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Preface

Euro-Par is an annual, international conference on European ground, covering all aspects
of parallel and distributed processing, ranging from theory to practice, from small to the
largest parallel and distributed systems and infrastructures, from fundamental computa-
tional problems to full-fledged applications, from architecture, compiler, language and
interface design and implementation to tools, support infrastructures, and application
performance aspects. Euro-Par has a unique organization into topics capturing all these
different aspects and has proven an excellent forum for focused technical discussions
within a large, broad, and diverse audience. The Euro-Par conference itself is comple-
mented by a workshop program, where workshops dedicated to more specialized themes,
to cross-cutting issues, and to upcoming trends and paradigms can be easily and conve-
niently organized with little administrative overhead. The Euro-Par topics are relatively
stable but have evolved over the years to adequately reflect the state of the field, often in
reaction to thematic developments initiated by previous workshops.

Euro-Par’s ambition is to be the first choice for presenting solid (European) research
in all areas of parallel and distributed computing as covered by the Euro-Par topics. The
target audience includes researchers, scientists and students from universities, academic
research institutions, research laboratories, development centers, and also companies
and industrial organizations with an often vital interest in parallel and distributed
computing. With its wide spectrum, Euro-Par fosters interaction between different
people and personalities and between different areas and approaches in parallel and
distributed computing.

Euro-Par 2015 was the 21th conference in the Euro-Par series, and was organized in
Vienna, Austria, by the Vienna University of Technology (TU Wien), Faculty of
Informatics, Research Group for Parallel Computing. Previous Euro-Par conferences
took place in Stockholm (1995), Lyon (1996), Passau (1997), Southampton (1998),
Toulouse (1999), Munich (2000), Manchester (2001), Paderborn (2002), Klagenfurt
(2003), Pisa (2004), Lisbon (2005), Dresden (2006), Rennes (2007), Las Palmas (2008),
Delft (2009), Ischia (2010), Bordeaux (2011), Rhodes (2012), Aachen (2013), and Porto
(2014). In 2016, the conference will be held in Grenoble. General information on the
Euro-Par conference series and organization is available at http://www.europar.org.

Euro-Par 2015 was organized into 13 topics, each with its own topic Program
Committee consisting of a global chair, a local chair, and at least two additional
members. Topics that received a larger number of submissions had additional members,
such that each topic member had the responsibility to solicit reviews for about five
papers. With this organization, the aim of Euro-Par is that each submitted paper receives
at least four reviews, that each paper is actually reviewed by at least one topic committee
member, and that papers receive reviews from different communities and groups. For
Euro-Par 2015, topic committee members hailed from 17 different countries.

The Euro-Par 2015 Call-for-Papers attracted 190 full-paper submissions, repre-
senting 37 countries. The topic committees made sure that all papers were reviewed

http://www.europar.org


according to the Euro-Par standards. A total of 772 paper reviews were collected over
an eight-week review period, giving an average of 4.1 review reports per paper. Based
on the reviews and discussions among the reviewers and topic committee members, 51
papers were selected for presentation at the conference. Of the 51 accepted papers, two
were accepted with distinction. Topic 11 attracted few papers and unfortunately none
could be accepted. The accepted papers represent contributions from 21 countries from
all continents, resulting in an acceptance rate of 27 %. The final decisions on accep-
tance or rejection of the submitted papers were made at a general Program Committee
meeting with physical presence of the conference co-chairs, the local (in some cases
global) chairs of the topics, and additional representatives from the Euro-Par Steering
Committee. An effort was made to handle potential conflicts of interest at this large
meeting in a proper way.

The conference program was organized into parallel sessions roughly following the
topics. The two distinguished papers that were presented at separate sessions were:

– Shahar Timnat, Maurice Herlihy and Erez Petrank: “A Practical Transactional
Memory Interface”.

– Leyuan Wang, Sean Baxter and John Owens: “Fast Parallel Suffix Array on the
GPU”.

In addition to the paper presentations, Euro-Par 2015 was very pleased to present three
renowned invited speakers who gave keynote presentations on new developments and
perspectives in their respective areas. These were:

– Michel Raynal (IRISA, University of Rennes, France),
– Mateo Valero (UPC Barcelona, Spain), and
– Christian Scheideler (University of Paderborn, Germany).

The program also included a panel discussion on “The Future of Parallel, Distributed
and High-Performance Computing, in Europe”, which was moderated by Raffaele
Tripiccione, University of Ferrara, Italy, and took place before the conference dinner.

The workshop program of Euro-Par 2015 on the Monday and Tuesday before the
main conference included the following workshops:

1. Big Data management in Clouds (BigDataCloud)
2. Parallel and Distributed Computing Education for Undergraduate Students

(Euro-EDUPAR)
3. Algorithms, Models, and Tools for Parallel Computing on Heterogeneous Plat-

forms (HeteroPar)
4. Large-Scale Distributed Virtual Environments (LSDVE)
5. On-chip Memory Hierarchies and Interconnects: Organization, management and

implementation (OMHI)
6. Parallel and Distributed Agent-Based Simulations (PADABS)
7. Performance Engineering for Large-scale Graph Analytics (PELGA)
8. Reproducibility in Parallel computing (REPPAR)
9. Resiliency in high-performance computing with clouds, grids, and clusters

(Resilience)
10. Runtime and Operating Systems for the Many-core Era (ROME)
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11. UnConventional High-Performance Computing (UCHPC)
12. Virtualization in High-Performance Cloud Computing (VHPC)

Workshop papers will be published in a separate, post-conference proceedings volume.
The success and relevance of Euro-Par are first and foremost due to the researchers,

who submit their contributions to the conference. We hereby warmly thank all con-
tributors of submitted papers, and hope that also those whose contributions were not
accepted for presentation this time will feel encouraged by the feedback to continue their
work and consider Euro-Par in the future as a relevant venue. Reviewing papers, pre-
paring feedback, and partaking in the discussions is a serious and considerable effort.
We expressly thank all topic committee members and all reviewers for their work,
especially all topic chairs for always being available and overseeing the reviewing
process.

Euro-Par is largely financed by the participants’ fees. A small number of institu-
tional and industrial sponsors contributed to the conference, and we deeply thank them
all. These contributions are essential for maintaining the modest conference fees, which
are a significant factor in making it possible for students to attend the conference. Their
names and logos appear on the Euro-Par 2015 website at http://www.europar2015.org.
We point out that sponsors have no influence on the conference program or any other
aspects of the Euro-Par organization.

This year, 15 special student scholarships consisting in free registrations for the
conference and workshops were available and financed by the Euro-Par fund. There
was a lot of interest in these scholarships, and we thank the Euro-Par Steering Com-
mittee for facilitating this support.

Euro-Par is a large conference and its organization depends on the work of many
individuals and organizations. We thank all members of the local organization team,
especially Christine Kamper and Margret Steinbuch. Vienna University of Technology
(TU Wien) provided lecture halls and seminar rooms at reasonable costs, and supported
us with the logistics. We are grateful for that. The Euro-Par Steering Committee,
especially the chair Christian Lengauer and the vice-chair Luc Bougé, provided reliable
guidance and support throughout the whole organizational phase going back to 2013.
We acknowledge the trust put in us to organize the 2015 edition of Euro-Par.

Lastly, we thank all participants who attended the conference and the workshops
and contributed to a productive meeting. It was a pleasure to organize and host
Euro-Par 2015 in Vienna. We hope that everybody enjoyed the technical program, the
social events, and the city of Vienna.

August 2015 Jesper Larsson Träff
Sascha Hunold

Francesco Versaci
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Euro-Par 2015 Invited Talks

Concurrent Systems: Hybrid Object Implementations
and Abortable Objects

Michel Raynal, IRISA, University of Rennes, France

As they allow processes to communicate and synchronize, concurrent objects are, de
facto, the most important objects of concurrent programming. The talk will present and
illustrate two important notions associated with such objects. The first one, which is
related to their implementation, is the notion of a hybrid implementation. The second
one, which is related to their definition, is the notion of an abortable object.

Roughly speaking, a hybrid implementation of a concurrent object is such that the
algorithms implementing its operations do not use locks in “good circumstances”, those
being defined statically or dynamically. In particular the use of locks must be prevented
in concurrency-free execution patterns.

The notion of an abortable object is related to the object definition itself. It
addresses the case where, in practice, conflicts are rare. So the idea is here to allow a
process that invokes an object operation, to return a predefined default value (abort) in
specific circumstances, namely in the presence of concurrency. To illustrate this, the
talk will present a non-blocking implementation of an abortable stack (non-blocking
means here that, in the presence of concurrency, at least one stack operation does not
return abort).

Runtime Aware Architectures

Mateo Valero, UPC Barcelona, Spain

In the last few years, the traditional ways to keep the increase of hardware performance
to the rate predicted by the Moore’s Law have vanished. When unicores were the norm,
hardware design was decoupled from the software stack thanks to a well defined
Instruction Set Architecture (ISA). This simple interface allowed developing applica-
tions without worrying too much about the underlying hardware, while hardware
designers were able to aggressively exploit instruction-level parallelism (ILP) in
superscalar processors. With the irruption of multi-cores and parallel applications, this
simple interface started to leak. As a consequence, the role of decoupling again
applications from the hardware was moved to the runtime system. Efficiently using the
underlying hardware from this runtime without exposing its complexities to the
application has been the target of very active and prolific research in the last years.

Current multi-cores are designed as simple symmetric multiprocessors (SMP) on a
chip. However, we believe that this is not enough to overcome all the problems that



multi-cores already have to face. It is our position that the runtime has to drive the
design of future multi-cores to overcome the restrictions in terms of power, memory,
programmability and resilience that multi-cores have. In this talk, we introduce a first
approach towards a Runtime-Aware Architecture (RAA), a massively parallel
architecture designed from the runtime’s perspective.

Self-stabilizing Distributed Data Structures

Christian Scheideler, University of Paderborn, Germany

Once a distributed system becomes large enough, faults are not the exception but the
rule. Proactive strategies that aim at protecting a distributed system from becoming
corrupted can only protect a system up to a certain point, which is nicely demonstrated
by the CAP-Theorem and other impossibility results. So also reactive strategies, which
aim at recovering from corruptions, should be considered. A standard approach to
obtain systems that are able to recover from any kind of faults is self-stabilization.
However, previous research has mostly focused on the case that there are no more
faults or other changes to the system (due to pending requests) during self-stabilization.
So it is not clear for many of the proposed solutions how well the system would be able
to serve requests while it is self-stabilizing. In my presentation I will address this issue
for the specific case of self-stabilizing distributed data structures that are managed by a
large distributed system that does not just allow changes to the data but also to the set
of its members, and I will present our newest results in this area.

XX Euro-Par 2015 Invited Talks



Euro-Par 2015 Topics Overview

Topic 1: Support Tools and Environments

Rosa Badia, Karl Fürlinger, Todd Gamblin, Nathan R. Tallent,
Marios D. Dikaiakos, Brian Wylie, Thilo Kielmann, Matthias S. Mueller

Despite an impressive body of research, parallel and distributed programming remains
a complex task prone to subtle software issues that can affect both the correctness and
the performance of applications. The topic on support tools and environments focuses
on tools and techniques to help tackling that complexity. Contributions were sought to
address any of the many challenges of parallel and distributed programming related to
programmability, portability, correctness, reliability, scalability, efficiency, perfor-
mance and energy consumption. The aim was to bring together tool designers,
developers, and users to share their concerns, ideas, solutions, and products for a wide
range of parallel platforms. Contributions with solid theoretical foundations and with
strong experimental validations on production-level parallel and distributed systems
were especially valued, as were submissions that detailed novel program development
tools and environments addressing the expected complexity of exascale systems.

Concrete topics of interest included debugging and correctness tools, hybrid shared
memory and message passing tools, instrumentation and monitoring tools and
techniques, program development tools, programming environments, interoperable tool
environments, integration of tools, compilers and operating systems, performance and
reliability analysis (manual and automatic), energy efficiency and savings tools,
performance and code structure visualization, testing and analysis tools, computational
steering, tool infrastructure and scalability, tool evaluations and comparisons in
production environments, tools for extremescale systems, tools for code modernization,
tools for homogeneous and heterogeneous multi/many-core processors, and tools and
environments for clusters, clouds, and grids.

Two papers were selected for presentation.

Topic 2: Performance Modeling, Prediction, and Evaluation

Felix Wolf, Marian Vajteršic, Laura Carrington, Frédéric Suter, Miquel Pericàs

In recent years, a range of novel methods and tools have been developed for the
evaluation, design, and modeling of parallel and distributed systems and applications.
At the same time, the term “performance” has broadened to include scalability and
energy efficiency, as well as to touch on reliability and robustness in addition to the
classic resource-oriented notions.



The aim of the topic was to reach researchers working on different aspects of
performance modeling, evaluation, and prediction, be it for systems or for applications
running on the whole range of parallel and distributed systems (multi-core and
heterogeneous architectures, HPC systems, grid and cloud contexts etc.), and to help
bring together current theory and practice. Submissions were sought on novel research
in all areas of performance modeling, prediction and evaluation, more concretely on
advanced simulation techniques and tools, measurement, benchmarking, and tracing,
workload modeling, verification and validation of performance models, performance
visualization, power consumption modeling and prediction, performance-driven code
optimization, and performance modeling and simulation of emerging exascale systems.

Three papers were selected for presentation.

Topic 3: Scheduling and Load Balancing

Denis Trystram, Hans Kellerer, Henri Casanova, Vitus Leung, Giorgio Lucarelli,
Ariel Oleksiak, Natasha Shakhlevich, Leonel Sousa

Parallel and distributed systems are becoming more complex and powerful, but are still
not fully exploited. Scheduling and load balancing issues remain crucial for more
efficient and transparent use. At the application level, the mapping of applications onto
the underlying computing platforms, and the development of dynamic algorithms able
to adapt to the particular characteristics and actual utilization of the systems are of
particular relevance. At the system level, areas of interest include the support for
modern multi-core and many-core architectures, huge data centers, and virtual systems
like cloud infrastructures.

The topic covered aspects related to scheduling and load balancing, ranging from
theoretical foundations for modeling and designing efficient and robust strategies to
experimental studies, applications and practical tools. This applies to multi-core
processors, servers, heterogeneous systems, HPC systems, as well as to distributed
systems, such as computational grids, clouds and global computing platforms. Concrete
areas of interest included theoretical foundations of scheduling algorithms, robustness
of scheduling algorithms, multi-objective scheduling, decentralized or hierarchical
scheduling, scheduling at extreme scale, on-line scheduling, scheduling algorithms for
homogeneous or heterogeneous platforms, resource management and awareness,
energy-efficient scheduling, power-aware and thermal-aware methods in scheduling
and load balancing, performance models for scheduling and load balancing, evaluation
and analysis of load balancing and scheduling techniques, implementation issues for
scheduling, workload characterization and modeling, workflow and job scheduling, and
concurrent workflow scheduling.

Eleven papers were selected for presentation.

XXII Euro-Par 2015 Topics Overview



Topic 4: Architecture and Compilers

Franz Franchetti, Jens Knoop, Markus Schordan, Louis-Noël Pouchet, Sid Touati

The topic dealt with architecture design, languages, and compilation for parallel high
performance systems. The areas of interest ranged from microprocessors to large-scale
parallel machines (including multi-/many-core, possibly heterogeneous, architectures);
from general-purpose to specialized hardware platforms (e.g., graphic coprocessors,
low-power embedded systems); and from architecture design to compiler technology
and language design.

On the compilation side, topics of interest included programmer productivity issues,
concurrent and/or sequential language aspects, program analysis, program transforma-
tion, automatic discovery and/or management of parallelism at all levels, auto-tuning
and feedback directed compilation, and the interaction between the compiler and the
system at large. On the architecture side, the scope spanned system architectures,
processor micro-architecture, memory hierarchy, and multi-threading, architectural
support for parallelism, and the impact of emerging hardware technologies. Concretely,
submissions were sought to deal with compiling for multi-threaded and multi-core and
heterogeneous processors and architectures, compiling for emerging architectures (low-
power embedded systems, reconfigurable hardware, processors in memory, graphics
processors), iterative, just-in-time, feedback-oriented, dynamic, and machine-
learning-based compilation, static analysis and interaction between static and dynamic
analysis, compiler, run-time, and architectural support for dynamic adaptation,
programmer productivity tools and analysis, program transformation systems, high-
level programming models and tools for multi- and many-core and for heterogeneous
architectures, interaction between compiler, runtime system, hardware, and operating
system, parallel computer architecture design (ILP, DLP, multi-threaded, and multi-core
processors), power-performance efficient designs, software and hardware fault-tolerance
techniques, memory hierarchy, emerging memory technologies, and stacked memories,
and application-specific, reconfigurable and embedded parallel systems.

Three papers were selected for presentation.

Topic 5: Parallel and Distributed Data Management

André Brinkmann, Harald Kosch, Gabriel Antoniu, Veronika Sonigo

The proliferation of extremely large and heterogeneous data sets poses complex
requirements for both cloud and high-performance computing environments, ranging
from the integration and management of data to complex data analytics. In addition,
managing diverse data requires solutions that integrate different data management
paradigms. Thus, data-intensive applications require new approaches and efficient
techniques to perform such tasks on locally stored or geographically dispersed data to
cope with this data explosion and heterogeneity.
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An important issue is the design of highly scalable distributed data platforms offering
consistency levels and programming models that can simplify the development of
complex, big-data applications, with the ultimate goal of shielding programmers from
sources of complexity like concurrency, distribution, and failures. The understanding of
applications and storage systems, leading to these scalable data platforms, must be
based on empirical evidence.

It is still necessary to improve the provisioning, staging, manipulation, continuous
maintenance, and monitoring of data hosted in distributed and heterogeneous systems.
This includes the interaction between object storage systems, key-value stores, and
parallel file systems with batch-systems and middleware environments. The issue of
self-tuning is also of paramount importance for distributed data platforms, which aim to
minimize the infrastructure’s operational costs or to provide quality-of-service levels by
elastically adapting their scale to match dynamic shifts of the workload. Interestingly,
these problems can be approached using inter-disciplinary methodologies, such as
machine learning, analytical modelling, and control theory. The parallel and concurrent
execution at all levels remains key to enable the development of scalable and effective
data-intensive applications.

The topic sought papers on all aspects of distributed and parallel data management
and data-intensive applications, with a focus on concurrency, parallelism, and
distributed processing aspects. Concretely, submissions were encouraged on parallel,
replicated, and highly-available distributed databases, distributed and parallel transac-
tion and query processing over homogeneous and heterogeneous management
paradigms, parallel and distributed information retrieval, middleware for processing
large-scale data, management of parallel and distributed data sources, data-intensive
clouds, grids and peer-to-peer systems, empirical evaluation of storage systems,
integration of large datasets on parallel systems, internet-scale data-intensive applica-
tions, sensor-network data management, mobile data management, cloud- and
HPC-based storage architectures and file systems, parallel data streaming and data
stream mining, NoSQL data management and analysis (key value, graph management,
etc.), parallel and distributed knowledge discovery and data mining, algorithms for
security and privacy in data management, and new storage hierarchies in distributed data
systems, e.g., based on Flash- and NVRAM-technologies.

Two papers were selected for presentation.

Topic 6: Grid, Cluster and Cloud Computing

Frédéric Desprez, Radu Prodan, Adrien Lebre, Helge Meinhard, Rizos Sakellariou,
Uwe Schwiegelshohn, Domenico Talia, Ramin Yahyapour

Heterogeneous Distributed Computing (HDC) systems (e.g., grids, clouds) have
changed the IT landscape with respect to the ways in which we access and manage IT
infrastructures. The use of computing resources accessible remotely in a seamless way
has become essential for many applications in various areas. These technologies
provide easy-to-use and on-demand access to large-scale infrastructures and have
stimulated much research involving both academia and industry.
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Although significant progress has been made in the design, deployment, operation
and use of such infrastructures, many research challenges remain to achieve the goal of
user-friendly, efficient, and reliable HDC systems. Research issues cover many areas of
computer science to address the fundamental capabilities and services that are required
in a heterogeneous environment, such as adaptability, scalability, reliability and
security, and to support applications as diverse as ubiquitous local services,
enterprise-scale virtual organizations, and internet-scale distributed supercomputing.
Research on these specific systems greatly benefits from interactions with the many
related areas of computer science also represented at Euro-Par. Submissions were sought
on HDC systems middleware, HDC systems-enabled applications and platforms,
interoperability and portability, resource/service/information discovery, power man-
agement in cluster systems, aggregation and federation of clouds, resource management
and scheduling, efficient energy usage of resources, programming models, tools, and
algorithms for HDC systems, dependability, adaptability, and scalability, security and
privacy for HDC systems, workflow management, automated or autonomic manage-
ment of resources and applications, Quality-of-Service and Service-Level-Agreement in
HDC systems, use of grid and cloud computing for HPC applications, scalability and
elasticity of applications and algorithms, and faults and failure management in clusters,
grids and clouds.

Two papers were selected for presentation.

Topic 7: Distributed Systems and Algorithms

André Schiper, Josef Widder, Antonio Casimiro, Christof Fetzer,
Marta Patino-Martinez, Pierre Sens

Parallel computing is heavily dependent on and interacting with the developments and
challenges for distributed systems, such as asynchrony, failures, malicious and selfish
behavior, load balancing, long latencies, network partitions, disconnected operations,
distributed computing models and concurrent data structures, and heterogeneity. The
topic on distributed systems and algorithms provided a forum for both theoretical and
practical research, of interest to both academia and industry, on distributed systems,
distributed computing, distributed algorithms and data structures, and parallel process-
ing on distributed systems. Concretely, contributions were sought on design and practice
of distributed algorithms and data structures, analysis of the behavior of distributed
algorithms and systems, self-organized and self-adjusting distributed systems, distrib-
uted fault tolerance, resource and service discovery, resource sharing in distributed
systems, collaborative computing, modeling of distributed environments, scalability,
concurrency and performance of distributed systems, transactional memory, distributed
operating systems, and system support for parallelism.

Two papers were selected for presentation.
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Topic 8: Parallel and Distributed Programming,
Interfaces and Languages

Bill Gropp, Erwin Laure, Keshav Pingali, Rajeev Thakur, Michael Gerndt

Developing parallel or distributed applications is a difficult task, which requires
adequate programming abstractions and models, efficient design tools, parallelization
techniques and practices, efficient and effective parallel languages, interfaces, libraries
and frameworks, backed up by solid practical and experimental validation. The topic
provided a forum for presentation of new results and practical experience in this domain.
It emphasized research that facilitates the design and development of high-performance,
correct, portable, and scalable parallel programs via adequate parallel and distributed
programming model, interface and language support. Contributions were especially
sought on assessing programming abstractions, models and methods for usability,
performance prediction, scalability, self-adaptation, rapid prototyping and fault-
tolerance, as needed, for instance, in dynamic heterogeneous parallel and distributed
infrastructures. Therefore, authors were urged to include quantitative evaluations to
substantiate their claims. Concrete themes included: programming models, languages
and libraries for parallel and distributed applications, programming paradigms and
techniques for novel infrastructures like accelerators, exascale systems and clouds,
design, implementation, performance analysis and performance portability of program-
ming models across parallel and distributed platforms, programming models and
techniques for heterogeneity, self-adaptation and fault tolerance, programming tools for
application design, implementation, and performance-tuning, application case-studies
for benchmarking and comparative studies of parallel programming models,
domain-specific libraries and languages, and parallel and distributed programming
productivity, usability, and component-based parallel programming.

Two papers were selected for presentation.

Topic 9: Multi- and Many-core Programming

Marco Aldinucci, Siegfried Benkner, Hans Vandierendonck, Franscisco De Sande,
Antoniu Pop, Massimo Torquati, Samuel Thibault, Massimiliano Meneghin,
José Daniel García

Modern homogeneous and heterogeneous multi-core and many-core architectures are
now part of the high-end and mainstream computing scene and can offer impressive
performance for many applications. This architecture trend has been driven by the need
to reduce power consumption, increase processor utilization, and deal with the
memory-processor speed gap. However, the complexity of these new architectures has
created several programming challenges, and achieving performance on these systems
is often a difficult task. The topic on multi- and many-core programming explores
productive programming of multi- and manycore systems, as well as stand-alone
systems with large numbers of cores like GPUs and various types of accelerators; this
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can also include hybrid and heterogeneous systems with different types of multi-core
processors. It focuses on novel research and solutions in the form of programming
models, algorithms, languages, compilers, libraries, runtime and analysis tools to
increase the programmability of multi-core, many-core, and heterogeneous systems in
the context of general-purpose parallel computing, including HPC.

Concretely, submissions were sought to deal with programming techniques,
models, frameworks and languages, advances in algorithms and data structures,
lock-free algorithms, transactional memories, compiler optimizations and techniques,
libraries and runtime systems, tools for discovering and understanding parallelism,
performance and scalability, innovative applications and case studies, and hardware
support for programming models and runtime systems.

Six papers were selected for presentation, one as distinguished paper.

Topic 10: Theory and Algorithms for Parallel Computation

Peter Sanders, Robert Elsässer, Leah Epstein, Pierre Fraigniaud, Geppino Pucci

Parallelism permeates all levels of current computing systems. Hence, most perfor-
mance critical applications now need efficient and scalable parallel algorithms at their
heart. This is currently causing a renaissance in the study of parallel algorithms and
their underlying machine models and theoretical foundations. High quality, original
papers were solicited, which contribute new results on parallel algorithms, computa-
tional models, and their theoretical foundations. Concrete themes included parallel
algorithms for graphs, geometrical data, strings etc., parallel data structures, parallel
streaming algorithms, communication algorithms for networks, parallel memory
hierarchies, communication-efficient algorithms, algorithms for GPUs and accelerators,
exascale algorithms, energy-efficient parallel algorithms, fault-tolerant parallel algo-
rithms, algorithmic challenges arising from concrete applications, algorithms and
models for big-data parallel processing, foundations, models, and emerging paradigms
for parallel, distributed, multiprocessor and network computation, parallel complexity
theory, and lower bounds for parallel computation.

Three papers were selected for presentation.

Topic 11: Communication, Routing and Networks

Torsten Hoefler, Holger Fröning, Mondrian Nüssle, Federico Silla, Mitch Gusat,
Tor Skeie

The topic on communication, routing and networks is dedicated to communication issues
in scalable compute and storage systems, such as tightly-coupled parallel computers,
clusters, and networks of workstations, including hierarchical and hybrid designs featuring
several levels of possibly different interconnects. All aspects of communication in modern
compute and storage systems were of interest, including advances in the design,
implementation, and evaluation of interconnection networks, network interfaces, system
and storage area networks, on-chip interconnects, communication protocols and interfaces,
routing and communication algorithms, communication interfaces, and communication
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aspects of parallel and distributed algorithms. Papers were sought to present significant,
original work in theory or practice on aspects of performance, reliability and availability,
power consumption and heat dissipation, cost, scalability, and management. Industrial case
studies were also welcome. Concrete themes included communication modeling of parallel
and distributed algorithms, communication interfaces, collective communication and
synchronization support, multi-level heterogeneous communication systems, lightweight
and user-level communication protocols, on-chip and power-efficient interconnects,
routing algorithms, congestion management, performance modeling and evaluation of
routing algorithms and implementations, network performance evaluation and analysis,
I/O architectures and storage area networks, interconnection networks, switch architec-
tures, network adapters, and software-defined networking.

The topic received few submissions, and no papers were selected for presentation.

Topic 12: Numerical Methods and Applications

Paolo Bientinesi, Wilfried Gansterer, Daniel Ruprecht, Xavier Vasseur

The solution of large-scale problems in Computational Science and Engineering
requires accurate, robust, and efficient numerical algorithms and software that can
exploit the potential of modern computer architectures. Such algorithms provide the
means to further the development of existing applications, and the building blocks to
prototype new methodologies. Ultimately, the objective is to relieve users from issues
related to numerical methods and from implementation aspects strongly influenced by
the computing environment.

The topic provided a forum for discussing recent developments in the design and
implementation of parallel and distributed numerical algorithms and software. The focus
was on fundamental algorithmic concepts, efficient implementations on modern parallel
architectures (e.g., multi-core and hybrid platforms, multi-GPU systems), design and
prototyping of scientific simulation software, performance analysis of numerical
methods, and application studies. Concretely, submissions were sought on dense and
sparse linear algebra, discrete algorithms in scientific computing, combinatorial
scientific computing, solvers (PDE, ODE, DAE), tensor decompositions and contrac-
tions, low-rank approximations, methods for uncertainty quantification, differential,
integral, and differential algebraic equations, non-linear systems, optimization, trans-
forms (wavelets, FFTs, etc.), and large-scale parallel applications and workflows.

Five papers were selected for presentation.

Topic 13: Accelerator Computing

Jörg Keller, Andreas Steininger, Lee Howes, Michael Klemm, Naoya Maruyama,
Norbert Eicker, Erik Saule, Benedict Gaster

Hardware accelerators of many different kinds offer a potential for achieving massive
performance in applications that can leverage their high degree of parallelism and
customization. Examples include graphics processors (GPUs), many-core devices, as
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well as more custom devices and customizable FPGA-based systems and streaming
dataflow architectures. The research challenge for the topic on accelerators was to
explore new avenues for actually realizing this potential. Submissions were encouraged
in all areas related to accelerators: architectures, algorithms, languages, compilers,
libraries, runtime systems, coordination of accelerators and CPUs, and debugging and
profiling tools. Application-related submissions that contribute new insights into
fundamental problems or solution approaches in this domain were also welcomed.

Concrete themes included new accelerator architectures, languages, compilers, and
runtime environments for accelerator programming, programming techniques for
clusters of accelerators, tools for debugging, profiling, and optimizing programs on
accelerators, hybrid and heterogeneous computing with several, possibly different types
of accelerators, parallel algorithms for accelerators, applications benefitting from
acceleration, models and benchmarks for accelerators, manual optimization and
auto-tuning, and library support for accelerators.

Ten papers were selected for presentation, one as distinguished paper.
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Abstract. As they allow processes to communicate and synchronize,
concurrent objects are, de facto, the most important objects of con-
current programming. This paper presents and illustrates two impor-
tant notions associated with concurrent objects. The first one, which is
related to their implementation, is the notion of a hybrid implementa-
tion. The second one, which is related to their definition, is the notion
of an abortable object.

1 Introduction

Concurrent Objects: On the Classical Side. An object is a (passive) com-
puting entity providing processes with operations. Only these operations are
visible from outside the object. Said differently, the internal representation, of
an object remains invisible to the processes. Hence, an object is an abstrac-
tion. An object is defined by a specification, which states the properties defining
all its correct behaviors. Those are usually captured by the set of the allowed
sequences on operation invocations. It appears that the object notion was intro-
duced a long time ago (it seems that its very first appearance dates back in 1967,
in the language SIMULA 67 [21]).

The first object, specific to the domain of concurrent programming, seems to
be the semaphore [3,9]. It is a counting object whose value has to never become
negative. Hence, processes can decrease and increase it as long they maintain
invariant the fact that it remains non-negative. Then, more sophisticated object
constructs have been introduced to cope with concurrent objects, such the con-
cept of a monitor [4,20]. In nearly all cases, these language constructs reduce
concurrency to sequential computing (they basically ensure that the object oper-
ations are executed in mutual exclusion).

Concurrent Objects: The World is Changing. Concurrency in multiproces-
sors (e.g., multicore) is real concurrency. It follows that the concurrency concepts
and techniques used to cope with multiplexing or interrupt handling are no
longer appropriate, and must be revisited to address the new computing world.
As expressed in [15]: “Changes in technology can have far-reaching effects on
theory. [...] After decades of being respected but not taken seriously, research
c© Springer-Verlag Berlin Heidelberg 2015
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on multiprocessor algorithms and data structures is going mainstream” (see also
[18,29,34]).

Among the most important concepts that have been introduced there is the
notion of progress conditions suited to systems where processes are asynchro-
nous and can fail by crashing. These notions are obstruction-freedom [16], non-
blocking [19], and wait-freedom [14]. This has motivated researchers to re-think
the implementation of concurrent data structures to exploit the benefit of new
architectures (e.g. [2,7,8,26,27,35,36] to cite a few).

Concurrent Objects: The Topics Addressed in the Paper. This paper
first defines (Sect. 2) basic computing models, which allow us to reason on con-
current objects. Their main characteristics lies in the hardware operations the
processes can use, the asynchrony of the processes, and the fact that failures can
occur or not.

Then the paper presents the notion of a hybrid implementation of a concur-
rent object (Sect. 3). Roughly speaking, a hybrid implementation is such that
the algorithms implementing the object operations do not use locks in “good
circumstances”, those being defined statically or dynamically. It follows that in
concurrency-free patterns, locks are not used.

Finally (Sect. 4), the paper considers the notion of an abortable object,
and illustrates it with a non-blocking abortable stack. An abortable object
allows operations to return a default value ⊥ when operation invocations are
concurrent.

The paper is an introductory paper to concurrent objects, addressing hybrid
implementation and abortable objects, which are only two facets of concurrent
objects. The reader will find more developments on concurrent programming
objects in [18,29,33].

2 Computing Models, Objects, and Progress Conditions

2.1 Basic Read/Write Model and Enriched Models

Basic Read/Write Model. The basic read/write model consists of n sequen-
tial asynchronous deterministic processes, denoted p1, ..., pn, which communicate
by reading and writing atomic registers only.

Asynchronous means each process proceeds to its own speed, which is not
known by other processes, and can be arbitrary and vary with time. Determin-
istic means that the behavior of a process is entirely determined from its initial
state, the algorithm it executes, and the sequence of values read from atomic
registers. Atomic means that, for each register, the read and write operations
appear as if they had been invoked sequentially, each abstracted as a point of
the time line occurring between its start and its end [19,23].

This computation model, where there are no failures, is denoted ARWn.

Crash Failures. The most common failures studied in multicore distributed
computing are process crash failures and Byzantine failures. Here we consider
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only process crash failures. Such a failure occurs when a process halts unexpect-
edly. Before crashing it executes correctly its algorithm, and after it crashed, a
process remains crashed forever.

Let t be the maximal number of processes that may crash; t is a model para-
meter and the corresponding model is called t-resilient model. The asynchronous
read/write model in which all processes, except one, may crash is called wait-free
model. Hence, “wait-free model” is synonym of “(n − 1)-resilient model”.

This crash-prone computationmodel is denotedARWn[∅].Whenenrichedwith
hardware-provided objects of some typeTYPE (whose aim is to allow processes to
communicate), the corresponding system model is denoted ARWn[TYPE ].

Enriched Model. While, from a computability point of view, ARWn[∅] has
the same power as a Turing machine, this is no longer the case for ARWn,t[∅]
which is strictly weaker than ARWn[∅] as soon as only even one process may
crash (i.e., for any t > 0) [10,14,17,25,30,33].

The situation is different as soon as processes can use hardware-provided syn-
chronization objects stronger than atomic read/write registers, such as test&set
objects, compare&swap objects, or LL/SC objects, to cite a few. The crash-
prone computation model, enriched with objects of type TYPE , is denoted
ARWn,t[TYPE ].

It was shown by Herlihy [14] that the computability power of such objects can
be measured with the notion of a consensus number. The greater this number,
the stronger the object. An infinite hierarchy of objects suited to the wait-free
model has been exhibited, where it is shown that the consensus number of reg-
isters is 1, the one of test&set objects is 2, while the one of compare&swap or
LL/SC objects is infinite. Hence, the model ARWn,n−1[Compare&swap] is com-
putationally stronger than ARWn,n−1[Test&set], which itself is stronger than
ARWn,n−1[∅] (see, e.g., [14,29]).

2.2 Concurrent Objects

Definition. A concurrent object (sometimes also called shared object) is an
object that can be accessed by several processes, simultaneously or not.

We consider here the subset of concurrent objects defined by a sequential
specification on total operations. An operation is total if it always returns a
result, whatever the state of the object (e.g., the operation remove() applied to an
empty queue is not allowed to wait until an element is added to the queue; it must
always terminate, for example returning the control value empty). Sequential
specification means that the correct behaviors of an object can be expressed by
traces on its operation invocations.

One-Shot vs Multi-shot. An object is one-shot if it has only one operation
and each process is allowed to invoke this operation at most once. Otherwise,
the object is multi-shot. As an example, a consensus object is one-shot, while a
set object or a stack are multi-shot objects.
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Consistency Condition. The most familiar consistency condition considered
for concurrent objects is atomicity [23], also called linearizability [19]. It states
that it must be possible to totally order the operations issued on each object
in such a way that (a) this total order respects the occurrence order of non-
concurrent operations, and (b) the resulting sequence of operations belongs to
the specification of the object.

An important property of linearizability, which motivates its practical con-
sideration, lies in its composability dimension (also called locality) [19], namely,
linearizable objects compose for free. This means that if we have two linearizable
objects O1 and O2 (whose implementations are independent) then the composed
object 〈O1, O2〉 is also linearizable, and this is obtained for free, i.e., without
additional implementation cost. (Intuitively, this comes from the fact that lin-
earizability respects the occurrence order of non-concurrent operations).

It is important to notice that other consistency conditions such as sequential
consistency [22] (or non-strict serializability encountered in databases [28]) are
not composable. This means that, to obtain a sequentially consistent composed
object 〈O1, O2〉 from two sequentially consistent objects O1 and O2, the imple-
mentation of both O1 and O2 has to be modified, each one must cooperate with
the other one to ensure that the composite object is sequentially consistent [29].

2.3 Progress Conditions for Object Operations

Classical Progress Conditions. The classical progress conditions encountered
in the implementation of concurrent objects are deadlock-freedom and starvation-
freedom. The first one captures the point of view of the object (service), namely,
if processes concurrently invoke operations, at least one process succeeds. The
second one captures the point of view of the processes (clients), namely, if any
process invokes an operation, it eventually executes it. These progress conditions
are usually implemented with locking mechanisms. Trivially, starvation-freedom
⇒ deadlock-freedom.

Locks in the Presence of Failures. It is important to notice that locks cannot
be used in the system model ARWn,t[∅]. This is due to the following reason. If
a process p obtains a lock on an object and crashes before unlocking it, due to
asynchrony, no other process can distinguish the case where p crashes and the
case where p is slow. Hence, in an asynchronous crash-prone system, locks may
prevent processes from progressing.

Progress Conditions Suited to Net Effect of Asynchrony and Process
Crashes. Three progress conditions have been proposed to cope with the net
effect of asynchrony and process crashes. Actually, a process crash can be seen
as if the corresponding process was pausing during a “very” long period of
time, during which the non-faulty processes must progress despite its absence of
progress.

Obstruction-Freedom [16] is the weakest progress conditions (from a progress
point of view). It states that a non-faulty process, that invokes an object oper-
ation, is required to terminate it, if it executes alone during a “long enough”
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period. (“Long enough” means it has enough time to terminate its operation,
without being bothered by other processes). Hence, obstruction-freedom allows
concurrent operations to never terminate.

Non-blocking is a stronger progress condition [19]. It states that, whatever
the concurrency among operation invocations, at least one of the concurrent
invocations terminate. As one can see, this is nothing else than deadlock-freedom
in a context where locks are forbidden (also called mutex-free context).

Finally, wait-freedom is the strongest progress condition [14]. It requires that,
until it possibly crashes, and whatever the behavior of the other processes, all
the operations issued by a process terminate.

Trivially, wait-freedom ⇒ non-blocking ⇒ obstruction-freedom. Of course,
the previous three mutex-free progress conditions remain meaningful in the clas-
sical failure system model ARWn[∅].

Where is the Difficulty. As previously indicated, locks cannot be used when
one has to cope with asynchrony and failures. Hence, mutex-free solutions have
to be found [29].

The main difficulty when one wants to implement a concurrent object whose
operations have to satisfy one of obstruction-freedom, non-blocking, or wait-
freedom, comes from the fact that there is no way to prevent several processes
to simultaneously access the internal representation of the object. This is true
even for the weak obstruction-freedom progress condition. As a simple example,
let us consider two processes that, invoking the operation S.pop() on a stack S,
access simultaneously its internal representation, and then one of them pauses
during a long enough period that allows the other process to terminate. Both
the returned values must be correct.

According to the high level object that has to be built, solving this issue may
require basic objects whose computational power is stronger than read/write
registers. In some cases, the power required is the one provided by the most
powerful objects (such as compare&swap) when considering the consensus num-
ber hierarchy.

3 Hybrid Implementation of a Concurrent Object

3.1 The Notion of a Hybrid Implementation of a Concurrent Object

Definition. The idea that underlies the notion of a hybrid implementation is
that locks are expensive, and consequently their use must be prevented in some
circumstances.

Given a concurrent object O, an hybrid implementation of O is an implemen-
tation that merges lock-based code and mutex-free code in the implementation
of the operations of O. This notion has been introduced in an explicit way in [29].
As locks can be used, these implementations are for failure-free systems. (Said
differently, this means that, in the presence of failures, the system may stop
progressing in configurations where a process crashes while holding a lock.)
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Static Hybrid vs Dynamic Hybrid Implementation. Two types of hybrid
implementations can be distinguished.
– Static hybrid implementation. In this case, the operations on the object are

statically divided into subsets: the ones whose implementation can use locks,
and the others whose implementation cannot use locks.

– Dynamic hybrid implementation. In this case, whatever the operation, its
implementation cannot use locks in “favorable circumstances”. Those are
defined according to the object, the context in which it is used, the aplication
features, etc.

3.2 Example 1: Static Hybrid Implementation of a Set Object

Set Object A concurrent set object S is defined by three operations:
– S.add(v) adds v to the set S and returns true if v was not in the set. Otherwise

it returns false.
– S.remove(v) suppresses v from the set S and returns true if v was in the set.

Otherwise it returns false.
– S.contain(v) returns true if v belongs to the set. Otherwise it returns false.

In a lot of applications using a set object, the number of invocations of
S.contain() outperforms the number of invocations of S.add() and S.remove().
This is, for example, the case of dictionary-like objects. In such a context, for
efficiency reasons, we want to have an implementation of S.contain() that (a) is
mutex-free (it does not use locks), and (b) always terminates. Said more com-
pactly, the algorithm implementing S.contain() has to be wait-free. Differently,
the algorithms implementing the operations S.add() and S.remove() may use
locks. These operations are required to be only deadlock-free. Moreover, to allow
them to be as concurrent as possible, a lock is associated with each element of
the set, and a process can simultaneously hold locks on at most two elements.

An hybrid implementation of such a concurrent set has been proposed in [13]
and proved correct in [6] (see also [29] for a pedagogical presentation). This
implementation is list-based. It assumes that the elements of the set are totally
ordered, they have a smallest element and a greatest element, and there is finite
number of elements between any two elements.

3.3 Example 2:
Dynamic Hybrid Implementation of a Double-Ended Queue

A dynamic hybrid implementation of a double-ended queue (in short, dequeue)
is presented in [16]. The “favorable circumstances” are when there is no con-
currency. The main difficulty that this implementation has to solve occurs when
a process started executing an operation in a no-concurrency context (hence it
uses no lock) and, while it is executing its operation, another process issue a
conflicting operation. This implementation considers the enriched system model
ARWn[Compare&swap]. A version of it, suited to the system model ARWn[LL/
SC] is described in [29,34].

Due to page limitation, the reader will consult [16,29] for a full presentation
of these implementations.
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3.4 Example 3:
Dynamic Hybrid Implementation of a Consensus Object

Binary Consensus Object. Such an object C is a one-shot object that provides
the processes with a single operation denoted C.propose() ans returns a value,
called “decided value”. Only the values 0 and 1 can be proposed. The object is
defined by the following properties.

– Validity. A decided value is a proposed value.
– Agreement. No two processes decide different values.
– Termination. If a process invokes C.propose(), it decides a value.

Favorable Circumstances. Here “favorable circumstances” concern two dif-
ferent cases. The first is when all the processes that invoke C.propose(), propose
the same value. The second is when an invocation of propose() executes in a
concurrency-free context.

When a favorable circumstance occurs, no lock has to be used. This means
that an invocation of propose(v) is allowed to use an underlying lock only if (a)
the other value (1−v) was previously or is currently proposed, and (b) there are
concurrent invocations. Hence, from a lock point of view, the notion of conflict
is related to both concurrency and proposed values.

Dynamic Hybrid Implementation: Internal Representation of the
Object. The implementation that follows is from [34]. The internal represen-
tation of the consensus object is made up of the following atomic read/write
registers, plus a lock:

– PROPOSED [0..1], which is an array of two Boolean registers, both initialized
to false. The atomic register PROPOSED [v] is set to true to indicate that a
process has proposed value v.

– DECIDED , which is an atomic register whose domain is {⊥, 0, 1}. Initialized
to ⊥, it is eventually set to the value that is decided and never the value which
is not decided.

– AUX , which is an atomic register whose domain and initial value are the same
as for DECIDED .

– LOCK , which is a starvation-free lock used to solve conflicts (if any).

Dynamic Hybrid Implementation: Algorithm. This algorithm is described
in Fig. 1. A process decides when it executes the statement return(val), where
val is the value it decides.

When a process p invokes propose(v), it first indicates that v was proposed,
and writes it into AUX if this register is still equal to ⊥ (line 01). Let us notice
that, if several processes proposing different values concurrently read ⊥ from
AUX , each writes its proposed value in AUX .

Then, process p checks if the other binary value (1 − v) was proposed by
another process (line 02). If it is not the case, p writes v into DECIDED (line 03),
and assuming that no other process has written a different value into DECIDED
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operation C.propose(v) is
(01) PROPOSED [v] ← true; if (AUX = ⊥) then AUX ← v end if;
(02) if (¬PROPOSED [1 − v])
(03) then DECIDED ← v
(04) else if (DECIDED = ⊥)
(05) then LOCK .acquire lock();
(06) if (DECIDED = ⊥) then DECIDED ← AUX end if;
(07) LOCK .release lock()
(08) end if;
(09) end if;
(10) return(DECIDED)
end operation.

Fig. 1. A dynamic hybrid implementation of a binary consensus object in ARWn

[LOCK] [34]

in the meantime, it decides the value stored in DECIDED (line 10). If the other
value was proposed there is a conflict. Process p then decides the value kept in
DECIDED if there is one (lines 04 and 10). If there is no decided value, the
conflict is solved with the help of the lock (lines 05–07). Process p assigns the
current value of AUX to DECIDED if that register was still equal to ⊥ when it
read it (lines 06) and p finally decides the value kept in DECIDED . Proofs can
be found in [29,34].

4 Abortable Concurrent Objects

4.1 The Notion of a Concurrent Abortable Object

In practice, conflicts are rare in a lot of applications. So the idea is here, not
only to forbid locks at the implementation level, but, at the semantics/interface
level, allow a process, that invokes an object operation, to return a predefined
default value ⊥ (abort) in specific circumstances, namely in the presence of
concurrency1.

Hence, the meaning of ⊥ is “the operation has not been executed because
the invocation occurred in a concurrency context”. Moreover, if we do not con-
sider the operation invocations that return ⊥, an abortable object behaves as
described by its sequential specification.
1 In some sense, the origin of abortable objects can be found in Lamport’s fast mutex

algorithm [24]. This paper presents a mutual exclusion algorithm which allows a
process to take a fast path to access the critical section when there is no concur-
rency. This fast path requires only five accesses to atomic read/write registers, and
is consequently independent of the total number of processes. When there is concur-
rency, the number of accesses to atomic read/write registers is O(n). This algorithm
was the starting point of the design of time-adaptive algorithms. The time complex-
ity of such an algorithm A is O(f(d)) ≤ O(f(n)), where d ∈ [1..n] is the concurrency
degree at the time where the object operation implemented by A is executed.
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This notion of an abortable object, introduced in [12,29], has not to be
confused with a close (but different) notion introduced in [1]. In this paper,
when an operation returns ⊥, the invoking process learns that its call occurred
in a concurrency context, but it does know if the operation was executed or not.

4.2 Example: A Non-blocking Abortable Stack
in ARWn,n−1[Compare&swap]

The implementation of a non-blocking abortable stack presented below is from [32].
It is based on compare&swap objects.

Compare&swap Object and the ABA Problem. A compare&swap object
X is an atomic register that can be read, and can be written by a hardware-
provided operation called compare&swap(). This operation is a conditional write,
which has two input parameters (denoted old and new), and returns a Boolean
value. Its effect can be described as follows:

X.compare&swap(old, new) is

if (X = old) then X ← new; return(true) else return(false) end if.

When using compare&swap(), a process pi usually does the following. It first
reads the atomic register X (obtaining its current value a), then executes state-
ments (possibly involving accesses to the shared memory) and finally updates
X to a new value c only if X has not been modified by another process since it
was read by pi. To that end, pi invokes X.compare&swap(a, c).

Unfortunately, the fact that this invocation returns true to pi does not allow
pi to conclude that X has not been modified since the last time it read it. This
is because, between the read of X and the invocation X.compare&swap(a, c)
both issued by pi, X could have been updated twice, first by a process pj that
successfully invoked X.compare&swap(a, b), and then by another process pk that
successfully invoked X.compare&swap(b, a), thereby restoring the value a to X.
This is called the ABA problem.

This problem can be solved by associating sequence numbers with each value
that is written (see [29]). Hence, in the previous scenario, the read of X by pi
would have returned a pair 〈a, sn〉. Then, X = 〈a, sn+2〉 after the the successful
invocations issued by pj and pk. Hence, the X.compare&swap(〈a, sn〉, c) cannot
be successful.

Abortable Stack: Operations. The stack operations are denoted push(v)
(where v is the value to be added at the top of the stack) and pop(). The stack
is a bounded stack: it can contain at most k values. If the stack is full, push(v)
returns the control value full , otherwise v is added at the top of the stack and the
control value done is returned. The operation pop() returns the value that is at the
top of the stack (and suppresses it from the stack), or the control value empty if
the stack is empty. Both operations may return ⊥ in the presence of concurrency.

Non-blocking Abortable Stack. As the stack must be non-blocking, even in
the presence of concurrency, at least one operation does not return ⊥.
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Non-blocking Abortable Stack: Internal Representation. The stack is
implemented with an atomic register denoted TOP and an array of k+1 atomic
registers denoted STACK [0..k]. These registers can be read and can be modified
only by using the compare&swap() primitive.

– TOP has three fields that contain an index (to address an entry of STACK ),
a value, and a counter. It is initialized to 〈0,⊥, 0〉.

– Each atomic register STACK [x] has two fields: the field STACK [x].val, which
contains a value, and the field STACK [x].sn, which contains a sequence num-
ber (used to prevent the ABA problem as far as STACK [x] is concerned).
STACK [0] is a dummy entry initialized to 〈⊥,−1〉. Its first field always con-
tains the default value ⊥. As far as the other entries are concerned, STACK [x]
(1 ≤ x ≤ k) is initialized to 〈⊥, 0〉.

The array STACK is used to store the contents of the stack, and the register
TOP is used to store the index and the value of the element at the top of the
stack. The contents of TOP and STACK [x] are modified with the help of the
conditional write operation compare&swap() (which, with the help of sequence
numbers, is used to prevent erroneous modifications of the stack internal pre-
sentation).

A Non-blocking Abortable Stack: The Algorithm. The implementation is
lazy in the sense that a stack operation assigns its new value to TOP and leaves
the corresponding effective modification of STACK to the next stack operation.
Hence, while on the one hand a stack operation is lazy, on the other hand it has to
help terminate the previous stack operation (as far as the internal representation
of the stack is concerned) (Fig. 2).

When a process pi invokes push(v), it first reads the content of TOP (which
contains the last operation on the stack) and stores its three fields in its local
variables index, value, and seqnb (line 01).

Then, pi calls the internal procedure help(index, value, seqnb) to help termi-
nate the previous stack operation (line 02). That stack operation (be it a push()
or a pop()) is required to write the pair 〈value, seqnb〉 into STACK [index]. To
that end, pi invokes STACK [index].compare&swap.

(
old, new

)
with the appro-

priate values old and new so that the write is executed only if not yet done
(lines 15–16).

After its help (which was successful if not yet done by another stack oper-
ation) to move the content of TOP into STACK [index], pi returns full if the
stack is full (line 03). If the stack is not full, it tries to modify TOP so that it
registers its push operation. This invocation of TOP .compare&swap() (line 06)
succeeds if no other process modified TOP since it was read by pi at line 01. If
it succeeds, TOP takes its new value and push(v) returns the control value done
(line 06). Otherwise, pi returns ⊥ (line 07).

The triple of values to be written in TOP at line 06 is computed at lines
04–05. Process pi first computes the last sequence number sn of next used in
STACK [index + 1] and then defines the new triple, namely newtop = 〈index +
1, v, sn of next+1〉, to be written first in TOP and, later, in STACK [index+1]
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operation push(v) is
(01) (index, value, seqnb) ← TOP ;
(02) help(index, value, seqnb);
(03) if (index = k) then return(full) end if;
(04) sn of next ← STACK [index + 1].sn;
(05) newtop index + 1, v, sn of next + 1 ;
(06) if TOP .compare&swap index, value, seqnb , newtop
(07) then return(done) else return(⊥) end if
end operation.

operation pop() is
(08) (index, value, seqnb) ← TOP ;
(09) help(index, value, seqnb);
(10) if (index = 0) then return(empty) end if;
(11) belowtop ← STACK [index − 1];
(12) newtop index − 1, belowtop.val, belowtop.sn + 1 ;
(13) if TOP .compare&swap index, value, seqnb , newtop
(14) then return(value) else return(⊥) end if
end operation.

internal procedure help(index, value, seqnb):
(15) stacktop ← STACK [index].val;
(16) STACK [index].compare&swap stacktop, seqnb − 1 , value, seqnb
end procedure.

Fig. 2. A non-blocking abortable stack in ARWn,n−1[Compare&swap] [32]

thanks to the help provided by the next stack operation (sn of next+ 1 is used
to prevent the ABA problem).

5 Conclusion

Considering concurrent objects, the aim of this paper was to present the notion of
an hybrid implementation of such objects, and the notion of an abortable object.
To this end, it first introduced fundamental notions associated with concurrent
objects (namely, consistency conditions and progress conditions). Then, after
having defined the notions of an hybrid implementation and an abortable object,
it illustrated them with appropriate examples.

The reader interested in concurrent programming can consult the follow-
ing textbooks devoted to concurrent objects, where are presented concurrency-
related concepts, algorithms, techniques, and numerous object implementations
[18,29,33] (parts of this paper are from [29]). A more general and sophisticated
notion, related to concurrent objects, is the one of a universal construction for
concurrent objects. This important topic, focusing on universality in the pres-
ence of concurrency, asynchrony and process crash failures, introduced in [14],
is addressed in the previous textbooks, and in [5,11,31].
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Abstract. In the last few years, the traditional ways to keep the increase
of hardware performance to the rate predicted by the Moore’s Law have
vanished. When uni-cores were the norm, hardware design was decoupled
from the software stack thanks to a well defined Instruction Set Architec-
ture (ISA). This simple interface allowed developing applications with-
out worrying too much about the underlying hardware, while hardware
designers were able to aggressively exploit instruction-level parallelism
(ILP) in superscalar processors. Current multi-cores are designed as sim-
ple symmetric multiprocessors (SMP) on a chip. However, we believe that
this is not enough to overcome all the problems that multi-cores face.
The runtime system of the parallel programming model has to drive
the design of future multi-cores to overcome the restrictions in terms of
power, memory, programmability and resilience that multi-cores have. In
the paper, we introduce an approach towards a Runtime-Aware Archi-
tecture (RAA), a massively parallel architecture designed from the run-
time’s perspective.

1 Introduction and Motivation

In uni-core processors Instruction Level Parallelism (ILP) and Data Level Paral-
lelism (DLP) are exploited to maximize the number of instructions executed per
cycle. The most important designs devoted to exploit ILP are superscalar and
Very Long Instruction Word (VLIW) processors. VLIW requires to statically
figure out dependencies between instructions and to schedule them accordingly.
However, since compilers do not do good a job obtaining optimal schedulings,
VLIW is not successful in exploiting the maximal ILP of workloads. Super-
scalar processors handle the increasing memory latencies, the so called Memory
Wall [25], by using Out of Order (OoO) and speculative executions [11]. Also,
improvements like prefetching, to fetch data from main memory in advance,
memory hierarchies, to exploit temporal and spatial locality, and reorder buffers,
to expose more instructions to the hardware, have been extensively used. DLP
is typically expressed at the software layer in an explicit way and it consists of a
parallel operation on multiple data performed by multiple independent instruc-
tions, or by multiple independent threads. In uniprocessors, the Instruction Set
c© Springer-Verlag Berlin Heidelberg 2015
J.L. Träff et al. (Eds.): Euro-Par 2015, LNCS 9233, pp. 16–27, 2015.
DOI: 10.1007/978-3-662-48096-0 2
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Architecture (ISA) is typically in charge of decoupling the high level applica-
tion source code and the underlying hardware. In this context, new architecture
ideas are applied at the pipeline level. In the left hand side of Fig. 1 we represent
the ISA role in decoupling the application and the hardware and the way new
architectural designs impact the pipeline.

Besides the problems associated with the Memory Wall, traditionally useful
ways to increase hardware performance at the Moore’s Law rate do not work any-
more. For instance, the processor clock frequency is stagnated because the power
per unit of area (power density) can not be dissipated once a certain frequency
threshold is reached. That problem is called the Power Wall. Indeed, a study
made by the International Technology Roadmap for Semiconductors expects the
frequency to increase by 5 % every year for the next 15 years [12]. Therefore,
further performance increases are expected to come from larger concurrency lev-
els rather than higher frequencies. Indeed, to deal with the stagnation of the
processor clock frequency, multi-core devices started to be on the market over a
decade ago. By exploiting Task Level Parallelism (TLP) multi-core devices may
achieve significant performance gains. While some aspects of the Memory and
Power Walls may be aggravated: The memory bandwidth per operation and the
ratio cache storage/operation remain stable or decrease in multi-cores. These
challenges related to memory hierarchy issues constitute a new Memory Wall.

Also, there is a trend towards more heterogeneous multi-core systems, which
might have processors with different ISA’s connected through deep and com-
plex memory hierarchies. To move data across these memory hierarchies while
issues like Non-Uniform Memory Access (NUMA) or sharp power budgets are
properly handled is going to be a major challenge in future multi-core machines.
The Programmability Wall [7] concept is commonly use to categorize the above
mentioned data management and programmability issues.

As the voltage scales up with respect to the transistor threshold voltage, the
sensitivity of circuit delays to transistor parameter variations increases remark-
ably, which implies that processor faults will become more frequent in future
designs. Additionally, future designs are expected to have more hardware com-
ponents than today machines, which only makes the fault prevalence problem
more dramatic. Therefore, in addition to the current challenges in parallelism,
memory and power management, we are moving towards a Reliability Wall.

Since the irruption of multi-cores and parallel applications it is not possible
to write high-level code in a completely hardware oblivious way anymore. An
option is to transfer the role of decoupling applications from the hardware to the
runtime system, that is, to let the runtime layer be in charge of efficiently using
the underlying hardware without exposing its complexities to the application.
In fact, the collaboration between the heterogeneous parallel hardware and the
runtime layer seems appropriated to keep the programmability hardship that we
are anticipating within acceptable levels while dealing with the Memory, Power
and Reliability Walls.

However, this is not enough to overcome all the problems that multi-
cores already have to face. To properly take advantage of their potential,
tight hardware-software collaboration is required. The runtime has to drive the



18 M. Casas et al.

Fig. 1. Left: Decoupling the hardware and the software layers in uniprocessors. Right:
The runtime drives the hardware design in multiprocessors. We call this approach a
Runtime-Aware Architecture (RAA) design.

design of hardware components to overcome the challenges of the above men-
tioned walls. We envision a Runtime-Aware Architecture (RAA) [23], a holistic
approach where the parallel architecture is partially implemented as a software
runtime management layer whose activity is supported by specific hardware com-
ponents specially designed with this purpose. In the right hand side of Fig. 1 we
display the RAA concept in a schematic way. In this architecture, TLP and
DLP are managed by the runtime and are transparent to the programmer. The
idea is to have a task-based representation of parallel programs and handle the
tasks in the same way as superscalar processors manage ILP, by means of a
Task Dependency Graph (TDG), which can be built at runtime or statically. In
this context, the runtime drives the design of new architecture components to
support activities like the construction of the TDG [9], among other things.

In the next sections, we describe some illustrative examples of techniques
that allow alleviating the challenges arisen from the Memory, Power, Resilience
and Programmability Walls. These examples show how an adequate hardware-
software co-designed system can significantly improve performance and energy
consumption. Section 2 presents a hybrid memory approach that combines
scratchpads and caches to deal with the Memory Wall. Section 3 shows how task
criticality and hardware reconfiguration can reduce energy consumption. We also
highlight the importance of vector processors in that same section. Next, Sect. 4
describes how the asynchrony provided by the OmpSs programming model [8],
a forerunner of OpenMP, combined with fine grain error detection techniques
can be efficiently combined to mitigate the Resilience Wall. Section 5 provides
some examples to illustrate how to deal with the Programmability Wall. Finally,
Sect. 6 presents the related work and Sect. 7 summarizes the main findings of
this work.



Runtime-Aware Architectures 19

Fig. 2. Performance, energy and NoC traffic speedup of the hybrid memory hierarchy
on a 64-core processor with respect to a cache-only system.

2 Memory Wall

The increasing number of cores in shared memory manycore architectures causes
important power and scalability problems in the memory hierarchy. One solution
is to introduce ScratchPad Memories (SPM) alongside the caches, forming a
hybrid memory hierarchy. SPMs are more power-efficient than caches and they
do not generate coherence traffic, but they suffer from poor programmability. A
good way to hide the programmability difficulties to the programmer is to give
the compiler the responsibility of generating code to manage the scratchpad
memories but, unfortunately, compilers do not succeed in generating this code
in the presence of random memory accesses with unknown aliasing hazards.

We propose a hardware/software co-designed coherence protocol that allows
the compiler to always generate code to manage the SPMs of hybrid memory
hierarchies, even if it encounters memory aliasing hazards between strided and
random memory references [1]. On the software side, the proposed solution con-
sists on simple modifications to the compiler analysis so that it can classify mem-
ory references in three categories: strided memory references, random memory
references that do not alias with strided ones, and random memory references
with potential aliases. The compiler then transforms the code for the strided
memory references to map them to the SPMs using tiling software caches, while
for the random memory references that do not alias with strided ones it gener-
ates memory instructions that are served by the cache hierarchy. For the random
memory references with possible aliasing hazards, the compiler generates a spe-
cial form of memory instruction that gives the hardware the responsibility to
decide what memory is used to serve them. On the hardware side, a coherence
protocol is proposed so that the architecture can serve memory accesses with
aliasing hazards with the valid copy of the data. For this purpose the hybrid
memory hierarchy is extended with a set of directories and filters that track what
part of the data set is mapped and not mapped to the SPMs. These new ele-
ments are consulted at the execution of memory accesses with unknown aliases,
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Fig. 3. Runtime Support Unit (RSU) to accelerate critical tasks in the application.

so all memory accesses can be correctly and efficiently served by the appropriate
memory component avoiding thus coherence hazards.

As shown in Fig. 2, the proposed system achieves significant speedups in
terms of performance, energy and NoC traffic for several NAS benchmarks.
Average improvements reach 14.7 %, 18.5 % and 31.2 %, respectively. Reduced
execution time combined with more energy-efficient accesses to the hybrid mem-
ory hierarchy lead to the energy reductions. Even for benchmarks with minimal
accesses to the SPM (as in the case of EP) performance, and NoC traffic are not
degraded. With respect to the EP’s energy consumption, there is a very minor
increase, below 5 %, due to the extra hardware components of the hybrid hier-
archy, which consume some static power and do not contribute, in the case of
EP, to the reduction of the total execution time.

3 Power Wall

3.1 Exploiting Task Criticality

Task-based data-flow programming models’ intrinsic information and execution
mechanisms can be exploited to open new performance gains or power savings
opportunities. Such programming models overcome the performance of widely
used threading approaches when running on heterogeneous many-cores. Further-
more, task criticality information can be exploited to optimize execution time
or energy consumption. A task is considered critical if it belongs to the critical
path of the Task Dependency Graph. Consequently, critical tasks can be run
in faster or accelerated cores while non critical tasks can be scheduled to slow
cores without affecting the final performance and reducing overall energy con-
sumption. Moreover, task criticality can be simply annotated by the programmer
and exploited to reconfigure the hardware by using DVFS, achieving improve-
ments over static scheduling approaches that reach 6.6 % and 20.0 % in terms of
performance and EDP respectively on a simulated 32-core processory.
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Fig. 4. Speedup over a scalar baseline for different vectorized sorting algorithms. Dif-
ferent maximum vector lengths (MVL) and lanes are considered.

The cost of reconfiguring the hardware with a software-only solution rises
with the number of cores. Therefore, novel architectural support is proposed to
reduce these overheads on future many-core systems. Figure 3 illustrates such
hardware support to build a runtime-aware architecture. The runtime system
is in charge of informing the Runtime Support Unit (RSU) of the criticality of
each running task. Based on this information and the available power budget, the
RSU decides the frequency of each core, which can be seen as a criticality-aware
turbo boost mechanism. Consequently, this hardware support minimally extends
hardware structures already present in current processors, which allows further
improvements in performance with negligible hardware overhead. The proposed
solution, which goes from the source code to the hardware level passing through
the runtime and the operating system, shows the need for a multi-layer approach
to optimally exploit the heterogeneity of future many-core systems.

3.2 Vector Processors

Due to their energy efficiency, SIMD extensions are ubiquitous in modern micro-
processors and expected to grow in width and functionality in future generations.
After extensive analysis on three diverse sorting algorithms in the context of
future SIMD support, we learn that all of the algorithms suffer from bottlenecks
and scalability problems due to the irregularity of the DLP and the limitations
of a standard SIMD instruction set. Based on these findings we propose VSR
sort [10], a novel way to efficiently vectorize the radix sort algorithm. To enable
this algorithm in a SIMD architecture we define two new instructions: vector
prior instances (VPI) and vector last unique (VLU). VPI uses a single
vector register as input, processes it serially and outputs another vector regis-
ter as a result. Each element of the output asserts exactly how many instances
of a value in the corresponding element of the input register have been seen
before. VLU also uses a single vector register as input but produces a vector
mask as a result that marks the last instance of any particular value found.
We provide a suitable hardware proposal that includes both serial and parallel
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variants, demonstrating that the algorithm scales well when increasing the max-
imum vector length, and works well both with and without parallel lockstepped
lanes. VSR sort is a clear example of the benefits that a hardware/software
co-designed system can offer.

As illustrated in Fig. 4, VSR sort shows maximum speedups over a scalar
baseline between 7.9x and 11.7x when a simple single-lane pipelined vector app-
roach is used, and maximum speedups between 14.9x and 20.6x when as few as
four parallel lanes are used. Next, we compare VSR sort with three very differ-
ent vectorized sorting algorithms: quicksort, bitonic mergesort and a previously
proposed implementation of radix sort. VSR sort outperforms all of the afore-
mentioned algorithms and achieves a comparatively low Cycles Per Tuple (CPT)
without strictly requiring parallel lanes. It has a complexity of O(k ·n) meaning
that this CPT will remain constant as the input size increases, a highly-desirable
property of a sorting algorithm. The k factor is significantly improved over the
original vectorized radix sort as well as the constant performance factor. Its
dominant memory access pattern is unit-stride which helps maximise the utili-
sation of the available memory bandwidth. Unlike the previous vectorized radix
sort, VSR sort does not replicate its internal bookkeeping structures which con-
sequently allows them to be larger and reduces the number of necessary passes
of the algorithm. On average VSR sort performs 3.4x better than the next-best
vectorized sorting algorithm when run on the same hardware configuration.

4 Reliability Wall

Relying on error detection techniques already available in commodity hardware,
we develop algorithmic-level error correction techniques for Detected and Uncor-
rected Errors (DUE) in iterative solvers. When a data loss or corruption is
detected, we use simple algorithmic redundancies that are not applicable under
coarser grain error models without paying prohibitive overheads. By using this
straightforward relations existing in the solver it is possible to interpolate the
lost data and manage to recover it. This forward recovery scheme has better
performance than backwards recoveries such as checkpointing and rollback. We
are also able to avoid sacrificing convergence rate altogether thanks to the exac-
titude of the recovered data, allowing the solver to continue, which is better in
the long run.

Furthermore, we can lever the asynchrony of task-based programming models
to perform our recoveries’ interpolations simultaneously with the normal work-
load of the solver. This allows to reduce the overheads of our recovery technique,
and is done with virtually no burden on the programmer thanks to the pro-
gramming model, by scheduling the recoveries in tasks that are placed out of
the critical path of the solver.

Figure 5 illustrates these behaviours, for a single error scenario where the
Conjugate Gradient (CG) method for the matrix thermal2 is disturbed by a DUE
around 30s. The lightblue checkpointing scheme incurs a significant overhead
when rolling back, and the restart method, in green, has a slower convergence
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Fig. 5. CG execution example with a single error occurring at the same time for all
implemented mechanisms.

afterwards, when compared to the ideal baseline, in red, which has no fault
injected nor resilience mechanism. Our recovery technique, in purple, shows a
convergence time close to the ideal baseline, and its asynchronous counterpart,
in blue, displays an even smaller overhead.

5 Programmability Wall

Task-based models are used to program parallel shared memory machines, offer-
ing an alternative to other models like POSIX threads. They allow the program-
mer to easily describe parallel work as asynchronous tasks. Task-based models
are coupled with a runtime system which in its simplest form takes the burden of
thread management from the programmer. Such runtime systems offer additional
functionality, such as load balancing or tracking data dependencies between dif-
ferent tasks, ensuring their correct order of execution. To allow data dependence
tracking by the runtime system, task-based models often offer syntactic tools
to the programmer to express data-flow relations between tasks [2,8,13,22,24].
The OpenMP standard has recently adopted tasks and data-flow extensions to
its syntax [18], allowing dynamic tracking of dependencies during execution.

Studies on how effective this emerging programming model is in terms of
performance have been done in the context of HPC [3,20,22]. Since there is an
increasing interest, driven by technological trends, in parallel workloads that go
beyond the traditional HPC applications, the importance of understanding how
task parallelism can be effectively adopted in application domains like search
engines, multimedia or finantial analytics is growing. To answer this question we
consider a large subset (10 out of 13 applications) of the PARSEC benchmark
suite [5] and we use the OmpSs programming model [8], which is a forerunner of
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Fig. 6. Scalability comparion between OmpSs and Pthreads.

OpenMP 4.0, to implement new parallelization strategies and extract additional
parallelism. We evaluate our task-based implementations in terms of performance
against the native implementations of the PARSEC suite (which is always in
Pthreads, except in the case of freqmine, which uses OpenMP’s parallel loops).
In some cases, for example when the applications use pipeline parallelism, we
extract additional parallelism executing asynchronously I/O intensive sequential
stages and overlapping them with computation intensive parallel regions. In these
cases we improve the scalability of the applications. Figure 6 shows the scalability
comparison between OmpSs and Pthreads versions for bodytrack and facesim
on a 16-core machine. Both applications improve significantly their scalability
over the original code, reaching a scaling factor of 12 and 10, respectively, when
running with 16 cores.

To evaluate the usability of task-parallel models we study how compact and
expressive the code is, compared to Pthreads/OpenMP. By measuring the lines
of code, we observe that OmpSs’ syntax is less verbose than Pthreads, for most
benchmarks. In general, applications that have pipeline parallelism can greatly
reduce the lines of code of the application, since simple data-flow relations can
replace user implemented queuing and thread management systems.

6 Related Work

Some previous work has been devoted to many-core architectures with a single
global address space where parallel work is expressed in terms of a taskcentric
bulk-synchronous model using hardware support [14]. The execution paradigm of
this approach is based on tasks, like the one presented in this paper. However, this
previous approach assummes the mapping of the tasks to the functional units
of the processor to be specified in the application binary, significantly reduc-
ing its flexibility. Other approaches propose architectures composed of multiple
processor types and a set of user-managed direct memory access (DMA) engines
that let the runtime scheduler overlap data transfer and computation [21]. The
runtime system automatically allocates tasks on the heterogeneous cores and
schedules the data transfers through the DMA engines. The programming model
suggested by this approach supports highly parallel applications and specialized
accelerator processors. The Runtime-Aware Architecture presented in this paper
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includes these ideas and incorporates new ones (resilience, hardware support for
frequency reconfiguration, etc.) to achieve a more general and robust design.

Other many-core proposals with separate execution units for runtime
and application code, application-managed on-chip memory and direct phys-
ical addressing, a hierarchical on-chip network and a codelet-based execution
model [6] have been suggested to reduce energy consumption and increase per-
formance. Hardware techniques to accelerate dynamic task scheduling on scalable
CMPs have also been suggested [15]. They consist in relatively simple hardware
that can be placed far from the cores. While our proposal also aims to support
task scheduling, it incorporates many more innovations like runtime-based hybrid
memory designs or hardware support for reconfiguration, to mention just two.

Our research group has experience on runtime system techniques to enable
optimizations like software prefetching [4] or overlapping communication and
computation [17]. More recently, approaches derived from our initial work aim
to exploit the runtime system information to either reduce cache coherence traf-
fic [16] or enable software prefetching mechanisms [19]. The Runtime-Aware
Architecture presented in this paper gathers all these previous experiences and
provides a holistic view that integrates not only the memory system but also all
the hardware components to ride again on the Moore’s Law.

7 Conclusions

Our approach towards Runtime-Aware Architectures offers a single solution to
fix most of the problems other approaches have: handling parallelism, the Mem-
ory Wall, the Power Wall, the Programmability Wall, and the upcoming Relia-
bility Wall. The approach presented in this paper is applicable to a wide range
of application domains from mobile up to supercomputers and its main feature
consists in hardware components specifically designed to support the activity of a
runtime system that handles task-parallelism plus control and data dependences.
Further, we envision a hardware-software codesign approach where the parallel
architecture has a software layer composed by a runtime system whose activity
is supported by hardware components specifically designed for that purpose.

Altogether, this novel approach towards future parallel architectures is the
way to ensure continued performance improvements by exploiting a tight col-
laboration between the hardware and the software without sacrificing program-
mability. All in all, the integrated solution proposed by this paper aims to get
us out of the hardship in terms of hardware design and programmability that
computers have turned into, once more riding on Moore’s Law.
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Abstract. MPI is the most widely used parallel programming model.
But the reducing amount of memory per compute core tends to push
MPI to be mixed with shared-memory approaches like OpenMP. In such
cases, the interoperability of those two models is challenging. The MPI
2.0 standard defines the so-called thread level to indicate how MPI will
interact with threads. But even if hybrid programs are more common,
there is still a lack in debugging tools and more precisely in thread level
compliance. To fill this gap, we propose a static analysis to verify the
thread-level required by an application. This work extends PARCOACH,
a GCC plugin focused on the detection of MPI collective errors in MPI
and MPI+OpenMP programs. We validated our analysis on computa-
tional benchmarks and applications and measured a low overhead.

Keywords: Static verification · OpenMP · MPI · MPI thread level

1 Introduction

To address the challenges of exascale systems, MPI evolves to be mixed with
shared-memory approaches like OpenMP. E. Lusk and A. Chan report for
instance some successful use cases of OpenMP threads exploiting multiple cores
per node with MPI communicating among the nodes [11]. But combining models
does not facilitate the debugging task and requires special care for MPI calls [4].
Indeed, in an MPI+OpenMP program, not only the correctness of MPI should
be ensured but also the multi-threaded model should not interfere with MPI.
As an example, within a process, the same communicator may not be concur-
rently used by two different MPI collective calls. This means MPI collective
operations may not be called by multiple parallel threads. The MPI-2 stan-
dard defines four thread-safety levels to indicate how MPI should interact with
threads. According to the MPI standard, it is the user responsibility to prevent
races when threads within the same application post conflicting communication
calls ([17], p. 482). This should be checked above all for the fully multithreaded
case (MPI THREAD MULTIPLE). This paper presents a static analysis to verify MPI
Thread-level compliance required by an MPI+OpenMP application.

Figure 1 illustrates some of the possible issues related to MPI communica-
tions in a multithreaded context through three examples. MPI Allreduce in
c© Springer-Verlag Berlin Heidelberg 2015
J.L. Träff et al. (Eds.): Euro-Par 2015, LNCS 9233, pp. 31–42, 2015.
DOI: 10.1007/978-3-662-48096-0 3
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Fig. 1. MPI+OpenMP examples showing different uses of MPI calls.

Listing 1.1 is called in a single block, MPI THREAD SERIALIZED then corre-
sponds to the minimum level of compliance. However if the function f is called
itself in a parallel construct, the collective is then executed in a nested parallel
region, possibly leading to more than one concurrent call to this collective. This
erroneous situation always occurs unless only one thread is created in the first
parallel region or in both regions. Listing 1.2 illustrates a more complex case: two
MPI Reduces are executed in single constructs in the same OpenMP parallel
region. As the first construct contains a nowait clause, both MPI Reduce can be
executed concurrently by different threads. This requires a thread-level equal to
MPI THREAD MULTIPLE, assuming the communicators used by the two collectives
are different. If they are identical, the code is incorrect. In Listing 1.3, func-
tion f is compliant with the MPI THREAD FUNNELED level. However, if the master
directive is replaced by a single directive, the MPI THREAD SERIALIZED level is
the minimum thread-level required. Thus, these examples illustrate the difficulty
for a developer to ensure that MPI calls are correctly placed inside an hybrid
MPI+OpenMP application whatever the required thread-level support.

This paper proposes a static analysis that helps the application developer to
check which thread-level support is required for a specific code. For this pur-
pose, we suppose the programs are SPMD (Single Program Multiple Data) MPI
programs. It means that every MPI rank calls the same functions in the same
order. This covers a large amount of scientific simulation applications for High-
Performance Computing. We integrated our analysis in the GCC plugin PAR-
COACH [13,14] and we designed it to be compatible with other dynamic tools.
Our paper makes the following contributions:

– Analysis to check the conformance of MPI+OpenMP codes with any MPI
thread level (including MPI THREAD MULTIPLE level) defined in the MPI-2 stan-
dard and code transformation to verify the non-compliance at runtime.

– Full implementation inside a production compiler (GCC).
– Experimental results on multiple benchmarks and production applications.
– Functional integration with existing dynamic debugging tools (our approach

is designed to be complementary to existing dynamic PMPI-based debugging
tools like MUST [6]).
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This paper is organized as follows: Sect. 2 summarizes the related work
on debugging of MPI and hybrid MPI+OpenMP applications, focusing on
MPI thread-level compliance. Section 3 describes the basis of our approach.
Then Sect. 4 exposes our static analysis detecting the thread-level compliance.
Section 5 illustrates our approach on experimental results and finally Sect. 6 con-
cludes.

2 Related Work

As most HPC applications are parallelized with MPI, a lot of work has been
done to help programmers to debug MPI applications (TASS [15], DAMPI [21],
MPI-CHECK [10], Intel Message Checker [2], Marmot [9], Umpire [20], MUST
[6], MPICH [3]). Existing tools, static or dynamic, are able to detect the line in
the source code where an error occured but rarely the line responsible for this
situation. Although the compile-time offers the possibility to detect and correct
possible errors earlier than at runtime, few tools rely on purely static analysis
because of the combinatory aspect of methods used. We have developed in pre-
vious work a GCC plugin named PARCOACH [13,14], to statically detect MPI
collective errors in MPI and MPI+OpenMP programs. It combines compile-time
code analysis with an instrumentation to prevent the application from deadlock-
ing. This approach avoids systematic instrumentation, highlights conditionals
that can lead to a deadlock and issues warnings with precise information.

One of the MPI challenges is its interoperability with other programming
models. Even if it is now possible to profile and visualize profiles and traces
for MPI+OpenMP programs, debugging tools especially those detecting thread
levels compliance are practically non-existent. To our knowledge, Marmot [5] is
the only tool that provides a support for detecting violations in MPI+OpenMP
programs. Marmot uses the MPI profiling interface (PMPI) to introduce arti-
ficial data races only occuring when some constraints are violated and detect
them with the Intel Thread Checker tool. The authors define five restrictions for
hybrid MPI applications based on the definition of the thread levels mentioned
in the MPI standard. The fifth restriction is the non-violation to the provided
thread level. However, as Marmot only relies on profiling, it may find for one
run that the program is non compliant to a given thread level, and for another
run find its compliance (so defining a compliance per run). The same happens
for bugs, where detection may require many runs in a profile-only approach. On
the contrary, PARCOACH finds statically the possible non-compliance of the
code, pinpointing non-compliant code fragments and situations. The runtime
instrumentation only checks whether these situations occur.

3 Analysis of the Multithreaded Context

Our static analysis verifies the thread-level compliance of hybrid applications.
The analysis proposed does not depend on one particular run and finds all pos-
sible situations of non-compliance to a given thread level. As it is conservative,
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it can be complemented by an instrumentation phase that checks the occurence
of these situations. An essential part of the static analysis consist in determining
the multithreaded context in which MPI calls (Point-to-point and collectives) are
performed. The method described in this section computes a parallelism word
to characterize this context in each point of the function analyzed.

3.1 Parallelism Words Construction

The analysis operates on the code represented as an intermediate-code form.
We consider the program is represented as a control-flow graph (CFG), built
in almost all compilers. The compile-time verification then consists in a static
analysis of the CFG for each function of a program. The CFG is defined as a
directed graph with artificial entry and exit nodes. Each node corresponds to a
basic block and has a set of successors and predecessors. The CFG is augmented
to highlight nodes containing MPI calls (collectives and P2P). As for the GCC
compiler, OpenMP directives are put into separate basic blocks. Hence new nodes
are added for explicit and implicit thread barriers. For sake of clarity, implicit
thread barriers at the end of parallel regions are denoted by end parallel.

entry

2 - parallel

3 - single

4 - MPI Reduce

5 - single

6 - MPI Reduce

7 - barrier

8 - end parallel

exit

Initial prefix: ∅

2: P 2

3: P 2S3

4: P 2S3

5: P 2S5

6: P 2S5

7: P 2B

8: ∅

(a) CFG of Listing 1.2

entry

2

3 - parallel

4

5 - master

6 - MPI Recv

MPI Send

7 - end parallel

8

exit

Initial prefix: ∅

2: ∅

3: P 3

4: P 3

5: P 3M5

6: P 3M5

7: P 3B

8: ∅

(b) CFG of Listing 1.3

Fig. 2. Control Flow Graph and parallelism words of Listings 1.2 and 1.3

To highlight the thread context in which an MPI call is performed, we extend
the notion of parallelism words defined in [14], taking into account the needs
of a thread level compliance analysis. The parallelism word of a basic block
is the sequence of OpenMP parallel constructs (pragma parallel, single, . . . )
surrounding this block and the barriers traversed from the beginning of a function
to the block. Parallel regions containing the block are denoted by P i, with i the



MPI Thread-Level Checking for MPI+OpenMP Applications 35

id of the basic block with the OpenMP construct. Similarly, regions executed
by the master thread are denoted by M i and other single threaded regions are
denoted Si. Finally, barrier corresponds to B. OpenMP defines a perfectly-
nested parallelism, thus the control flow has no impact on the parallelism word.
Each node (basic block) n is associated to a parallelism word denoted pw[n].
With a depth-first search starting at the entry node, each node then sets its
parallelism word depending on its predecessor and the OpenMP directives it
contains. P is added when a parallel region is encountered, S is added when a
single, section or task region is traversed, M is added when a master construct
is traversed and B is added when an implicit or explicit thread barrier is met.
Figure 2 shows examples of CFG with their associated parallelism words.

3.2 Parallelism Words Analysis

The automaton Fig. 3 defines the possible parallelism words. Nestings forbidden
by the OpenMP specification (SS, MS,...) are not considered by the automaton.
If the target obtains such forbidden nested regions, our analysis returns the error
message: invalid state, error. The language of accepted parallelism words will
depend on the specified thread level. As we check each function independently,
the level of parallelism in which a function is called is unknown. To provide an
accurate picture of the level of thread parallelism in which function occurrence
is called, the statistics on the NAS Parallel Benchmarks multizone (NASPB-
MZ) using class B [18] have been collected and are shown in Table 1 per thread,
in each process. We notice that functions are mainly called within one level of
multithreading. Thus to consider all possible initial conditions, each callsite is
instrumented in order to capture the initial parallelism word of each function.
This word corresponds to a prefix Pi for all basic blocks of the called function
and defines an initial state in Automaton Fig. 3 (all states are possible initial
states). The user can choose the initial state at compile-time.

Table 1. Level of threads parallelism at function entries for NASPB-MZ

Benchmark # function calls # calls in # calls in # calls in

state 0,2,3 state 1,4 state 5,6

BT-MZ 396,918,403 45,379 396,873,024 0

SP-MZ 15,479,425 116,161 15,363,264 0

LU-MZ 3,017,513 40,745 2,976,768 0

The following section describes the analysis checking the thread-level com-
pliance based on the parallelism words of the basic blocks containing MPI com-
munications.
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Fig. 3. Automaton of possible parallelism words. Nodes 0, 2 and 3 correspond to code
executed by the master thread or a single thread. Nodes 1 and 4 correspond to code
executed in a parallel region, and 5 and 6 to code executed in nested parallel region.

4 Thread-Level Compliance Checking

This section describes how the non-compliance of thread levels can be detected
at compile-time. For that purpose we use parallelism words introduced in the
previous section to check the placement of MPI calls within a process.

4.1 Static Analysis and Interface to Dynamic Checkings

For each possible thread level we define a language of valid parallelism words
based on the automaton Fig. 3. For a given basic block, its parallelism word con-
sists in the prefix (obtained from the callsite of the function or user-defined) and
the word computed from previous analysis. The analysis verifies if nodes contain-
ing MPI calls (P2P and collectives) are associated with an accepted word. Thread
barriers can be safely ignored as they do not influence the level of thread paral-
lelism. In case of the detection of a possible error, a warning related to the initial
level with the name of the call is returned to the programmer. Algorithm 1 takes
as input the CFG and the language L of correct parallelism words and outputs
the sets S and Sipw. These sets respectively contain the nodes violating the input
language and the nodes that dominate these nodes before the execution/control
flow changes. This set will be given as one of the input parameters of the dynamic
analysis. In the algorithm, line 5, the node u corresponds to the node preceed-
ing n in the CFG and that is the immediate successor of a control flow node
(with two successors) or of a pragma node (changing the parallelism word). The
nodes in the set Sipw correspond to execution points where compliance should
be tested at runtime, in order to handle possible false-positives detected stati-
cally. A unique parallelism word is computed at runtime and updated after each
OpenMP construct. Compared to the compile-time parallelism words, parallel
regions created with only one thread correspond to the parallelism word ε. This
implies that such region has no impact on the current multithreaded context.
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The insertion of such computations and checks can be conducted in tools such
as MUST [6], Marmot [9] or following the techniques proposed in [12].

