
Translating Simple Legal Text to Formal
Representations

Shruti Gaur(B), Nguyen H. Vo, Kazuaki Kashihara, and Chitta Baral

Arizona State University, Tempe, AZ, USA
{shruti.gaur,nguyen.h.vo,kkashiha,chitta}@asu.edu

Abstract. Various logical representations and frameworks have been
proposed for reasoning with legal information. These approaches assume
that the legal text has already been translated to the desired formal rep-
resentation. However, the approaches for translating legal text into for-
mal representations have mostly focused on inferring facts from text or
translating it to a single representation. In this work, we use the NL2KR
system to translate legal text into a wide variety of formal representa-
tions. This will enable the use of existing logical reasoning approaches
on legal text (English), thus allowing reasoning with text.

Keywords: Natural language processing · Natural language under-
standing · Natural language translation

1 Introduction and Motivation

One of the tasks of the Competition on Legal Information Extraction and Entail-
ment [1] consists of finding whether a given statement is entailed by the given
legal article(s) or not. This is similar to the Recognition of Textual Entailment
(RTE) challenge [3]. It has been observed by Bos and Markert [7] that classifica-
tion based on shallow features alone performs better than theorem proving, for
RTE. Androutsopoulos and Malakasiotis [3] state that most approaches for RTE
do not focus on converting natural language to its formal representation. How-
ever, we believe that approaches using statistical or machine learning methods
on shallow features do not offer much explanation about why a certain sentence
is entailed or not, hence providing little insight into the cause of entailment. In
this respect, we consider the approaches based on logical reasoning to be more
promising.

There have been several works that propose logical representations and log-
ics for representing and reasoning with legal information [11–14,21]. Reasoning
rules and frameworks assume that the information given in the form of natural
language can somehow be understood and represented in the required form. How-
ever, current methods to convert legal text to formal representations [4,8,17,18]
either focus on extracting important facts or are not generalizable to a wide
variety of representations. Currently, there is no consensus on a single repre-
sentation to express legal information. Therefore, a system that can translate
c© Springer-Verlag Berlin Heidelberg 2015
T. Murata et al. (Eds.): JSAI-isAI 2014 Workshops, LNAI 9067, pp. 259–273, 2015.
DOI: 10.1007/978-3-662-48119-6 19



260 S. Gaur et al.

natural language to a wide variety of formal languages, depending on the appli-
cation, is desired. In this paper we show how our NL2KR system can be used for
translation of simple legal sentences in English to various formal representations.
This will facilitate reasoning with various frameworks.

2 Related Work

Some approaches to translate text into formal representations focus on extrac-
tion of specific facts from the text. For example, Lagos et al. [17] present a semi-
automatic method to extract specific information such as events, characters,
roles, etc. from legal text by using the Xerox Incremental Parser (XIP) [2]. The
XIP performs preprocessing, named entity extraction, chunking and dependency
extraction, and combination of dependencies to create new ones. Bajwa et al. [4]
propose an approach to automatically translate specification of business rules in
English to Semantic Business Vocabulary and Rules (SBVR). Their method is
essentially a rule-based information-extraction approach, which identifies SBVR
elements from text. The goal of other approaches like the work by McCarty [18]
is to obtain a semantic interpretation of the complete sentence. This approach
uses the output from the state-of-the-art statistical parser to obtain a semantic
representation called Quasi-Logical Form (QLF). QLF is a rich knowledge rep-
resentation structure which is considered an intermediate step towards a fully
logical form.

There have been similar efforts in other languages. Nakamura et al. [20]
present a rule-based approach to convert Japanese legal text into a logical rep-
resentation conforming to Davidsonian style. They ascertain the structure of
legal sentences and identify cue phrases that indicate this structure, by manu-
ally analyzing around 500 sentences. They also define transformation rules for
some special occurrences of nouns and verbs. In their subsequent work [16], they
propose a method to resolve references that point to other articles or itemized
lists, by replacing them with the relevant content.

