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Abstract. An anchored alignment tree between two rooted labeled trees
with respect to a mapping that is a correspondence between nodes in two
trees, called an anchoring , is an alignment tree which contains a node
labeled by a pair of labels for every pair of nodes in the anchoring. In
this paper, we formulate an anchored alignment problem as the problem,
when two rooted labeled trees and an anchoring between them are given
as input, to output an anchored alignment tree if there exists; to return
“no” otherwise. Then, we show that the anchored alignment problem
can be solved in O(hα2 + n + m) time and in O(hα) space, where n
is the number of nodes in a tree, m is the number of nodes in another
tree, h is the maximum height of two trees and α is the cardinality of an
anchoring.

1 Introduction

An anchored alignment tree between two rooted labeled trees (trees, for short)
with respect to a mapping that is a correspondence between nodes in two trees,
called an anchoring , has been introduced by Schiermer and Giegerich [5] in the
context of forest alignments in bioinformatics. Then, the anchored alignment
tree is an alignment tree which contains a node labeled by a pair of labels for
every pair of nodes in the anchoring. By using an anchoring whose number is
α, we can obtain the anchored alignment tree in α times faster than the case
without using an anchoring [5].

Note first that an arbitrary anchoring between two trees does not always
provide an anchored alignment tree; If an anchoring is not less-constrained [4],
then there exists no alignment tree between them, because the less-constrained
mapping coincides with an alignable mapping [3], and then we can construct an
alignment tree from no less-constrained anchoring. Then, in this paper, we deal
with the following anchored alignment problem.
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AnchoredAlignment
Instance: Two trees T1 and T2, and a mapping M ⊆ V (T1) × V (T2),
called an anchoring .
Solution: Find an anchored alignment tree T of T1 and T2 such that T
contains a node labeled by (l(v), l(w)) for every (v, w) ∈ M if T exists;
return “no” otherwise.

Note that the anchored alignment tree as output is not necessary to be optimum
in the sense of the alignment distance or the minimum cost alignment [2]; it is
just an alignment tree between two trees containing nodes labeled by every pair
of labels in an anchoring.

In order to solve the anchored alignment problem, in this paper, we provide
an alternative proof that a less-constrained mapping coincides with an alignable
mapping [3]. In this proof, first we introduce the cover sequences consisting of
nodes of complete subtrees from a node in a mapping to the root. Then, we show
that a mapping is less-constrained if and only if, for every pair of nodes in the
mapping, the cover sequence of a tree and one in another tree are comparable.
By using this property, we can prove the above theorem, according to following
algorithm to solve the problem of AnchoredAlignment. Here, n is the number
of nodes in T1, m is the number of nodes in T2, h is the maximum height of T1

and T2 and α is the cardinality of an anchoring M .
First, we compute cover sequences of an anchoring and determine whether or

not they are comparable in O(hα) time and space. If so, then next we construct
an alignment subtree by aligning these cover sequences and by merging them
in O(h2α) time. Finally, we complete an anchored alignment tree by adding
appropriate alignment subtrees to the merged alignment subtree in O(n + m)
time. Hence, we can solve the problem of AnchoredAlignment in O(hα2 +
n + m) time and in O(hα) space.

Schiermer and Giegerich [5] have introduced the anchoring to divide the
dynamic programming to compute the alignment distance [2] into α parts and
claimed to reduce the time complexity from O(nmD2) time [2] to O(nmD2/α)
time, where D is the maximum degree of two trees. However, since the anchoring
is not always less-constrained, we cannot guarantee that the division is correct.
On the other hand, this paper determines whether or not the anchoring is less-
constrained and, if so, then uses it to find the anchored alignment tree directly
and correctly in O(hα2 + n + m) time. When n ≥ m, we can roughly estimate
that O(nmD2/α) = O(hα2 + n + m) = O(n3). Hence, we can find the anchored
alignment tree as fast as [5] even if an anchoring is less-constrained.

2 Preliminaries

A tree is a connected graph without cycles. For a tree T = (V,E), we denote
V and E by V (T ) and E(T ), respectively. We sometimes denote v ∈ V (T ) by
v ∈ T . We denote an empty tree by ∅.

A rooted tree is a tree with one node r chosen as its root . We denote the root
of a rooted tree T by r(T ). For each node v in a rooted tree with the root r, let
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UPr(v) be the unique path from v to r. If UPr(v) has exactly k edges, then we
say that the depth of v is k and denote it by d(v) = k. The height of T , denoted
by h(T ), is defined as max{dep(v) | v ∈ T}. The parent of v(�= r), which we
denote by par(v), is its adjacent node on UPr(v) and the ancestors of v(�= r)
are the nodes on UPr(v) − {v}. We say that u is a child of v if v is the parent
of u. In this paper, we use the ancestor orders < and ≤, that is, u < v if v is
an ancestor of u and u ≤ v if u < v or u = v. In particular, we denote neither
u ≤ v nor v ≤ u by u # v. We say that w is the least common ancestor of u and
v, denoted by u � v, if u ≤ w, v ≤ w and there exists no w′ such that w′ < w,
u ≤ w′ and v ≤ w′. A (complete) subtree of T = (V,E) rooted at v, denoted by
T [v], is a tree T ′ = (V ′, E′) such that r(T ′) = v, V ′ = {u ∈ V | u ≤ v} and
E′ = {(u,w) ∈ E | u,w ∈ V ′}.

