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Abstract. We introduce internal differential boomerang distinguisher
as a combination of internal differentials and classical boomerang distin-
guishers. The new boomerangs can be successful against cryptographic
primitives having high-probability round-reduced internal differential
characteristics. The internal differential technique, which follow the evo-
lution of differences between parts of the state, is particularly meaningful
for highly symmetric functions like the inner permutation Keccak-f of
the hash functions defined in the future SHA-3 standard. We find inter-
nal differential and standard characteristics for three to four rounds of
Keccak-f , and with the use of the new technique, enhanced with a strong
message modification, show practical distinguishers for this permutation.
Namely, we need 212 queries to distinguish 7 rounds of the permutation
starting from the first round, and approximately 218 queries to distin-
guish 8 rounds starting from the fourth round. Due to the exceptionally
low complexities, all of our results have been completely verified with a
computer implementation of the analysis.

Keywords: SHA-3 · Keccak · Internal differential · Boomerang ·
Practical-complexity distinguisher

1 Introduction

The family of sponge functions Keccak [3] was one of the proposals for the hash
function competition organized by NIST [29]. In 2012, Keccak was announced
as the winner, and some hash functions from this family will officially become
part of the SHA-3 standard [30], to complement the SHA-2 hash standard. As
such, Keccak is among the most significant cryptographic primitives to date; its
security is therefore of crucial importance.

In the past several years, Keccak has received significant amount of attention
from the cryptographic community, both during the competition and after being
announced as the winning algorithm. Analyses of round-reduced versions have
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been proposed for the hash function, for the underlying permutation, and for
various secret-key schemes based on this permutation. So far, the best attacks
on the hash function in the standard model reach five rounds [14,15], while in
the keyed model reach up to nine rounds [16]. For the underlying permutation,
the best analysis in terms of complexity reaches six rounds and requires 211

queries [22], while in terms of number of rounds, the best is eight and requires
2491 queries [17].

In this paper, we present distinguishers for round-reduced versions of the
permutation Keccak-f used in Keccak based on a new analysis technique called
internal differential boomerang distinguishers. We stress that we propose distin-
guishers on the round-reduced permutation: the paper does not target a keyed
mode using it, while the technique may encourage follow-up works. From a high-
level perspective, this technique resembles classical boomerangs, but in one part
of the boomerang it uses internal differentials, which consider differences between
part of a state, rather than a difference between two states. As a result, our
boomerang produces pairs of state values that have specific input internal and
output differences, while classical boomerangs produce quartets of inputs.

More precisely, on the one hand, the classical boomerang starts with an
input pair that has a specific internal difference, and the corresponding outputs
are computed. Then, a second output pair is produced by XORing a specific
difference to both output values, and finally, these values are inverted to a second
input pair, and it is checked if this pair has the same specific input difference.
On the other hand, the internal differential boomerang distinguisher framework
depicted in this paper is slightly different than this classical boomerang scenario
since it considers internal differences, which ultimately produces pairs of inputs
rather than quartets. Specifically, an input with particular internal difference
generates an output to which we apply a specific output difference. The second
output is then inverted to a second input, and one checks whether it has the
given input internal difference.

For both these kinds of boomerangs, the time complexity required to gen-
erate either a right quartet or a right pair depends on the probability of the
differentials (internal differentials or regular differentials) used in the two parts
of the primitive. Furthermore, in internal differential boomerangs, the part of the
primitive covered by the internal differential is passed twice, whereas the part
covered by the standard differential only once (in classical boomerang, both
of the parts are passed twice). Thus, our technique outperforms the classical
boomerangs when high-probability internal differentials exist for several rounds
of the primitive. We further give an evaluation of the time complexity required
to generate right quartets and pairs for both types of boomerangs, and discuss
the use of the message modification technique to greatly reduce this complexity
when we have the ability to choose bits of intermediate state values.

Interestingly, Dinur et al. [14] collision attacks on Keccak can be seen as an
instance of our boomerangs: as they perform only forward queries, their attacks
are in fact amplified version of our boomerangs. Thus, the boomerangs presented
here can be seen as a generalization of [14].
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We distinguish the round-reduced Keccak-f permutation by producing
boomerang pairs. First, we find internal differential and standard differential
characteristics that are used in the boomerangs. The characteristics span on
three to four rounds and, as in some rounds the differences are truncated, have
very high probabilities. We combine the characteristics according to the internal
differential boomerang, and with the use of an enhanced message modification
(which allows to pass deterministically the two low probability rounds in the
middle of the boomerang), obtain boomerang pairs with low and practical com-
plexity. We also provide a rigorous bound on the query complexity of producing
such boomerang pairs in the case of a random permutation. As this complex-
ity is much higher than what we need for round-reduced Keccak-f , we claim
distinguishers.

Our internal characteristics depend on the round constants, thus we give
distinguishers on the round-reduced Keccak-f permutation for two different
cases: when the permutation starts1 at round 0, and when it starts at round 3.
In the first case, we can distinguish the permutation reduced to 6 rounds with
25 queries, and 7 rounds with 213 queries. In the second case, we can distinguish
7 rounds with 210.3 queries, and 8 rounds with 218.3 queries.

We emphasize that the whole analysis, due to its exceptionally low complex-
ity, has been implemented and successfully verified. We refer the reader to [18]
for the outputs produced by our computer experiments. We also stress that our
results do not threaten the security of the full-round Keccak-f permutation.
A summary of previous analysis of Keccak, along with our new results, are given
in Tables 1 and 2.

