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Abstract. The current digital era is flooded with devices having high
processing and networking capabilities. Sharing of information, learning
and adaptation in such highly distributed systems can greatly enhance
their performance and utility. However, achieving the same in the pres-
ence of asynchronous entities is a complex affair. Multi-agent system
paradigms possess intrinsic similarities with these distributed systems
and thus provide a fitting platform to solve the problems within. Tra-
ditional approaches to efficient information sharing and learning among
autonomous agents in distributed environments incur high communica-
tion overheads. Non-conventional tactics based on social insect colonies
provide natural solutions for transfer of social information in highly dis-
tributed and dense populations. This paper portrays a framework to
achieve distributed and asynchronous sharing of intelligence and conse-
quent learning among the entities of a networked distributed system. This
framework couples localized communication with the available multi-
agent technologies to realize asynchronous intelligence-sharing and learn-
ing. The framework takes in a user-defined objective together with a
learning algorithm as inputs and facilitates cooperative learning among
the agents using the mechanisms embedded within. The proposed frame-
work has been implemented using Typhon agent framework over a LAN.
The results obtained from the experiments performed using both sta-
tic and dynamic LANs, substantiate the applicability of the proposed
framework in real distributed mobile computing environments.

Keywords: Multi-agent learning · Distributed intelligence · Mobile
agents · Typhon · Emulation

1 Introduction

The drastic increase in the number of computational entities or devices in our
surroundings has propelled research towards devising decentralized and distrib-
uted approaches for solving complex real-world problems. New paradigms, such
as Cyber-Physical Systems (CPS) [39] and the Internet-of-Things (IoT) [2],
wherein researchers attempt to evolve large-scale intelligent and autonomous
applications, require a high degree of co-ordination among the numerous small
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scale computing units that comprise these systems. The scale of the system and
the computational and communication related complexities restrict the use of
traditional centralized approaches to achieve such co-ordination. Though these
approaches provide a single-point control of the overall system, they are less flex-
ible in terms of reconfigurability and failures. Researchers have thus digressed
to conceive non-traditional paradigms [28,41] to develop such distributed and
autonomous large scale systems.

One of the approaches to solve problems that lie in distributed environments
is the multi-agent system paradigm. Multi-agent systems [12] focus on the collec-
tive behaviours of agents and the complexities springing from their interactions.
They form a fitting platform to realize truly distributed solutions in their most
natural forms. Learning and sharing of information in multi-agent systems is
a complex task both conceptually and technically [40] as it involves multiple
learners wherein each agent tries to learn and adapt concurrently and in con-
junction with the others. Research in the domain of multi-agent learning [1] has
largely bifurcated into two streams - those that use reinforcement learning and
the non-conventional evolutionary learning paradigms [36]. While in the former,
the focus is to learn and evolve the value functions associated with each state and
related actions, the latter tries to evolve behaviours. There are various aspects
that need to be addressed while devising multi-agent based strategies. These
include homogeneous versus heterogeneous agent teams, co-operation, restricted
communication, credit assignments, etc.

Communication amongst agents plays an important role for the success of
any multi-agent system. Efficient communication is the foundation for effective
coordination, information distribution and learning from one another. Nonethe-
less, an unrestricted and torrential communication essentially reduces a multi-
agent system to a single agent system [42]. Further, such communication facilities
are not pragmatic in real-world systems. Hence, communication among agents
in a multi-agent system needs to be selective and judiciously restricted while
at the same time facilitating learning and co-operation [16]. Many multi-agent
frameworks disregard this objective or rather neglect communication complexi-
ties to simplify the process of information sharing and learning [3,6]. The prob-
lem becomes more complex when, in a large distributed network, asynchronous
agents need to discover other similar agents with which sharing can be performed.

Multi-agent based approaches which also use the mobility of agents termed as
Mobile agents [20,37] can be considered as a compelling paradigm to realize truly
distributed yet intelligent systems. Apart from mobility, these agents have vari-
ous distinguishing features such as adaptability, autonomy, on-site computation
and are distributed and pervasive. They have been proved to be more efficient
than the traditional point-to-point communication models [35,38]. Although the
mobile agent technology is still shaping up, recent advancements in small hand-
held devices, miniature computers with high processing capabilities and the
advent of emerging fields such as CPS and IoT have propelled the research
towards the development of mobile agent based systems [8]. Since these agents
migrate throughout the network to sense and process data from and at different
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nodes in a real distributed environment, the information they possess can vary
with time. This form of information is akin to the level of experience that differ-
ent persons possess while working in the same or different environments. Sharing
of such experiences among the individuals could result in the growth of the overall
knowledge of the group [13]. Though, researchers have used mobile agents based
cooperation in a myriad of applications [22,32,35], this paper puts forward a
concentrated effort on collaborative learning and information sharing among the
entities of a distributed environment that utilizes the intrinsic characteristics of
mobility and local execution capability of such agents.

In this paper, we present a framework for sharing intelligence and mutual
learning among a set of location-unaware spatially segregated networked entities
or nodes of a distributed environment; all of which have the same objective.
The static agents are resident within each of the entities while the mobile ones
facilitate the exchange of information and localized sharing over a network. The
framework focuses on the generic mechanisms required to be embedded within
individual agents so as to result in the overall convergence of the entire agent
population, towards their common goal. The proposed framework is fully dis-
tributed in the sense that neither the agents (both static and mobile) possess
any knowledge about the overall number of such agents present in the network
nor do they possess any location information about other agents. Further the
sharing of information among the agents is completely asynchronous and local.
The major contributions of this work include:

– A multi-agent framework for distributed intelligence-sharing and learning.
– Modalities for local sharing and exchange of information.
– Dynamics for facilitating agent migration, inter-agent interactions and asyn-

chronous executions.

The succeeding sections discuss our motivation and explore the idea of a
multi-agent distributed intelligence-sharing and learning framework. A formal
description of the proposed framework and the related dynamics have also been
provided. The latter sections present the results along with the related discus-
sions and conclusions arrived at.

2 Motivation

Social insect colonies provide the most natural examples of large scale multi-
agent systems. These complex and self-organizing societies function based on
very simple processes of information transfer between the individuals, thus pro-
viding an ideal perspective to understand the mechanisms of social learning [30].
Social insects invest considerable effort in passing on learned information to
others in their group or swarm. The value of information obtained from oth-
ers depends on the context [10]. Such social learning systems are often flexible
enough to ensure that individuals rely on social information only when individual
learning does not suffice. In an insect colony, information learned by an individ-
ual is not actually broadcasted to its peers or mediated through a supervised or
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centralized control. On the contrary, the information flows through local inter-
actions among individuals e.g. Trophallaxis in bees [29] and Tandem running in
ants [14]. It has been demonstrated that bees learn associations between floral
scent and nectar rewards during trophallatic interactions, just as they would if
they were to sample the flowers themselves [10]. These local interactions among
the individuals within an insect colony add up to eventually alter the behaviour
of the entire colony and converge their searches to the location having maximum
availability of nectar.

These complex yet versatile systems of insect colonies have been a source
of inspiration for many a researcher in various fields of engineering and sci-
ence [43]. In the context of learning in multi-agent systems, social insect-colony
based models have been of notable interest [9,21]. In this paper, our focus is
to exploit the use of social interactions among nomadic agents so as to facil-
itate asynchronous sharing and co-operative learning among the entities of a
distributed environment. Exchange of information among these mobile agents,
populating a network of nodes, takes place locally within a node, as and when
they meet other such agents within. These local interactions tend to increase the
quantum of knowledge they possess. The mobile agents use this extra knowledge
gained through local interactions that are spread spatially across the network, for
enhancing their self-centric learning thus reducing their individual as also over-
all search spaces. This learned information is thus provided to the static agents
resident within the entities of the distributed environment, which evaluate the
new information and provide valuable feedback for further enhancement.

