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Abstract. In this paper, we investigate several mapping kernels to
count all of the mappings between two rooted labeled trees beyond
ordered trees, that is, cyclically ordered trees such as biordered
trees, cyclic-ordered trees and cyclic-biordered trees, and degree-bounded
unordered trees. Then, we design the algorithms to compute a top-down
mapping kernel, an LCA-preserving segmental mapping kernel, an LCA-
preserving mapping kernel, an accordant mapping kernel and an isolated-
subtree mapping kernel for biordered trees in O(nm) time and ones for
cyclic-ordered and cyclic-biordered trees in O(nmdD) time, where n is
the number of nodes in a tree, m is the number of nodes in another tree,
D is the maximum value of the degrees in two trees and d is the mini-
mum value of the degrees in two trees. Also we design the algorithms to
compute the above kernels for degree-bounded unordered trees in O(nm)
time. On the other hand, we show that the problem of computing label-
preserving leaf-extended top-down mapping kernel and label-preserving
bottom-up mapping kernel is #P-complete.

1 Introduction

A tree kernel is one of the fundamental method to classify rooted labeled trees
(trees, for short) through support vector machines (SVMs). Many researches to
design tree kernels for ordered trees, in which an order among siblings is fixed,
have been developed (cf., [2,6,14–17]). We call them ordered tree kernels.

A mapping kernel [15–17] is a powerful and general framework for tree kernels
based on counting all of the mappings (and their variations) as the set of one-
to-one node correspondences [18]. It is known that the minimum cost of (Tai)
mappings coincides with an edit distance between trees. Also, as the properties
of mapping kernels, almost ordered tree kernels are classified into the framework
of mapping kernels [15], and a mapping kernel is positive definite if and only if
the mapping is transitive, that is, closed under the composition [16,17].
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On the other hand, few researches to design tree kernels for unordered trees,
in which an order among siblings is arbitrary, have been developed. We call them
unordered tree kernels. One of the reasons is that the problem of counting all of
the subtrees for unordered trees is #P-complete [6].

In order to avoid such difficulty, the unordered tree kernel have been developed
as counting all of the specific substructures. For example, Kuboyama et al. [9] and
Kimura et al. [7] have designed the unordered tree kernel counting all of the bifoliate
q-grams and all of the subpaths, respectively.

As a tractable mapping kernel for unordered trees, Hamada et al. [3] have
introduced an agreement-subtree mapping kernel for phylogenetic trees (leaf-
labeled binary unordered trees). Also they have given a new proof of intractabil-
ity of computing a mapping kernel for unordered trees, simpler than Kashima
et al. [6], such that the problem of counting the number of leaves with the same
labels in leaf-labeled tree is #P-complete, which is based on the problem of
counting all of the matchings in a bipartite graph.

It is known that, by introducing several conditions to mappings, we deal
with several variations of mappings and they form the hierarchy of mappings
[5,8,21,23]. Every variation of mappings provides not only a variation of the
edit distance as the minimum cost of all the mappings [5,8,22,23] but also a
tree kernel as the number of all the mappings [8,10,15].

Note that the problem of computing the tractable variations of the edit
distance between unordered trees such as a top-down distance [1,13], an
LCA-preserving segmental distance [23], an LCA-preserving distance [27], an
accordant distance [8,10,22] and an isolated-subtree distance [25,26] is essential to
solve the minimum weighted maximum matching in a bipartite graph [22,26,27].
On the other hand, it is essential for the above #P-completeness [3,6] to reduce
from the problem of counting all of the matchings in a bipartite graph.