A rooted tree is labeled if every node is labeled by some alphabet. A rooted
tree is ordered if a left-to-right order among siblings is fixed; unordered otherwise.
In particular, for nodes u and v in an ordered tree, u is to the left of v, denoted
by u 	 v, if pre(u) ≤ pre(v) and post(u) ≤ post(v) for the preorder number pre
and the postorder number post . In this paper, we call a rooted labeled tree a tree
simply. If it is necessary to distinguish, we call either ordered trees or unordered
trees.

We say that two sets A and B are incomparable if none of A ⊂ B, A = B
and B ⊂ A holds, that is, there exist both a ∈ A \ B and b ∈ B \ A; comparable
otherwise. Also we say that two sequences A1, . . . , An and B1, . . . , Bm of sets
are incomparable if there exist i and j (1 ≤ i ≤ n, 1 ≤ j ≤ m) such that Ai

and Bj are incomparable; comparable otherwise. Furthermore, we call a sequence
A1, . . . , An of sets such that Ai ⊆ Ai+1 (1 ≤ i ≤ n − 1) increasing .

3 Less-Constrained Mapping

In this section, we introduce a less-constrained mapping and characterize it as
cover sequences.

Definition 1 (Mapping [6]). Let T1 and T2 be trees and M ⊆ V (T1)×V (T2).
We say that a triple (M,T1, T2) is a Tai mapping between T1 and T2 if every
pair (v1, w1) and (v2, w2) in M satisfies the following conditions.

1. v1 = v2 iff w1 = w2 (one-to-one condition).
2. v1 ≤ v2 iff w1 ≤ w2 (ancestor condition).
3. v1 	 v2 iff w1 	 w2 (sibling condition).

For unordered trees, the condition 3 is omitted. We will use M instead of
(M,T1, T2) when there is no confusion. Furthermore, we denote the set {v ∈
T1 | (v, w) ∈ M} by M |1 and the set {w ∈ T2 | (v, w) ∈ M} by M |2.

Definition 2 (Less-Constrained Mapping [3,4]). Let T1 and T2 be trees.
We say that a mapping M between T1 and T2 is a less-constrained mapping if
M satisfies the following condition.
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Fig. 1. Trees T0, T1, T2 and T3 (upper), mappings M1, M2 and M3 (center) and
mappings M4, M5 and M6 (lower) in Example 1.

∀(v1, w1), (v2, w2), (v3, w3) ∈ M
(
v1�v2 < v1�v3 =⇒ w2�w3 = w1�w3

)
.

Or equivalently [3]:

∀(v1, w1), (v2, w2), (v3, w3) ∈ M
(
w1�w2 < w1�w3 =⇒ v2�v3 = v1�v3

)
.

Example 1. Consider trees T0, T1, T2 and T3 in Fig. 1 (upper). Also suppose
that Mi is a mapping {(v1, w1), (v2, w2), (v3, w3), (v4, w4)} between T0 and Ti

(i = 1, 2, 3) in Fig. 1 (center). Then, M1 and M2 are less-constrained mapping,
while M3 is not, because v1 � v2 < v1 � v3 but w2 � w3 < w1 � w3.

Furthermore, let M4 = M3 − {(v1, w1)}, M5 = M3 − {(v2, w2)} and
M6 = M3 − {(v3, w3)} in Fig. 1 (lower). Then, we can show that M4, M5 and
M6 are less-constrained.

Definition 3 (Cover Set and Cover Sequence). Let T be a tree with the
root r, v a node in T and U a set of nodes in T . Also suppose that UPr(v) is
v = v1, . . . , vn = r.

Then, we call a set {w ∈ T [v] | w ∈ U} (or equivalently, T [v] ∩ U) the
cover set of v in T w.r.t. U and denote it by CT (v, U). Also we call a sequence
C1, . . . , Cn such that Ci = CT (vi, U) for every i (1 ≤ i ≤ n) the cover sequence
of v in T w.r.t. U and denote it by ST (v, U).

