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Abstract. There is a strong context dependency in meaning of modal-
ities in natural languages. Kratzer [9] demonstrates how to deal with
this problem within possible world semantics. In this paper, we propose
to interpret epistemic modalities in background of an epistemic state.
Our analysis is a meta-linguistic one and we extensively use the proof-
theoretic consequence relation. We define, then, a belief structure and
introduce a belief structure revision operator. We call this framework
Logic of Belief Structures (LBS). Then, we apply LBS to formalization
of belief revision and interpretation of conditionals and investigate the
relationship between belief revision and conditionals. Furthermore, we
propose two types of conditionals, epistemic and causal conditionals.

Keywords: Conditionals · Epistemic modality · Belief structure · Belief
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1 Logic for Epistemic Modalities

According to von Fintel [2], we can distinguish six kinds of modal meaning. They
are alethic, epistemic, deontic, bouletic, circumstantial, and teleological modality.
He characterized epistemic modality as the modality that is based on epistemic
state:

(1a) [Epistemic modality] Epistemic modality concerns what is possible or nec-
essary, given what is known and what the available evidence is.

(1b) [Example for epistemic modality] It has to be raining. [After observing
people coming inside with wet umbrellas.]

Kratzer [9, pp. 4–6] proposes to explain the varieties of modalities in terms
of the distinction of views. According to Kratzer, the core meaning of must can
be interpreted as must in view of. This must in view of takes two arguments,
namely modal restriction and modal scope. Then, we have the following schema
for modal sentences:

must in view of (modal restriction, modal scope).
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To demonstrate how to use this schema, let us take an example for epistemic
modality:

(2a) [Example for epistemic modality] The ancestors of the Maoris must have
arrived from Tahiti.

(2b) [must-in-view-of Interpretation] In view of what is known, the ancestors of
the Maoris must have arrived from Tahiti.

(2c) [Application of Kratzer’s schema] must in view of (what is known, the
ancestors of the Maoris arrived from Tahiti).

Kratzer [9, pp. 10–11] defines a possible world semantics for must in view of ;
her definition is restricted to propositional logic.

Definition 1. (3a) A proposition p is true in a world w in W iff w ∈ p.
(3b) The meaning of must in view of is a function ν that satisfies the following

conditions:
1. The domain of ν is the set of all pairs 〈p, f〉 such that p ∈ P (W ) and f is

a function from W to P (P (W )).
2. For any p and f such that 〈p, f〉 is in the domain of ν: ν(p, f) = {w ∈

W :
⋂

f(w) ⊆ p}.
The modal scope denotes a proposition p and the modal restriction denotes

an individual concept f . The meaning of must in view of is a function that maps
pairs consisting of a proposition and a function of the same type as f to another
proposition. When we apply (3b) to (2a), (2a) is true in those worlds w such
that it follows from what is known in w that the ancestors of the Maoris arrived
from Tahiti.

Recently, I proposed a formal framework in which the epistemic and the
deontic modality are relativized by an accepted epistemic and a deontic theory
[13–15]. The framework is called Logic for Normative Systems (LNS). In this
paper, we concentrate on the epistemic part of LNS and show that Krazer’s
view can be rewritten within our framework.

Logic for Epistemic Modalities (LEM) is a framework expressed in a meta-
language of First-order Logic (FOL). We define LEM-sentences as follows:

Definition 2. (4a) All FO-sentences (i.e., sentences in FOL) are LEM-
sentences.

(4b) If p is a FO-sentence and T is a set of FO-sentences, then MUSTT p,
MIGHTT p, KNOWNT p, and BELinf

T p are LEM-sentences. In this paper,
we use small letters p, q, ... to denote FO-sentences.

(4c) If φ and ψ are LEM-sentences, then not φ, φ&ψ, φ or ψ, φ ⇒ ψ, and
φ ⇔ ψ are LEM-sentences, where logical connectives, not, &, or, ⇒, and ⇔
belong to the meta-language.

(4d) If φ is a LEM-sentence, then φ satisfies (4a) or (4b) or (4c).

Definition 2 indicates that no iteration of modal operators is allowed in LEM.
The meaning of epistemic modalities is defined as follows.



Formal Analysis of Epistemic Modalities and Conditionals Based on Logic 39

Definition 3. Let T be a set of FO-sentences and p be a FO-sentence. We
use cons(T ) as an abbreviation of 〈T is consistent〉. We call T in the following
definitions 〈belief base〉. A belief base represents what is explicitly believed.

(5a) MUSTT p iff (T � p & cons(T )).
(5b) MIGHTT p iff cons(T ∪ {p}).
(5c) [Knowledge as Explicit Belief ] KNOWNT p iff (p ∈ T & cons(T )).
(5d) [Inferential Belief ] BELinf

T p iff (MUSTT p & not KNOWNT p).
(5e) mod(T ) = {M : M |= T}.

Explicit belief and inferential belief play an important role for analysis of
epistemic modalities (see Sect. 2). The semantics of LEM can be given in the
same way as for FO-sentences.

