus is method
evaluation, of all PPIs, we focus on binary Y2H PPIs because: (1) they have been
argued to be of higher quality than literature-curated PPIs supported by a single
publication [49,52], and (2) the same Y2H networks have already been used in
many existing studies [1,2,4–7]. Ultimately, what is important for a fair evalu-
ation is that all methods are tested on the same data, be it Y2H, AP/MS, or
other PPIs [7].

When we combine within NCF nodes’ topological similarity scores with their
sequence similarity scores (see below), for the latter, we rely on BLAST bit-
values from the NCBI database [53]. When we evaluate biological alignment
quality with respect to functional enrichment of the aligned nodes (see below),
we rely on Gene Ontology (GO) data [54] to evaluate the biological alignment
quality. We use same data versions as in our recent work [7,42].

2.2 Combining Topological and Sequence Information Within NCF

We compute the linear combination of topological node similarity scores st and
sequence node similarity scores ss of nodes u and v as: s(u, v) = αst(u, v) + (1 −
α)ss(u, v). We vary α from 0.0 to 1.0 in increments of 0.1. We do this for all combi-
nations of MI-GRAAL’s, GHOST’s, and WAVE’s NCFs and ASs. When we com-
pare WAVE to recent NETAL and MAGNA, since current implementations of
NETAL and MAGNA do not support inclusion of sequence information, for these
methods, we only study topology-based alignments (corresponding to α of 1).

2.3 Evaluation of Alignment Quality

If we align graph G(VG, EG) to graph H(VH , EH) (where |VG| ≤ |VH |) via an
injective function f : VG → VH , let us denote with E′

G this edge set: E′
G =

{(f(u), f(v))|u ∈ VG, v ∈ VG, (u, v) ∈ EG}. Also, let us denote with E′
H the edge

set of the subgraph of H that is induced on nodes from VH that are images of
nodes from VG. E′

H = {(f(u), f(v))|u ∈ VG, v ∈ VG, (f(u), f(v)) ∈ EH}. With
these notations in mind, we next define alignment quality measures that we use.

Topological Alignment Quality Measures
Node correctness (NC). Given a known true node mapping (which is typically
not available in real-world applications), NC is the percentage of node pairs that
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are correctly mapped by an alignment. If f∗ : VG → VH is the correct node
mapping of G to H and f : VG → VH is an alignment produced by the aligner,
NC = |{u∈VG:f∗(u)=f(u)}|

|VG| × 100% [1].
Edge Correctness (EC). EC represents the percentage of edges from G, the
smaller network (in terms of the number of nodes), which are aligned to edges
from H, the larger network [1]. Formally, EC = |E′

G∩E′
H |

|EG| × 100%, where the
numerator is the number of conserved edges.

Induced Conserved Structure (ICS). ICS is defined as ICS = |E′
G∩E′

H |
|E′

H | × 100%.
It was introduced because EC fails to penalize for misaligning edges in the larger
network, i.e., E′

H , as EC is defined with respect to edges in EG only [5]. Hence,
ICS accounts for this. However, ICS now fails to penalize for misaligning edges
in the smaller network, i.e., EG, as it is defined with respect to edges in E′

H

only. Hence, the following measure, S3, was introduced recently to penalize for
misaligning edges in both the smaller and the larger network [6].

Symmetric Substructure Score (S3). S3 is defined as S3 = |E′
G∩E′

H |
|EG|+|E′

H |−|E′
G∩E′

H | ×
100% [6]. Thus, S3 keeps advantages of both EC and ICS while addressing their
drawbacks. S3 was already shown to be the superior of the three measures [6].
Thus, we discard EC and ICS measures from further consideration, and instead,
we report results for S3.

The size of the largest connected common subgraph (LCCS) [1]. In addition
to counting aligned edges via S3 measure, it is important that the aligned edges
cluster together to form large, dense, and connected subgraphs, rather than being
isolated. In this context, a connected common subgraph (CCS) is defined as a
connected subgraph (not necessarily induced) that appears in both networks [2].
We measure the size of the largest CCS (LCCS) in terms of the number of nodes
as well as edges, as defined in the MAGNA paper [6].

In summary, we focus on NC, S3, and LCCS. The larger their values, the
better the topological alignment quality.

Biological Alignment Quality Measures. To transfer function from well
annotated network regions to poorly unannotated ones, which is the main moti-
vation behind network alignment in computational biology, alignment should be
of good biological quality, mapping nodes that perform similar function.
Gene Ontology Enrichment (GO). One could measure GO, the percentage of
aligned protein pairs in which the two proteins share at least one GO term, out
of all aligned protein pairs in which both proteins are annotated with at least one
GO term [6,42]. In this case, complete GO annotation data is used, independent
of GO evidence code.

Experimental GO (Exp-GO). However, since many GO annotations have been
obtained via sequence comparison, and since the aligners use sequence informa-
tion within their NCF, it is important to test the aligners when considering only
GO annotation data with experimental evidence codes. This avoids the circular
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argument of evaluating alignment quality with respect to the same data that was
used to construct the alignments [1,2,4,6,7,42]. Thus, we discard GO measure
from further consideration, and instead, we report results for Exp-GO.

In summary, we focus Exp-GO. The larger its value, the better the biological
alignment quality.

2.4 Our Methodology

Problem Definition. Existing network alignment methods aim to maximize
either node conservation or edge conservation. Further, they treat each conserved
edge the same. Here, we aim to simultaneously maximize both node and edge
conservation, while favoring conserved edges whose end nodes are highly similar.
Given a measure of node conservation (denoted as Node Alignment Quality,
NAQ) and a measure of edge conservation (denoted as Edge Alignment Quality,
EAQ), our goal is to optimize the following expression (denoted as Alignment
Quality, AQ):

AQ(G,H, f) = βnNAQ(G,H, f) + βeEAQ(G,H, f), (1)

where βn and βe are parameters used to balance between NAQ and NEQ. We
note that a previous study [35] proposed a similar objective function; however,
in our study, we define a new way to measure EAQ (see below).

As a proof of concept, we use the following measures as NAQ and EAQ
(although any other measure can be used instead). We use the sum of NCF scores
over all aligned pairs as our NAQ, which we denote as weighted node conservation
(WNC). We design a novel measure of edge conservation as our EAQ, as follows.
Similar to EC, ICS, and S3, this new measure counts the number of conserved
edges, but unlike EC, ICS, or S3 that treat each conserved edge the same, our
new measure weighs each conserved edge by the NCF-based similarity of its end
nodes, so that aligning an edge with highly similar end nodes is preferred over
aligning an edge with dissimilar end nodes. We denote our new EAQ measure
as weighted edge conservation (WEC).

Formally, we define WNC and WEC as follows. Given a pairwise node sim-
ilarity matrix s with respect to the given NCF, we denote similarity between
u ∈ VG and v ∈ VH in this matrix as suv. Also, we represent the injection
f : VG → VH as a matrix y|VG|×|VH |, where yij = 1 if and only if f(i) = j and
yij = 0 otherwise. Thus, the matrix satisfies the following three constraints:

yij ∈ {0, 1}, ∀i ∈ VG,∀j ∈ VH ;

|VH |∑

l=1

yil ≤ 1, ∀i ∈ VG;

|VG|∑

l=1

ylj ≤ 1, ∀j ∈ VH (2)

Then:
WNC =

∑

i∈VG

∑

j∈VH

yijsij (3)
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To formally define WEC, recall the definitions of EC, ICS, and S3 (Sect. 2.3).
All three measures have the same numerator, which we can now rewrite as:

|E′
G ∩ E′

H | =
1
2

∑

i∈VG

∑

j∈VH

∑

k∈Ni

∑

l∈Nj

yijykl (4)

Here, Ni denotes the neighborhood of node i, i.e., the set of nodes connected
to i. Since each conserved edge will be counted twice, the 1

2 constant corrects
for this.

Now, to leverage the weight of conserved edges by the NCF-based similarity
of its end nodes (see above), we define WEC as follows:

WEC =
∑

i∈VG

∑

j∈VH

∑

k∈Ni

∑

l∈Nj

yijyklskl (5)

With WNC as our NAQ and WEC as our EAQ, formally, our problem is
to find a matrix y that satisfies Eq. 2 and maximizes the following objective
function:

AQ(G,H, y) =βnNAQ + βeEAQ = βnWNC + βeWEC

=βn

∑

i∈VG

∑

j∈VH

yijsij + βe

∑

i∈VG

∑

j∈VH

∑

k∈Ni

∑

l∈Nj

yijyklskl (6)

Optimizing the WNC part in Eq. 6 is solvable in polynomial time (e.g., by
using Hungarian algorithm for maximum bipartite weighted matching). However,
optimizing the whole function on general graphs is NP-hard. We propose WAVE
to solve this problem, while allowing for trade off between node conservation and
edge conservation (as the two might not always agree).

Weighted Alignment VotEr (WAVE). Initially, we evaluate different values
of βn and βe and thus the effect of these parameters on WAVE’s results. Since (as
we will show in Sect. 3.2) equally favoring WNC and WEC (i.e., setting the two
parameters to the same value) in general yields best results, in all subsequent
analyses, we set βn = βe = 1. Given this parameter value choice, we can rewrite
Eq. 6 as:

AQ(G,H, y) =
∑

(i,j)∈VG×VH

yij

⎛

⎝sij +
∑

(k,l)∈Ni×Nj

yklskl

⎞

⎠ (7)

Next, we use set A = {(u, v) |u ∈ VG, v ∈ VH , yuv = 1} to denote our
alignment, so our objective function has set A as a variable. Then, we use a
greedy approach to maximize the objective function, as follows. We start with
an empty alignment set A0. In each step t, given the current alignment At−1, we
calculate the marginal gain of adding an available node pair (u, v) (in the sense
that so far v and u are both unaligned) into A. (For a function f(S) with variable
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S as a set, the marginal gain of adding an element e into S is defined as f(S ∪
{e}) − f(S).) That is, we calculate: AQ(At−1 ∪ {(u, v)}) − AQ(At−1). Then, we
align the pair (u∗, v∗) with the highest marginal gain, i.e., At = At−1∪{(u∗, v∗)}.
To calculate the marginal gain efficiently, we keep the current marginal gain of
each node pair and update it in each step. The marginal gain of the node pair
(u, v) to AQ is suv at the beginning (when A is empty, if we align this pair, we can
only get suv in WNC part). In each step, note that if we align two nodes u ∈ VG

and v ∈ VH , the side effect is that, in the following steps, when we align another
pair of nodes u′ ∈ Nu, v′ ∈ Nv, both the similarity of (u, v) and (u′, v′) will be
counted once more by the correctly linked edge, namely, the edge (u, u′) ∈ EG

and (v, v′) ∈ EH . Thus, the marginal gain of (u′, v′) will be suv + su′v′ more
after (u, v) is aligned.

Intuitively, this process is like voting. When a pair of nodes is aligned, this
node pair has a chance to vote for their neighbors: when u and v are aligned, all
other node pairs in Nu × Nv receive a weighted vote (with weight suv + su′v′)
from (u, v), and the weight consists of two parts: (1) the “authority” of the voter,
i.e., suv, (2) the “certainty” of the votee, i.e., su′v′ .

The weight for the initial votes of each node pair is the original suv (which
forms the WNC part in the objective function). In every round of WAVE, node
pair (u∗, v∗) with the highest vote is aligned, and (u∗, v∗) then vote for all the
pairs in Nu∗ × Nv∗ . The current vote that a node pair gets from its aligned
neighbors is the marginal gain to objective function of aligning them.

For WAVE’s pseudocode, see Algorithm 1. For its implementation, visit:
http://nd.edu/∼cone/WAVE/WAVE.zip

3 Results and Discussion

We denote the five aligners resulting from mixing and matching NCFs of MI-
GRAAL and GHOST with ASs of MI-GRAAL, GHOST, and WAVE as M-M,
M-W, G-M, G-G, and G-W (Sect. 1.3).

Recall that a key novelty of WAVE is that while optimizing edge conservation
(in addition to node conservation), WAVE weighs each conserved edge to favor
aligning edges with highly NCF-similar end nodes. Thus, to evaluate whether
weighing conserved edges leads to better alignments, we first compare the per-
formance of the edge-weighted versions of WAVE (i.e., M-W(W) and G-W(W))
and its edge-unweighted versions (i.e., M-W(U) and G-W(U)). As we will show,
the edge-weighted versions are superior.

Further, we evaluate the effect of the different parameters (i.e., βn and βe) on
WAVE’s results. As we will show, assigning the same value to the two parameters,
i.e., equally favoring node and edge conservation, is superior to other parameter
variations.

Next, using the edge-weighted versions of WAVE with βn = 1 and βe = 1,
we evaluate the five aligners (M-M, M-W, G-M, G-G, and G-W) against each
other. Also, we evaluate WAVE (the best of M-W and G-W) against NETAL and
MAGNA. By comparing M-M and M-W, we can directly and fairly evaluate ASs

http://nd.edu/~cone/WAVE/WAVE.zip
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Algorithm 1. Weighted Alignment VotEr (WAVE) pseudocode
Input: G = (VG, EG), H = (VH , EH), suv ((u, v) ∈ VG × VH)
Output: Alignment f : VG → VH

1: for (u, v) ∈ VG × VH do
2: voteu,v ← βn × su,v;
3: end for
4: for u ∈ VG do
5: visitedSrcu ← false;
6: end for
7: for v ∈ VH do
8: visitedTarv ← false;
9: end for

10: for round = 1 to |VG| do
11: (u∗, v∗) ← arg maxunaliged(u,v) voteu,v;

where unaligned(u, v) means both vistedSrcu and visitedTarv are
false

12: visitedSrcu∗ ← true;
13: visitedTarv∗ ← true;
14: f(u∗) ← v∗;
15: for ∗ (u, v) ∈ Nu∗ × Nv∗ do
16: voteu,v ← voteu,v + βe × (su,v + su∗,v∗)
17: end for
18: end for

Return f

of MI-GRAAL and WAVE under MI-GRAAL’s NCF. By comparing G-M, G-G,
and G-W, we can directly and fairly evaluate ASs of MI-GRAAL, GHOST, and
WAVE under GHOST’s NCF. If WAVE AS produces better alignments com-
pared to the existing methods’ ASs under both of the existing NCFs, this would
indicate WAVE’s superiority. If WAVE also produces better alignments com-
pared to NETAL and MAGNA, this would even further demonstrate WAVE’s
superiority. However, this is not a strict requirement, as the two new methods
either implement both different (newer, and thus possibly superior) NCF than
any of M-W and G-W as well as different AS (in case of NETAL), which might
give them an unfair advantage, or they work on different principles (in case of
MAGNA) and could be thus viewed as complementary to WAVE.

For each combination of network pair, value of α (denoting topological versus
sequence information within NCF), and alignment quality measure (Sect. 2), we
do the following. First, to extract the most out of each source of biological infor-
mation, it would be beneficial to know how much of new biological knowledge can
be uncovered solely from topology before integrating it with other sources of bio-
logical information, such as protein sequence information [1,2,4]. Thus, we first
compare the different edge-weighted and edge-unweighted versions of WAVE, the
different combinations of βn and βe parameter values, and the different NCF-AS
methods, on topology-only alignments (corresponding to α of 1 within NCF).
Also, since NETAL and MAGNA also produce topology-only alignments, here,
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we can compare WAVE to these methods. Second, we examine different contri-
butions of topology versus sequence information in NCF (by varying α), and for
each method, we choose the best value of α, i.e., the method’s best alignment.
We do this when comparing the different edge-weighted and edge-unweighted
versions of WAVE, as well as the five NCF-AS methods to each other. On the
other hand, we do not do this when comparing the different combinations of βn

and βe parameter values, due to the large number of evaluation tests required
in this analysis. Also, since current implementations of NETAL and MAGNA
do not allow for inclusion of sequence information, we cannot directly compare
WAVE to these methods when adding sequence information into NCF. How-
ever, since in real-life applications one should give the best-case advantage to
each method, we do compare best alignments of WAVE with topology-only align-
ments of NETAL and MAGNA, and we do consider this as comparison of the
methods’ best alignments.

For “synthetic” (noisy yeast) networks with known node mapping, we report
alignment quality with respect to NC, S3, LCCS, and Exp-GO. For real-world
PPI networks of different species with unknown node mapping, we report align-
ment quality with respect to S3, LCCS, and Exp-GO.

3.1 Comparison of Edge-Weighted and Edge-Unweighted Versions
of WAVE

Here, we compare the edge-weighted and edge-unweighted versions of WAVE.
We find that weighing conserved edges in general improves alignment quality
(Figs. 1 and 2, as well as Figs. A.1 and A.2 in the Appendix), as follows.

Networks with Known Node Mapping

Topological Alignments. Weighing conserved edges improves alignment qual-
ity of topology-only alignments under both MI-GRAAL’s and GHOST’s NCFs,
since the edge-weighted version of WAVE is comparable or superior to the edge-
unweighted version in the majority of cases across all alignments and all align-
ment quality measures (Fig. 1).

Best Alignments. Here, under MI-GRAAL’s NCF, the edge-weighted version
of WAVE is comparable or superior to the edge-unweighted version across all
alignments and all alignment quality measures (Fig. 2). Under GHOST’s NCF,
the edge-weighted version is comparable or superior to the edge-unweighted ver-
sion in the majority of cases. Thus, the edge-weighted version is even more
preferred by best alignments compared to topology-only alignments.

Networks with Unknown Node Mapping

Topological Alignments. Here, the edge-weighted version of WAVE is compa-
rable or superior to the edge-unweighted version under MI-GRAAL’s NCF for
two out of three alignment quality measures (Fig.A.1 in the Appendix). Under
GHOST’s NCF, the edge-weighted version of WAVE is rarely favored in this



Simultaneous Optimization of both Node and Edge Conservation 27

Table 1. Improvements of an edge-weighted version of WAVE over its edge-unweighted
counterpart, over all evaluation tests in which the edge-weighted version is the superior
one. The results are shown in terms of the minimum (“Min”), maximum (“Max”)
and average (“Avg”) improvement over all such tests, along with the corresponding
standard deviation (“Stdev”).

Topology-only alignments Best alignments

Aligner / Network set Min Max Avg Stdev Min Max Avg Stdev

M-W / “Synthetic” (noisy yeast) networks 0.03% 11.79% 4.71% 4.24% 0.17% 4.11% 1.41% 1.21%

M-W / Real-world PPI networks of different species 1.69% 6.51% 3.51% 1.73% 1.22% 6.51% 2.60% 1.85%

G-W / “Synthetic” (noisy yeast) networks 0.03% 11.84% 3.22% 4.7% 0.04% 3.11% 0.61% 1.11%

G-W / Real-world PPI networks of different species 5.16% 8.30% 6.73% 2.22% 5.16% 8.30% 6.73% 2.22%

Average across all aligners and network sets 1.73% 9.56% 4.54% 3.24% 1.65% 5.51% 2.84% 1.60%
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Fig. 1. Comparison of the edge-weighted and edge-unweighted versions of WAVE on
topology-only alignments of “synthetic”(noisy yeast) networks with respect to (a) NC,
(b) S3, (c) LCCS, and (d) Exp-GO. For analogous results for real-world PPI networks
of different species, see Fig. A.1 in the Appendix.

evaluation test. Nonetheless, the edge-weighted version is still favored over all
evaluation tests.

Best Alignments. The edge-weighted version is preferred under MI-GRAAL’s
NCF for all three alignment quality measures and under GHOST’s NCF for one
of the measures, since in these cases the edge-weighted version is comparable or
superior to the edge-unweighted version in the majority of cases (Fig. A.2 in the
Appendix).

In summary, over both network sets (with known and unknown node map-
ping), both topology-only and best alignments, and all alignment quality mea-
sures, the edge-weighted version of WAVE is overall (though not always) superior
to the edge-unweighted version. Over all cases in which we do observe superiority
of the edge-weighted version over the edge-unweighted version, the level of supe-
riority ranges from 1.73 % to 9.56 % (with the average of 4.54 %) for topology-
only alignments and from 1.65 % to 5.51 % (with the average of 2.84 %) for best
alignments (Table 1). Interestingly, superiority of the edge-weighted version of
WAVE becomes more pronounced with increase of noise in the data, especially
for topology-only alignments (we base this conclusion only on “synthetic” (noisy
yeast) networks for which we know the level of noise in the data). Because the
edge-weighted version of WAVE is overall the superior one, in the following sec-
tions, we use the edge-weighted version.
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Fig. 2. Comparison of the edge-weighted and edge-unweighted versions of WAVE on
best alignments of “synthetic” (noisy yeast) networks with respect to (a) NC, (b)
S3, (c) LCCS, and (d) Exp-GO. For analogous results for real-world PPI networks of
different species, see Fig. A.2 in the Appendix.

3.2 Comparison of Different Parameter Values Within WAVE

When we vary values of βn and βe parameters, corresponding to levels of node
and edge conservation considered within WAVE, we find that assigning the same
value to the two parameters overall leads to the best results (Fig. 3). This holds
for M-W and G-W combined (Fig. 3(a)) as well as for M-W only (Fig. 3(b)) and
G-W only (Fig. 3(c)).

Our above conclusion comes from the following observations. The combina-
tion in which only βn is used (i.e., βn = 1 and βe = 0) is always inferior to
any other combination of the parameter values. That is, considering only node
conservation within WAVE (which is what most of the existing methods do) is
inferior, and accounting for edge conservation improves results. The remaining
combinations of parameter values that use some level of edge conservation (i.e.,
βn = 0.75 and βe = 0.25, βn = 0.5 and βe = 0.5, βn = 0.25 and βe = 0.75,
and βn = 0 and βe = 1) are overall comparable to each other, with slight supe-
riority of βn = 0.5 and βe = 0.5, especially for G-W (Fig. 3(c)). Even for all
versions of WAVE (Fig. 3(a)), we argue that the combination of βn = 0.5 and
βe = 0.5 is overall superior. Namely, even though the combination of βn = 0
and βe = 1 is ranked as the first best combination in most of the cases, the
combination of βn = 0.5 and βe = 0.5 is following very closely (Fig. 3(a)). Fur-
ther, the combination of βn = 0.5 and βe = 0.5 is ranked as the second or third
best in more cases than the combination of βn = 0 and βe = 1; in other words,
the combination of βn = 0 and βe = 1 is ranked as the worst (i.e., fourth) in
more cases than the combination of βn = 0.5 and βe = 0.5 (or any other com-
bination that considers some level of edge conservation). For these reasons, in
our study, we have adopted this overall superior combination of βn = 0.5 and
βe = 0.5 (or equivalently βn = 1 and βe = 1), which equally favors node and
edge conservation.

Due to a large number of tests involved into evaluating different combinations
of βn and βe values, all experiments in this section have been performed only on
topology-only alignments of “synthetic” (noisy yeast) networks.
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Fig. 3. Overall ranking of each tested βn/βe combination over all network pairs in the
“synthetic” (noisy yeast) network data set and over all alignment quality measures, for
topology-only alignments of: (a) both M-W and G-W combined, (b) M-W only, and
(c) G-W only. The ranking is expressed as a percentage of all cases (i.e., all evaluation
tests) in which the combination ranks as the kth best method. That is, the more cases
in which a given combination achieves a higher ranking, the better the combination.
For example, in panel (c), the combination of βn = 0.5 and βe = 0.5 (or equivalently,
βn = 1 and βe = 1) is superior to all other combinations, since is ranked the highest
(i.e., as the 1st best method) in most of the cases.

3.3 Comparison of Five NCF-AS Methods

Here, we compare M-M, M-W, G-M, G-G, and G-W, to test whether WAVE AS
improves upon ASs of MI-GRAAL and GHOST under the same (MI-GRAAL’s
or GHOST’s) NCF.
Networks With Known Node Mapping

Topological Alignments. WAVE is always superior to the existing methods
(M-W is superior to M-M, and G-W is superior to G-M and G-G), for all noise
levels and alignment quality measures, under both MI-GRAAL’s and GHOST’s
NCFs (Figs. 4 (a) and 5).

WAVE in general works better under MI-GRAAL’s NCF than under
GHOST’s NCF, as M-W is overall superior to G-W. WAVE (at least one of
M-W and G-W) beats both MI-GRAAL and GHOST (all of M-M, G-M, and
G-G) in 20/20=100 % of all cases (Figs. 4 (a) and 5). These results hold across
all noise levels.

Best Alignments. Here, we give the best-case advantage to each method by
selecting its optimal α parameter value. Under MI-GRAAL’s NCF, WAVE is
always superior (M-W is better than M-M), for all noise levels and alignment
quality measures (Figs. A.3 (a) and A.4 in the Appendix).

Under GHOST’s NCF, WAVE is always superior to MI-GRAAL’s AS (G-W
is better than G-M), and WAVE is superior to GHOST’s AS (G-W is better
than G-G) with respect to two of the four measures (edge-based S3 and LCCS),
while GHOST’s AS is superior (G-G is better than G-W) with respect to the
other two measures (node-based NC and Exp-GO) (Figs. A.3 (a) and A.4 in the
Appendix). Hence, WAVE and GHOST’s AS are comparable overall.

Again, WAVE in general works better under MI-GRAAL’s NCF than under
GHOST’s, as M-W is overall superior to G-W. WAVE (at least one of M-W
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and G-W) beats both MI-GRAAL and GHOST (all of M-M, G-M, and G-G)
in 6/10=60 % of cases dealing with the two edge-based measures of alignment
quality (Figs. A.3 (a) and A.4 in the Appendix). The ranking of the different
methods does not change with increase of noise level with respect to NC and Exp-
GO, but it does change with respect to S3 and LCCS for the highest noise levels.

Networks With Unknown Node Mapping

Topological Alignments. Under MI-GRAAL’s NCF, WAVE is always superior
(M-W is better than M-M) with respect to S3, it is almost always superior with
respect to LCCS, and it is sometimes superior with respect to Exp-GO (Figs. 4
(b) and 6). Hence, here WAVE seems to be favored by topological alignment
quality measures.

Under GHOST’s NCF, WAVE is superior to MI-GRAAL’s AS (G-W is better
than G-M) in almost all cases, for each of S3, LCCS, and Exp-GO (Figs. 4 (b)
and 6). Also, here WAVE is overall superior to GHOST’s AS (G-W is better
than G-G) with respect to Exp-GO but not with respect to S3 or LCCS (Figs. 4
(b) and 6).

WAVE in general works better under MI-GRAAL’s NCF than under
GHOST’s NCF, as M-W is overall superior to G-W. WAVE (at least one of
M-W and G-W) beats both MI-GRAAL and GHOST (all of M-M, G-M, and
G-G) in 14/18=78 % of all cases (Figs. 4 (b) and 6).

Best Alignments. Under MI-GRAAL’s NCF, WAVE is always superior (M-W
is better than M-M) with respect to S3, and it is almost always superior with
respect to LCCS as well as Exp-GO (Figs. A.3 (b) and A.5 in the Appendix).
Hence, here WAVE is even more superior than for topological alignments only.

Under GHOST’s NCF, WAVE is superior to MI-GRAAL’s AS (as G-W is
better than G-M) in most cases for each of S3 and Exp-GO, and in some cases for
LCCS. Also, here WAVE is overall superior to GHOST’s AS (G-W is better than
G-G) with respect to Exp-GO but not with respect to S3 or LCCS (Figs. A.3
(b) and A.5 in the Appendix).

Again, WAVE works better under MI-GRAAL’s NCF than under GHOST’s
AS, as M-W is superior to G-W. WAVE (at least one of M-W and G-W) beats
both MI-GRAAL and GHOST (all of M-M, G-M, and G-G) in 13/18=72 % of
all cases (Figs. A.3 (b) and A.5 in the Appendix).

The fact that WAVE in general works better under MI-GRAAL’s NCF than
under GHOST’s NCF further adds to our recent finding that MI-GRAAL’s NCF
is superior to other NCFs [7,42].
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Fig. 4. Representative results for overall ranking of each NCF-AS method over all
network pairs in a given data set and over all alignment quality measures. The ranking
is expressed as a percentage of all cases (i.e., all evaluation tests) in which the given
method ranks as the kth best method. That is, the more cases in which a given method
achieves a higher ranking, the better the method. For example, in panel (a), M-W is the
highest scoring of all methods shown on x-axis, since it is ranked the highest (i.e., as
the 1st best method) in most of the cases. (a) Results for the five NCF-AS methods on
topology-only alignments of “synthetic” (noisy yeast) networks. For equivalent results
for best alignments, see Fig. A.3 (a) in the Appendix. (b) Results for the five NCF-AS
methods on topology-only alignments of real-world PPI networks of different species.
For equivalent results for best alignments, see Fig. A.3 (b) in the Appendix. Details (per
network pair and alignment quality measure) for panels (a)-(b) are shown in Figs. 5
and 6, respectively. Recall that M-M and G-G are MI-GRAAL and GHOST.
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Fig. 5. Comparison of the five NCF-AS methods on topology-only alignments of “syn-
thetic” (noisy yeast) networks with respect to: (a) NC, (b) S3, (c) LCCS, and (d)
Exp-GO. For analogous results for best alignments, see Fig. A.4 in the Appendix.
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Fig. 6. Comparison of the five NCF-AS methods on topology-only alignments of real-
world PPI networks of different species with respect to: (a) S3, (b) LCCS, and (c)
Exp-GO. For analogous results for best alignments, see Fig. A.5 in the Appendix.
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Fig. 7. Overall ranking of WAVE (the best of M-W and G-W) against the recent
methods (NETAL and MAGNA) over all network pairs in a given data set and over
all alignment quality measures. The ranking is expressed as a percentage of all cases
(i.e., all evaluation tests) in which the given method ranks as the kth best method.
That is, the more cases in which a given method achieves a higher ranking, the bet-
ter the method. Results are shown for: (a) topology-only alignments of “synthetic”
(noisy yeast) networks, (b) best alignments of “synthetic” (noisy yeast) networks, (c)
topology-only alignments of real-world PPI networks of different species, and (d) best
alignments of real-world PPI networks of different species. Details (per network pair
and alignment quality measure) for panels (a)-(d) are shown in Fig. A.6 in the Appen-
dix, Fig. 8, Fig. A.7 in the Appendix, and Fig. 9, respectively. Recall that M-M and
G-G are MI-GRAAL and GHOST.

3.4 Comparison of WAVE with Very Recent Methods

Here, we compare WAVE (the best of M-W and G-W) with NETAL and
MAGNA. Since the latter two became available at completion of our study,
we could not include their novelties (e.g., NETAL’s NCF) into our methodology.

Networks With Known Node Mapping

Topological Alignments. WAVE is always superior to both NETAL and
MAGNA, for all noise levels and alignment quality measures (Figs. 7 (a) and
A.6 in the Appendix). Only in 2/20 = 10% of all cases, MAGNA is superior:
with respect to S3 for two largest noise levels. But this is not surprising, as
MAGNA optimizes S3. Overall, the ranking of the different methods does not
change with increase in noise level.

Best Alignments. Recall that NETAL and MAGNA do now allow for inclu-
sion of sequence information into the alignment construction process. So, for
these two methods, their best alignments are actually their topology-only align-
ments. For WAVE, on this “synthetic” (noisy yeast) network set, topology-only
alignments are the best of all alignments (i.e., inclusion of sequence information
decreases alignment quality). Thus, results do not change from topology-only to
best alignments when comparing the three methods: WAVE remains superior
to NETAL and MAGNA (Figs. 7 (b) and 8). Again, overall, the ranking of the
methods does not change with increase in noise level.

Networks With Unknown Node Mapping
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Fig. 8. Comparison of WAVE (the best of M-W and G-W) with very recent net-
work alignment methods on best alignments of “synthetic” (noisy yeast) networks
with respect to: (a) NC, (b) S3, (c) LCCS, and (d) Exp-GO. For analogous results
for topology-only alignments of “synthetic” (noisy yeast) networks, see Fig. A.6 in the
Appendix.
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Fig. 9. Comparison of WAVE (the best of M-W and G-W) with very recent network
alignment methods on best alignments of real-world PPI networks of different species
with respect to: (a) S3, (b) LCCS, and (c) Exp-GO. For analogous results for topology-
only alignments of real-world PPI networks of different species, see Fig. A.7 in the
Appendix.

Topological Alignments. WAVE is always superior to MAGNA, for all noise
levels and alignment quality measures (Figs. 7 (c) and A.7 in the Appendix).
Only in one out of 18 cases, MAGNA is superior to WAVE: with respect to
S3 for one of the six network pairs. NETAL is overall superior to the other
two methods, especially with respect to topological alignment quality measures
(S3 and LCCS) (Figs. 7 (c) and A.7). This could be because NETAL has both
different NCF and AS compared to WAVE, and as such, its superiority might be
a consequence not of its ASs but rather of its NCF. So, if its NCF was fed into
WAVE AS, this could perhaps result in a superior new method. This possibility
of designing a novel superior method simply by mixing NCF of one method and
AS of another method has already been confirmed on several occasions [7,42].

Best Alignments. When each method is given the best-case advantage, WAVE
remains superior to MAGNA, and moreover, its ranking against NETAL now
improves compared to topology-only alignments (Figs. 7 (d) and 9), which con-
firms real-life relevance of WAVE.
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4 Concluding Remarks

We have presented WAVE, a general network alignment strategy for simultane-
ously optimizing both node conservation and weighted edge conservation, which
can be used with any node cost function or combination of multiple node cost
functions. We have demonstrated overall superiority of WAVE against existing
state-of-the-art alignment strategies under multiple node cost functions, espe-
cially with respect to topological alignment quality. Moreover, we have demon-
strated that WAVE is comparable or superior even to very recent approaches
that became available only close to completion of our study, especially on the
synthetic network data. This only further validates the effectiveness of WAVE.

Since WAVE can be combined with any node cost function, doing so for any
recent function might improve its alignment quality. Also, WAVE itself can be
modified to optimize any other measure of node and edge conservation, which
could further improve its accuracy; the measures that we have used are merely
a proof of concept that optimizing both node and weighted edge conservation
can lead to better alignments compared to optimizing just node conservation (as
e.g., MI-GRAAL and GHOST do) or just unweighted edge conservation (as e.g.,
MAGNA does).

As more biological network data are becoming available, network alignment
will only continue to gain importance in the computational biology domain
[41,55,56]. For example, network alignment has already redefined the notion
of sequence-based orthology to the notion of network-based orthology, as it
can identify conserved network (rather than sequence) regions between differ-
ent species [57]. Then, network alignment can guide the transfer of biological
(e.g., aging-related) knowledge from well-studied model species to poorly-studied
species such as human. Hence, given WAVE’s superiority as demonstrated in our
study, WAVE could further our biological insights. Applying WAVE to an inter-
esting biological question is out of the scope of this current method evaluation
study and is subject of our future work. Further, network alignment (and thus
WAVE) has implications in many domains. For example, it can be used to de-
anonymize online social networks and thus impact privacy [37]. Hence, further
theoretical improvements that would lead to better network alignments have a
potential to lead to important discoveries in different fields.

Acknowledgements. This work was funded by the National Science Foundation
CAREER CCF-1452795 and CCF-1319469 grants.
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Fig.A.1. Comparison of the edge-weighted and edge-unweighted versions of WAVE on
topology-only alignments of real-world PPI networks of different species with respect
to (a) S3, (b) LCCS, and (c) Exp-GO.
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Fig.A.2. Comparison of the edge-weighted and edge-unweighted versions of WAVE
on best alignments of real-world PPI networks of different species with respect to (a)
S3, (b) LCCS, and (c) Exp-GO.
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Fig.A.3. Remaining results for overall ranking of each method over all network pairs
in a given data set and over all alignment quality measures. The ranking is expressed
as a percentage of all cases in which the given method ranks as the kth best method.
That is, the more cases in which a given method achieves a higher ranking, the better
the method. For example, in panel (b), M-W is the highest scoring of all methods
shown on x-axis, since it is ranked the highest (i.e., as the 1st best method) in most of
the cases. (a) Results for the five NCF-AS methods on best alignments of “synthetic”
(noisy yeast) networks. (b) Results for the five NCF-AS methods on best alignments of
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quality measure) for panels (a)-(b) are shown in Figs. A.4 and A.5. Recall that M-M
and G-G are MI-GRAAL and GHOST.
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Fig.A.4. Comparison of the five NCF-AS methods on best alignments of “synthetic”
(noisy yeast) networks with respect to: (a) NC, (b) S3, (c) LCCS, and (d) Exp-GO.
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Fig.A.5. Comparison of the five NCF-AS methods on best alignments of real-world
PPI networks of different species with respect to: (a) S3, (b) LCCS, and (c) Exp-GO.
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Fig.A.6. Comparison of WAVE (the best of M-W and G-W) with very recent network
alignment methods on topology-only alignments of “synthetic” (noisy yeast) networks
with respect to: (a) NC, (b) S3, (c) LCCS, and (d) Exp-GO.
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Fig.A.7. Comparison of WAVE (the best of M-W and G-W) with very recent network
alignment methods on topology-only alignments of real-world PPI networks of different
species with respect to: (a) S3, (b) LCCS, and (c) Exp-GO.
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Abstract. Biological networks are an attractive construct for studying
evolution. One method for inferring evolutionary mechanics is to con-
struct models which generate networks sharing topological characteris-
tics with their empirical counterparts. It remains a challenge to assess,
modify, and improve a model based on the topological values it gener-
ates. A large range of parameter values may produce a similar topology,
and topological properties may vacillate in unexpected ways, frustrat-
ing attempts to determine whether the model is flawed or model para-
meter values are incorrect. We introduce a new method for evaluating
the fidelity of an evolutionary network model with respect to topologi-
cal characteristics by driving topological characteristics towards empiri-
cal values concurrently with network generation. From this we compute
a topological profile which defines the ability of the network model to
produce a desired topology. The topological profile also measures the
volatility of characteristics, and the interrelationships among topological
characteristics. Our method shows that a top-rated protein interaction
network model cannot produce the empirical number of triangles. As
triangle count is driven to the empirical value, additional characteristics
are propelled towards empirical values. These findings suggest that new
model mechanics that increase the number of triangles produced will
best enhance the existing model. By providing systematic evaluation of
the ability of model mechanics to produce desired topological properties,
our framework can help to focus the search for biologically plausible and
relevant processes important to network evolution.

1 Introduction

Discovery of the biological processes that influence evolution remains an active
area of research. Protein interaction networks are particularly well-suited for
undertaking evolutionary studies. Topological properties are readily measured
from empirical networks and have been used to guide research into biological
processes which may have influenced the formation of these properties. In par-
ticular, models of protein interaction network evolution have been built featuring
biologically-plausible evolutionary mechanics. When such a model can generate
c© Springer-Verlag Berlin Heidelberg 2015
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networks sharing topological characteristics with extant networks of biological
organisms, it suggests that the modeled evolutionary mechanics played a role in
the formation of empirical networks.

A continuing challenge in the search for evolutionary mechanics is associat-
ing the mechanics with the topological features generated by the network model.
Although analytic and computational results have demonstrated the relevance
of specific topological properties to specific evolutionary mechanics [2,5,8], there
is little work suggesting the number, type, or relative importance of topological
measures appropriate for evolutionary analysis. Different studies have relied on
different sets of measures for model validation. Examples of validating sets of
topological features include: clustering coefficient, square coefficient, and degree
distribution [18], clustering coefficient, degree distribution, and characteristic
(average) path length (CPL) [13], clustering coefficient and CPL [1], degree dis-
tribution and average connectivity of first neighbors [4], and degree distribution
alone [15]. By convention some measures such as the degree distribution are
included frequently in model evaluation. Otherwise there is little agreement as
to the number or type of topological measures to include in a model assessment.
More sophisticated topological measures such as graphlets (small, connected,
non-isomorphic subgraphs) [12] have also been used, and subgraphs have been
enumerated using machine learning techniques [10]. Thorne and Stumpf [16] used
graph spectra as a measure of network similarity, in lieu of traditional topological
characteristics.

Compounding this is the determination of parameter values. Parameters
which seem to produce a particular topological value can be mistaken if a large
range of parameter values produce a similar topology. If a model can produce
a large variety of topologies, then choosing an (incorrect) parameter value to
produce a valid topology can “validate” a flawed model. Conversely, a model
which produces a topology divergent from empirical could indicate either a flaw
of the model or incorrect parameters.

Previous methods of evolutionary model validation differ in how model-
generated networks are measured against empirical networks. These measures
allow different models to be compared and ranked on their ability to generate
empirically-observed networks. Absent from previous methods is a mechanism
to study a single model, to “stress” it and uncover its strengths and weak-
nesses. We approach the problem from this different direction by first asking: for
which topological properties can empirical values be obtained, and how do mul-
tiple topological properties interact during model evolution? By driving various
topological characteristics towards empirical values during network generation
we are able to observe the relationships between multiple topological measures
and assess their influence on each other and their contribution to the network
topology. We are not finding the “best”, or “optimized” topology a model can
produce. We are exercising a model to explore its topological profile–the limits of
a model to approximate an empirical network topology and the interrelationships
among topological characteristics of a model. We coerce topological characteris-
tics towards empirical values, revealing the model’s (in)ability to achieve empiri-
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cal values, and measured each topological property’s impact on other topological
properties.

Though the optimization strategy shares some qualities of genetic algorithms,
it must be stressed that the optimization strategy is not being used as a “natural
selection” proxy for optimizing the networks generated by the model, nor are
we suggesting that natural selection has driven empirical values of topological
properties. The optimization strategy is used only to measure the potential of a
model to achieve various empirical topological properties.

2 Methods

To drive individual topological properties produced by a model of network evo-
lution, we generated populations of networks via an optimization process. Each
topological property we examined was “optimized” in a population. Starting
with a population of 100 seed graphs, each with 100 nodes, a network model
was used to grow each of the 100 networks by 10 proteins. The target property
was then measured across all of the networks. The 10 networks whose property
most-closely approached that of an empirical network were culled and dupli-
cated ten times to restore the population to 100 networks. The networks were
iteratively grown 10 nodes at a time, retaining the optimal networks at each
iteration until the number of nodes in the networks matched that of the empir-
ical network. Topological values were measured on the final best 10 networks
from the population and averaged. Although this method is inspired by genetic
or evolutionary algorithms, it is used only to define the topological profile of the
model-generated networks. The method we use is not intended to reflect how
networks evolve in nature.

2.1 The Evolutionary Model

The duplication and divergence [18] model was selected for this study. The
model offers simple and biologically-plausible evolutionary mechanics of dupli-
cation and divergence (see Fig. 1). Specifically, duplication is modeled by adding
a progeny protein to the network which interacts with the same protein “neigh-
bors” as its progenitor. Divergence is modeled by removing, with some prob-
ability, one of each pair of redundant interactions the progeny/progenitor pair
has with each neighbor. Subsequent to its initial publication, additional studies
have further validated the Vázquez et al. model [5,8,10]. To this model we have
added the asymmetric loss of interactions during subfunctionalization due to its
better performance [7].

We begin our populations of networks with a 100-node scale-free network
(i.e., with a power-law degree distribution that follows a power-law). Because
seed graphs can affect the topology of generated networks [1], we also analyzed
populations seeded with a 100-node Erdős-Renýı random graph (i.e., with Pois-
son degree distribution), with comparable results.
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Fig. 1. Duplication and divergence model of evolution [18]. Duplication: protein P ′ is
created as the progeny of P . Progeny protein P ′ interacts with the same neighbors as its
progenitor P . With some probability interaction t is added, representing the paralogous
interaction formed when a homomeric protein duplicates. Divergence: one interaction
is lost from each redundant pair of interactions q, r and s, with some probability. In the
original model, when an interaction is lost from a redundant pair, the lost interaction
is selected equiprobably. We select the lost interaction asymmetrically due to its better
performance [7].

2.2 The Empirical Network

Protein interaction data was assembled from two high-quality Saccharomyces
cerevisiae (yeast) data sets: a meta study that produced a “second-generation”
high quality interaction data set by Yu et al. [19], and high-confidence inter-
actions from an in vivo protein-fragment complementation assay (PCA) by
Tarassov et al. [14]. The Yu et al. data represents directly-measured binary
interactions such as from yeast two-hybrid assays and interactions curated from
the literature. The data set includes high-confidence interactions from earlier
studies including [17] and [9]. The Tarassov data set was published subsequent
to the Yu et al. study. It is the first high-throughput study to identify binary
interactions in vivo. The combined empirical data sets have 2647 proteins and
5449 interactions.

Model parameters were estimated from this empirical network via an
evolutionary reconstruction method as described in [6] (probability of edge
loss = 0.887, asymmetry of loss = 0.82, probability of a paralogous interac-
tion = 0.46).

2.3 Topological Measures Assessed

Although the method allows for any arbitrary set of network measures to be
used, such as graphlet degree distribution [12] or graph spectra [16], here we
confine ourselves to eight, simply computed topological characteristics.

– Connected triples (“Trips”) A node connected to an unordered pair of nodes
(i.e., a path of length 2).

– Triangles (“Tris”) Three fully-connected nodes.
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– Transitivity (“Trans”) Also known as the clustering coefficient. It is given by
C = 3T

Γ , where T is the number of triangles and Γ is the number of connected
triples [11].

– Size The number of interactions (edges) in the network.
– Diameter (“Diam”) The maximum of the shortest paths between all pairs

of proteins in the largest component.
– Characteristic (Average) Path Length (“CPL”) The mean of the shortest

paths between all pairs of proteins in the network’s largest component.
– Assortativity (“Assort”) The tendency of proteins to interact with proteins

having similar degree. The assortativity is the equivalent of the Pearson Cor-
relation Coefficient between the degrees of pairs of nodes which interact.

– Degree distribution (“Deg Dist”) A histogram of the number of interacting
partners for each protein.

A population was evolved for each of the eight measures. Each population had
a topological measure driven towards the empirically observed value. In addition,
one population was grown without any constraints (that is, the normal, “neutral”
model), for a total of 9 populations to be compared.

The topological measures were averaged from the ten best-performing indi-
viduals in each population. Each average was then converted to a proportion by
dividing it by the equivalent empirical value.

The difference between the model’s degree distribution and the empirical
distribution was converted to a single value by first summing up the absolute
value of differences between degrees:

1 −
∑

i |kei − kmi|
ne

where kei is the number of proteins in the empirical network with degree i, kmi

is the number of proteins in the model network with degree i, and ne is the
number of nodes in the empirical network. Because the model network has the
same number of nodes as the empirical network, dividing by ne normalizes the
summation, and subtracting it from 1 ensures that a distribution identical to
empirical will have a value of 1, and a maximally disparate model distribution
(i.e., with no nodes sharing a degree with empirical), will have a value of 0.

A desktop workstation can easily handle the computational demands of the
method and a combination of C++ and Python code generated complete results
in a few minutes. The limiting factor of the computation is determined by the
cost of running the model and the topological measure calculations.

3 Results

Table 1 shows the topological profile of the model, presented as proportions of
empirical topological values. A value of 1.0 represents perfect agreement with
the empirical value. Each row in the table is a population with selective pressure
applied to the topological property indicated by the row-label. Each column is a



The Topological Profile of a Model of Protein Network Evolution 45

Table 1. Topological values observed as a proportion of empirical. Each row contains
the topological values for one population driven towards empirical by the characteristic
specified by the row label. Values are shown as proportions of empirical. A value of 1.0
represents perfect agreement with the empirical value. Each column is a topological
property measured.

Driving Scale-free seed graph
property Trips Tris Trans Size Diam CPL Assort DD

Neutral 0.22 0.11 0.51 0.66 1.58 1.40 0.57 0.66

Trips 1.00 0.15 0.15 0.72 1.27 1.02 -1.72 0.64

Tris 0.59 0.47 0.80 0.89 1.13 1.09 1.72 0.60

Trans 0.33 0.39 1.19 0.78 1.73 1.40 5.67 0.58

Size 0.45 0.31 0.69 1.00 1.05 1.12 0.63 0.42

Diam 0.22 0.11 0.50 0.66 1.00 1.37 0.31 0.67

CPL 0.41 0.14 0.35 0.68 0.80 1.01 -0.44 0.64

Assort 0.25 0.12 0.51 0.64 1.69 1.37 1.00 0.68

DD 0.20 0.10 0.53 0.64 1.60 1.43 1.09 0.83

Driving hpargdeesı́yneR-sődrE
property Trips Tris Trans Size Diam CPL Assort DD

Neutral 0.20 0.11 0.55 0.66 1.61 1.45 0.03 0.66

Trips 0.71 0.27 0.38 0.88 1.27 1.01 -1.83 0.59

Tris 0.44 0.45 1.00 0.89 1.27 1.19 1.97 0.58

Trans 0.31 0.38 1.22 0.82 1.43 1.38 3.28 0.56

Size 0.43 0.33 0.75 0.99 1.20 1.16 0.22 0.43

Diam 0.20 0.12 0.60 0.67 1.00 1.38 0.05 0.64

CPL 0.31 0.15 0.50 0.69 0.83 1.06 -0.21 0.68

Assort 0.20 0.10 0.51 0.65 1.72 1.45 1.00 0.66

DD 0.19 0.10 0.52 0.64 1.49 1.47 -0.13 0.83

Legend:

Neutral Normal model run CPL Characteristic Path Length Size Size (# edges)
Trips Triples Tris Triangles Trans Transitivity
Diam Diameter Assort Assortativity DD Degree Distribution

topological property measured on the optimal members of that population. For
an alternative visualization, Fig. 2 presents bar plots of each row for networks
generated from the scale-free seed graph.

3.1 Success of Driving Properties Towards the Empirical Topology

Five topological measures (triples, size, diameter, CPL, and assortativity)
achieved parity with the empirical value in the population towards which they
were driven. Driving some parameters towards empirical has expected effects.
For example, when triples are increased towards empirical values, the transitiv-
ity (a measure whose calculation includes triples in the denominator) decreases.
Three measures produced suboptimal results:

1. Triangles. Driving triangles towards empirical values produced fewer than
50 % of the empirical triangles (Table 1, Fig. 2). This is the most discrepant
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Fig. 2. From scale-free seed graphs, the proportion of model-generated to empirical
values when driving various measures towards empirical values. The bars in each plot
represent (from left to right): triples, triangles, transitivity, size, diameter, characteris-
tic path length, assortativity, and degree distribution difference. The red bar in each of
the nine plots indicate the topoological property that was driven towards the empirical
value. From left to right, top to bottom they are: neutral model, triangles, triples, tran-
sitivity, assortativity, degree distribution difference, characteristic path length, diame-
ter, and size (Color figure online).

of the measures and reflects a limitation of the model [7]. This suggests that
a mechanism should be modified or included in the model that increases the
number of triangles.

2. Transitivity. Optimizing for empirical transitivity (clustering coefficient)
results in a final network population having a ≈20 % larger transitivity than
empirical. This is a deviation in the opposite direction as the neutral model,
which achieves only about half of the empirical transitivity. Note that in the
populations driven towards empirical values, the triangles and triples com-
prising the transitivity were still much lower than empirical, though higher
than in the neutral (nonevolved) networks.
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3. Degree Distribution. Driving the degree distribution towards empirical
achieves ≈80 % of empirical. This may be an artifact of the measure, as we
must summarize many different values (one for each observed degree) while all
other topological measures considered are a single value. Although one might
think that the size (number of edges), which is much lower in the neutral
model than in the empirical network, would be related to degree distribu-
tion (as we’ve measured it), driving size achieves the empirical size but does
not significantly impact the distance from the empirical degree distribution,
while driving the degree distribution does not achieve the empirical degree
distribution nor does it significantly impact size.

3.2 Non-Optimized Topological Properties that Trend Towards
Empirical Values

Topological values driven towards empirical had varying tendencies to draw neu-
tral measures towards empirical values. We calculated an overall distance from
the population’s topological values to empirical values (dp) by:

dp =

√√√√
8∑

i=1

(ln |vpi|)2

where vpi is the distance from empirical of topological property i in population
p (the values are shown in Table 1). The dp values are summarized in Table 2.
Each row represents a population as in Table 1, and “Distance from Empirical”
is dp.

As Table 2 summarizes, there are several topological characteristics which,
when driven towards empirical values, show better fits to the empirical model
than the neutral model. Driving the population towards triangles has the closest

Table 2. Aggregate logarithmic distance of normalized topological measures from
empirical

Directed Scale-free Erdős-Renýı

Measure seed seed

Triangles 1.22 1.48

Size 1.78 2.27

Transitivity 2.44 2.08

Char. Path Len. 2.59 2.84

Assortativity 2.74 3.00

Triples 2.83 1.87

neutral 2.90 4.61

Degree Dist 2.95 3.64

Diameter 3.06 4.05
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fit to empirical, as illustrated in Fig. 2 (top, center) by the several bars which
are within close proximity of the 1.0 line.

3.3 Variability of Topological Measures

We also measured the extent to which each topological property varied across
the different optimization regimes (Fig. 3). Specifically, Fig. 3 shows the stan-
dard deviations of each column in Table 1. Properties having low standard devi-
ations suggest stable measures which are more robust against the varying con-
ditions impacting the evolutionary model. Basing model evaluation on these
low-variance characteristics increases confidence that the model mechanics are
indeed relevant to the evolution of the network and not just a coincidental match
with more variable measures for the given model.

Reassuringly, the degree distribution–putatively the most-studied topologi-
cal property among biological networks–showed the least variability across the
different populations. At the other extreme, the assortativity is extremely sen-
sitive. Its instability can be seen in Table 1 where the value vacillates between
positive and negative values.

Triangles merit additional attention. As noted earlier, the model is unable to
approach the number of triangles found in the empirical network. At the same
time driving triangles towards empirical has the greatest success in coercing
other properties towards the empirical topology. If the stability of the measure
as shown in Fig. 3 remains, a relevant and specific modification to the model
would be one that generates a greater number of triangles.

Fig. 3. The standard deviation of each normalized topological value across all popula-
tions.

3.4 Correlation Among Topological Characteristics

Table 3 shows the correlation between pairs of topological characteristics for the
generated networks. Only one measure from each highly-correlated pair is infor-
mative with regard to evaluating model-generated networks against an empirical
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Table 3. Pearson correlation. Values above 0.5 and below −0.5 in bold

Scale-free seed graph

Trips Tris Trans Size Diam CPL Assort DD

Trips 1.00 0.19 -0.39 0.30 -0.25 -0.76 -0.44 -0.28

Tris 0.19 1.00 0.76 0.76 0.03 -0.19 0.61 -0.60

Trans -0.39 0.76 1.00 0.43 0.40 0.42 0.96 -0.35

Size 0.30 0.76 0.43 1.00 -0.27 -0.43 0.18 -0.86

Diam -0.25 0.03 0.40 -0.27 1.00 0.70 0.58 0.34

CPL -0.76 -0.19 0.42 -0.43 0.70 1.00 0.56 0.45

Assort -0.44 0.61 0.96 0.18 0.58 0.56 1.00 -0.15

DD -0.28 -0.60 -0.35 -0.86 0.34 0.45 -0.15 1.00

hpargdeesı́yneR-sődrE

Trips Tris Trans Size Diam CPL Assort DD

Trips 1.00 0.57 -0.06 0.75 -0.16 -0.81 -0.37 -0.52

Tris 0.57 1.00 0.76 0.84 -0.02 -0.38 0.50 -0.70

Trans -0.06 0.76 1.00 0.42 0.13 0.20 0.91 -0.45

Size 0.75 0.84 0.42 1.00 -0.12 -0.59 0.08 -0.86

Diam -0.16 -0.02 0.13 -0.12 1.00 0.61 0.33 0.17

CPL -0.81 -0.38 0.20 -0.59 0.61 1.00 0.46 0.44

Assort -0.37 0.50 0.91 0.08 0.33 0.46 1.00 -0.22

DD -0.52 -0.70 -0.45 -0.86 0.17 0.44 -0.22 1.00

network. By contrast, pairs showing little correlation would each provide inde-
pendent evidence of the plausibility of the model mechanics. Highly-correlated
properties in an accepted model may also suggest that these topological proper-
ties are closely-related in evolution.

Table 3 indicates that the number of triangles and the diameter are essentially
uncorrelated.

It is also notable that transitivity and assortativity are highly correlated
despite their high variability. Size and degree distribution on the other hand
have the least variability and are the most highly anticorrelated.

3.5 Improving the Evolutionary Model

The relative dearth of triangles, even when driven towards the empirical number
of triangles, reflects a limitation of the mechanics of this particular model. While
optimizing the number of triangles fails to produce enough triangles, it simul-
taneously brings other topological properties more closely to empirical values
than other topological properties. Additionally, triangles were among the most
stable measures. This suggests that incorporating mechanics that will increase
the number of triangles will significantly improve the model.

Evolutionarily, a greater number of triangles are produced when a homo-
meric (self-interacting) protein is duplicated [5]. The current model considers
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Table 4. Topological values observed as a proportion of empirical. Two rows are shown.
The first is the original model’s proportions. This row is the same row as the Neutral row
in Table 1. The second row are the proportions generated from neutral (non-optimized)
runs of the iSite model. Values are shown as proportions of empirical. A value of 1.0
represents perfect agreement with the empirical value. Each column is a topological
property measured.

Driving
property Trips Tris Trans Size Diam CPL Assort DD

Original 0.22 0.11 0.51 0.66 1.58 1.40 0.57 0.66

iSite 0.50 0.52 1.04 1.02 1.60 1.92 0.62 0.26

Legend:

Neutral Normal model run CPL Characteristic Path Length
Trips Triples Assort Assortativity
Tris Triangles DD Degree Distribution
Trans Transitivity Size Size (# edges)
Diam Diameter

each redundant interaction pair independently when determining interaction
loss, and uses a simple probability to add paralogous interactions (which sim-
ulates the duplication of a homomeric protein). A more biologically faithful
interpretation acknowledges that interactions are formed at specific sites on the
protein’s surface, and that these sites are heritable through duplication. The
iSite evolutionary model adds precisely this enhancement to the original model,
including support for homomeric interactions [7]. By eschewing independent loss
of interactions in favor of grouping interactions (including self-interactions) into
heritable sites when calculating interaction loss, the iSite model generates signif-
icantly more triangles. Table 4 shows the topological characteristics of generated
by both the original model and the iSite model as a proportion of the empirical
network. Nearly every topological characteristic of networks generated by the
iSite model is closer than the original model to the empirical network.

4 Conclusion

As empirical networks become more complete and correct, evolutionary network
models have a greater potential to enhance our understanding of the mecha-
nisms affecting evolution [3,7]. Driving topological features towards empirical
values, and feature interrelationship analysis provide network model builders
with additional insights into model behavior leading to more informed model
construction.

There are many strategies for improving an evolutionary model that fails
to achieve topological parity with empirical networks. These include adjusting
model parameter values, changing model mechanics, and finding evolutionary
phenomena to explain model discrepancies. These techniques can be informed
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by the systematic evaluation our approach provides of the capabilities and limi-
tations of a model to produce desired topological properties.

Unsurprisingly, driving individual topological properties towards empirical
values generates networks that generally do well in that property when compared
to empirical networks. More notable is the ability to identify:

1. the limitations of existing mechanics to achieve an empirical topological value
(for example, the original model is unable to attain the number of triangles
found in the empirical network),

2. individual topological characteristics which beneficially affect many other
characteristics,

3. the volatility of individual characteristics with regard to the model being
used, and

4. correlated changes among properties.

With this additional topological information, we can make more informed assess-
ments of the biological processes which might have the most relevant impact on
the evolution of biological networks.

A mathematical analysis of the interrelationships among a cohort of topolog-
ical characteristics is intractable in models striving for biological realism. A more
tractable approach is to identify biological processes to incorporate into models,
but this requires much trial and error. An alternative approach is needed. Our
method provides a simple mechanism for observing these topological interrela-
tionships which influence the evolution of protein interactions.
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13. Solé, R.V., Pastor-Satorras, R., Smith, E., Kepler, T.B.: A model of large-scale
proteome evolution. Advs. Complex Syst. 5, 43–54 (2002). http://www.citebase.
org/cgi-bin/citations?id=oai:arXiv.org:cond-mat/0207311

14. Tarassov, K., Messier, V., Landry, C.R., Radinovic, S., Molina, M.M.S., Shames, I.,
Malitskaya, Y., Vogel, J., Bussey, H., Michnick, S.W.: An in vivo map of the yeast
protein interactome. Science 320, 1465–1470 (2008). http://dx.doi.org/10.1126/
science.1153878

15. Thomas, A., Cannings, R., Monk, N.A.M., Cannings, C.: On the structure of
protein-protein interaction networks. Biochem. Soc. Trans. 31(Pt 6), 1491–1496
(2003). http://dx.doi.org/10.1042/

16. Thorne, T., Stumpf, M.P.H.: Graph spectral analysis of protein interaction network
evolution. J. R. Soc. Interface 12(108), 1–14 (2012)

17. Uetz, P., Giot, L., Cagney, G., Mansfield, T.A., Judson, R.S., Knight, J.R.,
Lockshon, D., Narayan, V., Srinivasan, M., Pochart, P., Qureshi-Emili, A., Li,
Y., Godwin, B., Conover, D., Kalbfleisch, T., Vijayadamodar, G., Yang, M.,
Johnston, M., Fields, S., Rothberg, J.M.: A comprehensive analysis of protein-
protein interactions in Saccharomyces cerevisiae. Nature 403(6770), 623–627
(2000). http://dx.doi.org/10.1038/35001009

18. Vázquez, A., Flammini, A., Maritan, A., Vespignani, A.: Modeling of protein inter-
action networks. ComPlexUs 1, 38–44 (2003)

19. Yu, H., Braun, P., Yildirim, M.A., Lemmens, I., Venkatesan, K., Sahalie, J.,
Hirozane-Kishikawa, T., Gebreab, F., Li, N., Simonis, N., Hao, T., Rual, J.F.,
Dricot, A., Vazquez, A., Murray, R.R., Simon, C., Tardivo, L., Tam, S., Svrzikapa,
N., Fan, C., de Smet, A.S., Motyl, A., Hudson, M.E., Park, J., Xin, X., Cusick,
M.E., Moore, T., Boone, C., Snyder, M., Roth, F.P., Barabási, A.L., Tavernier, J.,
Hill, D.E., Vidal, M.: High-quality binary protein interaction map of the yeast
interactome network. Science 322, 104–110 (2008). http://dx.doi.org/10.1126/
science.1158684

http://dx.doi.org/10.1093/bioinformatics/btq623
http://dx.doi.org/10.1093/bioinformatics/btq623
http://stacks.iop.org/1367-2630/7/145
http://stacks.iop.org/1367-2630/7/145
http://dx.doi.org/10.1073/pnas.061034498
http://dx.doi.org/10.1073/pnas.0409515102
http://dx.doi.org/10.1073/pnas.021544898
http://dx.doi.org/10.1093/bioinformatics/btl301
http://dx.doi.org/10.1093/bioinformatics/btl301
http://www.citebase.org/cgi-bin/citations? id=oai:arXiv.org:cond-mat/0207311
http://www.citebase.org/cgi-bin/citations? id=oai:arXiv.org:cond-mat/0207311
http://dx.doi.org/10.1126/science.1153878
http://dx.doi.org/10.1126/science.1153878
http://dx.doi.org/10.1042/
http://dx.doi.org/10.1038/35001009
http://dx.doi.org/10.1126/science.1158684
http://dx.doi.org/10.1126/science.1158684


Algorithms for Regular Tree Grammar
Network Search and Their Application

to Mining Human-Viral Infection Patterns

Ilan Smoly1, Amir Carmel1, Yonat Shemer-Avni2, Esti Yeger-Lotem3(B),
and Michal Ziv-Ukelson1(B)

1 Department of Computer Science, Ben-Gurion University of the Negev,
Beer Sheva, Israel

{smolyi,karmela,michaluz}@cs.bgu.ac.il
2 Department of Virology, Ben-Gurion University of the Negev, Beer Sheva, Israel

yonat@bgu.ac.il
3 Department of Clinical Biochemistry and Pharmacology,

Ben-Gurion University of the Negev, Beer Sheva, Israel
estiyl@bgu.ac.il

Abstract. Network querying is a powerful approach to mine molecular
interaction networks. Most network querying tools support queries in the
form of a template sub-network, in case of topology-constrained queries,
or a set of colored vertices in case of topology-free queries. A third app-
roach is grammar-based queries, which are more flexible and expressive
as they allow the addition of logic rules to the query. Previous grammar-
based querying tools defined queries via string grammars and identified
paths in graphs. In this paper, we extend the scope of grammar-based
queries to regular tree grammar (RTG), and the scope of the identified
sub-graphs from paths to trees. We introduce a new problem and pro-
pose a novel algorithm to search a given graph for the k highest scoring
sub-graphs matching a tree accepted by an RTG. Our algorithm is based
on dynamic programming and combines an extension to k-best parsing
optimization with color coding. We implement the new algorithm and
exemplify its application to mining the human-viral interaction network.
Our code is available at http://www.cs.bgu.ac.il/∼smolyi/RTGnet/.

1 Introduction

Molecular interaction networks have become a prominent resource for inferring
protein functions, detecting cellular processes, predicting disease pathways, and
more [5]. A powerful approach to mine these networks is via network querying:
Given a query sub-network, network querying tools identify instances within the
network that match the query. Previous network querying tools mostly support
queries in the form of a “template” sub-network that is confined to a specific topol-
ogy, such as paths [33], trees [28,30] or graphs with bounded tree-width [10,30].
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Other approaches, denoted topology free, support queries in the form of a set of
colors, and seek in the network vertices with matching colors that can be connected
by a spanning tree [7,23].

Here we focus on a third approach to network querying, denoted grammar-
based queries. Such queries are given a grammar as input, and seek in the net-
work sub-graphs accepted by the grammar. On one hand, grammar-based queries
are more flexible than other approaches because neither the exact topology nor
the exact set of colors are specified in advance. On the other hand, they are more
expressive as they allow the addition of logic rules to the query. Previous works in
this area defined queries via string grammars, including regular expressions [12,22]
and context-free grammars [31], and identified paths in graphs. Here, we extend
the scope of the grammars to regular tree grammars (RTGs), and the scope of the
identified sub-graphs from paths to trees.

Note that even the most basic problem variant, that of finding a path in a
network based on a regular grammar query descriptor, is generally intractable
[26]. Thus, previous grammar-based search approaches either bounded the size
of the sought paths [12] or applied inadmissible heuristics such as seed-and-
extend [22]. In our solution, we also bound the size of the sought subtrees.

We introduce a new problem and propose a novel algorithm to search a given
graph for the k highest scoring sub-graphs, of size bounded by m, matching a
tree accepted by a regular tree grammar (RTG). Our proposed approach is based
on a two-stage dynamic programming algorithm combining RTG k-best parsing
with network search. One challenge encountered here is that RTGs recognize
ordered trees, while the subtrees in the graph to be searched are unordered.
We handle this by incorporating redundancy-avoidance logic and show how to
extend an efficient k-best parsing algorithm [19] to support it. Another chal-
lenge is that in order to support the bottom-up parsing employed in this paper,
we need to use a normalized form of the grammar, similarly to the way the
CYK algorithm parses context-free string grammars in Chomsky normal form
(CNF) [24]. For this purpose, we harness a previously known binarization app-
roach to RTG parsing [25]. To handle the exponentially growing search space,
and to avoid cycles, we employ color-coding [2], which was also used by other
network querying tools [7,10,30,33], and show how to probabilistically bound
the number of color-coding iterations needed to compute the k-best subtrees for
a given error threshold.

We implement the proposed algorithm in a software package, denoted
RTGnet, and demonstrate its usage in two separate applications which demon-
strate the expressive power of RTGs and the topological flexibility of the identi-
fied patterns. Due to space constraints, supplementary materials including some
of the figures and proofs to all theorems, are deferred to an appendix that is
available at http://www.cs.bgu.ac.il/∼smolyi/RTGnet/

2 Regular Tree Grammars and Curry-Encoding

The patterns we seek are ordered rooted trees, to be recognized by Regular Tree
Grammars [9].

http://www.cs.bgu.ac.il/~smolyi/RTGnet/
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Definition 1. A Regular Tree Grammar (RTG) is a tuple A = {N,Σ,P, S},
where N is a finite set of non-terminal symbols, Σ is an alphabet of terminal
symbols, S is the initial non-terminal, and P is a finite set of productions of type
X → a(R), where R is a regular expression over N and a ∈ Σ.

Each production rule X → a(R) defines a vertex x labelled a, while R
expresses the non-terminal symbols that are used to recursively generate the
child subtrees of x. If R = ε, then x is a leaf. Let T (Σ) denote the set of all
ordered, rooted trees with vertex labels in Σ. An ordered rooted vertex-labelled
tree τ ∈ T (Σ) is accepted by A if there is a chain of consecutive derivations
of production rules from P that starts in S and generates τ . The language
L(A) ⊆ T (Σ) is the set of all trees accepted by A. Regular Tree Languages
(RTL) is the class of tree languages that are generated by RTGs.

RTGs are classically categorized as either ranked or unranked. Ranked RTGs
generate trees for which there is a global bound on the number of children each
vertex may have. Unranked RTGs, which are the more general case supported by
our framework, have no such bound. For our bottom-up RTG parsing, we harness
a recursive deterministic binarization approach, denoted curryfication [8] (see
Figure S1). This approach encodes an unranked tree τ into a ranked binary tree,
denoted curry(τ), as follows. Given a tree τ = a(τ1, . . . , τn) ∈ T (Σ), curry(τ) =
@(curry(τ ′), curry(τn)) with τ ′ = a(τ1, . . . , τn−1). If n = 0 then curry(τ) = a.
The extension operator @ is used to denote the labels of the internal vertices of
the binarized trees, while their leaves correspond to the vertices of the original
tree. Correspondingly, the given RTG A is also converted to a Curry-encoded
RTG (defined below), curry(A), that accepts the curry encodings of the trees in
L(A), such that the bijection curry(L(A)) = L(curry(A)) is obeyed [8,9].

Definition 2. A Curry-Encoded Regular Tree Grammar is a tuple A =
{N,Σ,P, S} where N is a finite set of non-terminal symbols, Σ is an alpha-
bet of terminal symbols, S is the initial non-terminal, and P is a finite set of
productions of type X → @(Y,Z) or X → a, where X,Y,Z ∈ N and a ∈ Σ and
@ /∈ Σ.

In [8,9] it is shown that any unranked RTG A can be translated in linear time
to curry(A) via the construction of the corresponding deterministic Stepwise
Automaton. Furthermore, it is shown that for any recognizable RTL L ⊆ T (Σ)
there is a unique minimal deterministic Stepwise Automaton accepting L [25].

Based on this, in the rest of this paper we assume that the input grammar A
is in Curry-Encoded form, and denote by g the number of its production-rules.
The binarization of the candidate trees will be done during the parsing process.
Also, for convenience, we write X → Y @Z when X → @(Y,Z).

3 The RTG Network Parse-and-Search Problem

Given an RTG A of size g, a directed vertex-labeled graph G = (V,E), and
an integer parameter m. Let T [G,A,m] be a set of labeled trees, such that for
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any tree τ ∈ T [G,A,m]: (1) τ ∈ L(A), (2) |τ | ≤ m, and (3) τ is a subtree
in G. Let s(τ) ∈ � denote a predefined monotonic scoring scheme on τ , where
� denotes the real numbers. Let Maxk

s(T [G,A,m]) denote the subset of k-best
scoring subtrees in T [G,A,m] according to s. Our search is based on the following
optimization problem.

Problem 1 (RTG Network Parse-and-Search Problem). Given an RTG A =
{N,Σ,P, S}, a monotonic scoring scheme s, a graph G = (V,E), and two inte-
ger parameters m and k. The RTG Network Parse-and-Search Problem is to
compute Maxk

s(T [G,A,m]).

The problem of deciding whether a given ordered rooted tree is accepted by
a given RTG can be solved in polynomial time. However, solving Problem1
entails extending RTG parsing to handle, as input, a directed graph rather than
an ordered rooted tree and to support a local RTG derivation-tree search rather
than just tree parsing.

To handle the exponentially growing search space, and to avoid cycles, we
apply iterative randomized color-coding to our search space [2]. Color-coding is
a probabilistic approach that bounds the error expectancy by executing multiple
graph coloring iterations. In each iteration, every vertex in the queried network
is assigned a color chosen randomly out of m colors. The colored network is then
searched for colorful subgraphs in which each color appears exactly once. Thus,
instead of maintaining an enumeration space of size

(
n
m

)
, due to all possible

selections of subsets of size m from among n vertices, one can maintain a search
space of size 2m enumerating sets of m distinct colors in considerably lower
complexity. In each color-coding trial, the probability to obtain a certain tree
of the sought k-best trees is m!

mm ≥ e−m (i.e. the probability that a tree of m
vertices is colorful). The following theorem, which is proven in the Appendix,
bounds the number of required color-coding iterations.

Theorem 1. For any ε > 0, after em ln(k
ε ) iterations, the output list contains

all the k-best subtrees with error probability ≤ ε.

We next formalize the work per color-coding iteration, which will be the
subject of the next section. Let C : V → {1, . . . , m} be a coloring function.
We define TC [G,A,m] to be a subset of T [G,A,m], such that for any tree
τ ∈ TC [G,A,m], each vertex of τ is distinctly colored according to C (i.e. τ
is colorful). Let Maxk

s(TC [G,A,m]) denote the subset of k-best scoring subtrees
in TC [G,A,m] according to s.

Problem 2 (RTG Colored Network Parse-and-Search Problem). Given an RTG
A = {N,Σ,P, S}, a coloring function C, a monotonic scoring scheme s, a vertex-
labelled graph G = (V,E), and two integer parameters m and k. The RTG
Colored Network Parse-and-Search Problem is to compute Maxk

s(TC [G,A,m]).

An overall illustration of our framework for solving Problem 1, by solving
Problem 2 within color-coding iterations, is shown in Fig. S2.
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Across color-coding trials, we maintain a global sorted list of size k, which
stores the trees corresponding to the k-best derivations found so far. After each
color-coding iteration, this list is updated with the k-best derivations yielded by
that iteration. This is done in O(km log k) time and O(m · k) space, i.e. without
increasing the overall time and space complexities of the algorithm we propose
for solving Problem 2, which will be described and analyzed in the next section.

4 Algorithms for Solving Problem 2

In this section we describe a two-stage algorithm for solving Problem 2. We for-
mulate our dynamic programming algorithm as an instance of optimal deriva-
tion in the ordered hypergraph framework [13,19,27,29]. In the first stage of our
algorithm (Sect. 4.1), the curryfied representations of all the candidate subtrees
within the graph G are constructed and encoded in an ordered acyclic hyper-
graph. Then, in the second stage (Sect. 4.2), the hypergraph is processed again to
compute the k-best scoring subtrees in the hypergraph.

4.1 Stage 1: Hypergraph Construction and Its Optimal Derivation

A directed ordered hypergraph is a pair H = (VH , EH), where VH is the set of
hypernodes, and EH is the set of ordered, directed hyperedges. Each hyperedge
e is a pair 〈head(e), tail(e)〉, where head(e) is a hypernode called the head of
the hyperedge and tail(e) is an ordered pair of hypernodes, called the tail of
the hyperedge. Denote by ti(e) the i’th element of the tail of e. Note that the
hyperedges in our approach are all binary. Thus, henceforth we write a hyperedge
with head h and tail t1,t2 as (h ← 〈t1, t2〉).

Given an RTG A = {N,Σ,P, S}, a directed graph G = (V,E), a bound m
on the size of the sought trees, and a coloring function C of vertices in the input
graph. We define the hypergraph in our framework as follows:

Definition 3. A hypernode x ∈ VH is of the form (W, v, q), where W ∈ N ,
v ∈ V , q ⊆ {1, . . . , m} and C(v) ∈ q.

A hypernode x = (W, v, q) represents a class of subtrees Tx from G, such that
for each τ ∈ Tx, (1) τ is rooted in v, (2) τ is composed of vertices with distinct
colors from q, and (3) τ matches (in terms of both topology and vertex labels) a
tree obtained by consecutive derivations of production-rules from P , that start
with the non-terminal W .

Definition 4. A hyperedge e ∈ EH is of the form (z ← 〈x, y〉), such that
x = (X,u, q′), y = (Y, v, q′′), z = (Z, u, q′ ∪ q′′), and the following conditions
hold:

1. Z → X@Y ∈ P
2. (u, v) ∈ E
3. q′ ∩ q′′ = ∅
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Figure 1 exemplifies the construction of hyperedges incoming to a specific
hypernode (x1), for a given colored vertex-labelled graph G = (V,E) (Fig. 1.A),
and a given RTG A = {N,Σ,P, S}. Two hyperedges (Fig. 1.B, black arrows)
are incoming to hypernode x1, satisfying all three conditions: (1) (u, v) ∈ E, (2)
W → Y @Z ∈ P , and (3) the tail hypernodes contain disjoint sets of colors. The
hyperedge (x1 ← 〈x2, x5〉) is not constructed, since both x2 and x5 contain the
color pink, in contradiction to condition 3.