For illustration, imagine a scenario wherein multiple mobile robots are trying
to learn a single objective function such as solving a Rubik’s cube, wrapping
gifts, assembling a chair, etc. As can be observed, these tasks require a specific
sequence of actions to be performed in a specified manner to achieve the desired
objective. Since, there are multiple learning robots in this scenario, sharing of
their individual experiences can enhance the performance of the whole system
and also reduce the time the robots take to achieve the goal. However, sharing
information in such a setting wherein the robots are dynamic entities is not
trivial. Drawing inspiration from the social insects, one of the possible ways to
share information could be by making a robot move to the vicinity of another and
share information locally. The robots can gather such locally shared information
over time and then use sophisticated learning tools to create a new plan of
action. The robots can evaluate this new plan by executing them individually
and consequently find the amount of progress they have made in achieving the
goal. Repeating such a process would eventually lead all the robots towards
the convergence of their shared objective. The point to be noted here is that
the mobility of the robots contributes to the spreading of the information in
the environment. However, mobility in robots is a costly affair in terms of both
energy and actuation. The problem may become more critical if we think of a
large network of robots wherein a few of them are only trying to learn and share
a common objective.
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In another scenario, assume a large Campus Area Network (CAN) populated
by different kinds of devices as its nodes forming an IoT. These devices may
include several PCs, projectors, air conditioners, sensors, Wi-Fi routers, printers,
etc. In such a setting, imagine that a set of devices are required to find/learn
to use a specific set of parameters (such as resolution (dpi), mode, paper-type,
toner density, etc. in case of a set of printers) so as to optimize their life-time
and utility. It is also possible that the devices need to adapt their settings based
on their make and model. The simplest or näıve solution will be to package
each device with an algorithm or program which always tries to figure out the
optimized settings based on the user-feedback it receives on its own current
settings. Assume that if the parameters are not good enough, the user changes
these settings to suit her/his needs. This could be used as a feedback for the
algorithm embedded within the devices. The problem with this approach is that
each device (say printer) would try to solve the same problem repeatedly and
hence there would be wastage of power, paper and cartridges. The life-time
of the printer would also go down due to wear and tear during this laborious
learning phase. A smarter way would be to share the locally learned information
among the printers as in the case with mobile robots. This will not only reduce
the wastage but also boost convergence time since multiple printers would be
collaborating to achieve the same goal. However, it is not essential that these
printers know the location of other such printers of their kind on the network.
Further with no physical mobility and sophisticated programs on-board to handle
communication complexities, learning optimal settings by a heterogeneous set
of networked location-unaware printers, autonomously in the CAN, becomes a
challenging task.

In the multi-agent based approach portrayed herein, we try to leverage the
mobility based local sharing model of the mobile robots to alleviate the chal-
lenges discussed above. While a static agent manages local tasks at the physical
learning entity i.e. a robot or a printer, its mobile counterparts (mobile agents)
provide the much needed mobility of all the learned information. Imagine the
network of robots supports a framework with all agent based functionalities as
proposed in [18]. The authors in [18] describe the methodologies how a mobile
agent based framework for a network of heterogeneous devices can be conceived.
Let us further assume that the static agents reside within each of the networked
robots. These agents manage local information and configuration of a robot such
as preserving feedback, executing an action, etc. A set of mobile agents embed-
ded with a learning algorithm suited for such an application could be released
into the network of robots. These mobile agents then forage for the robots which
are trying to learn within the network and facilitate the exchange of informa-
tion locally with static agents hosted within each robot. Further, these agents
can search the network to share their information with other such mobile agents
asynchronously. When a mobile agent encounters other such agents at the various
nodes in the network (not essentially the targeted robots) it exchanges informa-
tion on the newly learned aspects of the solution to the problem. As a result of
sharing each mobile agent comes up with a new set of actions/plan as per its
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learning algorithm. This new learned information is then provided to the static
agent hosted within the robots which in turn executes the new plan or solution
and provides its feedback to the mobile agent. The latter continues its sojourn in
the network of robots after receiving the feedback. The process of learning and
sharing continues till eventually all such mobile agents agree on the same set of
actions indicating convergence. It may be noted that the job of collaboratively
learning the optimal set of actions is achieved by the set of robots using local
communications of migrating mobile agents. Similar applications such as learn-
ing optimal printer settings, finding unique genome sequences among different
databases distributed across a large network, etc., can be envisaged using such
multi-agent based approaches.

Although the above mentioned approach may seem trivial, it puts forward
many interesting challenges that are crucial in the realization of an asynchronous
and distributed intelligence-sharing and learning framework. These include:

1. The parameters both Input and Output such as number of mobile agents,
learning algorithm, etc. that are essential to regulate the functioning of the
framework.

2. The dynamics associated with the different parameters involved within such
as agent migration, on-node execution, etc.

3. The duration for which a mobile agent should search for other mobile agents
so as to share or receive information.

4. The mechanisms for the movement and exchange of learned information.
5. The formulation of conditions that will subsequently trigger the execution of

the learning algorithm using the newly collected information.

In the succeeding sections, we present the proposed multi-agent based approach
to model the above mentioned challenges followed by the framework in detail.

3 Proposed Framework

This section discusses the parameters, the inputs and the mechanisms required
to realize the proposed multi-agent framework for distributed and asynchronous
sharing of intelligence along with the formalism to model all the processes and
interactions used within.

3.1 System Model

The system under consideration is modelled based on the following:

• W is an undirected connected network, where W = (N,E) wherein nodes are
location-unaware.

• N is a set of nodes such that N = {ni|i <= C1}, where C1 is the total number
of nodes in the network W , i, C1 ∈ I where I is a set of positive integers.

• E is a set of links such that E = {ei|i <= C2}, where C2 is the total number
of links in the network W , i, C2 ∈ I.
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• A is a set of static agents resident on each of the nodes such that A =
{ai|∀ai∃ni, ni ∈ N}, i ∈ I.

• M is a finite set of autonomous mobile agents such that M = {mi|i <= K},
where K is the total number of mobile agents in the system and i,K ∈ I.

• P is an application dependent user-defined learning problem whose solution
(G) is to be found.

• G is a goal (objective function) provided by user.
• L is a learning algorithm provided by the user based on the underlying appli-

cation which is carried by each mobile agent as its payload.
• η(.) is a function (set of actions) that a static agent can execute in any order

with or without repetitions to achieve the goal G.

A mobile agent mi ∈ M , which is by itself an autonomous program, is capa-
ble of migrating from a node ni to another node nj if there exists a link ei

between (ni, nj), where ni, nj ∈ N and ei ∈ E within W . Each node ni hosts an
agent framework such as [31] that is capable of managing all agent related func-
tionalities. Each node ni also maintains a queue (Qni) of mobile agents present
within node ni. The queue, Qni, at a node ni is defined as

Qni = {qj |qj ∈ M, j <= Γ, Γ < K}, Qni ⊂ M,

Γ is the length of queue, j, Γ ∈ I.
It is apparent that if |Qni| = Γ , no mobile agent can enter the node ni. Each

node is a uniprocessing entity thus all the operations within a node are executed
sequentially. Figure 1 shows a typical network along with the mobile and static
agents, the agent framework, the learning problem and the respective queues
within.

Fig. 1. A network of nodes having the agent framework, the static agent, the learning
problem and the queue within. The mobile agents are shown to be either migrating
from one node to another or resident within the queue of a node.
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In the proposed framework, the mobile agents carry the learned information
within themselves, share it with other such agents during their sojourn in the
network. They also assimilate the newly gathered information to discover newer
paths towards the goal G and execute the same at a node using the help of
the static agents within. They collect the feedback and enrich their learned
information and once again set out to collect more information from other such
agents. Both, the mobile and static agents, co-exist in the network and share
and execute to eventually ensure convergence.

3.2 Inter-agent Interactions

The interaction among the agents forms a crucial component of the proposed
framework. As can be observed, there can be two kinds of possible agent inter-
actions within the framework namely mobile-to-static agent interaction and
mobile-to-mobile agent interaction. Since the network under consideration is
distributed having location-unaware nodes, the static-to-static agent interaction
is not possible under this framework.

Mobile-to-Static Agent Interaction. Mobile and static agents interact with
each other in the following ways:

(a) En-queue: A mobile agent mj can request a static agent ai on the node ni

to execute an en-queue operation so as to enter Qni to effect its migration
from another node nk to ni.

