
Scope as Syntactic Abstraction

Chris Barker(B)

New York University, New York, NY 10003, USA
chris.barker@nyu.edu

http://files.nyu.edu/cb125/public/

Abstract. What is the logic of scope? By “scope”, I mean scope-
taking in natural languages such as English, as illustrated by the sen-
tence Ann saw everyone. In this example, the quantifier denoted by
everyone takes scope over the rest of the sentence, that is, it takes
the denotation of the rest of the sentence as its semantic argument:
everyone(λx.saw(x)(ann)). The answer I will give here will be to pro-
vide a substructural logic whose two modes are related by a single struc-
tural postulate. This postulate can be interpreted as constituting a kind
of lambda-abstraction over structures, where the abstracted structures
are interpreted as delimited continuations. I discuss soundness and com-
pleteness results, as well as cut elimination. I also compare the logic to
a number of alternative approaches, including the standard technique
of Quantifier Raising, and mention applications to scope ambiguity and
parasitic scope.

Keywords: Scope · Continuations · Substructural logic · Quantifier
raising · Parasitic scope · Natural language quantification

1 What is the Logic of Scope?

Just as we might ask “What is the logic of negation?”, we might ask “What is
the logic of scope?”. And just as the first question has many answers, so too will
the second. The answer I will give here will take the form of a substructural logic
containing a single structural postulate. I will suggest this logic characterizes a
kind of scope-taking that has applications in the analysis of natural language.

1.1 Scope in Natural Language

Many natural languages have scope-taking expressions, including English:

(1) Ann saw everyone.

In (1), the denotation of the quantifier everyone takes the rest of the sentence in
which it occurs as its semantic argument. That is, the denotation of the sentence
as a whole is given by everyone(λx.saw(x)(ann)).

There are three important properties of scope-taking in natural language
that I will discuss here: unbounded scope displacement, embedded scope-taking,
and scope ambiguity (see [4] for a more complete discussion).
c© Springer-Verlag Berlin Heidelberg 2015
T. Murata et al. (Eds.): JSAI-isAI 2014 Workshops, LNAI 9067, pp. 184–199, 2015.
DOI: 10.1007/978-3-662-48119-6 14

Scope as Syntactic Abstraction 185

(2) Ann saw the mother of everyone’s lawyer.

In (2), despite being embedded inside of two layers of possessive constructions,
the quantifier still takes scope over the entire sentence. In general, there is no
upper limit to the structural distance over which an expression can take scope.

(3) a. Bill thinks [Ann saw everyone].
b. thinks(∀x.saw(x)(ann))(bill)

However, in (3a), the quantifier takes scope only over the [bracketed] embedded
clause Ann saw everyone, which is a proper subpart of the complete sentence.
The fact that scopal elements can take embedded scope is what makes undelim-
ited continuations unsuited to modeling scope (see Chap. 18 of [5] for discussion);
delimited continuations are a better fit.
(4) a. Someone loves everyone.

b. ∃x∀y.loves(y)(x)
c. ∀y∃x.loves(y)(x)

Scope ambiguity can arise when there is more than one quantifier in the sentence.
There can in general be as many as n! distinct denotations, where n is the number
of quantifiers.

1.2 Quantifier Raising

By far the dominant way to think about scope-taking is Quantifier Raising (QR),
as discussed in detail in [8]. Quantifier Raising accounts for unbounded scope
displacement, embedded scope-taking, and scope ambiguity.

From a logical point of view, Quantifier Raising can be seen as a structural
relation. That is, Quantifier Raising reconfigures a logical structure by moving
the quantifier to adjoin to its scope domain, placing a variable in the original
position of the quantifier, and abstracting over the variable at the level of the
scope domain.

[Ann [called everyone]]
QR
⇒ [everyone(λx[Ann [called x]])]

Here, the scope domain of everyone is the entire clause.
Because the QR operation can target embedded S nodes, embedded scope

falls out naturally. Just as naturally, QR easily accounts for scope ambiguity by
allowing QR to target quantifiers in any order.

Linear scoping : [someone [called everyone]]
⇒[everyone(λx[someone [called x]])]
⇒[someone(λy[everyone(λx[y [called x]])])]

Inverse scoping : [someone [called everyone]]
⇒[someone(λy[y [called everyone]])]
⇒[everyone(λx[someone(λy[y [called x]])])]

Raising the direct object first and then the subject gives linear scope, and raising
the subject first and then the direct object gives inverse scope.

186 C. Barker

So far, so good. What remains to be done is to characterize Quantifier Raising
from a logical point of view. This is what the remainder of this paper sets out
to do (see especially the discussion in Sect. 6.4).

1.3 The q Type Constructor

[14] extends Lambek grammar with a type constructor q (‘q’ for ‘quantification’)
which takes three categories as parameters and has the following logical behavior:

Γ [A] � B Σ[C] � D
q

Σ[Γ [q(A,B,C)]] � D
(5)

An expression in category q(A,B,C) functions locally (i.e., with respect to the
context Γ []) as an A, takes scope over a structure in category B, and allows the
structure over which it takes scope to function in the larger context (i.e., with
respect to Σ[]) as an expression of category C. This is exactly what a scope-
taking expression needs to do, and any adequate account of scope in natural
language should account for the ground covered by q.