We call the set of hyperedges, with x as their head, the backward star of
x, and denote it by BS(x) = {e ∈ EH |x = head(e)}. Let LH ⊆ VH denote
the set of leaf nodes of H. Each hyperedge e ∈ EH and each leaf hypernode
� ∈ LH , is associated with weights c(e), c(�). The function c : EH ∪ LH → �
could be grammar-based, reflecting a derivation-rule specific scoring, or network-
based, reflecting the confidence level of the corresponding edges or vertices in the
network, or alternatively some combination of the two strategies. For e ∈ EH ,
let sc(e) denote a monotonic scoring scheme according to c. For each hyperedge
e ∈ EH , sc(e) computes its score based on the score of the optimal derivation
of its tails. The score of the optimal derivation of a hypernode x in an acyclic,
directed, binary hypergraph H is denoted D∗(x), defined as:

D∗(x) =

{
c(x) v is a leaf

maxe∈BS(x) sc(e) otherwise

In our applications, sc is an addition function, defined as follows: sc(e) =
c(e) + D∗(t1(e)) + D∗(t2(e)).

Based on the above definitions, Stage 1 of our algorithm applies an agglomera-
tive bottom-up construction of the hypergraph, while simultaneously computing
D∗(x) for all x ∈ H.

The following theorem gives the time and space complexities for Stage 1
of our algorithm. The proof is given in the Appendix, and is based on some
principles from [7,30].

Theorem 2. The time complexity of Stage 1 of the proposed algorithm for
solving Problem 2 is O(mg|E|3m), and the space complexity is O(|EH |) =
O(g|E|3m).

4.2 Stage 2: Computing K-Best Scoring Trees

The hypernodes VH of the hypergraph H, constructed in stage 1, encode all
trees that are accepted by the grammar A, together with the subtrees used to
construct them. To extract the k-best scoring trees from H, we extend the k-best
optimization algorithm, FindKBest, developed by Huang and Chiang [19].

For exemplifications of our next definitions, we refer the reader again to
Fig. 1.B. Let D(x) denote the list of the k-best derivations of a hypernode x
(gray arrows) and Di(x) denote the i’th best derivation of x. (For example, in
the figure, the leftmost hypernode (x2) shows two derivations, each one consisting
of pink and yellow vertices, while the next hypernode (x3) has one derivation,
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Fig. 1. Example of a step in the construction of the hypergraph H.

consisting of a blue vertex). Each derivation in D(x) is a tuple, (e, (i, j)) where
e = x ← 〈t1, t2〉 and (i, j) is a pair of indices specifying two sub-derivations,
Di(t1) and Dj(t2), respectively. Each derivation corresponds to a specific tree
in Tx. For example, the third derivation of hypernode x1 in the figure is marked
(x1 ← 〈x2, x3〉, (2, 1)).

To compute D(x) for all hypernodes, Algorithm FindKBest (see pseudocode
in Algorithm 1) is executed for each hypernode x ∈ VH in topological order,
starting from the leaves and moving up the hypergraph. The algorithm main-
tains a priority queue cand[x] of potential candidates to be added to D(x), sorted
in decreasing score order. Initially, cand[x] is populated with the k top-scoring
derivations among all hyperedges in BS(x). This is achieved by calling the pro-
cedure GetCandidates (line 2 of the pseudocode). If |D(x)| < k, then cand[x] is
further populated iteratively. In each such iteration, the top derivation (e, (i, j))
in cand[x] is removed from the priority queue and added to D(x). Then, its
neighboring derivations, (e, (i, j +1)) and (e, (i+1, j)) are inserted into cand[x].
This procedure continues until |D(x)| = k or until all candidate derivations are
exhausted.

The correctness of Algorithm FindKBest is based on the monotonicity of sc,
by which for any derivation (e, (i, j)), the next-best scoring candidate derivation
following (e, (i, j)) is either (e, (i, j + 1)) or (e, (i + 1, j)). This is the essential
observation behind the cube pruning and cube growing approaches [16,19] that
is crucial to correctly, yet efficiently, enumerate the k-best derivations.

One obstacle encountered in our application is that the trees in G are
unordered while the trees defined by RTGs are ordered. This means that any
given subtree τ from G could have a one-to-many mapping to several top-
scoring derivations in H. These derivations correspond to ordered trees which
are isomorphic under Rooted Unordered Isomorphism. (In Rooted Unordered
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Algorithm 1. FindKBest(x, k)
Input: A hypernode x and an integer k.
Output: Vector D(x) of k-best scoring derivations rooted in x.

1 cand[x] ← ∅
2 GetCandidates(x, αmk)
3 D(x) ← ∅
4 B(x) ← ∅
5 while |cand[x]| > 0 and |D(x)| < k do
6 (e, (i, j)) = cand[x].dequeue()
7 if (e, (i, j)) �∈ B(x) then
8 D(x).insert((e, (i, j)))
9 B(x).insert((e, (i, j)))

10 cand[x].insert(e, (i + 1, j))
11 cand[x].insert(e, (i, j + 1))

Isomorphism, trees τ1 and τ2 are isomorphic if τ1 can be obtained from τ2 by
subtree reordering operations). As some or all of these isomorphic derivations
could be reported among the k-best derivations, this undermines the correctness
of the algorithm as a solution to Problem 2.

To prevent this from happening, we assign to each vertex v ∈ G a unique
integer id, and define a unique canonical encoding for each candidate derivation,
representing its corresponding subtree as a parentheses-annotated sequence over
lexicographic orderings of its vertex ids. This property ensures that any two
isomorphic trees have the same canonical encoding (see Fig. S3).

The canonical encoding logic is integrated into Algorithm FindKBest (line
7 of the pseudocode), ensuring that, for each hypernode x and for any two
isomorphic trees τ1 and τ2 that are induced by two distinct derivations and
are competing for D(x), only a single, highest-scoring representative is kept.
It is implemented as follows. For each hypernode x, we maintain an additional
binary-search tree B(x) containing pointers to all elements in D(x), sorted by
lexicographic order of their canonical codes. When a new candidate derivation
is about to be added to D(x), we first search for its canonical encoding in B(x).
If it is found, the new derivation is not added to D(x).

The work per iteration of Algorithm FindKBest is computed as follows. Con-
structing the canonical representation of a subtree can be naively implemented
in O(m) time, while operations on B(x) take O(mlogk) time. Moreover, since
the candidate subtree is not necessarily added to D(x) (due to the fact that an
isomorphic tree could already be in D(x)), the number of iterations of the while
loop in Algorithm FindKBest (line 5 of the pseudocode) is no longer limited to
k, as was the case in the original algorithm. However, the following observation
helps to bound the number of redundant iterations:

Lemma 1. For hypernode x = (X, v, qx), the number of distinct incoming
derivations that may produce the same tree (up to isomorphism) is bounded by
m ·αX , where αX denotes the number of different production rules derived by X.
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This leads to the following theorem which bounds the time and space com-
plexities of Stage 2 of the algorithm.

Theorem 3. The time complexity of Stage 2 of the proposed algorithm for
solving Problem 2 is O(g · |E| · 3m + g · |V | · 2m · km(m log k + log α)), where
α = maxX∈N αX . The space complexity is O(m ·k · |VH |) = O(m ·k · |N | · |V | ·2m).

To obtain the k-best trees which are the final solution to Problem 2, we
add to the hypergraph H a pseudo-root hypernode, denoted vp, such that all
hypernodes in H that are marked with the initial symbol S are in the backward
star of vp. After the computation of Stage 2, the k-best list of vp will contain
the k-best trees solving Problem 2.

5 Results

We demonstrate the power of RTG queries in two applications, both of which
mine the human protein interaction network for viral infection patterns. The first
application exemplifies the expressive power of grammar-based queries. The sec-
ond application exemplifies the ability to score patterns as part of the grammar.

Our first query aimed to identify temporal responses of human cells to infec-
tion by the flu virus Influenza Type A. This is a single-stranded, negative-sense
segmented RNA virus that infects hundreds of millions of people and results
in numerous hospitalizations and deaths world-wide [6]. The transcriptional
response to infection by the virus or its components was measured across time
in human primary bronchial epithelial cells [32]. To gain a mechanistic insight
into the cellular response to infection, we mapped these data onto a network
representing physical interactions between human proteins. We defined a query
that searches this network for temporal pathway cascades: Starting with a pro-
tein that was up-regulated at the earliest time-point following infection, the
cascade proceeds iteratively with one or more proteins that were up-regulated
at the same or the subsequent time point, while requiring that the two proteins
interact with each other (Fig. 1.A). To prioritize cascades that are biologically
relevant, we scored instances based on the sum of transcript levels of the pro-
teins in the cascade and the reliability of their interactions. Using RTGnet we
identified the top 1,000 up-regulated cascades (ε = 0.05) involving at most nine
genes, which required 80,248 iterations of the color-coding procedure.

We demonstrate the mechanistic insight that can be gained from this query
by discussing the top-scoring up-regulated cascade (Fig. 2.A). This top-most
cascade delineated important defence steps in the host response to influenza
infection, starting from detection of viral particles, inhibition of their produc-
tion, and ending with cell death. The cascade starts with up-regulation of ISG15,
an immune-related ubiquitin-like protein that recruits its interacting partners to
fight viral infection [35], and two interferon-induced proteins, IFIT1 and IFIT2,
which target viral RNA and the synthesis of viral proteins [1]. It follows with
up-regulation of MX1, an interferon-induced GTPase with a known antiviral
activity, and DDX85 (also known as RIG-I), a receptor activating a cascade of
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Fig. 2. (A) The maximal-scoring instance of the temporal cascade following influenza
infection. Protein colors denote the first time point at which they were up-regulated.
(B) The percentage of proteins annotated to ‘Immune system process’ in the k top-
scoring subtrees increases as k is decreased from 1,000 to 1. (C) A schematic view
of the TGF-β signaling pathway showing that distinct viruses interact with different
proteins in the pathway. (D) Maximal-scoring subtree per virus (and score) in the TGF-
β demonstrating the power of an RTG to define various patterns in a single grammar
(Color figure online).

antiviral responses, whose conjugation with ISG15 is essential for the initiation
of this pathway [3]. Up-regulated at the consecutive time point was TRIM25,
forming the DDX58-TRIM25 complex that mediates the DDX58-ISG15 conju-
gation [14]. Up-regulated at the fourth time point was RBCK1, which regulates
the activity of the DDX58-TRIM25 complex [20], and TNF, that together with
RBCK1 initiates TNF-mediated gene induction [18]. This is followed by up-
regulation of RIPK1, that initiates inflammatory and cell-death cascades upon
TNF-receptor signaling [11]. This cascade is especially interesting since several
of its proteins interact with the virus: ISG15 and MX1 interact with influenza’s
NS1 and NP proteins, correspondingly, to inhibit viral replication [17,34], and
TRIM25 was found be to be targeted by influenza’s NS1 protein to evade recogni-
tion of viral RNA by RIG-I [15]. Lastly, the silencing of ISG15, IFIT2, TRIM25
or RBCK1 was found to promote influenza life-cycle and replication [32]. To
assess our prioritization scheme we computed the fraction of proteins annotated
to the immune system (GO:0002376) [4] across different values of k (Fig. 2.B).
This fraction increased as we limited k, and was enriched in the top-ranking
subtree relative to other subtrees (p = 0.0125, Fisher’s exact test)

Our second query aimed to identify human pathways that a specific virus
targets in multiple, related points, as these pathways are likely to be of high
importance to its survival and replication. Therefore, we designed a query that
accepted subtrees in which several proteins in the pathway interact with each
other and with the virus, either directly or via a mediator protein. The accepted
subtrees were scored as part of the grammar according to the viral interactions
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of pathway proteins (see Appendix for details): Proteins with direct interactions
scored high (+4), while proteins with indirect interactions scored according to
the number of mediator proteins (+1 for each mediator protein). Note that the
topology of the subtrees was not predefined. To implement this query we aug-
mented the human protein interaction network described above with data of pro-
tein interactions between human and viral proteins for six viruses: Epstein-Barr
virus (EBV), hepatitis C virus (HCV), human papillomavirus (HPV), polyoma
virus (PYV), human immunodeficiency virus (HIV1), and Influenza A virus sub-
type H1N1 (H1N1). These viruses were selected because they are evolutionarily
remote and their interactions with human proteins were relatively mapped. Asso-
ciations of human proteins to cellular pathways were extracted from KEGG [21].
As proof-of-concept we focus on the transforming growth factor-β (TGF-β) sig-
naling pathway that regulates cell growth and differentiation, which is crucial
for replication of viruses that establish persistent (chronic or latent) infections.
Indeed, the only virus without a high-scoring instance was H1N1, a virus that
does not establish such persistent infections (Fig. 2.C). Top-scoring instances
were identified for all other viruses and had distinct topologies, demonstrating
the ability of RTGs to define flexible patterns with a single query (Fig. 2.D).
Results pertaining to other pathways are described in the Appendix for lack of
space.

The instances we found could have been identified by other types of network
querying approaches, though they would require hard-tailoring of the application
to ensure that all specifications are followed. RTGnet on the other hand offers a
general framework, in which various such queries can be expressed and scored.

6 Discussion

We introduce a novel framework, RTGnet, that extends the class of grammar-
based queries that can be efficiently searched within a network to include all
languages defined by RTGs, and produces the list of k-best results. We demon-
strated the capabilities of RTGnet in two applications that highlight the general-
ity of the tool and the topological flexibility of the identified instances. The RTG
search modelling that we suggest is particularly handful in rich networks with
many vertex-labels, enabling the design of more expressive grammars. Another
advantage of our framework is the ability of k-best optimization to identify a
space of near-optimal solutions, making them suitable for learning stochastic pro-
duction scores, given a reliable source of training data. Future extensions could
include the derivation and usage of more informed scoring schemes, more com-
plex grammars to express the queries, and the extension of tree-based instances
to general sub-networks.
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Abstract. Tree-oriented methods for inferring orthology and paralogy
relations between genes are based on reconciling a gene tree with a
species tree. On the other hand, many tree-free methods, mainly based
on sequence similarity, are also available. The link between orthology
relations and gene trees has been formally considered recently from the
angle of reconstructing phylogenies from orthology relations. Here, we
rather consider this link from a correction point of view. While a gene
tree induces a set of relations, the converse is not always true, as a set
of relations is not necessarily in agreement with any gene tree. How can
we minimally correct an infeasible set of relations? On the other hand,
given a gene tree and a set of relations, how to minimally correct a gene
tree in order to fit the set of relations? In this paper, various objective
functions are considered for the minimality criterion, among them the
Robinson-Foulds distance between the initial and corrected gene tree.
All considered problem variants are shown to be NP-complete.

1 Introduction

Genes are the molecular units of heredity, holding the information to build and
maintain cells. In the course of evolution, they are duplicated, lost, and passed
to organisms through speciation. Genes originating from the same ancestral
copy are called homologs. They are usually inferred from sequence similarity
and grouped into Gene Families. Two homologous genes are orthologous if their
parental origin is a speciation, and paralogous if it is a duplication. From the
orthology conjecture, orthologs tend to be more similar in function than par-
alogs [29]. This is a major motivation for inferring gene evolution, as it is a
prerequisite for functional prediction purposes.

The tree-based method requires to build, classically from a DNA or protein
sequence alignment, a phylogenetic tree for the considered gene family. Reconcil-
iation [12] with the species tree then allows to label internal nodes as duplications
and speciations, inducing a full orthology and paralogy set of relations between
gene pairs. On the other hand, tree-free orthology detection methods are also
available. They are based on gene clustering according to sequence similarity, (cf.
e.g. the COG database [34], OrthoMCL [24], InParanoid [3], Proteinortho [22]),
synteny [20,21] or functional annotation of genes [7]. Only partial sets of relations
are usually inferred from these methods.
c© Springer-Verlag Berlin Heidelberg 2015
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DOI: 10.1007/978-3-662-48221-6 5
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Recent papers have been dedicated to the formal study of the link between
trees and orthology/paralogy relations (we just say “relations” in the following)
[15,16]. Given a gene family Γ and a set C of pairwise relations, can we recon-
struct a labeled gene tree for Γ inducing C? The question can be subdivided into
two parts: 1. Is C satisfiable, i.e. is there an event-labeled gene tree G in agree-
ment with C? However satisfiability is not sufficient to ensure the possibility for
the relation set to reflect a true history, as nodes of G labeled as speciations can
be contradictory. This raises the second question; 2. Is there an event-labeled
gene tree G which is S-consistent, i.e. obtained from reconciliation, with a species
tree S? A simple characterization of satisfiability is given in [15] in the case of
C being a full set of relations (i.e. each pair of genes of Γ is in C). Moreover,
a polynomial-time algorithm can be devised to check for S-consistency [1,17].
In [19], we generalized these results to partial relations.

In this paper we explore the link between relations and trees for the purpose of
relation and tree correction. Several gene tree databases from whole genomes are
available, including for instance Ensembl Compara [36], Hogenom [30], Phog [8],
MetaPHOrs [31], PhylomeDB [18], Panther [26]. However, due to various lim-
itations such as alignment errors, systematic artifacts of inference methods or
unsufficient differentiation between sequences, trees are known to contain errors
and uncertainties. Consequently, a great deal of effort has been put towards tools
for gene tree editing [5,6,9,13,14,33,35]. Most of them are based on selecting,
in a neighborhood of an input tree, one best fitting the species tree.

Recently, we developed the first algorithm for gene tree correction using
orthology relations [20]. Here we address, from a complexity point of view, the
more general problem of correcting a gene tree according to a set of orthology
and paralogy relations. Two objective functions are considered: the number of
unchanged relations and the number of unchanged clades (the Robinson-Foulds
distance [32]). Conversely, we also address the problem of correcting a set of
relations so that it represents a valid history in terms of an S-consistent gene
tree. Two criteria are considered: maximize the number of unchanged relations,
and minimize the number of genes that should be removed for the relation set
to be S-consistent. These problems are all shown to be NP-complete.

We introduce the notations and known results in Sect. 2, and show the NP-
completeness of two relation correction problems in Sect. 3, namely the Minimum
Edge-Removal Consistency and Minimum Node-Removal Consistency problems. In
Sect. 4, we then provide analogous complexity results for two gene tree correction
problem: the Maximum Homology Correction and the Maximum Clade Correction
problems. Algorithmic avenues are discussed in Sect. 5. Due to space constraints,
some of the proof have been relegated to Supplementary materials, which can be
accessed at http://www-ens.iro.umontreal.ca/∼lafonman/en/publications.php.

2 Trees and Orthology Relations

All trees considered in this paper are assumed to be rooted. We also assume
that trees have no nodes of degree 2, except possibly the root. Given a set X,

http://www-ens.iro.umontreal.ca/~lafonman/en/publications.php
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a tree T for X is a tree whose leafset L(T ) is in bijection with X. We denote
by V (T ) the set of nodes and by r(T ) the root of T . Given an internal node u
of T , the subtree rooted at u is denoted Tu and we call the leafset L(Tu) the
clade of u. A node u is an ancestor of v if u is on the (inclusive) path between v
and the root, and we then call v a descendant of u. If u and v are connected by
an edge of T , then v is a direct descendant of u. We denote by ch(u) the set of
direct descendants (children) of u. The lowest common ancestor (lca) of u and
v, denoted lcaT (u, v), is the ancestor common to both nodes that is the most
distant from the root. We say that u and v are separated iff lcaT (u, v) /∈ {u, v}
(i.e. none is an ancestor of the other). We define lcaT (U) analogously for a set U
of nodes. Let L′ be a subset of L(T ). The restriction T |L′ of T to L′ is the tree
with leaf set L′ obtained from the subtree of T rooted as lcaT (L′) by removing
all leaves that are not in L′, and all internal nodes of degree 2, except the root.
Let T ′ be a tree such that L(T ′) = L′ ⊆ L(T ). We say that T displays T ′ iff
T |L′ is label-isomorphic to T ′.

2.1 Evolution of a Gene Family

Species evolve through speciation, which is the separation of one species into
distinct ones. A species tree S for a species set Σ represents an ordered set of
speciation events that have led to Σ: an internal node is an ancestral species
at the moment of a speciation event, and its children are the new descendant
species. Inside the species’ genomes, genes undergo speciation when the species
to which they belong do, but also duplications, and losses (other events such
as transfers can happen, but we ignore them here). A gene family is a set of
genes Γ accompanied by a mapping function s : Γ → Σ mapping each gene to
its corresponding species. The evolutionary history of Γ can be represented as
a node-labeled gene tree for Γ , where each internal node refers to an ancestral
gene at the moment of an event (either speciation or duplication), and is labeled
as a speciation (Spec) or duplication (Dup) accordingly.

Formally, we call a DS-tree for Γ a pair (G, evG), where G is a tree with
L(G) = Γ , and evG : V (G) \ L(G) → {Dup, Spec} is a function labeling each
internal node of G as a duplication or a speciation node (we drop the G subscript
from evG when it is clear from the context). Given a species tree S, the LCA-
mapping function sG maps each gene, ancestral or extant, to a species as follows:
if g ∈ L(G), then sG(g) = s(g); otherwise, sG(g) = lcaS({s(g′) : g′ ∈ L(Gg)}).
An example is given in Fig. 1, where the label of each node of G represents its
LCA-mapping with respect to S.

According to the Fitch [11] terminology, we say that two genes x, y of Γ are
orthologous in G if ev(lcaG(x, y)) = Spec, and paralogous in G if ev(lcaG(x, y)) =
Dup. We denote by O(G), respectively P(G), the set of all gene pairs that are
orthologous, respectively paralogous in G. By xy ∈ O(G) we mean {x, y} ∈ O(G)
(the same applies for P(G)). In Fig. 1, a1c1 ∈ O(G) while a1b1 ∈ P(G). We say
that a1c1 (respec. a1b1) is an orthology (respec. paralogy) relation induced by G.

While a history for Γ can be represented as a DS-tree, the converse is not
always true, as a DS-tree G for Γ does not necessarily represent a valid history.
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Fig. 1. A species tree S, a binary DS-tree G and a non-binary DS-tree G′. In DS-
trees, Dup nodes are indicated by squares, and each leaf αi denotes a gene belonging
to the genome α. G is a refinement of G′ such that O(G) = O(G′) and P(G) = P(G′).

For this to hold, any speciation node of G should reflect a clustering of species
in agreement with S [19]. Formally G should be S-consistent, as defined below.

Definition 1. Let S be a species tree and G be a DS-tree. Let v be an internal
node of G such that ev(v) = Spec. Then the speciation node v is S-consistent
iff for any v1, v2 ∈ ch(v), sG(v1) and sG(v2) are separated in S.

We say that G is S-consistent iff every speciation node of G is S-consistent.

Notice that G and S are not required to be binary. In particular, the definition
of S-consistency for a speciation node v of G does not require v to be binary, even
if S is binary. In this case, one can “refine” v into a set of binary S-consistent
speciation nodes based on the topology of S. This operation does not affect the
orthology and paralogy relations of by G (see Fig. 1). Duplication nodes can be
refined as well. Lemma 1 formalizes this intuition - we leave the proof to the
Supplementary materials.

Lemma 1. Let G be an S-consistent DS-tree for some binary species tree S.
Then there is a binary DS-tree G′ such that G′ is S-consistent, O(G) = O(G′)
and P(G) = P(G′).

We can verify that both DS-trees in Fig. 1 are S-consistent. For example, the
speciation node in G′ has children from species v, c, d and w, which are pairwise
separated in S. Notice that, from Definition 1, if G is a DS-tree, then the lca of
two leaves of G belonging to the same species must be a duplication node. The
converse is not true. For example, in the S-consistent gene tree G of Fig. 1, the
parental node of e1 and f1 is a duplication node even though e1 and f1 belong
to two different species.

2.2 Relation Graph

A set of orthology/paralogy relations on Γ (or simply a relation set) is a pair
C = (CO, CP ) of subsets CO, CP ⊆ (

Γ
2

)
such that CO∩CP = ∅ and if s(x) = s(y),

then {x, y} ∈ CP . The relation set is said full if CO ∪ CP =
(
Γ
2

)
. A DS-tree G

induces a full set (O(G),P(G)) of relations.
We adopt the graph representation considered in [19] for full relation sets.

A relation graph R on a gene family Γ is a graph with vertex set V (R) = Γ ,
in which we interpret each edge uv of the edge set E(R) of R as an orthology
relation between u and v, and each missing edge (non-edge) uv /∈ E(R) as a
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Fig. 2. A species tree S and a DS-tree G. The full orthology set induced by G is
represented by the relation graph R. The following graph R′ is an example of a not
satisfiable graph, as {c1, b1, d1, a2} induces a P4, while R′′ is an example of a satisfiable
(it has no induced P4), but not S-consistent graph.

paralogy relation 1. Note that if s(u) = s(v), then uv /∈ E(R). The relation
graph of a DS-tree G, denoted by R(G), is the graph with vertex set L(G) and
edge set O(G) (for example, see the relation graph R in Fig. 2).

A DS-tree for a gene family Γ leads to a relation graph, but the converse is
not always true. A relation graph R is satisfiable if there exists a DS-tree G such
that R(G) = R. The problem of relation graph satisfiability has been addressed
in [15]. The following theorem is a reformulation of one of the main results of
this paper.

Theorem 1 ([15]). A relation graph R is satisfiable if and only if R is P4-free,
meaning that no four vertices of R induce a path of length 4.

For example, in Fig. 2, the relation graphs R and R′′ are satisfiable, while the
graph R′ is not. As a DS-tree does not necessarily represent a true history for
Γ (see previous section and Definition 1), satisfiability of a relation graph does
not ensure a possible translation in terms of a history for Γ . For this to hold, R
should be consistent with the species tree, according to the following definition.

Definition 2. A relation graph R for Γ is S-consistent if and only if R is
satisfiable by a DS-tree G which is itself S-consistent.

For example the graph R in Fig. 2 is S-consistent. Note that S-consistency
implies satisfiability. Results from [19] complete the characterization of
S-consistent graphs through Theorem 2. A triplet is a binary tree with leaf-
set L of size three. For L = {x, y, z}, we denote by xy|z the unique triplet T
on L for which lcaT (x, y) �= r(T ) holds. Now P3(R) is the subset of triplets of
species induced by paths of length 3 in R = (V,E):

P3(R) = {s(x)s(y)|s(z) : zx, zy ∈ E and xy /∈ E and s(x) �= s(y)}

Theorem 2. Let R = (V,E) be a satisfiable relation graph. Then R is S-
consistent if and only if S displays all the triplets of P3(R).

Theorem 2 is an immediate consequence of Theorem 5 in [19]. For the
sake of completeness, we include the full proof in the Supplementary materials.
1 It has been pointed out to us that the term ‘relation graph’ is also used in phyloge-

netics in the form of a generalization of a median network to a set of partitions. To
make it clear, relation graphs in this paper have nothing to do with this notion.
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As an example, the graph R′′ in Fig. 2 is satisfiable but not S-consistent as the
path of length 3 containing {a1, b1, c1} induces the triplet ac|b, while the triplet
displayed by S is ab|c.

We end this section with additional notations that will be of use later. A
subgraph H ′ of H is a graph with V (H ′) ⊆ V (H) and E(H ′) ⊆ E(H). For a
graph H and some V ′ ⊆ V (H), the subgraph of H induced by V ′, denoted H[V ′],
is the subgraph of H with vertex-set V ′ having the maximum number of edges.
We say that H ′ is an induced subgraph of H if there is a subset V ′ ⊆ V (H) such
that H ′ = H[V ′]. If I is another graph, we say H is I-free if there is no V ′ ⊆
V (H) such that H[V ′] is isomorphic to I. Finally, for some edge set E′ ⊆ E(H),
H − E′ is the subgraph H ′ with V (H ′) = V (H) and E(H ′) = E(H) \ E′.

3 Relation Correction Problems

We raise the issue of leaving out a minimum of information from a relation
graph R in order to reach satisfiability or S-consistency. The problem limited to
satisfiability reduces to modifying, i.e. adding or removing, a minimum number
of edges of R in order to make it P4-free, which is known to be NP-Hard [25].
In [16], an integer linear programming formulation is used to correct relation
graphs of reasonable size.

We first extend the above problem to S-consistency: given a relation graph
R and a species tree S, what is the minimum number of edges that need to
be modified in order to reach S-consistency? Then, we study the problem of
removing as few genes as possible from the gene family in order for the set of
relations to be consistent.

3.1 The Minimum Edge-Removal Consistency Problem

Based on the same construction used in paper [10], we show that adding the
information on the species tree S does not make the problem of removing the
minimum number of edges leading to a P4-free graph simpler. Although a similar
reduction is likely to hold in the general case of edge-modification (removal or
insertion) [25], here we focus on edge removal, as this formulation is needed in
subsequent developments (Sect. 4). We show the NP-Completeness of this prob-
lem, even when every gene from the family Γ comes from a distinct species.

Minimum Edge-Removal Consistency Problem:
Input: A relation graph R for a gene family Γ , a species tree S and an integer k;
Output: An S-consistent subgraph R′ of R with V (R) = V (R′) such that
|E(R) \ E(R′)| ≤ k.

Theorem 3. The Minimum Edge-Removal Consistency Problem is NP-Complete,
even if for any distinct g1, g2 ∈ Γ , s(g1) �= s(g2).

Proof. Given R′, Theorem 2 easily translates into a polynomial-time algorithm
to verify that R′ is S-consistent. It is also clear that verifying if |E(R)\E(R′)| ≤ k
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can be done quickly. The problem is therefore in NP. As for the NP-Hardness,
the reduction is from the exact 3-cover problem, a classic NP-Hard problem [27]:
given a set W = {w1, . . . , w3t} and a collection Z = {Z1, . . . , Zr} of 3-elements
of W , does there exists Z ′ ⊆ Z such that |Z ′| = t and Z ′ is a partition of W ?

Given arbitrary W and Z, we construct R and S by first defining the species
set Σ. Let α =

(
3t
2

)
and let X = {X1, . . . , Xr} and Y = {Y1, . . . , Yr} be two

collections of all disjoint sets (i.e. for any distinct set A,B ∈ X ∪Y , A∩B = ∅),
with |Xi| = α and |Yi| = r2α, for all 1 ≤ i ≤ r. Let XΣ =

⋃
1≤i≤r Xi and YΣ =⋃

1≤i≤r Yi be the species in X and Y . Then the species set is Σ = W ∪XΣ ∪YΣ .
Let SW , SX and SY be three trees such that L(SW ) = W,L(SX) = XΣ and
L(SY ) = YΣ . Then S is obtained by first connecting r(SY ) with r(SW ) to obtain
a new tree SWY , then connecting r(SWY ) with r(SX) (see Fig. 3). Therefore S
has exactly |Σ| = 3t + r(α + r2α) leaves. The gene family Γ is then constructed
so that it contains exactly one gene per species, as mentioned in the Theorem
statement. In other words the mapping s : Γ → Σ is one-to-one. Since s is a
bijection, we make no distinction between a gene g and its species s(g). We then
define R with V (R) = Σ such that each of the sets W,X1, . . . , Xr, Y1, . . . , Yr

forms an individual clique. Finally we add two edge-sets E1 and E2 to R, where
E1 = {g1g2 : g1 ∈ Xi, g2 ∈ Zi, for a given 1 ≤ i ≤ r} and E2 = {g1g2 :
g1 ∈ Xi, g2 ∈ Yi, for a given 1 ≤ i ≤ r}. Then R has 2r + 1 cliques, namely
W,X1, . . . , Xr, Y1, . . . , Yr. Also, for 1 ≤ i ≤ r, all edges between Xi and Yi are
present, as well as all edges between Xi and Zi. Figure 3 gives an example with
t = 2 and W = {1, 2, 3, 4, 5, 6}.

We show that W and Z admit an exact 3-cover if and only if R admits an S-
consistent DS-tree after the deletion of at most 3α(r−t)+(α−3t) edges. Notice
that the construction of R described above can clearly be done in polynomial
time.

(⇒) : let Z ′ ⊆ Z be a partition of W , |Z ′| = t. Let R′ be the subgraph of R
in which all edges between Zi and Xi are removed iff Zi /∈ Z ′ (which removes
3α(r − t) edges), and the only edges not removed from the W -clique are those
belonging to a Zi triangle with Zi ∈ Z ′ (which removes α−3t edges). An example
of R′ is given in Fig. 3. Thus there are exactly 3α(r − t) + (α − 3t) edges of R
missing from R′, as desired. Clearly, R′ is P4-free and thus satisfiable. To see
that R′ is S-consistent, we use Theorem 2. Notice that any path of length 3 in
R′ has the form wxiyi with w ∈ W,xi ∈ Xi and yi ∈ Yi for some i, inducing the
wyi|xi speciation triplet, which is in agreement with S. Therefore there exists
an S-consistent gene tree G′ satisfying R′.

(⇐) : The construction of R is exactly the same as in Theorem 3 in [10], and
the proof is directly applicable to our case. Still, we have included a complete
proof in the Supplementary materials. �

3.2 The Minimum Node-Removal Consistency Problem

Minimum Node-Removal Consistency Problem:
Input: A relation graph R for a gene family Γ , a species tree S and an integer k;
Output: An S-consistent induced subgraph R′ of R with |V (R′)| ≥ k.
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Fig. 3. S represents the species tree and R∗ the relation graph constructed from the
sets W , Z, X and Y . The illustration is given for W = {1, 2, 3, 4, 5, 6} and Z =
{{1, 2, 3}, {2, 3, 4}, {3, 5, 6}, {4, 5, 6}}. Z′ = {{1, 2, 3}, {4, 5, 6}} is a subset of Z which
is a partition of W . R′ is the “corrected” relation graph corresponding to Z′.

We use a reduction similar to that in [23], where it was remarkably shown that
finding a maximum induced subgraph of some graph H having some property
Π is NP-Hard whenever Π is a hereditary property, i.e. applies to any induced
subgraph of H. Though it can be shown that S-consistency is indeed hereditary,
the reduction assumes H is unlabeled and unconstrained, which is not the case
of R .

Theorem 4. The Minimum Node-Removal Consistency Problem is NP-Complete.

Proof. Again by Theorem 2, verifying that R′ is indeed a solution can be done
in polynomial time and the problem is thus in NP. The reduction is from the
maximum independent set problem. That is, given a graph H, is there an induced
subgraph H ′ of H having at least k nodes such that H ′ has no edge. Let n =
|V (H)|. We construct R and S from H as follows: R starts as a copy of H, and
for each node x of R, we add a single neighbor x∗ (i.e. xx∗ is an edge of R and x∗

is of degree one). Denote by X the nodes of R originally from H, and by X∗ the
newly added nodes. Each gene in R is assigned to a distinct species. To construct
S, first let SX be a tree with leafset s(X), and SX∗ be a tree with leafset s(X∗).
Then S is obtained by connecting r(SX) and r(SX∗) under a common parent.
We show that H has an independent set of size at least k if and only if R admits
an induced subgraph of size at least n + k that is S-consistent.

Let H ′ be a solution to the independent set problem with |V (H ′)| ≥ k, and
let X ′ be the nodes of X corresponding to V (H ′). Let R′ = R[X ′ ∪X∗]. Now, no
two nodes of X ′ share an edge, and thus the only edges left in R′ are of the form
xx∗. Therefore, R′ is P3-free and thus, by Theorem 2, is S-consistent. Moreover,
|V (R′)| = |X ′ ∪ X∗| ≥ k + n.

Conversely, let R′ be an S-consistent induced subgraph of R with |V (R′)| ≥
n + k. Let W = {x ∈ X : x ∈ V (R′) and x∗ ∈ V (R′)}. We first claim that no
two nodes x, y ∈ W share an edge in R′. For otherwise, x∗xy induce a P3 with
x in the center, inducing the s(x∗)s(y)|s(x) speciation triplet. This contradicts
the triplet s(x)s(y)|s(x∗) found in S, and R′ is not S-consistent. Therefore, by
letting W ′ denote the nodes of H corresponding to W , we get that H[W ′] is an
independent set. Our final claim is that |W | ≥ k. Indeed if |W | < k, then there
are strictly more than n−k node pairs {x, x∗} from which at least one of x or x∗

is missing in R′. This implies that |V (R′)| < 2n− (n− k) = n+ k, contradicting
our initial assumption. �
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4 Gene Tree Correction Problems

In this section, we consider we are given a gene family Γ , a species tree S, an
S-consistent DS-tree G for Γ , and a set C = (O,P ) of orthology/paralogy con-
straints (not necessarily full). We focus on the problem of correcting G according
to C in a minimal way. The goal is thus to find a DS-tree G′ inducing C such
that the difference between G and G′ is minimum. We consider two ways of
measuring the difference (or symetrically the similarity) between gene trees, one
based on conserved orthology/paralogy relations induced by the two trees, and
one based on the number of conserved clades between the two trees, which is the
Robinson-Foulds in the case that G, G′ and S are all binary trees.

4.1 The Maximum Homology Correction Problem

Maximum Homology Correction Problem :
Input: A species tree S, an S-consistent DS-tree G for a gene family Γ , an
integer k, a set O of orthology and a set P of paralogy relations;
Output: An S-consistent DS-tree G′ for Γ with O ⊆ O(G′), P ⊆ P(G′) such
that |O(G) ∩ O(G′)| + |P(G) ∩ P(G′)| ≥ k.

Theorem 5. The Maximum Homology Correction Problem is NP-Complete, even
if S, G and G′ are required to be binary.

Proof. The problem is clearly in NP, as verifying S-consistency can be done in
polynomial time, as well as counting the common orthologs/paralogs relations
(the set of relations is quadratic in size). For our reduction, we use the Minimum
Edge-Removal Consistency Problem for the case of a gene family with at most one
gene per genome, which is NP-Hard by Theorem 3. Given a species tree S, a
relation graph R with V (R) in bijection with L(S) and an integer k, we construct
an instance of the Maximum Homology Correction Problem, i.e. a species tree S′,
a DS-tree G, an orthologous set O and paralogous set P . We show that there
is an S-consistent subgraph R′ of R obtained by removing at most k edges iff
there is an S′-consistent DS-tree G′ satisfying O and P with at most |P | + k
relations that are not induced by G.

Let S′ = S and construct G by mimicking S - that is by first copying S and
its leaf labels, then replacing each leaf � of G by the gene s−1(�). Note that if S
is binary, then so is G. All internal nodes of G are labeled as speciations, so all
genes of Γ are pairwise orthologous. Thus R(G) is a clique. Finally, let O = ∅
and P = {g1g2 : g1g2 /∈ E(R)}. Notice that R = R(G) − P .

⇒ : Let R′ be a solution to the Minimum Edge-Removal Consistency Problem
for R and S. Then there exists a S-consistent DS-tree G′ satisfying R′, which
is obtained by deleting at most k edges from R. By Lemma 1, we may assume
that if S is binary, then so is G′. Now, since R′ has at most |P | + k non-edges,
G′ has at most k + |P | paralogs and is therefore a solution to the constructed
instance of the Maximum Homology Correction Problem that breaks at most k+|P |
orthologies.
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⇐ : Let G′ be a solution, binary or not, to the constructed Maximum Homol-
ogy Correction Problem instance and let R′ = R(G′). Since G′ satisfies P and
breaks at most |P | + k orthologies, R′ must have P as non-edges, plus at most
k other non-edges. Thus R′ can be obtained by removing at most k edges from
R(G) − P = R, as desired. �

4.2 The Maximum Clade Correction Problem

Maximum Clade Correction Problem:
Input: A gene tree G, a species tree S, a set O of orthology and a set P of
paralogy relations and an integer k;
Output: An S-consistent DS-tree G′ satisfying O and P such that G and G′

have at least k clades in common.

Notice that if S, G and G′ are required to be binary, the effective measure
between G and G′ is the Robinson-Foulds distance. This special case is handled
as part of the general proof.

Theorem 6. The Maximum Clade Correction Problem is NP-Complete, even if
S, G and G′ are required to be binary.

The proof of Theorem 6 is a bit involving, and due to space constraints we
only provide the construction and intuition of the NP-Hardness reduction. The
complete proof can be accessed in the supplementary materials.

We use the Minimum Node-Removal Consistency Problem for our reduction.
Let R be the input relation graph with V (R) = {v1, . . . , vn}, S be the species
tree and k be an integer. Let α = n(n− 1− k)+2k. The constructed instance of
the Maximum Clade Correction Problem uses the same species tree S. Construct
G as follows: first consider G as a binary tree with n leaves l1, . . . , ln, where each
leaf li is mapped to vi. Then, replace each leaf li by a subtree Ti constructed as
follows: Ti is a caterpillar tree with n− 1+α leaves, and each leaf � of Ti is such
that s(�) = s(vi) (a caterpillar tree is a path to which we add a leaf child to each
internal node). Let Li denote the set of the n−1 deepest leaves of Ti (the depth
of a leaf � being the number of nodes on the path between � and the root). Each
leaf of Li is mapped to a distinct node of V (R) \ {vi}. Denote by �i,j the leaf of
Ti mapped to vj . Then G has exactly n(n − 1 + α) leaves and n(n − 1 + α) − 1
clades (since it is binary). Finally define O = {{�i,j , �j,i} : vivj ∈ E(R)} the set
of orthology relations and P = {{�i,j , �j,i} : vivj /∈ E(R)} the set of paralogy
relations. Note that each �i,j is present in exactly one relation.

It can be shown that R admits an S-consistent induced subgraph R′ with
at least k nodes if and only if G, O and P admit an S-consistent DS-tree G′

satisfying O and P such that G and G′ share at least k(α+n−2) clades. The idea
is that given R′, we can construct an S-consistent gene tree H satisfying R. To
each leaf vi of H corresponds a subtree Ti in G. We obtain G∗ by replacing each
such leaf vi by its corresponding Ti, which guarantees that the required number
of clades were preserved (as there were k such leaves in H). Noting that G∗ does
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not include every gene of G, the difficulty of the proof consists in including every
such missing gene whilst satisfying the relations of O and P .

In the other direction, i.e. if we are given a solution G′ that preserves enough
clades, it can be shown that G′ must preserve at least k of the Ti subtrees
intact, and restricting G′ to these k subtrees, then replacing each such Ti by its
corresponding vertex vi in R, we obtain a gene tree G∗ whose relation graph R′

is the solution we are looking for.

5 Algorithmic Avenues

As the problems presented in this work are NP -complete, non-polynomial exact
algorithms or approximation algorithms avenues should be explored. Let us gen-
eralize the Minimum Edge-Removal Consistency Problem to the minimum editing
problem (i.e. minimzing edge removals and insertions). It is not hard to imagine a
branch-and-bound algorithm that solves the problem. Call an induced subgraph
H of a relation graph R bad if it is either a P4, or a P3 in contradiction with
S. Each P4 can be solved by 6 possible edge editings, and each contradictory P3

can be solved by 3 possible editings. Therefore, in a branch-and-bound process,
one would verify if a given graph R′ contains a bad subgraph and if so, proceed
recursively on each graph obtained by an editing that removes it. If no bad sub-
graph exists, then R′ is a possible solution and its number of editings is retained.
If, at any point, R′ has had more editings than the best solution encountered so
far, the algorithm can stop the recursion. Notice however that an edge should
not be edited more than once in order to avoid infinite loops. The idea of this
branch-and-bound algorithm can also be applied to the Minimum Node-Removal
Consistency problem. It is known that a P4, if one exists, can be found in linear
time [4]. It remains to see if we can find a contradictory P3 in time better than
O(n3).

As for approximations, an algorithm proposed in [28] can be directly applied
to the Minimum Edge-Removal Consistency Problem and guarantees that we do
not remove more than 4Δ(R) times more edges than the optimal solution, where
Δ(R) is the maximum degree of R. The idea is simple : as long as R has a bad
subgraph H, remove every edge incident to a vertex of H and continue. Even
though this is the best known approximation algorithm so far, it has the undesir-
able effect of isolating many vertices, motivating the exploration of alternative
algorithms. One direction would be to consider existing ideas on the problem
of satisfiability, i.e. what is the minimum number of editings required to make
a graph P4-free, and adapt them to the consistency problem - for instance the
Min-Cut algorithm proposed in [2].

For gene tree correction, we have developed in [19] a polynomial-time algo-
rithm which, given a species tree S and a partial set of relations O and P ,
verifies if there exists an S-consistent gene tree G′ satisfying O and P and if so,
constructs one among the set of all possible solutions. It would be interesting
to explore the possibility of providing an input gene tree G to the algorithm in
order to pick a solution that is close to G (either in terms of common homology
relations or clades).
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It is also worth mentioning that relations are not always fully known, and
instead of a yes or no orthology assignment between two genes, existing methods
for orthology prediction can rather motivate a way of assigning a probabilistic
score to a given relation [19]. A natural extension to the edge removal/editing
problems is therefore to add a weight to each edge and non-edge, so that each
insertion/removal has its own weight. The objective then becomes to minimize
the total weight of a set of edited edges. Notice that the branch-and-bound
algorithm given above can easily be adapted to support weights on editings. This
generalization actually encompasses the Maximum Homology Correction problem.
Indeed, given a gene tree G and relations O and P to satisfy, one can create
a weighted relation graph R in this way: each relation in O (resp. P ) is an
edge (resp. non-edge) with infinite weight, and each relation in O(G) \ O (resp.
P(G)\P ) is an edge (resp. non-edge) with a weight of one. Therefore a minimum
S-consistent edge-editing of R corresponds to a gene tree G′ that satisfies O and
P and has a maximum number of common homologies with G.

6 Conclusion

A gene tree induces a set of orthology and paralogy relations between members
of a gene family, but the converse is not always true. In this paper we show that
attempting to modify a set of relations as least as possible in order to ensure
consistency with a species tree leads to the formulation of NP-Complete prob-
lems. Moreover, even assuming that the given relations are error-free, it remains
computationally difficult to correct a gene tree in order to fit the given set of
relations. As various model-free methods are available to infer orthology and
paralogy, these correction problems are of practical biological interest. A future
direction would be to explore fast approximation algorithms for the relation
graph and gene tree editing.
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Abstract. Recently, Hajirasouliha and Raphael (WABI 2014) proposed
a model for deconvoluting mixed tumor samples measured from a col-
lection of high-throughput sequencing reads. This is related to under-
standing tumor evolution and critical cancer mutations. In short, their
formulation asks to split each row of a binary matrix so that the resulting
matrix corresponds to a perfect phylogeny and has the minimum number
of rows among all matrices with this property. In this paper we disprove
several claims about this problem, including an NP-hardness proof of
it. However, we show that the problem is indeed NP-hard, by providing
a different proof. We also prove NP-completeness of a variant of this
problem proposed in the same paper. On the positive side, we obtain a
polynomial time algorithm for matrix instances in which no column is
contained in both columns of a pair of conflicting columns.

1 Introduction

Tumor progression is assumed to follow a phylogenetic evolution in which each
tumor cell passes its somatic mutations to its daughter cells as it divides, with
new mutations being accumulated over time. It is important to discover what
tumor types are present in the sample, at what evolutionary stage the tumor is
in, or what are the “founder” mutations of the tumor, mutations that trigger an
uncontrollable growth of the tumor. These can lead to better understanding of
cancer [2,17], better diagnosis, and more targeted therapies [16].
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DNA sequencing is one method for discovering the somatic mutations present
in each tumor sample. The most accurate possible observation would come
from sampling and sequencing every single cell. However, because of single-cell
sequencing limitations, and the sheer number of tumor cells, one usually samples
populations of cells. Even though the samples are taken spatially and morpho-
logically apart, they can still contain millions of different cancer cells. Moreover,
this mixing is not consistent across different collections of samples. Therefore,
studying only these mixed samples poses a serious challenge to understanding
tumors, their evolution, or their founding mutations.

Solutions for overcoming this limitation can come from a computational app-
roach, as one could deconvolute each sample by exploiting some properties of
the tumor progression. One common assumption is that all mutations in the
parent cells are passed to the descendants. Another one, called the “infinite
sites assumption”, postulates that once a mutation occurs at a particular site,
it does not occur again at that site. These two assumptions give rise to the
so-called perfect phylogeny evolutionary model. Hajirasouliha and Raphael pro-
posed in [8] a model for deconvoluting each sample into a set of tumor types so
that the multi-set of all resulting tumor types forms a perfect phylogeny, and
is minimum with this property. Even though this model has some limitations,
for example it assumes no errors, and only single nucleotide variant mutations,
it is a fundamental problem whose understanding can lead to more practical
extensions.

Other major approaches for deconvoluting tumor heterogeneity include meth-
ods based on somatic point mutations, such as PyClone [20], SciClone [15], Phy-
loSub [11], and methods based on somatic copy number alterations, such as
THetA [18], TITAN [7] and MixClone [14].

In this paper we show that several claims from [8] about this problem are
incorrect, including an NP-hardness proof of it. However, we show that the
problem is indeed intractable, by providing a different proof. We also adapt
this NP-completeness proof to a variant of the problem also proposed in [8] but
whose complexity was left open. This problem asks to minimize the set (instead
of multi-set) of all tumor types of the perfect phylogeny.

Moreover, we obtain a polynomial time algorithm for a collection of instances
of the former problem, which can be biologically characterized as follows. Say
that two mutations i and j are exclusive if i is present in a sample in which j is
absent, and j is present in a sample in which i is absent. Observe that exclusive
mutations cannot both be present in the same vertex of a perfect phylogeny.
Thus, we say that a sample is a mixture at exclusive mutations i and j if both
i and j are present in that sample. The instances for which we can solve the
problem in polynomial time are such that for any two exclusive mutations i and
j, no mutation is present only in the samples mixed at i and j.

Paper outline. In Sect. 2 we give all formal definitions and review the approach
of [8]. In Sect. 3 we give a complete characterization of a class of graphs con-
sidered in [8]. The complexity results are presented in Sect. 4, and the above-
mentioned polynomial time algorithm is given in Sect. 5. Some proofs are omitted
due to space limitations.
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2 Problem Formulation

As mentioned in the introduction, we assume that we have a set of sequencing
reads from each tumor sample, and that based on these reads we have discovered
the sample variants with respect to a reference (e.g., by using a somatic mutation
caller such as VarScan 2 [13]). This gives rise to an m × n matrix M whose m
rows are the different samples, and whose n columns are the genome loci where a
mutation was observed with respect to the reference. The entries of M are either
0 or 1, with 0 indicating the absence of a mutation, and 1 indicating the presence
of the mutation. We assume that the matrix has no row whose all entries are 0.

Under ideal conditions, e.g., each mutation was called without errors, and
the samples do not contain reads from several leaves of the perfect phylogeny,
M corresponds to a perfect phylogeny matrix. Such matrices are characterizable
by a simple property, called conflict-freeness.

Definition 1. Two columns i and j of a binary matrix M are said to be in
conflict if there exist three rows r, r′, r′′ of M such that Mr,i = Mr,j = 1, Mr′,i =
Mr′′,j = 0, and Mr′,j = Mr′′,i = 1. A binary matrix M is said to be conflict-free
if no two columns of M are in conflict.

It is well known that the rows of M are leaves of a perfect phylogenetic tree
if and only if M is conflict-free (see [3,6]). Moreover, if this is the case, then the
corresponding phylogenetic tree can be retrieved from M in time linear in the
size of M [5].

However, in practice, each tumor sample is a mixture of reads from several
tumor types, and thus possibly M is not conflict-free. If we are not allowed to
edit the entries of M as done e.g. by methods such as [19], [21], Hajirasouliha and
Raphael proposed in [8] to turn M into a conflict-free matrix M ′ by splitting
each row r of M into some rows r1, . . . , rk such that r is the bitwise OR of
r1, . . . , rk; that is, for every column c, Mr,c = 1 if and only if Mri,c = 1 for at
least one ri. The rows r1, . . . , rk can be seen as the deconvolution of the mixed
sample r into samples from single vertices of a perfect phylogeny. One can then
build the perfect phylogeny corresponding to M ′ and carry further downstream
analysis. Let us make this row split operation precise.

Definition 2. Given a binary matrix M ∈ {0, 1}m×n with rows labeled
r1, r2, . . . , rm, we say that a binary matrix M ′ ∈ {0, 1}m′×n is a row split of
M if there exists a partition of the set of rows of M ′ into m sets R′

1, R
′
2, . . . , R

′
m

such that for all i ∈ {1, 2, . . . ,m}, ri is the bitwise OR of the binary vectors
given by the rows of R′

i. The set R′
i of rows of M ′ is said to be a set of split rows

of row ri.

Observe that a simple strategy for obtaining a conflict-free row split of M
is to split every row r into as many rows as there are 1 s in r, with a single 1
per row. While this might be an informative solution for some instances (cf. also
Corollary 2 on p. 9), Hajirasouliha and Raphael proposed in [8] as criterion
for obtaining a meaningful conflict-free row split M ′ the requirement that the
number of rows of M ′ is minimum among all conflict-free row splits of M .
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In this paper we consider the following problem, which we call Minimum
Conflict-Free Row Split problem. For a binary matrix M , we denote by
γ(M) the minimum number of rows in a conflict-free row split M ′ of M . This
notation is in line with notation γ(M) used in [8] to denote the minimum number
of additional rows in a conflict-free row split M ′ of M , that is, γ(M) = γ(M)−m,
where m is the number of rows of M .

Minimum Conflict-Free Row Split:
Input: Binary matrix M , an integer k.
Question: Is it true that γ(M) ≤ k?

The optimization version of the above problem (in which only a given subset
of rows needs to be split) was called the Minimum-Split-Row problem in [8],
however, all results from [8] deal with the variant of the problem in which all
rows need to be split (some perhaps trivially by setting R′

i = {ri}), which is
equivalent to the Minimum Conflict-Free Row Split problem.

Given a binary matrix M and a row r of M , the conflict graph of (M, r) is
the graph GM,r defined as follows: with each entry 1 in r, we associate a vertex
in GM,r, and two vertices in GM,r are connected by an edge if and only if their
corresponding columns in M are in conflict. Denoting by χ(G) the chromatic
number of a graph G, Hajirasouliha and Raphael proved in [8] the following
lower bound on the value of γ(M):

Lemma 1. [8] Let M be a binary matrix with a conflict-free row split M ′. Then,
for every row ri of M with a set R′

i of split rows of M ′, we have |R′
i| ≥ χ(GM,ri

).

Corollary 1. For every binary matrix M , we have γ(M) ≥ ∑
r χ(GM,r).

Hajirasouliha and Raphael also claimed in [8] the following hardness result.

Theorem 1. [8] The Minimum Conflict-Free Row Split problem is
NP-hard.

To recall their approach for proving Theorem 1, we need one more definition.
We denote the fact that two graphs G and H are isomorphic by G ∼= H.

Definition 3. A graph G is a row-conflict graph if there exists a binary matrix
M and a row r of M such that G ∼= GM,r.

The proof of Theorem 1 was based on a reduction from the chromatic number
problem in graphs and relied on three ingredients: the lower bound given by
Corollary 1, Theorem 4 from [8] stating that every graph is a row-conflict graph,
and an algorithm based on graph coloring, also proposed in [8], for optimally
solving the Minimum Conflict-Free Row Split problem by constructing a
conflict-free row split of M with exactly

∑
r χ(GM,r) rows. In particular, their

results would imply that the lower bound on γ(M) given by Corollary 1 is always
attained with equality.
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Contrary to what was claimed in [8], we show that there exist graphs that
are not row-conflict graphs. In fact, we give a complete characterization of row-
conflict graphs, showing that a graph is a row-conflict graph if and only if its
complement is transitively orientable (see Theorem 2). Using a reduction from 3-
edge-colorability of cubic graphs, we show that it is NP-complete to test whether
a given binary matrix M has a conflict-free row split M ′ with a number of rows
achieving the lower bound given by Corollary 1 (see Theorem 3). This implies
that there exist infinitely many matrices for which this bound is not achieved.

A corollary of our characterization of row-conflict graphs is that the chro-
matic number is polynomially computable for this class of graphs. This fact
with the assumption that P �= NP, as well as the existence of matrices M with
γ(M) >

∑
r χ(GM,r), each individually imply that the claimed NP-hardness

proof of the Minimum Conflict-Free Row Split problem given in [8] is
flawed. Nevertheless, our NP-completeness proof (see Theorem 3) implies that
Theorem 1 is correct.

On the positive side, we give a polynomial time algorithm for the Minimum
Conflict-Free Row Split problem on input matrices M in which no column
is contained in both columns of a pair of conflicting columns (see Theorem 5).

We also consider a variant of the problem, also proposed in [8], in which
we are only interested in minimizing the number of distinct rows in a conflict-
free row split of M . This problem is similar to the Minimum Perfect Phylogeny
Haplotyping problem [1], in which we need to explain a set of genotypes with
a minimum number of haplotypes admitting a perfect phylogeny. For a binary
matrix M , we denote by η(M) the minimum number of distinct rows in a conflict-
free row split M ′ of M . We establish NP-completeness of the following problem
(see Theorem 4), which was left open in [8].

Minimum Distinct Conflict-Free Row Split:
Input: Binary matrix M , an integer k.
Question: Is it true that η(M) ≤ k?

3 A Characterization of Row-Conflict Graphs

Definition 4. Given a binary matrix M and two columns i and j of M , col-
umn i is said to be contained in column j if Mk,i ≤ Mk,j holds for every k.
The undirected containment graph HM is the undirected graph whose vertices
correspond to the columns of M and in which two vertices i and j, i �= j, are
adjacent if and only if the column corresponding to vertex i is contained in the
column corresponding to vertex j or vice-versa.

Recall that an orientation of an undirected graph G = (V,E) is a directed
graph D = (V,A) such that for every edge uv ∈ E, either (u, v) ∈ A or (v, u) ∈
A, but not both. An orientation is said to be transitive if the presence of the
directed edges (u, v) and (v, w) implies the presence of the directed edge (u,w).
A graph is said to be transitively orientable if it has a transitive orientation.
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The complement of a graph G is a graph G with the same vertex set as G in
which two distinct vertices are adjacent if and only if they are non-adjacent in
G. Transitively orientable graphs appeared in the literature under the name of
comparability graphs (and their complements under the name of co-comparability
graphs). Transitively orientable graphs and their complements form a subclass
of the well known class of perfect graphs [4]. Therefore, odd cycles of length at
least 5 and their complements are examples of graphs that are not transitively
orientable.

Observation 1. For every binary matrix M , the graph HM is transitively ori-
entable.

Proof. We say that column i is properly contained in column j if i is contained
in j and Mk,i < Mk,j for some k. Fix an ordering {c1, . . . , cn} of the columns
of M . Let us define a binary relation � on the set of columns on M by setting,
for every two columns ci and cj of M , ci � cj if and only if either ci is properly
contained in cj , or i < j and each of ci and cj is contained in the other one (that
is, as binary vectors they are the same). Observe that for a pair of columns ci

and cj with cicj ∈ E(HM ) we have either ci � cj or cj � ci but not both. The
binary relation � defines an orientation of HM , by orienting each edge cicj as
going from ci to cj if and only if ci � cj . This orientation can be easily verified
to be transitive. ��

In the next theorem, we characterize row-conflict graphs (cf. Definition 3).

Theorem 2. A graph G is a row-conflict graph if and only if G is transitively
orientable.

Proof. (⇒) Let M be an arbitrary binary matrix, r an arbitrary row of M ,
and let G = GM,r. Let N be the submatrix of M consisting of the columns of
M that have 1 in row r. It is now easy to see that GM,r

∼= GN,r. Moreover,
any two columns of N are either in conflict or their corresponding vertices are
adjacent in HN . Therefore, HN

∼= GN,r. Since HN is transitively orientable (by
Observation 1), it follows that G is transitively orientable as well.

(⇐) The reverse implication follows from the proof of Theorem 4 in [8] (which
works for complements of transitively orientable graphs). ��

Theorem 2 implies that odd cycles of length at least 5 and their complements
are not row-conflict graphs. The reader not familiar with transitively orientable
graphs might find it useful to verify that the cycle of length 5 cannot be transi-
tively oriented.

4 Complexity Results

Theorem 3. The following two problems are NP-complete:

– The Minimum Conflict-Free Row Split problem.
– Given a binary matrix M , is it true that γ(M) =

∑
r χ(GM,r)?
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Proof. The Minimum Conflict-Free Row Split problem is in NP, since test-
ing if a given binary matrix M ′ with at most k rows, equipped with a partition
of its rows into m sets, satisfies the condition in the definition of a row split, as
well as the conflict-freeness, can be done in polynomial time. To argue that the
second problem is in NP, we proceed similarly as above, performing an additional
test checking that the number of rows of M ′ equals

∑
r χ(GM,r). (In this case,

we will have γ(M) ≤ ∑
r χ(GM,r) and equality will follow from Corollary 1.)

The value of
∑

r χ(GM,r) can be computed in polynomial time, since each graph
GM,r is the complement of a transitively orientable graph (by Theorem 2), and
the chromatic number of complements of transitively orientable graphs can be
computed in polynomial time (see, e.g., [4]).

We prove hardness of both problems at once, making a reduction from the
following NP-complete problem [9]: Given a simple cubic graph G = (V,E), is G
3-edge-colorable? (A graph is cubic, or 3-regular, if every vertex is incident with
precisely three edges. A matching in a graph is a set of pairwise disjoint edges.
A graph is 3-edge-colorable if its edge set can be partitioned into 3 matchings.)

Given a simple cubic graph G = (V,E), we construct an instance (M,k) of
the Minimum Conflict-Free Row Split problem as follows:

– M is a (|V |+3)×(|E|+3) binary matrix, with rows indexed by V ∪{r1, r2, r3},
columns indexed by E ∪ {c1, c2, c3}, and entries defined as follows (see Fig. 1
for an example):
• For every row indexed by a vertex v ∈ V and every column indexed by an

edge e, we have

Mv,e =
{

1, if v is an endpoint of e;
0, otherwise.

• For every row indexed by a vertex v ∈ V and every column indexed by
some c ∈ {c1, c2, c3}, we have Mv,c = 1.

• For every row indexed by some r ∈ {r1, r2, r3} and every column indexed
by an edge e ∈ E, we have Mr,e = 0.

• For every row indexed by some ri ∈ {r1, r2, r3} and every column indexed
by some cj ∈ {c1, c2, c3}, we have

Mri,cj =
{

1, if i = j
0, otherwise.

– k = 3|V | + 3.

Fig. 1. An example construction of (M,k) from G.
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Note that for each row indexed by a vertex v ∈ V , the graph GM,v is isomor-
phic to the disjoint union of two complete graphs with three vertices each, hence
χ(GM,v) = 3. For each row indexed by some r ∈ {r1, r2, r3}, the graph GM,r

consists in a single vertex, thus χ(GM,r) = 1. It follows that k =
∑

r χ(GM,r)
and therefore M is a yes instance to the second problem (“Given a binary matrix
M , is γ(M) =

∑
r χ(GM,r)?”) if and only if (M,k) is a yes instance for the Min-

imum Conflict-Free Row Split problem. Hardness of both problems follows
from the following claim (the proof of which is omitted due to space limitations):
G is 3-edge-colorable if and only if γ(M) ≤ k. ��

Hajirasouliha and Raphael proposed in [8] an algorithm based on graph col-
oring for optimally solving the Minimum Conflict-Free Row Split problem
by constructing a conflict-free row split of M with exactly

∑
r χ(GM,r) rows.

Since there are infinitely many cubic graphs that are not 3-edge-colorable (see,
e.g., [10]), the proof of Theorem 3 implies that there exist infinitely many matri-
ces M such that γ(M) >

∑
r χ(GM,r). On such instances, the algorithm from [8]

will not produce a valid (that is, conflict-free) solution.
Since the smallest cubic 4-edge-chromatic graph is the Petersen graph, the

smallest matrix M with γ(M) >
∑

r χ(GM,r) that can be obtained using the
construction given in the proof of Theorem 3 is of order 13×18. A smaller matrix
M for which the bound from Corollary 1 is not tight can be obtained by applying
a similar construction starting from the complete graph of order 3 (which is a
2-regular 3-edge-chromatic graph):

M =

⎛

⎜⎜⎜⎝

1 1 0 1 1
1 0 1 1 1
0 1 1 1 1

0 0 0 1 0
0 0 0 0 1

⎞

⎟⎟⎟⎠ .

We leave it as an exercise for the reader to verify that
∑

r χ(GM,r) = 8 and
γ(M) ≥ 9 (in fact, γ(M) = 9). Let us also remark that in [12, Section 4.2.1]
a binary matrix M is given with γ(M) =

∑
r χ(GM,r), on which the algorithm

from [8] fails to produce a conflict-free solution.
We conclude this section with another hardness result.

Theorem 4. The Minimum Distinct Conflict-Free Row Split problem
is NP-complete.

Proof. Membership in NP of the Minimum Distinct Conflict-Free Row
Split problem can be argued similarly as for the Minimum Conflict-Free
Row Split problem. It suffices to argue that there is a polynomially-sized
conflict-free matrix M ′ such that M ′ is a row split of M with at most k distinct
rows. We may assume that for a partition R′

1, . . . , R
′
m of rows of M ′ into m sets

satisfying the condition in the definition of a row split, the rows within each R′
i

are pairwise distinct. Recall from e.g. [6] that a conflict-free matrix N with d
distinct rows and n columns corresponds to a perfect phylogenetic rooted tree
T such that: T has d leaves (the rows of the matrix), all internal vertices of T
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are branching, and all edges from a vertex to its children are injectively labeled
with a column of N , with the exception of at most one edge per node that is
unlabeled. Thus T has and at most 2n edges, and we infer that d ≤ 2n. There-
fore, the total number of rows of M ′ does not exceed 2nm, where m and n are
the numbers of rows and columns of M , respectively.

The hardness proof is based on a slight modification of the reduction used
in the proof of Theorem 3. (See Fig. 2 for an example.) Given a cubic graph
G = (V,E), we map it to (M,k) where

– M is the binary matrix obtained from the binary matrix M described in the
proof of Theorem 3 by adding to it three columns d1, d2, d3, which on the rows
indexed by V equal 0, and on the rows indexed by r1, r2, r3, each di equals ci,
i ∈ {1, 2, 3}.

– k = |E| + 3.

We claim that (M,k) is an instance of the Minimum Distinct Conflict-
Free Row Split problem such that G is 3-edge-colorable if and only if η(M) ≤
k. The proof of the claim is omitted due to space limitations. ��

Fig. 2. An example construction of (M,k) from G.

5 An Algorithm for the Case When No Column Is
Contained in both Columns of a Pair of Conflicting
Columns

In this section we consider the binary matrices in which no column is contained in
both columns of a pair of conflicting columns, and derive a polynomial time algo-
rithm for the Minimum Conflict-Free Row Split problem on such matrices.
The main idea behind the algorithm is the fact that on such matrices the lower
bound from Corollary 1 is achieved, and the bound can be expressed in terms
of parameters of a set of derived digraphs, the so-called directed containment
graph (see Definition 5 below).

Let M be a binary matrix such that no column of M is contained in two or
more conflicting columns. If there are duplicated columns in M , then we form
a new matrix where we take just one copy of the columns that are duplicated.
Since an optimal solution of the reduced instance can be mapped to an optimal
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solution of the original instance (by duplicating the columns corresponding to
the copies of the duplicated columns in M kept by the reduction), we may assume
that there are no duplicated columns in M .

Definition 5. Given a binary matrix M with distinct columns c1, . . . , cn and a
row r of M , the directed containment graph of (M, r) is the graph

−→
HM,r whose

vertex set is the set of columns of M having a 1 in row r, in which there is a
directed edge from ci to cj if and only if i �= j and ci is contained in cj.

We will use the notation ci �r cj as a shorthand for the fact that (ci, cj) is a
directed edge of

−→
HM,r. We say that ci is a source of

−→
HM,r if ci ∈ V (

−→
HM,r) and

there is no cj with cj �r ci. Let σ(M, r) denote the number of sources in
−→
HM,r.

Lemma 2. If there are no duplicated columns in M , then σ(M, r) ≤ χ(GM,r)
holds for any row r of M .

Proof. Observe that the underlying undirected graph of
−→
HM,r is equal to the

complement of GM,r. The set of all sources of
−→
HM,r forms an independent set

in its underlying undirected graph. This set corresponds to a clique in GM,r.
Therefore σ(M, r) ≤ ω(GM,r) ≤ χ(GM,r) (where ω(GM,r) denotes the maximum
size of a clique in GM,r). ��

Fig. 3. An example of a matrix M in which no column is contained in both columns
of a pair of conflicting columns (c1, c2 and c3, c4 are conflicting). The rows r′

1, r
′
2, r

′
3

constructed by the algorithm corresponding to row r of M are shown in the center. On
the right, the directed containment graph of (M, r).

Our algorithm is the following one (see also Fig. 3 for an example).

Input: An m × n binary matrix M with columns c1, c2, . . . , cn, without
duplicated columns, and such that no column of M is contained in a pair of
conflicting columns.
Algorithm:

Define a new matrix M ′ with columns c′
1, c

′
2, . . . , c

′
n;

For each row r of M , add the rows r′
1, . . . , r

′
σ(M,r) to M ′, defined as:

let cr,1, . . . , cr,σ(M,r) denote the sources of
−→
HM,r;

M ′
r′
i,c

′
j

=
{

1, if cr,i = cj or cr,i �r cj ;
0, otherwise;

Return M ′.
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Theorem 5. For any m × n binary matrix M such that no column of M is
contained in a pair of conflicting columns, it holds that γ(M) =

∑
r χ(GM,r) =∑

r σ(M, r). Moreover, a conflict-free row split M ′ of M with γ(M) rows can be
constructed in polynomial time.

Proof. As argued above, we may assume that M has no duplicated columns. We
claim that the matrix M ′ produced by the above algorithm is a conflict-free row
split of M with a number of rows equal to γ(M).

It is clear that M ′ is a row split of M . Let us prove that M ′ is conflict-free.
Suppose the contrary, that is, let c′

i and c′
j be two columns of M ′ which are in

conflict. Then, there exists a row r′
k of M ′ (obtained by splitting a row r of M)

which has 1 in columns c′
i and c′

j .
We will first show that ci is contained in cj or viceversa. Assume for a con-

tradiction that this is not the case, and suppose first that cr,k �∈ {ci, cj}. Since
r′
k has 1 in columns c′

i and c′
j it follows that cr,k �r ci and cr,k �r cj . This

implies that column cr,k is contained in both column ci and column cj . By the
assumption on M , ci and cj cannot be in conflict, hence, one of them is contained
in the other one. This violates our first assumption, and thus cr,k ∈ {ci, cj}. If
cr,k = ci (resp. cr,k = cj) then ci �r cj (resp. cj �r ci) and therefore column ci

is contained in column cj (resp. cj is contained in ci).
Thus, we may assume without loss of generality that ci is contained in cj .

Since c′
i and c′

j are in conflict it follows that there exists a row w′
� of M ′ which

has 1 in column c′
i and 0 in column c′

j . This implies that the corresponding row
w of M has 1 in column ci, and consequently also in cj , since ci is contained in
cj . Therefore, both ci and cj are vertices of

−→
HM,w. If ci = cw,�, then w′

� has value
1 in column c′

j (since ci is contained in cj), which contradicts the choice of w′
�.

Thus, ci �= cw,� and cw,� �w ci. However, since ci is contained in cj and
−→
HM,w

is transitive, it follows that cw,� �w cj . This implies that row w′
� has value 1 in

column c′
j , which again contradicts the choice of w′

�. This finally shows that M ′

is conflict-free.
Since the number of rows in M ′ is

∑
r σ(M, r) and M ′ is conflict free, we

have γ(M) ≤ ∑
r σ(M, r). By Corollary 1 and Lemma 2 we have

∑
r σ(M, r) ≤∑

r χ(GM,r) ≤ γ(M). This implies equality. Clearly, the algorithm can be imple-
mented to run in polynomial time. ��

Observe that when the input matrix satisfies the stronger property that no
column is contained in another one, Theorem 5 implies that the naive solution
obtained by splitting each row r into as many 1s as it contains always produces
an optimal solution. This is true since all vertices of

−→
HM,r are sources. We obtain:

Corollary 2. For any binary m × n matrix M such that no column of M is
contained in another one, it holds that γ(M) = m′, where m′ equals the number
of 1 s in M . Moreover, a conflict-free row split M ′ of M of size m′ × n can be
constructed in time O(m′n).
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6 Discussion

In this paper we gave a polynomial time algorithm for instances of the Min-
imum Conflict-Free Row Split problem where no column is contained in
both columns of a pair of conflicting columns. It remains to be verified if real
instances satisfy this property. More general tractable instances could be found
by inspecting further dependencies between column containment and conflict-
ness. For example, it remains open whether the Minimum Conflict-Free Row
Split problem is tractable on matrices in which no pair of conflicting columns is
contained in both columns of a pair of conflicting columns. It is also interesting
to identify polynomially solvable cases of the Minimum Distinct Conflict-
Free Row Split problem and to explore variations of the problems in which
we are also allowed to edit the entries of the input matrix. Finally, observe that
in [8] it was assumed that the matrices have no duplicated columns, which was
not necessary in this paper.

Note added in proof. After the final version of this paper was due, it has come
to the authors’ knowledge that Hajirasouliha and Raphael mentioned during
their WABI 2014 talk that their claim about every graph being a row-conflict
graph (Theorem 4 in [8]) contained a flaw and proposed a correction stating
that for every binary matrix M with an all-zeros row and an all-ones row, the
complement of GM,r (for any row r of M) is transitively orientable (cf. Theorem 2
above).
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Abstract. Recently coevolutionary analysis has turned to tree topology,
specifically the unbalanced nature of evolutionary trees, as a means to
reduce the asymptotic complexity associated with inferring coevolution-
ary interrelationships that exist between organismal trees. The leveraging
of tree topology for coevolutionary analysis has been shown to be highly
successful, with one recent result demonstrating a logarithmic space com-
plexity reduction for the dated tree reconciliation problem. In this work
we build on this prior result providing a reduced complexity bound by
applying a new model to construct the dynamic programming table. The
new complexity bound is the first sub quadratic running time solution
for the dated tree reconciliation problem for selected tree topologies and
is shown to be, in practice, the fastest method for solving the dated tree
reconciliation problem for expected evolutionary trees. Our theoretical
results are then validated using a combination of synthetic and biological
data with our proposed model shown to save almost O(

√
n) space while

finishing in half the time compared to existing methodologies.

Keywords: Coevolution · Phylogeny · Tree reconciliation · Tree shape ·
NP-Hard

1 Background

Phylogenetics considers the evolutionary drivers that have given rise to the diver-
sity present within the tree of life [1]. A long standing area of interest in the field
of phylogenetics is the topology of evolutionary trees, specifically their unbal-
anced nature. Analysis of this imbalance dates back to at least Yule’s modelling
for the evolutionary process [2]. While to date no model has captured the topo-
logical variation of all evolutionary trees, it has been shown that this variation
is bounded by two synthetic models; the Yule and Uniform models [3,4]. This
result is quite powerful as it allows for algorithmic development to target this
set of topologies when developing new phylogenetic analysis techniques [5].
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The Yule model is a bifurcating tree generation model which applies a con-
tinuous pure birth process to create a bifurcating tree. Under this model branch
lengths have no bearing on the rate of speciation [3], rather, each leaf exists for
a random period of time before it diverges, with this process repeating until the
tree has n taxa. Trees produced under this model represent the most balanced
evolutionary trees within the tree of life [6].

The Uniform model, also known as proportional-to-distinguishable arrange-
ments (PDA), is a bifurcating tree generation model which selects trees through
uniform sampling from all trees with n taxa [4]. This approach does not model
the evolutionary process, however, trees produced under this model are represen-
tative of the most unbalanced evolutionary trees found within the tree of life. As
a result, Yule and Uniform trees provide a tight topological bound for expected
evolutionary data [6].

Until recently little focus has been given to how the unbalanced nature of
phylogenetic trees may be applied to the analysis of coevolving systems. The
topology of phylogenetic trees, however, has the potential to be leveraged within
this context, as such analysis often considers the coevolutionary relationships
between a pair of phylogenetic trees, based on the known associations between
their extant taxa. These relationships are often inferred using a technique known
as cophylogeny mapping, the complexity of which is highly dependent on the
shape of the phylogenetic trees in question [5].

