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Abstract. NXP Semiconductors and its academic partners challenged
the cryptographic community with finding practical attacks on the block
cipher they designed, PRINCE. Instead of trying to attack as many
rounds as possible using attacks which are usually impractical despite
being faster than brute-force, the challenge invites cryptographers to
find practical attacks and encourages them to actually implement them.
In this paper, we present new attacks on round-reduced PRINCE includ-
ing the ones which won the challenge in the 6 and 8-round categories —
the highest for which winners were identified. Our first attacks rely on
a meet-in-the-middle approach and break up to 10 rounds of the cipher.
We also describe heuristic methods we used to find practical SAT-based
and differential attacks.

Finally, we also present an analysis of the cycle structure of the inter-
nal rounds of PRINCE leading both to a low complexity distinguisher
for 4-round PRINCE-core and an alternative representation of the cipher
valid in particular contexts and which highlights, in this cases, a poor
diffusion.

Keywords: PRINCE · Practical attacks · Meet-in-the-middle · SAT-
solver · Statistical analysis

1 Introduction

When tasked with assessing the security of a block cipher, cryptanalysts have now
a broad range of tools at their disposal: differential attack [1], linear attack [2],
meet-in-the-middle attack [3], etc. The main purpose of a security analysis is usu-
ally to identify flaws in the design of a primitive and then to illustrate their gravity
through the description of an attack covering as many rounds as possible. How-
ever, applicability of said attacks in a realistic situation is usually not the first
objective of the cryptanalyst. A simple reason for this is that as our understand-
ing of the design of block ciphers improved, the ease of identifying practical attacks
decreased. Furthermore and in accordance with the famous maxim “attacks only
get better”, an impractical attack submitted at a given timemay later be improved.
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While impractical attacks provide the academic community with valuable
insights into the security provided by different block ciphers, their components,
their design strategies, etc., crypanalysis in the industry is more focused on prac-
tical attacks. In order to promote this view, the Technical University of Denmark
(DTU), NXP Semiconductors and the Ruhr University of Bochum challenged the
cryptographic community [4] with finding low data complexity attacks on the
block cipher PRINCE [5]. More precisely, they accept attacks requiring only at
most 220 chosen plaintexts or 230 known plaintexts. Furthermore, extra rewards
(from 1000 to 10000e) are given for attacks on at least 8 rounds which require
at most 245 bytes of memory (about 32 Tb) and at most 264 encryptions of the
round-reduced variant attacked.

Studying PRINCE in this setting may provide valuable data on multiple
accounts. First of all, PRINCE is a lightweight block cipher, meaning that it is
intended to be run on processors with little computing power to devote to secu-
rity related algorithm or on hardware where every logical gate counts. Research
on this topic is intense nowadays as the need for such primitives becomes increas-
ingly pressing, see [6] for an extensive review of the algorithms that have been
proposed. Second, PRINCE implements a simplified version of the so-called FX
construction: encryption under key (k0||k1) consists in xor-ing k0 to the plain-
text, applying a block cipher called PRINCE-core keyed with k1 and then output
the result xor-ed with L(k0) where L is a simple linear bijection. This strategy
allows for a greater key size without the cost of a sophisticated key schedule.
However, it is impossible to make a security claim as strong as for a more classical
construction. Finally, PRINCE-core has a unique property called α-reflection. If
we denote by Ec,k1 the encryption under PRINCE-core with subkey k1, then the
corresponding decryption operation is Ec,k1⊕α for a constant α. In other words,
decryption is merely encryption under a related-key. The consequences of this
property have already been studied and, in particular, some values of α different
from the one used have been showed to lead to weaker algorithms [7].

PRINCE has already been the subject of several cryptanalysis, notably [8]
where the security of the algorithm against multiple attacks was assessed, [7]
which investigated the influence of the value of α, [9] which described Meet-
in-the-Middle attacks on the block cipher and, finally, [10] proposed the best
attack to date in terms of number of rounds attacked. A list of the cryptanaly-
ses of round-reduced PRINCE is provided in Table 1. Attacks working only on
PRINCE-core or for modified versions of PRINCE (different α or S-Box) are not
shown.

As stated before, most of the attacks usually considered often have impracti-
cal complexities. For instance, differential attacks and linear attacks require large
amounts of chosen (respectively known) plaintexts, both of which may be impos-
sible to gather to begin with if the algorithm is implemented on a small-device
with little computer and, hence, a small throughput. Therefore, we focused our
efforts on Meet-in-the-Middle (MitM) attacks, algebraic/logic attack where the
fact that a ciphertext is the encryption of a plaintext is encoded as an equation
which is fed to a solver and, surprisingly, differential attack for which we found
a heuristic method decreasing significantly the data complexity.
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Table 1. The best attacks on round-reduced PRINCE in the single-key model.

Description Complexity

Reference Type Rounds Data (CP) Time Memory

[8] Integral 4 24 264 24

6 216 264 26

Section 4 Diff./Logic 4 210 5s << 227

6 214.9 232.9 << 227

Section 3 MitM 6 216 233.7 231.9

8 216 250.7 (online) 284.9

8 216 265.7 (online) 268.9

10 257 268 (online) 241

[9] MitM 8 253 260 230

9 257 264 257.3

[10] Multiple diff. 9 246.89 251.21 252.21

10 257.94 260.62 261.52

Time complexity is measured in encryption units.
Memory complexity is measured in 64-bit blocks.

Our Contribution. We describe different low data complexity attacks on round-
reduced PRINCE which we submitted to the PRINCE challenge and which
turned out [11] to be the best ones on PRINCE reduced to 6 and 8 rounds.
In Sect. 3, we describe our attacks obtained using the meet-in-the-middle tech-
nique and we also show a new attack on 10 rounds with practical memory and
a time complexity around 268 encryptions. Then, we describe in Sect. 4 how the
equation given to a SAT-solver can be modified so as to make an attack on
4 rounds practical, how the power of the filter used to discard wrong pairs in a
differential attack can be raised to the power 4 when attacking 6-round PRINCE
by considering groups of pairs and, finally, how to attack 6-round PRINCE using
a differential attack to recover half of the key and a SAT-solver to recover the
other half. We finally present in Sect. 5 some observations about the cycle struc-
ture of the internal rounds of PRINCE and how it implies the existence of alter-
native representations of the cipher highlighting a poor diffusion in some subsets
of the input space. While we do not use these to attack PRINCE directly, we
show that the size of these subsets remains reasonable and actually find such
sets for 4-round PRINCE-core.

