
Towards a Wide-Coverage Tableau Method
for Natural Logic

Lasha Abzianidze(B)

Tilburg University - TiLPS, Tilburg, The Netherlands
L.Abzianidze@uvt.nl

Abstract. The first step towards a wide-coverage tableau prover for
natural logic is presented. We describe an automatized method for
obtaining Lambda Logical Forms from surface forms and use this method
with an implemented prover to hunt for new tableau rules in textual
entailment data sets. The collected tableau rules are presented and their
usage is also exemplified in several tableau proofs. The performance of
the prover is evaluated against the development data sets. The evalua-
tion results show an extremely high precision above 97 % of the prover
along with a decent recall around 40%.

Keywords: Combinatory Categorial Grammar · Lambda Logical
Form · Natural logic · Theorem prover · Tableau method · Textual
entailment

1 Introduction

In this paper, we present a further development of the analytic tableau system
for natural logic introduced by Muskens in [12]. The main goal of [12] was to
initiate a novel formal method of modeling reasoning over linguistic expressions,
namely, to model the reasoning in a signed analytic tableau system that is fed
with Lambda Logical Forms (LLFs) of linguistic expressions. There are three
straightforward advantages of this approach:

(i) since syntactic trees of LLFs roughly describe semantic composition of lin-
guistic expressions, LLFs resemble surface forms (that is characteristic for
natural logic); hence, obtaining LLFs is easier than translating linguistic
expressions in some logical formula where problems of expressiveness of
logic and proper translation come into play;

(ii) the approach captures an inventory of inference rules (where each rule is
syntactically or semantically motivated and is applicable to particular lin-
guistic phrases) in a modular way;

(iii) a model searching nature of a tableau method and freedom of choice in a
rule application strategy seem to enable us to capture quick inferences that
humans show over linguistic expressions.

c© Springer-Verlag Berlin Heidelberg 2015
T. Murata et al. (Eds.): JSAI-isAI 2014 Workshops, LNAI 9067, pp. 66–82, 2015.
DOI: 10.1007/978-3-662-48119-6 6

Towards a Wide-Coverage Tableau Method for Natural Logic 67

The rest of the paper is organized as follows. First, we start with the syntax of
LLFs and show how terms of syntactic and semantic types can be combined; then
we briefly discuss a method of obtaining LLFs from surface forms as we aim to
develop a wide-coverage natural tableau system (i.e. a tableau prover for natural
logic). A combination of automatically generated LLFs and an implemented
natural tableau prover makes it easy to extract a relevant set of inference rules
from the data used in textual entailment challenges. In the end, we present the
performance of the prover on several training data sets. The paper concludes
with a discussion of further research plans.

Throughout the paper we assume the basic knowledge of a tableau method.

2 Lambda Logical Forms

The analytic tableau system of [12] uses LLFs as logical forms of linguistic expres-
sions. They are simply typed λ-terms with semantic types built upon {e, s, t}
atomic types. For example, in [12] the LLF of no bird moved is (1) that is a
term of type st.1 As we aim to develop a wide-coverage tableau for natural logic,
using only terms of semantic types does not seem to offer an efficient and elegant
solution. Several reasons for this are given below.

(no(est)(est)st birdest) movedest (1)
(non,(np,s),s birdn) movednp,s (2)

First, using only terms of the semantic types will violate the advantage (i) of
the approach. This becomes clear when one tries to account for event semantics
properly in LLFs as it needs an introduction of an event entity and closure or
existential closure operators of [3,14] that do not always have a counterpart on
a surface level.

Second, semantic types provide little syntactic information about the terms.
For instance, birdest and movedest are both of type est in [12], hence there
is no straightforward way to find out their syntactic categories. Furthermore,
M(est)estHest term can stand for adjective and noun, adverb and intransitive
verb, or even noun and complement constructions. The lack of syntactic infor-
mation about a term makes it impossible to find a correct tableau rule for the
application to the term, i.e. it is difficult to meet property (ii). For example, for
AestBe, it would be unclear whether to use a rule for an intransitive verb that
introduces an event entity and a thematic relation between the event constant
and Be; or for M(est)setHest whether to use a rule for adjective and noun or noun
and complement constructions.2

1 Hereafter we assume the following standard conventions while writing typed λ-terms:
a type of a term is written in a subscript unless it is omitted, a term application is
left-associative, and a type constructor comma is right-associative and is ignored if
atomic types are single lettered.

2 The latter two constructions have the same semantic types in the approach of [2],
who also uses the C&C parser, like us, for obtaining logical forms but of first-order
logic. The reason is that both PP and N categories for prepositional phrases and
nouns, respectively, are mapped to et type.

68 L. Abzianidze

Finally, a sentence generated from an open branch of a tableau proof can give
us an explanation about failure of an entailment, but we will lose this option if
we stay only with semantic types as it is not clear how to generate a grammatical
sentence using only information about semantic types.3

In order to overcome the lack of syntactic information and remain LLFs sim-
ilar to surface forms, we incorporate syntactic types and semantic types in the
same type system. Let A = {e, t, s, np, n, pp} be a set of atomic types, where
{e, t} and {s, np, n, pp} are sets of semantic and syntactic atomic types, respec-
tively. Choosing these particular syntactic types is motivated by the syntactic
categories of Combinatory Categorial Grammar (CCG) [13]. In contrast to the
typing in [12], we drop s semantic type for states for simplicity reasons. Let IA
be a set of all types, where complex types are constructed from atomic types in a
usual way, e.g., (np, np, s) is a type for a transitive verb. A type is called semantic
or syntactic if it is constructed purely from semantic or syntactic atomic types,
respectively; there are also types that are neither semantic nor syntactic, e.g.,
ees. After extending the type system with syntactic types, in addition to (1),
(2) also becomes a well-typed term. For better readability, hereafter, we will use
a boldface style for lexical constant terms with syntactic types.