Cophylogeny mapping is the process of mapping a dependent (parasite) phy-
logeny into an independent (host) phylogeny based on the associations between
their extant taxa [7]. This technique is able to determine the congruence between
a pair of phylogenetic trees, along with inferring their shared evolutionary his-
tory using four evolutionary events: codivergence, duplication, host switch and
loss [8]; as can be seen in Fig. 1.

The development of cophylogeny mapping algorithms has gained significant
interest due to its close association with the gene–species tree reconciliation
problem [9], where the evolutionary events within this context are cospeciation,
gene duplication, horizontal transfer or lateral gene transfer and loss [10].

Cophylogeny mapping aims to reconcile the minimum cost map, where each
evolutionary event is assigned a penalty score, such that the minimum cost map is
representative of the most likely shared evolutionary history [11]. The inference of
such a map, the cophylogeny reconstruction problem, is NP-Hard [12]. Therefore,
techniques aiming to reconcile the most likely evolutionary history between a
pair of phylogenetic trees are often forced to rely on heuristics [7,13]. There
are currently two popular heuristics applied to this computationally intractable
problem, the first ignores the order of evolutionary events defined by the parasite
phylogeny, and the second constrains the order of evolutionary events within the
host phylogeny, reducing this problem to the simpler dated tree reconciliation
(DTR) problem.

In the case where the order of the evolutionary events in the parasite’s phy-
logeny are not considered, it is possible to reconstruct a map where the order of
evolutionary events as defined in the reconciled map contradict the order defined
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Fig. 1. The resultant map (right) of a pair of phylogenetic trees based on their known
associations (left). What is unique about this particular map is that it is composed of
all four evolutionary events, codivergence (at nodes z and v), duplication (at node w),
host switch (at node y) and loss (edge (z, x) at host node c).

by the parasite’s phylogeny, that is, the parasite phylogeny and resultant map
describe a different order of evolutionary events. Such a map is often referred to
as time-inconsistent or biologically infeasible [14]. While it has been shown that
such solutions are uncommon [9], in cases where they do occur this technique
may be unable to recover a biologically feasible alternative [14,15].

On the other hand, fixing the order of evolutionary events in the host tree
gives rise to a worst case exponential number of internal node orderings that need
to be considered to guarantee optimality. To overcome this limitation approaches
which leverage the DTR problem often use a metaheuristic to traverse only a
subset of the exponential number of possible node orderings. This approach has
been shown to be highly accurate and therefore recent algorithmic analysis has
tried to minimise the time complexity of the DTR problem to allow for further
exploration using a metaheuristic within a fixed period of time.

To date the fastest known approach for solving the DTR problem is Bansal
et al.’s reconciliation algorithm, implemented within RANGER-DTL [10]. This
algorithm is asymptotically bounded by O(n2 log n) and requires O(n2) space,
which is a significant reduction from the initial method proposed in 2009 [7]
(O(n7)). Any further reduction to this computational complexity, however,
would allow further exploration of the complex search space using metaheuris-
tics, where even a space complexity reduction would allow additional threads as
systems will quickly become bound by the quadratic space requirement of this
problem as data sets continue to grow [15].

In this work we re-examine the recent complexity analysis which aims to
leverage tree topology as a means to reduce the asymptotic complexity of the
DTR problem [5]. We build on these past results to provide a new worst case
complexity bound which is asymptotically faster than Bansal et al.’s reconcili-
ation method for a select set of topologies, where these selected tree topologies
represent the bounds for expected evolutionary data. As a result, our model rep-
resents the most time and space efficient approach for solving the DTR problem



96 B. Drinkwater and M.A. Charleston

for expected biological data. The asymptotic bounds which we present are then
evaluated using a combination of synthetic and biological data to validate that
our algorithm is in fact superior to Bansal et al.’s reconciliation algorithm, which
until now was the best known approach for solving the DTR problem.

2 Methodology

This work presents the construction of a new asymptotic bound for the node
mapping algorithm first presented in [7] and improved in [5,11], which relies
heavily on the tree topology analysis presented in [1,5]. The asymptotic bound
presented herein has the potential to be improved further, although appears to
provide a relatively tight bound, as observed in Sect. 3.

The new bound represents the lowest worst case time and space complexity
bound for solving the DTR problem for coevolving systems composed of trees
produced under the Yule model, where it is shown that it is possible to solve the
DTR problem in sub-quadratic time. In the case where the coevolving systems
considered are composed of trees produced under a Uniform model we present
the best space complexity solution for the DTR problem by almost a factor of
O(

√
n), with a time complexity result which is comparable to current methods,

although is shown to outperform them in practice.

2.1 The Number of Mapping Sites Required for Each
Parasite Node

Node mapping algorithms construct a dynamic programming table by mapping
each parasite node p into the host tree, from the leaves up to the root. This is
contrasted by Bansal et al.’s algorithm which maps each parasite into the host
phylogeny starting at the root, moving down to the tips, resulting in a significant
reduction in the algorithm’s time complexity. This is possible due to the appli-
cation of a novel O(n log n) preprocessing step, executed for each parasite node
which is processed. Prior research [5], however, has found that while asymptot-
ically slower, bottom-up, taxa to root, approaches are capable of solving the
DTR problem in sub-quadratic space. This is achieved by leveraging that not
all elements stored within the dynamic programming table are populated when
solving this problem optimally. This result cannot be applied to Bansal et al.’s
algorithm, however, due to its quadratic space requirement for preprocessing [5].

Previous approaches which solve the DTR problem using sub-quadratic space
have constructed their asymptotic space complexity bound by considering the
number of mapping sites required at each level in the reconciliation process. In
this context, the number of mapping sites is the number of unique positions
where p may be mapped in the host phylogeny, that is the number of potential
solutions which must be retained, and the level is the maximum distance that a
node is from its leaves starting at zero with a maximum number of levels bound
by n − 1.
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Prior research has shown that the number of mapping sites required for a
specific node p at level i can be defined as the function f(i) as follows [5]:

f(i) =
{

1 if i = 0
min(3(2

i−1), n) if i ≥ 1
(1)

We will show that while this exponential function does provide a bound
for the number of mapping sites required for each node p at level i, it often
significantly over–counts this number.

The function f(i) considers two cases to infer the number of mapping sites
for each parasite node, p, at a particular level. Either the node p may be mapped
to all nodes in the host tree, that is there are n mapping sites required for node
p, or there is only a subset of the host tree where p is mapped where the number
of nodes in this subset is bound by 3(2

i−1) where 3(2
i−1) < n. This subset can

alternately be bound by the following recurrence as first defined in [5]:

a0 = 1

ai = 3 × (ai−1)2 for all i ≥ 1 (2)

Under this model all host nodes contained within the subtree bounded by ai

children’s mapping sites are considered possible mapping site candidates. This
model is in line with the original construction of the node mapping algorithm [7].
The function ai was constrained, by noting that the number of mapping sites
required does not exceed n, but did not consider any filters to reduce the rate
of growth of the recurrence relation, ai.

We will show that it is possible to bound the rate at which ai grows by
applying two filters. The first filter is derived from noting that only one optimal
location for a codivergence or duplication needs to be retained for each parasite
node p. This was not considered in the original construction of the node map-
ping algorithm [7] but has been adapted in subsequent methodologies [10,14].
By applying this filter only one additional mapping site is considered for codi-
vergence and duplication events when computing ai from its children, ai−1.

The second filter that we apply is to leverage the previous proof [11] that
while there are up to O(n2) optimal host switch locations for each parasite node
p, that only one needs to be retained to guarantee that the reconciled map
is optimal. Therefore, when selecting a host switch event only one additional
mapping location needs to be retained for ai. This is the case even though a
host switch may be inferred in either direction during the construction of the
dynamic programming table, as at least one of those two host switch events will
be mapped to the same node as its child, ai−1 [11].

It is important to note that these two filters complement one another, and
that by applying both filters we can guarantee that an optimal reconstruction
will be recovered when applied to the node mapping algorithm [11]. That is that
retaining only three mapping sites, a single codivergence or duplication event
along with two host switch events for each parasite node p, ensures that the
resultant map will be optimal [10,11,14].



98 B. Drinkwater and M.A. Charleston

By applying these two filters to the function ai, we can infer an additive
growth function as opposed to the initial multiplicative function as defined
in Eq. (2). This drastically reduces the growth of ai, which we have redefined
in Eq. (3). We show this reduction translates to a significant reduction to the
asymptotic space complexity bound for the node mapping algorithm.

a0 = 1
a1 = 3
ai = ai−1 + ai−1 + 2 for all i ≥ 2 (3)

From this recurrence relation (Eq. (3)) we can construct a closed form func-
tion as follows:

Theorem 1. The maximum number of mapping sites required to solve the DTR
problem optimally for each level, ai, is bounded by the function ai = 5×2(i−1)−2
∀ i ≥ 1

Proof.

ai = ai−1 + ai−1 + 2
= 2 × 2 × ai−2 + 4 + 2
= 2 × 2 × 2 × ai−3 + 8 + 4 + 2
= . . .

= 2(i−1)a1 + 2 × (2(i−1) − 1)

= 5 × 2(i−1) − 2 (4)

Therefore this gives rise to a new function for f(i) as:

f(i) =
{

1 if i = 0
min(5 × 2(i−1) − 2, n) if i ≥ 1

(5)

This function can then be broken into three parts, where i = 0, and the
values for i for which 5 × 2(i−1) − 2 < n and where 5 × 2(i−1) − 2 > n as follows:

Lemma 1. 5 × 2(i−1) − 2 < n ∀ i < �lg (n + 2)� − 1

Proof.

5 × 2(i−1) − 2 ≤ n

2(i−1) ≤ n + 2
5

i ≤ lg (n + 2) − lg 5 + 1
i ≤ �lg (n + 2)� − �lg 5� + 1
i < �lg (n + 2)� − 1 (6)
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Using Lemma 1 we redefine f(i) as:

f(i) =

⎧
⎨

⎩

1 if i = 0
5 × 2(i−1) − 2 if 0 < i < �lg (n + 2)� − 1
n if i ≥ �lg (n + 2)� − 1

(7)

In line with [5] we are able to use our function for f(i) to compute the space
required to solve the DTR problem.

2.2 Space Complexity Reduction

To compute the total storage requirement to solve the DTR problem requires
that the number of mapping sites stored for each subsolution, f(i), be multipled
by the number of nodes at each level. If we let the number of nodes at each
level be defined by the function, g(i), in line with prior analysis, then the total
storage requirement for solving the DTR problem optimally is:

h∑

i=0

(f(i) × g(i)) (8)

where h is the height of the tree. As we don’t have an exact height for trees
produced under either the Yule or Uniform models, we let h be equal to the
maximum height of any possible tree (n − 1) for this complexity analysis. This
approach will potentially over-count the total number of mapping sites, which is
appropriate as our aim is to provide an asymptotic bound rather than the exact
number of mapping sites required.

Previous analysis has derived explicit functions for g(i) for both the Yule and
Uniform models as 2(i−1)n

3i and 3(i−1)n
4i respectively [5], and therefore substituting

our new f(i) along with these known results for g(i) gives us the following
respective asymptotic space complexity bounds for solving the DTR problem:

O

(
n + n

�lg (n+2)�−1∑

i=1

2(i−1)(5 × 2(i−1) − 2)
3i

+ n2
n−1∑

i=�lg (n+2)�

2(i−1)

3i

)
(9)

O

(
n + n

�lg (n+2)�−1∑

i=1

3(i−1)(5 × 2(i−1) − 2)
4i

+ n2
n−1∑

i=�lg (n+2)�

3(i−1)

4i

)
(10)

By simplifying Eqs. (9) and (10) a new set of worst case bounds for the space
required to solve the DTR problem may be established as follows:

Theorem 2. The required space to solve the DTR problem for trees constructed
under the expected Yule process is bounded by O(n1.42).

Theorem 3. The required space to solve the DTR problem for trees constructed
under the expected Uniform process is bounded by O(n1.58).
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Theorems 2 and 3 (as proven in Appendices A and B respectively) are rep-
resentative of the lowest worst case bounds for any approach capable of solving
the DTR problem optimally, with the prior best space complexity result achiev-
ing a bound of only O

(
n2

(log n)0.58

)
and O

(
n2

(log n)0.42

)
for trees produced under

the Yule and Uniform processes respectively [5]. What is even more significant
is compared to Bansal et al.’s reconciliation algorithm [10], our approach offers
almost an O(

√
n) improvement in the space required to solve the DTR problem

optimally for all expected evolutionary data.

2.3 Time Complexity Reduction

Theorems 2 and 3 provide a new worst case bound for space required to solve the
DTR problem. In this section we apply these asymptotic bounds to provide a
reduction to the cubic time complexity bound faced by Node Mapping [11], and
show that for specific tree topologies it is possible to solve the DTR problem in
subquadratic time.

A subquadratic space requirement is achieved by storing a sublinear number
of mapping sites for each parasite node. From Theorems 2 and 3 we can derive
the average number of mapping sites stored for each parasite node for trees
produced by both the expected Yule (ψ(n)) and Uniform (υ(n)) models as:

ψ(n) ≈ (n0.42) (11)

υ(n) ≈ (n0.58) (12)

The functions for the number of mapping sites stored for each parasite node,
p, for trees produced under the Yule (ψ(n)) and Uniform (υ(n)) models, are
derived by dividing the total storage requirement for each tree topology, O(n1.42)
or O(n1.58) as proven in Theorems 2 and 3, by the total number of subsolutions,
O(n), required to solve the DTR problem. As a result, ψ(n) and υ(n) represent
the average number of mapping sites stored for each subsolution. It is important
to note that the worst case running time will occur when this average number
of mapping sites is required to be stored for each subsolution [5].

Node Mapping [11] solves the DTR problem by mapping each parasite node,
of which there are O(n), into the host tree. The set of mapping sites for each
parasite node, p, is inferred by comparing all possible permutations of both its
left and right child mapping sites, that is either (ψ(n))2 or (υ(n))2 for the Yule
and Uniform models respectively. Therefore, the worst case time complexity
bound for solving the DTR problem for trees produced under the Yule and
Uniform models may be described by multiplying the number of mapping site
comparisons and the number of parasite nodes, giving us a time complexity
bound for solving the DTR problem for trees constructed under the expected
Yule process of O(n1.83), and a time complexity for solving the DTR problem
for trees constructed under the expected Uniform process of O(n2.17).

This result is of interest as for a select subset of tree topologies, that is
those that conform to a Yule process, it is possible to solve the DTR problem
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in sub-quadratic time. In the case where trees conform to those produced by a
Uniform process, the running time using our approach runs in O(n2.17), which
is slightly worse asymptotically than Bansal et al.’s algorithm which runs in
O(n2 log n). While our algorithm is asymptotically worse it performs better in
practice. This is because n2.17 < n2 log n ∀ 2 < n < 353, 830, 149. As there are
only an estimated 8.7 million species [16], our algorithm for trees produced under
both a Yule and Uniform process is the fastest algorithm for solving the dated
tree reconciliation problem for all feasible data.

3 Results and Discussion

The analysis of how our theoretical complexity bounds translate to a time and
space complexity reduction in practice is broken into three parts. The first
presents the space complexity reduction offered by our proposed model over
synthetic data sets constructed using both Yule and Uniform models. Following
this we compare the running time of our proposed method against Bansal et al.’s
reconciliation algorithm, over the same synthetic data sets.

In both cases the synthetic data applied was constructed using CoRe-PA’s
random nexus file generator [13] allowing a larger number of taxa to be consid-
ered. These data sets represent the largest coevolutionary data sets created for
algorithmic analysis, with ten times more taxa than prior analyses [5]. Finally,
we compare the time and space complexity of both our methods against Bansal
et al.’s approach over 102 previously published biological data sets [15], ensuring
our result translates to time and space reduction for biological data analysis.

In all three sections we compared a Java implementation of the Improved
Node Mapping algorithm [11] against a Java implementation of Bansal et al.’s
reconciliation algorithm [10]. RANGER-DTL was not used as the source code is
not open source and our aim was to implement both algorithms using common
code wherever possible, to provide an accurate comparison of each algorithm.

3.1 Analysis of Space Complexity Improvements (Synthetic Data)

The premise of the asymptotic reduction presented herein is that mapping a
parasite phylogeny into a host phylogeny is achievable using asymptotically less
than O(n2) mapping sites. Therefore it is important that this be validated before
considering any time reductions that may be observed due to this result.

To validate that our theoretical result translates to a space complexity
improvement in practice, we recorded the number of mapping sites stored when
solving the DTR problem, for two sets of 250 synthetic coevolutionary systems,
composed of trees ranging from 10 through to 2500 taxa that were constructed
using either the Yule or Uniform model. The median space required for 100
replicates of each data set has been plotted in Fig. 2, where it can be seen that
significantly less than O(n2) mapping sites are required. In fact our asymptotic
bounds appear to actually grow at a rate slightly faster than the required space,
meaning that an even lower asymptotic complexity bound may be achievable.



102 B. Drinkwater and M.A. Charleston

Fig. 2. The space required to solve the DTR problem for systems composed of trees
produced under a Yule (left) or Uniform (right) model.

3.2 Analysis of Time Complexity Improvements (Synthetic Data)

The running time required to solve the DTR problem for each of the synthetic
data sets applied in Sect. 3.1 was recorded for both Improved Node Mapping
and Bansal et al.’s reconciliation algorithm. To ensure a robust comparison of
each approach, 100 replicates were run for each system with the median run-
ning time plotted in Fig. 3. We only considered the time required to map the
parasite into the host. This was to observe Bansal et al.’s reconciliation algo-
rithm’s running time variation for systems composed of specific tree topologies,
without any potential noise that its quadratic preprocessing may introduce. This

Fig. 3. A running time comparison using coevolutionary systems composed of trees
produced under a Yule (left) or Uniform (right) model.
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did not assist node mapping’s observed improvement as it applies linear time
preprocessing compared to Bansal et al.’s quadratic preprocessing requirement.

It can be seen in Fig. 3 that Improved Node Mapping out performs Bansal
et al.’s reconciliation algorithm in both cases, with a median reduction of 43 %
for systems composed of trees produced under the Yule model and 62 % for
systems composed of trees produced under the Uniform model.

3.3 Time and Space Complexity Improvements for Biological Data

To ensure that our successful results translate to biological data, we repeated
the same experiments from Sects. 3.1 and 3.2 over a set of previously published
biological data [15]. These sets are smaller, however, with the largest only con-
taining 53 taxa compared with 2500 in the synthetic data sets.

Even with smaller data sets our experiments show that the space required
is generally less than O(n2). The exceptions seen in Fig. 4 are due to larger
parasite phylogenies, often twice the size of the host, which therefore require more
mapping sites as there are 2n subsolutions (parasite nodes). Overall however, as
n grows it can be seen that asymptotically fewer mapping sites are required.
In terms of running time, our proposed algorithm is observed to have a median
reduction of 51 %, which is significant considering this is achieved while providing
an asymptotic space reduction.

These results demonstrate that the asymptotic time and space reductions
proven herein translate to an in-practice time and space complexity improve-
ment over both biological and synthetic data sets. We have shown that the node
mapping algorithm, while not achieving an asymptotic reduction from its bound
of O(n3) for all data sets, is able to perform as well as Bansal et al.’s O(n2 log n)
algorithm for evolutionary data, with a worst case bound of O(n2.17). This trans-

Fig. 4. The space complexity requirements for the Node Mapping algorithm (left) and
a comparison of running times of Bansal et al.’s reconciliation algorithm and the Node
Mapping algorithm (right), both over a set of previously published biological data
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lates to a running time reduction of more than 50 % in practice, while providing
almost an O(

√
n) reduction in the space required. If adopted, this approach will

allow metaheuristic frameworks to execute a higher number of threads which
are capable of finishing in less than half the time. This will result in a higher
degree of confidence in the coevolutionary analysis performed due to a greater
exploration of the exponential search space within the same fixed time period.
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Appendix A: Proof for Theorem 2

Proof. To infer the worst case space complexity required to solve the dated
tree reconciliation problem for coevolutionary systems composed by phylogenetic
trees produced under an expected Yule model requires that the set of geometric
series defined in Eq. (9) be simplified. To do this we let the worst case asymptotic
complexity defined in Eq. (9) be redefined as a function α(n):

α(n) = n + n

�lg (n+2)�−1∑

i=1

2(i−1)(5 × 2(i−1) − 2)
3i

+ n2
n−1∑

i=�lg (n+2)�

2(i−1)

3i
(13)

which may be simplified as follows:

α(n) = n + n

�lg (n+2)�−1∑

i=1

2(i−1)(5 × 2(i−1) − 2)
3i

+ n2
n−1∑

i=�lg (n+2)�

2(i−1)

3i

= n + n

(
5
4

�lg (n+2)�−1∑

i=1

(
4
3

)i

−
�lg (n+2)�−1∑

i=1

(
2
3

)i

+
n

2

n−1∑

i=�lg (n+2)�

(
2
3

)i
)

< n + n

(
5
4

�lg (n+2)�−1∑

i=1

(
4
3

)i

+
n

2

n−1∑

i=�lg (n+2)�

(
2
3

)i
)

= n + n

(
5
4

×
( 4

3 − 4
3

�lg (n+2)�
1 − 4

3

)
+

n

2
×

((
2
3

)�lg (n+2)� − (
2
3

)n

1 − 2
3

))

= n + n

(
15
4

×
(

4
3

�lg (n+2)�
− 4

3

)
+

3n

2
×

(
2
3

�lg (n+2)�
−

(
2
3

)n))

≤ n + n

(
15
4

×
(

4
3
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− 4
3
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+

3n
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×

(
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3
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−
(
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= n + n

(
15
4

× 4
3

(lg (n+2))

+
3n

2
× 2

3

(lg (n+2))

− n ×
(

2
3

)n−1

− 5

)

< n + n

(
15
4

× 4
3

(lg (n+2))

+
3n

2
× 2

3

(lg (n+2))
)

= n + n

(
15
4

× (n + 2)(2−lg 3) +
3n

2
× (n + 2)(1−lg 3)

)

≈ n × n(2−lg 3)

≈ n1.42 (14)

Appendix B: Proof for Theorem 3

Proof. To infer the worst case space complexity required to solve the dated
tree reconciliation problem for coevolutionary systems composed by phyloge-
netic trees produced under an expected Uniform model requires that the set of
geometric series defined in Eq. (10) be simplified. To do this we let the worst
case asymptotic complexity defined in Eq. (10) be redefined as a function β(n):

β(n) = n + n

�lg (n+2)�−1∑

i=1

3(i−1)(5 × 2(i−1) − 2)
4i

+ n2
n−1∑

i=�lg (n+2)�

3(i−1)

4i
(15)

which may be simplified as follows:

β(n) = n + n

�lg (n+2)�−1∑

i=1

3(i−1)(5 × 2(i−1) − 2)
4i

+ n2
n−1∑

i=�lg (n+2)�

3(i−1)

4i

=n+n

(
5
6

�lg (n+2)�−1∑

i=1

(
3i × 2i

2i × 2i

)
−2

3
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3
4

)i

+
n

3
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(
3
4

)i
)

< n + n

(
5
6
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i=1

(
3
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+
n

3
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i=�lg (n+2)�

(
3
4

)i
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(
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×
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)
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n

3
×
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3
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3
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= n + n

(
5
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2

)
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4n

3
×

(
3
4
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3
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(
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= n + n

(
5
3

× 3
2

(lg (n+2))

+
4n

3
× 3

4

(lg (n+2))

− n ×
(

3
4

)(n−1)

− 5
2

)

< n + n

(
5
3

× 3
2

(lg (n+2))

+
4n

3
× 3

4

(lg (n+2))
)

= n + n

(
5
3

× (n + 2)(lg 3−1) +
4n

3
× (n + 2)(lg 3−2)

)

≈ n × n(lg 3−1)

≈ n1.58 (16)
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Abstract. Evolution of cancer cells are characterized by large scale and
rapid changes in the chromosomal landscape. The fluorescence in situ
hybridization (FISH) technique provides a way to measure the copy
numbers of preselected genes in a group of cells and has been found
to be a reliable source of data to model the evolution of tumor cells.
Chowdhury et al. [1,2] recently develop a theoreticallly sound and scal-
able model for tumor progression driven by gains and losses in cell count
patterns obtained by FISH probes. Their model aims to find the Rectilin-
ear Steiner Minimum Tree (RSMT) that describes progression of FISH
cell count patterns over its branches in a parsimonious manner. This
model is found to effectively model tumor evolution and is also useful in
tumor classification. However the RSMT problem is NP–complete and
efficient heuristics are necessary to obtain useful solutions, especially for
large datasets. In this paper we design a new algorithm for the RSMT
problem, based on Maximum Parsimony phylogeny inference. Experi-
mental results from both simulated and real tumor data show that our
approach outperforms previous heuristics for the RSMT problem, thus
obtaining better models for tumor evolution.

Keywords: FISH · Tumor Phylogenetics · Maximum Parsimony · Gene
copy number · Rectilinear steiner minimum tree

1 Introduction

Cancer is recognized to be an evolutionary process driven by mutations in tumor
cells [3]. These evolutionary processes include single-nucleotide variations, inser-
tions and deletions, copy-number aberrations, structural variations and gene
fusions [4]. Many experiments reveal considerable intra–tumor and inter–tumor
heterogeneity [5], attributed to these evolutionary processes. Clinical implica-
tions of this heterogeneity, for example in drug resistance and disease diagnosis,
has been well studied [5,6].
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Rapid, simultaneous linear and branching evolution in multiple subclones
of cancer cells can be modeled by a phylogenetic tree [7]. Inferring such phy-
logenies facilitates the study of cancer initiation, progression, treatment, and
resistance [8]. They can help pinpoint important changes that lead to the recur-
rence of some genome aberrations [9]. Phylogenies also aid in identifying genes
crucial for the evolution and hence may contribute to developing better cancer
treatment [10–13].

Mutation patterns in cancer are characterized by frequent and widespread
gains and losses of genomic material which is markedly different from what is
observed in species or population level evolution [8]. In particular, gene copy
number changes affect a larger fraction of the genome in cancers than do any
other type of somatic genetic alteration [14,15]. During tumor development,
the gene copy number can increase or decrease, due to failures in DNA repair
mechanisms (e.g., translesion synthesis and non-homologous end joining) [16–23].
Another characteristic feature of tumor evolution is the high genetic heterogene-
ity found. Previous phylogenetic models for cancer, such as [11,24–28], either
do not account for these unique characteristics of cancer evolution or are not
scalable and hence not of practical use. Thus there is need for development of
new phylogenetic models with scalable algorithms that can adequately model
cancer evolution. A step towards a scalable model for inferring tumor phylogeny
by copy number variation was taken by Chowdhury et al. [1,2] using FISH data.

FISH (Fluorescent In Situ Hybridization) was developed by bio-medical
researchers in the early 1980 s and has been used to detect and localize the
presence or absence of specific DNA sequences and to visualize the genomic
diversity of chromosome aberrations [29]. While single cell sequencing (SCS)
technique also has the potential to count the number of specific genes or spe-
cific regions for a group of cells, the highly non-uniform coverage, the admixture
signal and relatively high cost make the current SCS technique unsuitable. By
allowing us to count copies of gene probes across hundreds to thousands of cells,
FISH provides a way to characterize tumor heterogeneity reliably.

Chowdhury et al. [1] model the progression of tumor cells from the FISH
copy number data assuming that gene copy number changes occur by gain or
loss of a single gene probe. They show that such a progression of FISH cell
count patterns over a tree effectively models the evolution of tumor cells. They
assume a parsimonious model describing evolution by single gene copy number
changes and develop a theoretical foundation for handling large copy number
datasets. They reduce the modeling problem to the NP-hard Rectilinear Steiner
Minimum Tree (RSMT) problem, and develop heuristics to construct RSMT
trees. Another heuristic for the same problem was proposed by Zhou et al. [30].
Apart from providing a good model for tumor evolution, RSMT topologies have
been found to be useful in distinguishing primary and metastasis samples [1,2].
RSMT topologies and other tree-based statistics yield insights into selective pres-
sure which simpler statistics (like cell counts) do not and provide independent
support to findings such as in [31]. They also are useful as discriminatory fea-
tures in downstream classification-based analyses. Experiments in [1,2] suggest
that mpFISHtrees can potentially improve these analyses that rely on accurate
RSMT inference.
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Since FISH yields cell count patterns of gene copy numbers at single-cell reso-
lution, parsimony-based phylogenetic approaches (designed previously for build-
ing phylogenies of species) can be applied to such data. Maximum parsimony
approaches seek the tree and the cell count patterns (gene copy numbers) for
the internal nodes that minimize the total number of events (in this case, single
gene duplication or deletion) needed to produce the given input from a common
ancestor. Although this also results in an NP hard formulation, several heuristics
have been developed in the last decade to solve the Maximum Parsimony Phy-
logeny problem. Packages such as TNT [32] have largely overcome computational
limitations and allow reconstructions of large trees, inferring accurate trees with
hundreds of taxa within minutes, and the use of continuous characters [33].

In this paper we design a new approach based on Maximum Parsimony tree
reconstruction. We use approximations to Maximum Parsimony trees for phylo-
genetic inference to obtain excellent approximations to Rectilinear Steiner Min-
imum Trees. Experimental results from both simulated and real tumor data
show that our new approach outperforms previous heuristics by obtaining bet-
ter solutions for the RSMT problem and thus provides a good model for cancer
phylogenies using cell count patterns from FISH data.

2 Methods

In this section we describe the RSMT problem as proposed by Chowdhury
et al. [1] for modeling the progression of FISH cell count patterns. We then
describe our heuristic for obtaining an approximate solution to the problem.

2.1 The Rectilinear Steiner Minimum Tree (RSMT) Problem

The RSMT problem for gene copy number changes is defined as follows.
Definition: RSMT(n, d)
Input: FISH data of n cell count patterns on d gene probes for a given patient
Output: A minimum weight tree with the rectilinear metric (or L1 distance)
including all the observed n cell count patterns and, as needed, unobserved
Steiner nodes along with their cell count patterns for d probes, Steiner nodes
here is used to represent missing node during gene copy number change process

Each cell has some non-negative integer count of each gene probe. Given
two cell count patterns (x1, x2, . . . , xd) and (y1, y2, . . . , yd), the pairwise distance
under the rectilinear metric (or L1 distance) is defined as |x1 − y1| + |x2 − y2| +
. . .+ |xd − yd|, where xi, yi ∈ N. The weight of a tree with nodes labeled by cell
count patterns is defined as the sum of all branch lengths under the rectilinear
metric. Since the distance between two cell count patterns under the rectilinear
metric represents the number of single gene duplication and loss events between
them, a minimum weight tree, including Steiner nodes if needed, explains the n
observed cell count patterns of d probes with minimum total number of single
gene duplication and loss events, from a single ancestor. The single ancestor
could be, for example, cell count pattern with a copy number count of 2 for each
gene probe (a healthy diploid cell) [1,2].
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The RSMT problem is NP-complete [34]. Note that if all possible cell count
patterns in cancer cells are present as the input, then the RSMT is simply the
minimum spanning tree, since no additional Steiner nodes are needed. Since both
the minimum spanning tree and the minimum spanning network (as the union of
all minimum spanning trees) can be constructed efficiently, previous heuristics
have approximated RSMT by adding additional Steiner nodes to the minimum
spanning network [1,2] or to the minimum spanning tree [30]. For example, Fig. 1
shows an instance of 4 cell count patterns on 3 genes, and the RSMT can be
obtained by adding a Steiner node to the minimum spanning tree. However,
both the above heuristics are likely to be trapped in a local optimum if there are
multiple possible Steiner nodes that can be introduced, since the order in which
the Steiner nodes are added may affect the resulting tree weight [30].

Fig. 1. (Top) the input data of 4 cell count patterns on 3 genes. (Bottom left) the
minimum spanning tree has weight 5. (Bottom right) the RSMT has weight 4. The
Steiner node in RSMT is colored in red (Color figure online).

2.2 The Maximum Parsimony Tree (MPT) Problem

The Maximum Parsimony Tree problem for phylogenetic inference of gene copy
number changes is defined as follows.
Definition: MPT(n, d)
Input: FISH data of n cell count patterns on d gene probes for a given patient
Output: A minimum weight unrooted binary tree with the rectilinear metric (or
L1 distance) including all the observed n cell count patterns as leaves and n-2
unobserved internal nodes
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The MPT problem is also NP complete [35] but heuristics like TNT [32],
have largely overcome computational limitations and allow reconstructions of
large trees and the use of continuous characters [33]. The copy number of each
gene can be treated as continuous characters and TNT can be used to find
the minimum weight phylogenetic tree. Note that, given n observed cell count
patterns as the input (leaf nodes), MPT introduces (n-2) unobserved internal
nodes, while the minimum spanning tree does not introduce any unobserved
nodes.

2.3 From MPT to RSMT

In general, there may be multiple optimal solutions for the MPT problem, e.g.,
the internal nodes labeled by different cell count patterns. In any MPT with all
nodes labeled by cell count patterns, a branch is called trivial if its length is
0 under the rectilinear metric. For any MPT, an unobserved internal node is a
Steiner node if and only if it is labeled by a distinct cell count pattern other
than any input cell count patterns. If we contract all trivial branches in MPT,
the remaining unobserved internal nodes will be the Steiner nodes in RSMT. See
Fig. 2 for an example.

Fig. 2. (Top) the input data of 4 cell count patterns on 3 genes. (Bottom) two maximum
parsimony trees MPT and MPT’, both of weight 6, are shown on the left. Nodes with
identical cell count patterns are shown in the same color in both MPT and MPT’. The
corresponding RSMT and RSMT’, both of weight 6, are shown on the right, and the
Steiner node in RSMT is colored in red (Color figure online).

Minimizing Steiner Nodes. The MPT, as obtained above, may contain up to
(n-2) Steiner nodes. Following the philosophy of parsimony, we seek to minimize



Maximum Parsimony Analysis of Gene Copy Number Changes 113

Input: MPT with optimal weight Wopt

Output: RSMT with optimal weight Wopt

For each Leaf in MPT
Parent(Leaf): the parent node of Leaf in MPT
MPT \ Leaf : the tree obtained by removing Leaf , rooted at Parent(Leaf)

(Fig. 3(a))
Compute the ranges of possible values in internal nodes in MPT \ Leaf

(DP bottom-up phase; Fig. 3(b))
Assign the cell count pattern of Leaf to Parent(Leaf)

Determine all the values for all other internal nodes in MPT
(DP top-down phase; Fig. 3(c))

Contract all trivial branches in MPT \ Leaf and derive RSMT ∗

(Fig. 3(d))
If the weight of RSMT ∗ is equal to Wopt

Store RSMT ∗ as a candidate RSMT
Return a candidate RSMT with the minimum number of Steiner nodes

Algorithm 1. Algorithm to derive RSMT from MPT

these artificially introduced nodes, although this step does not reduce the final
tree weight and is not required by the formal definition of RSMT (which does
not place any explicit constraints on the number of Steiner nodes). In fact, all
the previous heuristics [1,2,30] also implicitly do not add unnecessary Steiner
nodes and are biased towards a parsimonious solution due to their incremental
way of adding Steiner nodes to an initial tree with no Steiner nodes.

Given any MPT, if the internal nodes are labeled by cell count patterns, the
RSMT can be derived by contracting all its trivial edges; but the MPT obtained
does not have labels assigned to the internal nodes. Hence the problem reduces
to finding the best possible labels for internal nodes that does not increase the
weight. The dynamic programming (DP) method of [36] can be adapted to find
the internal labels, but modifications are needed to account for the rectilinear
metric and its implications on the total tree weight. Our algorithm proceeds by
finding whether a leaf label can be reused in its parent (or “lifted”) for each
leaf in the tree. The node with the lifted pattern is chosen to be the root node
and the leaf is removed. In the bottom–up phase of the DP, labels from other
leaves are propagated up the tree by using ranges of cell count patterns that can
maintain the leaf cell counts without increasing the tree weight. In the top–down
phase, cell count values are assigned to the internal nodes and a candidate tree is
generated by contracting trivial edges. Several such candidate trees are generated
by selecting different root nodes from lifted leaves. We choose a candidate tree
with minimum number of Steiner nodes, with no increase in tree weight. The
complete algorithm is presented in Algorithm 1 and a detailed example is shown
in Fig. 3.
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Fig. 3. An example to test whether Leaf1 can be optimally “lifted”to its parent node
Node6 in MPT. (a) a MPT on 5 leaves and 3 internal nodes. (b) Leaf1 and compute the
ranges of possible values to internal nodes, except Node6, in MPT \Leaf1 in a bottom-
up phase. (c) Assign the cell count pattern of Leaf1 to the root of MPT \Leaf1, and
determine the values for other internal nodes in MPT \ Leaf1 in a top-down phase.
(d) Contract all trivial branches in MPT \ Leafi and derive RSMT ∗. Nodes with
identical cell count patterns are shown in the same color and the Steiner node in
RSMT* is colored in red (Color figure online).

3 Experimental Results

In the following, we refer to previous heuristics as FISHtree [1,2]1 and
iFISHtree [30], and we refer to our Maximum-Parsimony based approach as
mpFISHtree. We also refer to the exact method [1] as Exact.

3.1 Real Cancer Datasets

We use both the real cervical cancer and breast cancer data samples and sim-
ulation samples generated through the same process described by Chowdhury
et al. [1,2]. The cervical cancer data contains four gene probes LAMP3, PROX1,

1 We use the best result derived from the heuristic option in [1] and the option
PLOIDY LESS HEURISTIC in [2] that also approximate RSMT under the case
of gene copy number changes of single probes.
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PRKAA1 and CCND1, and the breast cancer data contains eight gene probes
COX-2, MYC, CCND1, HER-2, ZNF217, DBC2, CDH1 and p53. These genes
are chosen because they are considered as important factors for cancer growth
inhibition or promotion. The cervical cancer data is from 16 lymph posi-
tive patients (both primary and metastatic tumors) and 15 lymph negative
patients, making 47 samples in total. The breast cancer data is from 12 patients
with both IDC and DCIS and 1 patient with only DCIS, making 25 sam-
ples in total. More details of this FISH data set can be found in Chowdhury
et al. [1,2].

Tables 1 and 2 summarize the comparison of FISHtree, iFISHtree and
mpFISHtree for breast cancer samples and cervical cancer samples, respectively
(and the best tree weights are shown in bold). Note that mpFISHtree of the
three heuristic methods has the best performance in all the samples. Figure 4
shows three approximate RSMT trees for the cervical cancer sample of patient
29, constructed by FISHtree (Fig. 4(a), tree weight = 83), iFISHtree (Fig. 4(b),
tree weight = 82) and mpFISHtree (Fig. 4(c), tree weight = 81), respectively.

Table 1. Comparison on the real datasets for breast cancer samples (Exact results
are not available due to the time limitation). The best tree weights are shown in bold
for each sample. The number of Steiner nodes is shown in parenthesis. 7 breast cancer
samples have ties in tree weights and thus are not included due to the space limit.

Case # Tree weight (# Steiner nodes)

FISHtree iFISHtree mpFISHtree

B1 IDC 213 (15) 212 (13) 211 (19)

B1 DCIS 241 (14) 242 (15) 239 (22)

B2 IDC 217 (15) 216 (20) 211 (22)

B2 DCIS 56 (2) 56 (2) 55 (3)

B3 DCIS 100 (7) 98 (7) 98 (10)

B4 IDC 214 (16) 213 (17) 213 (17)

B6 IDC 112 (4) 111 (4) 111 (6)

B7 IDC 116 (8) 113 (12) 113 (12)

B7 DCIS 186 (13) 184 (14) 182 (22)

B9 IDC 222 (22) 217 (25) 213 (30)

B9 DCIS 164 (12) 163 (13) 161 (15)

B10 IDC 128 (4) 128 (4) 127 (4)

B10 DCIS 146 (6) 145 (8) 145 (9)

B11 DCIS 136 (6) 135 (7) 134 (7)

B12 IDC 201 (9) 200 (10) 198 (15)

B12 DCIS 161 (9) 161 (10) 158 (13)

B13 IDC 132 (7) 131 (8) 131 (8)

B13 DCIS 63 (3) 62 (4) 62 (4)
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Table 2. Comparison on the real datasets for cervical cancer samples. The best tree
weights are shown in bold for each sample. The number of Steiner nodes is shown
in parenthesis. 24 cervical cancer samples have ties in tree weights and thus are not
included due to the space limit.

Case # Tree weight (# Steiner nodes)

FISHtree iFISHtree mpFISHtree Exact

C5 195 (13) 196 (12) 194 (13) 194 (13)

C6 82 (2) 82 (2) 81 (5) 81 (4)

C8 103 (6) 103 (6) 100 (9) 100 (8)

C9 143 (1) 142 (2) 142 (5) 142 (2)

C10 87 (0) 86 (1) 86 (1) 86 (1)

C12 72 (1) 71 (2) 71 (2) 71 (2)

C13 150 (5) 150 (5) 149 (7) 149 (7)

C15 74 (1) 73 (2) 73 (2) 73 (2)

C18 127 (4) 127 (4) 126 (6) 126 (6)

C21 73 (4) 74 (3) 73 (5) 73 (4)

C27 59 (1) 57 (3) 57 (2) 57 (3)

C29 83 (2) 82 (3) 81 (3) 81 (3)

C30 118 (9) 118 (9) 116 (9) 116 (10)

C32 209 (7) 207 (9) 205 (14) 205 (13)

C34 83 (5) 82 (6) 82 (6) 82 (6)

C35 67 (1) 67 (1) 66 (2) 66 (3)

C42 199 (7) 198 (9) 197 (12) 197 (11)

C45 172 (10) 169 (13) 169 (14) 169 (15)

C46 110 (5) 109 (6) 108 (8) 108 (7)

C49 162 (4) 161 (5) 161 (7) 161 (7)

C53 80 (3) 79 (4) 79 (4) 79 (4)

C54 146 (6) 145 (7) 144 (10) 144 (9)

3.2 Simulated Cancer Data

We also test on simulated datasets generated for different number of gene probes
(4, 6, 8) and for different tree growth factors (0.4 and 0.5) [1,2]. For each pair
of parameters, we simulate 200 samples with the number of distinct cell count
patterns varying from 120 to 150. Table 3 summarizes the number of times each
of the methods, FISHtree, iFISHtree, mpFISHtree and Exact, obtains the best
results on these simulation datasets. We observe that mpFISHtree outperforms
both FISHtree and iFISHtree by a large margin. Thank to the very efficient
implementation of TNT [37], the running time of mpFISHtree is comparable to
that of FISHtree, iFISHtree, all of which is orders of magnitude faster than the
exact method (i.e., we could not derive the optimal solutions within a reason-
able amount of time when there are more than 4 gene probes, shown as N/A in
Table 3).”
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Fig. 4. Given the metastatic cervical cancer sample of patient 12, (a) approximate
RSMT constructed by FISHtree with weight 83, (b) approximate RSMT constructed
by iFISHtree with weight 82 and (c) approximate RSMT constructed by mpFISHtree

with weight 81. Each node in the tree is labeled by a cell count pattern of four gene
probes LAMP3, PROX1, PRKAA1 and CCND1. Each white node represents an input
cell count pattern, and each red node represents an inferred Steiner node. Branch
lengths are shown in blue (Color figure online).
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Table 3. Comparison on simulated datasets: number of times and percentage that the
best scoring tree (including ties) is obtained by the four methods. Exact results for
datasets with over four gene probes are not available due to the time limitation.

Probe # Growth factor Best score count (Best score percentage)

FISHtree iFISHtree mpFISHtree Exact

4 0.4 92 (46 %) 137 (68.5 %) 196 (98 %) 200

6 0.4 70 (35 %) 98 (49 %) 194 (97 %) N/A

8 0.4 41 (20.5 %) 69 (34.5 %) 196 (98 %) N/A

4 0.5 93 (46.5 %) 130 (65 %) 194 (97 %) 200

6 0.5 68 (34 %) 99 (49.5 %) 196 (98 %) N/A

8 0.5 40 (20 %) 64 (32 %) 195 (97.5 %) N/A

4 Discussion

The Rectilinear Steiner Minimum Tree (RSMT) has been shown to be a good
model for progression of cancer cells using FISH cell count pattern data [1,2].
Efficient heuristics are necessary to obtain approximations to RSMT since finding
the optimal solution is NP–hard. We present a new algorithm to approximate
the RSMT based on Maximum Parsimony (MP) phylogeny reconstruction.

Our experiments on synthetic and real datasets demonstrate the superiority
of our algorithm over previous methods in obtaining better parsimonious models
of cancer evolution.

RSMT instances found by our method (as well as previous heuristics) have
multiple solutions with the same tree weight and additional constraints are
needed to choose one from them. We choose the parsimonious solution of min-
imizing the Steiner nodes introduced by MP reconstruction. Proving that our
method produces the solution with the minimum number of Steiner nodes and
exploring other strategies to choose from multiple RSMT solutions remain open
problems. Chowdhury et al. recently extended the evolutionary model of tumor
progression by gene copy number changes of single probes to all probes, jointly,
on a gene, a chromosome and the whole genome [2]. Extensions of our new
method to this more general model are possible, but remain to be thoroughly
tested.
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Abstract. Inference of ancestry from genetic data is a fundamental
problem in computational genetics, with wide applications in human
genetics and population genetics. The treatment of ancestry as a con-
tinuum instead of a categorical trait has been recently advocated in the
literature. Particularly, it was shown that a European individual’s geo-
graphic coordinates of origin can be determined up to a few hundred
kilometers of error using spatial ancestry inference methods. Current
methods for the inference of spatial ancestry focus on individuals for
whom all ancestors originated from the same geographic location.

In this work we develop a spatial ancestry inference method that aims
at inferring the geographic coordinates of ancestral origins of recently
admixed individuals, i.e. individuals whose recent ancestors originated
from multiple locations. Our model is based on multivariate normal dis-
tributions integrated into a two-layered Hidden Markov Model, designed
to capture both long-range correlations between SNPs due to the recent
mixing and short-range correlations due to linkage disequilibrium. We
evaluate the method on both simulated and real European data, and
demonstrate that it achieves accurate results for up to three generations
of admixture. Finally, we discuss the challenges of spatial inference for
older admixtures and suggest directions for future work.

Keywords: Admixture · Ancestry inference · Spatial model · Hidden
Markov Model · Multivariate-normal distribution

1 Introduction

Determining the ancestry of individuals based on their DNA sequence is a com-
mon and useful task in the study of human genetics: In addition to its multiple
applications in population genetics [5,7,9,10,24], it has a critical role in correct-
ing for confounders in disease studies [19]: If different ancestral composition in
cases and controls is not accounted for, ancestry-informative markers will appear
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to be disease-related. Admixed individuals, i.e. individuals whose ancestry is
mixed, are of special importance in discovering disease-associated traits. The
analysis of individuals from admixed populations, such as African-Americans
and Latinos, have allowed for the detection of multiple disease association sig-
nals [8,12,28] using Mapping by Admixture Linkage Disequilibrium (MALD) [22]
as well as other computational techniques [21]. An accurate characterization of
the ancestral origins of study samples is therefore critical when population struc-
ture exists in the dataset; improved accuracy should lead to more accurate con-
trol of confounding, which in turn leads to increased statistical power to detect
disease-related markers.

Until recently, the ancestry of admixed individuals was treated as a discrete
trait, and individuals were classified into pre-defined classes (e.g. Tuscan, Sicil-
ian, Catalan). For admixed individuals, different methods were developed to
determine, under the assumption that their multiple ancestries are known, the
fraction of genome originating from each one [1,20], and the ancestral origin of
each genomic region [2,6,13,18]. In reality, however, ancestries are not discrete,
because different populations go through constant mixing whose rate is deter-
mined to a large extent by the geographic distance between them. Ancestries are
therefore better described as a continuum strongly correlated with geographic
structure. One recent work attempts to deal with this challenge by modeling
individuals as a mixture of a large panel of reference populations, in a proce-
dure that does not require any prior knowledge about the number or identity of
the mixture components; this approach moves closer to a continuous representa-
tion, but still suffers from the principal drawbacks of other discrete approaches.
Other works tried to cope with this challenge by first classifying the parts of
the genomes into continents of origins, and then obtaining within-continent con-
tinuous spatial separation using Principal Component Analysis (PCA) [11,15].
One serious problem with this approach is that when the mixing populations
are from the same continent, e.g. when attempting to separate two different
European origins [13], the preliminary classification stage is inaccurate. A more
fundamental problem is that the use of PCA for localization is merely a heuris-
tic, and although PCA maps sometimes fit well with the geographic map [17],
this is not always the case [23].

Motivated by above difficulties, a few probabilistic spatio-genetic models have
recently been developed [3,26,27]. These models describe the allele frequency of
each SNP as a continuous function of the geographic coordinates. In addition
to improved accuracy of localization compared with PCA, these models can
be naturally extended to describe individuals of mixed origin. Indeed, one of
these methods named SPA [26] included an immediate extension of its model
for the inference of two different origins, paternal and maternal. As we show
below, this trivial extension does not provide accurate localization. In addition,
the inference becomes more challenging in the presence of multiple generations
of mixture, e.g. when each of the four grandparents originates from a different
ancestral location. Here too, a recent effort to address this problem has been
made by the method SPAMIX [27], but as we show below this method does not
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provide accurate localization either. Multiple-ancestor geographic localization is
therefore an open challenge.

In this paper we provide LIZARD (LocalIZAtion of Recently aDmixed indi-
viduals), a method for estimating the multiple geographic coordinates of origin
for individuals of recent admixed ancestry. Our approach is based on modeling
both the long- and short-range correlations that exist in the genetic sequence of
admixed individuals. The long-range correlations, also termed Admixture Link-
age Disequilibrium, result from the recent mixing, due to which the chromosomes
become mosaics of long haplotypic segments originating from the same location;
because origin affects sequence, the alleles of SNPs residing on the same ancestral
haplotype are correlated. Next, given a haplotype’s location of origin, short-range
correlations exist between nearby SNPs due to Linkage Disequilibrium (LD).
Our model captures the short-range correlations by modeling haplotypes within
short genomic windows using the multivariate normal distribution (MVN). The
long-range correlations are captured by combining these windows into Hidden
Markov Models (HMMs) whose structure and between-window transition rates
are determined by the mixing pattern.

We evaluate LIZARD on both simulated and real data of European individ-
uals. LIZARD attains high accuracy in localizing the two parental locations of
individuals whose father and mother originate from different geographic regions
in Europe, with a median error of 374 km, considerably better than other exist-
ing approaches. We use real individuals of admixed ancestry from Europe whose
multiple origins are known to validate the method on real data, and observe
that LIZARD’s localization accuracy remains high and similar to the simulation
results. Next, we test our approach of individuals of 2 and 3-generation admix-
ture. As expected, the method’s performance deteriorates as g increases, though
the results remain useful for downstream applications (median error of 478 and
571 km for 2 and 3 generations, respectively). We discuss the limitations of our
approach for large values of g and suggest directions for future work. A software
package implementing our method will be freely available upon publication of
the manuscript.

2 Materials and Methods

We define an individual to be of homogeneous ancestry (or simply homogenous)
if all of their ancestors originated from the same geographic location, i.e. from
identical geographic coordinates. In addition, we say that an admixed individual
resulted from a g-generations admixture if each of their 2g ancestors from g
generations ago is of homogeneous ancestry, and g is the smallest number for
which this holds. In reality, locations are never identical and individuals are
never homogenous, as we are all mixed to some extent, but we can use them as
approximations when the scale of geographic variation in the study sample is
large enough.

We assume that a reference panel of 2n haplotypes whose locations of ori-
gin are known is available through phasing the genotypes of n individuals of
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homogenous ancestry. We denote the haplotypes by H = (h1, ..., h2n) and the
corresponding locations by X = (x1, ..., x2n). Each location is a vector which con-
tains longitude and latitude coordinates, and since the individuals are homoge-
nous x2i−1 = x2i ∀i ∈ {1 . . . n}. Given an individual of recent admixed ancestry,
our goal is to predict their geographical origins by utilizing the information in
the reference panel.

We begin by introducing our spatial model and a procedure for estimating its
parameters from a group of homogenous individuals. We then present a model for
individuals of 1-generation admixture, i.e. whose parents originate from different
locations but are themselves of homogeneous ancestry, and show how it can
be used to estimate the two parental origins. Finally, we extend this model
to localize individuals of g-generations admixture (for instance, a case of two
generations with four different ancestries).

2.1 Estimation of Spatial Parameters from Training Data

We split the haplotypes into L non-overlapping contiguous windows of l SNPs
per window, and denote by hij the part of haplotype hi confined to window j.
Similarly to [3], our model assumes that given hi’s location of origin, xi, hij is
sampled from a multivariate normal distribution (MVN), with window-specific
and location-dependent expectation βjxi and window-specific covariance Σj .
Here βj is an l × d matrix and Σj is an l × l matrix, where d is the dimension
of the spatial representation - 2 in our case, for latitude and longitude. The
probability of observing haplotype hi in window j given location xi equals the
multivariate normal likelihood:

L(hij | βj , Σj , xi) = MV N(hij ;βjxi, Σj)

=
1

(2π)
l
2 | Σj | 1

2
e− 1

2 (βjxi−hij)
T Σ−1

j (βjxi−hij) (1)

Despite the fact that the multivariate normal distribution is continuous while
genotypes are discrete, MVNs has been shown to model genotypic data well in
multiple contexts [6,14,25], including localization [3]. The advantage of using
MVNs is the ability to derive closed-form, efficiently-computable maximum like-
lihood solutions for the model parameters while accounting for pairwise correla-
tions between SNPs.

The training stage in which we estimate the parameters of the multivari-
ate normal distribution from the reference haplotypes has been previously
derived [3], and we describe it here briefly. Denote by Hj the matrix whose
ith column is haplotype hij , and by X the matrix whose ith column is the cor-
responding location vector xi. Then the maximum likelihood estimator of βj , Σj

have the following closed form solution:

β̂j = HjX
T (XXT )−1 (2)

Σ̂j =
1
2n

2n∑

i=1

(
β̂jxi − hi,j

)(
β̂jxi − hi,j

)T (3)
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We follow the standard procedure of adding a small positive constant (ε = 0.01)
to the diagonal of Σ̂j in order to ensure it is full rank and eliminate potential
overfitting of the covariance parameters due to the limited sample size.

2.2 Localization of Individuals of 1-Generation Admixture

We are given the two phased haplotypes h1, h2 of an individual whose parents
are homogenous, and would like to determine the two corresponding locations
of origin x1, x2. If phasing was error-free, the problem would be reduced to
separately localizing each haplotype; to do that, we can use known methods that
infer the location of haplotypes of homogeneous ancestry [3,26]. Unfortunately,
perfect phasing is typically not feasible, and as a result, each haplotype is mosaic
of parental and maternal segments.

Our model for 1-generation admixed individuals accounts for phasing errors
by allowing for the two locations of origin to change along the haplotypes. In
addition, the model assumes that there are no phasing errors within a window,
and therefore h1

j and h2
j originate from a single location for every window j.

As a result, we allow for one of two phasing arrangements per windows: Either
h1

j originated from x1 and h2
j from x2, or the other way around (see Fig. 1 for

illustration). Although the assumption of perfect phasing within windows may
not hold for all windows, if the window size is set appropriately, it should hold
for most of them.

Fig. 1. The two possible phasing arrangements per window. Given the two
phased haplotypes of a 1-generation admixed individual confined to a single genomic
window and the individual’s two ancestral locations x1, x2, for most windows it holds
that either h1 originated from x1 and h2 originated from x2, or the other way around.

The exact structure of the model is as follows: We combine the window-
specific parameters estimated from the reference panel as in Subsect. 2.1 into an
HMM specified by the triplet (Q, ε, δ): Q is the set of states, δ are the transition
probabilities, and ε are the emission probability functions. The set Q contains
2 x L states: For each window j ∈ {1 . . . L} there are two states, denoted sj =
{s1j , s

2
j}, for the two possible phasing arrangements. Given x1 and x2, the two

states of window j emit the haplotypes in the window in probabilities that are
determined by that MVN densities estimated in Eq. (2):

εs1
j
(h1

j , h
2
j ;x1, x2) = MV N(h1

j ;βjx1, Σj) · MV N(h2
j ;βjx2, Σj)

εs2
j
(h1

j , h
2
j ;x1, x2) = MV N(h2

j ;βjx1, Σj) · MV N(h1
j ;βjx2, Σj) (4)
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The between-states transition rate is constant across windows and is denoted
ps. This constant is determined by the phasing error rate and the window size,
and its exact choice is discussed in Sect. 2.5. We therefore have

δ(sk1
(j−1) → sk2

j ) =

{
1 − ps if k1 = k2
ps otherwise.

(5)

When performing localization of a 1-generation admixed individual, the
HMM we have just described is nearly fully parameterized; the only missing
parameters are the two location vectors (x1, x2). We use the Baum-Welch algo-
rithm to estimate these parameters, thereby localizing the individual. Specifi-
cally, denote by (z1j , z2j ) the indicator variables for the states (s1j , s

2
j ):

z1j = Isj=s1
j

=

{
1 if sj = s1j
0 if sj = s2j

(6)

and similarly for z2j , so that for each window z1j + z2j = 1. In iteration t of the

algorithm we use the Forward-Backward algorithm to compute (z1(t)j , z
2(t)
j ), the

posterior probabilities of the indicator variables, for every window j. We then
search for the location parameters that maximize the expected log likelihood:

(x(t)
1 , x

(t)
2 ) = argmax

x1,x2

L∑

j=1

[
(z1(t)j log(MV N(h1

j ;βjx1, Σj) · MV N(h2
j ;βjx2, Σj))

+ z
2(t)
j log(MV N(h1

j ;βjx2, Σj) · MV N(h2
j ;βjx1, Σj))

]
(7)

The values of xi, i = 1, 2 that maximize the above expression have the fol-
lowing closed form solutions:

x
(t)
i

T
=

⎛

⎝
L∑

j=1

(
z

i(t)
j h1

j + (1 − z
i(t)
j )h2

j

)T

Σ−1
j βj

⎞

⎠

⎛

⎝
L∑

j=1

(βT
j Σ−1

j βj)

⎞

⎠
−1

(8)

We repeat the expectation-maximization iterations until convergence of the log
likelihood (change smaller than 10−8), allowing for up to 100 iterations.

2.3 A Spatial Model for Individuals of g-generations Admixture

We now extend the model to describe individuals of g-generation admixture.
For such individuals each of the chromosomes (paternal and maternal) has orig-
inated from a different (but potentially overlapping) set of up to 2g−1 locations.
Because the admixture is recent, the pair of locations in window j are highly
correlated with the pair of locations of window j + 1. In order to capture these
correlations, we group each K consecutive windows into a block, and assume no
recent recombinations within blocks. As a result, all windows within the block
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Fig. 2. Model Assumptions for g-generation admixed individuals. Two
assumptions are made: (1) The two ancestral locations are constant within block (col-
ored gray), (2) no phasing errors within windows (colored white). In the figure, all
windows in the first block contain the locations x1 and x2, but different windows in
the block have different phasing arrangements. In the second block x3 replaces x2 due
to a recombination that occurred in the parental DNA (Color figure online).

contain the same two locations of origin, though perhaps with different phas-
ing arrangements. These assumptions are illustrated in Fig. 2. We note that in
our model windows and blocks have fixed sizes across the genome, but a more
accurate approach would be to set their sizes according to the region-specific
recombination rates.

We model these assumptions using a two-level HMM defined as follows (and
illustrated in Fig. 3):

1. Per each block we construct 22(g−1) bottom-level HMMs, one for each
unordered pair of parental locations - a paternal one and a maternal one.
Each of these HMMs contains K × 2 states, thereby capturing all possible
phasing arrangements in the block’s windows. These HMMs are identical to
the HMM defined in Sect. 2.2, but are confined to a single block.

2. We combine the bottom-level HMMs into a single top-level HMM. Denote
by B the number of blocks in the genome, then the top-level HMM has
B × 22(g−1) states, corresponding to all possible assignments of paternal and
maternal locations along the genome.

We estimate the 2g location vectors using the Baum-Welch algorithm. The
Expectation step in iteration t consists of the following two sub-steps:

1. For each block b and for each pair of locations r, we run the Forward-Backward
algorithm on the bottom-level HMM. This computation yields the emission
probability of block b and pair r in the top-level HMM. The computation
also gives us (z1(t)br1 , z

2(t)
br1 ) . . . (z1brK , z2brK), the posterior probabilities of the

per-window state variables in this block for this pair.
2. We run the Forward-Backward algorithm on the top level HMM. The transi-

tion probabilities between blocks are assumed to be fixed along the genome
and are determined by the average genome-wide recombination rate and by
g. For block b this computation gives us (w(t)

b1 . . . w
(t)

b22(g−1)), the conditional
probabilities of the per-block indicator variables corresponding to each of the
22(g−1) states.
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In the maximization step we derive the locations that maximize the expected
log likelihood. The optimal xi has the following closed form solution:

xT
i =

⎛

⎝
B∑

b=1

∑

r∈Ri

K∑

j=1

w
(t)
br (z1(t)brj h1

j + z
2(t)
brj h2

j )
T Σ−1

j βj

⎞

⎠

×
⎛

⎝
B∑

b=1

∑

r∈Ri

K∑

j=1

w
(t)
br βT

j Σ−1
j βj

⎞

⎠
−1

(9)

where Ri is the set of location pairs that include xi as one of the two locations.

Fig. 3. Two-level HMM for modeling 2-generation admixed individuals. The
top-level HMM includes four states per block - one for every unordered combination
of paternal and maternal states. In addition, for every block we define a bottom-level
HMM over the block’s windows: Given the block’s top-level state, each window has
two states, one for every possible phasing arrangement.

2.4 Simulation Setup

We tested our methods on simulated data generated from the POPRES Euro-
pean samples [16]. Our dataset consists of 364,373 SNPs with minor allele fre-
quency > 0.01 and no-call rate < 10%. We used BEAGLE [4] for phasing and
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imputation. This data contains 1385 individuals whose four grandparents were
reported to originate from the same country. Following phasing we obtained a
set of 2 × 1385 homogenous haplotypes, one part of which was used for training
the different methods, the other for simulating admixed individuals.

We simulated European admixed haplotypes as mosaics of homogenous hap-
lotypes. Specifically, for a g-generation admixed individual we first drew the num-
ber of recombinations from a Poisson distribution with a parameter determined
by g, and then uniformly sampled the paternal and maternal locations, sepa-
rately for the paternal and maternal haplotypes. Finally, we used the homoge-
nous haplotypes to fill out the genotype values according to the determined
recombination events. For all simulated individuals we assumed all 2g ancestral
origins to be different from each over. Overall we simulated 1500, 500 and 300
Europeans of 1, 2 and 3-generation admixture, respectively. Finally, we intro-
duced phasing errors into the phased haplotypes at a rate determined through
simulations. Specifically, we joined pairs of phased homogenous haplotypes from
different individuals to form artificial genotypes, used BEAGLE to phase them,
and measured the error rate produced by the phasing procedure.

2.5 Method Comparison

We compared LIZARD to two recently published methods for the inference of
ancestral locations in recently admixed individuals, SPA [26] and SPAMIX [27].
In a nutshell, SPA’s model assumes that a SNP’s frequency changes linearly
across the geographic space, similarly to LIZARD. However, SPA does not model
LD, and only works for 1-generation admixture. As for SPAMIX, it does not
model LD either, but does model g-generation admixture as well as admixture
LD. In accordance with these differences, SPA has only O(m) parameters (m
is the number of SNPs), all of them spatial, while SPAMIX has O(2g) addi-
tional parameters that determine the individual’s admixture proportions. As for
LIZARD, its model contains O(ml) spatial parameters (l is the window size) in
order to capture local LD, and only a fixed number of parameters that deter-
mine the HMM transition rates. We note that both SPA and SPAMIX should
perform approximately the same on 1-generation admixture due to the lack of
admixture-LD in these individuals.

All methods were evaluated on simulated data (see Sect. 2.4) of 1-generation
admixed Europeans; in addition, LIZARD and SPAMIX were evaluated on 2,3-
generation admixed individuals, and LIZARD on real European samples. All
methods were trained on the same set of POPRES homogenous individuals -
SPA and SPAMIX on genotypes, LIZARD on haplotypes. LIZARD’s window
size (l), block size (K) and phasing switch rate (pp) parameters were tuned on
the training data and set to l = 100, K = 20 and pp = 0.1. These parameters are
likely to be optimized by other values in other datasets, but we observe that the
method is robust to their setting within a wide range (results not shown). One
possible strategy for adjusting these parameters is simulating admixed individ-
uals using each study’s specific SNP set and relevant recombination maps, and
choosing the optimal values in a cross-validation scheme.



130 Y. Margalit et al.

A first measure of performance is the distance in kilometers between the
estimated geographical coordinates and the true coordinates; the latter was taken
to be the center of the (known) country of origin. The calculation of the distance
error involved applying a previously described transformation [3,17,26]. The per-
individual error is computed as the average error over all locations. Since for each
individual an unordered set of locations is estimated, we choose the permutation
that produces the best match between the estimated and the true locations.

A second measure of performance is the fraction of accurate assignments to
country of origin. Assignments were obtained by choosing the country whose
center is closest to the estimated location. Since multiple countries are assigned
per individual, the accuracy we report is the fraction of countries that were
correctly detected, averaged over individuals. We emphasize, though, that our
method aims at continuous assignment and not at classification, and we report
classification here only as a proxy to the former, in the absence of exact location
information for the POPRES individuals.

3 Results

3.1 Localization of Simulated 1-Generation Admixed Individuals

1-generation admixed individuals were simulated as described in Sect. 2.4. As
expected, SPA and SPAMIX achieve approximately the same results, and
LIZARD outperforms both of them, presumably due to its improved model-
ing approach. In terms of km error, LIZARD attains a median error of 374 km
compared with SPA’s 1141 km and SPAMIX’s 1159 km (Table 1). These differ-
ences are reflected also in improved accuracy of assignment to country of origin,
as shown in Fig. 4: LIZARD’s average success rate is 57 %, while both SPA
and SPAMIX attain an average success rate of 42 %. The two country pairs for
which LIZARD did not attain the highest accuracy both involve Portugal, and
we observe that when making these errors LIZARD localized the samples too far
to the East, resulting in a mis-classification to Spain. More generally, LIZARD is
more likely to make an error when the two countries involved are in geographic
proximity; in some of these cases these supposedly wrong assignments may be
artifacts of the assignment scheme, which assigns an individual to the country
whose center is the closest.

Table 1. km error on simulated 1-generation admixed Europeans. For each
method we given the 0.5 [0.25, 0.75] quantiles of km error over all simulated individuals.

Method Error

LIZARD 374.95 [267.76, 519.05]

SPA 1141.4 [706.75, 1674.6]

SPAMIX 1159.6 [723.13, 1704.7]
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Fig. 4. Accuracy of assignment to country of origin for simulated 1-
generation admixed Europeans. For each pair of locations we give the fraction
of haplotypes correctly classified to their country of origin, per method. The panel
includes only populations that are represented by at least 40 individuals in the train-
ing data. In bold is the method which achieved the highest accuracy.

3.2 Localization of Real Europeans from the POPRES Dataset

We used 254 real 1-generation admixed Europeans from the POPRES dataset to
calibrate the performance estimates we obtained in the simulations. LIZARD’s
median km error on this data was 368 km, but this number cannot be directly
compared to the simulations results due to the difference in ancestral composi-
tion between the two test panels. We therefore generated additional simulated
datasets so that each real individual is matched with a simulated individual with
identical locations of origin. We generated ten such simulated datasets so as to
account for the variance resulting from the sampling of the haplotypes. Figure 5
shows that LIZARD’s localization error on the real data is similar to the error
observed in simulation: For example, LIZARD achieves median errors of 396 and
399 km on the real and simulated datasets, respectively, for individuals originat-
ing from Switzerland and France.

3.3 Localization of Simulated g-generation Admixed Individuals

We simulated individuals of g-generation admixture as described in Sect. 2.4.
LIZARD localizes individuals of 2-generation admixture who originated from
2g = 4 different locations with a median error of 478 km, and individuals of 3-
generation admixture and 2g = 8 different origins with a median error of 571 km
(Fig. 6). SPAMIX’s error is considerably higher - medians of 1170 and 1332 km
for 2 and 3 generations, respectively. The deterioration in the performance of
both methods is unsurprising, mostly because as g grows the number of loca-
tions increases exponentially with g, while the amount of data to estimate each
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Fig. 5. LIZARD’s km error on real data. LIZARD’s accuracy was measured on
the three main groups of admixed populations in POPRES (IT-Italy; FR-France; CH-
Switzerland). The figure gives the 0.25, 0.50 and 0.75 quantiles of km error per group
and per method. Error bars for simulated data give the standard error over ten draws of
simulated datasets, and for real data the standard error over individuals. The resulting
assignment accuracy are 0.68, 0.54 and 0.7 for IT-FR, CH-FR and CH-IT, respectively.

Fig. 6. LIZARD’s km error for g-generation admixture. LIZARD is compared
with a random assignment. Error bars give the standard error of the median as esti-
mated from a 10-fold cross-validation experiment.

location decreases exponentially. The problem therefore becomes harder very
fast if no additional assumptions about the locations are made, and we discuss
possible solutions to this in the Discussion. We also note that because we choose
the best match between true and estimated locations over all possible permu-
tations (see Sect. 2.5), a method that produces random location estimates is
expected to score better as g increases. When compared to a random method
(Fig. 6), LIZARD can be seen to achieve significantly better results for up to
3 generations. Our results therefore suggest that LIZARD is suitable only for
recently admixed individuals.
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4 Discussion

In this paper we presented LIZARD, a new method for the inference of ances-
tral coordinates for individuals of recent admixed ancestry. LIZARD is capable
of accurately inferring the origins of 1-generation admixtures, and with a lesser
success of 2 and 3-generation mixtures. Its improved performance compared
with existing approaches is achieved by modeling both long-range genomic cor-
relations due to recent admixture, and short-range correlations due to linkage
disequilibrium. As a result of using closed-form optimization formulae, LIZARD
runs fast: Its training on a reference set of thousands of haplotypes take a few
minutes, and localizing each 1-generation individual takes 45 seconds, on average.
We note that LIZARD requires haplotype data, and phasing may take up to a
few days, depending on the available computational resources; however, phasing
is usually performed in any case as a routine part of the data analysis.

As the number of generations in admixture increase, LIZARD’s performance
deteriorates rapidly. The main reason is that the length of genomic sequence
available for determining each origin decrease exponentially with g. Moreover,
the average length of each single ancestral segment decreases, and hence the long-
range correlations decay faster. Finally, in terms of efficiency, the complexity
of our algorithm is exponential in g. We close this paper by suggesting a few
enhancements that will enable better handling of larger g values.

First, it is often possible to utilize existing information about the ancestral
coordinates. In some cases, priors distributions can be formulated, at least for
some of the ancestors. In other cases, it is known that all ancestors from one
side of the family originate from the same region, and this information can be
easily integrated into our optimization. Second, our model assumes that within a
parent’s haplotype (paternal or maternal), a segment from any location is equally
likely to be followed by a segment from any other location. In fact, the transition
patterns between locations contain regularities due to the pedigree structure that
induced the mixing, and future methods could model these regularities.

More generally, continuous localization as we have attempted here is a qual-
itatively more difficult task than classification to discrete ancestries. Spatio-
genetic modeling of human data is a relatively new research direction, and much
work remains to be done in refining the models that underlie current localization
methods; we expect that such refinements will yield a significant improvement
in localization accuracy of both homogenous and admixed individuals.

Acknowledgements. E.H. is a faculty fellow of the Edmond J. Safra Center at Tel
Aviv University. Y.B. was supported in part by a fellowship from the Edmond J. Safra
Center for Bioinformatics at Tel-Aviv University. E.H. and Y.B. were also supported
in part by the United States Israel Binational Science Foundation (grant 2012304),
and by the National Science Foundation (grant III-1217615), and by the Israeli Sci-
ence Foundation (grant 989/08). E.H, Y.B, and Y.M were partially supported by the
German-Israeli Foundation (grant 1094-33.2/ 2010). E.H was also supported by the
Israel Science Foundation (grant 1425/13).



134 Y. Margalit et al.

References

1. Alexander, D.H., Novembre, J., Lange, K.: Fast model-based estimation of ances-
try in unrelated individuals. Genome Res. 19(9), 1655–1664 (2009)

2. Baran, Y., Pasaniuc, B., Sankararaman, S., Torgerson, D.G., Gignoux, C.,
Eng, C., Rodriguez-Cintron, W., Chapela, R., Ford, J.G., Avila, P.C., et al.:
Fast and accurate inference of local ancestry in latino populations. Bioinformat-
ics 28(10), 1359–1367 (2012)

3. Baran, Y., Quintela, I., Carracedo, Á., Pasaniuc, B., Halperin, E.: Enhanced
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Abstract. For many important complex traits, Genome Wide Associ-
ation Studies (GWAS) have only recovered a small proportion of the
variance in disease prevalence known to be caused by genetics. The most
common explanation for this is the presence of multiple rare mutations
that cannot be identified in GWAS due to a lack of statistical power. Such
rare mutations may be concentrated in relatively few genes, as is the case
for many known Mendelian diseases, where the mutations are often com-
pound heterozygous (CH), defined below. Due to the multiple mutations,
each of which contributes little by itself to the prevalence of the disease,
GWAS also lacks power to identify genes contributing to a CH-trait.
In this paper, we address the problem of finding genes that are causal
for CH-traits, by introducing a discrete optimization problem, called the
Phenotypic Distance Problem. We show that it can be efficiently solved
on realistic-size simulated CH-data by using integer linear programming
(ILP). The empirical results strongly validate this approach.

1 Biological Background and CH-Model

Identifying specific genetic variants that are associated with disease risk or other
measurable phenotypes has been one of the major of objectives of modern human
genetics. Today, the most commonly used technique is association mapping.
Association mapping tries to detect correlations between genotypes and phe-
notypes in random population samples, or in case-control samples. Most com-
monly, association mapping is performed using so-called Genome Wide Asso-
ciation Studies (GWAS), in which each variable position in the genome, called
a Single Nucleotide Polymorphism (SNP), is tested independently. There have
been many successes using GWAS, but for many of the important complex traits,
such as obesity, Type 2 Diabetes (T2D), cardio-vascular diseases, and many psy-
chiatric disorders, GWAS have only recovered a minor proportion of the variance
in disease prevalence known to be caused by genetics [12]. This problems is known
as the ‘missing heritability’ problem [8].

Different explanation have been proposed for missing heritability, including
epigentic factors, gene-environment interactions, and epistasis [12,15]. However,
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the most common explanation is the presence of multiple rare mutations that
could not be identified in GWAS due to a lack of statistical power [16]. Such
rare mutations may be concentrated in relatively few genes affecting the trait
in question. This is the case for many Mendelian diseases in which multiple
mutations, sometimes hundreds or even thousands of rare mutations in the same
gene, or genomic region, may contribute to the disease [2,9,11]. There may be
a similar concentration of rare mutations in relatively few genes in complex
diseases as well. If so, it might be possible to identify genes affecting the trait
even though each individual mutation in the gene contributes very little to the
population level variance. This insight has been one of the main motivations
for the development of a number of different statistical methods for combining
information from multiple mutations in the same gene, including SKAT [13],
C-alpha [10], KBAC [6] and their derivatives. However, in many cases these
tests have not been able to recover much more of the genetic variance than
standard tests [1,5,7]. In this paper, we address this problem using a discrete
optimization method rather than a purely statistical approach.

Compound Heterozygous Traits. Mendelian diseases caused by multiple muta-
tions often have a mode of inheritance in which individuals are affected by the
disease if they are homozygous or compound heterozygous for disease mutations.
A compound heterozygous (CH) individual is an individual who carries disease-
causing mutations in both copies (homologs) of their DNA, but not necessarily
in the same exact position on their respective homologs. In fact, the two muta-
tions rarely occur at the same position (hence each such site is heterozygous),
although they typically will fall in the same gene. If both the copy of the gene
received from the father and from the mother carry a disease mutation (although
at different positions in the gene), the offspring will have a greater risk for the
disease, relative to individuals without those mutations. Examples of compound
heterozygous traits include phenylketonuria and Tay-Sachs disease.

Existing GWAS efforts have generally had difficulty identifying causal genes
for CH-traits because the effect of each mutation is only observed when it occurs
in combination with another mutation–by itself, each mutation may contribute
very little to the disease. To address this problem, we propose modeling the
phenomena of CH traits in terms of a discrete optimization model that we call
phenotypic distance (PD) (defined in detail in below).

