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Abstract. Sparse triangular solvers are typically parallelized using
level-scheduling techniques, but parallel efficiency is poor on high-
throughput architectures like GPUs. We propose using an iterative app-
roach for solving sparse triangular systems when an approximation is
suitable. This approach will not work for all problems, but can be suc-
cessful for sparse triangular matrices arising from incomplete factoriza-
tions, where an approximate solution is acceptable. We demonstrate the
performance gains that this approach can have on GPUs in the context
of solving sparse linear systems with a preconditioned Krylov subspace
method. We also illustrate the effect of using asynchronous iterations.

1 Introduction

Solves with sparse triangular matrices are difficult to parallelize efficiently, due
to the often irregular structure of sparse matrices and the sequential nature of
forward and backward substitution. The most common way to parallelize sparse
triangular solves is to use a “level scheduling” technique [22]. A “level” consists
of the unknowns that can be computed in parallel, given the dependency graph
implied by the sparse matrix. The levels are processed in sequence until all the
unknowns are computed. Depending on the sparse matrix, there may be a very
large number of levels or not enough work within a level to efficiently utilize
highly parallel architectures such as graphics processing units (GPUs).

In this paper, we investigate the approach of using an iterative method to
solve sparse triangular systems. It is unconventional to apply iterative methods
to triangular systems because such systems can be solved directly. However, due
to high efficiency sparse-matrix vector product codes that have been vigorously
developed in recent years, including on GPUs, iterations with sparse triangu-
lar matrices can be very fast compared to forward and backward substitution.
In this paper, we use the Jacobi iterative method, although nonstationary meth-
ods and polynomial methods can also be used. Because triangular matrices are
non-normal, the Jacobi method may diverge and cause overflow before converg-
ing, depending on the degree of non-normality of the matrix. However, for many
types of sparse triangular matrices, such as the triangular parts of matrices
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J.L. Träff et al. (Eds.): Euro-Par 2015, LNCS 9233, pp. 650–661, 2015.
DOI: 10.1007/978-3-662-48096-0 50



Iterative Sparse Triangular Solves for Preconditioning 651

from discretizations of partial differential equations, and from incomplete fac-
torizations of these matrices, the triangular matrices have a degree of diagonal
dominance that can avoid divergence of the Jacobi iterations. Thus, although
Jacobi iterations will not work for all matrices, there are large, useful classes of
matrices for which Jacobi iterations can be a viable approach for solving sparse
triangular systems.

The iterative approach taken here is particularly applicable and competitive
when only an approximate solution is sought, meaning, only a small number of
Jacobi iterations are necessary. This is the situation when the triangular solves
are used in preconditioned Krylov subspace methods for solving linear systems.
Here, the triangular matrices themselves, such as from incomplete factorizations,
are only approximations and approximate solves are acceptable when applying
the preconditioner. By using approximate solves, the total number of iterations
of the Krylov subspace method may be larger than when exact solves are used,
but the total execution time may be much smaller.

We investigate the use of Jacobi iterations (also called sweeps in this paper)
and a “block-asynchronous” variant to apply an incomplete LU (ILU) factoriza-
tion preconditioner. The asynchronous variant does not synchronize the updates
of variables within each sweep and may have improved convergence rate and
execution time. When a fixed number of synchronous Jacobi sweeps are used,
the operator is fixed, and standard Krylov subspace methods may be used. For
the asynchronous variant, the operator is not fixed and therefore we use a flex-
ible method, in particular, flexible GMRES (F-GMRES) [21] which we have
implemented in the MAGMA [13] library for GPUs.

