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Abstract. In this paper, we present a new classification of 4-bit optimal
S-boxes. All optimal 4-bit S-boxes can be classified into 183 different cat-
egories, among which we specify 3 platinum categories. Under the design
criteria of the PRESENT (or SPONGENT) S-box, there are 8064 differ-
ent S-boxes up to adding constants before and after an S-box. The 8064
S-boxes belong to 3 different categories, we show that the S-box should
be chosen from one out of the 3 categories or other categories for better
resistance against linear cryptanalysis. Furthermore, we study in detail
how the S-boxes in the 3 platinum categories influence the security of
PRESENT, RECTANGLE and SPONGENT88 against differential and
linear cryptanalysis. Our results show that the S-box selection has a
great influence on the security of the schemes. For block ciphers or hash
functions with 4-bit S-boxes as confusion layers and bit permutations
as diffusion layers, designers can extend the range of S-box selection
to the 3 platinum categories and select their S-box very carefully. For
PRESENT, RECTANGLE and SPONGENT88 respectively, we get a set
of potentially best/better S-box candidates from the 3 platinum cate-
gories. These potentially best/better S-boxes can be further investigated
to see if they can be used to improve the security-performance tradeoff
of the 3 cryptographic algorithms.

Keywords: 4-bit S-box · Classification · Block cipher · Hash function ·
Differential cryptanalysis · Linear cryptanalysis · PRESENT · REC-
TANGLE · SPONGENT

1 Introduction

S-boxes are widely used in modern block ciphers and hash functions. Substitution-
Permutation (SP) and Feistel network are the most common structures. In these
structures, S-boxes are usually the only non-linear part. Therefore, S-boxes have
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to be chosen carefully to optimize the security-performance tradeoff. The most
common sizes of S-boxes are 8-bit and 4-bit. AES [14] uses an 8-bit S-box, which
has influenced many subsequent ciphers; while Serpent [2] and NOEKEON [13]
use 4-bit S-boxes. In the past few years, as the need for security in RFID and
sensor networks is dramatically increasing, many lightweight constructions have
been proposed. Since a 4-bit S-box is usually much more compact in hardware
than an 8-bit S-box, many lightweight block ciphers and hash functions use 4-bit
S-boxes, such as LED [15], PHOTON [16], PRESENT [10], RECTANGLE [28]
and SPONGENT [8].

For 4-bit S-boxes, the optimal values are known with respect to differen-
tial and linear cryptanalysis, an S-box attaining these optimal values is called
an optimal S-box. In [18], Leander et al. classified all optimal 4-bit S-boxes
into 16 affine equivalences; this result can be used to efficiently generate optimal
S-boxes fulfilling additional criteria. However, for many constructions, the design
criterion of being an optimal S-box is not enough, there are other important prop-
erties the designers should take into account. For example, the design criteria
of the Serpent S-box require that a 1-bit input difference must cause an output
difference of at least two bits.

Given an S-box S, let CarD1S denote the number of times that a 1-bit
input difference causes a 1-bit output difference, and CarL1S the number of
times that a 1-bit input selection pattern causes a 1-bit output selection pat-
tern. We refer to Sect. 2.1 for a precise definition of CarD1S and CarL1S . For
the PRESENT S-box, CarD1S = 0 and CarL1S = 8. In [22], linear hulls were
used to mount an attack on 25-round PRESENT. Later, a multidimensional lin-
ear attack on 26-round PRESENT was given in [12], which is the best shortcut
attack on PRESENT so far. Both of the above attacks use the fact that the
value of CarL1S of the PRESENT S-box is relatively high, i.e., CarL1S = 8,
which leads to a significant clustering of linear trails. For comparison, the value
of CarD1S of the PRESENT S-box is zero, the best shortcut differential attack
on PRESENT only reaches 18 rounds [26]. It can be seen that, with respect to
security margin, there is a big gap between differential cryptanalysis and linear
cryptanalysis on PRESENT. More recently, Blondeau and Nyberg [7] showed
that there exists a chosen-plaintext truncated differential attack for any known-
plaintext multidimensional linear attack, hence, they have successfully derived a
truncated differential attack on 26-round PRESENT from the multidimensional
linear attack on 26-round PRESENT [12]. From this result, we can learn that a
block cipher had better have almost the same security margin against differential-
like attacks and linear-like attacks. Now, the questions come up. Is there any
optimal S-box satisfying CarD1S = 0 and CarL1S = 0? Is there a better
S-box for PRESENT with respect to the security against differential and lin-
ear cryptanalysis? These questions are part of motivation of this paper.

SPONGENT is a family of lightweight hash functions based on PRESENT.
The internal permutation of each variant uses SP-network with 4-bit S-boxes and
a bit permutation. For the SPONGENT S-box, CarD1S = 0 and CarL1S = 4.
RECTANGLE is designed with bit-slice technique. RECTANGLE also uses SP-
network with 4-bit S-boxes and a bit permutation. For the RECTANGLE S-box,
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CarD1S = 2 and CarL1S = 2. Then, one may wonder if the security margin
of PRESENT can be improved when replacing its S-box by the SPONGENT
or RECTANGLE S-box. Moreover, is the S-box selection of SPONGENT and
RECTANGLE optimal with respect to differential and linear cryptanalysis? In
this paper, we will partly answer these questions.

1.1 Contributions

In Sect. 3 of this paper, we firstly prove that CarL1S ≥ 2 for any optimal S-
box. Moreover, if CarL1S = 2, then the S-box must be in 4 (out of 16) affine
equivalent classes; if CarL1S = 3, then the S-box must be in 8 (out of 16)
affine equivalent classes. We call the subset of optimal S-boxes with the same
values of CarD1S and CarL1S a Num1-DL category. We show that all optimal
4-bit S-boxes can be classified into 183 different Num1-DL categories. Among
all the 183 Num1-DL categories, there are 3 categories with the minimal value
of CarD1S + CarL1S , we call the 3 categories platinum Num1-DL categories.

There are 4 measures to evaluate the security of a cipher against differential
and linear cryptanalysis. In Sect. 4, we give a brief discussion on the 4 measures,
and show why it is appropriate to use the heuristic measure for the study in this
paper.