1.1 A Formal Model of a CH-trait at a Single Gene

Here we give a more formal definition of a CH trait at a single gene. The data for
a single gene g consists of n pairs of binary vectors of length m each (the SNP
haplotype pairs) from the two homologs of the gene. The two haplotypes in the
i’th pair are denoted Hi,1,Hi,2 respectively; and jointly, the i’th haplotype pair
is denoted Hi. The matrix of the n haplotype pairs is denoted H. For example,
Table 1 shows data for n = 2 and m = 7.
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Table 1. Vector Xg and two haplotype pairs. CH(1) is 1, and CH(2) is 0.

Xg : 0 1 1 0 0 1 1
H1

H1,1 : 1 0 1 1 1 0 0
H1,2 : 1 1 0 0 1 1 0

H2

H2,1 : 1 0 0 1 1 0 0
H2,2 : 0 1 1 0 1 0 1

We let binary vector Xg denote which of the m sites are causal (i.e., contribute
to the CH-trait), and which are not. That is, Xg(c) = 1 if site c is causal, and
Xg(c) = 0 otherwise. Then, given Xg and H, we define

CH(i) = [
∨

c

(Xg(c) ∧ Hi,1(c))] ∧ [
∨

c

(Xg(c) ∧ Hi,2(c))], (1)

where Hi,1(c) and Hi,2(c) are the values of Hi,1 and Hi,2 at site c. So, given Xg

and H, CH(i) will have value 1 if and only if there is a site c with Xg(c) =
1, where site c in haplotype Hi,1 also has value 1; and there is also a site c′

(possibly c) with Xg(c′) = 1, where site c′ in haplotype Hi,2 also has value 1
(see Table 1). We let CH denote the vector of length n, containing the values
CH(1), ..., CH(n). If CH(i) = 1, we say that individual i is CH, or is a CH-
individual.

Hidden Phenotypic Distance. For a given CH-trait, we cannot observe which
individuals are CH, although we can determine which individuals have a pheno-
type (say disease) that is hypothesized to be associated with the CH-trait. Those
individuals are the cases, and the others are the controls. So, for each individual
i, the input data contains a single bit, T (i), (the phenotype), which determines
whether the individual has been classified as a case (coded 1), or as a control
(coded 0). We let T denote the vector of the n phenotypes.

Definition. Given vectors T and CH (which is a function of H and Xg) at
a gene g, the hidden phenotypic distance, denoted HPD(CH,T ), is equal to the
Hamming distance between the vectors CH and T . The Hamming distance is the
number of positions where the values in the two vectors disagree. For example,
with the data in Table 1, if T (1) and T (2) are both one, the Hamming distance
between CH and T is one.

Thus, the hidden phenotypic distance at g reflects how well the data at gene
g fits the CH-model. The word “hidden” is used because we generally don’t
know vector CH (or Xg), and so HPD(CH,T ) can’t be determined from the
known data, H and T . But, the hidden phenotypic distance can be determined
in simulated data, where Xg is known.
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2 The Phenotypic Distance Problem

The fact that vectors Xg and CH are unknown in real data, but a classification
of the individuals into cases and controls is known (given as vector T ), leads
to the problem of estimating Xg (and CH). Informally, the phenotypic distance
problem is to estimate vector Xg, given matrix H and vector T , so that the
implied CH vector matches the phenotype vector T as closely as possible. More
formally, for each SNP site c, we associate a variable X̃(c) that can be assigned
either value 0 or 1; and let X̃ denote the vector of those m values. Then, given
H and X̃, the CH model is reflected by the values of variables C̃H(i), for i from
1 to n, defined as:

C̃H(i) = [
∨

c

(X̃(c) ∧ Hi,1(c))] ∧ [
∨

c

(X̃(c) ∧ Hi,2(c))]. (2)

Vector X̃ is an estimate of the unknown Xg, and indicates which of the m sites
in the gene might contribute to (or be causal for) the CH-trait. Compare this to
Eq. 1. We let C̃H denote the vector of all the C̃H(i) values.

Definition. Given the haplotype matrix H, and a phenotype vector T , the
Phenotypic Distance Problem is the problem of setting the values of vector X̃
to minimize the Hamming distance between the resulting vector C̃H and the
phenotype vector T . We call that Hamming distance the Phenotypic Distance
for H and T , and write it PD(H,T ).

Intuitively, small phenotypic distance at g (relative to the number of SNPs, and
compared to other genes) suggests the hypothesis that gene g is causal for the
CH-trait, and that the sites with value 1 in X̃ are causal sites.

Computing Phenotypic Distance. When the number of sites, m, is small, it is
feasible to explicitly enumerate all 2m subsets of sites, and for each subset S, set
the value of X̃(c) to 1 if and only if site c is in S. Finding the Hamming distance
between each resulting vector C̃H and vector T solves the Phenotypic Distance
Problem. However, this approach is infeasible for many values of m that are of
realistic biological interest. For example, there are genes of interest with more
than two hundred sites, and we cannot test 2200 possible values for X̃. Further,
Yufeng Wu has proved that the problem of computing the Phenotypic Distance
is NP-hard [14]. For that reason, we have developed and explored an approach
based on integer linear programming (ILP).

In the next section, we discuss the formulation and solution of the Phenotypic
Distance Problem through the use of ILP. Extensive testing of simulated data
with up to n = 4000 haplotype pairs and m > 200 sites, shows that this approach
is convincingly effective, i.e., both fast and accurate. Moreover, the Phenotypic
distance can be used to effectively distinguish genes that are likely causal for the
CH-trait, from genes that are not.
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2.1 An ILP Formulation for the Phenotypic Distance Problem

Definition. For each haplotype pair Hi, the two entries Hi,1(c) and Hi,2(c) in
a column c are called type 0 if they are 0,0; type 1 if they are 0,1; type 2 if they
are 1,0, and type 3 if they are 1,1. In other words, the type of the two bits is
determined by considering them as a binary number, reading top to bottom.
Note that the type of a column is relative to Hi, so the same column can have
a different type for two different values of i.

The ILP Variables. Overloading symbols a bit, for each column c, we will
use the variable X̃(c) (from the Phenotypic Distance problem) as a binary ILP
variable. Then, the value of X̃(c) in an optimal solution to the ILP formulation
will be interpreted as the value of X̃(c) in the Phenotypic Distance Problem.
Similarly, for each haplotype pair Hi, we will use the variable C̃H(i) (from the
Phenotypic Distance problem) as a binary ILP variable; it’s value in an optimal
solution to the ILP formulation will be interpreted as its value in the Phenotypic
Distance problem. There will also be two binary ILP variables Zi,1 and Zi,2 for
each Hi ∈ H1, where H1 is the set of Hi pairs with T (i) = 1; similarly H0 is
the set of Hi pairs with T (i) = 0. Variables Zi,1 and Zi,2 have a technical use in
the ILP, and will be discussed next. A binary ILP variable is restricted to have
only value 0 or 1.

The ILP Inequalities. For each haplotype pair Hi ∈ H1, the ILP formulation
for the Phenotypic Distance will have the following inequalities:

C̃H(i) −
∑

c is type 2 or 3

X̃(c) ≤ 0

C̃H(i) −
∑

c is type 1 or 3

X̃(c) ≤ 0

The first inequality ensures that for any Hi ∈ H1, C̃H(i) can be set to 1 only
if some X̃(c) is set to 1 for a column c where Hi,1(c) = 1. The second inequality
says the similar thing for C̃H(i) and Hi,2(c). So, for any Hi ∈ H1, C̃H(i) will
be set to 1 only when the values of X̃ and Hi satisfy Eq. 2.

The converse, that for Hi ∈ H1, C̃H(i) will be set to 1 if Eq. 2 is satis-
fied, will be enforced through the objective function that will be defined below.
That is, the objective is to minimize the sum of several terms, one of which
is −∑

Hi∈H1 C̃H(i), so in any optimal solution to the ILP formation for the
Phenotypic Distance Problem, any C̃H(i) ∈ H1 will be set to 1 unless doing so
violates one of the two inequalities above. The result is that in an optimal ILP
solution, (|H1| − ∑

Hi∈H1 C̃H(i)) is the number of haplotype pairs Hi where
T (i) = 1 but C̃H(i) is set to 0.
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Now we consider the inequalities for a haplotype pair Hi ∈ H0. Let Ai be the
number of type 2 or type 3 columns in Hi, and let Bi be the number of type 1
or type 3 columns in Hi. For each haplotype pair Hi ∈ H0, the ILP formulation
will have the three inequalities:

∑

c is type 2 or 3

X̃(c) − |Ai|Zi,1 ≤ 0

∑

c is type 1 or 3

X̃(c) − |Bi|Zi,2 ≤ 0

Zi,1 + Zi,2 − C̃H(i) ≤ 1

The first inequality ensures that Zi,1 will be set to 1 if there is a column c

where X̃(c) is set to 1 and Hi,1(c) = 1. The second inequality ensures that Zi,2

will be set to 1 if there is a column c where X̃(c) is set to 1 and Hi,2(c) = 1.
The third inequality ensures that C̃H(i) will be set to 1 if both Zi,1 and Zi,2 are
set to 1.

The converse, that for Hi ∈ H0, C̃H(i) will be set to 1 only if those inequal-
ities are satisfied, will be enforced through the objective function. That is, the
objective function has the term +

∑
Hi∈H0 C̃H(i), and since the objective is a

minimization, any C̃H(i) ∈ H0 will be set to 0 unless doing so violates one
of the three inequalities above. The result is that in an optimal ILP solution,∑

Hi∈H0 C̃H(i) is the number of Hi pairs where T (i) = 0, but C̃H(i) is set to 1.
It follows that in an optimal ILP solution, the Hamming Distance between

C̃H and T is (|H1|−∑
Hi∈H1 C̃H(i))+

∑
Hi∈H0 C̃H(i). So, the ILP formulation

optimizes the objective function

Minimize[(|H1| −
∑

Hi∈H1

C̃H(i)) +
∑

Hi∈H0

C̃H(i)],

and hence the optimal solution has value exactly PD(H,T ). The formulation has
at most 3n + m variables and at most 3n inequalities, and so has modest size.

3 Simulated Data

The ILP formulation was extensively tested on simulated data under a range
of biological assumptions and choices of parameters. Here we describe how data
was generated to model DNA with CH-traits.

Realistic simulations of genetic data from case-control studies are compli-
cated by the fact that the patterns of allele frequencies in different SNPs are
correlated, with a complex structure that depends on the specifics of the popu-
lation history (see e.g. [4]). To simulate realistic data for a single gene, we use the
program MS [3], which uses an explicit population genetic model to simulate data
from multiple individuals sampled from a population. The parameters specified
to MS are: s (segsites), the number of SNP sites; r, the population recombination
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rate (a parameter that determines the degree of correlation among SNPs); and
N (nsam), the MS sample size.

Population samples created by MS are then processed to produce data mim-
icking case-control samples from a typical association mapping study using a dis-
ease model of CH-traits. The parameters specified are pp, the population preva-
lence of the phenotype (disease) of interest; a, the proportion of cases desired in
the case-control sample (often 0.5); α, the disease prevalence among individuals
who are CH; β, the disease prevalence among individuals who are not CH; and
n ≤ N , the number of individuals in the case-control sample (n ≤ N).

A case-control sample for a single gene g is created from the MS output in four
steps: (1) First each of the SNP sites is given a value of 0. Then (2) an iterative
algorithm determines which SNPs to declare as causative (and given value 1)
until the proportion of individuals with the phenotype is equal to or larger than
the desired population prevalence (pp). In more detail, at each iteration, a SNP
site with value 0 is chosen uniformly at random to be switched from 0 to 1; then
Eq. 1 is applied to determine the current vector CH and NCH , the number of
individuals that are now CH. The process stops when N × pp ≤ α × NCH +
β × (1 − NCH). This yields the vector Xg, and the final vector CH. (3) Each
individual is then assigned to be a case with probability α if the individual is CH,
and with probability β otherwise. This yields the vector T . Notice that unless
α = 1 and β = 0, T will likely not be equal to CH, and so the data will contain
false positives and false negatives. (4) A sample of n individuals is randomly
chosen from the N individuals. For case-control data, na and n(1 − a) cases
and controls, respectively, are randomly chosen. If these specifications cannot
be satisfied with this sample, it is rejected. The advantage of this method is
that it can simulate realistic case-control data, while controlling the relative risk
(α

β ) and the phenotype prevalence in the population. The phenotype (disease)
prevalence is often known for specific phenotype. However, the proportion of
causative mutations is typically not known, but is here controlled by α, β, and pp.

Note that since the simulation creates the vectors Xg and CH, the hidden
Hamming distance between CH and T , HPD(CH,T), can be computed in the
simulation. However, neither Xg nor CH is part of the input to the Phenotypic
Distance Problem.

Genomic Data. To simulate genomic data, we generate one dataset with a causal
gene, g, as discussed above. Let Tg be the phenotype vector created for gene g. Tg

represents the observed cases and controls. Then, we generate additional datasets
with the same number of haplotype pairs, but possibly differing numbers of
sites. These are the non-causal genes. For each non-causal gene g′, we replace its
phenotype vector T with Tg (from the chosen causal gene g). This models what
would be encountered in a true genomic context, i.e., the observed phenotypes
would be produced by the causal gene.

Significance Tests and Biological Fidelity. After computing PD(H,T ) for some
gene, we want to evaluate the statistical significance of that distance. There
are several natural approaches. In one approach, we repeatedly, and randomly,



Association Mapping for Compound Heterozygous Traits 143

permute the mapping of the phenotype values in T to the haplotype pairs in
H. We use T p to denote a permuted vector T . For each permutation, we com-
pute PD(H,T p). Then the p-value of PD(H,T ) is simply the number of permuted
mappings where PD(H,T p) ≤ PD(H,T ), divided by the total number of per-
muted mappings examined. The p-value can be computed both for simulated
and real data.

When using simulated data, another reflection of the biological fidelity of an
ILP result is the Hamming Distance between the computed X̃ vector, and the
original vector Xg. This Hamming Distance is called the SNP-distance between
X̃ and Xg.

Tests in a Genomic Context. As described above, data for one causal gene g is
generated, and we let Tg denote the phenotype vector at that gene. Many non-
causal genes are also generated, and we solve the Phenotypic Distance Problem
at each of those genes, using Tg in place of their generated phenotype vector.
For each gene, causal and non-causal, we permute Tg, creating T p, and solve
the Phenotypic Distance Problem at the gene, using T p. What we expect is
that the values PD(H,T p

g ) and PD(H,Tg) will be very similar at the non-causal
genes, but PD(H,T p

g ) will be significantly larger than PD(H,Tg) at the causal
gene. Hence the p-value at a causal gene will be significantly smaller than at a
non-causal gene. Also, we expect that PD(H,Tg)/(number of SNPs in gene g)
will be significantly lower when g is the causal gene than when g is a non-causal
gene. These difference allow us to distinguish the causal gene from the rest of
the set.

4 The Most Striking and Positive Empirical Results

Empirical testing has shown that modeling CH-traits using the concept of phe-
notypic distance is very effective, and that the phenotypic distance problem can
be solved convincingly fast in practice, by integer linear programming.

The most striking computational result is how quickly phenotypic distance
can be computed via integer linear programming, particularly at causal genes,
compared to the time needed for explicit enumeration and testing of all possible
values for the vector X̃. For example, Table 2 shows that for every simulated
causal gene with 4000 haplotype pairs and more than 200 sites, the ILP always
finds the phenotypic distance in under three seconds (running GUROBI 6.0 on
a 2.3 GH Macbook Pro laptop with 4 processors).

A related significant empirical result is that the time used to compute PD(H,Tg)
(via the ILP), is consistently less, and often overwhelmingly less, than the time
used to compute PD(H,T p

g ), i.e., when the phenotype vector is permuted. In those
cases, the time needed is typically more than ten times that needed for the non-
permuted vector. In the context of computing p-values at non-causal genes, the
time can be reduced as detailed in Sect. 4.1.
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Table 2. The first ten of 50 datasets generated to be causal genes, as explained in
Sect. 3. In these simulations, the parameters of MS were N = 40,000 individuals, s = 400
sites, and recombination parameter of 20 (specifically, the call was: ms 40000 50 -s 400 -
r 20 1000). Then, simulated CH data was created with parameters pp = .2, α = .9,
β = .1, and n = 4000. Each resulting dataset has 4000 haplotype pairs (hp), with an
equal number of cases and controls, and more than 200 sites in each dataset. The column
labeled HPD shows hidden phenotypic distance between CH and Tg, and the column
labeled PD shows PD(H, Tg) for that dataset. The time to compute the phenotypic
distance was less than three seconds in each dataset. The forty datasets not shown are
statistically similar to these ten.

hp no. sites HPD PD case, con secs

4000 241 933 919 2000, 2000 1.27

4000 223 776 771 2000, 2000 1.71

4000 264 890 859 2000, 2000 1.72

4000 218 874 868 2000, 2000 0.25

4000 244 877 870 2000, 2000 1.58

4000 253 871 859 2000, 2000 2.25

4000 229 841 826 2000, 2000 2.49

4000 250 871 864 2000, 2000 0.40

4000 255 807 794 2000, 2000 1.54

4000 237 885 870 2000, 2000 1.60

Biological Fidelity. With respect to the fidelity of the phenotypic distance compu-
tations, the most striking empirical results are that at a causal gene g, PD(H,Tg) is
typically very close, and often equal, to HPD(CH,Tg) (which we know in simulated
data); and that there is typically a very large difference between PD(H,Tg) and
PD(H,T p

g ). See Table 3. At a non-causal gene g′, vector Tg acts like a random phe-
notype vector, so that the values of PD(H,T p

g ) at g′ are typically close to n/2 (when
there is an equal number of cases and controls in T ), which is a value obtainable
by setting X̃ to the all-zero vector (or in some cases the all-1 vector). Such set-
tings of X̃ have no biological meaning, illustrating that essentially no structural
relationship between T p

g and CH remains at a non-causal gene. In the genomic
context, this means that we can easily distinguish a causal gene from non-causal
genes, and it means that p-values computed at non-causal genes are much larger
than at causal genes (where the p-value is essentially zero).

An additional striking empirical result is that the observed SNP-distance is
typically (but not always) lower when the input T is used, compared to when T p

is used, and is lower at causal genes than at non-causal genes. These empirical
results (the large differences between PD(H,T ) and PD(H,T p), the differences
in computation times, and differences in SNP-distances) are very strong valida-
tions that the Phenotypic Distance Problem does reflect the CH-model used to
generate the data.
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Table 3. Typical results using simulated genomic data, as explained in Sect. 3, using
parameters specified in the caption of Table 2. The first dataset is the causal gene, with
associated phenotype vector Tg. The following datasets are non-causal genes, also using
the phenotype vector Tg from the causal gene. At non-causal genes, the computation
was terminated early; the computed ub is shown on the first line for each non-causal
gene, and the computed lb, and percentage difference between the ub and lb are shown
on the second line for each non-causal gene. As expected, phenotypic distance at the
causal gene is substantially lower than the ub and lb values at each non-causal gene;
the computation times are greater at the non-causal genes. Also (not shown), at every
non-causal gene, the phenotypic distance when the phenotypes in Tg are permuted is
essentially the same as for Tg, while at the causal gene, the phenotypic distance is
substantially higher when Tg is permuted. These differences allow the causal gene to
be identified in a genomic setting. In these simulated data, we can also compute the
SNP-distances, and as expected, we see that the SNP-distance at the causal gene is
substantially lower than at any non-causal gene.

hp sites HPD PD/ub case, con secs SNP-dist

causal gene 4000 219 953 948 2000, 2000 0.34 65

non-causal 4000 218 2020 1864 2000, 2000 149.37 110

lb/gap 1785, 4.23 %

non-causal 4000 226 2017 1864 2000, 2000 180.02 110

lb/gap 1728, 7.29 %

non-causal 4000 237 1989 1853 2000, 2000 180.01 113

lb/gap 1693, 8.63 %

non-causal 4000 210 2009 1915 2000, 2000 181.67 94

lb/gap 1649, 13.89 %

non-causal 4000 231 1958 1868 2000, 2000 180.13 102

lb/gap 1648, 11.77 %

non-causal 4000 240 1985 1871 2000, 2000 181.66 105

lb/gap 1718, 8.17 %

non-causal 4000 217 1987 1925 2000, 2000 180.00 108

lb/gap 1713, 11.01 %

non-causal 4000 228 1985 1848 2000, 2000 170.40 120

4.1 Speeding Up the Computations for Non-causal Genes
and Permuted Data

ILP solvers solve a minimization problem by alternately focusing on finding
better solutions (i.e., reducing the value, ub, of the best feasible solution at hand),
and by finding better lower bounds on the value of an optimal ILP solution, i.e.,
by producing a number lb, where it is guaranteed that the optimal ILP solution
has value at least lb. Therefore, when computing p-values, at any point during
the computation of PD(H,T p), it is guaranteed that lb ≤ PD(H,T p) ≤ ub, for
the current values of lb and ub. In fact, the ILP solver only determines that
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PD(H,T p) has been found when it has computed values of lb and ub that are
equal.

The common, empirically observed phenomena of ILP solvers, is that they
fairly quickly compute a ub that is equal or very close to the optimal solution, in
this case PD(H,T p). The majority of the computation time is taken by computing
a matching lb. In our simulations, the phenotypic distance at causal genes is
significantly lower than the phenotypic distance at non-causal genes, so that even
the computed lb at a non-causal gene quickly exceeds the phenotypic distance
at the causal gene. Since the phenotypic distance at a causal gene is computed
very rapidly, if the computation of a phenotypic distance at a gene (which we do
not know is causal or non-causal) takes significant time, we can conclude that
it is non-causal, or we can terminate the computation and use the computed
ub in place of the actual phenotypic distance. In our genomic simulations, we
use several conditions to terminate early. Table 3 shows that this strategy works
exceedingly well; the computed lb values at non-causal genes are significantly
larger than the phenotypic distance at the causal gene, and the computed ub is
close to the optimal for that problem instance. Hence, in the context of a GWAS,
the computation at any gene will take a bounded amount of time (limited to
three minutes in our simulations).

In the context of computing p-values at a causal locus g, where PD(H,Tg) has
been computed, any computation of PD(H,T p

g ) can be terminated when lb for
the permuted data is larger than PD(H,T p

g ). Moreover, experimentation shows
that at that point, the computed ub value is almost always equal to PD(H,T p).
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Abstract. Hi-C experiments capturing the 3D genome architecture have
led to the discovery of topologically-associated domains (TADs) that form
an important part of the 3D genome organization and appear to play a
role in gene regulation and other functions. Several histone modifications
have been independently suggested as the possible explanations of TAD
formation, but their combinatorial effects on domain formation remain
poorly understood at a global scale. Here, we propose a convex semi-
nonparametric approach called nTDP based on Bernstein polynomials to
explore the joint effects of histone markers on TAD formation as well as
predict TADs solely from the histone data. We find a small subset of modi-
fications to be predictive of TADs across species. By inferring TADs using
our trained model, we are able to predict TADs across different species
and cell types, without the use of Hi-C data, suggesting their effect is con-
served. This work provides the first comprehensive joint model of the effect
histone markers on domain formation.

1 Introduction

The emerging evidence suggests that 3D nuclear architecture is important for
the regulation of gene expression and it is tightly linked to the function of the
genome. For instance, expression in the beta-globin locus is mediated by folding
to bring an enhancer and associated transcription factors within close proximity
of a gene [2,28]. Similarly, loci of mutations that affect expression of genomi-
cally far-away genes (eQTLs) are significantly closer in 3D to their regulated
genes [26], indicating that 3D genome structure plays a wide-spread role in gene
regulation. Lastly, spatial regions that interact with nuclear lamina are generally
inactive [11]. Measuring and modeling the 3D shape of a genome is thus essential
to obtain a more complete understanding of how cells function.

Chromatin interactions obtained from a variety of recent chromosome con-
formation capture experimental techniques such as Hi-C [17] have resulted in
significant advances in our understanding of the geometry of chromatin struc-
ture [10,24]. These experiments yield matrices of counts that represent the fre-
quency of cross-linking between restriction fragments of DNA at a certain reso-
lution. Analysis of the resulting matrix by Dixon et al. [6] led to the discovery
of topologically-associated domains (TADs) which correspond to consecutive,
highly-interacting matrix regions typically a few megabases in size that are
c© Springer-Verlag Berlin Heidelberg 2015
M. Pop and H. Touzet (Eds.): WABI 2015, LNBI 9289, pp. 148–161, 2015.
DOI: 10.1007/978-3-662-48221-6 11
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closely embedded in 3D. TADs have been identified across different cell cycle
phases and in prokaryotes [15]. Several lines of evidence suggest that TADs are
a building block of genomic regulatory architecture [14,27]. Segmental packaging
of genome via TADs likely have critical roles in cell dynamics such as long-range
transcriptional regulation and cell differentiation [22,23].

The mechanism by which these TADs form and are demarcated is still largely
unknown. A plethora of epigenetic modifications have been identified in meta-
zoan genomes that are associated with 3D genome shape [5], and thus TADs.
Several modifications have been found to be specifically correlated with TAD
boundaries [6]. For instance, histone modifications with insulator roles such as
H3K4me3 and H3K27ac are enriched within TAD boundaries [25], although the
causal direction of these associations is still unknown [22]. Despite these analyses,
the complete picture of how histone modifications are related to TAD formation
is missing. This is partially because previous analyses relating histone marks
to domain boundaries have often considered each histone mark independently,
without accounting for their combined affects. It is unknown to what extent
relationships between the histone markers are important or whether there is a
small set of markers that are of primary importance.

Here, we develop and train a joint model, which we call nTDP , of how his-
tone modifications are associated with domain boundaries and interiors. We
show that we are able to train this model optimally in polynomial time because
its likelihood function is convex. The model does not make any assumptions
about the effect of each histone mark on domain formation, and instead fits the
histone-domain relationship nonparametrically. Using this model, we systemati-
cally identify a small set of histone markers that in combination appear to explain
TAD boundaries. We find a small number of epigenetic elements account for a
large proportion of the accuracy of TAD prediction. All of these identified marks
fail to predict domain boundaries when considered independently. We show that
these markers are conserved across species and cell types in a very strong way:
models trained on mouse continue to work well on human, and models trained
on IMR90 cells continue to work on embryonic stem cells.

Our approach, nTDP , can form the basis of a unified, explanatory model of
the relationship between epigenetic marks and topological domain structures. It
can be used to predict domain boundaries for cell types, species, and conditions
for which no Hi-C data is available. The model may also be of use for improving
Hi-C-based domain finders.

1.1 Additional Related Work

Previous work mainly focused on analyzing epigenetic data in an unsupervised
way. Segway [13] and ChromHMM [8] take as input a collection of genomics
datasets and learn chromatin states that exhibit similar epigenetic activity pat-
terns which then have different interpretations such as transcriptionally active,
Polycomb-repressed. Libbrecht et al. [16] improve Segway predictions by inte-
grating Hi-C data which is not as abundant as histone data, whereas [12]
jointly infers chromatin state maps in multiple genomes by a hierarchical model.
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However, none of these methods deal directly with TADs. Even though a sub-
set of their chromatin states overlap with TADs, predicting TADs from them
heuristically does not perform well. Additionally, they either ignore the histone
densities, or make parametric distribution assumptions such as geometric or nor-
mal which are not always reflected in the true data. When modified to run in a
supervised setting, they cannot capture the most informative subset of epigenetic
elements.

The recent approach [3] proposes a supervised learning method based on
random forests to predict TAD boundaries from histone modifications and chro-
matin proteins. In general, this approach is reported to perform quite accurately
in predicting boundaries. However, it does not model interior TAD segments
and it treats each segment independently ignoring the fact that TADs form as
a result of the joint effects of multiple segments. Lastly, it also uses an error
function based on gini index ignoring that the marker distributions may not be
gaussian.

2 The nTDP Model

2.1 The Likelihood Function

Let V be the ordered set of genome restriction fragments (bins), where each
bin v represents the interval [vr − r + 1 , vr], where r is the Hi-C resolution.
Let M be the set of histone modifications (markers) over V . The marker data
H = (hvm) is a |V |×|M |-matrix where its (v,m)’th entry hvm is the count of the
occurrences of marker m inside segment v. Let d = [s, e] be a domain (interval)
where s and e are its start and end boundaries respectively, {s+1, . . . , e−1} are
the segments inside d, and let D = {[s1, e1], [s2, e2], . . . , [si, ei]} be a partition of
V where none of the domains overlap.

We propose a supervised, semi-nonparametric, high-dimensional model nTDP
that uses H to model and predict D. Our model can be seen as a generalization of
Conditional Random Field [21,31] where we have continuous weights instead of
binary features and where we model the marker effects semi-nonparametrically.

Specifically, we assume there are 3 types of segments in V that are relevant
for modeling: those that are at the domain boundaries (Vb), those that are in
the interior of domains (Vi), and those that are not part of a domain (Ve), and
we have V = Vb ∪ Vi ∪ Ve. For each marker type m, we have 3 types of effect
functions, f b

m(c,wb
m), f i

m(c,wi
m), fe

m(c,we
m), that will describe the relationship

between marker count c and the fragment type (b, i, e) for marker type m. Here,
wb

m,wi
m,we

m are parameters that we will fit to determine the shape of the effect
function. Thus, for example, f i

m(c,wi
m) will describe how a count of c for marker

m influences whether the fragment is in the interior (i) of a domain.
We assume that these effect functions combine linearly. Therefore, let

Eb
vq =

∑

m∈M

f b
m(cq

vm,wb
m) (1)
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be the total effect of all the markers on fragment v for boundary formation
(b). Summations Ei

vq and Ee
vq are defined analogously for interior (i) and inter-

domain fragments (e).
Let W be the union of model parameters wb

m,wi
m,we

m, and let Dtrain =
{Dq : q = 1, . . . , Q} be several domain decompositions (in different sequences
or conditions) and let Htrain = {Hq : q = 1, . . . , Q} be a set of corresponding
histone markers. Under the assumption that the training pairs are independent,
the log-likelihood of parameters W given Dtrain is

log
(
P (Dtrain|W,Htrain)

)
=

∑

q

log
(
P (Dq|W,Hq)

)
. (2)

We define the probability P (Dq,W,Hq) = expF (Dq,W,Hq)

∑
F

′ expF
′ where F (Dq,W,Hq) is

the total quality of partition Dq and marker data Hq under model parameters
W . Let V q be the set of segments in pair q. Due to the independence of segments:

log
(
P (Dq|W,Hq)

)
=

log
(
P (Dq,W,Hq)

)
=F (Dq,W,Hq)

︷ ︸︸ ︷
∑

d=[s,e]∈Dq

( ∑

v∈{s,e}
cbE

b
vq +

e−1∑

v=s+1

ciE
i
vq

)
+

∑

v∈V q
e

ceE
e
vq

− log(Zq
|V q|) (3)

where Zq
|V q| =

∑
D′ P (D′,W,Hq) is the partition function defined over all possi-

ble nonoverlapping partitions D′, cb, ci, ce are relative weights of different types
of fragments to account for unbalanced training set, and V q

e is the set of frag-
ments that do not belong to any domain in Dq.

2.2 Nonparametric Form of the Effect Functions

Because the shape of the marker effect function is unknown, we choose the f func-
tions from the nonparametric family of Bernstein basis polynomials. Bernstein
polynomials can approximate any effect function and additionally can handle
imposed shape constraints such as monotonicity and concavity.

Let A be the chosen dimension of these polynomials; larger A results in a
more expressive family, but more parameters to fit. Let mmax be the maximum
possible density of marker m. This is is used to transform the input cq

vm to
the range [0, 1]; therefore define pq

vm = cq
vm/mmax. We model f b

m(cq
vm,wb

m) for
segment v by a Bernstein polynomial BA(pq

vm,wb
m) as in:

f b
m(cq

vm,wb
m) = BA

(
pq

vm,wb
m

)
=

A∑

i=0

wb
m[i]

bi,A(pq
vm)

︷ ︸︸ ︷(
A

i

)
(pq

vm)i (1 − pq
vm)A−i (4)

where bi,A(pq
vm) are the base Bernstein kernels.
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3 Optimal Algorithms for Training and Inference

We must train the parameters W for the above model using data of the form
Dtrain,Htrain. We will examine these trained parameters (and several good solu-
tions for them) for insights into which markers are most informative for describ-
ing Dtrain and thus topological domains.

Problem 1. Training: Given a set of marker data Htrain, likely from several
chromosomes and cell conditions, and corresponding set of TAD decompositions
Dtrain, we estimate the most likely parameters W according to Eq. 2.

Problem 2. Inference: Given marker data H model parameters W , we estimate
the best domain partition D of the track.

3.1 Training

A nice feature of the objective (3) is that it is convex in its arguments, {wb
m,wi

m,
we

m}m∈M , which follows from linearity, composition rules for convexity, and con-
vexity of the negative logarithm. However, training involves several challenges:
(a) computing the partition function Zq

|V q| in (3), and (b) estimating W so that
the weights are sparse. We solve each of these challenges next.

Estimating the partition function. We estimate Zq
|V q| in (3) recursively

in polynomial time since each segment can belong to one of 4 states: domain
start (sb), inside a domain (i), domain end (eb), non-domain (e), and state of
each segment depends only on the previous segment’s state. Let Y = {sb, i, eb, e},
and Zq

|V q| = Zq
|V q|,eb + Zq

|V q|,e which components can be estimated by:

Zq
v,x =

∑

y∈Y

Zq
v−1,yTy,x expEx

vq (5)

where Zq
v,sb, Zq

v,i, Zq
v,eb, Zq

v,e represent the partition function up to segment v
ending with sb, i, eb and non-domain respectively. T is a 4×4 binary state transi-
tion matrix where Ty,x = 1 if a segment can be assigned to x given previous seg-
ment is assigned to state y such as (y, x) ∈ {(sb, i), (sb, eb), (i, i), (i, eb), (eb, sb),
(eb, e), (e, sb), (e, e)}, otherwise 0. Initial conditions are Zq

0,sb = Zq
0,i = Zq

0,eb = 0,
Zq
0,e = 1. To avoid overflow in estimating Zq

|V q| and speed it up, we estimate
log(Zq

|V q|) by expressing it in terms of log of the sum of exponentials and for-
ward and backward variables (α, β) similar to Hidden Markov Model [21].

Estimating a sparse set of good histone effect parameters. We would like
to augment objective function (2) so that we select a sparse subset of markers
from the data and avoid overfitting. If the coefficients wb

m = 0, then there is
no influence of marker m. For this purpose, we will impose grouped lasso type
of regularization on the coefficients wmk. Grouped lasso regularization has the
tendency to select a small number of groups of non-zero coefficients but push
other groups of coefficients to be zero.
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We introduce two types of regularization. First, we require that many of the
weights be 0 using an L2-norm regularization term. Second, we want the effect
functions {f} to be smooth. Let P = {b, i, e}. We modify our objective to trade
off between these goals:

argmin
W

−
∑
q

log
(
P (Dq|W, Hq)

)
+

Regularization︷ ︸︸ ︷
λ1

∑
p∈P

( ∑
m∈M

‖wp
m‖
)2

+ λ2

∑
p∈P

∑
m∈M

R(fp
m) (6)

where λ1, λ2 are the regularization parameters, and R(fp
m) is the smoothing

function for effect of marker m at p ∈ P :

R(fp
m) =

∫

x

(
∂2fp

m(x,wp
m)

∂x2

)2

dx (7)

Group lasso in (6) uses the square of block l1-norm instead of l2-norm group lasso
which does not change the regularization properties [1]. Second-order derivative
in (7) can be expressed more explicitly as a convex quadratic function of wp

m.
Its derivation can be found in Appendix.

We note that (6) is convex, but it is a nonsmooth optimization problem
because of the regularizer. We solve it efficiently by using an iterative algorithm
from multiple kernel learning [1]. By Cauchy-Schwarz inequality:

∑

p∈P

( ∑

m∈M

‖wp
m‖

)2

≤
∑

p∈P

∑

m∈M

‖wp
m‖2

γmp
(8)

where γmp ≥ 0,
∑

m∈M γmp = 1, p ∈ P , and the equality in (8) holds when

γmp =
‖wp

m‖∑
m∈M ‖wp

m‖ , p ∈ P (9)

This modification turns the objective into the following which is jointly con-
vex in both wp

m and γmp:

argmin
W

−
∑

q

log
(
P (Dq|W,Hq)

)
+

∑

p∈P

∑

m∈M

(
λ1

‖wp
m‖2

γmp
+ λ2R(fp

m)
)

(10)

s.t.
∑

m∈M

γmp = 1.0, p ∈ P (11)

γmp ≥ 0, m ∈ M,p ∈ P (12)

We solve this by alternating between the optimization of wp
m and γmp. When

we fix γmp, we can find the optimal wp
m by any quasi-newton solver such as

L-BFGS [18] which runs faster than the other solvers such as iterative scaling
or conjugate gradient. When we fixed wp

m, we can obtain the best γmp by the
closed form equation (9). Both steps iterate until convergence.
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3.2 Training Extensions

We can model a variety of shape-restricted effect functions by Bernstein polyno-
mials that cannot be easily achieved by other nonparametric approaches such as
smoothing splines [19]. We add the following constraints to ensure monotonicity:

wb
m[i] ≤ wb

m[i + 1], i = 0, . . . , A − 1 (13)

which is a realistic assumption since increasing the marker density should not
decrease its effect. We can also ensure concavity of the effect function by:

wb
m[i − 1] − 2wb

m[i] + wb
m[i + 1] ≤ 0, i = 1, . . . , A − 1 (14)

which has a natural diminishing returns property: the increase in the value of the
effect function generated by an increase in the marker density is smaller when
output is large than when it is small. Our problem is different than smoothing
splines since our loss function is more complicated than traditional spline loss
functions due to partition function estimation in (5) which makes it hard to
directly apply the smoothing spline methods [29]. In addition, these nonnegativ-
ity and other shape constraints can be naturally enforced in our method.

3.3 Inferring Domains Using the Trained Model

Given marker data H over a single track and W , the inference log-likelihood is:

argmax
D

log
(
P (D|W,H)

)
=

∑

d=[s,e]∈D

rsexse +
∑

v∈V

Ee
vyv (15)

where D = {[s, e] | s, e ∈ V, e − s ≥ 1} is the set of all potential domains of
length at least 2 and rse = Eb

s + Eb
e +

∑e−1
v=s+1 Ei

v. The intuition is that variable
xse = 1 when the solution contains interval [s, e], and variable yv = 1 if v is not
assigned to any domain. The log(Z|V |) term is removed during inference since it
is same for all D. We solve (16)–(17) to find the best partition D:

argmax
D

∑

d=[s,e]∈D

rsexse +
∑

v∈V

Ee
v

(
1 −

∑

[s,e]∈M [v]

xse

)
(16)

s.t. xse + xs′e′ ≤ 1 ∀ domains [s, e], [s′, e′] that overlap (17)

where M [v] is the set of intervals that span fragment v. We replace yv in (15)
with 1 − ∑

[s,e]∈M [v] xse since each segment can be assigned to at most a single
domain. (17) ensures that inferred domains do not overlap. Problem (16)–(17) is
Maximum Weight Independent Set in interval graph defined over domains which
can be solved optimally by dynamic programming in O(|V |2) time.
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4 Results

4.1 Experimental Setup

We binned ChIP-Seq histone modification and DNase-seq data at 40 kb resolu-
tion, estimate RPKM (Reads Per Kilobase per Million) measure for each bin,
and transform values x in each bin by log(x + 1), which reduces the distorting
effects of high values. In the case of 2 or more replicates, the RPKM-level for
each bin is averaged to get a single histone modification file, in order to minimize
batch-related differences. We convert any data mapped to hg19 (mm8) to hg18
(mm9) using UCSC liftOver tool. We define TADs over human IMR90, human
embryonic stem (ES), and mouse ES cells Hi-C data [6] at 40 kb resolution after
normalization by [30]. We use consensus domains from Armatus [9] as the true
TAD partition by selecting threshold γ where maximum Armatus domain size is
closest to the maximum Dixon et al. [6] domain size (γ = 0.5 for IMR90, γ = 0.6
for human ES, and γ = 0.2 for mouse ES cells).

Fig. 1. Fraction of histone modifications appearing in a best scoring four-modification
model in (a) human IMR90, (b) human ES. Best scoring is defined as reaching at least
95 % of NVI score of the model with all modifications.

We solved the training optimization problem by L-BFGS [18]. We use the
public implementation of Armatus [9], and obtain histone modifications from
NIH Roadmap Epigenomics [4] and UCSC Encode [7]. Code and datasets can be
found at http://www.cs.cmu.edu/∼ckingsf/research/ntdp. nTDP is reasonably
fast: we train on all human IMR90 chromosomes in less than 3 h on a MacBook
Pro with 2.5 Ghz processor and 8 Gb Ram. The iterative procedure in general
converges in fewer than 10 iterations.

We prevent overfitting by following a two-step nested cross-validation which
has inner and outer steps. The outer K-fold cross-validation, for example, trains
on all autosomal human chromosomes except the one to be predicted. Within
each loop of outer cross-validation, we perform (K−1)-fold inner cross-validation
to estimate the regularization parameters.

http://www.cs.cmu.edu/~ckingsf/research/ntdp
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4.2 nTDP Finds a Small Subset of Modifications Predictive
of TADs

We identified a minimal set of histone marks that can model TADs as follows:
we run nTDP independently on each chromosome of human IMR90 to obtain
21 sets of marks. These sets overlap significantly across all chromosome pairs
(hypergeometric p < 0.05 for all pair-wise comparisons), and a total of 16 modi-
fications cover all chromosomes. Despite the regularization, the weights of several
of these marks are still very close to 0, so we identify a non-redundant subset of
the modifications by Bayesian information criterion (BIC) [21] which penalizes
model complexity more strongly.

As we increase the number of included modifications from 1 to 16, the
BIC decrease nearly stops after 4 modifications, with some additional small
reduction up to 6 modifications. The sets of 4 and 6 modifications that
were most informative are: {H3K36me3, H3K4me1, H3K4me3, H3K9me3} and
{H3K4me3, H3K79me2, H3K27ac, H3K9me3, H3K36me3, H4K20me1}. These
non-redundant set of elements are preserved when we repeat this procedure
between species. We find that only these 4−6 modifications are needed to accu-
rately predict TADs.

These marks are common in good models. The 4 modifications {H3K36me3,
H3K4me1, H3K4me3, H3K9me3} are also enriched among a collection of high
quality training solutions. We measure the agreement between estimated and
true partitions by normalized variation of information NV I = V I

log |V | [20] where
VI measures the similarity between two partitions and lower score means better
performance. We analyze the fraction of models with 4 histone modifications for
which NVI score is at least 95% of optimum NVI score obtained by running
nTDP over all modifications as in Fig. 1a and b. We find 161, 139 solutions
satisfying this criteria among 1820 candidates for human IMR90 and human ES
histone modifications respectively. We find the 4 histone modifications above to
be significantly overrepresented in the set of models for both human IM90 and
ES cells (hypergeometric p < 0.0001). These significance values combined with
the results above suggest the importance of the identified modifications in TADs.

These marks have nearly optimal coherence score. We assess the performance of
various subset of modifications by the coherence score which is the exponential
of the negative mean log-likelihood of each chromosome on the test set, and
it is normalized by the best model coherence score as in Table 1. As such it is
a relative measure of the quality of various models. The coherence score using
only the set {H3K36me3, H3K4me1, H3K4me3, H3K9me3} is almost as high
as the score for all 28 histone modifications in human IMR90. Restricting the
effect function shape to be nonnegative and concave slightly improves the score.
Our analysis indicates that the remaining modifications carry either redundant
information or are less important for TADs.
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Table 1. Normalized coherence scores of various marker subsets

Allowed modifications (human IMR90 to IMR90) Coherence

score

(Normalized)

28 histone modifications + Concave + Nonnegative ∗ 1.00

28 histone modifications + Concave 0.99

28 histone modifications 0.97

H3K4me3, H3K79me2, H3K27ac, H3K9me3, H3K36me3, H4K20me1 0.94

H3K36me3, H3K4me1, H3K4me3, H3K9me3 + Concave + Nonnegative 0.94

H3K36me3, H3K4me1, H3K4me3, H3K9me3 + Concave 0.93

H3K36me3, H3K4me1, H3K4me3, H3K9me3 0.92

4.3 Predicting TADs from Histone Marks in Human

nTDP is able to predict domain boundaries accurately using 4 histone marks
alone in both human IMR90 and human ES cells. We compare TAD predic-
tion performance of nTDP with the chromatin state partition predicted by Seg-
way [13] in terms of NVI. Even though Segway does not predict TADs directly,
its chromatin state partition can still be used as a baseline. Training with all
28 histone modifications instead of with the identified 4 modifications does not
lead to a major performance increase as shown in Fig. 2a even though it increases
the training time approximately 4 times for human IMR90 cells. Restricting the
effect function to be monotonic and concave only slightly increases the perfor-
mance. Chromatin states inferred by Segway do not directly correspond to TADs
which leads to a lower TAD prediction performance even though they have other
meaningful interpretations.

We find combinatorial effects of histone modifications to be important for
accurate domain prediction since none of the modifications can achieve NVI
score better than 0.2 when considered independently. To verify that there are not
inherent structures in the data that can lead to an easy prediction, we randomly
shuffle domains in the training set by preserving their lengths without shuffling
modifications, which NVI score is never better than 0.3 in all chromosomes
showing the importance of histone modification distributions in TADs.

nTDP also predicts TADs accurately across different species as well as across
different cell types as in Figs. 2(b)–(d). For example, if we train on human IMR90
data, the model we obtain is still able to recover domains in human ES cells
(Fig. 2a). This holds true across species as well: training on human ES data, for
example, produces a model that can work well on mouse ES data.

4.4 Multiscale Analysis of the Predicted TADs

We find that our predicted TADs match true TADs more accurately at different
scales defined by different Armatus γ’s as in Fig. 3a. We observe a slight perfor-
mance improvement if we define true TAD partition at lower Armatus γ values
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Fig. 2. TAD prediction performance on different chromomes (a) human IMR90 to
human IMR90: infer each human IMR90 chromosome by training with all IMR90
chromosomes except the one to be inferred, (b) human IMR90 to human ES, (c) human
ES to human ES, (d) human ES to mouse ES are defined similarly.

Fig. 3. Multiscale analysis of the predicted TADs (a) Performance over true TAD
partitions at different scales obtained via different Armatus γ in human IMR90.
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in human IMR90 which correspond to longer TADs. This figure suggests that
some of our wrong TAD predictions may actually correspond to longer TAD
blocks which we erroneously interpret as incorrect due to a scale mismatch.

5 Conclusion

We formulate semi-nonparametric modeling of TADs in terms of histone modi-
fications, and propose an efficient provably optimal solution nTDP for training
and inference. Experimental results on human and mouse cells show that a com-
mon subset of histone modifications can accurately predict TADs across cell
types and species. Via our trained model, we also accurately predict TADs with-
out using any Hi-C data which is especially useful for understanding the 3D
genome conformation on species with limited Hi-C data.

Funding. This research is funded in part by the Gordon and Betty Moore Foundations
Data-Driven Discovery Initiative through Grant GBMF4554 to Carl Kingsford, by the
US NSF (1256087, 1319998), and by the US NIH (HG006913, HG007104). C.K. received
support as an Alfred P. Sloan Research Fellow.

Appendix

R(fp
m) can be written more explicitly as in (18) according to [19]:

∂2fp
m(x,wp

m)

∂x2
= A(A − 1)

A−2∑
i=0

(wp
m[i + 2] − 2wp

m[i + 1] + wp
m[i])

(
A − 2

i

)
xi(1 − x)A−2−i

(18)
which turns R(fp

m) into (19):

∫ 1

0

(
∂2fp

m(x)
∂x2

)2

dx = A2(A − 1)2
A∑

i=0

A∑

j=i

(wp
m[i]wp

m[j])

(
min(i,2)∑

q=ei

min(j,2)∑

r=ej

(−1)q+r

(
2
q

)(
2
r

)
T i−q

j−r (x)

)
(19)

where ep = max(0, 2 − A + p), T i−q
j−r (x) is defined below and β(i + j − q − r +

1, 2A − 3 − i − j + q + r) is the beta function:

T i−q
j−r (x) =

(
A − 2
i − q

)(
A − 2
j − r

)∫ 1

0

xi−q(1 − x)A−2−i+qxj−r(1 − x)A−2−j+rdx

︸ ︷︷ ︸
β(i+j−q−r+1,2A−3−i−j+q+r)

(20)
R(fp

m) is convex which follows from semidefiniteness of the resulting polynomial.
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Abstract. We recently proposed a novel clone-by-clone protocol for de
novo genome sequencing that leverages combinatorial pooling design to
overcome the limitations of DNA barcoding when multiplexing a large
number of samples on second-generation sequencing instruments. Here
we address the problem of correcting the short reads obtained from our
sequencing protocol. We introduce a novel algorithm called Scrible that
exploits properties of the pooling design to accurately identify/correct
sequencing errors and minimize the chance of “over-correcting”. Exper-
imental results on synthetic data on the rice genome demonstrate that
our method has much higher accuracy in correcting short reads com-
pared to state-of-the-art error-correcting methods. On real data on the
barley genome we show that Scrible significantly improves the decoding
accuracy of short reads to individual BACs.

1 Introduction

We have recently demonstrated how to take advantage of combinatorial pooling
(also known as group testing) for clone-by-clone de-novo genome sequencing
[1,8,9]. In our sequencing protocol, subsets of non-redundant genome-tiling
BACs are chosen to form intersecting pools, then groups of pools are sequenced
on an Illumina sequencing instrument via standard multiplexing (DNA bar-
coding). Sequenced reads can be assigned to specific BACs by relying on the
structure of the pooling design: since the identity of each BAC is encoded within
the pooling pattern, the identity of each read is similarly encoded within the
pattern of pools in which it occurs. Finally, BACs are assembled individually,
simplifying the problem of resolving genome-wide repetitive sequences.

An unforeseen advantage of our sequencing protocol is the potential to correct
sequencing errors more effectively than if DNA samples were not pooled. This
paper investigates to what extent our protocol enables such error correction.
c© Springer-Verlag Berlin Heidelberg 2015
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Due to obvious needs in applications of high-throughput sequencing technology,
including de-novo assembly, the problem of correcting sequencing errors in short
reads has been the object of intense research. Below, we briefly review some
of these efforts, noting that our approach is substantially different, due to its
original use of the pooling design.

Most error correction methods take advantage of the high sequencing depth
provided by second-generation sequencing technology to detect erroneous base
calls. For instance, Shrec [13] carries out error correction by building a gen-
eralized weighted suffix tree on the input reads, where the weight of each tree
node depends on its coverage depth. If the weight of a node deviates significantly
from the expectation, the substring corresponding to that node is corrected to
one of its siblings. Hitec [4] builds a suffix array of the set of reads and uses the
longest common prefix information to count how many times short substrings
are present in the input. These counts are used to decide the correct nucleotide
following each substring. Hitec was recently superseded by Racer [5], from the
same research group, which improves the time- and space-efficiency by using a
hash table instead of a suffix array.

Several other error-correction methods are based on k-mer decomposition
of the reads, e.g., Sga [14], Reptile [17] and Quake [6]. Sga uses a simple
frequency threshold to separate “trusted”k-mers from “untrusted” ones, then
performs base changes until untrusted k-mers can become trusted. Reptile
builds a k-mer tiling across reads, then corrects erroneous k-mers based on con-
textual information provided by their trusted neighbor in the tiling. Quake uses
a coverage-based cutoff to determine erroneous k-mers, then corrects the errors
by applying the set of corrections that maximizes a likelihood function. The like-
lihood of a set of corrections is defined by taking into account the error model of
the sequencing instrument and the specific genome under study. Other methods
are based on multiple sequence alignments. For example, Coral [12] builds a
multiple alignment for clusters of short reads, then corrects errors by majority
voting.

2 Preliminaries

Our algorithm corrects reads, short strings over the alphabet Σ = {A,C,G, T}.
With r[i] we denote the i-th symbol in read r. A k-mer α is any substring of a
read r such that |α| = k. A BAC (clone) is a 100–150 kb fragment of the target
genome replicated in a E. coli cell.

2.1 Pooling Design

After the selection of the BACs to be sequenced (see [8,9] for more details), we
pool them according to a scheme that allows us to decode (assign) sequenced
reads back to their corresponding BACs.

The design of a pooling scheme reduces to the problem of building a dis-
junctive matrix Φ where columns correspond to BACs to be pooled and rows
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correspond to pools. Let w be a subset of the columns (BACs) of the design
matrix Φ and p(w) be the set of rows (pools) that contain at least one BAC in
w : the matrix Φ is said to be d-disjunct (or d-decodable) if, for any choice of
w1 and w2 with |w1| = 1, |w2| = d, and w1 �⊂ w2, we have that p(w1) �⊆ p(w2).
Intuitively, d represents the maximum number of positives that are guaranteed
to be identified by the pooling design.

We pool BACs using a combinatorial pooling scheme called Shifted Transver-
sal Design (STD) [16]. STD is a layered design: the rows of the design matrix
Φ are organized into multiple redundant layers such that each pooled variable
(BAC) appears exactly once in each layer, that is, a layer is a partition of the set
of variables. STD is defined by parameters (q, L,Γ ) where L is the number of
layers, q is a prime number equal to the number of rows (pools) in each layer and
Γ is the compression level of the design. To pool n variables, STD uses m = q×L
pools. The set of L pools defines a unique pooling pattern for each variable, and
can be used to retrieve its identity. We call this set the signature of the variable.
The compression level Γ is defined to be the smallest integer such that qΓ+1 ≥ n.
STD has the desirable property that any two variables co-occur in at most Γ
pools, therefore by choosing a small value for Γ one can make STD pooling very
robust to decoding errors. The parameter Γ is also related to the decodability
of the design through the equation d = �(L − 1)/Γ �. Therefore, Γ can be seen
as a trade-off parameter: the larger it is, the more items can be tested, up to
qΓ+1, but fewer positives can be reliably identified, up to �(L−1)/Γ�. For more
details on this pooling scheme and its properties, see [16].

2.2 Read Decoding

As the read decoding problem is presented elsewhere [1,8,9], here we only provide
a brief overview to motivate the necessity of correcting reads before decoding
them. Given a set of pools P and a set of BACs B, the signature for a BAC
b ∈ B is the subset A ⊂ P of pools (|A| = L) to which BAC b is assigned. Given
a set Rp of reads for each pool p ∈ P and the set of all BAC signatures, the read
decoding problem is to determine, for each read r ∈ Rp, the BAC(s) from which
r originated. In [8] we solved the read decoding problem with a combinatorial
algorithm, while in [1] we proposed a compressed sensing approach. In [9] we
further improved the decoding by a “data slicing” approach. A similar slicing
strategy was used in [10] to improve the assembly quality for ultra-deep sequenc-
ing data. In all cases, we first decompose reads into their constituent k-mers and
compute, for each k-mer, the number of times it occurs in each pool (the k-mer
frequency vector).

The problems of decoding and error-correction are mutually dependent: cor-
recting sequencing errors will improve the accuracy of decoding; a more accurate
decoding can help correcting the reads more effectively (as it will become clear
later).
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3 Methods

3.1 Indexing k-mers

We first preprocess all reads r (|r| ≥ k) in each pool p ∈ P by sliding a window of
size k over each read r ∈ Rp to produce |r|−k+1 k-mers. The result of this pre-
processing is encoded in a function poolcount : Σk×P → N, where poolcount(α, p)
is the number of times k-mer α (or its reverse complement) appears in pool p. We
also define three additional functions, namely (i) pools: Σk → N where pools(α)
is the number of distinct pools where k-mer α appears at least once, (ii) count :
Σk → N where count(α) is the total number of times α appears in any of the
pools, and (iii) bacs: Σk → 2B where bacs(α) is the set of BACs corresponding
to pools(α), i.e., the BACs whose signature is included in pools(α). Observe that
pools(α) = |{p ∈ P : poolcount(α, p) > 0}|, count(α) =

∑
p∈P poolcount(α, p),

and that bacs(α) can be determined by matching pools(α) against the set of all
BAC signatures. As a consequence, we only need to explicitly store poolcount
into a hash table.

3.2 Identification and Correction of Sequencing Errors

Taking advantage of the pooling design, we can assume that any k-mer α such
that |pools(α)| < L (i.e., α occurs in a few pools, less than the expected L)
is erroneous. This assumption holds when the sequencing depth is sufficiently
high, so that each genomic location is covered by several correct k-mers possibly
mixed with a few corrupted k-mers. In practice, the depth of sequencing can
vary significantly along the genome. When it is particularly low, it is possible
(although unlikely) for a correct k-mer to appear in fewer than L pools.

We observed that these low-frequency k-mers are responsible for the large
majority of the entries in the hash table for poolcount. To save memory, we do
not store a k-mer in the hash table during the pre-processing phase if it appears
in fewer than l pools, where 1 ≤ l < L is a user-defined parameter. At the other
end, a k-mer α is deemed repetitive if |pools(α)| > h, where h is another user-
defined parameter such that dL < h ≤ qL. Discarding low-frequency k-mers
requires two passes over the data. In the first we only build the hash table for
the function |pools|, and in the second we determine poolcount by discarding any
k-mer such that |pools(α)| < l.

After building the hash table for poolcount, we process the reads one by
one. If a k-mer α in read r is absent from the hash table, it is assumed to be
incorrect. Our algorithm attempts to correct α by changing either its first or its
last nucleotide into the other three possible nucleotides (we discuss below how to
determine which one). The three variants are searched in the hash table: if only
one is present, then it is the correct version of α, assuming that α contains only
one error. If multiple variants of α are found in the hash table, the algorithm
analyzes the read r to which α belongs. For any correct k-mer β in r, we expect
pools(β) to match a single BAC signature or the union of up to d BAC signatures.
Furthermore, any other correct k-mer γ in r either satisfies pools(γ) = pools(β),
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or pools(γ) ∩ pools(β) is equal to a BAC signature. The second condition takes
into account the case when a portion of r originates from the overlapping region
between BACs.

Given a read r, let C = α1, α2, . . . , α|r|−k+1 be the set of its k-mers in left
to right order, i.e., α1 = r[1, k], α2 = r[2, k + 1], etc. We define a correct set
(or c-set) C′ as a maximal contiguous subset of C such that all k-mers in C′ are
either repetitive or all share the same BAC signature or the union of up to d
BAC signatures.

If r has only one non-empty c-set C′, we can use C′ as a starting point to
correct the remaining k-mers. Any c-set C′ contains at least one border k-mer αi

such that αi−1 �∈ C′ when i > 1 (or αi+1 �∈ C′ when i < |r|−k +1). Without loss
of generality, assume αi−1 �∈ C′. The c-set is “interrupted” at position i because
r[i − 1] is a sequencing error. Thus, we can attempt to change r[i − 1] to any
of the other three nucleotides, and search the variant k-mer α′

i−1 in the hash
table. If bacs(α′

i−1) match the shared signature in the c-set C′, we have found
the right correction for nucleotide r[i−1] so we add α′

i−1 to C′ and let it become
the new border k-mer. We then repeat the process of extending C′ by correcting
the k-mer preceding its new border k-mer (of course, the one correction we just
made might actually suffice to correct multiple k-mers, up to k of them, in fact).
This iterative process continues until C′ has been extended to encompass the
whole read r. Note that when correcting a read from pool p, we also update
the hash table: for each k-mer α corrected into α′, we increase poolcount(α′, p)
by one and decrease poolcount(α, p) by one. This process is expected to lead to
erroneous k-mers having all their pool counts drop below l in which case they
are removed from the hash table.

If the read contains multiple c-sets with conflicting signatures, we first assume
that the first c-set is correct and try to correct the entire read accordingly. If
we succeed, we have identified the correct c-set. Otherwise we assume that the
second c-set is correct, and so on. If none of the c-sets leads to a successful
correction of the entire read, we do not correct the read. Figure 1 illustrates an
example with two c-sets.

To deal with an arbitrary number of c-sets, we employ an iterative deepening
depth first search (IDDFS) heuristic strategy [11]. For each read, IDDFS searches
for the correction path with the smallest number of nucleotide changes by start-
ing with a small search depth (maximum number of base changes allowed at the
current iteration) and by iteratively increasing the depth until either a solution
is found or we reach the maximum number of base changes allowed.

Our proposed k-mer based error correction is sketched as Correction
(Algorithm 1). For each read, Correction starts by determining the set of
all repetitive and non-repetitive csets which will be extended one by one from
left to right until all the k-mers of the read are considered. If conflicting c-sets
are detected, they are removed from csets one at a time when attempting cor-
rection. For a given cset, we denote by begin and end its left and right border
k-mers respectively. Also, we denote by bacs the BACs whose signature is shared
by all the k-mers in cset. Starting at line 7, we iteratively call the recursive func-
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Fig. 1. An illustration of our error-correction strategy. C-sets are colored with dark
and light gray. First, we assume that the read belongs to BAC X; in this case, the
read positions corresponding to the first nucleotide of the k-mer starting at a, the last
nucleotide of the k-mer starting at b, the first nucleotide of the k-mer starting at c
and at least one more position in the portion w of the read (because the length of w
is between k and 2k − 1) must be corrected. If we assume that the read belongs to
BAC Y , the read positions corresponding to the first nucleotide of the k-mer starting
at d, the last nucleotide of the k-mer starting at e and at least two more positions in
the portion z of the read (because the length of z is between 2k an 3k − 1) must be
corrected.

tion IDDFSearch with the maximum number of corrections corr allowed at
the current iteration. If we can correct the entire read with exactly corr base
changes, we output the corrected read and stop. Otherwise we increment corr
and repeat the search.

Algorithm 2 sketches the recursive function IDDFSearch. When the entire
read is covered by a single c-set or by several non-conflicting repetitive and non-
repetitive c-sets, the corrected read is produced and the algorithm stops (lines
2-5). Otherwise, the algorithm tries to extend the current cset either to the left
(line 9) or to the right (line 13). If cset is extended to the left, the algorithm
needs to correct the read position errPos corresponding to the first nucleotide
of the k-mer starting at cset.begin − 1 (lines 10–11). If cset is extended to the
right, the algorithm needs to correct the read position errPos corresponding
to the last nucleotide of the k-mer starting at cset.end + 1 (lines 14–15). Line
17 calls the function KmerCorrect (Algorithm 3) with the kmer which is
currently being corrected. KmerCorrect searches for kmer in the hash table
(line 2) and if found, verifies that the BAC(s) associated with it, bacs(kmer),
agree with the shared BAC signature(s) in cset (line 11). If this is the case, kmer
is assumed to be correct and read is updated with the current base change (line
16 or line 21, depending on the direction). The variable cset is also extended
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Algorithm 1. Correction (read-set R, hashtable H)
1 for each read in R do
2 Determine csets, the set of all repetitive and non-repetitive c-sets;
3 if conflicts detected then
4 Remove conflicting c-sets from csets one at a time when attempting correction ;

5 corr ← 0;
6 cset ← leftmost element of csets ;

7 while corr ≤ MaxCorrections do
8 numCorrections ← 0 ;
9 IDDFSearch (corr, numCorrections, read, cset) ;

10 if numCorrections = corr then
11 break;

12 corr ← corr + 1;

13 output read ;

14 update hashtable H by decreasing the counts of erroneous k-mers and increasing the counts of corrected
k-mers;

by one position either to the left or to the right (line 18 or line 23). Line 17
in Algorithm 2 checks the same k-mer as found in read without changing it.
This is necessary after every successful correction, so that, when extending the
current c-set, we know that the k-mers we add contain no further errors. When
all k-mers not initially covered by c-sets are checked and all c-sets are extended
without detecting further errors, we have corrected the entire read, and we return
from the recursive call and produce the solution. If instead we detect additional
errors by checking the k-mers not initially covered by c-sets, the algorithm tries
all three alternative nucleotides at the erroneous position detected, errPos (line
23 in Algorithm 2) and calls KmerCorrect with the modified k-mer. Upon a
successful return from KmerCorrect, we recursively call IDDFSearch (line
31). The nucleotide changes at errPos and the calls to the two functions are
only made if the total number of corrections so far does not exceed corr, the
maximum number of corrections allowed at the current iteration (line 21).

4 Experimental Results

We present an experimental evaluation of our method on short reads derived
from BACs belonging to a Minimum Tiling Path (MTP) of the rice and barley
genomes. As its name suggests, an MTP is a set of BACs which cover the genome
with minimum redundancy. The construction of an MTP for a given genome
requires a physical map but we do not discuss either procedure here (see, e.g.,
[3,8] for details).

The use of an MTP allows us to assume that at most two (or three, to
account for imperfections) BACs overlap each other. This assumption leads to a
3-decodable pooling design. To achieve d = 3 for STD [16], we choose parameters
L = 7, Γ = 2 and q = 13, so that d = �(L − 1)/Γ � = 3, m = qL = 91, and
n = qΓ+1 = 2, 197. With this parameter choices, we can handle up to 2,197
BACs using 91 pools organized in 7 redundant layers of 13 pools each. Since
each layer is a partition of the set of pooled BACs, each BAC is pooled in
exactly 7 pools (which is its signature). In addition, pools are well-balanced, as
each pool contains exactly qΓ = 169 BACs. By the properties of this pooling



Scrible: Ultra-Accurate Error-Correction of Pooled Sequenced Reads 169

Algorithm 2. IDDFSearch(corr, numCorrections, read, cset)

1 while true do

2 while cset joins its neighbors do
3 cset ← next c-set

4 if exhausted all c-sets then
5 return

6 prevEnd ← end of previous c-set or 0 if none
7 nextBegin ← begin of next c-set or (|r| − |k| + 1) if none
8 if cset.begin − 1 �= prevEnd then
9 direction ← left

10 errKmer ← cset.begin − 1
11 errPos ← errKmer

12 else
13 direction ← right
14 errKmer ← cset.end + 1
15 errPos ← errKmer + kmerSize − 1

16 kmer ← k-mer starting at position errKmer in read

17 corrected ← KmerCorrect (read, cset, direction, kmer, errPos)
18 if not corrected then
19 break

20 numCorrections ← numCorrections + 1
21 if numCorrections > corr then
22 return

23 toTry ← the three alternative nucleotides at errPos
24 for nt ∈ toTry do
25 if direction = left then
26 kmer[1] ← nt

27 else
28 kmer[kmerSize] ← nt

29 corrected ← KmerCorrect (read, cset, direction, kmer, errPos)
30 if corrected then
31 IDDFSearch (corr, numCorrections, read, cset)
32 if numCorrections = corr then
33 break

design, any two BAC signatures share at most Γ = 2 pools and any three BAC
signatures share at most 3Γ = 6 pools [16].

Once the set of MTP BACs has been pooled, we sequenced the resulting
pools and used the read decoding algorithm HashFilter [8,9] to assign the
reads back to their source BACs, and finally assemble each BAC individually.
Error correction is applied prior to read decoding. All experiments were carried
out on an Intel Xeon X5660 2.8 GHz server with 12 CPU cores and 192 GB of
RAM.

For our correction algorithm Scrible, we used parameters k = 31, l = 3,
h = 45, and a maximum of 4 corrections per read, unless otherwise noted. An
analysis of other choices of k is carried out later in Fig. 2. The other methods
corrected all the reads in the 91 pools together (not pool-by-pool).

4.1 Results on Synthetic Reads for the Rice Genome

We tested our error correction method on short reads from the rice genome
(Oryza sativa) which is a fully sequenced 390 Mb genome. We started from an
MTP of 3,827 BACs selected from a real physical map library of 22,474 BACs.
The average BAC length in the MTP was ≈ 150 kB. Overall, the BACs in the
MTP spanned 91 % of the rice genome. We pooled a subset of 2,197 of these
BACs into 91 pools according to the parameters defined above.
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Algorithm 3. KmerCorrect(read, cset, direction, kmer, errPos)
1 correct ← false

2 if kmer /∈ hashtable then
3 return false

4 pools ← pools( kmer) // from hashtable

5 if size (pools) > h then
6 correct ← true

7 if size (pools) ≥ l and size (pools) ≤ h then
8 bacs ← bacs( kmer)
9 if size (bacs) = 0 then

10 return false

11 if bacs agree with cset.bacs then
12 correct ← true

13 if correct then
14 if direction = left then
15 // update read with base change

16 read[errPos] ← kmer[1]
17 // extend cset left

18 cset.begin ← cset.begin − 1;

19 else
20 // update read with base change

21 read[errPos] ← kmer[kmerSize]
22 // extend cset right

23 cset.end ← cset.end + 1;

24 return true

25 return false

Table 1. Percentage of error-corrected reads that map to the rice genome for increasing
number of allowed mismatches; execution times (preprocessing + correction) are per
1M reads; boldface values highlight the best result in each column.

0mm 1mm 2mm 3mm execution time (min) space (GB)

Original reads 14.56% 55.98% 85.43% 96.36% N/A N/A

Sga 62.68% 69.58% 72.31% 73.23% 228.73 + 0.87 6

Racer 87.10% 93.25% 96.00% 97.10% 19.76 + 0.11 120

Scrible 95.00% 97.77% 98.70% 99.11% 600 + 2.76 50

The resulting BAC pools were “sequenced” in silico using SimSeq, which
is a high-quality short read simulator used to generate the synthetic data for
Assemblathon [2]. SimSeq uses error profiles derived from real Illumina data to
inject realistic substitution errors. We used SimSeq to generate ≈1M paired-end
reads per pool with a read length of 100 bases and an average insert size of 300
bases. A total of ≈ 200M bases gave an expected ≈ 8× sequencing depth for a
BAC in a pool. Since each BAC is present in 7 pools, this is an expected ≈ 56×
combined coverage before decoding. The average error distribution for the first
read in a paired-end read is: 48.42% reads with no error, 34.82% with 1 error,
12.96% with 2 errors, 3.14% with 3 errors, 0.57% with 4 errors, 0.08% with 5
errors and 0.01% with 6 errors. For the second read, the error distribution is:
32.85% no errors, 35.71% with 1 error, 20.75 with 2 errors, 7.91% with 3 errors,
2.20% with 4 errors, 0.48% with 5 errors, 0.09% with 6 errors and 0.01% with
7 errors.

We compared the performance of Scrible against the state-of-the-art error-
correction method Racer [5]. The authors of Racer performed extensive exper-
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imental evaluations and determined that Racer is superior in all aspects (per-
formance, space, and execution time) to HiTec, Shrec, Reptile, Quake, and
Coral. We also compare Scrible against Sga [14], as it was not evaluated
in [5] but we had evidence it performs well. For both tools we used their default
parameter setting.

Table 1 reports correction accuracy as well as time and space used by each
method. As it was done in [5], correction accuracy is determined by mapping
the corrected reads to the reference using Bowtie [7] in stringent mode (paired-
end, end-to-end alignment). Columns 2, 3, 4, and 5 report the fraction of reads
mapped when 0, 1, 2, and 3 mismatches were allowed, respectively. The sec-
ond row of Table 1 reports the mapping results for the original set of uncor-
rected reads. The last two columns report time (pre-processing + correction)
and memory requirements for each method. The pre-processing time is method
dependent: in our method it is the time to build the hash table (which currently
is not multi-threaded), for Sga it is the time to build the FM-index, and, for
Racer it is the time to compute witnesses and counters. For Scrible and Sga
we chose a k = 31 because (1) our method performs better with larger k-mer
sizes and (2) this is the default choice for Sga. Racer determines the best k-mer
size from the data.

Fig. 2. Correction accuracy for different k-mer sizes for SGA and Scrible (x-axis:
number allowed mismatches for mapping, y-axis: percentage of reads mapped)

Table 1 shows that Scrible is by far the most accurate. The difference between
Scrible and state-of-the-art Racer on a small number of allowed mismatches
(which is what matters here) is very significant. In this application domain, accu-
racy is much more important than time- and space-complexity (as long as time and
space are reasonable). Also observe in Table 1 that Sga’s corrected reads do not
map as well as uncorrected reads at two and three mismatches. Sga’s results are
puzzling, and currently do not have a good explanation for its behavior. In terms
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of execution time, the bottleneck in Scrible is the preprocessing stage (building
the hash table), which is currently single-threaded.

Figure 2 shows correction accuracy (percentage of mapped reads) for Sga
and our method for other choices of k-mer size. As the k-mer size increases, our
method corrects more reads, whereas the opposite is true for Sga.

An alternative way to assess the performance of error correction is to assemble
the corrected reads, after decoding the reads with HashFilter. For this purpose,
we used Velvet [18] with hash parameter k = 49 (chosen based on our extensive
experience on this dataset). Table 2 reports the averaged results of 2,197 BACs
in each of the four datasets. The table shows average coverage, the percentage
of reads used by Velvet in the assembly, the number of contigs with length of
at least 100 bases, the N50 value, the ratio of the sum of all contigs sizes over
their BAC length, and the coverage of the BAC sequence by the assembly. The
slightly different coverages depend on the ability of HashFilter to decode reads
for each dataset. Despite the fact that Velvet employs its own error-correction
algorithm, assemblies corrected by Scrible have better statistics (except for the
number of contigs) than those obtained using the outputs of the other tools.

Table 2. Assembly statistics for rice BACs on datasets of reads uncorrected and cor-
rected via various methods; all values are an average of 2,197 BACs; boldface values
highlight the best result in each column.

4.2 Results on Real Reads from the Barley Genome

We also tested our method on real sequencing data from the barley (Hordeum
vulgare) genome, which is about 5,300 Mb and not yet fully sequenced [15]. We
started from an MTP of about 15,000 BACs selected from a subset of nearly
84,000 gene-enriched BACs for barley (see [8,9] for more details). We divided
the set of MTP BACs into seven sets of 2,197 BACs and pooled each set using
the STD parameters previously defined. We assessed the performance of error
correction on three of these data sets, namely Hv4, Hv5 and Hv6 (with an average
BAC length of about 116 kb). Each of the 91 pools in Hv4, Hv5 and Hv6 were
sequenced on a flowcell of the Illumina HiSeq2000 by multiplexing 13 pools on
each lane. After each sample was demultiplexed, we quality-trimmed and cleaned
the reads of spurious sequencing adapters and vectors. We ended up with high
quality reads of about 87–89 bases on average. The number of reads in a pool
ranged from 3.37 M to 16.79 M (total of 706 M) in Hv4, from 2.32 M to 15.65 M
(total of 500 M) in Hv5 and from 1.3 M to 6.33 M (total of 280 M) in Hv6.

We then compared Scrible’s ability to decode reads against Hashfilter’s.
In other words, while Hashfilter decodes erroneous reads using the improved
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Table 3. Percentage of real barley reads (decoded by HashFilter and error-
corrected/decoded by Scrible) that map to 454-based high-quality BAC assemblies
for increasing number of allowed mismatches; boldface values highlight the best result
in each data set.

dataset 0 mm 1 mm 2 mm 3 mm

HashFilter Hv4 88.41 % 91.66 % 92.54 % 93.25 %

Scrible Hv4 92.04% 93.67% 94.62% 95.23%

HashFilter Hv5 87.37 % 90.45 % 91.61 % 92.63 %

Scrible Hv5 93.26% 94.66% 95.56% 96.14%

HashFilter Hv6 84.72 % 88.46 % 90.05 % 91.38 %

Scrible Hv6 92.13% 93.48% 94.23% 94.73%

method described in [9], Scrible corrects and decodes the reads. Once the reads
were decoded to individual BACs by Hashfilter and Scrible, we mapped them
using Bowtie [7] in stringent mode (paired-end, end-to-end alignment) to the
subset of BACs for which a high-quality 454-based assembly was available (151
high-quality assemblies for HV4, 141 for HV5 and 121 for HV6). Table 3 presents
the results of this comparison (using k = 32). Note that Scrible achieves signif-
icantly higher mapping percentages than Hashfilter. Higher mapping percent-
ages indicate more error-free reads, and higher decoding accuracy.

To assess the impact of error correction on the final assemblies, we cor-
rected/decoded reads using Scrible then assembled them BAC-by-BAC using
Velvet [18]. We compared the resulting assembly against the BAC assem-
blies on uncorrected reads decoded by HashFilter. Table 4 shows the average
assembly statistics over 2,197 BACs in each barley set. Observe that assemblies
obtained from Scrible have consistently lower number of contigs, however the
N50 is not always the highest.