Algorithm 1. Detection of parallelism words for multithreaded regions
1: function Multithreaded regions(G = (V, E), L) � G: CFG, L: language
2: Sipw ← ∅ , S ← ∅
3: for each n ∈ V |n contains a MPI call do
4: if pw[n] �∈ L then
5: u ← Node that dominates n before execution/control flow changement
6: S ← S ∪ {n}, Sipw ← Sipw ∪ u
7: end if
8: end for
9: Output nodes in S as warnings

10: end function

4.2 MPI THREAD SINGLE

By setting the MPI THREAD SINGLE level, the user ensures only one thread
will execute MPI calls ([17], p. 486). This means all MPI calls should be per-
formed outside multi-threaded regions. Thus all nodes of the CFG containing
a MPI call must be associated with an empty parallelism word. The language
L of accepted parallelism words is then defined by L = {ε}. Algorithm 1 with
L = {ε} returns the non-compliant MPI calls (set S).

4.3 MPI THREAD FUNNELED

The use of MPI THREAD FUNNELED level means the process may be multi-
threaded but the application must ensure that only the thread that initialized
MPI can make MPI calls ([17], p. 486). For this level, State 3 in Automaton Fig. 3
is the accepting state and the language L = (PB∗M)+ describes the accepted
words. With Algorithm 1 and L, our analysis detects MPI calls that are not
executed in a master region.

4.4 MPI THREAD SERIALIZED

The MPI THREAD SERIALIZED level means the process may be multi-
threaded but only one thread at a time can perform MPI calls ([17]). The
accepting states in Automaton Fig. 3 are states 2 and 3. Thus, the language
L = (PB∗S|PB∗M)∗ describes the accepted words. This language contains par-
allelism words ending by S or M without a repeated sequence of P . Critical
sections and locks are not supported here and is part of our future work.

To verify the compliance of this level, Algorithm 1 is used to make sure
all MPI calls are performed in a monothreaded context. Different MPI calls in
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the same monothreaded region are sequentially performed as only one thread
executes it. However, calls in different monothreaded regions may be called
simultaneously if monothreaded regions are executed in parallel (no thread syn-
chronization between monothreaded regions). Special care is requested for MPI
collective operations. All MPI processes should execute the same sequence of
MPI collective operations in a deterministic way. That means there is a total
order between MPI collective calls. Algorithm 2 shows the detection of concur-
rent calls. It takes as input the CFG and outputs two sets: S and Scc. When
nodes containing a MPI call with the same number of B are detected these nodes
are put in the set S and the nodes that begin the monothreaded regions are put
in the set Scc for the dynamic analysis. A warning is issued for nodes in S.

Algorithm 2. Detection of potential concurrent calls
1: function Concurrent calls(G = (V, E)) � G: CFG
2: Scc ← ∅, S ← ∅
3: Remove loop back edges
4: if ∃ u, v ∈ nodes in concurrent monothreaded regions then
5: i, j ← nodes immediate successors of nodes creating monothreaded regions
6: S ← S ∪ {u, v}, Scc ← Scc ∪ {i, j}
7: end if
8: Output nodes in S as warnings
9: end function

To dynamically verify the total order of MPI collective sequences in each
MPI process, validation functions are inserted in nodes in the sets Sipw and
Scc generated by Algorithms 1 and 2: CCipw and CCcc. Function CCipw detects
incorrect execution parallelism words and Function CCcc detects concurrent col-
lective calls. In Fig. 2, nodes 4 and 6 have the same number of thread barriers
in their parallelism words (node 4: P 2S3, node 6: P 2S5) so the collective opera-
tions involved are potential concurrent collective calls. Indeed, the nowait clause
remove the implicit barrier at the end of the first single region. The algorithm
outputs a warning for collective calls located nodes 4 and 6 (S = {4, 6}) and
flags nodes 4 and 6 for dynamic checks (Scc = {4, 6}). CCcc functions are then
inserted in nodes 4 and 6.

4.5 MPI THREAD MULTIPLE

This level is the least restrictive level. It enables multiple threads to call MPI with
no restriction ([17], p. 486). However MPI calls should be thread safe, meaning
that when two concurrently running threads make MPI calls, the outcome will
be as if the calls executed sequentially in some order. The verification of this
level follows the same analyses as for the MPI THREAD SERIALIZED level.
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5 Experimental Results

This section is intended to show the impact of our analysis on the compila-
tion time. For that purpose we present experimental results obtained on the
NAS Parallel benchmarks multizone (NAS-MZ v3.2) using class B [18], five
MPI+OpenMP Coral benchmarks [19] (AMG2013, LULESH, HACC, SNAP,
miniFE) and a production test case named HERA [8], which is a large multi-
physics 2D/3D AMR hydrocode platform. To highlight the functionality of our
analysis, we created a microbenchmark suite called BenchError containing five
hybrid programs that violate thread level constraints (coll single, coll funneled,
coll serialized, p2p multiple) and contain MPI collective (coll deadlock) errors.
All compilation experiments were conducted on the Tera-100 supercomputer
(peak performance of 1.2 PFlops) and computed with BullxMPI 1.1.16.5.

5.1 Functionnalities of the Analysis

We extended PARCOACH, a GCC plugin located in the middle end of the com-
pilation chain after the CFG generation and before OpenMP directives trans-
formation. Hence the plugin is language independent allowing the verification
of programs written in C, C++ and Fortran. Our analysis is therefore simple
to deploy in existing environment as it does not modify the whole compilation
chain. The analysis issues warnings at compile-time with potential error infor-
mation (lines of MPI calls, line where the dynamic check is inserted,...). The
following example shows what a user can read on stderr when compiling the
program coll serialized corresponding to Listing 1.2.

in function ’f’:

Warning: PARCOACH: possible non-compliance of MPI_THREAD_SERIALIZED level. Potential concurrent

coll. calls within a process : MPI_Reduce l.11 may be called simultaneously with MPI_Reduce l.6

PARCOACH: Minimum thread-level required: MPI_THREAD_MULTIPLE

PARCOACH inserted a check after the single directive l.4 | the single directive l.9

In this example, MPI Reduce calls were done on different communicators. As
our analysis does not check communicators, both single regions are instrumented
to check if the non-compliance of the thread level is confirmed at runtime. In
comparison, the error message returned by Marmot at runtime is the following:
Marmot finds that the code should be executed within the MPI THREAD FUNNELED
thread level whereas PARCOACH finds the level MPI THREAD MULTIPLE. The rea-
son comes from the fact that Marmot detects conformance w.r.t. one execution,
and in particular to one parallel schedule. During the execution monitored by
Marmot, the single constructs are executed by the master thread leading to a
serialized sequence of these constructs. However, from a conformance point of
view, this is incorrect and the thread level MPI THREAD MULTIPLE as analyzed by
PARCOACH should be chosen.

5.2 Static Analysis Results

Table 2 shows the language and the number of lines of each benchmark we tested.
The 4th and 5th columns depict the thread level provided (level actually returned
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to the user, might be lower than the desired level, depending on the MPI imple-
mentation) and the minimum thread level required by the application (thread-
level the user should use). The last column displays the compliance our analysis
returned. Our analysis was able to find the thread-level non-compliance in our
microbenchmark suite. Notice that the MPI THREAD MULTIPLE level was not sup-
ported by the MPI implementation we used. For each benchmark, the overhead
obtained at compile-time (serial compilation) is presented Fig. 4. This overhead
is acceptable as it does not exceed 6 %.

Table 2. Compliance results

Benchmark Language Lines of code Thread level

provided

Thread level

required

Compliant

BT-MZ || SP-MZ Fortran 6,779 || 4,862 SINGLE SINGLE yes

LU-MZ Fortran 6,542 SINGLE SINGLE yes

AMG2013 || LULESH C 75,000 || 5,000 SINGLE SINGLE yes

miniFE || HACC C++ 50,000 || 35,000 SINGLE SINGLE yes

SNAP Fortran 3,000 SINGLE SINGLE yes

HERA C++ 500,000 SERIALIZED SERIALIZED yes

coll single C 29 SINGLE FUNNELED no

coll funneled C 36 FUNNELED SERIALIZED no

coll serialized C 47 SERIALIZED MULTIPLE no

coll deadlock C 38 FUNNELED FUNNELED yes

p2p multiple C 45 SERIALIZED MULTIPLE no

PARCOACH issues warnings for potential MPI collective errors within an
MPI process and between processes. The type of each potential error is specified
(collective mismatch, concurrent calls in an MPI process,...) with the names
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Fig. 4. Overhead of average compilation time
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and lines in the source code of MPI collective calls involved. Table 3 shows the
number of static MPI collective calls and the number of nodes in the set S
found by PARCOACH (Algorithms 1 and 2 of our analysis). The 4th column
depicts the percentage of the benchmarks functions instrumented. We notice a
good impact of the static analysis on the selective instrumentation. The two last
columns give the number of expected errors and the number of errors actually
found.

Table 3. Debugging results

Benchmark # collective

calls

# nodes

in S

% instrumented

functions

# expected

errors

# errors

found

BT-MZ || SP-MZ 15 || 15 7 || 7 8,57% || 8,57% 0 || 0 0 || 0

LU-MZ 20 7 8,82% 0 0

AMG2013 86 75 13.33% 0 0

LULESH || miniFE 3 || 4 1 || 6 1.44% || 2.56% 0 || 0 0 || 0

HACC || SNAP 26 || 9 11 || 13 1.41% || 10% 0 || 0 0 || 0

HERA 574 375 <1% 0 0

coll single || coll funneled 1 || 1 1 || 1 100% || 100% 1 || 1 1 || 1

coll serialized 2 2 100% 1 1

coll deadlock 1 1 100% 1 1

p2p multiple 0 2 100% 1 1

6 Conclusion and Future Work

Augmenting MPI applications with OpenMP constructs is one possible app-
roach to face exascale systems. But the development of such hybrid applications
requires effective debugging methods to assist programers. In this paper, we pre-
sented a compiler analysis to verify the MPI thread-level compliance of C/C++
and Fortran MPI+OpenMP codes. The analysis proposed finds the right MPI
thread level to be used and identifies code fragments that may prevent confor-
mance to a given level. We have shown a small impact on compilation-time with
an overhead lower than 6 %. For future work, our analysis could be extended to
include critical sections and locks. Furthermore, it could be integrated into exist-
ing tools like Marmot or MUST to cover other errors like calls arguments (e.g.,
communicators) or to report warnings concerning the execution path responsible
for bugs related to thread-level MPI compliance.
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Abstract. The development of applications for High Performance Com-
puting (HPC) systems is a challenging task. Development steps such as
optimization, tuning, porting, and debugging often motivate the use of
tools, many of which operate at application runtime. Current trends in
the HPC community, such as increasing compute core counts and the
advent of new programming paradigms challenge the development of
applications, as well as the development of runtime tools. Parallel tools
infrastructures can help to simplify the development and adaption of
runtime tools by reducing development time and increasing applicabil-
ity. They can provide reusable tool components, communication services,
and abstractions for scalable tools, which preserve lessons learned from
existing tools projects.

This paper defines an abstraction for a highly integrated infrastruc-
ture, which we implement in a prototype that targets MPI applications.
Our abstraction enables an incorporation of common tasks such as instru-
mentation, i.e., observing application behavior, with existing concepts for
tool communication, while at the same time enabling scalability. A for-
mal description of our abstraction allows us to highlight its design and to
differentiate it from alternatives, so tool developers have a clear under-
standing of the high-level approach that our infrastructure follows. Exist-
ing prototype tools that are based on this infrastructure demonstrate
applicability at 1,024 and 16,384 processes respectively.

1 Introduction

The development of efficient applications for todays and future High Performance
Computing (HPC) systems is a challenging process that involves important steps
such as debugging and performance optimization. Tools play a critical role in
aiding developers during these steps. Increasing HPC system size, in terms of
parallel processing elements, primarily impacts runtime tools, i.e., tools that
operate while an application is running on an HPC system. Additionally, deeper
c© Springer-Verlag Berlin Heidelberg 2015
J.L. Träff et al. (Eds.): Euro-Par 2015, LNCS 9233, pp. 43–54, 2015.
DOI: 10.1007/978-3-662-48096-0 4
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Fig. 1. Tool development with a common tools infrastructure can drastically simplify
the adaption of tools to novel requirements.

system hierarchies for parallelization, caused by hybrid parallelization schemes,
e.g., by adding threading models or targeting accelerators such as GPGPUs,
impact tools since they must be able to track system execution across these hier-
archies. Future systems of an exascale level are likely to add further challenges
on the development environment. In order to be widely applicable, portable and
future-proof, tools must both be able to handle the increasing scale, adapt to
changes in parallelization paradigms, and be capable to deal with limitations on
individual systems without loosing their portability.

Tool development efforts that implement all components of a tool themselves
are challenged by these trends, since addressing them requires tremendous effort
from tool developers. Figure 1(a) illustrates this situation. Each tool must indi-
vidually be adapted for the wide range of new requirements that novel HPC
systems and advancements in parallel programming yield. One way to reduce
this dramatic development cost, which is finding increased adoption in the tools
community, is the use of tool infrastructures and frameworks, which can provide
many types of common functionality to tool developers, as well as basic porta-
bility layers across platforms and programming paradigms. The use of such com-
mon functionality decreases development efforts, since it allows tool developers
to reuse adaptions across multiple tools. Figure 1(b) illustrates this situation:
The tool infrastructure needs to be adapted for new requirements, tool specific
adaptions can require drastically reduced effort then. Benefit increases with the
number of tools that adopt an infrastructure.

Following this motivation, we present an abstraction that enables a highly
integrated tools infrastructure. The goal of this abstraction is to maximize the
amount of common functionality that the infrastructure provides and to min-
imize tool specific implementation. As Fig. 1(b) illustrates, fulfilling this goal
directly reduces the development effort to adapt tools to new requirements.
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Naturally, wide adoption of a tools infrastructure does not only depends on the
features and capabilities of an infrastructure, but also on a multitude of strategic
considerations. Thus, we try not to solely promote a specific infrastructure, but
focus on describing an abstraction that enables highly integrated tools devel-
opment. Existing or novel infrastructures can utilize our concepts, at the same
time we provide an open source prototype implementation called GTI [4]. Our
contributions include:

– A high-level abstraction that enables quick prototyping and efficient tool devel-
opment;

– Event-flow definitions that define the meaning of our abstraction for both its
usage and implementation; and

– A comparison to existing tools infrastructures to highlight how we achieve a
high degree of integration.

Section 2 summarizes related work. We then detail our tools infrastructure
abstraction in Sect. 3. Section 4 compares our abstraction to existing infrastruc-
tures to highlight the increased degree of integration that we achieve with our
abstraction. Finally, we shortly present existing tools that use our abstraction
in Sect. 5.

2 Related Work

We classify runtime tool developments for HPC systems into: (1) developments
that largely use a custom-made implementations; (2) developments that reuse
existing components; and (3) developments with parallel tools infrastructures.

Efforts such as the development of Score-P [6] largely employ custom-made
source code. Motivations include highest performance requirements, lack of exist-
ing components, or redesign efforts. Usually, such developments reuse little exist-
ing source code and must cope with trends in HPC by themselves, in order to
remain applicable. In practice this can increase development costs and is only
suitable for large efforts with significant developer support for maintenance.

Component-based developments reuse existing packages to implement parts
of the tool. This can be compared to using support libraries, such as solvers or
I/O libraries, in application code. Examples include instrumentation services,
wrapper generators, tracing libraries, and stack tracing utilities. Existing com-
ponents for common types of tool functionality allow developers to reuse lessons
learned from other developers. As an example, if a developer improves the scal-
ability of a component, other developers that use the same component can reuse
this improvement.

Tool development with parallel tools infrastructures or frameworks, called
tools infrastructures in the following, provide wider-ranging services for the devel-
opment of tools and is similar to developing applications in larger frameworks
that provide the basic workflow and only require the addition of the actual appli-
cation components, often in the form of plugins. Examples include PnMPI [8] as
an infrastructure that combines and connects multiple MPI tools; OCM [10] as
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Table 1. Tool infrastructure comparison.

an early online tools infrastructure; STCI [2], and MRNet [7] as infrastructures
that provide Tree Based Overlay Network (TBON) services; and CBTF [3] and
GTI [4] that target a development with a higher degree of integration. TBON
services such as provided by STCI, MRNet, CBTF, and GTI are important since
they enable tool scalability. The TBON concept uses a hierarchy of processing
nodes that allows tools to condense information as it progresses towards the root
of the hierarchy. Aggregations and filters on all hierarchy layers provide a step-
by-step means to condense information. TBON-based tools such as STAT [1]
and Allinea DDT operate for applications that run on close to, or even more
than, one million compute cores.

The mentioned infrastructures differ in the depth of their integration and in
whether they provide TBON services or not. Table 1 compares these approaches.
PnMPI and OCM provide no TBON services, which is a common require-
ment for scalable tools. However, in both cases TBON functionality could be
added as an extension leveraging an existing TBON infrastructure. OCM uses
event-action mappings that relate to the analysis-hook mappings that we sub-
sequently present, but it considers no distributed and hierarchical processing.
The infrastructures STCI [2] and MRNet [7] focus on providing TBON ser-
vices and allow tool developers to specify modules as tool components. The
modules run on the TBON nodes to aggregate or filter information. However,
these infrastructures lack a deeper integration, e.g., they provide no instrumen-
tation systems, components can not be used on the leaves or the root of the
TBON, and no dependency tracking ensures that dependent components are
present. Thus, tool developers must provide several common tool components
themselves. CBTF and GTI provide such a deep integration and combine it with
TBON services. In the following we present the abstraction behind GTI, while
our previous publication [4] focused on an implementation of this abstraction.
Section 4 compares MRNet—due to its wide usage—with CBTF and GTI in
more detail.
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Fig. 2. Illustration of a tool layout and analyses for a profiling tool.

3 A Mapping-Based Tools Infrastructure

We base our abstraction for parallel tool development on the notion of:

Events: Occurrences of information that the runtime tool must know about, and
Analyses: The types of processing that need to take place upon perceiving

events.

The following examples show how both events and analyses map to common
steps in well-known types of tools:

– Tracing tools for performance analysis store information on a function invo-
cation (event) into a trace buffer, from where they are processed (analysis);

– A debugging tool retrieves a stack trace (analysis) due to a request from the
graphical user interface (event); or

– A runtime correctness tool for MPI analyzes whether send and receive datatypes
match (analysis) when a pair of send and receive operations is observed (events).

These examples highlight that events and analyses can represent the activities
of a wide range of runtime tools. Following this notion, tool developers can create
their tools by solely focusing on the two fundamental questions:

(1) What activities must the tool implement and (2) which events trigger
them?

The first identifies the analyses of the tool and the second its events and their
source. We follow this approach and let developers then specify mappings as the
relation between events and analyses. This approach allows tool developers to
specify the workings of their tool in a high level abstraction. In comparison to
existing infrastructure approaches, this allows us to increase the amount of tool
functionality that an infrastructure can implement.

We illustrate our abstraction with an example, a simplified profiling tool
that creates basic execution profiles and maps them to source code regions.
Irrespective of the parallel programming paradigm of the target application,
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the tool observes when the application enters or leaves functions. Summarizing
this information for all functions of equal name, the tool provides basic profiles
that identify the functions in which the application spends most time. Figure 2
illustrates an instance of this tool for four application processes/threads depicted
as nodes T0,0–T0,3. Instrumentation, i.e., observing function enters and leaves,
takes place directly on the application, along with adding up the time that each
function consumes. The box with instrumentation &measurement in the figure
illustrates the association of this tool functionality to the application processes.
The tool in the figure employs a TBON layout for two purposes: First, the root
T2,0 of the TBON can create a summary report that could average the profiling
data from all processes. Second, the intermediate layer with T1,0 and T1,1 aids
in averaging the profiling data, by applying a step-wise aggregation of the data.
Consequently, specific analyses can run on different levels of a TBON layout and
a mapping can specify this relation. Additionally, events must travel through
the TBON layout from their origin to the analyses that are interested in them.

By specifying the tool functionality in these terms, instead of hard-coding
the tool functionality and the tool layout, we allow the infrastructure to han-
dle event instrumentation, of spawning the tool layout, and of handling event
communication. This results in the desired deep integration that minimizes the
amount of functionality that individual tools must implement.

3.1 Terms and Abstraction

The tool infrastructure abstraction that we propose extends events and analy-
sis with layers, places, mappings, hooks, and an event-flow. We formally define
these terms to concisely present our abstraction and to simplify comparison and
adoption. Figure 3 showcases how our abstraction represents the aforementioned
profiling tool.

Analyses. Represent available tool actions. A selection from these analyses
makes up the overall functionality of a tool instance, i.e., of a running repre-
sentation of a tool. We use a set A to specify the available analyses. For the
profiling tool, we have A={enter, leave, finalize, printProfile}, where enter/leave
observes when the application enters/leaves a function, finalize triggers creation
and forwarding of the profiling data before the application exits, and printProfile
writes the resulting profiling data into a file for investigation.

The example analyses highlight a need for dependencies: Both the enter and
the leave analysis must be used together and they require the finalize analysis
to forward their results. We provide analysis dependencies depends : A → P(A)
for this purpose1. In our example, dependencies include depends(enter)={leave,
finalize} and so forth. If a tool consists of a large number of fine-grained analy-
ses, dependencies ensure that all analyses can operate correctly. This feature
facilitates effective component reuse.
1 The power set P(A) of A is the set of all subsets of A.
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Fig. 3. Illustration of our mapping-based abstraction for the profiling tool example
from Fig. 2.

Layers and Places. Figure 2 illustrates a possible layout for the example tool.
Our abstraction defines such layouts with a set of layers L = {l0, l1, . . .}. We
use a specifically marked layer l0 as the layer that consists of the application
processes. We then use the remaining layers to build a hierarchy of layers as in
a TBON layout. The layers both specify the hierarchy layers and they enable
that distinct layers can execute distinct analyses, as Fig. 2 illustrates. Formally,
a layer tree L = (L,EL ⊆ L × L) connects the layers to indicate which layers
send information to which other layers. This forwarding represents a towards-
root direction for scalable tools that apply event aggregation. In our example
we have L = {l0, l1, l2} and EL = {(l0, l1), (l1, l2)}. The lower third of Fig. 3
illustrates this layer tree.

Further, we use a size function to associate how many places each layer uses.
Where a place represents an application process/thread or a tool process/thread.
Thus, T1,0, T1,1, and T2,0 in Fig. 2 could be tool owned processes and T0,0–T0,3

could be MPI processes.
We use connection rules to create a tool topology graph T = (P,ET ) from a

layer tree and the size function, i.e., to create the layout in Fig. 2 from the layer
tree in Fig. 3 (bottom). This graph uses the set of all places P = {Ti,j : li ∈
L and 0 ≤ j < size(li)} as its node set. A connection rule then connects places
of connected layers to create the set of arcs ET ⊆ P × P .

Layer-Analysis-Mapping. A layer-analysis-mapping specifies which analyses
each layer executes. Formally, the function mL,A : L → P(A) specifies this map-
ping. Figure 2 illustrates the association for the example tool, which could use
mL,A(l0)={enter,leave, finalize}, mL,A(l1) = ∅, and mL,A(l2)={printProfile}.
Figure 3 illustrates mL,A with arrows between layers and analyses. Based on the
layer-analysis mapping, the tool infrastructure can compute dependent analyses
according to depends.
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Hooks and Analysis-Hook-Mapping. Infrastructure provided instrumen-
tation and automatic event communication is a key requirement for the deeply
integrated tool development that we target. This requires that the infrastructure
is aware of what can be instrumented, which we represent with a set of hooks
H. A hook h ∈ H is an activity that the infrastructure can instrument in order
to observe it. When during tool runtime, an instrumented hook h is triggered,
we create an event with information on the observation of hook h. Examples of
hooks could be function calls, APIs such as the profiling interface of MPI, or
callback mechanisms.

For the example case, we use H={userFunction, exit, provideProfile}. The
userFunction hook observes function calls of the application and could rely on a
compiler-based instrumentation of the application. The exit hook observes when
the application attempts to exit. When it is triggered, it must pass the profiling
data to the printProfile analysis. To do so, an analysis can simply trigger a
hook itself, i.e., analyses can inject events with hooks. The hook provideProfile
is used in this manner and implements part of the tool functionality, rather
than to observe application activities. With the provideProfile hook, the finalize
analysis can inject an event that carries this data. Any analysis that is interested
in the data, e.g., printProfile, can then observe it. Figure 3 (top) illustrates these
hooks and highlights that the first two hooks serve for application activities,
while the third hook implements part of the tool functionality.

The above example illustrates a notion of an analysis is interested in events
of a hook. We use analysis-hook-mappings mA,H : A → P(H) towards this
end. The enter and leave analyses must observe the userFunction hook, i.e.,
mA,H(enter)={userFunction} and mA,H(leave)={userFunction}. Additionally,
the finalize analysis must observe the exit hook, while the printProfile analy-
sis must observe the provideProfile hook. Figure 3 illustrates these mappings
with arrows between the analyses and hooks.

Event-Flow. The previous specifications detail how we can represent a tool in
the terms of a deeply integrated abstraction. However, we associated no seman-
tics, yet. For a given tool specification, we use event-flow definitions to define the
workflow within the tool. These definitions use a mapping execute : P → P(A)
that represents the final layer-analysis mapping, e.g., to correctly consider mod-
ule dependencies. The first event-flow definition specifies which analyses a place
must trigger when it observes or receives an event for a hook:

Event-Flow 1 (Trigger) A place T ∈ P that observes or receives an event
for a hook h must trigger an analysis a ∈ execute(T ) exactly if h ∈ mA,H(a).

The definition requires that when a place receives or observes an event, it
triggers any analysis that is mapped to the hook that created the event.

The remaining event flow definitions depend on communication directions.
As in the previous examples, events can travel towards higher hierarchy layers,
e.g., towards a root place. We call this the primary direction, which we cover
in the following. The opposite direction is called the broadcast direction and
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distributes information from a root towards application places. The function
dir : H → {primary,broadcast} assigns a communication direction with each
hook to specify the direction that events of this hook use. In the example, all
hooks use the primary direction.

For the primary communication direction, the hierarchies of places, as illus-
trated in Fig. 2, determine which events are forwarded to a place. A place T must
perceive events that are directly triggered on T and any event that a predecessor
in the tool topology graph perceives. As an example, in the figure, T0,0 perceives
its own events only, whereas T1,1 must perceive events from itself, T0,2, and T0,3.
To minimize tool overhead, a place perceives only events for hooks to which some
of its analyses are mapped or for which a descendant in the tool topology graph
must perceive. The relation requiresInformation ⊆ P × H formally defines the
hooks whose events a place must observe as (T, h) ∈ requiresInformation exactly
if ∃T ′ ∈ {T} ∪ successors(T, T ) and a ∈ A :

a ∈ execute(T ′), h ∈ mA,H(a), and dir(h) = primary.

The relation includes pairs of a place and a hook if the place itself or a
direct successor of the place executes at least one analysis that is mapped to the
respective hook2. This relation directly allows us to define what hooks a place
must instrument, i.e., observe, and towards which places a place forwards events
along the primary communication direction:

Event-Flow 2 (Observe) A place T ∈ P must observe (i.e., instrument)
a hook h ∈ H exactly if (T, h) ∈ requiresInformation.

Event-Flow 3 (Forward) A place T ∈ P must forward an event of hook
h, which it observes or receives from another place, to a direct successor
T ′ ∈ P exactly if (T ′, h) ∈ requiresInformation (with (T, T ′) ∈ ET ).

In the profiling tool example, these definitions require that places T0,0–T0,3

observe the provideProfile hook, even though no analysis mapping assigns these
places an analysis that is mapped to this hook. This results from place T2,0

executing the analysis printProfile, which is mapped to provideProfile, while
T2,0 is a successor of T0,0–T0,3 in the tool topology graph.

These three event-flow definitions formally define the workings of a tool that
follows our abstraction.

3.2 Event-Aggregation

Our abstraction allows integration of event aggregation with so called aggregation
analyses Aagg ⊆ A. These analyses have all properties of regular analyses, but
they try to replace their input events with a single/few events. Hooks serve to
inject the new events and return values of the aggregation enable the removal
of the input events. Adaptions of the above event flow definitions can formalize
this notion.
2 successors(T, T ) is the set of successor places of T in the tool topology graph T .
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4 Infrastructure Comparison

In the following we compare our abstraction with MRNet [7] as a widely used
infrastructure for TBON-based tools and with CBTF [3] as a further highly
integrated infrastructure.

An MRNet-based tool consists of back-end code running on the application
processes, front-end code running on the root of the TBON, and module code
that runs on the intermediate layers of the TBON. The modules are managed by
MRNet—much like analyses in our abstractions—and get triggered when events
of interest occur. Front-end and back-end code, however, are directly provided
by the tool developer and use a specific MRNet API. If a tool developer wants to
migrate tool functionality that is implemented as part of the front-end/back-end
code to a module, or vice versa, then an adaption of the API in use or a redesign
of that code is necessary. This imposes unnecessary restrictions on the use of
available pieces of a tool implementation. Our abstraction uses a single concept
to provide tool functionality instead, which are analyses. Migrating analyses
between any hierarchy layers requires no adaptions as we note in Table 1.

Instrumentation services for MRNet-based tools reside in the back-end code.
The infrastructure provides no services for the instrumentation of an application.
Our abstraction incorporates instrumentation directly into the infrastructure to
provide it to the tool developer directly. Portable instrumentation is often chal-
lenging for tools, thus our approach simplifies tool development. A further differ-
entiation is the analysis dependency system that we integrate in our abstraction.
MRNet has no such notion and tool developers can consequentially create non-
functional tool instances if they are not careful.

The Component Based Tool Framework (CBTF) [3] is closely related to our
efforts and is younger than the GTI implementation that realized our abstrac-
tion. Few studies on the applicability and scalability of CBTF are available,
so we focus on a high-level comparison. As opposed to our event-action map-
pings, CBTF uses a dataflow-programming paradigm. A CBTF tool consists of
components that could be compared to our analyses. Rather than using analysis-
hook mappings, CBTF connects components towards a component network. The
output of a component then forms the input of connected components. For scala-
bility, CBTF allows component networks to employ MRNet to apply hierarchical
aggregations or filters. Both approaches achieve a deeply integrated tool devel-
opment and should support similar ranges of tools. A key differentiation is that
CBTF lacks instrumentation services, which challenges portable tool develop-
ment. An integration of such functionality would require a mapping of instru-
mentation sources to CBTF components, much as in our proposed abstraction.

5 Tools Enabled by Our Abstraction

The tools infrastructure GTI implements our abstraction and extends it with
additions for practicality [4]. This includes a packaging of multiple tool analy-
ses into so called modules that provide data sharing between closely related
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analyses. The runtime correctness tool MUST [5] and the trace-based online
performance analysis prototype OTFX-GTI [9] are both based on GTI and
demonstrate applicability to multiple compute systems at up to 16,384 and 1,024
processes respectively. Both tools focus on MPI applications and use a TBON
layout in their standard configurations. MUST uses a total of 358 analyses (in
59 GTI modules) and OTFX-GTI uses 168 analyses (in 20 GTI modules). Large
numbers of these analyses (276 and 126 respectively) execute on the application
layer. This situation highlights that with abstractions such as MRNet, which
provides no concept for tool components on the application layer, a large por-
tion of the tool functionality might not be as reusable. Whereas our abstraction
enables component reuse on all hierarchy layers of the tool.

6 Conclusions

Development of HPC tools must consider increasing system scale and the
rise of novel parallel programming paradigms. Developing portable tools that
handle these challenges well is time consuming and often requires similar solu-
tions across tools. Tool infrastructures can provide common tool services to wide
ranges of tools. Such that development investments into the infrastructure can
benefit all tools that utilize them. In such a situation, the total development
effort that is needed to adapt tools to new requirements could be drastically
reduced.

We extend upon TBON-oriented tools infrastructures with a mapping-based
abstraction. This abstraction allows tool developers to implement their over-
all tool as fine-grained analyses. The abstraction carefully connects the concept
of tool hierarchies with a high-level thinking in terms of events and analyses.
This targets a deeply integrated development that lets the infrastructure pro-
vide as much functionality as possible. If we compare our approach with existing
infrastructures we see increased opportunity for component reuse, as well as sim-
plified development for tool developers. The infrastructure CBTF, which follows
similar goals as our approach, compares closely, but lacks portable support for
instrumentation.

If deeply integrated tools infrastructures receive widespread use, tool devel-
opment could be drastically simplified. Developers could reuse valuable lessons
learned that are embedded in a repository of existing tool components. A large
community could then maintain these modules to adapt them to ongoing trends
in HPC. Developing a novel tool becomes a reuse of existing modules with an
addition of tool specific modules, towards reduced time to solution. Experience
with tools that are based on our abstraction are promising and enable tools that
operate for 1,024 and 16,384 application processes respectively.
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Abstract. We present a performance analysis tool that reports the tem-
poral evolution of the memory access patterns of in-production applica-
tions in order to help analysts understand the accesses to the application
data structures. This information is captured using the Precise Event
Based Sampling (PEBS) mechanism from the recent Intel processors, and
it is correlated with the source code and the nature of the performance
bottlenecks if any. Consequently, this tool gives a complete approach to
allow analysts to unveil the application behavior better, and to lead them
to improvements while taking the most benefit from the system’s char-
acteristics. We apply the tool to two optimized parallel applications and
provide detailed insight of their memory access behavior, thus demon-
strating the usefulness of the tool.

Keywords: Performance analysis · Address sampling · Data-object
analysis · Sampling · Instrumentation

1 Introduction

The memory hierarchy is becoming more and more sophisticated as the proces-
sors evolve generation after generation. Its advances respond not only to address
the speed divergence between the processor and the memory outside the chip,
but also to reduce the energy dissipated by the data movement. Processor man-
ufacturers have typically organized the memory hierarchy in different strata to
exploit the temporal and spatial localities of reference. The memory hierarchy
ranges from the extremely fast but tiny and power-hungry registers to the slow
but huge and less energy-consuming DRAM, including multiple cache levels.
Still, some processor researchers and manufacturers are looking for opportuni-
ties to extend the memory hierarchy to improve the application execution in
terms of performance and energy. Their research consider additional integration
directions so that the memory hierarchy adds layers as scratchpad memories,
stacked 3D DRAM [12], and even non-volatile RAM [24].
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When it comes to performance analysis, traditional performance analysis
tools (e.g. gprof [9], Scalasca [25], TAU [20], HPCToolkit [23] and Periscope [7])
have naturally associated performance metrics to syntactical application com-
ponents such as routines, loops, and even statements. Despite this association
has proven valuable and has helped understanding and improving applications,
the impact of the memory hierarchy makes necessary to explore the performance
from the data perspective, also. A study from this point of view includes, but it
is not limited to, unveil which application variables are referenced the most and
their access cost, detect memory streams to help prefetch mechanisms, calcu-
late reuse distances, and even identify the cache organization that may improve
the execution behavior. To this end, two mechanisms have emerged to address
this type of studies. On the one hand, there exists instruction-based instrumen-
tation that monitors load/store instructions and decodes them to capture the
referenced addresses. While this approach accurately correlates code statements
with data references, it imposes a severe expense, daunting the analysis with
large data collections and/or time-consuming analysis; thus not being practi-
cal for long in-production executions. On the other hand, several processors
have enhanced their Performance Monitoring Unit (PMU) to sample instruc-
tions based on a user specified period and associate them with data such as the
referenced address. These mechanisms help on delimiting the amount of data
captured and the overhead imposed. However, the results obtained are statis-
tical approximations that may require sufficiently long runs so that the results
approximate the actual distribution, yet highly volatile metrics may be missed.

The framework described in [18,19] addresses the latter issue and provides
accurate and instantaneous performance metrics even using coarse grain sam-
pling and minimal instrumentation. This framework smartly combines sampled
and instrumented data by taking benefit of the repetitiveness from the applica-
tions. In this paper, we extend this framework by incorporating the application
address space perspective to unveil the access patterns and the locality of refer-
ence to the application data structures. Such an extension relies on the address
sampling mechanisms offered by the PMU extension known as PEBS [4] and to
minimize the overhead we use large sampling periods. The result of this enhance-
ment is a framework that provides complete support to gain insight of the appli-
cation behavior, including the application syntactical level, its data structure
organization, and its memory hierarchy usage and achieved performance.

The organization of this paper is as follows: Sect. 2 contextualizes our mecha-
nism with respect to previous existing tools. Section 3 introduces the framework
used as the basis for our mechanism and the hardware support for the address
sampling. Then Sect. 4 describes the extension applied to the framework and
exemplifies its results. Section 5 explores the behavior of two applications to
demonstrate the usefulness of the resulting framework. Finally, Sect. 6 draws
some conclusions and discusses possible future research trends.

2 Related Work

This section describes earlier approaches related to performance analysis tools
that have focused to some extent on the analysis of data structures and the
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efficiency achieved while accessing to them. We divide this research into two
groups depending on the mechanism used to capture the addresses referenced
by the load/store instructions.

The first group includes tools that instrument the application instructions
to obtain the referenced addresses. MemSpy [13] is a prototype tool to profile
applications on a system simulator that introduces the notion of data-oriented, in
addition to code oriented, performance tuning. This tool instruments every mem-
ory reference from an application run and leverage the references to a memory
simulator that calculates statistics such as cache hits, cache misses, etc accord-
ing to a given cache organization. SLO [1] suggests for locality optimizations
by analyzing the application reuse paths to find the root causes of poor data
locality. This tool extends the GCC compiler to capture the application’s mem-
ory accesses, function calls, and loops in order to track data reuses, and then it
analyzes the reused paths to suggest code loop transformations. MACPO [17]
captures memory traces and computes metrics for the memory access behavior
of source-level data structures. The tool uses PerfExpert [3] to identify code
regions with memory-related inefficiencies, then employs the LLVM compiler to
instrument the memory references, and, finally, it calculates several reuse fac-
tors and the number of data streams in a loop nest. Tareador [22] is a tool
that estimates how much parallelism can be achieved in a task-based data-flow
programming model. The tool employs dynamic instrumentation to monitor the
memory accesses of delimited regions of code in order to determine whether they
can simultaneously run without data race conditions, and then it simulates the
application execution based on this outcome. Peña et al. have designed an emula-
tor based data-oriented profiling tool to analyze actual program executions in an
emulated system equipped with a DRAM-based memory system only [16]. They
also use dynamic instrumentation to monitor the memory references in order to
detect which memory structures are the most referenced. With this setup, they
estimate the CPU stall cycles incurred by the different memory objects to decide
their optimal object placement in heterogeneous memory system.

The second group consists of tools that take benefit of hardware mecha-
nisms to sample addresses referenced when processor counter overflows occur
and estimate the accesses weight from the sample count. The Sun ONE Stu-
dio analysis tool has been extended in [10] by incorporating memory system
behavior in the context of the application’s data space. This extension brings
the analyst independent and uncorrelated views that rank program counters and
data objects according to hardware counter metrics, as well as, shows metrics for
each element in data object structures. HPCToolkit has been recently extended
to support data-centric profiling of parallel programs [11]. In contrast to the pre-
vious tool, HPCToolkit provides a graphical user interface that presents data-
and code-centric metrics in a single panel, easing the correlation between the
two. Giménez et al. use PEBS to monitor load instructions that access addresses
within memory regions delimited by user-specified data objects and focusing on
those that surpass a given latency [8]. Then, they associate the memory behav-
ior with several semantic attributes, including the application context which is
shown through the MemAxes visualization tool.
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Our proposal belongs to the second group and its main difference from exist-
ing tools relies on the ability to report time-based memory access patterns, in
addition to source code profiles and performance bottlenecks. The inclusion of
the temporal analysis allows time-based studies such as detection of simultane-
ous memory streams, ordering accesses to the memory hierarchy, and even, code
reordering. This data is captured using two independent monitoring tools that
are configured to collect data sparsely. While one of the tools capture informa-
tion regarding the performance bottlenecks, their nature and their association
with the code; the other tool samples the references to the process address space.

3 Background

3.1 The Basic Framework

The framework described in [18,19] generates reports of the performance along
time for computing regions from trace-files containing instrumented and sampled
data. The computing regions can be manually delimited using instrumentation
or automatically detected by the framework after the execution based on their
performance characteristics. In the latter case, a computing region is defined as
the user code in between successive parallel programming calls (such as MPI or
OpenMP). These regions are automatically grouped according to their perfor-
mance metrics (typically number of instructions and instruction rate) through
a density-based clustering algorithm. Then, the framework applies a mechanism
named folding that combines coarse grain sampled and instrumented informa-
tion to provide detailed performance metrics within a computing region. In the
context of the folding process, the samples are gathered from the computing
into a synthetic region by preserving their relative time within their original
region so that the sampled information determines how the performance evolves
within the region. Consequently, the folded samples represent the progression in
shorter periods of time no matter the monitoring sampling frequency, and also,
the longer the runs the more samples get mapped into the synthetic instance.
The framework has shown mean differences up to 5 % when comparing results
obtained sampling frequencies that are two orders of magnitude more frequent
(50 × 103 cycles vs 106 cycles).

3.2 Capturing the Referenced Addresses

The Precision Event Based Sampling (PEBS), and similarly the Instruction
Based Sampling (IBS [5]), are respective extensions to the Intel’s and AMD’s
PMU component that allow monitoring instructions at a user-configurable sam-
pling period. These mechanisms periodically choose an instruction from those
that enter into the processor pipeline. Then, the selected instruction is tagged,
and it is monitored as it progresses through the pipeline while annotating any
event caused by the instruction. When the instruction completes, the processor
generates a record containing the instruction address, its associated events and
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the machine state (without time-stamp), and then the record is written into a
previously allocated buffer. Every time the buffer gets full, the processor invokes
an interrupt service routine provided by a profiler that collects the generated
records. Since instructions are reported at the retirement stage, these mecha-
nisms exclude contributions from speculative execution. For the particular case
of load instructions, PEBS collects data such as, but are not limited to: the
linear address1 referenced, the layer of the memory hierarchy that served the
reference, and how many cycles did it take to reach the processor. These mon-
itoring mechanisms report linear addresses from the process address space but
do not provide information with respect to the physical addresses, thus they do
not help understanding memory migrations.

4 Enhancement of the Framework

This section describes the integration of the sampled memory references into the
aforementioned framework to display the time evolution of the memory access
patterns in addition to other performance metrics. We also provide an example
on how to use the output of this framework by applying it to a slightly modified
version of a well-known benchmark.

4.1 Capturing Referenced Addresses

The first enhancement involves collecting the referenced addresses during the
application execution so that the framework can later display them in the report.
We use the Extrae2 instrumentation package to generate the input for the origi-
nal framework. Extrae uses PAPI [2] to capture hardware performance metrics,
but PAPI does not capture the PEBS generated information3. perf [15], on the
other hand, is a tool that uses the performance counters subsystem in Linux, and
since Linux kernel version 3.11 it benefits from PEBS or IBS to collect memory
references from either load or store instructions, but not both at the same time.
This tool allocates a 1-entry buffer to store the memory references and then
samples the application at a user defined period. Thus, each time the processor
reaches the period, it generates a memory reference record, and then perf cap-
tures this record and associates a time-stamp to it. This way, perf is capable of
generating timestamped trace-files containing sampled memory references even
though neither PEBS nor IBS capture a timestamp.

Our approach relies on combining the results of these two monitoring tools
when applied on an optimized application binary with debugging information
in the same run, as depicted in Fig. 1. In this context, perf collects a time-
stamped sequence of references while Extrae collects performance counters and
1 Linear addresses also refer to logical addresses in x86-64 architectures as segmenta-

tion is generally disabled thus creating a flat 64-bit space, according to Sects. 3.3.4
and 3.4.2.1 from Intel R©64 and IA-32 Architectures Software Developers Manual.

2 http://www.bsc.es/paraver - Last accessed June, 2015.
3 As of PAPI 5.4.0.

http://www.bsc.es/paraver
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Fig. 1. Combination of two monitoring tools to generate a single trace-file that includes
hardware counter performance metrics, call-stack references and data references.

call-stack references, and then a post-process combines them into a single trace-
file. Both tools must use the same timing source in order to correlate the data
captured. The perf tool uses low-level kernel timing routines and Extrae uses the
Posix compliant high precision clock routines by default. Thus, we have adopted
a kernel module that exposes the low-level timing routines4 to the user-space
applications, yet there are other possibilities to achieve this goal. After generating
the trace-file, we extend the folding mechanism to apply to the memory reference
samples and to collocate all the metrics (source code, memory references and
node-level performance [such as MIPS rate and L1D miss ratio per instruction])
in one report per region.

4.2 Associating Addresses with Data Structures

When exploring the address space, it is convenient to map the address space
to the application data structures in order to let the analyst match the gener-
ated results with the application code and also to explore their pattern access
type. For that reason, Extrae has been extended to capture the base address
and the size of the static variables, as well as, of the dynamically allocated vari-
ables. With respect to the static variables, the instrumentation package explores
the symbols within application binary image using the binutils library5 in order
to acquire their name, starting address and size. Regarding the dynamic vari-
ables, we instrument the malloc family related routines and capture their input
parameters and output results to determine the starting address and size. As
dynamically allocated variables do not have a name, the tool collects their allo-
cation call-stack reference to identify them. Since applications may contain lots of
variables, Extrae ignores those smaller than a specified threshold (that defaults
to 1 MiB). Finally, it is worth to mention that some languages (such as C and
C++) allow declaring local (stack) variables within code blocks that can only be
referenced by the inner block statements. While these references are captured by
the perf tool, Extrae cannot track their creation; so, their references may appear
on the resulting plot but do not have an associated variable name.

4 https://lkml.org/lkml/2013/3/14/523.
5 http://www.gnu.org/software/binutils. Last accessed June, 2015.

https://lkml.org/lkml/2013/3/14/523
http://www.gnu.org/software/binutils
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4.3 Practical Example

We have applied this framework to a modified version of the Stream bench-
mark [14] in order to show the usability of the described framework when explor-
ing the load references. Since Stream accesses to statically allocated variables
through ordered linear accesses, we have modified the code so that: (1) the c
array is no longer a static variable but allocated by malloc and (2) the scale
kernel loads data from pseudo-random indices from the c array. Due to mod-
ification (2), scale executes additional instructions and exposes lesser locality
of reference, thus we have reduced the loop trip count in this kernel to N/8 to
compensate its duration. The resulting code looks like:

for i := 1 to NITERS do ! main loop
for j := 1 to N do c[j] := a[j]; od ! Copy
for j := 1 to N/8 do b[j] := s ∗ c[random(j)]; od ! Scale
for j := 1 to N do c[j] := a[j] + b[j]; od ! Add
for j := 1 to N do a[j] := b[j] + s ∗ c[j]; od ! Triad

od

We have instrumented the loop body, compiled it using the GNU suite v4.8.1,
and then, we have monitored the execution of the resulting binary on an Intel
Core i7 2760QM running at 2.40 GHz and executing Linux 3.11. With respect
to the monitoring, the Extrae package has sampled the application at 20 Hz and
the perf tool has sampled the application every 250k load instructions, resulting
in an overhead below 5 %.

Fig. 2. Analysis of the modified Stream benchmark. Triple correlation time-lines for
the main iteration: source code, addresses referenced and performance.

Figure 2 shows the result of the extended framework. The Figure consists of
three plots: (1) source code references (top), (2) address space load references
(middle), and (3) performance metrics (bottom). In the source code profile each
color indicates the active routine (identified by a label of the form X >Y [n],
where Y and X refer to the active routine and its ancestor, and n indicates the
most observed line). Additionally, the purple dots represent a time-based pro-
file of the sampled code lines where the top (bottom) of the plot represents the
begin (end) of the container source file. This plot indicates that the applica-
tion progresses through four routines and that most of the activity observed of



64 H. Servat et al.

each of these routines occurs in a tiny amount of lines. The second plot shows
the address space. On this plot, the background color alternates showing the
space used by the variables (either static or dynamically allocated), and the left
and right Y-axes show the name of the variables referenced and the address
space, respectively. The dots show a time-based profile of the addresses refer-
enced through load instructions and their color indicate the time to solve the
reference based on a gradient that ranges from green to blue referring to low
and high values, respectively. We want to outline several phenomena observed
in this plot. First, as expected, the access pattern in the Scale routine to the
variable allocated in line 181 of the file stream.c (formerly c) shows a random-
ized access pattern with most of the references in blue (meaning high latency).
The straight lines formed by the references in the rest of the routines denote
that they progressively advance and thus expose spatial locality, and also the
greenish color indicates that these references take less time to be served. Second,
the Copy routine accesses to the array a downwards despite the loop is written
so that the loop index goes upwards. This effect occurs because the compiler
has replaced the loop by a call to memcpy (from glibc 2.14) that reverses the
loop traversal, unrolls the loop body and uses SSSE3 vector instructions. A lin-
ear regression analysis indicates that approximately each instruction references
five addresses in Copy and since SSSE3 vector instructions may load up to 16
bytes, this translates into a 31.25 % vector efficiency. Finally, the instructions
within routines Add and Triad reference two addresses per variable in average,
the loaded data comes from two independent variables (or streams) simultane-
ously, and their accesses go from low to high addresses honoring the code. The
third plot shows the achieved instruction rate (referenced on the right Y-axis)
within the instrumented region, as well as, the L1D, L2D and LLC cache misses
per instruction (on the left Y-axis). While we would expect a large cache miss
ratio per instruction in Scale, we observe that they behave similarly to the rest
of the kernel routines. This occurs because random() executes instructions to
compute its results without accessing to the memory, thus reducing the cache
miss ratio per instruction.

5 Usage Examples

We have applied the extended framework to two parallel applications to demon-
strate its usefulness. Table 1 provides details of the application, execution and
monitoring characteristics. With respect to the systems, we have used a Core i7
system that includes the kernel module that allows the two monitoring mecha-
nisms use the same clock source. Since the system only has four cores and we
do not want to overload the system, we have used an additional Xeon system
to execute the remaining processes that do not fit on the former machine. The
Core i7 system has three levels of cache with a line size of 64 bytes: level 1 are
two 8-way 32 KiB caches for instructions and data, level 2 consists of a 8-way
unified 256 KiB cache, and level 3 is a 12-way unified 6,144 KiB cache.

Regarding the applications, each has been executed twice: the first execution
captures information regarding the load references, while the second run collects
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Table 1. Applications analyzed.

CGPOP BigDFT 1.7.5.13

# Processes 24 21

Processor type
Intel Core i7-2760QM @ 2.40 GHz

Processor type
Intel Xeon E5-2620v2 @ 2.10 GHz (max: 2.60 GHz)

Application size
6 Klines 496 Klines

Application size
20 files 769 files

Compiler GNU compiler suite 4.8.1
Compiler flags -O3 -g -O2 -g
MPI implementation OpenMPI v1.6.5
Sampling period 20 ms
Data sampling period 106 load, store instructions

store references. The resulting plots are shown side-by-side for comparison pur-
poses. Regarding the collecting, Extrae has been used to monitor MPI activity
and it has sampled using a period coarser than the gprof sampling frequency (10
vs 20 ms). perf has been instructed to sample memory references every 106 load
(or store) instructions. These coarse grain sampling frequencies ensured that the
applications suffered a time dilation below 5 %.

Fig. 3. Analysis of CGPOP mini-application.

5.1 CGPOP

CGPOP [21] is a proxy application of the Parallel Ocean Program application.
POP is a three-dimensional ocean circulation model designed primarily for study-
ing the ocean climate system and it is a component within the Community Earth
System Model. Figure 3 shows the obtained plots depicting the load and store
references for the most time-consuming region of this execution. Note that both
plots have its own address space depending on the accessed variables and that
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the store memory references are shown in green because in this architecture the
store instructions are inserted into a store buffer and these instructions are no
longer under control of PEBS thus not having latency information for them. The
Figure indicates that the region faces two routines: pcg chrongear linear (in
red) and matvec (from the matrix module, in green), but we have also manu-
ally added labels (A-D) in the plot to ease the referencing. The latter routine
takes most of the execution time within the region and also achieves the highest
MIPS rate (above 5,000 MIPS). With respect to the load instructions within the
data structures, we observe that phase C accesses to variables z and a (from
the matrix module). The plot shows that the load references to variable a are
partitioned into three disjoint portions that are accessed linear and simultane-
ously by the processor. The analysis of the source code shows that this variable
represents a sparse row matrix that includes three arrays (one for double pre-
cision values and two for integer indices). When analyzing phase A, we observe
that references require more time to be served (blue colored) and this is also
related to the highest ratio of cache misses (1 out of every 14 instructions miss
at L1D). The code in this phase loads data from six arrays (x linear, s, r,
z, q and az) and stores data to four arrays (x linear, s, r and q). We have
tested whether the code using an array of structures (AoS) improves the perfor-
mance; however, our results indicate that using AoS does not offer performance
improvements because the LLC miss ratio, as well as, the number of instructions
doubles. With respect to the stores, we observe several effects: phase B gener-
ates the data for the array z and it is used immediately after in phase C, the a
variable keeps unchanged during this region, and phase D does not expose stores
because it reduces a vector into a scalar (sumN2).

5.2 BigDFT

BigDFT [6] is a massively parallel code based on density functional theories. Our
analysis focuses on a computing region that corresponds to approximately 16 %

Fig. 4. Analysis of BigDFT.
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of the total execution time, and Fig. 4 shows the outcome of the extended frame-
work for this region. The results indicate that the region consists of two iterations
at all levels (source code, references, and performance). We have added labels to
identify the iterations, as well as, the phases (routines) within the iterations (A-
F). The first thing we notice is that load references expose better spatial locality
than the store references, and that phase E shows a random access behavior in
the load references and these references take more time to be served. We also
outline that phase A traverses completely the array allocated in plotting.f90
(line 1,008) to store values on it, and that happens immediately after executing
the razero routine (depicted in green) which may be redundant because there
aren’t loads in between.

This report also shows some insights on the chances of making this region
parallel using a task-based programming model. For instance, phases B and D
store data in the data allocated in daubis.f90 (line 1,118) and this data is used
in phases C and E, begetting true (RAW) dependencies between these pair of
phases. Also, phases B and D load and store data from the region allocated in
daubis.f90 (line 1,119) causing true (RAW) and output (WAW) dependencies
between these phases. Finally, phase F mainly depends on the data located by
plotting.f90 (line 1,008) which is written by phases C and E. Due to the
described dependencies, only phases A and B might safely run in parallel.

6 Conclusions and Future Work

We have presented an extension to a framework that displays the memory access
patterns of computing regions and their time evolution along the source code and
the performance behavior. This extension relies on the ability of recent hardware
mechanisms available in current processors to sample instructions based on a
user-defined period and attributes to each sample several performance metrics,
including the addresses referenced. This enhanced framework has proven valuable
to give detailed insight regarding several optimized application binaries, such as
detecting the most dominant data streams and their temporal evolution along
computing regions. For instance, we have seen that the compiler has replaced the
source code by a call in Stream, that CGPOP accesses multiple memory streams
simultaneously, and that there may exist redundant work in BigDFT. All this
information has been captured using minimal instrumentation and coarse grain
sampling periods, thus keeping a low expense during the measurement.

We believe that there are research opportunities using these hardware mem-
ory sampling techniques. For instance, we consider using the outcome of this
extended framework to capture the store access patterns and then search for
those variables that are not used shortly. The access to these variables may ben-
efit from non-temporal instructions because these instructions do not write data
into the cache hierarchy, nor fetches the corresponding line; thus not polluting
the cache hierarchy. Another direction would include studying data dependencies
for porting an application to a task-based data-flow programming model using
partial data. Finally, it would be valuable to extend the memory monitoring
mechanism to multiplex in order to capture load and store references in one run.
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No. TIN2012-34557 which has partially funded this work.

References

1. Beyls, K., D’Hollander, E.H.: Refactoring for data locality. IEEE Comput. 42(2),
62–71 (2009). http://dx.doi.org/10.1109/MC.2009.57

2. Browne, S., Dongarra, J., Garner, N., Ho, G., Mucci, P.: A portable programming
interface for performance evaluation on modern processors. Int. J. High Perform.
Comput. Appl. 14(3), 189–204 (2000). http://icl.cs.utk.edu/papi

3. Burtscher, M., et al.: PerfExpert: an easy-to-use performance diagnosis tool for
HPC applications. In: Conference on High Performance Computing Networking,
Storage and Analysis, pp. 1–11 (2010). http://dx.doi.org/10.1109/SC.2010.41

4. Corporation, I.: Intel 64 and IA-32 architectures software developer’s manual. Vol-
ume 3B: System Programming Guide, Part 2, January 2015

5. Drongowski, P., et al.: Incorporating instruction-based sampling into AMD Code-
Analyst. In: Performance Analysis of Systems Software, pp. 119–120 (2010)

6. Genovese, L., Neelov, A., Goedecker, S., Deutsch, T., Ghasemi, S.A., Willand, A.,
Caliste, D., Zilberberg, O., Rayson, M., Bergman, A., Schneider, R.: Daubechies
wavelets as a basis set for density functional pseudopotential calculations. J. Chem.
Phys. 129(1), 014109 (2008)

7. Gerndt, M., Fürlinger, K., Kereku, E.: Periscope: advanced techniques for perfor-
mance analysis. In: PARCO, pp. 15–26 (2005)
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Abstract. The deployment of larger and larger HPC systems chal-
lenges the scalability of both applications and analysis tools. Performance
analysis toolsets provide users with means to spot bottlenecks in their
applications by either collecting aggregated statistics or generating loss-
less time-stamped traces. While obtaining detailed trace information is
the best method to examine the behavior of an application in detail, it
is infeasible at extreme scales due to the huge volume of data generated.

In this context, knowing the application structure, and particularly
the nesting of loops in iterative applications is of great importance as it
allows, among other things, to reduce the amount of data collected by
focusing on important sections of the code.

In this paper we demonstrate how the loop nesting structure of an
MPI application can be extracted on-line from its event flow graph with-
out the need of any explicit source code instrumentation. We show how
this knowledge on the application structure can be used to compute post-
mortem statistics as well as to reduce the amount of redundant data
collected. To that end, we present a usage scenario where this structure
information is utilized on-line (while the application runs) to intelligently
collect fine-grained data for only a few iterations of an application, con-
siderably reducing the amount of data gathered.

Keywords: Application structure detection · Flow graph analysis ·
Performance monitoring · Online analysis · Automatic loop detection

1 Introduction

Computer simulations are nowadays an important method of scientific discov-
ery. By using computers, scientists can model processes that would be difficult
or impossible to reproduce and study in a real-world scenario. Moreover, the
deployment of larger and larger High Performance Computing (HPC) systems
provides scientists with an opportunity to solve problems which could not be
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tackled before. However, scientific applications have to be tuned and highly opti-
mized to effectively use all the computational power provided by current HPC
infrastructures.

In our previous work we have explored the use of event flow graphs as a
novel method for MPI monitoring and analysis, demonstrating that graphs are
a good compressed representation of MPI event traces due to the iterative nature
of MPI parallel applications [1,8]. Event flow graphs retain the temporal order
of the events executed during the lifetime of a program without saving explicit
timestamps. Thus, graphs can be used to reconstruct the full ordered sequence
of events performed by the application.

In this paper we present how event flow graphs can be used beyond trace
compression and reconstruction. Our approach for automatic analysis of event
flow graphs sheds light on the inherent structure of parallel applications, for
instance, revealing the nesting loop structure present in the program.

Knowledge of the application structure can be very useful both for post-
mortem and for on-line performance analysis. On one hand, this structural
knowledge can be utilized to automatically generate reports that show the user
where and how time is spent among loops, and how the performance character-
istics of those loops evolve over the lifetime of an application. This can be done
without the need of recompilation, access to the source code, or user involve-
ment at all. On the other hand, knowing the structure of a program while it
runs can benefit how data is collected and aggregated. For instance, data can be
aggregated at a loop level instead of keeping every event, or redundant informa-
tion can be reduced by keeping fine-grained data for a few loop iterations only.
Furthermore, this structural knowledge can also be used, for example, to help a
dynamic runtime system with its decision making process, or to feed an external
monitoring tool that decides the grain of the performance data collected.

The contributions of this paper include:

– We develop a simple mechanism to extract the structure of applications with
very low overhead and without the need to have access to the source code.

– We present a real usage scenario in which the structure of an application is
detected automatically while the application runs to intelligently select the
performance data collected.

– We demonstrate that the overall performance behavior of an iterative MPI
application is still captured with our approach by selecting only a few repre-
sentative iterations.

The remainder of this paper is organized as follows: Sect. 2 provides
background on our previous work on event flow graphs. Section 3 describes
the mechanisms implemented for application structure detection, and its on-line
application. Section 4 presents a real usage scenario where the on-line detection
of an application’s structure is used to intelligently select the amount of per-
formance data generated. Section 5 surveys related work. Finally, Sects. 6 and 7
discuss future work and conclusion, respectively.
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2 Background: IPM and Event Flow Graphs

The work presented in this paper builds on top of the Integrated Performance
Monitoring (IPM) tool [13]. In [1,8], IPM was extended to capture and generate
event flow graphs of MPI parallel applications. Upon program termination, IPM
generates for each MPI process a weighted directed graph in which nodes are
the different1 MPI calls performed by that process, and edges are the transitions
between those calls. In other words, edges are the computational parts between
two MPI calls. Therefore, event flow graphs keep the temporal order of the events
performed by the application. In addition, metrics such as timers and hardware
counters can be associated with the nodes and edges of the graph, increasing
thereby the usability of such graphs.

3 Automatic Analysis of Event Flow Graphs

3.1 Loops in Event Flow Graphs

It is commonly accepted conventional wisdom that the vast majority of HPC
scientific parallel codes are iterative and spend most of their time in loops. These
scientific applications are usually composed of a large outer loop, which controls
the simulation time-steps, and which contains several inner loops with different
nesting levels. Since most of the application time is spent in loops, they become
one of the main targets when analyzing and optimizing programs.

Most MPI parallel programs contain MPI operations in some of their loops,
as data needs to be shared among processes across loop iterations. In those
cases, the generated event flow graphs will contain cycles. Thus, by detecting
those cycles, we are detecting the actual loops that drive the simulation process
in the application. Loops without MPI calls are not detected with this approach,
however, their behavior gets captured in the edges of the graph as these loops
are just pure computational parts between two MPI calls.

Figure 1 shows the basic cycle shapes that can appear in our event flow
graphs. Each one of the loops is accompanied with a source code example that
generates such a loop structure. Calls to A, B, C and D represent any MPI
routine. As can be seen in the picture, loops can range from single node cycles,
through several nesting structures, to cycles with multiple tails. In addition, all
these basic loop structures can be combined to form more complex ones. At the
moment, our work focuses in reducible loops [23], that is, loops with just one
entry point. Formally, given a loop L with header h (h dominates all the nodes
in the loop L) and an edge < u, v >, if u /∈ L and v ∈ L − {h}, then v is a
re-entry point and the loop is irreducible.

Irreducibility in our event flow graphs can be caused by two different factors:
the application’s source code structure, and the event signatures used for the
1 What constitutes different MPI calls for recording our event flow graphs is governed

by a configurable event signature in IPM. The signature usually consists of the name
of the call and its call site and can optionally also include the communication partner
rank and the transfer size.
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Fig. 1. Different cycle shapes in event flow graphs.

nodes of the graph. Irreducibility caused by unstructured programming (e.g.,
the use of goto), however, is nowadays rare and will become even rarer in the
future due to the adoption of more structured programming practices [22]. On
the other hand, irreducibility caused by the event signature used can always be
solved by changing the signature. If transfer size is used in the signature for
example, one single MPI call in the source code can be translated into different
nodes in the graph if such a call has different transfer sizes at runtime. Thereby,
generating sometimes irreducible cycles. However, this situation is also rare, and
the graph usually becomes reducible again by using the call name and call site
as event signature, because then each graph node maps exclusively to only one
MPI call in the source code.

Algorithms for graph cycle detection have been studied and used in the field
of compilers for years [12,20,21]. Our framework for graph analysis implements
the algorithm from [24]. This algorithm traverses the graph using a depth-first
search (DFS) and runs in almost linear time. It does not require any complicated
data structures as other cycle detection algorithms, and thus, it is much easier
to implement. After running the algorithm, loop header nodes (entry node in a
graph cycle) are identified and all loop nodes are labeled with their corresponding
header. If multi-entry loops (irreducible loops) are found, the graph is marked
as irreducible and the process ends.

Once nodes have been labeled, our framework knows for every graph node to
which loop it belongs, which loops are outermost, which are nested, etc. Thereby,
our analysis tool can provide detailed exclusive and inclusive loop metrics such
as percentage of MPI time over total loop time. Figure 2 shows the percentage
of MPI time across ranks in the main simulation loop for MiniFE, a finite-
element code. The MPI time is the inclusive total time for this outermost loop,
that is, the time for its nested loops is also included. The picture shows that
MiniFE suffers of imbalance in this loop as some processes spend around 20 %
of their time in MPI whereas some others less than 5 %. It is important to
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remark that the statistics on loops provided by our approach are automatically
obtained without any user involvement or source code modification. Our solution
utilizes the PMPI interface to intercept MPI calls, and the libunwind library to
determine their call sites.

The use of event flow graphs together with automatic loop detection opens
many possibilities for post-mortem performance analysis of MPI parallel appli-
cations. However, this topic is out of the scope of this article. More details in
the use of graphs for visual performance analysis of MPI applications can be
found in [2].

3.2 Runtime Loop Detection

The previous section has focused on the automatic post-mortem analysis of
graphs to detect the structure of an application, however, our mechanism can
also be used in real-time while applications run.

In order to minimize the amount of overhead introduced into the application,
our on-line loop detection mechanism is performed only once when the appli-
cation has reached a stable state. The application is considered stable when it
enters into an iterative phase in which its performance behavior presents minor
fluctuations. Most scientific applications arrive into this state when they start
executing their main simulation loop, which is executed for most of the running
time. In our case, this situation is reflected in the number of nodes in the event
flow graph. In other words, once the application reaches an iterative stable state,
the number of nodes in the graph does not change since the same MPI calls are
repeated over and over again. Figure 3 shows the number of nodes in the graph
during application execution for one process of different MPI applications. It can
be seen, for instance with MiniGhost, that after some short initialization time,
the number of nodes in the graph does not change during most of the execution
time since the application has entered its stable state. At the end of its execution,
the number of nodes in the graph increases again as the application exits the
main loop and performs some new MPI calls before finalizing. However, these
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Table 1. Overhead introduced by IPM over total application running time.

Metrics MiniGhost MiniFE GTC MiniMD BT LU

Ranks 96 144 64 192 144 128

% Overhead 0.9 % 0.65 % 1.06 % 1.10 % 0.81 % 1.2 %

new final nodes represent a minimal percentage over the total running time, and
thus, they are not important for performance analysis purposes.

To detect when an application becomes stable, IPM checks at regular inter-
vals if the graph has changed since the last time it was checked. When the graph
remains the same for a certain number of times, the graph is considered stable
and the loop detection mechanisms are triggered. This graph sampling interval
used by IPM as well as the number of times the graph has to remain identical
are configured by the user.

4 Experiments

In this section we demonstrate the ability of our system to automatically identify
the structure of an application while it runs. Moreover, we demonstrate how this
knowledge can be used to reduce the amount of tracing data collected by only
keeping information from a few representative iterations.

To this end, we run six different applications that represent typical scientific
codes: MiniGhost, MiniFE and MiniMD from the Mantevo project [17]; BT and
LU from the NAS Benchmarks [4]; and the GTC code [15]. The applications
were run in a Cray XE6 machine with 2 twelve-core AMD MagnyCours CPUs
at 2.1 GHz per node. The nodes had a total of 32 GB DDR3 memory and were
interconnected through a Cray Gemini network. The benchmarks were compiled
using Intel 12.1.5.

4.1 Overhead

Table 1 shows for each benchmark the percentage of overhead introduced by
IPM over the total application running time. This overhead includes intercept-
ing every MPI call, building the graph, and detecting the cycles in it. As can
be seen in the table, the applications are not perturbed much since the over-
head is very small, being always under 2 %. In addition, this overhead does not
increase with the number of cores used as the graph creation and structure detec-
tion mechanism are performed locally without any inter-process communication
required.

4.2 Usage Scenario

Collecting fine-grained information with tracing tools avoids the loss of micro-
scopic information that can occur with other summarization methods such as
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Fig. 4. Event flow graph and its hierarchical tree representation after loop detection.

profiling. However, detailed trace-based analysis for the whole lifetime of an
application is infeasible due to the scalability problems caused by the amount of
data generated.

Nevertheless, most MPI scientific applications are usually iterative algorithms
that repeat the same operations over time as the simulation evolves. Given this
iterative nature, applications exhibit a similar performance behavior across iter-
ations during their lifetime. Thus, keeping information on only a few iterations
of such a stable region should be sufficient to capture the overall application
behavior.

By means of detecting the application structure, we aim to identify at run-
time the repetitive pattern of the program, thereby, collecting information on a
few representative iterations only. This process works as follows. First, the corre-
sponding event flow graphs are built when the application reaches a stable state.
In other words, when the number of graph nodes remains stable and does not
change. Once the event flow graph has been built for each process, each graph
is analyzed to automatically detect and label its cycles. Then, IPM creates for
each graph one tree that depicts the hierarchical relation of the loops detected.
The root of the tree represents the process and every internal tree node corre-
sponds to a loop or an event in such a process. If two loops are nested, they
will be parent and child in the tree. These trees model naturally the hierarchical
relations among loops and allow IPM to check easily, among other things, if an
event belong to a certain loop, if a loop is nested within another, or if two loops
are nested within the same loop. Figure 4 presents an event flow graph with two
loops and how this information would be represented within IPM after the loop
detection.

As previously stated, the loop detection mechanisms are triggered once the
application enters into a stable state, that is, when the application starts iterating
over its main simulation loop. Therefore, in order to monitor some iterations of
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Table 2. Size comparisons between full traces and traces with 10 selected iterations.

Metric MiniGhost MiniFE GTC MiniMD BT LU

Ranks 96 144 64 192 144 128

Total iterations 60 200 200 2000 250 300

Total trace size 26 MB 77 MB 48 MB 555 MB 717 MB 7.7 GB

10 iterations size 4.4 MB 4.1 MB 1.3 MB 788 KB 29 MB 267 MB

% reduced 83 % 94.7 % 97.3 % 99.8 % 96 % 96.53 %

that main loop, IPM only has to wait for the event that is the loop header of
the current outermost loop being executed. In other words, an event that is the
header of a loop that hangs from the root of the constructed tree. Once this
event is intercepted, IPM starts the tracing to collect detailed information for
a certain number of iterations defined by the user. Afterwards, IPM stops the
tracing and the application continues its execution normally.

Table 2 shows a comparison of sizes between a full trace and a trace with a
few selected iterations for our various test applications. The table contains the
number of processes used, the total number of iterations for the full test case,
the total trace size for the full test, the trace size when tracing automatically
only 10 iterations, and the percentage of trace size reduction achieved. As can
be observed in the table, by keeping information on only a few iterations, we
can reduce the final trace size up to several orders of magnitude.

The current approach leaves room for some improvements though. For
instance, IPM could take into account some loop performance metrics before
turning on the tracing. Checking metrics such as instructions per cycle (IPC)
across iterations of the outermost loop could guarantee even more that the appli-
cation has reached its stable state. At the moment, the loop detection mechanism
and the selective tracing are triggered only once during the whole lifetime of the
application. Therefore, in cases where applications have several phases or various
outermost loops, our methodology will trace only one of them. It is planned in
our future work to solve this issue by triggering the selective tracing few times
during the execution, as well as providing the possibility to trigger the loop
detection explicitly with an API.

Although tracing just a few iterations provides detailed information while
reducing the amount of data collected, it always comes with an inevitable data
loss. Specially in punctual variations between iterations. Therefore, we performed
several experiments to measure the quality of our results, that is, we examined
how representative from the overall execution are the iterations automatically
selected by IPM. With that in mind, we used the CrayPat performance tool to
collect several statistics about the most important functions in MiniGhost. Then
we computed the same statistics from the reduced trace that contained only 10
iterations. Those statistics are the percentage of time spent in each call, and the
average of instructions and cycles per call. Table 3 compares the measurements
obtained with Craypat for the whole run with the measurements obtained from
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Table 3. Statistics per call for the most relevant functions in MiniGhost.

CrayPat IPM Trace

Function name Time % Kinstr KCycles Time % Kinstr KCycles

MG BSPMA DIAGS 5.70 % 401,476 558,737 5.42 % 394,140 552,064

MG STENCIL 3D27PT 80.8 % 120,886 199,126 79 % 120,864 199,397

MG ALLREDUCE SUM 12.10 % 14,052 29,822 12.96 % 14,432 29,818

the automatically reduced trace. As can be seen in the table, the differences
are very small (always under 2 %) and could be explained due to the different
overheads introduced by both tools, or by small variances between executions
or even across iterations. In any case, the results demonstrate that the trace
containing only a few selected iterations is representative of the overall behavior
of the application.

5 Related Work

Detection and analysis of parallel application structure is the topic of sev-
eral related works. The ScalaTrace [18] framework provides on-the-fly lossless
trace compression of MPI communication traces by detecting loops, or repeat-
ing events, and encoding them using RSDs [11]. Our approach differs in the fact
that whereas ScalaTrace detects loops for trace compression, our on-line loop
detection has more general purposes, from statistic aggregation to data filtering.
Our solution is highly customizable, allowing the generation of compressed full
traces and small uncompressed fine-grained traces.

The work of Gonzalez et al. [9,10] works on two-dimensional hardware counter
data derived from computational bursts, and employs a density based cluster-
ing approach to identify the SPMD structure of the application. Although this
approach allows to reduce the size of traces by collecting only relevant infor-
mation from a few iterations, it has no precise control over which part of the
code corresponds to a certain traced region. In contrast, our approach provides
fine-grained precision in delimiting loops within the application. In addition, the
use of burst clustering demands a more complex parallel software infrastructure
to be used in an on-line scenario [16].

The work of Casas et al. [6,7] utilizes spectral analysis techniques such as
wavelets to unveil the inner structure of parallel programs in performance traces.
Thereby, generating sub-traces that only contain a few representative iterations.
In addition, the tool can also find regions within the trace that are not usable
due to tool perturbation, e.g. flushing of tracing buffers to disk. Although this is
a good approach that helps the user to focus in relevant parts of the application
while reducing the trace size, it still requires the whole original post-mortem
trace. In contrast, our approach can be performed on-line while the applica-
tion runs.
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An approach that puts more focus on the communication structure is followed
by [3,19]. Repeated communication patterns are here first identified locally (on
a single process) and then grown globally by using string processing techniques
such as n-gram detection and suffix trees. The work of Alawneh et al. [3] further
attempts to group repeated patterns into homogeneous phases using information
theory concepts.

AutomaDeD [5,14] has similarities to our approach in that the application
execution is also represented as a set of states and the transitions between them.
However, AutomaDeD focuses on debugging and only records transition propa-
bilities between the states to create a Semi-Markov Model (SMM) of the appli-
cation execution. In contrast, our event flow graphs record the actual program
execution, allowing us to reproduce exactly the full sequence of events ordered
in time.

6 Future Work

Our current implementation captures information from several consecutive
iterations only once during the lifetime of an application. Nevertheless, this
mechanism can be easily extended to acquire information with more advanced
strategies. For instance, every time a certain condition such as the variation of
a particular performance parameter is fulfilled. IPM could keep track of metrics
such as instructions per cycle (IPC) on an iteration basis, and then trigger the
tracing every time there is a noticeable change of such a metric. Thereby, if an
application degrades during a long job we can have fine-grained snapshots at
several points in time. Furthermore, we want to extend the iteration selection
mechanism in order to automatically detect when an application has irregular
loop behavior or combined repetitive loop patterns. That is, the sequence of
events executed by the application is not regular and it changes from time to
time regarding current loop iteration, program state, or simulation phase. Our
current solution for selective tracing generates always a fixed number of consec-
utive iterations, therefore, we can lose irregular loop patterns if their frequency
of appearance is smaller than the fixed number of iterations traced.

In the present work, we have shown how we discover the structure of an
application across the time dimension, that is, detecting patterns (loops) in the
sequence of events performed by each process. However, our ongoing work is also
directed towards investigating the structure of applications across the process
dimension. We are studying the utilization of graphs to build a process signature
that could be clustered to detect processes with the same program behavior.
Thereby, we could reduce even more the amount of data collected as only data
from a few representative tasks could be kept.

Our current event flow graphs are focused in pure MPI applications, how-
ever, with the increase in the number of cores within computer nodes, hybrid
approaches such as MPI+OpenMP or MPI+PGAS are becoming more usual.
Thus, we want to provide our graphs with extensions to model such situa-
tions, for instance, having new graph nodes that represent OpenMP regions,
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or PGAS operations. Moreover, we want to study the utilization of graphs with
non-iterative applications, for instance, recursive codes or applications with task-
based parallelism.

7 Conclusion

This paper presents the use of event flow graphs together with cycle detection
algorithms to automatically detect the loop nesting structure of MPI parallel
applications. This loop structure can be extracted from any MPI program with-
out recompilation or modification of the source code.

We demonstrate how our work can be used, for instance, to automatically
compute post-mortem statistics that help users to better understand their appli-
cations, e.g., the distribution of time across loops, or the percentage of MPI
time spent in a certain loop. Nevertheless, the greatest strength of our structure
detection approach is that it can be performed with very low overhead while the
application runs. To that end, we present a test case where the structure of a
stencil code is extracted on-line while the program runs to intelligently filter the
performance data collected. By knowing the loop structure of an application, our
framework traces automatically only a small fraction of representative iterations,
reducing considerably the amount of data collected while keeping the overall per-
formance behavior of the application. Furthermore, the overhead introduced by
our mechanism is very small, being always under 2 % in our experiments.
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Abstract. When do you trust a performance model? More specifi-
cally, when can a particular model be used for a specific application?
Once a stochastic model is selected, its parameters must be determined.
This involves instrumentation, data collection, and finally interpretation;
which are very time consuming. Even when done correctly, the results
hold for only the conditions under which the system was characterized.
For modern, dynamic stream processing systems, this is far too slow
if a model-based approach to performance tuning is to be considered.
This work demonstrates the use of a Support Vector Machine (SVM) to
determine if a stochastic queueing model is usable or not for a particular
queueing station within a streaming application. When combined with
methods for online service rate approximation, our SVM approach can
select models while the application is executing (online). The method is
tested on a variety of hardware and software platforms. The technique is
shown to be highly effective for determining the applicability of M/M/1
and M/D/1 queueing models to stream processing applications.

1 Introduction

Stochastic modeling is essential to the optimization of performant stream
processing systems. Successful application of a stochastic queueing model often
requires knowledge of many factors that are unknowable without extensive appli-
cation and hardware characterization. Extensive characterization, is however
quite expensive (both in time and effort) when considering streaming applica-
tions of any appreciable size. Complicating matters further is that each stream-
ing application could require that multiple models be selected in order to fully
model its performance; each with its own assumptions and parameters that must
be quantified before use. Even when modeling assumptions are verified offline,
often they are broken by unpredictable behavior that can occur during execution.
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This paper proposes a machine learning method for classifying the reliability of
stochastic queueing models for stream processing systems.

Stream processing is a compute paradigm that views an application as a
set of compute kernels connected via communications links or “streams” (exam-
ple shown in Fig. 1). Stream processing is increasingly used by multi-disciplinary
fields with names such as computational-x and x-informatics (e.g., biology, astro-
physics) where the focus is on safe and fast parallelism of a specific applica-
tion. Many of these applications involve real-time or latency sensitive big data
processing necessitating usage of many parallel kernels on several compute cores.
Intrinsically stream processing comes with a high communications cost and
infrastructure overhead. Optimizing or reducing the communication within a
streaming application is often a non-trivial task, however it is central to the
widespread adoption of stream processing techniques.

Fig. 1. The top image is an example of a simple streaming system with two compute
kernels (labeled A & B). Each kernel could be assigned to any number of compute
resources depending on the platform (e.g., processor core, graphics engine). The bottom
image is the resulting queue with arrival process A (emanating from compute kernel A)
and server B. For more complex systems this becomes a queueing network.

Streams allocated within a streaming application can be modeled as a sto-
chastic queueing network for which there are well understood relationships
between input arrival rates, computational service rates, queue occupancies, etc.,
in the steady state. Understanding the streaming application’s queueing network
is essential to its optimization. Streaming systems such as RaftLib [4], can spawn
tens to hundreds of queues; each potentially with a unique environment and char-
acteristics to model. Hand selection of performance models for these applications
is clearly impractical. Offline modeling attempts are often thwarted by dynamic
characteristics present within the system that were not included in the model.
This paper outlines what is perhaps an easier route. Utilizing 76 features easily
extracted from a system along with a streaming approximation of non-blocking
service rate, we show that a Support Vector Machine (SVM) can identify where
a model can and cannot be used. Results are shown that demonstrate that this
model is generalizable in trained form to multiple operating systems and hard-
ware types. In addition to testing the trained model on micro-benchmark data,
two full streaming applications are utilized: matrix multiplication and Rabin-
Karp string search.
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2 Methodology

For most stream processing systems (including RaftLib) the queues between
compute kernels are directly implied as a result of application construction.
In order to use models for optimizing the queues within a stream process-
ing application the service rate must be determined. Work from Beard and
Chamberlain [3] enables the online determination of mean service rates for
kernels. Working under the assumption that accurate determination of service
distributions will be too expensive to be practical, we instead learn the applica-
bility of two distinct queueing models based on features (shown in Fig. 2) that
are knowable during execution with low overhead. Once trained, the parameters
are supplied to a SVM which will label each parameter combination as being
“usable” or “not” for the stochastic queuing model (in our case the M/D/1 and
M/M/1 models) for which the SVM is trained.

Fig. 2. Word cloud depicting features used for machine learning process with the font
size representing the significance of the feature as determined by [8].

A SVM is a method to separate a multi-dimensional set of data into two
classes by a separating hyperplane. It works by maximizing the margin between
the hyperplane and the support vectors closest to the plane. The theory behind
these are covered by relevant texts on the subject [10,15]. An SVM labels an
observation with a learned class label based on the solution to Eq. (1) [5,9] (the
dual form is given, e is a vector of ones of length l, Q is an l × l matrix defined
by Qi,j ← yiyjK(xi, xj) K is a kernel function, specific symbolic names match
those of [6]). A common parameter selected to optimize the performance of the
SVM is the penalty parameter, C, discussed further in Sect. 2.2.

min
α

1
2αTQα − eT α

subject to 0 ≤ αi ≤ C, i = 1, . . . , l,
(1)

K(x, y) = e−γ||x−y||2 , y > 0. (2)
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A Radial Basis Function (RBF, [13], Eq. (2)) is used to map attributes to
features. The parameter γ is optimized separately in order to maximize the per-
formance of the SVM/Kernel combination. This work does not seek to add new
techniques to SVM or machine learning theory, rather it is focused on expand-
ing the application of SVMs to judging the reliability of stochastic performance
models for streaming systems.

The stochastic mean queue occupancy models under consideration by our
SVM are intended for systems at steady state. We apply these models to non-
steady state applications with steady state behavior over small periods of time
(i.e., they have multi-phase distributions). Applications whose behavior is too
erratic to have any steady state behavior over any period of time are not good
candidates for these models or our method. When testing the SVM we will test
with applications that do exhibit steady state behavior and we discuss how this
changes for applications whose distributions are more variable. Architectural
features of a specific platform such as cache size are used as features for this
work. As such we assume that we can find them either via literature search or
directly by querying the hardware. Platforms where this information is unknown
are avoided, however a surfeit of such platforms exists (see Table 1).

Implicit within most stochastic queueing models (save for the circumstance
of a deterministic queue) is that ρ < 1 to obtain a finite queue. In this work, it is
expected that the SVM should be able to find this relationship based upon the
training process. It is shown in Sect. 3 that this is indeed the case. If deciding
on a queueing model were as simple as selecting one class for ρ ≥ 1 and another
for ρ < 1 then the method described in this paper would be relatively incon-
sequential. However we also assume that the SVM is not explicitly told what
the actual service process distributions are of the compute kernels modulating
data arrival and service so this relationship is not quite so binary. It is also
shown in the results that training the SVM with broader distributions slightly
decreases the overall classification accuracy while increasing the generalizability
of the trained SVM.

In order to train and test the SVM we use a set of micro-benchmark and full
benchmark streaming applications (described below). All are authored using the
RaftLib library in C++ and compiled using g++ using the -01 optimization flag.

A micro-benchmark (with the topology shown in Fig. 1) has the advantage of
having a known underlying service distribution for both compute kernels A and B.
A synthetic workload for each compute kernel is composed of a simple busy-wait
loop whose looping is dependent on a random number generator (either Expo-
nential, Gaussian, Deterministic, or a mixture of multiple random distributions
are produced). Simple workloads similar to those used within the real applica-
tions also constitute up to 5% of the micro-benchmark loop workloads. Data
exiting the servers are limited to one 8-byte item per firing.

Dense matrix multiply (C = AB) is a staple of many computational tasks.
Our implementation divides the operation into a series of dot-product operations.
Matrix rows and columns are streamed to n parallel dot-product kernels (see
Fig. 3 for the topology). The result is streamed to a reducer kernel (at right)
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Fig. 3. Matrix multiply application (left image). The first kernel reads both matrices to
be multiplied and streams the data to an arbitrary (n) number of dot product kernels.
The final kernel reduces the input from the dot to a multiplied matrix. Rabin-Karp
matching algorithm (right image). The first compute kernel (RFD, at left) reads the
file to be searched, hashes the patterns to search and distributes the data to n “rolling-
hash” kernel(s). Next are j, j ≤ n verification kernel(s) to guard against matches due to
hash collision. The final kernel (at right) is a reducer which consolidates all the results.

which re-forms the output matrix, C. This application differs from the micro-
benchmark in that it uses data read from disk and performs multiple operations
on it. As with the micro-benchmark, it has the advantage of having a continuous
output stream from both the matrix read and dot-product operations. The data
set used is a single matrix (10000 × 10000) of single precision floating point
numbers produced by a uniform random number generator.