However, from a logical point of view, q is problematic. For instance, although
it is easy to write a left rule (a rule of use) for q, as in (5), a general right rule (a
rule of proof) remains elusive (see [16]). As I will explain below in Sect. 6.1, the
resolution of this puzzle here will be to factor the q inference into the interaction
of the structural postulate with two independent logical inferences, each of which
has its own left and right rules.

1.4 What this Logic for Scope Will not Account for

The account here seeks only to characterize an idealized, unconstrained version
of quantifier scope. In any natural language, scope-taking will be constrained by
syntactic and lexical factors. See [6] or [10] for formal grammars (also based on
delimited continuations) that propose principled constraints on scope-taking.

2 NLλ

The substructural grammar for characterizing scope discussed here is based on
the non-associative Lambek grammar NL (see, e.g., [13,17]). Since NL rejects all
structural rules, including exchange, there will be two versions of implication: \,
in which the argument is on the left, and /, in which the argument is on the right.

NL characterizes the logic of function/argument combination when the func-
tor is linearly adjacent to the argument. However, for scope-taking, linear adja-
cency is not sufficient. After all, a scope-taker is not adjacent to its argument—it
is contained within its argument. What we need is a syntactic notion of ‘sur-
rounding’ and ‘being surrounded by’. Therefore the grammar here will provide
two modes: not only a merge mode (already introduced), for ordinary func-
tion/argument combination, with implications \ and /; but also a continuation
mode, which will govern scope-taking, with implications � and � . (The inter-
pretation of the continuation mode will be explained shortly).

Scope as Syntactic Abstraction 187

The logical rules for these connectives are identical to the rules given in
[17]:129. They constitute the logical core of a two-mode type-logical grammar:

Axiom
A � A

(6)

Γ � A Σ[B] � C \L
Σ[Γ ·A\B] � C

A·Γ � B \R
Γ � A\B

Γ � A Σ[B] � C
/L

Σ[B/A·Γ] � C

Γ ·A � B
/R

Γ � B/A

Γ � A Σ[B] � C
�L

Σ[Γ ◦ A�B] � C

A ◦ Γ � B
�R

Γ � A�B

Γ � A Σ[B] � C
� L

Σ[B� A ◦ Γ] � C

Γ ◦A � B
� R

Γ � B� A

The sequents in the logical rules above have the form Γ � A, where A is a category
and Γ is a structure. All categories are structures, and if Γ and Δ are structures,
then Γ ·Δ (merge mode) and Γ ◦ Δ (continuation mode) are also structures.

In order to allow expressions to combine with material that surrounds it (or
that it surrounds), we need to add a structural rule. In order to state this structural
rule, we will need to enlarge the set of structures to include gapped structures: if
Σ[Δ] is a structure containing a distinguished substructure Δ, then λα Σ[α] is also
a structure, where α is a variable taken from the set x, y, z, For instance, λxx,
λy y, λx (x·left), λx (John·(saw·x)), and λxλy (y·(saw·x)) are gapped structures.

Although gapped structures have important predecessors, including [7,19],
they are not standard in discussions of substructural logics. One of the main goals
of this paper is to explain how to understand gapped structures. A crucial part
of achieving this goal will be to introduce a second substructural logic in the next
section, NLCL, which will be equivalent to (a restricted version of) NLλ. NLCL is
a standard substructural logic, and does not involve any gapped structures.

With gapped structures in hand, we can state the following structural infer-
ence rule:

Γ [Σ[Δ]] � A
=============== λ
Γ [Δ ◦ λα Σ[α]] � A

(7)

In words: if a structure Σ contains within it a structure Δ, then Δ can take scope
over the rest of Σ, where ‘the rest of Σ’ is represented as the gapped structure
λα Σ[α].

Schematically, we have:

(8)
The postulate says that if Δ (the small grey triangle) is some structure embed-
ded within a larger structure Σ (the complete larger triangle), we can view
these components in a completely equivalent way by articulating them into a
foreground and a background, that is, into a plug and a context—an expression
and its continuation. Then Δ will be the foregrounded expression, and the clear
notched triangle will be its context, the continuation λαΣ[α].

188 C. Barker

An expression in a category with the form A�B is a continuation: something
that would be a complete expression of category B, except that it is missing an
expression of category A somewhere inside of it. An expression in a category
with the form C� (A�B) will be something that combines with a continuation
of category A�B surrounding it to form a result expression of category C.