Table 4. Average assembly statistics for barley BACs. All values are averages over
2,197 BACs. Boldface values highlight the best result for each data set.

dataset coverage reads used #contigs N50 (bp) sum/size

Hashfilter+Velvet Hv4 205.9x 93.9 % 56 28,341 114.5 %

Scrible+Velvet Hv4 205.9x 96.7% 44 21,001 110.9%

Hashfilter+Velvet Hv5 155.5x 94.9 % 72 20,863 101.3%

Scrible+Velvet Hv5 155.5x 96.1% 35 19,708 93.4 %

Hashfilter+Velvet Hv6 81.1x 92.9% 44 25,194 89.4%

Scrible+Velvet Hv6 81.1x 89.1 % 34 27,631 87.2 %
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Abstract. Third generation sequencing platforms produce longer reads
with higher error rates than second generation sequencing technologies.
While the improved read length can provide useful information for down-
stream analysis, underlying algorithms are challenged by the high error
rate. Error correction methods in which accurate short reads are used to
correct noisy long reads appear to be attractive to generate high-quality
long reads. Methods that align short reads to long reads do not optimally
use the information contained in the second generation data, and suffer
from large runtimes. Recently, a new hybrid error correcting method has
been proposed, where the second generation data is first assembled into a
de Bruijn graph, on which the long reads are then aligned. In this context
we present Jabba, a hybrid method to correct long third generation reads
by mapping them on a corrected de Bruijn graph that was constructed
from second generation data. Unique to our method is that this mapping
is constructed with a seed and extend methodology, using maximal exact
matches as seeds. In addition to benchmark results, certain theoretical
results concerning the possibilities and limitations of the use of maximal
exact matches in the context of third generation reads are presented.

Keywords: Sequence analysis · Error correction · de Bruijn graph ·
Maximal exact matches

1 Introduction

The accurate determination of the DNA sequence of an organism, i.e., establish-
ing the precise order of the nucleotides A, C, G and T in a DNA molecule, is a fun-
damental and challenging problem in biology. Essentially this process consists of
two steps: (i) sequencing the DNA by means of a chemical process, resulting in a
large number of reads and (ii) genome assembly, where the reads are processed to
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reconstruct the complete DNA sequence. Every sequencing technology results in
reads that contain errors, with error profiles varying greatly between platforms.
There is a clear distinction between second generation reads and third generation
reads, where the latter are characterized by vastly improved read lengths albeit
with much higher error rates. Processing such reads usually involves mapping
them to other sequences, either by aligning the reads to each other to estab-
lish potential overlap, or by mapping them to a reference genome. Errors in the
reads introduce noise to these alignments, leading to weaker alignments than the
corresponding error-free reads would have. Lower rated alignments may then be
discarded for further analysis, potentially discarding crucial information. This
can be especially problematic when dealing with low quality reads in a region
with low coverage. To deal with this sequencing noise, error correction methods
can be applied. By correcting the errors in the reads, the optimal alignments can
be more accurately identified and more appropriately rated, leading to better
downstream analysis, as shown in e.g. [1] for de novo assembly.

In Jabba third generation reads are aligned to a de Bruijn graph built from
second generation reads, using a seed-and-extend approach. The resulting paths
in the graph dictate the read correction. The seeds are maximal exact matches
(MEM) between an individual read and a node of the graph. The usage of MEMs
as seeds has several advantages over k-mers. Firstly, the seeds can be longer. Even
though long seed occur only rarely, few longer seed can be sufficient to have a
rough estimate of how the read should be aligned to the graph. Shorter seeds
can then be used to further refine this. Secondly, given an enhanced suffix array,
seeds of arbitrary lengths can be sought without the need to rebuild this index.
This is not the case for a k-mer index (e.g. a hash table). In case different values
for k are to be used during the alignment process, different k-mer indexes need
to be build. Finally the MEMs are not required to have the same size as the
nodes. Since the high error rates of the third generation reads are the limiting
factor on the minimal seed size, this allows the use of a larger value of k to build
the de Bruijn graph, resulting in a less complex de Bruijn graph.

1.1 Related Work

For second generation sequencing we mainly consider Illumina. The different
Illumina technologies produce many short (100–250 nucleotides) reads with a
high accuracy (<2 % errors, mainly substitutions) with high throughput and at
a low financial cost. New algorithms, based on de Bruijn graphs, were specifi-
cally developed to efficiently deal with the assembly of huge amounts of second
generation sequencing data. Overlap between short reads is then established in
linear time between reads that share a k-mer, i.e., a substring of length k.

Algorithms to correct second generation reads have been classified [2] into
three types. The k-mer spectrum-based methods rely on coverage thresholds to
determine whether a k-mer represents part of the actual DNA sequence, these
methods have been used for second generation error correction [3,4], but also
in de novo genome assembly algorithms [5] and hybrid error correction meth-
ods [6]. The suffix tree-based methods [7,8] generalize the k-spectrum methods
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by handling multiple k values at once, while the multiple sequence alignment-
based methods [9] correct the reads after aligning several similar reads.

Recently, third generation sequencing technologies (Pacific Biosciences 2013;
Oxford Nano Technologies 2014) began to emerge. Pacific Biosciences SMRT
sequencing results in much longer reads (avg.>5000 nucleotides), albeit with
significantly higher error rates (15 %, mostly insertions and deletions and to
a lesser extent substitutions). Despite this high error rate, the errors are uni-
formly distributed over the read, leading to a very high consensus accuracy if
the coverage is sufficiently high and overlap between the reads is correctly estab-
lished. Computing such overlap can not be efficiently achieved by means of a de
Bruijn graph, because the high error rate leads to an overabundance of incorrect
k-mers. Other efficient methods have been developed to compute pairwise align-
ments between third generation reads [10,11]. However, comparing each pair
of reads results in a quadratic computational complexity, which is impractical
for larger genomes and/or higher coverages. However, the coverage required for
high accuracy consensus-based correction can still lead to a prohibitively high
financial cost for many sequencing projects.

From this perspective, the use of hybrid error correction methods appears to
be an attractive alternative. The goal is to correct long third generation reads
using the more accurate sequence information contained in second generation
reads. The idea is that a sufficient coverage in (cheap) second generation data
might be sufficient to correct the long reads, regardless of the coverage of third
generation data. This may result in a reduced financial cost for sequencing as low
coverage third generation data might suffice. It should be noted that lower third
generation coverage can directly result in lower assembly quality, no matter the
quality of the reads, because of the uneven length distribution of the reads [12].
However, hybrid error correction methods also appear attractive from a compu-
tational point of view as they avoid pairwise comparisons between long reads,
thus circumventing the quadratic computational complexity. The first type of
hybrid error correction methods [13–15] rely on mapping short reads to long
reads, and then calling the consensus sequence from this multiple alignment.
However, such methods map short reads individually and do not exploit the
context in which the short read occurs. A newer hybrid error correction method,
LoRDEC [6], first constructs a de Bruijn graph from the short reads and then
maps the long reads on this graph. The sequence implied by the path in the
graph to which the long read aligns then represents the corrected read. The
use of a de Bruijn graph has the advantage that overlap between short reads
is established prior to mapping them to long reads. In [6], it was shown that
LoRDEC achieves similar accuracy as other error correction methods, but with
significantly improved runtimes.

2 Methods

2.1 Overview

In this work, we further build upon the idea of using a de Bruijn graph for
hybrid error correction of long reads. Specifically, our main goal is the use of
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Illumina data to correct Pacific Biosciences SMRT reads. A de Bruijn graph is
then constructed from Illumina data and corrected using standard procedures
(see further). Subsequently, long reads are aligned along a certain path in the
graph in order to correct them. Whereas LoRDEC relies on shared k-mers to
align long reads to a de Bruijn graph, we explore the idea of using maximal exact
matches (MEMs). MEMs are exact matches between two sequences that can
not be extended in either direction, this as opposed to common k-mers, which
are exact matches of a fixed length k, which may or may not be extendable.
Alignment methods based on maximal exact matches have been developed for
read mapping [16–18]. It is shown in [16] that these methods can be more efficient
than alignment techniques based on k-mers and Burrows-Wheeler transforms
[19,20]. From the definition of a MEM, it is clear that every MEM of size l ≥ k
can be represented as a consecutive sequence of k-mers, and vice versa. As such,
finding and storing MEMs can be achieved in a more efficient manner, since
MEMs can compactly represent multiple k-mers. The remainder of this section
is dedicated to a more in-depth description of all steps involved (Fig. 1).

Fig. 1. To align a read to the de Bruijn graph, a seed-and-extend algorithm is used.
First MEMs are found between the read and the graph, then a path in the graph is
found between these seeds, creating the final alignment.

2.2 Correction of the de Bruijn Graph

Errors in short reads lead to erroneous paths in the de Bruijn graph. The errors
in the graph can be corrected as described in [5]. Two types of errors can be
discerned based on their position in the read. An error that is located at least
k − 1 nucleotides away from both ends of the read will lead to k erroneous k-
mers. In turn, this leads to the formation of a ‘bubble’, i.e. a path of length
k that runs parallel to the real path. Assuming a sufficiently low error rate
and a high coverage the correct path will typically have a higher coverage than
the parallel erroneous paths, and the graph can be corrected by removing the
erroneous path. On the other hand, errors positioned close to the ends of the
read lead to the creation of less than k erroneous k-mers, thus forming ‘dead
ends’ (tips) in the de Bruijn graph. These can be identified and removed based
on topology and coverage considerations. Errors in the reads may also result
in erroneous connections between unrelated parts of the graph, and because of
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coverage biases certain paths could be absent or underrepresented in the graph.
This vastly complicates the graph correction procedure and erroneous paths may
remain present in the final corrected graph.

2.3 Aligning Reads to a de Bruijn Graph

To align the reads to the graph a seed-and-extend approach is applied. By prop-
erly indexing the graph the seeds can be found in O(m) time, where m is the
size of the read that is being mapped.

Finding Maximal Exact Matches. To rapidly find MEMs between the nodes
of the graph and the long reads, essaMEM [21] is used. These MEMs will be
used as seeds for our alignment. By concatenating the sequences of every node
and their reverse complement, a sequence is constructed. From this sequence
an enhanced sparse suffix array is built by essaMEM. The sparseness factor of
the index sharply reduces the space requirement for the index, compared to
traditional suffix trees or enhanced suffix arrays, but this comes at the cost of a
small increase in runtime. The required space could be even further reduced by
only indexing the nodes and not their reverse complements. This would however
double the search time, since the reverse complements of the reads then also
have to be matched.

Chaining Seeds. To chain the seeds several passes over the read are performed.
In each iteration the algorithm considers every region of the read that has not yet
been corrected. For every such region separately, the largest seeds are considered.
From these seeds it is determined to which nodes the current region of the read
could map. For each such node the list of all seeds between this node and the
current region of the read is considered, and an optimal placement of these seeds
is decided, removing the ones that do not fit. Seeds are compatible if the distance
between the two seeds on the read is contained in an interval determined by the
estimated error rates and the distance of the seeds in the node.

Generally larger MEMs are less likely to be noise than shorter seeds, since
the number of all k-mers increases exponentially if k increases and the number of
k-mers contained in a sequence is similar to the size of the sequence, independent
of k. There can still be noisy long seeds, especially when the genome contains
imperfect repeats. In this case, the correct seeds can usually be recognized amidst
the noisy seeds by considering the context. Firstly, the local context is considered,
by comparing the seeds in the same node. This way seeds that occur in the same
order in a node and in the read can be chained together to form inexact matches.
Secondly, if the situation is still ambiguous, the global context is considered, by
comparing the alignments in the neighborhood of the ambiguous region. If this
neighborhood has not yet been chained in previous passes, the chaining of the
current region is delayed to the next pass.

After obtaining the presumed layout of the seeds, the quality of the alignment
is checked. Large gaps or a relatively large amount of mismatches may indicate
incorrect alignments. The following cases are filtered:
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1. Local mappings that are not super maximal, i.e., local mappings that are on
the read contained in a larger local mapping.

2. Local mappings that cover less than 20% of a node. The absence of any seeds
in the rest of the node makes it less likely that this is actually a correct
mapping.

3. Local mappings to nodes of size smaller than half of the largest local mapping.
It is preferred to extend from those larger local mappings, since those are more
reliable.

These filters are linearly relaxed with each pass of the algorithm, in the last itera-
tion all local mappings are considered. After the local alignments are computed
for the current pass, the next phase begins: chaining the alignments between
different nodes by following unique paths in the graph. During this phase every
local alignment is extended by considering the possible paths in the graphs. Both
directions of the alignments are extended in the same manner, as follows:

1. If there is a unique edge, this edge must be correct and the local alignment
is extended along this edge.

2. If there are several edges, the lengths of the end nodes are considered. Since
the extension takes place between two regions of the read, certain estimates
can be made for the maximal distance between the alignments, edges that
are too long are then not considered.

3. If at any point there are no suitable edges to extend along, a mistake was made
at some point. Either the graph is incorrect or the original local chaining was
erroneous. In either case the erroneous region is reprocessed in a new local
chaining step.

In the rest of this section the distance between corrected regions on a read is
denoted as n and the estimated insertion and deletion rates of the data are
denoted as i and d. After the unique-extension step, the resulting chains may
overlap in the graph, in which case they can be linked together to make one
consecutive path. Overlapping chains are however not a sufficient condition for
linking, the sequences represented by the path and the read need to be com-
pared. If the sequence on the path is smaller than (1 + 2i)−1n, the shortest
cycle at the common point is considered. If this shortest cycle can not ade-
quately fill the gap, then the paths are not joined and the gap is left for the next
pass. To determine whether the shortest cycle is a good fit a local alignment
is performed between the sequence dictated by the path and the read, using a
Smith-Waterman approach [22]. Likewise, if the resulting chains do not meet,
the shortest path between both end points is considered. If this shortest path
can not adequately fill the gap, the gap is again left for the next iteration.

By building from seeds and only using shortest path algorithms to chain the
nodes, computationally expensive path searching can be avoided, however, this
can not be avoided indefinitely. After the final iteration a bounded path search
is performed between consecutive corrected regions, in an attempt to fill the
remaining gaps. This search looks for paths that contain a sequence with length
bounded by the interval [(1 + 2i)−1n, (1 + 2d)n].
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Read Ends. The parts of the read beyond the extremal seeds, i.e., the ends of the
read, are not corrected. Such a correction can be trivial, if the end is completely
contained within the same node as the extremal seed, or in the unique path flowing
from that node. In this case correcting the end would not provide any information
about the genome that is not already contained in the graph. The correction can
also be far from trivial, if there are several possible paths. In this case the correc-
tion of the end requires aligning the possible paths against the read. This can be
done by looking for seeds with a lower threshold, or by performing direct global
alignments with a dynamic programming approach. This is not done in Jabba,
since it is a relatively expensive operation for a small gain.

Settings. Jabba takes several parameters that can affect the results. Most
importantly the minimal length l of MEMs for the initial search can be specified,
the standard value is l = 20, but this should be chosen based on the discussion
in Sect. 3.1 in function of the data. The maximal number p of iterations of the
algorithm can be specified, the standard value is p = 5. A third parameter allows
Jabba to trim the reads beyond the extremal corrected positions.

3 Results Concerning Maximal Exact Matches

In this section the occurrence of maximal exact matches in reads is investigated.
Insertions and deletions have a different effect on the size of maximal exact
matches than substitutions. A substitution error puts a firm stop to any running
exact matches, while an insertion or deletion may allow for the exact match
to continue, effectively looking like an error at a further point in the read. In
the following this difference is ignored and all errors are treated like they were
substitutions. Because of this, the size of MEMs is slightly underestimated for
sequences that contain insertions or deletions. It is also assumed that errors
are uniformly distributed in the sequences, as is the case for Pacific Biosciences
SMRT reads.

3.1 Coverage by Exact Regions

In this section the expected ratio of a long read that should be covered by MEMs
larger than a given size is explored, under the assumption that the reference
contains no errors. Variations on this topic have been explored in [23–25]. In the
following n is the length of the read, p is the error-rate and m the threshold
for maximal exact matches. An exact region of size k on a read is defined as k
correct consecutive bases in that read. The coverage by exact regions is the ratio
of bases that are contained in exact regions.

The expected number of exact regions (including those of length 0) is the
expected number of errors, i.e., np. The expected coverage of a read by exact
regions of size k is then the product of (i) the coverage of the read by one exact
region of size k: k/n, (ii) the expected number of exact regions: np, and (iii) the
probability that an exact region has size k: (1 − p)kp. This results in:



182 G. Miclotte et al.

k(1 − p)kp2 . (1)

Summing (1) over all k ≥ m gives the expected coverage of the read by exact
regions of size k ≥ m:

∞∑

k=m

k(1 − p)kp2 = (1 − p) −
m−1∑

k=0

k(1 − p)kp2 , (2)

the right hand side provides a finite formula to compute this expected coverage.
Figure 2 shows the expected coverage by exact regions larger than m, for error-
rate p = 15% and p = 35%. The maximum 1 − p is obtained at {0, 1} since
every correct base is contained in an exact region of size ≥ 1. It can be seen that
increasing p leads to a steeper descent near the inflection point. While it was a
priori clear that a lower error rate leads to larger exact regions, this also shows
that the equilibrium between a sufficient amount of seeds and a sufficiently large
minimal seed length, is less stable for higher error rates.
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Fig. 2. Expected coverage by exact regions of size k ≥ m for reads of size 10000 with
15 % errors (left) and 35 % errors (right), expressed as percentages of the whole read
as a function of the minimal size of the exact regions.

3.2 Occurrence of Exact Regions

The expected length of the longest exact region in a read of size n is denoted
by ERp(n). If np(1 − p)m ≥ 1 then at least one exact region of size k ≥ m is
expected in a read of size n, hence the expected length of the longest run can
be approximated by solving np(1 − p)m = 1 for m:

ERp(n) ≈ − log1−p np. (3)

The distribution around this average can be approximated by the complement
of a Gumbel distribution with cumulative distribution function
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F (x) = exp−(1 − p)x+1; (4)

the probability that a read of length n will have an exact region of size k ≥ m
is then approximated by

P (n, p,m) = 1 − F (m + ERp(n)) = 1 − exp
(−np(1 − p)m+1

)
. (5)

These approximations are highly accurate when p and n are sufficiently large.
Figure 3 shows the ratio of reads of length n that are expected to have an exact
region of size m. For sufficiently large values of n, replacing n by n′ > n shifts the
graph to the right by a term log1−p n/n

′, replacing p by p′ < p shifts the graph
to the left and steepens the descent near the inflection point. This again shows
that larger error rates make the determination of a proper seed size threshold
less stable.
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Fig. 3. Expected percentage of reads of size 10000 that contain at least one exact
region of size k ≥ m, for reads with 15 % errors (left) and 35 % errors (right).

3.3 Applications

During the local chaining step from Sect. 2.3 one can apply the results of Sect. 3.1
to decide whether a local mapping is plausible or not. For each mapping the
coverage by exact regions can easily be computed by counting seed sizes. The
resulting number can then be compared to the expected coverage that can be
obtained from Sect. 3.1. If there is a significant deviation in either direction, the
local mapping gets a lower rating.

When computing mappings it is required to have at least 1 seed available,
hence the results from Sect. 3.2 propose good upper bounds for the minimum
length of seeds, depending on the read size and error rates. To a certain extent
this result can also be used to estimate the probability of a read containing
several exact regions of a minimal size. If a read of size n contains a MEM of
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size k ≥ m, then this MEM divides the read in two pieces, one of size n′ and
the other of (approx.) size n− n′. This approximation of the piece-sizes is made
since typically k is significantly smaller than n, and k is not known a priori. The
conditional probability of the read containing a second MEM of size larger than
m then becomes 1 − (1 − P (n′, p,m))(1 − P (n − n′, p,m)), with P as in (5).
Since n′ depends on the read, it is a priori not known and integrating over n′ is
required. The distribution of the size of n′ can be approximated by the uniform
distribution on {0, . . . , n}, and because of symmetry this leads to the following
estimate of the a priori probability of a read of size n containing at least 2 exact
regions with size larger than m:

P (n, p,m)
2
n

n/2∑

n′=0

(
1 − (

1 − P (n′, p,m)
)(

1 − P (n − n′, p,m)
))

. (6)

Equation (6) can in a similar fashion be extended to multiple seeds, possibly
of different minimal sizes. However one should be careful when using (6) and
other extensions of (5), since the approximation made by P (n, p,m) becomes
less accurate when n decreases.

4 Results

4.1 Data

Datasets were simulated from reference genomes of varying size, two bacterial
genomes: N. meningitidis and A. hydrophila; and one eukaryotic genome: D.
melanogaster (fruit fly). For all genomes tests are performed on a perfect de
Bruijn graph built from the reference genome. For the bacterial genomes short
reads are simulated from which additional de Bruijn graphs are built. Illumina
paired-end reads of length 100 were simulated with ART [26] with 100x coverage.
PacBio reads of average length 10000 were simulated with pbsim [27] and 10x
coverage, with 15 % errors distributed as 60% insertions, 30% deletions and 10%
substitutions. Real Illumina and PacBio datasets were used for E. coli. For D.
melanogaster real PacBio data was mapped on the de Bruin graph built from
the reference genome. The sources of the data are specified in Table 1.

4.2 Parameters

LoRDECwas runwith k = 19 for the bacterial data sets, as suggested in [6]. For the
larger fruit fly the values k = 20 . . . 23 were tested. The best results were obtained
for k = 21 and these results have been included in the results tables. For Jabba
the de Bruijn graphs were built with k = 31 and the minimum MEM size was 20.

4.3 Evaluation Metrics

In [6] it is demonstrated that LoRDEC performs better than both LSC [13]
and PacBioToCA [14]. Hence, Jabba is only compared to LoRDEC. By using
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Table 1. The data sets and reference genomes. The D. melanogaster reference genome
can be accessed on http://www.fruitfly.org/sequence/release5genomic.shtml.

N. meningitidis Reference genome NC 003116

A. hydrophila Reference genome NC 008570

D. melanogaster Reference genome Release 5

PacBio data from http://datasets.pacb.com.s3.amazonaws.
com/2014/Drosophila/reads/list.html.

E. coli Reference genome NC 000913

Illumina data accession number ERR022075

PacBio data from https://github.com/PacificBiosciences/
DevNet/wiki/E-coli-K12-MG1655-Hybrid-Assembly

simulated data, the corrected read can be aligned to the original sequence from
which the read was simulated. This way a multiple alignment of the original
read, the corrected read and the genomic region is created. In this alignment
each position is analyzed separately, in order to obtain a confusion matrix as
follows:

– True Positive, an erroneous position was corrected.
– False Positive, a new error was introduced at a correct position.
– True Negative, a correct position remains unchanged.
– False Negative, an erroneous position remains unchanged.

To interpret this confusion matrix the following statistics are computed:

– Sensitivity = TP/(TP + FN). This expresses the relative amount of errors
that were corrected.

– Specificity = TN/(TN + FP ). This expresses the relative amount of correct
positions that were recognized as such.

– Precision = TP/(TP +FP ). This expresses how reliable a correction is, if one
is made.

– Gain = (TP − FP )/(TP + FN). This expresses the quality of the corrected
reads compared to the original read.

For real data the reads are aligned to the reference genome with BLASR [28]
and the identity of the mapping is computed. All experiments were run on dual-
socket octa-core Intel Xeon Sandy Bridge computing nodes at 2.6 GHz and 64 GB
of memory. The runtimes and memory usage are measured using the standard
Linux time command. The runtime includes only the actual mapping of long
reads and does not include the generation and correction of the de Bruijn graph.

4.4 Evaluation

Table 2 shows the results for LoRDEC and Jabba as they were run on each of
the simulated data sets. The results on the bacterial genomes suggest that a

http://www.fruitfly.org/sequence/release5genomic.shtml
http://datasets.pacb.com.s3.amazonaws.com/2014/Drosophila/reads/list.html
http://datasets.pacb.com.s3.amazonaws.com/2014/Drosophila/reads/list.html
https://github.com/PacificBiosciences/DevNet/wiki/E-coli-K12-MG1655-Hybrid-Assembly
https://github.com/PacificBiosciences/DevNet/wiki/E-coli-K12-MG1655-Hybrid-Assembly


186 G. Miclotte et al.

Table 2. Results on simulated data for LoRDEC and Jabba. The subscript p indicates
the usage of a perfect de Bruijn graph built from the reference genome. The absence of
the subscript indicates the usage of a de Bruijn graph built from simulated short reads.
Both real time and CPU time are averages over all reads, with 16 threads in parallel.

Sensitivity Specificity Precision Gain Real time CPU Time memory

Neisseria meningitidis

LoRDEC 95.6% 99.0% 94.4% 89.9% 266.5ms 1732.5ms 63MB

LoRDECp 98.7% 99.3% 96.0% 94.6% 141.7ms 921.1ms 58MB

Jabba 92.3% 99.1% 94.4% 86.9% 126.1ms 1596.5ms 126MB

Jabbap 92.3% 99.1% 94.5% 87.0% 125.0ms 1583.3ms 115MB

Aeromonas hydrophila

LoRDEC 99.2% 99.7% 98.4% 97.6% 84.1ms 1093.4ms 75MB

LoRDECp 99.8% 99.9% 99.1% 99.0% 70.5ms 597.3ms 46MB

Jabba 95.7% 99.4% 96.4% 92.1% 180.0ms 2315.2ms 161MB

Jabbap 95.3% 99.4% 96.1% 91.4% 178.5ms 2311.3ms 168MB

Drosophila melanogaster

LoRDECp 91.6% 98.5% 91.1% 82.7% 435.1ms 2828.6ms 538MB

Jabbap 93.9% 99.2% 95.3% 89.3% 246.4ms 2285.7ms 1181MB

corrected de Bruijn graph yields comparable results to using a perfect de Bruijn
Graph based on a reference genome. For the bacteria, LoRDEC performs better
than Jabba, since the MEMs contain the same information as k-mers, this is most
likely due to shortcomings in the chaining algorithm in Jabba. A noticeable drop
in the performance of LoRDEC can be observed when using the frequency-based
de Bruijn graph compared to the perfect de Bruijn graph.

The performance of Jabba does not drop when moving from the bacter-
ial genomes to the fruit fly. On the other hand, our evaluation of LoRDEC
shows that LoRDEC obtains a lower gain for this larger genome, to the point
where Jabba outperforms it. It can be seen in Table 2 that Jabba is slower than
LoRDEC on A. hydrophila, but faster on the other two genomes, and that Jabba
consistently requires 2–4 times more memory than LoRDEC.

The results for the real data can be found in Table 3. The higher performance
of Jabba on D. melanogaster when compared to LoRDEC might be explained by
the use of MEMs. In LoRDEC the seed size and the k-mer size of the graph are
identical. Since the seed size must be kept relatively low as shown in Sect. 3.2,

Table 3. Results on real data for LoRDEC and Jabba, as obtained by mapping the
reads to the reference genome.

Original LoRDEC LoRDEC Jabba Jabba

Identity Identity Gain Identity Gain

Escherichia coli 83.8 % 98.6 % 91.9 % 98.5 % 90.8 %

Drosophila melanogaster 86.7 % 96.6 % 74.3 % 98.0 % 85.3 %
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the de Bruijn graph has to be built with a small value of k, leading to a tangled
de Bruijn graph. This is expected to become more apparent for larger and more
complex genomes. When using MEMs however, the seed size and k-mer size are
independent of each other and optimal values of k can be chosen to construct
the de Bruijn graph.
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Abstract. New generation sequencing technologies produce massive
data sets of millions of reads, making the compression of sequence read
files an important problem. The sequential order of the reads in these
files typically conveys no biologically significant information, providing
the freedom to reorder them so as to facilitate compression. Similarly, for
many problems the orientation of the reads (original or reverse comple-
ment) are indistinguishable from an information-theoretic perspective,
providing the freedom to optimize the orientation of each read.

In this paper, we introduce a class of algorithmic problems concerned
with optimizing read ordering and orientation for sequence compres-
sion. We show that most of the interesting variants are hard, but pro-
vide heuristics yielding strong approximation guarantees. In particular,
we give a linear time 2-approximation algorithm for the optimal order-
ing/orientation under the prefix match criteria. Further, through experi-
ments on a number of data sets, we demonstrate that this heuristic works
well in practice. A prototype implementation of this 2-factor approxima-
tion is available at https://github.com/LaoZZZZZ/prefixMatching.

1 Introduction

New generation sequencing technologies produce massive data sets of 10 s or even
100s of millions of reads. These data sets are not processed and then discarded,
but rather are stored, often in public databases, to allow replication of results
and future analysis with new methods and tools and in light of new Biological
discoveries. The huge size and growing numbers of such data sets makes sequence
read compression an important problem — since these experimental results must
be efficiently stored and transferred.

The sequential order in which the reads appear in a typical file generally
conveys no biological significance. Specifically, the order in which reads are
recorded in a file is usually random and, even when it is not, almost all down-
stream processing tools are agnostic to this order. This provides the freedom to
c© Springer-Verlag Berlin Heidelberg 2015
M. Pop and H. Touzet (Eds.): WABI 2015, LNBI 9289, pp. 189–202, 2015.
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reorder sequencing reads so as to facilitate compression. Similarly, for double-
stranded sequence data, and un-stranded sequencing protocols, the orientation
of the reads (original or reverse complement) are typically indistinguishable from
an information-theoretic perspective, providing the freedom to optimize the ori-
entation of each read.

The problem of compressing sequencing data has spawned its own small field
of research, which can be roughly divided into two categories; reference-based
compression, which seeks to compress the information represented by a set of
sequencing reads by making use of the reference genome of the corresponding
organism and de novo compression, which seeks to compress the sequencing reads
without using any “external” information. While both strategies are important,
de novo compression is the more broadly applicable, as we do not have reference
genomes for most species. Typically, these approach try to exploit the redun-
dancy present within the set of sequencing reads resulting from an experiment
[1–4,7,8,10,11,14,16]. We expect such redundancy to be large since the reads
are drawn from the same underlying sequence (i.e. genome or transcriptome),
which is usually sequenced at considerable coverage.

The idea of boosting the compression of sequencing reads by altering the
order in which they appear in the file was proposed by Hach et al. [10]. Read re-
ordering is also one of the basic strategies taken in the recent Mince compressor
of Patro and Kingsford [14], who also demonstrate that selectively reverse-
complementing certain reads can further boost compression. However, the obser-
vation that re-ordering the underlying information improves the compression of
sequencing data was not completely new. For example, it is conventional wisdom
that re-ordering a BAM file by the position of the alignments therein — which
has the effect of placing similar alignments nearby — can significantly reduce the
size of the resulting file. While compression is a motivating factor for our work,
we focus here only on the related problem of ordering the reads to maximize
different types of objectives in the hope that these results might prove useful
to new techniques that attempt to boost compression, in part, by re-ordering
reads.

Algorithmic string ordering problems have been previously considered under
different distance measures, without the complexity of orientation. In particular,
the Hamming distance Travelling Salesman (TSP) problem has been shown to
be Max SNP-hard [13,18] (and thus hard to approximate within a constant
r > 1) [17].

Our major contributions here include:

– A Taxonomy of Read Ordering/Orientation Problems – We introduce a suite
of read ordering/orientation problems, which differ according to the measure
of similarity between adjacent reads.
In particular, our algorithmic and complexity-theoretic results are summarized
in Table 1 below. Here, we discuss the reversal of strings, but we note that the
operation of interest to us is actually reverse complementation. This distinc-
tion doesn’t affect the theoretical results and our experimental results. The
approximation results hold under reverse complementation since our analysis
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Table 1. A taxonomy of the complexity of different variants of the string ordering
problem.

Distance Reversals Complexity Apx. factor (if any)

1 Prefix No Sort Optimal

2 Prefix Yes NP-Hard 2-apx

2’ Prefix with alphabet size 2 Yes NP-Hard 2-apx

3 Max prefix or suffix No ? 9/7-apx

4 Max prefix or suffix Yes ? 9/7-apx

5 Max prefix and suffix No ? 9/7-apx

6 Max prefix and suffix Yes ? 9/7-apx

7 Max substring No NP-Hard 9/7-apx

8 Max substring Yes NP-Hard 9/7-apx

9 Levenshtein distance No NP-Hard 3/2-apx

10 Levenshtein distance Yes NP-Hard 3-apx

treats the prefix and suffix as independent, non-interacting strings. There is
a bijective mapping between strings and their reverse complement. Since our
analysis applies to all input strings, either interpretation is valid.

– A Linear-time 2-Approximation Algorithm for Maximizing the Sum of Prefix
Matching with Reversals – Our most interesting result is a heuristic for sum
of prefix matching which runs in linear-time (and hence is practical for large
data sets), yet provides a 2-factor approximation to optimality – exploiting
structural properties of tries to show that a greedy matching is in fact an
optimal matching.

– Experimental Results in Read Ordering/Orientation – We demonstrate the
performance of our 2-approximation algorithm for maximum sum of prefix
matching by comparing it to other ordering approaches.

This paper is organized as follows. We define our problem taxonomy in Sect. 2,
demonstrating the hardness of most variants in Sect. 3 and presenting approxi-
mation algorithms in Sect. 4. Experimental results are presented in Sect. 5.

2 Problem Taxonomy

The major problem variants we consider are illustrated in Fig. 1 and described
below:

– Prefix Matching - Let S = {s1, s2, ..., sN} be a finite and ordered set of
strings where each string is the same length l. Denote si[k] as the k-th char-
acter in string si. Then the prefix match for an arbitrary pair of strings si and
sj is defined as the largest integer n ≤ l such that si[m] = sj [m] ∀ 1 ≤ m ≤ n.
If no characters match, then the prefix match of si and sj is defined to be
zero. The reverse of a string si is a new string s′

i such that s′
i[k] = si[l−k +1]
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Distance
Function

Fixed Orientation Reversals Permitted

Max Prefix

Max Prefix
Or Suffix

Max Prefix
And Suffix

Max
Substring

Fig. 1. Taxonomy of read ordering/reversal problems.

∀ 1 ≤ k ≤ l. The prefix matching problem is then as follows: Allowing either
the forward or reverse orientation of each string in S, find a reordering S∗ of
S such that the sum of the prefix matches between sequential pairs of strings
is maximized.

– Suffix Matching - The suffix match for an arbitrary pair of strings si and
sj is defined as the largest integer n ≤ l such that si[m] = sj [m] ∀ l −n+1 ≤
m ≤ l. The suffix matching problem is the same as the prefix matching
problem except we are now maximizing suffixes instead of prefixes.

– Prefix Matching with Alphabet Size 2 - The proof used for the hardness
of Prefix Matching has an implicit assumption. Namely, if all of our strings
are length two, and if our strings have infinite alphabet size, then the Prefix
Matching problem is already hard.

– Max Prefix or Suffix - Similar to the prefix matching and suffix matching
problems defined above, we are interested in maximizing either the prefix or
suffix. More specifically, for any pair of sequential strings in S, we are allowed
to select either the suffix matching or prefix matching, but not both.

– Max Prefix and Suffix - This version of the problem is the same as above
except instead of picking either the suffix or prefix for a consecutive pair of
strings in the ordering, we take the sum of both values.

– Max Substring - Let si and sj be two arbitrary strings in S. Then the
max substring between si and sj is defined as the largest integer n such that
for some 0 ≤ k ≤ l − n, si[m] = sj [m] ∀ k + 1 ≤ m ≤ k + n. In the max
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substring problem, we wish to maximize the sum of the max substring between
sequential pairs of strings (with or without reversals).

– Edit Distance - We define the distance function here between two strings
as the minimum Levenshtein distance. Instead of maximizing like before, we
wish to minimize the total Levenshtein distance.

3 Hardness Results

We begin with the problem of ordering strings so as to maximize the sum of
the length of prefix matches between successive strings. We note that for strings
of fixed orientation, sorting the strings lexicographically suffices for optimality.
Assume an optimal ordering that didn’t agree with the lexicographic ordering.
Then moving any maximal block A of consecutive strings sharing a prefix P
next to a non-adjacent block B with the same prefix (to which A would have
been adjacent in the lexicographic order) adds a prefix match of length |P | while
breaking a shorter one, resulting in a larger total sum of prefix matches.

Allowing sequence reversals as well as reordering makes the problem consid-
erably more difficult:

Theorem 1. Finding the maximum prefix matching with reversals is NP-Hard.

Proof. We reduce the classical minimum Vertex Cover Problem to prefix match-
ing. Given a simply connected graph G(V,E) on N vertices and M edges, label
each of the vertices a unique character. An edge between any two vertices corre-
sponds to a length two string that is the concatenation of their respective labels.
The number of length two strings we construct is exactly equal to M . We may
write each length two string either in its forward or reverse orientations.

Let PM denote the maximum/optimal number of prefix matchings and let
V C denote the minimum number of vertices needed to cover G. Then, the max-
imum number of prefix matchings is achieved by the following equation:

PM + V C = M (1)

Hence, it follows that if we can find PM in polynomial time, then we can also
find the minimum vertex cover(V C) in polynomial time. �

Theorem 2. Maximum prefix matching with reversals remains NP-Hard even
if the alphabet size is 2.

Proof. Our sequence of reductions is as follows: we first reduce a given instance
of the vertex cover problem on N vertices and M edges to an instance of the
prefix matching problem on M strings, each with L = 2 characters. Call this
the L = 2 prefix matching problem. This first reduction is accomplished via the
transformation given in the proof of Theorem1. Next, we reduce the L = 2
prefix matching problem to an instance of the prefix matching problem where
the alphabet size is A = 2 and each string is no longer restricted to being just
length 2. Call this the A = 2 prefix matching problem. We focus on the second
reduction.
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Given a set of M strings of length L = 2, convert each length two string
into its binary representation. Within each length two string’s binary represen-
tation, reverse the binary representation of the second letter. This is to ensure
that the binary representation of the first character will match when strings
are reversed. Proceed to insert M2 zeros between the binary representation of
the first character and the reversal of the binary representation of the second
character.

Now suppose we can calculate the optimal ordering and objective to the
A = 2 prefix matching problem in polynomial time. Let OPT denote the optimal
solution to the prefix matching problem and define V C as the minimum vertex
cover number. We claim the validity of the following inequality:

M − V C + 1 ≥ OPT

log 2M + M2
≥ M − V C (2)

Note that OPT
log 2M+M2 = M −V C+ ε

log2M+M2 , where M −V C is the maximum
number of prefix matchings in the L = 2 problem, and ε is the sum of “residual”
matchings. To clarify further on the meaning of residual matchings, consider the
following two cases. If 2 strings in the L = 2 problem have only one matching
prefix, then in the A = 2 problem, the number of matchings is greater than or
equal to log 2M+M2. This is because for M strings each with two characters, the
total number of digits needed to represent all the characters is log 2M , so if there
is one character match, then in A = 2 problem there are at least log(2M) + M2

matches. On the other hand, if 2 strings in the L = 2 problem have no matching
prefixes, then in the A = 2 problem, the number of matching prefixes is greater
than or equal to 0 but less than or equal to log(2M) − 1.

Define OPT =
∑M−1

i=1 mi, where mi is the number of matchings from the ith
string to the(i + 1)th string in the A = 2 problem. For any index k which falls
into case one, we can define rk as rk = mk − (log2M + M2). For indices l which
fall into case two, we define rl = ml. We can see then that the exact definition
of ε can be written as ε =

∑M−1
i=1 ri. Since ri ≤ log(2M) − 1 for all i, it follows

that ε
log2M+M2 ≤ 1, and the inequality follows. Immediately, we can see if OPT

is found in polynomial time, then we can solve for V C in polynomial time. �

Theorem 3. The maximum substring problem without reversals is NP-Hard.

Proof. We reduce Hamiltonian cycle to max substring matching without rever-
sals. Let G(V,E) be a simply connected graph. Define the vertex set as V =
{v1, v2, v3, ...vN} and label each edge in E a unique character. We construct N
strings using the following procedure. For each vertex i, list the characters which
have vi as one of its endpoints. Now repeat for all vertices i. Since no two pairs
of strings constructed in this manner has more than one letter in common, it
follows that finding a solution to max substring matching will also give us a valid
Hamilton cycle. �

The next corollary follows immediately from Theorem3. If we allow reversals,
the optimal solution obtained remains the same. Since every pair of strings has
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one unique character in common, reversing strings gives no incremental benefit
when our distance function is max substring.

Corollary 1. Max substring matching with reversals is NP-Hard.

4 Approximation Algorithms

For each of the value functions discussed above, we give a 2-approximation
algorithm that takes into account reversals; the method is independent of
the particular value function. For a given set, S = {s1, s2, . . . , sN}, of N
strings, each of length m, we consider the complete graph, KN whose nodes
are the strings, and the weight, wi,j , of edge (si, sj) is given by wi,j =
max{p(si, sj), p(si, sj), p(si, sj), p(si, sj)}, where si is the reversal of string si,
and p(si, sj) is the value function (e.g., length of the common prefix) associated
with strings si and sj . A 2-approximation is obtained by finding a maximum
weight matching in this weighted complete graph.

Lemma 1. A maximum weight matching in KN yields a 2-approximation for
finding an optimal value permutation.

Proof. Consider an optimal ordering of the strings; without loss of generality,
it is (s1, s2, s3, . . . , sN ). Assume N is odd; the case for N is even is handled
similarly. The value of this optimal ordering is

N−1∑

i

wi,i+1 = (w1,2 + w3,4 + · · · + wN−2,N−1) + (w2,3 + w4,5 + · · · + wN−1,N ).

We know that a maximum-weight matching has value at least (w1,2 + w3,4 +
· · · + wN−2,N−1); also, a maximum-weight matching has value at least (w2,3 +
w4,5+ · · ·+wN−1,N ). Thus, the value of an optimal permutation is at most twice
the weight of a maximum-weight matching, implying that any permutation that
respects the ordering implied by the edges of a maximum-weight matching is
within a factor 2 of being optimal. �

Actually constructing the complete graph KN explicitly, and computing an
optimal matching thereof, would be impractical for large datasets. Thus, we
analyze the structure of this problem further to obtain a fast and practical
approximation algorithm for the prefix matching variant of our problem.

Our algorithm first builds a trie over all N input strings, si and their reversal
(or reverse-complement), si. This construction is a linear-time operation. We
note, here, that the fact that what is, essentially, a greedy algorithm (below)
yields a 2-approximation for the problem of finding a maximum prefix matching
with reversals has some interesting (perhaps deep) analogies to the recent work
of Cazaux and Rivals [5], who prove the utility of greedy algorithms in achieving
good approximation ratios for problems in overlap graphs of finite words.

Using this trie, we apply a greedy algorithm, running in time O(N), to com-
pute a matching. Specifically, we scan through our leaf nodes and pick pairs
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of strings that share the largest depth parent node in monotonically decreasing
order. As we search through all 2N leaves, we mark and forbid a leaf’s reverse
if we have already picked a leaf’s forward orientation.

If the value function is prefix matching, then the greedy algorithm above
actually gives us an optimal solution to pairwise matching. In other words, the
optimal value obtained by finding a maximum-weight matching on Kn will be
equivalent to the objective value obtained by applying the greedy algorithm on
the trie. This is summarized in the following lemma.

Lemma 2. Suppose the value function is common prefix length. Then, the greedy
algorithm on the trie of the N strings gives an optimal matching.

Proof. It is sufficient to show if strings a and b are two strings of S with the
largest prefix match, then there exists an optimal matching of S in which a and
b are adjacent. If this always holds, then we can apply this rule iteratively to
show there exists an optimal matching that is given by our greedy algorithm.

The proof is by an exchange argument. Suppose, to the contrary, that an
optimal matching matches string a to a′ �= b, and string b to b′ �= a. There are
three cases; refer to Fig. 2. Let d(U) denote the depth in the trie of node U ; i.e.,
d(U) is the number of edges in the path from the root, R, to U . In the figure, we
let C be the node of the trie that is the common ancestor of strings a and b, D
be the common ancestor of strings a and a′, and E be the common ancestor of
strings b and b′; by assumption, C has the largest depth, d(C), of any non-leaf
node of the trie. Thus, node E must be either on the path from the root R to
D (case (1)), or on the path from D to the leaf associated with a′ (case (2)), or
on the path from D to C (case (3)).

In case (1), if we replace the matched edges (a, a′) and (b, b′) with the edges
(a, b) and (a′, b′), the objective function goes up by d(C)+d(E)−d(D)−d(E) ≥ 1.
In case (2), if we replace the matched edges (a, a′) and (b, b′) with the edges (a, b)
and (a′, b′), the objective function goes up by d(C)+d(E)−d(D)−d(D) ≥ 2. In
case (3), if we replace the matched edges (a, a′) and (b, b′) with the edges (a, b)
and (a′, b′), the objective function goes up by d(C) + d(D) − d(D) − d(E) ≥ 1.

Thus, in all cases, the swap improves the matching, proving the claim.

4.1 Approximations Based on TSP

As long as the benefit, p(si, sj), of edge (si, sj) does not affect the benefit of any
other edge (in particular, of edge (sj , sk)), the problem of ordering the strings S
to maximize total benefit is exactly the Maximum-TSP problem — which seeks
to find a cycle in a graph that visits all vertices and maximizes the sum of the
weights of the traversed edges — for which there are known 9/7-approximation
algorithms [12]. The corresponding entries in the table include “Max Prefix or
Suffix” (without reversals), “Max Prefix and Suffix” (without reversals), and
“Max Substring” (without reversals). Other cases also can be addressed with
Maximum-TSP.

One can alternatively model the optimal ordering problem as a minimization
problem, in which the goal is to minimize the total cost of the permutation. Here,



Optimizing Read Reversals for Sequence Compression 197

(a) Case 1 (b) Case 2 (c) Case 3

Fig. 2. The three cases to consider for the greedy matching algorithm.

p(si, sj) now reflects a cost (e.g., edit distance) between si and sj . Provided the
cost function obeys the triangle inequality, then, we obtain a 3/2-approximation,
using the Christofides approximation [6] for metric TSP.

In the case of minimization allowing reversals, we obtain a 3-approximation,
since this is now a one-of-a-set TSP, with sets of size 2 (each set consists of
a string, together with its reversal), so Slavik’s approximation gives a factor
(3/2) · 2 = 3 [15].

4.2 Ordering with Reversals for Palindromic Value Functions

In this section we describe a simple Maximum-TSP based 9
7 -approximation algo-

rithm for string ordering with reversals when the value function satisfies a palin-
dromic property as defined below.

Definition 1 [Palindromic Value Function (PVF)]. A value function p(·, ·)
is palindromic w.r.t. a given set of strings S, provided p(si, sj) = p(si, sj) holds
for all si, sj ∈ S, where si (resp. sj) is the reversal of si (resp. sj).

Examples of PVF include max{prefix-length(si, sj), suffix-length(si, sj)},
prefix-length(si, sj) + suffix-length(si, sj), max-substring-length(si, sj),
max-subsequence-length(si, sj), complement-of -Hamming-distance(si, sj),
etc.

Given a set S = {s1, s2, . . . , sN} of strings as input we start by creating
a weighted complete graph KN with the strings in S as nodes, and setting
the weight of the undirected edge between every pair of distinct vertices si

and sj to wij = max{p(si, sj), p(si, sj)}. We then find a 9
7 -approximation of a

symmetric Maximum-TSP path in KN maximized over choices of starting and
ending vertices. W.l.o.g. let P = 〈s1, s2, . . . , sN 〉 be the resulting path. Observe
that each string in P is still in its original input orientation. But if an edge
weight wk,k+1 on this path is set to p(sk, sk+1) then those two strings si and
sk+1 must appear in one of the following two orientations in our output to
achieve value p(sk, sk+1): (sk, sk+1), (sk, sk+1). On the other hand, if wk,k+1 =
p(sk, sk+1) then the strings must be in one of these two orientations: (sk, sk+1),
(sk, sk+1). So we may need to reverse some of the strings in P so the orientations



198 Z. Sichen et al.

of every two consecutive strings on this path are consistent with the weight of
the edge between them. We do this reorientation by keeping s1 fixed in its input
orientation and then starting from k = 1 for each k < N , we reorient sk+1, if
needed, so that the orientations of sk and sk+1 are consistent with wk,k+1. This
reorientation step ensures that the total value of our string ordering matches the
total weight of path P .

5 Experimental Results

Here, we explore a practical implementation of our linear-time 2-approximation
algorithm for the prefix matching problem with reversals. We show that read
ordering alone can have significant results on compression and allowing reversals
further boosts this compression. We experimentally measure the running-time
of our algorithm on a varied selection of different data sets, and we also examine
how well our algorithm is able to optimize the average prefix length, defined as
1

n−1

∑n−1
i=1 f (si, si+1), where f (si, si+1) is the length of the prefix shared by the

reads appearing at positions i and i+1 in the computed order and with the pre-
scribed orientation. We compare the average prefix length obtained by the order
and orientation computed using our 2-approximation algorithm to the average
prefix length of the order in the original input file, the order obtained by sorting
the reads (without allowing reversals), and the order obtained by running the
reads through SCALCE [10] (by compressing then decompressing them). So as
to not confuse the SCALCE-induced order with the actual compression results
of the full SCALCE algorithm, we refer to it below as “SO”. We also consider
the compressed file sizes for these different read orderings and orientations and
the time required to compute them.

We note that we consider only the compression of read sequences, leaving the
conceptually and practically very different problems of read name and quality
score compression to be addressed by other methods. Most existing approaches
for read name and quality score compression do not assume an underlying order-
ing for the reads (e.g. the Quartz software of Yu et al. [19] for quality score
compression) and, hence, can be used along with reordering approaches, such as
ours, for read sequence compression.

Table 2 shows the average prefix length obtained under different read order-
ing algorithms mentioned above. The first column gives an index to each data
set and the second lists the data set’s accession IDs. The third column shows
read lengths of each dataset. The last three columns contain the average pre-
fix length obtained by the ordering (and potentially reversals) imposed by each
algorithm. The datasets chosen reflect a range of DNA sequences from different
species. Some of the data sets presented below are from paired-end experiments.
To avoid the complexities involved in handling such data when computing a sin-
gle ordering, we choose only the first sequence out of each pair, and thus use only
half of all reads. Another approach to this problem is to merge the paired-end
reads as is done in [14], wherein the authors demonstrate that this approach
seems to work well in practice. This problem could also be solved by determin-
ing a good joint-ordering, or efficiently encoding the permutation between two
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separate orderings — but we are unaware of tools which take such approaches.
All datasets are obtained from NCBI’s database.

As expected, the 2-approximation, allowing for reversals, obtains an often
substantially larger average prefix length than either sorting or SO; a result that
holds across all data sets. It must be noted that SCALCE does not attempt to
optimize for prefix matches, and so the SO results are not directly comparable to
our algorithm under this metric. On the other hand, sorting without taking into
account reverse complements actually provides an optimal solution to the prefix
matching without reversals problem, though it has no constant factor guarantee
when reversals are allowed. Thus, the difference between the 5th and 6th columns
is illustrative of the benefit one can expect to achieve in the average prefix length
objective by allowing reverse complementation.

Table 3 gives a summary of how different read orderings and orientations
affect downstream compression. Column 3 gives the original sequence file size in
megabytes, while columns 4–7 list the post-compression file size among the origi-
nal ordering and the orderings produced by the three algorithms we consider. To
obtain these results we compress the re-ordered files from the 2-approximation,
sorting and the SCALCE-induced ordering with gzip [9]. We consider here only
the sizes of the read sequences, and discard the read names and quality values.
The resulting file sizes from this procedure are given in column 7.

Table 3 demonstrates that grouping sequences by common prefixes improves —
sometimes substantially — the compression performance of gzip. In fact, in all
datasets but 5, all of the re-orderings improve the compressed file size, with the
ordering and orientation produced by the 2-approximation usually meeting or
surpassing that produced by simple sorting. For datasets 11, 14, and 15, sorting
achieves a better compression result than our 2-apx. For these datasets, the
2-approximation algorithm reverses a small proportion of the total number of
strings. If the number of reversals done on a dataset is small, then sorting may
obtain a better result. For these 3 datasets, the proportion of strings reversed is
22.8%, 8.5%, and 10.6% respectively.

As might be expected, the SCALCE ordering, being optimized for boosting
gzip compression, often produces the smallest file sizes. Nonetheless, it is sur-
prising how much of the gap between the size of the original compressed file
and the impressive compression rate of the SCALCE ordering can be accounted
for simply by re-ordering the reads, since the more local ordering optimization
computed by SCALE — essentially bucketing reads sharing similar substrings —
might seem a more natural fit for boosting dictionary-based compression tools
like gzip. However, the simple prefix-matching score we attempt to optimize cap-
tures a substantial percentage of the file compression achieved by the SCALCE
ordering, even achieving better compression on data sets 2, 4, 11, and 13. This
suggests that it may be an interesting objective to study further.

Finally, we observe that our 2-approximation algorithm demonstrates com-
parable, practical runtime compared to the other re-ordering methods. We com-
pared the time taken to run each of the re-ordering algorithms on the data
followed by the time required to compress the results with gzip. On average, the
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Table 2. Average prefix-length under different ordering and reversal criteria.

Dataset Read length Original 2-apx Sorting SO

1 Typhi 15098S solexa 51 0.710 13.753 12.479 1.694

2 Typhi 404ty solexa 26 0.359 14.962 13.575 5.201

3 ERR009815 146 0.407 17.962 15.563 2.764

4 DRR000003 36 0.754 14.263 13.456 2.466

5 SRR390728 72 2.723 20.095 17.725 4.252

6 DRR000002 72 0.867 22.614 19.127 2.955

7 ERR233147 69 0.400 27.333 26.327 4.976

8 DRR000001 72 0.865 23.079 19.882 2.972

9 ERR019065 152 0.638 34.953 25.909 9.265

10 ERR406998 152 0.493 64.317 60.576 19.877

11 ERR406999 152 1.105 123.149 121.004 101.914

12 SRR034939 200 0.372 19.244 15.866 0.703

13 ERR018601 152 0.369 30.378 25.595 0.369

14 SRR062421 200 92.987 157.569 156.963 92.987

15 SRR346694 200 91.739 156.168 153.964 156.168

Table 3. The compressed file sizes under various orderings and orientations of the
reads; all units are reported in megabytes. All read files of the sequences for each dataset
are in the FASTQ format. File sizes represent only read sequences, with quality and
ID discarded. We extract the sequence reads after running SCALCE on the original
dataset and apply gzip to this ordering. These compression results are given under the
SO column.

Dataset Sequence size Gzip only 2-apx Sorting SO

1 Typhi 15098S solexa 85 26 22 22 18

2 Typhi 404ty solexa 127 39 24 26 25

3 ERR009815 226 67 60 61 54

4 DRR000003 239 72 56 56 59

5 SRR390728 524 98 125 128 114

6 DRR000002 607 182 142 147 109

7 ERR233147 627 188 132 134 106

8 DRR000001 740 222 171 177 133

9 ERR019065 1004 259 217 230 125

10 ERR406998 1759 508 266 270 188

11 ERR406999 2356 609 114 109 123

12 SRR034939 3638 1066 971 982 921

13 ERR018601 4532 1248 1007 1028 985

14 SRR062421 4966 504 310 308 276

15 SRR346694 5422 536 333 331 333
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linear time 2-apx algorithm takes ≈ 92% of the time required to simply sort the
file. We note that we have focused here on providing a correct implementation of
our algorithm, and there is much room for optimizing the specific implementa-
tion, which would surely lead to marked performances in runtime improvement.
Obtaining the SCALCE ordering takes longer than either of the other methods,
but it is also doing significantly more work (e.g. compressing quality values), so
we do not discuss its runtime here. All timing results were computed on a shared
server with 4 × 6-core 2.6 GHz Xeon CPUs and 256 GB of RAM.
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Abstract. Sequence comparison is a fundamental step in many impor-
tant tasks in bioinformatics. Traditional algorithms for measuring approx-
imation in sequence comparison are based on the notions of distance or
similarity, and are generally computed through sequence alignment tech-
niques. As circular genome structure is a common phenomenon in nature,
a caveat of specialized alignment techniques for circular sequence com-
parison is that they are computationally expensive, requiring from super-
quadratic to cubic time in the length of the sequences. In this paper, we
introduce a new distance measure based on q-grams, and show how it can
be computed efficiently for circular sequence comparison. Experimental
results, using real and synthetic data, demonstrate orders-of-magnitude
superiority of our approach in terms of efficiency, while maintaining an
accuracy very competitive to the state of the art.

1 Introduction

Circular molecular structures are present, in abundance, in all domains of life:
bacteria, archaea, and eukaryotes; and in viruses. They can be composed of
both amino and nucleic acids. The following is a superficial description of such
occurrences. Exhaustive reviews can be found in [10] (proteins) and [19] (DNA).

Circular genomes and plasmids are found in bacteria and archaea. Whole-
genome comparison is a very useful tool in identifying bacterial strains, as well
as inferring phylogenies. The extended benefit of aligning plasmids is the ability
to identify important genes, such as antibiotic resistance genes, thereby enabling
their study and enhancement by genetic engineering techniques [12].

The most familiar examples of such structures in eukaryotes are mitochondrial
(MtDNA) and plastid DNA. However, there exist other structures, called extra-
chromosomal circular DNA, which are described as one of the characteristics of
genomic plasticity in eukaryotes [9]. MtDNA is generally conserved from parent
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to offspring, and so it can be used as an indicator of evolutionary relationships
among species. The absence of recombination in these sequences allows them to
be used as simple tests of phylogenetic evolution, and their high mutation rate is
a powerful discriminative feature [17,33].

It is common knowledge that many viral genomes are circular. Multiple
sequence alignment of viral genomes can be useful in the elucidation of novel
sites of interest [4], as well as the inference of evolutionary relationships [3].
Viroids are plant pathogens that comprise very small single-stranded circular
RNA. Their multiple sequence alignment could prove useful in the analysis of
their secondary structures and pathogenicity [24].

Ribosomally synthesized circular proteins occur in both prokaryotes and
eukaryotes [10]. An interesting phenomenon known to occur naturally in genes
encoding linear protein structures is circular permutation [34]. This can be exem-
plified by swaposins: highly-similar proteins resulting from circularly permuted
linear peptide sequences [29]. The ability to align linear sequences from circular
proteins can significantly speed-up and enhance their analyses, and could also
lead to the discovery of novel pairs of circularly permuted proteins.

Conventional tools to align circular sequences could yield an incorrectly high
genetic distance between closely-related species. Indeed, when sequencing mole-
cules, the position where a circular sequence starts can be totally arbitrary. Due
to this arbitrariness, a suitable rotation of one sequence would give much bet-
ter results for a pairwise alignment. A practical example of the benefit this can
bring to sequence analysis is the following. Linearized human (NC 001807) and
chimpanzee (NC 001643) MtDNA sequences do not start in the same region.
Their pairwise sequence alignment using EMBOSS Needle [31] gives a similarity
of 85.1 % and consists of 1,195 gaps. However, taking different rotations of these
sequences into account yields a much more significant alignment with a simi-
larity of 91 % and only 77 gaps. This example motivates the design of efficient
algorithms that are devoted to the specific comparison of circular sequences, as
they can be relevant in the analysis of organisms containing these structures.

Our Problem. We consider the pairwise circular sequence comparison problem.
Under the edit distance model, it consists in finding an optimal linear align-
ment of two circular strings. This problem for two strings x and y of length m
and n ≥ m, respectively, can be solved under the edit distance model in time
O(nm log m) [21]. Several other super-quadratic [23] and approximate quadratic-
time [5] algorithms exist. Trivially, for molecular biology applications, the same
problem can be solved in time O(nm2) with scoring matrices and affine gap
penalty scores. A direct application of pairwise circular sequence comparison
is for multiple circular sequence alignment [1,14,24]. The latter has also been
considered in [20] under the Hamming distance model.

To the best of our knowledge, there is no fast (that is, with sub-quadratic
time complexity) and exact (or at least very accurate) algorithm for circular
sequence comparison under some realistic model (that is, allowing indels). Taking
into account edit distance rather than Hamming distance is computationally
challenging as the search space for seeking similarity is wider. Moreover, filters
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that work for Hamming distance do not work in general for edit distance [28]
as well. An exception to this are the q-gram filtering techniques [32] that have
successfully been used for string matching under the edit distance model (e.g.
[7,26,30]), as well as for multiple local alignments both under the Hamming [27]
and edit [26] distance model.

Our Contribution. We present new efficient q-gram-based methods for pairwise
circular sequence comparison. Specifically, our contribution is threefold.

1. We introduce the β-blockwise q-gram distance between two strings x and y,
that is, a more powerful generalization of the q-gram distance introduced as
a string distance measure in [32]. Intuitively, and similarly to [7,26,30], this
generalization comprises partitioning x and y in β blocks each, as evenly as
possible, computing the q-gram distance between the corresponding block
pairs, and then summing up the distances computed blockwise.

2. We present an algorithm based on the suffix array [22] that finds the rotation
of x such that the β-blockwise q-gram distance between the rotated x and
y is minimal, in time and space O(βm + n), where m = |x| and n = |y|,
thereby solving exactly the circular sequence comparison problem under the
β-blockwise q-gram distance measure. We also present a simple heuristic algo-
rithm to solve an approximate version of the problem.

3. We present an experimental study, using real and synthetic data, which
demonstrates orders-of-magnitude superiority of our approach, in terms of
efficiency, while maintaining an accuracy very competitive to the optimal
obtained after considering all rotations of x against y using EMBOSS Needle.

The paper is organized as follows. Section 2 gives some preliminary definitions,
notation, and properties. Section 3 describes two algorithms, one is a heuristic
approach and the other is an exact algorithm for circular sequence comparison.
Section 4 shows the experimental results of performance and accuracy of our
algorithms. Section 5 gives some concluding remarks and future proposals.

2 Definitions and Properties

We begin with a few definitions, following [11]. We think of a string x of length m
as an array x[0 . . m−1], where every x[i], 0 ≤ i < m, is a letter drawn from some
fixed alphabet Σ of size |Σ| = O(1). By a q-gram we refer to any string x ∈ Σq.
The empty string of length 0 is denoted by ε. A string x is a factor of a string
y if there exist two strings u and v, such that y = uxv. Let x be a non-empty
string of length m and y be a string. We say that there is an occurrence of x
in y, or, simply, that x occurs in y, when x is a factor of y. The Parikh vector
associated with a string w ∈ Σ∗ is denoted by P(w) and represents a vector of
size |Σ|, where each component denotes the number of occurrences in w of the
corresponding letter from Σ.

Consider the strings x, y, u, and v, such that y = uxv. If u = ε, then x is a
prefix of y. If v = ε, then x is a suffix of y. We denote by SA the suffix array
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of y of length n, that is, an integer array of size n storing the starting positions
of all (lexicographically) sorted suffixes of y, i.e. for all 1 ≤ r < n, we have
y[SA[r − 1] . . n − 1] < y[SA[r] . . n − 1] [22]. Let lcp(r, s) denote the length of
the longest common prefix between y[SA[r] . . n − 1] and y[SA[s] . . n − 1], for all
positions r, s on y, and 0 otherwise. We denote by LCP the longest common prefix
array of y defined by LCP[r] = lcp(r − 1, r), for all 1 ≤ r < n, and LCP[0] = 0.
The inverse iSA of the array SA is defined by iSA[SA[r]] = r, for all 0 ≤ r < n.
SA, iSA, and LCP of y can be computed in time and space O(n) [15].

A circular string of length m can be viewed as a traditional linear string which
has the left- and right-most letters wrapped around and glued together in some
way. Under this notion, the same circular string can be seen as m different linear
strings, which would all be considered equivalent. Given a string x of length m,
we denote by xi = x[i . . n − 1]x[0 . . i − 1], 0 < i < m, the ith rotation of x and
x0 = x. Consider, for instance, the string x = x0 = abababbc; this string has
the following rotations: x1 = bababbca, x2 = ababbcab, and so on.

We give some further definitions following [32]. The q-gram profile of a string
x of length m is the vector Gq(x), where q > 0 and Gq(x)[v] denotes the total
number of occurrences of v ∈ Σq in x. The q-gram distance between two strings
x and y is defined as

Dq(x, y) =
∑

v∈Σq

|Gq(x)[v] − Gq(y)[v]| . (1)

Note that Dq is a pseudo-metric as Dq(x, y) can be 0 even if x �= y. Dq has the
following properties [32] for all x, y, z ∈ Σ∗ of length at least q.

1. Positivity: Dq(x, y) ≥ 0
2. Symmetry: Dq(x, y) = Dq(y, x)
3. Triangular inequality: Dq(x, y) ≤ Dq(x, z) + Dq(z, y)
4. |(|x| − |y|)| ≤ Dq(x, y) ≤ |x| + |y| − 2q − 2
5. Dq(x1x2, y1y2) ≤ Dq(x1, y1) + Dq(x2, y2) + 2(q − 1)
6. Dq(h(x), h(y)) ≤ Dq(x, y), for a non-length-increasing morphism h on Σ∗.

For a given integer parameter β ≥ 1, we define a generalization of the q-gram
distance in (1) by partitioning x and y in β blocks as evenly as possible, and using
the q-gram distance within each pair of blocks, one from x and one from y. The
rationale is to enforce locality in the resulting distance. For the sake of presentation
in the rest of the paper, we assume that the lengths |x| = m and |y| = n are both
multiples of β, so that x and y are conceptually partitioned into β blocks, each of
size m/β for x and n/β for y.

Definition 1. Given strings x of length m and y of length n ≥ m and integers
β ≥ 1 and q > 0, the β-blockwise q-gram distance Dβ,q(x, y) is defined as

Dβ,q(x, y) =
β−1∑

j=0

Dq

(
x

[
jm

β
. .

(j + 1)m
β

− 1
]
, y

[
jn

β
. .

(j + 1)n
β

− 1
])

. (2)
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In this paper, we consider the following problem, where we search for the ith
rotation of x that minimizes its blockwise distance from y as defined in (2). Ties
are broken arbitrarily.
Circular Sequence Comparison (CSC)
Input: strings x and y of lengths m and n ≥ m, respectively, and integers
β ≥ 1 and q < m
Output: i such that Dβ,q(xi, y) is minimal

3 Algorithms

We use the following result to first give a näıve solution to the CSC problem.

Lemma 2. ([32]). If we have space O(|Σ|q) available, then the q-gram distance
Dq(x, y) can be computed in time O(m + n) and extra space O(m + n), where
m = |x| and n = |y|.
We then apply Lemma 2 to each pair of blocks of x and y separately.

Lemma 3. If we have space O(|Σ|q) available, then the β-blockwise q-gram dis-
tance Dβ,q(x, y) can be computed in time O(m + n) and extra space O(m+n

β ),
where m = |x| and n = |y|.
The näıve algorithm, denoted by nCSC, computes for x′ = xx the values

δi = Dβ,q(x′[i . . i + m − 1], y),

for all 0 ≤ i < m; we report position i such that δi is minimal. This requires the
application of Lemma 3, m times. Therefore, we obtain the following.

Lemma 4. If we have space O(|Σ|q) available, then algorithm nCSC solves the
CSC problem in time O(m(m + n)) and extra space O(m+n

β ).

3.1 Algorithm hCSC: a Heuristic Algorithm

Here we give a simple heuristic algorithm, denoted by hCSC, to solve the CSC
problem faster than nCSC, and return an approximation of the best rotation.

Step 1: We split x′ = xx in 2β non-overlapping string blocks of length m/β.
We obtain strings x0, x1, . . . , x2β−1, such that xi = x′[ im

β . . (i+1)m
β − 1], for all

0 ≤ i < 2β. We split y in β non-overlapping string blocks of length n/β. We
obtain strings y0, y1, . . . , yβ−1, such that yi = y[ in

β . . (i+1)n
β −1], for all 0 ≤ i < β.

Step 2: For a given sequence xj , . . . , xj+β−1 of strings and y, we compute the
β-blockwise q-gram distance as follows

δj = Dβ,q(x′[
jm

β
. .

jm

β
+ m − 1], y) =

β−1∑

i=0

Dq(xj+i, yi).
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We compute δj , for all 0 ≤ j ≤ β. We choose jbest = j such that δj is minimal,
for all 0 ≤ j ≤ β. In other words, we have found a window of length m starting
at position jbest, such that (jbest + 1)mod(m/β) = 0, consisting of β blocks of
length m/β each, that minimizes its β-blockwise q-gram distance from y.

Step 3: To perform a refinement on the position of the window, we consider
all starting positions included in the two blocks starting at positions jbest and
jbest−m/β. This includes 2m/β−1 starting positions in total—we do not need to
consider position jbest − m/β as this was already considered by another window
in Step 2. Similarly to Step 2, we obtain the β-blockwise q-gram distance δi

between the window starting at position i and y, for all jbest − m/β < i ≤
jbest + m/β − 1. We report position ibest = i such that δi is minimal, for all
jbest − m/β < i ≤ jbest + m/β − 1.

Analysis. Step 1 can be done trivially in time O(m + n). If we have space O(|Σ|q)
available, then, by Lemma 2, Dq(xj+i, yi) can be computed in time O(m+n

β ). By
Lemma 3, δj can be computed in time O(β(m+n

β )) = O(m+n). Hence, Step 2 can
be done in time O(β(m+n)). In Step 3, the blockwise q-gram distance δi between a
single window and y can be computed in time O(β(m+n

β )) = O(m+n). There exist

2m/β − 1 such windows. Hence, Step 3 can be done in time O(m(m+n)
β ). Overall,

the algorithm requires time O(β(m + n) + m(m+n)
β ) and space O(|Σ|q + m + n).

For practical purposes, setting β = O(
√

m) and q = O(log|Σ| m) gives an
algorithm with time complexity O(

√
m(m+n)) and space complexity O(m+n).

3.2 Algorithm saCSC: an Exact Suffix-Array-based Algorithm

The above heuristics hCSC does not guarantee to find the exact value i, for which
δi = Dβ,q(xi, y) is minimal. In particular, when we identify in Step 2 jbest, that
is, the j for which δj is minimal, we take into account only the values of j such
that (j + 1)mod(m/β) = 0. Thus, Step 3 cannot guarantee that ibest, the local
minimum obtained by shifting the window m/β positions to the right and left
of jbest, is minimal for all 0 ≤ i < m. In this section, we give a fast and exact
algorithm, denoted by saCSC, to find i such that δi = Dβ,q(xi, y) is minimal,
based on the suffix array (see Sect. 2).

We partially follow the idea from [13]. This work investigates the string
matching problem in the setting of k-abelian equivalences: two strings are con-
sidered k-abelian equivalent for some positive integer k, if they have the same
length and share the same factors of length at most k, including multiplicities.
Note that if k is greater than or equal to the string’s length, then the strings must
be equal. A version of this result, called extended k-abelian equivalence, focuses
only on the factors of length k. By setting k = q, it is quite straightforward to
notice the equivalence with q-grams. Therefore, in order to avoid confusion we
will refer to the former notion from now on as q-abelian equivalence.

In [13], the authors propose a linear-time algorithm to solve the string match-
ing problem when looking at q-abelian equivalent strings: given a string x of
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length m, a string y of length n ≥ m, and a positive integer q < m, all factors of
y that are q-abelian equivalent to x can be found in time and space O(m + n).
The idea of the algorithm in [13] consists in constructing the suffix array of the
string xy, and ranking sets of identical q-length prefixes of suffixes in the suffix
array in the order of their appearance. Then it constructs new strings based
on this ranking, and solves the problem as in the jumbled matching case [6],
i.e. identifying all factors of y that have the same Parikh vector as x.

Basic Algorithm for β = 1. We construct the suffix array of the string xxy and
assign a rank to the prefix with length q of each suffix with length at least q,
based on its order in the suffix array. That is, the first i0 suffixes in the suffix
array, all sharing the same prefix of length at least q, will get rank 0; the next i1
suffixes sharing the same prefix of length at least q, different from the previous
one, will get rank 1, and so on. Next, based on this ranking, we construct two
new strings x′ of length 2m− q +1 and y′ of length n− q +1, such that x′[i] = j,
if j is the rank of the q-length prefix of the (i + 1)th suffix of xx in the suffix
array of xxy (the same goes for y). It is not difficult to see that the ranks go up
at most to value m + n − q + 1. However, we can reduce this value to m + 2 by
introducing two new ranks ax and ay: we can conceptually replace by ax every
letter of x′ that does not occur in y′, and by ay every letter of y′ that does not
occur in x′. Hence we can consider that the new strings x′ and y′ are defined
over an integer alphabet of size at most min(n − q + 1,m) + 2 ≤ m + 2.

Example 5. Let x = GAGTCTA, y = TCTAGCG, and q = 3. We denote xxy by z.

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

z[i] G A G T C T A G A G T C T A T C T A G C G

SA[i] 6 17 1 8 13 19 4 15 11 20 0 7 18 2 9 5 16 12 3 14 10
LCP[i] 0 2 2 6 1 0 1 4 3 0 1 7 1 1 5 0 3 2 1 5 4

x′[i] ax ax ax 2 ax 1 ax ax ax ax ax 0
y′[i] 2 0 1 ay ay

x′[3] = y′[0] = 2 denotes that x[3 . . 5] = y[0 . . 2] = TCT. x′[0] = ax denotes that
x[0 . . 2] = GAG does not occur in y. ��

We observe that when identifying the q-gram distance between two blocks, we
can apply the idea in [13], with the only difference that we should also maintain
a Parikh vector that stores the differences between the number of occurrences
of q-grams in the current block of xx and y (in fact the new letters given by
the ranks). Moreover, at the time of the construction of y′, we also construct a
Parikh vector P(y′), storing, for each letter of y′, the number of its occurrences in
y′. Notice that |P(y′)| ≤ m+2. Later on, when computing the q-gram distances,
we can construct another vector diff to store the letter differences between P(y′)
and the Parikh vector covering the m − q + 1 letters of x′ associated with a
window of length m on the string xx. This gives us the current Parikh difference
and, in fact, represents the q-gram distance between the two analyzed blocks,
where |diff| ≤ m + 2. Apart from these, we only need another vector δ of size m,
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which stores at each position i the actual q-gram distance δi between y and the
window starting at position i in xx, which is the ith rotation xi of x.

We use a sliding window of length m to maintain the above information.
When the window is shifted one position to the right, we have to add to the
difference-vector diff the previous first element of the window, and deduct from
it the current last element of it. The distance δi between y′ and the factor of
x′ starting at position i is thus updated using, in addition, the value of the q-
gram distance δi−1 as follows. If, after adding the previous first element to the
vector, we have a non-positive value at this position, we update the distance
by decreasing the previous value by 1; otherwise, we increase it by 1. If, after
deducting the current last element to the vector, we have a non-negative value
at this position, we update the distance by decreasing the previous value by 1;
otherwise, we increase it by 1. The distance will never be less than the number
of occurrences of ay. Furthermore, if the previous first element was ax, the new
distance decreases by 1, and for every newly added ax, it increases by 1. As these
operations require constant time, after going once through x′ with y′, we obtain
the list of distances δi from y to each rotation xi in linear time.

We are now able to give a more formal description of the steps to solve the
CSC problem for β = 1, which follow a dynamic programming scheme.

Step 1: Construct the SA, iSA, and LCP of xxy. Rank the q-length prefixes
of suffixes using LCP-array queries. Construct x′ and y′, as well as P(y′), the
Parikh vector storing, for each letter of y′, the number of its occurrences in y′;
make proper use of letters ax and ay, the ranks that do not occur in either y′ or
x′, respectively. Further, create diff = P(y′) and δ0 =

∑|P(y′)|−1
i=0 P(y′)[i].

Step 2: Read the first m−q+1 letters of x′, which constitute our sliding window
of length m on the string xx. When reading letter x′[i], update diff by decreasing
by 1 the value of the newly read letter, and update δ0, by either increasing the
current value of the distance when there were read too many of the current
letters, or decreasing it, when more of these letters still occur in y′

diff[x′[i]] = diff[x′[i]] − 1 and δ0 =
{

δ0 − 1, if diff[x′[i]] ≥ 0
δ0 + 1, if diff[x′[i]] < 0.