As mentioned in the previous section, different legal reasoning frameworks
expect input in different logical representations. Even though Legal Knowledge
Interchange Format (LKIF) [15] was an attempt to standardize the representa-
tion of legal knowledge in the semantic web, currently, no single representation
has been unanimously considered the de-facto standard for legal text. Therefore,
we need a system that can translate natural language to a particular represen-
tation depending on the application.

3 The NL2KR Framework

NL2KR is a framework to develop translation systems that translate natural
language to a wide variety of formal language representations. It is easily adapt-
able to new domains according to the training data supplied. It is based on the
algorithms presented in Baral et al. [5]. The workflow using the NL2KR systems
consists of two phases: (1.) learning and (2.) translation, as shown in Fig. 1.



Translating Simple Legal Text to Formal Representations 261

Fig. 1. The NL2KR system showing learning (left) and translation (right)

In the learning phase, the system takes training data, an initial dictionary and
any optional syntax overrides, as inputs. The training data consists of a num-
ber of natural language sentences along with their formal representations in the
desired target language. The initial dictionary (or lexicon) contains meanings
of some words. The dictionary is manually supplied to the system. Using these
inputs, NL2KR tries to learn the meanings of as many words as possible. Thus,
the output of the learning phase is an updated dictionary which includes the
meanings of all newly learned words. The translation phase uses the dictionary
created by the learning phase to translate previously unseen sentences.

Table 1. Example
John loves Mary
NP (S\NP )/NP NP
john #y.#x.loves(x, y) mary

S\NP
#x.loves(x,mary)

S
loves(john,mary)

At the core of NL2KR are two very ele-
gant algorithms, Inverse Lambda and Gener-
alization, which are used to find meanings of
unknown words in terms of lambda (λ) expres-
sions. NL2KR is inspired1 by Montague’s app-
roach [19]. Every word has a λ expression
meaning. The meaning of a sentence is suc-
cessively built from the combination of the λ
expressions of words according to the rules of
combination in Lambda (λ) calculus [9]. The
order in which the words should be combined is
given by the parse tree of the sentence accord-
ing to a given Combinatory Categorial Grammar (CCG) [22]. As an example
illustrating this approach, consider the sentence “John loves Mary” shown in
Table 1. The CCG category of “loves” is (S\NP)/NP. This means that this word

1 NL2KR cannot be said to be based on Montague Semantics as it does not use
intensional semantics. The translation of natural language to formal language with
the use of lambda calculus, however, is in the same spirit as Montague’s approach.



262 S. Gaur et al.

takes arguments of type NP (noun-phrase) from the left and the right, to form
a complete sentence. From the CCG parse, we observe that “loves” and “Mary”
combine first and then their combination combines with “John” to form a com-
plete parse. The λ expression corresponding to “loves” is #y.#x.loves(x, y)2,
which means that this word takes two inputs, #x and #y as arguments and the
application of this word to the arguments results in a λ expression of the form
loves(x, y).

The close correspondence between CCG syntax and λ calculus semantics
is very helpful in applying this method. In the first step, the λ expression for
“loves” is applied to “Mary”, with the former as the function and the latter
as the argument, in accordance with CCG categories. This application, denoted
as #y.#x.loves(x, y)@mary results in #x.loves(x,mary). Proceeding this way,
the meaning of the sentence is generated in terms of λ expressions. This is
a very elegant way to model semantics and has been widely used [5,6,10,23].
The problem, however, is that for longer sentences, λ expressions become too
complex for even humans to figure out. This problem is addressed by NL2KR by
employing the Inverse Lambda and Generalization algorithms to automatically
formulate λ expressions from words whose semantics are known.

Learning Algorithms: The two algorithms used to learn λ semantics of new
words are the Inverse Lambda and Generalization algorithms. When the λ
expressions of a phrase and that of one of its sub-parts (children in the CCG
parse tree) are known, we can use this knowledge to find the λ expression of
the unknown sub-part. The Inverse Lambda operation computes a λ expres-
sion F such that H = F@G or H = G@F given H and G. These are called
Inverse-L and Inverse-R algorithms, respectively. For example, if we know the
meaning of the sentence “John loves Mary” (Table 1) as loves(john,mary) and
the meaning of John as john, we can find the meaning of “loves Mary” using
Inverse Lambda, as #x.loves(x,mary). Going further, if we know the meaning
of “Mary” as mary, we can find the meaning of “loves” using Inverse Lambda.