2 Specification of PRINCE

2.1 Description of PRINCE

PRINCE is a 64-bit block cipher with a 128-bit key. It is based on a variant of the
FX-construction which was proposed by Kilian and Rogaway as a generalization
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Fig. 1. the PRINCE cipher.

of the DESX scheme. The master key k is split into two 64-bit parts k = k0 ‖ k1
and k0 is used to generate a third subkey k′

0 = (k0 ≫ 1) ⊕ (k0 � 63). Both k0
and k′

0 are used as pre- and post- whitening keys respectively. The full version
of the cipher has 12 rounds and is depicted on Fig. 1.

The encryption is quite similar to the AES and consists of a nibble-based
substitution layer S and a linear layer M . The operation M can be divided
into a ShiftRows operations and a matrix multiplication M ′ operating indepen-
dently on each column but not nibble-oriented. Furthermore the matrix M ′ is an
involution and, combined to the fact that the round constants satisfy the rela-
tion RCi ⊕ RC ′

i = α where α = C0AC29B7C97C50DD, the decryption process
Dk0,k1,k′

0
is equal to the encryption process Ek′

0,k1⊕α,k0 . For further details about
PRINCE we refer the reader to [5].

Notations. In the sequel we denote both the plaintext and the ciphertext by
p and c respectively. For the first R rounds of 2R-round PRINCE, we denote
the internal state just before (resp. after) the r-th SubNibble layer by xr (resp.
yr) while for the last R rounds those internal states are denoted by y′

r and x′
r

respectively as shown on Fig. 1. Given a collection of messages {p0, . . . , pm, . . .},
the notation xm

r [i] holds for the nibble i of the state xr of the message pm. As
PRINCE is not fully nibble-oriented we use the notation xr[i]b to refer to the
bit i of the state xr and the following relation holds for all i ∈ {0, . . . , 15}:

xr[i] = xr[4i + 3]b ‖ xr[4i + 2]b ‖ xr[4i + 1]b ‖ xr[4i]b.

Fig. 2. Ordering of bits/nibbles in PRINCE.
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Finally, we use the following notations for some functions.

R The composition of S and M so that R(x) = M
(
S(x)

)
= SR

(
M ′(S(x))

)
.

Er
k0||k1

PRINCE reduced to r rounds.
Ec,k1 full PRINCE-core.
Ec,r

k1
PRINCE-core reduced to r rounds.

3 Meet-in-the-Middle Attacks

In this section we present both the 6-round attack and the 8-round attack which
won the PRINCE Challenge in the chosen-plaintext category together with a
new attack on 10 rounds. The aim of the challenge was to find the best attacks
using at most 220 chosen plaintexts and thus we decided to follow the strategy
used by Demirci and Selçuk on AES in [3], later improved by Dunkelman et al.
in [12], Derbez et al. in [13,14] and by Li et al. in [9]. While our 10-round attack
does not fit the restriction on the data complexity it shows that this kind of
attacks is one of the most powerful on SP-Network.

First we give the definition of an ordered δ-set which is a particular structure
of messages used in our attacks.

Definition 1. Let a δ-set be a set of 16 PRINCE-states that are all different
in one state nibble (the active nibble) and all equal in the other state nibble (the
inactive nibbles). An ordered δ-set is a δ-set {x0, . . . , x15} such that the difference
in the active nibble between x0 and xi is equal to i, for 0 ≤ i ≤ 15.

In the sequel we consider δ-sets such that nibble 7 is the active one. For such
a particular set we made the following observations which are the core of our
new attacks.

Observation 1. Consider the encryption of a collection {p0, p1, . . . , p15} of
16 messages through 6-round PRINCE. If the set {y0

2 , y
1
2 , . . . , y

15
2 } is an ordered

δ-set then the ordered sequence
[
y′1
2 [7] ⊕ y′0

2 [7], y′2
2 [7] ⊕ y′0

2 [7], . . . , y′15
2 [7] ⊕ y′0

2 [7]
]

is fully determined by the following 8 nibble parameters:

– x0
3[0, 7, 10, 13] – x′0

3 [0, 7, 10, 13]

Consequently, there are at most 28×4 = 232 possible sequences when we con-
sider all the possible choices of keys and ordered δ-sets (out of the 24×15 = 260

of the theoretically possible 15-nibble sequences).

Proof. The proof is straightforward. The goal is to propagate the differences from
the state y2 (which are known) to the state nibble y′

2[7]. At each intermediate
round, each S-box is either a parameter, not required or constant (so output
differences are equal to zero).
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Observation 2. Consider the encryption of a collection {p0, p1, . . . , p15} of 16
messages through 8-round PRINCE. If the set {x0

2, x
1
2, . . . , x

15
2 } is an ordered

δ-set then the ordered sequence
[
x′1
2 [7] ⊕ x′0

2 [7], . . . , x′15
2 [7] ⊕ x′0

2 [7], y′1
2 [6] ⊕ y′0

2 [6], . . . , y′15
2 [6] ⊕ y′0

2 [6]
]

is fully determined by the following 42 nibble parameters:

– x0
2[7]

– x0
3[0, 7, 10, 13]

– x0
4[0..15]

– x′0
4 [0..15]

– x′0
3 [0, 7, 10, 13]

– x′0
2 [7]

Furthermore, those 42 state nibbles can be directly computed from the full
state x4 and 4 nibbles of M−1(k1). Consequently, there are at most 24×(16+4) =
280 possible sequences when we consider all the possible choices of keys and
ordered δ-sets (out of the 24×30 = 2120 of the theoretically possible 30-nibble
sequences).

Proof. The proof is similar to the one of Observation 1 except the parameters
are related. Indeed, from the full state x4 one can directly compute x′

4 as no
keys are involved. Then we note that the 4 nibbles M−1(k1)[4..7] are enough to
compute x0

3[0, 7, 10, 13] from x4 and x′0
3 [0, 7, 10, 13] from x′

4. Finally, the knowl-
edge of M−1(k1)[7] allows to compute x0

2[7] and x′0
2 [7] from x0

3[0, 7, 10, 13] and
x′0
3 [0, 7, 10, 13] respectively.

3.1 6-Round Attack

The 6-round attack is depicted on Fig. 3 and its scenario is straightforward. First
the 232 possible sequences given in Observation 1 are computed and stored in a
hash table during a preprocessing phase. Then during the online phase, we begin
by asking for the encryption of a structure of 216 chosen plaintexts such that
nibbles from 4 to 7 take all the possible values while the other ones are constant,
and pick one of them denoted p0. Now the goal of the adversary is to identify an
ordered δ-set containing y0

2 . To do so, he has to guess the fives nibbles x0
1[4..7]

and x0
2[7] and propagate the differences from the state y2 to the plaintext. Then

he gets the corresponding ciphertexts, guess the fives nibbles x′0
1 [4..7] and x′0

2 [7]
and propagates the differences from the ciphertexts to y′

2[7]. Finally he discards
all the guesses which do not lead to a match in the previously built hash table.
The probability for a wrong guess to pass the test is 232 × 2−60 = 2−28 so we
expect 25 candidates to remain at the end of the attack. The wrong ones can be
discarded by replaying the attack with an other choice for p0 without increasing
the overall complexity of the attack.