In particular, we use the cover sequences concerned with a mapping M
between T1 and T2, that is, ST1(v,M |1) and ST2(w,M |2) for (v, w) ∈ M . For
r1 = r(T1) and r2 = r(T2), we call UPr1(v) and UPr2(w) paths of ST1(v,M |1)
and ST2(w,M |2), respectively, and denote them by PT1(v) and PT2(w),
respectively.
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Example 2. Consider mapping M1, M2 and M3 in Example 1. For mapping Mi

(i = 1, 2, 3), we identify vj ∈ Mi|1 with wj ∈ Mi|2 (j = 1, 2, 3, 4) and both of
them are denoted by the index j. Then, the cover sequences ST0(j,Mi|1) and
STi

(j,Mi|2) are described as follows.

ST0(1,Mi|1) = {1}, {1, 2}, {1, 2, 3, 4}.
ST0(2,Mi|1) = {2}, {1, 2}, {1, 2, 3, 4}.
ST0(3,Mi|1) = {3}, {1, 2, 3, 4}.
ST0(4,Mi|1) = {1, 2, 3, 4}.
ST1(1,M1|2) = {1}, {1, 2}, {1, 2, 3, 4}.
ST1(2,M1|2) = {2}, {1, 2}, {1, 2, 3, 4}.
ST1(3,M1|2) = {3}, {1, 2, 3, 4}.
ST1(4,M1|2) = {1, 2, 3, 4}.

ST2(1,M2|2) = {1}, {1, 2, 3, 4}.
ST2(2,M2|2) = {2}, {1, 2, 3, 4}.
ST2(3,M2|2) = {3}, {1, 2, 3, 4}.
ST2(4,M2|2) = {1, 2, 3, 4}.
ST3(1,M3|2) = {1}, {1, 2, 3, 4}.
ST3(2,M3|2) = {2}, {2, 3}, {1, 2, 3, 4}.
ST3(3,M3|2) = {3}, {2, 3}, {1, 2, 3, 4}.
ST3(4,M3|2) = {1, 2, 3, 4}.

Since {1, 2} and {2, 3} are incomparable, so are ST0(2,M3|1) and
ST3(2,M3|2). On the other hand, ST0(j,Mi|1) and STi

(j,Mi|2) are comparable
for (i, j) ∈ {1, 2, 3} × {1, 2, 3, 4} − {(3, 2)}.

Furthermore, consider mappings M4, M5 and M6 in Example 1. Then, the
cover sequences ST0(j,Mi|1) and ST2(j,Mi|2) are described as follows, where
j ∈ Ii and I4 = {2, 3, 4}, I5 = {1, 3, 4} and I6 = {1, 2, 4}. All of them are
comparable.

ST0(2,M4|1) = {2}, {2}, {2, 3, 4}. ST3(2,M4|2) = {2}, {2, 3}, {2, 3, 4}.
ST0(3,M4|1) = {3}, {2, 3, 4}. ST3(3,M4|2) = {3}, {2, 3}, {2, 3, 4}.
ST0(4,M4|1) = {2, 3, 4}. ST3(4,M4|2) = {2, 3, 4}.
ST0(1,M5|1) = {1}, {1}, {1, 3, 4}. ST3(1,M5|2) = {1}, {1, 3, 4}.
ST0(3,M5|1) = {3}, {1, 3, 4}. ST3(3,M5|2) = {3}, {3}, {1, 3, 4}.
ST0(4,M5|1) = {1, 3, 4}. ST3(4,M5|2) = {1, 3, 4}.
ST0(1,M6|1) = {1}, {1, 2}, {1, 2, 4}. ST3(1,M6|2) = {1}, {1, 2, 4}.
ST0(2,M6|1) = {2}, {1, 2}, {1, 2, 4}. ST3(2,M6|2) = {2}, {2}, {1, 2, 4}.
ST0(4,M6|1) = {1, 2, 4}. ST3(4,M6|2) = {1, 2, 4}.

Theorem 1. Let T1 and T2 be trees. Also let M be a mapping between T1 and
T2. Then, M is not a less-constrained mapping between T1 and T2 if and only
if there exists a pair (v, w) ∈ M such that ST1(v,M |1) and ST2(w,M |2) are
incomparable.

Proof. Suppose that there exists a pair (v1, w1) ∈ M such that cover sets C1 ∈
ST1(v1,M |1) and C2 ∈ ST2(w1,M |2) are incomparable. Then, there exist v2 ∈
M |1 and w3 ∈ M |2 such that v2 ∈ C1 − C2 and w3 ∈ C2 − C1. Let v∗ and w∗

be nodes v1 � v2 and w1 � w3, respectively. Then, we can assume that C1 =
CT1(v

∗,M |1) and C2 = CT2(w
∗,M |2). Also consider v3 and w2.

Since v3 �∈ C1, it holds that v∗ < v1 � v3. Since w2 �∈ C2, it holds that w∗ <
w2�w3. Hence, even if v∗ = v1�v2 < v2�v3, it holds that w∗ = w1�w3 < w2�w3,
which implies that M is not a less-constrained mapping.