Application of the Internal Differential Boomerangs. The impact of this
kind of boomerangs depends on the analyzed framework. When the subject of
analysis is a block cipher, then the impact of the internal differential boomerangs
is similar to that of the classical boomerangs, i.e. they immediately lead to
distinguishers and possibly can be extended to key recovery attacks. On the
other hand, in the framework of hash/compression functions and permutations,
their significance depends on the quality of the internal differential and standard
differential characteristics used to produce the boomerang pairs. For instance,
if the input internal difference complies to the conditions of the input to the
hash/compression function and the output difference has a low hamming weight,
then an internal differential boomerang pair may lead to near collisions.

The internal differential boomerangs presented further in this paper only
apply to the round-reduced Keccak-f permutation, but not to Keccak. This
is due to the message modification used in the middle states, which results in
inputs that do not comply to the inputs conditions to the sponge construction
of Keccak where the values in the capacity part cannot be controlled. Simi-
larly, it prevents applying the distinguishers to other keyed constructions, such

1 Note that while the draft FIPS 202 [30] defines the r-round-reduced versions of
Keccak-f as the last r rounds of Keccak-f , this paper allows the reduced permuta-
tion to start at any round number.
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Table 1. Summary of attacks on Keccak.

Rounds Complexity Type Technique Reference

2 233 Collision Differential [31]

2 233 Preimage Differential [31]

3 225 Near-Collision Differential [31]

4 2221 Preimage Rotational [26]

4 225 Distinguisher Differential [31]

4 practical Collision Differential [15]

4 practical Collision Differential [21]

4 2506 Preimage Rotational [26]

5 2115 Collision Int. differential [14]

5 235 Key recovery (MAC) Cube attack [16]

5 practical Near-Collision Differential [15]

6 252 Distinguisher Differential [12]

6 236 Key recovery (Stream) Cube attack [16]

8 2129 MAC forgery Cube attack [16]

9 2256 Keystream prediction Cube attack [16]

Table 2. Distinguishers of reduced-round versions of Keccak-f .

Rounds Complexity Type Technique Reference

5 28 Distinguisher Rebound [17]

6 25 Distinguisher Internal Diff. Boomerang Section 4

6 210 Distinguisher Zero-sum [1,9]

6 211 Distinguisher Self-symmetry [22]

6 232 Distinguisher Rebound [17]

6.5 unknown Distinguisher Cube tester [16]

7 210 Distinguishera Internal Diff. Boomerang Section 4

7 213 Distinguisher Internal Diff. Boomerang Section 4

7 215 Distinguisher Zero-sum [1,9]

7 2142 Distinguisher Rebound [17]

8 218 Distinguishera Internal Diff. Boomerang Section 4

8 218 Distinguisher Zero-sum [1,9]

8 2491 Distinguisher Rebound [17]

24 21590 Distinguisher Zero-sum [10]
a: Start from round 3.

as Keyak [5] and Ketje [4]. Therefore, our internal differential boomerangs only
allow to distinguish round-reduced Keccak-f from a random permutation. How-
ever, their impact relate to Keccak since it adopts the hermetic sponge strategy
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as a design philosophy [2]. In its original formulation, this consists of using the
sponge construction (providing security against generic attacks) and calling a
permutation that should not have any properties (called structural distinguish-
ers) besides having a compact representation. Our results disprove this require-
ment for the round-reduced Keccak-f by showing a non-random behavior.

2 Description of Keccak-f

In this section, we give a partial description of the hash functions that will be
defined in the future SHA-3 standard [30]. In particular, since the results in this
paper only deal with the inner permutation (further denoted by Keccak-f), we
do not recall the details of the sponge construction. For a complete description
of this family of functions, we refer the interested reader to [3,30].

The Keccak-f permutation works on a state of b = 25 × 2l bits, where
b ∈ {25, 50, 100, 200, 400, 800, 1600}, and has nr = 12 + 2l rounds. We count
the rounds starting from zero. The results in this paper consider round-reduced
versions of Keccak-f [1600], where the full permutation has nr = 24 rounds.
As introduced in [30], we define by Keccak-p a round-reduced version of the
Keccak-f permutation, where its n ≥ nr rounds are the n last ones of Keccak-f .
In this paper, we leverage the restriction on the starting round number and
further introduce the notation Keccak-pi,n to consider the n consecutive rounds
of Keccak-f [1600] starting at round i; that is, rounds i, . . . , i+n− 1. Using this
notation, Keccak-f [1600] would be Keccak-p0,24.

Each round of Keccak-f [b] is composed of five steps: the first three (θ, π
and ρ, in this order) are linear and further denoted together by λ = π ◦ ρ ◦ θ,
the fourth step is non-linear and denoted by χ, and the last step ι adds round-
dependent constants RC[i], 0 ≤ i < nr, to break symmetries. Each step applies
to different parts of the state, which is seen as a three-dimensional array of bits
of dimension 5×5×b. A bit S[x, y, z] in a state S is addressed by its coordinates
(x, y, z), 0 ≤ (x, y) < 5 and 0 ≤ z < b. Furthermore, for fixed x, y and z,
S[x, y, •] refers to a lane of b bits, and S[•, •, z] to a slice of 25 bits.