Recently, as trees extended from ordered trees and restricted to unordered
trees, Yoshino and Hirata [24] have introduced the following three kinds of a
cyclically ordered tree that is an unordered tree preserving the adjacency among
siblings in a tree as possible. Let v1, . . . , vn be siblings from left to right. We say
that a tree is biordered if it allows two orders v1, . . . , vn and vn, . . . , v1. Also we
say that a tree is cyclic-ordered if it allows a cyclic order vi, . . . , vn, v1, . . . , vi−1

for every i (1 ≤ i ≤ n). Furthermore, we say that a tree is cyclic-biordered if it
allows cyclic orders vi, . . . , vn, v1, . . . , vi−1 and vi−1, . . . , v1, vn, . . . , vi for every i
(1 ≤ i ≤ n). Then, they have designed the algorithm to compute an alignment
distance [4] between cyclically ordered trees in polynomial time. Note that the
algorithm does not use the maximum matching for a bipartite graph. It is a
simple extension of the algorithm (or recurrences) of computing the alignment
distance between ordered trees [4].

Hence, in this paper, we first investigate several mapping kernels such as
a top-down mapping kernel, an LCA-preserving segmental mapping kernel, an
LCA-preserving mapping kernel, an accordant mapping kernel and an isolated-
subtree mapping kernel for cyclically ordered trees. Then, we design the algo-
rithms to compute all of the above mapping kernels for biordered trees in O(nm)
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time and ones for cyclic-ordered and cyclic-biordered trees in O(nmdD) time,
where n is the number of nodes in a tree, m is the number of nodes in another
tree, D is the maximum value of the degrees in two trees and d is the minimum
value of the degrees in two trees.

Next, by focusing that the agreement subtree mapping kernel is applied to
full binary trees, we investigate the above kernels for bounded-degree unordered
trees. Then, we design the algorithms to compute all of the above mapping
kernels in O(nm) time, which follows from the algorithms to compute ones for
unordered trees in O(nmDD) time, which is exponential to D.

On the other hand, for unordered trees, we show that the problem of com-
puting the label-preserving leaf-extended top-down mapping kernel and the label-
preserving bottom-up mapping kernel is #P-complete. Note here that the proof
of the above #P-completeness [3,6] cannot apply to top-down and bottom-up
mapping kernels for unordered tree directly. Also, the degrees of unordered trees
in this proof are not bounded.

2 Preliminaries

A tree is a connected graph without cycles. For a tree T = (V,E), we denote
V and E by V (T ) and E(T ), respectively. Also the size of T is |V | and denoted
by |T |. We sometime denote v ∈ V (T ) by v ∈ T . We denote an empty tree by ∅.

A rooted tree is a tree with one node r chosen as its root. We denote the
root of a rooted tree T by r(T ). A(n ordered) forest is a sequence [T1, . . . , Tn]
of trees which we denote by T1 • · · · • Tn or •n

i=1Ti. In particular, for two forests
F1 = T1•· · ·•Tn and F2 = S1•· · ·•Sm, we denote the forest T1•· · ·•Tn•S1•· · ·•Sm

by F1 • F2. For a forest F , we denote the tree rooted by v whose children are
trees in F by v(F ).

For each node v in a rooted tree with the root r, let UPr(v) be the unique
path (as trees) from v to r. The parent of v(�= r), which we denote by par(v),
is its adjacent node on UPr(v) and the ancestors of v(�= r) are the nodes on
UPr(v) − {v}. We denote the set of all ancestors of v by anc(v). We say that
u is a child of v if v is the parent of u. The set of children of v is denoted by
ch(v). A leaf is a node having no children. We denote the set of all leaves in T
by lv(T ). A node that is neither a leaf nor a root is called an internal node. We
call the number of children of v the degree of v and denote it by d(v), that is,
d(v) = |ch(v)|. Also we define d(T ) = max{d(v) | v ∈ T} and call it the degree
of T .

In this paper, we use the ancestor orders < and ≤, that is, u < v if v is an
ancestor of u and u ≤ v if u < v or u = v. We say that w is the least common
ancestor (LCA for short) of u and v, denoted by u�v, if u ≤ w, v ≤ w and there
exists no w′ such that A (complete) w′ < w, u ≤ w′ and v ≤ w′. A (complete)
subtree of T = (V,E) rooted by v, denoted by T [v], is a tree T ′ = (V ′, E′) such
that r(T ′) = v, V ′ = {u ∈ V | u ≤ v} and E′ = {(u,w) ∈ E | u,w ∈ V ′}.