The data complexity of this attack is 216 chosen plaintexts and the memory
requirement is around 232 × 4 × 15 × 2−3 ≈ 234.9 bytes. During the online phase
10 state nibbles are guessed however they can assume only 233 values once the
plaintext/ciphertext pair is given. Indeed, the knowledge of the 33 bits

{(k0 ⊕ k1)[16..27]b, (k′
0 ⊕ k1)[16..27]b, k1[28..31]b, k0[28..32]b},
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Fig. 3. 6r attack. No difference in white nibbles. Nibbles required in online (resp.
offline) phase are in gray (resp. black). Differences in dotted nibbles are known during
the offline phase. Hatched nibbles play no role.

is enough to compute all of them from p and c. Thus the time complexity of the
online phase is approximately 16 × 233 × 40/(6 × 64) ≈ 233.7 encryptions.

Key Recovery. At the end of the attack 128 − 33 = 95 key bits are still
missing. To find them the best way is to apply several meet-in-the-middle attacks
successively. For instance, one could begin by running the attack depicted on
Fig. 12 in AppendixA which has an overall complexity below 228 as most key
bits required in the online phase are already known.

3.2 8-Round Attack

The 8-round attack is similar to the one on 6 rounds and is depicted on Fig. 4. It
relies on Observation 2 so the memory complexity is around 280 ×15×8×2−3 ≈
283.9 bytes. In the online phase, the data complexity remains unchanged to
216 chosen plaintexts but the number of state variable to guess is increased.
The identification step requires to guess the four nibbles x0

1[4..7] and then the
nine nibbles x′0

1 [0..7] and x′0
2 [6] are guessed to build the sequence from the cipher-

texts. Those 13 nibbles can assume only 249 values once the plaintext/ciphertext
pair (p0, c0) given as they all can be derived from

{(k0 ⊕ k1)[16..24, 28..31]b, (k′
0 ⊕ k1)[0..23, 27..31]b, k0[25..27]b, k1[24..27]b}.

Thus the time complexity of the online phase is approximately 16 × 249 × 52/
(8 × 64) ≈ 249.7 encryptions and we expect 249 × 280 × 2−120 = 29 candidates to
remain at the end of the attack.

Key Recovery. As for the previous attack, the most efficient way to recover
the missing key bits is to perform other attacks. For instance one could run the
attack depicted on Fig. 13 (AppendixB) which has the same complexity than the
one above since there are approximately 29 candidates for the 4 active nibbles
of x1. Then the search space would be small enough to perform an exhaustive
search without increasing the overall complexity.
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p

k0 ⊕ k1 ⊕ RC0

S

M ′ SR

k1 ⊕ RC1

S

y1

M ′ SR

k1 ⊕ RC2

S

y2

M ′ SR

k1 ⊕ RC3

S

y3

M ′

y4 y′
4

S−1

k1 ⊕ RC′
3

SR−1 M ′
y′
3

S−1

k1 ⊕ RC′
2

SR−1 M ′
y′
2

S−1

k1 ⊕ RC′
1

SR−1 M ′
y′
1

S−1

k′
0 ⊕ k1 ⊕ RC′

0

c

Fig. 4. 8r attack. No difference in white nibbles. Nibbles required in online (resp.
offline) phase are in gray (resp. black). Differences in dotted nibbles are known during
the offline phase. Hatched nibbles play no role.

Trade-off. It is possible to trade some memory against time without increasing
the data complexity by noticing that for a considered structure of 216 plaintexts
the 4 active nibbles of x3 take all the possible values. Thus we can fix them to
0 during the offline phase and save a factor 216 in memory. In the other hand,
we now need to run the attack for all the possible choices for p0 increasing the
time complexity by the same factor of 216.

3.3 10-Round Attack

We now investigate PRINCE reduced to 10 rounds. While we were unable to find
an attack requiring less than 220 chosen plaintexts for the PRINCE Challenge,
we found one competitive with the actual best known attack. To describe it we
first extend the definition of a δ-set as it was done in [13], then we show a meet-
in-the-middle attack as the two ones above and finally we apply the differential
enumeration technique [12].

δ-set. In [13] Derbez et al. shown that the notion of δ-set can be extended to
set of states such that some linear combinations of state bits are constant. In
the sequel we denote by δ-set a set of 16 messages such that y2[0..4, 6, 8..12, 14]
and M ′(y2)[0..4, 6, 8..12, 14] are constant, exploiting the fact that the matrix
operating on the columns are not MDS.

10-round Attack. The basis of our attack on 10 rounds is depicted on Fig. 5.
The meet-in-the-middle is performed on the four bit-equations described above.
The state bytes required as the parameters of the hash table can be computed
from the whole state x5 and 8 nibbles of the equivalent subkey M−1(k1) and
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thus approximately 296 60-bit sequences are stored. In the online phase the 24
state nibbles needed can be computed from the following 66 key bits:

{k0[0, 20..24, 28..32, 52..56, 60..63]b, k1[20..23, 28..31, 52..55, 60..63]b,
(k0 ⊕ k1)[16..19, 24..27, 48..51, 56..59]b,

(k′
0 ⊕ k1)[16..19, 24..26, 48..51, 56..58]b}.

Note that this attack does not actually work because the number of sequences
stored is higher than the number of possible 60-bit sequences and thus no key
candidates are filtered. The aim of the next section is to show how to reduce the
memory requirement.

Differential Enumeration Technique. Li et al. applied this technique against
PRINCE in [9] and successfully mounted new attacks on 8 and 9 rounds. The
idea of this technique originally introduced by Dunkelman et al. in [12] is to store
in the hash table only the sequences built from a δ-set containing a message p0

that belongs to a pair (p0, p1) following a well-chosen differential characteristic.
In our case the truncated differential characteristic is depicted on Fig. 5 assuming
a zero difference in hatched nibbles. Thus we expect to store only 296+4−60 = 240

sequences in the offline phase. However generating them is not as trivial as for the
basic attack. We propose the following procedure which has a time complexity
around 272 operations:

1. Consider a pair (p0, p1) following the differential characteristic.

p

k0 ⊕ k1 ⊕ RC0

S

M ′ SR

k1 ⊕ RC1

S

y1

M ′ SR

k1 ⊕ RC2

S

y2

M ′ SR

k1 ⊕ RC3

S

y3

M ′ SR

k1 ⊕ RC4

S

y4

M ′

y5 y′
5

S−1

k1 ⊕ RC′
4

SR−1 M ′
y′
4

S−1

k1 ⊕ RC′
3

SR−1 M ′
y′
3

S−1

k1 ⊕ RC′
2

SR−1 M ′
y′
2

S−1

k1 ⊕ RC′
1

SR−1 M ′
y′
1

S−1

k′
0 ⊕ k1 ⊕ RC′

0

c

Fig. 5. 10r attack. No difference in white nibbles. Nibbles required in online (resp.
offline) phase are in gray (resp. black). Differences in dotted nibbles are known during
the offline phase. Hatched nibbles play no role.
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2. S−1 ◦ M ′ ◦ S can be seen as 4 invertible super Sboxes §0, . . . , S3 operating
on 16-bit words. Build 4 hash tables such that one can retrieve (x, y) from
(x ⊕ y, Si(x) ⊕ Si(y)).