We now discuss the details of each of the five steps on a given input state S:

The θ step operates on the slices of the state by performing the following
operation at each coordinate (x, y, z):

S[x, y, z] ← S[x, y, z] ⊕
( 4⊕

y′=0

a[x − 1, y′, z]
)

⊕
( 4⊕

y′=0

a[x + 1, y′, z − 1]
)
.

This linear step brings diffusion to the state. For instance, it expands a single
bit difference to 11 bits, while the inverse step θ−1 expands it to about b/2 bits.

The ρ step rotates the bits inside each lane. The rotation constants are inde-
pendent of the round numbers, and they are different for each of the 25 lanes
(refer to [3] for the actual values).
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The π step operates on each slice independently by permuting the 25 bits.
Namely, at each coordinate (x, y, z), it applies:

S[x′, y′, z] ← S[x, y, z], where:
(

x′

y′

)
=

(
0 1
2 3

)(
x
y

)
.

This step mixes the lanes and thus brings an additional diffusion to the state.

The χ step is the only non-linear operation in a round and it applies the same
5-bit S-Box to each 5-bit row S[•, y, z] of the internal state. In total, b/5 inde-
pendent S-Boxes are applied, that is 320 in the case of Keccak-f [1600]. The
S-Box has maximal differential probability 2−2.

The ι step XORs the b-bit round-dependent constant RC[i] at round i to the
lane S[0, 0, •], 0 ≤ i < nr.

3 The Internal Differential Boomerang Distinguisher

In this section, we introduce a new distinguisher called the internal differential
boomerang distinguisher. As it combines internal differentials and the boomerang
attack, we first give a brief overview of these two strategies, and then present
the new technique.

3.1 The Internal Differential Attack

In the internal differential attack [32], the adversary observes the propagation of
the difference between the two halves of the same state through the rounds of the
cryptographic function/permutation. Similar to the case of classical differential
analysis, the goal of the adversary is to show that the propagation of some
particular internal difference happens with an unusually high probability.

Let F be a permutation, and the n-bit state S is split into two halves SH

and SL. With this notation, it follows that |SH | = |SL| and S = SH‖SL. The
internal difference δ(S) of the state S is computed as the XOR of its two halves,
i.e. δ(S) = SH ⊕ SL. Then, an internal differential for F is a pair of internal
differences (Δ,∇), and its probability is defined as:

Pr
S

(
δ(F (S)) = ∇

∣∣∣ δ(S) = Δ
)
.

In other words, this is the probability that a randomly chosen input state S
with an internal difference Δ, after the application of F , will result in an output
state with internal difference ∇. Similarly to the standard differential attacks,
we can define an internal differential characteristic as the propagation of the
internal differences through the rounds of the permutation. Obviously, to each
such internal differential characteristic, we can associate a probability that this
propagation holds as expected.
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3.2 The Boomerang Attack

In classical boomerang attacks [34]2, the permutation F is seen as a composition
of two permutations F = g ◦ f , where each of them covers some rounds at the
beginning and at the end of F . Even though a high-probability differential might
not exist for F , if high-probability differentials do exist for the two permutations
f and g, then one can attack F with the boomerang technique.

Let Δ → Δ∗ be a differential for f that holds with a probability p and ∇ →
∇∗ be a differential for g that holds with a probability q. According to Fig. 1, the
adversary starts with a pair of inputs (P1, P2) = (P1, P1 ⊕ Δ) and, by applying
F , produces a pair of corresponding outputs (C1, C2) = (F (P1), F (P2)). Then,
the adversary produces a new pair of outputs (C3, C4) = (C1 ⊕ ∇∗, C2 ⊕ ∇∗).
For this pair, the adversary obtains the corresponding pair of inputs (P3, P4) =
(F−1(C3), F−1(C4)). The main observation of the boomerang technique is that
the difference P3 ⊕ P4 would be Δ with a probability of at least p2q2 because:

1. The difference f(P1) ⊕ f(P2) is Δ∗ with probability p.
2. The two differences g−1(C1) ⊕ g−1(C3) and g−1(C2) ⊕ g−1(C4) are both ∇

with probability q2.
3. When 1. and 2. hold, then the difference g−1(C3) ⊕ g−1(C4) is Δ∗ (with

probability pq2), and therefore f−1(C3)⊕f−1(C4) is Δ with probability p2q2.

The quartet of states (P1, P2, P3, P4) fulfilling the conditions P1 ⊕P2 = P3 ⊕
P4 = Δ and F (P1) ⊕ F (P3) = F (P2) ⊕ F (P4) is called a boomerang quartet. As
shown above, the quartet can be found in time equivalent to (pq)−2 queries to the
permutations. On the other hand, finding the boomerang quartet in the case of
a random permutation requires about 2n queries. Consequently, the boomerang
approach yields a distinguisher for F as soon as the adversary can find the two
differentials for f and g such that (pq)−2 < 2−n, that is pq > 2−n/2.

It has been shown in [7,8] that when F is a public permutation, a block
cipher in the chosen-key attack framework, or a compression function, then the
complexity of producing the boomerang quartet can be reduced with the use of
the message modification technique. That is, the adversary can choose particular
state words to ensure that some probabilistic differential transitions hold with
probability one. Consequently, some rounds can be passed deterministically, so
that their probabilities do not contribute towards the total probability (pq)2. The
number of such free rounds depends on how efficiently the message modification
can be applied. In general, the modification is used in the rounds around the
boomerang switch, i.e. the last few rounds of f and the first few rounds of g.