We say that a rooted tree is labeled if each node is assigned a symbol from
a fixed finite alphabet Σ. For a node v, we denote the label of v by l(v), and
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sometimes identify v with l(v). Also let ε �∈ Σ denote a special blank symbol
and define Σε = Σ ∪ {ε}.

Let v ∈ T and vi, vj ∈ ch(v) such that vi the i-th child of v and vj the
j-th child of v. Then, we say that vi is to the left of vj if i ≤ j. Then, for
every u, v ∈ T , u � v if either u is to the left of v (when both u and v are the
children of the same node in T ) or there exist u′, v′ ∈ ch(u�v) such that u ≤ u′,
v ≤ v′ and u′ is to the left of v′. Hence, we say that a rooted tree is ordered if a
left-to-right order among siblings is fixed; unordered otherwise. Furthermore, in
this paper, we introduce cyclically ordered trees by using the following functions
σ+

p,n(i) and σ−
p,n(i) for 1 ≤ i, p ≤ n.

σ+
p,n(i) = ((i + p − 1) mod n) + 1, σ−

p,n(i) = ((n − i − p + 1) mod n) + 1.

Definition 1 (Cyclically Ordered Trees). Let T be a tree and suppose that
v1, . . . , vn are the children of v ∈ T from left to right.

1. We say that T is biordered if T allows the orders of both v1, . . . , vn and
vn, . . . , v1.

2. We say that T is cyclic-ordered if T allows the orders vσ+
p,n(1), . . . , vσ+

p,n(n) for
every 1 ≤ p ≤ n.

3. We say that T is cyclic-biordered if T allows the orders vσ+
p,n(1), . . . , vσ+

p,n(n)

and vσ−
p,n(1), . . . , vσ−

p,n(n) for every 1 ≤ p ≤ n.

Sometimes we use the scripts o, b, c, cb, u, and the notation of π ∈ {o, b, c, cb, u}.
It is obvious that the cyclically ordered trees are an extension of ordered trees

and a restriction of unordered trees. The number of orders among siblings of a
node v in ordered trees, biordered trees, cyclic-ordered trees, cyclic-biordered
trees and unordered trees is 1, 2, d(v), 2d(v) and d(v)!, respectively. Also it
holds that, when d(T ) = 2, T is unordered iff it is biordered, cyclic-ordered or
cyclic-biordered, and when d(T ) = 3, T is unordered iff it is cyclic-biordered.

3 Mapping

In this section, we introduce a Tai mapping and its variations, and then the
distance as the minimum cost of all the mappings.

Definition 2 (Tai Mapping [18]). Let T1 and T2 be trees and M ⊆ V (T1) ×
V (T2).

1. We say that a triple (M,T1, T2) is an ordered Tai mapping from T1 to T2,
denoted by M ∈ Mo

Tai(T1, T2), if every pair (u1, v1) and (u2, v2) in M satisfies
the following conditions.
(i) u1 = u2 iff v1 = v2 (one-to-one condition).
(ii) u1 ≤ u2 iff v1 ≤ v2 (ancestor condition).
(iii) u1 � u2 iff v1 � v2 (sibling condition).



Mapping Kernels Between Rooted Labeled Trees Beyond Ordered Trees 321

2. We say that a triple (M,T1, T2) is an unordered Tai mapping from T1 to T2,
denoted by M ∈ Mu

Tai(T1, T2), if M satisfies the conditions (i) and (ii).

In the following, let u1, u2, u3, u4 ∈ ch(u) and v1, v2, v3, v4 ∈ ch(v).