The Rabin-Karp [12] algorithm is classically used to search a text for a set of
patterns. The implementation divides the text amongst n parallel rolling-hash
functions whose output is streamed to j parallel verification kernels. The final
kernel simply reduces the output from the verification kernel(s), returning the
byte position of each match (see Fig. 3). The data set for our tests is 2 GB of
the phrase “foobar.”

2.1 Data Collection and Hardware

Using benchmarking the applications enumerated above, we were able to collect
a variety of features from each platform using a myriad of methods ranging from
system calls through architecture-specific methods. Service rate is also used,
which is approximated online via methods [3]. The number of features utilized
prohibit their complete enumeration, however some of the more pertinent ones
include: service rate, instruction set architecture, cache hierarchy sizes, operat-
ing system (OS) and version, scheduler, and main memory available (further
enumerated in Fig. 2).

To collect mean queue occupancy, a separate monitor thread is used for each
queue to sample the occupancy over the course of the application. For both real
and synthetic applications, the service times of compute kernels are verified via
monitoring the arrival and departure rate of data from each kernel with a non-
blocking infinite queue (implemented by ignoring the read and write pointers).
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All timing is performed using the POSIX.1–2001 clock gettime() function with
a real time system clock using the setup described in [2].

Relying on measurements from only one hardware type or operating system
would undoubtedly bias any classification algorithm. To reduce the chance of bias
for one particular platform, empirical data are collected from platforms with the
processors and operating systems listed in Table 1. For all tests either the Linux
or Apple OS X versions of the completely fair scheduler are used. To unbias the
results further, task parallel sections of each application are replicated varying
numbers of times (up to 2x the number of physical processor cores available).
Application kernels are run “un-pinned.” That is, the compute core which each
executes on is assigned by the operating system and not by the user. Presum-
ably more stable results could be obtained by “pinning” each compute kernel to
dedicated cores, however this is not a realistic environment for many platforms.
Micro-benchmark data are collected from all of the platforms in Table 1, Matrix
multiply and Rabin-Karp Search data are collected from platforms 2, 8, 10,
and 15.

In all, approximately 45,000 observations were made for the micro-benchmark
application. This data is divided using a uniform random process into two sets
with a 20/80 split. The set with 20% of the data is used for training the SVM
and the 80% is set aside as a testing set. To give an idea of the range with
which the SVM is trained, the micro-benchmark training set has the following
specifications: approximately 8,200 observations, server utilization ranges from
close to zero to greater than one and distributions vary widely (a randomized mix
of Gaussian, Deterministic and the model’s expected Exponential Distribution
as well as some mixture distributions). For each of the other two applications, the
SVM trained exclusively on the training micro-benchmark data (same training
set as above) is used, with classification results reported in Sect. 3.

2.2 SVM and Training

Before the SVM can be trained as to which set of attributes to assign to a class,
a label must be provided. Our two classes are “use” and “don’t use” which are
encoded as a binary one and zero respectively. The SVM is trained to identify
one stochastic model at a time (i.e., either “use” or “don’t use” for M/M/1
or M/D/1 but not both at the same time). In order to label the dataset as to
which queueing model to use, a fixed difference is used. If the actual observed
queue occupancy is within n ← 5 items, then the model is deemed acceptable
otherwise false. A percentage based function for l shows a similar trend. After
sampled mean queue occupancy is used for labeling purposes, it is removed from
the data set presented to the SVM.

Feature selection is a very hot topic of research [11]. There are several meth-
ods that could be used including (but not limited to) Pearson correlation coeffi-
cients, Fisher information criterion score [8], Kolmogorov-Smirnov statistic [7].
Our selected feature set has a total of 35 linearly independent variables. The rest
of the features exhibit weak non-linear dependence between variables. Extensive
cross-validation followed by evaluating the Fisher information criterion score
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Table 1. Summary of processor types and operating systems used for both the micro-
benchmark and application data collection.

Platform Processor type OS Kernel version

P1 Intel Xeon CPU E5-2650 Linux 2.6.32

P2 Quad-Core AMD Opteron 2376 Linux 2.6.32

P3 Intel Xeon X5472 Darwin (OS X) 13.1.0

P4 Dual-Core AMD Opteron 2218 Linux 2.6.32

P5 ARM1176JZF-S Linux 3.10.37

P6 Dual-Core AMD Opteron 2222 SE Linux 3.0.27

P7 IBM Power PC 970 Linux 3.13.0

P8 Six-Core AMD Opteron 2431 Linux 3.0.27

P9 Intel Xeon E5345 Linux 2.6.32

P10 Intel Xeon CPU E3-1225 Linux 3.13.9

P11 Dual Core AMD Opteron 875 Linux 2.6.32

P12 AMD Opteron 6136 Linux 2.6.32

P13 ARM Cortex-A9 Linux 3.3.0

P14 Intel Core i5 M540 Darwin (OS X) 13.1.0

P15 AMD Opteron 6272 Linux 2.6.32

P16 Six-Core AMD Opteron 2435 Linux 3.0.27

P17 Dual Core AMD Opteron 280 Linux 2.6.32

P18 Quad-Core AMD Opteron 2387 Linux 2.6.32

P19 Dual-Core AMD Opteron 2220 Linux 2.6.32

P20 Dual-Core AMD Opteron 8214 Linux 2.6.32

showed that the training data relied extensively on 67 of our candidate features.
Most notably the variables that indicated the type of processor, operating sys-
tem kernel version and cache size ranked highest followed closely by amount of
main memory and total number of processes on the system. During the training
phase we noted that despite the Fisher information criteria results, the additional
9 features provided a significant increase in correct classification, therefore we
decided to include all 76 as opposed to the reduced set selected via statistical
feature selection.

For all data sets (and all attributes contained in each set) the values are
linearly scaled in the range [−1000, 1000] (see [14]). This causes a slight loss of
information, however it does prevent extreme values from biasing the training
process and reduces the precision necessary for the representation. Once all the
data are scaled, there are a few SVM specific parameters that must be optimized
in order to maximize classification performance (γ and C). We use a branch and
bound search for the best parameters for both the RBF Kernel (γ ← 4) and for
the penalty parameter (C ← 32768). The branch and bound search is performed
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by training and cross-validating the SVM using various values of γ and C for
the training data set discussed above. The SVM framework utilized in this work
is sourced from LIBSVM [6].

3 Results

To evaluate how effective a SVM is for model reliability classification we’ll com-
pare the class label predicted by the SVM compared to that of ground truth
as determined by the labeling process. If the queueing model is usable and the
predicted class is “use” then we have a true positive (TP). Consequently the
rest of the error types true negative (TN), false positive (FP) and false negative
(FN) follow this pattern.

The micro-benchmark data (Microtest) consists of queues whose servers have
widely varying distributions and server utilizations. Utilization ranges from close
to zero through greater than one (i.e., the queues are always full). As enumerated
in Fig. 4, the SVM correctly predicts (TP or TN) 88.1% of the test instances for
the M/M/1 model and 83.4% for the M/D/1 model. Overall these results are
quite good compared to manual selection [1]. Not only do these results improve
upon manual mean queue occupancy predictions, they are actually faster since
the user doesn’t have to evaluate the service time and arrival process distribu-
tions, and they can be done online while the application is executing.

Fig. 4. Summary of overall classification rate by error category. In general the correct
classification is quite high TP + TN > 83 % in all cases.

Server utilization (ρ) is a classic and simple test to divine if a mean queue
length model is suitable. At high ρ it is assumed that the M/M/1 and M/D/1
models can diverge widely from reality. It is therefore assumed that our SVM
should be able to discern this intuition from its training without being given
the logic via human intervention. Figure 5 shows a box and whisker plot for
the error types separated by ρ. As expected the middle ρ ranges offer the most
true positive results. Also expected is the correlation between high ρ and true
negatives. Slightly unexpected was the relationship between ρ and false positives.
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Fig. 5. Summary of true positive (TP), true negative (TN), false positive (FP), false
negative (FN) classifications for the M/M/1 (left) and M/D/1 (right) queueing models
for the microbenchmark’s single queue by server utilization ρ demonstrating empirically
that the SVM can recognize the instability of these models at high ρ.

Directly addressing the performance and confidence of the SVM is the prob-
ability of class assignment. Given the high numbers of TP and TN it would be
useful to know how confident the SVM is in placing each of these feature sets into
a category. Probability estimates are not directly provided by the SVM, however
there are a variety of methods which can generate a probability of class assign-
ment [16]. We use the median class assignment probability for each error category
as it is a bit more robust to outliers than the mean. For the M/M/1 model we
have the following median probabilities: TP = 99.5%, TN = 99.9%, FP = 62.4%
and FN = 99.8%. The last number must be taken with caution given that there
are only 79 observations in the FN category for M/M/1. For the M/M/1 FP
it is good to see that these were low probability classifications on average, per-
haps with more training and refinement these might be reduced. For the M/D/1
classification, probabilities mirror those of the M/M/1: TP=95.9%, TN=95.8%,
FP=50.9%, FN=85.3%. The same qualification applies to the M/D/1 trained
SVM for the FN probabilities as the FN category only contains 39 examples.
Calculating probabilities is expensive relative to simply training the SVM and
using it. It could however lead to a way to reduce the number of false posi-
tives. Placing a limit of p = .65 for positive classification reduces false positives
by an additional 95% for the micro-benchmark data. Post processing based on
probability has the benefit of moving this method from slightly conservative
to very conservative if high precision is required, albeit at a slight increase in
computational cost.

The full application results are consistent with those of the micro-benchmark
applications. Each application is run with a varying number of compute kernels
with its queue occupancies sampled as described in Sect. 2.1. Table 2 breaks
the application results into categories by model and application. Due to the
processor configuration and high data rates with this application all examples
are tested with a high server utilization. One trend that is not surprising is the
lack of true positives within Table 2. The application as designed has very high
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throughput, consequently all servers are highly utilized. In these cases (ρ close
to 1), it is expected that neither of these models is usable. As is the case for the
micro-benchmark data, the overall correct classification rates are high for both
applications and models tested.

Table 2. % SVM classification rate for application data.

Application Model TP TN FP FN Correct classification

Matrix multiply M/M/1 17.1 % 75.2 % 5.4 % 2.4 % 92.3 %

Matrix multiply M/D/1 5.4 % 83.9 % 4.6 % 6.1 % 89.3 %

Rabin-Karp M/M/1 0.0 % 86.0 % 14.0 % 0.0 % 86.0 %

Rabin-Karp M/D/1 0.0 % 87.4 % 12.6 % 0.0 % 87.4 %

One potential pitfall of this method is the training process. What would hap-
pen if the model is trained with too few distributions and configurations. To test
this a set of the training data from a single distribution (the Exponential) is
labeled in order to train another SVM explicitly for the M/M/1 model. We then
apply this to two differing test sets. The first is data drawn from an exponen-
tial distribution and the second is data drawn from many distributions (training
data is excluded from all test sets). The resulting classification rates are shown in
Table 3. Two trends are apparent: specifically training with a single distribution
increases the accuracy when attempting to classify for only the distribution for
which the model was trained, and conversely lack of training diversity increases
the frequency of false positives when attempting use the SVM to classify mod-
els with distributional assumptions that it have not been trained for. Unlike
the false positives seen in prior sets, these are high confidence predictions that
post processing for classification probability will not significantly improve. One
thing is clear, training with as many service rate distributions as possible and
as many configurations tends to improve the generalizability of the SVM for our
application.

Table 3. % for SVM predictions with SVM trained only with servers having an expo-
nential distribution and tested as indicated.

Dist # obs Model TP TN FP FN Correct classification

Exp. 3249 M/M/1 53.0 % 31.2 % 15.7 % 0.1 % 84.2 %

Many 6297 M/M/1 55.8 % 0.0 % 44.2 % 0.0 % 55.8 %

Our method is currently only applicable to queues with sufficient steady state
behavior. To show what happens when a local steady state is not reached we
will use the Rabin-Karp string searching kernel and change the packet to be
extremely large proportionate to the size of the data set. This results in fewer
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data packets sent from the source kernel to the “rolling-hash” kernel and no
steady state. The resulting observed queue occupancies are much lower than
what is calculated by either queueing model. Applying an M/M/1 mean queue
occupancy model to this application will still result in a queue which is sized for
the mean potential occupancy. Table 4 shows the result of attempting to evaluate
the SVM against a queue that has not reached steady state. As a consequence
of the streaming streaming service rate approximation method, it is knowable
when the application has reached at least a local steady state and this condition
can generally be avoided.

Table 4. % for SVM evaluated against a Rabin-Karp string search algorithm that has
not reached steady state.

Model #obs TP TN FP FN Correct classification

M/M/1 120 21.6 % 41.5 % 20.7 % 16.2 % 63.1 %

M/D/1 120 11.1 % 44.4 % 44.4 % 0.0 % 55.5 %

4 Conclusions and Future Work

We have shown a proof of concept for using a SVM to classify a stochastic
queuing model’s reliability for a particular queue within a streaming application
that is usable online. This enables fast online modeling and re-optimization of
stream processing systems. Across multiple hardware types, operating systems,
and applications it has been shown to produce fairly good reliability estimates
for both the M/M/1 and M/D/1 stochastic queueing models.

This work chose to ignore the actual distribution of each compute kernel.
What would happen if we knew the underlying distribution of the service and
arrival process for each compute kernel in the system? Manually determining the
distributions of each compute kernel and retraining the SVM with this knowl-
edge for the M/M/1 model we arrive at a 96.6% correct classification rate. This
works just as well for the M/D/1 model where we observed 96.4% of the queues
being correctly classified as either “use” or “don’t use.” One obvious path for
future work is faster and lower overhead process distribution estimation. Math-
ematically this can be done with the method of moments, what is left is an
engineering challenge.

Empirical data could also be seen as a weakness of our approach since it
is obviously finite in its coverage of the combinatorial plethora of possible con-
figurations. We trained our SVM using as wide a variety of configurations as
possible, however the permutations of possible application configurations are
quite high. Other combinations of applications could provide slightly differing
results. Our choices of attributes is limited to what the hardware and operating
system could provide. Omniscient knowledge of the system would obviously be
helpful, it is possible that future platforms will provide more robust identifica-
tion and monitoring features which could improve the training and classification
process.
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In conclusion we have demonstrated an automated way to classify the relia-
bility of stochastic queueing models for streaming systems. We have shown that
it can be done, and that in many cases it works quite well for the applications and
configurations tested. There are several avenues for future work to improve upon
what is demonstrated here ranging from improved instrumentation to improved
kernel functions.
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Abstract. The problem of task scheduling with communication delays
(P |prec, cij |Cmax) is NP-hard, and therefore solutions are often found
using a heuristic method. However, an optimal schedule can be very use-
ful in applications such as time critical systems, or as a baseline for the
evaluation of heuristics. Branch-and-bound algorithms such as A* have
previously been shown to be a promising approach to the optimal solving
of this problem, using a state-space model which we refer to as exhaus-
tive list scheduling. However, this model suffers from the possibility of
producing high numbers of duplicate states. In this paper we define a
new state-space model in which we divide the problem into two distinct
subproblems: first we decide the allocations of all tasks to processors,
and then we order the tasks on their allocated processors to produce a
complete schedule. This two-phase state-space model offers no potential
for the production of duplicates. An empirical evaluation shows that the
use of this new state-space model leads to a marked reduction in the
number of states considered by an A* search in many cases, particularly
for task graphs with a high communication-to-computation ratio. With
additional refinement, and the development of specialised pruning tech-
niques, the performance of this state-space model could be improved.

1 Introduction

In order to use the full potential of a multiprocessor system in speeding
up task execution, efficient schedules are required. In this work, we address
the classic problem of task scheduling with communication delays, known as
P |prec, cij |Cmax using the α|β|γ notation [11]. The problem involves a set of
tasks, with associated precedence constraints and communication delays, which
must be scheduled such that the overall finish time (schedule length) is min-
imised. The optimal solving of this problem is well known to be NP-hard [7], so
that the amount of work required grows exponentially as the number of tasks
is increased. For this reason, many heuristic approaches have been developed,
trading solution quality for reduced computation time [3,5,9,12]. Unfortunately,
the relative quality of these approximate solutions cannot be guaranteed, as no
α-approximation scheme for the problem is known [2].

Although the NP-hardness of the problem usually discourages optimal solv-
ing, an optimal schedule can give a significant advantage in time critical systems
c© Springer-Verlag Berlin Heidelberg 2015
J.L. Träff et al. (Eds.): Euro-Par 2015, LNCS 9233, pp. 97–108, 2015.
DOI: 10.1007/978-3-662-48096-0 8



98 M. Orr and O. Sinnen

or applications where a single schedule is reused many times. Optimal solutions
are also necessary in order to evaluate the effectiveness of a heuristic scheduling
method. Branch-and-bound algorithms have previously shown promise in effi-
ciently finding optimal solutions to this problem [8], but the state-space model
used, exhaustive list scheduling (ELS), was prone to the production of duplicate
states. This paper presents a new state-space model, in which the task scheduling
problem is tackled in two distinct phases: first allocation, and then ordering. The
two-phase state-space model (abbreviated AO) does not allow for the possibility
of duplicate states.

In Sect. 2, background information is given, including an explanation of the
task scheduling model, an overview of branch-and-bound algorithms, and a
description of the ELS model. Section 3 describes the new AO model, and how
a branch-and-bound search is conducted through it. Section 4 explains how the
new model was evaluated by comparison with the old one, and presents the
results. Finally, Sect. 5 gives the conclusions of the paper and outlines possible
further avenues of study.

2 Background

2.1 Task Scheduling Model

The specific problem that we address here is the scheduling of a task graph
G = {V,E,w, c} on a set of processors P . G is a directed acyclic graph wherein
each node n ∈ V represents a task, and each edge eij ∈ E represents a required
communication from task ni to task nj . The computation cost of a task n ∈ V
is given by its positive weight w(n), and the communication cost of an edge
eij ∈ E is given by the non-negative weight c(eij). The target parallel system for
our schedule consists of a finite number of homogeneous processors, represented
by P . Each processor is dedicated, meaning that no executing task may be
preempted. We assume a fully connected communication subsystem, such that
each pair of processors pi, pj ∈ P is connected by an identical communication
link. Communications are performed concurrently and without contention. Local
communication (from pi to pi) has zero cost.

Our aim is to produce a schedule S = {proc, ts}, where proc(n) allocates
the task to a processor in P , and ts(n) assigns it a start time on this processor.
For a schedule to be valid, it must fulfill two conditions for all tasks in G. The
Processor Constraint requires that only one task is executed by a processor at
any one time. The Precedence Constraint requires that a task n may only be
executed once all of its predecessors have finished execution, and all required
data has been communicated to proc(n). The goal of optimal task scheduling is
to find such a schedule S for which the total execution time or schedule length
sl(S) is the lowest possible.

It is useful to define the concept of node levels for a task graph [9]. For a
task n, the top level tl(n) is the length of the longest path in the task graph that
ends with n. This does not include the weight of n, or any communication costs.
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Similarly, the bottom level bl(n) is the length of the longest path beginning with
n, excluding communication costs. The weight of n is included in bl(n).

2.2 Branch-and-Bound

The term branch-and-bound refers to a family of search algorithms which are
widely used for the solving of combinatorial optimisation problems. They do this
by implicitly enumerating all solutions to a problem, simultaneously finding an
optimal solution and proving its optimality [1]. A search tree is constructed in
which each node (usually referred to as a state) represents a partial solution
to the problem. From the partial solution represented by a state s, some set
of operations is applied to produce new partial solutions which are closer to a
complete solution. In this way we define the children of s, and thereby branch.
Each state must also be bounded : we evaluate each state s using a cost function f ,
such that f(s) is a lower bound on the cost of any solution that can be reached
from s. Using these bounds, we can guide our search away from unpromising
partial solutions and therefore remove large subsets of the potential solutions
from the need to be fully examined.

A* is a particularly popular variant of branch-and-bound which uses a best-
first search approach [4]. A* has the interesting property that it is optimally
efficient; using the same cost function f , no search algorithm could find an
optimal solution while examining fewer states. To achieve this property, it is
necessary that the cost function f provides an underestimate. That is, it must
be the case that f(s) ≤ f∗(s), where f∗(s) is the true lowest cost of a complete
solution in the subtree rooted at s. A cost function with this property is said to
be admissable.

2.3 Exhaustive List Scheduling

Previous branch-and-bound approaches to optimal task scheduling have used a
state-space model that is inspired by list scheduling algorithms [8]. States are
partial schedules in which some subset of the tasks in the problem instance have
been assigned to a processor and given a start time. At each branching step,
successors are created by putting every possible ready task (tasks for which all
parents are already scheduled) on every possible processor at the earliest possible
start time. In this way, the search space demonstrates every possible sequence of
decisions that a list scheduling algorithm could make. This branch-and-bound
strategy can therefore be described as exhaustive list scheduling.

Branch-and-bound works most efficiently when the subtrees produced when
branching are entirely disjoint. Another way of stating this is that there is only
one possible path from the root of the tree to any given state, and therefore there
is only one way in which a search can create this state. When this is not the
case, a large amount of work can be wasted: the same state could be expanded,
and its subtree subsequently explored, mulitple times. Avoiding this requires
doing work to detect duplicate states, such as keeping a set of already created
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states with which all new states must be compared. This process increases the
algorithm’s need for both time and memory.

Unfortunately, the ELS strategy creates a lot of potential for duplicated
states [10]. This stems from two main sources: firstly, since the processors are
homogeneous, any permutation of the processors in a schedule represents an
entirely equivalent schedule. This means that for each truly unique complete
schedule, there will be |P |! equivalent complete schedules in the state space.
This makes it very important to use some strategy of processor normalisation
when branching, such that these equivalent states cannot be produced. The other
source of duplicate states is more difficult to deal with. When tasks are indepen-
dent of each other, the order in which they are selected for scheduling can be
changed without affecting the resulting schedule. This means there is more than
one path to the corresponding state, and therefore a potential duplicate. The
only way to avoid these duplicates is to enforce a particular sequence onto these
scheduling decisions. Under the ELS strategy, however, no method is apparent in
which this could be achieved while also allowing all possible legitimate schedules
to be produced.

3 Duplicate-Free State-Space Model

Both sources of duplicate states can be eliminated by adopting a new state-space
model (AO), in which the two dimensions of task scheduling are dealt with sep-
arately. Rather than making all decisions about a task’s placement simultane-
ously, the search proceeds in two stages. In the first stage, we decide for each
task the processor to which it will be assigned. We refer to this as the allocation
phase. The second stage of the search, beginning after all tasks are allocated,
decides the start times of each task. Given that each processor has a known set
of tasks allocated to it, this is equivalent to deciding on an ordering for each
set. Therefore, we refer to this as the ordering phase. Once the allocation phase
has determined the tasks’ positions in space, and the ordering phase has deter-
mined the tasks’ positions in time, a complete schedule is produced. Essentially,
we divide the problem of task scheduling into two distinct subproblems, each of
which can be solved separately using distinct methods.

3.1 Allocation

In the allocation phase, we wish to allocate each task to a processor. Since the
processors in our task scheduling problem are homogeneous, the exact processor
on which a task is placed is unimportant. What matters is the way the tasks are
grouped on the processors. The problem of task allocation is therefore equivalent
to the problem of producing a partition of a set. A partition of a set X is a set
of non-overlapping subsets of X, such that the union of the subsets is equal
to X. In other words, the set of all partitions of X represents all possible ways
of grouping the elements of X. Applying this to our task scheduling problem,
we find all possible ways in which tasks could be grouped on processors. In the
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allocation phase, we are therefore searching for an optimal partition of the set V ,
consisting of all tasks in our task graph. The search is conducted by constructing
a series of partial partitions of V . A partial partition A of V is defined as a
partition of a set V ′, V ′ ⊂ V [6]. At each level of the search we expand the subset
V ′ by adding one additional task, until V ′ = V and all tasks are allocated. At
each stage, the task n selected can be placed into any existing set a ∈ A, or
alternatively, a new set can be added to A containing only n.

A search using this method has the potential to produce every possible par-
tition of V , and there is only one possible path to each partition. In this way, we
remove the first source of duplicates: there is no possibility of producing alloca-
tions that differ from each other only by the permutation of processors. If we are
allocating tasks to a finite number of processors, we simply limit the number of
sets allowed in a partial partition to the same number. This has no effect other
than to reduce the search space by disregarding partitions consisting of a larger
number of sets (Fig. 1).

Fig. 1. Branching in the allocation state-space with a maximum of two processors

Allocation Heuristic. In order to guide our branch-and-bound search towards
an optimal partition, we need a heuristic by which to determine f -values for
each state s. In the case of allocation, there are two crucial types of information
we can obtain from a partial partition A which allow us to determine a lower
bound for the length of a resulting schedule. The first, and simplest, is the total
computational weight of the tasks in each grouping. Even without waiting for
communication, each processor must take at least the sum of the computation
times of its assigned tasks to finish. The length of the overall schedule must
therefore be at least as long as the time needed for the most heavily loaded
processor to perform its computations:

fload(s) = maxa∈A

{
∑

n∈a

w(n)

}

The second bound derives from our knowledge of which communication costs
must be incurred, and is obtained from the length of the allocated critical path
of the task graph; that is, the longest path through the task graph given the
particular set of allocations. The critical path as calculated only includes the
weights of edges for which both tasks have been allocated. If two tasks are
allocated to the same processor, an edge between them is considered to have
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a length of zero and does not extend the critical path. However, if they are
allocated to different processors, the communication cost is incurred and the
length of the critical path may increase. The allocated critical path represents
the longest sequence of computations and communications that we know must
occur given this allocation. Therefore, again, the resulting schedule must be at
least as long:

facp(s) = maxn∈V ′ {tla(n) + bl(n)}
Since we want the tightest bound possible, the maximum of these two bounds

is taken as the final f -value:

falloc(s) = max{fload(s), facp(s)}
By their nature, these two bounds oppose each other; lowering one is likely to

increase the other. The shortest possible allocated critical path can be trivially
obtained simply by allocating all tasks to the same processor, but this will cause
the total computational weight of that processor to be the maximum possible.
Likewise, the lowest possible computational weight on a single processor can be
achieved simply by allocating each task to a different processor, but this means
that all communication costs will be incurred and therefore the allocated critical
path will be the longest possible. Combining these two bounds guides the search
to find the best possible compromise between computational load-balancing and
the elimination of communication costs.

3.2 Ordering

In the ordering phase, we begin with a complete allocation, and our aim is to
produce a complete schedule S. After giving an arbitrary ordering to both the
sets in A and the processors in P , we can define the processor allocation in
S such that n ∈ ai =⇒ proc(n) = pi. Our remaining task is to determine
the optimal start time for each task. Given a particular ordering of the tasks
n ∈ pi, the best start time for each task is trivial to obtain, as it is simply the
earliest it is possible for that task to start. To complete our schedule we therefore
only need to determine an ordering for each set of tasks pi ∈ P . Our search
could proceed by enumerating all possible permutations of the tasks within their
processors.However, it is likely that many of the possible permutations do not
describe a valid schedule. This will occur if any task is placed in order after one
of its descendants (or before one of its ancestors).

In order to produce only valid orderings, an approach inspired by list schedul-
ing is taken. In this variant, however, each processor pi is considered separately,
with a local ready list R(pi). Initially, a task n ∈ pi is said to be locally ready if
it has no predecessors also on pi. At each step we can select a task n ∈ R(pi) and
place it next in order on pi. Those tasks which have been selected and placed
in order are called ordered, while those which have not are called unordered. In
general, a task n ∈ pi belongs to R(pi) if it has no unordered predecessors also
on pi. After a task n has been ordered, each of its descendants on pi must be
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checked to see if this condition has now been met, in which case they will be
added to R(pi). Following this process to the end, we can produce any possible
valid ordering of the tasks on pi.

Producing a full schedule requires that this process be completed for all
processors in P . At each level of the search, we can select a processor pi ∈ P
and order one of its tasks. The order in which processors are selected can be
decided arbitrarily; however, in order to avoid duplication, it must be fixed by
some scheme such that the processor selected can be determined solely by the
depth of the current state. The simplest method to achieve this is to proceed
through the processors in order: first order all the tasks on p1, then all the tasks
on p2, and so on to pn. Another method is to alternate between the proces-
sors in a round-robin fashion. Unlike in exhaustive list scheduling, tasks are not
guaranteed to be placed into the schedule in topological order. When a task is
ordered, its predecessors on other processors may still be unordered, and there-
fore their start times may not be known. During the ordering process, therefore,
a task n may only be given an estimated earliest start time eest(n). For all
unordered tasks, eest(n) = tla(n). For ordered tasks, we first define prev(n) as
the task ordered immediately before n. We also define the estimated data ready
time edrt(nj) = maxni∈parents(nj) {eest(ni) + w(ni) + c(eij)}. Where prev(n)
does not exist, eest(n) = edrt(n). Otherwise, eest(n) = max(eest(prev(n)) +
w(prev(n)), edrt(n)).

In this way, we have solved the problem of duplicates arising from making the
same decisions in a different order. By allocating each task to a processor ahead
of time, and enforcing a strict order on the processors, it is no longer possible
for these situations to arise. Where before we might have placed task B on p2

and then task A on p1, we now must always place task A on p1 and then task
B on p2. Unfortunately, in a small number of cases, the combination of valid
local orders for all processors produces an overall schedule with an invalid global
ordering. Consider a partial schedule as a graph in which there is a directed edge
from each task to the one placed in order after it, and also where interprocessor
communications occur. For invalid states, this graph will display a cycle. In
our implementation, such states cause the f -value of a state to be increased
indefinitely; they are therefore detected and removed from consideration once
the f -value reaches an upper bound (e.g., the sequential schedule length).

Ordering Heuristic. The heuristic for determining f -values in the ordering
stage follows a similar pattern to that for allocation. As we assign estimated
start times to tasks, it is possible that we introduce idle time to a processor in
which it will not be executing any task. The difference between the heuristics
for allocation and ordering lies in the incorporation of these idle times. For each
state s, the current estimated finish time of a processor pi is the latest estimated
finish time of any task n ∈ pi which has so far been ordered. This estimated
finish time must include both the full computation time of each task already
ordered on pi, as well as any idle time incurred between tasks.
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With this in mind, we define our two bounds like so: first, the latest estimated
start time of any task already ordered, plus the allocated bottom level of that
task. We refer to this as the partially scheduled critical path, as it corresponds
to the allocated critical path through our task graph, but with the addition of
the now known idle times:

fscp(s) = maxn∈ordered(s) {eest(n) + bla(n)}
Second, the latest finish time of any processor in the partial schedule, plus

the total computational weight of all tasks allocated to that processor which are
not yet scheduled:

fordered−load(s) = maxp∈P

⎧
⎨

⎩
tf(p) +

∑

n∈p∩unordered(s)

w(n)

⎫
⎬

⎭

Again, this corresponds to the total computational load on a processor with
the addition of now known idle times. To obtain the tightest possible bound, the
maximum of these bounds is taken as the final f-value:

forder(s) = max{fscp(s), fordered−load(s)}.

3.3 Combined State-Space

Solving a task scheduling problem instance requires both the allocation and
ordering subproblems to be solved in conjunction. To produce a combined state-
space, we begin with the allocation search tree, SA. The leaves of this tree
represent every possible distinct allocation of tasks in G to processors in P .
Say that leaf li represents allocation ai. We produce the ordering search tree
SOi

using ai. The leaves of SOi
represent every distinct complete schedule of G

which is consistent with ai. For each leaf lai
, we set the root of tree SOi

as
its child. The result is a tree SAO, the leaves of which represent every distinct
complete schedule of G on the processors in P (Fig. 2).

Fig. 2. A possible search path through the combined state space

A branch-and-bound search conducted on this state-space will begin by
searching the allocation state-space. Each allocation state representing a com-
plete allocation has one child state, which is an initial ordering state with this
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allocation. When considering the allocation subproblem in isolation, we define
the optimal allocation as that which has the smallest possible lower bound on
the length of a schedule resulting from it. Unfortunately, these lower bounds
cannot be exact and therefore it is not guaranteed that the allocation with the
smallest lower bound will actually produce the shortest possible schedule. This
means that in the combined state-space, a number of complete allocations may
be investigated by the search, having their possible orderings evaluated. The
tighter the bound which can be calculated, the more quickly the search is likely
to be guided toward a truly optimal allocation.

A search of this state-space model is theoretically able to benefit from sev-
eral pruning techniques already developed for ELS. Namely, these are identical
task pruning, equivalent schedule pruning, fixed order pruning and heuristic list
scheduling [10].

4 Evaluation

4.1 Experimental Methodology

The AO model was evaluated empirically by comparison with ELS. The eval-
uation was performed by running branch-and-bound searches on a diverse set
of task graphs using each state-space model. Task graphs were chosen that dif-
fered by the following attributes: graph structure, the number of tasks, and
the communication-to-computation ratio (CCR). Almost 500 task graphs with
unique combinations of these attributes were selected. An optimal schedule was
found for each task graph using 2, 4, and 8 processors, once each for each state-
space model. Searches were performed using the A* search algorithm. Pruning
techniques were applied to each state-space model that could take advantage of
them. Common to both state space models were identical task pruning, equiva-
lent schedule pruning, and heuristic list scheduling. With ELS, additional prun-
ing techniques were applied: processor normalisation, fixed order pruning, and
the use of a closed list.

The implementations were built with the Java programming language. An
existing implementation of ELS was used as the basis for an AO implementation,
with code for common procedures shared wherever possible. Notably, the basic
implementation of the A* search algorithm is shared, with the implementations
differing only by how the children of a search node are created. The implementa-
tions of commonly applicable pruning techniques are also shared. All tests were
run on a Linux (Ubuntu 12.04) machine with 64 processing cores and 256 GB of
RAM. The Java environment was version 1.7, running on the OpenJDK 64-Bit
Server JVM. Tests were single-threaded, so only one core was utilised by our
code, but the JVM’s concurrent garbage collector could potentially have bene-
fited from all 64 cores. For all tests, the JVM was given a maximum heap size
of 192 GB. A new JVM instance was started for every search, to minimise the
possibility of previous searches influencing the performance of later searches due
to garbage collection and JIT compilation.
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The dependent variable measured was the number of states created in the
course of a search. States created includes states which are removed from con-
sideration immediately after their creation by pruning techniques. The number
of states created by a search is considered as a more reliable metric for evaluat-
ing the performance of a search algorithm, as it can be made deterministic and
relies only on the details of the algorithm itself. The time taken for a search to
complete is extremely dependent on the environment in which the program is
run, as it can vary greatly based on the processing speed of the hardware.
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Fig. 3. Overall comparison between state-space models

4.2 Results

The overall results, presented in Fig. 3, show that AO performs better than ELS
in the majority of cases. Data is displayed on a log10 scale both because of its
extreme range, and so that positive (> 1) and negative (< 1) IFs have equal
weighting on the axis. The improvement factor (IF) for a particular problem
instance is determined by dividing a particular metric for a search with ELS
by the same metric for a search with the AO model. Figure 3a shows that the
lower quartile IF for the overall dataset was zero; AO performed better than
ELS in roughly 75 % of cases. As indicated by the median, in roughly 50 % of
cases AO performed at least 3.4 times better than ELS. At its best, the AO
model led to a reduction in the number of states created by a factor of more
than 104. On the other hand, at its worst, almost 105 times more states were
created. In Fig. 3b we see a direct case-by-case comparison of the performance
of the two models. The central dotted line represents equal performance. Cases
above this line are those where AO performed worse, while those below are
those where it performed better. The solid regression line shows the average
improvement of AO increasing with the number of states created by ELS. This
plot therefore shows us that cases where AO’s performance was worse were more
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often smaller, less difficult problem instances. Of the variables surveyed, the
one with the most dramatic impact on the relative performance of the state-
space models was the communication-to-computation ratio. Figure 4 shows a
clear trend towards better performance for the AO model as the CCR increases.
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Fig. 4. Comparison by CCR

The results indicate that the new AO model is generally superior to the more
mature ELS model, with an increased advantage in certain classes of schedul-
ing problem. Most obviously, these are problems in which communication costs
dominate and have a large influence on the optimal solution. By deciding the
allocation of tasks first, a search using the AO model very quickly determines
the entire set of communication costs which will be incurred. Allocations which
incur very large communication costs are likely to be quickly ruled out, and
knowledge of all the communication costs can be used in the calculation of
f -values throughout the ordering stage. It is likely that ELS performed better
on 25 % of cases, despite the duplicates, because the pruning techniques used
were specifically developed for it and therefore benefited it much more. It may
also be the case that the f -value calculations used by ELS provide tighter bounds
than those so far developed for AO, in the case of low communication costs.

5 Conclusions

Previous attempts at optimal task scheduling through branch-and-bound
methods have used a state-space model which we refer to as exhaustive list
scheduling. This state-space model is limited by its high potential for producing
duplicate states. In this paper, we have described a new state-space model which
approaches the problem of task scheduling with communication delays in two
distinct phases: allocation, and ordering. In the allocation phase, we assign each
task to a processor by searching through all possible groupings of tasks. In the
ordering phase, with an allocation already decided, we assign a start time to
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each task by investigating each possible ordering of the tasks on their proces-
sors. Using a priority ordering on processors, and thereby fixing the sequence in
which independent tasks must be scheduled, we are able to avoid the production
of any duplicate states.

An experimental evaluation shows that in roughly 75 % of problem instances,
the new AO state-space model significantly outperforms the ELS model. This is
most evident when scheduling task graphs with high CCRs, most likely because
information about communication costs is able to be used earlier and more exten-
sively. The AO state-space model is therefore a promising avenue for optimal
task scheduling. Further research is likely to yield improvements to the heuris-
tics used in each phase, as well as specialised pruning techniques which could
greatly improve the performance of the model. In addition, a parallel search
implementation using this model could have much potential, since the lack of
duplicates eliminates the possibility of collisions between parallel searches.
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Abstract. Assessing the performance of scheduling heuristics through
simulation requires to generate synthetic instances of tasks and machines
with well-identified properties. Carefully controlling these properties is
mandatory to avoid any bias. We consider the scheduling problem con-
sisting of allocating independent sequential tasks on unrelated processors
while minimizing the maximum execution time. In this problem, the
instance is a cost matrix that specifies the execution cost of any task on
any machine. This paper proposes a measure for quantifying the hetero-
geneity properties of a cost matrix. An analysis of two classical methods
used in the literature reveals a bias in previous studies. A new method is
proposed to generate instances with given heterogeneity properties and
it is shown that they have a significant impact on several heuristics.

1 Introduction

Leveraging the parallelism of multi-core distributed platforms involves to
efficiently schedule applications on several machines [19]. Current studies on
performance evaluation can be divided into several categories: formal analysis,
experiments, simulations, etc. In the case of simulations, a scheduling strategy
is tested in a virtual environment with a given workload. Synthetic instances of
workload allow a more general evaluation than specific traces. They are partic-
ularly useful for sensitivity analysis [21], which consists in assessing the impact
of the instance properties on the algorithms. The lack of control on the instance
properties, however, makes it difficult to confront the results of independent
studies. For instance, although many papers have compared several scheduling
heuristics [9,10,13,20], predicting their performance is still an issue. These prob-
lems can be tackled by carefully controlling the instance properties.

We consider the scheduling problem noted R||Cmax in α|β|γ notation [17]. It
consists in scheduling n independent sequential tasks on m unrelated machines
to minimize the latest task completion time. All tasks are available simultane-
ously and preemption is not possible. The instance is a cost matrix where each
element ei,j ∈ N is the execution cost of task i on machine j.

This paper provides the following contributions1: a statistical description of
the use of the range-based and CVB methods in the literature (Sect. 3); a study

1 These results are also available in the companion research report [11].
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of how to quantify the heterogeneity properties of a cost matrix (Sect. 4); a
formal analysis of the range-based and CVB methods and the identification of
a bias that impacts several studies (Sect. 4); a new method with control over
heterogeneity properties (Sect. 5); and, an assessment2 of the impact of these
properties on several heuristics (Sect. 6).

2 Related Work

The concept of heterogeneity was first introduced in the context of cost matrix
by Armstrong [8]. He described the heterogeneity quadrant in which cost matri-
ces are divided into four categories depending on their heterogeneity properties
regarding tasks and processors: low/low, low/high, high/low, and high/high.
However, no method for generating such matrices was proposed.

The range-based and CVB methods were proposed to fill this gap in [5]
and then in [6,7]. However, task and machine heterogeneities were not formally
defined and analyzed. The methods were assumed to generate matrices with the
expected properties and only validated through some examples.

The limits of these methods were later acknowledged in [4], which proposed to
consider the average coefficient of variation3, skewness and kurtosis of the costs
for each task and for each machine. The proposed scheme (based on decision
trees) uses these additional information to predict heuristic performance. Despite
a wide experimentation plan, the study lacks discussion and interpretation on the
relative importance of the considered measures. Additionally, no formal analysis
was provided. The exhibited decision trees suggest that the average coefficient
of variation plays a significant role, which supports the current work.

The MPH (Machine Performance Homogeneity) is introduced in [3] for cap-
turing the heterogeneity between the machines, while its counterpart for the
tasks, the TDH (Task Difficulty Homogeneity), appears in [2]. We discuss them
more extensively in Sect. 4. In addition, the TMA (Task-Machine Affinity) is also
defined in [3]: it quantifies the specialisation of the system (i.e., whether some
machines are particularly efficient for some specific tasks). Although the three
measures are applied to a real benchmark, no method is proposed for generating
matrices with given MPH, TDH and TMA.

Friese et al. [14] present a method for adding tasks in a given cost matrix
while preserving some statistical properties on each column (mean, coefficient of
variation, skewness and kurtosis). It ignores the properties on each row however.

A method for generating matrices with varying affinity (similar to the TMA)
is proposed in [1]. Khemka et al. [18] propose a method for changing the TMA
of an existing matrix while keeping the same MPH and TDS. TMA is mentioned
to be related to the correlation. Investigating the correlation properties is left
for future work. There is also another field of studies dedicated to the generation
of matrices with given correlation and covariance matrices [15].
2 Computations have been performed on the supercomputer facilities of the

Mésocentre de calcul de Franche-Comté.
3 Ratio of the standard deviation to the mean.
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3 Matrix Generations Methods

3.1 Range-Based and CVB Methods

The most used methods for generating cost matrices are the range-based and
the CVB (Coefficient of Variation Based) methods [5–7].

The range-based method generates n vectors of m values that follow a uni-
form distribution in the range [1, Rmach]. Each line is then multiplied by a ran-
dom value that follows a uniform distribution in the range [1, Rtask].

The CVB method is based on the same principle except it uses parame-
ters that are distinct from the underlying distribution parameters. In particu-
lar, it requires two coefficients of variation (Vtask for the tasks and Vmach for
the machines) and one mean (μtask for the tasks). The random values follow a
gamma distribution whose parameters are computed such that the provided CV
(Coefficient of Variation) and mean are respected.

Proposition 1. When used with parameters Vtask, Vmach and μtask, the CVB
method generates costs with expected value μtask and coefficient of variation√

V 2
taskV 2

mach + V 2
task + V 2

mach.

Proof. Each cost is the product of a random variable that follows a gamma law
with mean μtask and CV Vtask and a random variable that follows a gamma law
with mean 1 and CV Vmach. Therefore, the expected value of the costs is the
product of the expected values of both distributions, namely μtask.

The standard deviation of the product of two random variables with means
μ1 and μ2, and standard deviations σ1 and σ2 is

√
σ2

1σ2
2 + μ2

1σ
2
2 + σ2

1μ2
2. With a

similar argument as for the expected value we can derive the CV of the costs. �
To obtain the CV of the costs with the range-based method, we can replace

Vtask by the CV of the first uniform law,
√

12
6

Rtask−1
Rtask+1 , and Vmach by the CV

of the second uniform law,
√

12
6

Rmach−1
Rmach+1 . This CV remains close to a constant

except for low values of Rtask and Rmach. For instance, it is around 0.86 when
Rtask = Rmach = 100 and the asymptotic value is

√
7

2 ≈ 0.88 when both Rtask

and Rmach are large. This is not well-suited to control the heterogeneity of the
resulting cost matrix. Also, the asymmetry of this method may lead to different
heterogeneity properties for the tasks and for the machines.

3.2 Consistency Extension

Both the previous methods produce cost matrices that may not be representative
of realistic settings. For instance, the costs of a given task is not correlated to the
costs of another task, which may often be the case in practice. The consistency
extension consists in reordering the costs in the generated matrix to have an
instance that is closer to the uniform case. Specifically, the rows of a submatrix
of an rows and bm columns are sorted. Thus, a machine that is faster for a given
task than another machine will likely be also faster for another task. Inconsistent
matrices have a = b = 0 while consistent matrices have a = b = 1 (other matrices
are either called semiconsistent or partially consistent).
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3.3 Usage in the Literature

We covered the English articles that cite at least one of the references in which
the methods were initially presented [5–7] and that were freely available. For
each reference, we extracted all the distinct sets of parameters. However, the
size was ignored because we only consider asymptotic properties (see Sect. 4.2).

Some data were not specifically provided. The parameters that could be
directly inferred from the article or from similar works are mostly related to
missing parameters for the consistency extension (the ones from the cited article
were taken). Otherwise, they are treated as missing values. Some articles lack
enough information, which prevented any parameter extraction.

On the 160 analysed articles, 78 provide exploitable information on the cost
matrix instances. The rest consists of 40 articles with no description, but which
refer to instances described in other articles and 42 articles with unclear descrip-
tions or approaches that do not fit the current study. The extracted data are
available in [11, Appendix B] and summarized below. While most articles fail
to precisely describe the used method, only the range and CV parameters are
crucial for reproducing similar instances. In the end, 342 sets of parameters were
extracted in 78 articles for a total of 210 unique settings: 37 for the range-based
method and 173 for the CVB one.

Figure 1 depicts the values used with both methods. Although there is no
clear agreement on which precise parameters are the most relevant, there are
some common tendencies. Values for low heterogeneity are usually 10 and 100
for the range-based method and .1, .25 and .3 for the CVB method. Values for
high heterogeneity are usually 100, 1e3, 3e3 and 1e5 for the range-based method
and .3, .35, .4, .5, .6, .7, .9, 1 and 2 for the CVB method.

Fig. 1. Parameters used in the literature. Three points are not shown for the CVB
method: (1.4, 0.4), (1.8, 0.4) and (0.1, 2)
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4 Heterogeneity Measures

Assessing the impact of heterogeneity on heuristic performance requires a
method for quantifying the heterogeneity of the generated cost matrices.

4.1 TDH and MPH

The closest related measures are the TDH (Task Difficulty Homogeneity) and
the MPH (Machine Performance Homogeneity) [2,3]. The TDH computation
consists in computing the difficulty of each task (noted TD[i]), sorting all the
TD[i] in ascending order and averaging all the ratios between successive TD[i].
The measure lies in the interval (0, 1]: if it is one, then tasks are all similar; if it
is close to zero, then the task heterogeneity is large. The MPH computation is
analogous, but for the machine.

These measures have two major shortcomings. First, they are not intuitive
(they require to invert costs, to order sums and to average ratios). Also, they do
not rely on classical statistical measures, which makes deriving formal results
more difficult. Another notable problem is that the resulting values depend
on the size of the matrix. In particular, it is close to one when the matrix is
large (even if it is generated with the same parameters and has, intuitively,
the same characteristics). For instance, if we consider only one machine, the
following matrices (cost vectors in this case) have the same TDH: [1, 2] and
[0.125, 0.25, 0.5, 1, 2, 4]. The second vector, however, seems more heterogeneous.
As another example, let the minimum TD be 1 and the maximum TD be 100.
The TDH is always greater than 0.60 when there are 10 tasks and it is always
greater than 0.95 when there are 100 tasks [11, Proposition 1]. This measure is
thus relevant only for comparing small cost matrices with similar sizes.

4.2 Intuitive Measures of Heterogeneity

Assuming that the mean of each row represents a task weight, the task hetero-
geneity may be defined as the CV (Coefficient of Variation) of the means of the
rows (noted V μtask). Analogously, the machine heterogeneity may be measured
as the CV of the means of the columns (noted V μmach).

These measures of task and machine heterogeneity has been criticized for
small instances [2]. It is argued that the MPH is better than the CV as it is
less sensible to outliers. However, we consider asymptotic properties for large
matrices in this work because we expect them to hold for small instances. More-
over, in the case of outliers, the CV can be replaced by the quartile coefficient of
dispersion, which is a similar standard statistical measure but is more difficult
to formally analyse. Finally, the decision trees in [4] suggest that varying this
measure has an impact on the heuristics performance and is thus significant.

4.3 Coherence with the Uniform Model

The previous measures do not only rely on intuition, they are also consistent
with the expectation when we consider the uniform model. In this model, the
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cost of executing a task i on a machine j is given by the product of the task
weight, wi, and the inverse of the machine speed, bj . The concept of task and
machine heterogeneity is easy to grasp in the uniform model: it is given by the
statistical dispersion of the weights and the speeds, respectively. We assume
that the CV of the weights, noted CVtask, is a relevant measure of the task
heterogeneity. Analogously, the CV of the speeds, noted CVmach, represents the
machine heterogeneity.

It is possible to convert an instance of the uniform model in the unrelated
model because this last model is more general. The cost matrix is generated by
combining both vectors {wi}1≤i≤n and {bj}1≤j≤m such that ei,j = wibj . As we
know the heterogeneity properties of a uniform instance, we expect our proposed
measures for the unrelated model to be consistent when applied on the converted
instance, which is indeed the case [11, Proposition 2].

4.4 Heterogeneity of the Range-Based and CVB Methods

We analyse the asymptotic heterogeneity properties of the CVB method with the
proposed measures depending on the parameters Vtask and Vmach. An estimator
T converges to θ when the expected value of T tends to θ as the number of
samples (n and m in our case) tends to ∞.

Proposition 2. The measure V μtask of a cost matrix generated using the CVB
method with the parameters Vtask and Vmach converges to Vtask as n → ∞ and
m → ∞.

Proof. This proof assumes that the mean of a set of n samples (called the sample
mean) of a random variable with mean μ and standard deviation σ is a random
variable with mean μ and standard deviation σ√

n
. Moreover, the CV of a set of

n samples (called the sample CV) of a random variable with CV V converges to
V as n → ∞.

Let μi be the sample mean of the costs on line i. This row is the product
of a random variable that follows a distribution with mean μtask and CV Vtask

and m values that follow a distribution with mean one and CV Vmach. μi is
thus also the product of the first random variable and the sample mean of the
other m values, which follows a random variable with mean one and CV Vmach√

m
.

Therefore, the mean of μi is μtask and its CV is
√

V 2
task

V 2
mach

m + V 2
mach

m + V 2
task,

which tends to Vtask as m → ∞. Then, the sample CV of all μi tends to Vtask

as n → ∞ and m → ∞. �

We can also show that V μmach converges to a
√

bVmach as n and m → ∞.
Although more technical, the proof is analogous and provided in [11, Proposi-
tion 6].

These formal results can be extended to the range-based method by replacing
Vtask by the CV of the first random variable (

√
12
6

Rtask−1
Rtask+1 ) and Vmach by the CV

of the second one (
√

12
6

Rmach−1
Rmach+1 ). Indeed, the proofs only use the mean and the

CV of the random underlying distributions.
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In the case of complete consistency (i.e., when a = b = 1), V μtask = Vtask

and V μmach = Vmach, which supports the proposed heterogeneity measures.
This special case is due to the fact that consistent cost matrices are closer to
uniform instances than inconsistent ones.

The main issue of the CVB method is related to the impact of the consistency
parameters on the heterogeneity properties. It biases comparisons of scheduling
methods when cost matrices are used with different consistency settings because
these matrices will also have different heterogeneity properties. The range-based
method presents an even stronger bias as both Vtask and Vmach tends to

√
12
6 as

Rtask and Rmach → ∞ (the heterogeneity properties are thus often similar).

4.5 Task and Machine Heterogeneity in Previous Studies

For each of the instances summarized in Sect. 3, we computed both heterogeneity
measures using the previous analysis and the input parameters: Rtask, Rmach,
Vtask, Vmach, a and b.

Figure 2 depicts the values for the measures proposed above. The range-based
method has a clear bias because many heterogeneity properties have never been
obtained. Also, the consistency parameters invalidate the claimed properties of
the cost matrices relatively to the heterogeneity quadrant: some hihi instances
have the same machine heterogeneity as lolo instances.

Fig. 2. Heterogeneity properties (V µtask and V µmach) of cost matrices used in the
literature. Two points are not shown for the CVB method: (1.4, 0) and (1.8, 0).

This analysis is also consistent with the observation made in [3] about the
fact that the range-based and CVB methods do not cover the entire range of
possible values for the MPH.
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5 Controlling the Heterogeneity

We are interested in generating cost matrices that have specific heterogeneity
properties according to the measures introduced in Sect. 4. We propose a method
that alters a cost matrix generated from uniform instances for which we control
the task and machine heterogeneities. This cost matrices have specific proper-
ties in terms of consistency and correlation between each row and each column,
and the proposed method introduces some randomness in the matrix by shuf-
fling the costs. It first generates the task weights, {wi}1≤i≤n, with a gamma
distribution with mean one and CV Vtask, and then the inverse of the machine
speeds, {bj}1≤j≤m, with a gamma distribution with mean one and CV Vmach.
The corresponding matrix is computed such that ei,j = wibj before starting the
shuffling part. For each cost ei,j , another cost ei′,j′ is selected on a different row
and column. The same amount is then removed from these costs and is added
to two other costs, ei,j′ and ei′,j (one that is on the same row as the first cost
and on the same column as the second, and another one that is on the same row
as the second cost and on the same column as the first). This step preserves the
mean of each row and the mean of each column. The heterogeneity properties
remain thus the same. The transfered amount is the largest value (in absolute)
such that no cost among the four considered costs becomes lower than the min-
imum one among them (this prevents costs to be arbitrarily low). For instance,
if ei,j is the minimum cost (i.e., ei,j = min(ei,j , ei′,j , ei,j′ , ei′,j′)), there are two
cases: if ei,j′ < ei′,j , then ei,j′ becomes the new minimum and the added value to
ei,j and to ei′,j′ is ei,j′ − ei,j ; otherwise, it is ei′,j − ei,j . This method focuses on
preventing costs to be arbitrarily low because it is critical to guarantee positive
costs.

Proposition 3. When used with parameters Vtask and Vmach, the shuffling
method generates costs with expected value 1.

Proof. Costs in the matrix corresponding to the uniform matrix follow a distri-
bution that is the product of two distributions both with mean one. Therefore,
the expected value of the costs in the matrix before the shuffling step is also
one. The shuffling step do not change the expected value of the costs because
the amount that is taken on any cost is given to another cost. �
Proposition 4. The measure V μtask of a cost matrix generated using the shuf-
fling method with the parameters Vtask and Vmach converges to Vtask as n → ∞.

Proof. Analogously to the proof of Proposition 3, the shuffling step has no impact
on the mean of each row and each column. The measure V μtask is thus the same
for the final cost matrix as for the intermediate matrix that corresponds to a
uniform instance.

The sample CV of the sample means of all rows in this intermediate matrix
is equal to the sample CV of the vector {wi}1≤i≤n. This last sample CV tends
to Vtask as n → ∞. �

An analogous proof relying on the symmetry of the shuffling method shows
that V μmach converges to Vmach as m → ∞.
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6 Impact on Scheduling Heuristics

This section assesses the impact of the heterogeneity properties defined in Sect. 4
on the performance of some classic heuristics. Our intention is not to find the best
heuristic but rather to show the impact of the cost matrix generation method
on the performance results. We use classical heuristics from the literature sum-
marized in Table 1. These heuristics are described in [11, Appendix C].

Table 1. Summary of the scheduling heuristics for the R||Cmax problem

Name Ref. Complexity Remark

Min-min [10] n2m Earliest finish time

Max-min [10] n2m Earliest finish time of largest task

GA [10] – Genetic Algorithm

Suff [12] n2m Task that will suffer most first

HLPT [16] nm + n log(n) Heterogeneous version of LPT

BalSuff [11] – Reconsider allocation on sufferage

Cost matrices are generated with the shuffling method using V μtask and
V μproc, each with 30 values exponentially distributed in [0.001, 10]. For each
pair of parameters, 100 cost matrices are generated with n = 100 tasks and
m = 30 machines. For each scenario, we compute the makespan of each heuris-
tics. We only consider the relative difference from the reference makespan:
|C − Cmin|/Cmin where C is the makespan of a given heuristic and Cmin the
best makespan we obtained (a genetic algorithm initialized with all the solutions
obtained by the other algorithms). The closer to zero, the better the performance.

The results presented on Fig. 3 is a heat map of the relative performance
for each algorithm. On each figure, we use a logarithmic scale on both axises:
the x-axis gives the heterogeneity value for the tasks (V μtask) while the y-axis
gives the heterogeneity value for the machines (V μmach). The bottom-left area
represents almost homogeneous instances, while the top-right area is the most
heterogeneous one. The heterogeneity values covered by the range-based and
CVB methods in the literature are represented with dark rectangles on each
sub-figure. Contour lines correspond to the levels in the legend.

Figure 4 plots the best heuristic depending on the heterogeneity properties.
Contour lines show the number of heuristics which performance is closer to the
best heuristic than 0.001. For instance, there are at least four heuristics whose
relative performances are almost equivalent when task heterogeneity is high.
When several heuristics are equivalent for a given tile, the appearing heuristic is
the one that is the best the least often. The dark rectangles correspond to the
properties covered by the range-based and CVB methods in the literature.

The settings cover a large part of the possible instances for the R||Cmax

problem. Some areas on the figures may be associated to specific scheduling
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Fig. 3. Heuristic performance relatively to the best case with the shuffling method.
Values below 0.001 are shown in white and values above 1 are shown in black.

problems: the Q|pi = p|Cmax problem (top-left area), the P |pi = p|Cmax problem
(bottom-left area) and the P ||Cmax problem (bottom-right area). While the first
two problems can be solved in polynomial time, the last problem is NP-complete.

The heat maps suggest that the area where the heterogeneity values are
between 0.1 and 1 is more challenging for most heuristics (areas in purple on the
heat maps are 30 % far from the reference). This is confirmed by Fig. 4 where the
best heuristic is often far from the second best with these settings. Oppositely,
many heuristics are close to the best one when the task heterogeneity is low or
high, or when the machine heterogeneity is high. On one hand, execution costs
are quite similar when the coefficient of variation is below 0.1. A non-optimal
allocation will thus have a lower impact than with higher heterogeneity. On the
other hand, most execution costs are close to zero when the coefficient of vari-
ation is higher than 1 and bad allocations may be easy to avoid because there
are few allocations that are extremely critical while most of them are not. It is
thus easier to generate a reasonable schedule. When the machine heterogeneity
is low (with medium task heterogeneity), there is often a single best heuristic.
This suggests that these settings leads to difficult instances. As mentioned above,
this is close to the P ||Cmax problem. We may conclude that dealing with hetero-
geneous tasks is more difficult than with heterogeneous machines, which is also
supported by the asymmetry of the heat maps.
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Fig. 4. Best heuristic in the average case

The range-based and CVB
generation methods used in the
literature could not provide these
results due to two factors: the het-
erogeneity properties of the gen-
erated instances have a limited
coverage (shown by the dark
rectangles) and the erroneous
claimed properties of these matri-
ces prevent an unbiased analysis.

This study focuses on the
impact of two measures, V μtask

and V μproc, on the performance
of several heuristics. There are
however many other properties
that could be measured. If we con-
sider the skewness and the kur-
tosis as in [4], we can think of
4 × 4 measures for the lines and
as many for the columns. The
main limitation of this study is to
ignore the effect of all these pos-
sible measures.

Another limitation is related to the effect of outliers. For large instances, the
law of large number applies and the measures proposed in Sect. 4 correspond to
the characteristics of the cost matrices. However, for small instances, we suggest
to switch to robust measures such as the median, the interquartile range and
the quartile coefficient of dispersion instead of the mean, the standard deviation
and the CV, respectively.

7 Conclusion

This study shows that the methods used in the literature for generating cost
matrices are biased: the claimed heterogeneity properties of these instances are
invalidated by the measures we proposed to quantify them. We also show that
the range of instances that has been used are restricted. It is specifically the
case for the range-based method that covers only a minor fraction of all the
possible settings in terms of heterogeneity. By providing a new cost matrix gen-
eration method we show that heuristics for the R||Cmax problem have interesting
behavior outside this restriction.

In addition to all the possible measures mentioned in Sect. 6, we plan to
analyse other properties, in particular the correlation. It would also be interesting
to see if the conclusions hold for some variations of the R||Cmax problem such
as considering arrival times or online scheduling.
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Abstract. As thread level parallelism in applications has continued to
expand, so has relevant research on heterogeneous CMPs. Nowadays
multi-threaded workloads running on CMPs are common case, but as the
quantity of these workloads increase and as heterogeneous CMPs become
more diverse, thread scheduling within an operating system will become
ever more critical to maintaining efficient performance and system uti-
lization. As a consequence, the operating system will require increas-
ingly larger amounts of CPU time to schedule these threads effectively.
Instead of perpetuating the trend of performing complex thread schedul-
ing to the software, we propose a simple yet effective mechanism that
can easily be implemented in hardware which outperforms the typical
Linux OS scheduler as well as Fairness scheduler. Our approach fairly
redistributes running hardware threads across available cores within OS
scheduling quantum. It achieves an average speed up of 37.7 percent and
16.5 percent respectively compared to the Linux OS scheduler and state-
of-the-art Fairness scheduling when running a multi-threaded application
workloads.

Keywords: Hardware · Thread · Scheduling

1 Introduction

The relentless push in technology scaling driven by Moore’s law has resulted in
more transistors packed into a very small area. Computer architects responded
by integrating many cores on the same die. Chip multiprocessors, or CMPs for
short, are now the most common way to build high-performance microproces-
sors, for a variety of reasons. Large uniprocessors are no longer scaling in per-
formance, because it is only possible to extract a limited amount of parallelism
from a typical instruction stream using conventional superscalar instruction issue
c© Springer-Verlag Berlin Heidelberg 2015
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techniques. In addition, one cannot simply ratchet up the clock speed on today’s
processors, or the power budget will become prohibitive. Compounding these
problems is the simple fact that with the immense numbers of transistors avail-
able on today’s microprocessor chips, it is too costly to design and debug ever-
larger processors every year or two.

CMPs avoid these problems by filling up a processor die with multiple, rel-
atively simpler processor cores instead of one huge core. The exact size of a
CMP’s cores can vary from very simple pipelines to moderately complex super-
scalar processors, but once a core has been selected the CMP’s performance can
easily scale across silicon process generations simply by stamping down more
copies of the hard-to-design, high-speed processor core in each successive chip
generation. In addition, parallel code execution, obtained by spreading multiple
threads of execution across the various cores, can achieve significantly higher
performance than would be possible using only a single core. While parallel
threads are already common in many useful workloads, there are still important
workloads that are hard to divide into parallel threads. The low inter-processor
communication latency between the cores in a CMP helps make a much wider
range of applications viable candidates for parallel execution than was possible
with traditional, multi-chip multiprocessors; nevertheless, limited parallelism in
key applications is the main factor limiting acceptance of CMPs in some types of
systems. Nowadays, chip multiprocessors (CMPs) may be symmetric (SCMP),
consisting of many cores of the same type, or asymmetric (ACMP), where cores
may differ from one another with respect to their functionality and/or perfor-
mance [5,13]. As is shown by a number of recent studies ACMPs are likely to
outperform SCMPs for a fixed budget (area or power or both) [11,15]. Since it
is well known that different workloads have different resource requirements, the
benefits of ACMPs are intuitive.

The need for a scheduling algorithm arises from the requirement for CMP
and ACMP systems to perform multitasking (executing more than one process or
thread at a time). Scheduling is the method by which threads, processes or data
flows are given access to system resources (e.g. processor time). This is usually
done to load balance and share system resources effectively or to achieve a tar-
get quality of service. Parallel applications relying on multiple threads must be
efficiently managed and dispatched for execution if the parallelism is to be prop-
erly exploited. Thus, dynamic thread scheduling techniques are of paramount
importance in ACMP designs since they can make or break performance bene-
fits derived from the asymmetric hardware or parallel software. Several thread
scheduling methods have been proposed and applied to ACMPs. Most of these
make use of online or offline profiling as well as sampling or estimation techniques
to determine the optimum thread to core mapping (in relation to performance
and/or power) whenever a specific event is detected or scheduling time quantum
is completed [1,9,19] among others. Though these scheduling techniques include
certain performance or energy efficiency gains, their broad application remains
stifled due to scalability limitations, runtime overheads, and additional hardware
requirements and complexities. Our goal is to develop a scheduling policy that
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can be used as a foundation upon which to build practical and scalable hardware
scheduling designs in order to increase the performance capabilities of ACMPs.

This paper provides the following contributions:

– We propose a Hardware Round-Robin Scheduling (HRRS) policy which is
influenced by Fairness Scheduling techniques thereby reducing thread serial-
ization and improving parallel thread performance.

– We analyze and evaluate the performance of the HRRS policy on an ACMP
and show that it lowers total execution time by 37.7 percent and 16.5 percent
respectively compared to the state-of-the-art Linux OS scheduler and Fairness
scheduler when running a multi-threaded application workloads.

2 Motivation

The exciting rise of asymmetric multi-core processors (ACMPs) has fostered a
critical reevaluation of the traditional scheduling mechanisms in order to take
full advantage of the new hardware resources in relation to the increasingly
common thread level parallelism as well as in meeting certain system perfor-
mance and power requisites. The operating system scheduler module orches-
trates critical execution time junctures, selecting which jobs to be admitted
next into the system and the next process to run. A technique known as fair-
share scheduling is used by computer operating systems where CPU usage is
equitably divided between system users or groups, in contrast to equal distribu-
tion among processes. The Linux OS scheduler, based on a fair-share scheduler
strategy, is a process scheduler which was merged into the 2.6.23 release of the
Linux kernel as its default scheduler [8]. It handles CPU resource allocation for
executing processes aimed at maximizing overall CPU utilization as well as inter-
active performance. Operating systems may feature up to three distinct types
of schedulers, a long-term scheduler (also known as an admission scheduler or
high-level scheduler), a mid-term or medium-term scheduler and a short-term
or CPU scheduler. The names suggest the relative frequency with which these
functions are performed.

The third type of scheduler, the primary focus of this work, is the short-term
commonly referred to as the CPU scheduler. It is responsible for determining
which of the ready processes (loaded into the memory by the other schedulers)
should be sent for execution and on which computational core. This decision
takes place periodically at interrupt points caused principally by the clock, I/O
events, or OS system level calls. In relation to the long and short-term schedulers,
the short-term scheduler must make scheduling decisions much more frequently.
Furthermore, the short-term scheduler can be preemptive or non-preemptive
based on its ability to force processes off the CPU. The preemptive method
depends on a programmable interval timer that invokes a kernel level interrupt
handler which implements the scheduling algorithm. A key function involved in
the CPU-scheduling decision is the dispatcher which gives control of the CPU to
the process selected. This function involves the context switching, changing to
user mode, and jumping to the proper location of a program once it is restarted.
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The actual time it takes for the dispatcher to perform its job stopping one process
and starting another is known as the dispatch latency typically requiring several
thousands of cycles [12]. Since the dispatcher needs to analyze the program
counter values, fetch instructions, and load data into the registers of the CPU
every time a process switch occurs, minimizing the dispatcher latency should be
a primary objective. Moreover, it is also important to avoid unnecessary context
switches due to the fact that the processor remains idle for a period of time
during context switches.

It has been shown by Van Craeynest et al. [18], that in a asymmetric multi-
core system, a round robin scheduler using threads pinned to cores produces
no speedup compared to a lighter symmetric multi-core system for most mul-
tithreaded benchmarks. This behavior is caused by barrier-synchronized multi-
threaded workloads since the execution progress is limited by the slowest thread
which has little meaning in a symmetric system, but is significant for asymmetric
systems since the thread pinned to the simplest core will be the weakest link that
all other threads will have to wait for at every barrier. Work-stealing workloads,
in contrast, allows for idle large cores to steal work that would normally be run
on the small cores so that the execution time isn’t as constrained.

Therefore, in asymmetric multi-core systems, guaranteeing fairness is fun-
damental for improving performance of multithreaded workloads. Fairness, as
defined by giving each software thread equal execution time on each core or
allowing each thread to make equal progress, enables all threads to reach the
barriers simultaneously, and has been sown to provide average performance
improvements of 14 percent (and up to 25 percent) compared with a pinned
scheduler [18] for the system configuration we are using.

3 Hardware Round-Robin Scheduling

In the previous section we have noted the importance and the impact schedul-
ing fairness may have on the potential speedup that can be achieved from
the parallelization of multi-threaded applications and multiprocess workloads
on single-ISA asymmetric multi-cores. In the next two subsections we describe
the proposed Hardware Round-Robin Scheduling (HRRS) policy and discuss its
hardware implementation.

3.1 HRRS Algorithm

Figure 1 is used to illustrate the inner workings of the HRRS approach, we will
assume a system composed of an x86 ACMP hardware containing one large out-
of-order (OoO) core and three smaller and identical in-order cores. The operating
system is provided an abstracted homogeneous hardware view comprised of four
identical logical cores, which correlate to four identical hardware threads. The
OS scheduler maps threads to the logical cores which enables the OS scheduling
policies and implementation to be left unmodified. While the OS scheduler maps
threads to the logical cores at every software-quantum or other interrupts, the
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Fig. 1. HRRS scheduling - All logical cores (which correlate to hardware threads) are
the same while the large physical core is represented by Core 0 and the small physical
cores are shown as Cores 1,2 and 3

HRRS in turn maps the threads running on the logical cores to the physical
cores as shown in Fig. 2 at every hardware-quantum. In essence, the HRRS can
be viewed as mapping the logical cores that the OS sees and schedules threads
onto, to the physical cores of the underlying hardware which actually execute
the threads. Furthermore, the HRRS algorithm must produce a new scheduling
scheme after every hardware-quantum of time passes (as opposed to the software-
quantum which invokes the OS scheduler). In order to minimize the amount of
overhead in implementing the scheduling policy, the HRRS algorithm determines
the next scheduling scheme to apply before the beginning of the next hardware-
quantum. The defining characteristic of the HRRS algorithm is that it evenly
rotates threads (scheduled onto the logical cores by the OS scheduler) running on
the physical cores after every hardware-quantum. The OS scheduler, on the other
hand, is triggered at every software-quantum which happens much less frequently
than that of the hardware-quantum. Additionally, the HRRS algorithm does not
need to take into account whether the OS scheduler has activated and swapped
one of the currently executing threads on a logical core for another thread from
its ready queue. In such cases, the thread context of the thread being swapped
out must be saved and replaced by the context of the new thread chosen by
the OS to be executed all of which is performed by the triggered OS scheduler
routine. Consequentially, the HRRS scheduling policy guarantees that a thread
will not occupy a large physical core for more than one hardware-quantum unless
it is the only runnable thread at the end of the hardware-quantum.

The Fundamental Difference. Between the HRRS and Fairness-aware sched-
uler algorithms [18] is the way in which the threads are selected to be mapped
onto the physical cores. In both approaches, a thread running on one of the
smaller physical cores is swapped with the thread running on the large physi-
cal core after a given time quantum. However, while Fairness-aware scheduling
strives at achieving fairness by guaranteeing even progress using specific heuristic
for each software thread, it does not necessarily enforce swaps of threads between
large and small core every scheduling quantum but prefers to leave threads to run
on the same physical core. In contrast, the HRRS policy runs each logical core,
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Fig. 2. An example of the HRRS scheduling logical cores on actual physical cores at
every hardware-scheduling quantum. At the beginning logical core 0 is running on
the large physical core while logical cores 2, 3 and 4 are running on small physical
cores. After a first hardware scheduling quantum, Logical core 1 will be moved to large
physical core and logical core 0 will be moved to a small physical core.

hardware thread, on each physical core type for a specified amount of time. After
every quantum, the HRRS triggers a swap between the thread running on the
large core with one executing on a small core that is chosen using a round-robin
selection algorithm.

3.2 Hardware Implementation

Hardware Round-Robin Scheduling leaves the operating system level scheduling
untouched and it maintains a consistent view of the underlying hardware. The
hardware is able to provide the abstraction of a symmetric hardware to software
while dynamically rescheduling threads among the cores in an asymmetric multi-
core system [14]. Both of these approaches (HRRS and Fairness approach [18])
may also be implemented at the OS level by extending the OS scheduler but
the advantage of a hardware approach, in addition to minimizing scheduling
overheads, is that it provides a finer level of granularity for the scheduling quanta
and requires no changes to the OS code [19].

HRRS has hardware additions which include a bit on every core to signal
if the core is executing kernel or user code and a separate unit with vector
that holds all of the bits, one counter and one decoder to facilitate round-robin
mechanism. The size of these depends on the number of the cores in the system.
For instance, for four core system we need 2-bit counter. Unlike to some of the
other dynamic schedulers [7], the HRRS scheduling technique does not facilitate
hardware overheads in order to be able to store and restore the architecture state
in the cores. It utilizes the x86 hardware context switching mechanism, called
Hardware Task Switching in the CPU manuals [6]. In the case that large core is
in the kernel mode (handling an interrupt etc.) HRRS scheduler will wait until
it returns to user mode to mark rescheduling, while if the small core that isto
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have its thread swapped with the large core is in the kernel mode, the scheduler
will chose next small core to switch threads with large core in the round-robin
fashion.

4 Evaluation

Here we evaluate the Hardware Round-Robin Scheduling (HRRS) approach and
compare it to the Linux OS scheduler and Fairness approach [18].

4.1 Simulated Architecture and Workloads

For conducting the simulation experiments in this paper we have used Sniper [2],
a parallel, hardware-validated, x86-64 multi-core simulator capable of running
both multi-program and multi-threaded applications. We configured the sim-
ulator to model an ACMP made up of one large core and three small cores
respectively. The differences between the core types lie in the pipeline complex-
ity (out-of-order for large, in-order for small). In order to isolate the causes of
potential performance differences, the clock frequency (2.6 GHz), issue width
(4-wide), number of available thread contexts (one hardware context per core),
and cache sizes are the same for both core types. We assume a cache hierarchy
with separate and private 32 KB L1 instruction and data caches, private 256
KB L2 caches, and a shared 4 MB L3 last-level cache (LLC). All the caches
employ a LRU replacement policy and we assume the memory controllers are
on-chip. Similar to the work in [18], we utilize a conservative hardware-quantum
of 1 ms and a software-quantum of 4 ms even though it is typically upwards of
this range.

We use the SPLASH-2 [20] benchmarks in our experiments. The SPLASH-2
benchmarks are designed to represent multi-threaded applications in order to eval-
uate hardware architectures when running several thread contexts. All applica-
tions are run from start to finish. We run each benchmark on the four simulated
cores with each core capable of executing one hardware thread context at a time.
We evaluate single multi-threaded application workloads running an equal num-
ber of threads per application as the number of available hardware contexts, i.e.,
maximum number of threads, which is a common practice for running non-I/O-
intensive applications [7]. For example, when we run one multi-threaded applica-
tion on a system simulated with 4 cores, we use 4 threads for that application.

4.2 Performance Evaluation

Implementing dynamic scheduling requires the migration of workloads between
different cores. This leads to overheads incurred by context switches and the load-
ing of the working-sets into the private caches of the destination cores. A context
switch incurs a fixed cost for storing and restoring the architecture state (at most
a few kilobytes) [12] for which we presume a fixed 1,000 cycle penalty. Our simu-
lations also take into account the warming of the cache hierarchy needed after a
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Fig. 3. Net Speedup comparison of the HRRS and Fairness scheduler normalized to
Linux OS scheduler for the SPLASH-2 benchmark suite running on four cores (1 OoO +
3 InO)

context switch. The study [19] has shown the total migration execution time over-
head to be less than 1.5 percent across different types of single-threaded workloads,
ranging formmemory-intensive to compute-intensive, for a 4MBsharedLLCusing
a 1ms hardware-quantum.

Figure 3 shows the speedup of the HRRS scheme over the hardware implemen-
tation of the Fairness scheduler on four core system running multi-threaded appli-
cation workloads. The results are scaled to a Linux OS scheduler where the operat-
ing system has a notion of the underlying hardware. Under the Linux OS scheme,
in the case of a symmetric CMP, the operating system pins individual threads to
each of the cores in a round-robin fashion until all threads are assigned.The threads
are then selected to be executed in a round-robin fashion on the respective core
that they are pinned to (when there are more than one thread assigned per core).
When using Linux OS scheduler threads on an asymmetric CMP, the operating
system does not necessarily pin the threads to the cores, nor does it tend to swap
the threads running on the large core with those on the small core at every schedul-
ing quantum until threads pinned to the lagre core are all stalled or finished its exe-
cution. Rather, the OS scheduler tries to ensure quality-of-service for the threads.
This reflects the current practice in contemporary operating system schedulers,
as exemplified in the Linux 2.6 kernel [8]. The average speedups of HRRS over
the Fairness and Linux OS scheduler when running the Splash2 workloads are
16.5 percent and 37.7 percent respectively on a four core system.

A key element driving these performance benefits comes from the redistribu-
tion of the workloads amongst the cores. Figure 4 shows per benchmark LLC access
distribution between large core and small cores, while total number of the LLC
accesses grows up by only up to 1.5 percent for Fair and HRRS schedulers com-
pared to Linux OS scheduler. The HRRS scheme produces a higher proportion of
LLC accesses originating from the large core. Fundamentally, the large core can
better support the extra burden of LLC cache accesses since the large out-of-order
instruction window allows for a greater quantity of instructions to be processes
concurrently, which enables it to hide the additional latency caused by the extra
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Fig. 4. The LLC cache accesses breakdown for the large and small cores of the Linux
OS, Fairness and HRRS scheduler for the SPLASH-2 benchmark

Fig. 5. Speedup of the hardware over the software implementation (baseline) for the
HRRS scheduler, where scheduling quanta are 1 ms and 4 ms for hardware and software
implementations respectively

cache accesses and still, even after including overheads from the context swap, out-
perform the small cores in thread execution time. This hit/miss ratio and consid-
erable change in total number of LLC accesses between large and small cores are
clearly noticeable with cholesky and raytrace benchmarks which have the highest
performance gains.

Hardware vs. Software Implementation. Hardware Round-Robin Schedul-
ing leaves the operating system level scheduling untouched and it maintains a
consistent view of the underlying hardware. The hardware is able to provide the
abstraction of a symmetric hardware to software while dynamically rescheduling
threads among the cores in an asymmetric multi-core system [14]. Figure 5 repre-
sents the speedup that a hardware implementation, with a scheduling quantum of
1 ms, has over a software implementation (baseline), with a scheduling quantum
of the 4 ms, for the HRRS scheduler. We can see that a hardware implementation
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results in an average speedup of 6.98 percent over a software implementation for
the HRRS scheduler.

5 RelatedWork

Due to possible performance and efficiency gains, there has been increasing interest
in heterogeneous multi-core architectures, and various scheduling proposals have
been presented. An ACMP which consists of multiple cores of the same ISA but of
different sizes was proposed by Kumar et al. in [10]. Their process consists of sam-
pling for and choosing the core that will execute in the most power efficient manner
each time a new phase or program is detected. This work was later expanded to
maximize performance of multithreaded applications [11].

Similar work by Becchi [1] consists of an ACMP that includes two distinct
core sizes where thread to core assignment is managed by initiating a mandatory
swap of threads between two different sized cores in order to measure the corre-
sponding performance ratio. Based on this ratio, the threads are then scheduled to
their core that will maximize the system performance. This work has given insight
into ratio based ACMP scheduling techniques but is limited as the number of dis-
tinct core types used increases. Other work in this area has been done by Saez
et al. [16] who use a utility factor, defined as the ratio of L1 miss latency compared
to a baseline ACMP configuration (only small cores), with the aim of optimizing
the performance of both single and multithreaded workloads. Likewise, Koufaty
et al. [9] determine optimal thread to ACMP core mapping using a biasing method
estimated by the quantity of external memory stalls and internal pipeline stalls.
Another approach is detailed in the work by Srinivasan et al. [17] who propose a
formula based ACMP thread to core scheduling method which is used to estimate
and compare thread performance on individual cores. With respect to microarchi-
tectural differences, Chen et al. [3] chose to implement their ACMP with cores con-
sisting of separate branch predictor, issue width, and L1 cache sizes that together
with their scheduling method, achieve throughput and energy efficiency improve-
ments.

6 FutureWork

When considering an LLC cache for many-core processors, an popular option gain-
ing traction in the industry is to distribute the cache into separate blocks, therefore
appearing as unified rather than being physically unified. This is a similar app-
roach to that taken by the IBM Power8 architecture [4] where each core has an
8 MB low-latency LLC cache and a high-speed cache-coherent ring is used to con-
nect all of the cores. Thus joined, the LLC cache blocks can be viewed as a shared
96 MB cache with a nonuniform latency. Access to the local 8 MB LLC is speedy,
but access to remote LLC cache blocks will require additional cycles to traverse
the ring. By comparison, a large unified LLC cache would have a constant access
time slower than the local cache but faster than remote blocks. The IBM design
keeps hot data in the CPUs local LLC, reducing the average LLC latency.
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In a many-core processor with this kind of distributed LLC cache configura-
tion, a latency problem may arise due to frequent context switches among cores
being connected to a different LLC cache segments. Therefore, the HRRS schedul-
ing heuristic many need to be adjusted to account for the added latencies of the
LLC and moreover can be tuned to allow for the scheduling of threads to be such
as to take advantage of the distribution of cache blocks. Perhaps it may become
viable to not only swap threads from large to small cores but also from small to
small depending on which LLC segments their data sets are located. Furthermore,
it would be beneficial to implement the HRRS scheme on an FPGA in order to
gauge the feasibility of the design as well as raise the level of accuracy concerning
the latency overheads.

7 Conclusion

In this paper we have presented the Hardware Round-Robin Scheduler (HRRS).
Our work is influenced by the rise of many core processors, particularly the asym-
metric core multi-processors (ACMPs) and their dependence on dynamic sched-
ulers such as the commodity Linux OS CPU scheduler in order to achieve fair
and balanced performance between active threads. Our initial objective was to
achieve these performance benefits from running parallel workloads on ACMPs
without the need for substantial hardware extensions, sampling, or runtime over-
heads. Incorporating minimal hardware additions, our HRRS policy promotes a
balanced distribution of execution time for threads per core type. We have shown
that HRRS provides greater opportunity for all threads to share time running on
the more efficient large core, selected via a round-robin algorithm, which produces
generous performance benefits even after including scheduler and context swap
overheads as well as latencies arising from the additional cache accesses needed
for loading the working data sets. By using the HRRS policy on an ACMP, we
got a total execution time speedup of 37.7 percent and 16.5 percent respectively
compared to the state-of-the-art Linux OS scheduler and Fairness scheduler when
running a multi-threaded application workloads (Splash2).
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Abstract. Scheduling is one of the factors that most directly affect per-
formance in Thread-Level Speculation (TLS). Since loops may present
dependences that cannot be predicted before runtime, finding a good
chunk size is not a simple task. The most used mechanism, Fixed-Size
Chunking (FSC), requires many “dry-runs” to set the optimal chunk size.
If the loop does not present dependence violations at runtime, schedul-
ing only needs to deal with load balancing issues. For loops where the
general pattern of dependences is known, as is the case with Randomized
Incremental Algorithms, specialized mechanisms have been designed to
maximize performance. To make TLS available to a wider community,
a general scheduling algorithm that does not require a-priori knowledge
of the expected pattern of dependences nor previous dry-runs to adjust
any parameter is needed. In this paper, we present an algorithm that
estimates at runtime the best size of the next chunk to be scheduled.
This algorithm takes advantage of our previous knowledge in the design
and test of other scheduling mechanisms, and it has a solid mathemat-
ical basis. The result is a method that, using information of the exe-
cution of the previous chunks, decides the size of the next chunk to be
scheduled. Our experimental results show that the use of the proposed
scheduling function compares or even increases the performance that can
be obtained by FSC, greatly reducing the need of a costly and careful
search for the best fixed chunk size.

Keywords: Thread-level speculation · Speculative parallelization ·
Speculative multithreading · Scheduling

1 Introduction

Thread-Level Speculation (TLS) [4,18,20] is the most promising technique for
automatic extraction of parallelism of irregular loops. With TLS, loops that
can not be analyzed at compile time are optimistically executed in parallel.
A hardware or software mechanism ensures that all threads access to shared
data according to sequential semantics. A dependence violation appears when
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one thread incorrectly consumes a datum that has not been generated by a pre-
decessor yet. In the presence of such a violation, earlier software-only speculative
solutions (see, e.g. [10,20]) interrupt the speculative execution and re-execute the
loop serially. Subsequent approaches [5,7,21] squash only the offending thread
and its successors, re-starting them with the correct data values. More sophisti-
cate solutions [9,15,22] squash only the offending thread and subsequent threads
that have actually consumed any value from it.

It is easy to see that frequent squashes adversely affect the performance of
a TLS framework. One way to reduce the cost of a squash is to assign smaller
subsets (called chunks) of iterations to each thread, reducing both the amount of
work being discarded in the case of a squash, and the probability of occurrence of
a dependence violation. However, smaller chunks also imply more frequent com-
mit operations and a higher scheduling overhead. Therefore, a correct choice of
the chunk sizes is critical for speculation performance. Most scheduling methods
proposed so far in the literature deal with independent blocks of iterations, and
were not designed to take into account the cost of re-executing threads in the
context of a speculative execution.

A widely used mechanism to solve this problem is to choose a fixed, optimum
size by trial and error. This method, called Fixed-Size Chunking [12] requires
many dry-runs to find an acceptable value. Moreover, a particular size found for
one application is of little use for another one, or even for a different input set
of the same application.

In this work we address the general problem of scheduling chunks of iterations
for their speculative execution, regardless of the number of dependence violations
that may actually appear. We have found that the pattern of dependence viola-
tions heavily depends on the application. Therefore, a scheduling strategy that
is able to dynamically adapt the size of chunks at runtime is very desirable.

In this paper, we introduce a scheduling method, called Moody Scheduling,
that tries to predict, at runtime, the best chunk size for the next chunk to be
scheduled. To do so, we rely on the number of re-executions of the previous
chunks, not only by using the mean of the last re-executions, but also their ten-
dency. With this method, we are able to (a) provide a general solution that does
not need an in-depth study of the dependence violation pattern, and (b) greatly
reduce the need of repetitive executions to tune the scheduling mechanism used.