3.3 The Internal Differential Boomerangs

In this section, we show that the internal differential attack can be used in
the boomerang setting: we call this combined analysis the internal differential

2 The boomerang attack is closely related to higher-order differential techniques
[20,23].
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Fig. 1. The classical boomerangs (left). The internal differential boomerangs (right).

boomerangs. Although this new type of analysis shares similarity with the clas-
sical boomerangs based on standard differentials, we emphasize that there are
a few differences between them. The first difference is in the number of differ-
entials required to achieve the boomerang: the classical boomerang uses four
differentials, whereas the internal differential boomerang works with only three.
The second difference is in the type of differentials: the classical boomerang can
use (almost) any two differentials for f and g, while for the internal differential
boomerang, one of the differentials must have a special type.

Let F be a permutation that (similarly to the classical boomerang) is seen as
a composition F = g ◦ f . Let (Δ,Δ∗) be an internal differential for f that holds
with probability p, and (∇,∇∗) be a standard differential for g that holds with
probability q, where the input difference ∇ has an internal difference of zero, i.e.
δ(∇) = 0. Then, the internal differential boomerangs can be described as:

1. Fix a random input P1 with an internal difference Δ, i.e. δ(P1) = Δ.
2. Produce the corresponding output C1 = F (P1).
3. Produce another output C2 such that C2 = C1 ⊕ ∇∗.
4. Produce the corresponding input P2 = F−1(C2).
5. Check if δ(P2) = Δ. If it holds, output (P1, P2), otherwise go to 1.

The probability that the condition at step 5 holds is at least p2q. This is based
on a reasoning illustrated in Fig. 1. Let ∇ = ∇H‖∇H and ∇∗ = ∇H∗‖∇L∗ be
the input and the output differences of the standard differential used in the
function g. For a random input P1 = PH

1 ‖(PH
1 ⊕ Δ), the output X = f(P1)

will be XH‖(XH ⊕ Δ∗) with probability p. Furthermore, for a pair of outputs
(C1, C2) such that C1 ⊕ C2 = ∇∗ = ∇H∗‖∇L∗, after the inversion of g, the
output pair (X,Y ) will satisfy X ⊕ Y = ∇ = ∇H‖∇H with probability q. Then,

Y = X ⊕ ∇ =
[
XH‖(XH ⊕ Δ∗)

]
⊕

[
∇H‖∇H

]
= Y H‖(Y H ⊕ Δ∗),
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where Y H = XH ⊕ ∇H . Therefore, the internal difference in Y is Δ∗, and after
the inversion of f , it will become Δ with probability p. As a result, this algorithm
outputs a pair of inputs with probability p2q. We call such a pair an internal
differential boomerang pair.

For a random n-bit permutation F , the pair can be found in around 2n/2

queries3 to F . Therefore, the internal differential boomerang yields a dis-
tinguisher if p2q > 2−n/2. Recall that the same condition for the classical
boomerangs is pq > 2−n/2. Consequently, it is beneficial to use the internal
differential boomerang technique over the classical boomerang strategy only if
the internal differential for f has a much higher probability than a differential
for f .

Given a public permutation (or a compression function) F = g ◦ f , we can
start the internal differential boomerang in any round of f (but not in g), and
from there produce the pair of inputs and the pair of outputs. It is usually ben-
eficial to start at the end of f and, with the use of the message modification
technique, to pass a few rounds around the boomerang switch for free (deter-
ministically). Then, the formula for the probability of the boomerang becomes
p2∗q∗, where p∗ and q∗ are the differential probabilities of the non-linear parts of
f and g respectively, that are passed probabilistically.

Dinur et al. Collision Attack. In [14], Dinur et al. present a collision attack
on reduced variants of Keccak hash function by selecting message blocks in a
small subspace4 such that a high-probability characteristic might map them to
a small subspace after a certain number of rounds of Keccak-f . More precisely,
they find round-reduced internal characteristics and they extend them for an
additional 1.5 round. They call this extension bounding the size of the output
subset and note that this is possible because the differences are quite sparse and
the χ step has a slow diffusion.

We note that Dinur et al. collision attack is in fact based on the internal
differential boomerangs presented in this paper. Their internal differential char-
acteristics corresponds to the internal differential part of the boomerang, whereas
the aforementioned extension is the standard differential part of the boomerang.
Furthermore, Dinur et al. start the attack from the two inputs with specific
internal differences and then check if the difference of the two outputs is as
expected. This is precisely the variant of the boomerang attack called amplified
boomerang [19], where the attacker only makes forward queries. Thus, Dinur
et al.’s collision attack succeeds as after the amplification in the middle, the
remaining 1.5 rounds are passed according to any standard differential that at
the output has no active bits among those that comprise the hash value.

Truncated Differences. We further analyze the case when the input internal
difference Δ and the output standard difference ∇∗ of the boomerang are not
fully determined, but are truncated. Namely, only some bits of these differences

3 In a random permutation, the boomerang will return P2 with internal difference Δ
with a probability 2−n/2.

4 A related subspace problem has been discussed in [24].
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are determined, whereas the remaining bits can have any value. The lemma given
below defines a lower bound on the complexity of finding such boomerang pair
in the case of a random permutation. Note, in the lemma, we assume the output
difference to be XOR difference, that is, the output difference is produced as an
XOR of the two outputs.

