Hardware Round-Robin Scheduler
for Single-ISA Asymmetric Multi-core

Nikola Markovic'2(®) | Daniel Nemirovsky'2, Veljko Milutinovic?,
Osman Unsal!, Mateo Valero'2, and Adrian Cristall?:3

! Barcelona Supercomputing Center (BSC), Barcelona, Spain
{nikola .markovic,daniel.nemirovsky,osman.unsal,

mateo.valero,adrian.cristal}@bsc.es
2 Department of Computer Architecture,

Universitat Politecnica de Catalunya (UPC), Barcelona, Spain

3 Spanish National Research Council (ITTA-CSIC), Barcelona, Spain
4 School of Electrical Engineering (ETF), Univeristy of Belgrade, Belgrade, Serbia
vm@etf.bg.ac.rs

Abstract. As thread level parallelism in applications has continued to
expand, so has relevant research on heterogeneous CMPs. Nowadays
multi-threaded workloads running on CMPs are common case, but as the
quantity of these workloads increase and as heterogeneous CMPs become
more diverse, thread scheduling within an operating system will become
ever more critical to maintaining efficient performance and system uti-
lization. As a consequence, the operating system will require increas-
ingly larger amounts of CPU time to schedule these threads effectively.
Instead of perpetuating the trend of performing complex thread schedul-
ing to the software, we propose a simple yet effective mechanism that
can easily be implemented in hardware which outperforms the typical
Linux OS scheduler as well as Fairness scheduler. Our approach fairly
redistributes running hardware threads across available cores within OS
scheduling quantum. It achieves an average speed up of 37.7 percent and
16.5 percent respectively compared to the Linux OS scheduler and state-
of-the-art Fairness scheduling when running a multi-threaded application
workloads.

Keywords: Hardware - Thread - Scheduling

1 Introduction

The relentless push in technology scaling driven by Moore’s law has resulted in
more transistors packed into a very small area. Computer architects responded
by integrating many cores on the same die. Chip multiprocessors, or CMPs for
short, are now the most common way to build high-performance microproces-
sors, for a variety of reasons. Large uniprocessors are no longer scaling in per-
formance, because it is only possible to extract a limited amount of parallelism
from a typical instruction stream using conventional superscalar instruction issue

© Springer-Verlag Berlin Heidelberg 2015
J.L. Traff et al. (Eds.): Euro-Par 2015, LNCS 9233, pp. 122-134, 2015.
DOI: 10.1007/978-3-662-48096-0_10

Hardware Round-Robin Scheduler for Single-ISA Asymmetric Multi-core 123

techniques. In addition, one cannot simply ratchet up the clock speed on today’s
processors, or the power budget will become prohibitive. Compounding these
problems is the simple fact that with the immense numbers of transistors avail-
able on today’s microprocessor chips, it is too costly to design and debug ever-
larger processors every year or two.

CMPs avoid these problems by filling up a processor die with multiple, rel-
atively simpler processor cores instead of one huge core. The exact size of a
CMP’s cores can vary from very simple pipelines to moderately complex super-
scalar processors, but once a core has been selected the CMP’s performance can
easily scale across silicon process generations simply by stamping down more
copies of the hard-to-design, high-speed processor core in each successive chip
generation. In addition, parallel code execution, obtained by spreading multiple
threads of execution across the various cores, can achieve significantly higher
performance than would be possible using only a single core. While parallel
threads are already common in many useful workloads, there are still important
workloads that are hard to divide into parallel threads. The low inter-processor
communication latency between the cores in a CMP helps make a much wider
range of applications viable candidates for parallel execution than was possible
with traditional, multi-chip multiprocessors; nevertheless, limited parallelism in
key applications is the main factor limiting acceptance of CMPs in some types of
systems. Nowadays, chip multiprocessors (CMPs) may be symmetric (SCMP),
consisting of many cores of the same type, or asymmetric (ACMP), where cores
may differ from one another with respect to their functionality and/or perfor-
mance [5,13]. As is shown by a number of recent studies ACMPs are likely to
outperform SCMPs for a fixed budget (area or power or both) [11,15]. Since it
is well known that different workloads have different resource requirements, the
benefits of ACMPs are intuitive.