The interaction between syntactic and semantic types is expressed by a sub-
typing relation (�) that is a partial order, and for any α1, α2, β1, β2 ∈ IA:

(a) e � np, s � t, n � et, pp � et;
(b) (α1, α2) � (β1, β2) iff β1 � α1 and α2 � β2

The introduction of subtyping requires a small change in typing rules, namely,
if α � β and A is of type α, then A is of type β too. From this new clause it
follows that a term AαBβ is of type γ if α � (β, γ). Therefore, a term can have
several types, which are partially ordered with respect to �, with the least and
greatest types. For example, a term lovenp,np,s is also of type eet (and of other five
types too, where (np,np,s) and eet are the least and greatest types, respectively).
Note that all atomic syntactic types are subtypes of some semantic type except
e � np. The latter relation, besides allowing relations like (np, s) � et, also
makes sense if we observe that any entity can be expressed in terms of a noun
phrase (even if one considers event entities, e.g., singingNP is difficult).

Now with the help of this multiple typing it is straightforward to apply
lovenp,np,s marynp term to ce constant, and there is no need to introduce new
terms loveeet and marye just because loveeet marye is applicable to ce. For the
same reason it is not necessary to introduce manet for applying to ce as mannce

is already a well-formed term. From the latter examples, it is obvious that some
syntactic terms (i.e. terms of syntactic type) can be used as semantic terms,
hence minimize the number of terms in a tableau. Nevertheless, sometimes it
will be inevitable to introduce a new term since its syntactic counterpart is not
able to give a fine-grained semantics: if redn,ncarnce is evaluated as true, then

3 An importance of the explanations is also shown by the fact that recently SemEval-
2015 introduced a pilot task interpretable STS that requires systems to explain their
decisions for semantic textual similarity.

Towards a Wide-Coverage Tableau Method for Natural Logic 69

one has to introduce redet term in order to assert the redness of ce by the term
redetce as redn,nce is not typable. Finally, note that terms of type s can be
evaluated either as true or false since they are also of type t.

Incorporating terms of syntactic and semantic types in one system can be seen
as putting together two inference engines: one basically using syntactically-rich
structures, and another one semantic properties of lexical entities. Yet another
view from Abstract Categorial Grammars [7] or Lambda Grammars [11] would be
to combine abstract and semantic levels, where terms of syntactic and semantic
types can be seen as terms of abstract and semantic levels respectively, and the
subtyping relation as a sort of simulation of the morphism between abstract and
semantic types.4

3 Obtaining LLFs from CCG Trees

Automated generation of LLFs from unrestricted sentences is an important part
in the development of the wide-coverage natural tableau prover. Combined with
the implemented tableau prover, it facilitates exploring textual entailment data
sets for extracting relevant tableau rules and allows us to evaluate the theory
against these data sets.

We employ the C&C tools [4] as an initial step for obtaining LLFs. The
C&C tools offer a pipeline of NLP systems like a POS-tagger, a chunker, a
named entity recognizer, a super tagger, and a parser. The tools parse sentences
in CCG framework with the help of a statistical parser. Altogether the tools are
very efficient and this makes them suitable for wide-coverage applications [1]. In
the current implementation we use the statistical parser that is trained on the
rebanked version of CCGbank [8].

In order to get a semantically adequate LLF from a CCG parse tree (see
Fig. 1), it requires much more effort than simply translating CCG trees to syn-
tactic trees of typed lambda terms. There are two main reasons for this complica-
tion: (a) a trade-off that the parser makes while analyzing linguistic expressions
in order to tackle unrestricted texts, and (b) accumulated wrong analyses in final
parse trees introduced by the various C&C tools.

For instance, the parser uses combinatory rules that are not found in the
CCG framework. One of such kind of rules is a lexical rule that simply changes
a CCG category, for example, a category N into NP (see lx[np, n] combinatory
rule in Fig. 1) or a category S\NP into N\N . The pipeline of the tools can also
introduce wrong analyses at any stage starting from the POS-tagger (e.g., assign-
ing a wrong POS-tag) and finishing at the CCG parser (e.g., choosing a wrong
combinatory rule). In order to overcome (at least partially) these problems, we
use a pipeline consisting of several filters and transformation procedures. The
general structure of the pipeline is the following:

4 The connection between LLFs of [12] and the terms of an abstract level was already
pointed out by Muskens in the project’s description “Towards logics that model
natural reasoning”.

70 L. Abzianidze

ba[sdcl]

fa[sdcl\np]

rp[np]

.

period
.
.

fa[np]

ba[n]

lx[n\n, spss\np]

published

spss\np
publish
VBN

results

n
result
NNS

the

np/n
the
DT

got

(sdcl\np)/np
get

VBD

lx[np, n]

fa[n]

delegates

n
delegate

NNS

Several

n/n
several

JJ

Fig. 1. A parse tree of several delegates got the results published. by the C&C parser

• Transforming a CCG tree into a CCG term: the procedure converts CCG
categories in types by removing directionality from CCG categories (e.g.,
S\NP/NP � (np, np, s)) and reordering tree nodes in a corresponding way.