Lemma 1. For a random n-bit permutation π, the query complexity Q of pro-
ducing an internal differential boomerang pair, with truncated input internal dif-
ference Δ determined in nI bits and truncated XOR output difference ∇∗ deter-
mined in nO bits, satisfies:

Q ≥ min(2nI−2, 2
nO
2 − 3

2 ).

Due to space constraints, we refer the interested reader to [18] for the proof of
this lemma.

4 Distinguishers for the Round-Reduced Keccak-f
Permutation

In this section, we present internal differential boomerang distinguishers on the
round-reduced permutation Keccak-f [1600], further denoted Keccak-pi,n, where
the starting round i and the number of rounds n is specified in the text for each
case. In comparison to [30] where all the reduced variants simply called Keccak-p
start at the first round, we allow the permutation to start at any number of
round.

To describe our results, we first define the two differentials used in the
boomerang: the internal differential used in the first rounds, and the standard
differential used in the last rounds. Next, we show that a message modification
can help to deterministically pass the two rounds that surround the boomerang
switch. Finally, we present the actual distinguishers.

4.1 Internal Differential Characteristics

The 1600-bit state S of Keccak is composed of 25 lanes of 64 bits. The internal
difference δ(S) of the state is defined as the XOR difference between the higher
32 bits and the lower 32 bits, for each lane. Hence, the internal difference is
composed of 25 words of 32 bits, and can be seen as an 800-bit vector.

Let us scrutinize the behavior of the five round steps in regard to internal
differences. The linear step θ may introduce an increase in the hamming weight of
the internal difference, by a factor up to 11. The two steps ρ and π only permute
the bits in the internal differences, but maintain their hamming weight. The
non-linear step χ may increase the hamming weight of the internal difference.
For instance, one-bit difference at the input (resp. output) of the S-box, may
become a difference in more than 1 bit at the output (resp. input) of the S-box.
However, a fixed 1-bit input difference can affect only up to three bits in the
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output difference, while a fixed 1-bit difference at the output of chi can affect
up to 5 bits in the input difference. The ι step that XORs round constants can
increase the hamming weight of the internal difference by at most the hamming
weight of the rounds constant δ(RC[i]), which are very sparse. Indeed, as already
noted in [13,15], the round constants used in Keccak-f play a crucial role in
the existence of high-probability internal differential characteristics in the inner
permutation.

Due to the good diffusion of the round function of Keccak-f [1600], a state
with low-weight internal difference can be transformed into a state with a high
weight in a matter of a few rounds. To increase the number of rounds covered
by the internal differential characteristic, while maintaining a high and prac-
tical probability, we use two approaches. First, we start in the middle of the
characteristic with zero internal difference and pass one round with probabil-
ity one. Second, we consider truncated characteristics (or differentials), i.e. the
differences are not necessarily fully specified in all bits.

By the first approach, which is often used for constructing standard differ-
ential characteristics, the characteristics are built from inside out. First, a low-
weight difference in some middle round of the characteristic is fixed, and then,
by propagating the difference backwards and forwards, the input and the output
differences of the characteristic are obtained. Therefore, the middle rounds of the
characteristic have a high probability, while the rounds close to the input and
to the output are of low probability. However, the low-probability rounds can
be passed for free if we use a message modification or if we consider truncated
characteristics, which is in fact the second approach.

The Internal Characteristic I3. Let us focus on the following 3-round internal
differential characteristic I3, that starts at round 0, and that has been built with
the first approach:

The states are represented by the column vectors, where the upper number
denotes the hamming weight of the internal difference, and the lower number
gives the amount of bits in which the internal difference is fully determined. The
numbers in bold around the χ step of round 1 represent active S-Boxes for that
step, which is passed with a probability smaller than one. By ?, we represent an
undetermined value.

The characteristic has been built by fixing a zero internal difference at the
input of round 1. In the forward direction, there are no active S-Boxes in round
1, and the output difference is defined in all 800 bits after the linear step λ
of round 2. The following steps χ and ι2 produce some differences, but as
we show later in Sect. 4.3, the value of this internal difference is irrelevant. In the
backward direction, RC[0] of ι0 introduces only one bit difference, and thus the
subsequent χ−1 has only one active S-Box. After the inversion of the linear layer,
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we can fully compute the internal difference at the input of the characteristic,
so that each of the 800 bits are fully determined. Therefore, the whole 3-round
internal characteristic has 34 active S-Boxes (probability 2−68), and in the first
two rounds has only a single active S-Box (probability 2−2).

The Internal Differential ID4. We can construct a longer characteristic by
going backwards one additional round. However, in this round the hamming
weight of the internal difference at the input of χ−1 would be high (in the above
I3, the weight is 429). To avoid significant reduction of probability, we switch
to truncated internal differences. That is, instead of trying to define completely
the output difference of this χ−1 (that would be obtained with an extremely
low probability), we specify the difference only in nI bits out of 800 bits. The
internal difference in each of these nI specific bits can be either 0 or 1, but the
probability of this event must be one. As a result, the probability of the first
round of the characteristic would be one.

Once the truncated difference is fixed in nI bits at the output of χ−1, the
remaining three linear steps of the round will keep the truncated property: π−1

and ρ−1 will only permute and rotate the truncated difference and thus at the
output of these two steps still it will be defined in nI bits, while at the output of
θ−1 the internal difference will belong to a subspace of dimension 800 − nI . We
note that with a minor modification of Lemma 1, the obtained input internal
difference can be used to compare the query complexity to the generic case5

Therefore, to simplify the presentation of the input internal difference, in the
further analysis, we omit the three linear steps of the first round.