This logic allows for unbounded scope displacement, since there are no con-
straints on the complexity of the scope host Σ. It also allows for embedded
scope-taking, since Γ may be non-empty. As for scope ambiguity, we have the
following two derivations:

DP·(loves·DP) � S
λ

DP ◦ λx(DP·(loves·x)) � S
�R

λx(DP·(loves·x)) � DP�S S � S
� L

S� (DP�S) ◦ λx(DP·(loves·x)) � S
lex

everyone ◦ λx(DP·(loves·x)) � S
λ

DP·(loves·everyone) � S
λ

DP ◦ λx(x·(loves·everyone)) � S
�R

λx(x·(loves·everyone)) � DP�S S � S
� L

S� (DP�S) ◦ λx(x·(loves·everyone)) � S
lex

someone ◦ λx(x·(loves·everyone)) � S
λ

someone·(loves·everyone) � S

The Curry-Howard labeling for this derivation (see [5]) is ∃x∀y.loves y x. In gen-
eral, the scope-taker that is focussed (i.e., targeted by the structural postulate)
lower in the proof takes wider scope.

DP·(loves·DP) � S
λ

DP ◦ λx(x·(loves·DP)) � S
�R

λx(x·(loves·DP)) � DP�S S � S
� L

S� (DP�S) ◦ λx(x·(loves·DP)) � S
lex

someone ◦ λx(x·(loves·DP)) � S
λ

someone·(loves·DP) � S
λ

DP ◦ λx(someone·(loves·x)) � S
�R

λx(someone·(loves·x)) � DP�S S � S
� L

S� (DP�S) ◦ λx(someone·(loves·x)) � S
lex

everyone ◦ λx(someone·(loves·x)) � S
λ

someone·(loves·everyone) � S

In this case, the semantic labeling gives the universal wide scope: ∀y∃x.loves y x.

Scope as Syntactic Abstraction 189

3 Soundness and Completeness via NLCL

The proofs of soundness and completeness for NLλ will proceed by defining
NLCL, a more standard substructural logic whose soundness and completeness
follows from the general results of [20]. I will then give conditions under which
NLλ and NLCL are equivalent.

NLCL has the same logical rules as NLλ. Instead of the structural postulate
λ, however, NLCL has the following three structural postulates:

p
=== I
p ◦ I

p·(q ◦ r)
========= B
q ◦ ((B·p)·r)

(p ◦ q)·r
========= C
p ◦ ((C·q)·r) (9)

These postulates are identical to the ones given in [2]. [20]:30 considers I (which
he writes ‘0’) as “a zero-place punctuation mark,” where punctuation marks
(p. 19) “stand to structures in the same way that connectives stand to formulae.”
Likewise, B and C are also zero-place punctuation marks. The double horizontal
line indicates that these rules are bi-directional, i.e., inference in the top-to-
bottom direction and in the bottom-to-top direction are both valid. Restall calls
the top-to-bottom inference for the I postulate Push, and the other direction Pop.

In the form of an official inference rule, the I postulate (for instance) is written

Σ[p] � A
=========
Σ[p ◦ I] � A

, (10)

and similarly for the other rules.
An example derivation will show how these postulates work together to

achieve in-situ quantification for the sentence John saw everyone:

DP � DP

DP � DP S � S \L
DP·DP\S � S

/L
DP·((DP\S)/DP·DP) � S

lex
john·(saw·DP) � S

I
john·(saw·(DP ◦ I)) � S

B
john·(DP ◦ ((B·saw)·I))) � S

B
DP ◦ ((B·john)·((B·saw)·I)) � S

�R
(B·john)·((B·saw)·I) � DP�S S � S

� L
S� (DP�S) ◦ ((B·john)·((B·saw)·I)) � S

lex
everyone ◦ ((B·john)·((B·saw)·I)) � S

B
john·(everyone ◦ ((B·saw)·I)) � S

B
john·(saw·(everyone ◦ I)) � S

I
john·(saw·everyone) � S

(11)

190 C. Barker

NLCL is sound and complete with respect to the usual class of relational mod-
els. This follows directly from the proofs given in [20], Chap. 11. In particular,
[20]:249 provides an algorithm for constructing frame conditions corresponding
to the structural postulates.

Theorem (Soundness and Completeness): X � A is provable in NLCL iff for
every model M = 〈F , |=〉 that satisfies the frame conditions, ∀x ∈ F , x |= X →
x |= A.

Proof: given in [20], theorems 11.20, 11.37.
Furthermore, NLCL is conservative with respect to NL. That is,

Theorem (Conservativity): Let an NL sequent be a sequent built up only from
the formulas and structures allowed in NL: /, \, ·. An NL sequent is provable in
NLCL iff it is provable in NL.

See [5] for details.

4 The Connection Between NLλ and NLCL

This section investigates the conditions under which a derivation in NLλ has an
equivalent derivation in NLCL.