The rest of the paper is organized as follows. Section 2 reviews some of
the existent scheduling alternatives currently used with TLS. Section 3 intro-
duces the main aspects of our proposal. Section 4 describes the function from a
mathematical point of view. Section 5 explores two different uses for our Moody
Scheduling. Section 6 gives some experimental results, comparing the new algo-
rithm with FSC, while Sect. 7 concludes this paper.

2 Related Work

Since the size of the chunk assigned to each processor directly affects perfor-
mance in TLS, numerous algorithms have been proposed to give a solution to
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this problem. The simplest one, called Fixed-Size Chunking (FSC), was ini-
tially proposed by Kruskal and Weiss [12]. With this mechanism, each thread
is assigned a constant number of iterations. Finding the right constant needs
several dry-runs on each particular input set for each parallelized loop. When
no dependence violations arise at runtime, this technique is perfectly adequate.
The only remaining concern is to achieve a good load balance when the last
iterations are being scheduled. Some examples of mechanisms that implement
load-balancing techniques can be found in [11] or [23].

There are solutions based on compile-time dependence analysis [19,25].
In these approaches, scheduling decisions are taken by reviewing the possible
dependence pattern that can arise, so an in-depth analysis of the loop is needed.

Other approaches rely on the expected dependence pattern of the loop to
be parallelized. In particular, for Randomized Incremental Algorithms, where
dependences tend to accumulate in the first iterations of the loop, two methods
have been shown to improve performance. The first one, called Meseta [16],
divides the execution in three stages. In the first one, chunks of increasing sizes
are scheduled, aiming to compensate for possible dependence violations, until a
lower bound of the probability of finding a dependence is reached. From then
on, a second stage applies FSC to execute most of the remaining iterations.
A third stage gradually decreases the chunk size, aiming to achieve a better load
balancing.

The second mechanism is called Just-In-Time (JIT) Scheduling [17]. This
method also focuses on randomized incremental algorithms, where dependences
are more likely to appear during the execution of the first chunks. JIT Scheduling
defines different logarithmic-based functions that issue chunks of increasing size,
and relies on runtime information to modulate these functions according to the
number of dependence violations that effectively appear.

Kulkarni et al. [13] also discussed the importance of scheduling strategies in
TLS. These authors defined a schedule through three steps, i.e., three design
choices that specify the behavior of a schedule, namely clustering, labeling and
ordering. They tested several strategies for each defined module, using their
Galois framework. Their results show that each application analyzed was closely
linked to a different scheduling strategy.

In summary, we can conclude that proposed solutions so far either depend
on the expected dependency pattern of the loop to be speculatively executed, or
require a big number of training experiments to be tuned, as in the case of FSC.
In this paper we present a new mechanism that issues chunks of different sizes,
by taking into account the actual occurrence of dependence violations, without
using any prior knowledge about their distribution.

3 Moody Scheduling: Design Guidelines

Our main purpose is to design a scheduling function that is able to predict
the best size for the following chunk to be issued at runtime, without the need
of a knowledge of the underlying problem. In order to decide the size of the
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Fig. 1. (a) A possible execution profile for a given loop, and (b) an example of the use
of linear regression to measure the tendency of the last h chunks. Recall that the y-axis
does not represent the chunk size, but the number of re-executions for each chunk.

next chunk to be scheduled, we will use the number of times that the last h
chunks have been squashed and re-executed due to dependence violations. As
an example, Fig. 1(a) shows, for each scheduled chunk (x-axis), the number of
times it has been executed so far (y-axis).

Given the number of executions of the last h chunks (regardless whether they
were already committed or not), we will consider two parameters. The first one is
the average number of executions of the last h chunks, which we call meanH and
whose value is, at least, 1. The second one is the tendency of these re-executions.
This value, which we call d, lies in the interval (−1, 1) and determines if the
number of executions is decreasing (d < 0), increasing (d > 0), or remaining
unchanged (d = 0). As we will see, d depends on the angle δ between the linear
regression line for the last h chunks and the horizontal axis (see Fig. 1(b)).

The size of the following chunk to be scheduled will depend on these two para-
meters. We will first present an informal description of the idea. The following
section shows the mathematical background and the implementation details.

1. If the tendency of re-executions is decreasing (d close to −1):
(a) If meanH is very low (close to 1), we will (optimistically) set the chunk size

to the maximum size suitable for this problem. We will call this maximum
value maxChunkSize.

(b) If meanH is between the minimum value (1) and an acceptable value (that
we call accMeanH), we will (optimistically) increase the chunk size.

(c) If meanH is between accMeanH and an upper limit (that we call
maxMeanH), we will keep the same chunk size, with the aim that its
execution will help to further reduce meanH.

(d) If meanH is higher than maxMeanH, we set the size of the following chunk
to 1.

2. If the tendency of re-executions is stable (d close to 0):
(a) If meanH is very low (close to 1), then we will (optimistically) issue a

larger chunk size.
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(b) If meanH is acceptable (close to accMeanH), then we will keep the same
chunk size.

(c) If meanH is between accMeanH and maxMeanH, then we will (pessimisti-
cally) decrease the chunk size.

(d) If meanH is higher than maxMeanH, we set the size of the following chunk
to 1.

3. If the tendency of re-executions is increasing (d close to 1):
(a) If meanH is very low (close to 1), then we propose to keep the same chunk

size, waiting for the next data to confirm if meanH really gets larger.
(b) If meanH is acceptable (close to accMeanH), then we decrease the chunk

size, intending to reduce the number of executions.
(c) If meanH is close to (or higher than) maxMeanH, then we propose a chunk

of size 1 intending to minimize the number of re-executions.

The last question is what size we should use to issue the first chunk, where
there is no past history to rely on. As we will see in Sect. 6, setting this inital
value to 1 leads to a good performance in all the applications considered.

Table 1 summarizes the behavior of our scheduling mechanism. Using this
approach, given the current lastChunkSize and a pair of values (d,meanH)
our function will use the guidelines described above to propose a value for
nextChunkSize. The following section discusses the implementation details.

Table 1. Changes on the following chunk sized according to d and meanH parameters

meanH ≈ 1 meanH ≈ accMeanH meanH ≈ maxMeanH meanH > maxMeanH

d → −1 ↑ ↗ = 1

d ≈ 0 ↗ = ↘ 1

d → 1 = ↘ 1 1

4 Moody Scheduling Function Definition

After the informal description presented above, the following step is to define a
function that determines the value for nextChunkSize using the current value of
lastChunkSize, together with d and meanH. In order to obtain the value of δ, we
compute the regression line defined by the last h points in our execution window
(see Fig. 1(b)).

The main problem with the intuitive behavior described above is that its
straightforward implementation (with nested if. . . then constructs) leads to a
discontinuous function. This is not a desirable situation, since the behavior of
the scheduling function would drastically change for very similar situations.

Instead, we define a bidimensional function that, for a given value of meanH
and d, returns the size of the next chunk to be scheduled. Figure 2(a) shows a 3D
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Fig. 2. (a) 3D representation of the Moody Scheduling function, that returns a value
for nextChunkSize (nCS) provided the current lastChunkSize and depending on d and
meanH; (b) 2D representation that connects our function with the intuitive behavior
described in Sect. 3; (c) Intersection of the graphic of nextChunkSize (d,meanH) with
d = 0.

representation of the Moody Scheduling function proposed. Figure 2(b) shows its
projection onto a horizontal plane, using the same grey scale as in Table 1.

To properly define this scheduling function, several parameters should be set.
The value of d is calculated by measuring the angle δ of the tendency with respect
to the horizontal axis. This angle lies in (−π/2, π/2). Our growth tendency
d ∈ (−1, 1) will be given by d = δ

π/2 .
The following parameter to be defined is accMeanH, that is, the highest

value of meanH considered to be acceptable. We initially set accMeanH = 2,
considering that, on average, we will accept that chunks have to be reexecuted
at most once.

There are two remaining parameters: maxChunkSize and maxMeanH, whose
values depend on the slopes of the graphic of the bidimensional scheduling
function as follows. If we fix d = 0 in the scheduling function, we obtain the
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plot depicted in Fig. 2(c). In this case, we can define two angles, α and β (see
figure). The angle α represents how optimistically the chunk size is going to
be increased. The higher the value for α, the most optimistic the scheduling
function will be. Analogously, β represents how pessimistically the chunk size
is going to be decreased. If we fix the value for these two angles, the value of
maxChunkSize is determined by the intersection between the segment from P
with angle α, and the vertical line defined by meanH = 1. Analogously, the value
for maxMeanH is determined by the intersection between the segment from P
with angle β, and the horizontal line defined by nextChunkSize = 1. In the
case that lastChunkSize = 1, β will be 0. On the other hand, α �= 0 as long as
accMeanH will never be set to 1.

The nine particular points defined by meanH ∈ {1, accMeanH,maxMeanH}
and d ∈ {−1, 0, 1} are defined by the values described above. Given that the
call to nextChunkSize(d,meanH) will return maxChunkSize for the three points
(−1, 1), (−1, accMeanH), and (0, 1), the function will also return maxChunkSize
to all points inside this triangle. Analogously, for all points inside the triangle
with vertices (1, accMeanH), (1,maxMeanH), and (0,maxMeanH), the function
will return 1. Notice that points on the diagonals (1, 1) to (0, accMeanH), and
from there to (−1,maxMeanH) will return lastChunkSize. These three facts
provide a natural triangulation for the space in Fig. 2(b).

5 Dynamic and Adaptive Implementations

If no dependences arose during the parallel execution, the size of the following
chunk would be calculated only once, that is, just before issuing its execution.
Otherwise, if the execution of the chunk fails, it gives the runtime system an
opportunity to adjust its calculation by calling the scheduling function with
updated runtime information. As it happens in [17], this leads to two different
ways to use the scheduling function:

– To calculate the size of the following chunk only the first time this particular
chunk will be issued. Subsequent re-executions will keep the same size. See
Fig. 3(a).

– To re-calculate the size of the following chunk each time the chunk is sched-
uled. This solution is called adaptive scheduling in [17]. See Fig. 3(b).

The advantage of adaptive over dynamic scheduling is that the first calcu-
lation of the chunk size may rely on incomplete information, since some or all
of the previous chunks are still being executed, and therefore they may suffer
additional squashes. Adaptive scheduling will always reconsider the situation
using updated data. Naturally, this comes at the cost of additional calls to the
scheduling function.



142 A. Estebanez et al.

4 5 6 7 8 9 10 11 12 13

non−spec
thread

most−spec
thread

25 28 33 54 69 8940

1 1 1 2 1 1 1

Last T threads

. . . . . .

Chunk sizes

Chunk numbers

Execution counters

non−spec
thread

most−spec
thread

4 5 6 7 8 9 10 11 12 13

4 5 6 7 8 9 10 11 12 13

non−spec
thread

most−spec
thread

4 5 6 7 8 9 10 11 12 13

non−spec
thread

most−spec
thread

. . . . . . 

(i)

25

1

28 33 54 69 8940

1 1 2 1 1 1

. . . . . . 

(ii)

25

1

28 33 54 69 8940

1 1 2 1 1 1

114

1

. . . . . . 

(iii)

25

1

28 33 54 6940

1 1 2 1 1 2

Chunk sizes

Chunk numbers

Chunk numbers

Chunk sizes

Execution counters

Execution counters

Chunk numbers

Chunk sizes

Execution counters

Last T+1 threads

109

2

81

(a) (b)

Fig. 3. (a) Dynamic Moody Scheduling. The size for the following chunk to be executed
(#10) is calculated once (89 iterations). Its size will be preserved regardless of the
number of re-executions of this chunk. (b) Adaptive Moody Scheduling. (i) Size of
chunk #10 is calculated with the Moody Scheduling function (89 iterations). (ii) Chunk
#9 issues a squash operation. (iii) Squashed threads recalculate in program order the
new sizes of the chunks to be executed, using the new values of the execution counters.

6 Experimental Evaluation

We have used ATLaS, a software-based TLS framework [1,8], to execute in
parallel four different applications that present non-analyzable loops with and
without dependences among iterations.

The first benchmark used is TREE from [2]. This application spends a large
fraction of its sequential execution time on a loop that can not be automatically
parallelized by state-of-the-art compilers because it has dependence structures
that are either too complicated to be analyzed at compile time or dependent on
the input data.

We consider three additional applications that present loops with depen-
dences. The first one is the 2-Dimensional Convex Hull (2D-Hull), an incremen-
tal randomized algorithm due to Clarkson et al. [6]. The algorithm computes
the convex hull (smallest enclosing convex polygon) of a set of two-dimensional
points in the plane. We have tested this application using three different input
sets: Disc and Square, that are composed of points uniformly distributed inside a
disc and a square, and Kuzmin, that is composed of points that follow a Kuzmin
distribution [3].

The second application, called the 2-Dimensional Minimum Enclosing Circle
(2D-MEC) [24], finds the smallest enclosing circle containing a given set of points
in the plane. The construction is also incremental. In this case, a dependence
violation forces not only an update of the current solution, but the recalculation
of the entire enclosing ball. This fact produces devastating effects when the
benchmark is speculatively parallelized.
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Table 2. Characteristics of the algorithms and input sizes used

Algorithm Input set description Loop Loop time Iterations per % of FSC chunk

parallelized as % of invocation dependence size used

total time violations (iterations)

TREE Off-axis parab. collision accel 10 94 4 096 0 100

2D-Hull Kuzmin, 10M points Main loop 99 9 999 997 0.0008 11 000

2D-Hull Square, 10M points Main loop 99 9 999 997 0.0032 3 000

2D-Hull Disc, 10M points Main loop 99 9 999 997 0.021 1 250

2D-MEC Disc, 10M points Inner loop 99 Changes

dynamically

0.009 1 800

Delaunay 100K points Main loop 99 95 000 0.5 2

The last benchmark is the Delaunay triangulation [14] of a two-dimensional
set of points. We have used an input set of 100 K points. Table 2 summarizes the
characteristics of each application considered.

Experiments were carried out on a 64-processor server, equipped with four
16-core AMD Opteron 6376 processors at 2.3 GHz and 256 GB of RAM, which
runs Ubuntu 12.04.3 LTS. All threads had exclusive access to the processors
during the execution of the experiments, and we used wall-clock times in our
measurements. Applications were compiled with gcc. Times shown below repre-
sent the time spent in the execution of the main loop of the application. The
time needed to read the input set and the time needed to output the results have
not been taken into account.

Figure 4 shows the relative performance of the mentioned applications when
executed with the ATLaS speculative parallelization framework [1] and three
different scheduling mechanisms: Adaptive Moody Scheduling, Dynamic Moody
Scheduling and Fixed-Size Chunking (FSC).

The plots show the performance obtained when an optimum chunk size is
used for FSC (a choice that required more than 20 experiments per application)
and for Moody Scheduling, whose choice of parameters required less than five
experiments in all cases. In the case of Moody Scheduling, we have used a value
of 2 for accMeanH, β = π

4 , and a value for h (the size of the window to be consid-
ered) equal to twice the number of processors for all applications. Regarding α,
we have used values ∈ ( π

20 , π
6 ), depending on whether the application is known

to produce dependence violations at runtime.
Furthermore, Moody Scheduling turns out to be competitive even without

any tuning: If we set to 1 the initial chunk size, its performance reaches 88.3 %
of the best FSC on geometric average. Meanwhile, the performance of FSC with
chunk size 1 drops almost to zero (except for Delaunay, when the best chunk
size for FSC is 2).

Regarding 2D-Hull (Fig. 4(a), (b), and (c)), the results for the Disc and
Square input sets show that our scheduling method leads to a better performance
than FSC. For the Disc input set, the highest speedup (2.17×) is achieved with
32 processors and the Dynamic version. For the Square input set, the biggest
speedup (6.81×) is achieved with the Dynamic version and 40 processors. Finally,
the performance figures when processing the Kuzmin input set are similar for
all the scheduling alternatives. The best performance (11.11×) is achieved with
56 processors and the Adaptive version. The two remaining applications lead
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(c) 2D-Hull, Kuzmin input set
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Fig. 4. Performance comparison for 2D-Hull with Disc, Square, and Kuzmin input sets,
and 2D-MEC, Delaunay, and TREE benchmarks. Note the extremely poor performance
of FSC when the chunk size is set to 1.

to similar performance results with all the scheduling mechanisms considered.
The 2D Smallest Enclosing Circle (Fig. 4(d)) achieved a speedup of 2.18× with
24 processors and the Dynamic version. The Delaunay triangulation (Fig. 4(e))
achieved a speedup of 2.58× using the Adaptive version. Finally, Fig. 4(f) shows
the speedup of TREE. This benchmark gained with the use of our scheduling
method: With 40 processors, FSC approach achieved its speedup peak, while
the Adaptive version continued improving its performance even with the maxi-
mum of available processors. It is interesting to note that, for TREE, both the
Dynamic and Adaptive mechanisms are equivalent: As long as no squashes are
issued, the size for each new chunk is calculated only once. The best perfor-
mance in this benchmark (7.96×) is obtained with the Adaptive version and 64
processors.

Regarding the relative performance of FSC and Moody Scheduling, both
strategies lead to similar performance figures for all applications, with the excep-
tion of the TREE benchmark, where Moody Scheduling is clearly better. The
main difference between them is that the choice of the optimum block size in FSC
required a prior, extensive testing (more than 20 runs per benchmark), while the
Moody Scheduling self-tuning mechanism leads to competitive results right from
the beginning. Moreover, the results obtained for the TREE application show
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that, contrary to intuition, our self-tuning mechanism leads to better results
than FSC even without dependence violations, despite the higher computing
cost added by the runtime calls to the Moody Scheduling function. Regard-
ing which approach is better, Dynamic or Adaptive, it seems to depend on the
application. Therefore, we will keep both of them in the ATLaS framework.

7 Conclusions

This work addresses an important problem for speculative parallelism: How to
compute the size of the following chunk of iterations to be scheduled. We have
found that most of the existent solutions are highly dependent on the particular
application to parallelize, and they require many executions of the problem to
obtain the scheduling parameters. Our new method, Moody Scheduling, auto-
matically calculates an adequate size for the next chunk of iterations to be
scheduled, and can be tuned further by making slight changes to its parameters,
namely α, β, h, and accMeanH. Our scheduling method can be used as a gen-
eral approach that avoids most of the ‘dry-runs’ required to arrive to scheduling
parameters in other methods. Results show that execution times are similar (or
better) to those obtained with a carefully-tuned FSC execution. Moody Schedul-
ing just needs from the user to decide how optimistic, and pessimistic, the TLS
system will be when it schedules the following chunk of iterations.
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Abstract. In the context of service hosting in large-scale datacenters,
we consider the problem faced by a provider for allocating services to
machines. Based on an analysis of a public Google trace correspond-
ing to the use of a production cluster over a long period, we propose a
model where long-running services experience demand variations with a
periodic (daily) pattern and we prove that services following this model
acknowledge for most of the overall CPU demand. This leads to an allo-
cation problem where the classical Bin-Packing issue is augmented with
the possibility to co-locate jobs whose peaks occur at different times of
the day, which is bound to be more efficient than the usual approach that
consist in over-provisioning for the maximum demand. In this paper, we
provide a mathematical framework to analyze the packing of services
exhibiting daily patterns and whose peaks occur at different times. We
propose a sophisticated SOCP (Second Order Cone Program) formula-
tion for this problem and we analyze how this modified packing constraint
changes the behavior of standard packing heuristics (such as Best-Fit or
First-Fit Decreasing). We show that taking periodicity of demand into
account allows for a substantial improvement on machine utilization in
the context of large-scale, state-of-the-art production datacenters.

1 Introduction

The Cloud paradigm provides an illusion of infinite elasticity and seamless provi-
sioning of IT resources. However, as providers keep scaling their infrastructures
year after year, the efficient allocation of services in Platform-as-a-Service (PaaS)
becomes crucial.

We concentrate on the case of a Cloud platform in which several indepen-
dent services, typically virtualized as Virtual Machines (VMs) or lightweight con-
tainers, are serving user queries and need to be allocated onto physical machines
(PMs) [1,17]. We consider the static case where a set of dominant services define
the overall resource usage of the physical platform, which has proved to be com-
monplace in large datacenters [3]. In this context, mapping services with het-
erogeneous computing demands onto PMs is amenable to a multi-dimensional
Bin-Packingproblem(eachdimension corresponding to adifferent kindof resource,
c© Springer-Verlag Berlin Heidelberg 2015
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memory, CPU, disk, bandwidth,. . . ). Indeed, on the infrastructure side, each phys-
ical machine presents a given computing capacity (i.e. the number of Flops it can
process during one time-unit), a memory capacity and a failure rate (i.e. the prob-
ability that the machine will fail during the next time period). On the client side,
each service has a set of requirements along the same dimensions (memory and
CPU footprints) and a reliability requirement that has been negotiated typically
through an SLA [8].

In this work, we consider a specific feature of CPU demand that arises in the
context of service allocation. Based on the analysis of a large cluster trace provided
by Google, we demonstrate in Sect. 3 that many services representing most of the
overall CPU demand exhibit daily patterns and their demand can be modeled as a
set of sinusoids, each comprising a constant component, an amplitude and a phase.
Under this premise, the contribution of this paper is threefold. First, we propose
and advocate a novel model for jobs with time-varying resource demands and we
define the associated packing problem. This model can be used to aggregate onto
the same physical machines more resources than it would be possible based on
their maximal demands only, taking advantage of the fact that different phases for
different services imply that peak demands do not occur simultaneously. Second,
we show the benefits of antagonistic job aggregation, and how this can be used to
improve the system performance. Third, we propose several algorithms for packing
jobs with periodic demands on the hosting platform. The first one is based on
a Second Order Cone Program (SOCP) formulation [11] whereas the others are
adaptations of classical greedy packing heuristics.

The remaining of this paper is organized as follows. We discuss some related
works in Sect. 2. In Sect. 3, we characterize the periodic behavior of some of
the jobs in a cluster usage trace provided by Google. In Sect. 4, we formulate
the optimization problem using Complex Analysis and we prove that it can
be expressed as a SOCP (Second Order Cone Program). In Sect. 5, we propose
several packing heuristics, whose performance is analyzed and validated on a
realistic trace in Sect. 6. Finally, conclusions are drawn in Sect. 7.

2 Related Works

In order to deal with resource allocation problems arising in the context of
Clouds, several sophisticated techniques have been developed in order to opti-
mally allocate user services onto PMs, either to achieve good load-balancing [4,7]
or to minimize energy consumption [5]. Most of the approaches in this domain
are based on offline [9] and online [10] variants of Bin-Packing strategies.

In this paper, we concentrate on the allocation of jobs that last for a long
time and whose CPU demands exhibit periodic patterns. Some other work deal
with allocating jobs whose demands varies over time, either with predictable
(static) or unknown (dynamic) behavior. In the static case which is the focus of
this present work, historical average resource utilization is typically used as input
to an algorithm that maps services to physical machines. Therefore, the map-
ping is done off-line. In contrast, dynamic allocation schemes are implemented
on shorter timescales. Dynamic allocation leverages the ability to perform run-
time migrations of jobs and to recompute resource allocation amongst services.
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A dynamic migration algorithm Measure Forecast Remap is introduced in [6],
where highly variable workloads are forecast over intervals shorter than the time
scale of demand variability to ensure dynamic minimization of the number of
required machines. Based on stochastic vector packing model, the static scheme
proposed in [14] makes use of customers’ periodic access patterns in web server
farms to assign each customer to a server so as to minimize the total number of
required servers. In this latter work, the variable demand is analyzed at a differ-
ent time scale to extract probability distributions that are independent of time.
Then, stream-packing heuristics are employed to select the most complemen-
tary jobs to be packed in the same server. Urgaonkar et al. [15] rely on on-line
application profiling to demonstrate the feasibility and benefits of overbooking
resources in shared platforms to guide the application placement onto dedicated
resources while providing performance guarantees at runtime. A new mecha-
nism for dynamic resource management in cluster-based network servers [2],
called cluster reserve, allows performance isolation between service classes and
provides a minimal amount of resources, irrespective of the load imposed by
other requests. In contrast to these other directions, our work focuses on a part
of the workload which exhibits deterministic periodic variability. In this context,
dynamic resource management is unnecessary: the migration cost can be avoided
by using periodicity-aware static approaches for service allocation. Still, above
mentioned approaches can be used in order to allocate at runtime all the tasks
that do not exhibit daily sinusoidal patterns in their demand. Nevertheless, we
will prove that the overall weight of such services in terms of CPU demand makes
it useful to design specific allocation algorithms for them.

3 Periodicity Analysis

When considering efficient allocations, it is important to categorize how services
are correlated in order to schedule them efficiently. Indeed, if many services
reach their (say, CPU) peak demand at the same time (i.e. high positive cor-
relation), the stress on the platform and on the resource allocation algorithm
will be much higher. In this case, it seems reasonable to place those services on
different physical machines to avoid machine starvation. On the other hand, if
peaks are spread on a large enough time-frame, this will allow for some slack
in the allocation algorithm to provide efficient placements by co-allocating jobs
whose peaks happen at different times, hence resulting in a more efficient average
resource utilization.

Our periodicity analysis is based on the study of a usage trace released by
Google from one of its production clusters [16]. The workload consists in a
massive number of jobs, which can be further divided into tasks, being each
task assigned to a single physical machine. The data are collected from 12583
machines, span a time of 29 days and provide exhaustive profiling information
on 5 min monitoring intervals. Each job belongs to a priority group, namely
(in order of decreasing importance) Infrastructure, Monitoring, Normal Produc-
tion, Other and Gratis (free) [12,13]. The scheduler generally gives preference
to resource demands from higher priority tasks over tasks belonging to lower
priority groups, to the point of evicting the latter ones if needed.
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Given the thorough information contained in the trace, one of the main
difficulties is related to the time needed to validate any assumption based on
these data. To simplify this process without loss of accuracy, we proposed in [3] an
extraction of the information from a subset of jobs that we defined as dominant,
i.e. jobs which account for most of platform usage at any time.

In this work, we have restricted our study to dominant jobs in the Normal
Production class, given that they represent standard production utilization in the
datacenter and last for long enough to allow periodicity correlation. In addition,
considering only one priority class avoids issues due to the fact that hosts have
finite capacity. Indeed, this finite capacity implies that when the resource demand
of one job increases, another job with lower priority may end up using fewer
resources (or even getting evicted by the scheduler) even if its actual demand
remained invariable.

The spectral analysis of the Normal Production, dominant jobs that run
during the whole trace allowed us to quantify the main components of their
CPU demand, namely the amplitude, phase, frequency and background noise.
Table 1 provides the averaged ratios between the jobs’ components’ amplitudes
and their constant part. The residual noise is about 6 % of the average CPU
demand for a large part of the jobs, which can be used as a threshold: any
pattern with an amplitude significantly larger can be identified as a relevant
component. Attending to the percentile variation, we conclude that very few
jobs exhibit hourly patterns, more than half of the jobs show very strong daily
patterns, and only two thirds have significant daily patterns. Weekly patterns
are not as strong, but they are still significant for about half of the jobs.

Regarding pattern synchronization, we observed that all jobs with a weekly
pattern show the same behavior: 5 days of high usage followed by 2 days of lower
usage. For the daily patterns, we analyzed jobs with an amplitude of, at least,
10 % of the mean. Half of the jobs show a phase difference below 60 degrees (i.e.
their peaks are within 4 hours from each other). Furthermore, 90 % of the jobs
exhibit a phase difference below 120 degrees (peaks are at most 8 hours apart).
This shows that the jobs’ behavior is clearly correlated by this daily pattern.

Table 1. Ratios amplitude/mean part for long-running, dominant jobs [3]. Each row
shows the mean, standard deviation, and different percentiles of such ratios.

Stats Ratio of Amplitude to mean

Hourly Daily Weekly Long term Noise

Mean 0.057 0.267 0.148 0.154 0.100

Std 0.246 0.232 0.127 0.161 0.154

Min 0.001 0.006 0.011 0.001 0.012

25 % 0.004 0.052 0.076 0.051 0.036

50 % 0.007 0.268 0.106 0.102 0.058

75 % 0.009 0.376 0.196 0.196 0.072

Max 1.612 1.075 0.669 1.149 0.836
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4 Packing of Jobs with Periodic Demands

4.1 Notations and Problem Formulation

Let us assume that the cloud platform we consider consists of M homogeneous
nodes M1, . . . , Mk, . . . , MM and let us denote the processing capacity of a node
by C. For the sake of simplicity and in order to focus on issues related to the
aggregation of periodic demands, we will concentrate on CPU demands only.

The tasks of a job (corresponding to a service in the trace) can run on any
node, and job Jj is split into Nj tasks denoted by Tj,1, . . . , Tj,l, . . . , Tj,Nj

, who
share the same characteristics in terms of CPU demand.

In turn, platform nodes are allowed to run several tasks, provided that at
any time step, their capacity is not exceeded. We assume that the set of tasks
running on a node does not change over time, what is a realistic assumption
for dominant Normal Production jobs, as shown in Sect. 3, and we model the
instantaneous demand at time t of task Tj,l, which does not depend on l, as

Wj(t) = Cj + ρj sin
(

2π
t

Pj
+ φj

)
,

where Cj denotes the average of CPU demand of Task Tj,l, ρj denotes its max-
imal amplitude with respect to Cj , Pj denotes the period of its pattern and φj

denotes its phase. As noticed in Sect. 3, one can concentrate in this context on
jobs that exhibit daily patterns and we will therefore assume in what follows
that ∀j, Pj = P , where P denotes a daytime.

In this context, our aim is to provide a static packing for the set of tasks Tj,l

such that at any step and on any resource, capacity constraints are not exceeded
and such that the number of required nodes is minimized. More specifically, our
goal is to take advantage of daily variations in order to obtain an efficient packing
of tasks. Indeed, most packing strategies are based on the maximal demand of
each task, what corresponds to Cj + ρj for a task of job j. Taking advantage of
the fact that all tasks do not achieve their peak demand at the same time in the
day, it is possible to pack more tasks, and therefore to use fewer nodes whilst
packing statically all the tasks.

Let us consider several tasks Tj,l clustered together on node Mk. Knowing
that all the jobs have the same period P , the constraint stating that the capacity
of Mk is not exceeded at any time

∀t, k,
∑

j,l:Tj,l∈Mk

Wj(t) ≤ C, becomes

⇐⇒ ∀t, k,
∑

j,l:Tj,l∈Mk

Cj +
∑

j,l:Tj,l∈Mk

ρj sin(2πt/P + φj) ≤ C

⇐⇒ ∀t, k,
∑

j,l:Tj,l∈Mk

Cj + Im

⎛

⎝
∑

j,l:Tj,l∈Mk

ρj exp(2iπt/P ) exp(iφj)

⎞

⎠ ≤ C
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⇐⇒ ∀t, k,
∑

j,l:Tj,l∈Mk

Cj + Im

⎛

⎝(exp(2iπt/P ))

⎛

⎝
∑

j,l:Tj,l∈Mk

ρj exp(iφj)

⎞

⎠

⎞

⎠ ≤ C

⇐⇒ ∀k,
∑

j,l:Tj,l∈Mk

Cj + ‖
∑

j,l:Tj,l∈Mk

ρj exp(iφj)‖ ≤ C,

where Im(z) denotes the imaginary part of complex number z, i is the imaginary
unit satisfying i2 = −1 and ‖z‖ denotes the modulus of z.

Note that in the last expression, the constraint does not involve t anymore,
and that all above complex analysis derivations are equivalences, such that this
last expression exactly states that the capacity constraint is never exceeded at
any time step. In order to design exact solutions and heuristics, we will use the
following formulation,

∀k,
∑

j,l:Tj,l∈Mk

Cj +
√

(
∑

j,l:Tj,l∈Mk

ρj cos(φj))2 + (
∑

j,l:Tj,l∈Mk

ρj sin(φj))2 ≤ C (1)

4.2 Quadratic Formulation

From this modified packing constraint (1), we propose a quadratically con-
strained programming (QCP) formulation of our problem. This formulation uses
two types of variables:

Integer variables Xj,k representing the number of tasks of job j allocated on
the node Mk,

Boolean variables Yk representing whether node Mk is used.
With these variables, the formulation is the following:

Minimize
∑

k

Yk

∀j ∈ J,
∑

k∈M

Xj,k = Nj (2)

∀k ∈ M, (
∑

j∈J

Xj,kρj cos(φj))2 + (
∑

j∈J

Xj,kρj sin(φj))2 ≤ (C Yk −
∑

j∈J

Xj,k Cj)2

(3)

∀k ∈ M, C Yk −
∑

j∈J

Xj,k Cj ≥ 0 (4)

In this formulation, constraint (2) ensures that all instances of all jobs are
allocated. Tasks belonging to the same job could co-exist in the same node.
Constraints (3) and (4) are a quadratic reformulation of Eq. (1), ensuring that
an unused node does not contribute any resource to the platform. Due to the
nature of this constraint, this formulation can be expressed as a Second Order
Cone Program, and can thus benefit from efficient general purpose solvers [11] for
convex optimization. However, on real-size instances with thousands of machines,
this formulation can not be solved in reasonable time with integer and boolean
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values. Relaxing the problem by allowing rational variables makes it possible to
obtain a lower bound on the necessary number of resources in reasonable time.

5 Packing Heuristics

5.1 Complexity and Lower Bound

The optimization problem that consists in packing tasks with periodic demands
into nodes is clearly NP-Complete, since it is amenable to classical Bin-Packing
problems [9,10] in its most simplified setting where ∀j, ρj = 0, i.e. the case when
demands do not change over time. The SOCP formulation proposed in Sect. 4.2
can be used to solve the optimization problem, but its use is in practice restricted
to small cases. On the other hand, the relaxation of this SOCP where variables
can take rational values (including the Xj,l’s) can be solved in reasonable time.
This solution is not feasible in general but it provides a lower bound on the
number of necessary nodes that will be used in order to evaluate the quality of
the heuristics we propose.

5.2 Notations

In order to describe the algorithms, we will consider that tasks are sorted by
decreasing values of Cj , as usual when designing packing heuristics. Other pos-
sible choices would include sorting tasks by decreasing values of Cj +ρj and will
be discussed in Sect. 6.2. Let us assume that tasks Tj,l have been assigned to
node Mk. Then, the load of node Mk will be represented, following the analysis
performed in Sect. 4, by the triplet Sk = (Ck, xk, yk), where

Ck =
∑

j,l:Tj,l∈Mk

Cj , xk =
∑

j,l:Tj,l∈Mk

ρj cos(φj), yk =
∑

j,l:Tj,l∈Mk

ρj sin(φj).

The maximal load of node Mk at any time step t is therefore given by

L(Mk) = Ck +
√

x2
k + y2

k

and becomes L(Mk, Tj,l) = Ck + Cj +
√

(xk + ρj cos(φj))2 + (yk + ρj sin(φj))2
when one task Tj,l of job Jj is added to Mk.

5.3 Heuristics

We propose the following set of heuristics, adapted from classical efficient greedy
Bin-Packing algorithms to the case of tasks exhibiting daily patterns.

– First-Fit Decreasing FFD is a greedy algorithm in which tasks are considered
by decreasing values of Cj . At any step, task Tj,l (from job Jj) is allocated to
the node with the smallest index and such that L(Mk, Tj,l) ≤ C. If no such
node exists, then a new node is added to the system to hold the task.
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– Best-Fit Decreasing BFD is a greedy algorithm in which tasks are considered
by decreasing values of Cj . At any step, task Tj,l (from job Jj) is allocated
to the node Mk such that L(Mk, Tj,l) is maximized (while remaining below
C). Note that contrarily to what happens in classical BFD, the size that is
considered is the size after the allocation. If no such node exists, then a new
node is added to the system to hold the task.

– In Min-Max MM(M), the target number of nodes is fixed to M a priori.
Then, MM is a greedy algorithm where tasks are considered by decreasing
values of Cj . At any step, task Tj,l (from job Jj) is allocated to the node Mk

such that L(Mk, Tj,l) is minimized, in order to balance the load between the
different nodes. The allocation may fail if M is to small. In MM, the best
number of nodes is found using dichotomic search.

– Min-Max-Module MMM is similar to MM, except that tasks are repre-
sented using their maximal demand over time Cj + ρj only. Hence, in this
case, the problem is reduced to the classical bin packing. This is typically
what happens when one neglects the possibility to take advantage of the fact
that peak demands do not occur at the same time for all jobs.

6 Experimental Evaluation

6.1 Simulated Data

We perform a set of experiments with synthetic data in order to assess the
influence of the parameters on the performance of the different heuristics. In
all the experiments, we display the ratio between the number of nodes using
the heuristics described in Sect. 5 against the lower bound on the number of
necessary nodes described in Sect. 5.1.

In the following, we set the capacity of the nodes to 20 and we consider the
following parameters:

– CPU footprint of the tasks: we consider the case of Big Tasks (where Cj is
chosen uniformly at random in [0, 10]) and Small Tasks (where Cj is chosen
uniformly at random in [0, 1]).

– Daytime amplitude: we consider the case of Large Daytime Amplitude (where
ρj is chosen uniformly at random in [0, Cj ]) and Small Daytime Amplitude
(where ρj is chosen uniformly at random in [0, Cj/2]).

– Size of the Jobs: we consider the case of Large Jobs (where the number of
identical tasks of the job is set to 10) and Small Jobs, which consist in a
single task.

In all cases, the phase of each job is chosen uniformly at random in [0, 2π]. In
all the experiments, in order to perform a fair comparison, the expected value
of the lower bound is set to 250, so that there are 10 times more tasks in the
case of Small Tasks with respect to the case of Big Tasks. We performed other
experiments with different number of jobs and tasks, but the results showed very
little sensitivity to these parameters and were excluded from the paper in order
to save space.
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Results for the eight possible combinations (Small or Big tasks/Small or Big
amplitude/Small or Big jobs) are displayed in Fig. 1.

Fig. 1. Performance of the heuristics on synthetic data

The first conclusion that can be drawn is that failing to take periodic demand
variations leads to a large waste of resources. Indeed, the performance of Min-
Max-Module MMM is consistently far from the lower bound, by 50 % in the
case of Big Amplitudes and by 25 % in the case of Small Amplitudes.

The second conclusion is that when the tasks are Small, so that each node
holds a few tens of tasks, Min-Max MM performs extremely well and is always
at most within 1 % of the lower bound. The results of Min-Max MM slightly
degrade when tasks get Big. Indeed, in this case, the number of tasks per node is
relatively small (a few units) and greedy heuristics fail to achieve close to opti-
mal performance. Nevertheless, the number of nodes required by MM always
stays within 20 % of the lower bound, and this lower bound is certainly under-
estimated, especially in the case of Big Tasks.

In the case of Big Tasks, it happens that First-Fit Decreasing FFD outper-
forms Min-Max MM. Indeed, FFD is an efficient heuristic for classical Bin-
Packing problems. On the other hand, it tends to pack together on the same
node tasks whose characteristics are close in terms of Cj . In the case of Big Jobs
consisting in several identical tasks, then FFD packs together tasks that achieve
their peak demand at the same time and therefore fails to take full benefit of
their periodic behavior.
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6.2 Task Ordering

Note that in all the heuristics described in Sect. 5, tasks are sorted by decreasing
values of Cj , whereas their maximal demand is Cj + ρj . We also tried to sort
tasks according to Cj +ρj but it degrades the performance of the heuristics. The
reason is the following. As observed in Sect. 5.2, each task can be represented
by a triplet (Cj , xj , yj), where ρj =

√
x2
j + y2

j and the state of each node can
be represented by a triplet (Ck, xk, yk) and the maximal load at any time step
is given by Ck +

√
x2
k + y2

k. In practice, the x’s and y’s can be either positive or
negative whereas the C’s are always positive. Therefore, the packing heuristics
that take periodicity into account tend to annihilate x’s and y’s and therefore,
the amplitude of ρ should not be given as much importance as the amplitude of
C when initially sorting the tasks.

In the (most difficult) case of 1000 Big tasks with Big amplitudes, for instance,
the number of nodes required by Min-Max MM heuristic is on average 30 % larger
than the lower bound when tasks are ordered by decreasing values of Cj + ρj ,
whereas the number of nodes required by MM is on average only 15 % larger
than the lower bound when tasks are ordered by decreasing values of Cj .

6.3 Jobs and Tasks of Google Trace

As advocated in Sect. 3, in the trace released by Google [16] and corresponding to
one production center, the jobs of the Normal Production class that last for the
duration of the trace and that exhibit strong daily patterns count for about 50 %
of the overall load. In this paper, we concentrate on this set of jobs, and we prove
that their characteristics make them suitable for the design of efficient resource
allocation algorithms, which take into account both their periodic nature and
the fact that they do not all reach their peak values at the same time step.

Of course, since this set of jobs accounts for half of the overall demand,
it is also crucial to design more dynamic strategies for the rest of the jobs.
These jobs typically correspond to the Gratis (free) class [12,13] and can be
allocated at runtime and then migrated to other nodes when the load of a node
becomes too high so that the QoS (Quality of Service) of the Normal Production
class cannot be enforced. Nevertheless, this important problem, addressed in the
papers mentioned in Sect. 2, is out of the scope of this paper.

Following the classification of Sect. 3, we have extracted 89 jobs corresponding
to a total of 22600 tasks. The largest job (in terms of tasks) consists in 1608
tasks. The largest job (in terms of CPU demand) corresponds to the capacity
of 184 nodes at its peak demand. A capacity equivalent to 2198 nodes would
be required if all jobs reached their peak demand at the same instant. On the
other hand, the overall peak demand for the whole set of jobs is equivalent to
the capacity of 2090 nodes.

Therefore, there exists a potential improvement on the number of required
nodes of 5 %, what should be considered as large in the context of an actual
production center. The results achieved by the different heuristics are displayed
in Table 2.
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Table 2. Number of nodes required per heuristic.

First-Fit Best-Fit Min-Max Min-Max-Module

FFD BFD MM MMM
Number of nodes 2181 2182 2114 2226

It can be observed that the results of MM are extremely good on this actual
dataset. Indeed, the number of required machines is only 1.1 % higher than the
lower bound (2090 nodes), whereas MMM, the equivalent heuristic that does
not benefit from daily patterns, requires 6.5 % more machines than the lower
bound. This result proves that there is clear interest to take benefit of daily
patterns on an actual dataset.

7 Conclusions

This paper assesses the impact of designing efficient resource allocation algo-
rithms for jobs that exhibit daily periodic sinusoidal patterns. First, we demon-
strate that in a trace of a production cluster released by Google, those jobs
actually represent a significant part of the workload. Then, we present a novel
model of periodic jobs with variable resource demand in shared hosting plat-
forms. We prove that the job aggregation problem, where the objective is to
minimize the number of nodes, can be formulated as a SOCP, what enables us
to solve it exactly in reasonable time, at least for small instances. We argue that
provisioning resources solely based on the maximal demand of tasks, as showed
by Min-Max-Module heuristic, results in larger number of nodes. On the other
hand, resource provisioning based on an antagonistic job aggregation, as illus-
trated by the Min-Max heuristic, can yield gains that significantly decrease the
number of required nodes. As future work, we plan to extend job aggregation
strategies to provide performance guarantees for other resources like memory,
disk, network bandwidth, etc. Our future research plans include refining the
suggested second order cone program to more efficient mathematical program-
ming relying on column generation algorithm. This algorithm is proved to be
efficient for solving larger programs as it generates only variables which have the
potential to improve the objective function. At last, in order to deal with larger
classes of problems, it is crucial to understand how to mix the (close to opti-
mal) strategies used to schedule long-running high priority job classes and the
dynamic resource allocation strategies that are used for short and low priority
classes.
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Abstract. The hypergraph partitioning problem has many applications
in scientific computing and provides a more accurate inter-processor
communication model for distributed systems than the equivalent graph
problem. In this paper, we propose a sequential multi-level hypergraph
partitioning algorithm. The algorithm makes novel use of the technique
of rough set clustering in categorising the vertices of the hypergraph.
The algorithm treats hyperedges as features of the hypergraph and tries
to discard unimportant hyperedges to make better clustering decisions.
It also focuses on the trade-off to be made between local vertex match-
ing decisions (which have low cost in terms of the space required and
time taken) and global decisions (which can be of better quality but
have greater costs). The algorithm is evaluated and compared to state-
of-the-art algorithms on a range of benchmarks. The results show that
it generates better partition quality.

1 Introduction

A hypergraph is a pair: a set of vertices and a set of hyperedges. Each hyperedge
is a subset of the vertex set (there is no restriction on its size). The hypergraph
partitioning problem asks, roughly speaking, for a partition of the vertex set such
that the vertices are evenly distributed amongst the parts and the number of
hyperedges that intersect multiple parts is minimised. A tool to solve this probem
is called a partitioner. Hypergraph partitioning has applications in many areas
of computer science such as data mining and image processing.

The hypergraph partitioning problem is a generalisation of the graph parti-
tioning problem (in which the edges of a graph are subsets of the vertex set of size
two contrasting with hyperedges whose size is unbounded), and provides a more
natural way of representing the relationships between objects inherent in many
problems [14]. The removal of the constraint on edge size, however, increases
the practical difficulty of partitioning [13]. As both the graph and hypergraph
variants of the partitioning problem are NP-hard [12], a number of heuristic
algorithms have been proposed [10,17]. In this paper, we propose and evaluate
a new algorithm.

Our serial Feature Extraction Hypergraph Partitioning (FEHG) algorithm is
of a type known as multi-level. It has three distinct phases: coarsening, initial
partitioning and uncoarsening. During coarsening vertices are merged to obtain
c© Springer-Verlag Berlin Heidelberg 2015
J.L. Träff et al. (Eds.): Euro-Par 2015, LNCS 9233, pp. 159–170, 2015.
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hypergraphs with progressively smaller vertex sets. After the coarsening stage,
the partitioning problem is solved on the smaller hypergraph obtained in the
initial partitioning. During uncoarsening, the coarsening stage is reversed and
the solution obtained on the small hypergraph is used to provide a solution on the
input hypergraph. We describe some of the problems of multi-level partitioning
that motivate our study:

1. Heuristics for multi-level hypergraph partitioning focus on finding highly-
connected clusters of vertices that can be merged to form a coarser hyper-
graph. This requires a metric of similarity, the evaluation of which requires
the recognition of “similar” vertices. As the mean and standard deviation of
vertex degrees are usually high (and so the similarity of pairs of vertices is
typically low), it is often a problem to define and measure the similarity [9].

2. There can be redundancy in modelling scientific problems with hypergraphs
and it is desirable to remove it. In [13], an attempt to reduce the storage
overhead of saving and processing hypergraphs is presented, but the strategy
can increase either the storage requirement or the running time in some cases.

3. Decision making for matching vertices (that will be merged) is usually done
locally. Global decisions are avoided due to their high cost and complexity
though they give better results [21]. All proposed heuristics reduce the search
domain and try to find the vertices to be matched using some degree of
randomness. This degrades the quality of the partitioning by increasing the
possibility of getting stuck in a local minimum. A better trade-off is needed
between the low cost of local decisions and the high quality of global ones.

Highlights of our contribution:

– We propose a new serial multi-level hypergraph partitioning algorithm which
gives significant quality improvements over state-of-the-art algorithms.

– We use rough set based clustering techniques for removing redundant attributes
while partitioning and so make better clustering decisions.

– We provide a trade-off between global and local clustering methods by calcu-
lating sets of core vertices (a global decision) and then traversing these cores
one at a time to find best matchings between vertices (a local decision).

– We show that solely relying on a vertex similarity metric can result in major
degradation of the partitioning quality for some hypergraphs and different
coarsening methods should be considered.

In the next section, we briefly review partitioning algorithms and software
tools. In Sect. 3, we give a technical introduction to the Hypergraph Partitioning
Problem. In Sect. 4 we introduce FEHG. In Sect. 5 we evaluate the algorithm and
report results of a simulation comparing FEHG to state-of-the-art algorithms.
Finally in Sect. 6, we conclude with comments on ongoing and future work.

2 Related Work

We provide a brief review of algorithms, tools, and applications of hypergraph
partitioning; the reader is referred to [21] for an extensive survey. We note that,
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in general, there is no partitioner recognized to perform well for all types of
hypergraphs as there are always trade-offs such as those between quality and
speed [21]. Partitioning algorithms can be serial [4,16] or parallel [8], iterative
move-based [10] or multi-level [5], static [22] or dynamic [5], recursive [8] or
direct [1], and finally they can work directly on hypergraphs [16] or model them
as graphs and use graph partitioning algorithms [17].

Few software tools are available for hypergraph partitioning and there is
no unified framework for hypergraph processing. One popular tool designed for
VLSI circuit partitioning is hMetis1 [16]. The algorithms are based on multi-level
partitioning schemes and support recursive bisectioning (shmetis, hmetis), and
direct k–way partitioning (kmetis). Examples of tools that are designed for spe-
cific applications are MLPart2 and Mondriaan3, designed for VLSI circuit par-
titioning and rectangular sparse matrix-vector multiplications, respectively. The
emphasis of MLPart is on simplicity of design and Mondriaan uses the idea of
2D matrix partitioning to enhance performance [22]. PaToH 4 [4] is a multi-level
recursive bipartitioning tool designed for serial hypergraph partitioning. It sup-
ports agglomerative (vertex clusters are formed one at a time) and hierarchical
(several clusters of vertices can be formed simultaneously) clustering algorithms.
Zoltan5 [8] is developed for parallel applications. Its library includes a range of
tools for problems such as dynamic load balancing and graph and hypergraph
colouring and partitioning. Both static and dynamic hypergraph partitioning are
supported as are multi-criteria load balancing and processor heterogeneity.

There are a wide range of applications for hypergraph partitioning (see, for
example, [20]) including classifying gene expression data, replication manage-
ment in distributed databases [6] and high dimensional data clustering [15].

3 Definitions

3.1 Hypergraph Partitioning

A hypergraph H = (V,E) is a pair consisting of a finite set of vertices V , with
size |V | = n and a multi–set E ⊆ 2n of hyperedges with size |E| = m. For a
hyperedge e ∈ E and vertex v, we say e contains v, or is incident to v, if v ∈ e;
this is represented by e � v. The degree of a vertex is the number of distinct
incident hyperedges and the size of a hyperedge |e| is the number of vertices it
contains. The hypergraph is simply a graph if every hyperedge has size two.

Definition 1. Let k be a non–negative integer and let H = (V,E) be a hyper-
graph. A k–way partitioning of H is a collection of sets Π = {P1, P2, · · · , Pk}
such that ∪k

i=1Pi = V , and ∀Pi, Pj ⊂ V, 1 � i �= j � k, we have Pi �= ∅,
Pi ∩ Pj = ∅.
1 http://glaros.dtc.umn.edu/gkhome/metis/hmetis/overview.
2 http://vlsicad.ucsd.edu/GSRC/bookshelf/Slots/Partitioning/MLPart/.
3 http://www.staff.science.uu.nl/∼bisse101/Mondriaan/mondriaan.html.
4 http://bmi.osu.edu/umit/software.html.
5 http://www.cs.sandia.gov/zoltan/.

http://glaros.dtc.umn.edu/gkhome/metis/hmetis/overview
http://vlsicad.ucsd.edu/GSRC/bookshelf/Slots/Partitioning/MLPart/
http://www.staff.science.uu.nl/~bisse101/Mondriaan/mondriaan.html
http://bmi.osu.edu/umit/software.html
http://www.cs.sandia.gov/zoltan/


162 F. Lotfifar and M. Johnson

We say that v ∈ V is assigned to a part P ∈ Π if v ∈ P . Let ω : V 
→ N and
γ : E 
→ N be weight functions for the vertices and hyperedges. The weight of P
is defined as ω(P ) =

∑
v∈P ω(v). A hyperedge e ∈ E is said to be connected to

P if e ∩ P �= ∅. The connectivity degree of e is the number of parts connected
to e and is denoted by λe(H,Π). A hyperedge is cut if it connects to more than
one part. We define the cost of a partition Π of H as

∑

e∈E
(γ(e) · (λe(H,Π) − 1)).

The connectivity objective is to find a partition Π of low cost. Let Wave be
the average weight of the parts: that is Wave =

∑
v∈V ω(v)/k. The balancing

requirement asks that all parts of the partition have similar weight: that is,
given imbalance tolerance ε ∈ (0, 1), it is required that

Wave · (1 − ε) � ω(P ) � Wave · (1 + ε), ∀P ∈ Π. (1)

The hypergraph partitioning problem is finding a minimum cost partition Π
of H that satisfies the balancing requirement.

3.2 Rough Set Clustering

Rough set theory was introduced by Pawlak in 1991 as an approach to under-
standing fuzzy and uncertain knowledge [19]. It provides a mathematical tool to
discover hidden patterns in data; it can be used, for example, for feature selec-
tion, data reduction, pattern extraction. It can deal efficiently with large data
sets [2] by extracting global information that resides in the data.

Definition 2. Let U be a non-empty finite set of objects (called the universe).
Let A be a non-empty finite set of attributes. Let V be a multi-set of attribute
values such that Va ∈ V is a set of values for each a ∈ A. Let F be a mapping
function such that F(u, a) 
→ Va,∀(a, u) ∈ A × U. Then I = (U,A,V,F) is
called an information system.

For any B ⊆ A there is an associated equivalence relation denoted IND(B)
and called a B-Indiscernibility relation:

IND(B) =
{
(u, v) ∈ U

2 | ∀b ∈ B, F(u, b) = F(v, b)
}

. (2)

When (u, v) ∈ IND(B), it is said that u and v are indiscernible under B
and this is represented as uRv. Furthermore, the equivalence class of u with
respect to B is [u]B = {v ∈ U | uRv}. The equivalence relation provides a
partitioning of the universe and it is represented as U/IND(B) or simply U/IND.
Thus, for every X ∈ U, and with respect to B ⊆ A, a B–lower and B–upper
approximation can be defined for X, by, respectively, BX = {x | [x]B ⊆ X}
and BX = {x | [x]B ∩ X �= ∅}. BX contains objects that belong to X with
certainty and BX contains objects that possibly belong to X. We describe a
hypergraph H = (V,E) with an information system IH = (V,E,V,F) such
that Ve ∈ [0, 1],∀e ∈ E and the mapping function is defined as:

F(v, e) =
f(e)

∑
∀e′�v γ(e′)

, where f(e) = γ(e) if e � v and is otherwise 0.
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3.3 Hyperedge Connectivity Graph

We use rough set clustering in our algorithm to make better clustering decisions
in hypergraphs. We will need a measure of similarity of a pair of hyperedges, a
function sim(·). Different similarity measures, such as Jaccard Index or Cosine
Measure, can be used. Similarity is scaled according to the weight of hyperedges:
for two ei, ej ∈ E the scaling factor is γ(ei)+γ(ej)

2×maxe∈E(γ(e)) .

Definition 3. For a given similarity threshold s ∈ (0, 1), the Hyperedge Con-
nectivity Graph (HCG) of a hypergraph H = (V,E) is a graph Gs(V, E) where
V = E and two vertices vi, vj ∈ V are adjacent if, for the corresponding hyper-
edges ei, ej ∈ E we have sim(ei, ej) � s.

We discuss the importance of the choosing the similarity threshold in Sect. 5.

4 The Algorithm

The proposed algorithm is a recursive multi–level algorithm composed of coars-
ening, initial partitioning and uncoarsening phases.

4.1 The Coarsening

The process of coarsening involves finding a sequence of hypergraphs H =
(V,E) ,H1 =

(
V 1, E1

)
, . . . , Hc = (V c, Ec) such that each hypergraph has fewer

vertices than its predecessor and the coarsest hypergraph Hc has fewer vertices
than a predefined threshold. We say Hi is the hypergraph found at the ith level

of coarsening. The compression ratio of successive levels i, j is defined as |V i|
|V j | . We

use vertex matching to match a pair of vertices and merge them to form a coarser
vertex. The best pair is chosen using the Weighted Jaccard Index defined by:

J (u, v) =

∑
{e�v ∧ e�u} γ (e)

∑
{e�v ∨ e�u} γ(e)

, v, u ∈ V, and ∀e ∈ E. (3)

This is similar to non-weighted jaccard index in PaToH which is called Scaled
Heavy Connectivity Matching. The algorithm first constructs HCG graph defined
above. by traversing H using Breadth-First Search (the graph itself does not need
to be saved). A partition ER of the hyperedges of H is then obtained where each
part contains hyperedges that belong to the same connected component of HCG.
The size and weight of each eR ∈ ER is the number of hyperedges it contains
and the sum of their weights, respectively. If we represent a hypergraph with
an information system, a reduced information system IR

H

(
V,ER,VR,FR

)
is

constructed based on ER. A vertex is incident to eR ∈ ER if at least one of its
incident edges e ∈ H is in eR. In addition VR

eR
⊆ N,∀eR ∈ ER and the mapping

function is defined as:

FR(v, eR) = |{e � v ∧ e ∈ eR, ∀e ∈ E }| . (4)
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Fig. 1. An example of the coarsening procedure. (a) The sample hypergraph. (b) HCG
using weighted jaccard index in (3) and similarity threshold s = 0.5. (c) The reduced
information system, and (d) Remaining attributes after removing superfluous attributes
for clustering threshold c = 0.5.

The next step is to remove superfluous attributes from ER. A clustering
threshold c ∈ [0, 1] is defined and the mapping function of (4) is transformed to:

Ff (v, eR) =

{
1, if FR(v,eR)

|{e�v,∀e∈E}| � c

0, otherwise.
(5)

At this point we have a reduced information system If and we use this to find
clusters of vertices using rough set clustering techniques. Using the indiscernibil-
ity relation defined in (2), the equivalence relation between vertices (Sect. 3.2),
and the mapping function F f of (5), U/IND(ER) provides a partitioning of the
vertex set V . The parts are called the cores of the hypergraph. Cores of unit size
as well as vertices whose F f(v, eR) = 0, ∀eR ∈ ER are categorised as non–core
vertices and they will be processed after core vertices. The cores are visited one
at a time and they are searched locally to find the best matching pairs according
to (3). The larger the mean vertex degree in the hypergraph is, the larger denom-
inator we get in (5) and this makes it difficult to choose a clustering threshold.
As a result, large mean vertex degrees produce more cores of unit size and this
causes the number of vertices that belong to cores to be small compared to |V |.

To maintain a certain compression ratio between two successive levels of the
coarsening, we perform a random matching of the non–core vertices. An example
of the coarsening procedure is given in Fig. 1.

4.2 Initial Partitioning and Uncoarsening

In the initial partitioning phase, a bipartitioning on the coarsest hypergraph
Hc is found using a number of algorithms. An output is selected to be projected
back to the original hypergraph: if many outputs fulfill the balancing requirement
then the one with lowest cost is chosen else it is the output that comes closest to
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Table 1. Tested hypergraphs and their specifications

Hypergraph Description Rows Columns Non-zeros Structurea NSCb

CNR–2000 Small web crawl of Italian

CNR domain

325,557 325,557 3,216,152 USYM 100,977

AS–22JULY06 Internet routers 22,963 22,963 96,872 SYM 1

CELEGANSNEURAL Neural Network of Nematode

C. Elegans

297 297 2,345 USYM 57

NETSCIENCE Co-authorship of scientists in

Network Theory

1,589 1,589 5,484 SYM 396

PGPGIANTCOMPO Largest connected component

in graph of PGP users

10,680 10,680 48,632 SYM 1

GUPTA1 Linear Programming matrix

(A × AT )

31,802 31,802 2,164,210 SYM 1

MARK3JAC120 Jacobian from MULTIMOD

Mark3

54,929 54,929 322,483 USYM 1,921

NOTREDAME Barabasi’s web page network

of nd.edu

325,729 325,729 929,849 USYM 231,666

PATENTS–MAIN Pajek network: mainNBER

US Patent Citations

240,547 240,547 560,943 USYM 240,547

STD1–JAC3 Chemical process simulation 21,982 21,982 1,455,374 USYM 1

COND–MAT–2005 Collaboration network, www.

arxiv.org

40,421 40,421 351,382 SYM 1,798

a NSC stands for the number of strongly connected components.
b SYM stands for symmetric and USYM stands for unsymmetric.

meeting the balancing requirement. The algorithms used are random partitioning
(randomly assign vertices to parts), linear partitioning (linearly assign vertices
to parts), and a modification of the FM algorithm [10]. During uncoarsening,
we try to refine the quality of the partitioning by moving the vertices across the
partition boundary. A vertex is on the boundary if at least one of its incident
edges is cut by the bipartitioning. The FM algorithm and its variants have been
shown to be successful for the refinement process [8,16] and we use a modified
version of FM or Boundary FM algorithm.

5 Evaluation

We have compared our algorithm (FEHG) withPHG (the Zoltan hypergraph par-
titioner) [8], hMetis [16], and PaToH [4]. These algorithms achieve k-way parti-
tioning by recursive bipartitioning. The evaluated hypergraphs listed in Table 1
are from the University of Florida Sparse Matrix Collection [7]. They are from
a variety of applications with different specifications and include both symmetric
and non–symmetric instances, and hypergraphs with different numbers of strongly
connected components, etc. Each matrix in the table is treated as a hypergraph.
We use the column-net model where each row of the matrix corresponds to a ver-
tex and each column corresponds to a hyperedge [8]. The weights of vertices and
hyperedges are set to unity. The evaluated tools have different input parameters
that can be selected by the user. For our case, we use default settings for the com-
parison: shmetis is the default partitioner selected for hMetis,PaToH is initialised

www.arxiv.org
www.arxiv.org
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by setting SBProbType parameter to PATOH SUGPARAM DEFAULT, and the coarsen-
ing algorithm for PHG is set to agglomerative. All of them use a variation of FM
for the refinement and uncoarsening phase.

FEHG has two input parameters: the similarity threshold to construct HCG,
and the clustering threshold from (5). The values chosen for these parameters
can have a large impact on the quality of the partitioning. We describe how
calculate the similarity threshold when the Jaccard Index is used for measuring
the similarity between hyperedges.

The Clustering Coefficient (CC) is a graph theory measure determined by
the degree to which a node clusters with other nodes of the graph or hypergraph.
Different methods for finding CC in hypergraphs have been proposed [18]. Given
a hypergraph H = (V,E), we define CC for a hyperedge e ∈ E as:

CC(e) =

⎧
⎪⎨

⎪⎩

∑
{e′∩e �=∅}

((

1− (|e|−1)−|e∩e′|
|e|−1

)

·γ(e′)
)

∑
{v∈e}

∑
{e′′�v} γ(e′′) , ∀e′, e′′ ∈ E\e, if |e| > 1

0, otherwise.
(6)

The CC of the hypergraph is calculated as the average CC over all hyper-
edges. We calculate CC at the start of the algorithm. As the structure of the
hypergraph changes at each level of coarsening, we readjust its value instead
of recalculation. As proposed in [11] to analyse Facebook social networks and
theoretically investigated in [3] on sparse random intersection graphs, the clus-
tering of nodes in hypergraphs is inversely correlated with average vertex degree.
Based on this, we readjust CC’s value according to the variation of average ver-
tex degree from one level of the coarsening to the next. Finally, CC value of the
hypergraph is set as the similarity threshold at each coarsening level.

Figure 2a depicts the variation of similarity threshold for each coarsening level
of a tested graph CNR–2000. Both the readjusted value and the actual value are
shown. The readjusted value provides a lower bound for the actual value and it is
about 50% of its value from the third iteration onward which is sufficient for fea-
ture reduction. In Fig. 2b, the percentage of the edges whose clustering coefficients
are at least equal to the similarity threshold along with normalised variation of
edge size and its standard deviation (STD) is represented. As the partitioner gets
close to the coarsest hypergraph we have small average size of hyperedges (2.09)
and small average vertex degrees (2.47) but larger vertex degree standard devia-
tion (14.33); most of the vertices share very few hyperedges so clustering decisions
are difficult. As we see, the automatic readjustment still catches the possible sim-
ilarities. In general we achieve a cut size 50 for CNR–2000.

In our evaluation we found that variation of the similarity threshold has
higher impact on the quality of the partitioning than the clustering threshold.
The reason is that hyperedges with higher CC value are more likely to cluster
with others and they get higher coefficient in (4) and tend to be included in
the final reduced information system in (5). This reduces the effects of cluster-
ing threshold variations. Therefore, we remove each eR ∈ ER of unit size (refer
to Sect. 4.1) and we set the clustering threshold to 0 in (5) for the others. For
example, edge partitions C2 and C4 are removed from the table in Fig. 1c. For all
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(a) Similarity Threshold (b) Change vs. edge size and its STD

Fig. 2. (a) Readjusted similarity threshold s for the test hypergraph CNR–2000 accord-
ing to (6) compared to its recalculation at each coarsening level. (b) The percentage of
the hyperedges whose CC is more than s and comparison to normalised edge size edge
and its standard deviation (STD).

Fig. 3. Variation of vertex degree and its standard deviation when FEHG makes extra
effort for achieving maximum vertex similarity matching vs normal matching

tested hypergraphs, the algorithms are each run 20 times and the average and
best cut sizes are reported. Simulations are done with 2% imbalance tolerance in
(1) and the number of parts are {2, 4, 8, 16, 32}. The final imbalance achieved by
the algorithms are not reported because the balancing requirement was always
met by all algorithms. The simulation results as well as standard deviation from
the average cut are reported in Table 2. The latter could be used as a measure
of the robustness of the algorithms specifically when they give close partitioning
quality. The values are normalised with the best cut generated among all algo-
rithms except the standard deviation. According to the results, FEHG performs
very well compared to Zoltan and hMetis and it is competitive with PaToH.
For example in Noterdame and Patents-Main, FEHG achieves a superior quality
improvement compared to Zoltan and hMetis. In another simulation, we inves-
tigate whether relying only on a vertex similarity metric is enough to achieve
better partition quality. When two vertices are matched, we refer to their similar-
ity degree as the roughness of the match and it is calculated using (3). Matching
pairs of vertices with higher similarity degree at each level of coarsening means
higher average roughness of the matched vertices in that level. According to the
algorithms that investigate vertex similarity metrics, an algorithm would be bet-
ter if it yields higher average roughness for levels of coarsening compared to the
others [21]. Furthermore, the decision about the vertex similarity is made locally
in those algorithms without collecting global information. In FEHG, we refer to
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Table 2. Quality comparison of the algorithms for different part sizes and imbalance
factor 2 % with normalised values.

Graph Algorithm Number of Parts
2 4 8 16 32

AVE STD BEST AVE STD BEST AVE STD BEST AVE STD BEST AVE STD BEST

FEHG 1.11 34 1.00 1.02 32 1.00 1.04 25 1.01 1.01 30 1.00 1.01 28 1.03
AS-22JULY06 PHG 2.90 86 2.46 1.77 92 1.56 1.64 78 1.36 1.43 87 1.34 1.37 90 1.32

hMetis 1.34 0 1.95 1.19 7 1.30 1.16 12 1.18 1.04 23 1.06 1.09 27 1.04
PaToH 1.00 4 1.43 1.00 16 1.03 1.00 20 1.00 1.00 37 1.00 1.00 43 1.00

Best Value 136 – 93 355 – 319 629 – 599 1051 – 995 1591 – 1529

FEHG 1.00 2 1.00 1.09 9 1.00 1.10 15 1.06 1.11 16 1.08 1.07 17 1.03
CELEGANSNEURAL PHG 1.07 6 1.00 1.04 8 1.03 1.02 9 1.00 1.06 12 1.00 1.00 18 1.00

hMetis 1.17 0 1.21 1.00 5 1.05 1.00 0 1.04 1.00 2 1.02 1.00 6 1.00
PaToH 1.01 0 1.04 1.00 0 1.06 1.03 0 1.07 1.03 0 1.06 1.05 0 1.05

Best Value 79 – 77 195 – 184 354 – 342 548 – 536 773 – 769

FEHG 1.37 63 1.00 1.71 131 1.07 1.59 226 1.41 1.53 218 1.45 1.63 217 1.51
CNR–2000 PHG 35.88 552 45.62 12.48 760 9.17 5.73 569 4.84 3.54 477 2.98 2.42 530 2.02

hMetis 12.19 74 18.82 8.24 163 8.43 5.08 240 4.71 3.46 238 3.29 2.66 231 2.50
PaToH 1.00 3 1.71 1.00 37 1.00 1.00 48 1.00 1.00 62 1.00 1.00 85 1.00

Best Value 81 – 45 244 – 202 569 – 509 1014 – 911 1927 – 1830

FEHG 1.00 28 1.00 1.00 58 1.00 1.00 87 1.00 1.01 88 1.02 1.01 82 1.00
COND–MAT–2005 PHG 1.17 37 1.17 1.11 84 1.10 1.05 94 1.05 1.03 112 1.03 1.02 105 1.01

hMetis 1.05 14 1.07 1.11 75 1.12 1.11 81 1.12 1.11 129 1.10 1.01 122 1.01
PaToH 1.02 39 1.02 1.03 193 1.03 1.00 98 1.00 1.00 153 1.10 1.00 178 1.00

Best Value 2134 – 2087 5057 – 4951 8609 – 8485 12370 – 12150 16270 – 16150

FEHG 0.0 0 0.0 0.0 0 0.0 2.00 1 1.50 1.50 2 1.00 2.08 2 1.81
NETSCIENCE∗ PHG 0.0 0 0.0 0.0 0 0.0 1.50 1 1.00 1.40 2 1.00 1.87 2 1.5

hMetis 2.0 0 2.0 5.0 0 5.0 4.22 1 3.50 1.75 0 1.75 1.99 2 1.87
PaToH 0.0 0 0.0 0.0 0 0.0 1.00 0 1.00 1.00 0 1.00 1.00 0 1.00

Best Value 0 – 0 0 – 0 2 – 2 8 – 8 16 – 16

FEHG 2.12 8 1.27 1.00 23 1.00 1.04 18 1.00 1.00 16 1.08 1.00 18 1.00
PGPGIANTCOMPO PHG 13.23 48 1.83 1.44 65 1.04 1.25 45 1.04 1.02 53 1.00 1.08 46 1.00

hMetis 9.7 3 9.61 1.46 11 1.71 1.04 13 1.40 1.31 24 1.40 1.26 25 1.27
PaToH 1.00 0 1.00 1.04 0 1.27 1.00 7 1.04 1.02 2 1.15 1.08 5 1.06

Best Value 18 – 18 242 – 200 419 – 400 695 – 617 956 – 930

FEHG 1.00 60 1.00 1.00 55 1.00 1.00 80 1.00 1.00 115 1.00 1.00 15 1.00
GUPTA1 PHG 1.58 67 1.45 1.31 146 1.24 1.15 204 1.04 1.07 253 1.04 1.09 58 1.05

hMetis 1.73 2 1.82 1.61 10 1.69 1.58 58 1.64 1.60 137 1.57 1.51 643 1.48
PaToH 1.22 32 1.17 1.08 43 1.09 1.04 84 1.05 1.05 95 1.07 1.08 120 1.09

Best Value 486 – 462 1466 – 1384 3077 – 2893 5342 – 5134 8965 – 8519

FEHG 1.01 6 1.01 1.02 18 1.01 1.01 23 1.00 1.00 83 1.00 1.06 132 1.07
MARK3JAC120 PHG 1.00 4 1.01 1.02 15 1.02 1.02 27 1.00 1.00 53 1.00 1.72 106 1.78

hMetis 1.00 13 1.00 1.00 15 1.02 1.00 29 1.00 1.30 217 1.00 4.20 214 1.78
PaToH 1.00 0 1.02 1.00 11 1.00 1.00 17 1.00 1.26 248 1.20 1.00 267 1.00

Best Value 408 – 400 1229 – 1202 2856 – 2835 6317 – 6245 3142 – 2944

FEHG 0 0 0 1.00 9 1.00 1.12 40 1.12 1.09 116 1.03 1.06 119 1.07
NOTREDAME∗ PHG 4326 0 4326 158.56 124 288.69 13.82 67 16.78 2.09 75 3.06 1.72 78 1.78

hMetis 880 84 707 67.92 65 129.92 10.98 108 12.65 3.36 143 3.37 2.23 129 2.30
Patoh 24 1 22 1.90 8 3.31 1.00 27 1.00 1.00 52 1.00 1.00 62 1.00

Best Value 0 – 0 27 – 13 316 – 259 1577 – 1484 3142 – 2944

FEHG 1.20 180 1.00 1.03 275 1.01 1.05 270 1.03 1.00 327 1.00 1.00 342 1.00
PATENTS–MAIN PHG 12.49 1286 13.19 2.52 1736 2.30 1.79 1749 1.65 1.42 1575 1.38 1.23 1602 1.18

hMetis 2.38 36 2.77 1.16 70 1.24 1.26 115 1.43 1.26 161 1.31 1.21 231 1.22
PaToH 1.00 70 1.02 1.00 145 1.00 1.00 217 1.00 1.00 220 1.00 1.01 306 1.00

Best Value 643 – 528 3490 – 3198 6451 – 6096 11322 – 10640 16927 – 16460

FEHG 1.01 260 1.00 1.00 246 1.03 1.00 424 1.00 1.00 549 1.00 1.00 557 1.00
STD1–JAC3 PHG 1.15 227 1.08 1.16 377 1.10 1.18 748 1.13 1.28 768 1.35 1.33 801 1.29

hMetis 1.05 105 1.00 1.52 1649 1.03 1.54 2057 1.23 1.70 2330 1.53 1.71 2995 1.51
Patoh 1.00 125 1.00 1.08 506 1.00 1.16 700 1.14 1.00 827 1.26 1.30 945 1.29

Best Value 1490 – 1371 3735 – 3333 7616 – 6167 13254 – 11710 22242 – 21200
∗ When the minimum cut for the average or best cases are zero, the values shown are actual cut values rather than normalised values.

the average roughness of core vertices as core roughness. We consider two scenar-
ios for our test while we find a pair match for non–core vertices: in the first one,
a match is allowed for a non–core vertex if the roughness of the match is at least
equal to the core roughness. In the second scenario we allow non–core vertex to
be matched to any vertex as long as the roughness of the match is greater than
zero. In the first scenario, the emphasis is on finding vertices with higher simi-
larity as is the case for similarity metric based methods and it guarantees higher
average roughness compared to the second scenario during levels of coarsening.
The test is done on the hypergraphs and the result for CNR-2000 is reported
in Fig. 3. According to the results, the first scenario causes high fluctuations of
vertex degree standard deviations while the second scenario produces a smooth
change. We achieve average cuts of 490 and 110 for CNR–2000 for the first and
second scenarios, respectively.
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The agglomerative clustering of Zoltan and hMetis give 25.54 and 8.89 times
worse quality. PaToH also produces good average quality of 81 using absorption
clustering using pins and hyperedge clustering. The variations in vertex degree
or its standard deviation causes problems for clustering algorithms, making it
hard to make good clustering decisions because of the increased conflicts between
local and global decisions. Consequently, finding vertices with higher similarity
for matching can not be relied on for every hypergraph and it does not always
gives a better partitioning cut. In addition, gathering some global information
before making clustering decisions can give a major quality improvement and
decreases the unexpectedness of the partitioning cut as depicted in Table 2.

6 Conclusions and Future Work

We have proposed a multi–level hypergraph partitioning algorithm based on
feature extraction and attribute reduction using rough set clustering techniques.
The algorithm clusters hyperedges using different similarity metrics and a simi-
larity threshold and tries to removes less important hyperedges. An automated
calculation of this similarity threshold is proposed. The hypergraph is then trans-
formed into a reduced information system. Employing the idea of Rough Set clus-
tering, the algorithm calculates the partitioning of the objects in the reduced
information system based on indispensability relations and core sets of vertices
with globally high similarities. Then cores are searched locally for vertex match-
ings. Evaluating the algorithm in comparison to the state-of-the-art algorithms
has shown improvements in quality of the partitioning for tested hypergraphs.
Future work is to implement parallel versions of the algorithm. Using a special
distribution of vertices and hyperedges among processors and the ideas of rough
set theory, we are focusing on proposing a scalable partitioner.
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Abstract. We consider the problem of scheduling a set of n jobs on
a single processor. Each job is characterized by its release date rj , its
deadline dj and its processing volume pj . The processor can vary its
speed and can switch into a sleep state in order to reduce its energy
consumption. No energy is consumed in this state, but a fixed amount
of energy, equal to L, is required for a transition from the sleep state
to the active state. Here, we study the throughput maximization version
of the problem where we are given a budget of energy E and our goal
is to determine a feasible schedule maximizing the number of jobs that
are executed between their respective release dates and deadlines with-
out preemption. We first consider the case in which jobs have agreeable
deadlines, i.e. for every pair of jobs i and j, one has ri ≤ rj if and
only if di ≤ dj . Then we consider the case where the jobs have arbitrary
release dates and deadlines, but the same processing volume. We propose
polynomial-time algorithms for both cases.

1 Introduction

Power management aims to reduce the energy consumption in computer systems
while maintaining a good level of performance. One of the mechanisms used to
save energy is speed-scaling where the processor is capable to vary its speed
dynamically. The faster the processor runs, the more it consumes energy. Another
mechanism for energy savings is the power-down mechanism, in which we have to
decide whether to put the system into the sleep state when it is idle, or maintain
it in the active state. No energy is consumed during the sleep state, but a fixed
amount of energy is required to wake up the system.

More formally, we are given a set of n jobs. Each job is characterized by its
release date rj , its deadline dj and its processing volume pj . We are also given
one processor which can vary its speed and can switch into the sleep state in
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order to reduce the energy consumption. No energy is consumed in this state, but
a fixed amount of energy is required for transitioning the system from the sleep
state to the active one which is equal to L. The processor can execute at most
one job at each time during the active state. We measure the processor’s speed in
units of executed work per unit of time. If s(t) denotes the speed of the processor
at time t, then the total amount of work executed by the processor during an
interval of time [t, t′) is equal to

∫ t′

t
s(u)du. Specifically, at any time t, the power

consumption of the processor is P (t) = s(t)α + γ, where α > 1 is a constant and
γ is the energy leakage. We are given an energy budget E and the goal is to find
a feasible schedule maximizing the number of jobs that are executed between
their release dates and their deadlines and respecting the energy budget.

Related Works

A series of papers have studied energy minimization for the speed-scaling model,
the power-down model and the combined speed-scaling and power-down model.

Speed-Scaling. The energy minimization problem of scheduling n jobs with release
dates and deadlines on a single processor that can vary its speed dynamically
and where the preemption of the jobs is allowed has been first studied in the
seminal paper by Yao et al. [22]. The time complexity for general instances has
been improved in [15,20], while for jobs with agreeable deadlines in [16,21].
For the non-preemptive energy minimization problem, Antoniadis and Huang
[7] showed its NP-hardness in the strong sense and they proposed a polynomial
time approximation algorithm. This result has been improved recently in [9,14].

Power-Down. Baptiste [10] showed that the problem is polynomially solvable for
the power-down model when the processor’s speed is fixed by introducing O(n7)
time algorithm. Later on, Baptiste et al. [11] improved the time complexity of this
algorithm to O(n5). When the jobs have agreeable deadline (a formal definition
is given below), an O(n2) exact algorithm has been proposed by Angel et al. [3].
Finally, Chrobak et al. [13] proposed a 2-approximation algorithm of complexity
O(n2 log n).

Speed-Scaling and Power-Down. Irani et al. [17] introduced a model incorpo-
rating both mechanisms, i.e. speed-scaling and power-down, and proposed a 2-
approximation algorithm for the speed-scaling with power-down model. Recently,
Albers et al. [1] proved that the speed-scaling problem with power down is NP-
hard and provided a 4/3-approximation algorithm for the preemptive case, while
Bampis et al. [8] showed that when jobs have agreeable deadlines, the problem
can be solved in O(n3) time.

The most relevant works in the throughput maximization version of this prob-
lem but only for the speed scaling settings are [4,5,19]. Li [19] has considered
throughput maximization when there is an upper bound in the processor’s speed
and he proposed a greedy algorithm which leads to a 3-approximation for the
throughput and a constant approximation ratio for the energy consumption.
Angel et al. studied the throughput maximization problem in [5]. They pro-
posed a polynomial time algorithm that solves optimally the single-processor
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problem for agreeable instances. More recently in [4], the authors proved that
there is a pseudo-polynomial time algorithm for solving optimally the preemptive
throughput maximization problem with arbitrary release dates and deadlines as
well as arbitrary processing volumes. For the weighted version, the problem is
NP-hard even for instances in which all the jobs have common release dates and
deadlines.

Our Contributions

We consider the non-preemptive throughput maximization problem for the speed-
scaling and power-down model. Notice that this problem is at least as hard as
the energy minimization version since we can make a binary search in the energy
budget in order to find the minimum energy consumption for all jobs with respect
to the accuracy of the search. Since the non-preemptive general case is strongly
NP-hard [7] for the speed-scaling settings, then it is also for the combined model.
Indeed, the decision version is to ask whether there exists a non-preemptive
schedule that have a cost less than some value, and if so, we could construct a
solution of the same cost for the 3-partition. Here, we prove that the problem can
be solved in polynomial time for two special cases of instances. First, we consider
instances where jobs have agreeable deadlines, i.e. such that for every pair of jobs
i < j, one has ri ≤ rj if and only if di ≤ dj . Intuitively, in an instance with
agreeable deadlines a later released job also has a later deadline. We propose
a O(n11) time algorithm to solve this case. Then we consider the case where
jobs have arbitrary release dates and deadlines, but have the same processing
volume, i.e. pj = p ∀j. We first prove that the complexity time remains the same
as for the speed scaling case, and improve the time complexity of the energy
minimization variant to O(n19). These families of instances have received a lot
of attention in the literature (see for instance [2,16]).

2 Preliminaries

In this paper, we consider schedules without preemption. Without loss of gen-
erality, we assume that all parameters of the problem such as release dates,
deadlines and processing volumes of jobs are integers. We rename jobs in non-
decreasing order of their deadlines, i.e. d1 ≤ d2 ≤ . . . ≤ dn. We denote by
rmin := min1≤j≤n rj the minimum release date. Define Ω as the set of release
dates and deadlines, i.e. Ω := {rj |j = 1, . . . , n} ∪ {dj |j = 1, . . . , n}.

We refer to the energy cost of the processor induced by the speed as dynamic
energy and to the energy induced by the leakage and the wake-up cost as static
energy.

We call an edf (Earliest Deadlines First) schedule, a schedule in which at any
time, the job with the smallest deadline among the available jobs is scheduled first.

We give some simple observations on non-preemptive scheduling with the
objective of maximizing throughput under the energy constraint. First, it is well
known that due to the convexity of the power function P (s) := sα + γ, each job
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runs at a constant speed during its whole execution in an optimal schedule. This
follows from Jensen’s Inequality.

We first define the critical speed that minimizes the energy consumption of
a single job. This shows that we do not scheduled every job at the lowest speed
as possible.

Definition 1. [17] Let s� := arg mins
P (s)

s be the critical speed.

Definition 2. We define a block of jobs with respect to a schedule as the maxi-
mal interval when the processor is in the working state (ON-state). The processor
is in the sleep state (OFF-state) before and after this block.

Definition 3. (Fig. 1) [8] We define the prefix (resp. suffix) of a block of jobs
with respect to a schedule as the maximal subset of continuous scheduled jobs at
the beginning (resp. at the end) of the block and such that the processor runs at
speed s�.

Fig. 1. Illustration of Definition 3

Remark 1. The prefix and suffix of a block of jobs can be empty.

Proposition 1. [8] The processor speed is at least s� at the beginning and at
the end of a continuous block of jobs.

Proof. Let S be an optimal schedule and suppose that there is a block B of
jobs such that the processor speed is strictly lower than s� at the beginning of
the block (prefix). Let j be the first job of B. Job j is therefore scheduled with
a speed s < s� and let �(j) be its execution length. The energy consumption
of job j is �(j) · P (s). Then we can increase the processor speed from s to s�

for this job, the length of the job b will decrease to �(j)·s
s� , by shifting to the

right its starting time without changing its finishing time, the overall schedule
will remain feasible, and its energy consumption will decrease. Indeed, the new
energy consumption of job j is P (s�) · �(j)·s

s� , and one has �(j) ·P (s) > P (s�) �(j)·s
s�

which follows immediately from the definition of the critical speed. ��

3 Agreeable Deadlines Jobs

We study in this part instances in which jobs have agreeable deadlines, i.e. for
every pair of jobs i and j, one has ri ≤ rj if and only if di ≤ dj .
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Proposition 2. There exists an optimal solution in which jobs are scheduled
according to the edf order and without preemption.

Proof. We prove this proposition in two part. The first part is to prove that jobs
are scheduled in edf order. Then we prove that the schedule can be transform into
a non-preemptive schedule. Let O be an optimal schedule in which there exists
two consecutive piece of jobs j′ < j such that job j is scheduled before job j′

with dj′ ≤ dj . Let a (resp. b) be the starting time (resp. completion time) of job
j (resp. job j′) in O. Then, we have necessarily rj′ ≤ rj ≤ a < b ≤ dj′ ≤ dj .
The execution of jobs j and j′ can be swapped in the time interval [a, b). Thus
we obtain a feasible schedule O′ in which job j′ is scheduled before job j with
the same energy consumption. Once we obtain a schedule in which jobs are in
the edf order, we may have a same job into several pieces. If the processor is at
sleep state between two pieces, then we can merge the second piece with the first
one by shifting the piece to the left. The energy’s consumption does not increase.
Similarly, if the processor is on active state between the two pieces, then we can
shift the second piece to the left without increasing the energy’s consumption. ��
Definition 4. Define Y (i, j, a, b, u) as the minimum energy consumption of a
T -schedule T such that:

– T ⊆ {i, . . . , j} and |T | = u where T is the set of jobs scheduled in T ,
– the jobs of T are entirely scheduled in [a, b),
– the processor is in working state (ON-state) during [a, b).

Remark 2. By convention, {i, i − 1} is an empty set.

The energy consumption of a schedule corresponding to Y (i, j, a, b, u) is exactly
the minimum combined dynamic and static energy. Note that Y (i, j, a, b, u) could
be computed with the algorithm proposed in [5]. Note that by applying this algo-
rithm, we obtain a non-preemptive schedule.

Definition 5. Define X(i, j, a, b, u) as the minimum energy consumption of a
T -schedule T such that:

– T ⊆ {i, . . . , j} and |T | = u where T is the set of jobs scheduled in T ,
– during interval [a, b), there is exactly one sub-interval where the processor is in

sleep state. Otherwise, the processor executes jobs in T with speed (exactly) s∗.