In Sect. 5, we consider PRESENT and 5 variants of SPONGENT. There
are 8064 S-boxes (up to adding constants before and after an S-box, similarly
hereinafter) satisfying the design criteria of the PRESENT (or SPONGENT) S-
box. The 8064 S-boxes belong to 3 different categories. We show that, for each of
the 6 fixed permutation layers, if the S-box comes from 2 out of the 3 categories,
then there exists a linear trail with only one active S-box in each round. Hence,
for SP-network schemes with the PRESENT or SPONGENT permutation layer,
for better resistance against linear cryptanalysis, the S-box should be chosen
from 1 out of the 3 categories or other categories.

In Sect. 6, we investigate how the S-boxes in the 3 platinum Num1-DL cat-
egories influence the security of PRESENT, RECTANGLE and SPONGENT
against differential and linear cryptanalysis. We focus on 64- and 88-bit block
length. Consider the following SP-network schemes. For 64-bit block length, the
S-box is chosen from the 3 platinum Num1-DL categories, the diffusion layer
is either the PRESENT permutation or the RECTANGLE permutation. Thus,
there are 6 combinations. Similarly, for 88-bit block length, there are also 6 com-
binations. For each of these 12 combinations, we use the heuristic measure to
evaluate which are the best possible S-box candidates. Our results show that
the S-box selection has a significant influence on the security of the 3 primi-
tives. For PRESENT, there are 336 potentially best S-boxes, which does not
include the PRESENT S-box. For RECTANGLE, there are 128 potentially best
S-boxes, which includes the RECTANGLE S-box. For SPONGENT88, we present
4 potentially better S-boxes when considering differential cryptanalysis more
important than linear cryptanalysis. We want to point out that these results do
not mean any security weakness of PRESENT, RECTANGLE or SPONGENT.
However, these results show that there are potentially better S-box selections
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for PRESENT and SPONGENT, which means, by choosing another S-box, it
is possible to improve the hardware/software performance of PRESENT and
SPONGENT with a fixed level of security margin. Since any platinum Num1-
DL category is not always the best choice, we suggest that designers can extend
the range of the S-box selection to the 3 platinum Num1-DL categories and
select their S-box carefully, when designing a block cipher or a hash function
using 4-bit S-boxes as confusion layer and a bit permutation as diffusion layer.

2 Preliminaries

2.1 Optimal S-box, Affine and PE Equivalence, m-resilient Boolean
Function

Given an S-box mapping n bits to m bits S : Fn
2 → Fm

2 , we call S an n × m
S-box. In this paper, we only concentrate on 4 × 4 S-boxes.

Let S denote a 4 × 4 bijective S-box. Let �I,�O ∈ F 4
2 , define NDS

(�I,�O) as:

NDS(�I,�O) = �{x ∈ F 4
2 |S(x) ⊕ S(x ⊕ �I) = �O}.

Let ΓI, ΓO ∈ F 4
2 , define the imbalance ImbS(ΓI, ΓO) as:

ImbS(ΓI, ΓO) = |�{x ∈ F 4
2 |ΓI · x = ΓO · S(x)} − 8|.

where “·” denotes the inner product on F 4
2 .

Define the differential-uniformity of S as:

Diff(S) = max
�I �=0,�O

NDS(�I,�O)

Define the linearity of S as:

Lin(S) = max
ΓI,ΓO �=0

ImbS(ΓI, ΓO)

For any bijective 4 × 4 S-box, Diff(S) ≥ 4 and Lin(S) ≥ 4 [18]. An S-box
attaining these minima is called an optimal S-box.

Definition 1 ([18]). Let S be a 4 × 4 S-box. S is called an optimal S-box if it
satisfies the 3 conditions:

1. S is bijective, i.e., S(x) �= S(x′) for any x �= x′.
2. Diff(S) = 4.
3. Lin(S) = 4.

Let wt(x) denote the Hamming weight of a binary vector x. Define SetD1S

[28] as:

SetD1S = {(�I, �O) ∈ F 4
2 × F 4

2 |wt(�I) = wt(�O) = 1 and NDS(�I, �O) �= 0}.

Define SetL1S [28] as:

SetL1S = {(ΓI, ΓO) ∈ F 4
2 × F 4

2 |wt(ΓI) = wt(ΓO) = 1 and ImbS(ΓI, ΓO) �= 0}.

Let CarD1S denote the cardinality of SetD1S , and CarL1S the cardinality
of SetL1S .
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Definition 2 ([18]). Two S-boxes S and S′ are called affine equivalent if there
exist two invertible 4 × 4 matrices A,B over F2, and constants a, b ∈ F 4

2 such
that S′(x) = B(S(A(x) ⊕ a)) ⊕ b.

Given an S-box S, the values of Diff(S) and Lin(S) both remain unchanged
when applying an affine transformation in the domain or co-domain of S [11,21].

Theorem 1 ([18]). Let S and S′ be two affine equivalent S-boxes. If S is an
optimal S-box, then S′ is an optimal S-box as well.

According to Theorem 1, all optimal S-boxes can be divided into equivalence
classes using affine equivalence relation. All 4 × 4 optimal S-boxes can be split
into only 16 affine equivalence classes [18]. Let {Gi, 0 ≤ i ≤ 15} denote the
representatives for the 16 equivalence classes, we refer to [18] for the 16 repre-
sentatives.

Definition 3 ([18]). Two S-boxes S and S′ are called permutation-then-
XOR equivalent if there exist two 4 × 4 permutation matrices P0, P1 over F2,
and constants a, b ∈ F 4

2 such that S′(x) = P1(S(P0(x)⊕a))⊕ b. The equivalence
is called PE equivalence.

Note that if two S-boxes are PE equivalent, then they must be affine equiv-
alent.

Definition 4. Let f be a Boolean function f : Fn
2 → F2, define the Walsh

Coefficient of f at a as:

fW (a) =
∑

x∈F n
2

(−1)f(x)⊕a·x.

An n-variable Boolean function f is balanced if its output in the truth table
contains equal number of 0 and 1. f is balanced if and only if fW (0) = 0.

Definition 5 ([27]). A Boolean function f is m-resilient if and only if its Walsh
Coefficient satisfy fW (a) = 0 for any 0 ≤ wt(a) ≤ m.

For any b ∈ F 4
2 , define the corresponding component Boolean function Sb of

an S-box S as:
Sb : F 4

2 → F2, Sb(x) = b · S(x).

