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Abstract. A constant of 222 appears in the security bounds of the
Galois/Counter Mode of Operation, GCM. In this paper, we first develop
an algorithm to generate nonces that have a high counter-collision prob-
ability. We show concrete examples of nonces with the counter-collision
probability of about 220.75/2128. This shows that the constant in the secu-
rity bounds, 222, cannot be made smaller than 219.74 if the proof relies
on “the sum bound.” We next show that it is possible to avoid using the
sum bound, leading to improved security bounds of GCM. One of our
improvements shows that the constant of 222 can be reduced to 32.

Keywords: GCM · Provable security · Counter-collision · The sum
bound

1 Introduction

The Galois/Counter Mode of Operation, GCM, is a widely deployed authenti-
cated encryption scheme. It was designed by McGrew and Viega [18,19] in 2004,
and has been adopted by NIST as the recommended blockcipher mode of oper-
ation in 2007 [7]. A large number of standards include GCM, e.g., it is included
in TLS [29], ISO/IEC [11], NSA Suite B [22], and IEEE 802.1 [10]. A crypto-
graphic competition on authenticated encryption schemes, called CAESAR, has
been launched in 2013 [6], and it defines GCM as the benchmark algorithm of
the competition. There are a large number of results studying the security of
GCM. Ferguson showed a forgery attack against the use of short tags [8]. Joux
showed a partial key recovery attack under the nonce-reuse setting [14]. Weak
keys of GHASH, a polynomial hash function employed in GCM, was studied by
Handschuh and Preneel [9], followed by Saarinen [28], Procter and Cid [24], and
Bogdanov [5]. See also [1]. Other results related to GCM include [2,30,31], and
Rogaway [26] presented a comprehensive survey on various aspects of GCM.

For the provable security aspect of GCM, the original proposal by McGrew
and Viega [18,19] included proofs of the security. Later, Iwata, Ohashi, and
Minematsu [12] pointed out a flaw in the proofs of [18,19] with counter examples
that invalidate them. They also presented corrected proofs, but the security
bounds are larger than the original ones, roughly by a factor of 222.
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The counter examples invalidate the proofs in [18,19], but they do not exclude
the possibility that the original security bounds of [18,19] can still be proved,
and in [12], an open question about the possibility of improving the security
bounds of [12] was posed, which is the main question we consider in this paper.
GCM relies its security on the use of a nonce, and the nonce determines the
initial counter value. A collision on counter values, or a counter-collision, leads
to an attack on GCM, and the counter-collision probability needs to be small.
The crux of [12] is the development of a method to derive an upper bound on the
counter-collision probability. [12] showed that the upper bound is obtained by
solving a combinatorial problem involving arithmetic additions and xor’s, and
security bounds are derived by applying the sum bound to the counter-collision
probability.

In this paper, we first develop an algorithm to generate nonces that have
a high counter-collision probability. The problem is reduced to determining an
equation that has as many solutions as possible, and the equation involves an
arithmetic addition, finite field multiplications, and xor’s. We show that it can
be converted into a problem of solving a system of linear equations over GF(2),
with a selection process of several constants in a greedy method. As a result, we
obtain concrete examples of nonces that have a counter-collision probability of
about 220.75/2128 = 2−107.25, and the results were verified by a program. With
the same setting, the upper bound of [12] on the counter-collision probability is
about 222.75/2128 = 2−105.25. This implies that, as long as we follow the proof
strategy, in particular the use of the sum bound, the security bounds of [12] are
tight within a factor of about 4.

A natural question is then whether it is possible to avoid using the sum bound
in the proofs. We next answer this question positively, and we show that the
avoidance indeed yields strong security bounds of GCM. We present two types
of improvements. The first improvement reduces the constant, 222, appears in
the security bounds in [12], to 32. The new security bounds improve the security
bounds in [12] by a factor of 217, and they show that the security of GCM is
actually close to what was originally claimed in [18,19]. Another improvement
gives security bounds that are better than the first ones for long data. Specifically,
if the average plaintext length to be authenticated and encrypted is longer than
about 2 Gbytes, then the second improvement gives a stronger guarantee of
security.

We note that the focus of this paper is the general case where a nonce of
variable-length is used, while it is known that GCM has strong security bounds
if the nonce length is fixed to 96 bits [12].

2 Preliminaries

We write {0, 1}∗ for the set of all finite bit strings, and for an integer � ≥
0, we write {0, 1}� for the set of all �-bit strings. For X ∈ {0, 1}∗, |X| is its
length in bits, and |X|� = �|X|/�� is its length in �-bit blocks. We write ε for
the empty string. For X,Y ∈ {0, 1}∗, their concatenation is written as X ‖Y ,
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(X,Y ), or XY . The bit string of � zeros is written as 0� ∈ {0, 1}�, and � ones
is written as 1� ∈ {0, 1}�. The prefix 0x is used for the hexadecimal notation.
For example, 0x28 is 00101000 ∈ {0, 1}8. For X ∈ {0, 1}∗ and an integer �
such that |X| ≥ �, msb�(X) denotes the most significant (the leftmost) � bits
of X, and lsb�(X) denotes the least significant (the rightmost) � bits of X.
For X ∈ {0, 1}∗ such that |X| = j� for some integer j ≥ 1, its partition into
�-bit blocks is written as (X[1], . . . , X[j]) �← X, where X[1], . . . , X[j] ∈ {0, 1}�

are unique bit strings that satisfy X[1] ‖ . . . ‖X[x] = X. For integers a and �
satisfying 0 ≤ a ≤ 2� − 1, we write str�(a) for the �-bit binary representation
of a, i.e., if a = a�−12�−1 + · · · + a12 + a0 for a�−1, . . . , a1, a0 ∈ {0, 1}, then
str�(a) = a�−1 . . . a1a0 ∈ {0, 1}�. For X = x�−1 . . . x1x0 ∈ {0, 1}�, let int(X) be
the integer x�−12�−1 + · · · + x12 + x0. For a finite set X , we write #X for its
cardinality, and X

$← X for a procedure of assigning X an element sampled
uniformly at random from X .

Throughout this paper, we fix a blockcipher E : K×{0, 1}n → {0, 1}n, where
n is its block length in bits, which is fixed to n = 128, and K is a non-empty set
of keys. The permutation specified by K ∈ K is written as EK , and C = EK(M)
denotes the ciphertext of a plaintext M ∈ {0, 1}n under the key K ∈ K. The
set of n-bit strings, {0, 1}n, is also regarded as the finite field with 2n elements
which is written as GF(2n). An n-bit string an−1 . . . a1a0 ∈ {0, 1}n corresponds
to a formal polynomial a(x) = an−1+an−2x+ · · ·+a1xn−2+a0xn−1 ∈ GF(2)[x].
The irreducible polynomial used in GCM is p(x) = 1+x+x2 +x7 +x128, which
is assumed to be the underlying polynomial throughout this paper.