The need for a scheduling algorithm arises from the requirement for CMP
and ACMP systems to perform multitasking (executing more than one process or
thread at a time). Scheduling is the method by which threads, processes or data
flows are given access to system resources (e.g. processor time). This is usually
done to load balance and share system resources effectively or to achieve a tar-
get quality of service. Parallel applications relying on multiple threads must be
efficiently managed and dispatched for execution if the parallelism is to be prop-
erly exploited. Thus, dynamic thread scheduling techniques are of paramount
importance in ACMP designs since they can make or break performance bene-
fits derived from the asymmetric hardware or parallel software. Several thread
scheduling methods have been proposed and applied to ACMPs. Most of these
make use of online or offline profiling as well as sampling or estimation techniques
to determine the optimum thread to core mapping (in relation to performance
and/or power) whenever a specific event is detected or scheduling time quantum
is completed [1,9,19] among others. Though these scheduling techniques include
certain performance or energy efficiency gains, their broad application remains
stifled due to scalability limitations, runtime overheads, and additional hardware
requirements and complexities. Our goal is to develop a scheduling policy that

124 N. Markovic et al.

can be used as a foundation upon which to build practical and scalable hardware
scheduling designs in order to increase the performance capabilities of ACMPs.
This paper provides the following contributions:

— We propose a Hardware Round-Robin Scheduling (HRRS) policy which is
influenced by Fairness Scheduling techniques thereby reducing thread serial-
ization and improving parallel thread performance.

— We analyze and evaluate the performance of the HRRS policy on an ACMP
and show that it lowers total execution time by 37.7 percent and 16.5 percent
respectively compared to the state-of-the-art Linux OS scheduler and Fairness
scheduler when running a multi-threaded application workloads.

2 Motivation

The exciting rise of asymmetric multi-core processors (ACMPs) has fostered a
critical reevaluation of the traditional scheduling mechanisms in order to take
full advantage of the new hardware resources in relation to the increasingly
common thread level parallelism as well as in meeting certain system perfor-
mance and power requisites. The operating system scheduler module orches-
trates critical execution time junctures, selecting which jobs to be admitted
next into the system and the next process to run. A technique known as fair-
share scheduling is used by computer operating systems where CPU usage is
equitably divided between system users or groups, in contrast to equal distribu-
tion among processes. The Linux OS scheduler, based on a fair-share scheduler
strategy, is a process scheduler which was merged into the 2.6.23 release of the
Linux kernel as its default scheduler [8]. It handles CPU resource allocation for
executing processes aimed at maximizing overall CPU utilization as well as inter-
active performance. Operating systems may feature up to three distinct types
of schedulers, a long-term scheduler (also known as an admission scheduler or
high-level scheduler), a mid-term or medium-term scheduler and a short-term
or CPU scheduler. The names suggest the relative frequency with which these
functions are performed.

The third type of scheduler, the primary focus of this work, is the short-term
commonly referred to as the CPU scheduler. It is responsible for determining
which of the ready processes (loaded into the memory by the other schedulers)
should be sent for execution and on which computational core. This decision
takes place periodically at interrupt points caused principally by the clock, I/O
events, or OS system level calls. In relation to the long and short-term schedulers,
the short-term scheduler must make scheduling decisions much more frequently.
Furthermore, the short-term scheduler can be preemptive or non-preemptive
based on its ability to force processes off the CPU. The preemptive method
depends on a programmable interval timer that invokes a kernel level interrupt
handler which implements the scheduling algorithm. A key function involved in
the CPU-scheduling decision is the dispatcher which gives control of the CPU to
the process selected. This function involves the context switching, changing to
user mode, and jumping to the proper location of a program once it is restarted.

Hardware Round-Robin Scheduler for Single-ISA Asymmetric Multi-core 125

The actual time it takes for the dispatcher to perform its job stopping one process
and starting another is known as the dispatch latency typically requiring several
thousands of cycles [12]. Since the dispatcher needs to analyze the program
counter values, fetch instructions, and load data into the registers of the CPU
every time a process switch occurs, minimizing the dispatcher latency should be
a primary objective. Moreover, it is also important to avoid unnecessary context
switches due to the fact that the processor remains idle for a period of time
during context switches.