By definition, the energy consumption of the schedule is ((a′ − a) + (b −
b′))P (s�) + L where [a′, b′) ⊆ [a, b) is the interval during which the processor is
in sleep state. Note that the processor needs to be waken up once, which costs L.
Intuitively, X(i, j, a, b, u) represents the energy consumption during an interval
which consists of a prefix and a suffix and a sleep-state interval. Since the speed
is fixed in the definition of X(.), we show how to compute the minimum energy
consumption with classical scheduling algorithm.
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Definition 6. We define C(i, j, a, b, u) (resp. S(i, j, a, b, u)) as the minimum
length of a schedule starting at time a (resp. ending at time b), such that there
are exactly u jobs among {i, . . . , j} which are scheduled, and such that all these
jobs are scheduled in [a, b) with the speed s�. If no such schedule exists, then the
length is infinity.

Fig. 2. Illustration of the definition of C(i, j, a, b, u) in Definition 6

Proposition 3. The values C(i, j, a, b, u) and S(i, j, a, b, u) can be computed in
polynomial time.

Proof. This can be done by setting:

– the processing time of each job k, i ≤ k ≤ j, to pk/s�,
– the release date rk of a job k to max{rk, a} for i ≤ k ≤ j,
– the deadline dk of a job k to min{dk, b} for i ≤ k ≤ j.

Note that with these modifications, we still have an agreeable instance. Finally,
we solve this problem with the algorithm proposed in [18]. Indeed, in the clas-
sical scheduling problem, the throughput maximization can be reduced to the
minimum makespan problem [12], so C(i, j, a, b, u) is computed correctly and in
time O(n log n) if all parameters i, j, a, b, u are set.

Similarly, S(i, j, a, b, u) is the minimum length of a schedule finishing at time
b, such that there are exactly u jobs among {i, . . . , j} which are scheduled, and
such that all these jobs are scheduled in [a, b) with the speed s�. This value can
be computed in a similar way as C(.) values and by reversing the schedule. More
formally, we set b as the starting time of the schedule. Then, for each job k with
i ≤ k ≤ j :

– if rk ≤ b, we set d∗
k := b + (b − rk) = 2b − rk;

– if dk ≤ b, we set r∗
k := b + (b − dk) = 2b − dk.

Finally, we solve the minimum makespan problem with the modified jobs with
the same algorithm as previously. Thus, it computes the values S(i, j, a, b, �)
correctly and in time O(n log n) if all parameters i, j, a, b, u are set. ��
Proposition 4. It holds that

X(i, j, a, b, u) = L + P (s�) · min
i−1≤k≤j
0≤�≤u

C:=C(i,k,a,b,�)
S:=S(k+1,j,a,b,u−�)

C+S≤b−a

{
C(i, k, a, b, �)

+S(k + 1, j, a, b, u − �)

}
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Proof. The energy consumption depends on the length of the period that the
processor is in working state with a speed s�, and the above computation returns
a feasible schedule minimizing this length. ��
Definition 7. For 0 ≤ u ≤ n, define E(i, j, a, b, u) the minimum energy con-
sumption of a T -schedule T such that:

– T ⊂ {i, . . . , j} and |T | = u where T is the set of jobs scheduled in T ,
– the jobs of T are entirely scheduled in [a, b).

The objective function is max{u | E(1, n, 0, dn, u) ≤ E}.

Proposition 5. One has

E(i, j, a, b, u) = min

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Y (i, j, a, b, u)

min a1,b1
0≤u1,u2≤u
i≤i′,j′≤j
i′−1≤j′

⎧
⎪⎨

⎪⎩

Y (i, i′ − 1, a, a1, u1)
+X(i′, j′, a1, b1, u2)

+E(j′ + 1, j, b1, b, u − u1 − u2)

⎫
⎪⎬

⎪⎭

E(i, j, a, b, u) = +∞, u > j − i + 1
E(i, i − 1, a, b, u) = 0 ∀i

Fig. 3. Illustration of Proposition 5

Proof. (See Fig. 3) Let E′ := min{E′
1, E

′
2} be the right hand side of the equation.

The first case is when the processor is never idle during the interval [a, b) and
the second is when there is at least one idle period.

We first prove that E(i, j, s, t, u) ≤ E′.
If the processor is never idle, then we can build the schedule associated

with Y (i, j, s, t, u) from s to t. Since this schedule respects all the constraints
associated with E(i, j, s, t, u) it shows that E(i, j, s, t, u) ≤ Y (i, j, s, t, u) = E′

1.
Suppose now that there is at least one idle period in the schedule. Let

a schedule S1 that realizes Y (i, i′ − 1, a, a1, u1), a schedule S2 that realizes
X(i′, j′, a1, b1, u2) and a schedule S3 that realizes E(j′ + 1, j, b1, b, u − u1 − u2).
We can build a schedule with S1 from a to a1, with S2 from a1 to b1 and
with S3 from b1 to b. Moreover, the sets of jobs {i, . . . , i′ − 1}, {i′, . . . , j′}, {j′ +
1, . . . , j} do not intersect. So this is a feasible schedule, and its cost is E′

2. Hence
E(i, j, a, b, u) ≤ E′

2.
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We now prove that E′ ≤ E(i, j, a, b, u).
The first case is that the processor is never idle in a solution. Obviously, we

have E′ = Y (i, j, a, b, u).
Suppose now that there is at least one idle period in the schedule correspond-

ing to E(i, j, a, b, u). We denote by X the schedule that realizes E(i, j, a, b, u) in
which the first starting time a1 of the first suffix block is maximal and the first
completion time b1 of the first prefix block is minimal. We split X into three
sub-schedules S1 ⊆ {i, i′ − 1}, S2 ⊆ {i′, j′} and S3 ⊆ {j′ + 1, j} according to
the set of jobs executed into those three sub-schedules. Let a′ (resp. b′) be the
completion time (resp. starting time) of the first suffix (resp. prefix) block. We
have a1 ≤ a′ < b′ ≤ b1. We claim that we have the following properties:

– the processor execute always something in [a1, a
′)

– the processor execute always something in [b′, b1)

Suppose that the processor does not execute a job at time a′′ with a1 ≤ a′′ ≤ a′,
then we can take a1 := a′′ and we have a contradiction with the fact that a1 was
maximal and we have another job j′. A similar argument can be applied for the
value of b1.

Then the restriction S1 of X in [a, a1) is a schedule that meets all constraints
related to Y (i, i′ −1, a, a1, |S1|) and its cost is greater than Y (i, i′ −1, a, a1, |S1|).
Similarly, the restriction S2 of X in [a1, b1) is a schedule that meets all constraints
related to X(i′, j′, a1, b1, |S2|). Finally, the restriction S3 of X in [b1, b) is a
schedule that meets all constraints related to E(j′ + 1, j, b1, b, |S3|). Then the
cost of the schedule X is the sum of the cost of the schedule S1, S2 and S3.

Hence E(i, j, a, b, u) ≥ E′
2. ��

Theorem 1. The dynamic program in Proposition 5 has a running time of
O(n11) and uses O(n5) space.

Proof. We can precompute the values of Y (i, j, a, b, u). It is sufficient to set the
value of i and compute with the algorithm in [5]. Since it is also a dynamic
programming, it will compute the other values of Y (i, j, a, b, u). Then the table
Y (i, j, a, b, u) can be computed in time O(n×n6 log V log n) where V is the total
processing volume, i.e. V =

∑
j pj .

We can also precompute the values of X(i, j, a, b, u). By setting the values
i, j, a, b, u, we have to minimize over the values k and �. Once all the values are
set, the algorithm needs O(n log n) to compute (twice) the minimum makespan.
Finally the table X(i, j, a, b, u) can be computed in time O(n8 log n) and has
size O(n5).

Finally, the table E(i, j, a, b, u) has size O(n5). We have to minimize over
the values a1, b1, u1, u2, i

′, j′ where we pick already computed values. Then the
overall time complexity is O(n11). ��

4 Equal Processing Volume

In this section, we assume that pj = p for every job j, and we extend the result
in [6] to the model with speed-scaling and power-down. Although the results
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in [6] solve the multiprocessor case, we focus here on the single processor case
but our result can be easily extended to the multiprocessor case when the number
of processors is a given constant. Moreover, we do not just consider dates, but
vector of dates in order to divide a schedule into two sub-schedules. We first
define the set of relevant dates for our problem.

Definition 8. Let Θa,b := {a + � · b−a
k | k = 1, . . . , n and � = 0, . . . , k and a ≤

b}. Moreover, Θ :=
⋃{Θa,b|a, b ∈ Ω} ∪ {a ± � · p

s� | a ∈ Ω and � = 1, . . . , n}.
The following lemma gives an observation on the structure of an optimal

schedule.

Lemma 1. There exists an optimal schedule in which the starting time and
completion time of each job belong to the set Θ.

Proof. Let O be an optimal schedule. O can be partitioned into successive blocks
of jobs where the blocks are separated by idle-time periods. Consider a block B
and decompose B into maximal sub-blocks B1, . . . , Bk such that all the jobs
executed inside a sub-block B� are scheduled with the same common speed s�

for 1 ≤ � ≤ k.
The first part of this proof comes from [6] where the the starting and com-

pletion times of each job in any sub-blocks B2, . . . , Bk−1 belong to Θa,b for some
a ∈ Ω and b ∈ Ω.

Finally, thanks to Proposition 1, the speed of sub-block B1 and Bk are at
least s�. If the speed of the processor during the sub-block B1 is equal to s�, then
the starting time of the sub-block B1 is at a distance h · p

s� from the completion
time of B1 (which is a date in Ω). Thus the starting time of B1 is in Θ. Note that
there are h jobs in B1 and each job has its starting time and completion time
in {a ± � · p

s� | a ∈ Ω and � = 1, . . . , n}. If the speed of the processor during the
sub-block B1 is strictly larger to s�, then the starting time of the sub-block B1

is necessary a release date, otherwise, we can decrease the speed and the energy
consumption as well.

Similarly, the completion time of the sub-block Bk is either a deadline, either
at a distance h · p

s� from the starting time of the sub-block Bk for some value
h = 1, . . . , n. ��

Using Lemma 1 we can assume that each job is processed at some speed
which belongs to the following set.

Definition 9. Let Λ := { �·p
b−a | � = 1, . . . , n and a, b ∈ Ω and a < b} ∪ {s�} be

the set of different speeds.

Definition 10. Let J(k, a, b) := {j|j ≤ k and a ≤ rj < b} be the set of jobs
among the k first ones w.r.t. the edf order, whose release dates are within a
and b.

Definition 11. For 0 ≤ u ≤ n, define Ek(a, t, b, u) as the minimum energy
consumption of a non-preemptive schedule S such that
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– S ⊆ J(k, a, b) and |S| = u where S is the set of jobs scheduled in S,
– it is idle during interval [a, t].

Note that Ek(a, t, b, u) := ∞ if no such schedule S exists.

Proposition 6. (Fig. 4) One has

E0(a, t, b, 0) = γ(t − a) + min{L, γ(b − t)}
E0(a, t, b, u) = +∞ ∀u �= 0

Ek(a, t, b, u) = min

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Ek−1(a, t, b, u)

min a′,t′∈Θ
s∈Λ

t′=a′+p/s
rk≤a′<t′≤dk

0≤u′≤u−1

{
Ek−1(a, t, a′, u′) + p · sα−1

+Ek−1(a′, t′, b, u − u′ − 1)

}

Fig. 4. Illustration of Proposition 6

The main difference with [6] lies in the initialization of the table where we
consider the energy consumption of idle periods since there is no jobs scheduled
at these moments. The proof of the dynamic program is the same as for the
speed-scaling model.

Theorem 2. The dynamic program in Proposition 6 has a running time of
O(n21).

Proof. The objective function is max{u | En(rmin, rmin, dn, u) ≤ E}. The values
of Ek(.) are stored in a multi-dimensional array of size O(|Θ|2|Λ|n2) = O(n13).
Each value need O(|Λ||Θ| W ) time to be computed thanks to Proposition 6.
Thus we have a total running time of O(|Θ|3|Λ|2n3). This leads to an overall
time complexity O(n21). ��
Corollary 1. The minimization energy version of the problem can be solved in
time O(n19).

Proof. In the minimization energy variant, we have to schedule every job. Then
it is not necessary to guess how many jobs are scheduled in each part. We have to
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redefine the definition of Ek(a, t, b, u) into Ek(a, t, b) where we have to schedule
every jobs in {j ≤ k | a ≤ rj < b}. Moreover, we don’t need to guess the value of
u′ in the dynamic program. By adapting the dynamic program in Proposition 6,
we decrease by O(n) the size of the table, and by O(n) the time complexity to
compute one value of the table. Therefore, the energy minimization variant has
a complexity of O(n19). ��

5 Concluding Remarks

Maximizing throughput is one of the most important problems in scheduling the-
ory. In the last years, an increasing interest has been devoted to this problem in
the energy-aware setting. While the problem is closely related to the energy mini-
mization problem, throughput maximization seems harder to tackle. For instance,
while a polynomial time algorithm is known for the preemptive energy minimiza-
tion problem for the single-processor case, the complexity of the throughput max-
imization problem remains still open. Only recently, a pseudo-polynomial time
algorithm appeared in the literature showing that the problem is not strongly NP-
hard [4], but the question of whether the problem is solvable in polynomial time
or not remains open. For the speed-scaling with power-down model, the question
is even more challenging. While a polynomial time algorithm existed for instances
with agreeable deadlines, no results were known for the throughput maximization
problem.
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Abstract. We are interested in scheduling tasks from several selfish
agents on a set of parallel identical machines. A coordination mechanism
consists in giving a scheduling policy to each machine. Given these poli-
cies, each agent chooses the machines on which she assigns her tasks,
and her aim is to minimize the average completion times of her tasks.
The aim of the system (social cost) is to minimize the average comple-
tion time of all the tasks. We focus on coordination mechanisms inducing
Nash equilibria, and on the performance of such mechanisms. When the
machines do not know the owners of the tasks, the classical coordina-
tion mecanisms used for single-task agents do not work anymore and we
give necessary conditions to obtain coordination mechanisms that induce
Nash equilibria. When each machine is able to know the owner of each
task it has to schedule, we give coordination mechanisms which always
induce Nash equilibria.

1 Introduction

Among the most fundamental problems in algorithmic game theory are schedul-
ing and load balancing problems. Since the seminal paper by Koutsoupias and
Papadimitriou [16], these problems have been of growing interest [21]. Indeed,
besides their conceptual simplicity, these problems are central in distributed
environments where some machines are shared between selfish users, and where
the users decide on which machines they will assign their tasks. In such envi-
ronments, coordination mechanisms have been introduced by Christodoulou et
al. [7] in order to obtain socially desirable solutions despite the selfishness of
the agents. A coordination mechanism is a set of scheduling policies, one for
each machine. A scheduling mechanism for a machine Mi takes as input a set of
tasks assigned to machine Mi along with their processing times. The output is a
schedule of the tasks on Mi. The aim is to design a coordination mechanism such
that for each instance (set of tasks) there exists a Nash equilibrium (a schedule
where no agent has incentive to change the assignement of her tasks).

When a coordination mechanism always induces Nash equilibria, it is useful
to measure the quality of the Nash equilibria induced, which is usually done
c© Springer-Verlag Berlin Heidelberg 2015
J.L. Träff et al. (Eds.): Euro-Par 2015, LNCS 9233, pp. 183–195, 2015.
DOI: 10.1007/978-3-662-48096-0 15
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using the price of anarchy [16]. The price of anarchy is defined as the maximal
value, over all the instances, of the ratio between the social cost in the worst
Nash and the social cost in an optimal solution.

Starting from the seminal paper of Christodoulou et al. [7], coordination
mechanisms have been extensively studied for single tasks agents [3,4,6,9,11,13–
15]. In these papers, each agent owns a single task, and her aim is to minimize
the completion time of her task. The social cost is either the largest comple-
tion time of a task or the average completion time of the tasks. The coordina-
tion mechanism studied are often the ones which schedule the tasks in order of
non decreasing lengths (ShortestFirst policy), in order of non increasing lengths
(LongestFirst policy), or in a random order; for identical machines [7,14], related
machines [13], or unrelated machines [3,4,9,11]. These coordination mechanisms
usually induce pure Nash equilibria, and the aim is to measure their price of
anarchy.

In our setting, each agent may own several tasks, and her aim is to minimize
the average completion time of her tasks. We study the existence and the quality
of coordination mechanisms for this extension of this classical game. The social
cost that we consider is the sum of the completion times of all the tasks.

Most of the papers dealing with multi-task selfish agents sharing machines
are interested by designing centralized fair solutions (see [2] for a recent survey).
In these models, the agents cannot choose themself the machines on which their
tasks will be scheduled. Starting from the seminal paper [20], some papers (e.g.
[5,8,12]) consider a set of agents owing each one a set of tasks but also a set
of machines. The aim is to design a centralized algorithm which assigns all the
tasks to all the machines in a way which minimizes the overall makespan whilst
ensuring that the cost of each agent is not increased compared to the solution
where each agent schedules her own tasks on her own machines.

There is, up to our knowledge, only one paper which deals with coordina-
tion mechanisms with multi-tasks agents. In this paper, Abed et al. [1] consider
that each agent owns several tasks, each task having a length and a weight. The
machines are unrelated, and each agent aims at minimizing the weighted com-
pletion time of her tasks, whereas the social cost is the sum of agents’ costs. The
main difference to our paper is that the authors do not consider Nash equilibria
but a superclass of Nash equilibria: they consider that a schedule is stable (they
call such a schedule a weak Nash equilibrium) if no agent may decreases her cost
by moving exactly one of her task to a different machine. They show that when
the policies of the machines order the tasks according to their length to weight
ratio, then there exists a weak Nash equilibrium, and that the price of anarchy
(with respect to weak Nash equilibrium) is 4. They extend this policy by intro-
ducing some delays between tasks, and they show that the price of anarchy of
this new coordination mecanism is about 2.6.

We now describe precisely the problem studied and the notions used in this
paper.

Model. We consider a set of K selfish agents {A1, . . . , AK}, each agent Ai

owning a set of ni tasks. When we only consider two agents, these agents will be
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called A and B; the set of tasks of agent A will be {a1, a2, . . . , anA
}, and the set

of tasks of agent B will be {b1, b2, . . . , bnB
}. Each task has a unique identification

number and an arbitrary processing time (length). It cannot be preempted. The
agents share a set of m ≥ 2 identical parallel machines {M1, . . . , Mm}. Each
machine Mi has a public policy, which is an algorithm which returns a schedule
(on Mi) of the tasks assigned to Mi. This policy may introduce idle times between
the tasks. However, since we consider a totally decentralized setting, the policy of
Mi depends only on the tasks assigned to Mi: it cannot be a function of the tasks
assigned to the other machines. A set of policies, one for each machine, is called a
coordination mechanism. We consider two models. In the first one, the machines
cannot distinguish the tasks of one agent from the tasks of another agent: a
machine is only aware of the length and identification number of the tasks it has
to schedule. In the second one, the machines know the owner of each task.

Knowing the policies of the machines, the set of the tasks of the other agents
and the strategies of the other agents, each agent chooses, for each of her tasks,
on which machine it will be scheduled. The strategy of each agent is thus an
assignment to a machine of each of her tasks. The aim of each agent is to minimize
the average completion time of her tasks. This is equivalent to minimize the sum
of completion times of her tasks: in the sequel the cost of each agent is thus the
sum of the completion times of her tasks. A schedule is a (pure) Nash equilibrium
if no agent can decrease the sum of completion times of her tasks by changing her
assignment. In this paper, we focus on coordination mechanisms which always
induce pure Nash equilibria (i.e., coordination mechanism such that, for each
instance, there exists at least one pure Nash equilibrium). A game always has a
mixed Nash equilibrium [19], but pure Nash equilibria are more natural and are
the only possible solutions in some settings.

Our Contribution. In Sect. 2, we consider that the machines do not know the
owners of the tasks. We show that if all the machines use the same deterministic
policy then this policy necessarily have to introduce some idle times between
the tasks in order to induce Nash equilibria. Moreover the price of anarchy of
such a coordination mechanism is at least 2. In Sect. 3, we show that there exists
coordination mechanisms which induce Nash equilibria when the machines are
able to know the owner of each task. In particular, we introduce a simple and fair
coordination mechanism which has a bounded price of anarchy if the number of
agents is small. We conclude this paper in Sect. 4.

2 Properties of Coordination Mechanisms in Which the
Machines Do Not Know the Owners of Their Tasks

We consider in this section that the machines are not able to detect the owner
of the tasks they have to schedule. We will focus on coordination mechanisms
with deterministic identical policies. Given two tasks i and j, we note i ≺ j if
and only if task i is scheduled before task j when a machine has only these two
tasks to schedule.
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t0

a1 a2

b1

t0

a1

a2

b1

t0

a1

a2b1

(a) CA = 3 and CB = 1 (b) CA = 2 and CB = 2 (c) CA = 3 and CB = 1

Fig. 1. Instance with no pure Nash equilibrium when all the machines have the same
deterministic policy without idle times. CA (resp. CB) is the cost of agent A (resp. B).

Proposition 1. If all the machines have the same deterministic policy, and if
this policy does not introduce idle times between the tasks, then the coordination
mechanism does not always induce a pure Nash equilibrium.

Proof. We provide a instance without pure Nash equilibrium. This instance,
depicted in Fig. 1, consists in two machines and two agents A and B. Agent A
has two tasks a1 and a2, each of length 1, while B has one task b1 of length
1. We consider tasks a1, a2, and b1 such that a1 ≺ b1 and b1 ≺ a2. Note that
given three tasks i, j, k, and any deterministic policy, there always exists a
permutation of the tasks such that i ≺ j and j ≺ k. The configuration which
consists of three tasks on the same machine is not a Nash equilibrium since b1

would have incentive to move on the idle machine. The other configurations are
represented in Fig. 1 and are also not Nash equilibria: in Fig. 1(a) Agent A can
decrease her cost by assigning task a1 to M1; in Fig. 1(b) Agent B has incentive
to move her task; in Fig. 1(c) Agent A has incentive to exchange the assignment
of her two tasks a1 and a2. ��

Note that the classical policies LongestFirst and ShortestFirst have this prop-
erty, and thus they do not always induce pure Nash equilibria (contrary to the
case where each agent has only one task [14]). Moreover, the move of only two
tasks is needed to show this result. Abed et al. [1] show that when multi-tasks
agents are able to move only one task to improve their cost, then the Short-
estFirst policy is stable (for each instance there exist a schedule where the
agents cannot improve their costs by moving at most one of their tasks). If the
agents are able to move at most two tasks to compute their best response, then
Proposition 1 shows that there exists instances without stable schedules.

Note also that this result does not depend on the social cost considered, and
is thus valid for any social cost.

Proposition 2. Consider a coordination mechanism in which all the machines
have the same deterministic policy which is not based on identification numbers1.
If this coordination mechanism always induces a pure Nash equilibrium, then its
price of anarchy is larger than or equal to 2.

1 The schedule is constructed by considering only the lengths of the tasks to schedule.
Identification numbers are used thereafter to break the ties only, i.e. to assign each
task to a slot of its length in the constructed schedule.
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t0

a1
i1

a2

i2 b1

i3

t0

a2
i1

a1
i3

i2b1

t0

a1
i1 a2

i2

b1
i3

(a) not a Nash eq. (b) not a Nash eq. (c) Nash eq. when i3 ≥ i1 + i2 + 1

Fig. 2. Different configurations where both machines have the same deterministic pol-
icy having idle times.

Proof. Let us consider the following instance, with two machines and two agents:
Agent A owns two tasks a1 and a2, and Agent B owns one task b1. We consider
that these three tasks are all of length one, and are such that a1 ≺ b1 and b1 ≺ a2.
Let i1 (resp. i2) be the length of the idle time before the first (resp. second) task
when a machine schedules two tasks of length 1. Let i3 be the length of the idle
time before the first task when a machine schedules one task of length 1. We
proceed by cases analysis. There are four possible schedules. We show that if one
of these schedules is a Nash equilibrium then the price of anarchy is at least 2.

– Schedule 1: Tasks a1 and b1 are on the same machine (w.l.o.g. on M1); task a2

is alone on M2. Figure 2(a) shows this configuration. The completion time of
b1 is i1+i2+2. If this task would jump on M2, then its completion time would
be i1+1: this task has incentive to change machine (because i1+i2+2 > i1+1).
Thus, this schedule is not a Nash equilibrium.

– Schedule 2: Tasks b1 and a2 are on the same machine (w.l.o.g. on M2); task a1

is alone (on M1). This configuration is depicted in Fig. 2(b). The completion
time of all the tasks of Agent A is i1 + i2 + i3 + 3. If Agent A moves task a2

on M1 and a1 on M2, then the sum of completion times of her tasks will be
i1 + i3 + 2. Since i1 + i2 + i3 + 3 > i1 + i3 + 2, Agent A has incentive to move
her tasks, and this schedule is thus not a Nash equilibrium.

– Schedule 3: Tasks a1 and a2 are on the same machine (w.l.o.g. on M1 ); task
b1 is alone (on M2 ). Figure 2(c) shows this configuration. Let us focus on
Agent A. The completion time of the tasks of Agent A is 2i1 + i2 + 3 in this
schedule. If Agent A would place task a1 on M2 and task a2 on M1, then the
sum of completion times of her tasks would be i3 + i1 + 2. Thus this schedule
is a Nash equilibrium only if 2i1 + i2 + 3 ≤ i1 + i3 + 2, i.e. if i3 ≥ i1 + i2 + 1.
Thus i3 ≥ 1 is a necessary condition for schedule 3 to be a Nash equilibrium.
Let us thus consider any policy where i3 ≥ 1, and let us consider an instance
which consists of only one task of length 1. The completion time of this task
is at least 2, whereas the optimal completion time would be 1. Therefore the
price of anarchy of a coordination mechanism using such a policy is at least 2.

– Schedule 4: The three tasks are on the same machine (w.l.o.g. on M1 ). Let
us denote this schedule by S. Let us consider that S is a Nash equilibrium,
and that the price of anarchy of the coordination mechanism is smaller than
2. This implies that i3 < 1, otherwise an instance with only one task of length
1 would have a sum of completion times larger than 2, whereas the optimum
is 1. Thus task b1 has to be scheduled first in S, otherwise its completion
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time would be at least 2 and this task would decrease its completion time by
jumping on the idle machine: S would not be a Nash equilibrium. Tasks a1

and a2 are thus on second and third positions. Since S is a Nash equilibrium,
Agent A has no incentive to move a2 on M2. By moving a2, this agent would
let a1 and b1 on one machine (a1 is scheduled first since a1 ≺ b1), and a2 alone
on the other machine. Let us denote by C

(j)
i the completion time of the ith

task when there are j tasks of length 1 on a machine. Thus we have:

C
(3)
2 + C

(3)
3 ≤ C

(1)
1 + C

(2)
1 (1)

We saw that i3 < 1, so C
(1)
1 < 2. Moreover, since C

(3)
2 ≥ 2, we get: C

(3)
3 < C

(2)
1 .

We now show that with these hypothesis on the policies, there is an instance
in which there is no Nash equilibrium.

Let us consider the following instance: three tasks of length 1: a′
1, a

′
2 (belong-

ing to Agent A), and b′
1 (belonging to Agent B), such that, when they are

together on one machine a′
1 is scheduled first. The schedule where the three

tasks are together is not a Nash equilibrium, since b′
1 has a completion time

larger than or equal to 2, whereas it would get a completion time smaller than
2 by going on the other machine. The schedule where b′

1 is alone on a machine
is also not a Nash equilibrium. Indeed, in this schedule the sum of completion
times of a′

1 and a′
2 is C

(2)
1 + C

(2)
2 ≥ 2C

(2)
1 > 2C

(3)
3 , whereas by going with b′

1,
tasks a′

1 and a′
2 would have a sum of completion times smaller than 2C

(3)
3 :

Agent A has incentive to move her tasks. The last possible configuration is
when b′

1 is with one task of A, the other task of A being on the other machine.
In this case the sum of the completion times of the tasks of A is larger than or
equal to C

(1)
1 +C

(2)
1 ≥ C

(3)
2 +C

(3)
3 by Eq. 1. By going with b′

1, the sum of com-
pletion times of A’s tasks would be at most C

(3)
1 + C

(3)
3 < C

(3)
2 + C

(3)
3 : these

tasks again have incentive to move. Therefore there is no Nash equilibrium
in this instance, if we assume that the price of anarchy of the coordination
mechanism is smaller than 2. ��

We studied the case where the owners of the tasks are not known by the
machines: the results are rather negative since we gave strong necessary condi-
tions to get coordination mechanisms which always induce Nash equilibria. Let
us now show that the results are more positive if the machines are able to know
the owners of the tasks.

3 Coordination Mechanisms in Which the Machines
Know the Owners of Their Tasks

If the identification numbers (IDs) of the owners of the tasks are used only
to break the ties between the tasks of the same length, then we can extend
Proposition 1: in this case, if all the machines have the same deterministic policy,
and if this policy does not introduce idle times between the tasks, then the
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coordination mechanism does not always induce a pure Nash equilibrium2. Thus
the coordination mechanism which considers the tasks with the ShortestFirst
policy and breaks the ties with the IDs of the agents does not always induce
Nash equilibria. Since the IDs of the agents should not be considered only to
break the ties, let us now consider coordination mechanisms which make a more
intensive use of these IDs.

Let us first introduce a simple coordination mechanism, called PrioSPT:
each machine schedules the tasks of the same agent together, considering the
agents by increasing order of their ID. In other words, each machine schedules
the tasks of Agent A1, and then the tasks of Agent A2, and so forth. The tasks
of a same agent are scheduled with the ShortestFirst policy. This coordination
mechanism induces a Nash equilibrium, since each agent Ai has assigned her
tasks in order to minimize her cost given the tasks of higher priority agents, and
the tasks of lower priority agents will be scheduled after the tasks of Ai and thus
will not change the cost of Ai. Note that this coordination mechanism induces
Nash equilibria which can be reached in a polynomial time. Indeed, it has been
shown [17,18] that the SPT list algorithm3 is optimal for the minimization of
the sum of the completion times, even if some machines are not available at time
0. Each agent will thus use this polynomial time algorithm to schedule her tasks,
given the schedule obtained with the tasks of the higher priority agents.

However, this coordination has two main drawbacks: it is unfair (the lower
is the ID of an agent, the higher is her priority), and its price of anarchy is
unbounded: consider for example an instance where Agent A1 has m very large
tasks, and Agent A2 has a lot of tiny tasks. Let us now introduce a new coordi-
nation mechanism which is fair with the agents and which has a bounded price
of anarchy. This coordination mechanism, that we call EqualPrioSPT, works
if the number of agents is known and smaller than or equal to the number of
machines, which is realistic in many situations, like the one studies in [12], where
a few organizations (universities, associations, etc.) share a set of machines.

The idea of EqualPrioSPT is the following one: for each agent Ai, there
are �m

K � (or �m
K �+1) machines on which the tasks of Ai are scheduled first (from

the smallest one to the largest one). On these machines, once the tasks of Ai

have been scheduled, the tasks of A1+(i mod K) are scheduled, from the smallest
one to the largest one, and then the tasks of A1+((i+1) mod K), etc. The latest
tasks to be scheduled are the tasks of Ai−1 (or AK if i = 1).

More formally, to each agent Ai ∈ {A1, . . . , AK}, we associate a priority list
Li = (A1+(i mod K), A1+((i+1) mod K), . . . , A1+((i+K−2) mod K)) (e.g. the priority
list of A3 is (A4, A5, A6, A1, A2) when there are 6 agents). Let q and r be the

2 The proof is the same as the one of Proposition 1, except that the three considered
tasks i, j and k are not of length 1 but of length 1−ε, 1 and 1+ε for a small value of
ε. For any deterministic policy, there always exists a permutation of the tasks such
that i ≺ j and j ≺ k. Tasks i and k are the ones of Agent A, and task j is the one
of Agent B.

3 The SPT list algorithm considers the tasks in non-decreasing order of their lengths,
and assigns each task to a machine, as soon as a machine is available (idle).
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two positive integers such that m = qK+r. For 0 ≤ i ≤ K−1, machine Miq+1 to
machine M(i+1)q schedule the tasks of agent Ai+1 first (using the ShortestFirst
policy). If r 
= 0, then for 1 ≤ i ≤ r machine MKq+i schedules the tasks of agent
Ai first (using the ShortestFirst policy). Let Mj be one of the machines which
schedule first the tasks of Ai. Once Mj has scheduled the tasks of agent Ai, it
schedules the tasks of the other agents in the order of the priority list Li. The
tasks belonging to a same agent are scheduled with the ShortestFirst policy.

Proposition 3. EqualPrioSPT induces a pure Nash equilibrium, and this
equilibrium can be reached in O(nK), where n =

∑K
i=1 ni is the number of tasks.

Proof. We give a constructive proof: we provide a polynomial time algorithm
which takes as input an instance of the game (m machines and a set of tasks
belonging to K agents), and which returns a Nash equilibrium of this instance.
In this algorithm, we say that an agent is fixed or not (once an agent is fixed, her
tasks won’t be moved anymore). We will also say that each agent owns, at each
step of the algorithm, a set of machines. This algorithm is the following one:

– No agent is fixed. For each agent Aj ∈ {A1, . . . , AK}, the machines owned by
Aj are the ones on which Aj has the highest priority. Each agent Aj schedules
her tasks using the SPT list algorithm on the machines she owns.

– For i from 1 to K:
• For each agent Aj ∈ {A1, . . . , AK}, let Dj

i be the smallest date at
which a machine is idle among the machines owned by Aj . Let Di =
minj∈{1,...,K}{Dj

i }. Let Axi
be an agent such that Dj

i = Di.
• Agent Axi

is now fixed (and will remain fixed in the sequel).
• Let Ayi

be the first agent, among the agents which are not fixed, in the
priority list Lxi

. Add to the set of machines owned by Ayi
the machines

previously owned by Axi
. Remove from the schedule all the tasks of Ayi

which are started after time Di, and schedule them again using the SPT
list algorithm on the machines that Ayi

currently owns (on these machines,
the tasks starting before Di are not moved - note that it includes all the
tasks of the agents other than Ayi

).

At each step (iteration) one agent is fixed (her tasks won’t move anymore)
and the only tasks which are moved are the one of a single agent Ayi

: the SPT
list algorithm used to schedule them takes time O(nyi

) ⊂ O(n) (once the tasks
have been sorted for each agent - which takes time O(n log n)). There are K
steps so this algorithm runs in O(nK). Let us now prove the following property:
at the end of each iteration i of this algorithm, the agents which are fixed do not
have incentive to move their tasks. The proof is by induction on i.

– This is true when i = 1: all the tasks of the only fixed agent, Ax1 , start at the
latest at time Di, whereas the first idle time on a machine is Di. Moreover,
Ax1 used the SPT list algorithm to schedule her tasks on the machines she
owns: this minimizes her sum of completion times.
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– Let i > 1. Let us now consider that the property is true for each iteration
j < i, and let us show that it is also true for iteration i. Agent Axi

, which
has been fixed at iteration i, has not incentive to move her tasks since all her
tasks starts at the latest at time Di, whereas the first idle time on a machine
is Di. Before this date, all the machines which are not owned by Axi

schedule
tasks which have a higher priority than Axi

(otherwise by construction, some
tasks of Axi

would have been scheduled instead of the tasks of a lower priority
agent). Furthermore, the tasks of Axi

have been scheduled with the SPT list
algorithm: this minimizes the cost of Axi

. Likewise, each agent Axj
fixed at a

given iteration j < i has not incentive to move her tasks. Indeed, by induction,
she had no incentive to move her tasks at the time at which she has been fixed,
Dj , and, by construction, the schedule of the tasks scheduled before time Dj

does not change after this time.

We have proved that the agents which are fixed do not have incentive to move
their tasks once they are fixed. Since at the end of the execution of the algorithm
all the agents are fixed, no agent has incentive to move her tasks, and the schedule
obtained is thus a Nash equilibrium. ��

Let us now show that, contrarily to the coordination mechanism PrioSPT,
the price of anarchy of EqualPrioSPT is bounded.

Lemma 1. Let q and m be two positive integers such that q < m. The sum of
the completion times of a set of tasks scheduled with the SPT list algorithm on
q machines is smaller than or equal to m

q times the sum of completion times of
the same tasks scheduled with the SPT list algorithm on m machines.

Proof. An OPT∑ schedule is a schedule in which the sum of completion times
of the tasks is minimized. A schedule obtained by executing the SPT list algo-
rithm (we will call such a schedule a SPT schedule) is thus an OPT∑ schedule.
Conway et al. [10] show that an OPT∑ schedule of x tasks on m machines can
be described as follows. W.l.o.g., we assume that �1 ≥ �2 ≥ · · · ≥ �x, where
�i is the length of task i. We define the following sets: π1 = {�1, �2, . . . , �m},

π2 = {�m+1, �m+2, . . . , �2m}, . . . , πk = {�(k−1)m, . . . , �x}, where k = � x
m

�.
The set πi is called the ith rank of the tasks. A OPT∑ schedule is a schedule

obtained by scheduling the tasks rank by rank, in the order πk, πk−1, . . . , π1: the
tasks of πk are scheduled first, each one on a different machine, and the tasks of
πk−1 are scheduled, also each one on a different machine, and so forth.

By this way, a task in πi will be followed by i − 1 tasks on its machine, and
thus it will be counted i times in the sum of the completion times of the tasks:
this sum is

∑x
j=1 Cj =

∑k
i=1

∑
j∈πi

i�j .
Let us assume without loss of generality that the number of tasks x is divisible

by the number of machines m. If it is not the case, then we can add dummy
tasks of length 0. If there are m machines, then task �i will be in the set π� i

m �
and thus it will be counted � i

m times in the sum of the completion times.
Let ri be the rank of task �i in a SPT schedule for q machines. For 1 ≤ i ≤ x,

we have ri = � i
q , and thus r1 ≤ r2 ≤ · · · ≤ rx.
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We will focus on the tasks of rank j in the SPT schedule on m machines. In
other words, we will focus on set πj = {�(j−1)m+1, . . . , �jm}. We will prove that

jm∑

i=(j−1)m+1

ri�i ≤ m

q

jm∑

i=(j−1)m+1

j�i (2)

By definition, we have rjm = � jm
q . We can notice that if rjm = jm

q , then
Eq. (2) holds. Now, we assume that jm = q(rjm −1)+α where q > α > 1. First,
there are α tasks of this rank in πj . So, we have

jm∑

i=jm+1−α

ri�i = rjm

jm∑

i=jm+1−α

�i =
(

jm

q
+

q − α

q

) jm∑

i=jm+1−α

�i (3)

Second, there are m − α tasks of rank at most rjm − 1.

jm−α∑

i=(j−1)m+1

ri�i ≤ (rjm − 1)
jm−α∑

i=(j−1)m+1

�i =
(

jm − α

q

) jm−α∑

i=(j−1)m+1

�i (4)

Third, we will find an upper bound of the following value X =
∑jm

i=jm+1−α(q −
α)�i−

∑jm−α
i=(j−1)m+1 α�i. Since �1 ≥ �2 ≥ · · · ≥ �x, we get α(q−α)�jm+1−α ≥ (q−

α)
∑jm

i=jm+1−α �i and
∑jm−α

i=(j−1)m+1 α�i ≥ (m − α)α�jm+1−α. By computation,
we obtain X ≤ α(q − m)�jm+1−α. Since q < m, we get X < 0. From Eqs. (3)
and (4), we obtain

jm∑

i=(j−1)m+1

ri�i ≤
⎛

⎝m

q

jm∑

i=(j−1)m+1

j�i

⎞

⎠ (5)

Thus we have:
∑k

j=1

∑
i∈πj

j�i ≤ m
q

∑k
j=1

∑
i∈πj

ri�i. Hence the sum of comple-
tion times of the tasks scheduled on q machines is at most m

q times larger than
the sum of completion times of these tasks scheduled on m machines. ��
Proposition 4. The price of anarchy of EqualPrioSPT is at most m

�m/K� .
This bound is asymptotically tight.

Proof. The proof is split into two parts. The first part gives an upper bound on
the price of anarchy by finding a relationship between the sum of the completion
times in a schedule induced by the EqualPrioSPT coordination mechanism
and the sum of the completion times in an optimal schedule, obtained by using
the SPT list algorithm. The second part provides a lower bound on the price of
anarchy by giving an example. Let q and r be two integers such that m = qK+r.

First, we consider the schedule obtained when the tasks of each agent Ai (with
i ∈ {1, . . . , K}), are scheduled using the SPT list algorithm on the machines
where Ai has the highest priority (there are q or q + 1 such machines). Let us
denote this schedule by S. In S, the cost of each agent is larger than or equal
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to her cost in a Nash equilibrium (otherwise an agent would schedule her tasks
with the SPT list algorithm on the machines where she has the highest priority
and she would decreases her cost). Let us now show that the cost of the sum
of completion times in S is at most m

�m/K�OPT , where OPT is the optimal
sum of completion times. The sum of the completion times of a set of tasks
scheduled with the SPT list algorithm on q machines is smaller than or equal to
m
q times the sum of completion times of the same tasks scheduled with the SPT
list algorithm on m machines (Lemma 1). The SPT list algorithm minimizes the
sum of completion times. Thus, the cost of Agent Ai in S is smaller than or equal
to m

q times its cost in any solution (including the optimal solution): the sum of
the completion times in S is thus smaller than or equal to m

q OPT . Therefore,
the price of anarchy of EqualPrioSPT is at most m

�m/K� because q = �m
K �.

Let us now prove the lower bound by providing a particular instance: there
are K agents and m = K(2K + 4) machines. Thus q = 2K + 4. Agent A1 has
qmα tasks of length 1 and q tasks of length mα where α is an arbitrary integer
larger than 1. For 2 ≤ i ≤ K, Agent Ai has q tasks of length equal to mα. By
computation we get that the price of anarchy is at least αm

(α+1)q , which for large
values of α tends towards to m

q . ��

4 Conclusion and Future Work

We studied the existence of coordination mechanism for multi-tasks agents. Clas-
sical deterministic policies do not always induce pure Nash equilibria in this
context. In order to get Nash equilibria, if the machines are not able to identify
the owners of the tasks, then we have either to use non deterministic policies
(but such policies may be not easy to use in practice); or different policies on the
machines (but this may also not be very practical since it may not be easy to
add a machine to the system whilst ensuring that the coordination mechanism
still induce Nash equilibria); or we should use policies which introduce idle times
between the tasks (in this case the price of anarchy is at least 2).

Thus, knowing the owner of each task in the case of multi-tasks agents is a
very useful information. In this case there exists coordination mechanisms induc-
ing Nash equilibria. In particular, we have introduced a very simple coordination
mechanism which may be used when the number of agents is known and small
compared to the number of machines: this mechanism is fair since all the agents
are treated equitably, and its price of anarchy is about K (this corresponds to
the best we may have for K = 2 agents in the case of deterministic identical
policies when the owner of the tasks are not known). Note that Lemma 1, intro-
duced to show this result, can also be useful in other contexts: it indeed allows
to bound the deterioration of the sum of completion times of a set of tasks when
the number of machines to schedule these tasks decreases.

This work is a first step towards the study of coordination mechanism with
agents owning several tasks. The main remaining open problem consists in deter-
mining whether there exists a coordination mechanism which always induce Nash
equilibria with multi-tasks agents when the machines do not know the owners
of the tasks.



194 J. Cohen and F. Pascual

Acknowledgments. The work of the second author was supported by ANR grant
ANR-14-CE24-0007 (project COCORICO).

References

1. Abed, F., Correa, J.R., Huang, C.-C.: Optimal coordination mechanisms for multi-
job scheduling games. In: Schulz, A.S., Wagner, D. (eds.) ESA 2014. LNCS, vol.
8737, pp. 13–24. Springer, Heidelberg (2014)

2. Agnetis, A., Billaut, J.C., Gawiejnowicz, S., Pacciarelli, D., Soukhal, A.: Multiagent
Scheduling - Models and Algorithms. Springer, Heidelberg (2014)

3. Azar, Y., Jain, K., Mirrokni, V.: (Almost) optimal coordination mechanisms for
unrelated machine scheduling. In: SODA 2008, pp. 323–332. SIAM (2008)

4. Caragiannis, I.: Efficient coordination mechanisms for unrelated machine schedul-
ing. Algorithmica 66(3), 512–540 (2013)

5. Chakravorty, A., Gupta, N., Lawaria, N., Kumar, P., Sabharwal,Y.: Algorithms for
the relaxed multiple-organization multiple-machine scheduling problem. In: HiPC
2013, pp. 30–38 (2013)

6. Christodoulou, G., Gourvès, L., Pascual, F.: Scheduling selfish tasks: about the
performance of truthful algorithms. In: Lin, G. (ed.) COCOON 2007. LNCS, vol.
4598, pp. 187–197. Springer, Heidelberg (2007)

7. Christodoulou, G., Koutsoupias, E., Nanavati, A.: Coordination mechanisms.
Theor. Comput. Sci. 410(36), 3327–3336 (2009)

8. Cohen, J., Cordeiro, D., Trystram, D., Wagner, F.: Analysis of multi-organization
scheduling algorithms. In: D’Ambra, P., Guarracino, M., Talia, D. (eds.) Euro-Par
2010, Part II. LNCS, vol. 6272, pp. 367–379. Springer, Heidelberg (2010)

9. Cole, R., Correa, J.R., Gkatzelis, V., Mirrokni, V., Olver, N.: Inner product spaces
for MinSum coordination mechanisms. In: STOC 2011, pp. 539–548. ACM (2011)

10. Conway, R.W., Maxwell, W.L., Miller, L.W.: Theory of Scheduling. Addison-
Wesley Publishing Company, Reading (1967)

11. Correa, J.R., Queyranne, M.: Efficiency of equilibria in restricted uniform machine
scheduling with total weighted completion time as social cost. Naval Res. Logistics
(NRL) 59(5), 384–395 (2012)

12. Dutot, P.F., Pascual, F., Rzadca, K., Trystram, D.: Approximation algorithms
for the multiorganization scheduling problem. IEEE Trans. Parallel Distrib. Syst.
22(11), 1888–1895 (2011)

13. Hoeksma, R., Uetz, M.: The price of anarchy for minsum related machine schedul-
ing. In: Solis-Oba, R., Persiano, G. (eds.) WAOA 2011. LNCS, vol. 7164, pp. 261–
273. Springer, Heidelberg (2012)

14. Immorlica, N., Li, L.E., Mirrokni, V.S., Schulz, A.S.: Coordination mechanisms for
selfish scheduling. Theor. Comput. Sci. 410(17), 1589–1598 (2009)

15. Kollias, K.: Nonpreemptive coordination mechanisms for identical machines. The-
ory Comput. Syst. 53(3), 424–440 (2013)

16. Koutsoupias, E., Papadimitriou, C.: Worst-case equilibria. In: Meinel, C., Tison,
S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 404–413. Springer, Heidelberg (1999)

17. Liman, S.: Scheduling with capacities and due-dates. Ph.D. thesis, University of
Florida (1991)

18. Montreuil, B., Kaspi, M., Ramudhin, A.: Scheduling identical parallel processors
with arbitrary initial available times. Université Laval, Faculté des sciences de
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Abstract. In multicore architectures, deciding where to execute the
threads of parallel applications is increasingly a significant challenge.
This thread mapping has a large impact on the application’s performance
and energy consumption. Recent research in this area mostly focuses on
improving the locality of memory accesses and optimizing the use of
shared caches by mapping threads that frequently communicate with
each other to processing units that are closer to each other in the mem-
ory hierarchy. However, locality-based policies can lead to a substantial
performance reduction in some cases due to communication imbalance. In
this paper, we perform a comprehensive exploration of communication-
aware thread mapping policies in multicore architectures. We develop a
set of metrics to evaluate the communication behavior of parallel applica-
tions, and describe how these metrics can be used to favor locality-based
or balance-based mapping policies. Based on these metrics, we introduce
a novel mapping policy that combines locality and balance aspects and
achieves the highest overall improvements. We provide an experimental
evaluation of the performance gains using different mapping policies as
well as a detailed analysis of the sources of energy savings.

1 Introduction

Due to the rising parallelism in modern multicore architectures, deciding where
to execute each thread of a parallel application is becoming increasingly impor-
tant to improve the application’s performance as well as its energy consumption.
The assignment of threads to processing units (PUs), which is called thread map-
ping, can take into account several characteristics of the parallel application and
the underlying hardware architecture, such as utilization of PUs, contention on
functional units, memory usage or memory access patterns. Recent research in
this area mostly focuses on threads’ memory accesses to shared data, which we
call communication between threads, and uses a thread mapping policy that
puts threads closer to each other in the memory hierarchy if they communicate
frequently. In this way, threads can make better use of shared caches, and the
overall memory access locality increases [2,9].
c© Springer-Verlag Berlin Heidelberg 2015
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However, these communication-aware mapping policies based on increasing
locality can actually reduce the performance in some cases. We identify two con-
ditions under which a locality-based policy has no improvements or is even detri-
mental to performance; when communication is imbalanced between threads, and
when the ratio of communication to private data memory accesses is low. In such
cases, it can be better to balance the communication or to scatter threads, such
that there is less contention on caches or interconnections.

In this paper, we make the following contributions to the thread mapping
problem: (1) We develop a set of metrics that are based on shared mem-
ory accesses and comprehensively represent the communication behavior of the
threads in parallel applications. These metrics describe the structure and vol-
ume of communication. (2) We discuss which characteristics are suitable for
each type of thread mapping, and introduce policies that optimize the mapping
for each metric, as well as a policy that combines locality and balance. (3) We
evaluate parallel applications in terms of the metrics and show the performance
improvements of the different mapping policies. We also analyze the sources
of performance improvements and energy savings by using a microarchitectural
simulator.

2 Communication in Shared Memory

In parallel applications based on shared memory programming models, such as
OpenMP and Pthreads, communication is implicit and is performed via memory
accesses to shared memory areas. By observing accesses to memory addresses at
the cache line granularity, we can define a communication event as two memory
accesses from two different threads to the same cache line. With this definition,
we create a communication matrix that represents the communication behavior
of a parallel application by grouping the communication events [8,14].

In a communication matrix, the axes represent the thread IDs, while each cell
in the matrix contains the number of communication events for the corresponding
thread pair. For example, Fig. 1a shows a communication matrix for an appli-
cation that consists of 5 threads. Figure 1b shows a visualization of this matrix,
where darker matrix cells illustrate more communication. Based on the commu-
nication matrix, we introduce metrics to describe the communication behavior
formally. Our goal is to determine the most appropriate mapping policy for a
particular communication behavior depending on these metrics. Four metrics are
presented: heterogeneity and balance describe the structure of communication,
while amount and ratio describe the volume of communication.

Communication Heterogeneity. For policies that focus on improving the
locality of communication, it is necessary to have groups of threads that com-
municate more within the group than with threads outside the group. Based
on this intuition, a higher variation in the number of communication events for
thread pairs in the communication matrix indicates opportunities to increase the
overall locality. We refer to this variation as the heterogeneity of communication.
We adapt previous work [6,10] to formulate the metric HComm, which evaluates
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Fig. 1. Communication behavior of a parallel application consisting of 5 threads.

this heterogeneity. As shown in (1), HComm is calculated by first normalizing the
communication matrix M to its highest value, and then calculating the average
variance of the number of communication events per thread. The max and var
functions calculate the maximum and variance, respectively, and T represents
the number of threads. A locality-based thread mapping policy is more suitable
for higher values of HComm.

Mnorm =
M

max(M)
· 100, HComm =

∑T
i=1 var(Mnorm[i][1...T ])

T
(1)

Communication Balance. For mapping policies that are based on balance, it
is necessary to determine if some threads are performing more communication
than others. To evaluate this property, we introduce the metric BComm, which
we refer to as the balance of the threads’ communication behavior. To calculate
BComm, we first calculate the total amount of communication per thread in a
communication vector CommV , where each element i of CommV contains the
number of communication events of thread i. Then, similar to traditional load
balance [15], BComm is calculated by (2).

CommV [i] =
T∑

j=1

M [i][j], BComm =

(
max(CommV )

∑T
i=1 CommV [i]/T

− 1

)

· 100% (2)

A value of BComm that is close to 0 indicates a highly balanced communication
between threads, while higher values indicate more imbalance in the threads’
communication behavior, suggesting that communication balance-based map-
ping policies are more beneficial. A comparison of communication matrices with
different values of heterogeneity and balance is shown in Fig. 1c.

Communication Amount. Improvements according to a specific thread map-
ping policy depend on how much threads are communicating. We expect higher
gains for parallel applications that communicate more. To describe the amount of
communication, we introduce the AComm metric, defined as the average number
of communication events per thread, which is calculated by (3).
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AComm =

∑T
i=1

∑T
j=1 M [i][j]
T 2

(3)

Communication Ratio. The amount of communication itself is not sufficient to
evaluate if an application is suitable for communication-aware thread mapping. If
threads have much more memory accesses to private data than communication,
a communication-aware mapping might not affect the overall memory access
behavior. For this reason, we define the communication ratio metric RComm,
which is the ratio of the communication accesses to the total number of memory
accesses of the application threads. RComm is calculated by (4), where AccV [i]
is the number of memory accesses performed by thread i.

RComm =
AComm

∑T
i=1 AccV [i]

(4)

3 Communication Behavior of the Benchmarks

In this section, we analyze the communication behavior of two sets of parallel
applications in terms of the metrics introduced in the previous section.

3.1 Methodology of the Experiments

Benchmarks. We chose two parallel benchmark suites for the evaluation. NAS-
OMP [11] is the OpenMP implementation of the NAS Parallel Benchmarks
(NPB), which consists of 10 applications from the HPC domain. We use three
input sizes for the characterization, W, A, and B (from smallest to largest), to
show how the behavior changes with increasing input sizes. All applications were
executed with 64 threads. PARSEC [3] is a suite of 13 benchmarks that focus
on emerging workloads and are implemented using OpenMP and Pthreads. All
benchmarks were executed with the native input size. The number of threads is
different for each application, but most of them use 64 threads.

Profiling Environment. To characterize the benchmarks’ communication
behavior, we use a memory tracer based on our numalize technique [10], built
with the Pin DBI tool [13]. We calculate the communication behavior in a simpli-
fied way to characterize the applications independently from a particular hard-
ware architecture. We collect all memory accesses of the application’s threads
at a granularity of 64 byte-wide memory blocks and within time intervals of
10 ms. During each time interval, every time a memory block is accessed by
a thread, we record a communication event between this thread and the other
threads that have been involved in memory accesses to the same block since the
beginning of the current time interval. By aggregating these events, we generate
a communication matrix. Comparison with different time intervals, as well as a
full cache simulator, showed that the detected behavior is stable in such a way
that our characterization remains the same.
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3.2 Results of the Communication Characterization

We begin with a discussion of several common types of communication matrices
of the benchmarks, followed by an analysis of the metrics introduced in Sect. 2.

Communication Matrices. Figure 2 shows the communication matrices of
selected benchmarks that represent the most common types of behavior. For the
NAS-OMP benchmarks (LU and UA), we show the matrices of the B input.
In LU, threads that are far apart communicate mostly with each other, e.g.,
the threads 0 and 53. UA has a nearest neighbor pattern, where neighboring
threads perform most communication. In Blackscholes, thread 0 communicates
with all other threads, indicating that communication is due to initialization or
reduction of data. Ferret has a pipeline pattern, where one stage (threads 34–
49) performs most of the communication of the application. Swaptions has an
all-to-all pattern with similar amounts of communication for all threads.

From the communication matrices, it is possible to develop an idea of which
applications can benefit from which type of mapping. In LU, UA, and Ferret,
groups of threads perform substantial amounts of communication among them-
selves and only little communication with threads outside the group. Therefore,
a locality-based policy can increase the overall locality by mapping threads that
communicate closer to each other. Blackscholes and Swaptions can not benefit
from such a policy, as no mapping can improve the overall locality. LU and Fer-
ret can also benefit from a balance-based policy, as some threads perform very
little communication, such as threads 53–63 of LU and threads 1–33 of Ferret.

Fig. 2. Communication matrices of several parallel applications.

Communication Metrics. The values of the communication metrics intro-
duced in Sect. 2 for the two benchmark suites are shown in Figs. 3 and 4.

All NAS-OMP applications except EP, FT, and IS have a high heterogene-
ity, indicating their suitability for locality-based mapping. In BT, LU, SP, and
UA, the heterogeneity increases with larger input sizes. Evaluating the commu-
nication balance shows that only BT, LU, and SP are significantly imbalanced
and show a suitability for balance-based policies. The reason for the imbalance
of these applications is shown in Fig. 2a, as some of the threads are not com-
municating at all. This behavior changes with the input size: inputs W and B
are imbalanced, while A is much more balanced. However, despite this commu-
nication imbalance, there is no significant load imbalance for these benchmarks
according to our measurements, showing that the threads that communicate less
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Fig. 3. Communication characteristics of the NAS-OMP benchmarks.

Fig. 4. Communication characteristics of the PARSEC benchmarks.

still perform substantial amounts of computation. For example, SP with the B
input has a load balance of only 3.8, while the communication balance metric is
much higher (16.5, higher values indicate a higher imbalance). The communica-
tion amount increases slightly with larger input sizes for most benchmarks. The
communication ratio presented in Fig. 3d shows that with increasing input sizes,
less communication in comparison to the total number of memory accesses is
performed. This indicates that larger input sizes of NAS-OMP are less suitable
for communication-aware thread mapping in most cases. Although DC has a
high amount of communication, its ratio is very low.

Only a minority of the PARSEC benchmarks have a high heterogeneity, indi-
cating that PARSEC applications are generally less suitable for locality-based
thread mapping than those from NAS-OMP. Three PARSEC benchmarks, Fer-
ret, Dedup, and Streamcluster, are significantly imbalanced. These three applica-
tions have a pipeline communication pattern, similar to the one shown in Fig. 2d.
The load balance is again much lower than the communication balance (13.1 and
58.0 for Ferret, respectively). The communication amount differs widely between
applications, but PARSEC benchmarks have a high communication ratio in gen-
eral compared to NAS-OMP.

Summary. Summarizing our analysis, we find that a majority of the applications
have a high heterogeneity and are therefore suitable for locality-based thread
mapping. Some of these applications show varying degrees of communication
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imbalance and should therefore benefit also from balancing policies. On the
other hand, few applications appear to require only a balance-based mapping
policy, i.e., none of the imbalanced benchmarks have a low heterogeneity.

4 Mapping Policies

Several mapping policies that optimize different characteristics will be evaluated:
OS, Compact, Scatter, Locality, Distance, Balance and Balanced Locality. The
three last policies are introduced in this paper.

OS. The mapping performed by the operating system represents the baseline for
our experiments. We use the Linux kernel, version 3.8, which uses the Completely
Fair Scheduler (CFS) [18]. The scheduler focuses mostly on fairness and load
balance [18], and has no means for improving communication locality or balance.

Compact. The Compact mapping performs a round-robin scheduling of threads
to PUs such that neighboring threads are placed close to each other in the
memory hierarchy. This mapping can increase the locality of communication
behaviors where neighboring threads communicate frequently with each other.

Scatter. The Scatter policy represents the opposite of Compact. In this map-
ping, neighboring threads are placed far from each other in the hierarchy. In this
way, performance can be improved for applications with little communication or
a low communication ratio, by reducing competition for cache space. Compact
and Scatter do not take the actual communication behavior into account.

Locality. The Locality policy optimizes the communication behavior by map-
ping threads that communicate frequently close to each other in the memory hier-
archy. The mapping algorithm receives as input the communication matrix and
a description of the memory hierarchy of the system, generated with hwloc [4].
It outputs a thread mapping that maximizes the overall locality of communica-
tion. Several algorithms have been proposed to calculate this mapping. We use
the recently-proposed EagerMap algorithm [7] to calculate the Locality policy.

Distance. The Distance policy represents the opposite of Locality, placing
threads that communicate far apart in the memory hierarchy. We calculate this
mapping by inverting the communication matrix, subtracting each cell by the
maximum value of the matrix. We then apply the same mapping algorithm as
for the Locality mapping to the inverted matrix. This mapping can be useful
when the heterogeneity is high, but the communication ratio is low, similar to
the Scatter policy, but taking the actual communication behavior into account.

Balance. The Balance policy focuses on maximizing the communication balance
for the application. The mapping algorithm receives the communication vector
(introduced in Sect. 2) and the description of the memory hierarchy as input.
The mapping is calculated by selecting the thread with the highest amount of
communication that has not been mapped to a PU yet. This thread is then
mapped to the PU which currently has the lowest amount of communication
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mapped to it. This process is repeated until all threads are mapped to a PU.
This policy focuses only on balance and does not take locality into account.

Balanced Locality. The Balanced Locality policy focuses on increasing local-
ity while still maintaining the balance of the communication. First, it maps
threads that communicate frequently to nearby PUs, similar to the Locality pol-
icy. Second, for each level of the memory hierarchy, it keeps a similar amount
of communication for each cache memory of that level. We model the memory
hierarchy as a tree, where the leaves represent the PUs, and the other levels
of the tree represent cache levels and their nodes represent specific cache mem-
ories. Our algorithm groups threads with high amounts of communication to
the leaves of the tree, propagating this mapping to the parent nodes up to the
root node. We add threads to the leaves until the amount of communication is
higher than the average amount of communication per leaf. Summarizing, this
policy maps threads that communicate frequently to close PUs whose amounts
of communication are lower than the average amount of communication per PU.

Load Balance. We also evaluate the Load Balance of selected benchmarks to
compare it to the Communication Balance metric introduced in Sect. 2. We use
the number of executed instructions per thread as the metric for the load.

5 Performance Evaluation on a Real Machine

In this section, we evaluate the performance improvements that are achieved by
the thread mapping policies proposed in the previous section on a real machine.

Methodology. We run the experiments on a 4-socket system consisting of 4
Intel Xeon X7550 processors, with 8 cores and 2-SMT each (64 processing units
in total). Each core has private L1 and L2 caches, while the L3 cache is shared
among all the cores of the same processor. The same benchmarks with the same
number of threads and input sizes (NAS-OMP only with A and B) as in the
previous sections were evaluated. For each mapping policy presented in Sect. 4,
we show the average execution time of 10 runs. The OS mapping policy is our
baseline, and results are presented in terms of performance gains over this policy.
In all policies except OS, no thread migrations during execution were performed.

Results. Figure 5 shows the performance gains compared to the OS mapping.
For NAS-OMP with the A input, most benchmarks profit from the Locality
policy, as predicted by our analysis. With the A input, this policy never reduces
performance. The Balanced Locality policy has similar results as Locality for
all benchmarks except DC. For the benchmarks that have a nearest neighbor
communication pattern, the Compact policy improves performance, but reduces
it in some cases, such as LU. The Distance and Balance policies only show
performance improvements close to the Locality policy for the DC benchmark,
which benefits from a better balance due to its low communication ratio. The
Scatter policy never results in significant performance gains and reduces it in
many cases. On average, the Locality, Balanced Locality, and Compact policies
show improvements of more than 12 %, the other policies gain less than 4 %.
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Fig. 5. Performance improvements on the real machine compared to the OS mapping.

For the NAS-OMP benchmarks with the B input, the Locality policy reduces
performance for the benchmarks that are imbalanced (BT, LU, and SP). On the
other hand, Balanced Locality achieves the highest gains, proving that only tak-
ing locality into account is not sufficient for applications with this characteristic.
The Load Balance policy (not shown in the figure) has improvements of less than
5 % for the 3 benchmarks, indicating that balancing the load is not as effective
as balancing the communication in these cases. The other benchmarks show
a similar behavior as the A input, with lower average gains. This echoes our
discussion of the communication ratio, were we expected lower improvements
when the ratio decreases. On average, Balanced Locality achieved the highest
improvements, of 10.9 %. As several benchmarks benefit from balancing, the Bal-
ance policy has the second-highest improvements, of 7.3 %. The other policies
gain less than 5 %.

As discussed in Sect. 3, the PARSEC benchmarks generally have lower met-
rics than the NAS-OMP benchmarks, which is reflected in the performance
results. Five benchmarks (Ferret, Vips, X264, Dedup, and Streamcluster) bene-
fit from communication-aware thread mapping. Most of them benefit from both
the Locality and the Balance polices, but the Balanced Locality policy, which
combines both, results in the highest improvements in most cases. The Com-
pact, Distance, and Scatter policies do not improve performance consistently
and result in performance losses in several cases. On average, Balanced Locality
has again the highest gains of 6.7 %, followed by Balance (5.4 %) and Locality
(3.4 %).

Summary. We conclude that increasing locality is the most important way to
perform communication-aware thread mapping for most parallel applications.
However, many applications can benefit from improving the balance of the com-
munication, achieving higher performance gains and avoiding the performance
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reduction that a locality-based policy can cause. Simple mapping policies that
do not take the communication behavior into account only improve performance
in some cases and provide no consistent improvements over the OS.

6 Performance and Energy Consumption in a Simulator

Apart from performance, thread mapping can also improve the energy efficiency
of parallel applications, for two main reasons. By reducing execution time, static
energy consumption (leakage) will be reduced proportionally, since the processor
is in a high power-consuming state for less time. Additionally, reducing the
number of cache misses and traffic on the interconnections reduces the dynamic
energy consumption, leading to a more energy-efficient execution. This section
investigates the architectural impacts of thread mapping on the performance
and energy consumption using a microarchitecture simulator.

Table 1. Parameters of the simulated machine.

Parameter Value

System 2x 4-core processors; L1I/L1D cache per core; L2 cache shared
between 2 cores

Execution cores OoO; 1.8 GHz, 65 nm; 12 stages; 16 B fetch size; 96-entry
ROB; PAs branch predictor

L1I/L1D caches 32 KB, 8-way, 64 B line size; LRU policy; 1 cycle; MOESI
protocol; stride prefetch

L2 caches 2 MB, 8-way, 64 B line size; LRU policy; 4 cycles; stream
prefetch

Interconnection Cache line transfer: 2 cycles L2-to-L2; 32 cycles L2-to-DRAM

DRAM DDR2 667 MHz (5-5-5); 8 DRAM banks/channel; 2 channels;
1KB row buffer

Methodology. We use an in-house, cycle-accurate x86 processor simulator [1].
The execution statistics of the simulator are fed into McPAT [12] to calculate the
energy consumption. Table 1 shows the simulation parameters. As benchmark,
we chose SP from NAS-OMP, and run it with input W and 8 threads. We
compare the Locality and Distance mappings in depth, which have the highest
performance difference for this configuration of SP in the simulated machine.

Results. Figure 6 presents the results for execution time, performance statistics
and energy consumption. The results are normalized to the values of the Dis-
tance mapping. Regarding the performance, the execution time was reduced by
10.1 %, caused by the reduction of the number of L2 cache misses (32.0 %) and a
reduction of the number of DRAM accesses (39.9 %). The processor memory read
time was reduced by 22.6 %. The higher data locality also led to a reduction of
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Fig. 6. Results of executing SP in the simulator, normalized to the Distance mapping.

the number of L2 invalidation messages and off-chip interconnection usage. The
reduction of the interconnection traffic and L2 misses enabled the L2 prefetcher
to issue 5.8 % more requests, which also contributed to the overall performance
gains.

The more efficient execution also reduced energy consumption. Leakage was
reduced by 10.1 % for all components, the same amount as the execution time.
As expected, dynamic energy consumption was reduced less, by 2.4 % overall,
leading to a total energy reduction of 6.1 %. Although there are reductions of the
energy consumed by the cores and L2 caches, of 5.5 % and 8.0 % respectively,
the extra prefetches reduced potential reductions of the L2 dynamic energy,
which comprises 23.2 % of the total L2 energy. The highest energy reductions
were achieved by the memory controller and the interconnections between the
L2 caches, and between the processors and the main memory, with reductions of
17.9 % and 22.4 % respectively. The interconnection savings are caused by less
off-chip searches, as well as less cache-to-cache and DRAM data transfers.

7 Related Work

Many techniques for thread mapping have been investigated previously, focusing
on balance-based or locality-based policies. Most balance-based policies depend
on characteristics of the parallel application and the underlying architecture,
such as memory usage or core utilization. Sasaki et al. [16] develop a schedul-
ing scheme for multi-threaded applications based on predicting the application
scalability to balance the resource utilization. The Extended Lowest Load tech-
nique [17] uses a heuristic that is based on the amount of time spent by each
core doing useful work to find the optimal target core for each thread. Pearce
et al. [15] argue that the limitation in load balancing-based mapping policies
is related to inaccurate load information. Depending on information about the
work units of the application and dependencies between them, they develop load
metrics and a cost model for re-correcting load imbalance.

In these approaches, locality issues and the communication behavior are not
considered. On the other hand, policies that perform communication-aware map-
ping mostly focus on improving the locality of communication without evaluating
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balance. For parallel applications that communicate through MPI, most previous
research focuses on methods to trace the messages and uses the information to
perform a process mapping. MPIPP [5] is a framework for process mapping, con-
sisting of a message tracer and mapping algorithm. Some papers evaluate process
mapping for particular applications, such as the NAS-MPI benchmarks [14]. For
applications that use OpenMP or Pthreads, most mapping solutions focus on
analyzing memory accesses to map threads that communicate on shared caches,
but do not address the balance issue [6,8].

8 Conclusions

Communication-aware thread mapping can improve the performance of paral-
lel applications on multicore systems. In this paper, we introduced metrics to
describe the communication behavior and determine if an application can benefit
from mapping policies that focus on the locality or the balance of communication.
We presented a mapping policy that increases locality while still maintaining the
balance. Our evaluation on a real system showed that this policy can provide the
highest improvements and avoids the performance losses that may occur using a
pure locality-based policy. We also provided an in-depth analysis of performance
and energy efficiency gains from thread mapping in a hardware simulator.
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Abstract. The need for priority scheduling arises in many algorithms.
In these algorithms, there is a dynamic pool of lightweight, unordered
tasks, and some execution orders are more efficient than others. There-
fore, each task is given an application-specific priority that is a heuristic
measure of its importance for early scheduling, and the runtime system
schedules these tasks roughly in this order. Concurrent priority queues
are not suitable for this purpose. We show that by exploiting the fact that
algorithms amenable to priority scheduling are often robust to small devi-
ations from a strict priority order, and by optimizing the scheduler for
the cache hierarchy of current multicore and NUMA processors, we can
implement concurrent priority schedulers that improve the end-to-end
performance of complex irregular benchmarks by orders of magnitude
compared to using state-of-the-art concurrent priority queues.

1 Introduction

The problem of priority scheduling is ubiquitous in computer systems, and it can
be formulated abstractly as follows. There is a work-set W of tasks that must
be executed by some number of processors. The time to execute a task may be
unpredictable and may vary by task. When a task is executed, it may add new
tasks to W. Tasks in W can be processed in any order; however, some orders may
be more efficient than others—for example, the order may affect the time taken
to process a given task, and it may even affect the total number of tasks created
during the execution of the program. Therefore, each task has an associated
integer called its priority that is an application-specific, heuristic measure of its
relative importance for early scheduling. The problem of priority scheduling is
to assign tasks to processors according to the specified order (priority) with the
goal of minimizing the total execution time of the program.

In this paper, we focus on a particular instance of this problem that arises
when implementing irregular graph algorithms such as single-source, shortest-
path (sssp), preflow-push maxflow computation (pfp), Delaunay mesh generation
and refinement, and betweenness-centrality (bc). Each task in such an algorithm
is associated with a node called its active node [14] and it makes an update to a
small region of the graph containing its active node, such as modifying node and
edge data or adding and removing nodes and edges. Tasks that update disjoint
regions of the graph can be executed in parallel.
c© Springer-Verlag Berlin Heidelberg 2015
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An important feature of many such algorithms is that although the semantics
of the algorithm permit tasks to be performed in arbitrary order, some orders
may be far more efficient than others. There are several reasons for this.

– The work-efficiency and even the asymptotic complexity of the program may
depend on the schedule; sssp and preflow-push are well-known examples.

– Some schedules may exploit locality better than others. For example, in Delau-
nay mesh refinement, working on recently generated triangles has significant
locality benefits. It may also be desirable to schedule tasks with overlapping
working sets on the same core (affinity scheduling).

– In some algorithms such as the Metis graph partitioner [8], the quality of the
result may depend on the schedule even if the asymptotic complexity does
not.

Priority scheduling can be used to achieve the desired task execution order.
For sssp, the priority of an active node is the length of the shortest known path
from the source to that node; processing active nodes in increasing distance
order, as is done by Dijkstra’s algorithm, is good for work-efficiency. For pfp,
each active node is associated with an integer called its height, which is a heuristic
estimate of its distance from the sink in the residual graph; processing nodes in
decreasing height order improves work-efficiency [4].

Priority scheduling for sequential programs is straightforward: use a priority
queue. The priority of items is defined by a user-supplied priority function that
encodes the less-than relation between items. There are many implementations
of priority queues; one of the most commonly used representations is a heap.

For parallel programs, it is possible in principle to use a concurrent priority
queue that uses either locks or lock-free approaches to synchronize insertions
and removals from the priority queue. In this paper, we argue that concurrent
priority queues are not good priority schedulers for parallel programs. Tasks
in the parallel programming context may execute only a few hundred or thou-
sand instructions; for example, sssp tasks take roughly 1,500 cycles (about 300
instructions) on the machines described in Sect. 4. Therefore, it is imperative
that scheduling be a lightweight operation. In Sect. 2, we survey prior work
that uses concurrent priority queues for priority scheduling. Using sssp, we show
experimentally that parallel scaling is severely limited with these approaches.

To address these problems, we introduce a novel priority scheduler in Sect. 3.
This ordered-by-integer-metric (obim) scheduler does not use priority queues
and has much lower overhead than concurrent priority queues. Its efficiency
comes from exploitation of two insights.

– Exploiting priority inversion. Algorithms that use priorities are often
robust to some priority inversion. Although a substantial number of prior-
ity inversions can hurt work efficiency, we show that allowing a small number
can dramatically reduce communication, synchronization, and coordination
between threads.

– Architecture-aware design. The memory systems of multicores are hierar-
chical and communication between remote cores is expensive. The design of
obim exploits the memory hierarchy to minimize and control coherence traffic.
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In Sect. 4, we evaluate the end-to-end performance of seven irregular bench-
marks that benefit from priority scheduling, using obim and concurrent priority
queues on four multicore machines. For almost all machine/benchmark/input
combinations, obim provides far superior performance; for some of them, the
obim-based implementation is 50 times faster than a concurrent priority-queue-
based implementation.

2 Prior Work on Concurrent Priority Scheduling

In this section, we evaluate the pros and cons of three different ways in which
concurrent priority queues have been used in the literature to implement high-
performance parallel sssp. Our conclusions apply to other irregular programs as
well, but sssp is a good model problem because scheduling strategies for this
problem have been studied extensively.

2.1 Schedulers Based on Priority Queues

We study three ways to use concurrent priority queues for parallel scheduling.

Heap: a central concurrent priority queue. There are many choices of concurrent
priority queues, which we discuss below.

Sheap: a concurrent priority queue for each thread with work-stealing. New work
created by a thread is always pushed to its own local priority queue, although it
may get stolen later. Bertsekas et al. implemented one of the first parallel sssp
programs using this approach [1].

Pheap: a concurrent priority queue for each thread, with logically partitioned
data structures and owner-computes rule for task assignment. When a new task
B is created, the owner-computes rule determines which priority queue to push
the task on. This policy has been used by Tang et al. [17]; it was also mentioned
in [1]. Work-stealing is usually not performed.

Table 1. Number of iterations by type
for sssp on machine m1 (Table 3) at 8
threads.

Good Bad Empty

obim 671M 4.61M 74.6M
sheap 671M 96.3M 106M
pheap 671M 7.98M 721M
heap 671M 0 72.7M

All of these require a concurrent pri-
ority queue. We used the concurrent pri-
ority queue from the Intel TBB library.
We also evaluated a centralized priority
scheduler based on a concurrent skip-
list [15], but we found that the absolute
performance of the TBB priority queue
was substantially better, and although the
concurrent skip-list scaled better than the
TBB priority queue, it never caught up in
absolute performance. Besides concurrent
skip-lists, many other concurrent priority queues have been proposed [3,7,16].
These have various limitations such as being blocking, invalidation heavy, or sup-
porting only bounded ranges which make them unsuitable for scheduling very
small tasks on multi-processors with high remote-cache access latency.
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(c) obim scheduler.

Fig. 1. Priorities processed over time by different implementations. Each line corre-
sponds to priority values processed be one thread. For reference, sequential heap is
shown in black.

2.2 Priority Scheduling for Work Efficiency

For sssp, updates to the graph are called relaxations. Each node A has a label
d(A) that contains the length of the shortest known path to that node from the
source. For edge A → B with weight w(A,B), the relaxation operator updates
d(B) to d(A)+w(A,B) if this value is less than the current value of d(B). Initially,
only the source is active. If the distance of a node is lowered by a relaxation, it
becomes active in turn. We classify the relaxations into three categories called
good work, empty work, and bad work.

– Good work: relaxation that lowers the distance value of a node to its final
value.

– Empty work: attempted relaxation to a value higher than the current value.
– Bad work: relaxation of a label to a value greater than its final value.

Relaxations can be applied in any order but ordering them by the distance
labels of the active nodes minimizes work. Dijkstra’s algorithm [5] performs only
good and empty work. It uses the priority queue to store pending updates to
nodes and updates the node label in the graph only when the first (smallest)
update to that node reaches the head of the priority queue. In contrast, asyn-
chronous label-correcting algorithms perform relaxations in a random order and
may perform a lot of bad work [13]. Table 1 shows the breakdown of the differ-
ent types of work performed by different implementations on a machine with 8
cores. The input is described in Sect. 4. The amount of good work is the same
for all implementations, but the amount of bad work and empty work differ. In
particular, sheap performs a lot of bad work.

It is useful to characterize the instantaneous behaviors by plotting the prior-
ities of the work processed by thread over time. Figure 1 shows this data using
the total iterations executed as a proxy for time. In each graph, there is a line
for each of the 8 threads; in addition, the priority of the work processed by a
sequential implementation using a heap is superimposed in black.

Figure 1a shows that with sheap, threads quickly diverge from processing
the globally earliest priority work. Threads eventually converge to processing
the earlier priority work through work-stealing. Each of the drops in priorities
processed corresponds to a thread stealing earlier priority work from another
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thread. Figure 1b shows that pheap is much better at keeping threads working
on early priority work. This is because the graph is a random graph and thus
fairly uniform, so the average earliest priority among t partitions (where t is the
number of threads) is close to the earliest priority globally. This may not be true
for non-random graphs, and the performance of pheap implementations will be
poor for such graphs. Figure 1c shows that obim is successful in keeping all the
threads working on the globally earliest priority work.

Although sheap performs poorly, priority scheduling using sheap may be a
significant improvement over not using priorities at all. Using a random scheduler
on the same input produces an runtime greater than several hours, while using
sheap finishes in about 2 min (obim completes in 11 s).

Parallel Overheads: If work efficiency were the only concern, choosing a par-
allel scheduler would be easy: always pick the one that sticks closely to the
ideal priority order. However, the end-to-end performance of a program depends
also on the parallel overheads of the scheduler. The overhead costs of a parallel
scheduler come from two sources: the sequential cost of performing a schedul-
ing operation and the synchronization and communication cost from making the
scheduler concurrent. We find the sequential performance of the heap-based vari-
ants are approximately 2x that of obim. Using a sampling profile, we find that
at 8 threads, the costs are quite different. Obim scales essentially perfectly, the
overhead per task is the same as the sequential result. The concurrent heap being
a centralized data structure, however, scales extremely poorly, taking 14.5x more
time for scheduling than it did serially. pheap takes 2x and sheap takes 5x more
time than each did serially. As we saw in Table 1, sheap performs significantly
more iterations also.

End-to-end performance of sssp: Figure 2 shows the end-to-end performance
of the four implementations of sssp on a 24 core Intel Xeon. The baseline for
speedup is a sequential implementation of sssp using the Intel TBB priority
heap (which performed substantially better than the serial priority queue in lib-
stdc++). The two factors discussed above—work efficiency of the algorithm and
parallel overheads of the priority scheduler—limit the speed-up of the concurrent-
priority-queue-based implementations to roughly 3 on 24 cores. In contrast, it
can be seen the obim scheduler gives almost perfect speed-up.

2.3 Priority Scheduling for Output Quality

Priority scheduling is also useful for improving output quality in algorithms such
as Metis, a multi-level graph partitioner, which uses a lowest-degree first heuris-
tic for graph coarsening. Figure 3 shows the effect on the edge-cut, a measure of
partition quality, from varying the scheduling policy in the coarsening phase. For
comparison, random chooses nodes at random to match next, and simple imple-
ments a simple work-stealing scheduler. We see that obim provides consistent
quality across thread counts, producing better results than random scheduling.
Simple scheduling produces widely varying quality. In these tests, both simple
and obim had similar runtimes.
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3 A Scalable Priority Scheduler

Fig. 4. Priority map in
obim.

The design of obim exploits the observation that algo-
rithms that use priorities are robust to small amounts
of priority inversion. This observation is used to (i)
enhance parallelism by allowing each thread to schedule
work asynchronously, and (ii) minimize communication
by using an approximate consensus protocol with com-
munication matched to the memory system topology. A
full discussion with pseudocode can be found in [10]. A
simplified, high-level picture of obim is shown in Fig. 4.
The obim scheduler is built out of bags, which are used
to hold tasks at the same priority level, and priority maps, which are used to
hold a collection of bags at different priority levels.

3.1 Implementation of Bags

There is one bag per priority level in the entire system but it is implemented
in a distributed, machine-topology-aware way as follows. For a given bag, each
core has a data structure called a chunk, which is a ring-buffer that can contain
8–64 tasks (size chosen at compile time). In addition, each package has a list of
chunks. When the chunk associated with a core becomes full, it is moved to the
package-level list. When the chunk associated with a core becomes empty, the
core probes its package-level list to obtain a chunk. If the package-level list is
also empty, the core probes the lists of other packages to find work. To reduce
traffic on the inter-package connection network, only one hungry core hunts for
work in other packages on behalf of all hungry cores in a package.

3.2 Implementation of Priority Map

The priority map is also implemented in a distributed way by (i) a global map
of priorities to bags, and (ii) an approximate copy of the global map within each
thread. Each thread operates on its thread local map, synchronizing with the
global map only when necessary, as explained next.
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The thread-local map is implemented by a non-concurrent sorted vector of
pairs. The implementation of the map is straight forward and not presented.
Threads also maintain a version number representing the last version of the
global map they synchronized with. Each thread also tracks the current priority
it is working on and bag for that priority. This priority and bag are used by the
thread for pop operations.

To minimize synchronization overhead, the global map uses a log-based struc-
ture which stores bag-priority pairs created by insert operations on the global map.
Each insertion operation also updates a global version number, which corresponds
to the length of the log. When a thread cannot find a bag for a particular priority
using only its local map, it must synchronize with the global map and possibly
create a new mapping there. A thread atomically appends a record to the log and
increments the version number. The implementation ensures that the log can be
appended in the presence of concurrent readers without requiring locks.

Push: A thread pushing a task uses its local map to find the bag to insert to.
If its local map does not know if such a bag exists, the global map is consulted
and if the bag is found, the local map is updated appropriately. If the priority
of the pushed item is earlier than the current priority, the thread immediately
updates its current working priority to operate on the earlier priority work.

Pop: To keep close to the ideal schedule, all threads must be working on early
priority work. We adopt the heuristic that threads scan for earlier priority work
only when they find that the bag they are working on is empty. Thus, if the bag
for the current priority is not empty, a task from that bag is retrieved. Otherwise,
when a bag is empty the thread scans the priority space looking for early priority
work. We call this procedure back-scan.

Because a scan over the entire global map can be expensive, especially if there
are many bags (which often happens with algorithms on high-diameter graphs),
an approximate consensus heuristic is used to locally estimate the earliest pri-
ority work available and to prune the length of the back-scans, which we call
back-scan prevention. Each thread makes available its estimate of the earliest
priority work. When a thread needs to scan for work, it looks at this value for
all threads that share the same package and uses the earliest priority it finds to
start the scan for work. To propagate information between packages, in addition
to scanning all the threads in its package, one leader thread per package will scan
the other package leaders. This restriction allows most threads to incur only a
small amount of local communication.

Once a thread has a starting point for a scan, it simply tries to pop work
from each bag from the scan point onwards. The implementation ensures that
attempting to pop from empty bags does not perform any writes to shared-
memory, so popping from an empty bag, while not free, does not incur poor
locality or communication. This back-scan prevention method is especially effec-
tive in many algorithms because it exploits the common structure of priority
spaces. In most algorithms such as BFS, the priority space is populated monoton-
ically: processing work at one priority will usually generate work at the same or
later priority. Thus back-scan prevention can easily limit the scan to just a few
bags.
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Table 2. Obim variants used
in evaluation.

Bag type Backscan prevention

No Yes

Centralized cmn cmb

Distributed dmn dmb (obim)

Table 3. Properties of machines used in the eval-
uation.

Label Packages Cores per Speed L3 Model

Pkg (GHz) (MB) (Xeon)

m2x4 2 4 2.93 8 X5570

m4x6 4 6 2.00 18 E7540

m4x10 4 10 2.27 24 E7-4860

numa8x4 8 4 1.87 18 E7520

3.3 Evaluation of OBIM Design Choices

To evaluate the obim design decisions, we implemented several de-optimized
variants of the obim scheduler. Table 2 lists these variants, which focus on two
main optimizations. These are (i) the use of distributed bags and (ii) back-
scan prevention. Table 3 shows the four machines we used for the evaluation.
The numa8x4 is an SGI Ultraviolet (strong NUMA). The other 3 machines are
standard Intel Xeons with multiple packages connected by QPI.

We use three inputs which stress the priority scheduler in different ways. The
first input is a large random graph, which has many work items and stresses
the bag implementation. The second one is the USA road network, which is a
smaller graph with a large diameter. It stresses the efficiency of the priority map
implementation and the ability of the scheduler to find highest priority work
efficiently. The third input is a scale-free rmat graph of 227 nodes.

Fig. 5. Scaling of obim variants for sssp.