To demonstrate the relationship to Krazer’s approach, we introduce the fol-
lowing notations.

Definition 4. Let T be a set of PL-formulas and p be a PL-formula. Let W be
a set of possible worlds.

(6a) vW is a function from PL-formulas to P (W ).
(6b) vs

W (T ) =
⋂{vW (p) : p ∈ T}.

(6c) W is a maximal set of worlds iff for any consistent set T of PL-formulas
there is w such that w ∈ W & w ∈ vs

W (T ).

Now, from Definitions 3 and 4, Propositions 5 and 6 immediately follow.

Proposition 5. Let T be a set of FO-sentences and p be a FO-sentence.

(7a) MUSTT p ⇒ MIGHTT p.
(7b) MUSTT (p → q) ⇒ (MUSTT p ⇒ MUSTT q).
(7c) (T1 ⊆ T2 & MIGHTT2(p → p)) ⇒ (MUSTT1 p ⇒ MUSTT2 p).1

(7d) (T1 ⊆ T2 ⇒ (MIGHTT2 p ⇒ MIGHTT1 p).
(7e) KNOWNT p ⇒ MUSTT p.
(7f) cons(T ) ⇒ (KNOWNT p ⇔ p ∈ T ).
(7g) BELinf

T p ⇒ p /∈ T .
(7h) MUSTT p iff (mod(T ) ⊆ mod({p}) & mod(T ) �= ∅).
(7i) MIGHTT p iff mod(T ∪ {p}) �= ∅.
Proposition 6. Let T be a set of PL-formulas and p be a PL-formula. Let W
be a maximal set of worlds.

(8a) MUSTT p iff (vs
W (T ) ⊆ vW (p) & vs

W (T ) �= ∅).
(8b) MIGHTT p iff vs

W (T ∪ {p}) �= ∅.
In LEM, Krazer’s modal restriction can be imitated by the restriction given

by a belief base. We interpret, then, the modality not as a relation but as an
operator restricted by a belief base: [must in view of (T )] (proposition).

Now, let us reconsider Krazer’s example (2a). We interpret it as (2d).
1 Because (p → p) is a FOL-theorem, it holds: MIGHTT2(p → p) iff T2 is consistent.
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(2c) [Application of Kratzer’s schema] must in view of (what is known, the ances-
tors of the Maoris arrived from Tahiti).

(2d) MUSTT tr(the ancestors of the Maoris arrived from Tahiti).2

Thus, we are justified to say that theory T in MUSTT expresses the view of
what is known. In this context, MUSTT can be understood as must in view of
what is known.

2 Evidential Aspects of Epistemic Modalities

The interpretation of must as must in view of what is known, proposed in the previ-
ous section, is still inappropriate as an interpretation of epistemic must, because it
ignores evidential aspects of epistemic must. According to von Fintel and Gilles [3,
p. 357], epistemic must presupposes the presence of indirect inference rather than
a direct observation. Karttunen [7] observed problems connected with the tradi-
tional interpretation of epistemic must. When one considers which of the answers
to the question (9a) conveys more confidence, it is natural to feel that epistemic
modal sentence (9c) is less forceful than simple sentence (9b).

(9a) Where are the keys?
(9b) They are in the kitchen drawer.
(9c) They must be in the kitchen drawer.

According to Karttunen [7], modal semantics predicts that (9c) is a stronger
answer to the question than (9b), but our intuition goes the other way. To
respect this intuition, we propose to analyze (9b) as (9d) and (9c) as (9e). Here,
we presuppose that belief base T9b represents what is known by the speaker of
(9b) and that belief base T9c represents what is known by the speaker of (9c).
Let pkeys = tr(The keys are in the kitchen drawer).

(9d) Felicitous condition: KNOWNT9b pkeys; Claim: pkeys.
(9e) Felicitous condition: BELinf

T9c
pkeys; Claim: MUSTT9c pkeys.

It will be appropriate to interpret the situation described by (9a) ∼ (9c) as
follows: Sentence (9b) is uttered by a person who is convinced that pkeys, while
sentence (9c) is uttered by a person who has evidences for pkeys and accepts
this proposition based on these evidences. According to our interpretation, (9b)
is stronger than (9c) in the sense that the felicitous condition for (9b) implies
〈must (9b)〉.3

The bearer of T9b knows that pkeys, while the bearer of T9c does not know
that pkeys and his belief of pkeys is supported by his inference based on his
evidences.4 Our interpretation fully supports the following observation of von
Fintel and Gillies [3, p. 354]:
2 Here, function tr is the translation function from English sentences to FO-sentences.
3 Note that it holds: KNOWNT9b pkeys ⇒ MUSTT9b pkeys. See (7e).
4 Note that our interpretation agrees with Willet’s taxonomy of evidential categories

[16]. Willet interpret epistemic modalities as makers of indirect inference [3, p. 354].
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epistemic modals are also evidential markers: they signal that the preja-
cent was reached through an inference rather than on the basis of direct
observation or trustworthy reports.