3. We say that a triple (M,T1, T2) is a biordered Tai mapping from T1 to T2,
denoted by M ∈ Mb

Tai(T1, T2), if M satisfies the above conditions (i) and (ii)
and the following condition (iv).
(iv) For every u ∈ T1 and v ∈ T2 such that (u1, v1), (u2, v2), (u3, v3) ∈ M ,

one of the following statements holds.
1. u1 � u2 � u3 iff v1 � v2 � v3.
2. u1 � u2 � u3 iff v3 � v2 � v1.

4. We say that a triple (M,T1, T2) is a cyclic-ordered Tai mapping from T1 to
T2, denoted by M ∈ Mc

Tai(T1, T2), if M satisfies the above conditions (i) and
(ii) and the following condition (v).
(v) For every u ∈ T1 and v ∈ T2 such that (u1, v1), (u2, v2), (u3, v3) ∈ M , one

of the following statements holds.
1. u1 � u2 � u3 iff v1 � v2 � v3.
2. u1 � u2 � u3 iff v2 � v3 � v1.
3. u1 � u2 � u3 iff v3 � v1 � v2.

5. We say that a triple (M,T1, T2) is a cyclic-biordered Tai mapping from T1 to
T2, denoted by M ∈ Mcb

Tai(T1, T2), if M satisfies the above conditions (i) and
(ii) and the following condition (vi).
(vi) For every u ∈ T1 and v ∈ T2 such that (u1, v1), (u2, v2), (u3, v3), (u4, v4) ∈

M , one of the following statements holds.
1. u1 � u2 � u3 � u4 iff v1 � v2 � v3 � v4.
2. u1 � u2 � u3 � u4 iff v2 � v3 � v4 � v1.
3. u1 � u2 � u3 � u4 iff v3 � v4 � v1 � v2.
4. u1 � u2 � u3 � u4 iff v4 � v1 � v2 � v3.
5. u1 � u2 � u3 � u4 iff v4 � v3 � v2 � v1.
6. u1 � u2 � u3 � u4 iff v3 � v2 � v1 � v4.
7. u1 � u2 � u3 � u4 iff v2 � v1 � v4 � v3.
8. u1 � u2 � u3 � u4 iff v1 � v4 � v3 � v2.

We will use M instead of (M,T1, T2) simply and call a Tai mapping a mapping
simply.

Definition 3 (Variations of Tai Mapping). Let T1 and T2 be trees, π ∈
{o, b, c, cb, u} and M ∈ Mπ

Tai(T1, T2). Here, we denote M − {(r(T1), r(T2))} by
M−.

1. We say that M is a top-down mapping [1,13] (or a degree-1 mapping), denoted
by M ∈ Mπ

Top(T1, T2), if M satisfies the following condition.

∀(u, v) ∈ M−
(
(par(u), par(v)) ∈ M

)
.

2. We say that M is an LCA-preserving segmental mapping [23], denoted by
M ∈ Mπ

LcaSg(T1, T2), if there exists a pair (u, v) ∈ T1 × T2 such that M ∈
Mπ

Top(T1[u], T2[v]).
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3. We say that M is an LCA-preserving mapping (or a degree-2 mapping [27]),
denoted by M ∈ Mπ

Lca(T1, T2), if M satisfies the following condition.

∀(u1, v1), (u2, v2) ∈ M
(
(u1 � u2, v1 � v2) ∈ M

)
.

4. We say that M is an accordant mapping [8] (or a Lu’s mapping [12]), denoted
by M ∈ Mπ

Acc(T1, T2), if M satisfies the following condition.

∀(u1, v1), (u2, v2), (u3, v3) ∈ M
(
u1 � u2 = u1 � u3 ⇐⇒ v1 � v2 = v1 � v3

)
.

5. We say that M is an isolated-subtree mapping [21] (or a constrained map-
ping [25,26]), denoted by M ∈ Mπ

Ilst(T1, T2), if M satisfies the following
condition.

∀(u1, v1), (u2, v2), (u3, v3) ∈ M
(
u3 < u1 � u2 ⇐⇒ v3 < v1 � v2

)
.