The bottom row of Fig. 5
shows the speedup of sssp
for the small input for the
four obim variants on the
four machines. Speedup is
relative to the best over-
all single-threaded execution
time. The first conclusion is
that the back-scan optimiza-
tion is critical for perfor-
mance: peak speedup goes
from 2.5 (cmn and dmn)
to 5 (cmb and dmb). Given
the back-scan optimization
(cmb and dmb), the second
conclusion is that using dis-
tributed bags is also impor-
tant for performance: with-
out this optimization, speedup is never more than 5 on any machine. Without
back-scan prevention, a distributed bag is less efficient than a centralized one on
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this high-diameter input because it is more efficient to check that a centralized
bag is still empty than it is to perform this check on a distributed bag.

The top row of Fig. 5 shows the speedup of sssp for the large input. We see that
for this input, back-scan prevention is almost irrelevant. However, distributed bags
are even more important on this input than for the small input, pushing scaling
from 8 to 25. The power-law graph (rmat) behaves similarly to the large graph.
Machine m2x4 did not have enough RAM to load the rmat graph.

We investigated how the differences between variants manifest themselves
at the architectural level through sample-based profiling using hardware coun-
ters. Briefly, back-scan prevention significantly reduces CPU cycles chiefly by
reducing total instructions. The communication profiles with back-scan preven-
tion (dmb) and without it (dmn) are similar at the L3 level. This shows (a) the
amount of communication added to perform priority consensus is small, and (b)
making sure that probing bags is write-free significantly reduces communication
compared to trying to avoid checks using back-scan prevention. The former opti-
mization is shared by both bag variants, and addition back-scan prevention does
not change the L3 profile.

The second dimension we investigate is centralized versus distributed bags.
There is little difference in total number of instructions executed between these
two classes of implementations: we find no more than 6 % difference at 24 threads.
However, we see that the centralized queues have more than twice the commu-
nication costs of the per-package queues.

4 Experimental Evaluation

We implemented seven applications on the four machines in Table 3, using obim
and the three priority-queue-based schedulers. All the machines run Linux 2.6.32
with gcc 4.6. Processor affinity was used (and is necessary for the topology-aware

Table 4. Test programs and inputs

Name Algorithm Input

sssp Single-Source Shortest-Path [13] random constant average degree, 226

nodes, 228 edges

bfs Breadth-first search same as sssp

bp Loopy Belief Propagation [6] 3SAT problem with 350 k clauses and
100 k variables

matching Maximum Cardinality Bipartite
Matching [12]

bipartite graph with 106 nodes and 108

edges from [12]

avi Asynchronous Variational
Integrator [11]

10 × 10 m neo-Hookean plate with
42000 elements

pfp Pre-flow Push R-MAT with 222 nodes

bc Betweenness Centrality [2] USA road network
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code). Each application was run on a large input graph and a small input graph;
for lack of space, we only show the results for the large input graph.

We used the following seven applications from the Lonestar benchmark suite [9]
in our study. The Lonestar suite publishes comparisons of these benchmarks to
third party serial and parallel implementations, so we do not repeat these results
here. Descriptions of the benchmarks can likewise be found published with Lones-
tar. Brief descriptions of the benchmark programs and inputs are given in Table 4.

4.1 End-to-End Performance
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Fig. 6. Speedup. “#” indicate runs where runs
timed out after ten minutes.

Figure 6 shows speed-up for
large inputs, relative to the
best serial times for these algo-
rithms. First we see, for most
applications, the obim sched-
uler gives the best perfor-
mance even on one thread.
This is due to the lower over-
heads of pushing and popping
tasks with obim’s bucketing
scheme compared to a heap.
The minor improvements in
scheduling order of the heap
do not make up for this over-
head.

Second, at full scale, the
obim scheduler is almost always
substantially faster than all
the priority-queue-based imple-
mentations for most appli-
cations and machines. For
instance, at 24 threads on
machine m4x6, on sssp with
the large input, obim (4.4 s)
is about 7 times faster than
the partitioned heap sched-
ulers (about 32 s) and 50
times faster than a concur-
rent heap (about 227 s). There
are a few application/machine
combinations such as avi for
which obim is slower than the
heap-based schedulers on one
thread, but as the number of
threads increase, the perfor-
mance of obim surpasses that
of other priority schedulers for almost all application/machine combinations.
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The results for numa8x4 show that on a machine with high NUMA penalty,
obim doesn’t scale much beyond one NUMA-node, although it does performs bet-
ter than the other schedulers. Although all the machines are NUMA, the latency
penalty on numa8x4 is significantly higher. We do not optimize for memory-bank
locality in scheduling work, we only distribute the graph evenly between nodes.
Graph partitioning and partitioning-aware scheduling must be applied in this
case. We leave this for future work.

4.2 Differences in Application-Level Work

Fig. 7. Total iterations relative to best sequen-
tial scheduler for each combination. Outliers
exist for pheap (28) and sheap (16).

Figure 7 show how many iterations
were executed with each scheduler
for each application, input, and
machine, relative to the best single-
threaded scheduler. An important
caveat is that the number of itera-
tions is only a rough, though eas-
ily understood, proxy for the total
amount of useful work as we dis-
cussed in Sect. 2.2.

First, we see sheap and pheap can perform many more iterations than obim.
Extra iterations come from priority inversion. Second, the heap scheduler can
sometimes generate more work than the serial heap scheduler. This is because
in the parallel implementation, pushes and pops from different threads can get
interleaved in a different order than in the sequential implementation. For a few
benchmark/input/machine combinations, obim performs more iterations than
the best single-threaded scheduler for that combination.

4.3 A Full Application: Metis

Fig. 8. Scaling of Metis for coarsen-
ing, initial partitioning, and refine-
ment phases as well as total scaling.

We also evaluated obim for parallelizing a
complete application, the Metis graph par-
titioner [8]. Figure 8 shows the scaling of
Metis as well as the scaling of the coars-
ening, initial partitioning, and refinement
phases on m4x10 (Table 3). Creating 4 par-
titions of the USA road map takes roughly
35s with sequential Metis, 4s with our par-
allel Metis, and 2s with Mt-Metis, a hand-
parallelized version of Metis from the Uni-
versity of Minnesota, while creating 1000
partitions takes roughly 38s, 5s and 7s
respectively. The Mt-Metis program uses data structures optimized for graph
partitioning while we use generic Galois data structures.
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5 Conclusion

We presented a concurrent priority scheduler called the ordered-by-integer-metric
(obim) scheduler, which (i) exploits the seemingly innocuous fact that algorithms
amenable to priority scheduling are usually robust to small deviations from a
strict priority schedule, and (ii) is optimized for the cache hierarchy of current
multicore processors. Across a suite of seven complex, irregular benchmarks and
four machines, we showed that implementations that use obim almost always
outperformed implementations that used concurrent priority queues; for some
benchmarks, end-to-end performance improved by a factor of 50. We also showed
that obim could be used to successfully parallelize Metis, a complete and com-
plex application, improving running time by roughly a factor of 10 compared to
sequential Metis.
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Abstract. Work-stealing schedulers focus on minimizing overhead in
task scheduling. Consequently, they avoid features, such as task priori-
ties, which can add overhead to the implementation. Thus in such sched-
ulers, low priority tasks may be scheduled earlier, delaying the execution
of higher priority tasks and possibly increasing overall execution time.

In this paper, we develop a decentralized work-stealing scheduler that
dynamically schedules fixed-priority tasks in a non-preemptive manner.
We adhere, as closely as possible, to the priority order while scheduling
tasks by accepting some overhead to preserve order. Our approach uses
non-blocking operations, is workload independent, and we achieve per-
formance even in the presence of fine-grained tasks. Experimental results
show that the Java implementation of our scheduler performs favorably
compared to other schedulers (priority and non-priority) available in the
Java standard library.

Keywords: Work-stealing · Multi-level queue · Priority levels · Priority
scheduling · Load balancing · Task-parallel programming

1 Introduction

Load balancing is an important component in improving the performance of
parallel applications as it distributes the workload over all processors. Work-
stealing algorithms [1] have been gaining popularity as the technology of choice
for load-balancing of parallel tasks in multicores, especially for irregular and
dynamic computations. Applications such as tree or graph search problems can
benefit from attempting to execute tasks in a specific order. Assigning priorities
to tasks can be a method to influence the execution ordering in the scheduling
of tasks [18]. In fact, benchmarks such as branch-and-bound and single-source
shortest path show that prioritization of tasks can reduce the total amount of
work required compared to standard work-stealing execution order [17]. Soft
real-time applications with time constraints can also use priorities to promote
the execution of tasks, violations of these can allow the application to continue
to operate, but with a degraded quality of results. Mainstream work-stealing
schedulers do not support user-defined priorities in tasks and may schedule less
important tasks earlier. This scheduling leads to increased execution time or
degraded quality.
c© Springer-Verlag Berlin Heidelberg 2015
J.L. Träff et al. (Eds.): Euro-Par 2015, LNCS 9233, pp. 222–234, 2015.
DOI: 10.1007/978-3-662-48096-0 18
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The goal of priority scheduling is to assign tasks to processors in a way
that optimizes overall performance metrics such as the total execution time [11].
Sequential implementations of priority scheduling are simple as they can use pri-
ority queue data structures, however, scalable and efficient parallel implementa-
tions can be comparatively more complex. Parallel implementations of priority
scheduling tend to use shared concurrent priority queues. However, synchro-
nization overheads cause such queues to not necessarily make efficient sched-
ulers [11]. Other work-stealing priority schedulers guarantee priorities only in
local scheduling via the use of priority queues per worker thread [17] and per-
form steals from victims once the worker becomes idle. Thus, these approaches do
not adhere closely to global priorities while scheduling tasks trading off accuracy
for reduced overhead. However, priority scheduling is primarily used to reduce
the total amount of work done by an application. Using the priority order can
curtail computation time by avoiding further exploration of a solution space or
by causing the successful termination of the entire computation. Deviations from
priority order may cause the application to end up doing more work.

In this paper, we develop a decentralized work-stealing scheduler that dynam-
ically schedules fixed-priority tasks in a non-preemptive manner. We adapt a
multi-level queue scheduling algorithm [13] where the tasks can be classified
into priority classes and assign a separate container for each priority class. Our
algorithm uses non-blocking operations and minimizes the number of compare-
and-swap operations that each local worker thread performs. Furthermore, our
workload independent approach extracts performance even in the presence of
fine-grained tasks. Our approach relies on the unusual approach of performing
steals even if the worker thread is not idle to adhere close to the priority order
while scheduling. This strategy ensures that worker threads, in our scheduler,
are executing tasks from the highest priority class. Thus, we minimize instances
of priority inversion where low priority tasks are scheduled for execution even if
higher priority tasks are available in the distributed work queue.

In summary, the contributions of this paper are as follows:

– We introduce our decentralized non-blocking algorithm for a work-stealing
scheduler that respects global priorities.

– We present a lock-free implementation of our scheduler written using the stan-
dard Java library (JDK) and three work-stealing pool implementations.

– An empirical evaluation that shows our scheduler variants perform competi-
tive to existing priority-based and non-priority-based schedulers available in
the JDK.

2 Background

In the task parallel model, an application is usually decomposed into several
independent and/or interdependent sets of cooperating parallel tasks. The tasks
are stored in task pools, and worker threads are employed by the task scheduler
to process the tasks. Scheduling deals with the problem of deciding which of the
tasks from the work pool are allocated worker threads for execution. Efficient
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task scheduling improves resource utilization by automatically load-balancing
tasks across worker threads, thereby enhancing the overall performance of the
computation.

Load balancing is based on the idea of migration of excess load from heavily
loaded workers to lightly loaded ones. Given perfect information, a static schedul-
ing algorithm attempts to produce an optimal assignment of tasks to workers
that ideally balances their loads. Such information, however, may be unavailable
in irregular computations that generate non-uniform tasks. Such applications
cannot rely on static load balancing and have to defer to dynamic schemes that
redistribute the workload at runtime.

While dynamic load balancing is complex, its benefits outweigh its com-
plexity. The main challenge of the scheduler is to deal with the dynamic load
imbalance with minimal overhead while executing tasks on multiple workers.
Conventional scheduling policies, such as work-sharing, are normally centralized
and global in scope. The overhead of global synchronization that must be per-
formed to maintain a consistent state limits the scalability of such schedulers.
One of the simplest, yet best-performing, dynamic load balancing algorithms for
shared-memory architectures is work-stealing.

2.1 Work-Stealing Schedulers

The work-stealing algorithm is an effective decentralized technique for scheduling
parallel computations. The key observation is that there is no need to migrate
tasks between the workers for load balancing if all threads have enough work.
What makes work-stealing successful is that it employs a reactive asynchronous
strategy [16]. When a worker runs out of local work, it (randomly) chooses a vic-
tim thread and asynchronously tries to steal some work from it. The attempt to
load balance is receiver-initiated as the thief actively attempts to obtain avail-
able work. The asynchronous nature allows a thief to get some work without
any involvement from the victim thread that may be busy processing user tasks.
Thus, the idle workers eventually unburden the busy workers and load balance
is achieved.

A key component of work-stealing is the use of double-ended queues by each
worker thread [2,10]. Workers treat their own deques as a stack, pushing and
popping tasks from the bottom, but treat the deque of another busy worker as
a queue, stealing tasks only from the top, whenever they have no local tasks to
execute. Worker threads process their own deques in a LIFO order processing
local tasks, as long as they are available. Consequently, it may be the case that
most tasks are consumed locally, and relatively few steals are required to address
a load imbalance [9].

When a worker becomes idle, it transitions into a thief searching for available
work from active workers. The thief attempts to steal tasks from its victim
using FIFO order, i.e. from the opposite end from which the victim is working
on its deque. Since the victim and thief operate on opposite ends of the deque,
efficient algorithms can be implemented for the deque that minimize the need for
synchronization [6]. On a successful steal, a thief pushes the stolen task onto its
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local deque, returns to the worker state, and continues to process its local tasks.
If unsuccessful, the thief randomly searches for another victim and continues
steal attempts until successful. This procedure repeats until all workers have
exhausted their tasks and termination is detected.

Work-stealing schedulers focus on minimizing overhead in task creation and
scheduling [1]. As a result, they avoid features, such as task priorities, which can
add overhead to the implementation.

3 Priority Work-Stealing Algorithm

In this section, we provide the details of our work-stealing algorithm for schedul-
ing tasks under global priority. We briefly describe the pool data structure and
our overall technique before describing the algorithm.

3.1 Operations on Pool Data Structure

We generalize the data structure used to store tasks in a work-stealing algorithm
as a pool – a container of ready tasks. Like the concurrent deque described by
Arora et al. [1] in their work-stealing algorithm, the pool data structure is owned
by a worker thread and supports the following methods:

– push operation: this method is executed only by the owner thread and always
succeeds in storing a task into the pool.

– pop operation: this method is executed only by the owner thread and may
return a special empty value if the pool is empty.

– steal operation: this method is executed only by the thief thread and method
may return a special empty value if the pool is empty.

The pools support concurrent method invocations and may be implemented
using any concurrent data structure. Concurrency can only occur between one
invocation of push or pop in the owner thread and one or more executions of
steal from thief threads. Each pushed task is extracted exactly once either by
a call to pop or by a call to steal.

Note that we do not restrict the owner of the pool to use it as a stack
(pushing and popping at the bottom) and victim to steal only from the top of
the pool. Thus, pool implementations can also internally support priorities and
can choose the appropriate task to return during the pop or steal operation.
Our priority work-stealing scheduler (Sect. 3.3) which uses priority levels can
be paired with any appropriate pool implementation to use specific execution
orders. Thus depending on the application, a queue, a stack, or some other
container data type can be used as the pool.

3.2 Work-Stealing with Global Priorities

We assume that tasks are assigned fixed priorities and our work-stealing algo-
rithm schedules the highest priority task available globally in a non-preemptive
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manner. In non-preemptive priority scheduling, when a task starts execution, it
executes to completion even if a higher priority task arrives at the ready pool.
Since we expect fine-grained parallel programs; the iterations of the scheduler
loop are expected to be frequent. Thus, a minor delay in the execution of a
higher priority task is not a concern, and we do not expect major priority inver-
sion issues despite the use of a non-preemptive scheduler.

Our algorithm is inspired from the Multi-Level Queue Scheduling (MLQS)
algorithm [13] where tasks are partitioned into priority levels. Like MLQS, our
scheme maintains a number of distinct pools, each assigned a different priority
level. More than one task may be in a given pool and thus have the same priority.
However, like work-stealing algorithms, the tasks need to be distributed across
worker threads. Each worker thread maintains a local pool for each priority level;
we avoid a fully shared task pool as it would require expensive synchronization
for every access. Thus, the tasks of any given priority are potentially distributed
across the pools in the different worker threads.

In MLQS, higher priority queues must be empty before tasks from lower
priority queues are allowed to execute. Similarly, in our scheme higher priority
pools from all worker threads must be empty before a worker thread executes a
local task from a lower priority pool. This strategy requires the maintenance of
a global data structure to track the availability of tasks in the different priority
levels across all the workers. It also implies that worker threads will need to
perform a steal even if they are not idle, i.e. their pools may not be empty.

The assumption with standard work-stealing algorithms is that stealing
accesses are rare as they only occur when the local pool is empty. One strategy
that works well under this assumption is the choice of a random victim. Since
steals are concurrent operations, they are accompanied by synchronization over-
heads. To maintain scalability, a work-stealing algorithm needs to be careful
with victim selection to minimize the number of failed steal attempts where the
thief discovers that the victim has no work available. When performing a steal
operation, a thief must also determine how much work to steal.

Our goal is to adhere, as closely as possible, to the priority order while
scheduling tasks tolerating added overheads to preserve accuracy. We can neither
predict the dynamic priorities of newly spawned tasks nor expect the highest pri-
ority tasks to be evenly balanced across workers. Hence, we expect steal attempts
to be relatively more frequent than traditional work-stealing approaches and
steal only one task from a carefully chosen victim. This avoids ping-pong effects
where a task, being one of the highest priority ready tasks, moves back and forth
between worker threads. This also minimizes failed steal attempts required by
thieves to locate and steal work when highest priority tasks are available on a
single worker thread’s pool.

Starvation: Enforcing priorities means that high-priority processes will always
be favored over low-priority ones, causing starvation for low priority tasks. One
common method of ameliorating this situation is aging in which we gradually
increment the priority of waiting tasks, ensuring that they will all eventually
execute. As our benchmarks did not exhibit starvation, we do not address this
issue further in this paper.
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3.3 Priority Work-Stealing Algorithm

Our priority work stealing algorithm does not depend on synchrony for correct-
ness, and it involves lock-free operations1. Each worker thread is guaranteed to
make a locally optimal decision while making a best-effort at a globally optimal
decision in scheduling a task. The local guarantee is achieved as a worker will not
schedule a lower-priority task if there exists a higher-priority task in its pool(s).
The lack of guarantee in global optimality is because the global data structure
maintains a weakly consistent state of the availability of tasks in the different
priority levels.

Fig. 1. Simplified version of the non-blocking work-stealing algorithm that adheres,
as closely as possible, to the global priorities of tasks. All worker threads execute the
same scheduling loop. The heart of the algorithm is in findTask() which determines
which task is scheduled next.

The scheduler operates as shown in Fig. 1. The pushTask operation (lines 2
to 6) finds and populates the local pool for a task with a specified priority. The
important operation here is that the global data structure is updated after per-
forming local updates to the pool (line 5). Each worker thread uses a scheduling
loop (lines 7 to 12) which tries to find a task to execute and executes it until
the scheduler is stopped. The heart of the algorithm lies in each iteration of
the scheduling loop where each thread attempts to find a task to execute. The
1 The pool implementation may involve locking in the pop, push, and steal operations.
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worker tries to find the highest available priority level by querying a global data
structure (line 15) implemented using atomic variables to store the full/empty
state for each level. This global state can be out of sync with the state of the local
pools, hence the thread attempts to find a local task with a higher priority (lower
level index) and schedule the task if available (code not shown on line 16). If no
such local task exists, we enter the loop on line 18. The worker then attempts
to find a task from the local pool and returns if it finds such a task (lines 19 to
21). If no such task is found locally, the worker must now become a thief and
attempt to find a similar priority task from sibling workers (lines 22 and 25). The
worker queries global state to find the workers (potential victims) that claim to
have a task with the specified priority level. The worker then iterates through
each of these victims and attempts to asynchronously steal a task from them.
Since steals are attempted from victims claiming to have tasks at the specified
level, the number of failed steals should be relatively low and only fail during
high contention for few highest priority tasks. If the steal attempt is successful,
the worker executes the stolen task. Otherwise, the worker now realizes that
the global state is out of sync as none of the victims could provide a task. The
worker updates the global state to signal no tasks of the specified priority are
available (line 27). The worker keeps looping until the global state returns an
invalid index (line 28) signaling no global tasks are currently available to steal.
The findTask method returns the special value EMPTY signaling no tasks are
currently available to execute. The worker yields itself when it is unable to find
a task to execute (line 11) and then resumes the scheduling loop.

4 Implementation

We briefly describe the Java-based implementation of our scheduler in this
section. Our implementation has no third party dependencies; it relies on classes
and data structures available in the Java standard library (JDK). Our imple-
mentation and the benchmarks are released open source online on GitHub at
https://github.com/shamsmahmood/priorityworkstealing.

We have implemented three variants of unbounded pool data structures for
use in our scheduler based on:

(a) lock-based implementation of THE protocol in Cilk’s deque [6];
(b) wait-free array-based pool based on X10’s concurrent deque [3]; and
(c) wait-free linked-list-based pool based on JDK’s ConcurrentLinkedQueue [4].

Our scheduler is flexible in that it can be configured to use either of these
implementations as its pool data structure in the worker threads. Table 1 sum-
marizes the properties our priority work-stealing scheduler compared to other
work-stealing schedulers.

Our scheduler’s implementation is lock-free and uses the help-first policy for
task scheduling as this strategy is favorable when stealing is frequent [7]. Under
this policy, spawning a child task pushes it in the task pool and allows the parent
task to continue execution past the spawn operation. The scheduler maintains

https://github.com/shamsmahmood/priorityworkstealing
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Table 1. Comparing our work-stealing algorithm with couple other algorithms in the
literature.

Scheduler Pool Type When to steal from chosen victim What to steal What to pop

Work-Stealing

without priority

Deque Local deque is empty; victim chosen

randomly

Oldest item by

age

Newest item by

age

Work-Stealing local

priorities

Priority

Queue

Local queue is empty; victim chosen

randomly

Highest priority

item

Highest priority

item

Our Work-Stealing

global priorities

Deque Another worker (victim) has a higher

priority level pool which is

non-empty

Oldest item in

pool by age

Newest item in

pool

Queue Oldest item in

pool

a fixed number of worker threads which are configured during initialization. All
worker threads execute a scheduling loop similar to the one displayed in Fig. 1.
During steal attempts, the victims are traversed in round-robin order starting
at the previous successful victim.

Work-stealing schedulers do not enforce global prioritization since this could
compromise scalability of the implementation [17]. A limiting factor for scalabil-
ity of concurrent data structures is the number of global operations performed
concurrently by the worker threads. We use atomic variables available in the
JDK to implement the global state to reduce the risk of memory consistency
errors and to minimize the cost of overheads from synchronization. We reduce
the number of calls made to update the global state for a given priority level by
identifying instances when the owning worker realizes a pool has transitioned to
empty or non-empty states.

We allow tuning parameters like the number of worker threads and the kind
of pool to use. We also allow arbitrary scalars ranges to be used as priority
levels, there is no limit imposed on the size of the range. A default priority can
be specified for tasks created without an explicit priority property. Tasks with
invalid priorities are sanitized to meet the constraints of the allowable range for
priorities.

5 Experimental Results

Our benchmarks were run on four eight-core IBM POWER7 processors running
at 3.8 GHz each. Each node contains 256 GB of RAM and the software stack
includes IBM Java SDK Version 1.7.0. Each benchmark ran using the same kernel
where the user specifies priorities during task creation; only the task scheduler
was changed to report the execution times. Each benchmark was configured to
run using 32 worker threads; the arithmetic mean of the best fifty execution times
(from the hundred and eighty iterations) are reported and error bars represent
one standard deviation. Using the best execution time allows us to minimize the
effects of JVM warm up, just-in-time compilation, and garbage collection.

We evaluated several different priority schedulers in the Java platform. We
present empirical evaluation of our implementation using Cilk-like deques
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(PWSTCD), X10-like deques (PWSTXD), and JDK’s (PWSTJQ) priority queues
compared against: (a) JDK’s work-stealing ForkJoinPool scheduler (FRKJPL)
[10] that does not support priorities; (b) custom implementation of a work-stealing
scheduler using local priority queues that steals only when local queues are empty
(WSTLPQ). (c) JDK’s work-sharing ThreadPool scheduler that does not support
priorities (THRDPL); (d) JDK’s ThreadPool scheduler with a thread-safe prior-
ity queue using synchronized statements (SYNCPQ); and (e) JDK’s ThreadPool
scheduler using a concurrent queue (PriorityBlockingQueue) from the JDK
(PBLKQ). All the priority schedulers were configured to run with ten levels of pri-
orities unless otherwise specified.
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PWSTXD

SYNCPQ
THRDPL

WSTLPQ
11.67

11.62

11.61

11.10

10.45

11.52

11.97

11.66

Average Execution Time (in secs)

Fig. 2. Trapezoid - 800 thousand tasks
to compute an area approximation.
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FRKJPL

PBLKQ
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PWSTJQ
PWSTXD

SYNCPQ
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7.07
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10.48

6.74

7.04

30.17

16.71

13.90

Average Execution Time (in secs)

Fig. 3. Fibonacci - computing the 34th
term using recursive formula.

Micro-Benchmarks. The first two micro-benchmarks measure overheads in
the scheduler implementation, the rate at which tasks are processed. Almost all
variants perform similarly in the Trapezoid benchmark (Fig. 2), showing that
the scheduler implementations for all the variants are of equivalent quality. In
the Fibonacci benchmark, each parent task spawns two additional tasks with
random priorities. Thus, this benchmark measures the overheads from support-
ing priorities. As expected the SYNCPQ and PBLKQ variants perform the worst
due to overheads from a centralized queue implementation over the equivalent
non-priority version (THRDPL) as seen in Fig. 3. The WSTLPQ, despite having
a decentralized pool, also shows noticeable overheads compared to a non-priority
work-stealing scheduler using a similar victim selection strategy (FRKJPL). Our
scheduler implementation with queues and deques (PWSTJQ, PWSTCD, and
PWSTXD) performs close to FRKJPL.

Quality of Priority Scheduler Benchmarks. Next benchmark used is a vari-
ant of the JGK ForkJoin benchmark (Fig. 4) where equal numbers of tasks with
random priorities are created upfront on each worker. This synthetic benchmark
mimics applications that use priorities to ensure quality of results. The FRKJPL
and THRDPL do not support priorities and scheduled tasks with an average pri-
ority of 4.00 as expected. WSTLPQ, with a local priority queue, schedules its
local task to completion ignoring global priorities. Our decentralized implemen-
tations (PWSTJQ, PWSTCD, and PWSTXD) perform as well as a centralized
global priority queue variants (SYNCPQ and PBLKQ) which schedule the tasks
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ForkJoin: Number of tasks executed (in millions).
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UTS: Number of tasks executed (in millions).

Fig. 4. Y-axis represents average priority of tasks executed by scheduler, higher is
better.

in perfect priority order. Next is the Unbalanced Tree Search (UTS) bench-
mark designed to help evaluate systems that require dynamic load balancing.
In UTS, the nodes are assigned random priorities, tasks are spawned to process
each node as it is discovered. SYNCPQ and PBLKQ with global priority queues
and PWSTCD and PWSTXD with deque-based implementations report simi-
lar numbers. WSTLPQ, with local priority guarantees, reports priorities close
to FRKJPL and THRDPL. PWSTJQ performs best, even outperforming the
global priority queues due to a different traversal order. Along with results from
Fig. 3, this shows that our scheduler performs scheduling close to global priorities
but at a low overhead.
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Fig. 5. NQueens: board size of 13, and
cutoff after finding first 30 K solutions.
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Fig. 6. Knapsack benchmark with 40
items and a sequential cutoff of 34.

Priority to Curtail Computation Benchmarks. Priority scheduling can be
used to reduce the total amount of work done by an algorithm. In the NQueens
benchmark (Fig. 5), priorities are used based on the number of queens placed
on the board populated so far. Our scheduler using all three pools comfortably
outperforms all the other variants except FRKJPL. The Knapsack benchmark
(Fig. 6) has been ported from a Cilk implementation [5]. The computation can
be reduced by pruning sub-trees that cannot produce a better solution than the
best one found so far, this leads to an irregular computation. We can see the
benefits of using priorities to guide computations in a depth-first manner as our



232 S. Imam and V. Sarkar

scheduler variants perform favorably. Note that benefits of using the priority
scheduler depends on the priority-sensitivity of the benchmark – the amount of
additional computation that can be curtailed by using a good schedule.

0 2 4 6 8 10 12

FRKJPL

PBLKQ

PWSTCD

PWSTJQ
PWSTXD

SYNCPQ
THRDPL

WSTLPQ
11.93

5.64

4.95

1.59

3.95

4.47

1.80

Average Execution Time (in secs)

Fig. 7. A-Star Search on a grid of 350 ×
350 × 350.

As noted by Lenharth et al. [11],
whether to use a queue or a stack
depends on the particular algorithm.
An efficient solution for A-star bench-
mark (Fig. 7) requires support for pri-
orities, it follows a path of the lowest
expected total cost or distance, keep-
ing a sorted priority queue of alter-
nate path segments along the way. It
benefits from the use of breadth-first

traversal order via queues rather than deques. Hence the decentralized queued
variants (WSTLPQ, PWSTJQ) perform better than dequed versions (PWSTCD
and PWSTXD). One of the concerns with our approach is poor performance
due to overheads from increased frequency of steals compared to standard work-
stealing approaches. However, our experimental results in our benchmarks show
that this is not the case.

6 Related Work

Lenharth et al. presented a chunk-based priority scheduler for unordered algo-
rithms [11] that provide weak guarantees on the priority order of scheduled tasks.
By their own admission, there are many cases where worker threads do not
retrieve the highest priority task despite being aware of its existence. Mattheis
et al. used a work-stealing scheduler that respects priorities in a soft real-time
system [12]. Their approach uses a global queue in addition to the local queues,
and a global-first stealing policy.

Wimmer et al. proposed a basic extension to work-stealing that provides good
scalability, but can only provide guarantees for local task ordering in worker
threads [17,18]. One of the strategies only enforces local prioritization of tasks
and a worker only attempts a steal from a random victim when it becomes idle
(i.e. only when the local work queue becomes empty). They also propose a ρ-
relaxed priority data structure which guarantees that at most the latest k items
added by each worker will be ignored, which implies that W × k items might be
globally ignored during scheduling, W being the number of worker threads.

In Intel Thread Building Blocks (TBB), priority levels can be assigned to
individual tasks or task groups [14]. In TBB, worker threads always attempt
to execute tasks with highest priorities, while master threads execute any task
they have started even if higher priority ones become available. Like TBB, we use
non-preemptive scheduling; unlike TBB, our priority scheduler is decentralized
and relies on work-stealing strategies for load balancing.



Load Balancing Prioritized Tasks via Work-Stealing 233

7 Summary

We have developed a priority-based lock-free work-stealing algorithm to work
with multiple pool implementations to support priority scheduling of tasks. Our
scheduler performs competitively with existing priority and non-priority sched-
ulers in the JDK. We are exploring the idea of using a model similar to Tchi-
boukdjian et al. [15] to provide a theoretical analysis of our approach. Another
area of future work is to integrate priorities for eureka-style computations [8].
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Abstract. With the spread of parallel architectures throughout all
areas of computing, task-based parallelism is an increasingly commonly
employed programming paradigm, due to its ease of use and potential
scalability. Since C++11, the ISO C++ language standard library includes
support for task parallelism. However, existing research and implementa-
tion work in task parallelism relies almost exclusively on runtime systems
for achieving performance and scalability. We propose a combined com-
piler and runtime system approach that is aware of the parallel semantics
of the C++11 standard library functions, and therefore capable of sta-
tically analyzing and optimizing their implementation, as well as auto-
matically providing scheduling hints to the runtime system.

We have implemented this approach in an existing compiler and
demonstrate its effectiveness by carrying out an empirical study across 9
task-parallel benchmarks. On a 32-core system, our method is, on aver-
age, 11.7 times faster than the best result for Clang and GCC C++11
library implementations, and 4.1 times faster than an OpenMP baseline.

1 Introduction

Task-based parallelism is one of the most fundamental parallel abstractions in
common use today [11], with applications in areas ranging from embedded sys-
tems, over user-facing productivity software, to high performance computing
clusters. In all of these fields, the C++ programming language is one of the first
choices for performance-sensitive applications. The C++11 standard, which is
now implemented in all the most widely-used C++ compilers, introduced several
parallelism-related functions and classes in the standard library. One of the most
interesting of these from both the perspective of an application developer and
a library implementation is the async function template. It has the potential
to express both coarse- and fine-grained task parallelism, and can serve as a
building block for more complex and feature-rich parallel patterns.

While relatively easy to implement and use, achieving good efficiency with
task parallelism can be challenging not only for application developers but also
for runtime systems, particularly in the case of fine-grained tasks [5]. The granu-
larity of tasks is defined by the length of the execution time of a single task
between interactions with the runtime system, such as spawning new tasks.

c© Springer-Verlag Berlin Heidelberg 2015
J.L. Träff et al. (Eds.): Euro-Par 2015, LNCS 9233, pp. 237–249, 2015.
DOI: 10.1007/978-3-662-48096-0 19
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It has recently been demonstrated that the performance of fine-grained task-
parallel programs written in C++11 is insufficient in all mainstream compilers
and standard libraries [16].

In order to achieve high performance with fine-grained tasks, the overhead
of interactions with the runtime system needs to be minimized, and both task
distribution and communication need to be implemented in a scalable and effi-
cient fashion. Previous work in this area has focused mostly on new libraries,
dynamic optimization at runtime, or user-controlled tuning parameters. Con-
versely, we propose an approach that combines a library-semantics-aware opti-
mizing compiler with a high-performance runtime system which is statically
tuned by leveraging knowledge analytically derived at the compiler level. Our
goal is to maximize the efficiency of task execution without requiring any addi-
tional effort or systems-level knowledge on part of the application programmer,
and without introducing any tuning overhead at runtime.

We implemented our method within the Insieme compiler and runtime sys-
tem [7], but its principles are equally applicable in any other framework. Our
concrete contributions are the following:

– A library-semantics-aware compilation process, in which an existing compiler
is enriched with the capability to comprehend C++11 standard library seman-
tics, and thus recognize, analyze and optimize task-parallel programs written
using these libraries.

– A set of analyses which statically determine several performance-relevant prop-
erties of task-parallel code regions, and a heuristic which automatically tunes
various runtime system parameters based on these properties.

– An implementation of our approach within the Insieme system.
– Evaluation and analysis of the performance of our method on a set of 9 task-

parallel benchmarks. We compare to existing C++11 implementations, as well
as OpenMP versions of the benchmarks in order to provide a more optimized
and mature performance baseline.

The remainder of this paper is structured as follows. In Sect. 2 we discuss
some initial results that motivated our work. We then describe our library-
semantics-aware compilation method in detail in Sect. 3, and our static analyses
as well as the tuning heuristics derived from them in Sect. 4. The performance
of our implementation is evaluated in Sect. 5, followed by an overview of related
work in Sect. 6. Section 7 summarizes and concludes our findings.

2 Motivation

Our primary motivation for this work is the desire to be able to employ C++11
threading constructs as building blocks for task parallel programs. Clearly, this
approach should offer significant advantages over third-party and homegrown
solutions: it is easier to teach and read, thereby increasing programmer produc-
tivity, it can be more closely integrated and supported within a given compiler
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Fig. 1. Performance of the pyramids benchmark across APIs and compilers

and its associated runtime library, thereby potentially offering superior perfor-
mance, and it is portable to any standard-conformant implementation of C++

without external dependencies.
However, the primary reason for parallelization is generally the desire to

improve program performance. As Fig. 1 illustrates, both the performance and
scalability of state-of-the-art C++11 compilers and runtime systems is insuffi-
cient to serve as a replacement for existing parallel languages. The figure depicts
the execution time over varying degrees of parallelism for the pyramids bench-
mark from the INNCABS [16] C++11 benchmark suite, as well as an OpenMP
implementation of the same benchmark provided for reference. The hardware
and software setup for this test is the same as used for the evaluation in Sect. 5,
where it is described in detail. At the maximum degree of parallelism of 32,
the production-ready OpenMP implementation of GCC outperforms the C++11
versions generated by both GCC with libstdc++ and Clang with libc++ by a
factor of 7, and the research OpenMP implementation in Insieme is a full order
of magnitude faster.

While some degree of improvement of the C++11 results could be achieved
purely at the library level, we believe that providing high efficiency rivaling
existing parallel languages over several distinct task-parallel patterns without
the overhead of runtime tuning requires the co-operation of a library-semantics-
aware compiler with a high-performance runtime system.

3 Semantics-Aware Compilation

A fundamental issue with effectively implementing parallelism in mainstream
compilers and languages is that it is often expressed by means of library function
calls, opaque to the compiler and thus impossible for it to optimize. Furthermore,
even parallelism expressed at the language (extension) level – e.g. using OpenMP
constructs – is usually translated to internal library calls [3] before reaching the
main compiler intermediate representation (IR), once again rendering important
semantic information inaccessible to the compiler.
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Fig. 2. Semantics-aware frontend conversion of library calls to INSPIRE

The Insieme source-to-source compiler is based on the INSPIRE intermediate
representation, which is designed to inherently support unified parallel language
semantics. It has been successfully employed in OpenMP [17], Cilk [19], and
OpenCL [10] compilation. Detailing INSPIRE semantics is beyond the scope of
this paper, a summary is provided by Jordan et al. [6].

In order to enable semantics-aware compilation, analysis, and optimization
of C++11 task-parallel programs, we have extended the Insieme C++ frontend to
(i) identify relevant C++11 thread support library calls and data types, (ii) ana-
lyze their suitability for direct semantic translation, and (iii) translate them to
appropriate INSPIRE constructs.

Figure 2 provides a simplified overview of this conversion process, which
we will now describe in more detail. The Insieme C++ frontend is based on
Clang [13] and features a plugin system allowing multiple entry points for cus-
tom INSPIRE generation. For this work, we have created a C++11 Async plugin,
resulting in the following frontend conversion process:

1© The input program is parsed by Clang.
2© For every language construct encountered, the Async plugin is invoked.
3© In case of the vast majority of language constructs, the plugin ignores them

and they are passed directly to the default IR generation phase.
4© However, the relevant subset of suitable library calls and data structures are

intercepted and converted appropriately, as detailed below.
5© Finally, the full INSPIRE representation including a semantically equivalent

implementation of the library functions is generated.

Table 1 lists the most relevant subset of C++11 library functions and types the
Async plugin acts upon, as well as their INSPIRE equivalent. Several implemen-
tation details – such as the management of the valid state of each future – are
omitted for brevity. The same is true for the future::wait operation, as it is
simply equivalent to a future::get operation ignoring its return value.

Focusing on the essentials, the conversion is relatively straightforward.
Future type templates are converted to structures comprising the return value
(of automatically deduced type ’a) and a threadgroup, which is the fun-
damental INSPIRE type allowing operations on an asynchronously executing
process. Async calls are converted to a call to a function which takes an arbi-
trary closure () => ’a f as its argument and returns a pointer to a future
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Table 1. Semantic mapping of standard library constructs

C++11 INSPIRE

future<T> let future = struct { ’a result; threadgroup tg; }
async(f) (() => ’a f) -> ref<ref<future>> {

ref<ref<future>> x = var.new(future);

(*x)->tg = parallel( job { (*x)->result = f(); } );

return x; }
future::get() (ref<ref<future>> f) -> ’a {

merge((*f)->tg);

auto var = (*f)->result;

ref.delete(*f);

return var; }

ref<ref<future>>. It allocates the new future structure on the heap, launches
a new parallel job executing the closure f and storing its result in the future
structure, and stores the result of this parallel call – a threadgroup – in the
future structure as well. Finally, it returns a pointer to this new future struc-
ture. When get is invoked on a future, its associated threadgroup is first merged
to ensure that it has completed, the return value is stored, and the heap alloca-
tion for the future structure is freed.

The crucial feature of this conversion process is that, after it has completed,
the entire parallel program semantics are expressed in pure INSPIRE. This uni-
formity allows the compiler core to perform analysis as it would on e.g. an
OpenMP, Cilk or OpenCL program. Furthermore, it enables the compiler back-
end to generate code targeting the highly optimized Insieme runtime system,
instead of relying on the implementation provided by a given C++11 standard
library.

One important prerequisite during the conversion of async calls is checking
the specification of the std::launch parameter. Our semantics-aware compila-
tion applies if and only if this parameter is either (i) not supplied, thereby leav-
ing the choice up to the compiler, or (ii) supplied and set to async | deferred.
Other cases, that is settings of exclusively async or exclusively deferred, pre-
scribe the desired behavior exactly, and leave little room for compiler- and
runtime-level optimization. Therefore, the Async plugin forwards those cases
directly to the default IR generation phase, maintaining their correctness.

4 Static Optimization and Compiler-Assisted Tuning

Library-semantics-aware compilation as described up to now is quite useful in
and of itself, as it allows C++11 programs to automatically benefit from all back-
end and runtime optimization work carried out for any other parallel language
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Listing 1. Common pattern of async and future usage

let mmul = (int l, int r, int t int b, ...) -> unit {
auto f1 = async(mmul(l, l+(r-l)/2, t, t+(b-t)/2, ...));
auto f2 = async(mmul(l+(r-l)/2, r, t, t+(b-t)/2, ...));
auto f3 = async(mmul(l, l+(r-l)/2, t+(b-t)/2, b, ...));
auto f4 = async(mmul(l+(r-l)/2, r, t+(b-t)/2, b, ...));
...
f1.wait (); f2.wait (); f3.wait (); f4.wait ();
... }

compiled to INSPIRE. However, its full set of advantages can only be leveraged
in combination with static compiler-level optimization and analysis.

In this section, we will discuss both static optimization, which is always
attempted by the compiler and invariably improves performance when applica-
ble, as well as feature analysis and tuning, whereby compiler analysis is used to
derive code features which determine runtime tuning parameters according to
some heuristics.

Static Optimization. Listing 1 depicts a common pattern of async and future
usage in parallel programs. While this particular example is highly simplified, the
underlying pattern of launching a set of asynchronous tasks, and then waiting for
their completion before returning from the current task is exceedingly common
in real-world task-parallel applications, including most instances of divide-and-
conquer and branch-and-bound algorithms. In fact, Cilk semantics – the original
template for task-parallel programming – strictly proscribe this behavior.

The observation that this type of synchronization pattern is common is inter-
esting from an optimization perspective, as synchronizing on the completion of
all active child tasks can generally be implemented much more efficiently in a
given parallel runtime library than waiting for each of them individually. There-
fore, we have created a static optimization we call synchronization coalescing to
optimize this type of pattern.

Algorithm 1 describes the synchronization coalescing transformation. First,
on line 1 to 4, it is ensured that no threadgroup object is accessible outside
of the current task T , as this might allow unknown synchronization and access
patterns. This means that e.g. futures stored in global variables or moved outside
the function cannot be optimized, but in practice we have not found this to be
a significant limitation so far.

From line 5 to 12, all possible static control paths to merge calls are examined
to ensure that the expected synchronization pattern is maintained. As this check
is done on static control paths, repeated parallel/merge invocations within a
loop are not optimized, but the common idiom of first launching a set of tasks
in a loop and then waiting on their results in a new loop is captured.

If neither of the two safety checks prevents the optimization, starting from
line 13 the code transformation is performed.

It is important to note that the actual implementation of this transformation
benefits from the semantics-aware translation of library calls to the unified and
inherently parallel INSPIRE representation in several important ways:
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Algorithm 1. Synchronization coalescing
T input/output task function

1: P of all parallel invocations in T .
2: for all parallel p ∈ P do
3: if the threadgroup = p() is accessible outside T then return
4: end for
5: Determine the set M of all merge invocations in T .
6: for all merge m ∈ M do
7: Compute the set of all static execution paths F

from the entry point of T to m.
8: for all paths f ∈ F do
9: Reverse f and remove the first entry.

10: end for
11: if ∃f ∈ F : f encounters a merge after a parallel then return
12: end for
13: Insert merge all before the lexicographically first m ∈ M .
14: Remove all m ∈ M from T .

1. There is no need to deal with slightly different variants of the same underlying
operation individually – e.g. it is sufficient to process only merge calls rather
than future::get and future::wait invocations, as both of these map to
INSPIRE functions internally calling merge.

2. Existing tools for the analysis of parallel control and data flow in Insieme can
be re-used directly, e.g. in the implementation of the safety checks, without
requiring specific adaptation for C++11 async.

3. The resulting optimization is equally available and applicable to any other
input language or library generating INSPIRE.

Fig. 3. Parallel patterns

Table 2. Runtime system settings

Parameter Possible values

Push position P = {front, back}
Queue length L = 2n

n ∈ N, n > 1

Meaningful choices 8, 16, 32, 64

Feature Analysis and Tuning. As task parallelism is a versatile abstraction, it can
model a variety of parallel patterns. Among those, two highly relevant ones for
runtime system optimization are recursive parallelism and loop-like parallelism,
both of which are illustrated in Fig. 3. The former occurs e.g. in divide-and-
conquer and branch-and-bound algorithms, while the latter is common when-
ever lists or arrays are processed. The crucial difference between the two, which
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directly affects how they are most efficiently executed, is the fact that in recur-
sive parallelism each task generally generates further sub-tasks, while this is not
the case for loop-like parallelism.

Many task-parallel runtime systems offer tuning options, which can signifi-
cantly influence the achieved performance. The same is true for the Insieme run-
time system we employ. Two of its most relevant settings are listed in Table 2:
push position and queue length. These describe, respectively, whether newly gen-
erated tasks are inserted at the front or the back of each work queue, and
the number of full parallel tasks which will be generated before falling back
to sequential execution (lazy task creation). These settings relate directly to the
differences between recursive and loop parallelism: as recursively parallel tasks
generate new tasks, long queues are not necessary to maintain good utilization,
and newly generated tasks should be inserted at the back of the queue so that
other workers have a chance to first steal large blocks of work (further up in
the task tree). Conversely, for loop-like parallelism, longer queues are desireable
to maintain enough available tasks for all workers to be utilized effectively, and
new tasks should be inserted at the front of the queue to maintain cache locality
on the local worker.

In a conventional runtime system or parallel library, these settings need to
be taken care of by cautious selection of defaults, or, at best, by studying the
behavior of the application at execution time and gradually converging towards
an optimum. With library-semantics-aware compilation, we are able to clas-
sify applications at compile time by means of static analysis, and automatically
choose appropriate runtime system settings based on this classification.

Currently, our classification is based on two relatively simple analyses: (i) a
recursion check which determines whether a task function may invoke itself
recursively, and (ii) a loop check which investigates the invocation context of a
given parallel call to find out whether it occurs within any loop structure.

Describing these inter-procedural analyses in detail is not possible within the
constraints of this paper, but they are actually relatively simple to accomplish
within the Insieme infrastructure.

Based on the result of these analyses, classification is trivial:

1. if recursion check succeeded, classify as recursive, P = back and L = 8;
2. else, if loop check succeeded, classify as loop-like, P = front and L = 64;
3. else, use the defaults (P = front and L = 32).

While the arguments for the choice of P and the relative queue length for each
category were outlined above, the question for best choice of absolute value for
L has not been fully solved. Our current selection for each category is based on
empiric experience, with a more rigorous mechanism planned in future work.

5 Evaluation

We evaluate the effectiveness of our semantics-aware compilation approach on 9
task-parallel C++11 benchmarks from the INNCABS suite [16]. We have selected
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benchmarks for which equivalent OpenMP versions exist so as to provide an
additional reference measurement. Relying exclusively on current C++11 library
implementations as the sole point of comparison seems insufficient – as illustrated
in Sect. 2, their performance is not competitive for fine-grained tasks.

Experimental Setup. Our evaluation platform is a quad-socket shared-memory
system equipped with Intel Xeon E5-4650 processors, each offering 8 cores
clocked at a nominal frequency of 2.7 GHz (up to 3.3 GHz with Turbo Boost).
The software stack consists of Clang 3.4.2 using libc++ 3.4.2 and gcc 4.9.0 using
libstdc++ 3.4.20, both with -O3 optimizations, on a Linux operating system with
kernel version 2.6.32-431. The thread affinity for all benchmark runs was fixed
using a fill-socket-first policy, and all reported numbers are medians over five
runs.

Presentation. Due to a lack of space, we are unable to give a detailed account
of all our results. In order to provide some more in-depth discussion as well as a
comprehensive impression of the overall performance of our approach, we have
decided to discuss the results of three individual benchmarks – each represen-
tative of a broader category – in detail, as well as provide a separate overview
across the entire set of benchmarks. In all cases, we discuss 4 metrics:

cpp11 best defined as the best result obtained by either gcc or Clang using the
highest-performing of the three available task launch policies available for
async. This summarized metric maintains readability on the charts while
presenting the state of the art in C++11 production compilers in the best
possible light.

omp indicating the performance achieved by the OpenMP version of each bench-
mark compiled using gcc.

insieme our result using library-semantics-aware compilation in the Insieme
infrastructure, without heuristic runtime tuning.

insieme opt the same as above, but with the inclusion of the compiler-assisted
runtime tuning described in Sect. 4.

Alignment. The alignment benchmark is loop-like in structure, and features
coarse-grained tasks. As Fig. 4 illustrates, its parallel scaling is reasonable with
all tested technologies. However, it is worth noting in this context that the best
C++11 version shows worse scaling than the other options, likely due to higher
threading overhead. The insieme and insieme opt results are almost indistin-
guishable for up to 8 cores, with insieme opt scaling better beyond that. This
fits perfectly with expectations, as the alignment benchmark is classified cor-
rectly by the compiler as loop-like, increasing the runtime system queue size
which in turn improves utilization at higher degrees of parallelism.

While the log-log presentation in the chart hides it to some extent, the
improvement achieved by our approach is tangible even in this coarse-grained
case. At 32 cores, the insieme opt execution time is 47 % shorter than cpp11
best, 28 % better than omp, and an improvement of 21 % over insieme.
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Fig. 4. Alignment benchmark results Fig. 5. Health benchmark results

Health. This benchmark is recursive in structure, and features extremely fine-
grained tasks. Therefore, as depicted in Fig. 5, the best C++11 result remains
flat as the deferred launch policy – which is not parallel – is always the fastest.
Even the OpenMP version suffers from slowdown, rather than speedup, with
increasing thread counts, and its results for 8 or more threads are omitted for
readability. The low-overhead Insieme runtime system and synchronization coa-
lescing allow our system to achieve scaling up to 8 cores. Once again, the bench-
mark is correctly categorized by the compiler, with insieme opt scaling better
and not suffering from the performance drop-off incurred by the base insieme
version at 16 and 32. This is due to new tasks being pushed to the back of work
queues, resulting in larger tasks being spread across all cores and preventing the
severe overheads with higher core counts that affect all other versions.

Sort. This divide-and-conquer implementation of a mergesort is another example
of recursive task parallelism, but its tasks are significantly more coarse-grained
than those of health. Consequently, the OpenMP version performs much better.
However, as seen in Fig. 6, the task granularity is still too low for either gcc
or Clang to achieve any speedup in the C++11 code. One interesting artifact
of note here is that the omp version is faster on a single core than any other
option, likely due to differences in code generation between pure C and C++11.
However, due to its better scaling, the C++11 version compiled and executed
with the insieme framework catches up to and matches the omp version at 4, 8
and 16 cores. At the highest degree of parallelism, the OpenMP version hits a
task scheduling wall while our implementation of C++11 continues to scale.

Overall. The boxplot in Fig. 7 provides a statistical overview of the results across
the entire set of 9 benchmarks (alignment, fib, floorplan, health, sort, sparselu,
strassen, qap, and pyramids). In order to allow for direct comparison across this
diverse set of programs, it was created thusly: (i) select the best result across 1 to
32 cores for each benchmark and each of the four previously described versions,
(ii) normalize these values to the sequential time for the C++11 version of each
benchmark, and (iii) calculate the required quartiles and medians for the box
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Fig. 6. Sort benchmark results Fig. 7. Overview of results (32 cores)

plot across the 9 resulting benchmark values for each version. Horizontal lines
were added at the median for cpp11 best and omp, and between the two median
values for insieme and insieme opt to improve readability.

These results can be interpreted as follows: with 32 cores at its disposal, the
best available C++11 implementation achieves, on average, a parallel speedup of
1.8 (the median is at 0.55) over the sequential version in this set of benchmarks.
OpenMP fares better, with a median speedup of 5.9, while our implementation
reaches 21.2 without and 23.8 with runtime tuning. In a direct comparison, our
tuned results are on average 11.7 times as fast as the cpp11 best and 4.1 times
as fast as the omp baseline.

Looking beyond median performance, it is interesting to note that there is no
overlap between cpp11 best and insieme performance – that is, even at its worst
our system performs on par with the best results possible on any of our chosen
benchmarks for the existing C++11 implementations. Similarly, the worst cases
for omp are still on par with the average for cpp11 best.

Finally, while insieme opt achieves superior median, upper and lower quartile
performance than insieme, its upper limit is slightly higher. This is due to the
pyramids benchmark, despite being correctly classified as recursive, performing
better at default runtime settings. We believe that this is due to improved cache
effectiveness with the default queuing order. We consider statically analyzing
memory access patterns and taking them into account for runtime configuration
an area for future work.

6 Related Work

There is a large body of existing work in optimizing task parallelism, with a
particular focus on scheduling strategies [1,12] and alleviating task creation
overhead [4,15]. What is common to all of these approaches is that they focus
primarily on the runtime level, while we introduce a library-semantics-aware
compiler component in order to generate more efficient parallel code, and to
provide any given runtime system with static tuning information to use as an
initial default. As such, our approach is orthogonal to and compatible with any
further runtime-level adaptation and optimization – in fact the runtime system



248 P. Thoman et al.

we employ performs adaptive lazy task creation similar to that described by
Duran et al. [4].

Looking specifically at the C++ language, parallelism is primarily the domain
of libraries [8,18], and thus also inherently limited to runtime optimization in
traditional systems. Meanwhile, existing compiler research related to C++11
parallelism has focused on the correctness of the memory model underlying the
standard [14], not on the performance of its library function implementations.

Most compiler research in task parallelism is related to novel, inherently par-
allel languages [20], or investigates compilation for specific highly-parallel target
platforms such as GPUs [9]. Our method is fundamentally different, as it enriches
a compiler with understanding of the library-level semantics of a widely-used
mainstream language, improving its ability to analyze and optimize the imple-
mentation of these semantics. Liao et al. [2] performed one of the few existing
investigations of semantics-aware compilation in parallel computing. However,
their goal was improving the applicability of compiler autoparallelization by
taking into account STL container semantics in the ROSE compiler framework.
Conversely, we propose semantic analysis of programs which are already parallel,
in order to more efficiently implement this explicit parallelism.

7 Conclusion

We have presented a library-semantics-aware compilation approach for C++11
tasks. It enables (i) static optimization of task parallelism by synchronization
coalescing, (ii) executing C++11 programs on a highly optimized parallel runtime
system without any user effort, and (iii) automatic tuning of runtime settings
based on features derived by compiler analysis. Our system, implemented as an
extension to the Insieme compiler, massively improves performance over existing
implementations of C++11 parallelism across a range of 9 benchmarks, by a fac-
tor of 11.7 on average. Additionally, while compiling code using standard C++11
library constructs for parallelism, it matches and often exceeds the performance
and scalability obtained by C/OpenMP programs.
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Abstract. This paper describes a new approach to managing data lay-
outs to optimize performance for array-intensive codes. Prior research has
shown that changing data layouts (e.g., interleaving arrays) can improve
performance. However, there have been two major reasons why such opti-
mizations are not widely used in practice: (1) the challenge of selecting
an optimized layout for a given computing platform, and (2) the cost
of re-writing codes to use different layouts for different platforms. We
describe a source-to-source code transformation process that enables the
generation of different codes with different array interleavings from the
same source program, controlled by data layout specifications that are
defined separately from the program. Performance results for multicore
versions of the benchmarks show significant benefits on four different
computing platforms (up to 22.23× for IRSmk, up to 3.68× for SRAD
and up to 1.82× for LULESH). We also developed a new optimization
algorithm to recommend a good layout for a given source program and
specific target machine characteristics. Our results show that the per-
formance obtained using this algorithm achieves 78%–95 % performance
of the best manual layout on each platform for different benchmarks
(IRSmk, SRAD, LULESH).

1 Introduction

As computing platforms increase in diversity, “portable performance” has
become one of the most challenging problems for application developers. Achiev-
ing good performance on a specific platform often requires coding adjustments to
fit a specific set of machine parameters e.g., number of cores, cache size, cache
line size, number of registers, memory bandwidth, etc. Unfortunately, adjust-
ments for one platform can impede performance on other platforms. This paper
focuses on data layout optimization, which has been increasing in importance in
recent years. Most programming languages require developers to make array-of-
struct (AoS) or struct-of-array (SoA) decisions (or combinations thereof) early in
development. For long-lived applications, the following challenge can be encoun-
tered repeatedly (and now with increasing frequency): what to do when a new
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parallel architecture is introduced with a memory and storage subsystem that
would benefit from a different data structure layout in the program? This ques-
tion is taking on a new urgency as proposals for exascale architectures increas-
ingly include major changes in memory and storage structures. With current
languages, a near-complete rewrite of an application is usually required, because
each data access usually needs to be rewritten when the data layout is changed.
Historically, developers of large codes avoid changing data layouts because it
involves changing too many lines of code, the expected benefit of a specific
change is difficult to predict, and whatever works well on one system may hurt
on another. Our approach demonstrates how these obstacles can be overcome.

This paper is organized as follows. Section 2 describes a motivating example
(IRSmk) and shows that changing array layouts can significantly impact perfor-
mance on four different parallel platforms. Section 3 introduces our extensions to
TALC, a source-to-source transformation tool. TALC enables the same program
to be compiled and executed with different data layouts, without requiring any
changes to the source code. Section 4 presents a new automatic optimization algo-
rithm to recommend an optimized layout for a given source program and target
machine. Section 5 presents a summary of empirical results obtained for three
benchmarks (IRSmk, SRAD, LULESH) on four different multicore platforms:
IBM POWER7, AMD APU, Intel Sandy Bridge, and IBM BG/Q. Section 5 also
presents results from the automated layout algorithm that are very close to the
hand tuned manual layouts. Finally, Sect. 6 summarizes related work, and Sect. 7
contains our conclusions and plans for future work.

2 Motivating Example

We use the IRSmk benchmark (a 27-point stencil loop kernel in the ASC Sequoia
Benchmark Codes [2]) as a motivating example to illustrate the impact of data
layouts on performance. IRSmk is an Implicit Radiation Solver for diffusion
equations on a block-structured mesh. Figure 1 shows the main loop kernel of
IRSmk. For simplicity, we do not consider arrays starting with the letter x as
candidates for layout optimization, since they all alias to the same array with
different offsets. We also ignore array b since it only occurs in a single write
access. This leaves 27 arrays as candidates for layout optimization (dbl to ufr).

Fig. 1. IRSmk source code
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Table 1. Performance improvement of different layouts relative to baseline 27 × 1
layout, for different platforms

Platform 27 × 1 9 × 3 3 × 9 1 × 27

IBM POWER7 1.00 4.66 4.66 4.71
AMD APU 1.00 1.26 1.38 1.40
Intel Sandy Bridge 1.00 1.06 1.10 1.10
IBM BG/Q 1.00 1.65 2.14 2.20

As a preview of results to come (with larger number of layouts), we look at
four different array layouts here to illustrate the potential for performance gains
on different platforms. The default layout is the one observed in Fig. 1, where the
27 arrays are stored separately (27× 1). A simple rewrite can change the layout
by interleaving1 groups of three arrays, thus producing 9 arrays of structs where
each structure contains 3 fields (9 × 3). Another rewrite can interleave 9 arrays
each, producing three arrays (3 × 9). The final rewrite interleaves all 27 arrays
into one array (1 × 27). We ran these four versions of IRSmk on four different
platforms: IBM Power7, AMD APU, Intel Sandy Bridge, and the IBM BG/Q,
using a problem size of 1003 and all cores within a single node on each platform.
The results are presented in Table 1. All examples show positive gains for all of
the layout options. However, the performance improvement varies dramatically
across different layouts and different platforms.

3 TALC Data Layout Framework

This section describes our extensions to the TALC Framework [14] to support
user-specified and automatic data layouts, driven by a Meta file specification.
The past framework had limited capabilities in terms of error checking, no
automatic layout selection, did not take into consideration machine characteris-
tics and profiled information, and explored limited platforms. TALC stands for
Topologically-Aware Layout in C. TALC is a source-to-source compiler transla-
tion tool and accompanying runtime system that dramatically reduces the effort
needed to experiment with different data layouts. Our extended version of TALC
has been implemented in the latest version of the ROSE [4] compiler infrastruc-
ture. In the process of extending TALC, we have re-implemented its entire code,
added new functionality for automated layouts and extended layout transfor-
mations [3]. Our new tool explores a wide range of layouts, considers platform
characteristics and profile information and performs safety and error checking
for different layouts.

Figure 2 shows our extended TALC framework. TALC can be configured to
run in two modes: Automated Layout and User Specified Layout. For both these
1 In this paper, we use array regrouping and interleaving interchangeably.
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Fig. 2. Extended TALC framework

Fig. 3. Sample field specification file Fig. 4. Sample TALC meta file

modes, a user needs to provide some input to perform data layout transfor-
mations. In the Automated Layout mode, the user provides a field specification.
A field specification file is a simple schema file, which specifies arrays that should
be considered for transformation. The field specification file is necessary because
it enables our tool to only transform the specified arrays (like the 27 arrays in the
IRSmk example discussed in Sect. 2). Figure 3 shows a sample field specification
file. The View keyword is used to specify a data layout. The field keyword speci-
fies arrays considered for layout transformation. Each field has a type associated
with it, specified by the : separator. In this example, d stands for the double
data type. Specifying the data type helps with type checking array subscripts
during layout transformations. Further details about our TALC tool along with
a working example can be found in our technical report [18]. More information
on the Automatic Data Layout Selection is provided in the next section.

4 Automatic Data Layout Selection

In this section, we describe the automatic data layout selection algorithm. The
algorithm takes in a user-written field specification file which specifies arrays
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that should be considered for transformation, and uses a greedy optimization
algorithm to automatically construct a data layout based on the input program
and target architecture.

4.1 Automatic Data Layout Algorithm

Our automated data layout algorithm uses the cache-use factors and platform
characteristics to produce a meta file that contains the recommended data layout.
Algorithm 1 shows the automated data layout algorithm. More details can be
found in the related technical report [18]. To begin with, each array in the field
specification is placed in its own ArrayGroup. As a heuristic, we disallow arrays
that occur in vectorizable loops as candidates for data layout transformation.
This heuristic is used to avoid performance degradations that may result from
data layout transformations breaking vectorization. We expect this heuristic to
be relaxed in the future when processors have more flexible vector capabilities
with respect to memory accesses, compared to today’s processors. The algorithm
compares all pairs of ArrayGroups to determine the profitability of merging each
pair. We use Cache-Use Factor (CUF) as a cost metric to capture the possible
cache impact of merging two or more array groups. This factor denotes cache
usage efficiency across all the candidate loops in the program. The CUF metric
helps limit the amount limit of merging performed by our greedy algorithm.
The pair with the highest cache-use factor is merged to form a new group. This
process is repeated until the best candidate pair for merging falls below the
acceptable merge threshold. After the final grouping is determined, each group’s
arrays are sorted based on data type (largest data size to smallest data size),
to better pack them. The final step performs cache line splitting i.e. split array
groups based on cache line boundaries of an architecture, to further improve
cache line utilization within a group.

The evaluation of the profitability of merging two candidate ArrayGroups
considers two factors. The first consideration examines reads versus writes to
an ArrayGroup. Our experimental results (Sect. 5) showed that grouping arrays
written to frequently with arrays that are only read can decrease performance
significantly. Our current heuristic prohibits creating a new merged ArrayGroup,
if the number of write-only arrays is more than 2× the number of read and
read-write arrays The second consideration for merging ArrayGroups computes
the cache use factor for the proposed combination. If the cache use factor is
greater than our established thresholds, the ArrayGroups are viable for merging.
From our empirical results, we have chosen Cache Use threshold = 0.57 for our
algorithm. A detailed analysis to study the effects of varying this threshold across
architectures and benchmarks is a subject of future work.

5 Experimental Results

We ran a series of tests to evaluate the productivity and performance gains
obtained by using TALC to perform layout transformations. In Sect. 5.1, we first



Data Layout Optimization for Portable Performance 255

Algorithm 1. Automated Data Layout Algorithm
1: procedure AutoDataLayout(ArrayGroupList)
2: for loop L in the program do
3: if loop L is vectorizable (based on vector pragma or compiler analysis)
4: Remove arrays in loop from ArrayGroupList
5: end if
6: end for
7: IsMerge ← true
8: while IsMerge is true do
9: IsMerge ← false
10: for pairs ∈ ArrayGroupList do
11: if (pair writes) > 2*(pair reads+pair read/writes)
12: Ignore pair
13: end if
14: best pair ← pair with highest cache use factor
15: end for
16: if CUF resulting from merging best pair > threshold
17: merge pair
18: IsMerge ← true
19: end if
20: end while
21: sortGroups(ArrayGroupList)
22: splitCacheLine(ArrayGroupList)
23: return ArrayGroupList
24: end procedure

describe our experimental methodology. We then provide a detailed discussion
of performance results for user-specified layouts, obtained by evaluating a range
of manual layouts on different architectures (Sect. 5.2). Finally, we present per-
formance results obtained by using our automatic layout algorithm (Sect. 5.3).

5.1 Experimental Methodology

To show the impact of data layouts on performance we ran experiments
using our three benchmark programs on four different platforms: IBM Power7,
AMD APU, Intel Sandy Bridge and IBM BG/Q. IBM Power7 represents
a 32-core IBM Power 7 processor system (four eight-core 3.55 GHz proces-
sor, 32 KB L1 D-Cache per core, 256 KB L2 Cache, 32 MB L3 Cache) used
with compiler options xlc-v11.1 -O3 -qsmp=omp -qthreaded -qhot -qtune=pwr7

-qarch=pwr7. AMD APU represents a 4-core AMD A10-5800K APU processor
(quad-core 3.8 GHz processor, 16 KB L1 D-Cache per core, 4 MB L2 Cache)
used with compiler options gcc-v4.7.2 -O3 -fopenmp. Intel Sandy Bridge rep-
resents a 16-core Intel E5-2670 Sandy Bridge CPU system (eight-core 2.6 GHz
processor, 32 KB L1 D-Cache per core, 256 KB L2 Cache per core, 20 MB L3
Cache) used with compiler options icc-v12.1.5 -O3 -fast -parallel -openmp.
IBM BG/Q represents a 16-core IBM PowerPC A2 system (1.6 GHz processor,
32 MB eDRAM L2 cache) used with compiler options gcc-v4.4.6 -O3 -fopenmp.
For the AMD APU, we focused on the CPU and ignored the GPU. IRSmk and
LULESH were both run in double precision, while SRAD was run in single pre-
cision. Specifically, we ran IRSmk on a problem based on a 1003 mesh for 500
iterations. LULESH was run with a problem size = 90 (i.e. 903 elements and 913

nodes). SRAD was run for 200 iterations on a 40962 grid with the x1 and y1
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speckle values set to 0, the x2 and y2 values set to 127 and lambda set to 0.5.
We made minor changes to the original source program to conform to extended
TALC framework specifications. These changes related to renaming the program
variables and did not affect program execution in any way.

All of these benchmarks use OpenMP for parallelism. We use the default
memory allocation scheme provided in these benchmarks and limited our exper-
iments to one socket. Studying the Non Uniform Memory Access (NUMA) effects
with data layouts will be part of future work. All benchmarks were run with vary-
ing thread counts on the four platforms. For this work, we only used the default
memory allocation provided on these systems. For all codes, TALC enabled
testing a range of layouts, 9 for IRSmk and 11 for LULESH and 5 for SRAD.
To perform the layout transformations in IRSmk, between 56 and 272 (82 %)
lines of the original 330 lines of code were changed. For the LULESH the num-
bers are 98 to 477 (18 %) lines of the original 2640. For SRAD the number are
11 to 39 (16 %) lines of the original 239. By using TALC, we not only were
able to automate these changes, but also eliminate the possibility of subtle bugs
being introduced when these changes are performed manually (and repeated for
different architectures).

5.2 User Specified Layout Results

For each benchmark, we conducted extensive experiments across different layouts
on four architectures. However, due to space limitations, we limit the number
of layouts presented here to the most interesting ones. For each test case, we
report the speedup (which can be a slowdown, for values < 1) of each layout
against the “base case” which is the original code, running with an equivalent
number of threads. In some cases, for example IBM BG/Q for 2, 4 and 8 threads,
we omit showing results for all thread counts because their results were similar
to adjacent thread counts of 1 and 16. However, full details with results for all
layouts can be found in [18].

IRSmk. The implicit radiation solver (IRS) [2] is a benchmark used as part
of the procurement of the Sequoia system at LLNL. Figure 5a, d, g and j show
the results obtained by running IRSmk with different thread counts on all nine
layouts on each of the four platforms. IRSmk is a memory bound kernel whose
performance is limited by memory bandwidth. However, we see that except for
Sandy Bridge significant speedups occur at all thread counts due to data layouts.

The results of the best layout for IRS on all machines show performance of
at least 70 % of optimal and over 95 % on Sandy Bridge. For Sandy Bridge, the
execution time for the best layout is 3.05 s, for the AMD APU it is 10.04 s, for
BG/Q it is 5.2 s and for the Power 7 it is 12.52 s. BG/Q performs slightly worse
than other architectures due to in-order cores not hiding as much latency as the
other processors, while the AMD APU could be hurt by less data in the x array
staying in its smaller cache. Finally, all the processors might be limited in their
handling of the unequal amount of read and write data in IRSmk.
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(a) IRSmk - IBM Power7 (b) SRAD - IBM Power7 (c) LULESH - IBM Power7

(d) IRSmk - AMD APU (e) SRAD - AMD APU (f) LULESH - AMD APU

(g) IRSmk - Intel Sandy
Bridge

(h) SRAD - Intel Sandy
Bridge

(i) LULESH - Intel Sandy
Bridge

(j) IRSmk - IBM BG/Q (k) SRAD - IBM BG/Q (l) LULESH - IBM BG/Q

Fig. 5. Benchmark performance results on different platforms with varying threads.

On the Sandy Bridge, data layouts only sped up the computation by 1.11×.
Since, the base case was already running at over 85 % of peak memory band-
width. On the other processors, performance is significantly worse for the base
case. A related trend is that improvements from data layouts are more significant
at lower core counts. This implies two conclusions. First compute-bound codes
also benefit from data layout transformations. In the case of Sandy Bridge where
there are enough stream prefetchers for the base code and enough bandwidth
to feed a few, but not, all, cores merging arrays reduces the number of registers
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used as pointers by the compiler resulting in fewer instructions and possibly fewer
pipeline stalls. Another benefit is that the number of elements accessed in each
loop from an array can be matched to cache boundaries, such as layout 9. The
second observation is that for processors with an under provisioning of prefetch-
ers when fewer cores are used the computation becomes latency-bound. With
fewer cores to issue memory requests, the memory bus becomes idle for a larger
percentage of the time. Therefore, bandwidth is used less efficiently, allowing for
larger speedups when the core uses it more effectively.

A final observation is that not merging read only arrays in a loop with arrays
that are written increases the performance significantly. Modern architectures,
such as AMD APU, often implement a write buffer to combine multiple writes to
the same cache line to reduce the amount of data sent to main memory, known
as Write-Combining [1].

SRAD. The SRAD benchmark [7] from the Rodinia suite performs the image
processing calculation speckle reducing anisotropic diffusion. The algorithm
removes speckles (locally correlated noise) from images without removing image
features. We focus on the loop that iterates over the image as it takes almost
all of the time in SRAD. Figure 5b, e, h and k show SRAD results for running
the five layouts on our four test platforms. Due to space constraints, we have
omitted the five layout details. SRAD contains many of the same trends and
results as IRSmk, but adds some new features and complexity. SRAD contains
multiple loops so there are cases where two arrays are used together in one loop
and only one array is used in another loop. Examples of this are the IN , IS loop
pair and the JW , JE set of loops. SRAD is run on more compute intense prob-
lems where vectorization can increase its performance significantly. Our results
show how some of these tensions impact performance. On the Sandy Bridge
chip with the Intel compiler SRAD gets a significant performance boost from
vector instructions. However, when data layout transformations are performed
the compiler no longer vectorizes any instructions due to the use of pointers to
the structures. The result is a performance hit from vectorization that is greater
than the gain from data layout transformations. To confirm this we ran the
base version of SRAD with compiler vectorization turned off and data layout
transformations resulting in a 1.66× to 1.84× speedup from data layout trans-
formations. For future work, we plan on investigating how to generate array of
struct of array code (AoSoA) that the compiler can still vectorize. In the current
tool, we ignore the array references where the loop has a vector pragma associ-
ated with it. Overall, performance gains on SRAD ranged from the minor 1.07×
on most BG/Q thread counts to 3.68× on a single thread of an AMD APU.

LULESH. The largest application we focus on is the Livermore Unstruc-
tured Lagrange Explicit Shock Hydrodynamics (LULESH) mini-application [5].
LULESH solves the Sedov problem on a 3D hexahedral mesh. Different array
sizes and the fact that they are used in various combinations throughout the
loops in LULESH provide a larger search space for data layouts and tension for
data layout transformations not found in the smaller benchmarks. The version
of LULESH used in this study has undergone a variety of optimizations from
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the original published code, including aggressive loop fusion and elimination of
temporary arrays [13]. Figure 5c, f, i and l show LULESH results for running the
eleven layouts on our four test platforms. Due to space constraints, we have omit-
ted the eleven layout details. We only show selected interesting thread counts
(with the full data available in [18]).

Data layout transformations on LULESH were less profitable overall than for
IRSmk. This is not surprising since LULESH is a larger application than IRSmk,
and some arrays in LULESH are used together in certain places and not together
in others. Therefore, combining them together will help and hurt performance
simultaneously2. For example, layout 4 combines all four triples of x, y, z values
together. Many of these triples are used together in many functions, but not all.
However, most of the time layout 6 which leaves the triples separate is faster.
A notable exception can be seen on Power7 for a single thread, which has the
most cache, but the least bandwidth. It also suffers the most from not getting
good prefetching as shown by the IRSmk results.

The most interesting result from LULESH is that in most cases it seems the
code, not the hardware, is dictating the best data layout. On the AMD APU,
Intel Sandy Bridge and BG/Q the list of the best layouts always includes 8
and 10 and usually, includes 2 and 3. However, the Power7 is an outlier with
its best layout being 11 for all thread counts by a significant margin for the
reasons explained above. For LULESH, as with IRSmk and SRAD, data layouts
impacted the Sandy Bridge system the least with the largest speedup seen being
only 1.02×. There are a few likely reasons for this. First, as with IRSmk, the
Sandy Bridge architecture should be able to prefetch many streams at once. Also,
in the case of bundling indirect accesses, the large re-order window of the Sandy
Bridge might hide memory latency better than the other chips. Finally, the Intel
compiler used on this platform was the best at generating SIMD instructions for
some of the compute bound loops of LULESH. Some of the data transformations
result in the compiler no longer generating SIMD instructions and, therefore,
while data layouts save on data motion in memory-bound portions of the code
they can sometimes hurt performance in the compute bound sections.

5.3 Automatic Data Layout Results

Table 2 shows the speedup of the best manual layout and the automated layout
relative to the base layout. The results demonstrate that automated layouts can
come close to the best manual layout in most cases. In one particular case, 8
Threads on Power7 for LULESH, automated layout improved performance as
compared to manual layouts. For SRAD, automated results were close to the
best manual results for Power7 and BG/Q. However, the results fell behind
manual results for AMD APU and Sandy Bridge. In both cases, we suspect that
the data layout transformation inadvertently disabled some compiler optimiza-
tions, especially vectorization in the case of Sandy Bridge. (All results in this
section were obtained without enabling the vectorization test at the start of the
automatic layout algorithm).

2 This phenomenon motivates future work on redistributing data layouts across phases.
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Table 2. Speedup of best manual layout (ML) and automated layout (AL) speedup
relative to base layout

Benchmark Power7- AMD APU- Sandy Bridge- BG/Q-
8Threads 4Threads 8Threads 64Threads

IRSmk ML 4.70 1.46 1.11 2.20
IRSmk AL 4.67 1.43 1.10 2.08
LULESH ML 1.43 1.50 1.02 1.10
LULESH AL 1.58 1.46 0.96 1.07
SRAD ML 1.35 3.13 1.00 1.08
SRAD AL 1.20 2.55 0.46a 0.98
aAssuming vector pragma is not specified. If vector pragma is
specified then results is same as ML.

6 Related Work

Past research has proposed various data layout optimization techniques [6,8,9].
Here, we present a brief survey of past work, focusing on aspects that are most
closely related to our work.

Zhang et al. [20] introduced a data layout framework that targets on-chip
cache locality, specifically reducing shared cache conflicts while observing data
patterns across threads. Using polyhedral analysis, their framework rearranges
data layout tiles to reduce on-chip shared cache conflicts. However, their opti-
mization currently works with single arrays. In contrast, our approach works
on merging multiple arrays and operates at the element level rather than tiles.
Henretty et al. [11] presented a data layout framework to optimize stencil opera-
tions on short-SIMD architectures. Their work specifically targets stream align-
ment conflicts on vector registers and uses a dimension transposition method
(non-linear data layout optimization) to mitigate the conflicts. In comparison,
our approach works for more general applications, not just stencil code. Also,
our work did not specifically address the impact of data layout on vectoriza-
tion. Ding and Kennedy [9] introduced a data-regrouping algorithm, which has
similarities to our work on automatic selection of data layouts. Their compiler
analysis merges multi-dimensional arrays based on a profitability cache analy-
sis. Dynamic regrouping was also provided for layout optimization at runtime.
Experimental results show significant improvement in cache and TLB hierarchy.
However, their results were all obtained on uniprocessor systems and it is unclear
how their approach works in the presence of data aliasing. Raman et al. [17] used
data layout transformations to reduce false sharing and improve spatial locality
in multi-threaded applications. They use an affinity based graph approach (simi-
lar to our approach) to select candidates. Inter-procedural aliasing issues arising
due to pointers is not addressed in this work. Our work is intended to explore
data layout transformations more broadly, not just for false sharing and spatial
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locality. Using polyhedral layout optimization, Lu et al. [15] developed a data
layout optimization for future NUCA CMP architectures. Their work reduces
shared cache conflict on such architectures. Simulation results show significant
reductions in remote accesses. Finally, a number of papers, [10,12,16,19] have
explored the integration of loop and data layout transformations. To the best of
our knowledge, our work is the first to support both user-specified and automatic
AoS data layout transformations, while allowing the user to provide a data lay-
out specification file. Our results on the LULESH mini-application demonstrates
the importance of data layout transformations on modern multicore processors.

7 Conclusions

This paper establishes the foundation for a new approach to supporting portable
performance of scientific codes across HPC platforms. The upgraded TALC
source-to-source transformation tool permits application developers to maintain
one “neutral” data layout source code and explore architecture specific array
layouts. The new automated portion of TALC can analyze the original source
code based on platform characteristics and produces a new source code with new
array data layouts ready to be compiled and run on that system. The results for
the three test codes show that manual layouts improve performance by 1.10× to
22.23× for IRSmk, 1.00× to 3.68× for SRAD and 1.02× to 1.82× for LULESH
with results varying with thread count and architecture. The automated algo-
rithm achieves 95–99% of the best layout manual layout performance for IRSmk.
For LULESH the automated approach achieves 90 % of the best layout perfor-
mance on all processors. For SRAD, automated results achieves 78 % of best
manual layout performance for all architectures except for Intel Sandybridge
where layouts interfered with vectorization provided by Intel compiler.

Our future direction is to expand the flexibility of constraints on the original
source code to include manipulation of multi-dimensional arrays. Finally, we also
need to include enriched layouts (such as AoSoA) that reduce interference with
vectorization. Another interesting direction to pursue is to develop specialized
data layouts for accelerators such as GPU and Xeon Phi. We look forward to
pursuing these challenges in the future.
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Abstract. Memory optimizations have became increasingly important
in order to fully exploit the computational power of modern GPUs. The
data arrangement has a big impact on the performance, and it is very
hard for GPU programmers to identify a well-suited data layout. Clas-
sical data layout transformations include grouping together data fields
that have similar access patterns, or transforming Array-of-Structures
(AoS) to Structure-of-Arrays (SoA).

This paper presents an optimization infrastructure to automatically
determine an improved data layout for OpenCL programs written in AoS
layout. Our framework consists of two separate algorithms: The first one
constructs a graph-based model, which is used to split the AoS input
struct into several clusters of fields, based on hardware dependent para-
meters. The second algorithm selects a good per-cluster data layout (e.g.,
SoA, AoS or an intermediate layout) using a decision tree. Results show
that the combination of both algorithms is able to deliver higher per-
formance than the individual algorithms. The layouts proposed by our
framework result in speedups of up to 2.22, 1.89 and 2.83 on an AMD
FirePro S9000, NVIDIA GeForce GTX 480 and NVIDIA Tesla k20m,
respectively, over different AoS sample programs, and up to 1.18 over a
manually optimized program.

1 Introduction

With the advent of new massively parallel architectures such as GPUs, many
research projects focus on memory optimizations. In order to exploit the prop-
erties of the memory hierarchy, a key aspect is to maximize the reuse of data.

In this context, data layout transformation represents a very interesting
class of optimizations. Two typical examples are: organizing data with similar
access patterns in structures or rearranging array of structures (AoS) as structure
of arrays (SoA). Recent work extends the classical SoA layout by introducing
AoSoA (Array of Structure of Array) [16], also called ASA [14]. In this paper we
prefer the expression tiled-AoS, but we remark that all approaches exploit the
same idea: mixing AoS and SoA in a unique data layout.

1.1 Motivation

In this work, we investigate an automatic memory optimization method that can
be easily ported to different GPU architectures, using OpenCL as programming
c© Springer-Verlag Berlin Heidelberg 2015
J.L. Träff et al. (Eds.): Euro-Par 2015, LNCS 9233, pp. 263–274, 2015.
DOI: 10.1007/978-3-662-48096-0 21
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model. We combine together two different optimization strategies: we try to
group together data fields with similar data access patterns and find the best
data layout for each of these clusters.

Considering SAMPO [7] as an example, using a struct containing twelve
fields. The number of possible ways to partition these twelve fields is equal to
4, 213, 597. Considering that this program has minimum run-time of 65 s on
an AMD FirePro S9000, depending on the data layout, just evaluating all the
possible partitions (i.e., clusters) would take more than eight years.

Fig. 1. Excerpt of SAMPO’s optimization space. Execution times vary from 65 s (in
red) to 104 s (in blue) (Color figure online).

The exploration of the whole search space, including both fields’ clustering
and data tiling (i.e., finding the best data layout for each of these clusters) would
take more than 400 years.

Figure 1 shows a subset of the optimization space for SAMPO. The heat-
map on top depicts all possible data tiling for the one-cluster grouping of all the
twelve data fields. For this partition, the un-tiled AoS layout is slow (blue); by
increasing the data tile-size the run-time decreases (shown in red), and with data
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tile-size bigger than 12K it also outperforms the SoA layout. The lower heat-map
shows the performance results while applying the specific data tiling suggested
by our algorithm (Sect. 3.1). The fastest version of the shown optimization sub-
space is achieved when we use a tile-size of 16 for the smaller struct containing
two fields, 24 for the bigger struct with six fields, and having the other fields in
a SoA layout. This example program also shows that the best tile-size can be
different within the same code and different clusters: when using only one clus-
ter, the highest performance is achieved with large data tiles; however, different
clustering delivers better performance with smaller data tiling sizes. This sug-
gests that the optimal data tile-size highly depends on the size of the individual
cluster.

Our work is the first approach which automatically tackles the two problems
mentioned above. Our contributions are:

– A Kernel Data Layout Graph (KDLG) model extracted from an input
OpenCL kernel; each vertex weight represents structure field’s size and the
edge weight expresses intra-data field memory distance.

– A two-phase algorithm: first, a KDLG partitioning algorithm — driven by
a device-dependent graph model — splits the original graph into partitions
with similar data access patterns; second, for each partition we exploit a data
layout selection method — driven by a device-dependent layout calculation —
selects the most suitable layout from AoS, SoA and tiled-AoS layouts.

– An evaluation of five OpenCL applications on three GPUs showing a speedup
of up to 2.83.

2 Related Work

The problem of finding an optimal layout is not only NP-hard, but also hard to
approximate [11]. Raman et al. [9] introduced a graph based model to optimize
structure layout for multi-threaded programs. They developed a semi-automatic
tool which produces layout transformations optimized for both false sharing and
data locality. Our work uses a different graph based model encoding the vari-
ables memory distance and data structure size, in order to provide a completely
automatic approach; we also support AoS, SoA and tiled-AoS layouts. Kendermi
et al. [5] introduced an inter-procedural optimization framework using both loop
optimizations and data layout transformation; our method does not apply to a
single function only, but can span over multiple functions.

Data layout transformations such as SoA conversion have been described to
be the core optimization techniques for scaling to massively threaded systems
such as GPUs [13]. DL presented data layout transformations for heterogeneous
computing [15]; DL supports AoS, SoA and ASTA and implements and auto-
matic data marshaling framework to easily change data layout arrangements.
Our work supports similar data layouts, but we provide an automatic approach
for the layout selection. MATOG [16] introduces a DSL-like, library-based app-
roach which optimizes GPU codes using either static and empirical profiling to
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adjust parameters or to change the kernel implementation. MATOG supports
AoS, SoA and AoSoA with 32 threads (to match the warp size on CUDA) on
multi-dimensional layouts and builds an application-dependent decision tree to
select the best layout. Dymaxion [4] is an API that allows programmers to opti-
mize memory mapping on heterogeneous platforms. It extends NVIDIA’s CUDA
API with a data index transformation and a latency hiding mechanism based
on CUDA stream. Dymaxion C++ [3] further extends prior work. However, it
does not relieve the programmer from selecting a good data layout.