3 Specification of GCM

We follow the description in [12], which follows the specification in [18,19] with
minor notational changes. GCM takes two parameters: a blockcipher E : K ×
{0, 1}n → {0, 1}n and a tag length τ , where 64 ≤ τ ≤ n. If we use E and
τ as parameters, then we write the corresponding GCM as GCM[E, τ ], and
we write GCM-E for its encryption algorithm and GCM-D for its decryption
algorithm. These algorithms are defined in Fig. 1. In GCM-E and GCM-D, we use
two subroutines defined in Fig. 2. The first one is the counter mode encryption,
denoted by CTR, and the other one is the polynomial hash function over GF(2n),
denoted by GHASH. See Fig. 3 for the overall structure of GCM-E , and Fig. 4 for
the subroutines used therein.

The encryption algorithm, GCM-E , takes a key K ∈ K, a nonce N ∈ {0, 1}∗,
associated data A ∈ {0, 1}∗, and a plaintext M ∈ {0, 1}∗ as input, and returns
a pair of a ciphertext C ∈ {0, 1}∗ and a tag T ∈ {0, 1}τ . We require 1 ≤
|N | ≤ 2n/2 − 1, 0 ≤ |A| ≤ 2n/2 − 1, and 0 ≤ |M | ≤ n(232 − 2), and it holds
that |C| = |M |. We write (C, T ) ← GCM-EN,A

K (M). The decryption algorithm,
GCM-D, takes a key K ∈ K, a nonce N ∈ {0, 1}∗, associated data A ∈ {0, 1}∗,
a ciphertext C ∈ {0, 1}∗, and a tag T ∈ {0, 1}τ as input, and returns either a
plaintext M ∈ {0, 1}∗ or the distinguished invalid symbol denoted by ⊥. We
write M ← GCM-DN,A

K (C, T ) or ⊥ ← GCM-DN,A
K (C, T ).
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Algorithm GCM-EN,A
K (M)

1. L ← EK(0n)
2. if |N | = 96 then I[0] ← N 0311
3. else I[0] ← GHASHL(ε, N)
4. m ← |M |n
5. S ← CTRK(I[0], m)
6. C ← M ⊕ msb|M|(S)

7. T ← EK(I[0]) ⊕ GHASHL(A, C)

8. T ← msbτ (T )
9. return (C, T )

Algorithm GCM-DN,A
K (C, T )

1. L ← EK(0n)
2. if |N | = 96 then I[0] ← N 0311
3. else I[0] ← GHASHL(ε, N)

4. T ∗ ← EK(I[0]) ⊕ GHASHL(A, C)

5. T ∗ ← msbτ (T ∗)
6. if T = T ∗ then return ⊥
7. m ← |C|n
8. S ← CTRK(I[0], m)
9. M ← C ⊕ msb|C|(S)

10. return M

Fig. 1. Definitions of GCM-EN,A
K (M) and GCM-DN,A

K (C, T )

Algorithm CTRK(I[0], m)

1. for j ← 1 to m do
2. I[j] ← inc(I[j − 1])
3. S[j] ← EK(I[j])
4. S ← (S[1], S[2], . . . , S[m])
5. return S

Algorithm GHASHL(A, C)

1. a ← n|A|n − |A|
2. c ← n|C|n − |C|
3. X ← A 0a C 0c strn/2(|A|) strn/2(|C|)
4. (X[1], . . . , X[x])

n← X
5. Y ← 0n

6. for j ← 1 to x do
7. Y ← L · (Y ⊕ X[j])
8. return Y

Fig. 2. Definitions of CTRK(I[0], m) and GHASHL(A, C)

if |N | = 96

N 0311

I[0]

if |N = 96

ε N

GHASHL

I[0]

I[0]M

CTRK

S

C

msb|M|

A C

msbτ

T

I[0]

GHASHLEK

Fig. 3. Overall structure of (C, T ) ← GCM-EN,A
K (M)
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N [1] N [2]

L L L

strn(|N |)N [m] 0∗

L

Y

I[1]

S[1]

I[2]

S[2]

I[m]

S[m]

S

I[0]

inc inc

EK EK

inc

EK

Fig. 4. Subroutines S ← CTRK(I[0], m) and Y ← GHASHL(A, C), where (A, C) =
(ε, N), N = (N [1], . . . , N [m]), |N [1]| = · · · = |N [m − 1]| = n, and 1 ≤ |N [m]| ≤ n

We use the increment function, denoted by inc, in the definition of CTR. It
takes a bit string X ∈ {0, 1}n as input, and we regard the least significant (the
rightmost) 32 bits of X as a non-negative integer, and then increment the value
by one modulo 232. That is, we have

inc(X) = msbn−32(X) ‖ str32(int(lsb32(X)) + 1 mod 232).

For r ≥ 0, incr(X) means that we apply inc on X for r times, and inc−r(X)
means that we apply the inverse function of inc on X for r times. By convention,
we let inc0(X) = X, and we thus have I[j] = incj(I[0]) for 0 ≤ j ≤ m in the 2nd
line in the definition of CTR. In the definition of GHASH, the multiplication in the
7th line is over GF(2n). We note that when |N | �= 96, we have GHASHL(ε,N) =
X[1]·Lx⊕· · ·⊕X[x]·L, where X = (X[1], . . . , X[x]) = N ‖ 0n|N |n−|N | ‖ strn(|N |).

Let Perm(n) be the set of all permutations on {0, 1}n, and we call P
$←

Perm(n) a random permutation. Let GCM[Perm(n), τ ] be GCM where we use
a random permutation P as the blockcipher EK . We write GCM-EP for its
encryption algorithm and GCM-DP for its decryption algorithm. Similarly, let
Rand(n) be the set of all functions from {0, 1}n to {0, 1}n, and we call F

$←
Rand(n) a random function. Let GCM[Rand(n), τ ] be GCM where we use F
as EK . We write GCM-EF for its encryption algorithm and GCM-DF for its
decryption algorithm.

4 Security Definitions

An adversary is a probabilistic algorithm that has access to one or two oracles.
We write AO for an adversary A that has access to an oracle O, and AO1,O2

for A that has access to two oracles O1 and O2. Following [3,25], we consider
privacy and authenticity of GCM.

A privacy adversary A has access to a GCM encryption oracle or a random-
bits oracle. The GCM encryption oracle, which we write EncK , takes (N,A,M)
as input and returns (C, T ) ← GCM-EN,A

K (M). The random-bits oracle, $, takes
(N,A,M) as input and returns (C, T ) $← {0, 1}|M |+τ . The privacy advantage of
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A is defined as

Advpriv
GCM[E,τ ](A) def= Pr

[
K

$← K : AEncK(·,·,·) ⇒ 1
]

− Pr
[
A$(·,·,·) ⇒ 1

]
,

where the first probability is defined over the randomness of K
$← K and A,

and the last one is over the randomness of $ and A. We assume that privacy
adversaries are nonce-respecting: if A makes q queries and N1 . . . , Nq are nonces
used in the queries, then it holds that Ni �= Nj for 1 ≤ i < j ≤ q.