I define the following class of structures:

Γ �p�::= p | p ◦ q | q·Γ �p� | Γ �p�·q | λy. Γ �p� (12)

Given a structure p, a � �-context will consist either of the empty context, or else
the entire left element at the top level of a ◦ structure, or else a larger context
built up from · and λ. We can impose these restrictions on NLλ by replacing the
original lambda postulate with one that mentions � �-contexts:

Σ�Δ� ≡ Δ ◦ λα Σ�α� (13)

To illustrate, the following (bidirectional) inferences are licensed by (13):

A
======
A ◦ λxx

A ◦ B
==========
A ◦ λx(x ◦ B)

A·B
=========
A ◦ λx(x·B)

λx.(x·B)
===========
B ◦ λyλx(x·y)

(14)

But not these:
(A·B) ◦ C

==============
A ◦ λx((x·B) ◦ C)

A ◦ B
==========
B ◦ λy(A ◦ y)

(15)

The reason these last two inferences are not allowed is that abstraction across ◦
is forbidden unless the abstractee is the complete left element connected by ◦.

The inspiration for NLCL comes from the well-known equivalence between
the lambda calculus and Combinatory Logic. More specifically, the postulates of
NLCL implement a version of Shönfinkel’s embedding of λ-terms into Combina-
tory Logic. Adapting the presentation in [1]:152, [5] define 〈·〉, which maps an
arbitrary gapped structure into a NLCL structure:

Scope as Syntactic Abstraction 191

〈x〉 ≡ x

〈p·q〉 ≡ 〈p〉·〈q〉
〈p ◦ q〉 ≡ 〈p〉 ◦ 〈q〉
〈λx.p〉 ≡ A(x, 〈p〉)
A(x, x) ≡ i

A(x, p·q) ≡ (B·p)·A(x, q) (x not free in p)
A(x, p·q) ≡ (C·A(x, p))·q (x not free in q)

A(x, x ◦ q) ≡ (C·I) ◦ q (x not free in q)

(16)

With this mapping defined, I can state the following three theorems given in [5])
characterizing the relationship between NLλ and NLCL:

Theorem (Faithfullness of the 〈·〉 mapping from λ-structures into CL-
structures): For any structure p and context Γ � �,

〈p ◦ λxΓ �x�〉
========== CL〈Γ �p�〉 (17)

Here, CL schematizes over some series of structural inferences allowable in NLCL.

Theorem (Embedding of λ-free theorems of NLλ in NLCL): For any derivation
in NLλ (with abstraction restricted to � �-contexts) whose final sequent does not
contain any λ-structures, there is an equivalent derivation in NLCL.

Here, two derivations are equivalent if they differ only in the application of
structural rules. They must have the same axiom instances, the same conclusion,
and the Curry-Howard labeling must be the same up to α-equivalence.

Theorem (Embedding of IBC-free theorems of NLCL in NLλ): for any derivation
in NLCL whose conclusion does not contain the structures I, B, or C, there is an
equivalent derivation in NLλ.

The equivalence involves replacing each instance of I, B, and C with instances
of the lambda postulate as follows:

p
=== I
p ◦ I ∼

p
===== λ
p ◦ λxx

p·(q ◦ r)
========= B
q ◦ ((B·p)·r) ∼ p·(q ◦ r)

============ λ
q ◦ λx(p·(x ◦ r))

(p ◦ q)·r
========= C
p ◦ ((C·q)·r) ∼ (p ◦ q)·r

============ λ
p ◦ λx((x ◦ q)·r)

(18)

Note that each of these applications of the lambda postulate obeys the restriction
to � �-contexts.

Thus NLλ (with the lambda-postulate restricted to � �-contexts) and NLCL

are equivalent: any sequent containing only structures built from · and ◦ will be

192 C. Barker

a theorem of one just in case it is a theorem of the other. Furthermore, for each
derivation in one system, there will be a matching derivation in the other that
differs only in the application of structural rules, which means that the semantic
values of the two derivations will be identical. Since NLCL is conservative with
respect to the non-associative Lambek grammar NL, NLλ is too. As a result,
NLλ with restricted abstraction contexts can be used with full confidence that
it is equivalent to an ordinary and well-behaved substructural grammar.

5 Cut elimination and decidability

5.1 Cut Elimination for NLλ

The cut rule characterizes transitivity of the logical system:

Γ � A Σ[A] � B
cut

Σ[Γ] � B
(19)

The cut rule says that if Γ is a proof of A, and Σ is a proof of B that depends on
proving A, then we can construct a new proof of B in which A has been replaced
with Γ . The formula A has been ‘cut out’ of the derivation.

The proof strategy, just as it was above for completeness, will be to rely
on Restall’s general proof of cut elimination for Gentzen-style sequent systems.
This strategy emphasizes the ordinariness and the standardness of the logics
here, and how they fit into a larger landscape of substructural logics.

In order for Restall’s proof to apply, we need to demonstrate that the cut
rule, the structural rule, and the logical rules conform to certain conditions. This
is perfectly straightforward (see [5] for full details). Therefore we have:

Theorem (Cut Elimination): given that the parameter conditions, the elim-
inability of matching principal constituents, and the regularity condition hold,
if Γ � A and Δ[A] � B are provable, then Δ[Γ] � B is also provable.

Proof: see [20]: Sect. 6.3.