3 Method

Our approach tries to answer two complex questions: (1) What is the best way
to group data fields? (2) For each field cluster, what is the best data layout?

Once clusters have been identified, for each cluster we try to find the best
possible layout within that cluster (i.e., homogenous layout). Our model supports
AoS, SoA, as well as tiled-AoS with different tile-sizes.

In the next section we introduce a novel graph based model, where we encode
data layout, field’s size and field locality information. The presented two-step
approach (1) identifies field partitions (i.e., clusters of fields) with high locality
within intra-partition fields and (2) determines an efficient data layout for each
partition.

3.1 Kernel Data Layout Graph Model

We define a Kernel Data Layout Graph (KDLG) as an undirected, complete
graph whose nodes represent fields of the input struct (assumed to have AoS
layout). The KDLG has two labeling functions: σ for verteices, representing
the field’s data size; δ for edges, representing the memory distance (or inverse-
affinity) between fields. Formally, a KDLG is a quadruple defined as follows:

KDLG =(F,E, σ, δ)

where F is the set of all fields of the struct, which corresponds to the set of
nodes in the KDLG . E = F 2

� {(x, x)|x ∈ F} is the set of all edges e =
{(f1, f2)|f1, f2 ∈ F}. The mapping function σ : F → N returns the size of a field
f in bytes, e.g., if f refers to a field of type int, then σ(f) = 4, according to the
OpenCL specifications. δ : E → {N ∪ ∞} returns the weight of an edge e. The
mapping function δ((f1, f2)) is defined as the memory distance between the two
fields f1 and f2 by counting the number of unique memory locations, in bytes,
touched by the program between the instruction where they are accessed.

We borrow the idea of memory distance from [9] and extend it with the actual
data type size, which is important to distinguish different memory behaviors.

The KDLG is based on an OpenCL kernel. The set F will have a vertex for
each field defined in the structure, which is passed as an argument to the device
kernel function. For each vertex f , the σ function returns the actual type’s size
in bytes of the corresponding field of f .
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Fig. 2. A KDLG generated by a sample input data layout and kernel. Darker edges
show fields that are closer in memory (smaller δ).

Figure 2b displays the KDLG generated from the code shown in Fig. 2a: The
fields a and b are always accessed consecutively, therefore δ(a, b) is 4 bytes.
c is accessed after the for loop with 32 iterations, therefore δ(c, b) = 252 and
δ(c, a) = 256 bytes, resulting from the 32 iterations that access 2 ·4 bytes in each
iteration. d is never accessed, therefore its distance from other fields is ∞.

Our graph based model unrolls all loops before starting the analysis. There-
fore, it assumes that loop bounds are known at compile time. If not known, we
use a OpenCL kernel specific loop size inference heuristic to have a good approxi-
mation (see Sect. 3.1). Our analysis focuses on global memory operations, as they
are considerably slower than local and private memory operations

Let MI (f) define the set of all global memory instructions (loads and stores)
involving the data field f . Our distance function δ between two fields f1 and f2

is defined by taking into account the maximum-memory-distance path between
the accessing instructions i1 ∈ MI (f1) and i2 ∈ MI (f2).

In order to calculate δ, we use a data flow analysis where each node of the
control flow graph (CFG) consists of a single instruction. The function σ(i)
returns the number of bytes which are written to/read from the global memory
in instruction i. We define IN and OUT as

IN i[j] = min
x∈pred(j)

(OUTi[x]) OUT i[j] =

{
0 if i = j

IN i[j] + σ(j) if i �= j

We define a instruction-memory distance function MD(i1, i2) as

MD(i1, i2) = max(OUTi1 [i2], OUTi2 [i1])

so that MD(i1, i2) = MD(i2, i1). We calculate δ(f1, f2), the memory distance
between the fields f1 and f2, as the maximum memory distance between all
instructions in MI(f1) and MI(f2) as follows:

δ(f1, f2) = max

(

max
i∈MI (f1),j∈MI (f2)

MD(i, j)

)
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Therefore, we can use δ(f1, f2) to assign a weight to each edge (f1, f2) ∈ E.
We conservatively use the maximum, which leads to higher weights on the

KDLG ’s edges and leads to more clusters; since more clusters have a lower risk
of performance loss on our target architectures.

KDLG Partitioning. The first step of our algorithm identifies which fields in
the input data structure should be grouped together. Formally, we assume that
a field partitioning C of the KDLG (i.e., field clusters) is good if ∀e ∈ C|δ(e) < ε,
where ε is a device dependent threshold. We define ε as the L1 cache line size
of the individual GPUs. The values of ε are listed in Table 1. We use this value
as it is the smallest entity that can be loaded from the L1 cache and therefore
should be loaded at once.

We propose a strategy based on Kruskal’s Minimum-weight Spanning Tree
(MST) algorithm [8] that extends the classical MST algorithm with an ε-based
early termination criteria and multiple clusters of nodes (i.e., struct fields).

KDLG-Partitioning(F, E, δ, ε)

1 C = ∅

2 for each field f ∈ F
3 C = C ∪ {{f}}
4 Eε = {e ∈ E : δ(e) < ε}
5 for each edge (f1, f2) ∈ Eε

6 c1 = {x ∈ C|f1 ∈ x}
7 c2 = {x ∈ C|f2 ∈ x}
8 if c1 �= c2
9 C = (C � {c2, c1}) ∪ {c1 ∪ c2}

10 return C

It takes as input a KDLG , previously computed from an input kernel, and
a threshold ε. It starts by creating a partitioning with |F | sets, each of which
contains one field in F (lines 1–3). Line 4 initializes Eε for all edges in E with
a weight smaller then ε, according to the weighting function δ. The for loop in
lines 5–9 checks, for each edge (f1, f2), whether the endpoints f1 and f2 belong
to the same set. If they do, then the edge is discarded. Otherwise, the two sets
are merged in line 9. The complexity of this algorithm is O(|E| · |F |). Figure 3
shows three possible output partitions that can be generated from the graph
seen in Fig. 2b using different ε values.

Loop Bounds Approximation. When generating the test data to select ε we
use loops with a fixed number of iterations, in order to to accurately understand
the memory distance between two memory accesses. In real world codes, the
actual number of iterations is often not known at compile time. Therefore we use
a heuristic that is specifically designed for OpenCL kernel codes. If the number
of loop iterations are determined by compile-time constants, we use the actual
number of iterations. If not, we apply a heuristic to approximate the number of
iterations: When a loop performs one iteration for each OpenCL work-item [6]
of the work-group [6], we estimate it has 256 iterations, as the work-group size
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Fig. 3. Different output partitions using different ε values on a KDLG.

is usually in this range. When a loop performs one iteration for each work-item
of the NDRange [6], we assume it will have 1 · 106 iterations. If the number of
iterations is neither constant nor linked to the work-group size or NDRange,
we estimate it to have 512 · 103 iterations. The estimation of loop bounds is not
very sensitive: we only need to distinguish short loops, which may not completely
flush the L1 cache, from long ones.

3.2 Per-Cluster Layout Selection

After KDLG-Partitioning, we assume that each field in the same cluster has
similar memory behavior. Therefore, all the fields within a cluster should have
the same data layout arrangement, e.g., tiled-AoS with a specific tile-size.

To understand what layout is best for a given cluster, we generate different
kernels corresponding to a simple one-cluster KDLG where δ is roughly the same
for each pair of fields. The kernel consists of a single for-loop with a constant
number of iterations n. The value of n comprises all powers of two from 128 to
16384. We evaluated the performance of these kernels with different combinations
of loop size n, number of structure fields m, and tile-size t.

From the results we derive a device-dependent function Select-Tilesize
(σ(c)) which returns the suggested layout for a cluster c, where σ(c) =

∑
f∈c σ(f)

and σ(f) returns the size of the field f in bytes. Select-Tilesize is implemented
using a decision tree, constructed by the C5.0 algorithm [12]. σ(c) is the only
attribute the decision tree depends on. The potential target classes are AoS , SoA
and all powers of two from 21 to 215. The performance measurements of the afore-
mentioned kernels are used to generate the training data. For each kernel we create
a training pattern for the fastest tile-size as well as all other tile-sizes that are less
than 1% slower than the fastest one. These training patterns consist only of the
size of the structure σ(c), which is the only feature while the used tile-size acts as
the target value. Generating training patterns not only for the fastest tile-size but
for all which achieve at least 99% of it, as well as several training patterns for dif-
ferent structures with the same size, may lead to contradicting training patterns.
However, our experiments demonstrated that the resulting decision tree is more
accurate and less prone to overfitting. C5.0 was used with default settings; its run-
time was about 1ms, depending on the input.
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3.3 Final Algorithm

In order to achieve best results, we combine the two algorithms described in
Sects. 3.1 and 3.2. Before applying these algorithms, one has to identify the device
dependent factor ε and construct a decision tree to be used in function Select-
Tilesize, as described in the previous sections. Furthermore, the KDLG graph
is constructed and the actual memory layout for the program to be optimized
is selected at compile time. The selection of the memory layout is described by
the following pseudo code:

LayoutOptimize(F, E, δ, ε)

1 L = ∅

2 C = KDLG-Partitioning(F, E, δ, ε)
3 for each cluster c ∈ C
4 t = Select-Tilesize(σ(c))
5 L = L ∪ {(c, t)}
6 return L

Line 2 calls the KDLG-Partitioning algorithm and returns a set of clusters
C in which the corresponding structure should be split. Then the decision tree
determines an efficient tiling factor for each of these clusters and stores the
resulting pair (cluster, tile-size) (line 3–5).

4 Experimental Results

To verify the validity of our approach we implemented a prototype of our frame-
work and observed its performance on several OpenCL applications. The deploy-
ment of our system is split into two parts: A device dependent part which has
to be performed once for each GPU (installation time), and a program depen-
dent part, which is executed at the compile time of the program. These two
parts are depicted in Fig. 4. The device dependent part consists of identifying
the L1 cache line size to be used as ε and running a set of training programs to
collect the information needed to build the decision tree as defined in Sect. 3.2.
Collecting all the necessary data requires to run many benchmarks takes 196,
158 and 299 min on the FirePro, GeForce and Tesla, respectively. The program
dependent part constructs a KDLG graph for the structure to be optimized in
the corresponding program. This graph is hardware independent. By combining
the KDLG graph with the hardware depended ε we split the struct into several
clusters (Sect. 3.1). For each of these clusters we query the hardware dependent
decision tree to obtain the tile-size to be used (Sect. 3.2).

To evaluate our framework we run different programs on three different
GPUs. The test programs are listed in Table 2. In each program we focus on
the structure with the most instances and try to optimize its layout. The result
of our framework on five tested programs is shown in Table 2. The data layouts
proposed by our system always reach at least the performance of the AoS data
layout. In the following paragraphs we give more details about three example
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Fig. 4. Work-flow of our data layout optimization process.

Table 1. Properties determined using our algorithms

Hardware ε Decision tree

AMD
FirePro
S9000

64 ≤ 20

≤ 12
1024

512

> 48
16384

≤ 32
AoS

32

NVIDIA
GeForce
GTX 480

128 ≤ 12

≤ 8
AoS

SoA

≤ 96
512
SoA

NVIDIA
Tesla
K20m

128 ≤ 48

≤ 20
SoA

8192

≤ 96
16384

32768

test cases. For all charts we use AoS as a baseline and report the speedup of four
transformed versions: SoA, the version generated after applying the KDLG algo-
rithm and splitting the structure if applicable, a tiled AoS version were we use
the tile-size proposed by our hardware dependent decision tree-based algorithm,
and the final result of our framework as described in Sect. 3.3.

The first test case that we used to evaluate our framework is N-body, which
performs a direct summation of the forces of all particles on every other par-
ticle. The struct in the used implementation consists of two fields with a size
of 16 bytes each. As those fields have a big memory distance, the KDLG-based
algorithm will split those fields into separate structs. Therefore, the result after
applying the KDLG-based optimization is the same as when using the SoA lay-
out. Furthermore, applying our tiling algorithm after the KDLG-based algorithm
has no effect. The speedup achieved is shown in Fig. 5a. It clearly shows that the
tiled version of the program is not only slower than the one in SoA data layout,
but also slower than our baseline implementation. This applies to all tile-sizes
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Table 2. Test programs

Struct Size Affected Loop bound Speedup over AoS

Test codes bytes fields kernels approx.a FirePro GeForce Tesla

N-body 32 2 1 n 1.01 1.06 1.01

BlackScholes [2] 28 7 1 – 1.00 1.43 2.83

Bitonic sorting 16 4 1 u 1.47 1.50 1.38

LavaMD [10] 36 3 1 c,u 2.22 1.89 2.07

SAMPO 48 12 9 w,u 2.19 1.59 1.96
aUsed Loop bound approximations Sect. 3.1: loop over all work-items in the
NDRange (n), over the work-group size (g), with constant boundaries (c), with
unknown boundaries (u)

Fig. 5. Speedup over AoS implementation on two example applications using different
data layouts.

we evaluated. However, since our framework uses a combination of two layout
optimizations, it still correctly selects SoA, which is the data layout with the
highest performance for this program on all tested GPUs.

Bitonic Sort [1] is a sorting algorithm optimized for massively parallel hard-
ware such as GPUs. The implementation that we are using sorts a struct of four
elements, where the first element acts as the sorting-key. As all elements are
always moved together, the KDLG-based algorithm results in one single cluster
for any ε ≥ 4. Therefore, the version generated by the KDLG-based algorithm
is the same as AoS. The decision-tree-based tiling algorithm converts this lay-
out into a tiled-AoS layout with a tile-size of 512 bytes for the FirePro and
GeForce while it suggests to use SoA on the Tesla. The results can be found
in Fig. 5b. It clearly shows that, although the KDLG-based algorithm fails to
gain any improvement over AoS, the decision-tree-based algorithm as well as
the combination of both algorithm exceeds the performance of the AoS based
implementation by a factor of 1.38 to 1.5. Furthermore, it delivers performance
that is comparable or superior than the one achieved by a SoA implementation.

SAMPO [7] is an agent-based mosquito point model in OpenCL, which is
designed to simulate mosquito populations to understand how vector-borne
illnesses (e.g., malaria) may spread. The version available online is already
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manually optimized for AMD GPUs. Therefore, we ported this version to a
pure AoS layout, where each agent is represented by a single struct with twelve
fields. The measurements are displayed in Fig. 5c. The results clearly show, that
SoA yields a much better performance than AoS on all tested GPUs. Applying
the KDLG-based algorithm already results in a speedup between 1.54 and 2.18
on the three tested GPUs, which is within ±10% of the SoA version. Applying
tiling to the AoS implementation shows good results on the NVIDIA GPUs.
Also the AMD GPU benefits from tiling, but it does not reach the performance
of the SoA version or the version optimized with the KDLG-based algorithm.
Applying tiling to the latter version further increases the performance on all
evaluated GPUs and leads to a speedup over the AoS version of 2.19, 1.59 and
1.96 on the FirePro, GeForce and Tesla, respectively outperforming any other
version we tested. Even the manually optimized implementation is outperformed
by 7%, 10% and 18% on the FirePro, GeForce and Tesla, respectively.

5 Discussion

The results clearly show, that programs with AoS data layout are not well suited
for GPUs. SoA delivers a much higher performance on all GPU/program combi-
nations we tested. However, also SoA fails to achieve the maximum performance
in some cases. We observed that a tiled-AoS can achieve results that are usu-
ally equal or better compared to the ones achieved with an SoA layout. But
tiled-AoS is not suited for all programs. Similarly, splitting structures in several
smaller ones based on a KDLG is beneficial for most programs. However, also
this technique fails to improve the performance of some applications . Therefore,
combining these two algorithms leads to much better overall results than each
of them can achieve individually. This is underlined by the results of SAMPO,
where the combination of both algorithms does not only outperform the results
of each algorithm applied individually, but also leads to higher performance than
obtained by both, a SoA layout and the manually optimized layout.

6 Conclusions

We presented a system to automatically determine an improved data layout for
OpenCL programs. Our framework consists of two separate algorithms: The first
one constructs a KDLG , which is used to split a given struct into several clusters
based on the hardware dependent parameter ε. The second algorithm constructs
a decision tree, which is used to determine the tile-size for a certain structure
when converting it from AoS to tiled-AoS or SoA layouts.

The combination of both algorithms is crucial, as using only one of them often
leads to no improvement over AoS. The layouts proposed by our framework result
in speedups of up to 2.22, 1.89 and 2.83 on an AMD FirePro S9000, NVIDIA
GeForce GTX 480 and NVIDIA Tesla k20m, respectively.
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Abstract. The introduction of Exascale storage into production sys-
tems will lead to an increase on the number of storage servers needed by
parallel file systems. In this scenario, parallel file system designers should
move from the current replication configurations to the more space and
energy efficient erasure-coded configurations between storage servers.
Unfortunately, the current trends on energy efficiency are directed to
creating less powerful clients, but a larger number of them (light-weight
Exascale nodes), increasing the frequency of write requests and there-
fore creating more parity update requests. In this paper, we investigate
RAID-5 and RAID-6 parity-based reliability organizations in Exascale
storage systems. We propose two software mechanisms to improve the
performance of write requests. The first mechanism reduces the number
of operations to update a parity block, improving the performance of
writes up to 200 %. The second mechanism allows applications to notify
when reliability is needed by the data, delaying the parity calculation
and improving the performance up to a 300 %. Using our proposals, tra-
ditional replication schemes can be replaced by reliability models like
RAID-5 or RAID-6 without the expected performance loss.

1 Introduction

Nowadays, it seems clear that changes will need to be made to reliability planes in
parallel file systems, once storage requirements reach into the Exascale orders of
magnitude. Given the strong constraints on energy efficiency imposed on Exas-
cale clusters [2,24,30], the current replication techniques used by parallel file
systems (PFSs) to increase reliability and availability (where several copies of
each datum are kept in independent storage nodes) can represent a huge penalty,
since they multiply the investment and energy costs in the storage layer.

Parity based-reliability, where mathematical checksums are computed and
stored to recover failed data, is a more suitable method in this scenario since it
uses less storage resources than replication. As such, there is an increasing inter-
est to support node-wide RAID-5/6 reliability schemes in current PFSs. For
instance, Lustre [4] is planning to support file-level replication, and this tech-
nique can already be found in Gluster [13]. On the other hand, Panasas (with
PanFS [20]) supports object/file level RAID configurations using triple parity
c© Springer-Verlag Berlin Heidelberg 2015
J.L. Träff et al. (Eds.): Euro-Par 2015, LNCS 9233, pp. 277–288, 2015.
DOI: 10.1007/978-3-662-48096-0 22



278 R. Nou et al.

data [21], and GPFS [27] also supports a similar configuration with the declus-
tered array technique that can visualize all the JBOD disks individually [10].

In addition, there has been some interest on shifting the HPC cluster para-
digm to include more energy efficient computing nodes. Currently, some projects
(e.g. Montblanc [23], or Euroserver [11]) are attempting to create the next-
generation supercomputers using mobile technology, moving away from the more
standard and powerful nodes (i.e., x86 or PowerPC-based) to the more energy
efficient ARM-based nodes, which usually have reduced performance capabili-
ties. Thus, to account for this reduction in performance, the number of nodes
needs to be increased to provide enough computing power and, as a result, there
will be an undesired congestion on all I/O levels as more requests go through
the I/O layer. Unfortunately, an increase in the number of I/O requests will also
affect traditional parity-based reliability techniques. Increasing the number of
data writes will accentuate the partial stripes and small writes problems [28]
that typically affect these strategies: a small change to a datum will force the
parity checksum to be recomputed and stored, which requires additional I/O
operations as well as computation. Thus, introducing these node-wide reliabil-
ity strategies into Exascale storage can cause a performance impact: updating
a datum in RAID-5 requires four I/O requests (reading the original datum and
the old parity and writing the new datum and the new parity) and six I/O
requests in RAID-6 (due it uses two parity checksums). As we will show later,
even though these additional requests can be distributed between storage servers
to be processed in parallel, they can represent a loss of performance of up to
85 % for update operations when compared to storing raw data. In this situa-
tion, it seems clear that optimizations over RAID parity calculations are needed
to remove or alleviate this performance penalty and provide Exascale storage
systems with alternatives for reliability. In this paper we propose a transparent
(from the user perspective) I/O layer called the Write Cache Layer that reduces
the number of parity updates for arbitrary reliability configurations. Finally,
we also propose a novel method (Delayed Parity) that takes advantage of the
collaboration between the PFS and the clients and, using this layer, allows appli-
cations to delay parity computations. The analysis and design is evaluated with
a simulator, using a write-only workload to focus on the issue that we are solving
(read operations are not affected negatively).

The rest of the paper is organized as follows: In Sect. 2, we present the design
of the Write Cache Layer. In Sect. 3, we describe the simulator and we evaluate
our proposal. Section 4 describes related work. Finally, Sect. 5 states our conclu-
sions and future work.

2 Partial Stripe Avoidance

In this section, we discuss the two strategies proposed to reduce the overhead
of parity update operations. The first one (basic avoidance) actively reduces the
number of read operations done on each write request, whereas the second one
(delayed parity) delays the parity calculation until the application decides that
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it actually needs the reliability. These strategies are implemented within a new
I/O layer called the Write Cache Layer (WCL) that sits on top the PFS’ Object
Storage Servers (OSSs) and directly communicates with them. More specifically,
the WCL keeps all the metadata on parity blocks necessary to implement the
proposed strategies, communicates with the PFS servers in order to allocate
enough space to write full stripes and, whenever possible, transforms the different
write access patterns into a series of non-overwriting I/O operations, so that our
optimization techniques can be applied. Note that this transformation of access
patterns can be done with already existing techniques (e.g. log file systems [25]
or versioning [19]) that fall out of the scope of this paper. Also notice that
the WCL only needs to take into account write operations to implement our
proposed techniques and therefore read operations can follow through normally.

2.1 Basic Avoidance

Whenever stripes are rewritten, the PFS needs to read the original data blocks
in order to be able to compute the new parity checksum. Our first proposal,
the basic avoidance technique, reduces the number of data reads needed to
write full stripes by avoiding these read operations of old data blocks. This is
ensured because, as we have mentioned, the WCL can either detect a workload of
non-overwriting writes (which should be the case of a big majority of HPC appli-
cations), or transform a mixed workload into a sequence of non-overwriting oper-
ations. To implement this mechanism, the WCL creates a cache zone or working
zone using the available space in the storage devices connected to each OSS,
and redirects all write operations to it (see Fig. 1.b). This effectively allows the
WCL to treat all data writes as new data writes instead of updates, which allows
to compute the parities based only on the new data written (i.e., avoiding the
unnecessary reads of old data blocks). Once a stripe has been completely writ-
ten and its parity checksums computed, the WCL simply moves (i.e., rewrites)
the stripe back to its original placement into the OSS. With this technique the
reads of old data are removed from the critical path of write operations, and are
replaced with full-stripe reads (probably cached in the OSS) and writes that can
happen out of the critical path. The WCL layer keeps the same reliability level
as in the original system (e.g., RAID-5 or RAID-6) as it is built in top of the
OSSs. This is a basic difference of this technique with buffering techniques.

In order to be able to support both sequential and non-sequential access
patterns, the WCL keeps an in-memory data structure (a bitmap or interval
tree) to manage the used space of the cache zone. This structure is used to be
able to identify which blocks need to have their parity calculated and be able to
send large chunks of full-stripe writes to the disk. The metadata included in this
structure is made persistent in the OSSs storage, in order to guarantee that new
versions of data blocks can be safely recovered in case of unexpected shutdowns.

Figure 1.a shows the parity update workflow of the basic avoidance technique
when compared to vanilla RAID-5. The technique reduces the congestion in Data
OSSs by removing one (or two in RAID-6) data reads, hence reducing the number
of operations when writing new data by 25 % in RAID-5 and 16 % in RAID-6.
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Fig. 1. Basic avoidance technique

Note that even though the WCL has been implemented without modifying
the original PFS, better performance gains can be achieved and less control over
errors (failures, concurrency) will need to be taken if the implementation is done
directly inside the PFS (e.g. the in-memory bitmap would no longer be needed).
We will assume in this paper that the WCL layer is persistent in the disk, to show
the worst performance. We will also consider that the available storage space is
enough to avoid forced evictions, to avoid interferences in the evaluation. These
forced evictions and the space required depend on the randomness, in block
position terms, of the workload.

2.2 Advanced Avoidance: Delayed Parity

One of the most used fault tolerance mechanism in HPC applications is check-
pointing, an operation that stores the current status of all processes creating an
opportunity to restore the application in case of failure. Due to the continuous
writes needed to save the state, this particular operation issues many parity
update requests to maintain the reliability. However, is such reliability really
needed? Consider for instance that the system fails in the middle of the check-
pointing: the application could recover using a previous checkpoint and delete the
partial-checkpoint file, rendering the parity computations for the partial check-
point useless. This also applies to long computations like matrix multiplications
(e.g., MADCAP, on MADBench2 [8]). A failure in the middle of the computation
would require it to be restarted again from the beginning, hence the partially
stored data would be discarded and the parity calculations would become an
avoidable overhead. We can envision a lot of HPC applications that could make
use of such functionality, since reprocessing a chunk would be less costly than
the cost over all the system to store all the data in a reliable way compared to
doing it when the process completes.

Using this idea, we propose the START DELAYED and END DELAYED hints
to mark this kind of candidate operations, delaying the parity calculations
until all the writes are completed. When the WCL receives a START DELAYED
hint, redirects all write operations to the caching zone and disables the parity
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Fig. 2. Delayed Parity: Clients issue two writes and then the parity is calculated. The
writes are aligned so they end at the same Parity OSS but at sequential positions. Due
to this alignment, the parity calculation can be consolidated.

computations for this data. Once the corresponding END DELAYED hint is received,
the WCL computes the parities of all the full stripes affected by the hints, and
moves (rewrites) the data to its original location in the OSS. As a result, the
PFS can avoid using the Parity OSSs during the creation of the data and, when
parities are calculated, it only needs to send them the consolidated writes.

Figure 2 shows a simplified sequence diagram for the delayed parity technique.
In that example, 2 clients issue a 32 KiB write and then their parity is calculated.
The writes are directed to different data OSS, but the same Parity OSS. Parity
blocks are sequential, and hence parity updates can be consolidated.

The WCL supports synchronous parity calculations, but can also advance
the calculation in the background to reduce time. However, advancing the calcu-
lation may generate extra work if the calculation is not needed (i.e., application
cancellation or error in the client). In short, the delayed parity technique can be
represented as a collective operation between all clients, but without increasing
intermediate memory requirements since partial data will be written to disk.
Failure in acquiring the END signal can be detected with timeouts.

3 Evaluation

Due to the large number of clients, servers and requests involved in Exascale com-
puting clusters, we decided to evaluate the feasability of the proposed techniques
using simulations. The simulation environment is created using the OMNet++
framework [29], a C++-based event simulation package targeted at simulating
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computer networks and other distributed systems. In order to create a network
simulation as real as possible, the devised simulation implements Lustre message
sizes and payloads, including the actual sizes of Lustre RPC message headers.

For the simulation of the storage devices, we decided to capture the individ-
ual I/O requests received by each of the devices configured in each experiment
and replay them on a real device using the FIO benchmark, taking special con-
sideration to include the interference between different requests. This allowed
us to create a complete statistical model for each device, that can be used to
approximate the behaviour of the real device under the conditions imposed by
the network simulation. The decision to create this statistical model came after
attempting to use DiskSim [6] with the SSD addition from Microsoft Research
and finding severe limitations when using more than 64 combined devices at
once. The devices modelled in our simulation are Western Digital Black Hard
Disks (750 GB capacity, 7200 RPM) and Intel SSD 320 Series (160 GB capacity).

Regarding client behaviour, the simulated application uses a set of clients
issuing writes to the I/O layer. During a single simulation run, the datum size of
write operations is fixed for all the clients and the writes are distributed along
a different file per application to avoid overwrites. Each client writes enough
data to produce a statistically representative number of parity calculations. The
behaviours of the applications simulated mimic that of the FLASH applica-
tion [17], a computational tool for simulating and studying thermonuclear reac-
tions, that periodically outputs large checkpoint files and smaller plot files. For
the Delayed Parity evaluation, one process of each application acts as master
issuing the new hints and all the clients wait until the parity is calculated.

Workloads with mixed block sizes were only tested with a low number of
devices, as the cost of generating the statistical device model was too high (it is
necessary to attempt all the possible combinations of request sizes, which grows
exponentially). This is an important drawback of modelling the storage devices
without a simulator. Nevertheless, we did not find significant differences between
these simulated workloads in systems with the large number of clients targeted
in the paper. The same also applies to different stripe sizes.

We decided to use this workload in order to concentrate on the effect of typ-
ical HPC writes over the proposed reliability techniques. Nevertheless, we also
checked other workloads, which showed similar results. In particular, our prelim-
inary results using mixed workloads (with reads and writes), showed improve-
ments in the performance on read operations since the proposed techniques
favoured a reduction of the overhead on the storage devices. Due to space limi-
tations, we will not discuss these results further.

To assess the effectiveness of the novel strategies, we repeat each measure-
ment with different seeds, that control how requests are mapped into each stor-
age device. Each simulation run stops when we have a minimum of 1000 s of
simulated time, other variables (BW, latency, etc.) are tracked to assess that
the results are representative. In the following experimental results, RAID-0
represents the performance obtained from the OSSs when there are no parity
calculations. STD-RAID represents a standard striped RAID with parity and
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Fig. 3. RAID-5 (left) and RAID-6 (right) write bandwidth w.r.t. STD-RAID.

without optimizations. Finally, our two proposals are WCL and Delayed Par-
ity. If not specified, the results are scaled relative to STD-RAID for each x-axis
point. We use 512 OSSs in all the experiments with a stripe unit of 1 MiB and
a width of 512 OSSs.

We measure the results in two different ways: using Weak-Scaling and using
Strong-Scaling. Weak-Scaling means that the problem size increases with the
number of clients and thus, regardless of the number of clients, each one will
process the same amount of data (128 KiB per data write). Conversely, in Strong-
Scaling the number of clients is increased, but the problem size is kept. Conse-
quently, this increases the network and storage congestion due to I/Os when
the number of clients increases, due to the higher number and smaller size of
requests. In this scenario, the data writes grow from 8 KiB to 1 MiB according
to the number of clients in the simulation. For all the scenarios, the data is parti-
tioned to avoid overwrites according to their block size. We analyse the outcome
of the new techniques using RAID-5 in Subsect. 3.1 and RAID-6 in Subsect. 3.2.

3.1 RAID-5 Results

This section describes the measured results of our simulations when reliability
is implemented using RAID-5 (i.e., one parity checksum per stripe).

Weak-Scaling Results. Each client writes 128 KiB per write distributed along
a file avoiding overwrites with other clients. As we can see on the simulation
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results in Fig. 3.a, the performance of writes is four times slower on STD-RAID
w.r.t. RAID-0 both in HDDs and SSDs. Since we go from one operation to
four operations per write to two different OSSs, the performance degradation is
expected. Moreover, the WCL scenario results in a speedup of 2x w.r.t. the STD-
RAID, achieved simply by eliminating the read operation of old data blocks.

Regarding the Delayed Parity proposal, the strategy reduces the number of
writes on the corresponding Parity OSS for each row of the file (m−1 vs 1, where
m are the OSSs involved) w.r.t. the WCL strategy, but we increase the reads in
the data OSSs (0 vs m − 1) as we need to transfer the data to the parity node
to calculate the parity (see Fig. 2). If we take a look at the number of accesses
per Data OSS and Parity OSS, we observe that only one access is needed to the
Data OSS with WCL (to write) and two with the Delayed Parity approach (to
write and to read in order to calculate the parity). On the other hand, using the
WCL approach requires a parity for each write (a read and a write to the Parity
OSS), whereas with the Delayed Parity approach the parity only needs to be
generated when all operations have completed (i.e., a maximum of two accesses
to the OSSs).

As we can see in Fig. 3.a, the benefit of the Delayed Parity strategy depends
on the cost of the operations in the device. In that Figure, with less than 80,000
clients, the required time to complete the described operations on the HDD
devices surpasses the reduction on the number of operations. As a result, the
performance with Delayed Parity with a low number of clients is comparable
to the WCL strategy, but without the reliability of RAID-5 (as the parity is
calculated at the end). Despite this result, the general behaviour is for perfor-
mance to grow up close to RAID-0, as we remove a big number of parity updates
producing a higher throughput.

Apart from the results presented with a 128 KiB write size, if we fix the
number of clients to 250 K and we check different block sizes, we can observe how
the relative performance is stable using HDDs. However, using 4 KiB blocks with
SSDs STD-RAID achieves a better performance, which means that the benefit
of the other schemes is lower. The reason is that SSDs offer a better performance
of parallel operations, and thus a reduction of them on 4 KiB block sizes does
not produce the same improvement w.r.t. the STD-RAID.

Strong-Scaling Results. The experiments done with Strong-Scaling (see Fig. 3.c.)
are similar to the Weak-Scaling ones. Specifically, we obtain the same results for
RAID-0, STD-RAID and WCL, and thus the difference on block size (i.e., from
128 KiB for Weak-Scaling to 8 KiB for Strong-Scaling in the 500,000 client
scenario) is not important at this scale.

Using the Delayed Parity technique, we observe performance improvements
due to the fact that the number of parity updates is reduced greatly as the
number of clients increases. For instance, with 250 K clients, we do not issue a
parity update until all the clients of an application have stored their 16 KiB
to the devices, which means that we go from 250 K parity updates (clients ·
appl. iterations) to 1.7 K parity updates ( clients

clients per appl. · appl. iterations).
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Actually, the performance obtained differs when using HDD or SSD technology
(as in Weak-Scaling). On HDDs, the Delayed Parity achieves less performance,
thus it may be preferable to avoid using this strategy for a small number of clients.

3.2 RAID-6 Results

The complexity and variability of RAID-6 deployments make it more difficult to
simulate than RAID-5. Using RAID-6 with two or more parity devices, where
location and modification rules depend on the erasure codes used, adds too many
variables into the evaluation. The position of the parity devices can modify the
number of operations of each OSS and the network communication patterns, but
in any situation, our proposal will always optimize them by removing the need to
read the old data (because it is a new write). For this reason, in this experiments
we have selected two horizontal parity devices per stripe for RAID-6.

Weak-Scaling Results. As we can observe in Fig. 3.b, we found that the STD-
RAID performance of RAID-6 configurations is lower than for RAID-5 configu-
rations and the improvement on performance using WCL is a bit lower (1.18x
speedup). This happens because the strategy can only successfully avoid 16 % of
the operations instead of the 25 % for RAID-5.

The Delayed Parity option offers a bigger performance boost on RAID-6 since
we now have two parity devices, and we move from two parity updates per write
to two parity updates per application iteration (START-END hint).

Strong-Scaling Results. For Strong-Scaling results with RAID-6 we obtain similar
results to RAID-5 (see Fig. 3.d). Like with RAID-5 results, the block size is not
important on the simulated scenarios for all the experiments except Delayed Par-
ity. In that particular experiment, we can see the same performance loss found on
RAID-5 with HDD devices. However, the performance improvement compared
to the WCL proposal is bigger even with a lower number of clients since parity
updates are more expensive in RAID-6 than in RAID-5. Thus, removing them
(more precisely, grouping and delaying them) produces bigger improvements. In
general, since the performance loss of STD-RAID w.r.t. RAID-0 is much higher
for RAID-6, the potential gain of the Delayed Parity strategy is higher.

4 Related Work

RAID-5 and RAID-6 are redundant systems that provide a way to recover from
a data loss using the remaining disks, so for RAID-5 we can recover using n − 1
disks and with RAID-6 we can recover using only n − 2 disks. RAID-6 can use
a huge range of erasure codes offering different performance and recoverability
values. One such example is Reed-Solomon, which maps to a polynomial equation
so the missing data recovers using interpolation, therefore we can use extra
devices to extend the recovery capabilities (for example 12 data disks using 4
redundant disks, will be able to recover any failed disk from 12 correct disks of
the 15 available that are still working).
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Node-Local Redundacy. Inside RAID-6 research at controller layer, we can find
optimizations of the erasure codes as in P-Code [15] and HDP-Code [31], and
optimizations of the erasure codes using specialized hardware (FPGAs and
GPUs [5]) as in Gilroy [12] and Curry [9]. Moreover, we can find improvements
with SSD RAIDs [22] taking into account the wear-levelling of the parity stripe.
Directly related to the partial write on stripes problem, we found H-Code [32]
with a performance improvement of 15.54 % and 22.17 % compared to RDP and
EVENODD erasure codes. Finally, there are also patents that solve the problem
in the hardware level as Lyons [18] and Baylor [1], reducing the reads and writes
done at the controller level. Historically we also have parity logging to solve small
writes problem as Stodolsky [28] proposes, we study the problem in distributed
systems, RAID-6, and newer devices as SSDs. Our first proposal maintains the
reliability of the original system using a small fraction of space of the devices,
depending on the randomness of the workload and the cost of evictions, and
reduces the number of operations issued to the devices.

Those proposals may not be fully usable or become inefficient at the storage
server layer, as it involves network communication and bigger latencies. Despite
of this, some of them may improve the performance due to the different parity
layouts or calculations. Our work is transparent to the reliability configuration
used and will improve their performance.

Distributed Redundancy. Inside distributed redundancy, with can find Ticker-
TAIP [7] building a RAID system using the network as transport method. It can
be seen as a preliminary approach to support RAID parity schemes over PFS,
finally RAID-x [14] presents how to optimize it using a mirroring mechanism
reducing the number of operations in small writes. On the PFS plane, Glus-
terFS supports mirroring schemes and some requests have been done to support
RAID-5/6 schemes. Hadoop (HDFS [3]) supports file replication. Finally, PanFS
supports file level RAID configurations using triple parity data [21].

Delayed Parity Calculation. About our delayed parity proposal, a similar app-
roach is found in NetApp [16] where writes are buffered to issue an improved
write operation. Also, at AFRAID [26] they move the parity calculation to idle
periods to obtain a performance boost. The main difference of our proposal with
the previous mentioned works is that the lower reliability mode is selected by
the user (via hints) when he decides that the data is not useful until it is com-
pleted (i.e., check-pointing or partial results that will need to be recalculated).
All writes are persisted to the disk, so it may recover from failures, at the same
rate than the used PFS.

5 Conclusions and Future Work

Under Exascale constraints, reliability will be needed on the PFS layer if we
want to keep the storage costs and the energy used under control. Especially,
when we use a high number of clients the number of parity updates will increase.

We propose a transparent cache layer that is able to reduce the number of
operations needed to update the parity on such environments. To do that, we
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ensure that the writes are not overwriting so we can drop the read of old data
from the parity update workflow. This proposal improves the write performance
of the standard workflow by a 1.18x to a 2x depending on the RAID level (6 or 5,
respectively). Moreover, we show that applications gain substantial performance
controlling the parity calculation as in the Delayed Parity Proposal. Using reli-
ability oriented application hints, we can improve the write performance up to
levels near a RAID-0. This behaviour is useful when partial data does not need
to be reliable until all the data writing is finished, e.g. big partial matrices.

In this paper, we used simulation to predict the impact of these strategies.
The implementation in existing file systems is non-trivial and out of scope of
this paper; nevertheless this theoretical consideration steers the direction of a
beneficial implementation in the future.
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Abstract. Synchrotron (x-ray) light sources permit investigation of the
structure of matter at extremely small length and time scales. Advances
in detector technologies enable increasingly complex experiments and
more rapid data acquisition. However, analysis of the resulting data
then becomes a bottleneck—preventing near-real-time error detection or
experiment steering. We present here methods that leverage highly paral-
lel computers to improve the performance of iterative tomographic image
reconstruction applications. We apply these methods to the conventional
per-slice parallelization approach and use them to implement a novel in-
slice approach that can use many more processors. To address program-
mability, we implement the introduced methods in high-performance
MapReduce-like computing middleware, which is further optimized for
reconstruction operations. Experiments with four reconstruction algo-
rithms and two large datasets show that our methods can scale up to
8 K cores on an IBM BG/Q supercomputer with almost perfect speedup
and can reduce total reconstruction times for large datasets by more
than 95.4 % on 32K cores relative to 1K cores. Moreover, the average
reconstruction times are improved from ∼2 h (256 cores) to ∼1 min (32 K
cores), thus enabling near-real-time use.

1 Introduction

As data volumes increase, research success in a growing number of fields depends
on the ability to analyze the data rapidly. In scientific computing, this situation
is true both for data generated by simulations and instruments. In the context
of scientific instruments, for instance, techniques such as time-resolved micro-
tomography can produce three or more dimensional data at rates of terabytes
per day or more. Moreover, data generation rates are expected to increase with
advances in detector technologies and experimental techniques.
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The utility of such techniques is severely limited by the hours required to
analyze the resulting large datasets [3,11]. Scientists often want quasi-instant
feedback so that they can check results and adjust the experimental setup. For
instance, the x-ray tomography systems available at the imaging beamlines of the
Advanced Photon Source (APS, located at Argonne National Laboratory) are
routinely used in materials science applications, where high-resolution and fast
3D imaging are instrumental in extracting valuable information. Quasi-instant
feedback can help identify optimal experimental parameters (beamline condition
and sample environment such as temperature and pressure) and accelerate the
end-to-end scientific process.

In the absence of such quasi-real-time analysis, precious time on many expen-
sive instruments is used less effectively. In this paper, we focus on improving the
efficiency of tomographic image reconstruction, thus enhancing the turnaround
time of scientific workflows. Specifically, we address the following issues: (1) how
to enable efficient and parallel execution of tomographic reconstruction algo-
rithms and (2) how to ease the rapid development of reconstruction codes.

With regard to the first issue, different parallel reconstruction algorithms
have been proposed for multicore machines [1,14,17,23,24,26]. Although these
works provide reasonable reconstruction times with small datasets, they typi-
cally have scalability limitations and are not suitable for high-resolution large
datasets such as those generated at synchrotron x-ray light sources (e.g., APS).
Another effort in the same direction is to use accelerators such as GPUs [5,16,19].
Accelerators can provide high computational througput and enable the use of
compute-intensive algorithms that can operate on fewer projections (i.e., smaller
datasets) [12,20,21]. However, these devices can accommodate only a small frac-
tion of data and require repeated communication between host and device, which
can limit the performance.

With regard to the second issue, we note that reconstruction algorithms
might need to be developed according to different properties, including exper-
imental setup and data acquisition; point of interests in reconstruction object;
and total analysis or reconstruction time. These requirements result in various
application-specific algorithms that are difficult to modify and maintain [8,9,18].
There are several frameworks that provide workflows and algorithms for tomo-
graphic reconstruction [7,22]; however, these typically provide limited support
for easy implementation of reconstruction algorithms and parallelization of com-
putation. The data-intensive computing community has also developed frame-
works, such as Hadoop [2] and Spark [25], that ease the implementation of
parallel algorithms. Although these frameworks show good scalability, they are
not always suited for science applications that run on high-end clusters and
supercomputers.

To address these issues, we make the following contributions. First, we intro-
duce two parallelization techniques, per-slice and in-slice, for tomographic
reconstruction algorithms. Our in-slice technique provides fine-grained high-
performance parallelism using replicated reconstruction objects, which signifi-
cantly improves the conventional per-slice approach. Second, we extend and
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Fig. 1. Per-slice parallelization

optimize a MapReduce-like framework, MATE [13], to help implement these par-
allel methods efficiently. Third, we extensively evaluate the proposed methods
and middleware-based implementations (for different reconstruction algorithms
and real-world datasets). Our experimental results show that our middleware
can scale almost linearly up to 8 K cores and can achieve execution times on
32 K cores that are ≥95.4% less than those on 1 K cores. Moreover, the aver-
age reconstruction times are improved from ∼2 h (256 cores) to ∼1 min (32K
cores). To the best of our knowledge, this is the first study that examines the
parallelization of tomographic reconstruction algorithms at this scale.

2 Parallelization of Image Analysis and Reconstruction

In this section, we first discuss the organization of tomography datasets
and reconstruction approach; then we present two parallelization techniques,
per-slice and in-slice, for tomographic image reconstruction.

2.1 Tomography Datasets and Reconstruction

A tomography dataset is a set of 2D projections collected from different direc-
tions (θ) of a target sample. Each projection is a 2D array of floating-point
numbers, each representing the line integrals of a ray, namely, a ray-sum. There-
fore, a complete dataset is a 3D array in which the dimensions are projections,
rows, and columns, respectively.

The tomographic reconstruction algorithms that we consider in this paper
proceed in an iterative manner. At each iteration, rays are simulated according to
the ray-sum values and reconstructed data from the previous iteration. Since rays
in rows corresponding to different projections do not intersect, the reconstruction
of individual rows (also referred to as slices) can proceed in parallel. We further
discuss the tomographic image reconstruction and parallelization techniques in
the following sections.

2.2 Per-slice Parallel Reconstruction

Figure 1(a) illustrates the per-slice parallelization technique. We name the slices
in the tomography dataset IS = {is0, is1, ..., isn}, and denote the reconstructed
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Fig. 2. In-slice parallelization

object generated at the ith iteration as roi. Then, we can define a function R
that, for iteration i + 1, determines roi+1 = R(IS, roi) by computing each of
n output slices osj from the corresponding input slice isj and from roi, and
then setting roi+1 = {os0, os1, ..., osn}. Since there are no dependencies between
slices, each slice can be processed independently.

Figure 1(b) shows a sample reconstruction operation. Each arrow represents
a ray-sum value, with the direction of the arrow indicating the ray’s θ. Simulat-
ing the propagation of the colored rays using the R function leads to the updates
on the dotted cells in the output slice. Note that only the updates of the colored
rays are shown in the figure. Typically, for each iteration, all rays in the projec-
tion (input) dataset are simulated for rapid convergence to the real 3D image.
Although there are no dependencies between slices, different rays within a slice
can update the same cell in the output slice, a situation that results in a race
condition and limits the scalability of the per-slice parallelization technique.

2.3 In-slice Parallel Reconstruction

The per-slice technique can use only as much parallelism as there are slices in a
dataset. Thus, for example, a dataset with 2,048 slices cannot be reconstructed
with more than 2,048 parallel units (e.g. threads) and hence can take days to
finish, depending on dataset size, reconstruction algorithm, and computational
resources.

Our in-slice parallelization technique addresses this limitation by performing
parallel reconstruction for each ray, therefore it significantly decreases the gran-
ularity of parallelism and increases the number of threads that can be applied.
However, two obstacles must be addressed for in-slice parallelism: (1) different
rays in the same slice may update the same cell at the same time (i.e., race
conditions can occur); and (2) threads that operate on the same slice may need
to synchronize in order to compute the correct output slice.

One way to address race conditions is to use mutexes. However, the use of
mutexes can introduce significant overhead considering the many threads that
must perform update operations on the same slice. An alternative approach is to
replicate the assigned output slices (reconstruction objects) for each thread so
that reconstruction operations can proceed independently. This approach avoids
race conditions, and it achieves better performance than using (un)locks on
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individual reconstruction objects. Figure 2(a) illustrates how replication can be
used for parallel reconstruction. First, each row in an input slice is assigned
to a thread. Then, each thread simulates its assigned rays on the replicated
reconstruction object. For example, in the figure, T2 simulates rays p2,∗ and
updates results on its own replica. Similarly, other threads perform the same
operation on their own replicas.

We address the second issue by grouping and synchronizing threads according
to their assigned slices. For example, Fig. 2(b) shows how replicas (PR0, PR1 and
PR2) from threads (T0, T1 and T2) are combined in order to generate the correct
reconstructed slice. The combination function used may vary depending on the
reconstruction algorithm.

In-slice parallelization uses both replicas and combination operations to
enable fine-grained parallelism and large-scale 3D reconstruction of tomographic
images. However, these techniques require additional resources and introduce
overheads that are not required in per-slice parallelization.

3 Our MapReduce-like Middleware

We next describe the processing structure of our middleware and the methods
used to port the aforementioned parallelization techniques into this middleware.

Our middleware is built on top of MATE [13], a MapReduce-like middle-
ware that supports reduction-based processing structure [4]. The MATE mid-
dleware has been specialized to have a reconstruction object similar to the
reduction object. The processing structure of the middleware consists of three
main phases: local reconstruction (specialization of local reduction), partial com-
bination, and global combination. In this section, we first explain how data
management and distribution are performed in our system. Then, we provide
details about the processing structure of our middleware. Finally, we introduce
ordered-subsetting feature and its implementation.

Data Organization and Distribution: Typically, tomography datasets are
stored by using a scientific data format such as HDF5 [6]. Before beginning recon-
struction, our middleware reads metadata information from the input dataset
and allocates the resources required for the output dataset, setting the first
dimension of the 3D reconstruction object to the number of slices and the other
two dimensions to the number of columns. For instance, if the input dataset’s
dimensions are 360 × 2048 × 1024 (where 360 is the number of projections and
2048 and 1024 are the number of slices and columns, respectively), then the
reconstruction object’s dimensions are 2048 × 1024 × 1024.

Since the parallelization of reconstruction methods is based on slices, the
data distribution partitions the input dataset along its second dimension and the
3D reconstruction object along its first dimension. For example, if the system
has 128 processes, then the middleware partitions the input dataset and the
reconstruction object into subsets of size 360 ×16× 1024 and 16× 1024 × 1024,
respectively, where in each case 16 = 2048/128. It then assigns each portion
of the input data and reconstruction object to a process. If there are more
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Fig. 3. (a) Execution flow of our middleware; (b) pseudocode for in-slice parallelization

reconstruction processes/threads than there are slices, then portions of the same
slice can be distributed to multiple processes.

Reconstruction Object: With per-slice parallelization, our middleware creates
a single output object (portion of reconstruction object) in each process and lets
all the threads update it. Since each slice is an atomic unit in the per-slice
parallelization, threads can perform direct updates.

With in-slice parallelization, however, direct update on output object is not
a correct operation. Recall from Sect. 2.3 that each slice may be shared among
several threads, thus introducing the potential for race conditions. Our middle-
ware eliminates these race conditions by creating a replica of the output object
for each thread, which we refer to as ReconRep in Fig. 3(a). For example, assume
that the user sets the number of processes per node to 1 and the number of
threads per process to 32. In the aforementioned example, our middleware will
allocate a replica of the corresponding input slices (16 × 1024 × 1024) for each
thread. Therefore, each thread can perform reconstruction on its own replica.
This use of replicas provides the greatest reconstruction parallelization among
the threads, but does require additional synchronization. We quantify the costs
associated with this overhead in our experiments.

Local Reconstruction Phase: Local reconstruction corresponds to the map-
ping phase of the MapReduce processing structure. The user implements the
reconstruction algorithms in the local reconstruction function (LocalRecon in
Fig. 3(a)); our middleware applies this function to each assigned data chunk.
Each data chunk can be a set of slices (for per-slice parallelization) or a subset
of rays in a slice (for in-slice parallelization).

The local reconstruction function performs update operations using a 3-tuple,
(sliceID, offset, value), where sliceID refers to the slice, offset is the data point
on the slice, and value is the computed value. The usage of a 3-tuple is similar
to (key, value) pairs in MapReduce, where key corresponds to sliceID and offset.
Unlike MapReduce, however, the generated 3-tuple is being reduced/updated on
replicas right after its generation.
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Partial Combination Phase: After all the rays in the assigned data chunks
are processed, the threads that are working on the same slices synchronize and
combine their replicas by using a user-defined function (PartialCombination()
in Fig. 3(a)). Although this phase resembles the reduce phase in the MapReduce
processing structure, subtle yet important differences exist. First, there is no
barrier between the local reconstruction and partial reconstruction phases; thus,
idle time occurs only for the threads that need to synchronize. Second, the use
of replicas eliminates the need for shuffling, grouping, and sorting operations
used in MapReduce. This optimization has been shown to increase application
performance significantly [13]. The partial combination is required only for the
in-slice technique, since the per-slice technique does not need to use replicas.

Global Combination Phase: At the end of the partial combination phase,
processes generate the slices of the 3D image. If the reconstruction algorithm
uses neighboring slices, then the processes must exchange border slices. During
the global combination phase, processes exchange these slices and then continue
next iteration. This phase is required only for reconstruction algorithms that
utilize neighboring slices.

Once all the iterations are completed, the final reconstruction object (Recon[i]
in Fig. 3(a)) is generated. Our middleware, then, writes this reconstruction object
using parallel HDF5.

Figure 3(b) gives pseudocode for the in-slice parallelization technique. Our
middleware also supports ordered-subsetting, which lets users perform recon-
struction using a subset of the rays in the assigned projection dataset. For exam-
ple, assume that PSisi = {ps0, ps1, ..., psm} are the projection rows in slice isi.
If the GetOrderedRaySubset function is called with is = 0, i = 0 and dist = 2
values, it sets IR = {ps0, ps2, ps4, .., psm}. These projections’ rows are then
used for reconstruction. Here dist is used for setting the distances between pro-
jections, and i is the current iteration. The iteration number determines the
beginning index of the projection; that is, if i = 1 and dist = 2, then projections
IR = {ps1, ps3, .., psm−1} are processed.

While only a subset of the rays is processed in each iteration, the middle-
ware varies the beginning index of the projection so that all rays are eventually
processed. Ordered subsetting converges more rapidly to the 3D image than does
the sequential approach. After the target rays are determined, they are iteratively
reconstructed. Again, notice that the generated values are reduced in ReconRep
right after the LocalRecon function. Once all assigned rays are processed, Recon-
Reps from different threads are combined with PartialCombination. The Recon
object, then, is updated with GlobalCombine.

4 Experimental Results

We evaluated our middleware’s performance and scalability using four iterative
reconstruction algorithms and two real world datasets.
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The reconstruction algorithms are ported from TomoPy [10], a widely used
tomographic data processing and image reconstruction library. Specifically, we
used maximum likelihood expectation maximization (MLEM), simultaneous iter-
ative reconstruction technique (SIRT), penalized maximum likelihood (PML),
and accelerated PML reconstruction (APMLR). Among these algorithms, APMLR
requires adjacent slices, whereas MLEM, SIRT, and PML can perform reconstruction
using data points on the same slice (i.e., neighboring slices are not needed).

To evaluate our framework, we used two datasets, Seed and Hornby, from two
different APS beamlines. Seed is acquired from a seed of arabidopsis thaliana, a
flowering plant [9]. It consists of 720 projections, each with 2048 rows and 501
columns (i.e., 720 × 2048 × 501 single-precision floating-point numbers). Hornby
is an x-ray microtomography data from a shale sample [15]. It includes 360 projec-
tions, each with 2,048 rows and 1,024 columns. The reconstructed 3D images from
Seed and Hornby have dimensions 2048 × 501 × 501 and 2048 × 1024 × 1024,
respectively.

We conducted our experiments on Mira, a 10-petaflops IBM Blue Gene/Q
(BG/Q) supercomputer at the Argonne Leadership Computing Facility. Mira is
equipped with 49,125 nodes, each with 16 cores (1600 MHz PowerPC A2) and
16 GB memory. The nodes have access to a GPFS file system that provides 24 PB
of capacity and 240 GB/sec bandwidth. Moreover, the nodes are connected with a
5D torus proprietary network. 1

4.1 Multithreaded Performance

We first evaluated the performance of our middleware when using different num-
bers of threads on a single node. In these experiments, we processed 64 slices (i.e.,
rows) of the Seed dataset using the MLEM and APMLR reconstruction algorithms.

The MLEM column in Fig. 4 shows the single-iteration reconstruction time
(y-axis) for varying numbers of threads (x-axis). We observe the best performance
with 32 threads, achieving a speedup of 18.76 relative to 1 thread.

Fig. 4. Multithreaded reconstruction
times (in sec) of the Seed dataset on a
single BG/Q node.

The performance with 64 threads
is slightly slower, presumably because
of overheads resulting from insufficient
resources. Each BG/Q node can provide
hardware registers for up to four threads;
thus, the maximum number of supported
threads is 16 × 4 per node. Since these
threads share the same resources, we
observe a performance degradation after
32 threads.

The parallelization performance of
APMLR follows the same trend as MLEM.
Here, 32 threads provides the best per-
formance, achieving 18.38 speedup. We
1 For more information, see https://www.alcf.anl.gov/mira.

https://www.alcf.anl.gov/mira
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observe, however, that the execution time of APMLR is slightly longer than that of
MLEM. Although MLEM and APMLR use similar library functions from our middleware,
APMLR performs additional computation and communication operations because of
the use of adjacent slices, which introduces overhead during runtime.

4.2 Scalability

Wenext present the distributed-memory performance of ourmiddleware. For these
experiments, we used up to 2 K nodes (i.e., 32 K cores) and reconstructed both the
Seed and Hornby datasets. We set the total number of iterations to 10.

Fig. 5. Speedups achieved (y-axis) when reconstructing the Seed dataset on up to 32 K
cores (x-axis). Speedups are calculated with 256-core per-slice configurations.

Figure 5 shows the speedups achieved for the MLEM and PML algorithms on the
Seed dataset, when using the per-slice and in-slice parallelization techniques.
For these experiments, we used the 256-core per-slice timings as the baseline for
speedup calculations, and set the number of threads per core to 2, i.e., 32 threads
per node.

Notice that the per-slice technique has results for only up to 2 K cores, while
the in-slice technique has results for up to 32 K cores. This difference is because
the per-slice technique can create at most one thread per slice and the Seed
dataset has 2 K slices. Looking more closely, we see that per-slice performs sim-
ilarly to in-slice on up to 1 K cores but less well on 2 K cores. We attribute this
relative decline to the maximum 2 K threads that can be created by per-slice
for Seed. Thus, per-slice has 16 threads per BG/Q node when running on 2 K
cores—less than the 32 threads that we showed in Sect. 4.1 to provide the best CPU
utilization.

If we compare the 256- and 1 K-core timings of per-slice, we see speedups
of 3.99 and 3.98 for MLEM and PML, respectively. Since these speedups are close to
the ideal (4×), we conclude that our middleware introduces negligible scalability
overhead for these compute-intensive applications. The speedup for 2 K-core con-
figuration is 5.18 for both MLEM and PML, relative to the 256-core configuration.
The fact that the in-slice technique can scale to more than 2 K cores allows it to
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achieve far better reconstruction performance than does per-slice: at least 15.6×
faster (on 32 K cores) than per-slice (on 2 K cores) for both MLEM and PML.

Looking more closely, we see that in-slice achieves almost linear speedup on
up to 8 K cores. Beyond 8 K cores, however, the rate of speedup decreases. On 32 K
cores, for example, we observe a speedup of 85.6 for MLEM and 91.9 for PML applica-
tion relative to the times taken on 256 cores. We attribute these less-than-perfect
speedups to the short execution times (∼1 min.) with many threads; the time taken
by I/O; and the serial computation.

A closer look at the data shows that on up to 1 Kcores (inwhich both techniques
utilize 32 threads per node), per-slice performs slightly better than in-slice.
We attribute this difference to the need for in-slice to (1) synchronize threads
that operate on the same slice at the end of each iteration and (2) perform addi-
tional computation for correct calculation of intermediate reconstruction objects
(i.e., slices of 3D images). However, these overheads are small, ranging between
2.1% and 2.5%.

Fig. 6. Reconstruction times (in secs.) of
MLEM and PML with the Hornby dataset
using up to 32 K cores.

In Fig. 6, we show the execution times
for the same applications, MLEM and PML,
on the Hornby dataset, looking only
at the more scalable in-slice tech-
nique in this case. For this set of exper-
iments, we scaled the number of cores
from 1 K to 32 K. The scalability results
show a similar trend to that seen in the
previous experiments: an almost linear
speedup up to 8 K cores for both MLEM and
PML, increasing more slowly subsequently
because of increased I/O, synchroniza-
tion, and communication costs. The exe-
cution times on 32 K vs. 1 K cores show
speedups of 24.22 and 25.5 for MLEM and PML, respectively.

Since Hornby is larger and thus computationally more demanding than Seed,
we achieve better scalability than with the former dataset. Specifically, the
speedups observed on 32 K relative to 1 K cores of MLEM and PML for Seed are 21.94
and 23.51, respectively: 7.8–9.5 % less than those achieved with Hornby.

In Fig. 7, we show the performance achieved when we repeat the same experi-
ments with the APMLR reconstruction algorithm. The execution times (left y-axis)
and speedups (right y-axis) are presented in Fig. 7(a). Similar to the previous
experiments, speedups are close to linear for up to 8 K cores. Considering 32 K
vs. 1K cores, the speedup of APMLR is 24.77, which decreases the execution time
from over 1 h to less than 2.5 min. Note that the 1 h execution time is with 1 K cores;
thus, the estimated execution time of the same application on a single BG/Q node
(i.e., 16 cores) is more than 67 h.

In Fig. 7(b), we show the percentage times spent in five different activities
for the experiments of Fig. 7(a): (1) Reconstruction time, encompassing recon-
struction and update operations on replicas; (2) Intermediate computation, i.e.,
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Fig. 7. Performance achieved by the APMLR algorithm for the Hornby dataset, using
up to 32 K cores.

Inter. Computation, in which intermediate matrices are calculated for recon-
struction; (3) Combination, which is the sum of local and global combinations;
(4) Communication, in which neighbors are updated; and (5) I/O time, in which
data read and write operations are performed.

We see that Reconstruction dominates overall execution time for all core
counts. The fraction of time spent in I/O increases as the number of cores grows;
this result is not surprising since increasing the number of cores decreases per-core
computation time and increases synchronization costs. Communication also does
not scale well, since it requires constant time for updating neighbors. Moreover, the
fraction of time spent in Inter. Computation and Combination remains roughly
the same with increasing number of cores; the reason is that since these phases
process data structures which are tightly coupled with the size of reconstruction
objects, they show good parallelization performance.

4.3 Ordered-Subsetting Performance

Fig. 8. Reconstruction times (in secs) of
APMLR and SIRT using different dis-
tances. (Hornby dataset; # cores=4 K).

In our next experiments, we evaluate the
performance of the ordered-subsetting
feature of our middleware. We apply
the APMLR and SIRT reconstruction algo-
rithms to the Hornby dataset with differ-
ent distance parameters (d) on 4 K cores
and for 10 iterations. In contrast to previ-
ous experiments, however, these are par-
tial iterations; that is, only a portion of
the assigned data is processed.

Figure 8 shows our results. We see
that execution times improve with
increasing distance configurations for both
APMLR and SIRT algorithms. Since the
amount of processed data directly affects
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the overall execution times, the partial iteration decreases the reconstruction
times. For example, if we set d = 2, then each thread processes every other projec-
tion in an assigned slice. This effectively decreases the amount of processed input
data by half (for each iteration). We note, however, that the reconstruction is per-
formed on the same (full) output data; that is, the computational complexity of
updating the 3D object is still high.

Comparing d = 1 and d = 32, we observe 4.8 and 9.7 speedups for APMLR and
SIRT, respectively. Although the amount of processed data is 1/32 of the original
for d = 32 configuration, update and reconstruction operations on 3D object still
involve significant computation. Moreover, the strided access to the input data
degrades the data locality. These effects are more visible in the case of the APMLR
application, in which reconstruction also requires additional synchronization and
communication.

The main advantage of using ordered-subsetting is the high image quality that
it achieves with only a small number of full iterations. For example, 10 partial iter-
ations with ordered-subsetting (where d = 2) provide better image quality than do
five full iterations without ordered-subsetting for SIRT (normal execution). Note
that 10 partial iterations correspond to 5 full iterations where d = 2. The ordered-
subsetting method is being used extensively to improve reconstruction times and
3D image quality [3].

5 Conclusion

We have described the design and implementation of parallelization methods
for tomographic reconstruction algorithms on high-performance clusters. We
presented two parallel reconstruction techniques: per-slice and in-slice.
The in-slice technique, which provides fine-grained high-performance paral-
lelism using replicated reconstruction objects, represents a significant improvement
over the conventional per-slice approach. We integrated the per-slice and
in-slice techniques in a lightweight MapReduce-like middleware and extended
the middleware to make it easy to implement different reconstruction algorithms.

We evaluated the techniques and middleware using four reconstruction
algorithms and two large datasets. Our results show that our reconstruction
approaches can achieve close to perfect speedups on up to 8 K cores (512 BG/Q
nodes). Moreover, the execution times of the 32K-core configurations (2 K BG/Q
nodes) show ≥95.4% reduction in execution time relative to a 1K-core configu-
ration. This acceleration enables near-real-time reconstruction of large datasets,
such as those generated at synchrotron x-ray light sources.
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Abstract. Virtual machines (VM) are used in cloud computing environ-
ments to isolate different software. Virtualization enables live migration,
and thus dynamic VM consolidation. This possibility can be used to
reduce power consumption in the cloud. However, consolidation in cloud
environments is limited due to reliance on VMs, mainly due to their mem-
ory overhead. For instance, over a 4-month period in a real cloud located
in Grenoble (France), we observed that 805 VMs used less than 12 % of
the CPU (of the active physical machines). This paper presents a solu-
tion introducing dynamic software consolidation. Software consolidation
makes it possible to dynamically collocate several software applications
on the same VM to reduce the number of VMs used. This approach can
be combined with VM consolidation which collocates multiple VMs on
a reduced number of physical machines. Software consolidation can be
used in a private cloud to reduce power consumption, or by a client of
a public cloud to reduce the number of VMs used, thus reducing costs.
The evaluation was performed using both the SPECjms2007 benchmark
and an enterprise LAMP benchmark on both a VMware private cloud
and Amazon EC2 public cloud. The results show that our approach can
reduce the energy consumed in our private cloud by about 40 % and the
charge for VMs on Amazon EC2 by about 40.5 %.

Keywords: Cloud · Consolidation · Energy saving · Virtualization

1 Introduction

In recent years, cloud computing has emerged as one of the best solutions to
host applications for companies or individual users. For these cloud customers
(hereafter called clients), its pay-per-use model reduces the cost compared to
c© Springer-Verlag Berlin Heidelberg 2015
J.L. Träff et al. (Eds.): Euro-Par 2015, LNCS 9233, pp. 305–316, 2015.
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using internal IT resources. For cloud providers (hereafter called providers) one
of the main challenges is limiting power consumption in their data centers.
In 2010, for example, data centers consumed approximately 1.1–1.5 % of the
world’s energy [14]. Power consumption can be minimized by limiting the num-
ber of active physical machines (PM) through sharing the same PM between
several software applications and providing dynamic software consolidation (fill-
ing unused resources by grouping software). This helps to balance the variable
workload due to the departure of some software.

In this paper, we considered a SaaS/PaaS-based cloud model (e.g.
RightScale [5]). This type of cloud provides a fully customizable environment,
allowing clients, e.g. companies, to focus on applications. The cloud provider
offers a software catalogue. Clients can select an application and request its
start in a virtualized data center. The data center may belong either to the
cloud provider (private cloud), or be part of a public cloud; alternatively it can
be a mixture of the two (hybrid cloud). The cloud provider is responsible for
managing the clients’ software (scalability, highly-available, failover, etc.) while
efficiently managing resources to reduce data center costs: power consumption
when relying on its own private cloud, or resource charged for when using a
public cloud.

Advances in virtualization make transparent dynamic consolidation possible
in the cloud. Based on this technology, the cloud runs each software application
on a separate virtual machine (VM). Many studies [12,16,23] have described
algorithms providing software consolidation through the consolidation of VMs.
However, this approach is not sufficient since an infinite number of VMs cannot
be packed into a single PM, even when the VMs are underused and the PM has
sufficient computation power. Indeed, as argued by [20], VM packing is limited
by memory. In this paper, we therefore propose a solution consolidating
software onto VMs. This solution is complementary to VM consoli-
dation. Rather than dedicating one VM to each software, we propose that the
same VM be shared between several software applications. This will fill the gaps
remaining inside the VM, as mentioned earlier. This strategy also reduces
the total number of VMs. This is very important in a commercial
cloud to reduce the charge for VMs.

Software consolidation raises two main challenges that need to be addressed:

– Software isolation. Isolation ensures that if a software application fails it does
not compromise the execution of another software application, it also stops
software from “stealing” the resources allocated to another application.

– Software migration. Migration involves moving software from its current node
to another node without interrupting the service offered by the software, and
while avoiding Service Level Agreement (SLA) violations on the migrated
software.

In this paper we focus only on the live software migration and consolidation. For
software isolation, we rely on Docker [2]. We present a solution to consolidate
software on VMs (Sect. 2) based on a Constraints Programming (CP) solver.
The genericity of the solution allows the integration of a range of
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live software migration mechanisms since this operation is specific to
software. We evaluated our approach using the SPECjms2007 benchmark [6]
and an enterprise Internet application benchmark (Sect. 4) in the context of a
SaaS offering messaging and Internet software on a private VMware cloud and on
the Amazon EC2 cloud. These evaluations showed that: (1) our approach results
in reduced power consumption and costs; and (2) the efficient live migration
algorithms implemented for JMS messaging and Internet web servers are viable.
For the specific workload assessed, our solution reduces the power consumption
in our private cloud by about 40 % when software consolidation is combined
with VM consolidation. Running the same workload on Amazon EC2 leads to a
reduction in VMs charged of about 40.5 %. The paper ends by presenting related
work in Sect. 5 and a conclusion is provided in Sect. 6.

2 Software Consolidation

Like VMs, software consolidation is an NP-hard [13] problem. We presents a
solution that allows software consolidation for SaaS/PaaS platform.

2.1 Solution Overview

We focus on software consolidation and migration. VM placement at start time
is part of the consolidation problem. Figure 1 presents the key components of
the system studied. Applications are isolated within VMs using Docker contain-
ers [2]. QuotaComputer determines the amount of resources required by each
application. MonitoringEngine is responsible for gathering statistics for both
VM and software from all MonitoringAgents. The ConsolidationManager imple-
ments an online, reactive consolidation algorithm which acts as an infinite loop.
It periodically:

1. Gets VMs and software status (quota consumption, which is an average of
the most recent values) from the MonitoringEngine.

2. Checks if there are applications which need more resources and provides for
them (relocation Algorithm 1).

3. Computes software assignment on VMs to minimize the number of VMs
required to support all the software running. It also computes the recon-
figuration plan (a set of software migrations) that must be performed for the
ideal assignment to be achieved (Sect. 2.2).

4. And finally, runs (through the LocalManager) the reconfiguration plan.

At the end of each loop, VMs not running any software are terminated, either
immediately in the case of a private cloud, or when its uptime is close to a
multiple of Θ (the payment time unit) in a public cloud. In the latter case, a
timer is started for each VM to be terminated so that it stops it before a new
payment time unit starts. The timer is disabled when the VM is eligible to host
a running application.

Before presenting our solution in detail, there follows a list of the notations
used:
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– S = {S1,S2,...,Sm} is the set of software types offered by the cloud.
– S̄i = {Sk,...} is the set of software, instances of which are collocate-able with

an instance of Si. This can be used to protect sensitive software from other
potentially dangerous applications.

– For each VM vmi, we consider three types of resources: cpu (vmu
i ), memory

(vmm
i ) and IO bandwidth (vmo

i ).
– vmγ

i is the cost of running the VM for a payment time unit Θ. This is con-
sidered when the SaaS/PaaS is placed on a public cloud.

– vmst
i is the start time of vmi.

– An instantiated VM is assigned an identifier (an integer). svm
i is the identifier

of the VM running software si.
– len(vmi) is the number of applications on vmi.
– Like VMware does for VMs, we consider two levels of resource reservation for

a software: the minimum quota and the maximum quota. sumin
i and sumax

i are,
respectively, the minimum and the maximum cpu (or memory or IO) quota.
The software starts with s∗min

i and increases stepwise until it reaches s∗max
i .

s∗cur
i denotes the current quota. Note that * is u, m or o.

– sT
i is the acceptable service degradation threshold defined at start time for

software si. It corresponds to its SLA.

The relocation algorithm described in Algorithm 1, checks if the current
resources available for each application are insufficient, excessive or sufficient.
If not, the software acquires more resources within its maximum quota. This
operation can cause the software to be relocated to another VM (an existing one
or a new one). On the other hand, if the software is wasting resources, its quota is
reduced; the algorithm includes a clause to avoid the frequent transitions (yo-yo
effect). The choice of the destination VM (on which software is to be relocated)
does not need to be optimal. Indeed, the consolidation manager will correct the
placement. This will be discussed in the next section, where the formalization of
the software placement problem as a Constraint Satisfaction Problem (CSP) [9]
is presented.

2.2 Software Placement as a CSP

Definition : A CSP [9], C, is a set of constraints, L, acting on a set of variables,
Δ = {A1, A2, ..., An}, each of which has a finite domain of possible values, Di.
A solution to L is an instantiation of all of the variables in Δ such that all of
the constraints in C are satisfied.

We used the ChocoCP library [19] to solve CSP. Choco aims to minimize or
maximize the value of a single variable, while respecting a CSP definition. To
do this, it uses an exhaustive search based on a depth-first search. We used two
CSPs to resolve the consolidation problem. The first CSP was used to deter-
mine the minimum number of VMs nnew needed to run all software; we call
this the MinVMToUse problem. But nnew can be provided by several configu-
rations (software mapping onto VMs). Therefore, the second CSP chooses the
appropriate configuration and generates the reconfiguration plan to reach that
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Fig. 1. Architecture of our software consolidation system

Algorithm 1. Software relocation
Begin

1: for each software si of the SaaS/PaaS do
2: for each resource type r (u, m, or o) do
3: if srcur

i is insufficient and srcur
i < srmax

i then
4: Increase the quota of si

5: else
6: if srcur

i is excessive and srcur
i �= s

rmin
i then

7: if The last quota decrease time is enough to avoid yo − yo effect then
8: Decrease the quota of si

9: end if
10: end if
11: end if
12: end for
13: if The actual V M of si does not have enough resources for − the new quota then
14: DestinationVM← The Best-Fit VM which can host si with its new quota
15: if DestinationV M == NULL then
16: DestinationVM←Allocate a new VM
17: else
18: Disable any timer on DestinationVM
19: end if
20: Compute the docker container for si on DestinationVM
21: Migrate si to DestinationV M
22: else
23: Update the docker container for si on its current VM
24: end if
25: end for

End
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configuration; this is called the RightConfiguration problem. We modeled these
problems as a mixed-integer non-linear optimization problem. The inputs are a
list of VMs with their total resources, a list of software (for each VM) with their
current resource quota and status (service level they provide).

The MinVMToUse Problem. If no deployment request has been submitted,
the number of VMs in use after application of the ConsolidationManager should
decrease or remain the same. This should be done while avoiding resource over
commitment. This is expressed in the following inequality:

∑
sucur

j ≤ vmu
i ∧

∑
smcur

j ≤ vmm
i ∧

∑
socur

j ≤ vmo
i , (1)

where svm
j = i, ∀ V M vmi

We also allow the user to specify collocation requirements for each software. The
following equation expresses that:

| svm
i − svm

j | +Col(si, sj) �= 0, ∀ couple of software (si, sj), i �= j (2)

where Col(si, sj) =

{
1 if si and sj are collocate − able

0 otherwise

The variable X minimizing the number of VMs is defined as follows:

X =
∑

((len(vmi) == 0)?0 : 1) (3)

Speeding Up the Consolidation Process. We improved the consolidation
process to reduce the solver execution time. First, we reduced the search domain
for X by bounding it. In the best case, the minimum number of VMs is the sum of
the resource quotas needed by all the software divided by the resource capacity
of the biggest VM (we choose the most restrictive resource type). In the worst
case, there will be no consolidation. This improvement is formalized as follows:

max(

⌈ ∑
sucur

i

max(vmu
j )

⌉

,

⌈ ∑
smcur

i

max(vmm
j )

⌉

,

⌈ ∑
socur

i

max(vmo
j)

⌉

) ≤ X ≤ n, (4)

where n is the current number of VMs.
Second, some VMs or software may be equivalent in terms of resources or

collocation constraints. If the resources offered by a VM, vmi, are insufficient to
host software sj , then they are also insufficient to host any software sk which has
the same requirements. In addition, software sj cannot be hosted by any other
VM vmk having the same characteristics as vmi. With regard to the collocation
constraint, if a VM, vmi, runs software sj which cannot be collocated with
software sk, then vmi cannot host any software of the same type as sk.
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The RightConfiguration Problem. For correct configuration, the solver only
considers configurations using the number of VMs determined by the first prob-
lem. The reconfiguration operation likely to affect the software SLA is live migra-
tion. The impact of this process could be a degradation of the service offered by
the migrated software. Three factors affect live migration: network utilization,
remaining computation power on both source and destination VM, and efficiency
of the implementation of the live migration itself. Considering this, we call sI

i

the function calculating the impact of migrating software si for a given triplet
of factors. Thus, if se

i represents the current service level provided by si before
migration, then se

i *sI
i is the service level during migration. We define the cost

of migrating a software si as sΔ
i = se

i − se
i ∗ sI

i . The correct configuration is the
one minimizing K,

K =
∑

sΔ
i , ∀ software si to be migrated (5)

while avoiding SLA violations:

se
i ∗ sI

i < sT
i , ∀ software si to be migrated (6)

3 Use Cases

This work was conducted conjointly with two industrial groups: Scale Agent and
Eolas. The former provides an implementation of the JMS specification, while
the latter is a SaaS provider offering Internet services. We used our solution to
manage a SaaS offering both a messaging service (such as IronMQ [3]) provided
by Joram [4] software, and an Internet service based on a LAMP architecture.

Migrating a running software serving requests raises two main challenges that
we had to address:

– (C1) Avoid loss of requests and state during migration.
– (C2) Make the migrated software available and accessible on the destination

node after migration. This should be transparent for the clients.

Due to space limitation for this article, we present only the migration algorithm
for the JMS server. Joram ensures that any message will reach its addressee
within a configurable time window. We relied on this feature to complete the
initial part of the first challenge (C1). For the second part of (C1), at runtime
a Joram server keeps a persistence basis containing its entire state: processing
messages, messages in transit, and processed messages. Therefore, a Joram server
can be made available with the same state on the destination node by copying
this basis from the source node to the destination node. With regard to (C2), in
contrast to live migration of VMs, where the migrated VM keeps its IP address
on the destination node, migrating software results in a new IP address (the
IP address of the destination node). How can remote clients be transparently
informed of this new address? In our system this is resolved by forcing clients to
use the DNS name when dealing with the Joram servers. Thus, the accessibility
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of the migrated server is provided by (1) dynamically updating the DNS server
and (2) rebinding the JMS client to the DNS server. This is transparent to
the client because the JMS client is implemented to automatically resolve new
addresses after several attempts.

Immediate copy of the persistence basis can have an important impact on
the service offered by the migrated Joram server when this file is very large.
To avoid this problem, we have optimized the algorithm to transmit the log
file block by block to the destination node. This optimization was inspired by
the copy-on-write mechanism used for live VM migration. We customized the
Joram implementation to dynamically integrate and evolve its state at runtime
when receiving new persistence information. A timer, which is triggered at the
beginning of the migration process, ends the copy to limit the duration of the
whole process. This optimization is currently being integrated into the official
implementation of Joram on the OW2 [4] open source platform.

4 Evaluations

We evaluated our solution to show the benefits of software consolidation on
top of VM consolidation. These benefits are shown in terms of energy and cost
savings. The efficiency and scalability of CSP-based consolidation methods were
evaluated in [10,12].

4.1 Testbed Overview

The cloud testbed integrates both a private and a public platform. Our private
cloud is a part of the Eolas data center. It is composed of 8 DELL PowerEdge
R510 equipped with Xeon E5645 2.40 Ghz processors (one with a 12-core CPU,
and the others with 8-core CPU), 32 Gb memory and 2 NICs at 1 Gbps. They
are connected through a gigabyte network switch. The virtualized layer is pro-
vided by VMware VCenter 5.1.0 (ESXi 5) with the VM consolidation module
DRS/DPM [1] enabled: a PM for the VCenter, a PM with an NFS server to
host VM images and user sessions, and 5 PMs as ESXi to host VMs. The last
PM hosts our system (including the DNS server) and the agents simulating the
Joram and web server users. The cloud provides a single type of VM: 1 vcpu
running at 2.4 GHz and 1 Gb memory. The public cloud used was Amazon EC2
in the M1, medium VM, configuration.

SPECjms2007 [6] was used to bench the Joram servers. It includes seven
interactions. Thus 7 Joram servers (7 VMs) are needed to run it. The second
use case was based on real traces of the Internet service (LAMP) offered by the
Eolas SaaS.

4.2 Power Saving in the Private Cloud

We simultaneously ran 15 SPECJms2007 and 6 LAMP scenarios (up to 37 VMs)
in two situations. In the first situation (noted WSC (With Software Consolida-
tion)) we ran the experiment with both software and VM consolidation enabled,
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Fig. 2. Power saving in the private cloud: Utilization of PMs

while in the second situation (noted WOSC (WithOut Software Consolidation))
we disabled software consolidation (but maintained VM consolidation). The sce-
narios were configured to provide a varied workload over 30 h: a mix of constant,
ascending and descending phases. Figure 2 presents (1) the occupancy (in terms
of the number of VMs) of each PM in the private cloud, and (2) the number
of PMs in use during the 25 h of observation. We see that the first situation
results in 3 PMs (PM2, PM3 and PM5) being freed, while 1 PM (PM2) was
freed in the second situation. Software consolidation accelerates VM consolida-
tion. The bottom right curve in Fig. 2 shows that this improvement represents
an approximately 40 % power saving with this particular workload.

4.3 Cost Saving in a Public Cloud

We repeated the previous experiments with VMs configured to run for an hour
(before termination because they were empty) on Amazon EC2. We used M1,
medium VMs instances, which are charged at $0.120 per VM per hour. Figure 3
presents the total number of VMs used over the 25 h of observation, and the
total cost of the experiments. The number of VMs is seen to drastically decrease
thanks to software consolidation, resulting in an approximate 40.5 % saving: from
about $1300 (without software consolidation) to $800 (with software consolida-
tion).

5 Related Work

Memory Footprint Improvements. Significant research has been devoted to
improving workload consolidation in data centers. Some studies have investi-
gated reducing the VM memory footprint to increase the VMs’ consolidation,
when a VM is dedicated to a single software. Among these, memory compres-
sion and memory over commitment ([8,15,22]) are very promising. In the same
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Fig. 3. Cost saving on Amazon EC2: (top) nb. of VMs per hour, (bottom) VMs charged

vein, [21] extends the VM ballooning technique to software to increase the den-
sity of software collocation on the same VM. [7] presented VSwapper, a guest-
agnostic solution to reduce the effect of memory ballooning. Xen offers what it
called “stub domain”1. This is a lightweight VM which requires very few memory
(about 32 MB) for its execution. As our solution, all these works try do mini-
mize the footprint of a VM in order to increase the number of VMs that can
be collocated on top of the same physical machine. Therefore, they result to the
same result as us in terms of energy saving. However, they do not minimize the
total number of VMs as we do in order to reduce VMs charged for the clients
when considering of a commercial cloud.

VM Consolidation Algorithms. In our previous work [23], we proposed a couple
of this sort of VM relocation and collocation algorithms. [18] treats the VMs
consolidation problem using a heuristic algorithm which minimizes the number
of live migrations in the reconfiguration plan. An SLA-aware VMs consolidation
system is presented in [11]. Like with our proposal, it formalizes the problem
of minimizing the operating cost for a private cloud while also minimizing SLA
violations for services offered by software. Our formalization can be extended
by considering this work. [17] presents a VM consolidation strategy based on a
predictive approach. Since the placement problem is NP-hard, it is not possible
to develop a solution running within an acceptable time. [24] presents DejaVu,
a consolidation system which takes into consideration the interference between

1 http://wiki.xen.org/wiki/StubDom.

http://wiki.xen.org/wiki/StubDom
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consolidated VMs. Based on hardware counters, it proposes a metric for char-
acterizing workloads which are collocatable. In this paper, we do not focus on
VM consolidation. We bring the same idea at software level (software within
VMs). Therefore, any VM consolidation algorithm presented in this section can
be applied to software consolidation. In this paper, we base on a solver to resolve
the problem.

Software Consolidation. The main problem with previous solutions is that they
are limited by the footprint of the VMs consolidated (they are all operating
systems). Execution of a VM requires a set of minimum resources, even if the
application it runs is idle. Thus, we propose a solution which dynamically packs
software into VMs to effectively use the overall VM resources while respecting
the individual requirements of the different software applications. With current
knowledge, [10] is the only previous work that studies dynamic software con-
solidation on the same OS; however, it does not rely on VMs. [10] focuses on
the MySQL database software and provides a live migration algorithm for that.
This algorithm can be plugged into our framework. [10] (as well as Entropy [12])
describes a consolidation algorithm based on a CSP. Thus, no previous study
has investigated software consolidation onto VMs. In this paper, we developed a
working prototype and showed that it can achieve high VM utilization to provide
cost and power-saving benefits.

6 Conclusion

In this paper we proposed a solution to consolidate software onto VMs to reduce
power consumption in a private cloud and the number of VMs charged for in
a public cloud. We focused on the algorithms for live migration and consolida-
tion. Although the proposed solution can integrate other live software migration
algorithms, we have provided a migration algorithm for JMS messaging. The
consolidation algorithm is based on a Constraint Satisfaction Problem (CSP)
approach. Evaluations with realistic benchmarks on a messaging and web appli-
cations SaaS cloud showed that our solution (1) reduces the power consumed by
our industrial cloud partner by about 40 % when combined with VM consolida-
tion, and (2) reduces the charge for VMs used on Amazon EC2 by about 40.5 %.
Future work will include extended analysis of how best to coordinate software
consolidation on VMs with VM consolidation on physical machines in order to
further improve power gains.
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national program “Investissements d’Avenir IRT Nanoelec” ANR-10-AIRT-05 and
Institut Universitaire de France.
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Abstract. Advanced Virtual Machines placement policies are evaluated
either using limited scale in-vivo experiments or ad hoc simulator tech-
niques. These validation methodologies are unsatisfactory. First they do
not model precisely enough real production platforms (size, workload
representativeness, etc.). Second, they do not enable the fair comparison
of different approaches.

To resolve these issues, we propose VMPlaceS, a dedicated simula-
tion framework to perform in-depth investigations and fair comparisons
of VM placement algorithms. Built on top of SimGrid, our framework
provides programming support to ease the implementation of placement
algorithms and runtime support dedicated to load injection and exe-
cution trace analysis. It supports a large set of parameters enabling
researchers to design simulations representative of a large space of real-
world scenarios. We also report on a comparison using VMPlaceS of
three classes of placement algorithms: centralized, hierarchical and fully-
distributed ones.