6. We say that M is a bottom-up mapping [8,20,22], denoted by M ∈
Mπ

Bot(T1, T2), if M satisfies the following condition.

∀(u, v) ∈ M

⎛
⎝∀u′ ∈ T1[u]∃v′ ∈ T2[v]

(
(u′, v′) ∈ M

)

∧∀v′ ∈ T2[v]∃u′ ∈ T1[u]
(
(u′, v′) ∈ M

)
⎞
⎠.

Proposition 1 (cf. [8,23]). For π ∈ {o, b, c, cb, u} and trees T1 and T2, the
following statement holds:

Mπ
Top(T1, T2) ⊂ Mπ

LcaSg(T1, T2) ⊂ Mπ
Lca(T1, T2)

⊂ Mπ
Acc(T1, T2) ⊂ Mπ

Ilst(T1, T2).

Furthermore, for A ∈ {Top,LcaSg,Lca,Acc, Ilst}, Mπ
Bot(T1, T2) is incom-

parable with Mπ
A (T1, T2)

4 Mapping Kernels

Let π ∈ {o, b, c, cb, u} and A ∈ {Top,LcaSg,Lca,Acc, Ilst} unless otherwise
noted. A mapping between forests F1 and F2 is defined as a mapping M between
trees v(F1) and v(F2) such that (v, v) �∈ M . We define Mπ

A (F1, F2) as similar
as Mπ

A (T1, T2). Let σ : Σ × Σ → R+ be a similarity function. The similarity
σ(M) of a mapping M ∈ Mπ

A (T1, T2) between two trees T1 and T2 is defined
as σ(M) =

∏
(u,v)∈M

σ(l(u), l(v)). The similarity between two forests F1 and F2 is

defined as follows:

Kπ
A (F1, F2) =

∑
M∈Mπ

A (F1,F2)

σ(M).
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Corollary 1. For π ∈ {o, b, c, cb, u} and A ∈ {Top,LcaSg,Lca,Acc, Ilst},
Kπ

A is positive definite.

Proof. Since Mπ
A is closed under the composition [8,23,27] and by [16], the

statement holds. ��

Kuboyama [8] has introduced the recurrences to compute Ko
A(T1, T2) for

A ∈ {Top,LcaSg,Lca} implicitly and A ∈ {Acc, Ilst} explicitly illustrated
in Fig. 1. Note the underlined formulas that denote the difference between simi-
lar formulas.

Fig. 1. The recurrences of computing Ko
A(T1, T2) for A ∈ {Top,LcaSg,Lca,Acc,

Ilst} [8].
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Theorem 1 (cf., Kuboyama [8]). For A ∈ {Top,LcaSg,Lca,Acc, Ilst},
the recurrences in Fig. 1 correctly compute Ko

A(T1, T2) in O(nm) time, where
n = |T1| and m = |T2|.

4.1 Mapping Kernels for Cyclically Ordered Trees

In this section, we extend the recurrences in Fig. 1 to the recurrences to compute
Kπ

A (T1, T2) for π ∈ {o, b, c, cb} and A ∈ {Top,LcaSg,Lca,Acc, Ilst}.
For u(F1) and v(F2), let F1=[T1[u1], . . . , T1[us]] and F2=[T2[v1], . . . , T2[vt]],

that is, ch(u) = {u1, . . . , us}, ch(v) = {v1, . . . , vt}, d(u) = s and d(v) = t. Also
let 1 ≤ p ≤ s and 1 ≤ q ≤ t. We denote the forests [T1[uσ+

p,s(1)
], . . . , T1[uσ+

p,s(s)
]]

and [T2[vσ+
q,t(1)

], . . . , T2[vσ+
q,t(t)

]] by F p
1 and F q

2 . Furthermore, we denote the

forests [T1[uσ−
p,s(1)

], . . . , T1[uσ−
p,s(s)

]] and [T2[vσ−
q,t(1)

], . . . , T2[vσ−
q,t(t)

]] by F−p
1 and

F−q
2 . It is obvious that F1 = F 1

1 and F2 = F 1
2 .