(b) De-queue: A mobile agent mj can request the static agent ai on the node ni

to execute a de-queue operation to enable its exit from Qni resulting in its
migration to another node nk from ni.

(c) Execution of L: A mobile agent mj at a node ni, can execute the user-
defined learning algorithm L using the computing environment provided by
the static agent ai resident at the node ni.

(d) Execution of η(.): A mobile agent mj can request the static agent ai on the
node ni to execute a set of actions and provide feedback. As η(.) leads to the
goal G (Sect. 3.1) which is dependent on the application under consideration,
the executions mentioned here could imply either a set of movements for a
navigating mobile robot, a set of rules for mining a large database, a set of
input parameters for a control algorithm, etc.

Mobile-to-Mobile Agent Interaction. A mobile agent mi interacts-with (⊗)
another mobile agent mj resulting in sharing of intelligence if both the agents
are present within the queue of a node nk i.e.

mi ⊗ mj iff mi,mj ∈ Qnk, i �= j

Hence, all the interactions among the mobile agents are always local and take
place only within the queue of a node where the agents reside after migrating to
a node.
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3.3 Mobile Agent Migration Strategy

The mobile agents migrate within the network W using the ε-Conscientious
migration strategy which is a combination of the Random and Conscientious
migration strategies [33]. In the Random migration, a mobile agent chooses one
of the neighbours of the current node at random and migrates to that node. In
Conscientious migration strategy the mobile agent maintains a list of previously
visited nodes (say V ) and migrates to one that it has not visited so far. If it has
visited all, it moves to the node which it has visited least recently. It can be noted
that due to this migration strategy, the mobile agents tend to evenly distribute
their frequency of visits at each node within the network. The Conscientious
migration may intuitively seem better from the perspective of a single mobile
agent. However, in a multiple mobile agent scenario, this strategy may lead the
mobile agents to follow one another along a fixed path within the network.

In ε-Conscientious migration, a mobile agent employs the Random migration
with a probability ε while it follows the Conscientious migration with probability
(1 − ε). Thus, with an ε-Conscientious migration strategy, agents always try to
reach out to non-visited or least visited nodes with a higher probability while
reducing the drawback of a purely conscientious migration strategy.

3.4 Distributed Asynchronous Intelligence-Sharing and Learning

Let Smi be a set of shareable intelligence units (si) that a mobile agent mi ∈ M
receives from the static agent aj ∈ A at a node nj ∈ W . The set of shareable
intelligence Smi is the learned information gathered as a result of the feedbacks
obtained by mi via the static agent aj when it executes η(.). Hence, the structure
of individual elements si ∈ Smi depends on the learning problem P of the
application under consideration.

Each mobile agent mi carries a Bag, Bmi , (similar to the casebase of an agent
as mentioned in [15]) which is a set of sis obtained from the sets of shareable
intelligence Smi , of other mobile agents as a result of sharing between mi and
the other mobile agent. Hence, Bmi , which forms a part of the mobile agent’s
payload, can be defined as:

Bmi = {bi|∃mj such that bi = sk, sk ∈ Smj , bi /∈ Smi i, j, k ∈ I}

Below we enumerate the definitions of sharing and learning within the scope
of the proposed framework.

Definition 1. A mobile agent mi is said to have shared its intelligence with
another mobile agent mj if

mi ⊗ mj , si ∈ Smi , si /∈ Smj , si ⇒ mj , mi,mj ∈ M, i �= j

where ‘⇒’ denotes that si is assigned to the mobile agent mj resulting in si ∈
Bmj .
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The sharing of information amongst the mobile agents is completely asynchro-
nous in nature. This essentially means that there is no global clock to synchronize
the sharing events among the multiple mobile agents at various nodes within the
framework. Thus sharing between the several mobile agents populating the net-
work could take place concurrently at different nodes.

Definition 2. As mentioned in Sect. 3.1, η(.) is a function (set of actions) pro-
vided by a mobile agent mi to a static agent aj at a node nj. The execution of
η(.) which is facilitated by aj at nj returns a new Smi which is passed on to mi

by aj as the feedbacks. Thus Smi
new = η(.). The mobile agent mi is said to have

learned new information if
|Smi

new| > |Smi

old|
where, Smi

old is the shareable intelligence possessed by the mobile agent mi before
the execution of η(.) and Smi

new is the same that the mobile agent mi receives after
this execution by the static agent aj at node nj.

Definition 3. The problem P is said to have solved if a solution to goal G is
found by all the mobile agents. This convergence is said to have achieved iff

∀i,mi → G,mi ∈ M

where, → denotes convergence. Hence, the main objective of the proposed frame-
work is to ensure the convergence of all the mobile agents within the network to
the common goal G using local sharing and consequent learning.

3.5 Inherent Mechanisms Within the Framework

The proposed framework provides a distributed model for sharing and learning
amongst a set of location-unaware nodes in a network. In this framework we
use asynchronous local sharing as a basis of information exchange by providing
mobility to the learned information. Figure 2 depicts the cycle of learning that
a mobile agent goes through within the proposed framework.

Each mobile agent (mi) starts its operations initially from an Executor state.
In this state, the mobile agent mi residing in the queue, Qnj

, of node nj interacts
with the static agent aj also resident at the node nj . Each mobile agent mi

is conferred with an Execution Potential (ξmi
) which is consumed gradually

(discussed later) with every execution that the static agent aj performs based
on a request from mi at the node nj . The Execution Potential (ξmi

) restricts the
mobile agent to reside at a node indefinitely. In the Executor state, the mobile
agent mi provides a sequence of actions derived from η(.) to the static agent
aj as an attempt to achieve the goal G at the node nj . This reduces the value
of ξmi

based on the length of the sequence. The static agent aj executes these
sequence of actions at the node nj . As a result of this execution, the mobile
agent mi receives feedbacks on the derived sequence of actions from the static
agent aj . This constitutes the part of the shareable-intelligence Smi gained by
the mobile agent mi at node nj . These feedbacks also replenish ξmi

based on
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Fig. 2. The learning cycle of a mobile agent in the proposed framework

criteria discussed later. A mobile agent continues to remain in the Executor
state until its ξmi

is exhausted. Once, ξmi
≤ 0, the mobile agent mi assimilates

the shareable-intelligence Smi it received and transits to the Collector state.
In this state, the mobile agent traverses the network W , to share its shareable-
intelligence with other mobile agents as well as to get shareable-intelligence from
them as and when they co-exist within the same queue at a node. The mobile
agent communicates locally with other mobile agents in the Collector state to
share information. As a result of these local communications within a queue,
the mobile agent mi may receive a new set of information from the shareable-
intelligence of other mobile agents. This new set of information is deposited into
the Bag, Bmi which is unique to the agent.

Every mobile agent is also empowered with a quantity termed as Migration
Resource (ρmi

) [24] a priori which is also carried as its payload. The parameter
ρmi

governs and regulates the duration for which the mobile agent migrates
around in the network W , so as to meet and share information, in the Collector
state. A mobile agent mi enters the Collector state with ρmi

= ρmax, ρmax

being the maximum possible value of ρmi
as defined by the user. The mobile

agent mi continues to traverse the network W , till its Migration Resource (ρmi
)

is exhausted i.e. ρmi
≤ 0. This resource provides the impetus to the mobile

agent to migrate within the network in search of other mobile agents having
better information. The dynamics governing ρmi

have been discussed later. The
structure of a mobile agent with all its components (payloads) can be seen in
Fig. 3.

The mobile agent mi transits to the Assimilator state from the Collector
state as and when ρmi

degrades to a value less than or equal to zero. This is the
state where the learning takes place. In this state, the mobile agent mi uses the
learning algorithm (L) which it carries as payload. It combines the information
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Fig. 3. Contents within the payload of a mobile agent in the proposed framework.

in Smi and Bmi as the input to L and churns out a new execution plan (i.e.
a new sequence of actions from η(.)) to reach the goal G at a node nj . The
generation of the new execution plan triggers the mobile agent mi to transit to
the Executor state.