The acceleration of sparse triangular solves is the subject of much current
research, e.g., [19], but almost all this research is based on the level scheduling
idea [2,12,23]. Efficient implementations on state-of-the-art hardware still pose a
challenge [14,15,26]. Another approach to parallelizing sparse triangular solves
is to use partitioned inverses [1,20]. Here, a triangular matrix is written as a
product of sparse triangular factors; each triangular solve is then a sequence of
sparse matrix vector multiplications. The use of a sparse approximate inverse for
a triangular matrix has been considered in [10,24], as well as the idea of approxi-
mating the inverse ILU factors via a truncated Neumann series [24,25]. The latter
is similar to the idea of using Jacobi sweeps presented in this paper. The use
of Jacobi sweeps for for sparse triangular solves was recommended in [6] for the
Intel MIC architecture. Asynchronous iterations for these sweeps were not con-
sidered. The potential of replacing synchronous Jacobi with block-asynchronous
Jacobi for more efficient use of the GPU hardware was investigated in [3] and
applied to smoothers for geometric multigrid methods in [4].

This paper is organized as follows. Section 2 first provides some background
and Sect. 3 gives details about the actual implementations for the methods
we use for the experimental part (Sect. 4) in this paper. Section 4.1 describes
our test environment, in Sect. 4.2 we compare the convergence of classical
Jacobi and a block-asynchronous version when solving sparse triangular systems.
For the latter, we investigate the effect of scheduling the GPU thread blocks
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consistently with the data dependency order in the triangular factors. We also
compare the execution time with level-scheduling triangular solves. In Sect. 4.3
we investigate the impact of approximate triangular solves when used in precon-
ditioned F-GMRES(50). We conclude in Sect. 5.

2 Background

2.1 Jacobi Method and Asynchronous Iteration

Classical relaxation methods like Jacobi or Gauss-Seidel are defined using a spe-
cific update order of the vector components and imply synchronization between
the distinct iterations. The number of components that can be computed in
parallel in an iteration depends on whether the update of a component uses
only information from the previous iteration (Jacobi type) or also information
from the current iteration (Gauss-Seidel type). Using newer information gener-
ally results in faster convergence. This however comes at the price of reduced
parallelism: Gauss-Seidel is inherently sequential and requires a strict update
order; for Jacobi, all components are updated simultaneously within one itera-
tion. Asynchronous relaxation methods do not obey any update order. Instead
they iterate the components in a nondeterministic fashion, always using the
newest available values of the other components. The implied fine-grained par-
allelism and the lack of synchronization makes asynchronous methods attractive
for GPUs, which themselves operate in an asynchronous-like fashion. At the same
time, asynchronous iteration methods require the target matrix to have stronger
properties to ensure convergence. For the asynchronous relaxation suitable for
linear systems, a sufficient condition for convergence is given if the spectral radius
of the positive iteration matrix, ρ(|M |), is smaller than unity [11]. If this conver-
gence condition is fulfilled, a block-asynchronous Jacobi iteration, where subsets
of components are iterated in synchronous fashion and asynchronous updates are
used in-between the subsets, also converges [5]. The Jacobi iteration for solving
Ax = b can be written as

xk+1 = D−1
(
b − (A − D)xk

)

xk+1 = D−1b + Mxk (1)

where D the diagonal part of A [5]. For the triangular systems that arise in
the context of incomplete factorization preconditioning, we denote the iteration
matrices as ML and MU for the lower and upper triangular, respectively. Let
DL and DU be the diagonal parts of the triangular factors L and U , and let I
be the identity matrix. For the diagonal of L being all ones,

ML = D−1
L (DL − L) = I − L, MU = D−1

U (DU − U) = I − D−1
U U. (2)

Hence, ML is strictly lower triangular and MU is strictly upper triangular, which
implies that the spectral radius of both iteration matrices is zero. Therefore,
the asynchronous method converges in the asymptotic sense for any triangular
system [11].
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2.2 Incomplete LU Preconditioning

An ILU factorization is the approximate factorization of a nonsingular sparse
matrix A into the product of a sparse lower triangular matrix L and a sparse
upper triangular matrix U , A ≈ LU , where nonzeros or fill-in are only permitted
in specified locations. The basic algorithm, called ILU(0), approximates the LU
factorization by allowing only nonzero elements in L and U that are nonzero in
A. In this case, the sparsity pattern of L and U matches the sparsity pattern of
the system matrix A. The ILU factorization can also be computed efficiently in
parallel on GPUs using a fine-grained parallel iterative algorithm [6,7].