Furthermore, the values of p and q in F p
1 , and F q

2 are (1) p = q = 1 if π = o,
(2) p = ±1 and q = ±1 if π = b, (3) 1 ≤ p ≤ s and 1 ≤ q ≤ t if π = c and
(4) 1 ≤ p ≤ s, −s ≤ p ≤ −1, 1 ≤ q ≤ t and −t ≤ q ≤ −1 if π = cb. Hence,
we prepare the following sets: (1) o(s) = o(t) = {1}, (2) b(s) = b(t) = {−1, 1},
(3) c(s) = {1, . . . , s}, c(t) = {1, . . . , t}, and (4) cb(s) = {−s, . . . ,−1, 1, . . . , s},
cb(t) = {−t, . . . ,−1, 1, . . . , t}. We refer these sets to π(s) and π(t) for π ∈
{o, b, c, cb}.

Then, we design the recurrences to compute Kπ
A (T1, T2) illustrated in Fig. 2.

Theorem 2. For A ∈ {Top,LcaSg,Lca,Acc, Ilst}, the recurrences in Fig. 2
correctly compute Kb

A(T1, T2) in O(nm) time and Kc
A(T1, T2) and Kcb

A (T1, T2) in
O(nmdD) time, where n = |T1|, m = |T2|, d = min{d(T1), d(T2)} and D =
max{d(T1), d(T2)}.

Proof. In the formulas of Kπ
Top and T π

Lca, the number of Fπ
Top(F

p
1 , F q

2 ) and
Fπ

Lca(F
p
1 , F q

2 ) is 1 if π = o, 4 if π = b, d(u) · d(v) if π = c and 2d(u) · 2d(v)
if π = bc. Also in the formulas of T π

Acc and T π
Ilst, the number of Fπ

Acc(F
p
1 , F q

2 )
and Fπ

Ilst(F
p
1 , F q

2 ) is 1 if π = o, 4 + 2 + 2 + 4 = 12 if π = b, d(u) ·
d(v) + d(u) + d(v) + d(u) · d(v) = 2d(u) · d(v) + d(u) + d(v) if π = c and
2d(u) · 2d(v) + 2d(u) + 2d(v) + 2d(u) · 2d(v) = 8d(u) · d(v) + 2d(u) + 2d(v)
if π = bc. Then, we can compute these recurrences in O(1) time if π ∈ {o, b},
whereas in O(d(u) · d(v)) = O(dD) time if π ∈ {c, cb}. Hence, the time com-
plexity in the statement holds. Also we can show the correctness by extending
Theorem 1. ��

4.2 Mapping Kernels for Bounded-Degree Unordered Trees

In this section, we extend the recurrences in Fig. 1 to the recurrences to compute
Ku

A (T1, T2) for A ∈ {Top,LcaSg,Lca,Acc, Ilst}.
For nonnegative integers s and t, let Bs,t be a complete bipartite graph

(X ∪Y,E) such that X = {1, . . . , s} and Y = {1, . . . , t}, and BM (s, t) the set of
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Fig. 2. The recurrences of computing Kπ
A (T1, T2) for π ∈ {o, b, c, cb} and A ∈

{Top,LcaSg,Lca,Acc, Ilst}.

all maximum matchings in Bs,t. For every M ∈ BM (s, t), it holds that M ⊂ E
and |M | = min{s, t}.

For u(F1) and v(F2), let F1 = [T1[u1], . . . , T1[us]] and F2 = [T2[v1], . . ., T2[vt]],
that is, ch(u) = {u1, . . . , us}, ch(v) = {v1, . . . , vt}, d(u) = s and d(v) = t. Then,
for M ∈ BM (s, t), we denote the ordered forests •(i,j)∈MT1[ui] and •(i,j)∈MT2[vj ]
by FM

1 and FM
2 , where we assume that trees in a forest are ordered along the

order of M . Furthermore, for an ordered forest F , let pm(F ) be the set of all
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Fig. 3. The recurrences of computing Ku
A (T1, T2) for A ∈ {Top,LcaSg,Lca,Acc,

Ilst}.

permuted forests of F . Then, Fig. 3 illustrates the recurrences of computing
Ku

A (T1, T2).