• Normalizing the CCG term: since an obtained CCG term can be considered
as a typed λ-term, it is possible to reduce it to βη-normal form.5

• Identifying proper names: if both function and argument terms are recog-
nized as proper names by the C&C pipeline, then the terms are concate-
nated; for instance, Leonardon,n(dan,nVincin) is changed in a constant term
Leonardo da Vincin if all three terms are tagged as proper names.

• Identifying multiword expressions (MWE): the CCG parser analyzes in a
purely compositional way all phrases including MWEs like a lot of, take part
in, at least, etc. To avoid these meaningless analyses, we replace them with
constant terms (e.g., a lot of and take part in).

• Correcting syntactic analyses: this procedure is the most complex and exten-
sive one as it corrects a CCG term by inserting, deleting or replacing terms.
For example, the type shifts like n � np are fixed by inserting correspond-
ing determiners (e.g., (oiln)np � an,npoiln) or by typing terms with ade-
quate types (e.g., (Leonardo da Vincin)np � Leonardo da Vincinp and
(severaln,ndelegaten)np � severaln,npdelegaten). More extensive correc-
tions, like fixing a syntactically wrong analysis of a relative clause, like (3),
are also performed in this procedure.

• Type raising of quantifiers: this is the final procedure, which takes a more or
less fixed CCG term and returns terms where quantified noun phrases of type
np have their types raised to ((np, s), s). As a result several LLFs are returned
due to a scope ambiguity among quantifiers. The procedure makes sure that

5 Actually the obtained CCG term is not completely a λ-term since it may contain
type changes from lexical rules. For instance, in (severaln,ndelegaten)np subterm,
(.)np operator changes a type of its argument into np. Nevertheless, this kind of type
changes are accommodated in the λ-term normalization calculus.

Towards a Wide-Coverage Tableau Method for Natural Logic 71

generalized quantifiers are applied to the clause they occur in if they do not
take a scope over other quantifiers. For example, from a CCG term (4) only
(5) is obtained and (6) is suppressed.

oldn,n(who(np,s),n,ncrynp,smann) � who(np,s),n,ncrynp,s(oldn,nmann) (3)

ands,s,s

(
sleepnp,sjohnnp

)(
snorenp,s(non,npmann)

)
(4)

ands,s,s(sleepnp,sjohnnp)(non,(np,s),smannsnorenp,s) (5)

non,(np,s),smann

(
λx.ands,s,s(sleepnp,sjohnnp)(snorenp,sxnp)

)
(6)

The above described pipeline takes a single CCG tree generated from the
C&C tools and returns a list of LLFs. For illustration purposes CCG term (7),
which is obtained from the CCG tree of Fig. 1, and two LLFs, (8) and (9),
generated from (7) are given below; here, vp abbreviates (np, s) and sn,vp,s term
stands for the plural morpheme.

gotnp,vp

(
sn,np

(
whovp,n,n(bevp,vppublishvp)resultn

))(
severaln,npdelegaten

)
(7)

severaln,vp,sdelegaten

(
λx. sn,vp,s

(
whovp,n,n(bevp,vppublishvp)resultn

)(
λy.gotnp,vp ynp xnp

))

(8)
sn,vp,s

(
whovp,n,n(bevp,vppublishvp)resultn

)(
λx. severaln,vp,sdelegaten(gotnp,vp xnp)

)
(9)

4 An Inventory of Natural Tableau Rules

The first collection of tableau rules for the natural tableau was offered in [12],
where a wide range of rules are presented including Boolean rules, rules for
algebraic properties (e.g., monotonicity), rules for determiners, etc. Despite this
range of rules, they are insufficient for tackling problems found in textual entail-
ment data sets. For instance, problems that only concentrate on quantifiers or
Boolean operators are rare in the data sets. Syntactically motivated rules such
as rules for passive and modifier-head constructions, structures with the cop-
ula, etc. are fruitful while dealing with wide-coverage sentences, and this is also
confirmed by the problems found in entailment data sets. It would have been a
quite difficult and time-consuming task to collect these syntactically motivated
tableau rules without help of an implemented prover of natural tableau. For this
reason the first thing we did was to implement a natural tableau prover, which
could prove several toy entailment problems using a small inventory of rules
mostly borrowed from [12].6 With the help of the prover, then it was easier to
explore manually the data sets and to introduce new rules in the prover that
help it to further build tableaux and find proofs.

6 Implementation of the prover, its computational model and functionality is a sepa-
rate and extensive work, and it is out of scope of the current paper.

72 L. Abzianidze

During collecting tableau rules we used a half portion of the FraCaS test suite
[5] and the part of the SICK trial data [10] as a development set.7 The reason
behind opting for these data sets is that they do not contain long sentences,
hence there is a higher chance that a CCG tree returned by the C&C tools will
contain less number of wrong analyses, and it is more likely to obtain correct
LLFs from the tree. Moreover, the FraCas test suite is considered to contain
difficult entailment problems for textual entailment systems since its problems
require more complex semantic reasoning than simply paraphrasing or relation
extraction. We expect that interesting rules can be discovered from this set.

Hereafter, we will use several denotations while presenting the collected
tableau rules. Uppercase letters A,B,C, . . . and lowercase letters a, b, c. . . . stand
for meta variables over LLFs and constant LLFs, respectively. A variable letter
with an arrow above it stands for a sequence of LLFs corresponding to the reg-
ister of the variable (e.g.