Conversely, suppose that M is not a less-constrained mapping. Then, there
exist v1, v2, v3 ∈ M |1 and w1, w2, w3 ∈ M |2 such that (1) v1 � v2 < v1 � v3 holds
and either (2) w2 � w3 < w1 � w3 or (3) w2 � w3 > w1 � w3 holds.
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By the condition (1), the cover sequences ST1(v1,M |1) and ST1(v2,M |1) con-
tain a cover set C1 such that {v1, v2} ⊆ C1 and v3 �∈ C1. On the other hand, by
the condition (2), the cover sequence ST2(w2,M |2) contains a cover set C2 such
that {w2, w3} ⊆ C2 and w1 �∈ C2, which implies that C1 and C2 are incompara-
ble. Also, by the condition (3), the cover sequence ST2(w1,M |2) contains a cover
set C3 such that {w1, w3} ⊆ C3 and w2 �∈ C3, which implies that C1 and C3 are
incomparable. ��

Corollary 1. Let T1 and T2 be trees. Also let M be a mapping between T1 and
T2. Then, M is a less-constrained mapping between T1 and T2 if and only if, for
every pair (v, w) ∈ M , ST1(v,M |1) and ST2(w,M |2) are comparable.

4 Alignable Mapping and Alignment Tree

Let T1 and T2 be trees. We say that I is a root-preserving mapping from T1 to T2

if I is a mapping between T1 and T2 and r(T1) ∈ I|1 always holds. In particular,
for v ∈ T1, we denote the node w ∈ T2 such that (v, w) ∈ I by I(v). Note that
T2 is not necessary to be labeled.

Definition 4 (Alignable Mapping [3]). Let T1 and T2 be trees. We say that
M is an alignable mapping between T1 and T2 if there exist a tree T (not
necessary to be labeled) and root-preserving mappings I1 from T1 to T and I2
from T2 to T satisfying that I1(v) = I2(w) for every (v, w) ∈ M . In particular,
we call the tree T an aligned tree between T1 and T2 and the root-preserving
mappings I1 and I2 side mappings of M from T1 and T2, respectively.

Let M be an alignable mapping between T1 and T2 and Ii a side mapping of
M from Ti (i = 1, 2). Then, it holds that M |1 = {v ∈ T1 | I1(v) = I2(w)} and
M |2 = {w ∈ T2 | I1(v) = I2(w)}. For an aligned tree T , we denote the inverse
image of Ii from V (T ) to V (Ti) by I−1

i . In particular, when no v ∈ Ti such that
Ii(v) = u exists for a node u ∈ T , we denote I−1

i (u) by ∅ and l(I−1
i (u)) by ε.

Definition 5 (Alignment Tree [2]). Let M be an alignable mapping between
T1 and T2, Ii a side mapping of M from Ti (i = 1, 2) and T an aligned tree
between T1 and T2. Then, we call the tree obtained by replacing every label of
u ∈ T with (l(I−1

1 (u)), l(I−1
2 (u))) an alignment tree between T1 and T2. For an

alignment tree T , we denote a mapping M between T1 and T2 constructed from
T such that (v, w) ∈ M iff (l(v), l(w)) ∈ T by MT .

Example 3. Consider mappings Mi (i = 4, 5, 6) in Example 1 (Fig. 1). Then,
every mapping Mi is an alignable mapping. Also, the tree T i in Fig. 2 is an
alignment tree between T0 and T3 in Example 1 corresponding to Mi.

Let ε �∈ Σ denote a special blank symbol and define Σε = Σ ∪ {ε}. Then,
we define a cost function γ : (Σε × Σε − {(ε, ε)}) �→ R+ on pairs of labels. We
constrain γ to be a metric, that is, γ(l1, l2) ≥ 0, γ(l1, l1) = 0, γ(l1, l2) = γ(l2, l1)
and γ(l1, l3) ≤ γ(l1, l2) + γ(l2, l3). In particular, the unit cost function μ such
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Fig. 2. The alignment trees T i between T0 and T3 in Example 1.

that μ(a, b) = 0 if a = b and μ(a, b) = 1 if a �= b is the most famous cost function.
The cost of an alignment tree T under γ, denoted by γ(T ), is the sum of the
costs of all labels in T . The minimum cost of all the possible alignment trees is
known to an alignment distance [2].

5 An Alternative Proof of Theorem 2

In this section, by using the cover sequence, Theorem 1 and Corollary 1, we give
an alternative proof of the following Theorem 2.

Theorem 2 (Kuboyama [3]). Let T1 and T2 be trees and M a mapping
between T1 and T2. Then, M is less-constrained if and only if M is alignable.

First, we show the if-direction of Theorem 2.

Lemma 1. Let T1 and T2 be trees and M an alignable mapping between T1 and
T2. Then, M is also a less-constrained mapping.