3 Block-Asynchronous Jacobi on GPUs

If we allow Jacobi to use newer information in the component updates, the
resulting asynchronous iteration can be realized in a single kernel that over-
writes the iteration input vector with the updated values. The algorithm may
be considered as block-asynchronous Jacobi as components handled by the same
GPU thread block are updated simultaneously in Jacobi fashion, but the distinct
thread blocks are executed asynchronously without enforcing a certain update
order. Using newer information from remote components has the potential of
improving the convergence, but carries the danger of degraded convergence if
some components are updated several times in a row without using newer infor-
mation about the other components [5].

The order in which the components are updated depends on the scheduling
of the GPU thread blocks. GPUs use the concept of thread blocks to apply a
kernel operation to data, and typically not all data is processed at the same
time, but some thread blocks are scheduled before others [16]. The components
handled by one GPU thread block are updated in parallel using the newest
available information for the other components. Unfortunately, GPUs generally
do not allow insight or modifications to the thread block execution order. How-
ever, backward-engineering experiments reveal that the thread blocks are usually
scheduled in consecutive increasing order. With Gauss-Seidel converging usually
faster than Jacobi, this motivates us to update the components in dependency
order. For triangular matrices with a small bandwidth, i.e. the triangular factors
arising from the RCM-reordered systems, this effect may be small. For matrix
entries with a distance to the diagonal larger than the thread block size, updat-
ing in dependency order is equivalent to an Gauss-Seidel update, which would
be equivalent to an exact substitution for this matrix component. For the lower
triangular solve, updating the components in dependency order is equivalent to
scheduling the thread blocks in consecutive increasing order. For the upper tri-
angular solve, this scheduling order is against the dependency order, and faster
convergence should be achieved by reversing the scheduling order. We investigate
the effect of the thread block scheduling order in Sect. 4.2.

For classical (synchronous) Jacobi, the thread block scheduling has no
impact, as no new information from the current iterate is used. This however
implies, that the algorithm’s implementation can not be realized in a single
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kernel overwriting the iteration input vector with its output (neglecting the case
of the hardware parallelism being larger than the iteration vector length). Either
separate input/output vectors have to be used, or the Jacobi is realized in two
kernels where the first computes the sparse matrix vector product and the second
performs the update.

4 Experimental Results

4.1 Test Environment

The experimental results were obtained using a Tesla K40 GPU (Kepler microar-
chitecture) with a theoretical peak performance of 1,682 GFlop/s (double pre-
cision). The 12 GB of GPU main memory, accessed at a theoretical bandwidth
of 288 GB/s, was sufficiently large to hold all the matrices and all the vectors
needed in the iteration process. Although all operations are handled by the accel-
erator, we mention for completeness that the host was being an Intel Xeon E5
processor (Sandy Bridge). The implementation of all GPU kernels is realized in
CUDA [16], version 7.0 [18], using a thread block size of 128, NVIDIA’s sparse
matrix vector product was taken from the cuSPARSE library version 7.0 [17].
Double precision computations were used. To account for the non-deterministic
properties of the asynchronous methods, the reported results are averaged over
50 runs.

Nonsymmetric test matrices were selected from the University of Florida
sparse matrix collection (UFMC) [8], and are listed in Table 1. We also included a
test matrix arising from a finite difference discretization of the Laplace operator
in 3D with Dirichlet boundary conditions. A 27-point stencil was used on a
64 × 64 × 64 mesh. Although this latter matrix is symmetric, we treat it as
nonsymmetric in our experimental tests. The sparsity plots for all test matrices
are given in Fig. 1.

Reverse Cuthill-McKee (RCM) ordering is well-known to reduce the matrix
bandwidth and can produce more accurate incomplete factorization precondi-
tioners [9]. Except for the dc test problem where RCM reordering fails to reduce
the bandwidth, we consider all test matrices in RCM ordering (all matrices have
symmetric structure). Note that we do not use multicolor orderings as these typ-
ically degrade the approximation properties of ILU preconditioners [9] although
these orderings can enhance the parallelism for level scheduling.