#–

C is a sequence of LLFs). Let [] denote an empty
sequence. We assume that enp is a variable type that can be either np or e and
that vp abbreviates (np, s). Let (−, α) ∈ IA for any α ∈ A where the final (i.e.
the most right) atomic type of (−, α) is α; for instance (−, s) can be s, (np, s),
(vp, vp), etc. While writing terms we may omit their types if they are irrelevant
for discussions, but often the omitted types can be inferred from the context
the term occurs in. Tableau rules will be followed by the names that are the
current names of the rules in the natural tableau prover. The same rule names
with different subscripts mean that these rules are implemented in the prover
by a single rule with this name. For instance, both mod n tr1 and mod n tr2 are
implemented by a single rule mod n tr in the prover. Finally, we slightly change
the format of nodes of [12]; namely, we place an argument list and a sign on the
right side of a LLF – instead of Tci : man we write man : ci : T. We think that
the latter order is more natural.

4.1 Rules from [12]

Most rules of [12] are introduced in the prover. Some of them were changed
to more efficient versions. For example, the two rules deriving from format are
modified and introduced in the prover as pull arg, push arg1, and push arg2. These
versions of the rules have more narrow application ranges. Hereafter, we assume
that X can match both T and F signs.

λx. A : c C : X

(λx. A) c : C : X
pull arg

Ace : C : X

A : ce C : X
push arg1

Acnp : C : X

A : cnp C : X
A : ce C : X

push arg2

The Boolean rules and rules for monotonic operators and determiners
(namely, some, every, and no) are also implemented in the prover. It might be said
that these rules are one of the crucial ones for almost any entailment problem.
7 The Fracas test suite can be found at http://www-nlp.stanford.edu/∼wcmac/

downloads, and the SICK trial data at http://alt.qcri.org/semeval2014/task1/index.
php?id=data-and-tools.

http://www-nlp.stanford.edu/~wcmac/downloads
http://www-nlp.stanford.edu/~wcmac/downloads
http://alt.qcri.org/semeval2014/task1/index.php?id=data-and-tools
http://alt.qcri.org/semeval2014/task1/index.php?id=data-and-tools

Towards a Wide-Coverage Tableau Method for Natural Logic 73

4.2 Rules for Modifiers

One of the most frequently used set of rules is the rules for modifiers. These rules
inspire us to slightly change the format of tableau nodes by adding an extra slot
for memory on the left side of an LLF:

memorySet : LLF : argumentList : truthSign

An idea of using a memory set is to save modifiers that are not directly attached
to a head of the phrase. Once a LLF becomes the head without any modifiers, the
memory set is discharged and its elements are applied to the head. For example,
if we want to entail beautiful car from beautiful red car, then there should be a
way of obtaining (11) from (10) in a tableau. It is obvious how to produce (12)
from (10) in the tableau settings, but this is not the case for producing (11) from
(10), especially, when there are several modifiers for the head.

beautifuln,n(redn,ncarn) : ce : T (10)
beautifuln,ncarn : ce : T (11)

redn,ncarn : ce : T (12)

With the help of a memory set, beautifuln,n can be saved and retrieved back
when the bare head is found. Saving subsective adjectives in a memory is done
by mod n tr1 rule while retrieval is processed by mods noun1 rule. In Fig. 2a,
the closed tableau employs the latter rules in combination with int mod tr and
proves that (10) entails (11).8

if b is subsective:
M : bn,nA : ce : T

M∪{bn,n} : A : ce : T
mod n tr1

M∪{mn,n} : an : ce : T

mn,nan : ce : T
mods noun1

if b is intersective:
M : bn,nA : ce : T

M : A : ce : T
bet : ce : T

int mod tr
bn,nA : ce : F

A : ce : F A : ce : T
bet : ce : F

int mod fl

Hereafter, if a rule do not employ memory sets of antecedent nodes, then
we simply ignore the slots by omitting them from nodes. The same applies to
precedent nodes that contain an empty memory set. In rule int mod tr, a memory
of a premise node is copied to one of conclusion nodes while rule int mod fl
attaches empty memories to conclusion nodes, hence, they are omitted. The
convention about omitting memory sets is compatible with rules found in [12].

8 It is not true that mod n tr1 always gives correct conclusions for the constructions
similar to (10). In case of small beer glass the rule entails small glass that is not
always the case, but this can be avoided in the future by having more fine-grained
analysis of phrases (that beer glass is a compound noun), richer semantic knowledge
about concepts and more restricted version of the rule; currently rule mod n tr1 can
be considered as a default rule for analyzing this kind of constructions.