Let deg(f) denote the algebraic degree of the Boolean function f , the alge-
braic degree is invariant under affine equivalence. Table 1 [18] gives the number
of b ∈ F 4

2 \{0} such that deg(Sb) = 2, 3 for the 16 representative optimal S-boxes.

Table 1. ([18]) Number of b ∈ F 4
2 \ {0} such that deg(Sb) = 2, 3

S-box G0 G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 G13 G14 G15

deg(Sb) = 2 3 3 3 0 0 0 0 0 3 1 1 0 0 0 1 1

deg(Sb) = 3 12 12 12 15 15 15 15 15 12 14 14 15 15 15 14 14
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2.2 Differential Trail, Difference Propagation, Linear Trail
and Linear Propagation

Differential cryptanalysis (DC) [5] and linear cryptanalysis (LC) [19] are among
the most powerful techniques available for block ciphers. Let β be a Boolean
transformation operating on n-bit vectors that is a sequence of r transformations:

β = ρ(r) ◦ ρ(r−1) ◦ · · · ◦ ρ(2) ◦ ρ(1).

In this paper, β refers to a key-alternating block cipher [14] or a permutation
of a hash function, the round keys (or constants) are added to the state by means
of an XOR. Thus, a difference is referred to as an XOR.

A differential trail [14] Q over an iterative transformation consists of a
sequence of r + 1 difference patterns:

Q = (q(0), q(1), q(2), · · · , q(r−1), q(r)).

The probability of a differential step is defined as:

Prob(q(i−1), q(i)) = 2−n × �{x ∈ Fn
2 |ρ(i)(x) ⊕ ρ(i)(x ⊕ q(i−1)) = q(i)}.

Assuming the independence of different steps, the probability of a differential
trail Q can be approximated as:

Prob(Q) =
∏

i

Prob(q(i−1), q(i)).

A difference propagation [14] is composed of a set of differential trails, the
probability of a difference propagation (a ′, b ′) is the sum of the probabilities
of all r-round differential trails Q with initial difference a ′ and terminal differ-
ence b ′:

Prob(a′, b′) =
∑

q(0)=a ′,q(r)=b ′

Prob(Q) (1)

The correlation C(f, g) between two binary Boolean functions f(a) and g(a)
is defined as:

C(f, g) = 2 × Prob(f(a) = g(a)) − 1.

A linear trail [14] U over an iterative transformation consists of a sequence
of r + 1 selection patterns (also known as linear mask):

U = (u(0), u(1), u(2), · · · , u(r−1), u(r)).

The correlation contribution [14] of a linear trail is the product of the corre-
lation of all its steps:

Cor(U) =
∏

i

C(u(i) · ρ(i)(a), u(i−1) · a). (2)
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A linear propagation is composed of a set of linear trails, the correlation of a
linear propagation (u,w) is the sum of the correlation contributions of all r-round
linear trails U with initial selection pattern w and final selection pattern u:

Cor(u,w) =
∑

u(0)=w, u(r)=u

Cor(U). (3)

The square of a correlation (contribution) is called correlation potential.
The following theorem gives the expected value of the correlation potential
Cor(u, w)2 over all possible values of the expanded key.

Theorem 2 ([14]). The average correlation potential between an input and an
output selection pattern is the sum of the correlation potentials of all linear trails
between the input and output selection patterns:

E(Cort
2) =

∑

i

(Cori)2 (4)

where Cort is the overall correlation, and Cori the correlation contribution of a
linear trail.

To attack a b-bit block cipher using DC, there must be a predictable difference
propagation over all but a few rounds with a probability significantly larger than
2−b. To attack a b-bit block cipher using LC, there must be a predictable linear
propagation over all but a few rounds with a correlation potential significantly
larger than 2−b.

2.3 An Extension of RECTANGLE - RECTANGLE88

Based on the design criteria of RECTANGLE, we present an extension of REC-
TANGLE to 88-bit block length, denoted as RECTANGLE88. A 88-bit cipher
state is pictured as a 4×22 rectangular array of bits. The SubColumn is 22 par-
allel applications of S-boxes to the 22 columns. The ShiftRow step is defined as
follows: row 0 is not rotated, row 1 is left rotated over 1 bit, row 2 is left rotated
over 8 bits, row 3 is left rotated over 17 bits.

3 A New Classification of 4-bit S-boxes

The subset of 4×4 optimal S-boxes with the same values of CarD1S and CarL1S

is called a category, the following is a formal definition.

Definition 6. An (nd, nl)-Num1-DL category is defined as a subset of all
4 × 4 optimal S-boxes which satisfy CarD1S = nd and CarL1S = nl. The
category is also called a Num1-DL category for short.

We are especially interested in those categories with low CarD1S and low
CarL1S . It can be easily seen that 0 ≤ CarD1S ≤ 16 and 0 ≤ CarL1S ≤ 16.
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Theorem 3. Let S denote an optimal S-box, then CarL1S ≥ 2. In other words,
there does not exist an optimal S-box with CarL1S = 0 or CarL1S = 1.

Proof: Let x = (x3, x2, x1, x0) and S(x) = (f3(x), f2(x), f1(x), f0(x)), where xi

is the i-th bit of x, and fj(x) the j-th bit of S(x). Since S is bijective, each
Boolean function fj (0 ≤ j ≤ 3)) is balanced.

Firstly, we show that there exist at least 2 Boolean functions fj1 and fj2 (0 ≤
j1, j2 ≤ 3) with algebraic degree 3, equivalently speaking, there exist at most
2 Boolean functions with algebraic degree less than 3. Proof by contradiction.
Assume that there exist 3 (or 4) out of the 4 Boolean functions fj (j = 0, 1, 2, 3)
with algebraic degree less than 3. Then, for each of the 7 (or 15) non-zero linear
combinations of these 3 (or 4) functions, the algebraic degree is also less than 3.
However, according to Table 1, for any optimal S-box, there are at most 3 out
of the 15 component functions with algebraic degree less than 3, which is a
contradiction.

According to Siegenthaler’s inequality [25], an n-variable Boolean function
with degree n−1 is not 1-resilient. Particularly, if the degree of fj is 3, then there
exists 0 ≤ i ≤ 3 such that fj(x)⊕xi is not balanced, which means that (2i, 2j) ∈
SetL1S . Since there exist at least 2 functions fj1 and fj2 with algebraic degree
3, we can get that there are at least 2 elements in SetL1S , i.e., CarL1S ≥ 2. 
�

Similar to the proof of Theorem 3, we can prove the following 2 theorems.