Table 1. Test matrices.

Name Abbrev. Description Nonzeros nz Size n

U
F
M

C

chipcool0 chp Convective thermal flow (FEM) 281,150 20,082
dc1 dc Circuit simulation matrix 766,396 116,835
stomach sto 3D electro-physical duodenum model 3,021,648 213,360
venkat01 ven Unstructured 2D Euler solver (FEM) 1,717,792 62,424

Laplace3D lap 3D Laplace problem (27-pt stencil) 6,859,000 262,144
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chp dc sto ven lap

Fig. 1. Sparsity plots of test matrices listed in Table 1.

4.2 Sparse Triangular Solves

In this section, we report experimental results on convergence and performance
when solving sparse triangular systems with relaxation methods. In these sys-
tems, the right-hand side is the vector of all ones, and the initial guess is the
zero vector. Figures 2 and 3 show results for ILU(0) factors from two very dif-
ferent test problems, lap and dc, respectively. In each figure, the top set of
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Fig. 2. For the lower and upper triangular ILU(0) factors of the lap problem, conver-
gence (left) and runtime (right) of the synchronous Jacobi and the block-asynchronous
Jacobi (averaged results).
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Fig. 3. For the lower and upper triangular ILU(0) factors of the dc problem, conver-
gence (left) and runtime (right) of the synchronous Jacobi and the block-asynchronous
Jacobi (averaged results).

graphs show results for lower triangular solves, and the bottom set of graphs
show results for upper triangular solves.

The results show that the block-asynchronous methods converge faster than
the classical Jacobi methods. In the lower triangular case, forward thread block
ordering gives faster convergence than backward thread block ordering, as pre-
dicted in Sect. 3. The convergence of backward thread block ordering is very
similar to that of classical Jacobi, as the method tends not to use newly com-
puted information within an iteration. The opposite of the above statements is
true for the upper triangular case.

The timing results follow the same trends as the convergence results. We note
that for the dc problem, the timings for the upper triangular solves are much
higher than the timings for the lower triangular solves. This will be explained
at the end of this subsection.

The graphs also show results for a Jacobi implementation based on the sparse
matrix vector product from NVIDIA’s cuSPARSE library [17]. Naturally, the
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Table 2. Runtime comparison [ms] between the exact triangular solve using the cuS-
PARSE level-scheduling implementation and one Jacobi sweep.

Matrix Factor Exact triangular solve Single Jacobi sweep

chp L 7.84 0.10

U 7.07 0.10

dc L 0.62 0.23

U 4.65 26.57

sto L 21.61 0.40

U 24.16 0.37

ven L 17.49 0.23

U 14.81 0.23

lap L 12.13 0.66

U 11.57 0.65

optimization level of this routine is significantly higher than of our CUDA based
implementations. In the end, the cuSPARSE based Jacobi is the overall win-
ner in terms of runtime. However, from comparing the results of synchronous
and block-asynchronous Jacobi, it can be deduced that applying the same level
of optimization to the kernel for block-asynchronous iteration would make it
superior also to the cuSPARSE based Jacobi. In the remainder of the paper we
use the cuSPARSE based Jacobi implementation. There is no “asynchronous”
sparse matrix vector product in cuSPARSE (which would give “approximate”
and nondeterministic results) that we could use to implement a more efficient
block-asynchronous Jacobi kernel.

Table 2 compares the runtime for exact sparse triangular solves from the
NVIDIA cuSPARSE library to the runtime of one single Jacobi sweep. The data
reveals that a Jacobi sweep typically costs a fraction of the total time for an
exact sparse triangular solve using level scheduling (although multiple sweeps
will generally be needed for an approximate solve). Only for the test case dc,
which comes from circuit simulation modeling, one Jacobi sweep on the upper
triangular system is more expensive than the level-scheduling exact solve. The
reason for this is the structure of this matrix: very unbalanced lengths of rows
in the upper triangular part of this matrix (see Fig. 1 for the dc matrix, where
some rows have many more nonzeros than others) causes load imbalance in the
GPU kernels. Performance could be improved by using a load balanced sparse
matrix vector product kernel.