What does this signaling means? We propose to interpret it as a felicitous
condition (abbreviated as FC). This is described in Table 1.

S’s utterance of p is felicitous iff S believes that S knows p.
S’s utterance of Must p is felicitous iff S accepts p based on an indirect
inference.

von Fintel and Gillies argue for the thesis that epistemic modalities signal not
weakness but indirect inference. This observation agrees with our interpretation
of epistemic modalities (See Table 1).

Table 1. Interpretation of simple sentences and epistemic modalities

Claim FC Formal representation of FC

Simple sentence p KNOWNT1 p p ∈ T1 & cons(T1)

Epistemic must MUSTT2 p BELinf
T2

p p /∈ T2 & T2 � p & cons(T2)

Let us consider some additional examples from von Fintel and Gillies [3,
p. 372]:

(9f) Seeing the pouring rain, Billy says: It’s raining.
(9g) Seeing people coming inside with wet umbrellas, Billy says: It must be

raining.

We assume that prain = tr(it is raining) and pumbrellas = tr(people coming
inside have wet umbrellas). Because of (9f) and (9g), it holds: prain ∈ T9f &
pumbrellas ∈ T9g & prain /∈ T9g. In this case, the situation can be described as
Table 2.

Table 2. Examples for simple sentences and epistemic modalities

Claim FC

Simple sentence prain KNOWNT9f prain

Epistemic must MUSTT9g prain BELinf
T9g

prain

We see that both (9f) and (9g) are appropriate, because felicitous conditions
for both cases are satisfied in these situations.

As von Fintel and Gillies [3] discuss, there are several semantic approaches for
epistemic modalities. Our approach is proof-theoretic and very straightforward.
It is directly based on the following observation: Epistemic modalities are used
in a situation in which the speaker has no direct but only indirect evidences for
the prejacent.
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3 Logic of Belief Structures

To describe semantics for conditionals, we propose to represent an epistemic
state by a belief structure, which is a linearly ordered set of consistent sets
of FO-sentences. In this section, we define a logical framework for such belief
structures and call it Logic of Belief Structures (LBS).

Definition 7. (10a) [Belief structure BS] BS = 〈ST,>〉 is a belief structure,
when the following three conditions are satisfied:
1. ST = {Ti : 1 ≤ i ≤ n & Ti is a consistent set of FO-sentences},
2. > is a total order on ST and T1 > ... > Tn, and
3. for all Ti ∈ ST and Tj ∈ ST , Ti ∩ Tj = ∅.

(10b) [k first fragment of BS] top(BS, k) =
⋃{Ti : 1 ≤ i ≤ k and Ti ∈ ST}.

In other words, k first fragment of BS is the union of the first k elements
of BS. We can also define top(BS, k) recursively as follows:
1. top(BS, 1) = T1.
2. top(BS, k) = top(BS, k − 1) ∪ Tk.

(10c) [Consistent maximum of BS] top(BS, k) is the consistent maximum of
BS (abbreviated as cons-max(BS)) iff (cons(top(BS, k)) & not cons(top(BS,
k + 1))). We call k the consistent maximum number of BS (abbreviated as
cmn(BS)), when top(BS, k) = cons-max(BS).

(10d) [Deductive closure] Cn(T ) = {p : T � p}.
(10e) [Belief set for BS] We call Cn(cons-max(BS)) the belief set for BS.

Based on Definition 7, we can define some modal operators and some notions
related to sphere systems.

Definition 8. Let BS = 〈ST,>〉 be a belief structure with T1 > ... > Tn. Let p
and q be FO-sentences.

(11a) MUST ∗
BS p iff MUSTcons-max(BS) p.

(11b) MIGHT ∗
BS p iff MIGHTcons-max(BS) p.

(11c) [Probability Order] MORE-PROBABLEBS(p, q) iff (there are Ti ∈ ST
and Tj ∈ ST such that (p ∈ Ti & q ∈ Tj & Ti > Tj).

(11d) PROBABLYBS p iff (MIGHT ∗
BS p & not MUST ∗

BS p & p ∈ top(BS, n)
& (¬p ∈ top(BS, n) ⇒ MORE-PROBABLEBS(p,¬p))).

(11e) MUST-min(BS, k, p) iff (MUSTtop(BS,k) p & not MUSTtop(BS,k−1) p).
(11f) p �BS q iff there are k and m such that (k ≤ m ≤ cmn(BS) & MUST-

min(BS, k, p) & MUST-min(BS,m, q)).
(11g) p ≈BS q iff (p �BS q & q �BS p).
(11h) p ≺BS q iff (p �BS q & not (p ≈BS q)).
(11i) [Sphere Model System]

SMSBS is a sphere model system for BS iff
1. SMSBS = {Scmn(BS), ..., S1}, and
2. Sk = mod(top(BS, k)) for k with 1 ≤ k ≤ cmn(BS).