An authenticity adversary A has access to two oracles, GCM encryption and
decryption oracles. The GCM encryption oracle, EncK , is described as above.
The GCM decryption oracle, DecK , takes (N,A,C, T ) as input and returns M ←
GCM-DN,A

K (C, T ) or ⊥ ← GCM-DN,A
K (C, T ). The authenticity advantage of A

is defined as

Advauth
GCM[E,τ ](A) def= Pr

[
K

$← K : AEncK(·,·,·),DecK(·,·,·,·) forges
]
,

where the probability is defined over the randomness of K
$← K and A. If A

makes a query (N,A,M) to EncK and receives (C, T ), then we assume that A
does not subsequently make a query (N,A,C, T ) to DecK . We also assume that
A does not repeat a query to DecK . We define that A forges if at least one
of the responses from DecK is not ⊥. We assume that authenticity adversaries
are nonce-respecting with respect to encryption queries. That is, assume that
A makes q queries to EncK and q′ queries to DecK , where N1, . . . , Nq are the
nonces used for EncK , and N ′

1, . . . , N
′
q′ are the nonces for DecK . We assume that

Ni �= Nj holds for 1 ≤ i < j ≤ q, but Ni = N ′
j may hold for some 1 ≤ i ≤ q and

1 ≤ j ≤ q′, and N ′
i = N ′

j may also hold for some 1 ≤ i < j ≤ q′.

5 GCM Security Bounds in [12] Need 881145

5.1 Review of Results in [12]

We first review results from [12]. Consider a privacy adversary A, and suppose
that A makes q queries (N1, A1,M1), . . . , (Nq, Aq,Mq), where |Ni|n = ni and
|Mi|n = mi. Then the total plaintext length is m1 + · · ·+mq, and the maximum
nonce length is max{n1, . . . , nq}. The following privacy result was proved.

Proposition 1 [12]. Let Perm(n) and τ be the parameters of GCM. Then for
any A that makes at most q queries, where the total plaintext length is at most
σ blocks and the maximum nonce length is at most �N blocks,

Advpriv
GCM[Perm(n),τ ](A) ≤ 0.5(σ + q + 1)2

2n
+

222q(σ + q)(�N + 1)
2n

. (1)

Suppose that an authenticity adversary A makes q queries (N1, A1,M1), . . . , (Nq,
Aq,Mq) to EncK and q′ queries (N ′

1, A
′
1, C

′
1, T

′
1), . . . , (N

′
q′ , A′

q′ , C ′
q′ , T ′

q′) to DecK ,
where |Ni|n = ni, |Ai|n = ai, |Mi|n = mi, |N ′

i |n = n′
i, |A′

i|n = a′
i, and
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|C ′
i|n = m′

i. Then the total plaintext length is m1 + · · · + mq, the maximum
nonce length is max{n1, . . . , nq, n

′
1, . . . , n

′
q′}, and the maximum input length is

max{a1 + m1, . . . , aq + mq, a
′
1 + m′

1, . . . , a
′
q′ + m′

q′}. The following authenticity
result was proved.

Proposition 2 [12]. Let Perm(n) and τ be the parameters of GCM. Then for
any A that makes at most q encryption queries and q′ decryption queries, where
the total plaintext length is at most σ blocks, the maximum nonce length is at
most �N blocks, and the maximum input length is at most �A blocks,

Advauth
GCM[Perm(n),τ ](A) ≤0.5(σ + q + q′ + 1)2

2n

+
222(q + q′)(σ + q + 1)(�N + 1)

2n
+

q′(�A + 1)
2τ

. (2)

We see that a non-small constant, 222, appears in (1) and (2). In what follows, we
recall how the constant was introduced by reviewing the proof of Proposition 1.
We first replace a random permutation P with a random function F . We have

Advpriv
GCM[Perm(n),τ ](A) ≤ Advpriv

GCM[Rand(n),τ ](A) +
0.5(σ + q + 1)2

2n

from the PRP/PRF switching lemma [4].
Now assume that A makes q queries, and for 1 ≤ i ≤ q, let (Ni, Ai,Mi)

be the i-th query, where |Mi|n = mi. Let the initial counter value, Ii[0], be
Ii[0] ← GHASHL(ε,Ni) if |Ni| �= 96, and Ii[0] ← Ni ‖ 0311 otherwise. We also let
the counter value, Ii[j], be Ii[j] ← incj(Ii[0]) for 1 ≤ j ≤ mi. With this notation,
we have the following list of counter values.

I1[0], I1[1], . . . , I1[m1]
I2[0], I2[1], . . . , I2[m2]

...
Iq[0], Iq[1], . . . , Iq[mq]

(3)

At this point, we are ready to define a bad event. We say that the bad event
occurs if we have at least one of the following events:

Case (A). Ii[j] = 0n holds for some (i, j) such that 1 ≤ i ≤ q and 0 ≤ j ≤ mi.
Case (B). Ii[j] = Ii′ [j′] holds for some (i, j, i′, j′) such that 1 ≤ i′ < i ≤ q,

0 ≤ j′ ≤ mi′ , and 0 ≤ j ≤ mi.

As analyzed in detail in [13, Appendix D], the absence of the bad event implies
that, each time A makes a query (Ni, Ai,Mi), A obtains a uniform random string
of |Mi| + τ bits, which in turn implies that the adaptivity of A does not help
and we may fix the q queries (N1, A1,M1), . . . , (Nq, Aq,Mq) of A. We evaluate
the probability of the bad event based on the randomness of L. For simplicity,
we write PrL[E] for Pr[L $← {0, 1}n : E] for an event E. We have

Advpriv
GCM[Rand(n),τ ](A) ≤ Pr

L
[Case (A) holds] + Pr

L
[Case (B) holds] . (4)
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The first probability is easy to evaluate and we have

Pr
L

[Case (A) holds] ≤
∑

1≤i≤q,0≤j≤mi

Pr
L

[Ii[j] = 0n] ≤ (σ + q)(�N + 1)
2n

, (5)

since incj(Ii[0]) = 0n is a non-trivial equation in L of degree at most �N +1 over
GF(2n) if |Ni| �= 96, and hence the probability is at most (�N + 1)/2n, or we
never have the event if |Ni| = 96.

The second probability can also be evaluated as the first one by using “the
sum bound,” and we obtain

Pr
L

[Case (B) holds] ≤
∑

1≤i′<i≤q,0≤j′≤mi′ ,0≤j≤mi

Pr
L

[
Ii[j] = Ii′ [j′]

]
. (6)

It remains to evaluate PrL

[
Ii[j] = Ii′ [j′]

]
for each (i, j, i′, j′), and we have the

following four cases to consider: |Ni| = |Ni′ | = 96, |Ni| �= 96 and |Ni′ | = 96,
|Ni| = 96 and |Ni′ | �= 96, and |Ni|, |Ni′ | �= 96.

The case |Ni| = |Ni′ | = 96 is easy to analyze and we have PrL

[
Ii[j] =

Ii′ [j′]
]

= 0. If |Ni| �= 96 and |Ni′ | = 96, then we have PrL

[
Ii[j] = Ii′ [j′]

] ≤
(�N +1)/2n since incj(Ii[0]) = incj′

(Ii′ [0]) is a non-trivial equation in L of degree
at most �N + 1 over GF(2n). The analysis for the case |Ni| = 96 and |Ni′ | �= 96
is the same as the previous case. The analysis of the last case, |Ni|, |Ni′ | �= 96,
is not simple, and we review the notation used in [12].