5.2 Decidability of NLλ

Decidability is a property a logic has if it is always possible to figure out whether
a sequent is a theorem (has a proof, has a derivation) in a bounded amount of
time, where the bound is some concrete function of the complexity of the sequent
to be proved.

The structural postulate given above in (7) is a reversible inference, that is,
it is bidirectional. In the discussion that follows, it will be helpful to keep track
of the two directions separately:

Σ[Δ�A�] � B
reduction

Σ[A ◦ λxΔ�x�] � B

Σ[A ◦ λxΔ�x�] � B
expansion

Σ[Δ�A�] � B
(20)

Scope as Syntactic Abstraction 193

Since in proof search we are starting with the conclusion and trying to find
appropriate premises, the names ‘reduction’ and ‘expansion’ are relative to the
bottom-to-top direction of reading proofs. The main challenge for decidability is
that there is no limit to the opportunities for expansion, since B ≡ B ◦ λxx ≡
(B ◦ λxx) ◦ λxx ≡

I will leave a full account of the decidability of NLλ for another occasion. Never-
theless, Iwill discuss a strategy thathandles the vastmajority of cases.Thegoalwill
be to push each Expansion inference upwards in the proof until one of two things
happens: either it encounters a matching Reduction instance, in which case the
two rules cancel each other out, and can be eliminated from the proof; or else the
expansion is adjacent to a logical rule that introduces the focussed occurrence of ◦.

It turns out that the only candidate for such a logical rule is� L.

λxΓ �x� � A Σ�B� � C
� L

Σ[B� A ◦ λxΓ �x�] � C
exp

Σ[Γ �B� A�] � C

≡ λxΓ �x� � A Σ[B] � C
� Lλ

Σ[Γ �B� A�] � C
(21)

We can replace the adjacent pair of inferences on the left with the derived infer-
ence on the right, which we can call� Lλ. By repeated application of this rea-
soning, almost every instance of Expansion can either be eliminated, or replaced
with an instance of � Lλ. (There are exceptions that include certain parasitic
scope configurations that will not be discussed here).

Having eliminated almost all expansion inferences, we can eliminate Reduc-
tion inferences in a similar fashion. That is, reasoning dually, Reduction infer-
ences can be pushed downwards until the Reduction encounters an instance of
�R that targets the ◦ connective introduced by Reduction. And once again, we
can replace the combination of the reduction and the instance of �R with a
derived rule that captures their net effect:

Γ �A� � B
red

A ◦ λxΓ �x� � B
�R

λxΓ �x� � A�B

≡ Γ �A� � B
�Rλ

λxΓ �x� � A�B
(22)

At this point, we have two derived logical inferences: �Rλ, and� Lλ. The �Rλ

rule says that in-situ elements can take scope directly from embedded positions,
without needing to first be abstracted leftwards. Dually, the� Lλ rule says that
a context can surround a scope-taker even when the scope-taker is embedded in
a still larger surrounding context. Adding the two derived logical rules to the
standard logical rules leads to derivations of in-situ scope-taking, illustrated here
for the sentence Ann saw everyone:

ann·(saw·DP) � S
�Rλ

λx.ann·(saw·x) � DP�S S � S
� Lλ

ann·(saw·S� (DP�S)) � S

ann·(saw·everyone) � S

(23)

194 C. Barker

In effect, we have compiled both parts of the structural rule into the logical rules.
If we add these two derived logical rules to the grammar, we can consider an
approximation of NLλ that consists entirely of logical rules.

Note that in this modified logic, each inference rule, including the derived infer-
ence rules, eliminates exactly one logical connective.As a result, nopart of theproof
can have a depth greater than the number of logical connectives in the final sequent.
Since there is at most a finite number of ways to apply each rule to a given occur-
rence of a logical connective, decidability of the modified logic follows immediately.

5.3 Proof Search with Gaps

The treatment of scope-taking can be extended to a treatment of overt syntactic
movement (see [5]). From the point of view of decidability, gaps are a challenge,
since they allow us to posit new structure during the course of a proof search,
in which case we lose the subformula property. An extension of the technique
developed in the previous section allows derivations with gaps without giving up
decidability.

Γ [B·A] � C
�Rlgap

Γ [A] � B�C

Γ [A·B] � C
�Rrgap

Γ [A] � B�C
(24)

Since each of these inferences has the subformula property, and moreover, elim-
inates a logical connective, adding them to the logic will not compromise decid-
ability.

To illustrate these logical rules in action, here is a derivation of the wh-
question Who did Ann see (with did suppressed for simplicity):

ann·(see·DP) � S
�Rlgap

ann·see � DP�S Q � Q
/L

Q/(DP�S)·(ann·see) � Q
lex

who·(ann·see) � Q

(25)

6 Comparisons with Other Approaches

The participants at LENSL11 kindly suggested a number of other approaches to
the logic of scope-taking that it would be useful to compare with the approach
presented here. In this section, I will discuss Moortgat’s [14] q type constructor
(mentioned above); a multi-modal analysis also due to Moortgat [15]; Morrill
et al.’s notion of scope-taking as discontinuity [16,18]; and, finally, standard
Quantifier Raising.