(11j) [Sphere System] Let W be a maximal set of worlds. Let ST be a set of
PL-formulas.
SSBS is a sphere system for BS iff
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1. SSBS = {Scmn(BS), ..., S1}, and
2. Sk = vs

W (top(BS, k)) for k with 1 ≤ k ≤ cmn(BS).5

p �BS q is read as 〈Based on BS, it is at least as possible that p as it is that
q〉. p ≈BS q is read as 〈Based on BS, it is equally possible that p and that q〉.
p ≺BS q is read as 〈Based on BS, it is more possible that p than that q〉.6 From
the view of belief change, we may read p ≺BS q as 〈In BS, p is more entrenched
than q〉. Based on Definition 8, Propositions 9 and 10 can be easily shown.

Proposition 9. Let BS be a belief structure with T1 > ... > Tn. Let Tk (1 ≤
k ≤ n) be a set of FO-sentences.

(12a) k ≤ m ≤ n ⇒ top(BS, k) ⊆ top(BS,m).
(12b) k ≤ m ≤ cmn(BS) ⇒ Cn(top(BS, k)) ⊆ Cn(top(BS,m)).
(12c) k ≤ m ≤ cmn(BS) ⇒ mod(top(BS,m)) ⊆ mod(top(BS, k)).
(12d) If SMSBS is a sphere model system for BS, then SMSBS satisfies the

following four requirements:
1. SMSBS is centered on Scmn(BS), i.e., for all Sk ∈ SMSBS, Scmn(BS) ⊆

Sk.
2. SMSBS is nested, i.e., for all Si, Sj ∈ SMSBS, (Si ⊆ Sj or Sj ⊆ Si).
3. SMSBS is closed under unions, i.e., X ⊆ SMSBS ⇒ ⋃

X ∈ SMSBS.
4. SMSBS is closed under (nonempty) intersections, i.e., (X ⊆ SMSBS &

X �= ∅) ⇒ ⋂
X ∈ SMSBS.

Proof. (12a) follows from (10b). (12b) follows from (10d) and (12a). (12c) follows
from (5e) and (12a). (12d) 1, 2, 3, and 4 follow from (11i) and (12c). Q.E.D.

Proposition 10. Let Tk (1 ≤ k) be a set of PL-formulas and W be a maximal
set of worlds. Let BS be a belief structure.

(13a) k ≤ m ≤ cmn(BS) ⇒ vs
W (top(BS,m)) ⊆ vs

W (top(BS, k)).
(13b) If SSBS is a sphere system for BS, then SSBS is centered on Scmn(BS),

nested, closed under unions, and closed under (nonempty) intersections.

Proof. (13a) follows from (6b) and (12a). (13b) follows from (11j) and (13a).
Q.E.D.

Lewis defined a sphere system in [11, p. 14]. (12d) shows that only the first
characterization is different from his definition. Lewis required that a sphere
system is centered on a singleton {w0}, where the intended reference of w0 is the
actual world. Our interpretation of the center of a sphere system is epistemic.
The center, Scmn(BS), denotes the set of worlds (or the set of models) in which
all of what are consistently believed are true.

5 According to definition of vsW , vsW (top(BS, k)) = {w ∈ W : all formulas in top(BS, k)
are true in w}.

6 These orders are a modification of comparative possibility in Lewis [11, p. 52].
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Proposition 11. Let BS be a belief structure.

(14a) �BS is transitive.7

(14b) ≈BS is symmetric and transitive.8

(14c) PROBABLYBS p ⇒ (MIGHT ∗
BS p & not MUST ∗

BS p).

Proof. To show (14a), suppose that p �BS q & q �BS r. Then from (11f), there
are k, l,m such that (k ≤ l ≤ m ≤ cmn(BS) & MUST-min(BS, k, p) & MUST-
min(BS, l, q) & MUST-min(BS,m, r)). Thus, from (11f), p �BS r. Therefore,
transitivity holds for �BS . (14b) follows from (11g) and (14a). (14c) follows from
(11d). Q.E.D.

4 Belief Revision Based on Logic of Belief Structures

We can divide a belief structure BS into two parts, namely the consistent
part, top(BS, k) with k ≤ cmn(BS), and the inconsistent part, top(BS, k) with
cmn(BS) < k ≤ n. Now, let us define the belief structure revision and expansion.

Definition 12. Let H be a consistent set of FO-sentences. Let BS be a belief
structure with T1 > ... > Tn.

(15a) We define ext(H,BS) as the belief structure with H > T1 > ... > Tn. In
other words, the extended belief structure of BS by H is the belief structure
that can be obtained from BS by adding H as the most reliable element.

(15b) [Belief structure revision] bsR(BS,H) = Cn(cons-max(ext(H,BS))).
(15c) [Belief structure expansion] bsEX(BS,H) = Cn(cons-max(BS) ∪ H).