74 L. Abzianidze

1 beautifuln,n(redn,ncarn) : ce : T
2 beautifuln,ncarn : ce : F

3 {beautifuln,n} : redn,ncarn : ce : T

4 {beautifuln,n} : carn : ce : T
5 redet : ce : T

6 beautifuln,ncarn : ce : T
7 ×
(a)

1 todayvp,vp(slowlyvp,vpranvp) : johnnp : T
2 todayvp,vpranvp : johnnp : F

3 {todayvp,vp} : slowlyvp,vpranvp : johnnp : T

4 {todayvp,vp, slowlyvp,vp} : ranvp : johnnp : T

5 {slowlyvp,vp} : todayvp,vpranvp : johnnp : T
7 ×
(b)

Fig. 2. Tableaux that use rules for pulling and pushing modifiers in a memory: (a)
beautiful red car ⇒ beautiful car; (b) john ran slowly today ⇒ john ran today

M : Bvp,vpA : C : T

M∪{Bvp,vp} : A : C : T
mod push

M∪{Bvp,vp} : A : C : T

M : Bvp,vpA : C : T
mod pull

if p is a preposition:
M∪{pnp,vp,vp denp} : An : ce : T

peet de : ce : T
pnp,n,n denpAn : ce : T

mods noun2
M : pnp,n,n denp An : ce : T

M : An : ce : T
peet de : ce : T

pp mod n

The other rules that save a modifier or discharge it are mod push, mod pull
and mods noun2. They do this job for any LLF of type (vp, vp). For instance,
using these rules (in conjunction with other rules) it is possible to prove that
(13) entails (14); moreover, the tableau in Fig. 2b employs push mod and pull mod
rules and demonstrates how to capture an entailment about events with the help
of a memory set without introducing an event entity.

Yet another rules for modifiers are pp mod n, n pp mod and aux verb. If a
modifier of a noun is headed by a preposition like in the premise of (15), then
pp mod n rule can treat a modifier as an intersective one, and hence capture
entailment (15). In the case when a propositional phrase is a complement of
a noun, rule n pp mod treats the complement as an intersective property and
attaches the memory to the noun head. This rule with mod n tr1 and mods noun1
allows the entailment in (16).9

innp,vp,vpparisnp
(
λx.an,vp,stouristn(λy. isnp,vp ynp xnp)

)
johnnp (13)

innp,n,nparisnptouristnjohne (14)

9 Note that the phrase in (16) is wrongly analyzed by the CCG parser; the correct
analysis is fornp,n,nCnp(nobeln,nprizen). Moreover, entailments similar to (16) are
not always valid (e.g. shortn,n

(
manpp,n(innp,ppnetherlandsnp)

) �⇒ shortn,nmann).
Since the parser and our implemented filters, at this stage, are not able to give
correct analysis of noun complementation and post-nominal modification, we adopt
n pp mod as a default rule for these constructions.

Towards a Wide-Coverage Tableau Method for Natural Logic 75

innp,n,nparisnptouristnjohne ⇒ ineetparisejohne (15)

nobeln,n
(
prizepp,n(fornp,ppCnp)

) ⇒ nobeln,nprizen (16)

Problems in data sets rarely contain entailments involving the tense, and
hence aux verb is a rule that ignores auxiliary verbs and an infinitive particle to.
In Fig. 4, it is shown how aux verb applies to 4 and yields 5. The rule also acci-
dentally accounts for predicative adjectives since they are analyzed as bevp,vpPvp,
and when aux verb is applied to a copula-adjective construction, it discards the
copula. The rule can be modified in the future to account for tense and aspect.

M : dpp,nApp : ce : T

M : dn : ce : T
App : ce : T

n pp mod
M : b(−,s),(−,s)A : C : X

M : A : C : X
aux verb

where b ∈ {do,will,be, to}

4.3 Rules for the Copula be

The copula be is often considered as a semantically vacuous word and, at the
same time, it is sometimes a source of introduction of the equality relation in
logical forms. Taking into account how the equality complicates tableau systems
(e.g., a first-order logic tableau with the equality) and makes them inefficient, we
want to get rid of be in LLFs whenever it is possible. The first rule that ignores
the copula was already introduced in the previous subsection.

If pnp,pp is a preposition:
M : bepp,np,s (pnp,pp cenp) : denp : X

M : pnp,pp cenp : de : X
peet : ce de : X

be pp

The second rule that does the removal of the copula is be pp. It treats a
propositional phrase following the copula as a predicate, and, for example, allows
to capture the entailment in (17). Note that the rule is applicable with both truth
signs, and the constants c and d are of type e or np.

bepp,np,s(innp,pp parisnp) johnnp ⇒ innp,pp parisnp johne (17)

The other two rules a subj be and be a obj apply to NP-be-NP constructions
and introduce LLFs with a simpler structure. If we recall that quantifier terms
like an,vp,s and sn,vp,s are inserted in a CCG term as described in Sect. 3, then it
is clear that there are many quantifiers that can introduce a fresh constant; more
fresh constants usually mean a larger tableau and a greater choice in rule appli-
cation strategies, which as a result decrease chances of finding proofs. Therefore,
these two rules prevent tableaux from getting larger as they avoid introduction
of a fresh constant. In Fig. 3, the tableau uses be a obj rule as the first rule
application. This rule is also used for entailing (14) from (13).

76 L. Abzianidze

If a ∈ {a, the} and c �= there
M : an,vp,s Nn(be cenp) : [] : X

M : Nn : ce : X
a subj be

If a ∈ {a, s, the} and c �= there
M : an,vp,s Nn(λx.be xenp cenp) : [] : X

M : Nn : ce : X
be a obj

4.4 Rules for the Definite Determiner the

We have already presented several new rules in the previous section that apply
to certain constructions with the copula and the determiner the. Here we give
two more rules that are applicable to a wider range of LLFs containing the.

Since the definite determiner presupposes a unique referent inside a context,
rule the c requires two nodes to be in a tableau branch: the node with the
definite description and the node with the head noun of this definite description.
In case these nodes are found, the constant becomes the referent of the definite
description, and the verb phrase is applied to it. The rule avoids introduction
of a fresh constant. The same idea is behind rule the but it introduces a fresh
constant when no referent is found on the branch. The rule is similar to the one
for existential quantifier some of [12], except that the is applicable to false nodes
as well due to the presupposition attached to the semantics of the.