It has been shown by Van Craeynest et al. [18], that in a asymmetric multi-
core system, a round robin scheduler using threads pinned to cores produces
no speedup compared to a lighter symmetric multi-core system for most mul-
tithreaded benchmarks. This behavior is caused by barrier-synchronized multi-
threaded workloads since the execution progress is limited by the slowest thread
which has little meaning in a symmetric system, but is significant for asymmetric
systems since the thread pinned to the simplest core will be the weakest link that
all other threads will have to wait for at every barrier. Work-stealing workloads,
in contrast, allows for idle large cores to steal work that would normally be run
on the small cores so that the execution time isn’t as constrained.

Therefore, in asymmetric multi-core systems, guaranteeing fairness is fun-
damental for improving performance of multithreaded workloads. Fairness, as
defined by giving each software thread equal execution time on each core or
allowing each thread to make equal progress, enables all threads to reach the
barriers simultaneously, and has been sown to provide average performance
improvements of 14 percent (and up to 25 percent) compared with a pinned
scheduler [18] for the system configuration we are using.

3 Hardware Round-Robin Scheduling

In the previous section we have noted the importance and the impact schedul-
ing fairness may have on the potential speedup that can be achieved from
the parallelization of multi-threaded applications and multiprocess workloads
on single-ISA asymmetric multi-cores. In the next two subsections we describe
the proposed Hardware Round-Robin Scheduling (HRRS) policy and discuss its
hardware implementation.

3.1 HRRS Algorithm

Figure 1 is used to illustrate the inner workings of the HRRS approach, we will
assume a system composed of an x86 ACMP hardware containing one large out-
of-order (O00) core and three smaller and identical in-order cores. The operating
system is provided an abstracted homogeneous hardware view comprised of four
identical logical cores, which correlate to four identical hardware threads. The
OS scheduler maps threads to the logical cores which enables the OS scheduling
policies and implementation to be left unmodified. While the OS scheduler maps
threads to the logical cores at every software-quantum or other interrupts, the

126 N. Markovic et al.

~ OPERATING SYSTEM I

= _ OS Scheduler
HE HEThreads :] HE HE
Logical Logical Logical Logical
Core B Core 2 Core 1 Core 0
\ HW Scheduler \
In-Order In-Order Out-of-Order

In-Order
Core 3

Core2 | Core 1 Core 0

Fig. 1. HRRS scheduling - All logical cores (which correlate to hardware threads) are
the same while the large physical core is represented by Core 0 and the small physical
cores are shown as Cores 1,2 and 3

HRRS in turn maps the threads running on the logical cores to the physical
cores as shown in Fig. 2 at every hardware-quantum. In essence, the HRRS can
be viewed as mapping the logical cores that the OS sees and schedules threads
onto, to the physical cores of the underlying hardware which actually execute
the threads. Furthermore, the HRRS algorithm must produce a new scheduling
scheme after every hardware-quantum of time passes (as opposed to the software-
quantum which invokes the OS scheduler). In order to minimize the amount of
overhead in implementing the scheduling policy, the HRRS algorithm determines
the next scheduling scheme to apply before the beginning of the next hardware-
quantum. The defining characteristic of the HRRS algorithm is that it evenly
rotates threads (scheduled onto the logical cores by the OS scheduler) running on
the physical cores after every hardware-quantum. The OS scheduler, on the other
hand, is triggered at every software-quantum which happens much less frequently
than that of the hardware-quantum. Additionally, the HRRS algorithm does not
need to take into account whether the OS scheduler has activated and swapped
one of the currently executing threads on a logical core for another thread from
its ready queue. In such cases, the thread context of the thread being swapped
out must be saved and replaced by the context of the new thread chosen by
the OS to be executed all of which is performed by the triggered OS scheduler
routine. Consequentially, the HRRS scheduling policy guarantees that a thread
will not occupy a large physical core for more than one hardware-quantum unless
it is the only runnable thread at the end of the hardware-quantum.