We can show that our revision operator bsR satisfies all of postulates for the
belief revision operator ∗ in AGM-theory, if H = {p} and p is a consistent FO-
sentence.9 Because the AGM-theory is a theory for propositional representation
and our revision operator is defined for FO-sentences, our approach is broader
than the AGM approach. The AGM postulates for belief revision can be defined
as described in [6].

Definition 13. Let p and q be PL-formulas and K be a set of PL-formulas. Let
K + p = Cn(K ∪ p).

(16a) [Closure] K∗p = Cn(K∗p).
(16b) [Success] p ∈ K∗p.
(16c) [Inclusion] K∗p ⊆ K + p.
(16d) [Vacuity] If ¬p /∈ K, then K∗p = K + p.
(16e) [Consistency] K∗p is consistent if p is consistent.
(16f) [Extensionality] If p and q are logically equivalent, then K∗p = K∗q.

7 In domain cons-max(BS), �BS is also reflexive and connected.
8 In domain cons-max(BS), ≈BS is also reflexive. Thus, in cons-max(BS), ≈BS is an

equivalence relation.
9 For AGM-theory, consult Gärdenfors [4, Sect. 3.3] and Hansson [6].
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(16g) [Superexpansion] K∗(p ∧ q) ⊆ (K∗p) + q.
(16h) [Subexpansion] If ¬q /∈ K∗p, then (K∗p) + q ⊆ K∗(p ∧ q).

The following theorem shows that belief structure revision operator bsR satis-
fies all of the AGM postulates with the restriction that the revising FO-sentence
is consistent.

Theorem 14. Let p, q, and p ∧ q be consistent FO-sentences.

(17a) [Closure] bsR(BS, {p}) is a belief set.
(17b) [Success] p ∈ bsR(BS, {p}).
(17c) [Inclusion] bsR(BS, {p}) ⊆ bsEX(BS, {p}).
(17d) [Vacuity] ¬p /∈ Cn(cons-max(BS)) ⇒ bsR(BS, {p}) = bsEX(BS, {p}).
(17e) [Consistency] bsR(BS, {p}) is consistent.
(17f) [Extensionality] If p and q are logically equivalent, then bsR(BS, {p}) =

bsR(BS, {q}).
(17g) [Superexpansion] bsR(BS, {p ∧ q}) ⊆ bsEX(bsR(BS, {p}), {q}).
(17h) [Subexpansion] ¬q /∈ bsR(BS, {p}) ⇒

bsEX(bsR(BS, {p}), {q}) ⊆ bsR(BS, {p ∧ q}).

Proof. We assume that p, q and p ∧ q are consistent FO-sentences. Then,
(17a) holds because of (15a), (15b), and Definition 7. Because {p} is consis-
tent, (17b) follows from Definitions 7 and 12. From Definitions 7 and 12 fol-
lows: cons-max (ext(H,BS)) ⊆ cons-max (BS) ∪ H. Then, (17c) holds because
of Definition 12. To show (17d), suppose ¬p /∈ Cn(cons-max (BS)). Then, cons-
max (BS)∪{p} is consistent. Thus, cons-max (ext({p}, BS)) = cons-max (BS)∪
{p}. Hence, (17d) holds based on Definition 12. (17e) holds because of (15b).
(17f) holds based on (15b) and inference rules of FOL. To show (17g), we assume:
k = cmn(ext({p ∧ q}, BS)) − 1 and m = cmn(ext({p}, BS)) − 1. Then, from
Definitions 7 and 12: top(BS, k) ⊆ top(BS,m). In FOL, it holds: T1 ⊆ T2 ⇒
Cn(Cn(T1 ∪{p∧q})∪{q}) ⊆ Cn(Cn(T2 ∪{p})∪{q}). Because Cn(Cn(T1 ∪{p∧
q})∪{q}) = Cn(T1∪{p∧q}), (17g) holds based on Definition 12. To show (17h),
we assume ¬q /∈ bsR(BS, {p}). In FOL, we can prove: If T ∪ {p} � ¬q, then
[cons(T ∪ {p}) iff cons(T ∪ {p ∧ q})]. Thus, bsR(BS, {p}) = bsR(BS, {p ∧ q}).
Therefore, (bsR(BS, {p})∪{q}) = (bsR(BS, {p∧ q})∪{q}). However, because q
follows from p ∧ q, Cn(bsR(BS, {p ∧ q}) ∪ {q}) = bsR(BS, {p ∧ q}). From these:
bsEX(bsR(BS, {p}), {q}) = bsR(BS, {p ∧ q}). Thus, (17h) holds. Q.E.D.

AGM-theory is a standard framework for belief revision. Thus, Theorem
14 suggests the adequacy of our definition of belief structure revision. In fact,
our approach provides a useful tool for belief revision, because it only requires
a linearly order sets of FO-sentences. The original AGM requirements for the
entrenchment relation are rather unnatural and difficult to use.10

10 However, AGM-theory has a nice correspondence with the probability theory [4,
Chap. 5]. Our approach is difficult to relate with a probability theory.
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5 Conditionals and Belief Revision

Our analysis of conditionals in this paper is based on Ramsey Test [4, p. 147]:

[RT] Accept the sentence of the form 〈If A, then C〉 in a state of belief K
if and only if the minimal change of K needed to accept A also requires
accepting C.