M : then,vp,s N V : [] : X
N : de : T

M : V : de : X
the c

M : then,vp,s N V : [] : X

N : ce : T
M : V : ce : X

the where ce is fresh

4.5 Rules for Passives

Textual entailment problems often contain passive paraphrases, therefore, from
the practical point of view it is important to have rules for passives too. Two rules
for passives correspond to two types the CCG parser can assign to a by-phrase:
either pp while being a complement of VP, or (vp, vp) – being a VP modifier.
Since these rules model paraphrasing, they are applicable to nodes with both
signs. In Fig. 4, nodes 6 and 7 are obtained by applying vp pass2 to 5.

M : Vpp,vp (bynp,ppCenp) : Denp : X

M : Vnp,vp : DenpCenp : X
vp pass1

M : bynp,vp,vpCenp Vvp : Denp : X

M : Vnp,vp : DenpCenp : X
vp pass2

4.6 Closure Rules

In general, closure rules identify or introduce an inconsistency in a tableau
branch, and they are sometimes considered as closure conditions on tableau
branches. Besides the revised version of the closure rule ⊥≤ found in [12], we
add three new closure rules to the inventory of rules.

Towards a Wide-Coverage Tableau Method for Natural Logic 77

1 then,vp,s (whovp,n,n dancevp mann) (λx.benp,vp xnp johnnp) : [] : T
2 an,vp,s (whovp,n,n movevp personn) (λx.benp,vp xnp therenp) : [] : F

3 whovp,n,n dancevp mann : johne : T

4 dancevp : johne : T
5 mann : johne : T

7 λx.benp,vp xnp therenp : johne : F

12 benp,vp johne therenp : [] : F
13 ×

6 whovp,n,n movevp personn : johne : F

9 personn : johne : F
11 ×

8 movevp : johne : F
10 ×

Fig. 3. A tableau for the man who dances is John ⇒ there is a person who moves. The
tableau employs be a obj rule to introduce 3 from 1. The first two branches are closed
by ⊥≤ taking into account that man ≤ person and dance ≤ move. The last branch
is closed by applying ⊥there to 12.

{} : benp,np,s c therenp : [] : F

×
⊥there

M1 : A : C : T
M2 : B : C : F

×
⊥≤ where A≤B, M2⊆M1

donp,vp : ce Denp : T
An : ce : T

{} : Avp : Denp : F

×
⊥do vp1

{} : donp,vp : ce Denp : F
An : ce : T

Avp : Denp : T

×
⊥do vp2

Rule ⊥there considers a predicate corresponding to there is as a universal
one. For example, in Fig. 3, you can find the rule in action (where be a obj rule
is also used). The rules ⊥do vp1 and ⊥do vp2 model a light verb construction.
See Fig. 4, where the tableau is closed by applying ⊥do vp1 to 6, 8 and 2.

The tableau rules presented in this section are the rules that are found nec-
essary for proving certain entailment problems in the development set. For the
complete picture, some rules are missing their counterparts for the false sign.
This is justified by two reasons: those missing rules are inefficient from the com-
putational point of view, and furthermore, they do not contribute to the prover’s
accuracy with respect to the development set. Although some rules are too spe-
cific and several ones seem too general (and in few cases unsound), at the moment
our main goal is to list the fast and, at the same time, useful rules for textual
entailments. The final analysis and organization of the inventory of rules will
be carried out later when most of these rules will be collected. It is worth men-
tioning that the current tableau prover employs more computationally efficient
versions of the rules of [12] and, in addition to it, admissible rules (unnecessary
from the completeness viewpoint) are also used since they significantly decrease
the size of tableau proofs.

78 L. Abzianidze

1 an,vp,s beautifuln,ndancen bevp,vp(bynp,vp,vpmarynpdovp) : [] : T
2 dancevpmarynp : [] : F

3 beautifuln,ndancen : ce : T
4 bevp,vp(bynp,vp,vpmarynpdovp) : ce : T

5 bynp,vp,vpmarynpdovp : ce : T

6 donp,vp : ce,marynp : T
7 donp,vp : ce, marye : T

8 {beautifuln,n} : dancen : ce : T
9 ×

Fig. 4. A tableau proof for a beautiful dance was done by Mary ⇒ Mary danced

5 Evaluation

In order to demonstrate the productivity of the current inventory of tableau
rules, we present the performance of the prover on the development set. As it
was already mentioned in Sect. 4, we employ the part of the SICK trial data (100
problems) and a half of the FraCaS data (173 problems) as the development set.
In these data sets, problems have one of three answers: entailment, contradiction,
and neutral. Many entailment problems contain sentences that are long but have
significant overlap in terms of constituents with other sentences. To prevent
the prover from analyzing the common chunks (that is often unnecessary for
finding the proof), we combine the prover with an optional simple aligner that
aligns LLFs before a proof procedure. The prover also considers only a single
LLF (i.e. semantic reading) for each sentence in a problem. Entailment relations
between lexical words are modeled by the hyponymy and hypernymy relations
of WordNet-3.0 [6]: term1 ≤ term2 holds if there is a sense of term1 that is a
hyponym of some sense of term2.