Theorem 4. Let S denote an optimal S-box. If S is affine equivalent to
G9, G10, G14 or G15, then CarL1S ≥ 3.

Theorem 5. Let S denote an optimal S-box. If S is affine equivalent to
G3, G4, G5, G6, G7, G11, G12 or G13, then CarL1S ≥ 4.

According to Theorems 4 and 5, we can get the following corollary.

Corollary 1. If CarL1S = 2, then S is in the 4 affine equivalence classes cor-
responding to G0, G1, G2 and G8; if CarL1S = 3, then S is in the 8 affine
equivalence classes corresponding to G0, G1, G2, G8, G9, G10, G14 and G15.

Corollary 1 indicates that we can restrict the search of S-boxes with
CarL1S = 2 (or CarL1S = 3 ) within the 4 (or 8) affine equivalence classes. In
the following, we present an efficient way which can experimentally classify all
4 × 4 optimal S-boxes into different categories.

The values of CarD1S and CarL1S are not generally invariant under the
affine equivalence relation, but the two values are invariant under the PE equiv-
alence relation.

Theorem 6. Let S and S′ be two PE equivalent S-boxes, then CarD1S =
CarD1S′ and CarL1S = CarL1S′ .

Every 4 × 4 optimal S-box can be written as B(Gi(A(x) ⊕ a)) ⊕ b, where
Gi (0 ≤ i ≤ 15) is the representative S-box, A and B are two invertible 4 × 4
matrices over F2, a and b are two constants over F 4

2 . The number of 4 × 4
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invertible matrices is
∏3

i=0(2
4 − 2i) = 20160. At the first sight, up to adding

constants, we need to consider 16×20160×20160 ≈ 232.6 S-boxes. However, this
number can be decreased greatly.

Lemma 1. Let M denote a 4 × 4 matrix over F2:

M =

⎛

⎜⎝

a03 a02 a01 a00

a13 a12 a11 a10

a23 a22 a21 a20

a33 a32 a31 a30

⎞

⎟⎠

where aij ∈ F2, 0 ≤ i, j ≤ 3. Let ri = ai3||ai2||ai1||ai0 denote the nibble consisting
of the 4 bits in the i-th row, ai0 is the least significant bit. There are 840 matrices
satisfying the following 2 conditions:

1. invertible.
2. r0 < r1 < r2 < r3.

we call such a matrix a row-increasing matrix.

Proof: Given a 4 × 4 invertible matrix, there are 24 different matrices obtained
by permuting the 4 rows. Among the 24 matrices, only one matrix satisfies
r0 < r1 < r2 < r3. Hence there are 20160/24 = 840 invertible row-increasing
matrices. 
�

According to Lemma 1, every 4 × 4 optimal S-box is PE equivalent to an
S-box with the form M1(Gi(MT

0 (x))), 0 ≤ i ≤ 15, M0 and M1 are two row-
increasing matrices. Hence, up to PE equivalence, we only need to consider
16 × 840 × 840 = 11289600 ≈ 223.43 S-boxes. By exhaustively checking all the
11289600 S-boxes, we have the following result.

Result 1. All optimal 4 × 4 S-boxes can be split into 183 different Num1-DL
categories. Table 2 gives the details, the symbol “�” at position (i, j) means that
there exist optimal S-boxes satisfying CarD1S = i and CarL1S = j. From
Table 2, the following facts are of interest:

1. No Num1-DL category satisfies that CarL1S = 0 or CarL1S = 1.
2. The minimal possible value for CarD1S is 0. When CarD1S = 0, the minimal

possible value for CarL1S is 4, i.e., the (0, 4)-Num1-DL category.
3. The minimal possible value for CarL1S is 2. When CarL1S = 2, the minimal

possible value for CarD1S is 2, i.e., the (2, 2)-Num1-DL category.

Note that the first fact in Result 1 is in accordance with Theorem 3. For
each Num1-DL category satisfying CarD1S + CarL1S ≤ 8, by checking all the
S-boxes (out of 11289600 S-boxes) in this category, we get the following result.

Result 2. There are 24 Num1-DL categories satisfying CarD1S +CarL1S ≤ 8.
Table 3 gives the number of PE classes for each of the 24 Num1-DL categories.
Moreover, we have the following facts:

1. Consider the sum of the values in row 0, there are 20 PE classes satisfying
CarD1S = 0.
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Table 2. 183 Num1-DL Categories: marked by �

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0 � � � � �
1 � � � � � � � � � �
2 � � � � � � � � � � � � �
3 � � � � � � � � � � � � � �
4 � � � � � � � � � � � � � � �
5 � � � � � � � � � � � � � � �
6 � � � � � � � � � � � � � �
7 � � � � � � � � � � � � � �
8 � � � � � � � � � � � � �
9 � � � � � � � � � � � � �
10 � � � � � � � � � � � � �
11 � � � � � � � � � � � � �
12 � � � � � � � � � � �
13 � � � � � � � � � �
14 � � � � � � � �
15 � �
16

Notes: the leftmost column denotes the 17 possible values of
CarD1S the uppermost row denotes the 17 possible values of
CarL1S

Table 3. Number of PE Classes in the 24 Num1-DL Categories satisfying CarD1S +
CarL1S ≤ 8

0 1 2 3 4 5 6 7 8

0 2 2 6 2 8

1 4 26 50 112 113 –

2 4 54 155 290 648 – –

3 10 116 593 1445 – – –

4 9 168 1141 – – – –

5 5 146 – – – – –

Notes: the leftmost column denotes the
possible values of CarD1S the upper-
most row denotes the possible values of
CarL1S “–” denotes the class does not
satisfy CarD1S + CarL1S ≤ 8
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2. Restricting CarD1S + CarL1S ≤ 4, there are 3 Num1-DL categories: (0, 4)-,
(1, 3)-, (2, 2)-Num1-DL category. We call these 3 categories platinum
Num1-DL categories. Table 4 lists representative S-boxes for each PE class
in each of the 3 platinum Num1-DL categories.