The Fundamental Difference. Between the HRRS and Fairness-aware sched-
uler algorithms [18] is the way in which the threads are selected to be mapped
onto the physical cores. In both approaches, a thread running on one of the
smaller physical cores is swapped with the thread running on the large physi-
cal core after a given time quantum. However, while Fairness-aware scheduling
strives at achieving fairness by guaranteeing even progress using specific heuristic
for each software thread, it does not necessarily enforce swaps of threads between
large and small core every scheduling quantum but prefers to leave threads to run
on the same physical core. In contrast, the HRRS policy runs each logical core,

Hardware Round-Robin Scheduler for Single-ISA Asymmetric Multi-core 127

{ Logical] { Logical] { Logical J

. Core 1 Core 2 Core 3
Scheduling -
quantum-1

Logical Logical Logical
Core O Core 2 Core 3
Scheduling -

quantum-2

{ Logical] { Logical] [Logical J

Core O Core 1 Core 3
Scheduling
quantum-3
[Logical } [Logical } [Logical J
Core O Core 2 Core 2
Scheduling

quantum-4

Fig. 2. An example of the HRRS scheduling logical cores on actual physical cores at
every hardware-scheduling quantum. At the beginning logical core 0 is running on
the large physical core while logical cores 2, 3 and 4 are running on small physical
cores. After a first hardware scheduling quantum, Logical core 1 will be moved to large
physical core and logical core 0 will be moved to a small physical core.

In-Order
Core 1

In-Order
Core 2

In-Order
Core 3

hardware thread, on each physical core type for a specified amount of time. After
every quantum, the HRRS triggers a swap between the thread running on the
large core with one executing on a small core that is chosen using a round-robin
selection algorithm.

3.2 Hardware Implementation

Hardware Round-Robin Scheduling leaves the operating system level scheduling
untouched and it maintains a consistent view of the underlying hardware. The
hardware is able to provide the abstraction of a symmetric hardware to software
while dynamically rescheduling threads among the cores in an asymmetric multi-
core system [14]. Both of these approaches (HRRS and Fairness approach [18])
may also be implemented at the OS level by extending the OS scheduler but
the advantage of a hardware approach, in addition to minimizing scheduling
overheads, is that it provides a finer level of granularity for the scheduling quanta
and requires no changes to the OS code [19].

HRRS has hardware additions which include a bit on every core to signal
if the core is executing kernel or user code and a separate unit with vector
that holds all of the bits, one counter and one decoder to facilitate round-robin
mechanism. The size of these depends on the number of the cores in the system.
For instance, for four core system we need 2-bit counter. Unlike to some of the
other dynamic schedulers [7], the HRRS scheduling technique does not facilitate
hardware overheads in order to be able to store and restore the architecture state
in the cores. It utilizes the x86 hardware context switching mechanism, called
Hardware Task Switching in the CPU manuals [6]. In the case that large core is
in the kernel mode (handling an interrupt etc.) HRRS scheduler will wait until
it returns to user mode to mark rescheduling, while if the small core that isto

128 N. Markovic et al.

have its thread swapped with the large core is in the kernel mode, the scheduler
will chose next small core to switch threads with large core in the round-robin
fashion.

4 Evaluation

Here we evaluate the Hardware Round-Robin Scheduling (HRRS) approach and
compare it to the Linux OS scheduler and Fairness approach [18].

4.1 Simulated Architecture and Workloads

For conducting the simulation experiments in this paper we have used Sniper [2],
a parallel, hardware-validated, x86-64 multi-core simulator capable of running
both multi-program and multi-threaded applications. We configured the sim-
ulator to model an ACMP made up of one large core and three small cores
respectively. The differences between the core types lie in the pipeline complex-
ity (out-of-order for large, in-order for small). In order to isolate the causes of
potential performance differences, the clock frequency (2.6 GHz), issue width
(4-wide), number of available thread contexts (one hardware context per core),
and cache sizes are the same for both core types. We assume a cache hierarchy
with separate and private 32 KB L1 instruction and data caches, private 256
KB L2 caches, and a shared 4 MB L3 last-level cache (LLC). All the caches
employ a LRU replacement policy and we assume the memory controllers are
on-chip. Similar to the work in [18], we utilize a conservative hardware-quantum
of 1 ms and a software-quantum of 4 ms even though it is typically upwards of
this range.