The Generalization algorithm is used to learn meanings of unknown words
from syntactically similar words with known meanings. It is used when Inverse
Lambda algorithms alone are not enough to learn new meanings of words or when
we need to learn meanings of words that are not even present in the training
data set. For example, we can generalize the meaning of the word “likes” with
CCG category (S\NP )/NP ), from the meaning of “loves”, which we already
know from the previous example. The meaning of “likes” thus generated will be
#y.#x.likes(x, y). We will illustrate learning in later sections with the help of
examples.

For every sentence in the training set, we first use the CCG Parser to obtain
all possible parse trees. Using the initial dictionary supplied by the user, the
system assigns all known meanings to the words (at the leaf) in each parse tree.
Moving bottom up, it combines as many words with each other as possible(in the

2 # is used in place of λ to enable typing into a terminal.



Translating Simple Legal Text to Formal Representations 263

order dictated by the parse tree) by performing λ applications. The meaning of
each complete sentence is known from the training corpus. We need to traverse
top-down from this known translation, while simultaneously traversing bottom
up, by filling in missing word or phrase meanings. Meanings of unknown words
and phrases are obtained using Inverse Lambda and Generalization, as applica-
ble, until nothing new can be learned.

Dealing with Ambiguity: To deal with ambiguity of words, a parameter
learning method [23] is used to estimate a weight for each word-meaning pair
such that the joint probability of the training sentences getting translated to
their given formal representation is maximized. However, this method might not
work in all cases and more complex approaches, possibly involving word sense
identification from context, might have to be used. Completely addressing this
problem is a part of future work.

Translation Approach: Given a sentence, we consider all the possible parse
trees, consisting of meanings of every word learned by the system or obtained
from Generalization algorithm. Then we use Probabilistic CCG (PCCG) [23] to
find the most probable tree, according to weights assigned to each word.

Availability: NL2KR is freely available for Windows, Linux and MacOSX sys-
tems at http://nl2kr.engineering.asu.edu. It is configurable for different domains
and can be adapted to work with a large number of formal representations.
A tutorial has also been provided.

4 Translating to Formal Legal Representations

NL2KR can be used to translate sentences into various logical representations,
either directly or by using an intermediate language3. It can be customized to
different domains based on the initial dictionary and training data provided.
The quality of these inputs affects NL2KR’s performance. A language class can
be considered a good analogy of NL2KR. The effectiveness of learning depends
on the richness of vocabulary imparted to the students beforehand (similar to
initial lexicon) and the sentences chosen to teach the language (training data).
In our experiments, we observed that learning simpler sentences before complex
ones aided learning. We will also give some guidelines for creating the initial dic-
tionary. Several logics have been proposed in the literature for representing legal
information [11–14,21], from which we have selected a few. In this section, we
will illustrate the method of creating a good initial lexicon and demonstrate how
to use the system to learn new word meanings, with respect to these examples.
We will start with simple examples and progress to more complicated ones.

3 The choice of intermediate language depends on the domain and target languages.
Once an intermediate language has been decided, the conversion can be automated.

http://nl2kr.engineering.asu.edu


264 S. Gaur et al.

4.1 Translating to First Order Logic Representations

In this section, we demonstrate translating a sentence from the Competition on
Legal Information Extraction and Entailment [1] corpus to a first order logic
representation.

Sentence: Possessory rights may be acquired by an agent.
Translation: rights(X) ∧ type(X, possessory) ∧ agent(Y ) >
acquirable(X,Y,may)

Here > is used to denote implication. The form of an action, for e.g., “acquirable”
is action(X,Y,Z). It denotes X(possessory rights) is being acquired by Y(agent)
and the type of this action is Z. In the given example, acquiring is a possibility,
not an obligation, which is why we use may as its type.