The static agent aj in turn executes this new plan within node nj and pro-
vides the related feedback to the mobile agent mi. This makes the mobile agent
mi transit back to the Collector state (unless of course the goal G is achieved)
and the cycle in Fig. 2 continues. The value of ρmi

is again changed to ρmax

before it enters this cycle.
If the static agent reports that the goal G has been achieved, the mobile

agent then transits to the Converger state with ρmi
= ρmax. Mobile agents in

this state tend to verify whether the converged goal G is an optimum or not.
A mobile agent mi in the Converger state migrates in the network W to find
other mobile agents having a better solution than the one it has found. If the
mobile agent mi finds another mobile agent mj having a better solution (as per
the criteria defined by the user) then mi receives the shareable-intelligence from
mj into its Bag Bmi . This makes the mobile agent mi to transit back to the
Collector state and once again join the cycle. However, if ρmi

becomes less than
or equal to 0 for the mobile agent mi in the Converger state and Bmi is still
empty, it triggers the mobile agent mi to exit the learning cycle. Hence a mobile
agent mi exits the learning cycle iff

(mi → G) ∧ (ρmi
≤ 0) ∧ (|Bmi | = 0)

The overall process halts when all the mobile agents exit the learning cycle
through the Converger state. The Algorithm 1 depicts all the functions of a
mobile agent in the proposed framework as described above.

3.6 Dynamics Within the Framework

As mentioned, both ρmi
and ξmi

act as fuel for migration and on-node execution
on part of the mobile agents, respectively. The dynamics that regulates the values
ρmi

and ξmi
are discussed below.
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Algorithm 1. Algorithm embedded within Mobile Agents
Input : η, L, G, P , ρmax

Output : Convergence path to G

Initialization: Bmi = {}, Smi = {}
1 while Not converged to G do

2 enter node(nj); // Executor State //

3 while ξmi
> 0 do

4 Exec P lan = action sequence(η);

5 initialize(ξmi
, Exec P lan);

6 to StaticAgent(aj , Exec P lan) ; // Mobile to Static Agent Interaction

7 receive feedback();

8 retrieve intelligence(Smi );

9 update potential(ξmi
);

10 end

11 if G is not reached then

12 ρmi
= ρmax ; // Collector State //

13 while ρmi
> 0 do

14 migrate next node();

15 en queue(Qni
);

16 ρmi
= migration penalty(ρmi

, Bmi );

17 if information request received then

18 share intelligence(Smi ); // Mobile to Mobile Agent Interaction

19 end

20 if end of queue then

21 find shareable agent();

22 if agent is available then

23 Wold = Πmi
(Bmi );

24 bi = get shareable intelligence(); // Mobile to Mobile Agent

Interaction

25 Bmi = Bmi ∪ bi;

26 Wnew = Πmi
(Bmi );

27 ρmi
= migration reward(ρmi

, Wold, Wnew);

28 end

29 end

30 end

31 end

32 else if G is reached then

33 ρmi
= ρmax; // Converger State //

34 while ρmi
> 0 do

35 migrate next node();

36 en queue(Qni
);

37 ρmi
= migration penalty(ρmi

, Bmi );

38 validate convergence(G);

39 if G is non-optimal then

40 Jump to Collector State ;

41 end

42 end

43 end

44 if G ∧ (ρmi
≤ 0) ∧ (|Bmi | = 0) then

45 exit() ; // Convergence

46 end

// Assimilator State //

47 run learning algorithm(L, Bmi , Smi );

48 get new sequence(η);

49 end
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Dynamics of ρmi
. We assume that each piece-wise intelligence bi ∈ Bmi

gained in the learning exercise by the mobile agent mi in the Collector state,
to achieve the goal G, has a value or weight associated to it. This weight is
synonymous to the profit gained or loss incurred, as the case may be, in using
this piece of intelligence to advance towards the goal G. Let φ(.) be the function
which returns this weight for each piece-wise intelligence bi ∈ Bmi . Hence, the
net weight (Πmi

) of the Bag, Bmi , is calculated as:

Πmi
=

∑

i

φ(bi),∀bi ∈ Bmi (1)

The weight function φ(.) depends on the underlying application and can be
designed based on a knowledge-sharing model as proposed in [13].

A mobile agent always enters the Collector state with ρmi
= ρmax, where

ρmax is the maximum possible value of ρmi
conferred on it a priori. A migration

penalty is incurred on ρmi
whenever a mobile agent mi in the Collector state

moves to a new node.
The value of ρmi

at the new node is computed as:

ρmi
(xn+1) =

{
ρmi

(xn)e−Πmi , if Πmi
> 0

ρmi
(xn)(1 − 1

ρmax
) , otherwise (2)

where, xn denotes the nth instance.
As can be observed in the above equation, the value of ρmi

degrades exponen-
tially with increase in the weight of the Bag Bmi . As more nuggets of information
populate the Bag Bmi of a mobile agent mi due to local communication with
other mobile agents, the payload of the mobile agent mi increases and makes its
movement across the network W sluggish. The migration resource ρmi

, however,
decreases accordingly and inhibits the mobile agent mi from further migration
when ρmi

≤ 0. This triggers the mobile agent to enter Assimilator state wherein
it generates a new plan using the algorithm L. On the contrary, if the Bag Bmi

is empty, the mobile agent’s payload is lighter and ρmi
is high, forcing it to

explore for fresh information across the network W by migrating to other nodes
in search of other mobile agents that can provide the same.

While the above equation tends to reduce ρmi
of an agent due to migrations,

it is also recharged whenever a mobile agent in the Collector state receives infor-
mation from another mobile agent as a result of local sharing. This also means
that whenever there is an increase in weight Πmi

of the Bag within a mobile
agent mi, the value of ρmi

increases empowering it to travel further into the
network W in spite of its sluggishness caused by the heavy Bag Bmi . The value
of ρmi

when a mobile agent mi receives and accumulates new information into
its Bag Bmi is calculated as:

ρmi
(xn+1) = ρmi

(xn) + c
δ

Πmi

ρmax (3)

where,
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δ = Πafter sharing
mi

− Πbefore sharing
mi

(4)

c is a constant and c > 0.

Dynamics of ξmi
. The Execution Potential (ξmi

) of a mobile agent decreases
linearly with the execution of every action within the action-sequence when
the mobile agent mi is in the Executor state. As mentioned earlier, the action-
sequence is derived from η(.) which is performed by the static agent.

ξmi
(xn+1) = ξmi

(xn) − k1, k1 > 0 (5)

However, when the mobile agent receives a positive feedback (defined by the
user for the specific problem whose solutions are being learnt using the algo-
rithm L) from the static agent as a result of executing an action, the Execution
Potential (ξmi

) is topped up as:

ξmi
(xn+1) = ξmi

(xn) + k2, k2 ≥ 0 (6)

k1 and k2 are constants.
The increase in ξmi

allows for further exploration into the search space of
the problem that has not been achieved as a result of sharing with other mobile
agents. It thus aids the generation of new piecewise information and subsequent
enhancement of the set Smi .

4 Implementation

Since the work reported herein exploits the simultaneous or concurrent exe-
cutions of multiple agents running and sharing in parallel at different loca-
tions (nodes) within a network, experiments if conducted on an inherently
sequential simulator would grossly undermine the strength and ability of the
proposed framework. Hence, we have implemented the whole framework using
the Typhon [31] platform over a Local Area Network (LAN). Typhon provides
for mobile agent programming on real networks and runs over the proprietary
Chimera Static Agent Platform that is shipped along with LPA WIN-PROLOG
(http://www.lpa.co.uk/). Hence, along with static agents, Typhon provides all
the mobile agent related functionalities such as migration, execution, cloning,
payload carrying capability, etc. One instantiation of a Typhon based plat-
form over Chimera acts as a node in the network. Several such instantiations
were used to realize various overlay networks of different sizes varying from 10
nodes to 50 nodes over the LAN. Further, to evaluate the robustness of the pro-
posed framework, experiments were conducted using a dynamic network of 50
nodes emulating a mobile computing environment. As the experimental test-bed
was completely implemented over a LAN, the results gathered also involve the
real-time states (such as processing speed, network conditions, etc.) of different
machines used in the experiments. One separate dedicated computer served as a
log server to record events such as sharing, executions, etc., at the various nodes.

http://www.lpa.co.uk/
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Fig. 4. The schematic of a 5 × 5 Maze-World. The top left corner in the Maze-World
is the location of highest light intensity and formed the Destination location. The
difference in colour variation of the cells show the change in light intensity as we move
away from the destination. The black cells depict obstacles. The four directions of
movement in the Maze-World are shown separately (Color figure online).