Theorem 3. For A ∈ {Top,LcaSg,Lca,Acc, Ilst}, the recurrences in Fig. 3
correctly compute Ku

A (T1, T2) in O(nmDD) time, where n = |T1|, m = |T2| and
D = max{d(T1), d(T2)}. Hence, if the degrees of unordered trees are bounded by
some constant, then we can compute Ku

A (T1, T2) in O(nm) time.
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Proof. Since |BM (s, t)| = sPt and the number of all permuted forests of
F1 (resp., F2) is sP1 (resp., tP1), the number of occurrences of the formula
Fu

A (FM
1 , FM

2 ) is bounded by DD and the number of occurrences of the formu-
las Fu

A (u(F1), F ′
2) and Fu

A (F ′
1, v(F2)) for A ∈ {Acc, Ilst} is bounded by DD. In

both cases, the number of occurrences of the formulas is O(DD). Since every pair
(u, v) ∈ T1×T2 is called just once, we can compute Ku

A (T1, T2) in O(nmDD) time
by using dynamic programming. Hence, the time complexity in the statement
holds. Also we can show the correctness by extending Theorem 1. ��

5 #P-Completeness for Unordered Trees

Since we cannot apply the #P-completeness of [3,6] to the top-down mapping
kernel for unordered trees directly, in this section, we show that the problem of
counting all the specific top-down mappings (or bottom-up mappings) is #P-
complete.

Let M be a mapping between T1 and T2. We say that M is label-preserving (or
an indel mapping) if it always holds that l(u) = l(v) for every (u, v) ∈ M . Also
we say that M is leaf-extended if, for every (u, v) ∈ M , there exists (u′, v′) ∈ M
such that u ∈ anc(u′), v ∈ anc(v′), u′ ∈ lv(T1) and v′ ∈ lv(T2). Then, we deal
with a label-preserving leaf-extended top-down mapping M between unordered
trees T1 and T2, which we denote M ∈ Mu

llTop(T1, T2).

Theorem 4 (cf., [3]). The problem of counting all the mappings in
Mu

llTop(T1, T2) is #P-complete.

Proof. Valiant [19] has shown that the problem of counting all the matchings
in a bipartite graph, which we denote #BipartiteMatching, is #P-complete.
Then, we give two trees such that the number of all the label-preserving leaf-
extended top-down mapping between them is equal to the output of #Bipartite
Matching. Here, for a forest F and a node v such that l(v) = a, we denote
v(F ) by a(F ).

Let G = (X ∪ Y,E) be a bipartite graph. For v ∈ X ∪ Y , we denote a
neighbor of v by N(v). It is obvious that N(v) ⊆ Y if v ∈ X and N(v) ⊆ X
if v ∈ Y . Then, we construct Tx = a({xy | y ∈ N(x)}) for every x ∈ X and
T1 = a({Tx | x ∈ X}). Similarly, we construct Ty = a({xy | x ∈ N(y)}) for every
y ∈ Y and T2 = a({Ty | y ∈ Y }). Here, we regard an edge xy in G as the label
of a leaf in Tx and Ty. Figure 4 illustrates an example of the above construction
of T1 and T2 from a bipartite graph G.