This idea can be roughly expressed as follows: 〈If A, then C〉 is acceptable
with respect to K iff minimal-change(K,A) implies C.

This idea can be combined with Kratzer’s approach to counterfactual condi-
tionals. Kratzer [9, p. 64] suggests that there are (at least) three forms of condi-
tionals: (If ...), (necessarily/possibly/probably). According to this observation,
we have two types of operators in counterfactual conditionals (If p, Modal q).
The operator If characterizes the considered situation, and the operator Modal
makes a modal statement. The antecedent [If p] brings us to imagine a situation
in which p is true, where the situation is described by T . Then, we consider
whether the modal claim in the consequence [MODALT q] holds in the imag-
ined situation. Based on this idea, we propose to interpret If -operator as a belief
structure revision operator and p as the revising consistent FO-sentence.

Definition 15. Let BS be a belief structure and H be a consistent set of
FO-sentences. Let Modal ∈ {Must, Might, Known} and MODAL ∈ {MUST,
MIGHT, KNOWN}.
(18a) IFBS(H) = cons-max(ext(H,BS)).
(18b) [IfBSp](Modal q) iff

(not cons(top(BS, 1) ∪ {p}) or (T = IFBS({p}) & MODALT q)).
(18c) [IfBSp](Probably q) iff

(not cons(top(BS, 1) ∪ {p}) or PROBABLYext({p},BS) q).

From Definition (18b) follows: If cons(top(BS, 1)∪{p}), then [If BS p](Must
q) holds iff the minimal change of cons-max (BS) needed to accept p also requires
accepting q. This formulation roughly corresponds to [RT]. Based on Defini-
tion 15, we can prove Proposition 16.

Proposition 16. Let BS be a belief structure and H be a consistent set of FO-
sentences.

(19a) bsR(BS,H) = Cn(IFBS(H)).
(19b) [IfBS p](Must q) iff (IFBS({p}) = {p} or q ∈ bsR(BS, {p})).
(19c) MIGHTcons−max(BS) p ⇒

([IfBS p](Must q) ⇒ MUST cons−max(BS) (p → q)).
(19d) [IfBS p](Must q) ⇒

(mod(top(BS, 1) ∪ {p}) = ∅ or mod(IFBS({p})) ⊆ mod({q})).
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Proof. (19a) follows from (15b) and (18a). (19b) follows from (18a), (18b), and
(19a). To show (19c), suppose that MIGHTcons-max(BS) p holds. Then, because
of (5b), cons-max (BS) ∪ {p} is consistent. Thus, according to (15a) and (18a),
IFBS({p}) = cons-max (ext({p}, BS) = cons-max (BS)∪{p}. Now, suppose that
[IfBS p](Must q) holds. Then, from (18b), MUSTcons-max(ext({p},BS)) q. Thus,
MUSTcons-max(BS)∪{p} q. Then, because of (5a) and the deduction theorem of
FOL, MUSTcons-max(BS) (p → q) holds. Hence, (19c) holds. (19d) follows from
(7h) and (18b). Q.E.D.

(19a) and (19b) show that our definition of counterfactual conditional is
based on the belief structure revision. According to (19c), a material condi-
tional follows from a counterfactual conditional, when no change is required to
accept its antecedent. (19d) expresses the idea that the antecedent of a coun-
terfactual conditional determines the range of models in which the consequent
is evaluated.

Let us apply LBS to an example from Kratzer [9, p. 94].

(20a) If a wolf entered the house, he must have eaten grandma, since she was
bedridden. He might have eaten the girl with the red cap, too. In fact, that’s
rather likely. The poor little thing wouldn’t have been able to defend herself.

We assume that there are appropriate translations of sentences in (16a) into
FO-sentences:

p: tr(a wolf entered the house).
q: tr(the wolf ate grandma).
r: tr(the grandma was bedridden).
s: tr(the wolf ate the girl with the red cap).
t: tr(the girl was not able to defend herself).

Now, we can express story (20a) within LBS as follows:

(20b) [IfBS p](Must q) & ([IfBS p](Known r) & not MUST {p} r) & [IfBS p]
((Might s) & (Probably s) & (Must t)).

Here, ([IfBS p](Known r) & not MUST{p} r) expresses that r belongs to the
part of BS that is kept in its consistent maximum after acceptance of p and that
r is independent from p. When we assume cons(top(BS, 1) ∪ {p}), from (20b)
follows (20c).

(20c) T = IFBS({p}) & MUSTT q & (KNOWNT r & not MUST {p} r) &
MIGHTT s & PROBABLYext({p},BS) s & MUSTT t.