3. Guess the difference in the active nibbles of both y4 and y′4 and retrieve the
actual value of x5 and x′

5 for both messages of the pair.
4. Guess the difference in the two active nibbles of the first column of y3 and

get back the actual values of y4[2, 5, 8, 15].
5. Combined with the knowledge of x5 this leads to the knowledge of the four

key nibbles M−1(k1)[2, 5, 8, 15]. Use them to partially encrypt x′
5 and check

if the difference in the first column of y′
3 is correct.

6. Use M−1(k1)[15] to partially decrypt y4 and get the difference in x2[15] and
check its correctness. Do the same for the difference in x′

2[15].
7. Guess the difference in the two active nibbles of the third column of y3 and

get back M−1(k1)[0, 7, 11, 13].
8. Compute the value of the missing parameters and check whether the pair

follows the characteristic or not. If it does then build the 60-bit sequence
from p0 and store it in the hash table.

The complexity of this procedure is dominated by the complexity of steps
4–5 which is 272 simple operations that we estimate to be equivalent to 269

encryptions. Now that the table is built the online phase is quite similar to the
one of the offline phase:

1. Ask for a structure of 232 chosen plaintexts and store the ciphertexts in a hash
table to identify the pairs that may follows the differential characteristic.

2. For each pair (p0, p1):
(a) Guess the difference in the first column of y1 and of y2, deduce the corre-

sponding value of (k0 ⊕ k1)[12..15] and k1[15]. Store them in a hash table
T0 indexed by k1[15], k0[61..63]b.

(b) Similarly compute (k′
0 ⊕ k1)[12..15] and k1[15] from the ciphertexts and

use T0 and the linear relations between k0 and k′0 to get back the 22×4+2 ·
2−7 = 23 corresponding values of the key nibbles above. Store those 213

key candidates in a hash table T1 indexed by (k0 ⊕ k1)[12..15], (k′
0 ⊕

k1)[12..15] and k0[55]b ⊕ k0[60]b (= (k0 ⊕ k1)[55]b ⊕ . . . ⊕ (k0 ⊕ k1)[60]b ⊕
(k′

0 ⊕ k1)[55]b ⊕ . . . ⊕ (k′
0 ⊕ k1)[59]b ⊕ k1[60]b).

(c) Repeat the two steps above but now by guessing the third column of y2
and use T1 to obtain the 22×13−8−8−1 = 29 and store them in a hash table
T2 indexed by the difference in y2. (While the match is on 33 bits, (k0 ⊕
k1)[12..15] and (k′

0 ⊕ k1)[12..15] only depend on four 4-bit parameters.)
(d) Repeat the three steps above but now by guessing the third column of y1

and use T3 to finally retrieve all the 29+9−8 = 210 key candidates.
(e) For each key candidate identify a δ-set from p0, build the 60-bit sequence

and check whether it belongs to the table constructed in the offline phase.
If it does then try the key candidate.

3. Repeat the procedure until the right key is found.
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As each structure contains 263 pairs and each of these pairs follows the dif-
ferential with probability 2−28−60 = 2−88, we need 225 structures on average.
Then, for each structure we have to study only 263−32 = 231 pairs and for each
of them we have to perform 4 × 213 + 210 × 24 simple operations estimated to
approximately 212 encryptions. Thus this procedure has a the time complexity
of 225+31+12 = 268 encryptions and requires 225+32 = 257 chosen plaintexts.
At the end of the attack 266 × 240 × 2−60 = 246 key candidates remain. As 62
key bits are also missing performing an exhaustive search is not a valid option.
Instead, the best way to recover the key is to apply several meet-in-the-middle
attacks. For instance, we can assume that when a match happens we get back
the corresponding values of the red nibbles in Fig. 5 and then deduce step by
step each key bits of M−1(k1) by completing the first and the third columns of
y′
3 without increasing the overall complexity of the attack.

4 Combining Differential Attack with a SAT-Solver

4.1 Attacking 4-Round PRINCE with a SAT-Solver

Encoding PRINCE as a CNF Formula. The idea is to generate a CNF
formula where a set p of boolean variables correspond to the 64 bits of the plain-
text, c to the 64 bits of the ciphertext and k to the 128 bits of the key, and
such that there exists a unique assignment of the variables satisfying the CNF
corresponding to the case Ek(p) = c.

Hence, if we generate such a formula, set the variables in p and k to a chosen
value and use a SAT-solver to find an assignment satisfying the CNF formula,
the variables in c will correspond to the ciphertext. Solving such a formula is
easy, an observation which we can relate to the fact that the evaluation of a
block cipher has to be “easy” from the point of view of complexity theory.

Another way to use such a formula is to fix the variables in p and in c
according to a known plaintext/ciphertext pair, solve the CNF and recover the
key from the variables corresponding to it. Unless the number of rounds is very
small (at most 3 in the case of PRINCE), solving such a system is impractical.
Again, we can relate this observation to the fact that recovering the key given
one or several plaintext/ciphertext pair has to be “hard”. Our approach consists
in using some knowledge about the internal state of the cipher to simplify the
task of the SAT-solver and make such a resolution possible for a higher number
of rounds.

In order to encode a PRINCE encryption as a CNF formula, we introduce
several sets of 64 Boolean variables corresponding to each step of each round:
one for the internal state at the beginning of the round (xr), one for the internal
state after going throught the S-Box (yr), etc. We also use boolean variables
corresponding to the key bits.

Our task is then to create a CNF formula connecting these variables in such
a way as to ensure that, for instance if k[0, ..., 63] is fixed, it has only one solution
where yr[0, ..., 63] is indeed the image of x[0, ..., 63]r by S, etc.
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In order to encode the linear layer, we use the alternative representation of
M ′ from [10] where it was shown that M ′ operates on columns of 4-bits inde-
pendently by first rotating them by a column-dependent number of bit and then
xor-ing the hamming weight of the column in each bit. We thus add variables
corresponding to the hamming weights of the columns and encode the corre-
sponding xor’s as CNF formulas. The SR operation is only a permutation of the
bits so we simply set the corresponding bits to be equal.