For 0 ≤ r ≤ 232 − 1 and two distinct nonces N and N ′ which are not 96 bits,
let the counter-collision, denoted by CollL(r,N,N ′), be the event

incr(GHASHL(ε,N)) = GHASHL(ε,N ′). (7)

We say PrL[CollL(r,N,N ′)] a counter-collision probability. Recall that Ii[j] =
Ii′ [j′] is equivalent to incj(Ii[0]) = incj′

(Ii′ [0]), where Ii[0] ← GHASHL(ε,Ni)
and Ii′ [0] ← GHASHL(ε,Ni′), and this can be written as CollL(r,N,N ′) with
(r,N,N ′) = (j − j′, Ni, Ni′) if j − j′ ≥ 0, and (r,N,N ′) = (j′ − j,Ni′ , Ni)
otherwise.

Now define Yr ⊆ {0, 1}32, for 0 ≤ r ≤ 232 − 1, as

Yr
def=

{
str32(int(Y ) + r mod 232) ⊕ Y | Y ∈ {0, 1}32} , (8)

and write its cardinality as αr
def= #Yr. We let αmax

def= max{αr | 0 ≤ r ≤
232 − 1}. The following result was proved.

Proposition 3 [12]. For any 0 ≤ r ≤ 232−1 and two distinct nonces N and N ′

which are not 96 bits, it holds that PrL[CollL(r,N,N ′)] ≤ αr(�N + 1)/2n, where
|N |n, |N ′|n ≤ �N .

Yr can be used to replace the arithmetic addition by r in incr(X) with the
xor of some constant. That is, we convert incr(X) into X ⊕ (096 ‖Y ) for some
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Y ∈ {0, 1}32, and as argued in [12], Yr exhaustively covers all the possible
constants, and it must be the case that Y ∈ Yr. Note that the constant is of the
form (096 ‖Y ) and the most significant 96 bits can be fixed to 096, as inc has no
effect on these bits. For simplicity, for any Y ∈ {0, 1}32, let [[Y ]] = (096 ‖Y ).

In [12], a recursive formula to compute the value of αr was presented, and
the value of αmax was shown to be αmax = 3524578, where the equality holds
when r = 0x2aaaaaab, 0xaaaaaaab, 0x55555555, and 0xd5555555. We have
3524578 ≤ 222, and this yields PrL

[
Ii[j] = Ii′ [j′]

] ≤ 222(�N + 1)/2n for the last
case, which is the source reason why we have this constant in (1) and (2).

A question is if we really need the constant, or if we can make it smaller.

5.2 Case r = 0x55555555

Our approach to the question is to derive the values of r, N , and N ′ where
PrL[CollL(r,N,N ′)] is large, or equivalently, the equation CollL(r,N,N ′) has as
many solutions (in L) as possible. We now present our main result of this section.

Theorem 1. There exist 0 ≤ r ≤ 232 − 1 and two distinct nonces N and N ′

such that |N | = |N ′| = 128 and PrL[CollL(r,N,N ′)] ≥ 1762290/2n.

Proof. Let r = 0x55555555, and let N and N ′ be the following values.
{

N = 0x8d44009c dc550100 00000000 00000000

N ′ = 0x5b6dbdd9 f3b151d9 d1bc4145 ecb396ef
(9)

Then CollL(r,N,N ′) is equivalent to

incr(U · L2 ⊕ V · L) = U ′ · L2 ⊕ V · L, (10)

where U = N , U ′ = N ′, and V = 0x00000000 00000000 00000000 00000080.
Note that V is the hexadecimal form of |N | = |N ′| = 128. Now Yr consists
of αmax constants, and we can list all these constants by listing str32(int(Y ) +
r mod 232) ⊕ Y for all Y ∈ {0, 1}32. Let Yr = {Y1, . . . , Yαmax} be the concrete
representation of Yr. We can solve (in L) the equation U ·L2⊕V ·L⊕ [[Y�]] = U ′ ·
L2⊕V ·L for all Y� ∈ Yr, which gives us L =

[
(U ⊕U ′)−1 ·[[Y�]]

]1/2, and see if this
L satisfies (10). We find that 1762290 values of L satisfy (10), which was verified
by using a program, and hence we have PrL[CollL(r,N,N ′)] ≥ 1762290/2n. ��
With the same value of r = 0x55555555, the values of N and N ′ in the following
list give the same probability.

{
N = 0x215c004e 6e2a8080 00000000 00000000

N ′ = 0xab48deec f9d8a8ec e8de20a2 f659cb77
(11)
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{
N = 0x1bb000e9 9f71db00 00000000 00000000

N ′ = 0xb0085245 fd3dc69e 9de41b1a 943d314f
(12)

{
N = 0x77500027 37154040 00000000 00000000

N ′ = 0xd35a6f76 7cec5476 746f1051 7b2ce5bb
(13)

Theorem 1 suggests that, for the particular value of r = 0x55555555, there exist
N and N ′ with PrL[CollL(r,N,N ′)] ≥ 1762290/2n = 881145(�N + 1)/2n, where
|N |n = |N ′|n = �N = 1. Specifically, the result shows that the constant, αmax,
in Proposition 3 for the case r = 0x55555555 cannot be made smaller than
881145. Therefore, as long as we make use of the sum bound in (6) to derive
the upper bound on PrL[Case (B) holds], the constants in (1) and (2) cannot be
made smaller than 881145. Since 3524578 ≤ 221.75 and 881145 ≥ 219.74, we may
conclude that (1) and (2) are tight up to a constant factor of about 4 if we use
the sum bound. We next present how we have derived the values of N and N ′

in (9).

5.3 Deriving N and N ′

Recall that our goal is to derive r, N , and N ′ where CollL(r,N,N ′) defined in (7)
has as many solutions in L as possible. We decided to focus on r = 0x55555555
since this is one of the four values of r that is potential to have the maximum
number of solutions. We also decided to focus on the case |N | = |N ′| = 128,
since even with this restricted length of nonces, we still have about 2256 possible
search space of N and N ′. With the setting, (7) is equivalent to

incr(U · L2 ⊕ V · L) = U ′ · L2 ⊕ V · L, (14)

where r = 0x55555555 and V = 0x00000000 00000000 00000000 00000080
are now fixed, and U = N and U ′ = N ′ are the variables we are searching for.

Converting incr(X) into X ⊕ [[Y�]]. As mentioned in the proof of Theorem 1,
Yr consists of αmax constants, and let Yr = {Y1, . . . , Yαmax} be the concrete
representation of Yr. Now instead of directly considering (14), we consider the
following simultaneous equation.