Proof. For an alignable mapping M , there exists an alignment tree T such that
M = MT . Also suppose that M is not a less-constrained mapping. By Theorem 1,
there exists a pair (v, w) ∈ M such that cover sets C1 ∈ ST1(v,M |1) and C2 ∈
ST2(w,M |2) are incomparable. Then, there exist v1 ∈ M |1 and w2 ∈ M |2 such
that v1 ∈ C1−C2 and w2 ∈ C2−C1. Let v′ and w′ denote v�v1 and w�w2. Then,
we can assume that C1 = CT1(v

′,M |1) and C2 = CT2(w
′,M |2). Also consider

w1 and v2 such that (v1, w1) ∈ M and (v2, w2) ∈ M .
Since M = MT , both (l(v1), l(w1)) and (l(v2), l(w2)) occur in T . Since v1 ∈

C1, it holds that (l(v), l(w)) < (l(v1), l(w1)) in T . Since w2 ∈ C2, it holds
that (l(v), l(w)) < (l(v2), l(w2)) in T . Furthermore, since v1 ∈ C1 − C2 and
w2 ∈ C2 − C1, we can show that (l(v1), l(w1)) # (l(v2), l(w2)) in T as follows.
Note here that we identify vi with wi (i = 1, 2).

If (l(v1), l(w1)) < (l(v2), l(w2)) in T , then it holds that v < v1 < v2 in
T1 and w < w1 < w2 in T2. Then, since v′ = v1 and w′ = w2, it holds that
C1 = CT1(v

′,M |1) ⊆ CT1(v2,M |1) = CT2(w
′,M |2) = C2. If (l(v2), l(w2)) <

(l(v1), l(w1)) in T , then it holds that v < v2 < v1 in T1 and w < w2 < w1

in T2. Then, since v′ = v1 and w′ = w2, it holds that C2 = CT2(w
′,M |2) ⊆

CT2(w1,M |2) = CT1(v
′,M |1) = C1. These imply a contradiction that C1 and C2

are incomparable.
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Hence, it holds that (l(v), l(w)) < (l(v1), l(w1)), (l(v), l(w)) < (l(v2), l(w2))
and (l(v1), l(w1)) # (l(v2), l(w2)) in T for (l(v), l(w)), (l(v1), l(w1)), (l(v2), l(w2))
∈ T , which is a contradiction that T is a tree. ��

In order to show the only-if-direction of Theorem 2, we start the following
lemma.

Lemma 2. Let T1 and T2 be trees and M a less-constrained mapping between T1

and T2. Then, for (v, w) ∈ M , both ST1(v,M |1) and ST2(w,M |2) are comparable
increasing such that the last element of ST1(v,M |1) (resp., ST2(w,M |2)) is M |1
(resp., M |2).

Let M be a mapping between T1 and T2. Then, for every (vj , wj) ∈ M , we
sometimes identify vj ∈ M |1 with wj ∈ M |2 and both of them are denoted by
the index j. Under such an identification, we can regard that M |1 = M |2. Then,
we introduce the following aligned sequence and aligned path for comparable
increasing sequences of sets.

Definition 6 (Aligned Sequence, Aligned Path). Let S1 = A1, . . . , An and
S2 = B1, . . . , Bm be comparable increasing sequences of sets such that An = Bm.
Then, we call the sequences S′

1 = A′
1, . . . , A

′
k and S′

2 = B′
1, . . . , B

′
k obtained from

S1 and S2 by the procedure AlnSq in Algorithm 1 aligned sequences of S1 and
S2. Furthermore, for the aligned sequences S′

1 = A′
1, . . . , A

′
k and S′

2 = B′
1, . . . , B

′
k

of S1 and S2, we define the aligned path of S1 and S2 as a rooted labeled path
P = (V,E) such that V = {p1, . . . , pk}, E = {(pi, pi+1) | 1 ≤ i ≤ k−1}, the root
of P is p1 and the label of pi is (A′

k−i+1, B
′
k−i+1) for 1 ≤ i ≤ k. We sometimes

denote such a path by [p1, . . . , pk].

Example 4. Consider a mapping M2 in Example 1. By Lemma 2, ST0(j,M2|1)
and ST2(j,M2|2) in Example 2 are comparable increasing. Then, we can obtain
the aligned sequences S′

T0
(j,M2|1) and S′

T2
(j,M2|2) illustrated in Fig. 3 (upper).