Table 4. Representative S-boxes for the 3 platinum Num1-DL categories

(0, 4)-Num1-DL category 0, 11, 12, 5, 6, 1, 9, 10, 3, 14, 15, 8, 13, 4, 2, 7

0, 12, 13, 10, 5, 11, 14, 7, 15, 6, 2, 1, 3, 8, 9, 4

(1, 3)-Num1-DL category 0, 12, 9, 7, 6, 1, 15, 2, 3, 11, 4, 14, 13, 8, 10, 5

0, 12, 9, 7, 15, 2, 6, 1, 3, 11, 4, 14, 10, 5, 13, 8

0, 11, 8, 5, 15, 12, 3, 6, 14, 4, 7, 9, 2, 1, 13, 10

0, 13, 4, 11, 7, 14, 9, 2, 6, 10, 3, 5, 8, 1, 15, 12

(2, 2)-Num1-DL category 0, 13, 8, 2, 14, 11, 7, 5, 15, 6, 3, 12, 4, 1, 9, 10

0, 11, 14, 1, 10, 7, 13, 4, 6, 12, 9, 15, 5, 8, 3, 2

0, 11, 6, 9, 12, 5, 3, 14, 13, 7, 8, 4, 2, 10, 15, 1

0, 14, 9, 5, 15, 8, 10, 7, 3, 11, 6, 12, 4, 1, 13, 2

Note: In each row, the first integer represents the image of 0, the second
the image of 1, and so on.

Generally, the S-boxes in a Num1-DL category belong to many affine equiv-
alence classes. For example, (0,8)-Num1-DL category includes 8 PE classes, and
the 8 PE classes belong to 5 affine equivalence classes. In Result 2, the first
fact is in accordance with Fact 4 in [18]. For the (2, 2)-Num1-DL category, the
4 representative S-boxes are respectively PE equivalent to the 4 representative
S-boxes given in [28].

4 Measures for Evaluating the Security Against
DC and LC

Kanda et al. [17] classified 4 measures to evaluate the security of a cipher against
DC and LC as follows:

1. Precise measure: The maximum probability of difference propagations, and
the maximum average correlation potential of linear propagations.

2. Theoretical measure: The upper bound of the maximum probability of differ-
ence propagations, and the upper bound of the maximum average correlation
potential of linear propagations.

3. Heuristic measure: The maximum probability of differential trails, and the
maximum correlation potential of linear trails.

4. Practical measure: The upper bound of the maximum probability of differ-
ential trails, and the upper bound of the maximum correlation potential of
linear trails.
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For many modern ciphers, such as AES and Serpent, it is almost compu-
tationally infeasible to perform an evaluation using the precise measure or the
theoretical measure. For ciphers with good diffusion, such as Serpent [2], the
heuristic measure is only effective for a small number of rounds. On the other
hand, many ciphers evaluated with the practical measure are practically secure
against DC and LC, such as AES and NOEKEON, hence the practical measure
is the most common measure.

However, compared with the practical measure, the heuristic measure is more
accurate. If the heuristic measure is feasible for a cipher, then both the cryptana-
lysts and designers can have a better understanding on the security of the cipher
against DC and LC. Particularly, for PRESENT, RECTANGLE and SPON-
GENT, the heuristic measure is feasible, we will discuss this problem in Sect. 6.2.

Consider the following SP-network schemes. Fix the permutation layer of
PRESENT, RECTANGLE or SPONGENT, the S-box can have many different
choices. Then, for each scheme, we wonder which S-boxes are the best with
respect to DC and LC? In this paper, we mainly concentrate on S-boxes in
the 3 platinum Num1-DL categories. In Sects. 5 and 6, we adopt the heuristic
measure for the study. One may say that, for such schemes, the clustering of
differential/linear trails must not be neglected [6,12,22,26,28], hence it needs to
use the precise (or the theoretical) measure. However, we think that it is still
appropriate to use the heuristic measure for the study. The following gives the
reasons.

The total number of schemes investigated in this paper is 4368 (see Table 5),
it needs an extremely huge computational effort to evaluate the clustering of
differential/linear trails for all the schemes investigated in this paper.

Let rDp denote the highest number of rounds of an exploitable differential
distinguisher by using the precise measure, and rLp the highest number of rounds
of an exploitable linear distinguisher by using the precise measure, define rp ≡
max{rDp, rLp}. For a fixed permutation, among all the S-box candidates, the
smaller the value of rp, the better the scheme, because schemes with the minimal
rp need the least number of rounds to resist against DC and LC. Let rDh denote
the highest number of rounds of an exploitable differential distinguisher by using
the heuristic measure, and rLh the highest number of rounds of an exploitable
linear distinguisher by using the heuristic measure, define rh ≡ max{rDh, rLh}.
Based on Eqs. (1) and (4), we have rDp ≥ rDh and rLp ≥ rLh, thus rp ≥ rh. The
smaller the value of rDp −rDh (rLp −rLh), the less the clustering of differential
(linear) trails. Based on the known results on PRESENT, RECTANGLE and
SPONGENT [1,6,12,22,26,28], the difference rDp−rDh (or rLp−rLh) between
the two measures are as follows: For PRESENT against DC, the difference is
16 − 14 = 2; for PRESENT against LC, the difference is 24 − 16 = 8. For
RECTANGLE against DC, the difference is 14 − 14 = 0; for RECTANGLE
against LC, the difference is 14 − 13 = 1. For SPONGENT88 against LC, the
difference is 23 − 22 = 1. Based on the above results, we expect that there exist
S-boxes with a small value of both rDp − rDh and rLp − rLh for each fixed
permutation layer. For such schemes, if rh reaches the minimal, we expect that
it is very likely that rp also reaches the minimal. Hence, it is reasonable to make
the following assumption:
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Assumption 1. For each fixed permutation layer, consider the SP-network
schemes investigated in this paper. Among those with a minimal value of rh,
there exist some schemes satisfying rDp − rDh ≤ 2 and rLp − rLh ≤ 2.

By using the heuristic measure, for each combination of a fixed permutation
layer and a platinum Num1-DL category, we can discard a large proportion of the
S-box candidates and concentrate only on S-boxes with the minimal value of rh

(we will present the results in Sect. 6). We emphasize that this is the first step.
For such cipher designs, designers must take differential/linear clustering into
consideration. Ideally, designers can make a further selection from the schemes
with the minimal value of rh by selecting an S-box which has the minimal value
of rp − rh. Note that the minimal value of rp − rh is not more than 2 under
Assumption 1.