(20c) roughly means the following: (Suppose p. Then, (it must be q, because
it is known that r & it might be s & it is probable that s & it must be t)).
As Kratzer [9, p. 94] points out, the if-clause determines the evaluation range of
modal operators in long stretches of subsequent discourse.11.
11 For interpretation of (20a), it would be more appropriate to deal with anaphoric

relation. This can be done by using Skolem-symbols [12,15].
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6 Interpretation of Conditionals

In this section, we examine the relationship between our interpretation of con-
ditionals and the standard interpretation. Lewis [11, p. 1] explains the standard
interpretation as follows [8, p. 428]:

A possible world in which the antecedent of a counterfactual is true is
called an “antecedent-world.” One can state the theory (in a somewhat
simplified form) by saying that a counterfactual is true just in case its
consequent is true in those antecedent-worlds that are most similar to
the actual world.

Based on this idea, Lewis [11, p. 16] defines the truth condition for a counter-
factual conditional as follows:12

[LEWIS] p �→ q is true at a world i (according to a system of spheres
SS) iff either

1. no p-world belongs to any sphere S in SSi, or
2. some sphere S in SSi does contain at least one p-world, and p → q

holds at every world in S.

Now, we examine the relationship between our interpretation and Lewis’s
standard interpretation. Actually, it turns out that our interpretation is very
similar to [LEWIS]. The main difference lies in the notion of center of a sphere
system, namely Lewis accepts only a singleton as the center. We can prove a
proposition that is very close to [LEWIS].

Proposition 17. Let BS be a belief structure with T1 > . . . > Tn.

(21a) Let T1, . . . , Tn be sets of FO-sentences.
[IfBS p](Must q) iff either
1. no p-model belongs to any sphere S in SMSBS, or
2. some sphere S in SMSBS does contain at least one p-model, and p → q

holds in every model in S.
(21b) Let T1, . . . , Tn be sets of PL-formulas and W be a maximal set of worlds.

[IfBS p](Must q) iff either
1. no p-model belongs to any sphere S in SSBS, or
2. some sphere S in SSBS does contain at least one p-model, and p → q

holds in every model in S.

Proof. It can be easily shown: mod(T1 ∪ {p}) = ∅ iff (21a.1). Now, we con-
sider cases in which mod(T1 ∪ {p}) �= ∅. Let k = cmn(ext({p}, BS)) − 1 and
Sk = mod(top(BS, k)). Because top(BS, k) ∪ {p} is consistent, there is a model
in Sk that makes p true. Furthermore, IFBS({p}) = cons-max (ext(p,BS)) =
top(BS, k) ∪ {p}. According to (5a) and (11i), (T = IFBS({p}) & MUSTT q)

12 Here, we represent counterfactual conditional with �→.
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iff mod(IFBS({p})) ⊆ mod({q}). Then, because of the deduction theorem in
FOL: mod(top(BS, k) ∪ {p}) ⊆ mod(q) iff mod(top(BS, k)) ⊆ mod({p → q})) iff
Sk ⊆ mod({p → q}). Hence, (T = IFBS({p}) & MUSTT q) iff (21a.2). Then,
because of (18b), (21a) holds. (21b) can be proved in the same way as the proof
of (21a). Q.E.D.

This result shows that our interpretation of conditionals is very similar to the
standard one. In fact, with respect to the determination of spheres, our approach
is more explicit than Lewis’s approach (see (11i) and (11j)).

Grove [5] proposes sphere-semantics for theory change and shows that this
semantics satisfies AGM postulates for the belief revision and that it is very simi-
lar to the sphere-semantics for counterfactual logic proposed by Lewis [11]. Thus,
our results are similar to results in [5]. It is Grove’s motivation for his investi-
gation to connect the sphere semantics with the treatment of theory change.13

His interest shares with ours. In fact, LBS is applicable to description of theory
change in scientific activities.14

The main difference between two approaches lies in generality. Grove requires
that the language is compact [5, p.157], while we deal with full FO-languages.
Thus, our approach is broader than Grove’s.

7 Two Types of Conditionals

Williams [17] points out a semantic difference between indicative and counter-
factual conditionals.

(22a) [Indicative conditional] If Oswald didn’t shoot Kennedy, someone else did.
(22b) [Counterfactual conditional] If Oswald hadn’t shot Kennedy, someone else

would have.

According to Williams, (22a) is true, while (22b) is false. This means that
the meaning of indicative conditionals and that of counterfactual conditionals
are different. We usually accept (22c) instead of (22b).

(22c) If Oswald hadn’t shot Kennedy, Kennedy might not have been killed.

Williams explained this difference through a slight modification of the stan-
dard interpretation of conditionals proposed by Lewis [11]. Instead, we propose
to distinguish both cases through a different relationship to causal dependencies.