Also, for an aligned path PM2(j) = [p1, p2, p3] of ST0(j,M2|1) and ST2(j,M2|2),

procedure AlnSq(S1, S2)
/* S1 = A1, . . . , An, S2 = B1, . . . , Bm */
i ← 1; j ← 1; k ← 1;1

while i ≤ n + 1 and j ≤ m + 1 do2

if i = n + 1 then A′
k ← λ; B′

k ← Bj ; j++;3

else if j = m + 1 then A′
k ← Ai; B′

k ← λ; i++;4

else if Ai = Bj then A′
k ← Ai; B′

k ← Bj ; i++; j++;5

else if Ai ⊂ Bj then A′
k ← Ai; B′

k ← λ; i++;6

else if Ai ⊃ Bj then A′
k ← λ; B′

k ← Bj ; j++;7

k++;8

return S′
1 = A′

1, . . . , A
′
k and S′

2 = B′
1, . . . B

′
k;9

Algorithm 1. AlnSq.
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Fig. 3. The aligned sequences S′
T0(j, M2|1) and S′

T2(j, M2|2) of ST0(j, M2|1) and
ST2(j, M2|2) (upper) and the labels in aligned path PM2(j) of ST0(j, M2|1) and
STi(j, M2|2) (lower) in Example 4.

every label l(pi) of a vertex pi (i = 1, 2, 3) in PM2(j) is illustrated in Fig. 3
(lower).

Consider mappings M4, M5 and M6 in Example 1. By Lemma 2, ST0(j,Mi|1)
and ST2(j,Mi|2) (i = 4, 5, 6, j ∈ Ii) in Example 2 are comparable increasing.
Then, we can obtain the aligned sequences S′

T0
(j,Mi|1) and S′

T2
(j,Mi|2) illus-

trated in Fig. 4 (upper). Also, for an aligned path PMi
(j) = [p1, p2, p3, p4] of

ST0(j,Mi|1) and ST2(j,Mi|2), every label l(pi) of a vertex pi in PMi
(j) are illus-

trated in Fig. 4 (lower).

Let M be a less-constrained mapping between T1 and T2, where r1 = r(T1)
and r2 = r(T2). By Lemma 2, for ST1(v,M |1) = A1, . . . , An and ST2(w,M |2) =
B1, . . . , Bm for every (v, w) ∈ M , there exist paths PT1(v) = v1, . . . , vn and
PT2(w) = w1, . . . , wm such that v1 = v, w1 = w, vn = r1 and wm = r2.
Also, by identifying v′ ∈ M |1 with w′ ∈ M |2 for (v′, w′) ∈ M , it holds that
A1 = B1 = {v} = {w} and An = Bm = M |1 = M |2.

Furthermore, suppose that the aligned sequences S′
T1

(v,M |1) of ST1(v,M |1)
and S′

T2
(w,M |2) of ST2(w,M |2) are of the forms A′

1, . . . , A
′
k and B′

1, . . . , B
′
k,

respectively. Then, we denote the corresponding path of S′
T1

(v,M |1) in T1 includ-
ing λ by P ′

T1
(v) = v′

1, . . . , v
′
k such that v′

i = λ if A′
i = λ and v′

i = vi′ otherwise,
where i′ = |{l | 1 ≤ l ≤ i, v′

l �= λ}|. Also we denote the corresponding path
of ST2(v,M |1) in T2 including λ by P ′

T2
(w) = w′

1, . . . , w
′
k such that w′

j = λ if
B′

j = λ and w′
j = wj′ otherwise, where j′ = |{l | 1 ≤ l ≤ j, w′

l �= λ}|.

Lemma 3. Let M be a less-constrained mapping between T1 and T2. Also, for
(v1, w1), (v2, w2) ∈ M , let:
S′

T1
(v1,M |1) = A′

1, . . . , A
′
k, S′

T2
(w1,M |2) = B′

1, . . . , B
′
k,

S′
T1

(v2,M |1) = C ′
1, . . . , C

′
h, S′

T2
(w2,M |2) = D′

1, . . . , D
′
h.

Then, for the maximum indices i and j (2 ≤ i ≤ k, 2 ≤ j ≤ h) such that
(A′

i, B
′
i) = (C ′

j , B
′
j) and (A′

i−1, B
′
i−1) �= (C ′

j−1, B
′
j−1), it holds that (A′

a, B′
a) �=

(C ′
b, B

′
b) for every a (1 ≤ a ≤ i − 1) and b (1 ≤ b ≤ j − 1).
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Fig. 4. The aligned sequences S′
T0(j, Mi|1) and S′

T2(j, Mi|2) of ST0(j, Mi|1) and
ST2(j, Mi|2) (upper) and the labels in aligned path PMi(j) of ST0(j, Mi|1) and
ST2(j, Mi|2) (lower) in Example 4.

Proof. Let A = A′
1 ∪ · · · ∪A′

i−1 −{λ}, B = B′
1 ∪ · · · ∪B′

i−1 −{λ}, C = C ′
1 ∪ · · · ∪

C ′
j−1 − {λ} and D = D′

1 ∪ · · · ∪ D′
j−1 − {λ}. Then, we show that A ∩ C = ∅ and

B ∩ D = ∅.
Suppose that A∩C �= ∅. Then, there exist a vertex v ∈ T1 such that v ∈ A∩C.