{
incr(U · L2 ⊕ V · L) = U · L2 ⊕ V · L ⊕ [[Y�]] (15)
(U ⊕ U ′) · L2 = [[Y�]] (16)

Equation (15) is the conversion of the arithmetic addition by r in the left
hand side of (14) using some constant Y� ∈ Yr, and then we obtain (16) by
simplifying (14) after the conversion with Y� ∈ Yr used in (15) , where the term
V · L cancels out. Note that the conversion of (15) is always possible, and (14)
holds if and only if (16) holds, and hence (14) is equivalent to (15) and (16)
holding for some Y� ∈ Yr.
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Deriving Conditions on X for incr(X) = X ⊕ [[Y�]]. Suppose that we fix some Y�

from Yr, and convert incr(X) into X ⊕ [[Y�]]. Now we observe that the equality of
incr(X) = X ⊕ [[Y�]] imposes restrictions on some bits of X. For instance, when
Y� = 0x55555555, then X must be of the form

X = ∗ · · · ∗︸ ︷︷ ︸
96 bits

∗0 ∗ 0 ∗ 0 ∗ 0 ∗ 0 ∗ 0 ∗ 0 ∗ 0 ∗ 0 ∗ 0 ∗ 0 ∗ 0 ∗ 0 ∗ 0 ∗ 0 ∗ 0︸ ︷︷ ︸
32 bits

in binary, where ∗ can be 0 or 1, i.e., if X = x127 . . . x0 is the binary representation
of X, it must be the case that x30 = 0 ∧ x28 = 0 ∧ · · · ∧ x0 = 0. When Y� =
0xefffffff, then X must be of the form

X = ∗ · · · ∗︸ ︷︷ ︸
96 bits

∗0010101010101010101010101010101︸ ︷︷ ︸
32 bits

in binary. Using Y� = 0x55555555 fixes 16 bits of X, and Y� = 0xefffffff fixes
31 bits of X. The condition and the number of bits we have to fix depend on the
value of Y�. We have to fix from 16 to 31 bits of X, and these are two extreme
cases that have the minimum number and the maximum number of conditions.
On average, around 20 bits are fixed. Let C(Y�) be the set of conditions to replace
incr(X) to X ⊕ [[Y�]]. We represent C(Y�) as a column vector

C(Y�) =

⎡
⎢⎣
x127

...
x0

⎤
⎥⎦ ,

where xi ∈ {∗, 0, 1}. Let I(Y�) be the set of indices with xi �= ∗, i.e., I(Y�) = {i |
xi �= ∗}. We note that 127, . . . , 32 are not in I(Y�) as x127, . . . , x32 are all ∗.

Given Y�, there are several approaches to write down C(Y�). For instance,
a possible approach is to follow the framework in [21], or to use the tool [15]
developed in [16,17]. We present in [23] an algorithm that directly gives us the
conditions.

Decomposition into Bits. Let us continue focusing on Y� from Yr that we have
fixed. We can solve (16) with respect to L, and we obtain L =

[
(U ⊕ U ′)−1 ·

[[Y�]]
]1/2 =

[
(U ⊕U ′)−1 · [[Y�]]

]2127 . Now we consider the argument, U ·L2 ⊕V ·L,
of incr of (15) . With this L, the argument becomes U · (U ⊕ U ′)−1 · [[Y�]] ⊕ V ·[
(U ⊕ U ′)−1 · [[Y�]]

]2127 . At this point, instead of treating U and U ′ as variables,
we let W = (U ⊕U ′)−1 and regard U and W as variables. With this replacement,

we have L =
[
W · [[Y�]]

]2127 , and the argument becomes

U · W · [[Y�]] ⊕ V · W 2127 · [[Y�]]2
127

. (17)

It is well known that a multiplication by a constant and a squaring operation
over GF(2n) are linear operations in GF(2), e.g., see [8]. We make an observation
that, if we decompose (17) into bits using U = u127 . . . u0 and W = w127 . . . w0
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as variables, then each bit of the first term, U · W · [[Y�]], can be represented by
using u127w127, . . . , u127w0, . . . , u0w127, . . . , u0w0, and the second term, V ·W 2127 ·
[[Y�]]2

127
, can be represented by using w127, . . . , w0. The first term consists of terms

of the form uiwj , a total of 128 × 128 = 16384 variations, and we replace the
term uiwj with a monomial s128i+j . Let z127 . . . z0 be the decomposition of (17)
into bits. Then we can represent zi as a linear function of s16383, . . . , s0 and
w127, . . . , w0. In other words, there is a linear function fi that describes zi as

zi = fi(s16383, . . . , s0, w127, . . . , w0).

Let us define a binary row vector rowi, which is associated to fi, of length
16384+128 that lists the coefficients of s16383, . . . , s0, w127, . . . , w0. We can collect
them into a 128 × (16384 + 128) binary matrix M to write

⎡
⎢⎣
z127

...
z0

⎤
⎥⎦ = M · S,where M =

⎡
⎢⎣
row127

...
row0

⎤
⎥⎦ and S

def=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

s16383
...
s0
w127

...
w0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

S is the column vector that consists of the variables we are searching for. We note
that M depends on Y�, and we thus write M(Y�) to describe the dependency.

Recall that z127 . . . z0 is the decomposition of (17) into bits. The equality
of (15) holds if C(Y�) is satisfied. In other words, we require

xi = fi(s16383, . . . , s0, w127, . . . , w0)

holds for all i ∈ I(Y�).

Deriving U and W . Let us still focus on Y� from Yr. For C(Y�) =
[
x127 · · · x0

]tr,
where xi ∈ {∗, 0, 1} and Xtr is the transposition of a row vector X, let C̃(Y�)
be a column vector that is obtained from C(Y�) by removing ∗. Suppose that
C̃(Y�) consists of s elements, and let us represent it as C̃(Y�) =

[
xi1 · · · xis

]tr.
Note that we have I(Y�) = {i1, . . . , is}. Let M̃(Y�) =

[
rowi1 · · · rowis

]tr be a
matrix that consists of the relevant s row vectors rowi1 , . . . , rowis

of M(Y�) =[
row127 · · · row0

]tr. Now we can apply the Gaussian elimination to solve a system
of linear equations

C̃(Y�) = M̃(Y�) · S (18)

to derive s16383, . . . , s0, w127, . . . , w0, and if we can further derive u127, . . . , u0 that
are consistent with them, then this gives us U and W that have L =

[
W ·[[Y�]]

]2127
as a solution to (15) and (16) .
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We next extend this to deal with multiple constants from Yr. Suppose that
we choose j constants Y�1 , . . . , Y�j

from Yr. We combine the conditions of (18)
into a single system of linear equations

⎡
⎢⎣
C̃(Y�1)

...
C̃(Y�j

)

⎤
⎥⎦ =

⎡
⎢⎣
M̃(Y�1)

...
M̃(Y�j

)

⎤
⎥⎦ · S. (19)

If we can derive s16383, . . . , s0, w127, . . . , w0 and u127, . . . , u0 that are consistent
with them, then this gives us U and W that have L1 =

[
W · [[Y�1 ]]

]2127
, . . . , Lj =[

W · [[Y�j
]]
]2127 as j solutions to (15) and (16) .

Our Algorithm. We are now ready to present our algorithm to derive U and
W . It turns out that it is not possible to solve (19) if we use all the αmax

constants from Yr. Therefore, we need to choose some of the constants from
Yr, and this turns out to be a non-trivial task. We follow a greedy method and
our approach is to list Y1, . . . , Yαmax in the increasing order of the number of
conditions #I(Y�). For the constants with the same number of conditions, we
list them in the lexicographic order. Assume that Yr = {Y1, . . . , Yαmax} is listed
with this order.

1. First, initialize C̃ as an empty binary column vector, and M̃ as a binary
0 × (16384 + 128) matrix.

2. Next, execute Steps 3 and 4 for i = 1 to αmax.
3. Apply the Gaussian elimination to the following system of linear equations

and see if it can be solved. [
C̃

C̃(Yi)

]
=

[
M̃

M̃(Yi)

]
· S (20)

4. If (20) has a solution, then let C̃ ←
[

C̃

C̃(Yi)

]
and M̃ ←

[
M̃

M̃(Yi)

]
.