6.1 Deriving the q Type Constructor

If we carry the strategy in Sect. 5 of fusing inferences into derived inferences one
step further, we derive the rule of use for Moortgat’s q type constructor, given
above in (5):

Scope as Syntactic Abstraction 195

Γ �A� � B
�Rλ

λxΓ �x� � A�B Σ[C] � D
� Lλ

Σ[Γ �C� (A�B)�] � D

≈ Γ �A� � B Σ[C] � D
q

Σ[Γ [q(A,B,C)]] � D
(26)

We now have an explanation for why it was impossible to find a general right
rule for the q type constructor: it is because the q inference represents the fusion
of two logically distinct inferences, each with their own left and right rules.

In support of the usefulness of factoring the q into independent components,
consider ‘parasitic scope’, a technique proposed in [2] to account for the scope-
taking behavior of adjectives such as same and different. Parasitic scope requires
the inferences tobe interleaved in away that cannotbeduplicatedby the q inference
alone:

(the·(N/N·waiter))·(served·DP) � S
�Rλ

λx.(the·(N/N·waiter))·(served·x) � DP�S
�Rλ

λyλx.(the·(y·waiter))·(served·x) � (N/N)�(DP�S) DP�S � DP�S
� Lλ

λx.(the·((DP�S)� ((N/N)�(DP�S))·waiter))·(served·x) � DP�S
lex

λx.(the·(same·waiter))·(served·x) � DP�S S � S
� Lλ

(the·(same·waiter))·(served·S� (DP�S)) � S
lex

(the·(same·waiter))·(served·everyone) � S

(27)

Although the innermost pair of � Lλ and �Rλ can be fused into a single
instance of the q inference, the outermost pair cannot.

6.2 Comparison with a Unary Modality Strategy

Moortgat, in [15], gives an analysis that at first glance is strikingly similar to
NLCL. The heart of the approach is a set of three structural postulates, lined
up here in (29) underneath the corresponding NLCL postulates.

NLCL :
p

=== I
p ◦ I

p·(q ◦ r)
========= B
q ◦ ((B·p)·r)

(p ◦ q)·r
========= C
p ◦ ((C·q)·r) (28)

Unary modalities :
p

=== P0
p ◦ I

p·(q ◦ r)
======== P2
q ◦ 〈r〉(p·r)

(p ◦ q)·r
======== P1
p ◦ 〈l〉(q·r) (29)

Both sets of postulates regulate the interaction of two binary modalities, · and ◦.
The postulates in (29) make use in addition of two unary modalities, 〈l〉, and 〈r〉.
(I’ve omitted a third unary modality, ♦, in order to emphasize the similarities
between the approaches, and to simplify the discussion immediately below.) The
presence or absence of the 〈l〉 and 〈r〉 modalities track the path between the in-
situ position of a scope-taker and its scope position, very much like the structural
punctuation marks B and C do in a NLCL derivation.

196 C. Barker

The key difference between the two systems is that decorating a constituent
with a unary modality blocks further abstraction from that constituent. As a
result, the unary modalities are able to track at most one scope path at a
time in the general case. In contrast, NLCL allows multiple scope-takers to
simultaneously share the same abstraction path without those paths getting
confused. For example, note that in NLλ, the structure p·(q·s) is equivalent to
q ◦ (s ◦ λyλx(p·(x·y))). A derivation of the corresponding equivalence in NLCL is
given on the left:

q ◦ (s ◦ ((B·(B·p))·((B·(C·I))·I)))
B

q ◦ ((B·p)·(s ◦ ((B·(C·I))·I)))
B

q ◦ ((B·p)·((C·I)·(s ◦ I)))
I

q ◦ ((B·p)·((C·I)·s))
B

p·(q ◦ ((C·I)·s))
C

p·((q ◦ I)·s)
I

p·(q·s)

q ◦ 〈r〉(p·〈l〉(s ◦ 〈r〉(I·I)))
P2

q ◦ 〈r〉(p·〈l〉(I·(s ◦ I)))
P0

q ◦ 〈r〉(p·〈l〉(I·s))
P2

p·(q ◦ 〈l〉(I·s))
P1

p·((q ◦ I)·s)
P0

p·(q·s)

(30)

The derivation on the right using unary modalities can’t be completed. The
structure s gets trapped underneath an instance of the 〈l〉 operator, which pre-
vents s from taking scope just underneath q.

This limitation prevents the unary modality strategy from accounting for
the full range of scope analyses that have been proposed in the literature. In
particular, the configuration derived by NLλ and NLCL in the example in (30)
is an instance of parasitic scope. Parasitic scope has been advocated as a scope-
taking strategy for handling a number of phenomena, including adjectives of
comparison such as same and different [2], as illustrated in (27); respective
and symmetrical predicates [12]; certain uses of the adjective average [9]; non-
constituent coordination [11]; as well as for verb phrase ellipsis, sluicing, and
anaphora in general [3], following [18]. NLλ and NLCL were originally proposed
precisely in order to handle parasitic scope.