Once we provide this training data and other required inputs to the NL2KR
learning interface (Fig. 2), we can start the Learning process. We will describe
how to create inputs for learning in the next sub-section. The initial dictionary
contains a list of words and their meanings in terms of λ expressions. Even if we
do not know meanings of some words, we can use the system to figure them out on
its own, using Inverse Lambda or Generalization algorithms. Figure 2 shows that
the system learns the meaning of “rights” automatically using Inverse Lambda.

Fig. 2. NL2KR automatically learning the meaning of “rights” using Inverse Lambda
Algorithm : feature = rights : [N] : #x3.#x1.right(x1) ∧ type(x1,x3)



Translating Simple Legal Text to Formal Representations 265

4.2 Translating Sentences with Temporal Information

Consider the following sentence and translation, which shows an example of tem-
poral ordering.

Sentence: After the invoice is received the customer is obliged to pay.
Translation: implies(receipt(invoice, T1) ∧ (T2 > T1),
obl(pay(customer, T2)))

Here implies(x, y) denotes x → y. The predicate obl denotes that the action
is an obligation (usually marked by words such as obliged to, shall, must, etc.)
in contrast to a possibility (usually marked by words such as may). T1 and T2
are the instances of time at which the two events occurred.

Words that do not contribute significantly to the meaning of the sentence can
be assigned the trivial meaning #x.x in the dictionary. It is a λ expression that
does not affect the meaning of other λ expressions. We can assign it to words such
as “is”, “to” and “the” since these do not carry much meaning in this example.
Next, we can start entering the meanings that are evident from looking at the
target representation. Since “invoice” occurs as itself, we can give it the simple
meaning invoice (similarly for “customer”). From the representation, we observe
that “received” is a function called receipt with two arguments, hence we can
give it the meaning #x.#t.receipt(x, t) (similarly for “pay”). Obliged is a more
complicated function because it takes another function (pay) as its argument
and therefore uses @y@t to carry forward the variables in pay to the next higher
level of the tree, where we obtain the real arguments (customer and T2). Once all
these meanings (Table 2) have been supplied, the system can automatically find
the meaning of the word “after” using Inverse Lambda algorithm (Fig. 3). This is
remarkable from the perspective that the meaning of “after” looks complicated
and it might be tedious for users to supply such meanings manually in the initial
lexicon. This demonstrates one of the advantages of using NL2KR. The meaning
of “after” makes intuitive sense. The λ expression #x12.#x11.implies(x12 @
T1 ∧ T2 >T1,x11 @ T2) means that “after” is a λ function which takes two
inputs:x11 and x12, where the first input event (x12) occurs at time T1, T2 >T1,
the second input event (x11) occurs at time T2 and x12 implies (or leads to) x11.
Hence, we were able to learn a significantly complicated meaning automatically
by providing relatively simple λ expressions in the initial dictionary.

4.3 Translating to Temporal Deontic Action Laws

Giordano et al. [14] have defined a Temporal Deontic Action Language for defin-
ing temporal deontic action theories, by introducing a temporal deontic exten-
sion of Answer Set Programming (ASP) combined with Deontic Dynamic Linear
Time Temporal Logic (DDLTL). This language is used for expressing domain
description laws, for e.g., action laws, precondition laws, causal laws, etc., which
describe the preconditions and effects of actions. It is also used for expressing
obligations, for e.g., achievement obligations, maintenance obligations, contrary



266 S. Gaur et al.

Table 2. λ expressions and CCG categories in the initial dictionary for the sentence
“After the invoice is received the customer is obliged to pay.”

Word Syntax Meaning

invoice N invoice

is (S\NP)/NP #x.x

received NP #x.#t.receipt(x,t)

customer N customer

obliged NP/NP #x.#y.#t.obl(x@y@t)

to NP/(S\NP) #x.x

pay S\NP #x.#t.pay(x,t)

the NP/N #x.x

to duty obligations, etc. We will take examples of several domain description
laws from the paper and demonstrate how to translate them automatically from
natural language to the Deontic action language, using NL2KR.