5 A Relation of the S-box Selection, the Value of CarL1S

and the Security of PRESENT and SPONGENT

The block length of PRESENT is 64 bits. For SPONGENT [8], the block length
of the internal permutation has 5 choices: 88, 136, 176, 240 and 272 bits 1, which
are denoted as SPONGENTb respectively, b is the block length. In this section,
we focus on these 6 block lengths.

The design criteria of the PRESENT S-box are as follows:

1. Optimal.
2. CarD1S = 0.
3. For ΓI, ΓO ∈ F 4

2 such that wt(ΓI) = wt(ΓO) = 1 it holds that ImbS

(ΓI, ΓO) = 2.
4. No fixed point, i.e., S(x) �= x for any x ∈ F 4

2 .

There are 20 PE classes satisfying criteria 1 and 2. Among the 20 PE classes,
14 PE classes satisfy criterion 3. Up to adding constants before and after an S-
box, which does not change any of the design criteria 1–3 of the PRESENT S-box
and moreover does not change the probability of the best differential trail and
the correlation potential of the best linear trail, there are 14 × 4! × 4! = 8064 S-
boxes. The 8064 S-boxes belong to 3 different categories. Fix the permutation of
PRESENT (or the permutation layer of the SPONGENT internal permutation),
we wonder which are the best choices among the 8064 S-boxes.

For the schemes investigated in this section, if the best r-round linear trail
has only one active S-box in each round, then its correlation potential is 2−4r+4.
Thus, when r = b

4 , the correlation potential of such a linear trail is 2−b+4,
which means there exists a b

4 -round exploitable linear distinguisher. For b = 64
and b = 88, our experiments show that there exist some S-boxes such that the
correlation potential of the best b

4 -round linear trail is less than or equal to 2−b

(see Tables 7 and 9).
1 The block length of the internal permutation of SPONGENT is extended to 11

different choices in [9]. We do not consider the other 6 choices in this paper.
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Algorithm 1
INPUT:

b: the block length S: an S-box candidate Permb: the b-bit permutation layer of
the block cipher or the hash function
OUTPUT:

Check if the S-box can result in a linear trail with only one active S-box in each round. If yes,
flag=1; else flag=0.

1. Set flag=0. Declare Init as a global variable.
2. Calculate CarL1S and the CarL1S pairs {(ΓI, ΓO)} of the set SetL1S .
3. for b

4 S-box indexes of i ∈ {0, 1, · · · , b
4 − 1} do

for CarL1S pairs (ΓI, ΓO) ∈ SetL1S do

{Init = In = i × 4 + log Γ I
2 ; Out = i × 4 + log Γ O

2 ;
if ( Permb[Out] = Init ), then {flag=1; return flag and exit the program}; //

a 1-round iterative weak linear trail is found.
else call Function loop(2); }

4. Return flag and exit the program;

Function loop(r)

{for all pairs (ΓI∗, ΓO∗) ∈ SetL1S satisfying (Permb[Out] mod 4 = ΓI∗) do

{In = Permb[Out]; Out = � In
4 	 × 4 + log Γ O∗

2 ;
if ( Permb[Out] = Init ), then {flag = 1; return flag and exit the program}; //

a r-round iterative weak linear trail is found.
else if (r < 25 ), call loop(r+1); } }

Based on the above discussion, we decide to discard the S-boxes which can
result in a linear trail with only one active S-box in each round. Note that a
r-round iterative linear trail can be used to construct a r ′-round linear trail for
any r ′ ≥ r. Algorithm 1 is designed to detect if an S-box can result in a r-round
iterative linear trail with only one active S-box in each round, note that such
a linear trail is connected by the elements in SetL1S . We only check up to 25
rounds for practical reasons (nevertheless, we point out that it can not exclude
the possibility that more S-boxes may be discarded if more rounds are checked).
Let ei denote the vector with a single one at position i (counting from zero).
Since all of the round input/output selection patterns belong to the set {ei}, for
simplicity, we use In (Out) to denote the subscript of the input (output) selection
pattern of the S-box layer. By running Algorithm1, we get the following result.

Result 3. For each of the 6 block lengths, fix the corresponding permuta-
tion layer, when combining with the 8064 S-boxes, there are 8064 SP-network
schemes. Discard the S-boxes which can result in a linear trail with only one
active S-box in each round using Algorithm1, we have the following facts:

1. Table 5 gives the number of the remaining S-boxes, which shows that more
than 98.6 percent of the 8064 S-boxes are discarded for each block length.

2. For 64-, 88-, 136-, 176- and 240-bit block length, all of the remaining S-boxes
belong to the (0, 4)-Num1-DL category; for 272-bit block length, there is no
S-box left.

For each of the 6 block lengths, among the 8064 S-boxes, every S-box in (0, 6)-
Num1-DL and (0, 8)-Num1-DL categories can result in a linear trail with only
one active S-box in each round. For 272-bit block length, fix the permutation
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Table 5. Number of the Remaining S-boxes using Algorithm 1 for the 6 Block Lengths

block length (bits) 64 88 136 176 240 272

number of remaining S-boxes 96 112 32 48 64 0

layer of SPONGENT272, for each of the 8064 S-box candidates, there exists a
linear trail with only one active S-box in each round. Hence, we get a new design
criterion for the S-box of PRESENT-like or SPOGNENT-like schemes.

Design Criterion 1. For 64-bit (88-, 136-, 176- and 240-bit respectively) block
length, fix the permutation layer of PRESENT (the corresponding SPONGENT
variant). For better resistance against LC, besides the 4 design criteria for the
S-box, designers should add CarL1S = 4 as a new design criterion.

For 272-bit block length, fix the permutation layer of SPONGENT272. For
better resistance against LC, designers should change their design criteria
CarD1S = 0 and choose an S-box with CarD1S �= 0.

6 An Investigation of the S-box Selection of PRESENT,
RECTANGLE and SPONGENT

Due to the huge computational effort required to run the experiments, we only
focus on 64- and 88-bit block lengths in this section. Consider the following
SP-network schemes. For 64-bit block length, the S-box is chosen from the 3
platinum Num1-DL categories, the diffusion layer is either the PRESENT or
RECTANGLE permutation. Thus, there are 6 combinations. Similarly, for 88-bit
block length, there are also 6 combinations. Hence, 12 combinations in total. In
Sect. 6.3, we consider both DC and LC for the security of the 12 combinations
using the heuristic measure. Since DC is more important than LC for hash
functions, in Sect. 6.4, we only consider DC for the 12 combinations.