6.3 Comparison with Discontinuous Lambek Grammar

Morrill, Valent́ın and Fadda, in [18] and [21], present a type-logical grammar
called Discontinuous Lambek Grammar. Though different from NLλ in its his-
torical development (see [2] versus [18]:11) and in form, the expressive power
and the specific analyses it provides are closely parallel to those of NLλ.

On a conceptual level, there is a dramatic difference. Discontinuous Lambek
Grammar views the argument that a scope-taker combines with (its nuclear scope)
as a discontinuous constituent. For instance, in the sentence Mary claimed John
wanted everyone to read the book, the nuclear scope of everyone corresponds to the
discontinuous string John wanted ... to read the book. Continuation-based gram-
mars such as NLλ and NLCL view this portion of a linguistic tree as a unit: it is a

Scope as Syntactic Abstraction 197

constituent with one piece removed (in the position of the scope-taker). All of its
parts are connected, so it is a contiguous, single constituent, as illustrated in (8).

The correspondence between Discontinuous Lambek Grammar and NLλ is
easiest to see at the level of categories. Following [16], Morrill et al. define a type
connective ‘↑’ such that B ↑ A means (roughly) “a discontinuous expression
that would be of category B if one of its gaps were filled with an expression of
category A”. This is functionally equivalent to our A�B (note the reversal of the
order of the subcategories). Likewise, they define a complementary connective
‘↓’ such that D ↓ C means “an expression that would be of category C, if only
it were first substituted into a discontinuous expression of category D”, which is
functionally equivalent to our C� D. (Note again the reversal of the categories.)
So their category for a generalized quantifier is ((S1 ↑ DP) ↓ S2), which is
equivalent to our S2� (DP�S1). As a result of this correspondence, multiple
levels of discontinuity in Discontinuous Lambek Grammar can be handled as
different varieties of parasitic scope in NLλ and NLCL, and vice versa.

In addition to a major difference in conceptual foundations, Morrill et al. are
committed to the assumption that natural language is fully associative, that is,
that the structures p · (q · r) and (p · q) · r are fully equivalent. Associativity is
well-established as a default assumption in some varieties of categorial grammar.
However, it is by no means clear that natural language is uniformly associative.
Instead of building associativity into the basic definitions of the grammar, as
Morrill et al. do, a more conservative strategy would be to build a non-associative
grammar, and add associativity in a carefully regulated way, only where needed,
as advocated in [17]. In that spirit, associativity can easily be added to NLλ or
NLCL simply by adding an appropriate structural postulate, if desired.

6.4 Comparison with Quantifier Raising

Here is the structural operation of Quantifier Raising, illustrated with categories
borrowed from NLλ:

198 C. Barker

In NLλ, this derivational step can be simulated closely using the λ postulate
(reading the proof from bottom upwards):

everyone ◦ λx (ann·(saw·x)) � S
λ

ann·(saw·everyone) � S
(31)

So the logic here captures a significant portion of the insight embodied in
Quantifier Raising. Is NLλ then just the logic of Quantifier Raising? In some
sense, clearly yes.

However, there are important differences between Quantifier Raising and the
λ postulate of NLλ.

For one, the lambda postulate is bidirectional. This reflects the fact that the
two structures it relates are fully equivalent logically: they denote the same object
in the model. In contrast, in the treatment in, e.g., [8], the pre-QR structure
does not have a denotation. Thus the main motivation for executing an instance
of Quantifier Raising is to produce a new meaning. In contrast, the lambda
postulate here is a structural rule. Like all structural rules, the effect of the
rule on the Curry-Howard labeling is null (no change to the semantic labeling).
Quantifier Raising is conceived of as a rule that has a semantic effect but no
syntactic effect (it constitutes ‘covert’ movement); the lambda postulate here
has a syntactic effect, but no semantic effect. Its role in the logic is purely to
characterize the syntactic operation by which a delimited continuation combines
with its functor (by being surrounding by it) or its argument (by surrounding
it).

For another difference, Quantifier Raising can create unbound traces.

Unbound trace: [[some [friend [of everyone]]][called]]
⇒[everyone(λy[[some [friend [of y]]][called]])]
⇒[[some [friend [of y]]](λx[everyone(λy.x)][called])]

If QR targets the embedded quantifier everyone first, and then targets the origi-
nally enclosing quantifier some friend of , the variable introduced by the QR of
everyone (in this case, y) will end up unbound (free) in the final Logical Form
structure. In a QR system, such derivations must be stipulated to be ill-formed.
In the logics developed here, unbound traces cannot cause any problems.

Finally, although I have not emphasized this in the discussion here, the sub-
structural logics given here allow fine-grained control over order of evaluation,
allowing accounts of order-sensitive phenomena such as crossover, reconstruction,
negative polarity licensing, and more. Evaluation order and its applications in
natural language are discussed in detail in [5].