Then, it holds that v ∈ P ′
T1

(v1) and v ∈ P ′
T1

(v2). Since T1 is a rooted tree, v1 �v
and v2 � v satisfy one of the statements of v1 � v < v2 � v, v2 � v < v1 � v and
v1 � v = v2 � v. For P ′

T1
(v1) = p′

1, . . . , p
′
k and P ′

T1
(v2) = q′

1, . . . , q
′
h such that

p′
1 = v1, q′

1 = v2, p′
k = q′

h = r(T1), let v∗ = p′
i′+1 = q′

j′+1 ∈ T1. Then, it holds
that v1 � v2 = v∗.

If v1 � v < v2 � v holds, then it holds that v1 � v < v∗, which means that
v �∈ C. If v2 � v < v1 � v holds, then it holds that v2 � v < v∗, which means that
v �∈ A. If v1 � v = v2 � v, then it holds that v∗ ≤ v1 � v = v2 � v, which means
that v �∈ A ∩ C. Hence, it holds that A ∩ C = ∅.

By the same way, we can show that B ∩ D = ∅. Hence, the statement holds.
��

Definition 7 (Merged Graph). For a less-constrained mapping M between
T1 and T2, let PM be the set of all aligned paths concerned with M . Then, we
define the merged graph GM of M as a rooted graph obtained by identifying
vertices with the same labels in PM , where the label of the root is (M |1,M |2).
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Fig. 5. The merged graphs GMi
(i = 2, 4, 5, 6) in Example 5.

Lemma 4. Let T1 and T2 be trees and M a less-constrained mapping between
T1 and T2. Then, the merged graph GM of M is a rooted labeled tree.

Example 5. Consider the mappings M2, M4, M5 and M6 in Example 1. By
Example 4, it holds that PM2 = {PM2(1), PM2(2), PM2(3), PM2(4)} and PMi

=
{PMi

(j) | j ∈ Ii} (i = 4, 5, 6). Then, the merged graphs GMi
of PMi

are illus-
trated in Fig. 5.

Let T1 and T2 be trees, M a less-constrained mapping between T1 and T2

and GM the merged graph of M . Then, we denote the tree obtained by removing
all of the labels in GM by G−

M . Also, for a vertex u ∈ GM , the label of u is of
the form (A,B), where A ⊆ M1 or A = λ and B ⊆ M2 or B = λ. When A �= λ
(resp., B �= λ), there exists a unique vertex in T1 corresponding to A (resp., in T2

corresponding to B), which we denote such a vertex by vT1(A) (resp., vT2(B)).
For every vertex u ∈ GM , consider to replace the label (A,B) of u with

(l(vT1(A)), l(vT2(B))) if A �= λ and B �= λ; (ε, l(vT2(B))) if A = λ and B �=
λ; (l(vT1(A)), ε) if A �= λ and B = λ. We denote the tree obtained by this
replacement of labels in every u ∈ GM from GM by G∗

M .

Lemma 5. Let T1 and T2 be trees, M a less-constrained mapping between T1

and T2 and GM the merged graph of M . Then, G−
M is a subtree of the aligned

tree between T1 and T2, and G∗
M is a subtree of the alignment tree between T1

and T2.

Proof. Note that the labels of vertices in GM are of the form (A,B). Then, by
the definition of GM and Lemma 4, we obtain a subtree of T1 (resp., T2) by first



Anchored Alignment Problem for Rooted Labeled Trees 307

connecting vT1(A) (resp., vT2(B)) for every A (resp., B) and then by deleting λ
and, for a vertex v whose label is λ, connecting the children of v to the parent
of v. Hence, the statement holds. ��

Let P1 be the set of all rooted maximal paths in T1 − {PT1(v) | v ∈ M |1}
and P2 the set of all rooted maximal paths in T2 − {PT2(w) | w ∈ M |2}. For
every P = [p1, . . . , pk] ∈ P1 such that r(P ) = p1, there exists a vertex v ∈ T1

such that v is a parent of p1 in T1, which we denote by parT1
(P ). Similarly, for

every Q = [q1, . . . , qk] ∈ P2 such that r(Q) = q1, there exists a vertex v ∈ T2

such that v is a parent of q1 in T2, which we denote by parT2
(Q).

Furthermore, for every P = [p1, . . . , pk] ∈ P1, we denote a labeled path
obtained by replacing l(pi) with (l(pi), ε) by 〈P, ε〉, and, for every Q =
[q1, . . . , qk] ∈ P2, we denote a labeled path obtained by replacing l(qi) with
(ε, l(qi)) by 〈ε,Q〉.

Lemma 6. Let T1 and T2 be trees and M a less-constrained mapping between
T1 and T2. Then, M is also an alignable mapping.

Proof. It is sufficient to construct an alignment tree between T1 and T2 from M .
By Lemma 5, G∗

M is a subtree of the alignment tree between T1 and T2. In order
to complete the alignment tree, it is necessary to insert the paths not “covered
by” M , which are denoted by the above P1 and P2. Hence, by inserting paths
〈P, ε〉 to the appropriate child of parT1

(P ) in G∗
M for every P ∈ P1 and 〈ε,Q〉

to the appropriate child of parT1
(P ) in G∗

M for every Q ∈ P2, we can obtain the
alignment tree between T1 and T2. ��

It is not necessary for Theorem 2 to distinguish that trees are ordered or
unordered.