Since NL2KR does not support some special symbols used in the Tempo-
ral Deontic Action Language, we first use NL2KR to convert the natural lan-
guage sentences to an intermediate representation which is directly convertible to
the Temporal Deontic Action Language. Then using the one-to-one correspon-
dence between the intermediate language and the action language, we obtain
the desired representation. In the Intermediate representation shown below, we
have defined the predicate creates(x, y), which means x creates y. We have also
changed the representation of until to have two parameters a and b denoting “a
until b” (as defined by Giordano et al. [14]).

Action Law:
Sentence: The action accept price creates an obligation to pay.
Translation: [accept price]O(�U < pay > �)
Intermediate: creates(action(accept price),O(until(a(T),b(pay,T))))

The NL2KR learning component can be used to make the system learn words
and meanings from this sentence. The iterative learning process is depicted in
the screenshot in Fig. 4. We start by giving meanings of simple words first.
We give trivial meanings #x.x to “the”,“an” and “to”, because they do not
significantly affect the meaning of the sentence. Next, we guess the meanings of
words from the target representation. Since “action” is a function that accepts a
single argument, we give it the meaning #x.action(x). Similarly, “accept price”
which occurs as itself is given the meaning accept price. Similarly, Obligation,
O is also a function, but it contains more structure, which can be obtained from
the target representation. We interpret an obligation to also have an implicit
notion of time by having “until” embedded in its meaning. However, the verb
“pay” should be replaceable, because there can be other sentences such as “The
action accept price creates an obligation to ship”. Therefore, we leave it as a



Translating Simple Legal Text to Formal Representations 267

Fig. 3. NL2KR automatically learning the meaning of “after” using Inverse Lambda
Algorithm : feature = after : [(S/S)/S] : #x12.#x11.implies(x12 @ T1 ∧ T2 >T1,x11
@ T2)

variable input. The word “pay” could have been simply pay but we assign it the
meaning #x.x@pay. This is because the node, “an obligation”, expects “to pay”
to be an argument to it, but their CCG categories dictate otherwise. In cases
where there is such inconsistency, we use meanings prefixed with #x.x@ for the
function (according to CCG categories), so that their role is flipped to that
of arguments4. The λ expressions and CCG categories of the constituent words
are shown in Table 3. After giving these meanings, we find that the meaning
of “creates” is obtained automatically by the system using the Inverse Lambda
algorithm (Fig. 4).

Once the learning process is complete, we can use the Translation component
of NL2KR to translate a new sentence. In this case, we use NL2KR to translate
the following action law.

Action Law:
Sentence: The action cancel payment cancels the obligation to pay.
Translation: [cancel payment]¬O(�U < pay > �)
Intermediate: cancels(action(cancel payment),O(until(a(T),b(pay,T))))

The screenshot of the translation process is shown in Fig. 5. We observe
that the sentence was automatically translated by the system successfully. This
was done by generating the meanings of unknown words (“cancel payment”

4 Let the required function be A and the required argument be B. Let the CCG-
determined function be B and the CCG-determined argument be A. Recall that
@ denotes λ application. By giving a meaning of the form #x.(x@b) to B, and
performing application as determined by CCG, we obtain the result as (#x.(x@b))@a
or a@b.



268 S. Gaur et al.

Fig. 4. Screenshot of the Learning Process in NL2KR for the sentence “The action
accept price creates an obligation to pay.” The meaning of “creates” is obtained auto-
matically by the system using the Inverse Lambda algorithm

and “cancels”) using Generalization (Fig. 6) on the words learned from the first
action law.

4.4 Translating to Temporal Object Logic in REALM

Regulations Expressed as Logical Models (REALM) [13] is a system that models
regulatory rules in temporal object logic. The concepts and relationships occur-
ring in this rule are mapped to predefined types and relationships in a Unified
Modeling Language (UML) model. Using some examples from this paper, we will
show how NL2KR can be used to translate rules specified in natural language
to this temporal object logic representation.