The events were time-stamped using the local time at the log server as and when
the relevant pieces of information were received from the individual nodes in the
network.

4.1 Terms Used in the Implementation

In this section, a glossary of various terms used in the implementation has been
provided for better clarity. The meaning of terms used are as follows:

• Virtual robot: This is a simulated robot which has been tasked to learn a
sequence of actions to reach a specified goal.

• Maze-World : This is an n × n grid structure with each cell of the grid having
a set of sensor vectors.

• Sensor Vector (SV ): This is a set of sensor values perceived by the Virtual
Robot in a cell within the Maze-World.

• Static agents: These agents have the responsibility of executing operations on
the virtual robots and to interact with the mobile agents.

• Mobile agents: They act as the carrier of learned information from one virtual
robot to another.

• Node: The node comprises the Typhon Agent Platform, Queue for mobile
agents, Maze-World and the virtual robot managed by a static agent.

• Network: This is the inter-connection of nodes which facilitates migration of
mobile agents from one node to another.

4.2 The Distributed Learning Problem (P )

For evaluation of the proposed framework, a problem involving a set of virtual
robots assigned with the task to learn a path from a fixed source (SS - lowest
light intensity) to a fixed destination (SD - highest light intensity) in a Maze-
World was used. The visualization of the Maze-World is shown in Fig. 4 and
the corresponding networked-framework is depicted in Fig. 5. As can be seen,
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Fig. 5. An approximate visualization of the virtual robot network along with the Maze-
World.

the Maze-World is available within each virtual robot locally. The set of vir-
tual robots form the nodes of the distributed network. A static agent was also
stationed at each node to manage all the functions of the virtual robot on the
Maze-World available within the node. As can be observed, the Maze-World and
virtual robot replace the problem component P and the node in Fig. 1 respec-
tively. The network W is formed by the set of virtual robots situated within
the nodes with the Maze-World and static agent. The mobile agents use this
distributed network to disseminate the learned information received from the
virtual robots via the static agents.

4.3 Specifications of the Virtual Robot

Each virtual robot is equipped with three virtual sensors viz. a Light sensor, an
Obstacle sensor and a Direction sensor. The value of the Light sensor increases as
the virtual robot moves towards the destination and is highest at the destination.
Its value is inversely proportional to the distance between the destination and
the current location of the virtual robot in the Maze-World. Obstacles may also
populate the Maze-World. A virtual robot can sense these obstacles using its
Obstacle sensor which returns only a binary value viz. true or false. The sensor
returns a true if there is an obstacle in the direction of the virtual robot’s heading
or when it encounters the boundary of the Maze-World ; else it returns a false.
A virtual robot cannot cross any obstacle or the boundary of the Maze-World.
Further, the value of the Light sensor becomes 0 if the value of Obstacle sensor is
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true. The Direction sensor returns the direction of movement of the virtual robot
in the Maze-World. There can be four possible values of the Direction sensor viz.
Up (positive Y-axis), Down (negative Y-axis), Right (positive X-axis) and Left
(negative X-axis). Hence, a virtual robot is not allowed to move diagonally from
one location to another.

The virtual robot can perform five actions within the Maze-World. These
actions are as follows:

– Move Forward: Execution of this task makes the virtual robot to change its
location in the direction of its heading one step at a time. For example, if the
current location of the virtual robot is (2, 3) and its current heading is Up,
then the new location of the virtual robot would be (2, 4) after the execution
of the action Move forward.

– Move backward: Execution of this action changes the location of the virtual
robot in the diametrically opposite direction of its heading without changing
the current heading of the virtual robot. For example, if the current location
of the virtual robot is (3, 3) and the current heading direction is Left then
after executing the Move backward action, the new location of the agent would
become (4, 3) and the heading will remain Left.

– Turn Left: This action changes the heading of the virtual robot 90◦ towards
the clockwise direction of its current heading. The location of the virtual robot
within the Maze-World is not affected by this action.

– Turn Right: This action changes the heading of the virtual robot 90◦ towards
the anticlockwise direction of its current heading. The location of the virtual
robot within the Maze-World is not affected by this action.

– Turn Back: This action changes the heading of the virtual robot to 180◦ of
its current heading without changing the location of the virtual robot in the
Maze-World.

4.4 Embedding the Problem P in the Framework

All the virtual robots have been embedded with the sensor vectors (SV s) of the
source (SS), and the destination (SD) within the Maze-World using which they
come to know about the source and the destination. The goal G for the virtual
robot is to find a series of SV transitions using the available actions to reach the
destination viz. SD from the source SS . The network of virtual robots uses the
proposed framework to realize the mentioned objective.

φ(.) is defined as the difference of the norm between the SV before and after
an action is executed i.e.

φ(X) = ||SVo|| − ||SVi|| (7)

where, X is an action, SVi is the sensor vector before the execution of the action
and SVo is the sensor vector after the execution of the action.

The Smi in this case is the set of SV s with φ(X) > 0. The structure of a
piecewise unit of intelligence si ∈ Smi together with an example sis sequence
are shown in Fig. 6(a) and (b).
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(a) (b)

Fig. 6. (a) Structure of a piecewise intelligence si ∈ Smi that a mobile agent mi shares
with other mobile agents (b) An example of sis forming a sequence

4.5 The Learning Algorithm (L)

In our implementation, we have used a greedy approach to construct the sequence
of actions towards the destination. When the mobile agents are in the Assimilator
state of the learning cycle (Fig. 2), they perform an incremental search within
their Bags to find the associated transitions of SV s to reach the destination
SD. This search explores various combinations of SV s available within the Bag,
Bmi and Smi , of a mobile agent mi and outputs the largest possible sequence
of actions based on the SV transitions. Two piece-wise intelligence bi, bj ∈ Bmi

such that i �= j, can be connected to form a link if SVo ∈ bi (i.e. SV bi
o ) is equal

to SVi ∈ bj (i.e. SV
bj

i ) i.e.

SV bi
o = SV

bj

i

Thus, SV transitions or bis result in a tree with either the start vector SS

(the SV of the starting point in the Maze-World) or an SV closest to SS (based
on the cosine distance among the SV s) at the root of the tree. Other bis within
the Bag, Bmi , form the node of the tree. The algorithm L uses Depth-First-
Search (DFS ) and outputs the branch having the highest length. In case, two
branches have the same length, it outputs the branch with highest weight, Πmi

(calculated using Eq. 1).
After assembling the sequence of actions towards the goal, G, the mobile

agent transits to the Executor state. As mentioned earlier, in Executor state the
static agent at a node executes the sequence of actions on the virtual robot thus
evaluating the sequence of actions obtained using L and records the fresh SV s.
If the execution of all the actions is over and the Execution Potential, ξmi

, is
still greater than zero, then the static agent selects an action at random out of
the set of actions (η(.)) and executes them. This allows for the self-discovery on
the part of the agents which can be shared with others.

4.6 Complexity Analysis Within the Maze-World

Let us assume that the size of the Maze-World is n × n. One may note that
there could be more than one SV possible within a cell in the Maze-World. For
example in the present Maze-World there are four different SV s, one for each
direction within a cell. If S is the number of SV s possible within each cell of the
Maze-World, the total possible SV s within the Maze-World would be Sn2. Let
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T be the number of actions that can be performed and l be the length of the
sequence of actions to be executed to reach the destination (SD). If we consider
that the starting point for all virtual robots is fixed (SS) within the Maze-World,
then the total search space would reduce to O(T l).

If we relax our assumption that the length, l, of the sequence of actions
is known, then for a single agent, the total time complexity to reach to the
destination location (SD) in the worst-case would be:

β := O

⎛

⎝
Sn2−1∑

l=1

T l

⎞

⎠

This gives us the upper bound on the time complexity of the search space
using a single virtual robot positioned at a fixed location within the Maze-World.