We use the SPLASH-2 [20] benchmarks in our experiments. The SPLASH-2
benchmarks are designed to represent multi-threaded applications in order to eval-
uate hardware architectures when running several thread contexts. All applica-
tions are run from start to finish. We run each benchmark on the four simulated
cores with each core capable of executing one hardware thread context at a time.
We evaluate single multi-threaded application workloads running an equal num-
ber of threads per application as the number of available hardware contexts, i.e.,
maximum number of threads, which is a common practice for running non-I/0-
intensive applications [7]. For example, when we run one multi-threaded applica-
tion on a system simulated with 4 cores, we use 4 threads for that application.

4.2 Performance Evaluation

Implementing dynamic scheduling requires the migration of workloads between
different cores. This leads to overheads incurred by context switches and the load-
ing of the working-sets into the private caches of the destination cores. A context
switch incurs a fixed cost for storing and restoring the architecture state (at most
a few kilobytes) [12] for which we presume a fixed 1,000 cycle penalty. Our simu-
lations also take into account the warming of the cache hierarchy needed after a

Hardware Round-Robin Scheduler for Single-ISA Asymmetric Multi-core 129

=3
[%)
<
o
T
s

Fig. 3. Net Speedup comparison of the HRRS and Fairness scheduler normalized to
Linux OS scheduler for the SPLASH-2 benchmark suite running on four cores (1 OoO +
3 In0O)

Fair ®@HRRS

250.00%

200.00%

150.00%

100.00%

Speedup

50.00%

0.00%

ft ——
fmm

mean

bames p—
cholesky —
radiosity I

Ry e | —

Waler-SP |

lu.cont
lu.ncont
ocean.cont
ocean.ncont

context switch. The study [19] has shown the total migration execution time over-
head to beless than 1.5 percent across different types of single-threaded workloads,
ranging form memory-intensive to compute-intensive, for a4 MB shared LLC using
a 1ms hardware-quantum.

Figure 3 shows the speedup of the HRRS scheme over the hardware implemen-
tation of the Fairness scheduler on four core system running multi-threaded appli-
cation workloads. The results are scaled to a Linux OS scheduler where the operat-
ing system has a notion of the underlying hardware. Under the Linux OS scheme,
in the case of a symmetric CMP, the operating system pins individual threads to
each of the cores in a round-robin fashion until all threads are assigned. The threads
are then selected to be executed in a round-robin fashion on the respective core
that they are pinned to (when there are more than one thread assigned per core).
When using Linux OS scheduler threads on an asymmetric CMP, the operating
system does not necessarily pin the threads to the cores, nor does it tend to swap
the threads running on the large core with those on the small core at every schedul-
ing quantum until threads pinned to the lagre core are all stalled or finished its exe-
cution. Rather, the OS scheduler tries to ensure quality-of-service for the threads.
This reflects the current practice in contemporary operating system schedulers,
as exemplified in the Linux 2.6 kernel [8]. The average speedups of HRRS over
the Fairness and Linux OS scheduler when running the Splash2 workloads are
16.5 percent and 37.7 percent respectively on a four core system.

A key element driving these performance benefits comes from the redistribu-
tion of the workloads amongst the cores. Figure 4 shows per benchmark LLC access
distribution between large core and small cores, while total number of the LLC
accesses grows up by only up to 1.5 percent for Fair and HRRS schedulers com-
pared to Linux OS scheduler. The HRRS scheme produces a higher proportion of
LLC accesses originating from the large core. Fundamentally, the large core can
better support the extra burden of LLC cache accesses since the large out-of-order
instruction window allows for a greater quantity of instructions to be processes
concurrently, which enables it to hide the additional latency caused by the extra

130 N. Markovic et al.

LChit% © LC miss % ™ SCs hit % B SCs miss %

100%
S
60%
40%

20%
0%

Total number of LLC accesses

=N BEY V=N BEY NDEN VSN VY DS DSV VSN BEY VS0
ofx Ofx Ofx Ofx OfX OfX Ofx Ofx OfX OfX OfX OFx
-~ e Hoe Hoe Mo e o He Mo e Mo e
ST SIS IT3STITSTITSTIT ST ST ST ST ST ST
EE EE EEEEEE EE
- » - 'y - & - c o) -) - - - - - - > - © - o _’CL
c c c c =
E 3 E 8 8 8 g & g g2 ¢
@ 2 35 c : < o 1= 5 9
- = 32 § g 8 F g %
] 3 o H
o Q
=}