5. Finally, return C̃ and M̃.

Result. The execution of the algorithm gives us M̃ of the form presented in
Fig. 5. The matrix is in the row echelon form where the lower left part of the
elements are zeros.

We can arbitrarily fix w19, . . . , w0, and then w57, . . . , w20 are uniquely deter-
mined. We then arbitrarily fix w76, . . . , w58, and then w127, . . . , w77 are uniquely
determined. At this point, all the bits of W = w127 . . . w0 are fixed, and we
substitute them into s128i+j = uiwj and see if we can determine U = u127 . . . u0.

It turns out that it is indeed possible if we let w76, . . . , w58w19, . . . , w0 = 039,
which gives us W = 0xa288088a 02a88000 00eff100 0e100000, and N = U
and N ′ = U ′ = U ⊕W−1 presented in (9), where the bits of U that can be fixed
to any value are fixed to 0. Other results in (11), (12), and (13) are obtained with
different values of w76, . . . , w58w19, . . . , w0, which are 0381 for (11), 03710 for (12),
and 03711 for (13).
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Fig. 5. The output ˜M of our algorithm

5.4 Applications to Other Values of r

The algorithm presented in the previous section can be naturally applied to
other values of r. We present in Fig. 6 results of applying our algorithm on
several values of r. The figure in #L shows the number of solutions (in L)
that we can cover, and this suggests that we have identified N and N ′ such
that PrL[CollL(r,N,N ′)] ≥ #L/2n. The figure in #L/(�N + 1) is normalized by
dividing #L with the degree (�N + 1) of the polynomial, and we have �N = 1 in
our algorithm. The figure in αr shows the value of αr, and Proposition 3 states
that we have PrL[CollL(r,N,N ′)] ≤ αr(�N + 1)/2n for any N and N ′.

We see that, for these values of r, our algorithm gives N and N ′ such that
the counter-collision probability is close to the upper bound in Proposition 3,
and this suggests that Proposition 3 is tight up to a factor of about 4 to 16
depending on the value of r. However, there are other values of r where our
algorithm does not work. We see that for r = 0x2aaaaaab and 0xd5555555, it
fails to give N and N ′ with a high counter-collision probability.

The existence of N and N ′ with a high counter-collision probability even
for several values of r suggests that, if we rely on the sum bound in (6), the
constants in security bounds in (1) and (2) cannot be significantly reduced. Now
a natural question is whether it is possible to avoid using the sum bound, and
if so, whether this leads to improved security bounds. In the next section, we
answer these questions positively.
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r #L #L/( N + 1) αr

0x00000005 17 23.09 26.48

0x00000055 59 24.88 29.07

0x00000555 298 27.22 211.60

0x00005555 1930 29.91 214.09

0x00055555 13115 212.68 216.49

0x00555555 90134 215.46 218.77

0x05555555 667663 218.35 220.77

0x55555555 1762290 219.75 221.75

0x2aaaaaab 35 24.13 221.75

0xaaaaaaab 1762290 219.75 221.75

0xd5555555 35 24.13 221.75

Fig. 6. Summary of application of our algorithm to several values of r

6 Improving GCM Security Bounds

6.1 Avoiding the Sum Bound

For 0 ≤ r < r′ ≤ 232 − 1 and two distinct nonces N and N ′ which are not 96
bits, consider deriving the upper bound on PrL[CollL(r,N,N ′)∨CollL(r′, N,N ′)],
i.e., PrL

[
incr(I[0]) = I ′[0]∨incr′

(I[0]) = I ′[0]
]
, where I[0] ← GHASHL(ε,N) and

I ′[0] ← GHASHL(ε,N ′). The first step is to replace the arithmetic additions by
r and r′ with the xor of some constants Y ∈ Yr and Y ′ ∈ Yr′ . We obtain the
following upper bound.

Pr
L

[I[0] ⊕ [[Y ]] = I ′[0] for some Y ∈ Yr ∨ I[0] ⊕ [[Y ′]] = I ′[0] for some Y ′ ∈ Yr′ ]

(21)

The proof in [12,13] relies on the sum bound, and (6) suggests the use of
∑

Y ∈Yr

Pr
L

[
I[0] ⊕ [[Y ]] = I ′[0]

]
+

∑
Y ′∈Yr′

Pr
L

[
I[0] ⊕ [[Y ′]] = I ′[0]

]

as the upper bound on (21). We now present the following simple lemma.

Lemma 1. Fix 0 ≤ r < r′ ≤ 232 − 1, and consider Y ∈ {0, 1}32 such that
Y ∈ Yr and Y ∈ Yr′ . Then there does not exist X ∈ {0, 1}n that satisfies
incr(X) = X ⊕ [[Y ]] and incr′

(X) = X ⊕ [[Y ]] simultaneously.

Proof. Suppose for a contradiction that there exists X ∈ {0, 1}n that satisfies
both incr(X) = X ⊕ [[Y ]] and incr′

(X) = X ⊕ [[Y ]]. From incr(X) = incr′
(X), we

have incr′−r(X) = X. This is a contradiction as r′ − r �≡ 0 mod 232, and hence
lsb32(incr′−r(X)) and lsb32(X) cannot take the same value. ��
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It follows from Lemma 1 that
∑

Y ∈Yr

Pr
L

[
I[0] ⊕ [[Y ]] = I ′[0]

]
+

∑
Y ′∈Yr′\Yr

Pr
L

[
I[0] ⊕ [[Y ′]] = I ′[0]

]
(22)

is also an upper bound on (21). If the cardinality of Yr ∩Yr′ is small, then (22)
does not seem to give us any improvement. However, it turns out that there is
a non-obvious effect of considering the cardinality of Yr ∩ Yr′ , and (22) indeed
gives us improved security bounds on GCM.

This observation motivates us to consider another upper bound on (21),
which is

∑
Y ∈Yr∪Yr′

Pr
L

[
I[0] ⊕ [[Y ]] = I ′[0]

]
. (23)

In what follows, we present improved security bounds of GCM with (22) and (23).

6.2 Towards Improved Security Bounds

Consider an adversary A in the privacy game. As outlined in Sect. 5.1, we
may focus on non-adaptive adversaries and consider the list of counter values
in (3). The privacy advantage can be derived as (4), and PrL [Case (A) holds]
is obtained as (5). We focus on PrL [Case (B) holds], i.e., we are interested in
the probability of having a collision Ii[j] = Ii′ [j′] for some (i, j, i′, j′), where
1 ≤ i′ < i ≤ q, 0 ≤ j′ ≤ mi′ , and 0 ≤ j ≤ mi. For each 2 ≤ i ≤ q, we have
at most (m1 + 1) + (m2 + 1) + · · · + (mi−1 + 1) + (i − 1)mi cases of (j, i′, j′) to
consider. To see this, we observe that for Ii[0], we need to consider

Ii[0] ∈ {Ii′ [0], Ii′ [1], . . . , Ii′ [mi′ ]} for some 1 ≤ i′ < i, (24)

and thus for j = 0, we have (m1 +1)+(m2 +1)+ · · ·+(mi−1 +1) cases of (i′, j′)
to consider. See Fig. 7 (left). For Ii[1], Ii[2], . . . , Ii[mi], we consider

Ii[1] ∈ {I1[0], I2[0], . . . , Ii−1[0]},
Ii[2] ∈ {I1[0], I2[0], . . . , Ii−1[0]},

...
Ii[mi] ∈ {I1[0], I2[0], . . . , Ii−1[0]},

(25)

and we thus have (i − 1) cases of (i′, j′) for each 1 ≤ j ≤ mi. See Fig. 7 (right).
We note that we can exclude the cases Ii[j] = Ii′ [j′] for 1 ≤ j ≤ mi, 1 ≤ i′ < i,
and 1 ≤ j′ ≤ mi′ , as these cases are covered in (24) or in another case of (25).