13 Gärdenfors [4, Sect. 4.5] gives an insightful description of Grove’s system.
14 Some parts of Lakatos’ discussion on scientific research programs in [10] can be

described within LBS. In belief structures of scientists, basic theories are more
trusted than their auxiliary hypotheses (BT > AH). Suppose that the set nO of
observation data is consistent with BT but inconsistent with BT ∪ AH. In such a
case, scientists would try to find the set nAH of new auxiliary hypotheses such that
nO ∪ BT ∪ nAH is consistent. In this way, a basic theory can be protected against
new anomalies.
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It is usual to distinguish two types of conditionals [1, Sect. 1]. We propose
that one type, like case (22a), is epistemic and the other type, like case (22c),
is concerned with causal effects. The second type has the form “if-had A, then-
would B”, where the occurrence of B is causally dependent on the occurrence of
A. In such a case, the shift of temporal perspective is often required. In (22a),
our temporal view is fixed in the present and we assume that we know that
Kennedy was killed. In this situation, we think about the possibility of Oswald’s
innocence. However, when we utter (22b) or (22c), our temporal viewpoint is
shifted to the situation just before Kennedy was shot and we imagine what could
happen after that situation. In this paper, we call the first type of conditionals
epistemic conditionals and the second type causal conditionals.

Now, we define casual dependency as follows.

Definition 18. Let BS be a belief structure with T1 > . . . > Tn. Let CT be a
theory of causality that implies causal laws.

A fact expressed by q is causally dependent on a fact expressed by p with
respect to (wrt) BS iff there are i, j, and k such that (i < j < k ≤ cmn(BS)
& CT ⊆ Ti & Tj = {p} & MUST-min(BS, j, p) & MUST-min(BS, k, q) & not
MUSTtop(BS,k)−CT q & not MUSTtop(BS,k)−Tj

q).

To explain this distinction of conditionals, let us consider examples (22a),
(22b), and (22c). We use some abbreviations to improve readability:

killed: Kennedy was killed [∃t(killed(Kennedy, t) ∧ t <t now)];
someone: Someone shot Kennedy [∃t∃x(shoot(x,Kennedy, t) ∧ t <t now)];
oswald: Oswald shot Kennedy [∃t(shoot(Oswald,Kennedy, t) ∧ t <t now)];
someone-else: Someone else shot Kennedy [∃t∃x(shoot(x,Kennedy, t) ∧ x �=

Oswald ∧ t <t now)].

For the sake of simplicity, we assume that BS1 is a belief structure
with CT > {someone} > {killed} > {oswald} and that BS2 is a belief
structure with CT > {oswald} > {killed}. We assume also that CT ∪
{oswald} ∪ {killed} is consistent. Because (oswald → someone) is a FOL-
theorem, it holds Cn(BS1) = Cn(BS2). Furthermore, according to Def-
inition 18, the fact expressed by killed is causally dependent on the fact
expressed by oswald only wrt BS2. Because (IFBS1({¬oswald}) = {¬oswald}∪
CT ∪ {someone} ∪ {killed} & IFBS2({¬oswald}) = {¬oswald} ∪ CT ) and
(¬oswald ∧ someone → someone − else) is a FOL-theorem, we obtain:
[IfBS1¬oswald ](Must someone-else) & not [IfBS2¬oswald ](Must someone-else)
& [IfBS2¬oswald ](Might ¬killed). This result can be summarized as follows:

BS1: CT > {someone} > {killed} > {oswald}.
BS2: CT > {oswald} > {killed}.
The fact expressed by killed is causally dependent on the fact expressed by
oswald only wrt BS2.
[IfBS1¬oswald](Must someone-else).
not [IfBS2¬oswald](Must someone-else).
[IfBS2¬oswald](Might ¬killed).
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To evaluate a causal conditional 〈If p, then q〉, we, at first, reformulate our
belief structure, so that it reflects the causal dependency expressed by the con-
ditional. Then, we imagine a situation in which p holds. Let us call this refor-
mulated belief structure BSc. The determination of the imagined situation can
be achieved by calculating [IfBSc p]. After that, we examine whether MUSTT q
holds, where T = IFBSc

({p}). In contrast, we do not need any reformulation of
belief structures, when we evaluate epistemic conditionals.

8 Concluding Remarks

In the first part of this paper, we proposed Logic for Epistemic Modalities
(LRM). LEM is based on the consequence relation of FOL. We have shown
how to express in LEM some evidential features of epistemic modalities.

In the second part, we extended LEM to Logic of Belief Structures (LBS).
Then, we defined a belief structure revision operator bsR based on LBS.
A belief structure can be roughly understood as a linearly ordered set of sets
of FO-sentences. We proved that bsR satisfies all postulates for belief revision
in AGM-theory. Then, we defined the truth condition of counterfactual condi-
tionals; we interpreted that the consequent of a conditional describes a modal
state after a belief revision invoked by acceptance of the antecedent. We have
also shown that sphere semantics can be defined for our treatment of condition-
als. The characteristic feature of our approach lies in its explicitness. Instead of
similarity relation among worlds, we use a reliability order among sets of FO-
sentences. An example of causal interpretation of counterfactual conditionals
demonstrated how LBS-approach can be used for describing truth conditions of
modal statements in natural languages.15
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