Fig. 4. The LLC cache accesses breakdown for the large and small cores of the Linux
OS, Fairness and HRRS scheduler for the SPLASH-2 benchmark

140.00%

120.00%

100.00%
80.00%
60.00%
40.00%
20.00%

0.00%

Speedup norm. to software implementation

barnes
cholesky
lu.cont
lu.ncont
ocean.cont
ocean.ncont
radiosity
raytrace
water.nsq
water.sp
mean

Fig. 5. Speedup of the hardware over the software implementation (baseline) for the
HRRS scheduler, where scheduling quanta are 1 ms and 4 ms for hardware and software
implementations respectively

cache accesses and still, even after including overheads from the context swap, out-
perform the small cores in thread execution time. This hit/miss ratio and consid-
erable change in total number of LLC accesses between large and small cores are
clearly noticeable with cholesky and raytrace benchmarks which have the highest
performance gains.

Hardware vs. Software Implementation. Hardware Round-Robin Schedul-
ing leaves the operating system level scheduling untouched and it maintains a
consistent view of the underlying hardware. The hardware is able to provide the
abstraction of a symmetric hardware to software while dynamically rescheduling
threads among the cores in an asymmetric multi-core system [14]. Figure 5 repre-
sents the speedup that a hardware implementation, with a scheduling quantum of
1 ms, has over a software implementation (baseline), with a scheduling quantum
of the 4 ms, for the HRRS scheduler. We can see that a hardware implementation

Hardware Round-Robin Scheduler for Single-ISA Asymmetric Multi-core 131

results in an average speedup of 6.98 percent over a software implementation for
the HRRS scheduler.

5 Related Work

Due to possible performance and efficiency gains, there has been increasing interest
in heterogeneous multi-core architectures, and various scheduling proposals have
been presented. An ACMP which consists of multiple cores of the same ISA but of
different sizes was proposed by Kumar et al. in [10]. Their process consists of sam-
pling for and choosing the core that will execute in the most power efficient manner
each time a new phase or program is detected. This work was later expanded to
maximize performance of multithreaded applications [11].

Similar work by Becchi [1] consists of an ACMP that includes two distinct
core sizes where thread to core assignment is managed by initiating a mandatory
swap of threads between two different sized cores in order to measure the corre-
sponding performance ratio. Based on this ratio, the threads are then scheduled to
their core that will maximize the system performance. This work has given insight
into ratio based ACMP scheduling techniques but is limited as the number of dis-
tinct core types used increases. Other work in this area has been done by Saez
et al. [16] who use a utility factor, defined as the ratio of L1 miss latency compared
to a baseline ACMP configuration (only small cores), with the aim of optimizing
the performance of both single and multithreaded workloads. Likewise, Koufaty
et al. [9] determine optimal thread to ACMP core mapping using a biasing method
estimated by the quantity of external memory stalls and internal pipeline stalls.
Another approach is detailed in the work by Srinivasan et al. [17] who propose a
formula based ACMP thread to core scheduling method which is used to estimate
and compare thread performance on individual cores. With respect to microarchi-
tectural differences, Chen et al. [3] chose to implement their ACMP with cores con-
sisting of separate branch predictor, issue width, and L1 cache sizes that together
with their scheduling method, achieve throughput and energy efficiency improve-
ments.

6 Future Work

When considering an LLC cache for many-core processors, an popular option gain-
ing traction in the industry is to distribute the cache into separate blocks, therefore
appearing as unified rather than being physically unified. This is a similar app-
roach to that taken by the IBM Power8 architecture [4] where each core has an
8 MB low-latency LLC cache and a high-speed cache-coherent ring is used to con-
nect all of the cores. Thus joined, the LLC cache blocks can be viewed as a shared
96 MB cache with a nonuniform latency. Access to the local 8 MB LLC is speedy,
but access to remote LLC cache blocks will require additional cycles to traverse
the ring. By comparison, a large unified LLC cache would have a constant access
time slower than the local cache but faster than remote blocks. The IBM design
keeps hot data in the CPUs local LLC, reducing the average LLC latency.