Further, let us assume that α number of virtual robots at a fixed location
within the Maze-World are trying to move towards the given destination. In the
best case when no redundant executions are performed due to one-to-all sharing
amongst virtual robots, the total time complexity of exploring the Maze-World
by α virtual robots is of the order of β/α plus the overheads incurred in sharing.

Let the time taken for sharing intelligence between two virtual robots be
τ . Apparently, the sharing of information involves two virtual robots (one who
provides the information and the other one who receives it) at a time. Hence, the
total number of sharing events required to disseminate the intelligence within
each virtual robot among the remaining virtual robots would be αC2. It may be
noted that the virtual robots can share intelligence concurrently. If α is even,
then the number of concurrent sharing events possible is α/2. Thus the total
time required to share the intelligence among the α virtual robots would be
(2τ αC2)

α .

In case if α is odd, this time complexity would become
(

2 α−1C2
α−1 + α − 1

)
τ .

Hence, the total time complexity to reach the destination in the best case for
α virtual robot (α being even) would be:

γ := O

(
β + (2τ αC2)

α

)

This forms the lower bound on the time complexity of the overall search
space. Let θ be the time complexity of solving the problem P using the proposed
framework. Since, in our proposed framework α > 1 along with localized sharing
using the concept of mobility of learned information, intuitively θ will be bounded
as: γ < θ << β

It may be noted that these bounds are not so tight on θ, yet they give us an
approximation of the reduction in the search space and time complexity when
the proposed sharing framework is used.
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5 Results

Experiments were carried out on various networks of virtual robots with different
populations of mobile agents to learn a sequence of actions (i.e. the goal G in
this case) to reach the destination. Each experiment was performed at least 10
times to counter any stochastic influence. The time required to complete each
of the experiments varied between 300 to 3000 s. The average of 10 runs has
been portrayed in the results. The values of various parameters used for the
experiments are:
ε = 0.2, ρmax = 10, n × n (Size of maze) = 50 × 50, Start Location (SS) = (50,
0), Destination Location (SD) = (0, 50)

The mobile agents were placed arbitrarily at different nodes within the net-
work of virtual robots during the start of each of the experiments. All the nodes
in the network of virtual robots were connected in the form of a mesh.

For experimentation, Typhon [31] based networks with sizes varying from 10
nodes to 50 nodes were created. The densities (D) of the mobile agents within a
network, which can be defined as the ratio of number of agents to the number of
nodes in the network, were varied from D = 0.1 to 0.5 on each of the networks
and all the executions were logged. The experiments involved the problem of
finding the sequence of actions required to traverse from the starting location
SS to the destination location SD within the Maze-World with no obstacles. To
vary the problem setting, we have also experimented on a 50-node network with
the Maze-World having contiguous obstacles occupying co-ordinate locations
(40, 0) to (40, 40).

Two important factors that are crucial to verify the effectiveness of the pro-
posed framework are - the size of the network (i.e. number of nodes in the
network) and the number of mobile agents involved. While the former tests the
scalability of the framework, the latter can ensure a faster convergence. Hence,
as a performance yardstick, we varied the density (D) of mobile agents in net-
works of different sizes and recorded the average number of executions that the
virtual robots took to converge to the goal G. By number of executions of virtual
robots, we mean the number of times each mobile agent entered the Executor
state (Sect. 3.5). Thus, the average number of executions is the ratio of the total
number of executions (until the convergence of all the mobile agents in the net-
work) to the total number of mobile agents.

5.1 Converged Sequences of Actions

The graphs in Fig. 7(a) and (b) depict the final converged paths taken by the
virtual robots with 5 mobile agents in the 50-node network. Figure 7(a) shows
the converged paths of five virtual robots without sharing i.e. when the proposed
sharing framework was not used. While, a total of 5 mobile agents (D = 0.1)
in the 50-node network were used with the proposed framework for the graph
in Fig. 7(b). As can be observed in Fig. 7(a), when the proposed sharing frame-
work is not used by the virtual robots, all the virtual robots discover different
sequences of actions (paths) to the destination SD for the goal G. However, all
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(a)

(b)

Fig. 7. Final converged sequences of five agents in the Maze-World from the Source
at (50, 0) to the Destination at (0, 50) in a 50-node network - (a) Without Sharing
(Paths are distinct) (b) With Sharing (Paths are highly overlapped).

the virtual robots converge to the same sequence of actions when they share
information with one another. These graphs not only show the impact of shar-
ing but also reveal the expected performance of the proposed framework. The
goal G, assigned to the virtual robots, was to find a sequence of actions (as dis-
cussed in Sect. 3.5) that facilitate their movement from a source at (50,0) to a
destination at (0,50). It can be seen clearly that sharing of information definitely
helps these virtual robots achieve their goals in lesser time with fewer number of
executions. From the logs, we have found that the average number of executions
was 195 when the virtual robots did not share information whereas it was a
mere 92 when sharing was embedded using the proposed framework. It should
be noted that all the virtual robots are required to find their path individually.
The results indicate that the proposed framework allows mobile agents to search
in different directions (possibilities) and the best amongst them is taken up by
all the virtual robots to beeline towards the goal. Similar trends were observed
in all other cases considered for the experimentation.
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(a)

(b)

Fig. 8. Variations in the length of the sequences of actions of the virtual robots with
executions in case of five mobile agents in a 50-node network - (a) Without Sharing
(Mostly dissimilar sequences) (b) With Sharing (Converge on the similar sequences).

Further the converged sequence shown in Fig. 7(b) is achieved by five different
mobile agents when they are completely oblivious of the information about other
mobile agents within the network along with any knowledge pertaining to the
network itself (i.e. the number of virtual robots). Hence, the proposed framework
augments the algorithm L and facilitates the sharing of information amongst the
virtual robots in a truly distributed sense and also yields better performance.

5.2 Length of the Sequences of Actions

The graphs in Fig. 8(a) and (b) depict the variations in the length of the sequence
of actions with respect to the executions on part of the virtual robots with five
mobile agents whose converged sequences are shown in the graphs in Fig. 7(a)
and (b) respectively. The differences in the lengths of the sequences discovered by
the five virtual robots against their executions can be observed in Fig. 8(a) when
they are not sharing any intelligence amongst each-other. As can be observed in
the case when the mobile agents shared intelligence (Fig. 8(b)), the lengths of
the sequences of all the virtual robots are spread evenly and confined along a
common line even before convergence when they are in the process of discovering
the paths which is the period when execution increases. This illustrates that with
no sharing of intelligence, the virtual robots search egocentrically and explore to
find their individual solutions. Whereas the virtual robots are able to effectively
constrict their search space towards the goal by sharing their piecewise knowledge



Distributed Asynchronous Intelligence-Sharing and Learning Framework 189

Fig. 9. Variations in the average number of executions to converge to a path from
the source to the destination within a Maze-World of size 50 × 50 by all the mobile
agents for different densities. The graph is plotted by taking the average of 10 runs
in each case on Typhon based networks with no obstacles in the Maze-World for the
first five sets. The last set is one with obstacles stretching from (40,0) to (40,40) in the
Maze-World (Color figure online).

using the dynamics of the proposed framework. Each virtual robot thus tries to
solve the sub-problems of a common agenda. It can also be observed that the
total number of executions performed by all the five mobile agents taken together
which is around 350 is less than half of the total number of executions taken
together of all the non-sharing virtual robots (around 900). Hence, the results
portrayed herein show that the proposed framework makes the virtual robots
agree on a common solution and share the best available information amongst
each other using the mobility of the learned information. The graphs in Fig. 8
show one instance of the results obtained. Similar trends were observed when
the number of nodes and mobile agents were varied in all other cases considered
for experimentation.

5.3 Average Number of Executions

Figure 9 depicts the average number of executions required to learn a path from
source to the destination within the Maze-World of size 50 × 50 with varying
number of nodes and mobile agents.