Definition 7. Let b denote the block length. For a b-bit block cipher (or permu-
tation of a hash function), let Probr denote the probability of the best r-round
differential trail, and Corr the correlation of the best r-round linear trail. Define
rmin as

rmin = min
r

{Probr ≤ 2−b and Corr
2 ≤ 2−b}.

In this section, we use the values of rmin, Probrmin
and Corrmin

for a com-
parative study. Generally speaking, the smaller the value of rmin, the better the
scheme against DC and LC. For schemes with the same value of rmin, the smaller
the value of Probrmin

(or Corrmin
), the better the scheme against DC (or LC).

6.1 Influence of S-box Selection and Differential/Linear Trails
with One Active S-box per Round

According to Table 4, up to adding constants before and after an S-box, there are
1152, 2304 and 2304 S-boxes in the (0, 4)-Num1-DL category, the (1, 3)-Num1-
DL category and the (2, 2)-Num1-DL category respectively. By checking all the
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10 platinum representative S-boxes, we get the following result. For any of the
investigated schemes, if a r-round linear trail has only one active S-box in each
round, then its correlation potential is 2−4r+4; if a r-round differential trail has
only one active S-box in each round, then its differential probability is between
2−3r and 2−3r+2.

For each of the 12 combinations, we firstly discard the S-boxes which can
result in a differential/linear trail with only one active S-box in each round.
For schemes using the PRESENT or SPONGENT88 permutation layer, we use
Algorithm 1 to perform the filtering, note that Algorithm 1 can be modi-
fied a little for the differential case. For schemes using the RECTANGLE or
RECTANGLE88 permutation, we extend the idea of Algorithm 2 in [28] to per-
form the filtering, the number of remaining S-boxes only depends on properties
of the S-boxes and not on the block length. Table 6 presents our experimental
results of the number of remaining S-boxes for the 12 combinations.

In [24], 4 PE classes are specified as “golden” S-boxes. For each of the 4 PE
classes, CarD1S = 0 and CarL1S = 8. Fix the RECTANGLE permutation,
when combining with these golden S-boxes, we get 2304 SP-network schemes.
For each of the 2304 schemes, there exists a linear trail with only one active
S-box in each round. Thus, together with Result 3, we get that all of the golden
S-boxes are not good choices for the 3 primitives.

Table 6. Number of the Remaining S-boxes for the 12 Combinations

PRESENT Perm SPONGENT88 Perm RECTANGLE64 Perm

/RECTANGLE88 Perm

(0, 4)-Num1-DL 96 112 96

(1, 3)-Num1-DL 384 592 384

(2, 2)-Num1-DL 528 640 528

6.2 Search Algorithm for the Best Differential/Linear Trail

Matsui proposed a branch-and-bound search algorithm [20] for determining the
best differential/linear trail of DES-like cryptosystems in 1994. Ohta et al. [23]
improved Matsui’s algorithm by introducing the concept of search pattern to
reduce unnecessary search candidates before the search, and applied their algo-
rithm on DES and FEAL. Aoki et al. [3] further improved Ohta’s search algorithm
by discarding more unnecessary search patterns, and applied their algorithm on
FEAL. Based on these 3 previous work, we have written a program for the search
of the best differential/linear trails for PRESENT, RECTANGLE and the inter-
nal permutation of SPONGENT respectively.

6.3 Experimental Results

In the following, we present our experimental results. The experiments have
been performed using 4 computers: 3 with Intel Core i7 (or i5) CPU, and 1
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with Intel Xeon E7-2820 (16 cores) CPU. It took us about 4 weeks to do all the
experiments.

For each combination, let N denote the number of the remaining S-boxes (see
Table 6), the permutation layer is fixed, thus we have N SP-network schemes.
Here are some notations:

– Rm: the minimal value of rmin among the N schemes
– NumRm

: the number of schemes that the corresponding rmin reach the min-
imum value Rm

– num: the number of schemes with the values ProbRm
and Cor2Rm

in the same
row

Tables 7, 8, 9, 10 summarize our experimental results for each fixed permu-
tation. The result in Table 8 is in accordance with that in [28]. From Tables 7,
8, 9, 10, we get the following results:

1. With the PRESENT permutation layer, the values of Rm are the same for
the 3 combinations. There are 336 S-boxes (up to adding constants before
and after an S-box, similarly hereinafter) such that the value of rmin reach
the minimum Rm = 16.

2. With the RECTANGLE permutation layer, the (1,3)- and (2,2)-Num1-DL
categories are better. There are 128 S-boxes such that the value of rmin reach
the minimum Rm = 15. Note that RECTANGLE uses one of these 128 S-
boxes.

3. With the SPONGENT88 permutation layer, the (1,3)- and (2,2)-Num1-DL
categories are better. For the (1,3)-Num1-DL category, Rm = 19; for the
(2,2)-Num1-DL category, Rm ≤ 19.

4. With the RECTANGLE88 permutation layer, the (2,2)-Num1-DL category
is the best. There is only one S-box such that the value of rmin reach the
minimum Rm = 17.

Table 7. Experimental Results With the PRESENT Permutation

category Rm NumRm ProbRm Cor2Rm
num

(0, 4)-Num1-DL 16 96 2−64 2−64 96

(1, 3)-Num1-DL 16 192 2−70 2−64 96

2−64 2−64 96

(2, 2)-Num1-DL 16 48 2−68 2−64 48

In Table 9, for the two combinations marked with “*”, we have not finished
the experiments for all of the corresponding S-boxes. However, we derived the
value of Rm for one combination and a good estimate of Rm for the other, which
are enough for us to derive the above results.
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Table 8. Experimental Results With the RECTANGLE Permutation

category Rm NumRm ProbRm Cor2Rm
num

(0, 4)-Num1-DL 16 16 2−64 2−80 16

(1, 3)-Num1-DL 15 64 2−74 2−66 16

2−71 2−66 16

2−65 2−66 16

2−65 2−64 16

(2, 2)-Num1-DL 15 64 2−73 2−64 8

2−72 2−64 8

2−69 2−64 16

2−67 2−66 8

2−66 2−74 4

2−66 2−72 8

2−66 2−70 4

2−66 2−66 8

Table 9. Experimental Results With the SPONGENT88 Permutation Layer

category Rm NumRm ProbRm Cor2Rm
num

(0, 4)-Num1-DL 21 8 2−118 2−88 4

2−117 2−88 4

(1, 3)-Num1-DL* 19 ? ≤ 2−91 2−90 ?