132 N. Markovic et al.

In a many-core processor with this kind of distributed LL.C cache configura-
tion, a latency problem may arise due to frequent context switches among cores
being connected to a different LLC cache segments. Therefore, the HRRS schedul-
ing heuristic many need to be adjusted to account for the added latencies of the
LLC and moreover can be tuned to allow for the scheduling of threads to be such
as to take advantage of the distribution of cache blocks. Perhaps it may become
viable to not only swap threads from large to small cores but also from small to
small depending on which LLC segments their data sets are located. Furthermore,
it would be beneficial to implement the HRRS scheme on an FPGA in order to
gauge the feasibility of the design as well as raise the level of accuracy concerning
the latency overheads.

7 Conclusion

In this paper we have presented the Hardware Round-Robin Scheduler (HRRS).
Our work is influenced by the rise of many core processors, particularly the asym-
metric core multi-processors (ACMPs) and their dependence on dynamic sched-
ulers such as the commodity Linux OS CPU scheduler in order to achieve fair
and balanced performance between active threads. Our initial objective was to
achieve these performance benefits from running parallel workloads on ACMPs
without the need for substantial hardware extensions, sampling, or runtime over-
heads. Incorporating minimal hardware additions, our HRRS policy promotes a
balanced distribution of execution time for threads per core type. We have shown
that HRRS provides greater opportunity for all threads to share time running on
the more efficient large core, selected via a round-robin algorithm, which produces
generous performance benefits even after including scheduler and context swap
overheads as well as latencies arising from the additional cache accesses needed
for loading the working data sets. By using the HRRS policy on an ACMP, we
got a total execution time speedup of 37.7 percent and 16.5 percent respectively
compared to the state-of-the-art Linux OS scheduler and Fairness scheduler when
running a multi-threaded application workloads (Splash2).

Acknowledgment. Nikola Markovic is supported through a doctoral scholarship by
the Universitat Politecnica de Catalunya (UPC). Additional support is provided by the
CICYT (Spanish National Science Foundation) project TIN2012-34557. We would also
like to thank to all reviewers for their comments and suggestions.

References

1. Becchi, M., Crowley, P.: Dynamic thread assignment on heterogeneous multiproces-
sor architectures. J. Instr.-Level Parallelism 10, 1-26 (2008)

2. Carlson, T.E., Heirman, W., Eeckhout, L.: Sniper: exploring the level of abstrac-
tion for scalable and accurate parallel multi-core simulation. In: Proceedings of the
International Conference for High Performance Computing, Networking, Storage
and Analysis, pp. 1-12 (2011)

10.

11.

12.

13.

14.

15.

16.

17.

18.

Hardware Round-Robin Scheduler for Single-ISA Asymmetric Multi-core 133

Chen, J., John, L. K.: Efficient program scheduling for heterogeneous multi-core
processors. In: Proceedings of the Annual Design Automation Conference, pp. 927—
930 (2009)

Fluhr, E.J. et al.: IBM STG, POWERSTM: a 12-core server-class processor in 22nm
SOI with 7.6Tb/s off-chip bandwidth. In: Proceedings of the IEEE International
Solid-State Circuits Conference on Digest of Technical Papers, pp. 96-97 (2014)
Greenhalgh, P.: big.LITTLE Processing with ARM Cortex-A15 & Cortex-AT7
(2011). www.arm.com/files/downloads/bigLITTLE_Final Final.pdf

Intel Corp.: Intel 64 and ia-32 architectures developers manual (2015).
http://www.intel.com /content /www /us/en/architecture-and-technology/64-ia-32-
architectures-software-developer-manual-325462.html

Joao, J., Suleman, M.A., Mutlu, O., Patt, Y.: Utility-based acceleration of multi-
threaded applications on asymmetric CMPs. In: Proceedings of the Annual Interna-
tional Symposium on Computer Architecture, pp. 154-165 (2013)