The encoding of the S-Box is less simple to obtain. In order to find the best
one, we chose to look for it directly instead of using the ANF as an intermediate
step. Indeed, since the S-Box is 4x4, it is small enough for us to brute-force all
clauses1 involving input and output bits and check if they hold for every input.

Doing this lead us to find 29 clauses with 3 variables. However, they are not
sufficient to completely specify the S-Box so we used a greedy algorithm to find
the best clauses with 4 variables to add to this encoding. In the end, we have
29 clauses with 3 variables and 9 clauses with 4 variables which are such that
the only solutions of the CNF made of all these clauses are all the assignments
corresponding to pairs

(
x, S(x)

)
for all x ∈ [0, 15].

These clauses with 3 variables can be interpreted as simple implications. For
example, if o[3, ..., 0]b = S(i[3, ..., 0]b) then the following two clauses hold with
probability 1 :

(
i[1]b ∨ o[2]b ∨ o[3]b

)
∧

(
i[1]b ∨ o[1]b ∨ o[2]b

)
.

They are logically equivalent to the following implication:

i[1]b =⇒
(
(o[2]b ∨ o[3]b) ∧ (o[1]b ∨ o[2]b)

)
.

Differential Over Definition. The approach consisting in using the knowl-
edge from a differential trail to ease the task of a SAT-solver used to attack a
cryptographic primitive has been explored in [15] in order to attack MD4 and
MD5. The authors of this paper first use heuristic methods to find a high prob-
ability differential trail leading to a collision and then use a SAT-solver to find
a pair of messages which satisfies this trail. In the same paper, we can find the
following observation:

An interesting result of our experiments with SAT solvers is the impor-
tance of having a differential path encoded in the formula.

As we shall see, this also holds for block ciphers. Attacking 4 rounds PRINCE-
core takes more than 10 h if we simply encode as a CNF that some plaintext
are encrypted into known ciphertexts but we can both drastically reduce this
time while breaking PRINCE with its whitening keys using differential over-
definition.

1 A clause is the logical OR of several variables, e.g. a ∨ b, a, a ∨ b ∨ c where x is the
negation of x.
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Definition 2. We call Differential Over Definition (or DOD) the following algo-
rithm which simplifies a CNF formula knowing that the variables correspond to
bits of the internal state of an encryption following a certain trail.

For all pairs of variables in the CNF, proceed as follows:

– If they are assumed to be equal, replace all occurrences of the first one by the
second one.

– If they are assumed to be different, replace all occurrences of the first one by
the negation of the second one.

While the idea behind this algorithm is simple, it is necessary for cryptog-
raphers to implement it efficiently “by hand”. Indeed, the only input of a SAT-
solver is a CNF formula, i.e. merely a list of clauses from which deriving what
variables are equal to each other without knowledge of the structure of the prob-
lem is far from trivial. For instance, it would be necessary for the SAT-solver
to “understand” that the set of clauses used to model one S-Box call all cor-
respond to a unique function so that identical inputs lead to identical outputs;
all this without having any distinction between the input and output bits. That
is why differential over-definition, an easy algorithm for the cryptographer to
implement, is a valuable pre-processing step when using a SAT-solver for cryp-
tography leading to gains in time complexity of several orders of magnitude.

This algorithm can be implemented efficiently using a hashtable containing
the correspondences between the variables. Once this algorithm has been run,
the CNF is over defined: the solution would have been such that the equalities
hold anyway but there are less variables and less clauses in the CNF. However,
if the pair actually does not follow the trail, the CNF has become unsatisfiable.
This is a difference between our work and the one described in [15]: we do not
always know before hand if the CNF has a solution. We can think of this as a
trade-off between “solving one CNF known to be true” and “solving many over-
defined CNF’s which may or may not be true”: the second approach loses time
by requiring several calls to a SAT-solver but these calls take less time thanks
to the over-definition.

Such an over definition can be used in different ways.

1. Propagating only the zero differences holding with probability 1 inside a group
of 8 encryptions with many zero differences is enough to reduce the time
complexity of an attack on 4 rounds from more than 10 h to a few seconds
(see below). Furthermore, such a formula is always true.

2. Instead of implementing an algorithm recovering the key from a pair following
a particular trail by peeling of layer after layer of encryption in our attack
on 6 rounds described in the remainder of this section, we simply re-used
the code of our attack on 4 rounds and over-defined the CNF modeling the
encryptions of right pairs according to the high probability trail we used.

We implemented the attack described in Algorithm 1 to attack 4-round
PRINCE (with its whitening keys) using the SAT-solver Minisat [16] and obtained
an average total time of 5.13 s and average time spent solving the CNF of 3.06 s.
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The designers of PRINCE did not consider SAT-based attacks but they did inves-
tigate algebraic attacks. They manage to attack 4-round PRINCE-core in less than
2 s while our attack requires about 5 s to attack 4-round PRINCE, a cipher which
uses twice as much key material.

Algorithm 1. Using Differential over-Definition to enable an attack on 4-round
PRINCE.

Query 210 plaintext/ciphertexts where the first 10 bits take all possible values.
Select a subset of 8 plaintext/ciphertext maximizing the number of 0-differences in

the output.
Encode the 8 encryptions as a CNF A.
Overdefine A by propagating zero-differences with probability 1.
Use a SAT-solver to retrieve the key bits from A
return k0||k1

4.2 Amplified Differential Trails

Our attacks rely on some differences propagating identically in different pairs.
To better describe this, we introduce the following definitions.

Encryption. We call encryption a couple plaintext/ciphertext encrypted under
a fixed key.

Pair. A pair is a set of two encryptions where the plaintexts are separated by a
known difference.

Family. A family is a group of pairs with a particular structure. They are
generated from a single pair

{
(p[0], ..., p[b − 1]), (p′[0], ..., p′[b − 1])

}
, where

p[i] and p′[i] are nibbles. Suppose that the input difference covers the first
three nibbles so that p[3] = p′[3] = c[3], ..., p[b − 1] = p′[b − 1] = c[b − 1] for
some constants c[i]. Then the family corresponding to this pair is made by
exchanging some nibbles between the two encryptions in the pair so as to
obtain the following pairs:

{
(p[0], p[1], p[2], c[3], ..., c[b − 1])

(p′[0], p′[1], p′[2], c[3], ..., c[b − 1])

{
(p′[0], p[1], p[2], c[3], ..., c[b − 1])
(p[0], p′[1], p′[2], c[3], ..., c[b − 1])

{
(p[0], p′[1], p[2], c[3], ..., c[b − 1])
(p′[0], p[1], p′[2], c[3], ..., c[b − 1])

{
(p[0], p[1], p′[2], c[3], ..., c[b − 1])
(p′[0], p′[1], p[2], c[3], ..., c[b − 1]).