The number of bits nI in which the truncated difference at the output of χ−1

is defined with probability one depends on the round constants RCi. For instance,
if we start with round 0, then there is no bits in which the truncated difference
is determined, i.e. nI = 0. Only if we start with round 3, the number nI will be
sufficiently large to claim later (according to Lemma 1) that the complexity of
producing boomerang pairs for Keccak-p3,n is lower than the generic complexity,
with n ∈ {7, 8}.

The resulting 4-round internal differential characteristic I4, that starts at
round 3, is defined as:

The characteristic has been built by fixing a zero internal difference at the
input of round 5. The forward propagation is similar to I3. Backwards, after the
addition of the constant RC[4], the weight of the internal difference is five. Hence,
χ of round 4 has at most five active S-Boxes, that can be passed probabilistically
and would result in a state with internal difference of weight five. Then, the linear

5 That is, we use the subspace to claim distinguisher for the permutation. This is in
line with our initial intention to show that the round-reduced permutation exhibits
non-random properties.
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steps λ−1 in round 4 and the addition of RC[3] in round 3 increase the weight
of the internal difference to 398. In the following χ−1, we switch to truncated
differences. Although the input difference has a weight of 398 (possibly, all 320
S-Boxes are active), at the output of χ−1, the internal difference is 0 in 55
specific bits, and 1 in 9 other bits. In other words, nI = 55 + 9 = 64 bits of the
internal difference are defined deterministically and thus, the probability to pass
this χ−1 is one. Note, the truncated characteristic in the first round holds with
probability one only when moving backwards through the round.

The probability of the truncated internal differential characteristic I4 can
be evaluated as follows: in round 3 the probability is 1, in round 4 there are 5
active S-Boxes, thus the probability is 2−10, in round 6 there are no active S-
Boxes, while in round 7 there are 22 active S-Boxes (probability is 2−44). Hence,
when going backwards through the rounds, the probability of the whole 4-round
characteristic is 2−54. Furthermore, the probability of the first three rounds is
2−10.

Recall that the boomerangs can use differentials instead of characteristics.
As the probability of a differential may be higher than the probability of a single
characteristic, the complexity of producing boomerang pairs may be reduced.
Therefore, let us build a 4-round differential ID4 by using the same approach
as for I4. That is, for all of the characteristics that belong to ID4, we start at
round 5 with zero internal difference. In the forward direction, we move deter-
ministically through round 5 and at the input of χ in round 6, we have 22 active
S-Boxes (i.e. all the characteristics are equally defined in this part of the dif-
ferential). In the backward direction, all the characteristics are the same up to
the input of χ−1 of round 4, but the five active S-Boxes in each of the char-
acteristics results in different outputs. Then, for each of the outputs, we move
through λ−1 of round 4, ι3, χ−1 of round 3, and at the output of χ−1, we check
if the truncated difference is defined in the same 64 bits as I4. Therefore, all the
characteristics of the differential ID4 have the same input truncated difference,
and the same difference at the input of χ in round 6 (the output of this χ is
irrelevant as before). We found experimentally the probability of ID4 for the
first three rounds to be 2−4.6. This has to be compared to 2−10, which is the
probability of the first three rounds of the characteristic I4.

4.2 Standard Differential Characteristics

Along with internal differential characteristics, the boomerang technique
described in this paper uses standard differential characteristics. Recall that
due to the special requirement of our boomerang, the standard characteristic
cannot be of any form since it is connected to the two internal characteristics.
This constraints the input difference ∇ of the standard characteristics to be
symmetric, i.e. ∇ = ∇H ||∇H , or δ(∇) = ∇H ⊕ ∇H = 0, Note, the standard
characteristic (unlike the internal characteristic) does not depend on the round
number, hence further we omit ιi from the description of the characteristic.

The standard characteristic that we use relies on the already-known concept
of parity kernels, which allows to minimize the number of S-Boxes in two con-
secutive rounds of Keccak-f . This notion has been described in the submission
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document [3], and has been used in cryptanalytic results [12,22,31]. The behav-
ior is possible due to two observations: first, a state-difference may be invariant
of the θ step if there is an even number of active bits in each of the 320 column of
the internal state; and second, an active S-Box in χ (or in χ−1) leaves unchanged
a 1-bit difference with probability 2−2.

The 4-round standard differential characteristic C4 that we use in the
boomerangs is defined as:

The notations used in the characteristic are the same as before. With “x+x”,
we emphasize that the states are comprised of 2x active bits, but the actual
difference is symmetric, which implies that there are x active bits in each half of
the state, with equal differences.

This differential characteristic has been constructed by selecting a symmetric
difference of hamming weight four at the input of round i + 1 (note, this is
the smallest possible weight of a symmetric parity kernel). In the backward
direction, the step χ−1 has only 4 active S-Boxes, and results in a difference
that is irrelevant as we further show in Sect. 4.3. In the forward direction, the
selected 4-bit difference acts as a kernel and thus, after the λ step of round
i + 1, results in a 4-bit difference. The same behavior of the following χ step is
expected with probability 2−8, so the input difference to round i + 2 still has a
weight of four. The linear step in this round expands the difference to 44 active
bits. Then, we switch to truncated differences. As a result, the difference in the
following χ step is defined in 1278 bits, and after all the steps of round i+3, the
difference is still deterministically defined in 118 bits (78 zeros and 30 ones).