Table 3. λ expressions and CCG categories for the words in the action law “The action
accept price creates an obligation to pay.”

Word Syntax Meaning

the NP/N #x.x

action N/N #x.action(x)

accept price N accept price

an NP/N #x.x

obligation N #x.O(until(a(T),b(x,T)))

to (S\NP)/(S\NP) #x.x

pay S\NP #x.x@pay



Translating Simple Legal Text to Formal Representations 269

Fig. 5. Screenshot of the Translation Process in NL2KR for the sentence “The action
cancel payment cancels the obligation to pay.”

Fig. 6. Generating the meanings of unknown words (cancel payment and cancels) using
Generalization during the Translation Process in NL2KR for the sentence “The action
cancel payment cancels the obligation to pay.”

As in the previous section, we have created an intermediate representation
which can directly be converted to the desired temporal object logic representa-
tion. This is needed due to unavailability of certain symbols in NL2KR’s vocab-
ulary. We also assume that coreference in sentences has been resolved. For exam-
ple, in the following sentence, the second occurrence of “bank” has replaced the
pronoun “it”.



270 S. Gaur et al.

Sentence: Whenever a bank opens an account bank must verify customers iden-
tity within two days
Translation: �topen(DoOnF (bank, open, a) →
♦tverify(DoInputF (bank, verify, a.customer.record) ∧ tverify − topen ≤ 2[day])
Intermediate: implies(g(do(bank, open, a, T1)),
f(do(bank, verify, a customer record, T2)
∧equals(difference(T2, T1), two days)))

Similar to the previous examples, we use NL2KR to learn unknown words
from these sentences. We do not give the meaning of “verify” for the second sen-
tence (which is different from its meaning in the first sentence) but the system is
able to figure it out on its own. Moreover, it also generalizes the correct meaning
of three days using the meaning of two days from the previous sentence.

Sentence: Whenever a bank can not verify an identity bank has to close the
account within three days

Table 4. Initial Lexicon containing λ expressions and CCG categories for both REALM
examples

Word[Syntax] Meaning

whenever [(S/S)/S] #y.#x.implies(g(y@T1),f((x@T1)@T2))

a [NP/N] #x.x

bank [N] bank

opens [(S\NP)/NP] #y.#x.#t1.do(x,open,y,t1)

an [NP/N] #x.x

account [N] a

must [(S\NP)/(S\NP)] #x.x

verify [(S\NP)/NP] #x.x@#x1.#x2.#x3.#x4.#x5.(do(x3,verify,x1,x5)

∧ x2@x4@x5)

customers [NP/N] #x.x

identity [N] a customer record

within [(NP\NP)/NP] #z.#y.#x.x@y@#t1.#t2.equals(difference(t2,t1),z)

has [(S\NP)/(S\NP)] #x.x

to [(S\NP)/(S\NP)] #x.x

the [NP/N] #x.x

can [(S\NP)/(S\NP)] #x.x

close [(S\NP)/NP] #x.x@#x1.#x2.#x3.#x4.#x5.(do(x3,close,x1,x5)

∧ x2@x4@x5)

not [(S\NP)/(S\NP)] #y.#x.#t1.(y @ x @ t1 ∧ isfalse)

two days [N] two days



Translating Simple Legal Text to Formal Representations 271

Translation: �topen(DoOnF (bank, open, a) →
♦tverify(DoInputF (bank, verify, a.customer.record) ∧ tverify − topen ≤ 2[day])
Intermediate: implies(g(do(bank, verify, a customer record, T1) ∧ isfalse),
f(do(bank, close, a, T2) ∧ equals(difference(T2, T1), three days)))

We observe that the initial dictionary for this case (Table 4) looks more com-
plicated than the one in Sect. 4.3. This is because the target language in this
case is such that the functions which would have been intuitive according to
their natural language meanings, for e.g., “opens”, “verify”, etc. are not func-
tions but arguments of an artificially created function, “do”. It is obvious that
the language of REALM was designed for different purposes than that of trans-
lation, which is why such a situation exists. Our motivation here is to give the
reader an explanation of why some languages are easy for NL2KR to translate,
while others are more difficult.