Jones, M.T.: Inside the Linux 2.6 Completely Fair Scheduler (2009). http://www.
ibm.com/developerworks/library /1-completely-fair-scheduler /I-completely-fair-sch
eduler-pdf.pdf

Koufaty, D., Reddy, D., Hahn, S.: Bias scheduling in heterogeneous multi-core archi-
tectures. In: Proceedings of the 5th European Conference on Computer Systems, pp.
125-138 (2010)

Kumar, R., Farkas, K., Jouppi, N., Ranganathan, P., Tullsen, D.: Single-ISA het-
erogeneous multi-core architectures: the potential for processor power reduction. In:
Proceedings of the Annual IEEE/ACM International Symposium on Microarchitec-
ture, p. 81 (2003)

Kumar, R., Tullsen, D., Ranganathan, P., Jouppi, N., Farkas, K.: Single-ISA hetero-
geneous multi-core architectures for multithreaded workload performance. In: Pro-
ceedings of the Annual International Symposium on Computer Architecture, p. 64
(2004)

Li, C., Ding, C., Shen, K.: Quantifying the cost of context switch. In: Proceedings
of the Workshop on Experimental Computer Science, p. 2-es (2007)

NVIDIA: Variable SMP: A Multi Core CPU Architecture for Low Power and High
Performance (2011). http://www.nvidia.com

NVIDIA: Tegra 3 (Kal-El) Quad-Core Mobile Processor (2011). http://www.nvidia.
com/object /tegra-3-processor.html

Rodrigues, R., Annamalai, A., Koren, I., Kundu, S., Khan, O.: Performance per watt
benefits of dynamic core morphing in asymmetric multicores. In: Proceedings of the
International Conference on Parallel Architectures and Compilation Techniques, pp.
121-130 (2011)

Saez, J.C., Prieto, M., Fedorova, A., Blagodurov, S.: A comprehensive scheduler for
asymmetric multicore systems. In: Proceedings of the 5th European Conference on
Computer Systems, pp. 139-152 (2010)

Srinivasan, S., Zhao, L., Illikkal, R., Iyer, R.: Efficient interaction between OS and
architecture in heterogeneous platforms. SIGOPS Oper. Syst. Rev. 45(1), 62-72
(2011)

Van Craeynest, K., Akram, S., Heirman, W., Jaleel, A., Eeckhout, L.: Fairness-aware
scheduling on single-ISA heterogeneous multi-cores. In: Proceedings of the Interna-
tional Conference on Parallel Architectures Compilation Techniques, pp. 177-187
(2013)

www.arm.com/files/downloads/bigLITTLE_Final_Final.pdf
http://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-manual-325462.html
http://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-manual-325462.html
http://www.ibm.com/developerworks/library/l-completely-fair-scheduler/l-completely-fair-scheduler-pdf.pdf
http://www.ibm.com/developerworks/library/l-completely-fair-scheduler/l-completely-fair-scheduler-pdf.pdf
http://www.ibm.com/developerworks/library/l-completely-fair-scheduler/l-completely-fair-scheduler-pdf.pdf
http://www.nvidia.com
http://www.nvidia.com/object/tegra-3-processor.html
http://www.nvidia.com/object/tegra-3-processor.html

134

19.

20.

N. Markovic et al.

Van Craeynest, K., Jaleel, A., Eeckhout, L., Narvaez, P., Emer, J.: Scheduling het-
erogeneous multi-cores through performance impact estimation (PIE). In: Proceed-
ings of the Annual International Symposium on Computer Architecture, pp. 213-224
(2012)

Woo, S., Ohara, M., Torrie, E., Singh, J., Gupta, A.: The SPLASH-2 programs: char-
acterization and methodological considerations. In: Proceedings of the Annual Inter-
national Symposium on Computer Architecture, pp. 24-36 (1995)

	Hardware Round-Robin Scheduler for Single-ISA Asymmetric Multi-core
	1 Introduction
	2 Motivation
	3 Hardware Round-Robin Scheduling
	3.1 HRRS Algorithm
	3.2 Hardware Implementation

	4 Evaluation
	4.1 Simulated Architecture and Workloads
	4.2 Performance Evaluation

	5 Related Work
	6 Future Work
	7 Conclusion
	References