We evaluate the prover against the FraCaS development set (173 problems)
and the whole SICK trial data (500 problems). The confusion matrix of the per-
formance over the FraCaS development set is given in white columns of Table 1.
As it is shown the prover was able to prove 31 true entailment and 2 contradic-
tion problems. From all 173 problems, 18 problems are categorizes as defected
since LLFs of those problems were not obtained properly – either the parser
could not parse a sentence in a problem or it parsed the sentences but they
were not comparable as their CCG categories were different. If we ignore the
obvious errors from the parser by excluding the defected problems, the prover

Towards a Wide-Coverage Tableau Method for Natural Logic 79

Table 1. The confusion matrix of the prover’s performance on the FraCaS dev-set and
on the SICK trial data (with a gray background). Numbers in parentheses are the cases
when the prover was force terminated (after 200 rule applications).

Problem answer
Prover status

Proof No proof Defected input

Entailment 31 48 58 (6) 95 (18) 10 1
Contradiction 2 42 13 (0) 31 (1) 3 1
Neutral 1 2 50 (6) 277 (29) 5 3

1 everyn,vp,s(apcomn,nmanagern)(λy. sn,vp,s(companyn,ncarn)(λx.havenp,vp xnp ynp)) : [] : T
2 an,vp,s(apcomn,nmanagern)(λx.benp,vp xnp jonesnp) : [] : T
3 an,vp,s(companyn,ncarn)(λx.havenp,vp xnp jonesnp) : [] : F

4 apcomn,nmanagern : jonese : T

5 λy. sn,vp,s(companyn,ncarn)(λx.havenp,vp xnp ynp) : jonese : T
6 λy. sn,vp,s(companyn,ncarn)(λx.havenp,vp xnp ynp) : jonesnp : T

7 sn,vp,s(companyn,ncarn)(λx.havenp,vp xnp jonesnp) : [] : T

8 sn,vp,s(companyn,ncarn) : λx.havenp,vp xnp jonesnp : T
9 an,vp,s(companyn,ncarn) : λx.havenp,vp xnp jonesnp : F

10 sn,vp,s : companyn,ncarn, λx.havenp,vp xnp jonesnp : T
11 an,vp,s : companyn,ncarn, λx.havenp,vp xnp jonesnp : F

12 ×

Fig. 5. A tableau proof for FraCaS-103 problem: all APCOM managers have company
cars. Jones is an APCOM manager ⇒ Jones has a company car (Note that 4 was obtained
from 2 by be a obj, 5 and 6 from 1 and 4 by the efficient version of the rule for every
of [12], 7 from 6, 8 and 9 from 3 and 7 by the efficient version of the monotone rule of
[12], 10 and 11 from 8 and 9 in the same way as the previous nodes, and 12 from 10
and 11 by ⊥≤ and the fact that a ≤ s).

get the precision of .97 and the recall of .32. For this evaluation the prover is
limited by the number of rule applications; if it is not possible to close a tableau
after 200 rule applications, then the tableau is considered as open. For instance,
the prover reached the rule application limit and was forcibly terminated for
12 problems (see the numbers in parentheses in ‘No proof’ column). In Fig. 5,
it is shown a closed tableau found by the prover for the FraCaS problem with
multiple premises. The first three entries in the tableau exhibit the LLFs of the
sentences that were obtained by the LLF generator.

80 L. Abzianidze

The results over the FraCaS data set seem promising taking into account that
the set contains sentences with linguistic phenomena (such as anaphora, ellipsis,
comparatives, attitudes, etc.) that were not modeled by the tableau rules.10

The evaluation over the SICK trial data is given in gray columns of Table 1.
Despite exploring only a fifth portion of the SICK trial data, the prover showed
decent results on the data (see them in gray columns of Table 1). The evaluation
again shows the extremely high precision of .98 and the more improved recall
of .42 than in case of the FraCaS data. The alignment preprocessing drastically
decreases complexity of proof search for the problems of the SICK data since
usually there is a significant overlap between a premise and a conclusion. The
tableau proof in Fig. 6 demonstrates this fact, where treating shared complex
LLFs as a constant results in closing the tableau in three rule applications.

1 twon,vp,s personn be and watch the sunset stand in the oceanvp : [] : T
2 non,vp,s personn be and watch the sunset stand in the oceanvp : [] : T

3 personn : ce : T
4 be and watch the sunset stand in the oceanvp : ce : T

5 personn : ce : F
6 ×

Fig. 6. A tableau proof for SICK-6146 problem:two people are standing in the ocean
and watching the sunset ⊥ nobody is standing in the ocean and watching the sunset. The
tableau starts with T sign assigned to initial LLFs for proving the contradiction. The
proof introduces 5 from 2 and 4 using the efficient version of the rule for no of [12] and,
in this way, avoids branching of the tableau.

Table 2. The false positive problems

ID Answer Prover Problem (premises ⇒ hypothesis)

FraCaS-287 Neutral Entailment Smith wrote a report in two hours ⇒
Smith wrote a report in one hour

SICK-1400 Neutral Entailment A sad man is crying ⇒ A man is screaming

SICK-8461 Neutral Contradiction A man with no hat is sitting on the ground ⇒
A man with backwards hat is sitting on the ground

The problems that were classified as neutral but proved by the prover rep-
resent also the subject of interest (see Table 2). The first problem was proved
10 The FraCaS data contains entailment problems requiring deep semantic analysis and

it is rarely used for system evaluation. We are aware of a single case of evaluating
the system against this data; namely, the NatLog system [9] achieves quite high
accuracy on the data but only on problems with a single premise. The comparison
of our prover to it must await future research.