5 Conclusion and Future Work

Although legal text is written in natural language, one needs to do some kind
of formal reasoning with it to draw conclusions. The first step to do that is
to translate legal text to an appropriate logical language. At present there is
no consensus on a single logical language to represent legal text. Therefore,
one cannot develop a translation system targeted to a single language. Thus, a
platform that can translate legal text to the desired logical language depending
on the application, is needed. We have developed such a system called NL2KR.
In this paper, we showed how NL2KR is useful in translating sentences from
legal texts in English to various formal representations defined in various works,
thereby bridging the gap from language to logical representation and enabling
the use of various logical frameworks over the information contained in such
texts.

So far we have experimented with a few small sentences picked from the
literature on logical representation of legal texts. However, we need to expand
this approach to capture nuances of legal texts used in real laws and statutes.
Further enhancements are needed in NL2KR to equip it to deal with longer
and more complicated sentences. One approach that can be used would involve
breaking the sentence into smaller parts and subsequently dealing with each
part separately. Such a parser, called L-Parser is available at http://bioai8core.
fulton.asu.edu/lparser. We also plan to combine statistical and logical methods
in the future. In particular, we are considering using a combination of distribu-
tional semantics and hand curated linguistic knowledge to characterize content
words (especially, noun, verbs and adjectives) and use logical characterization
for grammatical words (prepositions, articles, quantifiers, negation, etc.).

Acknowledgements. We thank Arindam Mitra and Somak Aditya for their work in
developing the L-Parser. We thank NSF for the DataNet Federation Consortium grant
OCI-0940841 and ONR for their grant N00014-13-1-0334 for partially supporting the
development of NL2KR.

http://bioai8core.fulton.asu.edu/lparser
http://bioai8core.fulton.asu.edu/lparser


272 S. Gaur et al.

References

1. Jurisin legal information extraction and entailment competition (2014). http://
webdocs.cs.ualberta.ca/miyoung2/jurisin task/index.html

2. Aı̈t-Mokhtar, S., Chanod, J.P., Roux, C.: Robustness beyond shallowness: incre-
mental deep parsing. Nat. Lang. Eng. 8(3), 121–144 (2002)

3. Androutsopoulos, I., Malakasiotis, P.: A survey of paraphrasing and textual entail-
ment methods. J. Artif. Int. Res. 38(1), 135–187 (2010)

4. Bajwa, I.B., Behzad, L.M.: SBVR business rules generation from natural lan-
guage specification. In: AAAI 2011 Spring Symposium AI for Business Agility,
San Francisco, USA, pp. 2–8 (2011)

5. Baral, C., Dzifcak, J., Gonzalez, M.A., Zhou, J.: Using Inverse lambda and Gener-
alization to Translate English to Formal Languages. CoRR abs/1108.3843 (2011)

6. Blackburn, P., Bos, J.: Representation and Inference for Natural Language: A
First Course in Computational Semantics. Center for the Study of Language and
Information, Stanford (2005)

7. Bos, J., Markert, K.: Recognising textual entailment with logical inference. In:
Proceedings of the Conference on Human Language Technology and Empirical
Methods in Natural Language Processing, HLT 2005, pp. 628–635. Association for
Computational Linguistics, Stroudsburg (2005)

8. Brüninghaus, S., Ashley, K.D.: Improving the representation of legal case texts
with information extraction methods. In: Proceedings of the 8th International
Conference on Artificial Intelligence and Law, ICAIL 2001, pp. 42–51. ACM,
New York (2001)

9. Church, A.: An unsolvable problem of elementary number theory. Am. J. Math.
58(2), 345–363 (1936)

10. Costantini, S., Paolucci, A.: Towards translating natural language sentences into
ASP. In: Faber, W., Leone, N. (eds.) CILC, CEUR Workshop Proceedings, vol.
598. CEUR-WS.org (2010)

11. De Vos, M., Padget, J., Satoh, K.: Legal modelling and reasoning using institu-
tions. In: Bekki, D. (ed.) JSAI-isAI 2010. LNCS, vol. 6797, pp. 129–140. Springer,
Heidelberg (2011)