4.3 ILU-Preconditioned FGMRES

Figures 4 and 5 show the impact of replacing the exact triangular solves by
approximate triangular solves in an ILU(0) preconditioned F-GMRES(50) solver.
The left side of these figures relates the number of relaxation sweeps in the
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Fig. 4. F-GMRES(50) convergence (left) and runtime (right) when using either exact
or approximate triangular solves for the test matrices from UFMC.
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Fig. 5. F-GMRES(50) convergence (left) and runtime (right) when using either exact
or approximate triangular solves for the lap test case.

approximate triangular solve to the F-GMRES(50) iteration count. According
to the convergence results on the triangular solves in the previous section, the
block-asynchronous Jacobi algorithm schedules the thread blocks in dependency
order. This is forward thread block scheduling when solving the lower triangular
systems, and backward thread block scheduling when solving the upper trian-
gular systems. In many cases, the faster convergence of the block-asynchronous
Jacobi accounting for the dependency order compared to the synchronous Jacobi
is reflected in the top level solver convergence: e.g., for chp, ven and lap,
the left-hand side plots show that on average, fewer F-GMRES(50) iterations
are required for block-asynchronous Jacobi than for classical Jacobi. The error
bars for block-asynchronous Jacobi indicate one standard deviation above and
below the mean. They reveal that especially when using only few sweeps of
block-asynchronous Jacobi, significant variation in the solver iterations may be
expected. For systems with most entries close to the diagonal, the standard devi-
ation is very small, and the iteration counts are almost identical to those using
synchronous Jacobi. In general, few sweeps of the approximate triangular solve
are sufficient to get the same F-GMRES(50) iteration count like when using
exact triangular solves.

The right-hand side of Fig. 4 (respectively Fig. 5 for the lap problem) relates
the F-GMRES(50) convergence with respect to the runtime. Applying few sweeps
of the relaxation method is usually less expensive than a level-scheduling exact
solve, and can reduce the top-level solver execution time. In particular, the faster
preconditioner application can compensate for a few additional iterations. Except
for the dc problem (Fig. 4), where the sparse matrix vector product suffers from
the unbalanced nonzero distribution, all problems benefit from replacing the
level scheduling triangular solve by an approximate solve in the preconditioner
application. We noticed that synchronous Jacobi usually requires a few addi-
tional F-GMRES(50) iterations. In terms of performance, synchronous Jacobi
still beats block-asynchronous Jacobi. This is due to the performance of the
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cuSPARSE sparse matrix vector kernel that the synchronous Jacobi is based on.
As previously mentioned, the block-asynchronous Jacobi would likely outperform
the synchronous counterpart if it were optimized the same way.

Separate experiments on a consumer card of NVIDIA’s Kepler architecture
(not shown here) revealed that block-asynchronous Jacobi becomes even more
attractive when there is less hardware parallelism. This is due to the fact that
fewer GPU thread blocks can be scheduled simultaneously, resulting in a higher
ratio of Gauss-Seidel-to-Jacobi-type of updates, which improves convergence.

5 Conclusions

We investigated the potential of approximate triangular solves for an
incomplete LU factorization preconditioner on GPU accelerators, replacing the
level-scheduled exact forward and backward substitutions with classical and
block-asynchronous Jacobi iterations allowing for fine-grained parallelism. We
analyzed the trade-off between convergence penalty caused by lower precondi-
tioning accuracy and enhanced parallelism for several test matrices. We have
shown that few sweeps of an iterative method are often sufficient to provide the
same preconditioner quality as the top-level solver. Even if additional iterations
are required by the approximate triangular solve, they are in many cases compen-
sated by faster preconditioner application. Future research will focus on porting
the approximate triangular solve to other hardware architectures, and investi-
gating the potential of faster information propagation by adding local Jacobi
sweeps for cached values for components handled by the same thread block, and
using overlapping iteration blocks.
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