Overall, if there are n nibble with non-zero differences in the input then a
family is made of 2n−1 pairs and 2n encryptions.

In the case of PRINCE, we consider differential trails where the input dif-
ferences are only over one column and such that all the pairs in a family follow
the same trail for the first three rounds. For example, the trails we consider in
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Fig. 6. The 5.5 rounds trail T1.

this paper (Figs. 6 and 14) are either followed by all the elements in a family or
none of them. A similar heuristic is used in [17] to perform a multiset attack on
the SASAS structure.

This behaviour comes from the fact that the transition in the trails we study
depend only on the transitions occuring during the first round, which are the
same in all pairs of a family, and on the actual value of some nibbles to which
the difference have not had the time to propagate, which are the same in all
encryptions of the structure.

Our Trails. There has already been some differential cryptanalyses of PRINCE,
see for example [10], which is the best attack to date, and also [18].

We consider trails which are completely specified during the first 3 rounds and
then propagate with probability 1 for 2.5 rounds before having spread to the full
internal state. Figure 6 shows a first trail covering 5.5 rounds in this way which we
denote T1. Each array corresponds to the differences between the internal states
of two encryptions under 6-round PRINCE and each cell gives the value of the
difference: light gray corresponds to a fully specified non-zero value at the nibble
level (e.g. a difference of 1), dark gray to an unkown non-zero difference and white
to a zero difference. A very similar trail with a probability 2 times smaller, T2,
is given in Fig. 14 (see Appendix C). To compute their probabilities, we use the
difference distribution matrix of the S-Box. If we let the input difference be
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Table 2. Input differences which might be mapped to a difference of 1 by the S-Box
of PRINCE.

Hexadecimal Binary Probability

0x1 0001 1/4

0x2 0010 1/8

0x4 0100 1/8

0xb 1011 1/8

0xc 1100 1/4

0xd 1101 1/8

(1, 1, 1, 0, ..., 0), then T1 has a probability of 2−2·3 · 2−2 · 2−2−2−3 = 2−15 and T2

has a probability of 2−2·3 · 2−2 · 2−2−3−3 = 2−16.
Querying enough families at random to find one right family for any of these

would require (2−15 + 2−16)−1 = 214.41 families with an input difference over
3 nibbles, i.e. 214.41 · 23 = 217.41 encryptions. However, we can use structures to
decrease this complexity.

We note that the input differences which might lead to an output difference
of 1 are those listed in Table 2. As we can see, the second bit from the right
in little-endian notation is only involved in 0x2 and 0xb which, taken together,
only have a probability of 1/4 of leading to a difference of 1. Hence, we use the
following structures where b is a bit taking all possible values and c is constant
accross the structure:

bbcb bbcb bbcb cccc cccc ... cccc.

We found experimentally that such structures contain several2 right families
with probability 2−5.9 on average when we take into account all possible input
differences, i.e. (δ, δ′, δ′′, 0, ..., 0) where δ, δ′, δ′′ ∈ {1, 4, c, d}. Hence, obtaining at
least 2 right families only requires about 29+5.9 = 214.9 queries to the encryption
oracle on average.

Filtering Right Pairs. Full diffusion has been achieved by the 6-th round.
Thus, we guess 16 bits of key material to be able to partially invert the last
round on one column. A guess leads to the correct nibble having a zero differ-
ence in every pair of the family with probability 2−4·4 = 2−16. We repeat this
independently over each column and obtain either 64 bits of key material or none
at all. Since there are either several right families or none at all in the structures

2 Actually, a structure of size 212 where the first three nibbles take all values con-
tains 64 right families with probability about 2−5.9. If we reduce these to form the
structures of 29 plaintext/ciphertext encryptions we described, only some of these
64 families are still present, hence the presence of either 0 or several right families
in a structure.
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we consider, we only return the key guesses which come from several families as
well as the corresponding families.

This is a powerfull filter: while we expect each family from the structure to
yield about one 64 bits candidates, the probability to have a collision is very
small3.

4.3 Differential Attacks on 6-Round PRINCE

Pseudo-code describing our attack on 6-round PRINCE is provided in Algorithm2.
We ran this attack 10 times and found that about 25.75 structures were needed

on average. The filtering step is the most time consuming: finding a right pair
requires about 1h 30 min but the SAT-solver requires about 0.5 s to recover
the full key or (rarely) to discard the pair. For this reason, we approximate
the complexity of this attack by the complexity of its filtering step. We query
25.9 structures of 29 encryptions and, for each, encryption, we invert the last
round by guessing 216 bits of key material for each of the 22 columns. Hence,
this attack requires about 25.9+9+16+2 = 232.9 partial decryptions and 214.9 cho-
sen/plaintexts. Memory complexity is dominated by the SAT-solver but is (well)
below 1 Go, i.e. (well) below 227 64-bits blocks.

5 Structural Analysis of PRINCE

The α-reflection introduced along with PRINCE [5] is the name given to the
following property of a block cipher Ek: E−1

k = Ek⊕α. In other words there is a
constant α such that decryption for a key k is the same operation as encryption
under key k⊕α. PRINCE-core implements this property by having a three-parts
structure as decribed here:

Ec,k1 = F−1
k1⊕α ◦ I ◦ Fk1 ,

where Fk corresponds to 5 rounds of a classical Substitution-Permutation Net-
work construction and where I is an involution.

Since we are going to study the structure of the cycles of different functions
in a fashion similar to the way Biryukov analysed the inner-rounds of some
involutional ciphers in [19], we define the cycle type of a permutation.

Definition 3. The cycle type of a permutation π is an (ordered) multiset con-
taining the cycle lengths of the permutation. The cycle type of π is denoted by
L(π).