So far, we have proceeded as was done in [12,13]. Now for 0 ≤ a ≤ b ≤ 232−1
and two distinct nonces N and N ′ which are not 96 bits, let CollL([a..b], N,N ′)
denote the event

incr(GHASHL(ε,N)) = GHASHL(ε,N ′) for some a ≤ r ≤ b.
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I1[0]
inc−→ I1[1] · · · inc−→ I1[m1]

...

Ii [0]
inc−→ Ii [1] · · · inc−→ Ii [mi ]

...

Ii−1[0]
inc−→ Ii−1[1] · · · inc−→ Ii−1[mi−1]

Ii[0]
inc−→ Ii[1] · · · inc−→ Ii[mi]

I1[0]
inc−→ I1[1] · · · inc−→ I1[m1]

...

Ii [0]
inc−→ Ii [1] · · · inc−→ Ii [mi ]

...

Ii−1[0]
inc−→ Ii−1[1] · · · inc−→ Ii−1[mi−1]

Ii[0]
inc−→ Ii[1] · · · inc−→ Ii[mi]

Fig. 7. Cases of (i′, j′) to consider for j = 0 (left) and for 1 ≤ j ≤ mi (right)

We see that (24) is equivalent to inc0(Ii′ [0]) = Ii[0] ∨ inc1(Ii′ [0]) = Ii[0] ∨ · · · ∨
incmi′ (Ii′ [0]) = Ii[0] for some 1 ≤ i′ < i, and the probability can be evaluated as

∑
1≤i′<i

Pr
L

[CollL([0..mi′ ], Ni′ , Ni)] . (26)

With respect to (25), we rearrange them as Ii′ [0] ∈ {Ii[1], Ii[2], . . . , Ii[mi]} for
some 1 ≤ i′ < i. We see that this is equivalent to inc1(Ii[0]) = Ii′ [0]∨inc2(Ii[0]) =
Ii′ [0]∨ · · · ∨ incmi(Ii[0]) = Ii′ [0] for some 1 ≤ i′ < i, and the upper bound on the
probability can be evaluated as

∑
1≤i′<i

Pr
L

[CollL([1..mi], Ni, Ni′)] ≤
∑

1≤i′<i

Pr
L

[CollL([0..mi], Ni, Ni′)] . (27)

6.3 Improving the Security Bounds with (22)

To apply (22) on (26) and (27), we define Wr ⊆ {0, 1}32, for 0 ≤ r ≤ 232 − 1, as

W0
def= Y0 and Wr

def= Yr \ (Y0 ∪ Y1 ∪ · · · ∪ Yr−1) for r ≥ 1.

We denote its cardinality as wr
def= #Wr and let wmax

def= max{wr | 0 ≤ r ≤
232 − 1}. We show the following lemma.

Lemma 2. For 0 ≤ m ≤ 232 − 1 and two distinct nonces N and N ′ which are
not 96 bits, it holds that PrL[CollL([0..m], N,N ′)] ≤ wmax(m + 1)(�N + 1)/2n,
where |N |n, |N ′|n ≤ �N .

Proof. Recall that CollL([0..m], N,N ′) is the event inc0(I[0]) = I ′[0]∨inc1(I[0]) =
I ′[0] ∨ · · · ∨ incm(I[0]) = I ′[0], and the probability can be evaluated as

∑
0≤r≤m

∑
Y ∈Yr\(Y0∪Y1∪···∪Yr−1)

Pr
L

[
I[0] ⊕ [[Y ]] = I ′[0]

] ≤
∑

0≤r≤m

wmax(�N + 1)
2n

,

since I[0] ⊕ [[Y ]] = I ′[0] is a non-trivial equation in L over GF(2n) of degree at
most �N + 1. ��
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It follows that

(26) + (27) ≤
∑

1≤i′<i

wmax(mi′ + 1)(�N + 1)
2n

+
∑

1≤i′<i

wmax(mi + 1)(�N + 1)
2n

≤ wmax(�N + 1)
2n

⎛
⎝

⎛
⎝ ∑

1≤i′<i

(mi′ + 1)

⎞
⎠ + (i − 1)(mi + 1)

⎞
⎠ ,

and by taking the summation with respect to i, we obtain PrL [Case (B) holds] ≤
wmax(q − 1)(σ + q)(�N + 1)/2n, since

∑
2≤i≤q

⎛
⎝

⎛
⎝ ∑

1≤i′<i

(mi′ + 1)

⎞
⎠ + (i − 1)(mi + 1)

⎞
⎠ ≤ (q − 1)(σ + q).

From (5), PrL [Case (A) holds] + PrL [Case (B) holds] is at most

(σ + q)(�N + 1)
2n

+
wmax(q − 1)(σ + q)(�N + 1)

2n
≤ wmaxq(σ + q)(�N + 1)

2n
,

and it remains to evaluate the value of wmax, which is shown in the lemma below.

Lemma 3. wmax ≤ 32.

A proof is presented in Appendix A.
We are now ready to present the improved security bound based on (22).

Theorem 2. With the same notation as in Proposition 1, we have

Advpriv
GCM[Perm(n),τ ](A) ≤ 0.5(σ + q + 1)2

2n
+

32q(σ + q)(�N + 1)
2n

. (28)

We have focused on the privacy result, but the authenticity result can also be
obtained as follows.

Theorem 3. With the same notation as in Proposition 2, we have

Advauth
GCM[Perm(n),τ ](A) ≤ 0.5(σ + q + q′ + 1)2

2n

+
32(q + q′)(σ + q + 1)(�N + 1)

2n
+

q′(�A + 1)
2τ

. (29)

Proofs follow the corresponding proofs in [13, Appendix D] for privacy and [13,
Appendix E] for authenticity. For privacy, the difference is the analysis of Case
(B) in [13, Appendix D], which is presented in this section, and for authenticity,
the difference is the analysis of Case (B) and Case (D) in [13, Appendix E],
where we can directly apply the analysis of this section.
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6.4 Improving the Security Bounds with (23)

To apply (23) on (26) and (27), we define Zr ⊆ {0, 1}32, for 0 ≤ r ≤ 232 − 1, as

Zr
def= Y0 ∪ Y1 ∪ · · · ∪ Yr,

and denote its cardinality as zr
def= #Zr. We also let zmax

def= max{zr | 0 ≤ r ≤
232 − 1}. We show the following lemma.

Lemma 4. For 0 ≤ m ≤ 232 − 1 and two distinct nonces N and N ′ which
are not 96 bits, it holds that PrL[CollL([0..m], N,N ′)] ≤ zmax(�N + 1)/2n, where
|N |n, |N ′|n ≤ �N .