6 Anchored Alignment Problem

Finally, we discuss the anchored alignment problem introduced in Sect. 1.

Theorem 3. Let n = |T1|, m = |T2|, h = max{h(T1), h(T2)} and α = |M |.
Then, the problem of AnchoredAlignment can be solved in O(hα2 + n + m)
time and in O(hα) space for both ordered and unordered trees.

Proof. Since the correctness is shown in Sect. 5, it is sufficient to show the time
complexity. We use α-bits {0, 1} vectors for set operations in totally O(hα) space,
which we can prepare in O(hα) time.

For an anchoring M , first check whether or not M is less-constrained by using
Corollary 1. If M is not less-constrained, then return “no,” which runs in O(hα)
time. Otherwise, construct a partial alignment tree T between T1 and T2 by using
the algorithm AlnSq in Algorithm 1. We can check whether Ai = Bj , Ai ⊂ Bj

or Ai ⊃ Bj in Algorithm 1 in O(α) time, so the running time of Algorithm 1 is
O(hα) and the total running time in this process is O(hα2). Next, construct the
merged graph GM and the replacement G∗

M of GM , which runs in O(hα) time
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for ordered trees (just checking adjacent nodes in postorder) and in O(hα2) time
for unordered trees. Finally, add 〈P, ε〉 and 〈ε,Q〉 to T according to Lemma 6,
which runs in O(n + m) time.

Hence, the time complexity is O(hα)+O(hα2)+O(hα)+O(n+m) = O(hα2+
n + m) for ordered trees and O(hα) + O(hα2) + O(hα2) + O(n + m) = O(hα2 +
n + m) for unordered trees. ��

7 Conclusion

In this paper, first we have provided an alternative proof that a mapping is less-
constrained iff it is alignable, by using cover sequences and merged graphs. Then,
we have formulated the problem of AnchoredAlignment and then shown that
we can solve it in O(hα2 +n+m) time and in O(hα) space for both ordered and
unordered trees. Note that, if a given anchoring is optimum, that is, the cost of
a given anchoring is minimum [2], then the problem of AnchoredAlignment
is corresponding to the traceback of the alignment.

As stated in Sect. 1, an anchored alignment tree as output is not necessary
to be optimum; it is just an alignment tree between two trees containing nodes
labeled by pairs of labels in an anchoring. For example, consider the trees T0 and
T3 in Fig. 1 and let M7 in Fig. 6 (left) be an anchor between T0 and T3. Then,
the anchored alignment tree of M7 is T 7 in Fig. 6 (right) such that μ(T 7) = 8
under a unit cost function μ. On the other hand, T 5 in Fig. 2 is the optimum
alignment tree between T0 and T3 such that μ(T 5) = 4.

Fig. 6. A mapping M7 and the anchored alignment tree of M7.

Then, it is a future work to discuss the problem of AnchoredAlignment
such that the anchored alignment tree is optimum. Also, it is a future work to
investigate whether or not we can improve the time complexity to find the align-
ment distance for ordered trees, by using the algorithm to solve the problem of
AnchoredAlignment. Furthermore, it is a future work to discuss the relation-
ship between the results of this paper and the maximum agreement supertrees [1].



Anchored Alignment Problem for Rooted Labeled Trees 309

References

1. Berry, V., Nicolas, F.: Maximum agreement and comaptible supertrees. J. Discrete
Algorothms 5, 564–591 (2007)

2. Jiang, T., Wang, L., Zhang, K.: Alignment of trees - an alternative to tree edit.
Theoret. Comput. Sci. 143, 137–148 (1995)

3. Kuboyama, T.: Matching and learning in trees. Ph.D. thesis, University of Tokyo
(2007)

4. Lu, C.L., Su, Z.-Y., Tang, C.Y.: A new measure of edit distance between labeled
trees. In: Wang, J. (ed.) COCOON 2001. LNCS, vol. 2108, pp. 338–348. Springer,
Heidelberg (2001)

5. Schiermer, S., Giegerich, R.: Forest alignment with affine gaps and anchors, applied
in RNA structure comparision. Theoret. Comput. Sci. 483, 51–67 (2013)

6. Tai, K.-C.: The tree-to-tree correction problem. J. ACM 26, 422–433 (1979)


	Anchored Alignment Problem for Rooted Labeled Trees
	1 Introduction
	2 Preliminaries
	3 Less-Constrained Mapping
	4 Alignable Mapping and Alignment Tree
	5 An Alternative Proof of Theorem 2
	6 Anchored Alignment Problem
	7 Conclusion
	References