In what follows, we do not represent the round constants for the sake of
simplicity. However, not only do our result hold in their presence but we could
actually generalize them to any key schedule preserving the fact that the subkeys
of symmetric rounds have a XOR equal to α.
3 Each structure yields 29−3 = 26 families for each of the 43 interesting input differ-

ences so that we consider the families by groups of 212. This implies that a collision

has a probability of about
(
212

2

)
· 2−64 ≈ 2−41.
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Algorithm 2. Using trails T1, T2 and a SAT-solver to recover the complete key
k0||k1 of 6-round PRINCE.

while the key has not been retrieved do

Query a structure S =
(
(p0, c0), ..., (p212−1, c2

12−1
)

H ← empty hashtable of lists of families indexed by 64-bits integers
for all families F in S do

for all columns of the internal state do
for all 16-bits key guesses k16 do

for all pairs in F do
Invert key addition for the column using k16

Invert S−1 for the column
Invert M ′ for the column

end for
if the correct nibble has a zero difference in all pairs then store k16

end for
end for
Combine all guesses from each column into 64-bits guesses
for all 64-bits guesses k64 append F to H[k64]

end for
for all k64 among the keys of H do

if H[k64] contains strictly more than 1 element then
for all families F in H[k64] do

Generate a CNF A encoding all encryptions in F with same key such
that k1 + L(k0) = k64.

for all trails T in {T1, T2} do
B ← DoD(A, T)
if B is satisfiable then retrieve k0||k1 from the solution of B and

return it
end for

end for
end if

end for
end while

5.1 Small Cycles in Round-Reduced PRINCE

The central involution is I = S−1 ◦ M ′ ◦ S. Therefore, it is isomorphic to M ′, a
linear involution operating on each column of the internal state independently.
It is easy to check experimentally the result given in [7] stating that M ′ has
exactly 232 fixed points, meaning that I also has 232 fixed points. Therefore, I
has 232 cycles of length 1 and 263 − 231 cycles of length 2.

The cycle type of Iα : x �→ I(x)⊕α is more sophisticated but still contains a
fair amount of small cycles. After noting that both I and x �→ x ⊕ α operate on
each column of the internal space independently, we denote Iα

i the restriction
of x �→ I(x) ⊕ α to column i and Ii that of I. Since each of the Iα

i ’s operates
only on a space of size 216, it is easy to generate their complete cycle structures
independently by searching the whole space. Each Iα

i has a cycle type made of
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Algorithm 3. Generating the cycle type of Iα from those of its columns.
for i ∈ [0, 3] do

Li ← List of the cycle length of Iα
i

end for
L ← Hashtable indexed by integers
for (�0, �1, �2, �3) ∈ L0 × L1 × L2 × L3 do

� ← lcm
(
�0, �1, �2, �3

)

L[�] ← L[�] + �−1 ·
∏3

i=0 �i

end for
return L

many “small” cycles, the largest having a length of 2844. This is explained by
the fact that both I and x �→ x ⊕ α are involutions and each column of I has
exactly 28 fixed points. Thus, most of the cycles have a particular structure4

described in [20] which we recall in Fig. 7. We remark that to each cycle of Iα
i

correspond two fixed points of Ii.

Ii Ii
Ii Ii

⊕α ⊕α ⊕α

Iα
i Iα

i

Iα
i

Iα
iIα

i

Iα
i

Fig. 7. The structure of a cycle of Iα
i for i ∈ [0, 3].

After generating the cycle type for each Iα
i , we combine them to obtain the

cycle type of x �→ I(x) ⊕ α using Algorithm 3. The cycle type of this function is
too complex to be printed completely but some information extracted from it is
given in Table 3. If we pick x uniformly at random, the expected length of the
cycle it is on is 230.7.

Recall that Ec,4
k1

is the permutation of {0, 1}64 corresponding to an encryption
under key k1 by PRINCE-core reduced to 4 rounds. Then x �→ Ec,4

k1
(x) ⊕ α has

the same cycle type as Iα due to the cancellation of the last round of one
encryption with the first round of the next. Indeed, to each cycle of this function
corresponds one of Iα, as illustrated in Fig. 8 where a cycle (x0, x1, x2, x3) of
length 4 of x �→ Ec,4

k1
is represented along with the corresponding cycle of Iα

(dashed line).
A first consequence of these observations is the existence of a distinguisher

for 4-round PRINCE-core requiring about 227.4 adaptatively chosen plaintexts.

4 While there are some cycles which do not have this structure, they are a small
minority: for f0, 256 elements out of 65536 are on such cycles, 64 for f1, 8 for f2 and
194 for f3.
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Table 3. Information about the cycle type of Iα, where �(x) is the length of the cycle
on which x is.

Cycle length � #{cycles of length�} P
[
�(x) = �, x drawn uniformly

]

1 0 0

2 27 2−57

4 210.25 2−53.75

8 215.46 2−48.54

10080 233.06 2−17.63

110880 231.96 2−15.27

≤210 – 2−22.4

≤215 – 2−12.4

≤224 – 2−4.1

As stated in Table 2, an element picked at random is on a cycle of length at most
215 with probability 2−12.4. Therefore, we repeat multiple times the experiment
consisting in picking an element x uniformly at random and then check if it is
on a cycle of length at most 215 by iterating x �→ Ec,4

k1
(x) ⊕ α at most 215. The

experiment is a success if x is on a cycle of length at most 215. If the permutation
is Ec,4

k1
for some k1, then its probability of success is 212.4 but if the permutation

is a random permutation5, then the probability of success becomes 2−49. We
confirmed experimentally the success probability of this experiment for Ec,4

k1
.

A second consequence is the existence of “small” sets of plaintext/ciphertext
encryptions where the set of the ciphertexts is the image of the set of the encryp-
tions by a function significantly simpler than a PRINCE encryption. This topic
is studied in the next section.

5.2 Simplifications of PRINCE’s Representation

The particular cycle types of the round-reduced versions of PRINCE studied
above lead to simpler alternative representations of the encryption algorithm.

Consequences of the Cycle Type of I. Suppose that an encryption is such
that the input of I is one of the 232 fixed-points of this function. Then the
key addition before and after this function cancel each other so that only the
addition of α remains. Then, since M is linear, the operations M−1 ◦ (⊕α) ◦ M
become simply the addition of M−1(α). Thus, the 4 center rounds — minus the
first and last key addition — become a simple S-Box layer which we denote S′

5 Recall that the probability for x to be on a cycle of length � for a permutation of
[0, N − 1] is equal to 1/N . Hence, the probability that the length is smaller than 215

for a permutation of [0, 264 − 1] is
∑215

�=1 2−64 = 2−49.
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Fig. 8. Correspondance between a cycle of x �→ Ec,4
k1

(x) ⊕ α and a cycle of Iα.

and which is defined by

S′(x) = S−1
(
S(x) ⊕ M−1(α)

)
.

This simplifying process is summarized in Fig. 9. Note that if M−1(α) has any
nibble equal to 0 then the function S′ is the identity for this nibble. However,
for the value of α chosen by the designers of PRINCE, there is no such nibble.

The simplification goes further. Indeed, since S′ operates only at the nibble
level, it commutes with the operations SR and SR−1 (up to a reordering of the
S-Boxes in S′). Therefore, if we add one round before and one round after S′,

Fig. 9. Simplification of the 4 center-rounds if the input of I is a fixed point.
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Fig. 10. Simplification of the 6 center-rounds if the input of I is a fixed point.

we can replace SR−1 ◦ S′ ◦ SR by S′′ where S′′ is another S-Box layer. Hence,
6-round of PRINCE operate on each column of the internal state independently:
each output bit depends only on 16 bits of the input, 28 bits6 of k1 and at most
18 bits of k0. This simplification is summarized in Fig. 10.