Step 3: Let i be the current position in x′ and repeat this step, one position at
a time. Shift the window to the right, update the information for diff

diff[x′[i]] = diff[x′[i]] + 1 and diff[x′[i + m]] = diff[x′[i + m]] − 1,

and calculate δi+1, based on this information, sequentially applying the two
following rules

δi+1 =
{

δi − 1, if diff[x′[i]] ≤ 0
δi + 1, if diff[x′[i]] > 0

δi+1 =
{

δi+1 − 1, if diff[x′[i + m]] ≥ 0
δi+1 + 1, if diff[x′[i + m]] < 0.
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Correctness. Steps 1 and 2 are trivially correct as at the end of them we have
that diff is the difference between P(y′) and the vector corresponding to the
window. These operations follow directly from the definitions of SA and LCP,
and are followed by a simple traversal of the suffix array in order to obtain
the ranks and create the P(y′) and diff vectors. Also, δ0, which was initially
the number of letters in y′, is decreasing as long as the difference between the
vectors for a specific letter is non-negative (thus, we still have more occurrences
of that letter in y′ compared to the window), and increasing otherwise. In Step
3, we update the difference vector by increasing the value at position x′[i] and
decreasing that of the new letter x′[i + m] added to the difference. The q-gram
distance at that position is based on the values of the newly obtained difference
vector, as well as the q-gram distance at the previous position: if diff[x′[i]] ≤ 0,
then obviously there were more letters x′[i] in y′ than in the window, thus we
need to decrease, while, if diff[x′[i]] > 0, then there were at least as many letters
x′[i] in the window as in y′, and taking one out increases the distance. The
complementary reasoning applies to the newly added letter x′[i + m]. The value
of δi never goes below the number of occurrences of ay in y′ (it is equal to that,
when all other elements of diff are 0) and represents the q-gram distance between
y and xi, the corresponding window of length m starting at position i in xx.

Analysis. In Step 1, constructing SA, iSA, and LCP of xxy can be done in
time and extra space O(m + n) (Sect. 2). Furthermore, the construction of x′,
y′, P(y′), diff, and δ0 is done with the same time and space cost. In Step 2,
updating diff and δ0 after reading each letter takes constant time, as we execute
two operations, thus O(m) in total. Constant time is required for each iteration
in Step 3 to compute the value of δi, 1 ≤ i < m, and update diff, since a constant
number of operations are executed, thus O(m) in total. Hence, we can solve the
CSC problem for β = 1 in time and space O(m + n).

General Algorithm for β ≥ 1. We can now generalize this algorithm to solve
the CSC problem for any β ≥ 1, which gives algorithm saCSC. We maintain a
Parikh vector for each block, and apply the above basic algorithm for each pair of
blocks, computing their q-gram distance. If we denote by Pj(y′) and diffj , for all
0 ≤ j < β, the β Parikh vectors of y′ and of the q-gram distances, respectively,
as well as by δi,j the q-gram distance between the jth block of y and xi, then the
updates will be given by the formulae below. Hence, at each position i < m, we
can update all of the β Parikh vectors corresponding to the blocks, as previously
described, in time O(β). As an example, see here the modification of the previous
Step 3, with the other two steps being easily adapted in a similar fashion.

Step 3′: When shifting the window one position to the right from position i,
update the information for every diffj , where 0 ≤ j < β, as follows

diffj [x′[i +
jm

β
]] = diffj [x′[i +

jm

β
]] + 1

diffj [x′[i +
(j + 1)m

β
]] = diffj [x′[i +

(j + 1)m
β

]] − 1,
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and calculate δi+1,j , based on this information, sequentially applying the two
following rules

δi+1,j =

{
δi,j − 1, if diffj [x′[i + jm

β ]] ≤ 0
δi,j + 1, if diffj [x′[i + jm

β ]] > 0

δi+1,j =

{
δi+1,j − 1, if diffj [x′[i + (j+1)m

β ]] ≥ 0
δi+1,j + 1, if diffj [x′[i + (j+1)m

β ]] < 0.

Theorem 6. Algorithm saCSC solves the CSC problem in O(βm + n) time and
space.

4 Experimental Results

We implemented algorithms nCSC, hCSC, and saCSC as the program CSC. Given
one of the three methods, two sequences x and y in (Multi)FASTA format, the
number β of blocks, and the length q of the q-grams, CSC finds the rotation of x
(or an approximation of it) that minimizes its β-blockwise q-gram distance from y.
The implementation is distributed under the GNU General Public License (GPL),
and it is available at http://github.com/solonas13/csc. For comparison purposes,
we also implemented a näıve algorithm that compares all rotations of x against y
using the Needleman-Wunsch algorithm [25] with substitution matrices and affine
gap penalty scores [18]; we denote this by cNW.

The following experiments were conducted on a desktop computer using one
core of Intel R© CoreTM i7-2600 CPU at 3.4 GHz and 12 GB of RAM under
64-bit GNU/Linux. All programs were compiled with gcc version 4.7.3. We used
both synthetic data (Sects. 4.1–4.2) and real data (Sect. 4.3). All input datasets
referred to in this section are publicly maintained at the same web-site.

4.1 Accuracy

We began with simulating three DNA sequence datasets using INDELible [16],
with each dataset consisting of 12 sequences, each of length approximately 2,500
base pairs (bp). INDELible produces linear sequences with substitutions, inser-
tions, and deletions at rates defined by the user. Three unique substitution rates
were set per dataset using the substitution model JC69 (Jukes-Cantor, 69): 5 %,
20 %, and 35 %. The insertion and deletion rates were set, respectively, to 4 %
and 6 %, relative to substitution rate of 1, similar to those observed in MtDNA
in primates and mammals [14]. We refer to these datasets as Original.

To allow for comparison of the performance of the algorithms in realigning
randomly-rotated sequences, which should be similar to those obtained from
sequencing circular DNA structures, such as MtDNA, one random rotation was
generated from each sequence in all datasets, creating new datasets which will
be referred to as Random. Using the three Random datasets allowed us to test
the accuracy of hCSC and saCSC; notice that nCSC and saCSC always return the
same rotation. For each Random dataset, an all-against-all sequence comparison

http://github.com/solonas13/csc
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Fig. 1. Accuracy comparison for substitution rates 5 %, 20 %, and 35 %; the black,
green, and blue points coincide implying that algorithms hCSC, nCSC, and saCSC return
the rotation maximizing the similarity score for all pairwise comparisons (Colour figure
online)

was performed. That is, all possible pairs, 66 in total, of sequences in each dataset
were input to both hCSC and saCSC. β was set to 50 and q was set to 6. The
resultant re-rotated sequences were aligned using EMBOSS Needle [31] and the
similarity scores were compared to those of the Original and Random datasets,
which were input directly to EMBOSS Needle. The results can be found in Fig. 1.

The results show that: (a) hCSC and saCSC yield significantly improved
similarity scores compared to those obtained from inputting Random datasets
directly to EMBOSS Needle; and (b) hCSC and saCSC yield similarity scores that
are identical or almost identical—notice that the black (Original), green (hCSC),
and blue (nCSC/saCSC) points coincide—to those obtained from inputting Orig-
inal datasets directly to EMBOSS Needle. This implies that algorithms hCSC,
nCSC, and saCSC return the rotation maximizing the similarity score for all
pairwise comparisons.

Hence what we establish here is that the introduced distance measure coupled
with the respective algorithms consistently yield a very high accuracy, compared
to the standard measure [18,25,31], for both low and high substitution rates.

4.2 Time Performance

We then compared the time performance of the algorithms. Each algorithm was
given a pair of randomly generated sequences starting from m = n = 50 bp and
doubling 8 times to a length ofm = n = 12, 800 bp. Itwas expected that the slowest
algorithm would be cNW which runs in time O(nm2). Then it would be algorithm
nCSC which runs in time O(m(m + n)), then algorithm hCSC, which runs in time
O(β(m+n)+ m(m+n)

β ), and lastly algorithm saCSC, which runs in timeO(βm+n).
Initially, β was set to 
√m� and q was set to 
log m/ log |Σ|�. The results

in Fig. 2 demonstrate orders-of-magnitude superiority of saCSC compared to
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Fig. 2. Elapsed-time comparison

cNW and nCSC, confirming our theoretical findings. hCSC is the second fastest.
Although β was set to 
√m�, saCSC clearly outperforms hCSC, due to the use of
a highly optimized implementation of the suffix-array construction, thus high-
lighting the importance of suitably implemented data structures such as suffix
arrays.

Since the time complexities of hCSC and saCSC depend on β, we repeated the
same experimentwith these twoalgorithms settingβ to 
m/25� and q to 
log m/ log
|Σ|�—notice that q does not affect the time efficiency of the algorithms. The results
in Fig. 2 show that hCSC and saCSC are still the fastest, even though m = O(β),
and that saCSC is clearly the fastest of all. As expected for m = O(β), we observe
that hCSC and saCSC become gradually slower when m grows.

More algorithms could have been included in the comparison but their (at
least) quadratic time complexity [5,23] prevents them to compete with saCSC.

4.3 Application to Real Data

As the input dataset, we used two real sequences from GenBank [2]: human
(NC 001807) and chimpanzee (NC 001643) MtDNA sequences. The MtDNA
genome size for human is 16,571 bp and for chimpanzee is 16,554 bp. Their pair-
wise sequence alignment using EMBOSS Needle with the default parameters (Gap
opening penalty 10.0 and Gap extension penalty 0.5) gives a similarity of 85.1%.
We used saCSC to obtain the rotation of NC 001807 that minimizes its β-blockwise
q-gram distance from NC 001643, for β = 850 and q = 5. We obtained rotation 578
of NC 001807 and used EMBOSS Needle to align this rotation with
NC 001643. EMBOSS Needle gave a significantly improved similarity of 91%.This
rotation is exactly the rotation we obtained after näıvely searching for the rota-
tion of NC 001807 that maximizes similarity using cNW. Finding this rotation
took approximately 28 hours for cNW and only a quarter of a second for saCSC.
We repeated this experiment with the human and gorilla (NC 011120) MtDNA
sequences. The MtDNA genome size for gorilla is 16, 412 bp. Their pairwise
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sequence alignment using EMBOSS Needle with the default parameters gives a
similarity of 83.5%. After using saCSC to rotate sequence NC 001807, EMBOSS
Needle gave a significantly improved similarity of 88.4%.

5 Final Remarks

In this paper, we introduced a new distance measure for sequence compari-
son based on q-grams, and showed how it can be applied effectively and com-
puted efficiently for circular sequence comparison. Furthermore, we presented an
experimental study, using both real and synthetic data, demonstrating orders-of-
magnitude superiority of our approach, in terms of efficiency, while maintaining
an accuracy which is very competitive to the state of the art.

Our immediate target is twofold: (a) implement algorithm saCSC in BEAR [1],
a state-of-the-art tool for improving multiple circular sequence alignment; and
(b) evaluate alternative methods for circular sequence comparison based on local
alignment heuristics [8].
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Abstract. High throughput sequencing technologies have become fast
and cheap in the past years. As a result, large-scale projects started to
sequence tens to several thousands of genomes per species, producing
a high number of sequences sampled from each genome. Such a highly
redundant collection of very similar sequences is called a pan-genome. It
can be transformed into a set of sequences “colored” by the genomes to
which they belong. A colored de-Bruijn graph (C-DBG) extracts from
the sequences all colored k-mers, strings of length k, and stores them in
vertices. In this paper, we present an alignment-free, reference-free and
incremental data structure for storing a pan-genome as a C-DBG: the
Bloom Filter Trie. The data structure allows to store and compress a set
of colored k-mers, and also to efficiently traverse the graph. Experimental
results prove better performance compared to another state-of-the-art
data structure.

1 Introduction

A string x is a sequence of characters drawn from a finite, non-empty set, called
the alphabet A. Its length is denoted by |x|. The character at position i is denoted
by x[i], the substring starting at position i and ending at position j by x[i..j].
Strings are concatenated by juxtaposition. If x = ps for (potentially empty)
strings p and s, then p is a prefix and s is a suffix of x.

A genome is the collection of all inheritable material of a cell. Ideally it
can be represented as a single string over the DNA alphabet A = {a, c, g , t}
(or as a few strings in case of species with multiple chromosomes). In practice,
however, genomes in databases are often less perfect, either left unchanged in
form of the raw data as produced by sequencing machines (millions of short
sequences called reads), or after some incomplete assembly procedure in form
of contiguous chromosome regions (hundreds of contigs of various lengths). We
are interested in the problem of storing and compressing a set of multiple highly
similar genomes, e.g. the pan-genome of a bacterial species, comprising hun-
dreds, or even thousands of strains that share large sequence parts, but differ
c© Springer-Verlag Berlin Heidelberg 2015
M. Pop and H. Touzet (Eds.): WABI 2015, LNBI 9289, pp. 217–230, 2015.
DOI: 10.1007/978-3-662-48221-6 16
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by individual mutations from one another. An abstract structure that has been
proposed for this task is the colored de-Buijn graph (C-DBG) [13]. It is a directed
graph G = (VG, EG) in which each vertex v ∈ VG represents a k-mer, a string
of length k over A, associated with a set of colors representing the genomes
in which the k-mer occurs. A directed edge e ∈ EG from vertex v to vertex
v′, respectively from k-mer x to k-mer x′, exists if x[2..k] = x′[1..k − 1]. Each
k-mer x has |A| possible successors x[2..k]c and |A| possible predecessors cx[1..k−
1] with c ∈ A. An implementation of such a graph does not have to store edges
since they are implicitly given by vertices overlapping on k − 1 characters.

In this paper, we propose a new data structure for indexing and compressing
a pan-genome as a C-DBG, the Bloom Filter Trie (BFT). It allows any format
for the input genomes (completely sequenced, set of contigs, set of reads, and
even mixtures of them), is alignment-free, reference-free and incremental, i.e.,
it does not need to be entirely rebuilt when a new genome is inserted. BFTs
provide insertion and look-up operations for strings of fixed length associated
with an annotation.

In the next section, existing data structures and software for pan-genome
representation are reviewed. Section 3 presents the BFT and Sect. 4 the oper-
ations it supports. Then, Sect. 5 describes the traversal of a C-DBG stored as
a BFT. Finally, Sect. 6 contains experimental results showing the performance
of the data structure. Section 7 concludes. Our implementation of the BFT is
available at https://github.com/GuillaumeHolley/BloomFilterTrie.

2 Existing Approaches

The BFT, as well as existing tools for pan-genome storage, uses a variety of basic
data structures reviewed in the following. Existing tools for pan-genome storage
will then be discussed in Sect. 2.2.

2.1 Data Structures

One common way to index and compress a set of strings is to use as a first step the
Burrows-Wheeler Transform (BWT) [2] that rearranges the input data to enable
better compression by aggregating characters with similar context. For multiple
sets of strings, a disk-based approach [4] or different terminator characters must
be used. The FM-Index [9] allows to count and locate the occurrences of a
substring in the BWT.

Introduced by Bloom [1], a Bloom filter (BF) records the presence of elements
in a set. Based on the hash table principle, look-up and insertion times are
constant. The BF is composed of a bit array B[1..m], initialized with 0s, in
which the presence of n elements is recorded. A set of f hash functions h1, ..., hf

is used, such that for an element e, hi(e) : e → {1, ..,m}. Inserting an element
into B and testing for its presence are then

Insert(e,B) : B[hi(e)] ← 1 for all i = 1, ..., f

https://github.com/GuillaumeHolley/BloomFilterTrie
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and

MayContain(e,B) :
f∧

i=1

B[hi(e)],

respectively, where
∧

is the logical conjunction operator. The BF does not gen-
erate false negatives but may generate false positives, as MayContain can report
the presence of elements which are not present but a result of independent inser-
tions.

The Sequence Bloom Tree (SBT) [21] is a binary tree with BFs as vertices.
An internal vertex is the union of its two children BFs, i.e., a BF where a cell is
set to 1 if the cell at the same position in at least one of the two children is set
to 1.

A trie [10] is a rooted edge-labeled tree T = (VT , ET ) storing a set of strings.
Each edge e ∈ ET is labeled with a character. A path from the root to a leaf
represents the string obtained by concatenating all the characters on this path.
The depth of a vertex v in T is denoted by depth(v, T ) and is the number of
edges between the root of T and v. The height of T , denoted by height(T ), is
the number of edges on the longest path from the root of T to a leaf. The burst
trie [11] is an efficient implementation of a trie which reduces its number of
branches by compressing sub-tries into leaves. Its internal vertices are labeled
with multiple prefixes of length 1, linked to children. The leaves are labeled with
multiple suffixes of arbitrary length. A leaf has a limited capacity of suffixes
and is burst when this capacity is exceeded. A burst splits suffixes of a leaf into
prefixes of length 1, linked to new leaves representing the remaining suffixes.

2.2 Software for Pan-Genome Storage

Existing tools for pan-genome storage are mostly alignment-based or reference-
based and take a set of assembled genomes as input. Alignments naturally exhibit
shared and unique regions of the pan-genome but are computationally expen-
sive to obtain. In addition, misalignments can lead to an inaccurate estimation of
the pan-genome regions [7]. PanCake [8] is an extension of string graphs, known
from genome assembly [17], which achieves compression based on pairwise align-
ments. Experiments showed compression ratios of 3:1 to 5:1. Nguyen et al. [18]
formulated the pan-genome construction problem as an optimization problem of
arranging alignment blocks for a set of genomes partitioned by homology. The
complexity of the problem has been shown to be NP-hard, and a heuristic using
Cactus graphs [19] was provided. A multiple sequence alignment is required for
creating the blocks, another NP-hard problem.

Among the reference-based tools, Huang et al. [12] proposed to build a pan-
genome by adding all the variants detected between a set of genomes to a refer-
ence genome. The BWT of the augmented reference is then computed and can
be used by an aligner based on the FM-Index. While being more accurate with
the augmented reference genome than BWA [14] with the reference alone, the
aligner is between 10 to 100 times slower, uses significantly more memory and
can introduce false positive alignments. RCSI [22] (Referentially Compressed
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Search Index) uses referential compression with a compressed suffix tree to store
a pan-genome and to search for exact or inexact matches. The inexact match-
ing allows a limited number of edit distance operations. 1,092 human genomes
totaling 3.09 TB of data were compressed into an index of 115 GB, offering a
compression ratio of about 28:1. Yet, the index is built for a maximum length
query and a maximum number of edit operations.

Close to our approach is SplitMEM [16], which uses a C-DBG to build a pan-
genome made of assembled genomes and to extract the shared regions. Although
the C-DBG is directly constructed in a compressed way, where a non-branching
path is stored in a single vertex, the resulting size of the data structure is larger
than the sum of the original sizes of the input sequences, due to the use of an
augmented suffix tree.

Recently, the authors of Khmer [5] introduced in their software library a
de-Bruijn graph labeling method. Khmer provides a lightweight representation of
de-Bruijn graphs [20] based on Bloom filters and a graph labeling method based
on graph partitioning. Unfortunately, this functionality was made available only
a few days before submission.

The SBT [21] is an alignment-free, reference-free and incremental data struc-
ture that allows to label sequences with their colors. The proposed tool is
designed to index and compress data from sequencing experiments for effec-
tive query of full-length genes or transcripts by separation into k-mers. A leaf of
an SBT is used to represent a sequencing experiment by extracting all its k-mers
and storing them in the BF of the leaf. SBTs do not represent exactly the set of
k-mers of the sequencing experiments they contain, though, due to the inexact
nature of BFs.

3 The Bloom Filter Trie

The Bloom Filter Trie (BFT) that we propose in this paper is an implementation
of a C-DBG. It is based on a burst trie and is used to store k-mers associated
with a set of colors. For the moment we may assume that colors are represented
by a bit array color initialized with 0s. Each color has an index icolor such that
colorx[icolor ] = 1 records that k-mer x has color icolor . Sets of colors will later
be compressed as explained in Sect. 4.3. All arrays in a BFT are dynamic: An
insertion at position pos in an array reallocates it and shifts every cell having
an index ≥ pos by one position.

In the following, let t = (Vt, Et) be a BFT created for a certain value of k
where we assume that k is a multiple of an integer l such that k-mers can be split
into k

l equal-length substrings. The maximum height of t is heightmax (t) = k
l −1.

The alphabet we consider is the DNA alphabet A = {a, c, g, t}, and because
|A| = 4, each character can be stored using two bits. A vertex in a BFT is
a list of containers, zero or more of which are compressed, plus zero or one
uncompressed container. In the following, we will explain how the containers are
represented and how an uncompressed container is burst when its capacity is
exceeded.



Bloom Filter Trie – A Data Structure for Pan-Genome Storage 221

3.1 Uncompressed Container

An uncompressed container of a vertex v in a BFT is a limited capacity set of
tuples <s, colorps> where s is a suffix and p is the prefix represented by the
path from the root to v. Uncompressed containers are burst when the number
of suffixes stored exceeds their capacity c > 0. Then, each suffix s of the uncom-
pressed container is split into a prefix spref of length l and a suffix ssuf of length
|s|− l such that s = spref ssuf . Prefixes are stored in a new compressed container.
Suffixes, attached with their colors, are stored in new uncompressed containers,
themselves stored in the children of the compressed container. An example of a
BFT and a bursting is given in Fig. 1.

3.2 Compressed Container

A bursting replaces an uncompressed container by a compressed one, used to:

– store q suffix prefixes in compressed form (in Fig. 1(b), q = 4),
– store links to children containing the suffixes,
– reconstruct suffix prefixes and find the corresponding children.

In the following, each suffix prefix spref is split into a prefix a and a suffix b with
respective binary representations α and β. A compressed container is composed
of four structures quer , pref , suf and clust , where:

– quer is a BF represented as a bit array of length m and f hash functions, used
to record and filter for the presence of q suffix prefixes;

– pref is a bit array of 2|α| bits initialized with 0s and used to record prefix
presence exactly. Here the binary representation α of a prefix a is interpreted
as an integer such that pref [α] set to 1 records the presence of a;

– suf is an array of q suffixes b sorted in ascending lexicographic order of the
original suffix prefixes they belong to;

Fig. 1. Insertion of six suffixes (that are here complete k-mers) with different colors
(boxes with diagonal lines) into a BFT with k = 12, l = 4 and c = 5. In (a), the first
five suffixes are inserted at the root into an uncompressed container. When a sixth
suffix gcgccaggaatc is inserted, the uncompressed container exceeds its capacity and is
burst, resulting in the BFT structure shown in (b).
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– clust is an array of q bits, one per suffix of array suf , that represents cluster
starting points. A cluster is a list of consecutive suffixes in array suf that
share the same prefix. It has an index icluster with 1 ≤ icluster ≤ 2|α| and a
start position poscluster in the array suf with icluster ≤ poscluster ≤ q. Position
pos in array clust is set to 1 to indicate that the suffix in suf [pos] starts a
cluster because it is the lexicographically smallest suffix of its cluster. A cluster
contains n ≥ 1 suffixes and, therefore, position i in array clust is set to 0 for
pos < i < pos + n. The end of a cluster is indicated by the beginning of the
next cluster or if pos ≥ q.

For example, the internal representation of the compressed container shown in
Fig. 1(b) with |a| = 2 and |b| = 2 would be:

quer 0 0 1 0 1 1 0 0 0 1 1 1 suf gc ca cc gc

pref 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 clust 1 1 1 0

The size required by a set of q substrings in a compressed container is
m + 2|α| + q · (|β| + 1) bits. A bursting minimizes this size by choosing a prefix
length |a| and a BF size m such that the set of substrings stored in a compressed
container does not occupy more memory than their original representation in an
uncompressed container, i.e., m + 2|α| ≤ q · (|α| − 1). Each suffix prefix inserted
after a bursting costs only |β| + 1 bits. When the average size per suffix prefix
stored is close to |β| + 1 bits, arrays pref , suf and clust can be recomputed by
increasing |a| and decreasing |b|, such that 2|α′| + q · |β′| < 2|α| + q · |β|, where
α′ and β′ are the values of α and β, respectively, after resizing.

4 Operations Supported by the Bloom Filter Trie

The BFT supports all operations necessary for storing, traversing and searching
a pan-genome, as well as to extract the relevant information of the contained
genomes and subsets thereof. Here we describe the most basic ones of them,
Look-up (Sect. 4.1) and Insertion (Sect. 4.2), as well as how the sets of colors are
compressed (Sect. 4.3). Traversal of the graph is discussed in Sect. 5.

The algorithms use two auxiliary functions. HammingWeight(α, pref ) counts
the number of 1s in pref [1..α] and corresponds to how many prefixes represented
in array pref are lexicographically smaller than or equal to an inserted prefix a
with binary representation α. This requires O(2|α|) time. The second function,
Rank(i, clust), iterates over array clust from its first position until the i-th entry 1
is found and returns the position of this entry. It corresponds to the start position
of cluster i in array clust . If the entry is not found, the function returns |clust |+1
as a position. While Rank could be implemented in O(1) time [9], we use a more
naive but space efficient O(q) time implementation.

4.1 Look-Up

The function that tests whether a suffix prefix spref = ab with binary represen-
tation αβ is stored in a compressed container cc is given in Algorithm 1. Line 1
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uses MayContain to filter for presence of spref inside cc by querying the BF quer
in O(f) time. If present as a true or false positive, the presence of the prefix a
is verified in the array pref in O(1) time. If a is not present, this was clearly a
false positive and nothing else has to be done. If a is present, line 2 computes in
O(2|α|) time the Hamming weight i of a, i.e., the index of the cluster in which
suffix b is possibly situated. Line 3 locates the rank of i, i.e., the start position of
the cluster, and lines 4–7 compare the suffixes of the cluster to b. Lines 3–7 are
computed in O(q) time. Algorithm 1 has therefore a worst case running time of
O(f + 2|α| + q).

Algorithm 1. Contains(ab, cc)
1: if MayContain(ab, cc.quer) and cc.pref [α] = 1 then
2: i ← HammingWeight(α, cc.pref )
3: start ← Rank(i, cc.clust)
4: pos ← start
5: while pos ≤ |suf | and (pos = start or cc.clust [pos] = 0) do
6: if cc.suf [pos] = b then return true
7: pos ← pos + 1
8: return false

The function that tests whether a k-mer x is present in a BFT t = (Vt, Et)
is given in Algorithm 2. Each vertex v ∈ Vt represents k-mer suffixes possibly
stored in its uncompressed container or rooted from its compressed containers.
The look-up traverses t and, for a vertex v, queries its containers one after the
other for suffix xsuf = x[l · depth(v, t) + 1 .. k]. If the queried container is a com-
pressed container, its BF quer is queried for xsuf [1..l] and, in case of a positive
answer, the function Contains is used for an exact membership of xsuf [1..l]. If
it is found, the traversing procedure continues recursively on the corresponding
child. The absence of xsuf [1..l] indicates the absence of x in t since xsuf [1..l]
cannot be in another container of v. If the container is an uncompressed con-
tainer, its suffixes are compared to xsuf . As an uncompressed container has no
children, a match indicates the presence of the k-mer. Algorithm 2 is initially
called as TreeContains(x, 1, l, root). In the worst case, all vertices on a traversed
path represent all possible suffix prefixes and the BFs quer have a false posi-
tive ratio of 0. In such case, each traversed vertex contains � |A|l

c � containers.
The longest path of a BFT has heightmax (t) + 1 vertices. Therefore, the worst
case time of TreeContains is O(heightmax (t) · � |A|l

c � · (f + 2|α| + q)).

4.2 Insertion

Prior to any k-mer insertion into a BFT t, a look-up verifies if the k-mer is
already present. If it is, only its set of colors is modified. Otherwise, the look-up
stops the trie traversal on a container cont of a vertex v where the searched suffix
prefix or k-mer suffix is not present. If cont is an uncompressed container, the
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Algorithm 2. TreeContains(x, i, l, v)
1: for each container cont in v do
2: if cont is compressed and MayContain(x[i..i + l − 1], cont .quer) then
3: if Contains(x[i..i + l − 1], cont) then
4: v ← child associated with x[i..i + l − 1] in cont .suf
5: return TreeContains(x, i + l, l, v)
6: else return false
7: else if cont is uncompressed then
8: for each <s, colorx[1..i−1]s> in cont do
9: if s = x[i..k] then return true

10: return false

insertion of the k-mer suffix and its color is a simple O(c) time process. If cont
is compressed, the insertion of suffix prefix spref = ab is a bit more intricate.
In fact, it will only be triggered if cont is the first compressed container of
v to have spref as a false positive (MayContain(spref , cont .quer) = true and
Contains(spref , cont) = false). False positives are therefore “recycled”, which is
a nice property of BFTs: The BF quer remains unchanged, and only pref , suf
and clust need to be updated in a way similar to Algorithm 1: The presence
of prefix a must first be verified by testing the value of pref [α] where α is the
binary representation of a. If pref [α] = 0, prefix a is not present and is recorded
by setting pref [α] to 1. Then, the index idcluster and start position poscluster
of the new cluster are computed using HammingWeight and Rank. Suffix b is
inserted into suf [poscluster ] and a 1 into clust [poscluster ]. This takes O(2|α| +2q)
time. If pref [α] = 1 prior to insertion, prefix a is already present, and idcluster

and poscluster have already been computed by Contains(spref , cont). Let n be the
number of suffixes in cluster idcluster . Suffix b is inserted into suf [pos] such that
poscluster ≤ pos ≤ poscluster + n and suf [pos − 1] < suf [pos]. If pos = poscluster ,
b starts its cluster: A 1 is inserted into clust [pos] and clust [pos + 1] is set to 0.
Otherwise, a 0 is inserted into clust [pos]. This takes O(2q) time. The worst case
time insertion of a k-mer is O(d + 2|α| + 2q) with d being the worst case time
look-up.

The internal representation of the compressed container shown in Fig. 1(b)
after insertion of the suffix prefix gtat is given below (inserted parts are high-
lighted). The presence of prefix gt is recorded in pref [12]. Then, its cluster index
and start position are computed as 4 and 5, respectively. Consequently, after
reallocation of arrays suf and clust , suffix at is inserted in suf [5] and clust [5] is
set to 1 to indicate that suf [5] starts a new cluster.

quer 0 0 1 0 1 1 0 0 0 1 1 1 suf gc ca cc gc at

pref 0 0 1 0 0 0 0 1 0 1 0 1 0 0 0 0 clust 1 1 1 0 1
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4.3 Color Compression

Remember from Sect. 3 that color sets associated with k-mers in a C-DBG are
initially stored as bit arrays in BFTs. However, these can be compressed. To this
end, a list of all color sets occurring in the BFT is built and sorted in decreasing
order of total size, i.e., the number of k-mers sharing a color set multiplied by
its size. Then, by iterating over the list, each color set is added incrementally to
an external array if the integer encoding its position in the array uses less space
than the size of the color set itself. Finally, each color set present in the external
array is replaced in the BFT by its position in the external array.

5 Traversing Successors and Predecessors

Let t be a BFT that represents a C-DBG G. For a k-mer x, visiting all its
predecessors or successors in G, denoted pred(x,G) and succ(x,G), respectively,
implies the look-up of |A| different k-mers in t. Such a look-up would visit in
the worst case |A| · (heightmax (t) + 1) vertices in t. This section describes how
to reduce the number of vertices and containers visited in t during the traversal
of a vertex in G.

Observation 1. Let G be a C-DBG represented by a BFT t and x a k-mer cor-
responding to a vertex of G. All k-mers of succ(x,G) share x[2..k] as a common
prefix and therefore share a common subpath in t starting at the root. On the
other hand, k-mers of pred(x,G) have different first characters and, therefore,
except for the root of t do not share a common subpath. Hence, the maximum
number of visited vertices in t for all k-mers of succ(x,G) is 1 + heightmax (t)
and for all k-mers of pred(x,G) is 1 + |A| · heightmax (t).

Lemma 1. Let G be a C-DBG represented by a BFT t, x a k-mer in t and v
a vertex of t that terminates the shared subpath of the k-mers in succ(x,G). If
depth(v, t) = heightmax (t), succ(x, t) suffixes may be stored in any container of
v. If not, they are stored in the uncompressed container of v.

Proof. A vertex v is the root of a sub-trie storing k-mer suffixes of length
l · (heightmax (t) − depth(v, t) + 1) with l = k

heightmax (t)+1 . Let s be a k-mer suffix
of succ(x, t) rooted at a vertex v ∈ Vt. If depth(v, t) 	= heightmax (t) but s is
rooted at a compressed container in v, then this compressed container stores
s[1..l], and s[l +1..|s|] is rooted in one of its children. As the divergent character
between the k-mer suffixes of succ(x) is in position |s| − 1, this character is in
s[l + 1..|s|], rooted at one child of this compressed container. Therefore v does
not terminate the common subpath shared by succ(x, t) k-mers. 
�

Lemma 1 proves that the only two cases where a look-up of pred(x,G) or
succ(x,G) must search in different containers of a vertex are:

– searching at the root of t for k-mers of pred(x,G),
– if depth(v, t) = heightmax (t), searching at vertex v for suffixes of succ(x,G).
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Restricting the hash functions used in the compressed containers to take only
positions 2 through l − 1 into account, allows to limit the search space.

Lemma 2. Let t be a BFT where the f hash functions hi of quer have the form
hi(spref ) : spref [2..l − 1] → {1, ..,m} for i = 1, ..., f . Then, for a vertex v of
t and a suffix prefix spref , all possible substrings s′

pref = c1spref [2..l − 1]c2 are
contained in the same container of v.

Proof. Assume a k-mer suffix s inserted in a vertex v of t. A look-up for s
analyzes the containers of v from the head to the tail of the container list. In the
worst case, s can be rooted, according to BFs quer , in all compressed containers
as a true positive or as a false positive. However, a look-up stops either on the
first compressed container claiming to contain the suffix prefix spref = s[1..l],
or on the uncompressed container. As the hash functions of quer consider only
spref [2..l−1], a look-up will therefore stop on the same container for any substring
s′
pref = c1spref [2..l − 1]c2. 
�

As a consequence of Lemma 2, each suffix prefix spref stored or to store
in arrays pref , suf and clust is modified such that spref = spref [2..l]spref [1],
which guarantees that all s′

pref = spref [2..l − 1]c2c1 are in the same container.
Furthermore, suffixes stored in array suf are required to have a minimum length
of two characters to ensure that characters c1 and c2, the variable parts between
the different s′

pref , are stored in array suf . Hence, as all s′
pref share spref [2..l−1]

as a prefix, they share the same cluster in arrays suf and clust . Suffix prefixes
s′
pref = spref [1..l − 1]c2 also have consecutive suffixes in their cluster.

6 Evaluation

We implemented the BFT in C and compared it to the SBT [21], version 0.3.1,
on a mid-class laptop with an SSD hard drive and an Intel Core i5-4300M proces-
sor cadenced at 2.6 GHz. All software was run with a single thread. Both data
structures were used to represent one real and one simulated pan-genome dataset.
The real dataset (NCBI BioProject PRJEB5438) consists of raw sequencing data
from 473 clinical isolates of Pseudomonas aeruginosa, sampled from 34 patients,
resulting in 844.37 GB of FASTQ files. The simulated dataset was generated from
19 strains of Yersinia pestis. For each strain, we used Wgsim1 to create 6,000,000
reads of length 100 with a substitution sequencing error rate of 0.5 %, resulting
in 31 GB of FASTQ files. We first used KmerGenie [3] on a subsample of the files
for each dataset to estimate the best k-mer length and the minimum number of
occurrences for considering a k-mer valid (not resulting from a sequencing error).
A length of k = 63 with a minimum number of 3 occurrences was selected for the
real and a length of k = 54 with a minimum of 15 occurrences for the simulated
data set.
1 https://github.com/lh3/wgsim.

https://github.com/lh3/wgsim
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Table 1. Running time and memory usage for the real (P. aeruginosa) and simulated
(Y. pestis) dataset. The compression ratio is given w.r.t. the original file sizes and (NA)
indicates unavailable information.

P. aeruginosa Y. pestis

BFT SBT BFT SBT

Insertion time 14 h 34min 44 h 4 min 11min 29 s 38 min 6 s

(without k-mer counting) (8 h 5min) (NA) (2min 18 s) (NA)

Uncompressed size 7.25GB 11 GB 79MB 115.2 MB

(compression ratio) (116:1) (77:1) (402:1) (276:1)

Compressed size 2.2GB 4.8 GB 76MB 117.2 MB

(compression ratio) (384:1) (176:1) (418:1) (271:1)

For the BFT, we used KMC2 [6] to extract all valid k-mers from each genome.
The capacity c influences the compression ratio as well as the time for insertion
and look-up. We chose a value of c = 248 as it showed a good tradeoff in practice.
The prefix length l determines the size of several internal structures of the BFT
and how efficiently they can be stored. We selected l = 9 as this limits the
internal fragmentation of the memory. The color set compression was applied
regularly during the insertion process in order to keep the memory used to build
the BFT as low as possible. After insertion of each dataset, the BFT was written
to disk.

The SBT employs Jellyfish [15] to extract from each genome all valid k-mers.
As the size of BFs used in the SBT must be specified prior to the k-mer counting
and should be the same for all vertices, the authors of the SBT suggested to
estimate the number of unique k-mers in each dataset to design the size of BFs,
at the price of an extra computation time (personal communication). Since we
knew the exact number of unique k-mers from the BFT construction, we used
this instead: 93,202,452 k-mers for the real dataset, resulting in a BF size of
11.1 MB. However, our simulated dataset corresponds to a very well conserved
species with an average of 4,557,245 unique 54-mers per genome for a total of
5,121,443 unique 54-mers in the pan-genome: Each BF of the SBT would hold
a very high false positive ratio, 59 % on average, by choosing 5,121,443 bits for
the BFs size. To avoid saturation, we computed a BF size of 24,910,142 bits
(2.97 MB) for the simulated dataset to obtain a smaller false positive ratio of
approximately 7.2 % – similar to the ratio for the real dataset. We also reused
k-mer counts computed for the BFT to estimate the number of hash functions:
One hash function for the real dataset and four hash functions for the simulated
dataset. The SBT counts the k-mers and builds the leaves in a one step process:
It is not possible to differentiate these two sub-steps nor to extract the valid k-
mers using a different software. According to the SBT paper and the CPU usage
of this step, the insertion time is mainly dominated by the k-mer extraction.
Note that SBTs are streamed on disk, each vertex being kept in a separate file.

Running times and memory usage of both tools are shown in Table 1.
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Fig. 2. Memory used by the BFT during the insertion of P. aeruginosa isolates.

Suprisingly, the compressed version of the SBT for the simulated dataset
takes more disk space than the uncompressed version. Memory usage during the
insertion of the real dataset in the BFT is shown in Fig. 2. Note that after storage
on disk, the BFT can be compressed further using a standard compressor. We
compressed the BFT using 7z2, resulting in a file of 980 MB for the real dataset
and 40.1 MB for the simulated dataset (about 882:1 and 792:1 w.r.t. the original
file sizes). We suspect that 7z delivers such compression ratio by taking advantage
of the data redundancy among the uncompressed containers.

For each dataset, the set of unique k-mers in the BFT was written to disk in
random order and reused as a batch query for the presence of all unique k-mers
in both data structures. It was not possible to query the SBT for a single batch
query of all 93,202,452 63-mers for the real dataset as the memory used exceeded
the 16 GB of memory available on the test machine, even when specifying that
BFs could be loaded into memory separately. We suspect this is because k-mers
are first loaded into memory before querying and the results are also stored in
memory before writing to disk. Therefore, we divided the set of unique 63-mers
into ten subsets, the first nine subsets containing 10,000,000 k-mers each and
the last subset containing 3,202,452 k-mers. Query times are shown in Table 2.

A second experiment gives an estimation of the time required to traverse the
graph represented by a BFT: It verifies for each k-mer whether its corresponding
vertex in the graph is branching. This experiment first computes information
about the root in a negligible amount of time and memory. Then, the BFT is
queried for its branching vertices. For the real dataset, this experiment took
14 min (average time of 8.71µs per 63-mer), resulting in 14,314,840 branching

2 http://www.7-zip.org/.

http://www.7-zip.org/
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Table 2. Query time for the real (P. aeruginosa) and simulated (Y. pestis) dataset).
Real and simulated dataset batch queries contain 93,202,452 63-mers and 5,121,443
54-mers, respectively.

P. aeruginosa Y. pestis

BFT SBT BFT SBT

Total running time 13 min 9h 18 min 8 s 3 min 47 s

Running time 8.04 µs 359 µs 1.56 µs 44.35 µs

vertices. For the simulated dataset, this experiment took 14 s (average time of
2.73µs per 54-mer), resulting in 6,312 branching vertices.

In summary, in our experiments the BFT was multiple times faster than the
SBT on the building time while using about 1.5 times less memory. The BFT
was about 30 times faster than the SBT for querying a k-mer.

7 Conclusion

We proposed a novel data structure called the Bloom Filter Trie for storing
a pan-genome as a colored de-Bruijn graph. The trie stores k-mers and their
colors. A new representation of vertices is proposed to compress and index shared
substrings. It uses four basic data structures, which allow to quickly verify the
presence of substrings. In the worst case, the compressed strings have a memory
footprint close to their binary representation. However, we observe in practice
substantial memory savings. Future work concerns the possibility to compress
non-branching paths that share the same colors [16], but also the extraction of
the different pan-genome regions.
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Abstract. Alignment-free approaches for sequence similarity based on
substring composition are increasingly attracting interest from the scien-
tific community. In fact, in several contexts, with respect to alignment-
based approaches, alignment-free techniques are faster but less accurate.
Recently, several studies (e.g. [4,8,9]) attempted to bridge the accuracy
gap with the introduction of approximate matches in the definition of
composition-based distance measures.

In this work we present MissMax, an exact algorithm for the computa-
tion of the longest common substring with mismatches between each suf-
fix of a sequence x and a sequence y. This collection of statistics is useful
for the computation of two similarity distances that have been recently
extended to incorporate approximate matching, namely the longest and
the average common substring with k mismatches. Our approach is exact,
and it is based on a filtering technique that showed, in a set of prelimi-
nary experiments, to substantially reduce the size of the set of potential
sites of a longest match.

1 Introduction

Sequence similarity has long been playing a crucial role in Computational Biol-
ogy and Bioinformatics. As a matter of fact, similarity is considered as a key
ingredient in the prediction of functional and structural properties, and of evo-
lutionary mechanisms, by comparing new elements with other elements whose
properties are known, or by comparing elements that show a similar behaviour
to infer the common mechanism that underlies the observed phenomena.

Since the introduction of high throughput techniques, hundreds of fully
sequenced genomes of different species have been made available at a fast pace.
The increasing number of available sequences makes all kind of sequence analysis,
most notably assembly, phylogenetic reconstruction, and multiple alignments,
more challenging due to the time consuming and memory-demanding operations
that need to be carried out on these huge datasets.

To try to cope with the increasing demand of time efficiency, a wide range
of alignment-free (or composition-based) approaches have been proposed. The
idea behind compositional approaches is to model each sequence in terms of the
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c© Springer-Verlag Berlin Heidelberg 2015
M. Pop and H. Touzet (Eds.): WABI 2015, LNBI 9289, pp. 231–242, 2015.
DOI: 10.1007/978-3-662-48221-6 17



232 C. Pizzi

substrings that it contains, and then to devise appropriate similarity measures
to compare two sequences based on this model [13].

Traditionally, alignment-free approaches rely on the frequency or presence
of L-mers, for a fixed length L, and consider exact matches. Although usually
very fast, in several contexts such approaches can be much less accurate than
alignment-based counter-parts.

For this reason, within the last decade several approaches have been proposed
to improve the ability to better capture the nature of the similarity/dissimilarity
between biological sequences with alignment-free techniques. Among the wide
literature, we can mention, for example, the introduction of over-representation,
rather than simple frequency count, in the definition of the similarity measure
for fixed length [11] and maximal length [3] components; and the definition of
distances based on average longest shared substrings [12], which frees the analysis
from fixing the length of the substrings to analyse.

More recently, several studies proposed to model the intrinsic variability of
biosequences by using spaced-words, or by considering approximate matches
with a bounded number of mismatches in the characterization of the sequence
composition. Several related experiments showed that, in the context of phyloge-
netic tree reconstruction, the introduction of approximate matches can improve
the quality of the detected sequence similarity [4,8,9].

Given these premises, we focused our attention on these more involved for-
mulations of the alignment-free approach, in particular on those allowing for
approximate matching within a bounded number of mismatches. Within this
framework we developed an algorithm for the computation of the longest com-
mon substring with mismatches between all the suffixes of a sequence x and
another sequence y. This primitive is at the basis of recently developed distance
measures for the problem of phylogentic tree reconstruction: the longest and the
average common substring distances with mismatches.

The paper is organized as follows: in Sect. 2 we will introduce the basic nota-
tion used throughout the paper, and also give a brief overview of recent research
on the subject. In Sect. 3 we will describe the proposed algorithm, and in Sect. 4
we will present the results of preliminary experiments on its performances.

2 Preliminaries

Let us consider two sequences x = x1 . . . xn and y = y1 . . . ym defined over an
alphabet Σ. Let us indicate with Xi = xi . . . xn and Yj = yj . . . ym the suffixes
of x and y starting at position i and j respectively. In the following, we will
assume, without loss of generality, that both sequences have the same length n.

Since we are interested in studying sequence similarity measures based on
string composition, and considering maximal and approximate matches, as a
warm up we will give a brief overview of recently proposed approaches, and will
use some of the presented results to introduce further notation used throughout
the paper.
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2.1 Related Work

An early result was presented in [10], where an O(n2) algorithm was proposed
to compute the number of occurrences with k mismatches of all the substrings of
length L in a string x of length n. The algorithm was proposed within the pattern
discovery framework [5], thus the need to count the occurrences within the same
string in order to subsequently estimate their over-representation. However, the
proposed solution can be easily adapted to compute the number of occurrences
of all the substrings of length L of a string x in another string y, leading to
the definition of a similarity measure between the two sequences based on the
frequency of shared approximate occurrences.

More recently, in [4] several similarity measures based on shared maximal
substrings with mismatches were introduced1. Let LCPk(x, y) be the length of
the longest common prefix between two strings x and y when k mismatches
are allowed. Now, consider the set of LCPk(Xi, Yj) defined for all the suffixes
Xi, i = 1, 2, . . . , n of x, and for all the suffixes Yj , j = 1, 2, . . . , n of y.

The following measures of cross correlation were defined for a given number
of mismatches k:

– MaxCork, defined as the maximum value attained by LCPk(Xi, Yj) over all
values of i ∈ (1, 2, ..., n) in x and j ∈ (1, 2, ..., n) in y.

– AvCork, that is, the average value attained by LCPk(Xi, Yj) over all values
of i ∈ (1, 2, ..., n) of x and j ∈ (1, 2, ..., n) in y.

– MaxCork(i), i = 1, 2, ..., n : the maximum value attained by LCPk(Xi, Yj)
for each i over all values correspondingly spanned by j.

– AvCork(i), i = 1, 2, ..., n : the average value attained by LCPk(Xi, Yj) for
each i over all values correspondingly spanned by j.

For measures such as MaxCork and AvCork a subquadratic solution O( kn2

log n )
was also proposed in [4].

In [9] kmacs, a greedy heuristic, was proposed to generalize the well known
Average Common Substring (ACS) distance [12] so to account for k mismatches
when considering the longest common substring between pairs of positions in
the two strings. We refer to this variant of the ACS problem as kACS. The
algorithm proposed in [9] has time complexity O(nkz), where z is the maximum
number of occurrences in y of a string of maximal length occurring in both x and
y. Being based on a heuristic, this method is very fast, but it does not guarantee
to find the optimal solution to the problem. Note that the kACS problem can
be described in terms of the measures of cross correlation previously defined as
the mean over all positions i in x of MaxCork(i).

We end our overview with two results published earlier this year. In [6] the k-
LCF problem is introduced as the generalization of the longest common substring
(there named “factor” to avoid confusion with LCS as the Longest Common
Subsequence problem) as finding the longest common shared match between
two sequences when up to k mismatches are allowed. Also this problem can
1 Here we use a slightly different notation than the one used in [4].
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be described in terms of the previously defined scheme, as it corresponds to
MaxCork. In [6] an O(nm) time and O(1) space solution is provided for a generic
k and two strings of length n and m respectively, and also an O(n+m) log(n+m)
solution for the case k = 1. Finally, in [2] an O(n logk+1 n) time and O(n) space
algorithm was proposed to provide a subquadratic solution to the kACS problem.

Within such a context, we focussed our attention on the computation of
the values of MaxCork(i), for all i = 1 . . . n, because such vector allows us to
compute the values of both MaxCork (or equally k-LCF) and of kACS, being
respectively:

MaxCork = max
i=1...n

MaxCork(i) (1)

kACS =
1
n

∑

i=1...n

MaxCork(i) (2)

3 The MissMax Algorithm

Our aim is to compute the values of MaxCork(i) for each position i in x. The
main idea behind the proposed algorithm is to avoid the computation of the
LCPk(Xi, Yj) for all pairs of positions i ∈ x and j ∈ y. To this purpose we will
compute the value of MaxCork(i + 1) starting from the value of the already
computed MaxCork(i). This procedure will initially give us a candidate longest
match Lmax that is at least equal to MaxCork(i−1)−1. We will use this infor-
mation, among some others that will be discussed in the following subsections,
to reduce the cardinality of the set C of possible candidates for approximate
matches longer than Lmax, and then we will verify them.

Note that, when computing the MaxCork(i) for each i, one can either take
track of their maximum value to compute MaxCork, or of their sum to later
compute kACS at no extra cost.

3.1 Initial Set Up: MaxCork(1)

We start with the computation of MaxCork(1) as the maximum approximate
match of the suffix X1 against the sequence y. For this purpose we will start
from, and exploit, the classical concept of longest common substring (without
any mismatch allowed).

Definition 1. Longest Common Substring
Given two sequences x and y, of length n, find the maximum length L for which
a pair of indexes (i, j) exists such that xi . . . xi+L−1 = yj . . . jj+L−1.

The problem of finding the longest common substring between two sequences
is a well known problem in pattern matching that can be solved in linear time by
the traversal of a generalized suffix tree of the two sequences. More in details, we
want to be able to find the longest common match starting at any two positions
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i in x and j in y. This problem can be solved through a call to the Lowest
Common Ancestor of the corresponding leaves ni and nj in the generalized
suffix tree. The length of the label of the path from the root to LCA(ni, nj) is
the length of their longest common prefix. LCA queries can be carried out for
any i and j in constant time after a linear-time preprocessing step [7].

In particular, similarly to the routine step in [9], we will perform k + 1
jump-extensions to compute the longest approximate match between X1 and
the generic Yj . As after the first jump-extension of length l1 we know we will
have a mismatch, we will call LCA on the nodes corresponding to positions
1+ l1 +1 and j + l1 +1, and repeat the procedure until the (k +1)-th mismatch
is found. This is repeated for each j = 1 . . . n, thus taking O(kn) time overall.

3.2 Minimum MaxCork from the Previous Step

Assume now we have computed L = MaxCork(i), and we want to compute
MaxCork(i + 1). Let j be the position in y of a longest approximate match of
Xi. Two cases may hold, which are illustrated in Figs. 1 and 2:

1. xi = yj: in this case the k mismatches all lie within x[i + 1, i + L − 1] and
y[j +1, j +L−1], respectively. Therefore we have LCPk(Xi+1, Yj+1) = L−1.
Note that this might or might not be the final MaxCork(i + 1) over all
positions of Y .

2. xi �= yj: in this case the mismatch between the first characters will be lost
when considering the alignment of i + 1 and j + 1, leading to k − 1 mis-
matches in the following L − 1 positions. After L positions we know we
must have a mismatch, which is now counted as the k-th. To finally obtain
LCPk(Xi+1, Yj+1) we need a further call to LCA on the nodes corresponding
to the positions i + L + 1 and j + L + 1 to obtain LCP0(Xi+L+1, Yj+L+1)
that will end on the (k + 1)-th mismatch. In summary: LCPk(Xi+1, Yj+1) =
L+LCP0(Xi+L+1, Yj+L+1). Again, note that this might or might not be the
final MaxCork(i + 1) over all positions of y.

Let Lmax be the candidate value for MaxCork(i + 1) obtained either from
Case 1 or Case 2.

Fig. 1. Candidate MaxCork(i + 1) from MaxCork(i) when xi = yj
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Fig. 2. Candidate MaxCork(i + 1) from MaxCork(i) when xi �= yj

3.3 Potential Candidates from the Previous Step

Let us consider now a generic position r in Y . We must have L′ = LCPk(Xi, Yr) ≤
L, since L was the absolute maximum found in the step to compute MaxCork(i).

If xi = yr then k mismatches lie between x[i + 1, i + L′ − 1] and y[r + 1, r +
L′ −1], respectively, and LCPk(Xi+1, Yr+1) = L′ −1 ≤ L−1. As a consequence,
the pair (i + 1, r + 1) can be ruled out as one that cannot have an approximate
match longer than the one we are currently considering (which is greater or equal
than L − 1). Note that this observation allows us to exclude from the candidate
set C all the positions r + 1 in y that are preceed by a symbol matching xi.

The case where xi �= yr is more involved. With reference to Fig. 3, the
aligment (Xi+1, Yr+1) loses the mismatch in the first position of the align-
ment (Xi, Yr), and includes the one at position i + L′ and r + L′, in x and
y respectively. To obtain the length of LCPk for this alignment we should add
LCP0(Xi+L′+1, Yr+L′+1), which gives the last exact contribution till the (k+1)-
th match. It may happen that the addition of this term to L′ allows one to
obtain a match longer than the potential MaxCork(i + 1) = Lmax we had from
the previously discussed Case 1 or Case 2. The main problem here is that we do
not know the value of L′.

We will then proceed by assuming r is indeed the site of a match longer
than the current maximum Lmax. If this is the case, the gap with Lmax must
be closed assuming the (k + 1)-th mismatch occurs after the positions i + L and
r + L in the two strings. As a consequence, LCP0(Xi+L, Yr+L) will end exactly
where LCP0(Xi+L′ , Yr+L′) would end (see Fig. 3).

If this value is indeed bigger than Lmax we need to make sure no further
mismatch was present between i+L′ and i+L. This can be checked by running
the jump-extension performed in the initial setup starting from positions i + 1
and r + 1 until k + 1 mismatches are found. Let Ltrue be the reached extension.
If its value is equal to L + LCP0(Xi+L+1, Yr+L+1) then the position r is the
new candidate position for the longest match of the suffix Xi in y, otherwise the
position is dropped, and the next candidate is considered.
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Fig. 3. Guessing the maximum extension between the suffix Xi and a candidate Yr

3.4 Theoretical and Practical Considerations

We now discuss some theoretical and practical issues emerging from the proposed
approach.

Theoretical Observations. The worst case complexity occurs when we inherit
from step i an initial candidate that is smaller or equal than MaxCork(i). In
such a case any position r for which xi+Lmax+1 = yr+Lmax+1 is a possible longer
match that we need to verify with the jump-extension. This lead to potential
O(n) candidate pairs per position i, and to a worst case time complexity O(kn2).

However, we observe that even in the worst case, at least the first symbol of
the last jump must be a match in order to have a longer match. Therefore, given
the generalixed suffix tree we built for x and y, it will suffice to check only the
positions r −L where r is a leaf in the subtree of the root with a label matching
xi+L. Assuming equal distribution, this means we have to check n

|Σ| positions,

and can safely ignore the others n × |Σ|−1
|Σ| positions that do not match.

Particular care needs to be taken if there are multiple longest matches from
the previous steps. All the corresponding positions need to be treated separately.
This is because when Lmax = MaxCork(i) − 1 = L − 1 and xi �= xr we will
have that xr+L lands on the k-th mismatch rather than on the first position
after that, thus ending up to erroneously discard position r + 1 from further
processing. For this reason, we keep track of all ties corresponding to a longest
match in a list, and add such positions to the set of candidates C that need to
be verified.

Furthermore, we actually need to check only those positions for which the cor-
responding LCA with Xi+L is at a depth greater than LCP0(Xi+L+1, Yj+L+1).
Statistics about the length of the longest common substring between two strings
comes handy at this point. The expected length of the longest common substring
is 2 logΣ n. The number of expected pairs (i, r) for which LCP0(Xi, Yr) = m is
n2pm, if we assume the uniform distribution and p = 1

|Σ| is the probability
of any symbol in Σ to occur in any position. Therefore, given the extension
LCP0(Xi, Yj) of the candidate pair, only those pairs with a match in the first
position after the last mismatch, and with an LCA deeper than LCP0(Xi, Yj)
should be considered. The larger LCP0(Xi, Yj), the smaller the number of occur-
rences to check.
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Practical Observations. Building indexing data structures can be expensive, and
so can be operations that are theoretically efficient. For example, it was already
observed in [9] that a naive extension to account for k mismatches gave better
performances than calling LCA (or than performing the equivalent operation on
an Enhanced Suffix Array [1], as they did). In our experiments we experienced
the same. Therefore, by keeping the original approach in mind, but avoiding
reference to indexing data structures, we developed a tool, implementing our
algorithm MissMax, in which the extensions are performed naively. Note that in
many cases we just need to perform a one-step extension, as the k-step extensions
are performed only in the initial step, and whenever we have a candidate with an
approximate match longer than Lmax. Also, to reduce the set C of candidates we
associate to each string a bitvector B. We then set up a position j if yj−1 �= xi−1

and yj+Lmax
= xi+Lmax

. This way we consider only positions that can be a site
of a longer or equal match, and substantially reduce the size of the candidate
set C. For DNA applications, when reading the input, we can build 4 bitvectors,
one for each symbol to speed up this computation. The position i of the bitvector
of the symbol s is set if and only if xi = s. When computing MaxCork(i + 1),
the first filter is given by the complement of the bitvector corresponding to xi.
To get the second filter we take the bitvector corresponding to the symbol xi+L

and shift it of L positions to the left. The bitwise AND of the two vectors is the
bitvector B mentioned above that holds the positions of C (to avoid a further
shift of one position to the right, when considering position j we look at the
value of this vector at position j − 1).

4 Preliminary Experimental Analysis

In this section we present the results of preliminary experiments we run to test
MissMax. Here we are not mainly interested in the improvement of the qual-
ity of the tree reconstruction with mismatches, that was already discussed in
both [4,9]. We are rather interested on the time needed to compute the values
of MaxCork(i), for all the positions i in a sequence x with respect to a sec-
ond sequence y, as a function of the input length. As explained in Sec.2, this
statistics can be used to compute both the MaxCork (i.e. the longest common
substring with k mismatches) based distance discussed in [4], and the kACS
distance discussed in [9]. Our algorithm is an exact algorithm based on filtering,
therefore one of the main aspects to investigate is the filtering power, which in
turn affects the time performances. For what concerns the comparison with other
algorithms, the algorithm described in [2], which holds the best known asymp-
totic complexity for the exact computation of the n values of MaxCork(i), has
no available implementation yet. On the other side, the algorithm behind kmacs
[9], which is available, is based on a greedy heuristics, which makes it very fast,
although it does not guarantee to find the optimal solution. Despite this major
difference, we tried to do some tests with it anyway. However, we did experienced
some unexpected behavior of kmacs on some of the input sequences we tried.
Because the reasons for the sudden decrease of performances we observed are
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Algorithm 1. Computing MaxCor(i) from MaxCor(i-1)
1: procedure missmax(string x, string y, int k )
2: MaxCor(1) ← k-jump extension between X1 and any Yj

3: MaxPos(1) ← the corresponding position
4: if There are more positions with the same MaxCor(1) then
5: Put them in a special list
6: end if
7: for each suffix i in x do
8: Compute the candidate MaxCork(i) = Lmax from MaxCork(i − 1)
9: Compute the candidate set C of potential sites for longer matches

10: Add to C the elements of the special list and clear it
11: for each position r ∈ C do
12: Compute potential longest match L
13: if L ≥ MaxCork(i) then
14: Compute the actual extension L′

15: if L = L′ then
16: if L > MaxCork(i) then
17: Update MaxCork(i) and MaxPos(i), and reset the special list
18: else
19: Add r to a special list
20: end if
21: end if
22: end if
23: end for
24: end for
25: end procedure

still unclear, we preferred not to report such results. Rather, we plan in the near
future to perform further experiments to understand what is going on, and to
guarantee a fair comparison.

As a consequence of the above considerations, the only algorithm left to com-
pare to is the naive solution to the problem. As the naive algorithm is quite slow, we
run this comparison on relatively short mithocondrial DNA sequences (16k bases)
taken from a dataset already used in [4,12]. The experiments were conducted on
different values of k and on prefixes of the input sequences of increasing length. We
also verified whether there was any difference in terms of performances by com-
paring two close species as Human and Chimpanzee (Fig. 4 - left), and two diver-
gent species as Human and Wallaroo (Fig. 4 - right). The figures clearly show an
increasing gain in performances when the length of the input sequence grows. We
also observe that the time needed for the computation depends on number of mis-
matches k.

To reveal possible dependencies of the filtering on the number of mismatches
k or on the input length n, we measured the minimum, maximum, and average
size of the candidate set C over all suffixes i. We noticed that such values are
constant in terms of percentage of the input length (therefore the longer the
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Fig. 4. Time performances as a function of the input size for different values of k.
The column of the left refers to two similar species (Human and Chimpanzee) and the
column to the right refers to two more different species, as Human and Wallaroo

input the bigger the candidate set), while the number of mismatches does not
seem to have much influence.

However, we also noticed that the comparison of similar sequences is faster
than the comparison of divergent species. This is somehow expected, as if a long
match (which is more likely between similar species than between divergent ones)
is found at some point, the filter is expected to work better. This is confirmed
by the data we collected. For divergent species the average size of the candidate
set for k = 5 is 7.14% of the input size, and for k = 100 it is 8.13%. For similar
species the average size of the candidate set is 5.54% and 5.08% of the input
length, for k = 5 and k = 100 respectively. For completeness of results, the
minimum was about 1% for both comparison, while the maximum was about
27% and 28% for similar and divergent species respectively.

The difference in terms of time performances for the comparison of two similar
and two divergent species can be better appreciated in Fig. 5.

To further investigate the scalability of the approach we perform similar tests
on longer sequences, avoiding the comparison with the slow naive algorithm.
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Fig. 5. Time performance of MissMax when comparing similar species and divergent
species for k = 5 (left) and k = 100 (right).

We took two similar Bacteria, the Streptococcus pneumonia and the Strepto-
coccus pyogenes, and an Eukariote, the Saccharomyces cerevisiae, and compute
the values of MaxCork(i) for all i among them. The results are reported in
Fig. 6, where we show the time required for three different values of k.

The average, minimum and maximum size of the candidate set C for this set
of experiments is shown in Fig. 7. The dependency of the size of the candidate
set on the number of mismatches k is more evident here.

As a final remark, we observe that the variance of the candidate set is quite
large as the number of candidates ranges from a minumum of about 2% to a
maximum 25% of the input size. It might be of interest to further study the
distribution of the size of C to detect possible bottlenecks and appropriate ways
to overcome them.

Fig. 6. Time performance of MissMax when comparing similar species (left) and diver-
gent species (right) for different values of the number k of allowed mismatches.

Fig. 7. Average, mimimum and maximum size of the candidate set, as a percentage of
the input length, for similar species (left) and divergent species (right)
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5 Concluding Remarks

In this work we proposed a filtering-based approach for the computation of the
longest common substring with k mismatches between each suffix of a sequence
x and a sequence y we want to compare to. This statistics is useful for the
computation of alignment free distances based on approximate matching, that
are a promising approach to improve the quality of alignment free sequence
comparison.
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Abstract. Traditionally, the merit of a rearrangement scenario between
two genomes has been measured based on a parsimony criteria alone; two
scenarios with the same number of rearrangements are considered equally
good. In this paper, we acknowledge that each rearrangement has a cer-
tain likelihood of occurring based on biological constraints, e.g. physi-
cal proximity of the DNA segments implicated, or repetitive sequences.
Accordingly, we propose optimization problems with the objective of max-
imizing overall likelihood, by weighting the rearrangements. We study a
binary weight function suitable to the representation of sets of genome
positions that are most likely to have swapped adjacencies. We give a
polynomial-time algorithm for the problem of finding a minimum weight
double cut and join (DCJ) scenario among all minimum length scenarios.
In the process, we solve an optimization problem on colored noncrossing
partitions which is a generalization of the Maximum Independent Set
problem on circle graphs.

1 Introduction

A huge body of work exists on modeling the evolution of whole chromosomes [10].
The main difference between such models is the set of rearrangements that they
allow. The moves of interest are usually inversion, transposition, translocation,
chromosome fission and fusion, deletion, insertion, and duplication.

Almost all versions of the problemareNP-Hard if contentmodifying operations
such at duplication, loss, and insertion are allowed [6,14]. Fortunately, amodel that
considers genomes with equal content (i.e. no duplications or insertions/deletions)
is quite pertinent, particularly in eukaryotes, since syntenic blocks of genes can be
assigned between genomes so that each block occurs exactly once in each genome.
For two genomes with equal content, double cut and join (DCJ) has been the model
of choice since it elegantly includes inversion, translocation, chromosome circular-
ization and linearization, as well as chromosome fission and fusion [3,27].

One of the most important problems in comparative genomics is the infer-
ence of ancestral gene orders, i.e. paleogenetics. Given a realistic model of evo-
lution, one can infer ancestral adjacencies of high confidence from present-day
genomes [4,15,20]. However, methods that attempt to infer deeper structure
c© Springer-Verlag Berlin Heidelberg 2015
M. Pop and H. Touzet (Eds.): WABI 2015, LNBI 9289, pp. 243–256, 2015.
DOI: 10.1007/978-3-662-48221-6 18
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for ancestral species suffer due to the huge number of parsimonious scenarios
between genomes [1,13,22].

The apparent difficulty of the ancestral inference problem — because of the
potentially astronomical number of parsimonious sorting scenarios — highlights
the importance of methods that infer scenarios that conform to some extra bio-
logical constraints. Yet, aside from methods that weight inversions based on their
length [2,5,11,17,21], to our knowledge no work exists in this direction.

In this paper we use a weight function on rearrangements suitable for mod-
eling positional constraints, i.e. sets of positions in the genome that are likely to
swap adjacencies. Two examples of constraints that fit this paradigm are: (1) the
physical 3D location of DNA segments in a nucleus and, (2) repetitive sequences
that are the cause or consequence of rearrangement mechanisms. We illustrate
the utility of our model with 3D constraints in Sect. 1.4.

We propose a general optimization problem that minimizes the sum of weights
over the moves in a scenario. A more constrained version of the problem asks for
such a scenario out of all possible unweighted parsimonious scenarios. Our algo-
rithm solves this version of the problem in polynomial time given a binary weight
function, despite an exponential growth of the number of parsimonious DCJ sce-
narios with respect to the distance [7,19]. The commutation properties of DCJ
moves as studied in [19] link certain DCJ scenarios to noncrossing partitions. Our
algorithm relies on solving a new optimization problem on colored noncrossing
partitions, called Minimum Noncrossing Colored Partition. It is a general-
ization of the Maximum Independent Set problem on circle graphs [12,18,25].

1.1 Genomes as Sets of Signed Integers

A gene, or more generally a syntenic block of genes, will be represented by a
signed integer. A chromosome is a sequence of blocks, and a genome is a set
of chromosomes. Thus, we write a genome in list notation where a block is a
positive integer if read in one direction in the genome, and a negative integer if
read in the opposite direction. For example, a genome A can be written as

{(◦, 5,−1,−2, 6,−4,−8, ◦), (◦,−3, 7, ◦), (9, 10)},

where ◦ represents a telomere at the end of a linear chromosome. Genome A has
two linear chromosomes and a circular chromosome (9, 10).

Alternatively, the organization of the blocks on the chromosomes can be given
by the set of adjacencies between the extremities of consecutive blocks. A block b
has a tail extremity, written bt, and a head extremity, written bh. Thus, the adja-
cency between 5 and −1 in A is {5h, 1h}. A block that is on the end of a linear
chromosome implies a telomeric adjacency . The first chromosome has two such
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adjacencies: {◦, 5t} and {8t, ◦}. A circular chromosome has no telomeres, i.e. the
last block is adjacent to the first. We can write genome A using adjacencies as

A =
{{{◦, 5t}, {5h, 1h}, {1t, 2h}, {2t, 6t}, {6h, 4h}, {4t, 8h}, {8t, ◦}}

,
{{◦, 3h}, {3t, 7t}, {7h, ◦}}

,
{{9h, 10t}, {10h, 9t}

}}
.

1.2 DCJ and Sorting DCJs

Double cut and join (DCJ) is an operation on a genome that cuts one or two
adjacencies, and glues the resulting ends back together according to the following
rules [3]:

1. If a single adjacency is cut, then add new telomeres to the resulting ends
(resulting in two new telomeric adjacencies).

2. If two adjacencies are cut, then glue the adjacencies back in one of two new
ways.

Application of a single DCJ corresponds to diverse genomic operations such
as inversion, chromosome linearization and circularization, transposition, and
excision of a circular chromosome.

The DCJ distance between genomes A and B is the minimum number of
DCJ moves needed to transform A into B. DCJs that move A closer to B, called
sorting DCJs, can be found using a graph. The colored adjacency graph for A
and B is a graph G(A,B, col) whose vertices are the extremities and telomeres
of A and B, and whose edges are colored by the color function col. For each
adjacency in A or B an adjacency edge links the corresponding nodes of the
adjacency, and a cross edge links non-telomere vertices from A to vertices with
the same label in B. The graph for genomes

A =
{{{◦, 5t}, {5h, 1h}, {1t, 2h}, {2t, 6t}, {6h, 4h}, {4t, 8h}, {8t, ◦}}

,
{{◦, 3h}, {3t, 7t}, {7h, ◦}}}

, and

B =
{{{◦, 1t}, {1h, 2t}, {2h, 3t}, {3h, 4t}, {4h, 5t}, {5h, 6t}, {6h, ◦}}

,
{{◦, 7t}, {7h, 8t}, {8h, ◦}}}

is given in Fig. 1. It is easy to confirm that the adjacency and cross edges each
form a matching, so that each connected component of the graph will be either
a cycle or a path. Note that connected components of the graph are only loosely
related to the chromosomes; connected components can span multiple chromo-
somes.

We denote a cross edge by the label of the vertices that they connect. We
denote the connected components of the graph by the set of cross edges that
comprise them. The connected components of the graph in Fig. 1 are {5t, 4h, 6h},
{5h, 6t, 2t, 1h}, {1t, 2h, 3t, 7t}, {8t, 7h}, and {3h, 4t, 8h}. The length of a path or
a cycle is the number of cross edges it has.
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A :

B :

5  1  2 6  4  8  3 7

1 2 3 4 5 6 7 8

- - - - -

Fig. 1. The colored adjacency graph G(A, B, col). Black edges are adjacency edges and
gray edges are cross edges. The color function col maps adjacency edges of genome A
to the alphabet {a, b, c, d}.

To find sorting DCJs, we categorize the connected components by length. In
Fig. 1 there is one cycle, two even-length paths, and two odd-length paths. The
formula for the DCJ distance is

dDCJ(A,B) = N − (C + I/2) (1)

where N is the number of blocks, C is the number of cycles, and I is the num-
ber of odd-length paths in G(A,B) [3]. Figure 2 depicts a comprehensive list of
the possible sorting DCJs on an adjacency graph, and describes the conditions
under which they may be applied. See Proposition 1 of [19] for a more thorough
treatment. G(A,A), for some genome A, will always have 2M paths of length
one and N − M cycles of length two, where M is the number of chromosomes
and N is the number of blocks.

Fig. 2. All possible DCJs that move one genome closer to the other. Adjacency edges
are contracted, so that only the cross edges are shown in the connected components.
Endpoints that are affected by the DCJ are circled. In the top row, extracting a cycle
from (a) an even-length path, (b) an odd-length path, and (c) a cycle are depicted.
Even-length paths can be combined to form two odd-length paths if one of the paths
has endpoints in genome A and the other in genome B, as depicted in (d). An even-
length path can be split into two odd length paths if the split is done in the genome
with fewer vertices in the path, as depicted in (e).
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1.3 The Minimum Weighted Rearrangements Problem

Consider a genome Ai made of a set of linear or circular chromosomes. Each
rearrangement on this genome may have a certain likelihood of occurring. In
Sect. 1.5 we will describe a DCJ move on G(Ai, B) as a reconnection of two adja-
cency edges of G(Ai, B); the resulting graph G(Ai+1, B) is identical to G(Ai, B)
aside from the connectivity of two adjacency edges. Therefore there is a bijection
between edges of G(Ai, B) and edges of G(Ai+1, B), so we can weight all pairs of
genome adjacencies occurring in a sorting scenario by weighting all pairs of adja-
cency edges in G(A,B). For the set P of all pairs of adjacency edges in genome A,
the weight function for a pair is w : P �→ R+, where R+ denotes the non-negative
real numbers. The higher the value of w the less likely the rearrangement is to
occur, e.g. a value of 0 represents a most likely rearrangement.

A sequence of rearrangements ρ1, ρ2, . . . , ρd such that (· · · ((Aρ1)ρ2) · · · ρd) =
B is called a sorting scenario. The weight of a scenario is the sum of the
weights of all the rearrangements in the scenario, i.e.

∑d
i=1 w(ρi). The Mini-

mum Weighted Rearrangements problem is the following.

Problem 1. Minimum Weighted Rearrangements

INPUT: Genomes A and B and a weight function w.
OUTPUT: A scenario of rearrangements turning A into B.
MEASURE: The weight of the scenario.

1.4 Positional Constraints as Colored Adjacencies

Although chromosomes are represented as linear or circular sequences of syntenic
blocks, in reality they correspond to molecules whose conformation within the
nucleus is complex. Recent technological advances, called Hi-C, allow the mapping
of chromosome conformation in various cell types and species [8,9,16,23,28]. The
positional constraints introduced here are based on the principle that rearrange-
ments (DCJ moves) involving pairs of adjacencies that are close in 3D space are
more frequent than others. This model is supported by the pioneering work of
Véron, et al. [26], who showed that loci that are distant in the linear ordering of
the human chromosome yet close in the ordering of the mouse chromosome, are
physically close (in 3D) in the human chromosome. Recently we have conducted
a study on rearrangement scenarios showing that breakpoint pairs comprising a
rearrangement are closer than expected by chance for intrachromosomal and inter-
chromosomal rearrangements. This is true for multiple cell types from multiple
laboratories [24]. In this paper, we use the observation that many moves are local
to constrain the rearrangement scenarios that we compute. We call this the posi-
tional constraint.

We incorporate the constraint by grouping adjacencies of the genome into
classes that are more likely to swap endpoints. This idea is illustrated in Fig. 3,
where the physical (3D) structure of genome A is drawn and the adjacencies
are grouped into colored localities. According to Véron et al. [26] and our recent
results [24], rearrangements are more likely to occur between adjacencies at the
same position.
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Fig. 3. (a) A 2D cartoon of a possible 3D configuration for genome A. Adjacencies
between syntenic blocks are classified by physically close regions, which are marked by
dashed circles and labeled by the alphabet {a, b, c, d}. (b) Genome A after a reciprocal
translocation has occurred at position b. (c) Genome A after an excision has occurred
at position b.

Fig. 4. The update of colors by a DCJ. (a) Adjacency edges with colors x and y
are reconfigured in two different ways for the same DCJ operation. In this case the
reconfigurations are achieved by swapping either both right-hand endpoints or both
left-hand endpoints of the adjacency edges. (b) The adjacency edge with color x is
split to make two adjacencies of color x with two new telomeres.

1.5 Locality and the Adjacency Graph

Each adjacency edge in G corresponds to an adjacency in genome A or B. The
color of an adjacency is given to the adjacency edge it corresponds to. Figure 1
shows a coloring for the adjacencies of genome A that matches the localities in
Fig. 3. The application of a DCJ operation to a genome has the effect of swapping
the endpoints of two adjacency edges, or splitting an adjacency edge as in the
case of Fig. 4(e).

Throughout a DCJ sorting scenario, adjacency edges always keep the same
color. Thus, each DCJ operation corresponds to one of two possible updates of
the same pair of adjacency edges, as depicted in Fig. 4(a).

1.6 A Positional Weight Function

Categorize rearrangements into two sets: those that are likely, and those that are
not. Such a categorization of rearrangements is powerful enough to encapsulate
the positional property discussed earlier.

A DCJ ρ acts on one or two adjacencies. Our model labels each adjacency
with some color from an alphabet Σ, and weights a DCJ based on the colors
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that are acted upon. Call iρ and jρ the adjacencies affected by ρ; iρ = jρ if
the DCJ acts on only a single adjacency, e.g. case (e) in Fig. 2. The color of an
adjacency iρ is written col(iρ). Given a DCJ ρ, our weight function is

w(ρ) =
{

0 if iρ = jρ or col(iρ) = col(jρ)
1 otherwise.

We call those DCJ moves that have zero weight likely, while we call all others
rare. It is trivial to evaluate our weight function for a given DCJ; simply check
the colors of the two adjacency edges that are affected.

Two restricted versions of the general problem are now described. The prob-
lem Minimum Local Scenario is exactly Minimum Weighted Rearrange-
ments with the positional weight function w.

Problem 2 (MLS). Minimum Local Scenario

INPUT: Genomes A and B and positional weight function w.
OUTPUT: A scenario of rearrangements turning A into B.
MEASURE: The weight of the scenario.