(2, 2)-Num1-DL* ≤ 19 ? ≤ 2−88 2−90 ?

Table 10. Experimental Results With the RECTANGLE88 Permutation

category Rm NumRm ProbRm Cor2Rm
num

(0, 4)-Num1-DL 22 96 2−88 2−118 84

2−88 2−116 8

2−88 2−114 4

(1, 3)-Num1-DL 18 56 2−93 2−92 8

2−93 2−88 10

2−92 2−88 2

2−91 2−92 4

2−91 2−90 2

2−90 2−88 2

2−88 2−92 8

2−88 2−90 6

2−88 2−88 14

(2, 2)-Num1-DL 17 1 2−88 2−88 1
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6.4 For Hash Functions - When DC Is More Important Than LC

According to the state-of-art security analysis on hash functions, DC is more
important than LC. On the other hand, the permutation (or the compression
function) of a hash function is normally required to be pseudo-random, which
includes the requirement that there is no effective linear distinguisher. Therefore,
we decide to consider the following question: For each of the 12 combinations,
when only considering DC for the remaining S-boxes obtained in Sect. 6.1 (see
Table 6), what results can we get? At first thought, the (0,4)-Num1-DL category
should be the best choice, however, we will show that it is not always the case.

Table 11. Results for the 12 Combinations when only Considering DC

Permutation Layer category RD
m ProbRD

m

PRESENT (0, 4)-Num1-DL 16 2−64

Permutation (1, 3)-Num1-DL 15 2−64

(2, 2)-Num1-DL 16 2−68

RECTANGLE (0, 4)-Num1-DL 16 2−64

Permutation (1, 3)-Num1-DL 14 2−69

(2, 2)-Num1-DL 14 2−68

SPONGENT88 (0, 4)-Num1-DL 17 2−94

Permutation Layer (1, 3)-Num1-DL* ≤ 18 ≤ 2−89

(2, 2)-Num1-DL* ≤ 19 ≤ 2−88

RECTANGLE 88 (0, 4)-Num1-DL 22 2−88

Permutation (1, 3)-Num1-DL 18 2−93

(2, 2)-Num1-DL 17 2−88

For each scheme, define rD
min = minr{Probr ≤ 2−b }. For each combina-

tion, let RD
m denote the minimal value of rD

min among the N schemes. Table 11
summarizes our experimental results, and we get the following results:

1. With the PRESENT permutation, the (1,3)-Num1-DL category is the best.
The minimal value of rD

min is RD
m = 15.

2. With the RECTANGLE permutation, the (1,3)- and (2,2)-Num1-DL cate-
gories are better. The minimal value of rD

min is RD
m = 14.

3. With the SPONGENT88 permutation layer, it seems that the (0,4)-Num1-DL
category is the best and the minimal value of rD

min is RD
m = 17.

4. With the RECTANGLE88 permutation, the (2,2)-Num1-DL category is the
best. The minimal value of rD

min is RD
m = 17.

Potentially Better S-boxes for SPONGENT88. For SPONGENT88, there
exists a 17-round differential trail with probability 2−86 [4], which is better than
the one given by its designers in [9, Table 4]. Moreover, there exists a 22-round
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linear trail with correlation potential 2−84 for SPONGENT88 (only one active
S-box in each of the 22 rounds).

With the permutation layer of SPONGENT88, we found 4 S-boxes in the
(0,4)-Num1-DL category such that the probability of the best 17-round differen-
tial trail is 2−94 and the correlation potential of the best 21-round linear trail is
2−88 for each of the 4 schemes. It can be seen that the 4 S-boxes are potentially
better than the SPONGENT88 S-box with respect to the security against both
DC and LC. The 4 S-boxes are listed in Table 12, which can be used for further
investigation.

Table 12. 4 Potentially Better S-boxes for SPONGENT88

0, 6, 12, 1, 5, 9, 11, 14, 3, 13, 15, 8, 10, 7, 4, 2

0, 6, 5, 8, 10, 13, 15, 1, 12, 9, 11, 7, 3, 14, 4, 2

0, 3, 5, 12, 10, 13, 15, 2, 6, 9, 11, 7, 1, 14, 8, 4

0, 12, 10, 5, 3, 15, 13, 2, 6, 11, 9, 14, 8, 1, 7, 4

6.5 A New Design Criterion

For SP-network schemes with the SPONGENT88 permutation layer, when con-
sidering both DC and LC, based on the results in Sect. 5 and Table 9, it can be
deduced that an S-box with CarD1S = 0 is not an optimal choice, while (1, 3)-
and (2, 2)- Num1-DL categories are better choices. On the other hand, when con-
sidering DC more important than LC, it seems that (0, 4)-Num1-DL category is
the best choice. For SP-network schemes with RECTANGLE-like permutations,
based on the results in Tables 7, 8, 9, 10, 11, it seems that the (2, 2)-Num1-DL
category is always an optimal choice. We have the following design criterion.

Design Criterion 2. For block ciphers (or hash functions) using 4× 4 S-boxes
as confusion layers and bit permutations as diffusion layers, designers can extend
the range of the S-box selection to the 3 platinum Num1-DL categories and select
their S-box carefully.

7 Discussion

Based on our experimental results, there are 336 potentially best S-boxes for
PRESENT, 128 potentially best S-boxes for RECTANGLE, and 4 potentially
better S-boxes for SPONGENT88. To judge if a potentially best (better) S-box
is a real best (better) S-box, it needs to investigate the clustering of differen-
tial/linear trails. In this respect, the approach used in [1] is of interest, we leave
it for further study. The NOEKEON S-box belongs to the (7, 6)-Num1-DL cate-
gory. Serpent uses 8 S-boxes, among them, 3 S-boxes belong to the (0, 6)-Num1-
DL category, and the other 5 S-boxes belong to the (0, 8)-Num1-DL category.
It is also interesting to investigate the influence of the 3 platinum Num1-DL
categories on the security of NOEKEON and Serpent against DC and LC.
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