Similar simplifications occur if instead of having a fixed point we have a
particular collision between two encryptions. This setting corresponds to the so-
called mirror slide attack described by Dunkelman et al. in [21]. Consider two
encryptions (p0, c0) and (p1, c1) by PRINCE-core as follows

c0 = Ec,k1(p
0) =

(
F−1

k1⊕α ◦ I ◦ Fk1

)
(p0)

c1 = Ec,k1(p
1) =

(
F−1

k1⊕α ◦ I ◦ Fk1

)
(p1)

which are such that Fk1(p
0) = I

(
Fk1(p

1)
)
. In this case, we have that

c0 =
(
F−1

k1⊕α ◦ Fk1

)
(p1)

c1 =
(
F−1

k1⊕α ◦ Fk1

)
(p0),

where 6 rounds of F−1
k1⊕α◦Fk1 can be simplified exactly as described and therefore

only operate on each column separately.
In conclusion, if an encryption is such that the input of I is a fixed-point

of this function or if two encryptions form a mirror slide pair, then 4 rounds of
PRINCE consist simply in 16 parallel operations on each nibble and 6 rounds of
PRINCE in 4 parallel operations on each column.

Consequences of the Cycle Type of Iα. Consider a sequence of plaintexts
(p0, . . . , p�−1) and their corresponding ciphertexts (c0, ..., c�−1) such that the
input xi

5 ⊕ k1 of the sixth round for the plaintext pi is the image of xi−1
5 ⊕ k1

by Iα. We call such a sequence a cycle set and we give a representation of such

6 In each column, 16 bits from the corresponding column of k1 are used as well as
16 bits from the corresponding column of SR−1(k1). Since the top nibble of these
two sets is the same, we are left with 32 − 4 = 28 bits.
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a sequence on Fig. 11: if two values are equal then they are connected by a line;
red lines correspond to the cycle of Iα this set is built out of and blue lines
correspond to the propagation of these equalities through identical operations,
namely x �→ k1 ⊕ R−1(x ⊕ k1).

There is a unique function mapping pi to ci−1 in every cycle set which corre-
sponds to the encryption algorithm where the 4 center-rounds have been removed
and replaced by a simple addition of α. This means that this function under-
goes the simplifications described above except that these cover 2 more rounds.
In particular, for 6-round PRINCE-core, the function mapping pi to ci−1 only
operates at the nibble level and, for 8-round PRINCE-core, it operates at the
column level. At least 10 rounds are necessary to obtain full diffusion out of the
12 PRINCE has.

The cycle sets we consider cover the 4 center-rounds of PRINCE but it is
possible to generalize this construction to an arbitrary amount of rounds. How-
ever, the cycle set sizes are abnormaly small in this case because of the cycle type
of Iα. Indeed, a random plaintext/ciphertext pair is in a cycle set of size 230.7

and in a cycle set of size smaller than 215 with probability 2−12.4. In other cases,
including a priori if we have a cycle covering at least 6 rounds, the expected
size of a cycle set is the expected size of the cycle of a random permutation a
random element is on, namely 263.

Fig. 11. A cycle set of 6-round PRINCE-core.

Should the cycle sets of PRINCE become identifiable, the security of up to
8 rounds may be compromised as the alternative versions of the cipher we
described in this Section are much weaker than the original cipher. Further-



Meet-in-the-Middle Attacks and Structural Analysis 213

more, since small cycles are not unlikely to be found, the data complexity of
such an attack may remain feasible.

6 Conclusion

We looked for practical attacks which would hinder the security provided by
round-reduced versions of PRINCE in a realistic framework provided by the
designers of this cipher. We found that approaches based on a Meet-in-
the-Middle, SAT-based or, surprisingly, differential framework can all lead to
practical attacks on up to half of the rounds. We checked our results by actually
implementing one of our attacks. As a matter of fact, our attacks were the best
submitted to the PRINCE-challenge for 6 and 8 rounds. Furthermore, during
our investigations on PRINCE we discovered a new attack on 10 rounds which
despite its data complexity of 257 chosen plaintexts has a reasonable complexity
and a very (very!) motivated adversary could run it.

We also identified some simplifications of the encryption occurring because
of the small cycles of the inner-rounds of this block cipher, thus shedding new
light on the consequences of the α-reflection as it is implemented in PRINCE.

Acknowledgement. The authors thank Alex Biryukov for useful discussions about
the differential attack on PRINCE. We also thank NXP Semiconductors for organizing
the PRINCE challenge and sending us our rewards!

A The Second 6-Round Attack
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Fig. 12. 6r attack. No difference in white nibbles. Nibbles required in online (resp.
offline) phase are in gray (resp. black). Differences in dotted nibbles are known during
the offline phase. Hatched nibbles play no role.

B The Second 8-Round Attack
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Fig. 13. 8r attack. No difference in white nibbles. Nibbles required in online (resp.
offline) phase are in gray (resp. black). Differences in dotted nibbles are known during
the offline phase. Hatched nibbles play no role.

C The Second 5.5 Rounds Trail
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3. Demirci, H., Selçuk, A.A.: A meet-in-the-middle attack on 8-round AES. In:
Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 116–126. Springer, Heidelberg
(2008)

4. Semiconductors, N.: The PRINCE challenge (2014). http://www.emsec.rub.de/
research/research startseite/prince-challenge/
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8. Jean, J., Nikolić, I., Peyrin, T., Wang, L., Wu, S.: Security analysis of PRINCE.
In: Moriai, S. (ed.) FSE 2013. LNCS, vol. 8424, pp. 92–111. Springer, Heidelberg
(2014)

9. Li, L., Jia, K., Wang, X.: Improved meet-in-the-middle attacks on aes-192 and
prince. Cryptology ePrint Archive, Report 2013/573 (2013). http://eprint.iacr.org/

10. Canteaut, A., Fuhr, T., Gilbert, H., Naya-Plasencia, M., Reinhard, J.R.: Multi-
ple differential cryptanalysis of round-reduced PRINCE (full version). Cryptology
ePrint Archive, Report 2014/089 (2014). http://eprint.iacr.org/

11. Rechberger, C.: Update on the 10000 euro PRINCE cipher-breaking
challenge: results of round-1 (2014). http://crypto.2014.rump.cr.yp.to/
d037206eda8f9278cef1ea26cd62e51f.pdf

12. Dunkelman, O., Keller, N., Shamir, A.: Improved single-key attacks on 8-round
AES-192 and AES-256. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp.
158–176. Springer, Heidelberg (2010)

13. Derbez, P., Fouque, P.: Exhausting Demirci-Selçuk meet-in-the-middle attacks
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