12. Distinto, I., Guarino, N., Masolo, C.: A well-founded ontological framework for
modeling personal income tax. In: Proceedings of the Fourteenth International
Conference on Artificial Intelligence and Law, ICAIL 2013, pp. 33–42. ACM,
New York (2013)

13. Giblin, C., Liu, A.Y., Müller, S., Pfitzmann, B., Zhou, X.: Regulations expressed as
logical models (REALM). In: Proceedings of the 2005 Conference on Legal Knowl-
edge and Information Systems, JURIX 2005, The Eighteenth Annual Conference,
pp. 37–48. IOS Press, Amsterdam (2005)

14. Giordano, L., Martelli, A., Dupré, D.T.: Temporal deontic action logic for
the verification of compliance to norms in ASP. In: Proceedings of the Four-
teenth International Conference on Artificial Intelligence and Law, ICAIL 2013,
pp. 53–62. ACM, New York (2013)

15. Hoekstra, R., Breuker, J., Bello, M.D., Boer, E.: The LKIF core ontology of basic
legal concepts. In: Proceedings of the Workshop on Legal Ontologies and Artificial
Intelligence Techniques, LOAIT 2007 (2007)

16. Kimura, Y., Nakamura, M., Shimazu, A.: Treatment of legal sentences including
itemized and referential expressions – towards translation into logical forms. In:
Hattori, H., Kawamura, T., Idé, T., Yokoo, M., Murakami, Y. (eds.) JSAI 2008.
LNCS, vol. 5447, pp. 242–253. Springer, Heidelberg (2009)

http://webdocs.cs.ualberta.ca/miyoung2/jurisin_task/index.html
http://webdocs.cs.ualberta.ca/miyoung2/jurisin_task/index.html


Translating Simple Legal Text to Formal Representations 273

17. Lagos, N., Segond, F., Castellani, S., O’Neill, J.: Event extraction for legal case
building and reasoning. In: Shi, Z., Vadera, S., Aamodt, A., Leake, D. (eds.) IIP
2010. IFIP AICT, vol. 340, pp. 92–101. Springer, Heidelberg (2010)

18. McCarty, L.T.: Deep semantic interpretations of legal texts. In: Proceedings of
the 11th International Conference on Artificial Intelligence and Law, ICAIL 2007,
pp. 217–224. ACM, New York (2007)

19. Montague, R.: English as a formal language. In: Thomason, R.H. (ed.) Formal
Philosophy: Selected Papers of Richard Montague, pp. 188–222. Yale University
Press, New Haven (1974)

20. Nakamura, M., Nobuoka, S., Shimazu, A.: Towards translation of legal sentences
into logical forms. In: Satoh, K., Inokuchi, A., Nagao, K., Kawamura, T. (eds.)
JSAI 2007. LNCS (LNAI), vol. 4914, pp. 349–362. Springer, Heidelberg (2008)

21. Riveret, R., Rotolo, A., Contissa, G., Sartor, G., Vasconcelos, W.: Temporal accom-
modation of legal argumentation. In: Proceedings of the 13th International Con-
ference on Artificial Intelligence and Law, ICAIL 2011, pp. 71–80. ACM, New York
(2011)

22. Steedman, M.: The Syntactic Process. MIT Press, Cambridge (2000)
23. Zettlemoyer, L.S., Collins, M.: Learning to map sentences to logical form: struc-

tured classification with probabilistic categorial grammars. In: UAI, pp. 658–666.
AUAI Press (2005)


	Translating Simple Legal Text to Formal Representations
	1 Introduction and Motivation
	2 Related Work
	3 The NL2KR Framework
	4 Translating to Formal Legal Representations
	4.1 Translating to First Order Logic Representations
	4.2 Translating Sentences with Temporal Information
	4.3 Translating to Temporal Deontic Action Laws
	4.4 Translating to Temporal Object Logic in REALM

	5 Conclusion and Future Work
	References