Proof. The upper bound on PrL[CollL([0..m], N,N ′)] can be evaluated as
∑

Y ∈Y0∪Y1∪···∪Ym

Pr
L

[
I[0] ⊕ [[Y ]] = I ′[0]

] ≤ zmax(�N + 1)
2n

,

since I[0] ⊕ [[Y ]] = I ′[0] is a non-trivial equation of degree at most �N + 1. ��
It follows that

(26) + (27) ≤ 2
∑

1≤i′<i

zmax(�N + 1)
2n

≤ 2(i − 1)zmax(�N + 1)
2n

,

and by taking the summation with respect to i, we obtain PrL [Case (B) holds] ≤
zmaxq

2(�N + 1)/2n. We use (5) to have

Pr
L

[Case (A) holds] + Pr
L

[Case (B) holds] ≤ (σ + q)(�N + 1)
2n

+
zmaxq

2(�N + 1)
2n

,

and it remains to evaluate the value of zmax, which is stated in the following
lemma.

Lemma 5. zmax ≤ 232.

We have Zr ⊆ {0, 1}32, and hence the lemma follows. We note that the analysis
is tight, as str32(r) is always included in Yr, and the union Y0 ∪Y1 ∪· · ·∪Y232−1

covers {0, 1}32.
We have the following improved security bound based on (23).

Theorem 4. With the same notation as in Proposition 1, we have

Advpriv
GCM[Perm(n),τ ](A) ≤ 0.5(σ + q + 1)2

2n
+

(σ + q)(�N + 1)
2n

+
232q2(�N + 1)

2n
.

(30)

The authenticity theorem is given as follows.

Theorem 5. With the same notation as in Proposition 2, we have

Advauth
GCM[Perm(n),τ ](A) ≤ 0.5(σ + q + q′ + 1)2

2n
+

(σ + q + q′)(�N + 1)
2n

+
232q(q + q′)(�N + 1)

2n
+

q′(�A + 1)
2τ

. (31)
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6.5 Discussions

We present a comparison of the three privacy bounds in (1), (28), and (30).
We see that (28) is always smaller than (1), hence we focus on the comparison
between (28) and (30). By simplifying (28) ≤ (30), we obtain

(
32 − 1

q

) (
σ

q
+ 1

)
≤ 232.

This suggests that if σ/q, the average block length of each query, is at most
232/32 blocks, then (28) is smaller, where 232/32 blocks amount to 2 Gbytes
from n = 128. Similarly, for authenticity, (29) is always better than (2). By
simplifying (29) ≤ (31), we obtain

σ

q

(
32 − 1

q + q′

)
+

1
q

+ 32 ≤ 232.

As with the case of privacy, this suggests that if σ/q is at most 232/32 blocks,
which is about 2 Gbytes, then (29) gives a better bound than (31).

7 Conclusions

In this paper, we developed an algorithm to generate nonces that have a high
counter-collision probability, and showed concrete examples of nonces as the
results of our experiments. This implies that, if we use the sum bound in the
security proof, then the security bounds of [12] are tight within a factor of
about 4. We next showed that it is possible to avoid using the sum bound. We
presented improved security bounds of GCM, and one of our security bounds
suggests that the security of GCM is close to what was originally claimed by the
designers in [18,19].

There are several interesting research directions. With respect to the genera-
tion of nonces, it would be interesting to extend our algorithm to handle nonces
of different lengths. It would also be interesting to study the security of variants
of GCM, including SGCM [27] and MGCM [20].
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A Proof of Lemma 3

Let x and c be integers such that 0 ≤ x ≤ 31 and 0 ≤ c ≤ 2x−1. Throughout the
proof of Lemma 3, we abuse the notation and regard an integer 0 ≤ a ≤ 232 − 1
and its 32-bit binary representation, str32(a), identically. For a 32-bit string
a31 . . . a0, the i-th bit refers to ai. We show the proof of Lemma 3 with the
following two claims.

Claim. 2x + c ∈ Y2x−c.

Proof. We have 2x + c ∈ Y2x−c if there exists Y ∈ {0, 1}32 that satisfies Y +
(2x − c) = Y ⊕ (2x + c), which is equivalent to 2x + c = (Y + (2x − c)) ⊕ Y . Now
let Y ← str32(c). Then the right hand side is (c + (2x − c)) ⊕ c, which is equal to
the left hand side from 0 ≤ c ≤ 2x − 1. Therefore, we have 2x + c ∈ Y2x−c. ��
Claim. 2x + c �∈ Yr for 0 ≤ r < 2x − c.

Proof. Let d be an integer such that c < d ≤ 2x. We show that there does not
exist Y ∈ {0, 1}32 that satisfies 2x+c = (Y +2x−d)⊕Y , implying 2x+c �∈ Y2x−d.
From c < d ≤ 2x, we have 2x + c = 2x ⊕ c and 2x − d = 2x − 1 − (d − 1) =
(2x − 1) ⊕ (d − 1).

We first consider the case d − 1 = c. We see that the 0-th bit of 2x + c
is different from the 0-th bit of 2x − d. Therefore, there does not exist Y that
satisfies 2x + c = (Y + 2x − d) ⊕ Y .

We next consider the case d−1 > c. Let d′ = d−1, and let str32(c) = c31 . . . c0

and str32(d′) = d′
31 . . . d′

0 be the binary representations of c and d′. Define �
def=

max{i | d′
i �= ci}. Then we have d′

� = 1 and c� = 0 from d − 1 > c. This
implies that the �-th bit of 2x +c and the �-th bit of 2x −d are both 0. Now from
d′

�+1 = c�+1 and the fact that the (�+1)-st bit of 2x and the (�+1)-st bit of 2x−1
are different, we necessary have that the (�+1)-st bit of 2x + c and the (�+1)-st
bit of 2x − d are different. In order the equality of 2x + c = (Y + 2x − d) ⊕ Y to
hold, we must have a carry to the (�+1)-st bit in computing Y +2x−d. However,
it is impossible to have the carry since the �-th bit of 2x −d is 0. Therefore, there
does not exist Y that satisfies 2x + c = (Y + 2x − d) ⊕ Y . ��

The two claims show 2x + c ∈ W2x−c. Now any integer between 1 and 232 −1
can be uniquely represented in the form of 2x + c for some 0 ≤ x ≤ 31 and
0 ≤ c ≤ 2x − 1. The uniqueness follows from the fact that, if (x, c) �= (x′, c′),
then 2x + c �= 2x′

+ c′. We note that 0 cannot be represented in the form of
2x + c, which is an element of Y0, and is not included in Yr for r ≥ 1, since
0 = (Y + r) ⊕ Y cannot hold for r ≥ 1. This implies that Wr for r ≥ 1 can be
written as Wr = {2x + c | r = 2x − c, 0 ≤ x ≤ 31, 0 ≤ c ≤ 2x − 1}. We can
specifically list the elements of Wr as

Wr = {231+(231−2x +c), 230+(230−2x +c), . . . , 2x+1+(2x+1−2x +c), 2x +c},

where x = �log2 r� and c = r − 2x. This proves #Wr = 32 − �log2 r�, and hence
we have wmax ≤ 32. ��
In [23], we present a small-scale example that supports our claims.
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