Towards a Wide-Coverage Tableau Method for Natural Logic 81

due to the poor treatment of cardinals by the prover – there is no distinction
between them. The second problem was identified as entailment since cry may
also have a meaning of shout. The last one was proved because the prover used
LLFs, where no hat and a backwards hat had the widest scopes.

6 Future Work

Our future plan is to continue enriching the inventory of tableau rules. Namely,
the SICK training data is not yet explored entirely, and we expect to collect sev-
eral (mainly syntax-driven) rules that are necessary for unfolding certain LLFs.
We also aim to further explore the FraCaS data and find the ways to accom-
modate in natural tableau settings semantic phenomena contained in plurals,
comparatives, anaphora, temporal adverbials, events and attitude verbs.

At this stage it is early to compare the current performance of the prover to
those of other entailment systems. The reason is that entailment systems usually
do not depend on a single classifier but the combination of several shallow (e.g.,
word overlap) or deep (e.g., using semantically relevant rules) classifiers. In the
future, we plan to make the prover more robust by combining it with a shallow
classifier or by adding default rules (not necessarily sound) that are relevant for
a development data set, and then compare it with other entailment systems.
We also intend to employ other parsers for improving the LLF generator and
knowledge bases for enriching the lexical knowledge of the prover.

Acknowledgements. I would like to thank Reinhard Muskens for his discussions and
continuous feedback on this work. I also thank Matthew Honnibal, James R. Curran
and Johan Bos for sharing the retrained CCG parser and anonymous reviewers of
LENLS11 for their valuable comments. The research is part of the project “Towards
Logics that Model Natural Reasoning” and supported by the NWO grant (project
number 360-80-050).

References

1. Bos, J., Clark, S., Steedman, M., Curran, J.R., Hockenmaier, J.: Wide-coverage
semantic representations from a CCG parser. In: Proceedings of the 20th Interna-
tional Conference on Computational Linguistics (COLING 2004), pp. 1240–1246
(2004)

2. Bos, J.: Towards a large-scale formal semantic lexicon for text processing. from
form to meaning: processing texts automatically. In: Proceedings of the Biennal
GSCL Conference, pp. 3–14 (2009)

3. Champollioni, L.: Quantification and negation in event semantics. In: Baltic Inter-
national Yearbook of Cognition, Logic and Communication, vol. 6 (2010)

4. Clark, S., Curran, J.R.: Wide-coverage efficient statistical parsing with CCG and
log-linear models. Comput. Linguist. 33(4), 493–552 (2007)

5. Cooper, R., Crouch, D., van Eijck, J., Fox, C., van Genabith, J., Jaspars, J.,
Kamp, H., Milward, D., Pinkal, M., Poesio, M., Pulman, S.: Using the framework.
Technical Report LRE 62–051 D-16. The FraCaS Consortium (1996)

82 L. Abzianidze

6. Fellbaum, Ch. (ed.): WordNet: An Electronic Lexical Database. MIT press,
Cambridge (1998)

7. de Groote, Ph.: Towards abstract categorial grammars. In: Proceedings of the
Conference on ACL 39th Annual Meeting and 10th Conference of the European
Chapter, pp. 148–155 (2001)

8. Honnibal, M., Curran, J.R., Bos, J.: Rebanking CCGbank for improved NP inter-
pretation. In: Proceedings of the 48th Meeting of the Association for Computa-
tional Linguistics (ACL), pp. 207–215 (2010)

9. MacCartney, B., Manning, C.D.: Modeling semantic containment and exclusion in
natural language inference. In: Proceedings of Coling-2008, Manchester, UK (2008)

10. Marelli, M., et al.: A sick cure for the evaluation of compositional distributional
semantic models. In Proceedings of LREC, Reykjavik (2014)

11. Muskens, R.: Language, lambdas, and logic. In: Kruijff, G., Oehrle, R. (eds.)
Resource-Sensitivity, Binding and Anaphora. Studies in Linguistics and Philos-
ophy, vol. 80, pp. 23–54. Springer, Heidelberg (2003)

12. Muskens, R.: An analytic tableau system for natural logic. In: Aloni, M.,
Bastiaanse, H., de Jager, T., Schulz, K. (eds.) Logic, Language and Meaning.
LNCS, vol. 6042, pp. 104–113. Springer, Heidelberg (2010)

13. Steedman, M., Baldridge, J.: Combinatory Categorial Grammar. In: Borsley, R.D.,
Borjars, K. (eds.) pp. 181–224. Blackwell Publishing (2011)

14. Winter, Y., Zwarts, J.: Event semantics and abstract categorial grammar. In:
Kanazawa, M., Kornai, A., Kracht, M., Seki, H. (eds.) MOL 12. LNCS, vol. 6878,
pp. 174–191. Springer, Heidelberg (2011)

	Towards a Wide-Coverage Tableau Method for Natural Logic
	1 Introduction
	2 Lambda Logical Forms
	3 Obtaining LLFs from CCG Trees
	4 An Inventory of Natural Tableau Rules
	4.1 Rules from [12]
	4.2 Rules for Modifiers
	4.3 Rules for the Copula be
	4.4 Rules for the Definite Determiner the
	4.5 Rules for Passives
	4.6 Closure Rules

	5 Evaluation
	6 Future Work
	References