As can be observed from the graph in Fig. 9, the average number of executions
(until all the mobile agents converge to a path to SD) reduces monotonically with
increase in the density of the mobile agents. Further, the trend remains the same
as the size of the network (number of nodes in the network) grows. One can also
observe that as the density becomes high (50 % of the total number of nodes), no
significant difference in the average number of executions across different network
sizes is observed. It may be noted that in the real-world, the execution of a series
of actions is a costly affair both in terms of energy and time. Also, D = 0.1 in a
10-node network depicts a scenario when there is no sharing since there is only 1
mobile agent in the network. The average number of executions in this case is 195.
While the average number of execution reduces to almost half (110 executions)
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Fig. 10. Average number of sharing events per execution with different densities. The
graph is plotted by taking the average of 10 runs in each case on Typhon based networks
with no obstacles in the Maze-World for the first five sets. The last set is one with
obstacles stretching from (40,0) to (40,40) in the Maze-World (Color figure online).

with D = 0.2 in case of 10 nodes. This depicts the huge gain in terms of average
number of executions when the mobile agents are sharing information against
the case when they are not doing so. Further, the average numbers of executions
are higher in case of 50 nodes when there was obstacles within the Maze-World
against the no-obstacle case. This shows that the complexity of the problem does
affect the performance though the trend of executions remains the same. It may
also be noted that the reduction in the average number of executions is high
when the density of mobile agents varies from D = 0.1 to 0.2 in all the cases
considered for experimentation. This reduction slows down from 0.2 onwards
and almost becomes asymptotic. Moreover, increasing the density above 0.5 is
not advisable as the population of mobile agents would clutter the network and
entail more communication overheads [19]. Hence, the results clearly show that
the proposed framework can effectively bring down the number of executions
required to achieve the goal G in a fully distributed and asynchronous manner.

5.4 Average Number of Sharing Events per Execution

The graph in Fig. 10 depicts the average number of times the sharing was per-
formed per execution with varying densities and sizes of the network. The average
number of sharing events per execution is calculated as the ratio of the average
of the total number of sharing events performed in 10 runs of each experiment to
the average of the total number of executions in 10 runs. The cases considered
are same as described in the previous section. As can be observed there is an
increase in the average number of sharing events per execution with increase in
the density of mobile agents in each of the networks of different sizes. Further,
as observed in the previous case, the trend remains the same across different
network sizes and problem setting. Apparently, the average number of sharing
events per execution is 0 in case of D = 0.1 in the network with 10 nodes. The
graph also reveals the fact that an initial increase in the density of mobile agents
aids to expand the search in multiple directions which increases the amount of
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sharing. However, a high density of mobile agents within the network causes
redundancy in the search space and hence creates less amount of shareable intel-
ligence amongst each other. Further, the graph also shows that a change in
the problem setting (Maze-World with obstacles) does not alter the trend or
the behaviour of the sharing among the mobile agents. It can also be observed
that the amount of sharing increases when the problem becomes more complex
(Maze-World with obstacles) because of the increase in size of the search space.

It may be noted that there is a marginal difference (< 0.05) in the average
sharing per execution between D = 0.4 and D = 0.5 across all cases. These
are possibly the best operating densities of the number of mobile agents in the
proposed framework to effectively use distributed asynchronous sharing in the
current problem setting of the Maze-World. Though a lower number of mobile
agents could eventually find the solution (taking more number of executions and
less sharing), an optimum number of mobile agents in the network could hasten
the process while also effectively utilizing the network resources. A mechanism
to dynamically vary the density of mobile agents based on the current size of the
network as reported in [19] could aid the performance of the proposed framework.

5.5 Distinct Movements of Virtual Robots Within the Maze-World

The graphs in Fig. 11(a) and (b) depict the movement of all the virtual robots
within the Maze-World of size 50×50 for D = 0.1 in a 50-node network without
and with obstacles. The final converged sequences of actions (G) of all the virtual
robots are also depicted in the graphs. These two cases of Maze-World exhibit
different levels of complexities for the virtual robots to reach the destination
location (50, 0) from the starting location (0, 50). When there is no obstacle
within the Maze-World, the obvious way to traverse the Maze-World to reach
the destination is to move diagonally while in the presence of an obstacle the
best choice is to follow the path alongside the obstacle towards the destination.
In case of an obstacle, the virtual robots need to exert more energy in terms of
the number of executions required to explore the path alongside the obstacle as
compared to a diagonal path in the absence of the same. Insertion of multiple
obstacles along the path also gave similar results. As can be observed from the
graphs, the final converged sequence of actions (G) in both without and with
the obstacles, for all the virtual robots is the best possible intersection of the
sequences available to reach the destination location at (50,0). Since the learning
algorithm discussed in Sect. 4.5 does not ensure the optimality in the movement
of virtual robots towards their destination, such an effect evolves as a result
of the distributed asynchronous sharing of the piecewise intelligence available
within each mobile agent which in turn circulates the knowledge of the global
best among all the virtual robots. Sharing of information on part of the mobile
agents seems to bring back the virtual robots that drift away from the optimal
path resulting in a drastic reduction in the number of otherwise futile executions.
It thus motivates the entire population of virtual robots to pursue a common
and possibly more optimal path in an orderly and unified manner.
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(a) (b)

Fig. 11. Movements of all five virtual robots with sharing from the start of the exper-
iment until convergence - (a) with D = 0.1 in a 50-node network with no obstacles in
the Maze-World and (b) with D = 0.1 in a 50-node network with an obstacle stretching
from location (40,0) to (40, 40) in the Maze-World.

5.6 Frequency of Sharing

Figure 12 shows the change in number of sharing events versus time along with
the associated linear trendline for D = 0.5 in a 50-node network. It may be
noted that the X-axis indicates the time-stamps recorded by the log server (as
mentioned in Sect. 4). As can be seen, the linear trendline drawn based on the
frequency of sharing events has a negative slope. Since the mobile agents try
different combinations of actions on to the virtual robots initially they tend to
discover diverse piecewise solutions causing the sharing events to be high. The
number of sharing events decreases gradually as the virtual robots move towards
the goal. This is because the initial high level of sharing causes the mobile agents
to converge closer to a common path causing lesser diversity of information
within their respective bags resulting in a gradual reduction in sharing. A similar

Fig. 12. Number of sharing events among 25 agents in a 50-node network (D = 0.5)
against time in seconds.
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trend was observed in all other cases of varying nodes and mobile agents used
in the experimentation.

Sharing thus seems to constrain the mobile agents to search within a common
and narrower search space. This could lead the virtual robots to follow a non-
optimal path (local optima). One alternative to circumvent this could be to
embed a different learning algorithm within a few mobile agents so as to force
them explore the search space in a different manner ensuring diversity of the
contents in the various Bags for a longer time. This increase in diversity of the
piecewise solutions carried within the individual Bags of the mobile agents will
consequently increase sharing and aid in an exit path from possible local optima.

5.7 Performance in a Dynamic Network

Figure 13 depicts the performance of the proposed distributed intelligence-
sharing and learning framework in a 50-node dynamic network. The dynamic
network was created using a variant of the Erdős-Rényi G(n, p) model [11]. Ini-
tially a mesh network of 50 nodes was established over a LAN. Each node within
the network was provisioned to break their connections with any of their current
neighbours with a probability of 0.3. A node was allowed to make a new con-
nection with any other node in the network with a probability of 0.5. Each node
exercises the event of altering their connections after a time interval randomly
chosen between 10 and 20 s in real time. Thus, the virtual robots within the
dynamic network mimicked the movement or mobility of actual mobile robots
just as in a mobile ad-hoc network by breaking and making new connections
with other robots as they move physically. From the logs, the minimum degree
of a node (d) was found to be 0 while the maximum degree was found to be 27.
When a virtual robot becomes isolated (d = 0), then all the mobile agents within
that node become dormant and wait till the virtual robot reconnects. Hence, the
total number of nodes in the connected network keeps on varying with time.

As can be observed from Fig. 13(a), the average number of executions (until
all the mobile agents converge to G) reduces with increase in the density of the
mobile agents within the 50-node dynamic network. This follows the same trend
as observed in case of the static networks discussed earlier. Further as shown
in Fig. 13(b), the average number of sharing events per execution increases with
increase in the number of mobile agents within the network. The trend of the
graph in this case also remains similar to the previously cited cases of static
networks. As can be seen from the graph, there is an initial boost in the average
number of sharing events per execution in case of 5 mobile agents to 10 mobile
agents while the same slows down as we move from 10 mobile agents to 25 mobile
agents. As mentioned earlier, this is due to the fact that an initial increase in
the density of agents aids to expand the search in multiple directions resulting
in an increase in the overall sharing. As the density of mobile agents increases,
redundancy in information discovered by the mobile agents increases thereby
lowering the quantum of shareable intelligence.