7 Conclusion

What is the logic of scope? With natural language in mind, here is my answer:
when an expression takes scope, it combines with one of its delimited continua-
tions. The substructural logics given here, NLλ and NLCL, illustrate two equiva-
lent ways to implement a concrete continuation-based grammar. These grammars

Scope as Syntactic Abstraction 199

are perfectly kosher substructural logics. In particular, they are sound and com-
plete with respect to the usual class of models, they are conservative with respect
to NL, and they enjoy cut elimination. Finally, although I presented a promising
proof search strategy, a full account of decidability will have to wait for a future
occasion.

References

1. Barendregt, H.P.: The Lambda Calculus: Its Syntax and Semantics. Elsevier,
North-Holland (1984)

2. Barker, C.: Parasitic scope. Linguist. Philoso. 30, 407–444 (2007)
3. Barker, C.: Scopability and sluicing. Linguist. Philosop. 36(3), 187–223 (2013)
4. Barker, C.: Scope. In: Lappin, S., Fox, C. (eds.) The Handbook of Contemporary

Semantics, 2d edn. Wiley-Blackwell, Malden (2014)
5. Barker, C.: Shan, Chung-chieh: Continuations and Natural Language. Oxford Uni-

versity Press, New York (2014)
6. Charlow, S.: On the semantics of exceptional scope. NYU Ph.D. dissertation (2014)
7. de Groote, P.: Towards abstract categorial grammars. In: Proceedings of the

40th Annual Meeting of the Association for Computational Linguistics. Morgan
Kaufmann (2002)

8. Heim, I., Kratzer, A.: Semantics in generative grammar. Oxford (1998)
9. Kennedy, C., Stanley, J.: On average. Mind 118(471), 583–646 (2009)

10. Kiselyov, O., Shan, C.: Continuation hierarchy and quantifier scope. In: McCready,
E., Yabushita, K., Yoshimoto, K. (eds.) Formal Approaches to Semantics and Prag-
matics. Springer, Netherlands (2014)

11. Kubota, Y.: Nonconstituent coordination in Japanese as constituent coordination:
An analysis in Hybrid Type-Logical Categorial Grammar. Linguistic Inquiry 46.1
(2015)

12. Kubota, Y., Levine, R.: Unifying local and nonlocal modelling of respective and
symmetrical predicates. In: Morrill, G., Muskens, R., Osswald, R., Richter, F. (eds.)
Formal Grammar. LNCS, vol. 8612, pp. 104–120. Springer, Heidelberg (2014)

13. Lambek, J.: The mathematics of sentence structure. Am. Math. Monthly 60(3),
154–170 (1958)

14. Moortgat, M.: Categorial Investigations: Logical and Linguistic aspects of the Lam-
bek calculus. Foris, Dordrecht (1988)

15. Moortgat, M.: In situ binding: a modal analysis. In: Dekker, P., Stokhof, M. (eds.)
Proceedings of the 10th Amsterdam Colloquium, pp. 539–549. Institute for Logic,
Language and Computation, Universiteit van Amsterdam (1996a)

16. Moortgat, M.: Generalized quantification and discontinuous type constructors. In:
Bunt, H.C., van Horck, A. (eds.) Discontinuous Constituency, pp. 181–207. Mouton
de Gruyter, Berlin (1996b)

17. Moortgat, M.: Categorial Type Logics. In: van Benthem, J., ter Meulen, A.G.B.
(eds.) The Handbook of Logic and Language. Elsevier, Amsterdam (1997)

18. Morrill, G., Valentn, O., Fadda, M.: The displacement calculus. J. Logic Lang.
Inform. 20(1), 1–48 (2011)

19. Muskens, R.: λ-grammars and the syntax-semantics interface. In: van Rooij, R.,
Stokhof, M. (eds) Proceedings of the 13th Amsterdam Colloquium, ILLC (2001)

20. Restall, G.: An introduction to substructural logics. Routledge, London (2000)
21. Valent́ın, O.: Theory of discontinuous lambek calculus. Ph.D. thesis, Universitat

Autonma de Barcelona (2012)

	Scope as Syntactic Abstraction
	1 What is the Logic of Scope?
	1.1 Scope in Natural Language
	1.2 Quantifier Raising
	1.3 The q Type Constructor
	1.4 What this Logic for Scope Will not Account for

	2 NL
	3 Soundness and Completeness via NLCL
	4 The Connection Between NL and NLCL
	5 Cut elimination and decidability
	5.1 Cut Elimination for NL
	5.2 Decidability of NL
	5.3 Proof Search with Gaps

	6 Comparisons with Other Approaches
	6.1 Deriving the q Type Constructor
	6.2 Comparison with a Unary Modality Strategy
	6.3 Comparison with Discontinuous Lambek Grammar
	6.4 Comparison with Quantifier Raising

	7 Conclusion
	References