For a matching B ⊆ E in G we construct the label-preserving leaf-extended
top-down mapping M between T1 and T2 such that:

M =

⎧
⎨
⎩

∅ if B = ∅,

{(r(T1), r(T2))} ∪
⋃

xy∈B

Mxy if B �= ∅,

Mxy =

⎧
⎨
⎩

(u1, v1), (u2, v2)
∈ V (Tx) × V (Ty)

∣∣∣∣∣∣
u1 = par(u2), v1 = par(v2),
u2 ∈ lv(Tx), v2 ∈ lv(Ty)
l(u1) = l(v1) = a, l(u2) = l(v2) = xy

⎫
⎬
⎭.
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G

T1 T2

Fig. 4. A bipartite graph G and the trees T1 and T2.

T1 T2

Fig. 5. Trees T1 and T2 in Corollary 2.

For example, let B be a matching {12, 21, 33} in G illustrated in Fig. 4 as think
lines. Then, the label-preserving leaf-extended top-down mapping M between
T1 and T2 is illustrated by dashed lines.

Note that, by the definition of Tx and Ty, Mxy is a label-preserving leaf-
extended top-down mapping between Tx and Ty. Also Mxy is corresponding
to an element xy in a matching of G. Furthermore, no label-preserving leaf-
extended top-down mapping Mxy between T1 and T2 contains more than one
path from the root to leaves in Tx or Ty, that is, Mxy contains zero or one path
in Tx and Ty.

Hence, a matching B in G determines the label-preserving leaf-extended top-
down mapping M between T1 and T2 uniquely and vice versa. Then, the number
of all the matchings in G which is the output of #BipartiteMatching is
equal to the number of all the label-preserving leaf-extended top-down mappings
between T1 and T2. Hence, the statement holds. ��

Finally, we denote all the label-preserving bottom-up mappings between
unordered trees T1 and T2 by Mu

lBot(T1, T2). Then, the proofs of [3,6] or the above
proof imply the following corollary. Here, it is sufficient to construct a matching B

in Fig. 4 to a mapping
⋃

xy∈B

{(u, v) ∈ lv(Tx) × lv(Ty) | l(u) = l(v) = xy} as Fig. 5,

for example.

Corollary 2 (cf., [3,6]). The problem of counting all the mappings in
Mu

lBot(T1, T2) is #P-complete.
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6 Conclusion

In this paper, for mapping A ∈ {Top,LcaSg,Lca}, we have designed the recur-
rences to compute Ko

A(T1, T2) and Kb
A(T1, T2) in O(nm) time and to compute

Kc
A(T1, T2) and Kcb

A (T1, T2) in O(nmdD) time. Also, we have designed the recur-
rences to compute Ku

A (T1, T2) in O(nmDD) time, which implies that we can
compute Ku

A (T1, T2) in O(nm) time if the degrees of T1 and T2 are bounded
by some constant. On the other hand, we show that the problem of computing
Ku

llTop(T1, T2) and Ku
lBot(T1, T2) are #P-complete.

For MAln (alignable mapping [8], less-constrained mapping [11]), from [4,24],
we conjecture that we can compute Kb

Aln(T1, T2) in O(nmD2) time, Kπ
Aln(T1, T2)

in O(nmdD3) time (π ∈ {c, cb}) and Ku
Aln(T1, T2) in polynomial time if the

degrees of T1 and T2 are bounded by some constant. Hence, it is a future work
to investigate whether or not the above conjecture is correct.

In the proof of Theorem 4 and Corollary 2, the condition of label-preserving
and leaf-extended are essential. If these condisions are not met, we must
count all the other (standard) top-down or bottom-up mappings that are not
label-preserving or leaf-extended. In order to show that the problem of count-
ing all the mappings in Mu

Top(T1, T2), Mu
Bot(T1, T2) and then Ku

A (T1, T2) for
A ∈ {LcaSg,Lca,Acc, Ilst,Aln} are all #P-complete, we must use the Cook-
reduction [6,19] from #BipartiteMatching, which is more complex than the
proof of Theorem 4. On the other hand, this paper has shown that we can com-
pute Ku

A (T1, T2) for bounded-degree unordered trees. Hence, it is an important
future work to investigate whether or not the problem of computing Ku

A (T1, T2)
is #P-complete when degrees are unbounded.
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