The differential characteristic C4 covers four full rounds of the permutation,
and holds with probability 2−16 in the forward direction since there are a total
of 8 active S-Boxes (four in each of the rounds i and i + 1).

We can define a 3-round differential characteristic C3, which is basically the
same as the first three rounds of C4, but we start truncating from χ at round
i + 1. That is, in C3, we begin with 4-bit difference at round i + 1 and the
backward round i is the same as C4. However, the 4-bit input difference at χ of
round i + 1 results in truncated output difference (with probability 1, instead of
2−8), and after the steps λ and χ of round i + 2, the truncated difference can
still be determined in 1278 bits. Therefore, the probability of C3 in the forward
direction is only 2−8 as it has only four active S-Boxes in the first round.

4.3 Message Modification, Matching, and Neutral Bits

In our distinguishers, we start constructing the internal differential boomerang
pairs from the middle by fixing some bits of the intermediate states, which allows
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λ χint ιi

Round i

λ χstd ιi+1

Round i + 1

S1

λ χint ιi λ χstd ιi+1S2

Boomerang switch

Δ

Δ

∇∇′

Fig. 2. The boomerang switch: middle of distinguishing structure where the differen-
tials on the two halves of the primitive meet.

to pass low-probability events similarly to the rebound technique [25]. We define
in particular the boomerang switch as the “middle” where we start constructing
the state pairs to be the location where the two internal differential characteris-
tics (or internal differentials) meet with the standard differential characteristic
(see Fig. 2). Note that the two surrounding χ steps (denoted χint in the inter-
nal characteristic and χstd in the standard characteristic on Fig. 2) usually have
very low differential probabilities. However, since we start in the middle, we can
fix partial state values such that these two steps are passed deterministically.
Namely, this message modification technique allows to go through these two
non-linear steps χint and χstd without considering their probability.

Freedom Degrees. There are three conditions imposed on the state pair
(S1, S2) at the boomerang switch: the first two come from the internal differen-
tial characteristics, i.e. δ(S1) = δ(S2) = Δ, while the third is from the standard
characteristic, i.e. S1 ⊕ S2 = ∇. Therefore, in total, we have 800 bits of free-
dom; that is, once we fix the first half of S1, then the second half of S1 is fully
determined, as well as the whole S2.

The limited degrees of freedom may lead to contradictions. For instance,
if there is an active S-Box in the first halves of S1 and S2, then the symmetry
imposes than such S-Box must also be active in the second halves. If, in addition,
these two halves differ in the bits that belong to the S-Boxes (which can occur
when there is a non-zero internal difference at these bits), then it may not be
possible to fix simultaneously the inputs to the S-Boxes in both of the halves.

Matching. To avoid such contradictions, we first have to make sure that the
internal characteristics and the standard characteristic can be matched, i.e. there
exist two states S1 and S2 at the boomerang switch (Fig. 2), that can pass
the χint and χstd steps and that can produce differences as specified by the
characteristic. Our extensive computer experiments have shown that if the dif-
ferences at the boomerang switch are not sparse, then the chance of a match is
extremely low6.
6 This only confirms the fact that for boomerangs (both classical and internal dif-

ferential), finding the two characteristics for f and g does not guarantee that the
boomerang will work – see [28] for more details.
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To overcome this issue, we find (S1, S2) that produce the required differences
Δ at the input of χint and ∇ at the output of the χstd, but not necessarily
have the correct differences right at the boomerang switch7. By relaxing the
difference constraint at the boomerang switch, and by trying different standard
characteristics8, we are able to match the characteristics.

Matching. This matching process is actually implemented by a message mod-
ification to partially fix values of the two states S1 and S2 to ensure that the
boomerang can work by linking the two characteristics. As the output difference
of χint is denser, we start the matching in the boomerang switch right at the
output of χint (see Fig. 2). First, from the fixed output difference ∇ of χstd, we
produce all possible input differences ∇′, which defines the standard difference
at the boomerang switch. We propagate each such difference to the output of
χint, and then try to fix the values of all active S-Boxes of χint. If all the S-Boxes
can be fixed, then the matching for χint is complete. During the matching, the
values of some bits of the states S1 and S2 are being fixed, but there are still free
(non-fixed) bits. We use the freedom of these bits to check if the active S-Boxes
of χstd can be passed. If so, then the matching is complete.

Neutral Bits. The above process fixes some bits of S1 and S2 but there are
more free bits and they can be used as neutral bits [6]. Namely, if S1 and S2 have
fixed bits according to the matching, then for any value of the free remaining
bits, the active S-Boxes of χint and χstd still produce the required differences.

4.4 Internal Differential Boomerang Distinguishers for Keccak-pi,n

We use the internal differential boomerang technique to distinguish the round-
reduced Keccak-f permutation. The boomerangs are based on the internal dif-
ferentials and characteristics from Sect. 4.1, and the standard differential charac-
teristics from Sect. 4.2. To produce a boomerang pair, we start at the boomerang
switch, and we first find the values of the fixed bits of S1 and S2 according to
the message modification, which allows to pass the two rounds that surround
the boomerang switch. Then, we randomize the remaining neutral bits of the
states and finally, from the two middle states, we produce the corresponding
inputs and outputs. If the internal differences of each of the two inputs and the
difference of the two outputs are as expected by the boomerang, then we have
found the pair. Otherwise, we randomize again the neutral bits and repeat the
procedure. An example of the overall description of the 8-round case is given in
Fig. 3.