The problem Minimum Local Parsimonious Scenario introduces the con-
straint that the scenario output is also a parsimonious scenario, i.e. a scenario
of minimum length.

Problem 3 (MLPS). Minimum Local Parsimonious Scenario

INPUT: Genomes A and B and positional weight function w.
OUTPUT: A parsimonious scenario of rearrangements turning A into B.
MEASURE: The weight of the scenario.

2 Minimum Local Parsimonious Scenario

Since a solution to Minimum Local Parsimonious Scenario is limited to
sorting moves, most connected components of G(A,B, col) must be sorted inde-
pendently of each other, the exception being for even-length paths; all but one
DCJ in Fig. 2 act on a single connected component. We first give a method for
computing the number of rare operations per connected component when no
pair of even-length paths exist, as in Fig. 2(d). We then show in Sect. 2.2 how to
solve the problem when such pairs exist.

2.1 Colored Partitions

Consider a connected component C of the graph G(A,B, col). If C is monochro-
matic, i.e. has adjacency edges of a single color, then the component can be
sorted with likely DCJs according to the listed moves in Fig. 2; the move that
operates on more than one component in Fig. 2(d) need not be used since each
path can be split on its own with a local move, as in Fig. 2(e). If C is polychro-
matic then DCJs must be performed to separate the colors, since a fully sorted
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Fig. 5. Colored partitions for the set [1, 8] where col(1) = b, col(2) = a, col(3) = b,
col(4) = c, col(5) = a, col(6) = d, col(7) = a, and col(8) = c. Vertices are cir-
cles numbered by their order in the set [1, 8] and labeled by their color. Thick black
lines are drawn between vertices that are in the same class of the partition. (a) The
crossing partition {{1, 3}, {2, 5, 7}, {4, 8}, {6}}. (b) The optimal noncrossing partition
{{1, 3}, {2}, {4, 8}, {5, 7}, {6}}. (c) The instance embedded on a line.

genome has components that each have only a single colored adjacency edge in
genome A.

Recall that AA-paths and BB-paths are paths that start and end in the
same genome. In this subsection, we assume that there does not exist both
an AA-path and a BB-path in the graph (Fig. 2(d)). Ouangraoua and Bergeron
established that the DCJs in a sorting scenario can be done in any order for such a
graph and that every component will be sorted independently, thereby defining a
noncrossing partition on each component (see Sects. 3 and 4 of [19]). Later in this
section we show that Minimum Local Parsimonious Scenario on a single
component is equivalent to the following problem concerning a generalization of
noncrossing partitions. A partition of a set is a collection of pairwise disjoint
subsets whose union is the entire set. The subsets are called classes. [1, n] is the
set of integers from 1 to n.

Definition 1. A noncrossing partition is a partition P of [1, n] such that for
any classes Si, Sj ∈ P if we have p < q < p′ < q′ for p, p′ ∈ Si and q, q′ ∈ Sj,
then Si = Sj. A noncrossing colored partition is a noncrossing partition where
for any p, p′ ∈ Si, col(p) = col(p′).

Another way to define a noncrossing partition is on a convex polygon. A non-
crossing partition is a partition of the vertices of an n-gon with the property
that if you draw a line between all pairs of vertices in the same class, for all
classes, then no two lines from different classes intersect. A colored partition has
colored vertices, and respects the property that any pair of vertices in the same
class of the partition have the same color (see Figs. 5(a) and (b)).

Problem 4 (MNCP). Minimum Noncrossing Colored Partition

INPUT: Set size n, color set Σ, and color function col : [1, n] → Σ.
OUTPUT: A noncrossing colored partition.
MEASURE: The cardinality of the partition.
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Wepresent apolynomial-timealgorithm for theMinimumNoncrossingCol-
ored Partition problem, which according to Lemma 2 (later in this section)
gives a solution to Minimum Local Parsimonious Scenario on a single com-
ponent. We describe the algorithm on an instance that has been embedded on a
line where the left-most vertex 1 represents the smallest element of the set, as
shown in Fig. 5(c). For an interval [i, j], let NCP (i, j) be the number of classes in
the MNCP on that subproblem. Thus, NCP (1, n) corresponds to the Minimum
Noncrossing Colored Partition of [1, n].

For any interval [i, j] we have NCP (i, i) = 1, and the following recurrence.

NCP (i, j) = min

⎧
⎨

⎩

NCP (i, j − 1) + 1 for i < j,
NCP (i, j − 1) for i < j and col(i) = col(j)
NCP (i, k − 1) + NCP (k, j) for all k where i < k < j

The first case corresponds to the creation of a new class with the single element j.
The second case is applicable when element j is the same color as element i; in this
case i and j become part of the same class, all the other classes staying the same.
The third case tests combinations of subproblems; this case is pertinent when the
col(i) = col(k−1) or col(k) = col(j). It is easy to confirm that any feasible solution
to MNCP is scored by the recurrence. This dynamic program runs in O(n3) time
in the worst case.

We now show the link between MLPS and MNCP. Consider component C to
be sorted. Pick an arbitrary vertex of C if it is a cycle, or either endpoint of C if
it is a path, and consider an ordering of the vertices of genome A based on a tra-
versal of the edges of C from that vertex. Embed the vertices of the component on
a circle with respect to that ordering, and the edges so that they remain inside
the circle. Call this a circular embedding of the component. Consider a sorting
scenario for C that corresponds to a sequence of adjacency graphs C0, C1, . . . , Cd

(C = C0). Call C◦
i the graph Ci with vertices embedded according to the circular

embedding of C0.

Lemma 1 ([19]). C◦
i has no pair of crossing adjacency edges for any i.

Proof. By construction, all adjacency edges in C◦
0 connect adjacent vertices on the

circle, so none of them cross. Assume that C◦
j has crossing adjacency edges and

C◦
j−1 does not. This implies that the jth DCJ did not split a component. This is

a contradiction since every sorting move on C splits a component, never creating
both an AA-path and BB-path. ��
Lemma 2. Given a connected component C, Minimum Local Parsimonious
Scenario on C can be solved by MinimumNoncrossing Colored Partition.

Proof. First, transform an instance ofMLPS on a single component to an instance
ofMNCP. Given a cycle C representing genomes A and B, map the set of elements
[1, n] from the set of adjacency edges of A ordered according to a circular embed-
ding of C. The color function col maps each element to its corresponding adjacency
edge’s color.
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Now transform an optimal solution of MNCP into an optimal solution for
MLPS. Clearly, any partition of [1, n] corresponds to a partition of adjacency edges
of genome A. We show that there always exists a scenario of DCJs whose prefix sep-
arates C into connected components according to the partition. Any two edges of
the same component can be chosen for a DCJ [19] and the DCJs on a cycle can be
done in any order (Lemma 1). Since the ordering of the edges on the cycle corre-
sponds to the ordering on [1, n], an edge partition of size k can be achieved with
k − 1 DCJs. Since k is minimum over all feasible partitions and the remaining
DCJs of the scenario are likely, the constructed scenario has a minimum number of
rare DCJs. ��
In fact, the two problems are equivalent. We omit the reduction in the other direc-
tion since it is out of the scope of this paper.

2.2 Even-length Paths

AMinimumNoncrossingColoredPartition can be computed in polynomial
time for a single component independent of all others. Yet it is possible to merge
components in a parsimonious DCJ scenario. As described in Fig. 2, the only parsi-
monious DCJs thatmerge components are those that act on one edge from an AA-
path and one edge from a BB-path. Call AA (BB respectively) the set of AA-paths
(BB-paths respectively) in the adjacency graph. The key observation is that once
a path has been merged with another, the result is always two odd-length paths
which subsequently cannot be merged with any other. Thus we devote this section
to the computation of which pairs (a, b) ∈ AA × BB will be merged in an optimal
solution, and which paths will remain unmerged.

Any pair (a, b) can be merged in several ways. For all possible DCJs that merge
them,we compute theMNCP on the resulting components.TheminimumMNCP
over all merges is the cost in rare moves for merging the two paths. To compute the
pairs of paths to be merged in an optimal solution, we use the inverse of these costs
— the number of likely moves — as weights in a bipartite graph.

Take the elements of AA and BB as vertices in a complete bipartite graph, and
label each edge (a, b) with the maximum number of likely DCJs for the merge of
paths a and b. Any even-length path could alternatively be used independently of
any other, so there is a vertex q′ for each q ∈ AA ∪ BB with a single edge (q, q′)
labeled by the number of likely moves on q alone (computed using the MNCP on
that component). Algorithm 1 computes the minimum number of rare DCJs in a
parsimonious scenario. It is easy to modify the algorithm to give the list of DCJs.

The function MNCPonComp(a, col) computes the Minimum Noncrossing
Colored Partition on the given component a. In other words it builds the color
function col according to the component a and then calls MNCP (1, n, col) where
n is the number of adjacency edges on the A side of the component a. The function
maxMerge(a, b) computes the maximum number of likely DCJs over all possible
DCJs that use one edge from a and one edge from b. The function d(AA) computes
the sum of DCJ distances from each component in AA using Formula 1. The func-
tion maxMatching(VA, VB , w) builds the bipartite graph with vertices VA on one
side and vertices VB on the other, and the edges described by the weight function w.
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Algorithm 1. MLPS(A,B)
Input: genomes A and B.
Output: cost of parsimonious scenario with a minimum number of rare DCJs.

� Sort the graph components by type:
C ← set of cycles in G(A, B, col)
P ← set of odd-length paths in G(A, B, col)
AA ← set of AA-paths in G(A, B, col)
BB ← set of BB-paths in G(A, B, col)

� Compute the cost of the cycles and odd-length paths:
cost ← 0
for c ∈ C do

cost ← cost + MNCPonComp(c, col) − 1
end for
for p ∈ P do

cost ← cost + MNCPonComp(p, col) − 1
end for

� Compute the cost of the even-length paths:
for a ∈ AA do � Compute weights for not merging AA vertices:

VA ← VA ∪ {a, a′}
w(a, a′) ← MNCPonComp(a, col) − 1

end for
for b ∈ BB do � Compute weights for not merging BB vertices:

VB ← VB ∪ {b, b′}
w(b, b′) ← MNCPonComp(b, col) − 1

end for
for a ∈ AA do � Compute weights for merges:

for b ∈ BB do
w(a, b) ← maxMerge(a, b)

end for
end for

� Build the bipartite graph and compute the matching:
cost ← cost + d(AA) + d(BB) − maxMatching(VA, VB , w)
return cost

To summarize, any path can be merged at most once in a parsimonious sce-
nario. Potential merges, as well as potential non-merges, are encoded into a bipar-
tite graphwith edgesweighted by the cost of amerge.Amaximumweightmatching
in this graph corresponds to a scenario that minimizes the number of rare moves
on the paths. All other connected components of the graph are sorted using the
Minimum Noncrossing Colored Partition on the component.

The running time of our algorithm is dominated by the weighting of the edges
on the bipartite graph. Consider all merges done between elements of AA and ele-
ments of BB. A particular adjacency edge e from a given path a ∈ AA will take
part in exactly one DCJ with every edge f from a path b ∈ BB throughout the
weighting process. Therefore for each pair (e, f), e being an edge from a path in
AA and f being an edge from a path in BB, we will compute the MNCP on the
resulting merge. If the number of edges in the pathsAA (respectively BB) is n(AA)
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(respectivelyn(BB)), then the running timeof our algorithm isO(n(AA)n(BB)n3).
In the worst case, half of the edges are used in AA-paths and half in BB-paths,
yielding a running time of O(n5). We conjecture that in practice even-length paths
are rare, yielding a running time of O(n3).

3 Conclusion

The number of parsimonious DCJ scenarios between two genomes is exponential
in the distance between them. However, many of the scenarios are probably unre-
alistic in the biological sense. This paper takes a step towards modeling realistic
scenarios by posing optimization problems that take into account positional con-
straints. An example of such a positional constraint is the 3D proximity of genome
segments given by Hi-C experiments.

An O(n5) algorithm is proposed for computing a parsimonious DCJ scenario
that is most likely, given a function that classifies DCJ as “likely” or “unlikely”. In
practice the algorithm will be O(n3) since we expect long even-length path to be
rare in nature. For example, the adjacency graph for the mouse/human syntenic
map built by Véron, et al. [26] from one-to-one orthologs in Biomart has only 182
edges in even-length paths out of a total of 13302 edges. The largest connected
component has 35 edges.

From a biological perspective, a solution to Minimum Local Parsimonious
Scenario corresponds to finding a maximum likelihood scenario in a situation
where likely and unlikely scenarios are both rare, and the difference between the
likelihoods of likely and unlikely moves is not very large. In this situation, a most
parsimonious scenario made of k unlikely moves is more likely than a non-
parsimonious scenario made of k + 1 likely moves. Thus the maximum likelihood
scenario is the most parsimonious scenario that involves the smallest number of
unlikely moves.

We introduce the Minimum Noncrossing Colored Partition problem —
a generalization of the Maximum Independent Set problem on circle graphs
— for weighting the edges of a bipartite graph, on which we obtain a maximum
matching. While this technique is essential to our algorithm for finding DCJ
scenarios, we believe it will also come in handy for an algorithm that finds likely
inversion scenarios (e.g. for handling the infamous “hurdles”). A multitude of bio-
logically relevant variations on this problemexist, includingvariations on themodel
of genome rearrangement, a variant where edges have multiple colors, and a bi-
directional sorting variant where edges are weighted on both genomes according
to the chromatin conformation on each. Models that incorporate uncertainty or
evolution in the Hi-C data would also be relevant.We hope that this work provokes
further study from both the algorithmic and the biological perspectives.
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Abstract. RNA secondary structure prediction by energy minimiza-
tion is the central computational tool for the analysis of structural non-
coding RNAs and their interactions. Sparsification has been successfully
applied to improve the time efficiency of various structure prediction
algorithms while guaranteeing the same result; however, for many such
folding problems, space efficiency is of even greater concern, in particu-
lar for long RNAs and complex folding algorithms. So far, space-efficient
sparsified RNA folding with fold reconstruction was solved only for sim-
ple pseudo-energy models. Here, we revisit the problem of space-efficient
free energy minimization. Whereas the space-efficient minimization of
the free energy has been sketched before, the reconstruction of the opti-
mum structure has not even been discussed. We show that this recon-
struction is not possible in trivial extension of the method for simple
energy models. Then, we present the time- and space-efficient sparsified
free energy minimization algorithm SparseMFEFold, which guarantees
optimal structure prediction. In particular, this novel algorithm provides
efficient fold reconstruction based on dynamically garbage collected trace
arrows. We provide theoretical and empirical results on the efficiency of
the method. SparseMFEFold is free software, available at http://www.
bioinf.uni-leipzig.de/∼will/Software/SparseMFEFold.

Keywords: Space efficient sparsification · Pseudoknot-free rna folding ·
RNA secondary structure prediction

1 Introduction

The manifold catalytic and regulatory functions of non-coding RNAs are medi-
ated by the formation of inter-molecular structures with other RNAs or proteins,
as well as their intra-molecular structures [3,5,10]. Currently computational
RNA structure prediction methods mainly focus on predicting RNA secondary
structure - the set of base pairs that form when RNA molecules fold. There is
evidence that RNA molecules in their natural environments usually fold to their
minimum free energy (MFE) secondary structure [16]. This motivates various
c© Springer-Verlag Berlin Heidelberg 2015
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algorithms that predict MFE secondary structures of RNAs. Commonly, the free
energy of a secondary structure is calculated by summing up the energies of its
single features, where these energies are empirically determined [9]. MFE-based
methods are applicable in cases of novel RNAs with unknown function, design
applications in biotechnology and interacting RNAs.

Recently, sparsification techniques were applied to improve time and space
efficiency of various RNA folding algorithms, while guaranteeing the same result.
Wexler et al. [17] reduced the time complexity of standard MFE RNA folding by
saving redundant recursion cases in the complexity-limiting step of the dynamic
programming algorithm. For this purpose, they introduced candidates, which –
by and large – are understood as sub-instances that cannot be optimally parti-
tioned into two smaller sub-instances (cf. folding recursions of Fig. 1).

The approach of Wexler et al., which solely improves time efficiency, was
implemented for the full free energy model by Dimitrieva and Bucher [4]. Beyond
standard folding, these ideas have been studied for more complex folding algo-
rithms, namely pseudoknot folding [11] and RNA-RNA-interaction [14].

Backofen et al. [2] showed that the concept of candidates can be extended to
improve time and space of RNA folding in base pair-based (bp-based) pseudo-
energy models (i.e. a generalized form of base pair maximization [12]). The two
subproblems, energy minimization and fold reconstruction, are commonly solved
by dynamic programming (DP) and trace-back through the DP matrix, respec-
tively. Instead of storing the entire DP matrix, Backofen et al. [2] saved space by
storing only a single matrix row (in the case of MFE prediction, several rows) as
well as a list of candidates. This suffices to solve energy minimization subprob-
lem, and at the same time allows efficient reconstruction of the optimal structure
by recomputing matrix rows during trace-back. Note that [14] transferred Back-
ofen et al.’s space savings to MFE RNA-RNA-interaction prediction, however
only without space-efficient fold reconstruction.

Contributions: We show that the fold reconstruction method suggested by Back-
ofen et al. cannot be trivially transferred beyond bp-based models. Consequently,
we present a space-saving sparse MFE prediction algorithm with fold recon-
struction. In preparation, we present space-efficient MFE folding without fold
reconstruction for the MFE folding algorithm of [19], which extends [18] by mul-
tiloop penalties and is implemented by modern RNA folding software [6]; to the
best of our knowledge, even this algorithm is presented here for the first time.
Our efficient fold reconstruction algorithm keeps the additional information to
a minimum using garbage collection. Whereas we present our techniques for the
most common case of RNA MFE folding, they are intentionally more general;
in particular, they can be transferred to complex sparsified folding algorithms
(e.g., [11,14]), as well as simultaneous alignment and folding [15], which profit
from sparsification even stronger than standard folding.
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2 Time and Space Efficient Computation of the MFE

An RNA sequence S = S1, . . . , Sn is represented as a sequence over the alphabet
{A,C,G,U}. Si,j denotes the subsequence Si, . . . , Sj . Fix an RNA sequence S of
length n. A base pair of S is an ordered pair i.j with 1 ≤ i < j ≤ n, such that ith
and jth bases of S are complementary (i.e. {Si, Sj} is one of {A,U}, {C,G}, or
{G,U}). A secondary structure R for S is a set of base pairs such that for all i.j,
i′.j′ ∈ R: {i, j} ∩ {i′, j′} = ∅. Base pairs of secondary structure R partition the
unpaired bases of sequence S into loops [13] (i.e., hairpin loop, internal loop and
multiloop). Hairpin loops have a minimum length of m; consequently, j − i > m
for all base pairs i.j of R. A secondary structure R is pseudoknot-free if it does
not contain i.j and i′.j′ such that i < i′ < j < j′.

2.1 Time and Space Efficient Bp-Based Folding

The simplest form of RNA folding minimizes a bp-based (pseudo-)energy; the
most prominent special case is base pair maximization, in which (equivalently
put), each base pair is assigned −1 if it is complementary and +∞ otherwise. The
bp-based energy E of a structure R is then: Ebp(R) =

∑
i.j∈R Ebp(i.j). Since bp-

based models by nature cannot capture thermodynamics of even stacked loops,
here we reserve the term free energy minimization to refer to optimization in
loop-based energy models. In a loop-based energy model, free energy of hairpin
loop closed by i.j and internal loop (including stacked and bulge loops) closed
by i.j and k.l as external and internal base pairs are referred to by H(i, j), and
I(i, j, k, l), respectively. Following common practice we limit the size of internal
loops to M to cap the time complexity to O(n3). Free energy of multiloops is
calculated from their numbers of inner base pairs, p, and unpaired bases, q, as
follows: ML(i, j, p, q) = a+b p+c q [9]. Energy of a structure R is then calculated
as: E(R) =

∑
�∈loops(R) Eloop(�).

Fig. 1. Graphical representation of the sparse bp-based energy minimization recur-
sions. A minimum energy general substructure (L, lined pattern) over region [i, j] is a
closed structure (Lc, solid arcs) or it is partitionable into two substructures (L̂p, dotted
arcs). Sparsification restricts the minimization over the partitions in the second row
to consider only candidates [k, j] for the second fragment; candidates are defined as
sub-instances that are not optimally partitionable, i.e. Lc(i, j) < L̂p(i, j).
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To find the minimum free energy of substructures for region [1, n], L(1, n),
a dynamic programming algorithm, with similar recurrences as follows, is used;
in which Lc(i, j) corresponds to “closed” substructures (i.e., closed by base pair
i.j) and Lp(i, j) to “partitionable” substructures, which can be optimally decom-
posed into two independent subparts.

L(i, j) = min{Lp(i, j), Lc(i, j)}
Lp(i, j) = min{L(i, j − 1), min

i<k<j
L(i, k − 1) + L(k, j) }

Lc(i, j) = L(i + 1, j − 1) + Ebp(i.j),

where 1 ≤ i < j ≤ n, Lp(i, i) = Lc(i, i) = +∞ and L(i, i) = 0.
We obtain equivalent sparsified recursions after replacing Lp(i, j) by L̂p(i, j)1:

L̂p(i, j) = min{L(i, j − 1), min
[k, j] is candidate, k > i

L(i, k − 1) + Lc(k, j)}, (L̂p)

where [i, j] is an L-candidate, i.e., a candidate for recursion L, iff Lc(i, j) <
L̂p(i, j) (see Fig. 1). If, for i < j, [i, j] is not an L-candidate, we call it
L-partitionable. Note that here we consider [i, i] as neither candidates nor par-
titionable, whereas in [2] they are considered as candidates. To prove the cor-
rectness one has to show L̂p(i, j) = Lp(i, j); this follows the triangle inequality
L(i, j) ≤ L(i, k − 1) + L(k, j) (for all 1 ≤ i < k ≤ j ≤ n) [2].

Backofen et al. [2] improved the time and space efficiency of O(n3) and O(n2)
in the non-sparsified version to O(n2 + n · ZL) and Θ(n + ZL) respectively,
where ZL is the total number of candidates; typically ZL << n2. The efficient
implementation, which computes the matrix entries row by row starting with row
n, is based on two further observations: (1) During the DP algorithm, one can
maintain an appropriate data structure that allows traversing the candidates
[k, j] of Eq. (L̂p) in time linear to the number of candidates [k, j]. The data
structure takes Θ(ZL) space. (2) In addition to storing Lc for all candidates in
Θ(ZL) space, for computing row i, it suffices to store the rows i and i + 1, the
latter for accessing L(i + 1, j − 1), at any given time in the DP evaluation.

2.2 Time and Space Efficient Calculation of the MFE

Whereas Wexler et al. [17] sparsified the recursions of [18], we build on the
recursions of [19], since they are used by modern folding software [6]. These
recursions are explicitly given in [6] using matrix symbols C, F , and FM .
For reference, we restate these original recursions in our notation and using
respective symbols V , W , and WM ; the symbols V and W are taken from [18],
which makes the presentation closer to Wexler et al.

1 i.e., we replace the recursion Lp(i, j) by Eq. (L̂p) and replace the symbol Lp(i, j) by
L̂p(i, j) in the recursion L.
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Definition 1 (Free energy minimization recursions from [6]).

W (i, j) = min{ V (i, j), min
i<k<j

W (i, k) + W (k + 1, j) }
V (i, j) = min{ H(i, j), min

i<p<q<j
p−i+j−q−2≤M

I(i, j, p, q) + V (p, q),

min
i<k<j

WM(i + 1, k) + WM(k + 1, j − 1) + a}
WM(i, j) = min{ V (i, j) + b,WM(i + 1, j) + c,WM(i, j − 1) + c,

min
i<k<j

WM(i, k) + WM(k + 1, j) }

W (i, j) denotes the minimum free energy of any pseudoknot-free MFE sec-
ondary structure of the subsequence Si . . . Sj , such that the free energy mini-
mization algorithm returns the energy W (1, n). V (i, j) is the free energy of the
MFE structure for Si . . . Sj that contains i.j; H(i, j) and I(i, j, p, q) are energy
of a hairpin loop and internal loop closed by i.j, respectively. The parameter a
is the penalty for multiloop initiation, b is the penalty for inner base pairs and c
is the penalty for an unpaired base in a multiloop. Thus, WM(i, j) is analogous
to W (i, j), but includes multiloop penalties and minimizes over structures that
contain at least one base pair (initialization WM(i, i) := ∞).

For preparing the subsequent sparsification, but resulting in equivalent recur-
sions, we introduce the matrices W p, WMp, and WM2. W p(i, j) and WMp(i, j)
correspond to the respective cases of W (i, j) and WM(i, j), where the substruc-
ture is partitionable. WM2 represents multiloop fragments with at least two
inner base pairs. The term WM2(i + 1, j − 1) + a corresponds to the energy of
a MFE structure for Si . . . Sj in which i.j closes a multiloop.

Definition 2 (Sparsification-ready free energy minimization recur-
sions).

W (i, j) = min{W p(i, j), V (i, j) }
W p(i, j) = min{W (i, j − 1), min

i<k<j
W (i, k − 1) + W (k, j) }

V (i, j)=min{H(i, j), min
i<p<q<j

p−i+j−q−2≤M

I(i, j, p, q)+V (p, q),WM2(i + 1, j − 1)+a}

WM(i, j) = min{WMp(i, j), V (i, j) + b }
WMp(i, j) = min{WM(i + 1, j) + c,WM(i, j − 1) + c,WM2(i, j) }
WM2(i, j) = min

i<k<j
WM(i, k − 1) + WM(k, j)

where i < j, W (i, i) = 0; V (i, j) = WM(i, j) = ∞ for all j − i ≤ m; and
WM2 = ∞ for all j − i ≤ 2m + 3 (m is the minimum size of a hairpin loop).
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We sparsify the recurrences by rewriting W p(i, j) to Ŵ p(i, j) and WM2(i, j) to

ŴM
2
(i, j), where

Ŵp(i, j) = min{W (i, j − 1), min
[k,j] is W-candidate,k>i

W (i, k − 1) + V (k, j) }

ŴM
2
(i, j) = min{WM2(i, j − 1) + c, min

[k,j] is WM-candidate,k>i
WM(i, k − 1) + V (k, j) + b }

together with the candidate criteria

– [k, j] is a W-candidate iff V (k, j) < Ŵ p(k, j) and
– [k, j] is a WM-candidate iff V (k, j) + b < WMp(k, j).

We note that to have similar recurrences, we also rewrite WMp(i, j) recurrence

as follows: WMp(i, j) = min{WM(i + 1, j) + c, ŴM
2
(i, j) } which merges the

second case of original WMp into the ŴM
2

recurrence.

Lemma 1. The sparsified version of W p and WM2 recurrences are equivalent
to the non-sparsified recurrences.

Proof.

1. Choose the largest k, i < k < j, s.t. W (i, k − 1) + W (k, j) is minimal. We
show that [k, j] is a W-candidate. Assuming the opposite, choose e (e > k),
such that W p(k, j) = W (k, e − 1) + W (e, j). Now W p(i, j) = W (i, k − 1) +
W (k, e − 1) + W (e, j) ≥ W (i, e − 1) + W (e, j), which contradicts the choice
of k such that W (i, k − 1) + W (k, j) is minimal. Therefore we must have
W (k, j) = V (k, j) < Ŵ p(k, j), and [i, j] is a W-candidate.

2. Choose the largest k, i < k < j, s.t. WM(i, k − 1) + WM(k, j) is mini-
mal. We show that [k, j] is a WM-candidate. Assuming the opposite, choose
e (e > k), such that WM2(k, j) = WM(k, e−1)+WM(e, j). Now WM2(i, j) =
WM(i, k − 1)+WM(k, e− 1)+WM(e, j) ≥ WM(i, e− 1)+WM(e, j), which
contradicts the choice of k such that WM(i, k − 1) + WM(k, j) is minimal.
Therefore we must have WM(k, j) = V (k, j) + b < WMp(k, j), and [i, j] is a
WM-candidate. �	
Going beyond Wexler et al., these recursions handle multiloop energies cor-

rectly by introducing the matrices WM , WMp and ŴM
2
.

Analogous to [2], there is an algorithm that evaluates the above recursions
efficiently, such that its time and space complexity depends on Z, where Z is
the total number of candidates (which are W - or WM -candidates). We call this
algorithm SparseEnergyMinimization.

Lemma 2. W (1, n) can be calculated in O(n2 + nZ) time and Θ(n + Z) space,
where Z is the total number of candidates.

Proof Time. SparseEnergyMinimization computes O(n2) entries and per-

forms the minimizations over all candidates in the calculations of Ŵ p and ŴM
2
.
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These minimizations require O(Z) steps per matrix row, resulting in O(nZ) addi-
tional time.

Space. To calculate all Ŵ p(i, j) and ŴM
2
(i, j) in row i it suffices to compute

and store the entries in the same matrix row and store the matrix entries at the
candidates of rows i′ > i. For calculating the V (i, j) in row i (j : i < j ≤ n),
it suffices to keep row i + 1 of WMp and the rows i + 1 to i + M + 1 of V in
memory, since the interior loop size is bounded by M. �	

2.3 The Difficulty of MFE Fold Reconstruction Compared to
Bp-Based Folding

The MFE structure in the bp-based model is efficiently reconstructed using the
minimum energy, the energies of candidates, and O(n) space by trace-back with
recomputation of partitionable entries, which are not stored in the DP-matrix.
We briefly recapitulate this result of [2].

Lemma 3. The optimal structure in the bp-based model can be reconstructed
from the candidates and the minimum free energy in O(n+ZL) space and O(n2+
nZL) time.

Proofsketch. The algorithm starts similar to a regular trace-back from
W (1, n). Recursively, it derives the optimum recursion cases of the current matrix
entry and continues to trace back from the identified successive trace entries. For
finding the successive trace entries from a current entry (i, j), it suffices to know
the entries (i, j′) (j′ ≤ j) of the same row: if [i, j] is a candidate, then the suc-
cessive trace entry is (i+1, j − 1); otherwise, it can be split at some k, s.t. entry
(i, k − 1) is in the same row and [k, j] is a candidate (unless k = j). On demand,
the entries (i, j′) can be recomputed from entries (i, j′′) (j′′ < j′) of this row
and candidate entries. Note that access to non-candidates of rows i′ > i is never
required. In particular, the algorithm utilizes that the candidates [i, j] of row
i do not have to be recomputed, because candidates necessarily trace back to
(i+1, j − 1). Thus, the trace-back with recomputation takes O(n ·ZL) time and
does not require additional space. �	

After executing SparseEnergyMinimization, all candidates are calcu-
lated and stored in memory, analogously to the bp-based case. However, there
is no trivial transfer of the bp-based trace-back algorithm of [2], Folding-
Traceback, to the loop-based case.

The main difference between the bp-based and the loop-based folding algo-
rithm is the evaluation of interior loops. In both cases, bp-based folding and
loop-based folding, the energy of a closed structure, respectively Lc(i, j) and
V (i, j), depends only on a constant number of rows (resp., 1 row or M rows).
However, Folding-Traceback relies on the fact that the successive trace entry
of candidates is known, whereas the MFE fold reconstruction has to infer the
optimum recursion case of V (i, j), even if V (i, j) < min{W (i, j),WM(i, j)} —
corresponding to the optimum co-terminus criterion of [2].
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Naively, this requires to recompute the (non-candidate) V entries of rows
i + 1,. . . ,i + M + 1, which in turn rely on V and WM entries of larger rows.
Consequently, the non-candidate entries of the whole V matrix have to be recom-
puted. This negates the sparsification benefits. Furthermore, there seems to be
no simple way to overcome this problem. In particular, we cannot directly com-
pute V (i, j) by minimizing only over candidates, since there is no guarantee that
the inner base pair of an interior loop corresponds to a candidate.

Lemma 4. The minimization over inner base pairs in the recursion of V cannot
be restricted to candidates.

Proof. We show that there is a loop-based energy model (namely the Turner
energy model [9]), a sequence S and 1 ≤ i < j ≤ n, such that V (i, j) <
min{H(i, j),WM2(i+1, j−1)+a}, but there is no candidate [p, q], i < p < q < j,
such that V (i, j) = I(i, j, p, q) + V (p, q).

Consider the RNA sequence S = GCCAAAAGGGC of length 11. In the Turner
model, the optimal recursion case of V (2, 10) forms the interior loop closed by
(2, 10) with inner base pair (3, 9), because V (3, 9) = H(3, 9) = 4.3 kcal/mol and
I(2, 10, 3, 9) = −3.3 kcal/mol. However, [3, 9] is not a candidate, since W (3, 9) =
WM(3, 9) = H(3, 8) = 4.1 < V (3, 9), i.e. the MFE structure of S3,9 forms the
hairpin loop closed by (3, 8) – not by (3, 9).

The lemma holds for arbitrarily large instances. This can be seen by, for
example, looking at the family of RNA sequences Sk = GCkA4Gk+1C, where
Xk is the k-times repeat of X. Furthermore, this issue is not limited to stacked
base pairs, since there are non-stacked interior loops with stabilizing energy
contributions, in the Turner energy model.

3 MFE Folding with Fold Reconstruction

As discussed earlier direct transfer of Folding-Traceback from [2] is not
possible because the optimum case of the V -recursion cannot be determined
efficiently by recomputation. Therefore we suggest to store trace arrows from all
entries that cannot be recomputed efficiently. Subsequently, we discuss several
space optimizations for this idea, such as avoiding trace arrows by rewriting the
recursions and removing trace arrows as soon as they become inaccessible for
the trace-back.

3.1 Adding Trace Arrows

As a first step towards efficient trace-back, we store trace arrows from each
potential base pair i.j to its optimum inner base pair during the DP evaluation.
Here, a trace arrow is simply a directed edge connecting two matrix entries. By
storing these arrows we avoid the recomputation of all V entries in the trace-
back, by inferring their successive trace entries. If there is no trace arrow to



Sparse RNA Folding Revisited 265

an inner base pair and V (i, j) 
= H(i, j), we can simply continue to trace from
(i + 1, j − 1) in matrix WM2.

Furthermore, the case WM(i + 1, j) + c of WMp accesses entries beyond the
current row i. As before, we cannot efficiently recompute row i + 1, which could
be resolved by recording trace arrows.

3.2 Avoiding Trace Arrows

One can avoid the trace arrows for the case WM(i+1, j)+c of WMp by rewriting
the case equivalently as follows:

WMp(i, j) = min{WM(i + 1, j) + c,WM2(i, j) }
= min{ min

i<k<j
(k − i) × c + WM(k, j),WM2(i, j) }

Since WM(i, i) = +∞, we can sparsify the recurrence as follows:

ŴM
p
(i, j) = min{ min

i<k<j
[k, j] is WM-candidate

(k − i) × c + V (k, j) + b, ŴM
2
(i, j)}.

We have previously stablished equivalence of ŴM
2

and WM2 recurrences. We
establish the correctness of this rewriting by the following lemma. This serves
well as an example of a typical small change during sparsification of recursions,
which is nevertheless non-trivial.

Lemma 5. Replacing WMp by ŴM
p

leaves the values of W , V , and WM
entries unchanged.

Proof. We have to show that restricting the minimization of mini<k<j(k − i)×
c + WM(k, j) to only WM -candidates is admissible; this boils down to showing
that non-candidates in the new minimization do not change the minimum values
in the recursions. Assume that [k, j] is WM -partitionable. By definition there
exists a k′ > k, where [k′, j] is a WM -candidate s.t. one of the following holds

1. V (k, j) + b ≥ (k′ − k) × c + V (k′, j) + b
2. V (k, j) + b ≥ WM(k, k′ − 1) + V (k′, j) + b

Case 1. (k − i) × c + V (k, j) + b ≥ (k − i) × c + (k′ − k) × c + V (k′, j) + b ≥
(k′ − i) × c + V (k′, j) + b, i.e. k′ dominates k in this minimization. Case 2.
(k − i) × c + WM(k, k′ − 1) + V (k′, j) + b ≥ WM(i, k′ − 1) + V (k′, j) + b; since

the latter is a case of ŴM
2
, k is again dominated. �	

Furthermore, we do not have to store trace arrows from V entries (i, j) to
candidates. In such cases, the optimum interior loop case, V il-cand(i, j), can be
reconstructed by minimizing over all candidates:

V il-cand(i, j) = min
i<p<q<j

p−i+j−q−2≤M
[p, q] is candidate

I(i, j, p, q) + V (p, q).
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If V il-cand(i, j) is the MFE, we have reconstructed the trace arrow, however
there is one catch: recall that we cannot use WM2(i + 1, j − 1) + a to decide
whether WM2(i+1, j−1)+a < min{V il-cand(i, j),H(i, j) }, because it is neither
stored nor can be recomputed efficiently. Thus, our strategy is to trace into
the multiloop, iff no other case yields the MFE V (i, j). However, as of this
computation, we do not know this energy for non-candidate entries during trace-
back. Therefore, we additionally keep track of this energy: each time we trace
back from some (i, j) to a non-candidate (p, q), we recalculate the entry V (p, q)
due to V (p, q) = V (i, j) − I(i, j, p, q).

3.3 Garbage Collecting Trace Arrows

So far, our algorithm stores all trace arrows from V entries to non-candidates.
However, most of those V entries are not on the MFE trace (rather far off from
it). Identifying unnecessary arrows during the recursion evaluation, allows saving
space for trace arrows, while still supporting MFE fold reconstruction.

Of course, during the evaluation we generally have only partial information
about the MFE trace. Therefore, a safe strategy is to remove the trace arrows
that are inaccessible from current and future accessible entries.

Definition 3. An entry V (p, q) is accessible, iff during recursion evaluation,
after computing row i:

– p ≤ i + M + 1,
– [p, q] is a candidate, or
– there is a trace arrow from some accessible entry to V (p, q).

The trace arrows induce a directed graph on the set of matrix entries.
Therefore, detecting inaccessible entries can be performed by garbage collec-
tion (GC) [7]. Since there is no cycle in our directed graph, we apply a simple
reference counting GC technique. Each arrow ta receives a counter, which keeps
track of the arrows that point to the source of ta. After computing row i, we scan
through the arrows with source in row i + M + 1. Arrows from non-candidates
in row i + M + 1 are removed, if their reference count is zero. In a recursive
procedure, we detect all arrows pointing from inaccessible entries, remove them
and update the appropriate counters.

3.4 Algorithm Summary

Employing the above two techniques, our algorithm SparseEnergyMinimiza-
tion (Algorithm 1) keeps track of trace arrows and performs reference counting
garbage collection (Procedure GarbageCollect). Note that for further space
savings, the algorithm does not distinguish W - and WM -candidates; this does
not affect our complexity bounds.

The final algorithm SparseMFEFold performs energy minimization and
fold reconstruction. The fold reconstruction relies on the complete results of
Algorithm 1, i.e. the minimum free energy, the candidates, and the trace arrows.
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Algorithm 1. Space-efficient sparsified calculation of minimum free energy that
keeps track of garbage-collected trace arrows to enable trace-back.

procedure SparseEnergyMinimization(S)

allocate arrays V [0..M ][1..|S|], W [1..|S|], WM [1..|S|], ŴM
2
[1..|S|]

for i ← |S| downto 1 do
i′ ← i mod (M + 1) � row index for “rotating” matrix V

W [i] ← 0; WM [i] ← ∞ ; ŴM
2
[i] ← ∞ ; ŴM

2′ ← ∞
for j ← i + 1 to |S| do

(p∗, q∗) = arg min i<p<q<j
p−i+j−q−2≤M

I(i, j, p, q) + V [p mod (M + 1)][q]

VI = I(i, j, p, q) + V [p∗ mod (M + 1)][q∗] � interior loop cases

VO = min{ H(i, j), ŴM
2′ + a } � other cases of V

V [i′][j] = min{ VI, VO }

ŴM
2′ ← ŴM

2
[j] � store ŴM

2
(i + 1, j) for use in iteration j + 1

ŴM
2
[j] = min{ ŴM

2
[j − 1] + c, min(k,j,e)∈C WM [k − 1] + e }

ŴM
p

= min{min i<k<j
(k,j,e)∈C

(k − i) · c + e + b, WM [j − 1] + c, ŴM
2
[j − 1]}

WM [j] = min{ ŴM
p
, V [i′][j] + b }

Ŵ p = min{ W [j − 1], min(k,j,e)∈C W [k − 1] + e }
W [j] = min{ Ŵ p, V [i′][j] }

if V [i′][j] < Ŵ p or V [i′][j] + b < ŴM
p
then � register candidate

add the candidate (i, j, V [i′][j]) to C

if (p∗, q∗, ·) �∈ C and VI < VO then � register trace arrow
add the trace arrow (i, j, 0) �→ (p∗, q∗, V [p∗][q∗]) to T
ModifyRefCount(p, q, +1)

if i + M + 1 ≤ |S| then
for (i + M + 1, j, 0) �→ (p, q, e) ∈ T do

GarbageColllect(i+M+1,j)

return (E, C, T )

procedure GarbageCollect(i, j)
if (i, j, c) �→ (p, q, e) ∈ T and c = 0 then

release the trace arrow (i, j, 0) �→ (p, q, e) from T
ModifyRefCount(p, q, −1)
GarbageCollect(p, q)

procedure ModifyRefCount(i, j, δ)
if (i, j, c) �→ (p, q, e) ∈ T then

change counter c of (i, j, c) �→ (p, q, e) in T to c + δ
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3.5 Complexity

Implementing the trace arrow data structure as a hash allows access to a trace
arrow by its origin in amortized constant time. In the following, we assume
constant time access.

Lemma 6. SparseEnergyMinimization (including storing and garbage col-
lection of trace arrows) calculates W (1, n) in O(n2 +nZ) time and Θ(n+Z +T )
space, where Z is the total number of candidates and T is the maximum number
of accessible trace arrows to non-candidates.

Proof. The number of trace arrows is quadratically limited and the criterion
for storing a trace arrow is checked in constant time, such that the time com-
plexity is not changed. The time for garbage collection of trace arrows is at
most quadratic, because GarbageCollect is called at most once per matrix
entry from SparseEnergyMinimization. Furthermore, each time it calls itself
it removes one trace arrow. Each trace arrow can be inserted and removed only
once by SparseEnergyMinimization. The space complexity depends on the
maximum number of trace arrows that have to be stored simultaneously. With-
out garbage collection, this is the number of trace arrows to non-candidates. Due
to the garbage collection, we reduce this to the maximum number of simultane-
ously accessible trace arrows to non-candidates. �	

4 Empirical Results

We implemented the algorithm SparseMFEFold in C++ utilizing the Vienna
RNA library [8] for calculating the single loop energies. Consequently, we com-
pute exactly the same energies and structures as RNAfold of the Vienna RNA
package 2.x [8] (without dangling ends, i.e., option -d0). This implementation
allows us to study the suggested strategies empirically. Tables 1 and 2 summarize
results from folding 80 long RNA sequences from the RNA STRAND v2.0 data-
base [1]. This set of 80 sequences comprises of all RNAs of length greater or equal
2500, for which a single molecule fold is available. (We note that the sparsifica-
tion gain is pronounced for large values of n. ) These sequences have a median
length of 2904 and a maximum of 4381. Our comparison to RNAfold, currently
the fastest RNA folding implementation, shows that our sparsified algorithm is
significantly faster and uses significantly less space (Table 1). Experiments were
performed on a Lenovo Thinkpad T431s with 12GB memory and Intel i5-3437U
CPU. We measured run-time as user time and space consumption as maximum
resident set size. Note that even the median resident set size of our method is
about six-times lower than that of RNAfold. To empirically study the effects of
our optimizations in SparseMFEFold, we further provide number of candidates
and trace arrows (Table 2). For the trace arrows, we report minimum, median,
and maximum of the final number of trace arrows (Final), passed to the fold
reconstruction algorithm; the maximum number of trace arrows (Maximum),
determining the memory foot print; the savings due to avoiding arrows to can-
didates (Avoided); and garbage collection of inaccessible arrows (GC-Removed).
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Table 1. Time and space performance of SparseMFEFold compared to RNAfold

Run-time (s) Memory: resident set size (kB)

RNAfold SparseMFEFold RNAfold SparseMFEFold

Minimum 16.9 15.37 31800 5932

Median 29.7 22.89 42828 7262

Maximum 89.9 57.36 88548 9048

The latter two numbers show the importance of these two optimizations for the
entire approach; together these strategies reduce the (median) number of stored
trace arrows to only about 9% (94443/1038525).

Table 2. Counts of candidates and trace arrows in SparseMFEFold.

Number of Number of trace arrows

candidates Final Maximum Avoided GC-Removed

Minimum 17032 49860 52293 137892 467230

Median 41215 92967 94443 237717 706365

Maximum 71508 147150 148947 419825 1748491

5 Conclusion and Future Work

We identified and solved the fundamental problem of efficient fold reconstruction
in time- and space-efficient sparsified MFE folding of RNAs, while guaranteeing
prediction of the MFE structure. This problem is not present in simple variants
of RNA folding such as base pair maximization, but emerges only in realistic
free energy minimization problems. Remarkably, Backofen et al. did not notice
this problem when discussing the extension of their time and space-efficient base
pair maximization algorithms to MFE prediction. Here, we provide an elegant
and practical solution, which introduces garbage collection as a novel technique
to RNA folding. The method is presented and studied for the most-common case
of pseudoknot-free RNA secondary structure prediction using the Turner model.

Importantly, the introduced techniques are not specific to the presented fold-
ing scenario, but are applicable to many – even fundamentally more complex –
variants of RNA folding, such as the MFE prediction of RNA-RNA-interactions
and efficient pseudoknot folding algorithms. Similar to the case of time-efficient
sparsification, the presented techniques will have even stronger impact on com-
plex folding algorithms. Thus, we see the strongest potential of our method in
reducing the often prohibitive space requirements of such algorithms.
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Abstract. The basic RNA Secondary Structure Prediction problem or
Single Sequence Folding Problem (SSF) was solved thirty-five years ago
by a now well-known O(n3)-time dynamic programming method.

Recently three methodologies - Valiant, Four-Russians, and Sparsifica-
tion - have been applied to speedup RNA Secondary Structure prediction.

In this paper we combine the previously independent speedups of Spar-
sification and Four-Russians.

The Sparsification method exploits two properties of the input: the
number of subsequence Z with the endpoints belonging to the optimal
folding set and the maximum number base-pairs L. These sparsity prop-
erties satisfy 0 ≤ L ≤ n/2 and n ≤ Z ≤ n2/2, and the method reduces
the algorithmic running time to O(LZ). In this paper, we first reformu-

late the SSF Four-Russians Θ( n3

log2 n
)-time algorithm, implied by Pinhas

et al. [24], to utilize an on-demand lookup table. This formulation not
only removes all extraneous computation and allows us to incorporate
more realistic scoring schemes, but leads us to take advantage of the
sparsity properties.

Our main result is a framework that combines the fastest Sparsifica-
tion and fastest Four-Russians Methods. For SSF, this combined method
has worst-case running time of O(L̃Z̃), where L

logn
≤ L̃ ≤ min(L, n

logn
)

and Z
logn

≤ Z̃ ≤ min(Z, n2

logn
).

Through asymptotic analysis and empirical testing on the base-pair
maximization variant, we show that this framework is able to achieve a
speedup on every problem instance, that is asymptotically never worse,
and empirically better than achieved by the minimum of the two methods
alone.

1 Introduction

Non-coding RNA (ncRNA) affects many aspects of gene expression, regulation
of epigenetic processes, transcription, splicing, and translation [14]. It has been
observed that in eukaryotic genomes the ncRNA function is more clearly under-
stood from the structure of the molecule, than from sequence alone. While there
have been advances in methods that provide structure experimentally, the need
for computational prediction has grown as the gap between sequence availability
and structure has widened. In general, RNA folding is a hierarchical process in
c© Springer-Verlag Berlin Heidelberg 2015
M. Pop and H. Touzet (Eds.): WABI 2015, LNBI 9289, pp. 271–285, 2015.
DOI: 10.1007/978-3-662-48221-6 20
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which tertiary structure folds on top of thermodynamically optimal1 secondary
structure, secondary structure is a key component of structure prediction [14].

Efficient O(n3)-time dynamic programming algorithms were developed more
than thirty years ago to find non-crossing secondary structure of a single RNA
molecule with n bases [22,23,27,29,38,39]. We call this basic folding or single
sequence folding (SSF) problem. In addition, McCaskill [19] created an O(n3)-
time algorithm for the partition function for RNA secondary structure. Based on
these algorithms, software has been developed and widely used [15,18,25,36,37].
Probabilistic methods, employing Stochastic Context-Free Grammar (SFCG),
were also developed to solve the basic folding problem [7,8].

The accuracy of all these methods is based on the parameters given by the
scoring function. Thermodynamic parameters [16,17,28,33] and statistical para-
meters [6,7], or a combination of the two [2,13] are currently employed.

The Valiant [1,34], Sparsification [4,30], and the Four-Russians (FR) [9,24]
methods where previously applied to improve on the computation time for
secondary structure prediction. For SSF, the Valiant method achieves the asymp-
totic time bound of O( n3

2Ωlog(n) ) by incorporating the current fastest min/max-
plus matrix multiplication algorithm [32,34]. The Four-Russians method was
applied to single sequence [10,24], cofolding [11] and pseudoknotted [12] folding
problems. The Sparsification method, was developed to improve computation
time in practice for a family of RNA folding problems, while retaining the opti-
mal solution matrix [4,20,21,26,30,35].

In this paper, we combine the Four-Russians method [24] and the Sparsifica-
tion method [4]. While the former method reduces the algorithm’s asymptotic
running time to Θ( n3

log2 n
), the latter eliminates many redundant computations.

To combine these methods, we use an on-demand tabulation (instead of a
preprocessing approach which is typically applied in FR algorithms), remov-
ing any redundant computation and guaranteing the combined method is at
least as fast as each individual method, and in certain cases even faster. First,
we reformulate SSF Four-Russians Θ( n3

log2 n
)-time algorithm [24] to utilizes on-

demand lookup table creation. Second, we combine the fastest Sparsification
and Four-Russians SSF speedup methods. The Sparse Four Russians speedup
presented here leads to a practical and asymptotically fastest combinatorial algo-
rithm(even in the worst-case). The new algorithm has an O(L̃Z̃) run time where
LZ

log2 n
≤ L̃Z̃ ≤ min( n3

log2 n
, LZ). In practice, when accounting for every compar-

ison operation the Sparse Four Russians outperforms both the Four-Russians
and Sparsification methods.

2 Problem Definition and Basic Algorithm

Let s = s0s1 . . . sn−1 be an RNA string of length n over the four-letter alphabet
Σ = {A,U,C,G}, such that si ∈ Σ for 0 ≤ i < n. Let si,j denote the substring
sisi+1 . . . sj−1. We note that for simplicity of exposition substring si,j does not

1 Or close to optimal.
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contain the nucleotide j. A folding (or a secondary structure) of s is a set M
of position pairs (k, l), such that: (1) 0 ≤ k < l < n; (2) and there are no two
different pairs (k, l), (k′, l′) ∈ M such that k ≤ k′ ≤ l ≤ l′ (i.e. each position
participates in at most one pair, and the pairs are non-crossing).

Let β(i, j) return a score associated with position pair (i, j). Let L(s,M) be the
score associated with a folding M of RNA string s, and let L(s) be the maximum
score L(s,M) over all foldings M of s. The RNA Folding or SSF problem is:
given an RNA string s, compute L(s), and find an optimal folding M such that
L(s,M) = L(s). In this work, we assume the following simple scoring scheme:

L(s,M) =
∑

(i,j)∈M

β(i, j),

where β(i, j) = 1 if (si, sj) ∈ {(A,U), (U,A), (C,G), (G,C)}, and β(i, j) = 0
otherwise. Richer scoring schemes allow more biologically significant information
to be captured by the algorithm. However, the algorithms for solving the problem
similar recurrences and other discrete scoring schemes may be accelerated in a
similar way to what we present here.

For the folding M of si,j , an index k ∈ (i, j) is called a split point
in M if for every (x, y) ∈ M , either y < k or k ≤ x. A folding
M is called a partitioned folding (with respect to si,j) if there exists at
least one split point; otherwise M is called a co-terminus folding. Let the
matrix L be a matrix such that L[i, j] = L(si,j). In addition, let Lp[i, j]
be the maximum value of L(si,j ,M) taken over all partitioned foldings M
of si,j . Similarly, let Lc[i, j] be the maximum value of L(si,j ,M) taken
over all co-terminus foldings M of si,j . Let L[i, i] = L[i, i + 1] = 0.
For all j > i + 1, L[i, j] can be recursively computed as follows [23]:

L[i, j] = max(Lp[i, j], Lc[i, j]), (1)

Lp[i, j] = max
k∈(i,j)

(L[i, k] + L[k, j]), (2)

Lc[i, j] = L[i + 1, j − 1] + β(i, j − 1). (3)

For completeness, when j < i, define L[i, j] = Lp[i, j] = Lc[i, j] = −∞.
The above recurrence may be efficiently implemented using a dynamic pro-

gramming (DP) algorithm. Essentially, the DP algorithm computes and main-
tains values of the form L[i, j], Lp[i, j] and Lc[i, j] for every 0 ≤ i ≤ j ≤ n in
three n + 1 × n + 1 matrices. The algorithm traverses the matrices in increasing
column order index j from 1 to n. Within each column, the cell L[k, j] is computed
in decreasing index order k from j − 1 to 0. Once L[k, j] is computed, Lp[i, j] is
updated for all i < k such that Lp[i, j] = max(Lp[i, j], L[i, k]+L[k, j]). The solu-
tion L(s,M) is stored in cell L[0, n]. Clearly, computing Lp is the bottleneck of
the computation, since for a given i, j, there may be Θ(n) split points to examine.
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2.1 Extending the Notation and Moving Towards a Vector by
Vector Computation of L

For a matrix A and some integer intervals I, J , denote by A[I, J ] the sub-matrix
of A obtained by projecting it onto the row interval I and column interval J .
When I = [i] or J = [j], we simplify the notation by writing A[i, J ] or A[I, j].

Definition 1. For a set of integers K, define the notation Lp
K [i, j], and the

max-plus operation ⊗ as

Lp
K [i, j] = L[i,K] ⊗ L[K, j] = max

k∈K
(L[i, k] + L[k, j]).

For an interval I = [i, i + 1, . . . i′], define Lp
K [I, j] to be the vector such that

Lp
K [I, j] = L[I,K] ⊗ L[K, j] =

[
LP
K [i, j] for all i ∈ I

]

We divide the solution matrix L in two ways: q × q submatrices (Fig. 1) and
size q sub column vectors (the value of q will be determined later). Let Kg be
the gth interval such that Kg = {q · g, q · g + 1, . . . , q · g + q − 1}. We call these
sets Kgroups, and use Kg as the interval starting at index g · q. For an index i,

define gi =
⌊

i
q

⌋
. It is clear that i ∈ Kgi

.
Similarly, we break up the row indices into groups of size q, denoted by Ig

where Ig = {k = q · g, k + 1, ...k + q − 1}. (Clearly, row index set Ig is equivalent
to the Kgroup Kg. We only introduce this extra notation for simplicity of the
exposition).

Given this notation LP [i, j] can be rewritten as maximization Lp
Kg

[i, j] values
for all Kg index Kgroups between i and j. However, in some cases, the indices
{i+1, ...q · gi+1 −1} do not form a full Kgroup Kgi

. Similarly indices {qgj , qgj +
1, ...j−1} do not form a full Kgroup Kgj

. Therefore, LP [i, j] can be computed by
maximizing the full and non full Kgroups Kg. In Eq. 4 and the following sections
we do not explicitly differentiate between full and non full groups.

Lp[i, j] = max
gi≤g≤gj

Lp
Kg

[i, j] (4)

We extend the notation further, to compute the matrix Lp not cell by cell but
instead by vectors of size q corresponding to the Ig′ row sets, as follows.

Lp[Ig′ , j] = max
g′≤g≤gj

Lp
Kg

[Ig′ , j]. (5)

The DP algorithm can be updated to incorporate the extended notation.
Within each column, compute the matrices in vectors of size q. Once L[Kg, j] is
computed it is used in computation of Lp

Kg
[Ig′ , j] for g′ < g. When computing

Lp
Kg′ [Ig′ , j] we follow Eqs. 1–3 to complete the computation of cells L[Ig′ , j].

3 Sparsification of the SSF Algorithm

The Sparsification method achieves a speedup by reducing the number of split
points examined during the computation of LP [i, j]. In this section we give a
brief overview of the Sparsification method applied to SSF [4,30].
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Fig. 1. An example of how a solution matrix L is broken down into submatrices. Using
the extended vector notation we can say that cell L[i, j] belongs to the vector L[Kgi , j]
as well as submatrix L[Igi , Kgj ]. We partition the solution matrix L into O(n2/q)
vectors of size O(q) and O(n2/q2) submatrices, of size O(q2).

3.1 OCT and STEP Sub-instances of Sequence s

Sub-instance si,j is optimally co-terminus (OCT ) if every optimal folding of si,j
is co-terminus. We introduce the extra notation below

if L[i, j] = Lc[i, j] > Lp[i, j] then we say L[i, j] is OCT .

Sub-instance si,j is STEP , if L[i, j] > L[i + 1, j] where L[i, j] = L(si,j) and
L[i + 1, j] = L(si+1,j). For ease of exposition we also say L[i, j] is STEP when
si,j is STEP . A STEP sub-instance si,j implies that nucleotide i is paired in
every optimal folding of si,j .

Fact 1. For every sub-instance si,j with j > i there is an optimal split point
k ∈ (i, j) such that either k = i + 1 or L[i, k] is STEP and L[k, j] is OCT [4].

Notation: For the index set K = {k, k + 1, ...k′} and column j, let Koctj be
the set of indices such that Koctj ⊂ K and ∀k∈Koctj L[k, j] is OCT . Given the
row interval I = {i, i + 1, ...i′}, let Istepk be the set of rows such that Istepk ⊂ I,
and for all i ∈ Istepk L[i, k] is STEP .

We further define operation ⊗step−oct such that given I = {i, i + 1, . . . , i′}
and K = {k, k + 1, . . . , k′}, L[I,K] ⊗step−oct L[K, j] results in A[I, j]
where ∀i∈(Istepk ∪Istepk+1∪...Istep

k′ )A[i, j] is computed by the following proce-
dure:

for k ∈ Koctj do
∀i∈Istepk A[i, j] = max(L[i, k] + L[k, j], A[i, j])
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Using the operation ⊗step−oct and based on Fact 1. We reduce the time to
compute Lp[Ig′ , j] by considering a split-point k only if k = i + 1 or L[i, k] is
STEP and L[k, j] is OCT for i ∈ Ig′ and k ∈ (i, j).

Lp[Ig′ , j] = max
g′≤g≤gj

Lp
Kg

[Ig′ , j] = max
g′≤g≤gj

L[Ig′ ,Kg] ⊗step−oct L[Kg, j]. (6)

Note Eq. 6 does not explicitly show that for LP
Kg′ [Ig′ , j] the split-point i + 1

must be examined for every i ∈ Ig′ .

Asymptotic time bound of Sparsified SSF. When computing matrix Lp[i, j] we
examine value L[i, k] only if L[k, j] is OCT . Let Z, be the total number of sub-
instances in s or cells in matrix L that are OCT . Given that L[k, j] is OCT ,
Lp[i, j] must examine the split point k, for all i ∈ {0, 1, ...k} such that L[i, k] is
STEP . Let L be the total number of STEP sub-instances in column k. More
precisely L = |{0, 1, ...k}stepk | (Creating the list of split-points that correspond
to STEP incidence requires no additional computation time [4]). The total time
to compute SSF when examining only STEP , OCT combinations (Sparsification
method), is O(LZ). As shown in Backofen et al. [4] Z is bounded by Z ≤ n2 and
L is bounded by L ≤ n

2 . The overall asymptotic time bound of the Sparsification
method is O(LZ) remains O(n3).

4 On-demand Four Russians Speedup

Presented here is an on-demand version of the Ω(log2 n)-time Four-Russians
algorithm implied by Pinhas et al. [24].

Observation 4.1. The scores stored in L[k, j] and L[k+1, j] differ by the effect
of adding only one more nucleotide (i.e., sk). Therefore, L[k, j] − L[k + 1, j]
belongs to a finite set of differences D, where D is the set of scores created as
the result of the scoring scheme β. The cardinality of the set of differences,
D = |D|, is O(1) when β is discrete. For the simple β scoring function (+1 for
every permitted pair, and 0 otherwise), the set D is equal to {0, 1} and therefore
|D| = 2 [23].

Let x = [x0, x1, . . . , xq−1] be an integer vector of length q. We say that x is
D-discrete if ∀l∈(0,q)|xl−1−xl| ∈ D. We define the Δ-encoding of 2-discrete vector
x to be a pair of integers (x0,Δx) such that x0 is the first element in x and Δx is
the integer representation of the binary vector [x0−x1, x1−x2, . . . , xq−2−xq−1].
Note that 0 ≤ Δx < 2q−1. For simplicity, we will interchangeably use x to
imply either (x0,Δx) or [x0, x1, . . . , xq−1]. Clearly, Δ-encoding takes O(q) time
to compute.

Δ-encoding vector operations:

– Let (x0,Δx ) + c = (x0 + c,Δx ) be equivalent to x + c = [x0 + c, x1 +
c, . . . , xq−1 + c].

– Let B ⊗ (x0,Δx) be equivalent to B ⊗ x .
– Let max((x0,Δx), (y0,Δy)) be equivalent to max(x ,y).
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MUL Lookup Table. Based on Observation 4.1, any column vector in matrix
L is 2-discrete. Given vector L[Kg, j] and its Δ-encoding (x0 = L[gq, j], Δx =
ΔL[Kg,j]), it is clear that Δx ∈ [0, 2q − 1].

Fact 2. L[Ig′ ,Kg] ⊗ L[Kg, j] is equivalent to L[Ig′ ,Kg] ⊗ (0,ΔL[Kg,j]) +
L[gq, j] [24].

Let MULB [i] be a lookup table, where given a q×q submatrix B = L[Ig′ ,Kg]
and i = ΔL[Kg,j], the entry MULL[Ig′ ,Kg][ΔL[Kg,j]] = (y0,Δy) where y =
L[Ig′ ,Kg] ⊗ (0,ΔL[Kg,j]). We could reformulate the computation of Lp

Kg
[Ig′ , j]

to utilize the MUL lookup table.

Lp
Kg

[Ig′ , j] = L[Ig′ ,Kg] ⊗ L[Kg, j] = MULL[Ig′ ,Kg][ΔL[Kg,j]] + L[gq, j]. (7)

Equation 7, abstracts the detail that we still have to compute each refer-
enced entry in the MUL lookup table. Each entry in the MUL lookup table
is computed on-demand i.e. only when it corresponds to a required calcula-
tion. (This removes any extraneous calculation incurred when preprocessing
all possible entries as in the typical Four-Russians implementation.) If entry
MULL[Ig′ ,Kg][ΔL[Kg,j]] does not exist we compute L[Ig′ ,Kg] ⊗ (0,ΔL[Kg,j])
directly in O(q2) time. If entry MULL[Ig′ ,Kg][ΔL[Kg,j]] exists then the opera-
tion is O(1)-time lookup.

There are O(n
2

q2 ) submatrices within L. For each submatrix the maximum
number of entries we compute for lookup table MUL is 2q−1. In total, the asymp-
totic time bound to populate lookup table MUL is O(n

2

q2 · 2q−1 · q2) = O(n2 · 2q).

MAX Lookup Table. Let the max of two 2-discrete q-size vectors v and w ,
denoted max(v ,w), result in a q-size vector z , where ∀0≤k<q zk = max(vk, wk).
Without loss of generality, let w0 ≥ v0. Comparing the first element in each
vector there are two possibilities either (1) w0−v0 > q−1 or (2) w0−v0 ≤ q−1.
In the first case, (w0 − v0 > q − 1), it is clear that max(v ,w) is equal to w . In
the second case, we make use of the following fact [24].

Fact 3. Given two vectors (w0,Δw) and (v0,Δv), if w0 − v0 ≤ q − 1 then
max(v,w) = max ((0,Δv), (w0 − v0,Δw)) + v0.

Lets define lookup table MAX such that entry
MAX[i, i′, h] = max ((0, i), (h, i′)). Hence, we reformulate Fact 3. To incorporate
the MAX lookup table:

max(v ,w) = MAX[Δv0,Δw0, (w0 − v0)] + v0

We summarize these results in the function Δ max:
Function Δ max ::

input: v ,w such that w0 ≥ v0 and v = (v0,Δv) and w = (w0,Δw)
output: z = (z0,Δz) where ∀i∈[0,q)zi = max(vi, wi)
if(w0 − v0 ≥ q − 1) : z = w
else : z = MAX[Δv0,Δw0, (w0 − v0)] + v0
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In Eq. 8, below, we integrate the vector comparison function Δ max. Each
vector Lp[Ig′ , j] is computed by maximizing over O(n/q) vectors. We will com-
pute the lookup table MAX on-demand for every entry that does not exist an
O(q). Clearly the lookup table MAX will contain at most 2(q−1) ·2(q−1) ·q entries.
In worst case, the lookup table MAX computes in O(2q

2
q) time.

Lp[Ig′ , j] = Δmax
g′≤g≤gj

(
MULL[Ig′ ,Kg]

[
ΔL[Kg,j]

]
+ L[gq, j]

)
(8)

The matrix Lp and hence L is solved by a total of O(n
2

q ) computations of
Eq. 8. In total, given lookup table MUL and MAX, the time to compute the

Four-Russians SSF is O(
n3

q2︸︷︷︸
computation

+ 2q
2
q + n22q︸ ︷︷ ︸

on-demand lookup table

).

Setting q = ε log n, where ε ∈ (0, .5) [31], the total computation time is equal
to Θ( n3

log2 n
), which achieves a speedup by a factor of Ω(log2 n), compared to the

original O(n3)-time solution method.

5 Sparse Four-Russian Method

With the Four-Russians method, a speedup is gained by reducing q split point
index comparisons for q subsequences to a single O(1) time lookup. The Sparsi-
fication method reduces the comparison to only those indices which correspond
to STEP -OCT folds.

5.1 STEP − OCT Condition for Sets of Split Points

In this section, we achieve a Sparsified Four-Russian speedup for the computation
of the Lp matrix. As in the Four Russians Method, we will conceptually break up
the solution matrix L in two ways: in q×q size submatrices, and q size subcolumn
vectors. The submatrices are indexed by g′ and g such that the corresponding
submatrix is L[Ig′ ,Kg]. The subcolumn vectors are indexed by g and j, such
that the corresponding subcolumn vector is L[Kg, j].

We augment the Four-Russians SSF to reduce the number of entries, and
lookups into the MUL table. If and only if, the matrix L[Ig′ ,Kg] contains at
least one cell L[i, k] that is STEP and within vector L[Kg, j] the cell L[k, j]
is OCT we will lookup MULL[Ig′ ,Kg][ΔL[Kg,j]]. If such an entry does not exist
we will compute L[Ig′ ,Kg] ⊗ (0,ΔL[Kg,j]) and store the result into lookup table
MUL.

The following notation will be used to help determine if a split point Kgroup
should be examined in the computation.

OCT subcolumn vector. Given the vector L[Kg, j] let m be a q size binary vector
such that ∀0≤x≤q−1m[x] = 1 if L[gq + x, j] is OCT . Let the sigOct of the vector
L[Kg, j], written sigOct(L[Kg, j]), be equal to m the integer representation of
the binary vector m . Clearly 0 ≤ m < 2q, and if m > 0 then L[Kg, j] contains
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at least one OCT instance. Let O(Z̃) be the total number of subcolumn vectors
which contain an instance that is OCT . Clearly, Z

q ≤ Z̃ ≤ min(n
2

q , Z).

STEP submatrix. Given the submatrix L[Ig′ ,Kg], let m ′ be a q size binary
vector such that ∀x∈[0,q)m

′[x] = 1 if ∃0≤i≤q−1 L[qg′ + i, qg + x] is STEP . Let
sigStep of a submatrix, written sigStep(L[Ig′ ,Kg]), be equal to m′ the integer
representation of the binary vector m ′. Clearly 0 ≤ m′ < 2q. Let L̃ be the
total number of submatrices which contain an instance that is STEP within
L[[0, n],Kg]. Clearly, L

q ≤ L̃ ≤ min(nq , L).

Observation 5.1. Suppose that, si,k is STEP , and integer
m′ = sigStep(L[Ig′ ,Kg]) such that i ∈ Ig′ (or Ig′ = Igi

) and k ∈ Kg (or
Kg = Kgk

). Then, the corresponding binary vector m′ must be set to 1 in position
x where x is an index such that k = qg + x. More precisely, if L[i, k] is STEP
then m′[x] = 1 by the definition of sigStep.

Observation 5.2. Suppose sk,j is OCT , and suppose integer
m = sigOct(L[Kg, j]) such that k ∈ Kg. Then, the corresponding binary vector
m must be set to 1 in position x, where x is an index such that k = qg+x. More
precisely, if sk,j is OCT then m[x]=1 by the definition of sigOct.

Given two binary vectors v and w the dot product of their integer represen-
tation is equal to a binary number x such that x = v 
 w = v0 ∧ w0 ∨ v1 ∧ w1 ∨
... ∨ vq−1 ∧ wq where |v| = |w| = q − 1.

Theorem 1. For any subinstance si,j either i + 1 is the optimal split point,
or there is an optimal split point k ∈ (i, j), such that sigStep(L[Igi

,Kgk
]) 


sigOct(L[Kgk
, j]) equals 1.

Proof. Based on Fact 1 for any sub-instance si,j there is an optimal split point
k such that either k = i + 1 or si,k is STEP and sk,j is OCT . If si,k is
STEP and sk,j is OCT then L[i, k] is STEP and L[k, j] is OCT . The cell
L[i, k] belongs to submatrix L[Igi

,Kgk
] and the cell L[k, j] belongs to the vec-

tor L[Kgk
, j]. Let x be an index such that k = qgk + x. Let m ′ be a binary

vector that corresponds to sigStep(L[Igi
,Kgk

]). Based on Observation 5.1, m′[x]
must equal 1. Let m be the binary vector that corresponds to sigOct(L[Kgk

, j]).
Based on Observation 5.2, m[x] equals 1. Therefore, m[x] ∧ m′[x] = 1 and
sigStep(L[Igi

,Kg]) 
 sigOct(L[Kg, j]) = 1.

Notation: The index g is STEP -OCT if given the set of rows Ig′ and the column
j if sigStep( L[Ig′ ,Kg] ) � sigOct( L[Kg, j] ) = 1.

We can reformulate the computation of Lp[Ig′ , j] by referencing the lookup
table MUL only if g is STEP -OCT . This reduces the number of operations
used in computing the bottleneck LP matrix.

Lp[Ig′ , j] = Δmax
g is STEP−OCT
where g∈[g′,gj ]

(
MULL[Ig′ ,Kg]

[
ΔL[Kg,j]

]
+ L[gq, j]

)
(9)
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We update the DP algorithm to only access the MUL lookup table for matrix
and vector combinations that satisfy the property

sigStep( L[Ig′ ,Kg] ) � sigOct( L[Kg, j] ) = 1.
Let G be a lookup table, where give an index g ∈ [0, n/q] and integer m ∈

[0, 2q] the G[g][m] ⊂ {I0, I1, . . . , Ig} is a set of row index intervals. Each index
Ig′ within G[g][m] satisfies the following condition:

if Ig′ ∈ G[g][m] then sigStep( L[Ig′ ,Kg] ) � m ) = 1.

Lookup table G (updated on-demand) allows us to implement Eq. 9. As
L[Kg, j] is computed, the corresponding SigOct is also computed. Let m =
sigOct(L[Kg, j]). By iterating through Ig′ ∈ G[g][m] set of row indices we access
table MUL only when both of the following conditions hold at the same time:
the submatrix L[Ig′ ,Kg] contains at least one cell L[i, k] where si,k is STEP and
within vector L[Kg, j] the cell L[k, j] contains sk,j that is OCT (where i ∈ Ig′

and k ∈ Kg).
The Sparsified Four-Russian algorithm implements Eq. 9. The complete func-

tion will tabulate STEP , and OCT instances as well as sigStep and sigOct
values. The G, MUL and MAX lookup tables will be computed on-demand
(Fig. 2).

Sparsified Four-Russian Folding s

input: An RNA string s of length n.
outout: L(s).

for j ← 2 to n do
L[K, j]=complete (Lp[K, j]) where K = {qgj , qgj + 1, ..., j − 1}
for I ∈ {Igj−1, Igj−2...I0} and if sigOct(L[K, j]) > 0 do

let Lp[I, j]= the Δ-encoding of L[I,K] ⊗step−oct L[K, j]
for g ← gj − 1 to 0 do

L[Kg, j]=complete(Lp[Kg, j])
if (sigOct(L[Kg, j]) > 0) then

let m = sigOct(L[Kg, j])
if G[g][m] does not exist then
compute entry G[g][m] // on-demand update

let x = (x0,Δx) where x0 = L[gq, j] and Δx = ΔL[Kg,j]

for Ig′ ∈ G[g][m] do
if MULL[Ig′ ,Kg][Δx] does not exist then

compute MULL[Ig′ ,Kg][Δx] // on-demand update
Lp
Kg

[Ig′ , j] = MULL[Ig′ ,Kg][Δx] + x0;
Lp[Ig′ , j]= Δmax(Lp

Kg
[Ig′ , j], Lp[Ig′ , j])
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Fig. 2. whetherare STEP −OCT . The yellow cells indicate STEP instances. The red
cells indicate OCT instances. The L[Ig′ , Kg] ⊗ L[Kg, j] operation is only performed on
submatrices with sigSTEP � sigOCT > 0.

Complete
input: Lp[K, j] where j is the column index, and K = [k, k + 1, ...k + q′]

with q′ < q
outout: L(sk,j), L(sk+1,j), ..., L(sk+q′,j) or L[K, j]
1: for k′ = k + q′ to k′ = k do
2: Lc[k′, j] = L[k′ + 1, j − 1] + β(k′, j − 1)
3: L[k′, j] = max (Lc[k′, j], Lp[k′, j])
4: if (L[k′, j] > Lp[k′, j]) then
5: sk′,j is OCT ; add k′ to list OCT in column j
6: update sigOct(L[Kgk

, j]) such that m[k′ − k] = 1 where k′ ∈ Kgk

7: if (L[k′, j] > L[k′, k′] + L[k′ + 1, j]) then
8: sk′,j is STEP ; add k′ to list STEP in column j
9: update sigStep(L[Ig′ ,Kg]) such that k′ ∈ Ig′ and j ∈ Kg

10: if sk′,j is OCT then
11: for i ∈ {k′ − 1, k′ − 2, ..., k} ∩ STEP in column k′ do
12: Lp[i, j] = Δ max (Lp[i, j], L[i, k′] + L[k′, j])
13: return L[K, j]

Asymptotic Analysis of Sparsified Four-Russians. We assume O(1)-time RAM
access for log(n) bits. The calculation for column j can be broken down into
LP
K=[qgj ,j)

[i, j] and LP
K=[0,qgj)

[i, j] for all i < j. The computation of
LP
[qgj ,j)

[[0, n], j] occurs when Kgroup Kgj
is not full, and follows the Sparsification

algorithm maximizing over STEP − OCT split points only. This reduces the
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comparisons made from O(n · q) to O(Lq̃) where q̃ < q is the total number
OCT instances within the interval [qg,j). The computation of LP

[0,qgj)
[[0, n], j]

employs Sparsified Four Russians speedup. The MUL table entries are created
and references only for STEP − OCT submatrix vector combinations. This
reduces the comparisons made to O(L̃Z̃).

The helper function complete is called O(n2/q) times for the entire algorithm.
The complete function outer-loop iterates at most O(q) times updating the lists
of OCT and STEP split points, as well as sigOct and sigStep values. Overall the
complete function takes O(q + x̃) where x̃ ≤ q2 is the number of STEP − OCT
instance combinations. The asymptotic runtime of the Sparsified Four-Russian
algorithm is

O(L̃Z̃) + O(
n2

q
· x̃) + O(updating lookup tables on-demand) = O(L̃Z̃)

5.2 Asymptotic Analysis of On-demand Lookup Tables Calculation

We compute the lookup tables G, MUL, and MAX on-demand. For each vector
L[Kg, j] containing an OCT instance (where m = sigOct(L[Kg, j])), if G[g][m]
does not exist then we directly compute it. For the computation of a single
entry into lookup table G, we iterate through O(L̃) submatrices and compute
the dot product in O(q) time2. In total, an update is called to lookup table
G at most O(C̃ = min(2q, Z̃)) times. The entire G lookup table on-demand
computation takes O(on-demandG) = O(L̃C̃ · q) or O(G) ≤ O(min(L̃2q, L̃Z̃) ·
q) ≤ O(min(n2

q

q , LZ
q )).