It may thus be observed that the proposed framework is suited to networks
wherein the nodes are mobile. This emphasizes the robustness and flexibility of
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(a)

(b)

Fig. 13. Performance in the Typhon based 50-node dynamic network of virtual robots
with varying densities from D = 0.1 (5 agents) to 0.5 (25 agents) (a) Average number
of executions to converge to a path from the source to the destination within a Maze-
World of size 50 × 50 by all the mobile agents (b) Average number of sharing events
per execution.

the proposed framework for intelligence-sharing and learning in distributed envi-
ronments. The results substantiate the viability of using the proposed framework
in distributed mobile computing environments.

6 Discussions

The proposed framework opens numerous avenues for testing and verifying a
gamut of learning algorithms over distributed, decentralized and asynchronous
environments. Convergence is hastened due to faster access to newly weaned
information gained from sharing on part of the mobile entities in the network.
The multi-agent paradigm coupled with this mobility of learned information,
facilitates collaborative learning among a set of location-unaware entities or
nodes in a large distributed, decentralized and asynchronous system. The intrin-
sic flexibility of agent based technology used by the framework could also allow
learning of multiple goals by the various entities in a network. Thus, in an N -
node network, I nodes could be trying to find a solution to a problem P1, J nodes
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could be doing the same for another problem P2, while the rest (N − I − J) try
to solve P3. These problems may need to be solved concurrently or could even
be made sequential using techniques cited in [24,25]. In such a case, the N -node
network would be hosting heterogeneous sets of mobile agents which use the pro-
posed framework to solve their respective problems. Heterogeneity in this case
refers to the difference in the parameters and the learning algorithms used by
the three sets of mobile agents attempting to solve the problems P1, P2 and P3

respectively as mentioned above. Given a heterogeneous set of algorithms say
L1, L2 and L3 to be used to solve a particular problem P , such a set up of the
framework could also be used to evolve the best algorithm. In this case, three
sets of mobile agents could be primed to solve the problem P using an algo-
rithm respectively within the proposed framework. Consequent to this, each set
of mobile agents would evolve three solutions S1, S2 and S3 based on the algo-
rithms L1, L2 and L3 respectively. In order to find the efficacy of the solutions
Si and find the best among them, an Idiotypic network [23] based mechanism
such as the one proposed in [26] could be used. The mechanism proposed in [26]
could allow the N -node network to automatically evolve the best solution out
of S1, S2 and S3.

In addition, if it so happens that an algorithm L1 performs optimally during
the initial phase of learning but unfortunately deteriorates in its performance
at later stages while another algorithm L2 behaves just the reverse way then
running them together within the framework could be meaningful. While the
set of mobile agents using L1 will clearly dominate in performance initially, the
other set of mobile agents using L2 will use this learned information and enhance
the convergence at a rapid pace. The heterogeneous set of mobile agents using
different learning algorithms can thus co-operate and lead to a better solution
using this framework. Since the performance of different algorithms could vary
depending on the problem at hand such a hybridizing of algorithms could pave
ways to newer and more efficient mechanisms.

The framework could also be enhanced by supplementing it with cloning
of the best performing sets of mobile agents as described in [19]. Accordingly,
the cloning of mobile agents would not only enhance concurrent processing by
increasing the population of the best performing agents, but also restrict the
lesser performing ones from consuming precious system resources such as band-
width and computation times. Modifying and emulating variants of population
based algorithms such as Evolutionary Computing and Genetic Algorithms (GA)
including Island models [7] can also be performed using this framework.

As discussed earlier, the design methodology of the proposed framework is
inspired by the interactions in social insect colonies and draws concepts from
the domain of Evolutionary Computing and Genetic Algorithms (GA). Modi-
fying and emulating variants of such population based algorithms can also be
performed using this framework. If we consider each mobile agent carrying the
learned information as a candidate solution, then this framework can be viewed
as a real-time formulation of a distributed GA. The support for mobility of can-
didate solutions in this framework also allows the real implementation of Island
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models of parallel GA [7]. Such models have been proposed as a distributed
implementation but have hardly been used, possibly due to the non-existence of
a convincing platform to realize them. If we look for the analogies between the
proposed framework and GA, it may be observed that the Migration Resource,
ρmi, mildly mimics the crossover operator used in a GA. It also makes candidate
solutions to be nomadic and forces their movement from one island population
to another. Further, the Execution Potential, ξmi

, partially mimics the muta-
tion operator used in a GA by forcing the system to try out new solutions.
Given a set of actions, it makes the system try out new permutations and com-
binations of these actions. The feedback provided by the static agent at the
nodes participating in the learning exercise can be attributed to the fitness of
the solutions in a GA. Similar analogies can also be derived for other popula-
tion based bio-inspired algorithms such as Particle Swarm optimization (PSO)
[27]. The proposed framework can thus be effectively utilized as a potential tool
for intelligence-sharing and learning in large distributed systems in a variety of
scenarios.

7 Conclusions

Distributed intelligence-sharing and learning in multi-agent systems, open up
a wide variety of applications, that range from sensor beds to smart cities [5].
Mobile agent technology can play a crucial role in optimizing the use of local
computing resources and distributed decision making in highly complex and
scalable systems. This paper attempts to highlight the advantages of distributed
intelligence-sharing and learning using a set of mobile agents. The emulation
experiments presented in this paper provide valid proof-of-concept for the same.
The model of intelligence-sharing and learning proposed herein could be used
as a framework to realize distributed and continuously evolving systems which
in turn could exhibit emergent behaviours. A variety of user-defined learning
algorithms could also be used concurrently by different sets of agents within this
framework. Further, since the number of mobile agents required is unknown,
the initial discovery could commence with a moderate number of mobile agents,
some of which may be allowed to clone over a period of time based on a perfor-
mance measure so as to hasten the process of convergence. Excessive cloning can
however lead to cluttering within the network which could be prevented using
an appropriate controller such as the one described in [19].

It may be noted that the proposed framework makes use of information
available locally (within a node) to achieve a global objective. This is akin to
the functioning of densely populated insect colonies such as ants, honeybees, etc.
[10]. The asynchronous sharing and consequent learning observed in the proposed
framework could provide insights to the manner in which these swarms interact
and converge towards a goal. It further opens up avenues to explore applications
in the domain of asynchronous robotic swarms wherein every execution con-
sumes precious energy stored within their batteries. Such a system could thus
enhance the capabilities of the robotic swarm several manifolds. It is possible to
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conjecture each robot in a swarm as a mobile agent and then embed the whole
mechanism of local sharing and learning to constitute an intelligent mobile ad
hoc network of robots. The framework described herein can also be used in many
Internet of Things (IoT) and Cyber-Physical Systems (CPS) based applications.
Some of the examples of such applications can be - energy management in smart
buildings [44] wherein a set of mobile agents could be used to learn a schedule of
energy consumption by various networked devices, intelligent water distribution
systems [17] wherein such agents could share the information of a distributed
network of various water reservoirs and optimize water distribution. Other appli-
cations could be the learning of the occupancy patterns of large buildings [34]
for regulating HVAC systems and distributed intelligent traffic monitoring and
management systems [4] wherein the agents can share the information of heavy
traffic routes and learn traffic regulation rules to cater to different times of the
day thus evolving optimized route schedules. In industry automation such agents
can share the information of workloads on different remotely located machines
and learn an optimized schedule for job allocations on-the-fly while in intelligent
warehouse management systems these agents can facilitate sharing of informa-
tion of the items placed in various smart racks and shelves to come up with the
better and optimal strategies to improve logistics and placement of goods, etc.
Use of a set of mobile agents, empowered with the sharing and learning mecha-
nisms, in all these scenarios is bound to instil and enhance intelligence in such
networked environments.
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