7 This is the reason why we have omitted specifying the differences at the output of the
internal characteristics from Sect. 4.1, and at the input of the standard characteristics
from Sect. 4.2.

8 The internal characteristic cannot be changed as its difference propagation is com-
pletely defined by the round constants RCi. On the other hand, there are many dif-
ferent standard characteristics (built upon parity kernels) that hold with the same
probability.
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λ χ ι3 λ χ ι4 λ χ ι5 λ χ ι6 λ χ ι7 λ χ ι8 λ χ ι9 λ χ ι10I1 O1

λ χ ι3 λ χ ι4 λ χ ι5 λ χ ι6 λ χ ι7 λ χ ι8 λ χ ι9 λ χ ι10I2 O2

M+MD+ND

Step 1

Probabilistic propagation (internal differences)

Step 2

Probabilistic propagation (regular differences)

Step 3

Δ4 5 0 0 2

(22)

Δ4
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∇4 4 4 4 ∇∗
4

Fig. 3. Example of the internal boomerang distinguisher in the case of Keccak-p3,8. In
step 1, we first perform the matching (M), then the message modification (MD) and
we use neutral bits (ND). We finish the construction of the pair of inputs (I1, I2) with
the probabilistic propagations in Step 2 and 3.

The query complexity of producing a pair is determined by the differential
probability of the characteristics in all the rounds but the middle two9. We
claim distinguishers for Keccak-pi,n for some (i, n) because the complexity of
finding a boomerang pair for Keccak-pi,n is significantly lower compared to the
complexity of producing a boomerang pair (with the same conditions on the
input and output differences) for a random permutation defined by Lemma 1.
In the four boomerangs below, the input internal difference is determined either
in 800 bits (when I3 is used) or in 64 bits (when ID4 is used), while the output
difference is determined either in 1278 bits (when C3 is used) or in 118 bits
(when C4 is used). Therefore, by Lemma 1, the query complexity of producing
a boomerang pair in the case of a random permutation requires at least 257.5

queries.
Depending on the starting round i of Keccak-pi,n, the boomerang pairs are

produced for two cases. First, when the permutation starts at round 0, for the
boomerang we use the first internal differential characteristic I3 given in Sect. 4.1
and the standard characteristics C3, C4 given in Sect. 4.2. We can produce the
boomerang pair for Keccak-p0,6 by using the internal characteristic I3 and the
standard characteristic C3. As the probability of I3 without χint is 2−2 and
the probability of C3 without χstd is 1 (recall both of these two χ steps are
passed with the message modification), we can produce the boomerang pair
with 2 · 22 · 22 · 1 = 25 queries to the 6-round permutation. Similarly, we can
produce boomerang pair for Keccak-p0,7 (we combine I3 with C4) in 2 ·22 ·22 ·28
(the additional factor 28 is required to pass the 4 active S-boxes in the second
round of C4), or approximately 213 queries to the 7-round permutation.

Then, when the permutation starts at round 3, the boomerang uses the inter-
nal differential ID4 given in Sect. 4.1, and the standard characteristics C3, C4

from Sect. 4.2. The boomerang on Keccak-p3,7, based on ID4 and C3, produces
a pair with 2 · 24.6 · 24.6 · 1 = 210.2 queries. For Keccak-p3,8 (see Fig. 3), the

9 The cost of the message modification can be ignored because it is executed once, but
it can be used for producing many boomerang pairs, thus on average it is negligible.
The actual cost is around 28.
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Table 3. The internal differential boomerangs for Keccak-pi,n for (i, n) ∈
{(0, 6), (0, 7), (3, 7), (3, 8)}.

Rounds Internal Standard Prob. of Prob. of Prob. of the Complexity

internal standard boomerang of finding a pair

6 I3 C3 2−68 2−8 2−140 25

7 I3 C4 2−68 2−16 2−148 213

7 ID4 C3 2−48.6 2−8 2−105.2 210.2

8 ID4 C4 2−48.6 2−16 2−113.2 218.2

boomerang is based on ID4 and C4, and for producing a boomerang pair, we
need 2 · 24.6 · 24.6 · 28 = 218.2 queries.

We have checked and confirmed the complexities of the four boomerangs
given above. A summary of the distinguishers is given in Table 3.

5 Conclusions

We have presented the internal differential boomerang distinguishers, which are
a combination of internal differentials and the boomerang technique. The new
boomerangs can be used for cryptanalysis of functions and ciphers that have
high-probability internal differentials. We have used the boomerangs to show
non-randomness of reduced variants of the permutation Keccak-f . Based on
truncated characteristics that hold with exceptionally high probability, and com-
bined with a strong message modification, we have shown how to produce inter-
nal differential boomerang pairs for Keccak-f reduced to 6 rounds with only 25

queries to the permutation, 7 rounds with 213 queries, and up to 8 rounds with
218 queries.

Our results significantly outperform in terms of practical complexity all the
previous cryptanalysis of Keccak-f . We emphasize that the results do not pose
threat to the security of the future SHA-3 standard as there is no known way to
date to extend the proposed reduced-round permutation distinguishers to the full
sponge construction based on the full 24-round Keccak-f permutation. We were
unable to extend our distinguishers to larger number of rounds while maintaining
practical complexity. On the other hand, we leave as an open problem finding
internal differential boomerang distinguishers that cover more rounds and that
require theoretical complexity.
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