For each vector containing an OCT instance if an entry doesn’t exist in
the lookup table MUL it is computed on-demand. Each entry takes O(L̃ · q2)
time to compute. There are min(2q, Z̃) such computation. In total, lookup table
MUL takes O(L̃q2 · min(2q, Z̃))-time. Setting q = ε log n where ε ∈ (0, .5) the
asymptotic run-time for on-demand computation is O(L̃Z̃).

The entire algorithm takes O(L̃Z̃) where LZ
log2 n

≤ L̃Z̃ ≤ min( n3

log2 n
, LZ).

5.3 Empirical Results

We tested 20 randomly generated sequences for each size N = 64, 128, 256, 512.
The empirical testing results are given not in seconds but in the number of

operations including both lookup table creation and split-point comparisons. We
do so to abstract from the effect compiler optimizations. Note that the testing
does not account for memory access time, or extend the algorithm to D > 2
scoring schemes (Table 1).

For N = 128 the Sparse Four-Russians(SFR) algorithm performs 25% less
comparisons than the Sparsified(SP) SSF algorithm and 80% less comparison
than the Four-Russians (FR) algorithm. In all test cases, the Sparse Four-
Russians performed better than the minimum of either method alone.
2 Using some word tricks the dot product could be computed in O(1)-time.
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Table 1. Number of all comparisons computed

Size O(n3) FR SP SFR

64 43,680 12,014 2,733 1,837

128 349,504 49,456 13,196 9,982

256 2,796,160 346,692 79,544 41,393

512 22,500,863 5,746,853 650,691 503,425

5.4 Future Work

The on-demand tabling enables the Four-Russians method to be efficiently (in
terms of time) applied to D > 2. It would be interesting to test this method
for a more biologically informative scoring scheme. It would also be interesting
to examine the ability to sparsify memory [3], as Four-Russians at worst case
requires an additional factor of 2log(n) in memory. Another open question is
wether it is possible to apply the Ω(log3 n) [5] speedup of boolean matrix mul-
tiplication to RNA folding. Lastly, the Four-Russians speedup presented here
easily lends itself to an O(n2/log2n)-time parallel formulation, by augmenting
the algorithm to compute in parallel for each column j. It would be interesting
to extend the Sparse Four-Russians to a parallel architecture.

Acknowledgement. We would like to sincerely thank Shay Zakov and Michal Ziv-
Ukelson for their many helpful comments and suggestions. This research was partially
supported by the IIS-1219278 grant.
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Abstract. The growing number of metagenomic studies in medicine and
environmental sciences is creating new computational demands in the
analysis of these very large datasets. We have recently proposed a time-
efficient algorithm called Clark that can accurately classify metage-
nomic sequences against a set of reference genomes. The competitive
advantage of Clark depends on the use of discriminative contiguous k-
mers. In default mode, Clark’s speed is currently unmatched and its
precision is comparable to the state-of-the-art, however, its sensitivity
still does not match the level of the most sensitive (but slowest) metage-
nomic classifier. In this paper, we introduce an algorithmic improvement
that allows Clark’s classification sensitivity to match the best metage-
nomic classifier, without a significant loss of speed or precision compared
to the original version. Finally, on real metagenomes, Clark can assign
with high accuracy a much higher proportion of short reads than its clos-
est competitor. The improved version of Clark, based on discriminative
spaced k-mers, is freely available at http://clark.cs.ucr.edu/Spaced/.

Keywords: Metagenomics · Microbiome · Classification · Discrimina-
tive spaced k-mers · Short metagenomic reads

1 Introduction

One of the primary goals of metagenomic studies is to determine the compo-
sition of a microbial community, which typically involves the analysis of short
reads obtained from sequencing a heterogenous microbial sample. The analysis
can reveal the presence of unknown bacteria and viruses in a newly explored
microbial habitat (e.g., in marine environment [24]), or in the case of the human
body, elucidate relationships between diseases and imbalances in the microbiome
(see, e.g., [7,10]).

Classification tools such as NBC [21], Kraken [25], Clark [19], among
others, can be used to determine the composition of the microbial diversity from
the sequenced reads for a microbial sample. We have recently proposed Clark
in [19] and demonstrated that its classification speed is currently unmatched.
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Independently from us, it has been shown that Clark’s classification precision is
comparable or better than best state-of-the-art classifiers [15]. However, Clark’s
classification sensitivity is inferior compared to NBC [19].

The work presented in this manuscript describes a new approach to improve
Clark’s classification sensitivity. The approach exploits the concept of (dis-
criminative) spaced k-mers. We first describe the notion of spaced k-mers as
implemented in a new mode called Clark-S (S for “spaced”), then compare
the performance of Clark-S against two of the most sensitive classifiers in
the literature (i.e., NBC and Kraken), on several simulated/real metagenomic
datasets. We show that at the phylum/genus level Clark-S outperforms both
NBC and Kraken on all metrics.

2 Classification by Discriminative Spaced k-mers

2.1 Preliminaries

The concept and the utility of spaced seeds were initially described in context
of a sequence-alignment tool called PatternHunter [17]. A spaced seed s is
a string over the alphabet {1,*}, where ‘1’ indicates that one should sample
that position while ‘*’ indicates that position should be ignored. The number
of symbols in s is the length |s| of s, while the number of 1s in s is the weight
of s. A spaced k-mer is a spaced seed of length k. Let s be a spaced k-mer and
weight w, and let m be a text of length k. We define s(m) be the w-mer obtained
from m using only the positions in s denoted by a 1. For example, if the text
m = AAGTCT and s = 11*1*1 (k = 6, w = 4) then s(m) = AATT. The same text
processed using the spaced 6-mer s = 1*11*1 would give the 4-mer s(m) = AGTT.

The work of Ma et al. in [17] demonstrated that the use of single (and multi-
ple) spaced seeds/k-mers significantly increased the chance of detecting a valid
sequence alignment between the query and the target compared to contigu-
ous seeds/k-mers, while incurring no additional computational cost. As a direct
consequence of this work, spaced seeds are now used in the state-of-the-art
homology search methods, such as Blast [1] or MegaBlast [26]. For more
information about spaced seeds, we also refer the reader to [5,6,11–14] and ref-
erences therein.

Consider now the following problem: we are given a read r and two target
sequences g1 and g2, and we want to classify r to g1 or g2, i.e., we want to
know whether r is more likely to originate from g1 or from g2. As it is done in
homology search methods, we can use seeds/k-mers as “witnesses” of possible
valid alignments. A time-efficient solution is to count the number shared k-mers
between r and targets g1 and g2, and assign r to the target that has the highest
count. As said, spaced seeds/k-mers increases the probability of detecting a valid
alignment compared to contiguous seeds/k-mers. It is always possible, however,
that a shared seed/k-mer (whether it is spaced or not) may be a false positive.
In order to compensate for false positives, we use discriminative spaced k-mers,
as described next.
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2.2 Discriminative Spaced k-mers

Given a set of reference sequences (or targets) {g1, g2, . . . , gp}, i ∈ {1, 2, . . . , p},
the set Di of discriminative k-mers for target gi is the set of all k-mers in gi that
do not appear in any other reference sequences [19]. Given a spaced seed s of
length k and weight w, we define Di,s to be the set of all w-mers obtained via s
from k-mers in Di. We then define the set Ei,s of discriminative spaced k-mers
as the set of all w-mers of Di,s that do not appear in any set Dj,s where j �= i.
Thus, any w-mer in Ei,s is a spaced k-mer of weight w that can be found in one
and only one target.

As stated earlier, the concept of spaced k-mers is not new. Several pop-
ular metagenome classifiers, such as MetaPhyler [16], PhymmBL [4] or
MEGAN [9], as BLAST-based methods, have been implicitly using spaced seeds.
In addition, other similarity-based methods that analyze genomic and metage-
nomic sequences use spaced k-mers, such as Seed [2]. However, to the best of our
knowledge, the concept of discriminative spaced k-mers is novel and introduced
for the first time in this manuscript.

2.3 Selection of Optimal Spaced Seeds and Index Creation

The selection of specific spaced seed is critical to achieve high precision and
sensitivity (see, e.g., [5,6,11–14,17]). For contiguous k-mers, the classification
precision increases as we increase k. However, the highest sensitivity occurs with
somewhat shorter k-mers. Clark is more precise for long contiguous k-mers
(e.g., k = 31), but the highest sensitivity occurs for k-mers of length 19–22 [19].
As a consequence, we considered here spaced seeds of length k = 31 and weight
w = 22. The choice of selecting a length of 31 is also motivated by a fair com-
parison against Clark and Kraken, which achieve high accuracy thanks to
long 31-mers in their default mode. However, we realize that a more exhaustive
analysis of k and w would be necessary, but (i) the intent of this work is to show
the advantage of replacing discriminative contiguous seed with discriminative
spaced seed, (ii) an analysis of other choices of w will be reported in the journal
version of this paper.

Given k and w, the second step is to determine the structure of the spaced
seed. In order to determine the optimal structure we proceeded to model
sequence similarly as it is done in alignments-based method (see, e.g., [17]).
We considered that the succession of matches/mismatches follows a Bernoulli
distribution with parameter p, where p represents the similarity level between
the read and the reference sequence. If a short read belongs to a known ref-
erence sequence, then the similarity level should be high since the amount of
mismatches dues to genomic variations or sequencing errors are low. This is why
we assumed a high similarity level, and chose p = 95%.

We searched exhaustively through all the spaced seeds of length k = 31
and weight w = 22 (starting/ending with ‘1’) using a similarity level of 95 %,
and a random region of length 100 bp, by using the dynamic programming app-
roach from [17] and implemented in [12]. The spaced seed with the highest
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hit probability [17], 0.998113, is 1111*111*111**1*111**1*11*11111. In addi-
tion, we have also selected two additional spaced seeds with the highest hit
probability namely 11111*1**111*1*11*11**111*11111 (0.998099) and finally
11111*1*111**1*11*111**11*11111 (0.998093).

Before a read can be classified, Clark-S builds a database of discriminative
spaced k-mers for each target. Clark-S can take advantage of multiple spaced
seeds, thus multiple databases can be created. For each spaced seed, discrimina-
tive spaced k-mers were built from contiguous discriminative 31-mers. Once the
three databases of discriminative spaced k-mers were computed, they are stored
in disk so they can be loaded for classification.

The classification algorithm of the “Spaced” mode is identical to that of the
“full” mode (extensively described in [19]), except for two differences, namely (i)
Clark-S queries against discriminative spaced k-mers instead of discriminative
k-mers and (ii) Clark-S does three queries for each k-mer in a read, because
there are three different databases. Finally, as done in the full and other modes,
the read is assigned to the target that has the highest amount of successful
queries, and several statistics (such as the confidence score and gamma score,
see [19]) are computed as well.

3 Results

3.1 Datasets

To evaluate numerically the performance of the classifiers we used simulated
datasets. From the available literature, we have selected the following three
simulated metagenomes, which we made available at http://clark.cs.ucr.edu/
Spaced/. The first dataset is “A1.10.1000” which was derived from “A1”, the first
group of paired-end reads in the dataset “A” from [15]. According to authors,
this dataset closely mimics the complexities, size and characterization of real
metagenomes. The A1 dataset contains about 28.9M reads, 80 % of which cor-
respond to known sequenced genomes (from bacterial, archaeal and eukaryotes
genomes), and 20 % of which are randomized reads (from real genomes) that
should not be assigned to any taxa. We have extracted 10,000 reads from A1
as follows. We have arbitrarily taken nine different genomes from the list of
genomes used to build “A1” (see Supplementary Table 1 in [15]). Then, we took
the first 1,000 reads for each selected genome, and also 1,000 “random” reads.
The resulting dataset, called “A1.10.1000”, contains 10,000 reads (each 100 bp
long) and can be considered as medium/high complexity.

The second dataset is “B1.20.500” which was derived from “B1”, the first
group of reads in the dataset “B”, from [15]. Similarly as done for A1.10.1000,
we have extracted 10,000 reads from B1 as follows. We have arbitrarily taken 19
different genomes from the list of genomes used to build “B1” (see Supplementary
Table 2 in [15]). Note that these 19 selected genomes are different from those
selected in A1. Then we took the first 500 reads for each selected genome, and also
500 “random” reads. The resulting dataset, called “B1.20.500”, contains 10,000
reads (each 100 bp long) and can be considered as medium/high complexity.

http://clark.cs.ucr.edu/Spaced/
http://clark.cs.ucr.edu/Spaced/
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The third dataset “simBA-5” comes from the Kraken paper and is described
in it. According to the authors, it was created using bacterial and archaeal
genomes, and with an error rate five times higher than the default. It contains
10,000 reads, each read is 100 bp long, and can be considered as high complexity.

To classify these metagenomic datasets, we use the entire set of bacter-
ial/archaeal genomes from NCBI/RefSeq as reference genomes. At the time of
writing, they represent 2,644 genomes and distributed in 36 phyla. The cumula-
tive length of these genomes is 9.1 billion base pairs, where the average genome
length is 3.4 million base pairs.

3.2 Comparison with Other Tools

A large set of metagenomic classifiers exists in the literature. However, a com-
parison between Clark and all existing classifiers is not necessary. An inde-
pendent comprehensive evaluation of a wide range of metagenomics classifiers
has been carried out recently using six large datasets of short paired-end
reads [15]. On the data tested, Kraken is among the most accurate meth-
ods at the phylum level compared to other popular and used methods, such
as mOTU [23], MetaPhlAn [22], MetaPhyler or MEGAN. However, the
experimental results in [25] shows that NBC is more sensitive than Kraken,
Megablast and PhymmBL at the genus level. In our study [19], we have also
shown that NBC is more sensitive than Kraken at the genus level. In addition,
NBC is more sensitive than Clark, at the genus level, even when the latter is
run in its most sensitive settings (i.e., “full” mode and k = 20) [19]. Note that
the study [3] also shows the high sensitivity of NBC. As a consequence of this
analysis, it appears sufficient to compare Clark against NBC and Kraken, as
they are the two most accurate classifiers among current published methods, at
the phylum and genus level.

3.3 Classification Accuracy

In this section, we present the performance of Clark (v1.2.1-beta), NBC (v1.1)
and Kraken (v0.10.5-beta) on the three simulated datasets described above.
Consistently with other published studies (e.g., [19,25] or [3]), the sensitivity
is defined as the ratio between the number of correct assignments at a given
taxonomy rank (e.g., phylum or genus) and the number of reads defined for
that rank. The precision is defined as the ratio between the number of correct
assignments at a given taxonomy rank (e.g., phylum or genus) and the number
of assigned reads.

We present below results for the phylum and genus level. In Tables 1 and 2,
the first three rows report results from Kraken Clark, and NBC, all run
in their default/recommended parameters. We ran Kraken and Clark in the
default mode, with k = 31, and NBC, with k = 15. The last two rows in
these tables report the performance of Clark-S. In the last row we report the
precision and sensitivity when filtering only high confidence (HC) assignments
(i.e., assignment with confidence score ≥ 0.75 and gamma score ≥ 0.03).
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Table 1. Phylum-level accuracy (%) of Kraken, NBC, Clark, Clark-S and Clark-
S (HC) on A1.10.1000, B1.20.500 and simBA-5

A1.10.1000 B1.20.500 simBA-5

Precision Sensitivity Precision Sensitivity Precision Sensitivity

Kraken 99.91 77.59 99.98 90.91 99.98 94.49

Clark 99.93 76.87 100.00 90.12 99.99 93.46

NBC 79.86 79.86 94.91 94.91 99.89 99.89

Clark-S 94.50 79.99 98.95 94.98 99.87 99.70

Clark-S (HC) 99.63 79.97 99.99 94.93 100.00 99.29

Table 2. Genus-level accuracy (%) of Kraken, NBC, Clark, Clark-S and Clark-S
(HC) on A1.10.1000, B1.20.500 and simBA-5

A1.10.1000 B1.20.500 simBA-5

Precision Sensitivity Precision Sensitivity Precision Sensitivity

Kraken 99.80 70.61 99.94 90.55 99.85 91.97

Clark 99.80 69.98 99.95 89.69 99.82 90.77

NBC 77.94 77.94 94.76 94.76 98.97 98.97

Clark-S 92.71 78.38 98.76 94.74 98.58 98.22

Clark-S (HC) 99.35 76.41 99.95 94.52 99.61 97.24

Observe in Table 1 that (i) Clark-S (HC) and NBC achieve very high sensi-
tivity, (ii) Kraken’s sensitivity is lower than NBC or Clark-S for all datasets,
(iii) Clark-S outperforms NBC’s sensitivity in A1.10.1000 and B1.20.500,
(iv) both Clark and Kraken have high precision and achieve more than 99.9 %
in all datasets (even though A1.10.1000 and B1.20.500 contain reads that do not
belong to any bacterial/archaeal genomes), but (v) Clark-S (HC) is as precise
as them and outperforms NBC in all datasets.

Table 2 shows that (i) Clark’s sensitivity is lower than NBC, (ii) Clark-
S (HC) and NBC achieve the highest sensitivity and outperforms Kraken,
(iii) Clark-S is more NBC in A1.10.1000, (iv) Kraken and CLARK show
high precision and achieve both more than 99.8 % in our datasets, (v) Clark-S
(HC) is as precise as Kraken and Clark, it outperforms NBC in all datasets,
especially for A1.10.100 or B1.20.500. For simBA-5, NBC achieves the best
sensitivity with 98.97, less than 2 % more than the level performed by Clark-
S (HC).

3.4 Real Metagenomic Samples

In this section, we evaluate the performance of Clark-S (HC) on a large real
metagenomic dataset. We have selected the dataset from [18], which is a recently
published study on the population dynamics in microbial communities present
in surface seawater in Monterey Bay, CA.
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This dataset contains 42M reads, and the average read length is 510 bp.
We pre-processed the dataset of raw reads using the following trimming steps:
(i) we removed the first five bases and kept the following 100 bases using FastQ
Trimmer1, (ii) we removed reads containing sequencing adapters using Scythe2,
(iii) we trimmed the read ends if contained bases with a quality score below
30 and discarded reads containing any Ns using Sickle3. The resulting dataset
contained 37M short reads.

We classified these 37M short reads using Kraken (default) and Clark-S,
using the bacterial/archaeal genomes from NCBI/RefSeq. Kraken was able to
classify only 1,1M reads (or 3 % of the total). Clark in its default mode also
classifies about 1,1M reads. However, Clark-S classifies 20M reads (or 54 %
of the total), about 20 times more than Kraken. Among these 20M classified
reads, there are 7M high confidence assignments (or 19 % of the total), which is
about 6 times more than Kraken.

The fact that Kraken assigns only 3 % of the reads can be explained by
the fact that (i) Kraken relies on matching exact k-mer, and (ii) the current
database of bacterial/archaeal likely contains only a limited fraction of the bac-
terial/archaeal diversity in seawater. Seawater metagenomes are likely to con-
tain a high proportion of organisms that are missing in NBCI/RefSeq database
because while the marine environment is one of the most biologically diverse
on the planet [8], the culture in laboratory of bacteria from seawater is difficult
[20]. Since Clark-S allows mismatches on the k-mers, it can identify at least
the phylum/genus of unknown organisms.

Kraken identified, as dominant phyla, Proteobacteria (57 %) and Bac-
teroides (27 %). This is consistent with results reported in [18], as well as
phyla in low-abundance such as Actinobacteria (1 %) or Thaumarchaeota (2 %).
Within high confidence assignments of Clark-S, the two dominant phyla are,
as expected by estimations from [18], Proteobacteria (56 %) and Bacteroides
(32 %). Consistently with [18], phyla in low-abundance were correctly identified,
for example, Actinobacteria (1 %) and Thaumarchaeota (2 %).

Experimental results from Kraken and Clark-S (HC) indicate the
expected dominant phyla in the dataset (with the expected abundance for each).
While Kraken and Clark-S (HC) are consistent for this dataset, we do notice
one significant disagreement. The expected abundance of Cyanobacteria is 0–
2 %, according to [18], but Kraken reports 9 % and Clark-S (HC) reports 3 %.
Such discrepancies can be explained by our pre-processing to create this dataset,
however, the estimation by Clark-S (HC) is more accurate than Kraken. As
a consequence, Clark-S was able to assign about 20 times more short reads
than Kraken, and its high confidence assignments show stronger consistency
with expected results than Kraken’s results.

1 http://hannonlab.cshl.edu/fastx toolkit/index.html.
2 https://github.com/ucdavis-bioinformatics/scythe.
3 https://github.com/ucdavis-bioinformatics/sickle.

http://hannonlab.cshl.edu/fastx_toolkit/index.html
https://github.com/ucdavis-bioinformatics/scythe
https://github.com/ucdavis-bioinformatics/sickle
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3.5 Time and Space Complexity

All experiments presented in this study were run on a Dell PowerEdge T710
server (dual Intel Xeon X5660 2.8 Ghz, 12 cores, 192 GB of RAM). NBC’s
speed is the slowest at 8–9 reads per minute, Kraken’s speed is 1.8–2M reads
per minute, while Clark (default mode) runs the fastest, at 2.8–3M reads
per minute. However, Clark-S runs slower than Clark, and classifies about
150–200 thousand reads per minute. While Clark is the fastest in the default
mode, it does not provide the same classification accuracy of NBC or Clark-S.
The fact that Clark-S computes spaced k-mers and uses several spaced seeds
explains this difference of speed. However, Clark-S is still several thousand of
times faster than NBC.

NBC consumed less than 500 MB of RAM, while Clark and Kraken used
70 and 77 GB respectively. Finally, Clark-S used 110 GB. This larger RAM
usage is due to the multiple databases corresponding to the three spaced seeds.
However, this amount remains significantly lower than 160 GB, which is the
amount needed to build/construct the database of discriminative k-mers.

4 Discussion

We have introduced for the first time the use of discriminative spaced k-mers for
the classification problem of short metagenomic reads. To the best of our knowl-
edge, Clark is the first metagenome classifier using (multiple) discriminative
spaced k-mers. We have tested Clark-S against Clark, Kraken and NBC.

Our results on several realistic metagenomic samples show that (i) Clark/
Kraken achieves high precision while being less sensitive than NBC at the
phylum/genus level, (ii) NBC achieves high sensitivity while being less precise
than the other tools, however, (iii) Clark-S (HC) can be both as precise as (or
more precise than) Kraken and as sensitive as NBC. While Clark-S is slower
than Clark because its uses mutiple spaced seeds, it is still faster than NBC
by several order of magnitude. Finally, in the context of real metagenomic data,
we proved that Clark-S (HC) can classify with high accuracy a much higher
proportion of short reads than Clark/Kraken.

We are currently improving the speed and the RAM usage of Clark-S.
A public release of Clark-S is available at http://clark.cs.ucr.edu/Spaced/.
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Abstract. Methods for the clustering of genes into homologous families
(sets of genes descending from a single gene in an ancestral organism)
are susceptible to the inappropriate merging of unrelated families, called
domain chaining. We give formal criteria for the chaining effect by defin-
ing multiple alternative clique relaxation and path relaxation models and
the relationships among them, involving different graph characteristics.
We implement these definitions and apply them to 45 flowering plant
genomes in order to compare the Markov Cluster Algorithm (MCL) and
Soft Cliques with Backbones (SCWiB) clustering method. In the process
we note the extreme behavior of the Amborella trichopoda genome.

1 Introduction

A gene family is a set of genes, in one genome or several, that includes all
descendants of a single gene in an ancestral organism. The genes in a family are
called homologous. The goal of gene family classification is to partition a set of
sequences into homologous families. In practice, gene families are constructed
on the basis of DNA or protein sequence similarities under the assumption that
genes in the same family will retain more sequence similarity than unrelated
genes. Many methods are currently available for the clustering of genes into
families. However these methods are susceptible to the inappropriate merger
of unrelated families, due to the multiple domain structure of many proteins.
Some domains, more or less lengthy sequence fragments, recur in many different
families with largely distinct histories and functions, blurring the boundaries
between these families. This problem is called the domain chaining effect [4,5];
it stems from the evolutionary acquisition of widespread protein modules that
may help in the binding or movement of the protein but generally not its specific
primary enzymatic, synthetic, signaling or regulatory function.

Gene family classification has often been studied using graph concepts
[3,13,14]. A theoretical model of this problem can be obtained in the following
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way: each gene is identified with a vertex v of undirected graph GS = (V,E),
where there exists an edge {u, v} ∈ E between two vertices u and v if the pair of
genes exceeds a threshold similarity score. Graph GS is called a similarity graph;
ideally each maximal clique in GS corresponds to a single gene family, and vice
versa, and a long path may represent a chaining effect (Fig. 1).

Duplication
Domain
Insertion

Domain
Insertion

x y wz

x y z w

Fig. 1. The evolutionary history of a hypothetical multidomain family showing both
gene duplication and domain insertions. Genes y and z share a common ancestor but
do not have identical domain composition. Genes x and w share homologous domains
with genes y and z, respectively, but there is no gene that is ancestral in all of x, y, z
and w.

There is a large literature on clique relaxation models, where not all the
elements are “directly connected” to each other [9]. These models are useful in
applied contexts where connections between members of a group need not be
direct and could be meaningfully accomplished through intermediaries. Clique
relaxation models are obtained by allowing the clique property to be relaxed in
various ways. Some examples are: s-clique — where the distance between vertices
within the group must be at most s [6]; s-club — where the diameter of the graph
induced by the group must be at most s [2]; s-plex — where the number of non-
neighbors among elements of the group is bounded [11]; k-core where a certain
minimum number k of neighbors within the group is guaranteed [10]; s-defective
clique — which differs from a clique by at most s missing edges [12]; γ-quasi-
clique — ensures a certain minimum ratio γ of the number of existing links to
the maximum possible number of links within the group [1]. Although clique
relaxation models have proved useful in many applications, there has been no
formal study of domain chaining associated to these methods.

In this present paper, we also give formal criteria for the chaining effect in
terms of a number of alternative path relaxation models and the relationships
among them, involving different graph characteristics. We define the α-quasi-path
that ensures a certain minimum ratio α of the diameter to number of existing
links; k-chain that is relative to average degree; and (x, y)-damaged-path that
takes into account the number of missing and extra edges to be dealt with in
order to turn the graph into a path.

We use these cluster and path relaxation definitions in comparing two meth-
ods for generating gene families: Markov Cluster Algorithm (MCL) [3], one of
the most widely used procedures for inferring gene families; and Soft Cliques
With Backbones (SCWiB) [14], a new method that ensures that clusters satisfy
a tolerant edge-density criterion that takes into account cluster size. We perform
the comparisons on 45 published angiosperm genome sequences.
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In Sect. 2 we give some basic graph theory definitions and formalize our pro-
posed new path relaxation definitions. In Sect. 3 we implement the definitions
and apply them to 45 genomes in order to compare the MCL and SCWiB meth-
ods. Finally, in Sect. 4, we summarize our results.

2 Definitions and Notations

We denote a simple undirected graph by G = (V,E), where V is the set of
vertices and E is the set of edges. Given a vertex v ∈ V , we denote the degree
of v by d(v) and the minimum degree of G by δ(G). A clique of a graph is a
set of mutually adjacent vertices. A path of length r between vertices u and v
in G is a subgraph of G defined by an alternating sequence of distinct vertices
u ≡ v0, v1, ..., vr−1, vr ≡ v such that {vi, vi+1} ∈ E for all 1 ≤ i ≤ r − 1. We
denote by Pn the graph that is a path with n vertices. The distance dist(u, v)
between two vertices u and v of a connected graph is the length of the shortest
path connecting them. The eccentricity of a vertex v, denoted by ε(v), in a
connected graph G, is defined to be the maximum distance between v and any
other vertex u of G. Then we say the diameter of G, diam(G), is the maximum
value of ε(v) over all vertices v ∈ V . The density ρ(G) of G is the ratio of the
number of edges to the total number of possible edges, i.e., ρ = 2|E|

|V |(|V |−1) .
Next, some of clique relaxation models, which were already mentioned in the

previous section, are formally defined. We assume that G = (V,E) is connected,
γ ∈ (0, 1] is real and the constant s is positive integer.

Definition 1 (s-plex). G is an s-plex if δ(G) ≥ |V | − s.

Definition 2 (γ-quasi-clique). G is a γ-quasi-clique if ρ(G) ≥ γ.

Definition 3 (s-defective-clique). G is a s-defective-clique if G contains at least
|V |(|V |−1)

2 − s edges.

In order to study the domain chaining effect, we introduce some path relax-
ation definitions, each of which measures, in some sense, how close a graph is to
being a path. We assume that G = (V,E) is connected, constants k, x and y are
positive integers and α ∈ (0, 1] is real.

Definition 4 (α-quasi-path). G is an α-quasi-path if diam(G)
|E| ≥ α.

Definition 4 ensures a certain minimum ratio α of the diameter to the number
of edges. Note that this definition is more pertinent to chaining than the defini-
tion of an s-club, since in addition to considering the diameter, it also considers
the total number of edges and the ratio between them.

Observe that for α = 1, G is an α-quasi-path if and only if it is a path, and
that the minimum value for α is 2

|V |(|V |−1) , which occurs when G is a complete
graph. If G contains an α-quasi-path, where α is close to 1, the graph is highly
chained, i.e., similar in structure to a path.
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Definition 5 (k-chain). G is a k-chain if k is the smallest integer such that

k ≥
∑

v∈V \{u,w}
d(v)

|V |−2 = 2|E|−d(u)−d(w)
|V |−2 , where u and w are the vertices of smallest

degree and d(u) ≤ d(w) < k.

Definition 5 ensures that the average degree of a graph G, without the two
vertices of smallest degree, is less than or equal to k. Furthermore, as δ(G) < k
if G is a k-chain, all k-chain graphs are at most (k−1)-connected. Note that all
p-regular graphs are p + 1-chains. In particular a complete graph is a |V |-chain.
Thus 2 ≤ k ≤ |V |, and when k approaches 2, the graph is highly chained (it is
structurally similar to a tree).

Definition 6 ((x, y)-damaged-path). G is an (x, y)-damage-path if x =
|V | − 1 − diam(G) and y = |E| − diam(G).

Definition 6 involves two parameters (x, y). The former is the difference
between the length of P|V | and the diameter of G; the latter is the difference
between the number of edges and the diameter of G. Here the idea is, given a
graph G and a path P in G with length equal to the diameter of G, y represents
the number of edges that are not in P (extra edges), and x indicates the number
of edges needed to complete P (missing edges) in order to obtain a path of length
|V | − 1. Note that x and y could be defined in different ways, as long as the dif-
ference y − x = |E| − |V | + 1 always remained the same; it is convenient here to
define x and y in terms of the diameter of G so that x = y = 0 if and only if G

is a path. In this case, we have 0 ≤ x ≤ |V | − 2 and 0 ≤ y ≤ |V |(|V |−1)
2 − 1. Note

that x = |V |−2 and y = |V |(|V |−1)
2 −1 if G is a complete graph. Thus, given two

graphs G1 and G2, such that G1 is (x1, y1)-damaged-path and G2 is (x2, y2)-
damaged-path, we say that G1 is more chained than G2 if y1 − x1 < y2 − x2, or
y1 − x1 = y2 − x2 and x1 < x2. Some examples are depicted in Fig. 2.

2-club
1
2 -quasi-path

2-club
2
7 -quasi-path

3-chain

4-chain

(2,2)-damaged-path

(2,3)-damaged-path

G1
G2

G1

G2

G1

G2

Fig. 2. Examples of path relaxation models, where G1 is more chained than G2 accord-
ing to the respective definition.

We will compare two methods for generating gene families, SCWiB and MCL,
in terms of the parameters we have defined.

The SCWiB method ensures that a gene family is determined by strong
similarities connecting each of its members, by setting a high similarity threshold
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U , and requiring that a cluster be connected, in the graph theoretical sense, solely
in terms of similarities exceeding U . Also to control chaining, this method sets
a less stringent threshold W , and requires that the elements in the cluster form
an s-plex in terms of similarities exceeding W .

MCL is one of the most widely used methods for inferring gene families. Its
basic principle is the iteration of a procedure that strengthens certain heavily
weighted edges and weakens those with lesser weight. With appropriate parame-
ter settings, MCL and SCWiB can produce very similar distributions of cluster
sizes. The lack of any cluster quality criterion influencing the MCL process, how-
ever, results in many of its clusters, including some of the largest ones, having
very few internal edges, while the SCWiB construction explicitly prohibits this.

3 Results

Data Source. In order to compare the SCWiB and MCL methods, we cal-
culate the parameters introduced in Sect. 2 in 45 genomes. We extracted the
data on these genomes from the CoGe database [7,8]. We require genomes to
be published, publicly available, and have associated structural gene annota-
tions. The genomes include Amborella, sacred lotus, rice, Brachypodium, maize,
sorghum, millet, banana, duckweed, date palm, grape, eucalyptus, clementine,
sweet orange, cacao, papaya, Arabidopsis thaliana, Arabidopsis lyrata, turnip,
Capsella rubella, Leavenworthia alabamica, Sisymbrium irio, Aethionema ara-
bicum, Thellungiella parvula, Eutrema parvulum, watermelon, cucumber, peach,
strawberry, lotus, common bean, pigeonpea, soybean, coffee, poplar, flax, cas-
sava, Ricinus communis, kiwifruit, tomato, potato, pepper, Utricularia, Mimulus
and Medicago [15–56].

We analyze these two methods for each genome individually, calculating the
average of each parameter (diameter, α, k, (x, y)) separately, for clusters with
|V | in each the following bins: 2, 3–4, 5–8, 9–16, 17–24, 25+. We consider each
parameter as a function of bin size.

Comparison of Clustering Methods. In Figs. 3 and 4, we note that, in
general, the diameter is a non-decreasing function for both methods and, in
the SCWiB method it is always bounded above by 2 (by definition, given our
choice of parameters). Furthermore, for all the genomes analyzed the average
diameter of SCWiB clusters with the same |V | is always less than that of the
corresponding MCL clusters.

For α-quasi-paths, we observe that α is a decreasing function and, starting
at bin 5-8, α decreases faster for SCWiB than for MCL.

For k-chains, k is a increasing function and, starting at bin 5-8, k increases
in the SCWiB clusters faster than in those obtained by MCL. Therefore for the
parameters “diameter”, α and k, we find that MCL leads to more chaining than
the SCWiB method.

Turning to the relaxation clique criteria, γ-quasi-clique and s-defective-clique,
we also compare the similarity to cliques of the gene families generated by both
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Fig. 3. Average of diameter (top) and α(bottom) separately for clusters with |V | in
each the following bins: 2, 3–4, 5–8, 9–16, 17–24, 25+. Singletons not included. Left:
the SCWiB. Right: MCL. Amborella results highlighted in black.

the two clustering processes. We observe that SCWiB clusters are denser, and
more uniform in density, than those of MCL, and the former have fewer missing
edges than the latter in comparison with a complete graph. The range, across all
genomes, of the average number of missing edges in SCWiB-generated families
in every bin, starting at bin 9-16, is less than and actually disjoint from that for
MCL method. SCWiB clusters are thus more clique-like than MCL clusters.

Comparison of Genomes. We previously observed that Amborella trichopeda
has an anomalously small number of moderate and large-sized clusters [14]. Here,
in comparing all 45 genomes by both clustering methods, we observe in Figs. 3, 4
and 5 that Amborella also demonstrates extreme behaviour with respect to high
levels of chaining and non-clique-like families. Only papaya and strawberry have
comparable behavior, but less consistently. The common bean, soybean and Theo-
broma are at the other extreme, with little chaining and more clique-like clusters.
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Fig. 4. Average of k (top) and y − x(bottom) separately for clusters with |V | in each
the following bins: 2, 3–4, 5–8, 9–16, 17–24, 25+. Singletons not included. On the left
the SCWiB clusters and in right the clusters from MCL. Amborella always highlighted
in black.

Comparison of Criteria. We computed the Pearson correlation coefficient
among the parameters from an array of average values over all 45 genomes, for
each bin (Table 1). We did this separately for the SCWiB clusters and the MCL
clusters. All pairs of parameters are significantly correlated, either positively
and negatively. To find the overall pattern, we submitted the correlations to
a multidimensional scaling (MDS) procedure using the XLSTAT package from
AddinsoftTM. For coherence, we used −α and −ρ instead of α and ρ, so that all
the correlations would have the same sign, and larger values of all parameters
would indicate increased chaining.

Figure 6 shows that the parameters are largely disposed in a single dimension,
although a two-dimensional space was specified in the scaling settings. −α, −ρ
and “diameter” are at opposite sides from s and |y −x|, while k is intermediate.
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Fig. 5. Average of density (top) and average of missing edges to be complete graph
(bottom) separately for clusters with |V | in each the following bins: 2, 3–4, 5–8, 9–16,
17–24, 25+. Singletons not included. On the left the SCWiB clusters and in right the
clusters from MCL. Amborella always highlighted in black.

Table 1. Pearson correlation coefficient among: diameter, α, k, |y − x|, density ρ and
s missing edges.

SCWiB diam α k |y − x| ρ s

diam 1
α -0.94 1
k 0.84 -0.68 1

|y − x| 0.64 -0.46 0.96 1
ρ -0.76 0.93 -0.28 -0.35 1
s 0.64 -0.45 0.96 0.99 -0.35 1

MCL diam α k |y − x| ρ s

diam 1
α -0.84 1
k 0.95 -0.75 1

|y − x| 0.75 -0.41 0.93 1
ρ -0.99 0.86 -0.97 -0.76 1
s 0.69 -0.37 0.89 0.99 -0.72 1
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Fig. 6. MDS analysis of correlations among clique- and path-relaxation criteria for
chaining. Top: SCWiB clusters. Bottom: MCL clusters.

There are clear differences between SCWiB and MCL, in the ordering of −α,
−ρ and “diameter”, for example, reflecting the constraints on these quantities
in their SCWiB definitions.

4 Conclusion

Our application to plant genomes shows that Amborella clusters show less chain-
ing than other flowering plants, extending the previous discovery, in the same
set of angiosperm genomes surveyed here, of the special nature of this basal
flowering plant [14] in having exceptionally few large and moderate-size gene
families.

The different uses of clustering in genomics suggest that no one definition is
universally useful. For partitioning the set of genes into disjoint gene families,
as we have done here, allowing minor relaxation from a clique is probably more
appropriate. On the other hand, for the investigation of the evolution of genes
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through the accumulation, loss and exchange of protein domains, it may be inter-
esting to balance clique-like behaviour with a degree of chaining. For functional
studies of gene networks, still other concepts and definitions of cluster shape
may be preferable.

Although “chaining” is a generally understood concept in cluster analysis
and domain chaining is familiar to all who work on automated gene family con-
struction, there is no one single formal definition of chaining. We have suggested
a range of formalizations that turn out to differ (empirically) along an axis mea-
suring relaxation from a clique at one extreme, to relaxation from a path at the
other. Our tests show that in general SCWiB yields clusters with less chaining
than MCL, not only according to the clique relaxation criteria, but also by the
path relaxation ones.

That the clustering criteria are disposed in an almost one-dimensional sub-
space when applied to our database is more than just an artifact of the clustering
method is confirmed by similar results with the two methods. It is also unlikely
to reflect only the properties of our database, but this should be confirmed by
simulation studies. These observations reinforce our suggestion of more general
research into how to operationalize various concepts of cluster shape. We could
hope that eventually this would lead to an understanding of the statistical nature
of the evolution of gene families.
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Abstract. Current microarray technologies to determine RNA struc-
ture or measure protein-RNA interactions rely on single-stranded,
unstructured RNA probes on a chip covering together all k-mers. Since
space on the array is limited, the problem is to efficiently design a com-
pact library of unstructured �-long RNA probes, where each k-mer is
covered at least p times. Ray et al. designed such a library for specific
values of k, � and p using ad-hoc rules. To our knowledge, there is no gen-
eral method to date to solve this problem. Here, we address the problem
of finding a minimum-size covering of all k-mers by �-long sequences with
the desired properties for any value of k, � and p. As we prove that the
problem is NP-hard, we give two solutions: the first is a greedy algorithm
with a logarithmic approximation ratio; the second, a heuristic greedy
approach based on random walks in de Bruijn graphs. The heuristic algo-
rithm works well in practice and produces a library of unstructured RNA
probes that is only ∼ 1.1-times greater in size compared to the theoret-
ical lower bound. We present results for typical values of k and probe
lengths � and show that our algorithm generates a library that is signifi-
cantly smaller than the library of Ray et al.; moreover, we show that our
algorithm outperforms naive methods. Our approach can be generalized
and extended to generate RNA or DNA oligo libraries with other desired
properties. The software is freely available on curlcake.csail.mit.edu.

Keywords: de Bruijn graph · RNA secondary structure · Microarray
library design

1 Introduction

RNAs play vital roles in many processes in the living cell. Through interaction
of RNAs with other RNAs or proteins, they perform specific functions. RNA-
RNA interactions play a role in many pathways of RNA metabolism, including
pre-mRNA splicing, ribosome synthesis, and the regulation of mRNA stability
by microRNAs [1]. RNA-binding proteins interact with RNAs to modulate and
affect a wide variety of cellular processes, including RNA replication, repair and
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recombination [2]. Both types of interactions are mediated through the structure
and sequence of the RNA molecule. Typically, interactions occur with RNA
accessible regions through either base-pairing to nucleotides of another RNA or
hydrogen bonding to a protein’s residues [3,4].

A given RNA may fold into different conformations, which vary in accessible
regions [5]; therefore, relying on in silico prediction of its structure may lead to
incorrect predictions for the accessible region of interest. Researchers would thus
like to experimentally measure accessible regions in RNAs.

Numerous experimental methods have been developed to study the secondary
structure of RNAs in a high-throughput (HTP) manner [6–8]. Microarray tech-
nologies measure RNA secondary structure through the hybridization of acces-
sible regions to a set of oligos on a chip. An array covering all RNA k-mers
(a contiguous RNA word of length k) can robustly and accurately measure the
structure of many RNAs. Examples for such arrays covering all 6-mers and 7-
mers include [7,8], respectively. In both experimental setups, each oligo contains
a unique k-mer. Despite the fact that microarrays are limited in throughput
compared to deep-sequencing based methods, they are still often being used to
overcome limitations in sequencing methods [9].

RNA-binding proteins (RBPs) regulate gene translation post-transcriptionally
via their binding to RNA molecules. More than 1,500 genes in the human genome
are thought to code for RBPs, making this family one of the largest families in the
human proteome [10]. Many of these proteins have sequence-specific RNA-binding
properties and thus regulate genes by binding only to site-specific elements. Better
characterization of RBPs sequence-specific binding preferences can improve our
understanding of post-transcriptional gene regulation.

New experimental high-throughput (HTP) techniques have been developed to
uncover protein-RNA interactions on a genome-wide scale at single-nucleotide res-
olution. For example, HITS-CLIP, CLIP-seq and RIP-seq [11] measure protein-
RNA interactions in vivo in a HTP manner. However, much like protein DNA-
binding, protein RNA-binding is influenced by a variety of factors, such as other
RBPs (that either compete for the same binding site or co-bind as a complex)
and RNA secondary structure, which determines if a binding site is accessible or
not [12]. While the end goal is to understand and predict in vivo binding, in vitro
experiments currently have higher resolution and lower noise and thus provide
valuable complementary information to protein RNA-binding preferences.

Towards this aim, high-throughput in vitro methods have been developed to
study the binding preferences of RBPs [13,14]. In RNAcompete [13], a specific
protein binds to a set of pre-designed oligos, and binding is measured using a
florescence tag. The binding of the protein to a set of more than 200,000 probe
sequences is reported. A recent study by the authors presents the binding of
more than 200 human RBPs and provides a compendium of RBPs [15]. RNA
Bind-n-Seq is a new technology that measures protein RNA-binding based on
HTP sequencing [14]. Since the initial library is composed of random oligos,
these may be structured and as a result include k-mers that are likely to be
base-paired in RNA secondary structure.
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The oligo library used in RNAcompete experiments has unique properties
that allow it to effectively measure protein RNA-binding in a universal and
unbiased manner. The complete oligo set is designed such that each 9-mer is
covered at least 16 times. This property guarantees the ability to infer accurate
binding scores for 9-mers and shorter k-mers. Another key property is that the
probe sequences are unstructured, which makes them accessible to the protein
for binding [16].

In this paper, we address the problem of designing better microarray probe
libraries for enhanced exploration of both RNA structure through base-pairing
of the target RNA to the probes as well as protein RNA-binding through affinity
between a protein and the probes. Note that array designs that consist of a single
k-mer for each probe are disadvantageous: the space on the microarray is limited,
while the number of probes grows exponentially with k (the number of possible
RNA k-mers is 4k). A small value of k is also undesirable, since the likelihood
of having a k-mer appear more than once in a target RNA sequence, and thus
preventing unique identification of accessible sites, increases as k gets smaller.
Hence, we aim to increase the size of k, while maintaining a small number of
oligos on the chip. This goal can be achieved by covering a number of k-mers
on each oligo. In this scenario, the k-mers are no longer covered by a unique
sequence. Alternatively, if a k-mer is covered multiple times, an aggregate score
for its accessibility or affinity can be inferred.

There are numerous methods to design sequences with complete coverage of
all k-mers. De Bruijn sequences are the most compact sequences to cover all k-
mers [17]. They can be generated in linear time in various ways, including Euler
tours in complete de Bruijn graphs [18], linear-feedback shift registers [19] and
in a recursive manner [20]. De Bruijn sequences have been successfully used in
HTP technologies that measure protein DNA-binding, such as protein-binding
microarrays [21–23] and MITOMI [24].

However, the coverage of all k-mers is not enough, as RNAs may form struc-
ture. In RNAcompete, the authors used ad-hoc greedy rules to generate an oligo
library with the desired properties [13]; however, their method cannot be gen-
eralized. To our knowledge, there is currently no method to generate an RNA
oligo library such that each k-mer occurs at least p times in �-long unstructured
probe sequences. Such a method would be highly useful for current and future
technologies that measure protein-RNA interactions or RNA secondary struc-
ture. In addition, the freed space on the device may be used to cover longer
k-mers or sequences with other specific properties.

Here, we solve the problem of designing an RNA oligo library such that
each k-mer occurs at least p-times in �-long unstructured probe sequences. We
prove that for a given set of �-long probes, the problem of covering all k-mers
by a minimum-size subset is NP-hard. Thus, we formulate the problem as a
minimum m-set cover problem and give an approximation algorithm with guar-
anteed logarithmic ratio. We also present a heuristic greedy algorithm based
on random walks in de Bruijn graphs which performs very well in practice; it
produces an oligo library that is only ∼ 1.1-times greater in size than the the-
oretical lower bound. In our results, we analyze the fraction of unstructured
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RNA oligos as a function of their length and show that traditional methods to
cover all k-mers do not work. We conclude with an analysis of the computational
performance of our heuristic algorithm over different values of k and � and in
comparison to the design by Ray et al. [15]. The software is freely available on
curlcake.csail.mit.edu.

2 Preliminaries

2.1 de Bruijn Graphs

A de Bruijn graph of order k over alphabet Σ is a directed graph in which every
vertex has an associated label (a string over Σ) of length k (k-mer) and every
edge has an associated label of length k + 1. There are exactly |Σ|k vertices in
the graph, each representing a unique k-mer. If an edge (u, v) has an associated
label l, then the label associated with u must be a k-prefix of l and the label
associated with v must be a k-suffix of l. A complete de Bruijn graph contains
all possible edges, which represent together all (k + 1)-mers over Σ.

Every path in a de Bruijn graph represents a sequence. A path v1, e1, v2, . . . , vn

of length n spells a sequence s of length n + k − 1 such that the label associated
with vi occurs in s at position i for all 1 ≤ i ≤ n, and the label associated with ei

occurs in s at position i for all 1 ≤ i ≤ n − 1.

2.2 Unstructured RNA Probes and Self-structured k-mers

We followed the definition of structuredness due to Ray et al. [13]. The authors
use RNAshapes [5] to enumerate all secondary structures with free energies
within 70 % of the minimum free energy. The exact command line is: RNAshapes
-s -c 70.0 -r -M 30 -t 1 -o 2.

The sum of the probabilities of structures with free energies less than
−2.5 kcal/mol quantifies structuredness. A value below 0.5 is considered unstruc-
tured. For any sequence, we prepend the linker used in the RNAcompete tech-
nology (AGG or AGA) [13]. From the two linkers, we selected the one that gave
the smaller sum of probabilities.

A self-structured k-mer forms structure in itself. It follows that no probe can
contain it without being structured. Thus, to cover all k-mers in a microarray,
structured probes must be included. For the structure definition above, self-
structured k-mers exist for k ≥ 9. Smaller values of k do not require structured
probes to cover all k-mers. We refer to k-mers which are not self-structured as
unstructured k-mers.

2.3 Problems Definition

We first define the notion of k-mer coverage over alphabet Σ.

http://curlcake.csail.mit.edu
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Definition 1. A set L of sequences is a k-mer coverage over Σ if for every
w ∈ Σk, there exists a sequence Li ∈ L s.t. w ∈ Li.

We generalize the definition of k-mer coverage with a p-multi k-mer coverage.

Definition 2. A set L of sequences is a p-multi k-mer coverage over Σ if for
every w ∈ Σk,

∑
Li∈L o(w,Li) ≥ p, where o(w,Li) is the number of times w

occurs in sequence Li.

We can now state our optimization problem:

THE MINIMUM K-MER COVERAGE BY �-LONG SEQUENCES
PROBLEM

INSTANCE: A set S of �-long sequences that is a k-mer coverage over Σ =
{A,C,G,U}.

VALID SOLUTION: A subset S′ ⊆ S that is a k-mer coverage over Σ.
GOAL: Minimize |S′|.

And a similar NP-hard problem that we reduce from and use for an approx-
imation algorithm:

THE MINIMUM M-SET COVER PROBLEM
INSTANCE: A set S of subsets of E = {e1 . . . en} s.t. for any Si ∈ S, its size

|Si| ≤ m.
VALID SOLUTION: A subset S′ ⊆ S s.t. for every ei ∈ E there exists Si ∈ S′

s.t. ei ∈ Si.
GOAL: Minimize |S′|.

We generalize the k-mer coverage problem by requiring multiple k-mer occur-
rences. Note that multisets may contain an element multiple times. We use
distinct(S) to denote the set of unique elements in multiset S.

THE MINIMUM P -MULTI K-MER COVERAGE BY �-LONG
SEQUENCES PROBLEM

INSTANCE: A set S of �-long sequences that is a k-mer coverage over Σ =
{A,C,G,U} and p.

VALID SOLUTION: A multiset S′ s.t. distinct(S′) ⊆ S and S′ is a p-multi
k-mer coverage over Σ.

GOAL: Minimize |S′|.

Dealing with Self-structured k-mers. Note that since self-structured k-mers
may exist, covering all k-mers by �-long unstructured probes may be impossible.
The coverage problem may be redefined as two sub-problems to handle self-
structured k-mers:

1. Cover all unstructured k-mers by a minimum size set of �-long unstructured
RNA probes.

2. Cover all self-structured k-mers by a minimum size set of �-long RNA
probes.

The union of these sets covers all k-mers, since each k-mer is either unstruc-
tured or self-structured by definition (see Sect. 2.2).
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3 Methods

Since the minimum k-mer coverage by �-long sequences problem is NP-hard (as
we prove in Sect. 3.3), we provide an approximation algorithm and heuristic,
which performs very well in practice, to address this problem.

3.1 Approximation Algorithm Through the Minimum m-set Cover
Problem

The problem of covering all k-mers in unstructured RNA probes can be for-
mulated as a minimum m-set cover problem. The problem can be approx-
imately solved by a greedy algorithm. The algorithm starts with an empty
set and adds to the solution the set that has the most uncovered elements
in it. The algorithm achieves an approximation ratio of H(m) − 196

360 , where
m is the maximum cardinality of a set in S, and H is the harmonic number
H(n) =

∑n
i=1 1/i ≤ ln(n) + 1 [25,26]. The algorithm can be highly accurate in

some instances [27]. This leads us to the next corollary:

Corollary 1. Algorithm1 is an (H�−k+1 − 196
390 )-approximation to the minimum

k-mer coverage by �-long sequences problem.

If self-structured k-mers exist, Algorithm 1 can be modified to first handle
the coverage of unstructured k-mers by unstructured RNA probes, and then re-
run to cover uncovered self-structure k-mers by structured RNA probes. Thus,
since the approximation ratio is valid for each sub-problem, Corollary 1 is valid
for covering all k-mers (see Sect. 2.3 for definition of sub-problems).

Algorithm 1. Solve k-coverage by �-long unstructured RNA probes problem as
a set cover problem
1: For each �-long RNA sequence:
2: Test if the sequence is unstructured. If so, add it to the list of unstructured

sequences.
3: Apply the greedy set cover algorithm:
4: The elements are the k-mers.
5: The sets are the unstructured sequences, and their elements are the k-mers they

cover.

The running time of the algorithm is exponential in the oligo length �. The
first step iterates over all possible �-long sequences, and for each one runs an RNA
secondary structure prediction algorithm. Denote f(�) to be the running time of
the prediction algorithm on an �-long sequence; then Step 1 takes Θ(4� · f(�)).
The second step can be implemented using a priority queue, whose keys are
the number of uncovered elements of each unstructured sequence not in the
solution. Since the keys are integers bounded by � − k + 1, queue operations
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can be implemented in O(1) time. A dictionary is used to hold uncovered k-
mers and pointers to the sequences that contain them. The dictionary can be
implemented using an array of size 4k, as our k-mers can be represented as
integers from 0 to 4k − 1. Each cell contains a list of pointers to sequences
containing the k-mer. The length of the list is bounded by (� − k + 1) · 4�−k,
the number of possible �-long sequences containing the k-mer. Therefore, we
get that the running time for the second step is Θ(4� + 4k · (� − k + 1) · 4�−k).
The first term consists of delete-minimum operations on the queue, and the
second, the update operations. In total, Algorithm1 takes time Θ(4�·f(�)). (Since
input size is �, then f(�) = Ω(�). Predicting minimum free-energy structure
can be done in O(�2) [28]. Predicting all possible structures takes O(4� · �) as
there is an exponential number of structures, and heuristics are used to estimate
representative structures up to a given energy threshold [5]). Unfortunately, the
running time is infeasible for most instances, e.g. � = 35 in RNAcompete’s
implementation [13]. Thus, we turn to a heuristic greedy algorithm.

3.2 A Heuristic Greedy Algorithm Based on Random Walks in
de Bruijn Graphs

Our greedy algorithm, summarized as Algorithm 2, is based on the following two
key ideas:

1. Using random walks in a de Bruijn graph to find unstructured oligos.
2. Backtracking strategy in cases where the random walk reaches a structured

oligo.

The algorithm tries to find a set of disjoint �-long paths in a de Bruijn
graph, each representing an unstructured probe, and together covering all the
edges. To cover each k-mer p times, p − 1 copies are added to each edge. During
the search for the desired paths, structured paths may be found. To address
this problem, the algorithm backtracks and searches for a different path. An
illustration of this process is depicted in Fig. 1. Through its random walk, the
algorithm doubles the length of the explored path by possible extensions and
selects the first unstructured path it encounters. The rationale behind this search
process follows from two ideas related to RNA secondary structure prediction:

1. If a subsequence is structured, it is most likely that a sequence containing it
is structured (for experimental support see Sect. 4.1).

2. A structure may form between one half of a sequence to the other half.

Thus, the algorithm does not waste time by trying to extend structured sub-
paths. Indeed, it considers all possible path-extensions of length double the
current path to test if it is unstructured. This fact is also beneficial in terms
of running time: the number of extensions in a doubling scheme is O(log(�))
instead of O(�).

We bound the running time of the algorithm. The number of possible exten-
sions at each vertex is at most 4i, where i is the length of the current probe.
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Algorithm 2. Generate a set of �-long unstructured RNA sequences covering
all k-mers p times. Input: k (coverage), � (oligo length), p (multiplicity), c (a
limit on the number of attempts)
1: Generate a complete de Bruijn graph of order k−1. For each edge add p−1 copies.
2: Initialize a list L of unfinished vertices with all vertices.
3: Set current vertex to the first element in the list.
4: while there are edges in the graph do
5: probe = label of current vertex.
6: extension length = �.
7: while |probe| < extension length do
8: Try to extend probe to length minimum{2 · |probe|, extension length}.
9: if unstructured extension was not found in c attempts then

10: extension length = extension length − 1.
11: end if
12: end while
13: if |probe| = k − 1 then
14: Extend probe by a random extension of size 1.
15: end if
16: Output probe and delete the edges of its k-mers from the graph.
17: if current vertex has no outgoing edges AND |L| > 1 then
18: remove it from L.
19: Set current vertex to a random vertex from L.
20: end if
21: end while

Since the maximum number of extensions at any vertex is 4��/2�, the sum of pos-
sible extensions examined for each probe is Θ(4�/2). Denote by f(�) the running
time of the prediction algorithm and the number of probes by X, then the total
time is O(X4�/2f(�)). This may be prohibitive in some instances, depending on
the value of �. Thus, for practical reasons, we replace the search of all possible
extensions by a search of a limited number of random extensions. Denote this
number c (given as input) and remember that the extensions are performed in
a doubling scheme. Hence, the total running time is O(Xf(�)c log(�)). Results
show that X = Θ(4k/(� − k + 1)) (see Table 1).

In some cases, no extension forms an unstructured oligo with the current
sub-path. In these cases, we look for an extension shorter by one nucleotide,
and continue shortening until an unstructured path is found or the searched
extension is of size 1. This process incurs an additional factor of O(f(�)c�) per
probe in the running time, since in the worst case �/2 shortening may occur.
Thus, the total running time is O(Xf(�)c�).

The final result of this process is a set of unstructured probe sequences of
length at most �. In this set each k-mer is represented exactly p times. The
probes may be of length shorter than � in two cases:

1. The path closed a cycle (i.e. reached a vertex with no outgoing edges.)
2. The path had to be shortened to become unstructured, since no unstructured

extension was found in c attempts.
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Fig. 1. An illustration of the search process for unstructured paths. In the example,
the current path started from vertex AGCGGG. It was extended to the unstructured
path AGCGGGACGUGG. Then, it attempted to extend the path, and succeeded in
the third attempt to find an unstructured path. The de Bruijn graph is of order 6 to
cover all 7-mers.

If the technology requires that all probes have the same length, then an addi-
tional process, Algorithm 3, is run to extend these probes into �-long unstruc-
tured probes. Other methods may be used for this step, such as RNAinverse [28].
The total set in the end is the complete set.

If self-structured k-mers exist, the algorithm can be used to solve the two
sub-problems (see Sect. 2.3). The algorithm as is solves the problem of covering
all k-mers at the expense of having a few structured RNA probes. If structured
probes are forbidden, the edges corresponding to self-structured k-mers can be
removed, and the algorithm can be run on the remaining graph.

3.3 NP-Hardness of the Minimum k-mer Coverage by �-long
Sequences Problem

We prove that the following problem is NP-hard: covering all k-mers by a
minimum-size subset of a restricted set of �-long sequences. For sake of simplic-
ity, we study the problem on the RNA alphabet, but it can be easily generalized
to any finite alphabet Σ.

The problem is easy in two extreme instances. Clearly, when set S contains all
possible �-long sequences, the problem can be solved in linear time. A de Bruijn
sequence can be generated in linear time. Cutting it into �-long subsequences
with (k−1)-overlaps covers all k-mers in the most compact manner. On another
extreme, when � = k the problem is trivial.

We reduce a known NP-hard problem, the minimum m-set cover [26], to our
problem. While the problems look similar, one is not a private instance of the
other and the reduction is not immediate. Here we describe the reduction.
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Algorithm 3. Extend set S of RNA sequences covering all k-mers, each p times,
to length �. Input: k (coverage), � (oligo length), S (incomplete set), c (a limit
on the number of attempts)
1: for Each Si ∈ S do
2: if |Si| = � then
3: Output Si

4: else
5: attempts = 0
6: do
7: attempts = attempts + 1
8: Create �-long sequence S′

i:
9: Pick a random index 1 ≤ j ≤ � − |Si| + 1 for Si.

10: Assign random nucleotides in the positions outside Si.
11: while (S′

i is structured AND (attempts < c OR (attempts < 100 · c AND
|Si| = k)))

12: if S′
i is structured AND |Si| > k then

13: Continue recursively on the (|Si|/2+k/2)-prefix and (|Si|/2+k/2)-suffix
of Si.

14: Output a union of the returned sets.
15: else
16: Output S′

i.
17: end if
18: end if
19: end for

Theorem 1. The minimum k-mer coverage by �-long sequences problem is NP-
hard.

Proof. Given an input to the minimum m-set cover problem, and a set S of
subsets of E = {e1 . . . en}, we generate an input to the minimum k-mer coverage
by �-long sequences problem in polynomial time. We choose k = �log2(n)� and
� = 3km. We map each element ei ∈ E to a k-long binary representation of i,
where instead of bits we use A and U . We call this representation the element’s
{A,U}-representation and denote it by fAU (ei).

We generate three sequence sets whose union is the input to the k-mer cov-
erage problem.

1. L1: For each set Si ∈ S we generate a sequence that contains all of
its elements’ {A,U}-representation, each buffered by Gk before and Ck

after. Formally, for a set Si = {ei1 , . . . , eim} we create the sequence:∏m
j=1 Gk · fAU (eij ) · Ck. If |Si| < m, we append the sequence by C’s, so that

its total length is �.
2. L2: we add sequences that cover all the k-mers over {A,U} that are not

covered by L1. For each k-mer w over {A,U} that is not in L1 we create a
sequence Gk · fAU (w) · C�−2k.

3. L3: we cover all non-{A,U} k-mers. Formally, for each k-mer w ∈ Σk \
{Gi{A,U}k−i ∪{A,U}jCk−j |0 ≤ i, j ≤ k} create the sequence Gk ·w ·C�−2k.
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The input to the minimum k-mer coverage problem is the set L = L1 ∪ L2 ∪ L3.
Denote by LOPT the optimal solution to the k-mer coverage problem and

by LOPT
1 = LOPT ∩ L1. The solution to the m-set cover problem are the sets

corresponding to the sequences in LOPT
1 . The running time of the reduction is

bounded by O((4k + |S|) · �) to generate the input sequences, which is O((n2 +
|S|) · m · log(n)).

We now prove the correctness of the reduction. We start with proving a
couple of properties of the solution.

Lemma 1. Any k-mer coverage must include all L2 sequences.

Proof. Each sequence in L2 contains a unique k-mer over {A,U}k that does not
appear in L1. In addition, by the design of L3, there are no k-mers over {A,U}k

in L3. Thus, to cover all k-mers, all of L2 sequences must be included. ��
Lemma 2. The selection of sets in L3 is independent of L1 and L2.

Proof. The set of k-mers covered by the selected sequences in L1 and L2 is
{Gi{A,U}k−i ∪ {A,U}jCk−j ∪ CgGk−g|0 ≤ i, j, g ≤ k}. The selected sequences
in L3 are constructed to cover all other k-mers. It follows that their selection is
independent of the input to the problem.

��
1. k-mer coverage ⇒ m-set cover: all k-mers are covered by sequences in

LOPT . The selected sequences from L2 and L3 in LOPT are independent of
the input by Lemmas 1 and 2. Each sequence in LOPT

1 corresponds to a unique
set in S. The set of corresponding sets is the optimal solution to the m-set
cover problem. Assume the contrary, i.e. that there exists a smaller solution
to the m-set cover problem. Then, the set of sequences corresponding to the
sets in the solution together with LOPT ∩ {L2 ∪ L3} form a smaller solution
to the k-mer coverage problem, in contradiction to the fact that LOPT is a
minimum k-mer coverage.

2. m-set cover ⇒ k-mer coverage: denote SOPT to be an optimal solution to
the m-set cover problem. Denote L′

1 as the set of sequences corresponding to
the sets in SOPT . Then, an optimal solution to the k-mer coverage problem
is the set L′

3 ∪ L2 ∪ L′
1, where L′

3 is the minimum-size set to cover Σk \
{Gi{A,U}k−i ∪ {A,U}jCk−j ∪ CgGk−g|0 ≤ i, j, g ≤ k}. All the elements in
E were covered by SOPT , and so their {A,U}-representations are covered by
L′
1. By Lemmas 1 and 2, L2 sequences are in any optimal solution, and the

selection of L3 sequences is independent of the input. Assume to the contrary
that there exists a smaller solution to the k-mer coverage problem. L2∪L′

3 are
in any solution, so L′

1 must be smaller. L′
1 covers all the k-mers corresponding

to the elements in E, so there is a smaller solution to the m-set cover problem,
in contradiction to the fact that SOPT is an optimal solution. ��
Clearly, if we could solve the p-multi k-mer coverage problem in polynomial

time, then we could solve the k-mer coverage problem. Thus, we get:

Corollary 2. The minimum p-multi k-mer coverage by �-long sequences is NP-
hard.
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4 Results

4.1 Traditional Methods Won’t Solve Our Problem

We sought to test whether traditional methods to cover all k-mers, such as ran-
dom oligos or overlapping subsequences of a de Bruijn graph, could solve the
minimum k-mer coverage problem. Towards this aim, we analyzed the proper-
ties of unstructured probe sequences. Here we followed the definition of Ray
et al. [13]. Predicting a single minimum folding energy structure may be mis-
leading, as many RNAs may fold into different structures. Thus, for each RNA
sequence an ensemble of structures is predicted. The oligo is considered struc-
tured if its probability of forming a low energy structure is more than half.
Figure 2A depicts the structuredness test. Unfortunately, this property cannot
be elegantly formulated in combinatorial terms. For a formal definition and tech-
nical details see Sect. 2.2.

To better understand the problem at hand, we calculated the percentage of
unstructured RNA probes. Ideally, we would iterate over all possible RNA �-long
sequences and test if each is structured. While for small values of � this strategy
is feasible, for greater values it is not, as it requires 4� iterations. To overcome
this problem, we generated 10,000 random �-long sequences for each value of �,
where each nucleotide is uniformly picked at each position in the sequence. The
fraction of structured probes quickly converged (data not shown), and hence we
are confident that these estimates are accurate.

The results are shown in Fig. 2B. As expected, the fraction of structured
probes is higher for longer probes. More surprisingly, the decrease in the fraction
of unstructured RNA probes as a function of length is fast, and for length 45,
less than 10% of the probes are unstructured. Thus, using random oligos is
sub-optimal and requires many more probe sequences to cover all k-mers. de
Bruijn sequences, which are the most compact sequences to cover all k-mers,
are uniformly distributed over all k-mers [29], and are therefore prone to having
many structured subsequences. Indeed, in the report by Ray et al. [13], in a de
Bruijn sequence of order 11 over {A,C,G,U}, only 36,837 probes out of 167,773
were unstructured. Note also that for k ≥ 9 the fraction is smaller than 1 due
to self-structured k-mers (see Sect. 2.2). To conclude, neither random oligos nor
probes generated by overlapping subsequences of a de Bruijn sequence are likely
to provide an optimal or near-optimal solution to our problem.

To support our assumption that structured subsequences are likely to be
extended to structured sequences (see Sect. 3.2), we calculated the fraction of
structured probes given that their first half is structured. For each probe length
28 ≤ � ≤ 52, we generated 100 random ��/2�-long structured sequences and
extended them by 100 random extensions to a probe of length �. The fraction of
structured probes out of the 10,000 probes is the reported value. We compared
this value to the fraction of structured probes among random �-long sequences.
Results show that, given that the first half is structured, there is a chance of
more than 95% that a probe starting with it is structured (see Fig. 2C). The
fraction of structured oligos among random oligos is much smaller, supporting
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Fig. 2. Properties of unstructured oligos. (A) An output of RNAshapes. For each probe
sequence, an ensemble of structures is predicted. If the sum of probabilities of structures
with energy smaller than −2.5 is greater than 0.5, the oligo is considered structured.
On the left is a highly structured oligo, while on the right an unstructured oligo.
(B) Fraction of unstructured RNA probes as a function of their length. For each probe
length, the fraction of unstructured RNA probes was empirically estimated using 10,000
randomly generated sequences of this length. (C) Fraction of structured RNA probes
as a function of their length given their first half. For each probe length, the fraction of
structured RNA probes was empirically estimated using 100 structured (blue)/random
(red) first halves. For each first half, 100 random extensions were appended to generate
a complete probe (Color figure online).
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our assumption that structured subsequences are more likely to be extended to
structured sequences.

4.2 A Theoretical Lower Bound for the Number of Oligos

We give a simple lower bound for the number of oligos needed to cover all k-
mers based on k-mer counts. Since we do not know the optimal solution to the
theoretical problem, we will use this lower bound as a baseline to compare to.

Denote the minimum number of oligos to be n(k, �), where k is the desired
k-mer coverage and � the length of the probe. Then,

n(k, �) ≥ � 4k

� − k + 1
� (1)

It follows immediately from the fact that the number of k-mers to be covered is
4k and each probe of length � covers � − k + 1 k-mers.

For the p-multi k-mer coverage, the bound is:

n(k, �, p) ≥ � 4k · p

� − k + 1
� (2)

4.3 Computational Results

We implemented and ran our heuristic algorithm on 5 ≤ k ≤ 10 and � =
30, 35, 40, typical values used for library design [9,13]. Multiplicity was set to
1, number of random attempts to 100 and randomization seed to 0. The results
are summarized in Table 1. On average, our method generates a library that is
only 1.1 − 1.3-times greater in size than the theoretical lower bound. Moreover,
as expected, the ratio compared to the lower bound increases with oligo length.
It is more difficult to find unstructured probes since the fraction of unstructured
probes decreases with oligo length (see Sect. 4.1). Note that for k ≥ 9, there are a
few structured probes in the set. These cannot be avoided due to self-structured
k-mers (see Sect. 4.1). Running times were benchmarked on a single CPU of a
20-CPU Intel Xeon E5-2650 (2.3 GHz) machine with 384 GB 2133 MHz RAM.

In addition, we implemented a naive algorithm to compare the performance
with our algorithm. We generated random sequences of length � and added them
if they included uncovered k-mers until all k-mers were covered. We report the
average set size over 100 runs. As can also be seen in Table 1, the naive algorithm
produces much larger sets than our heuristic.

4.4 Comparison to the Library Design of Ray et al.

To compare our solution to the library design of Ray et al. [15], we ran the
algorithm with k = 9, � = 35 and p = 16, as their library is required to cover
each 9-mer at least 16 times. Notably, our solution is significantly more compact.
Our library contains a total of 166,649 oligos of length 35. Compared to the
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Table 1. Computational results for different oligos libraries. For a pair of oligo length
� and k to cover, we ran Algorithms 2 and 3 to generate an unstructured RNA library
covering all k-mers in �-long sequences. We report the number of oligos in the output
of each run and the ratio compared to a theoretical lower bound. Algorithm 2 outputs
the incomplete set (oligo length ≤ �) and Algorithm 3 outputs the complete set (oligo
length = �). Reported run times are elapsed times of running Algorithms 2 and 3
consecutively. The naive set is based on generating random sequences until all k-mers
are covered.

� k Lower Incomplete Incomplete Complete Complete Structured Naive Runtime

bound set ratio set ratio set (hh:mm:ss)

5 40 50 1.25 51 1.27 0 149 00:02:11

6 164 182 1.11 182 1.11 0 766 00:07:43

30 7 684 737 1.08 739 1.08 0 3 308 00:41:40

8 2 850 3 081 1.08 3 106 1.09 0 13 801 02:58:52

9 11 916 12 940 1.09 13 069 1.10 59 57 154 14:42:27

10 49 934 55 882 1.12 56 526 1.13 670 236 477 82:18:01

5 34 41 1.21 41 1.21 0 131 00:03:13

6 138 158 1.14 162 1.17 0 670 00:21:20

35 7 566 635 1.12 648 1.15 0 2 884 01:17:43

8 2 342 2 670 1.14 2 744 1.17 0 11 961 06:03:05

9 9 710 11 022 1.14 11 439 1.18 60 49 289 26:47:31

10 40 330 47 139 1.17 49 225 1.22 609 202 763 137:33:27

5 30 37 1.23 38 1.27 0 117 00:02:44

6 118 140 1.19 148 1.25 0 598 00:36:31

40 7 482 561 1.16 611 1.27 0 2 561 02:33:16

8 1 986 2 362 1.19 2 627 1.32 0 10 597 11:24:15

9 8 192 9 745 1.19 10 966 1.34 60 43 492 48:02:15

10 33 826 41 798 1.24 47 457 1.40 557 178 187 246:05:17

theoretical lower bound of 155,346 oligos, our library is only 1.07-times greater
in size. In comparison, the library of Ray et al. contains 214,948 probes, which
is 1.38-times greater in size than the theoretical lower bound. Moreover, in our
complete library, all oligos have the same length, as opposed to the library of Ray
et al., where oligo lengths vary. A more flexible length requirement may enable
us to construct an even smaller library. More importantly, their library includes
2,858 structured probes due to self-structured 9-mers, while in our library there
are only 841, a very small fraction of the total number of probes.

5 Conclusion

In this work, we have presented, for the first time, a general algorithm to generate
a compact set of unstructured RNA probes that together cover all RNA k-
mers. The algorithm’s good performance can be attributed to the key ideas of
generating probe sequences using de Bruijn graphs, but taking a random walk
on those and backtracking when we encounter a structured sequence.
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De Bruijn graphs and linear-feedback shift registers (LFSR) are commonly
used to generate de Bruijn sequences. Euler tours over de Bruijn graphs have
the advantage that all possible (4!)4

k−1

/4k de Bruijn sequences can be gen-
erated [30]. On the other hand, linear-shift feedback registers for generating
de Bruijn sequences are limited by the number of primitive polynomials over
GF (4) with degree k [19]. There are only φ(4k−1)/k primitive polynomials,
where φ is the totient function. For example, for k = 11 there are only 240,064
de Bruijn sequences that can be generated by an LFSR. In addition, LFSR-
generated sequences have uniform properties [31], which are counter-productive
to the problem at hand, since it requires local properties of unstructuredness.
Thus, de Bruijn graphs provide a much more flexible mechanism than LFSRs to
generate sets of sequences with specific properties covering all k-mers.

Our implementation deals cleverly with prohibitive running times. Our back-
tracking approach is particularly suited to the monotone property of RNA sec-
ondary structure. That is, having a structured subsequence highly influences the
probability of the whole sequence being structured. In addition, the random walk
works in a way that tries to double the length of the path in each attempt, and
in so doing reduces the running time of the extension process by a factor of �.
We applied several practical heuristics, such as a limited number of attempts
and shortening extensions, to avoid dead-end paths.

The potential downside of our approach is its heuristic nature, which intrin-
sically does not guarantee any ratio over the optimal solution. Unfortunately,
the structuredness property of RNA sequences is not easily translated into com-
binatorial properties which can be targeted by short paths in a de Bruijn graph.
Properties that proximate these features, such as not having a k-mer and its
reverse complement in the same probe sequence, are not good enough to ensure
that the probe is unstructured by the prediction algorithm.

While in this work we focused on one application, we see the substantial
potential benefit of our algorithm in other applications. Our general scheme
can be used to design sequence libraries with other desired properties or other
definitions of structuredness. For example, RNA secondary structure can be
defined by minimum free-energy instead of an ensemble of structures [32]. On the
DNA front, DNA oligos with specific DNA shape features are desirable as shape
plays a significant role in protein DNA-binding [33]. Moreover, our algorithm can
be modified to cover only a subset of the k-mers, or have different multiplicities
for each k-mer, by keeping the edges in the de Bruijn graph that represent those
k-mers and add different numbers of edge copies for each k-mer. For example,
in the RNAcompete technology two 7-mers are excluded as they are restriction
sites of an enzyme used in the protocol [13].

To conclude, we have demonstrated the ability of our algorithm the meet the
highly desired goal of generating compact sets of unstructured RNA probes that
cover all k-mers. High-throughput technologies that measure RNA accessibility
as part of the secondary structure or protein RNA-binding in vitro will greatly
benefit from this design. The generated library set is only slightly larger than the
theoretical lower bound, and thus achieves near-optimal results. The algorithms
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can be easily applied to other sequence design problems. Any design that requires
complete coverage of all k-mers, with specific sequence properties, can utilize our
general scheme of random path search in de Bruijn graphs.
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