1 Introduction

Most of the popular Cloud Computing (CC) management systems [7,16,17], or
IaaS toolkits [14], rely on elementary virtual machine (VM) placement policies
that prevent them from maximizing the usage of CC resources while guarantee-
ing VM resource requirements as defined by Service Level Agreements (SLAs).
Typically, a batch scheduling approach is used: VMs are statically allocated to
physical machines according to user requests. Such static policies are clearly sub-
optimal, because users often overestimate their needs and the effective resource
requirements of a VM may significantly vary during its lifetime [2].

An important impediment to the adoption of more advanced strategies such
as dynamic consolidation, load balancing and other SLA-enforcing algorithms
developed by the academic community [8,10,19,22,23] is related to the experi-
mental processes used for their validation: most VM placement proposals have
been evaluated either using ad hoc simulators or small in-vivo (i.e., real-world)
experiments. These methods are not accurate and not representative enough
to (i) ensure their correctness on real platforms and (ii) perform fair compar-
isons between them. Analyzing proposals for VM placement on representative
testbeds in terms of scalability, reliability and varying workload changes would
c© Springer-Verlag Berlin Heidelberg 2015
J.L. Träff et al. (Eds.): Euro-Par 2015, LNCS 9233, pp. 317–329, 2015.
DOI: 10.1007/978-3-662-48096-0 25
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definitely be the most rigorous way to support their development for CC produc-
tion infrastructures. However, in-vivo experiments, if they can be executed at
all, are always expensive and tedious to perform (see [1] for a recent reference).

In this article, we propose VMPlaceS, a dedicated simulation framework to
perform in-depth investigations of VM placement algorithms and compare them
in a fair way. To cope with real conditions such as the increasing scale of modern
data centers, as well as the workload dynamicity and elasticity characteristics
that are specific to the CC paradigm, VMPlaceS allows users to study large-scale
scenarios that involve thousands of VMs, each executing a specific workload
that evolves during the simulation. To illustrate the relevance of VMPlaceS,
we have implemented and analyzed three well-known approaches: Entropy [10],
Snooze [8], and DVMS [19]. We chose these three systems as they represent
three classes of placement algorithms: Entropy is an instance of a centralized
model, Snooze of a hierarchical one and DVMS of a fully distributed one. Using
VMPlaceS, we compare the scalability and reactivity (i.e., the time to solve SLA
violations) of the strategies — a contribution of its own. Our results also reveal
the importance of the duration of the reconfiguration phase (i.e., the step where
VMs are relocated throughout the infrastructure) compared to the computation
phase (i.e., the step where the scheduler solves the VMPP). We believe that
VMPlaceS will be beneficial to a large number of researchers in the field of
CC as it enables them to analyze the main characteristics of a new proposal,
allowing in vivo experiments to be restricted to placement mechanisms that have
the potential to handle CC production infrastructures.

The rest of the article is organized as follow. Section 2 gives an overview
of the SimGrid framework on which our proposal is built. Section 3 introduces
VMPlaceS. Entropy, Snooze and DVMS are briefly presented in Sect. 4 and eval-
uated in Sect. 5. Sections 6 and 7 present, respectively, related work and a con-
clusion.

2 Simgrid, a Generic Toolkit to Build Simulators

SimGrid is a toolkit for the simulation of potentially complex algorithms exe-
cuted on large-scale distributed systems [6]. To perform simulations, users
develop a program, and define a platform and a deployment files. The program
typically leverages SimGrid’s MSG API that allows end users to create and
execute SimGrid abstractions such as processes, tasks, VMs and network com-
munications. The platform file provides the physical description of all resources
that are the object of the simulation. The deployment file is used to launch the
different SimGrid processes of the program on the simulated nodes. Finally, the
simulation is orchestrated by the SimGrid engine that internally relies on a con-
straint solver to assign the CPU/network resources during the entire simulation.

We chose to base VMPlaceS on SimGrid since (i) the latter’s relevance
in terms of performance and validity has already been demonstrated [20] and
(ii) because it has been recently extended to integrate VM abstractions and a
live migration model [11]. In addition to enabling researchers to control VMs in
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the same manner as in the real world (e.g., create/destroy VMs; start/shutdown,
suspend/resume and migrate them), the live migration model provided by Sim-
Grid is the only one that successfully determines correctly the time and the
resulting network traffic of a migration by taking into account the competition
arising in the presence of resource sharing and the memory refresh rate. These
two capabilities were mandatory to build VMPlaceS.

3 VM Placement Simulator

The aim of VMPlaceS is twofold: (i) to relieve researchers of the burden of
dealing with VM creations and workload fluctuations when they evaluate new
VM placement algorithms and (ii) to offer the possibility to compare them.

Overview. VMPlaceS has been implemented in Java by leveraging the SimGrid
MSG API. Although Java has an impact on the efficiency of SimGrid, we believe
its use is acceptable because Java offers important benefits to researchers for the
implementation of advanced scheduling strategies, notably concerning the ease
of implementation of new strategies. As examples, we implemented the Snooze
proposal in Java and the DVMS proposal using Scala and Java.

Fig. 1. VMPlaceS’s Workflow Gray parts
correspond to the generic code while the
white one must be provided by end-users.

VMPlaceS performs a simulation in
three phases, see Fig. 1: (i) initializa-
tion, (ii) injection and (iii) trace analy-
sis. The initialization phase corresponds
to the creation of the environment, the
VMs and the generation of an event
queue. The simulation is performed by
at least two SimGrid processes, one exe-
cuting the injector, the generic part of
the framework which is in charge of
injecting the events during the execu-
tion of the simulation, and a second one
executing the to-be-simulated schedul-
ing algorithm. The latter analyzes the
collected traces in order to gather the
results of the simulation, notably by means of the generation of figures repre-
senting, e.g., resource usage statistics.

Researchers develop their scheduling algorithm using the SimGrid MSG API
and a more abstract interface that is provided by VMPlaceS and consists of the
classes XHost, XVM and SimulatorManager. The two former classes respectively
extend SimGrid’s Host and VM abstractions while the latter controls the inter-
actions between the different components of the simulator. Through these three
classes users can inspect, at any time, the current state of the infrastructure (i.e.,
the load of a host/VM, the number of VMs hosted on the whole infrastructure
or on a particular host, check whether a host is overloaded, etc.).
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Initialization Phase. VMPlaceS first creates n VMs and assigns them in a
round-robin manner to the first p hosts defined in the platform file. The default
platform file corresponds to a cluster of h + s hosts, where h corresponds to the
number of hosting nodes and s to the number of services nodes. The values n, h
and s constitute input parameters of the simulations (specified in a Java property
file). These hosts are organized in form of topologies, a cluster topology being
the most common one. It is possible, however, to define more complex platforms
to simulate, for instance, federated data center scenarios.

Each VM is created based on one of the predefined VM classes. A VM class
corresponds to a template specifying the VM attributes and its memory foot-
print. It is defined in terms of five parameters: the number of cores nb cpus,
the size of the memory ramsize, the network bandwidth net bw, the maxi-
mum bandwidth available mig speed and the maximum memory update speed
mem speed available when the VM is consuming 100 % of its CPU resources.
Available classes are defined in a text file that is modifyable by users. As pointed
out in Sect. 2, the memory update speed is a critical parameter that governs the
migration time as well as the amount of transferred data. VM classes provide
means to simulate arbitrary kinds of workload (e.g., memory-intensive ones).

All VMs start with a CPU consumption of 0 that will evolve during the sim-
ulation depending on the injected load as explained below. Once the creation
and the assignment of VMs completed, VMPlaceS spawns at least two SimGrid
processes, the injector and the launcher of the selected scheduler. At its start
the injector creates an event queue that will be consumed during the second
phase of the simulation. Currently, VMPlaceS supports CPU load change events
(only). The event queue is generated in order to change the load of each VM
every t seconds on average. t is a random variable that follows an exponential
distribution with rate parameter λt while the CPU load of a VM evolves accord-
ing to a Gaussian distribution defined by a given mean (μ) as well as a given
standard deviation (σ). t, μ and σ are provided as input parameters of a simula-
tion. Furthermore, each random process used in VMPlaceS is initialized with a
seed that is defined in a configuration file. This way, we can ensure that different
simulations are reproducible and may be used to establish fair comparisons.

Finally, we highlight that adding new events can be done by simply defin-
ing new event Java classes implementing the InjectorEvent interface and by
adding the code in charge of generating the corresponding events that are then
handled similarly to the CPU Load ones. As an example, the next release of
VMPlaceS will integrate node apparition/removal events that will be used to
simulate crashes.

Injector Phase. Once the VMs and the global event queue are ready, the
evaluation of the scheduling mechanism can start. First, the injector process
iteratively consumes the different events. Changing the load of a VM corresponds
to the creation and the assignment of a new SimGrid task in the VM. This new
task has a direct impact on the time that will be needed to migrate the VM as it
increases or decreases the current CPU load and thus its memory update speed.
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Based on the scheduler decisions, VMs will be suspended/resumed or relo-
cated on the available hosts. Users must implement the algorithm in charge of
solving the VMPP but also the code in charge of applying reconfiguration plans
using methods from the SimulatorManager class. This step is essential as the
reconfiguration cost is a key element of dynamic placement systems.

It is noteworthy that VMPlaceS invokes the execution of each scheduling
solver, as a real implementation would do, to get the effective reconfiguration
plan. That is, the computation time that is observed is not simulated but corre-
sponds to the effective one, only the workload inside the VMs and the reconfigu-
ration operations (i.e., suspend/resume and migrate) are simulated in SimGrid.

Trace Analysis. The last step of VMPlaceS consists in analyzing the informa-
tion that has been collected during the simulation. This analysis is done in two
steps. First, VMPlaceS records several metrics related to the platform utilization
using an extended version of SimGrid’s TRACE module1. This way, visualization
tools that have been developed by the SimGrid community, such as PajeNG [18],
may be used with VMPlaceS. Furthermore, our extension enables the creation of
a JSON trace file, which is used to represent resource usage by figures generated
using the R statistical environment [3].

By default, VMPlaceS records the load of the VMs and hosts, the start and
the duration of each violation of VM requirements in the system, the number
of migrations, the number of times the scheduler mechanism has been invoked
and the number of times it succeeds or fails to resolve non-viable configurations.
The TRACE API is extensible in that as many variables as necessary can be
created by users of our system, thus allowing researchers to instrument their
own algorithm with specific variables that record other pieces of information.

4 Dynamic VMPP Algorithms

To illustrate the interest of VMPlaceS, we implemented three dynamic VM place-
ment mechanisms: a centralized one based on the Entropy proposal [10], a hierar-
chical one based on Snooze [8], and a fully-distributed one based on DVMS [19].

These systems search for solutions to violations caused by overloaded nodes.
A host is overloaded when its VMs try to consume more than 100 % of the CPU
capacity of the host. In such a case, a resolution algorithm looks for a reconfig-
uration plan that can lead to a viable configuration. For the sake of simplicity,
we chose to use the latest solver developed as part of the Entropy framework [9]
as this resolution algorithm for all three systems. The Entropy solver evaluates
different viable configurations until it reaches a predefined timeout. Once the
timeout has been triggered, the algorithm returns the best solution among the
ones it finds and applies the associated reconfiguration plan by invoking live
migrations in the simulation world.

In the remainder of this section, we present an overview of the three systems.

1 http://simgrid.gforge.inria.fr/simgrid/3.12/doc/tracing.html.

http://simgrid.gforge.inria.fr/simgrid/3.12/doc/tracing.html
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Entropy-Based Centralized Approach. The centralized placement mecha-
nism consists in one single SimGrid process deployed on a service node. This
process implements a simple loop that iteratively checks the viability of the
current configuration by invoking the aforementioned VMPP solver with a pre-
defined frequency. The resource usage is monitored through direct accesses to the
states of the hosts and their respective VMs. We also monitor, for each iteration,
whether the VMPP solver succeeds or fails. In the case of success, VMPlaceS
records the number of migrations that have been performed, the time it took to
apply the reconfiguration and whether the reconfiguration led to new violations.

Snooze-Based Hierarchical Approach. Snooze [8,21] harnesses a hierarchi-
cal architecture in order to support load balancing and fault tolerance, cf. Fig. 2.
At the top, a group leader (GL) centralizes information about the whole cluster
using summary data about group managers (GMs) that constitute the interme-
diate layer of the hierarchy. GMs manage a number of local controllers (LCs)
that, in turn, manage the VMs assigned to nodes.

Fig. 2. Snooze architecture

During execution, higher-level components
periodically send heartbeats to lower-level ones;
monitoring information, e.g., about the system
load, is also sent periodically in the opposite
direction. In order to propagate information,
Snooze relies on hardware support for multicast
communication.

The implementation in VMPlaceS of the core
architectural abstractions of Snooze leverages
the XHOST, XVM and SimulatorManager while
other mechanisms have been implemented using
Simgrid’s primitives and standard Java mecha-
nisms. For instance, communication between Snooze actors is implemented based
on Simgrid’s primitives for, mainly asynchronous, event handling. The multicast
capability that is used, e.g., to relay heartbeats, is implemented as a dedicated
service that manages a state to relay heartbeat events in a concurrent manner
to all receivers. Finally, our Snooze simulation uses, as its original counterpart,
a multi-threaded implementation (i.e., based on multiple SimGrid processes) in
order to optimize reactivity even for large groups of LCs (or GMs) that have to
be managed by one GM (or GL).

DVMS-Based Distributed Approach. DVMS (Distributed Virtual Machine
Scheduler) [19] enables the cooperative and fully-distributed placement of VMs.
A DVMS agent is deployed on each node in order to manage the VMs on the
node and collaborate with (the agents of) neighboring nodes. Agents are defined
on top of an overlay communication network that defines the node-neighbor
relation. We have implemented a simple unstructured overlay that enables the
agents to collaborate by providing a link to a neighbor on the latter’s request.

Figure 3 depicts the DVMS algorithm. When a node Ni detects that it
cannot provide enough resources for its hosted VMs, an Iterative Scheduling
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Fig. 3. Processing two events simultaneously

Procedure (ISP) is started: it initiates a partition, reserving itself to solve the
problem, see Fig. 3(a). Then, its closest neighbor is considered. If this neigh-
bor, Ni+1, is already part of another partition, the next neighbor is considered.
Otherwise, Ni+1 joins the partition (see Fig. 3(b)) and becomes the partition
leader.

The other nodes involved in the partition then send it information about their
capacities and current load. The leader, in turn, starts a scheduling computation
looking for a reconfiguration within the current partition. If no solution is found,
the same algorithm is applied to the next node Ni+2. This approach constructs
small partitions in a highly parallel manner (Fig. 3(c)), thus accelerating the
scheduling process and reactivity.

Most of the DVMS code has been coded in SCALA leveraging the Java prim-
itives of SimGrid for the communications between the different DVMS agents
that have been implemented, in turn, using the abstractions of VMPlaceS.

5 Experiments

Two kinds of experiments have been performed to validate the relevance of
VMPlaceS. The objective of the first one was to evaluate the accuracy of the
returned results while the second was a concrete use-case of VMPlaceS, analyzing
the three strategies introduced before.

5.1 Accuracy Evaluation

To validate the accuracy of VMPlaceS, we have implemented a dedicated version
of our framework2 on top of the Grid’5000 testbed and compared the execution of
the Entropy strategy invoked every 60 s over a 3600 s period in both the simulated
and the real world. Regarding the in-vivo conditions, experiments have been
performed on top of the Graphene cluster (Intel Xeon X3440-4 CPU cores, 16 GB
memory, a GbE NIC, Linux 3.2, Qemu 1.5 and SFQ network policy enabled) with
6 VMs per node. Each VM has been created using one of 8 VM predefined classes.
The template was 1:1GB:1Gbps:1Gbps:X, where the memory update speed X
was a value between 0 and 80 % of the migration bandwidth (1Gbps) in steps

2 https://github.com/BeyondTheClouds/G5K-VMPlaceS.

https://github.com/BeyondTheClouds/G5K-VMPlaceS
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of 10. Starting from 0 %, the load of each VM varied according to the exponential
and the Gaussian distributions. The parameters were λ = #VMs/300 and μ =
60, σ = 20. Concretely, the load of each VM varied on average every 5 min in steps
of 10 (with a significant part between 40 % and 80 %). A dedicated memtouch
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Fig. 4. Comparison between simulated (top)
and in-vivo (bottom) Executions The Y-axis
represents the duration of each Entropy invo-
cation. It is divived into two parts: the time to
look for a new configuration (the computation
phase in red) and the time to relocate the VMs
(the reconfugration phase in black). Both axis
are in seconds (Color figure online).

program [11] has been used to
stress both the CPU and the mem-
ory accordingly. Regarding the sim-
ulated executions, VMPlaceS has
been configured to reflect the in-
vivo conditions. In particular, we
configured the network model of
SimGrid in order to cope with
the network performance of the
Graphene servers that were allo-
cated to our experiment (6 MBytes
for the TCP gamma parameter
and 0.88 for the bandwidth cor-
rective simulation factor). Figure 4
shows the time to perform the two
phases of the Entropy algorithm
for each invocation when consider-
ing 32 PMs and 192 VMs through
simulations (top) and in reality
(bottom). Overall, we can see that
simulation results successfully fol-
lowed the in-vivo ones. During the first hundreds seconds, the cluster did not
experience VM requirement violations because the loads of VM were still small
(i.e., Entropy simply validated that the current placement satisfied all VM
requirements). At 540 s, Entropy started to detect non viable configurations and
performed reconfigurations. Diving into details, the difference between the simu-
lated and in-vivo reconfiguration time fluctuated between 6 % and 18 % (median
was around 12 %). The worst case, i.e., 18 %, was reached when multiple migra-
tions were performed simultaneously on the same destination node. In this case
and even if the SFQ network policy was enabled, we discovered that in the reality
the throughput of migration traffic fluctuated when multiple migration sessions
simultaneously shared the same destination node. We confirmed this point by
analyzing TCP bandwidth sharing through iperf executions. We are currently
investigating with the SimGrid core-developers how we can integrate this phe-
nomenon into the live-migration model. However, as a migration lasts less than
15 s in average, we believe that the current simulation results are sufficiently
accurate to capture performance trends of placement strategies.

5.2 Analysis of Entropy, Snooze and DVMS

As a validation of our approach (and a contribution by itself), we now provide
simulation results comparing the Entropy, Snooze and DVMS strategies.



VMPlaceS: VM Placement Simulator 325

Experimental Conditions. Each simulation has been executed on a dedi-
cated server, thus avoiding interferences between simulations and ensuring repro-
ducibility between the different invocations. VMPlaceS has been configured to
simulate a homogeneous infrastructure of PMs composed of 8 cores, 32 GB of
RAM and 1 Gpbs Ethernet NIC. To enable a fair comparison between the three
strategies, the scheduling resolver only considered 7 cores, i.e., one was devoted
to run the Snooze LC or the DVMS admin processes (a common experimental
setup). Ten VMs have been initially launched on each simulated PM. Each VM
relied on one of the VM classes described in the accuracy experiment and one set
of load-change parameters has been used: λ = #VMs/300, μ = 60 and σ = 20.
The stationary state was reached after 20 min of the simulated time with a global
cluster load of 85 %. We have performed simulations over a period of 1800 s. The
consolidation ratio, i.e., the number of VMs per node, has been defined such that
a sufficient number of violations is generated. We have discovered that below a
global load of 75 %, few VM violations occurred under the selected Gaussian
distribution we have chosen. This result is rather satisfactory as it can explained
why most production DCs target a comparable load level.3 Finally, infrastruc-
tures composed of 128, 256, 512 and 1024 PMs, hosting respectively 1280, 2560,
5120 and 10240 VMs have been investigated. For Entropy and Snooze that rely
on service nodes, additional simulated PMs have been provided. For Snooze, one
GM has been created per 32 LCs (i.e., PMs). The solver has been invoked every
30 s for Entropy and Snooze.

General Analysis. Figure 5 presents on the left the cumulated violation time
for each placement policy and on the right several tables that give more details by
presenting the mean and the standard deviations of the duration of, respectively,
the violations and the computation/reconfiguration phases. As anticipated, the
centralized approach did not scale and even incurs an overhead in the largest sce-
nario compared to a system that did not perform any dynamic scheduling. The
more nodes Entropy has to monitor, the less efficient it is during both the com-
putation and reconfiguration phases. This is to be expected for the computation
phase (which tries to tackle an NP-complete problem). As to reconfiguration,
the reconfiguration plan becomes more complex for large scenarios, including
several migrations coming from and going to the same nodes. Such plans are
not optimal as they increase the bottleneck effects at the network level of each
involved PM. Such a simulated result is valuable as it confirms that reconfigu-
ration plans should avoid such manipulations as much as possible. The results
of the hierarchical approach are clearly better than the Entropy-based ones but
worse than those using DVMS-based placement. However, diving into the details,
we can see that both the time needed for the computation and reconfiguration
are almost independent from the cluster size (around 3 s and 10 s) and not much
worse than those of DVMS, especially for the reconfiguration phase, which is pre-
dominant. These results can be easily explained: the centralized policy addresses

3 http://www.cloudscaling.com/blog/cloud-computing/amazons-ec2-generating-220m-
annually/.

http://www.cloudscaling.com/blog/cloud-computing/amazons-ec2-generating-220m-annually/
http://www.cloudscaling.com/blog/cloud-computing/amazons-ec2-generating-220m-annually/
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Fig. 5. Scalability/Reactivity analysis of Entropy, Snooze and DVMS

the VMPP by considering all nodes at each invocation, while the hierarchical
and the distributed algorithms divide the VMPP into sub problems, considering
smaller numbers of nodes (32 PMs in Snooze and, on average, 4 in the case of
DVMS). To clarify the influence of the group size on the performance of Snooze,
i.e., the ratio of LCs attached to one GM, we have performed additional simu-
lations for varying group sizes. VMPlaceS has significantly facilitated this study
as the corresponding simulations differ just by configuration parameters and do
not require modifications to the code base.

Investigating Algorithm Variants. VMPlaceS facilitates the in-depth analy-
sis of variants of placement algorithms. We have, for example, analyzed, as a first
study of its kind, how the Snooze-based placement depends on the no. of LCs
assigned to a GM. Figure 6 presents the simulated values obtained for scenar-
ios with 2, 4, 8 and 32 LCs per GM for four infrastructure sizes. The overall
performance (i.e., cumulated violation time) shows that 2 LCs per GM result
in significantly higher violation times. The relatively bad performance of the
smallest group size can be explained in terms of the number of failures of the
reconfiguration process, that is, overloading situations that are discovered but
cannot be resolved due to a lack of resources (see tables on the right). Groups
of 2 LCs per GM are clearly insufficient at our global load level (85 %). Failed
reconfigurations are, however, already very rare in the case of 4 LCs per GM and
do not occur at all for 8 and 32 LCs per GM. This is understandable because the
load profile we evaluated rarely results in many LCs of a GM to be overloaded at
once. Violations can therefore be resolved even in the case of a smaller number of
LCs available for load distribution. Conversely, we can see that the duration of
the computation phases decreases strongly along with the group size. It reaches a
value close to the computation times of DVMS for a group size of 4-LCs per GM.
We thus cannot minimize computation times and violation times by reducing
the number of LCs because larger group sizes are necessary to resolve overload
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Fig. 6. Hierarchical placement: influence of varying group sizes

situations if the VM load gets higher. In contrast, DVMS resolves this trade-off
by means of its automatic and dynamic choice of the partition size necessary to
handle an overload situation. Once again, this information is valuable as it will
help researchers to design new algorithms favoring the automatic discovery of
the optimal subset of nodes capable to solve violations for given load profiles.

The study performed in this paper has allowed us to analyze several other
variants and possible improvements (which we cannot present here for lack of
space), such as a reactive approach to hierarchical placement instead of the
periodical one used by Snooze, as well as more aggressive partitioning in the case
of DVMS. VMPlaceS also provides additional metrics such as the overall count
of migrations, the average duration of each migration . . . These allow important
properties, e.g., the migration overhead, to be studied. All these variants can be
easily studied and evaluated thanks to VMPlaceS.

Finally, we have succeeded to conduct DVMS simulations up to
8 K PMs/80 K VMs in a bit less than two days. We did not present these results
in this paper because it was not possible to run a sufficient number of Snooze
simulations at such a scale (the Snooze protocol being more complex). The time-
consuming portions of the code are related to SimGrid internals such as sleep
and send/recv calls. Hence, we are collaborating with SimGrid core developers
in order to reduce the simulation time in such cases.

6 Related Work

Simulator toolkits that have been proposed to address CC concerns [4,5,12,13,
15] can be classified into two categories. The first corresponds to ad-hoc simula-
tors that have been developed to address one particular concern. For instance,
CReST [5] is a discrete event simulation toolkit built for Cloud provisioning algo-
rithms. If ad-hoc simulators allow some characteristics of the behaviors of the
system to be analyzed, they do not consider the implication of the different layers,
which can lead to non-representative results. Moreover, most ad-hoc solutions
are developed for one shot analyses. That is, there is no effort to release them as
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a complete and reusable tool for the scientific community. The second category
[4,13,15] corresponds to more generic cloud simulator toolkits (i.e., they have
been designed to address multiple CC challenges). However, they focus mainly
on the API and not on the model of the different mechanisms of CC systems.
For instance, CloudSim [4], which has been widely used to validate algorithms
and applications in different scientific publications, is based on a top-down view-
point of cloud environments. That is, there are no articles that properly validate
the different models it relies on: a migration time is simply (and often impre-
cisely) calculated by dividing VM memory sizes by network bandwidth values.
In addition to be subject to inaccuracies at the low level, available cloud sim-
ulator toolkits often use oversimplified models for virtualization technologies,
also leading to non-representative results. As highlighted throughout this arti-
cle, we have chosen to build VMPlaceS on top of SimGrid in order to build a
generic tool that benefits from the accuracy of its models related to virtualization
abstractions [11].

7 Conclusion

We have presented VMPlaceS, a framework providing generic programming sup-
port for the definition of VM placement algorithms, execution support for their
simulation at large scales, as well as new means for their trace-based analysis.
We have validated its accuracy by comparing simulated and in-vivo executions
of the Entropy strategy. We have also illustrated the relevance of VMPlaceS by
evaluating and comparing algorithms representative of three different classes
of virtualization environments: centralized, hierarchical and fully distributed
placement algorithms. The corresponding experiments have provided the first
systematic results comparing these algorithms in environments including up to
one 1 K nodes and 10 K VMs.

A version of VMPlaceS is available on a public git repository4. We are
in touch with the SimGrid core developers in order to improve our code with
the ultimate objective of addressing infrastructures up to 100 K PMs and
1 Millions VMs. As future work, it would be valuable to add additional dimen-
sions in order to simulate other workload variations stemming from network and
HDD I/O changes. Moreover, we plan to provide a dedicated API to be able to
provision and remove VMs during the execution of a simulation.
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Beńıtez, D. (eds.) Euro-Par 2008. LNCS, vol. 5168, pp. 13–25. Springer, Heidelberg
(2008)

13. Kliazovich, D., et al.: Greencloud: a packet-level simulator of energy-aware cloud
computing data centers. In: IEEE GlobeCom 2010, December 2010

14. Moreno-Vozmediano, R., et al.: IaaS cloud architecture: from virtualized datacen-
ters to federated cloud infrastructures. Comput. J. 45(12), 65–72 (2012)

15. Nunez, A., Vazquez-Poletti, J.L., et al.: iCanCloud: a flexible and scalable cloud
infrastructure simulator. J. Grid Comput. 10(1), 185–209 (2012)

16. Open Source Data Center Virtualization. http://www.opennebula.org
17. The Open Source, Open Standards Cloud. http://www.openstack.org
18. PajeNG - Trace Visualization Tool. https://github.com/schnorr/pajeng
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Abstract. The consensus problem is a fundamental paradigm in dis-
tributed systems, because it captures the difficulty to solve other agree-
ment problems. Many current systems evolve with time, e.g., due to node
mobility, and consensus has been little studied in these systems so far.
Specifically, it is not well established how to define an appropriate set of
assumptions for consensus in dynamic distributed systems. This paper
studies a hierarchy of three classes of time-varying graphs, and provides
a solution for each class to the problem of Terminating Reliable Broad-
cast (TRB). The classes introduce increasingly stronger assumptions on
timeliness, so that the trade-off between weakness versus implementabil-
ity and efficiency can be analysed. Being TRB equivalent to consensus
in synchronous systems, the paper extends this equivalence to dynamic
systems.

1 Introduction

The consensus problem is a central paradigm in distributed systems, as it rep-
resents many agreement problems, e.g., leader election, atomic commitment
and total-order broadcast. Solving consensus has attracted a lot of attention
in dependable computing and has generated fundamental results. In this regard,
it is known that in crash-prone asynchronous distributed systems it is impossi-
ble to solve consensus deterministically due to the impossibility of distinguishing
between “slow” processes and crashed ones, a result known as FLP impossibil-
ity [8]. Alternatively, consensus can be easily solved in synchronous systems,
where perfect failure detection can be implemented [5].

Most of the research on consensus has considered a static distributed system
with permanent connectivity among nodes. In many current distributed systems,
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research stay of Carlos Gómez-Calzado at the University of Bordeaux. The authors
want to thank Antonio Fernández Anta for his valuable comments.

c© Springer-Verlag Berlin Heidelberg 2015
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however, these assumptions are not valid any more. Instead, these new systems
exhibit a dynamic behavior, with nodes joining the system, leaving it or just
moving, which implies uncertain connectivity conditions. Indeed, and unlike in
classical static systems, these events are no longer considered incorrect or spo-
radic behaviors, but rather the natural dynamics of the system.

Clearly, even the synchrony assumptions of classical (static) models of distrib-
uted systems are not enough to solve agreement problems in dynamic systems.
For example, having an upper bound on link latencies is pointless if the link is
not available at the time of transmission of the message. Note however that the
nodes could still communicate using an alternative path in the network. Thus,
assumptions should consider the overall system connectivity, which encourages
for a holistic approach to model dynamic distributed systems.

In recent years there was a rising interest in modeling dynamic distributed
systems from the perspective of graph theory. In this regard, there exist several
works that study the solvability of deterministic problems, including consensus,
in highly-dynamic systems [2,3,7,11,12]. However, regarding consensus, none
of them lowers the assumptions to the realm of temporal connectivity, i.e., not
requiring that the graph be connected at every instant, but only that paths exist
over time and space (temporal path, aka journeys). The time-varying graph for-
malism [4] (TVG, for short) provides a useful qualitative framework to model
dynamic distributed systems. In this formalism, the dynamic network is repre-
sented as a graph, together with a presence function that tells whether a given
edge is present at a given time and a latency function that tells how long it takes
to cross a given edge at a given time. In [4], Casteigts et al. define a hierarchy of
classes of dynamic networks, most of which are based on temporal connectivity
concepts. Among them, the recurrent connectivity class requires that a journey
exists between any two nodes infinitely often (that is, recurrently). Nevertheless,
this class lacks the necessary timeliness (i.e. time bounds in communication) to
describe the specific assumptions that are required by synchronous agreement
algorithms, such as TRB, to terminate. One of the goals of our paper is to extend
some of the existing TVG classes by introducing timeliness constraints, together
with practical considerations, and analyze the impact of these new constraints
on solving consensus.

Our Contribution. In this paper, we address timeliness in evolving systems
(i.e., time-varying graphs, TVG) from a synchronous point of view, i.e., systems
where the transmission delay of messages is bounded and the bound is known a
priori by the processes. The resulting set of concepts and mechanisms makes it
possible to describe system dynamics at different levels of abstraction and with
a gradual set of assumptions.

We first formulate a very abstract property on the temporal connectivity
of the TVG, namely, that the temporal diameter (i.e. maximum duration of a
foremost journey) of a component in the TVG is always bounded by Δ. We
refer to such a component as a Δ-component, and define the concept of correct
process in terms of this component. We then specify a version of the Terminating
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Reliable Broadcast problem (TRB) for Δ-components, which we relate to the
ability of solving agreement at component level.

Although Δ-components are proven to be a sufficient concept at the most
abstract level, they rely on non implementable communication patterns in
message-passing systems. Indeed, the solution to TRB proposed in this abstract
model relies on an oracle that provides the algorithm with instantaneous knowl-
edge of the appearance of an edge. Unfortunately, this oracle does not have a
straightforward implementation in terms of real processes and communication
links. Therefore, we introduce a first constraint to force the existence of journeys
whose edges presence duration is lower-bounded by some duration β (which holds
a relation to the maximal latency of a link), thereby enabling repetitive commu-
nication attempts to succeed eventually. These journeys are called β-journeys
and their existence makes it possible to implement the TRB algorithm with-
out oracle. We then look at a further constrained class of TVG, inspired by the
work of Fernández-Anta et al. [7], whereby the local appearance of the edge used
by every next hop of (at least one of the possibly many) β-journeys also must
be bounded by some duration α, yielding to the concept of (α, β)-journeys. The
existence of recurrent (α, β)-journeys allows the nodes to stop sending a message
α time after they receive it, which is much more efficient.

The rest of the paper is organized as follows. Section 2 introduces basic time-
varying graph notations, used in Sect. 3 to define the abstract timely connectivity
model based on Δ-components. In the same section we redefine the TRB problem
with respect to Δ-components and give a solution to it. Then, in Sect. 4, we
introduce β-journeys (and the corresponding β-components), which we show to
be sufficient to implement an effective (i.e., oracle-free) version of the algorithm.
We then define (α, β)-journeys and components, and discuss their advantages
(and disadvantages) over β-journeys. In Sect. 5, we describe how consensus can
be solved by using the TRB implementations introduced in Sects. 3 and 4. We
finally conclude in Sect. 6 with open questions and future work.

2 Time-Varying Graphs

A recent framework called time-varying graphs, proposed by Casteigts et al. [4],
aims to provide a precise formalism for describing dynamic networks. As usual,
the entities of the system and the communication links between them are rep-
resented as a graph. More specifically, a time-varying graph (TVG, for short) is
defined as a tuple G = (V,E, T , ρ, ζ), where:

– V is the set of communicating entities (or nodes, or processes, interchange-
ably).

– E is the set of edges (or links, interchangeably) that interconnect the nodes
in V. In this work, all edges are undirected.

– T is the lifetime of G, i.e. the interval of time over which the graph is defined.
It is a subset of the temporal domain T, itself being N or R

+ depending
on whether time is discrete or continuous (in this work, it is continuous).
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For convenience, both endpoints of T are referred to as T − and T +, the
latter being possibly +∞.

– ρ : E × T → {true, false}, i.e., the presence function, indicates whether a
given edge is present at a given time (i.e., ρ(e, t) = true iff edge e is present
at time t).

– ζ : E × T → T, i.e., the latency function, indicates how long it takes to send
a message across a given edge for a given emission time (assuming the edge is
present at that time).

The kind of network we are addressing is possibly disconnected at
every instant. Still, a form of communication can be achieved over time
by means of journeys (a.k.a. temporal path). Formally, a journey J =
{((e1, t1), (e2, t2), . . . , (ek, tk))} is a sequence such that (e1, e2, . . . , ek) is a valid
path in the underlying graph (V,E), and (1) for every i ∈ [1, k] edge ei is present
at time ti long enough to send a message across (formally, ρ(ei, ti + δ) = true
for all δ ∈ [0, ζ(ei, ti)]), and (2) the times when edges are crossed (we also say
activated) and the corresponding latencies allow a sequential traversal (formally,
ti+1 ≥ ti + ζ(ei, ti) for all i ∈ [1, k)). What makes this form of connectivity
temporal is the fact that a journey can pause in between hops, e.g. if the next
link is not yet available.

Given a journey J , departure(J ) and arrival(J ) denote respectively its start-
ing time t1 and its ending time tk+ζ(ek, tk). Journeys can be thought of as paths
over time, having both a topological length k (i.e., the number of hops) and a
temporal length (i.e., a duration) arrival(J )−departure(J ) = tk + ζ(ek, tk) − t1.
Note that journeys describe opportunities of communication between an emitter
and a receiver. J ∗

G is the set of all such opportunities over G’s lifetime, while
J ∗

(p,q) ⊆ J ∗
G are those journeys from p to q. A simplified way of denoting the

existence of a journey between a process p and a process q, when the context
of G is clear, is p � q. Finally, the graph is temporally connected if for every
p, q ∈ V, p � q.

An induced sub-TVG G′ ⊆ G is obtained by restricting either the set of
vertices V ′ ⊆ V or the lifetime T ′ ⊆ T , resulting in the tuple (V ′, E′, T ′, ρ′, ζ ′)
such that:

– (V ′, E′) is the subgraph of (V,E) induced (in the usual sense) by V ′
– ρ′ : E′ × T ′ → {true, false} where ρ′(e, t) = ρ(e, t)
– ζ ′ : E′ × T ′ → T where ζ ′(e, t) = ζ(e, t).

If only the lifetime is restricted, say to some interval [ta, tb), then the resulting
graph G′ is called a temporal subgraph of G and denoted G[ta,tb). The temporal
diameter of a graph G at time t is the smallest duration d such that G[t,t+d) is
temporally connected.

Finally, following Bhadra and Ferreira in [1], we consider a temporal variant of
connected components (hereafter, simply called components), which are maximal
sets of nodes V ′ ⊆ V such that ∀p, q ∈ V ′, p � q. Two variants are actually
considered, whether the corresponding journeys can also use nodes that are in
V \ V ′ (open components) or not (closed components). Observe that a close
component is equivalent to an induced sub-TVG being temporally connected.
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3 A Timely Model for Dynamic Systems

This section focuses on the analysis of timeliness in dynamic systems at the
most abstract level, i.e. considering only a general communication bound Δ for
end-to-end communication. We first provide a set of definitions related to this
bound, which leads to the formulation of a new class of TVGs that is a strict
subset of Class 5 (recurrent connectivity) in [4]. We then specify a solution to the
problem of Terminating Reliable Broadcast (TRB) in the corresponding context.

3.1 Definitions

We define the concept of bounded-time journey as follows:

Definition 1. A journey J is a Δ-journey if and only if arrival(J ) −
departure(J ) ≤ Δ.

Based on Δ-journeys we define the concept of bounded-time component.
Unlike components, we require here that connectivity also be recurrent by defi-
nition.

Definition 2. A Δ-component in G = (V,E, T , ρ, ζ) is a set V ′ ⊆ V such
that for every t in [T −, T + − Δ], for every p, q in V ′, there exists a Δ-journey
from p to q in G[t,t+Δ).

Similarly to components, Δ-components can be open or closed, depending
on whether the Δ-journeys use nodes in V \ V ′. Observe that, a graph behaving
in an open way provides flexibility in mobility, and therefore, a model allowing
open Δ-components is weaker (in the sense that it requires less assumption) than
a model strictly based on closed Δ-components. Henceforth we assume that in
our system model Δ-components are by default open.

Informally, Δ-components allow us to think about subsets of nodes behaving
timely with each other. Hence, nodes in a Δ-component are also timely connected.
We define the (parametrized) class of timely (and recurrently) connected TVGs
T C(Δ) as follows:

Definition 3. G ∈ T C(Δ) ⇐⇒ V is a Δ-component.

3.2 Terminating Reliable Broadcast in T C(Δ)

According to [6], consensus is equivalent to Terminating Reliable Broadcast in
static synchronous systems. We take this as a starting point and describe here
a solution for TRB in the scope of a Δ-component.

We assume that processes know a global time. Processing times are negligible
with respect to communication time. The system is composed by processes that
can crash/recover, and leave/join the system. Processes that crash or leave the
system, even if they recover or join again later, are by definition excluded from
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any Δ-component, however since we assume the existence of open Δ-components,
they can punctually take part on various journeys.

Recall that a distributed system G may have several Δ-components. There
may exist values of Δ for which a process belongs to different components,
which are thus overlapping. However, since every component is recurrently con-
nected, then overlapping components become naturally merged as the value for
Δ increases, and transitively, there must exist a sufficiently large value of Δ such
that all remaining components are disjoint. Henceforth, we consider Δ to be (an
upper bound on) such a value.

We define now which processes are correct in terms of the classical termi-
nology. In a classical partitioned system it can be considered that a process p
behaves correctly in its partition, and incorrectly with respect to the other par-
titions in the system. Similarly, in our Δ-component based system a process p
behaves correctly with respect to the Δ-component p belongs to, e.g. C. Hence, a
member of a Δ-component C is by definition correct with respect to C. However
p could still sporadically communicate timely with some processes in another
Δ-component, C ′. Obviously, we consider p incorrect with respect to C ′, but a
message m from p received by some process in C ′ should either be delivered by
all processes in C ′, or by none of them in order to hold the agreement property
of reliable broadcast.

Thus, in T C(Δ) a set of properties should be hold by a process with respect
to a Δ-component in order to provide Δ-TRB:

– Δ-Termination: Every process in the same Δ-component eventually delivers
some message.

– Δ-Validity : If a process in a Δ-component broadcasts a message m, then all
processes in the same Δ-component eventually deliver m.

– Δ-Agreement : If a process in a Δ-component delivers a message m, then all
processes in the same Δ-component eventually deliver m.

– Δ-Integrity : For any message m, every process in the same Δ-component
delivers m at most once, and if it delivers m �= SF (sender faulty) then the
sender(m) must have broadcast m.

As usual, the broadcast at time tinit of a message m is considered in the
scope of m.

To guarantee the Δ-Agreement property we should correctly understand
when a message m broadcast by p /∈ C should be delivered by all processes
in C. If p has been able to propagate m to some process q ∈ C, then we assume
that there exists a Δ-journey from p to q. Observe that this assumption is con-
sistent with the fact that our model allows the existence of open Δ-components.

A solution to the TRB problem is described in Fig. 1 (see [9] for details).
Informally, the distinguished process pB Δ-TRBroadcasts a message m by send-
ing m on all its active edges at time tinit. Whenever an edge in pB ’s neigh-
borhood appears1, pB also sends m on that edge. Every other process p, upon

1 We assume here the existence of an abstract oracle to capture events of edge appear-
ance. In the next section we will board the implementation of such an oracle.
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Fig. 1. Terminating Reliable Broadcast for T C(Δ).

reception of m for the first time, forwards m on all its active edges, as well as
upon the appearance of a new edge. Finally, at time tinit + 2Δ every process
pΔ-TRBdelivers either m (if m has been received) or SF .

We explain next why a time of 2Δ is necessary and sufficient to deliver m.
Observe that, since we are assuming that pB could be not in C, pB could

not be able to communicate to all nodes in C in Δ time, (otherwise pB ∈ C),
thus, after m is resent by q, every process in C will receive m into a second Δ
time interval. Henceforth the bound for a process in C to TRDeliver a message
is 2Δ.

Theorem 1. The specification in Fig. 1 satisfies the properties of Δ-TRB in
T C(Δ).

4 Implementability of TRB

The specification of TRB provided in Fig. 1 relies on an “oracle” available at
every process p, which informs p instantaneously upon appearance of a new
edge in its neighbourhood. Such an abstraction has been recently used by Raynal
et al. [13] to implement a broadcast algorithm for recurrent dynamic systems.
However, a strict implementation of this oracle in a real system is far from being
trivial, as we discuss now.

Observe that the only temporal assumption on Δ-journeys is that they satisfy
a given upper-bound Δ in its temporal length, thus the duration of an edge may
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be as short as the latency of the message. In consequence, an implementation
of this oracle should be able to allow the sending of a message at the very same
time that the edge get activated, which is unrealistic since the oracle should be
able to predict the behaviour of the links in a real network. Alternatively, an
algorithm could continuously send message m along the whole time interval in
the hope that one of the sending attempts will success in the appearance of an
edge. Observe, however, that this iteration would require a period of time zero
between two consecutive sends. In other words, the algorithm should be able to
send an infinite number of messages per unit of time, which is impossible.

Therefore, additional assumptions should be introduced in order to provide
an implementation for the above specification of TRB. Specifically we first pro-
pose an extra assumption that allow to maintain active the edge not only for
communicating the message but also to detect its appearance.

4.1 (Lower)-Bounding the Edge Stability

We assume that the edge latency is bounded, i.e., there exist a bound on
max{ζ(e, t) : t ∈ T , e ∈ E}, that we call ζMAX . Additionally, we assume that
edges are active at least β time. Let us call β-edge an edge that fulfils this
bounded disposability. For this new model we define β-journeys as follows:

Definition 4. A β-journey J = {((e1, t1), . . . , (ek, tk))} is a Δ-journey such
that:

1. ζMAX < β ≤ Δ.
2. ∀i ∈ [1, k), ei is a β-edge.
3. The times when edges are activated and their corresponding latencies allow a

bounded sequential traversal (formally, ∀i ∈ [1, k), ti+1 ≥ ti + β).

We now define β-components as a subset of Δ-components that uses
β-journeys. Formally:

Definition 5. A β-component is a Δ-component where a set V ′ ⊆ V satisfies
that ∀t ∈ [T −, T + −Δ], V ′ is a β-journey based temporal component in G[t,t+Δ).

We define the parametrized timely connectivity class T C′(β) as follows:

Definition 6. G ∈ T C′(β) ⇐⇒ V is a β-component.

TRB in T C′(β)

We give now a TRB algorithm for the T C′(β) model, which is shown in Fig. 2.
In the algorithm proposed in Fig. 2 a process pB sends at time tinit a message

m by Δ-TRBroadcasting it, and pB keeps sending m each W time in order to
assure the correct send of m by every β-journey. Observe that, according to the
definition of β-edge, for a β-edge e = (p, q) in a β-journey, if process p sends a
message m on e each W ≤ β − ζMAX time during Δ, q will receive m at least
once (see [9] for the complete correctness proof). When a process p receives the
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Fig. 2. Terminating Reliable Broadcast for T C′(β).

message m automatically Δ-TRDelivers m, and additionally, if p �= pB, p sends
m each W time during Δ. Finally, if a process does not receive the message m,
at time tinit + 2Δ, it Δ-TRDelivers the special message SF .

Theorem 2. The specification in Fig. 2 satisfies the properties of Δ-TRB in
T C′(β).

4.2 (Upper)-Bounding the Edge Appearance

Observe that, in the algorithm in Fig. 2 messages are forwarded during the whole
Δ interval. This is necessary because the ending edge of a β-journey could be
activated at a time as late as tinit + Δ − β. It is apparent that more efficient
implementations of a TRB algorithm in terms of number of messages could
be envisaged if stronger connectivity assumptions are introduced in the model.
Specifically, in this section we introduce an additional timely assumption on the
appearance of edges.

We adopt the assumption of [7], where, besides β, a bound α on the appear-
ance of links is defined. We define a new type of journey, that we call (α, β)-
journey. Formally:

Definition 7. A (α, β)-journey J = {((e1, t1), . . . , (ek, tk))} is a β-journey
such that:

1. The appearance of e1 is bounded by α.
2. The appearance of the subsequent edges are also bounded by α. Formally,

ti+1 ≤ ti + ζ(ei, ti) + α for all i ∈ [1, k).

We define a (α, β)-component as follows:
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Definition 8. A (α, β) -component is a β-component where a set V ′ ⊆ V
satisfies that ∀t ∈ [T −, T +−Δ], V ′ is a (α, β)-journey based temporal component
in G[t,t+Δ).

We define the parametrized timely connectivity class T C′′(α, β) as follows:

Definition 9. G ∈ T C′′(α, β) ⇐⇒ V is a (α, β)-component.

TRB in T C′′(α, β). The algorithm in Fig. 3, describes a TRB algorithm exe-
cutable in a T C′′(α, β) dynamic system.

The new bound α, altogether with the latency bound β and ζMAX , allows to
calculate global system bounds, namely the period W and a time to deliver Γ,
strictly in terms of specific network parameters. In the algorithm proposed in
Fig. 3 a process pB Δ-TRBroadcast a message m at time tinit by sending each
W time m until the time is strictly higher than tinit + α, in order to assure
the correct sending of m by every (α, β)-journey. When a process p receives the
message m at time trec for the first time, automatically Δ-TRDelivers m and,
additionally, if p �= pB , p sends m each W until the time is strictly higher than
trec + α. Finally, if any of the process in p does not receive the message m at
time tinit +Γ, Δ-TRDelivers the special message SF denoting the sender failure.

A detailed explanation of how Γ is obtained can be found in the extended
version of this paper [9]. It is important to note that in the TRB algorithm
for T C′′(α, β), differently to the previous classes, processes need to known the
network diameter, which is bounded by |V | − 1. This is a consequence of the
fact of considering strictly local bounds in T C′′(α, β). Instead, both T C(Δ) and
T C′(β) rely on a system-wide bound, Δ.

Theorem 3. The specification in Fig. 3 satisfies the properties of Δ-TRB in
T C′′(α, β).

4.3 Relating Timely Classes

We have defined a hierarchy of classes with increasingly stronger timely assump-
tions. Being T C(Δ), T C′(β) and T C′′(α, β) the parametrized classes, we define
now for each one the union of all its possible instances:

G ∈ T C∗ ⇐⇒ ∃Δ �= ∞ : G ∈ T C(Δ)

G ∈ T C′∗ ⇐⇒ ∃β �= ∞ : G ∈ T C′(β)

G ∈ T C′′∗ ⇐⇒ ∃α, β �= ∞ : G ∈ T C′′(α, β)

In spite of the different strength of the parametrized classes, we show in [9]
that T C′′∗ ≡ T C′∗. Besides, T C′∗ ⊂ T C∗ and T C′′∗ ⊂ T C∗.
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Fig. 3. Terminating Reliable Broadcast for T C′′(α, β).

5 From Δ-TRB to Δ-Consensus in Dynamic Systems

In this section we analyse the equivalence between TRB and consensus, originally
stated for synchronous static systems [6], in terms of a dynamic system as the
one we have modelled.

In the previous sections we have presented three Δ-TRB algorithms in the
scope of respectively Δ-, β- and (α, β)-components. We show now how the
consensus problem can be reduced2 to a Δ-TRB problem. We will refer as
Δ-Consensus to this kind of consensus in the scope of Δ-components.

By the properties of Δ-TRB, it is straightforward to define the Δ-Consensus
properties as follows:

– Δ-Termination: Every process in the Δ-component eventually decides.
– Δ-Agreement: Every process in the Δ-component decides the same value.
– Δ-Validity: The decided value is a proposed one.

Without loosing generality we focus here on Δ-Consensus using the Δ-TRB
specification of Fig. 1 for the T C(Δ) Class.

The resulting Δ-Consensus algorithm is shown in Fig. 4. Every process p
holds a vector Vp initialized to ⊥. At time tinit, |V | instances of Δ-TRB are
started, one per process, being each process the sender in one instance. Every
2 We say that a problem A can be reduced to a problem B if A can be solved using B.
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Fig. 4. Δ-TRB based Δ-Consensus algorithm for T C(Δ).

process p records in vector Vp(q) the message mq delivered from process q (or
SF in case mq has not been received on time). At time tinit + 2Δ, p decides on
the first non-SF value of Vp.

Note that solving consensus at system level would require a second Δ-TRB
round to agree on the decision of the majority, provided that the temporal inter-
val [T −, T +] in which the Δ-component is defined covers both rounds. In other
words, the stability of Δ-components must be temporally extended to solve con-
sensus at system level.

6 Conclusions

In this paper we studied how to introduce timeliness in evolving systems so that
the resolution of agreement problems (specifically consensus) is possible. On the
basis of previous works, we have adopted the concept of journey or temporal path
and have introduced the necessary timeliness (i.e., time bounds) to describe the
specific assumptions that are required by an agreement algorithm to terminate
and satisfy the consensus properties.

We have first proposed a general class, T C(Δ), with a very abstract property
on the temporal connectivity of the TVG to provide the necessary stability
conditions, namely, that the temporal diameter of a recurrent component in
the TVG is bounded. We refer to such a component as a Δ-component. To
approach the consensus problem we have defined a TRB specification in terms
of Δ-components, Δ-TRB. However, Δ-TRB is not implementable in T C(Δ)
by message-passing without zero processing time assumptions. Henceforth, by
introducing increasingly stronger connectivity assumptions, we have provided
two implementable connectivity classes, namely T C′(β) and T C′′(α, β), as well
as two respective implementations of Δ-TRB in these classes. Finally, we have
shown that consensus at Δ-component level is easily reduced to Δ-TRB.

An open issue is the search of the weakest connectivity class that allows
to implement Δ-TRB (and henceforth consensus) in message-passing systems.
Of additional interest is to extend the proposed classes to partially synchro-
nous models. In this regard, in [10], leader election is implemented in a par-
tially synchronous system with dynamic partitions that could be modelled as
Δ-components.
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Abstract. As graphs become bigger, the need to efficiently partition
them becomes more pressing. Most graph partitioning algorithms subdi-
vide the vertex set into partitions of similar size, trying to keep the num-
ber of cut edges as small as possible. An alternative approach divides the
edge set, with the goal of obtaining more balanced partitions in presence
of high-degree nodes, such as hubs in real world networks, that can be
split between distinct partitions. We introduce dfep, a distributed edge
partitioning algorithm based on the metaphor of currency distribution.
Each partition starts from a random edge and expands independently
by spending currency to buy neighboring edges. After each iteration,
smaller partitions receive an higher amount of currency to help them
recover lost ground and reach a similar size to the other partitions. Sim-
ulation experiments show that dfep is efficient and obtains consistently
balanced partitions. Implementations on both Hadoop and Spark show
the scalability of our approach.

1 Introduction

One of the latest trend in computer science is the emergence of the “big data”
phenomena that concerns the retrieval, management and analysis of datasets of
extremely large dimensions, coming from wildly different settings.

Although the collected data is often structured, several interesting datasets
are unstructured and can be modeled as graphs. An obvious example is the World
Wide Web, but there are many other examples such as social network topologies,
biological systems or even road networks. While graph problems have been stud-
ied since before the birth of computer science, the sheer size of these datasets
makes classic graph problems extremely difficult. Even solving the shortest path
problem needs too many iterations to complete when the graph is too big to fit
into memory. The big Internet players (such as Google, Yahoo and Facebook)
have invested large amount of money in the development of novel distributed
frameworks for the analysis of very large graphs and are working on novel solu-
tions of many interesting classic problems in this new context [2,8].

The most common approach to cope with this huge amount of data using mul-
tiple processes or machines is to divide the graph into non-overlapping subsets,
called partitions. Edges between vertices that have been assigned to distinct par-
titions, called cut edges in the literature, act as communication channels between
the partitions themselves.
c© Springer-Verlag Berlin Heidelberg 2015
J.L. Träff et al. (Eds.): Euro-Par 2015, LNCS 9233, pp. 346–358, 2015.
DOI: 10.1007/978-3-662-48096-0 27
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When such partitions are assigned to a set of independent computing nodes
(being them actual machines or virtual executors like processes and threads, or
even mappers and reducers in the MapReduce model), their size matters: the
largest of them must fit in the memory of a single computing entity. A common
solution to the problem of optimizing the usage of memory in such cases is to
compute partitions that have similar sizes. Dividing the vertex set in equal-sized
partitions can still lead to an unbalanced subdivision, though: having the same
amount of vertices does not imply having the same size, given the unknown
distribution of their degrees and the potential high assortativity of some graphs.

In this paper we study a different approach: edges are partitioned into disjoint
subsets, while vertices are associated to edges and thus may belong to multiple
partitions at the same time. The advantage of such approach is that it makes
possible to obtain well-balanced partitions, because the adjacency lists of high-
degree nodes may be subdivided among multiple computing nodes. A good load
balancing enables the use of a smaller number of computing units.

This type of partitioning can then be used by edge-centric programming
models to speed up computation. For example, the Gather-Apply-Scatter model
introduced by GraphLab [4] is executed independently on each edge in both the
Gather and Scatter phase, and thus needs an efficient edge partitioning. Their
system uses Powergraph [4], a one-pass greedy edge partitioning algorithm that
can scale to huge graphs.

The main contribution of this paper is dfep, a distributed graph partition-
ing algorithm that divides the edge set in partitions of similar size. The paper
thoroughly evaluates dfep, using both simulations and then implementation on
top of both Hadoop and Spark, using the Amazon EC2 cloud. The experiments
show that dfep is efficient, scalable and obtains consistently good partitions.

2 Edge Partitioning

The task of subdividing a graph into partitions of similar size, or partitioning,
is a classical problem in graph processing, and has many clear applications in
both distributed and parallel graph algorithms. Most solutions, from Lin’s and
Kernighan’s algorithm [6] in the 70’s to more recent approaches [10], try to solve
vertex partitioning. This approach, however, may lead to unbalanced partitions,
because even if they end up having the same amount of vertices, an unbalanced
distribution of edges may cause some subgraphs to be much larger than oth-
ers. Approaching the problem from an edge perspective, thus, may bring us to
interesting and practical results.

Given a graph G = (V,E) and a parameter K, an edge partitioning of G sub-
divides all edges into a collection E1, . . . , EK of non-overlapping edge partitions:

E = ∪K
i=1Ei ∀i, j : i �= j ⇒ Ei ∩ Ej = ∅

The i-th partition is associated with a vertex set Vi, composed of the end points
of its edges:

Vi = {u : (u, v) ∈ Ei ∨ (v, u) ∈ Ei}
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Fig. 1. Edge partitioning example: each edge appears in only one partition, while
frontier vertices may appear in more than one partition

The edges of each partition, together with the associated vertices, form the
subgraph Gi = (Vi, Ei) of G, as illustrated in Fig. 1.

The size of a partition is proportional to the amount of edges and vertices
|Ei| + |Vi| belonging to it. Given that each edge (u, v) ∈ Ei contributes with
at most two vertices, |Vi| = O(|Ei|) and the amount of memory needed to
store a partition is strictly proportional to the number of its edges. This fact
can be exploited to fairly distribute the load among machines. Vertices may be
replicated among several partitions, in which case are called frontier vertices.
We denote with Fi ⊆ Vi the set of vertices that are frontier in the i-th partition.

3 Distributed Funding-Based Edge Partitioning

The properties that a “good” partitioning must possess are the following:

– Balance: partition sizes should be as close as possible to the average size
|E|/K, where K is the number of partitions, to have a similar computational
load in each partition. Our main goal is to minimize the size of the largest
partition.

– Communication Efficiency: given that the amount of communication that
crosses the border of a partition depends on the number of its frontier vertices,
the total sum

∑K
i=1 |Fi| must be reduced as much as possible.

– Connectedness: the subgraphs induced by the partitions should be as con-
nected as possible. This is not a strict requirement and later in this section
we illustrate a variant of our algorithm that relax it.

Balance is the main goal; it would be simple to just split the edges in K
sets of size ≈ |E|/K, but this could have severe implications on communication
efficiency and connectedness. The approach proposed here is thus heuristic in
nature and provides an approximate solution to the above requirements.

Since the purpose is to compute the edge partitioning as a preprocessing step
to help the analysis of very large graphs, we need the edge partitioning algorithm
to be distributed as well. As with most distributed algorithms, we are mostly
interested in minimizing the amount of communication steps needed to complete
the partitioning.

Ideally, a simple solution could work as follows: to compute K partitions,
K edges are chosen at random and each partition grows around those edges.
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Then, all partitions take control of the edges that are neighbors (i.e., they share
one vertex) of those already in control and are not taken by other partitions.
All partitions will incrementally get larger and larger until all edges have been
taken. Unfortunately, this simple approach does not work well in practice, since
the starting position may greatly influence the size of the partitions. A partition
that starts from the center of the graph will have more space to expand than a
partition that starts from the border and/or very close to another partition.

Table 1. Notation

d(v) Degree of vertex v

E(v) Edges incident on vertex v

V (e) Vertices incident on edge e

Mi[v] Units of partition i in vertex v

Mi[e] Units of partition i in edge e

Ei Edges bought by partition i

owner[e] The partition that owns edge e

Fig. 2. Step 1

Fig. 3. Step 2

Algorithm 1. dfep Init
Executed by the coordinator

foreach edge e ∈ E do
owner[e] = ⊥

for i = 1 to K do
v ← random(V )
Mi[v] = |E|/K

Algorithm 3. dfep Step 2
Executed at each edge e

best = argmaxp(Mp(e))
if owner[e] = ⊥ and Mbest(e) ≥ 1 then

owner[e] = best
Mbest[e] = Mbest[e] − 1

for i = 1 to K do
if owner[e] = i then

foreach v ∈ N(e) do
Mi[v] = Mi[v] + Mi[e]/2

else
S = vertices that funded
partition i in e
foreach v ∈ S do

Mi[v] = Mi[v] + Mi[e]/|S|

Mi[e] = 0

Algorithm 2. dfep Step 1
Executed at each vertex v

for i = 1 to K do
if Mi[v] > 0 then

eligible = ∅
foreach e ∈ E(v) do

if owner[e] = ⊥ or
owner[e] = i then

eligible = eligible ∪ {e}

foreach e ∈ eligible do
Mi[e] =
Mi[e] + (Mi[v]/|eligible|)

Mi[v] = 0

Algorithm 4. dfep Step 3
Executed by the coordinator

AVG =
∑

i∈[1...K](|Ei|)/K
for i = 1 to K do

funding = min(10, AV G/Ei)
foreach v ∈ V do

if Mi(v) > 0 then
Mi(v) = Mi(v) + funding
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To overcome this limitation, we introduce dfep (Distributed Funding-based
Edge Partitioning), an algorithm based on concept of “buying” the edges through
an amount of funding assigned to partitions. Initially, each partition is assigned
the same amount of funding and an initial, randomly-selected vertex. The algo-
rithm is then organized in a sequence of rounds. During each round, the parti-
tions try to acquire the edges that are neighbors to those already taken, while
a coordinator monitors the sizes of each partition and sends additional units of
funding to the smaller ones, to help them overcome their slow start.

Table 1 contains the notation used in the pseudocode of the algorithm. For
each vertex and edge we keep track of the amount of units that each partition
has committed to that vertex or edge. Algorithm1 presents the code executed
at the initialization step: each partition chooses a vertex at random and assigns
all the initial units to it. The edges are initialized as unassigned. Each round of
the algorithm is then divided in three steps. In the first step (Algorithm2), each
vertex propagates the units of funding to the outgoing edges. For each partition,
the vertex can move its funding only on edges that are free or owned by that
partition, dividing the available units of funding equally among all these eligible
edges. During the second step (Algorithm 3), each free edge is bought by the
partition which has the most units committed in that edge and the units of
funding of the losing partitions are sent back in equal parts to the vertices that
contributed to that funding. The winning partition loses an unit of funding to
pay for the edge and the remaining funding is divided in two equal parts and sent
to the vertices composing the edge. In the third step (Algorithm 4), eachpartition
receives an amount of funding inversely proportional to the number of edges it
has already bought. This funding is distributed between all the vertices in which
the partition has already committed a positive amount of funding. Two examples
are illustrated in Figs. 2–3. The red and blue color represents partitions, while
black edges are still free.

dfep creates partitions that are connected subgraphs of the original graph,
since currency cannot traverse an edge that has not been bought by that parti-
tion. It can be implemented in a distributed framework: both Step 1 and Step 2
are completely decentralized; Step 3, while centralized, needs an amount of com-
putation that is only linear in the number of partitions.

In our implementation, the amount of initial funding is equal to what would
be needed to buy an amount of edges equal to the optimal sized partition.
A smaller quantity would not decrease the precision of the algorithm, but it
would slow it down during the first rounds. The cap on the units of funding to
be given to a small partition during each round (10 units in our implementation)
avoids the over-funding of a small partition during the first rounds.

In a distributed setting the algorithm will follow the Bulk Synchronous
Processing model: each machine receives a subset of the graph, executes Step 1
on each of its vertices independently, sends money to the correct edges (that
may be on other machines), wait for the other machines to finish Step 1, and
executes Step 2. Step 3 must be executed by a coordinator, but the amount of
computation is minimal since the current sizes of the partitions can be computed
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via aggregated counting by the machines. Once the coordinator has computed
the amount of funding for each partition, it can send this information to the
machines that will apply it independently before Step 1 of the successive itera-
tion. If the coordinator finds that all edges have been assigned, it will terminate
the algorithm.

3.1 Variant: DFEPC

If the diameter is very large, there is the possibility that a poor starting vertex
is chosen at the beginning of the round. A partition may be cut off from the
rest of the graph, thus creating unbalanced partitions. A possible solution for
this problem involves adding an additional dynamic, at the cost of losing the
connectedness property.

A partition is called poor at round i if its size is less than µ
p , with µ being

the average size of partitions at round i and p being an additional parameter;
otherwise, it is called rich. A poor partition can commit units on already bought
edges that are owned by rich partitions and try to buy them. This addition to
the algorithm allows small partitions to catch up to the bigger ones even if they
have no free neighboring edges and results in more balanced partitions in graphs
with larger diameter.

4 Results

We evaluated our algorithms with both simulations (experiments repeated 100
times) and actual implementations (experiments repeated 20 times. The metrics
considered to evaluate dfep in our simulation engine are the following:

– Rounds: the number of rounds executed by dfep to complete the partition-
ing. This is a good measure of the amount of synchronization needed and can
be a good indicator of the eventual running time in a real world scenario.

– Balance: Each partition should be as close as possible to the same size. To
obtain a measure of the balance between the partitions we first normalize the
sizes, so that a partition of size 1 represents a partition with exactly |E|/K
edges. We then measure the standard deviation of the normalized sizes.

– Communication Costs: Each partition will have to send a message for each
of its frontier vertices, to share their state with the other partitions. We thus
use the frontier nodes to estimate the communication costs: M =

∑K
i=1 Fi.

Since the simulation engine is not able to cope with larger datasets, we used
different datasets for the experiments in the simulation engine and the real world
experiments. For both types of datasets we list the size of the graphs, the diam-
eter D, the clustering coefficient CC and the clustering coefficient RCC of a
random graph with the same size.

The first four datasets in Table 2 have been used in the simulation engine.
astroph is a collaboration network in the astrophysics field, while email-enron
is an email communication network from Enron. Both datasets are small-world,
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as shown by the small diameter. The usroads dataset is a road networking the
US, and thus is a good example of a large diameter network. Finally, wordnet
is a synonym network, with small diameter and very high clustering coefficient.

The three larger graphs are used in our implementation of dfep on the
Amazon EC2 cloud. dblp is the co-authorship network from the DBLP archive,
youtube is the friendship graph between the users of the service while amazon
is a co-purchasing network of the products sold by the website.

All the networks have been taken from the SNAP graph library [7] and
cleaned for our use, by making directed edges undirected and removing dis-
connected components.

Table 2. Datasets used in the simulation engine (1–4) and EC2 (5–7)

# Name |V | |E| D CC RCC

1 astroph 17903 196972 14 1.34 × 10−1 1.23 × 10−3

2 email-enron 33696 180811 13 3.01 × 10−2 3.19 × 10−4

3 usroads 126146 161950 617 1.45 × 10−2 2.03 × 10−5

4 wordnet 75606 231622 14 7.12 × 10−2 8.10 × 10−5

5 dblp 317080 1049866 21 1.28 × 10−1 2.09 × 10−5

6 youtube 1134890 2987624 20 2.08 × 10−3 4.64 × 10−6

7 amazon 400727 2349869 18 5.99 × 10−2 2.93 × 10−5

4.1 Simulations

Figure 4 shows the performance of the two versions of dfep against the para-
meter K, in the astroph and usroads datasets. As expected, the larger the
number of partitions, the larger is the variance between the sizes of those parti-
tions and the amount of messages that will have to be sent across the network.
The rounds needed to converge to a solution go down with the number of par-
titions, since it will take less time for the partitions to cover the entire graph.

The diameter of a graph is a strong indicator of how our proposed approach
will behave. To test dfep on graphs with similar characteristics but different
diameter we followed a specific protocol: starting from the usroads dataset
(a graph with a very large diameter) we remapped random edges, thus decreasing
the diameter. The remapping has been performed in such a way to keep the
number of triangles as close as possible to the original graph, to avoid introducing
bias in the experiment by radically changing the clustering coefficient.

Figure 5 shows that changing the diameter leads to completely different
behaviors. The size of the largest partitions and the standard deviation of par-
titions size rise steeply with the growth of the diameter, since in a graph with
higher diameter the starting vertices chosen by our algorithm affect more deeply
the quality of the partitioning. As expected, the number of rounds needed by
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Fig. 4. Behavior of dfep and dfepc with varying values of K

dfep to compute the partitioning also rise linearly with the diameter. Since the
partitions will be more interconnected, the amount of messages sent across the
network will decrease steeply with a larger diameter. Our variant of dfep is able
to cope well also in case of graphs with large diameter.

Finally, we compare the two version of dfep against JaBeJa [9] and Power-
Graph [4]. Since JaBeJa is a vertex-partitioning algorithm, its output has been
converted into an edge-partitioning.

PowerGraph processes the graph one edge at a time, assigning it to the best
partition according to which partitions already contain the nodes of the cur-
rent edge. The sequential version of the algorithm needs at each step complete
knowledge of the choices of the previous iteration. The authors also illustrate a
version called “Oblivious PowerGraph” in which each process behaves indepen-
dently on a subset of the edges. The quality of the partitioning thus depends on
the number of independent processes used. In our comparison, we used both the
centralized version (labeled “PowerGraph”) and the oblivious version (labeled
“Oblivious PowerGraph”). In the oblivious version, we tested the algorithm by
simulating two distinct processes.

Both PowerGraph versions create remarkably balanced partitions and are
extremely fast, since they work in a single pass over the graph. On the downside,
their partitions are less connected than dfep and thus incur in more communi-
cation costs.

Figure 6 shows the experimental results over 100 samples, on the four differ-
ent datasets. A pattern can be discerned: the algorithms have wildly different
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Fig. 5. Behavior of dfep and dfepc with varying diameter (K = 20)

behaviors in the small world dataset than in the road network. In the small
world datasets our approaches results in more balanced partitions, while need-
ing less rounds to converge than JaBeJa. In the usroads dataset JaBeJa creates
more balanced partitions, but with a communication costs that is roughly ten
times higher. This result shows the importance of creating partitions that are
as much connected as possible. Powegraph instead gets balanced, but not very
connected partitions in all cases. With the oblivious version of the algorithm the
quality degrades, since the approach will obtain a partitioning of worse quality
the higher the number of the processes that participate in the computation.

Since JaBeJa uses simulated annealing to improve the candidate solution, the
number of round needed is mostly independent from the structure of the graph.
As shown in Fig. 5 the number of rounds dfep needs depend mostly from the
graph diameter. Both versions of PowerGraph work in a single pass over the edge
set, and therefore is a better choice if the amount of computation needed after
the partitioning step is not large enough to warrant a more precise partitioning.

4.2 Experiments in EC2

dfep has been implemented in both Apache Hadoop in the MapReduce model
and in Spark/Graphx, and have been tested over the Amazon EC2 cloud. All
the experiments have been repeated 20 times on m1.medium machines.
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It was not possible to implement dfep in Hadoop using a single Map-Reduce
round for each iteration while keeping exactly the same structure as in the
pseudocode. Each instance of the Map function is executed on a single vertex,
which will output messages to its neighbor and a copy of itself. Each instance of
the Reduce function will receive a vertex and all the funding sent by the neigh-
bors on common edges. The part of the algorithm that should be executed on
each edge is instead executed by both its neighboring vertices, with special care
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to make sure that both executions will get the same results to avoid inconsisten-
cies in the graph. This choice, which sounds counterintuitive, allows us to use
a single Map-Reduce round for each iteration of the algorithm, thus decreasing
the communication and sorting costs inherent in the MapReduce model.

Figure 7a presents the scalability results, when run with the datasets in
Table 2, with K = 20. The algorithm scales with the number of computing
nodes, with a speedup larger than 5 with 16 nodes instead of 2.

Our Spark/Graphx implementation of dfep is still unstable, and thus, while
faster, it is not able to reach the scalability of the Hadoop implementation.
Figure 7b shows a speedup of just 2 with 16 nodes instead of 2 nodes, with a
very large variance.

5 Related Work

The literature on graph partitioning is huge, but given that edge partitioning has
not been studied in equal depth, we will mostly focus on the different approaches
developed to solve vertex graph partitioning. The edge partitioning problem can
be reduced to the vertex partitioning problem by using the line graph of the
original graph, but the massive increase in size makes this approach infeasible.

In both versions, the partitioning problem is not only NP-complete, but even
difficult to approximate [1]. Most work in this field are thus heuristics algorithms
with no guaranteed approximation rate. Kernighan and Lin developed the most
well-known heuristic algorithm for binary graph partitioning in 1970 [6]. At
initialization time, each vertex in the network is randomly assigned to one of
two partitions and the algorithm tries to optimize the vertex cut by exchanging
vertices between the partitions. This approach has been later extended to run
efficiently on multiprocessors by parallelizing the computation of the scoring
function used to choose which vertices should be exchanged [3].

METIS [5] is a more recent and highly successful project that uses a multi-
level partitioning approach to obtain very high quality partitions. The graph is
coarsened into a smaller graph, which is then partitioned and the solution is then
refined to adapt to the original graph. An effort to create a parallelizable version
of the program has lead to P-METIS, a version built for multicore machines.
The quality of the partitions obtained with this approach does not seem to be
of the same quality than the centralized version, as expected.

The presence of additional constraints has driven the research field towards
more specialized algorithms. For example, in the streaming scenario it is infea-
sible to use the classical partitioning algorithm, since the data is continuously
arriving. A greedy algorithm that assign each incoming vertex to a partition has
been proposed [10] and computes partitions of only slightly less quality than
most centralized algorithms.

The two algorithms selected for our comparison are JaBeJa [9] and Power-
graph [4]. JaBeJa is a completely decentralized partitioning algorithm based on
local and global exchanges. Each vertex in the graph is initially mapped to a
random partition. At each iteration, it will try to exchange its mapping with
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one of its neighbor or with one of the random vertices obtained via a peer selec-
tion algorithm, if the exchange decreases the vertex cut size. An additional layer
of simulated annealing decrease the likelihood of returning to a local minima.
JaBeJa is similar in approach to Kernighan and Lin’s algorithm, but moves
the choices from the partition level to the vertex level, greatly increasing the
possibility for parallelization.

Powergraph instead uses a greedy approach, processing and assigning each
edge before moving to the next. It keeps in memory the current sizes of each
partition and, for each vertex, the set of partitions that contain at least one
edge of that vertex. If both endpoints of the current edge are already inside
one common partition, the edge will be added to that partition. If they have no
partition in common, the node with the most edges still to assign will choose
one of its partitions. If only one node is already in a partition, the edge will be
assigned to that partition. Otherwise, if both nodes are free, the edge will be
assigned to the smallest partition. This heuristic can be run independently on
N subsets of the edge set to parallelize the workload, at the cost of lower quality
partitions.

6 Conclusions

This paper presented dfep, an heuristic distributed edge partitioning algorithm
based on a simple funding model. Our experimental results, obtained through
simulation and through an actual deployment on an Amazon EC2 cluster, show
that dfep scales well and is able to obtain balanced partitions.

As future work, we are working on an efficient Spark implementation of dfep,
to allow us to partition larger graphs and analyze the scalability of our approach.
We will study how does the algorithm behaves in presence of dynamism (such
as addition and deletion of edges) and how to use external information about
nodes and edges to obtain a better partitioning.
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Abstract. In this paper we describe an implementation of a software
transactional memory library for the GPU written in CUDA. We describe
the implementation of our transaction mechanism which features both
tentative and regular locking along with a contention management pol-
icy based on a simple, yet effective, static priority rule called Priority
Rule Software Transactional Memory (PR-STM ). We demonstrate com-
petitive performance results in comparison with existing STMs for both
the GPU and CPU. While GPU comparisons have been studied, to the
best of our knowledge we are the first to provide results comparing GPU
based STMs with a CPU based STM.

Keywords: Transactional memory · GPU · CUDA · Concurrency con-
trol · STM

1 Introduction

The availability of Graphics Processing Units (GPU) has recently expanded
into the area of general purpose programming, giving rise to a new genre of
applications known as General Purpose GPU [10] (hereafter GPGPU). The
principle benefit of using the GPU is the relatively high degree of parallel com-
putation available compared to the CPU. Furthermore, programming APIs, such
as CUDA [13,14], have grown in sophistication with every new advancement in
GPU design. As such, GPGPU programmers now have at their disposal tools
to enable them to write complex and expressive applications which can leverage
the power of modern GPUs.

As with multi-threaded applications on the CPU, GPGPU applications
require synchronisation techniques to prevent corruption of shared data. As has
long been experienced in the domain of CPU computing, correctly synchronising
multiple threads is a difficult task to implement without introducing errors (such
as deadlock and livelock) [7]. To compound matters, the high number of threads
available on modern GPUs means that contention for shared data is an issue of
greater potential significance than on the CPU where the number of threads is
typically much lower.

c© Springer-Verlag Berlin Heidelberg 2015
J.L. Träff et al. (Eds.): Euro-Par 2015, LNCS 9233, pp. 361–372, 2015.
DOI: 10.1007/978-3-662-48096-0 28
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To address the difficulties of multi-threading on the CPU, significant progress
has been made in providing Concurrency Control techniques to aid the concur-
rent programmer. One notable technique is Transactional Memory [8] (TM),
which allows the execution of transactions in both Software [2,6] and Hard-
ware [8,15]. TM provides an intuitive interface to aid programmers of multi-
threaded programs. The TM system guarantees that programs are free of data
inconsistency issues while handling the intricacies of thread coordination and
contention management.

At the time of writing, implementing an efficient TM technique for the GPU
remains an area with much potential for development. The work in this paper
aims to contribute to that development by providing the following:

– An STM algorithm for the GPU based on a simple, yet effective, static priority
rule. We demonstrate that our technique can out-perform a state-of-the-art
STM technique for the GPU called GPU-STM [19];

– Benchmarked performance figures are provided, comparing PR-STM with
both GPU-STM and a widely used STM technique for the CPU, namely
TinySTM [3]. To our knowledge this is the first time that comparisons have
been produced between STM techniques for the GPU and the CPU.

We have enhanced the benchmarking software to assess the performance of
all three techniques with variation on the number of threads, transaction size
and the granularity of lock coverage in addition to the impact of invisible reads.

Section 2 describes the implementation of our STM and Sect. 3 surveys
related work. Section 4 describes our evaluation and, finally, Sect. 5 concludes
the paper and discusses future work.

2 Implementation

2.1 Overview

The operation of the GPU differs considerably from the CPU and this must be
taken into account when implementing transactional algorithms on the GPU.
In addition to the high degree of threads available, groups of GPU threads
execute as part of a ‘warp’. Threads belonging to the same warp share the same
instruction counter and thus execute the same instruction in a ‘lock-step’ fashion.
In addition to the risk of high contention given the high number of threads,
deadlock and livelock are possible because threads of the same warp cannot
coordinate their accesses to locks as they can on the CPU (see Fig. 1(A)).

To prevent the possibility of deadlock and livelock, we use a ‘lock stealing’
algorithm which requires each thread be assigned a static priority. This allows a
thread with priority n to steal a lock which is currently owned by any thread with
a priority less than n (see Fig. 1(B)). As every thread has a unique priority, this
addresses the possibility of deadlock because any thread can always determine its
next action when encountering locked data. Livelock is also addressed as threads
will never attempt to perpetually steal one another’s locks.
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Fig. 1. Livelock and contention management in GPU transaction execution.

PR-STM implements a commit time locking approach where threads attempt
to acquire locks at the end of their transactions. Before committing, threads first
attempt to validate their transactions by tentatively ‘pre-locking’ shared data.
Pre-locked data can be stolen based on the thread priority rule. If validation is
successful the thread may commit its transaction. We implement invisible reads
and threads maintain versions of the data they have accessed so that they can
abort early if a conflict is detected. This has the benefit of reducing the costs
of false conflict where a thread needlessly aborts when encountering data locked
by a transaction which itself will abort in future.

2.2 Metadata

PR-STM consists of two types of metadata: a global metadata which is shared
among all threads and a local metadata which is private to a single thread:

– Global Lock Table. A lock table is required which should be accessible to all
GPU threads, hence it is located in global memory. Each word of shared data
is hashable to a unique lock in the global lock table. To enhance the scalability
of our system we can vary the number of words that are covered by a single
lock. When the hashing function has a 1:1 configuration, for instance, every
word of shared data has its own lock. While this configuration demands the
most memory it minimises the chance of a false conflict based on shared locks.
Each entry in the global lock table is an unsigned integer composed of version
(11 bits), owner (19 bits), locked (1 bit) and pre-locked (1 bit);

– Local Read Set is a set of read entries each composed of a memory location,
version and value read by the current thread;

– Local Write Set is a set of write entries recording the memory location and
value written by the current thread;
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– Local Lock Set is a set of lock indices and lock versions written by the current
thread. The use of lock versioning, along with thread priorities provides the
data required by our algorithm when a transaction wishes to perform lock
stealing.

2.3 STM Operations

PR-STM is comprised of several functions that are executed during significant
events during a transaction’s execution. Specifically: txStart, txRead, txWrite,
txValidate and txCommit. Algorithms 1 and 2 provide the pseudo code.

txStart is called before a thread begins or restarts a transaction. The function
initialises the thread’s local read, write and lock sets setting them to be empty
(line 1). The thread then sets a local abort flag to false (line 2).

txRead is executed whenever a thread attempts to read shared data from global
memory. The calling thread checks if the shared data is locked by another thread
(line 3) and if so the thread aborts and restarts its transaction (line 10). If the
data is not locked the thread checks to see if the data has already been added to
its local write set (line 4) and if so, returns the stored value (line 5). If the data
is not in the thread’s local write set it retrieves the value from global memory
(line 6) using an atomic read to ensure the value is up to date. The thread then
adds the value read to its local read set along with the atomically read lock
version corresponding to the shared data (lines 7–8) before it is returned.

txWrite records each write a thread wishes to make in its local write set . The
thread first checks if the data is already locked and if so sets its abort flag to
true indicating the transaction must abort and restart when the function returns
(line 19). If the data is not locked the thread checks if the data is already in its
local write set (line 14) and overwrites it. If the data has not been previously
written the thread creates a new write set entry (lines 15–18).

txValidate is invoked before the transaction can commit. The thread attempts
to lock all shared data that it intends to modify and performs validation of all
the shared data it has read. The thread invokes prelock on all data read/written
(line 20) to determine whether it has the highest priority value. Then the thread
validates all the data in its read set by checking that their versions have not
changed (lines 21–22). If validation is successful the thread will try to lock all
data (line 23). If this is successful then the thread can now commit its transac-
tion. If any of these steps fail, the transaction must abort.

txCommit is invoked only when a transaction has already successfully validated.
The thread writes to all global shared data in its local write set (line 26) and
executes a ‘thread fence’ (line 27). CUDA provides a thread fence function to
ensure memory values modified before the fence can be seen by all other threads.
Without a thread fence, the weak memory model of the GPU might cause a
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Algorithm 1. PR-STM functions
function txStart()

1 readSet ← writeSet ← lockTable ← ∅;
2 abort ← false;

function txRead(Address addr)
3 if getLockBit(g lock[hash(addr)]) = 0 then
4 if < addr, valWritten >∈ writeSet then
5 return valWritten ;

else
6 value ← atomicRead(addr);
7 version ← getVersion(atomicRead(g lock[hash(addr)]));
8 readSet ← readSet ∪ {< addr, value, version >};
9 return value;

else
10 abort ← true;
11 return 0;

function txWrite(Address addr, Value val)
12 if getLockBit(g lock[hash(addr)]) = 0 then
13 if < addr, valWritten >∈ writeSet then
14 < addr, valWritten >←< addr, val >;

else
15 idx ← hash(addr);
16 version ← getVersion(g lock[idx]);
17 writeSet ← writeSet ∪ {< addr, val >};
18 lockSet ← lockSet ∪ {< idx, version >}};

else
19 abort ← true;

function txValidate()
20 if tryPreLock() = true then
21 for all< addr, value, version >∈ readSet do
22 if getVersion(g lock[hash(addr)]) �= version then

return false;

23 return tryLock();

else
24 return false;

function txCommit()
25 for all < addr, val >∈ writeSet do
26 ∗addr ← val;

27 threadfence();
28 for all< idx, version >∈ lockSet do
29 if version < maxV ersion then
30 setVersion(g lock[idx], version + 1);

else
31 setVersion(g lock[idx], 0);

reordering of a thread’s instructions, which could lead to inconsistent shared
data. The thread fence ensures that modifications to shared data are visible to
all threads before any locks are released. The thread then updates the version
bit in the global lock table for each lock in its lock set. The version bit is either
incremented (line 30) or reset (line 31) if the version value has reached the
maximum value.
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Algorithm 2. PR-STM functions
function tryPreLock()

32 for all< idx, version >∈ lockSet do
33 repeat
34 tmpLockV al ← g lock[idx];
35 if getVersion(tmpLockVal) �= version
36 or getLockBit(tmpLockVal) = 1
37 or(getPreLockBit(tmpLockVal) = 1 and

getOwner(tmpLockVal) < threadIdx) then
38 releaseLocks();
39 return false;

40 preLockV al ← calcPreLockedVal(version, threadIdx);
until atomicCAS(g lock+idx,tmpLockVal,preLockVal) = tmpLockV al;

41 return true;

function tryLock()
42 for all< idx, version >∈ lockSet do
43 PreLockV al ← calcPreLockedVal(version, threadIdx);
44 FinalLockV al ← calcLockedVal(version);
45 if atomicCAS(g lock+idx,PreLockVal,FinalLockVal) �= PreLockV al then
46 releaseLocks();
47 return false;

48 return true;

function releaseLocks()
for all idx ∈ PreLocked do

49 preLockV al ← calcPreLockedVal(version, threadIdx);
50 atomicCAS(g lock+idx,preLockVal,preLockVal-1);

for all idx ∈ Locked do
51 unLockV al ← calcUnlockVal(version);
52 g lock[idx] ← unLockV al;

2.4 Contention Management Policy

In PR-STM, 32-bit memory words are used to represent locks. We use locks
for both protecting shared data and implementing our priority rule policy. The
various bits of each lock represent the following:

– The first 11 bits of a lock represent the current version of that lock. The version
is incremented whenever an update transaction is successfully committed.

– Bits 12–30 represent the priority of whichever thread has currently pre-locked
this lock (if such a thread exists). A lower value represents a higher priority.

– The 31st bit indicates whether this lock is pre-locked. Pre-locked locks may
be stolen from threads with lower priorities and acquired by threads of higher
priorities.

– The last bit represents whether the lock is currently locked. Once this bit is
set, no other threads can acquire this lock.

Algorithm 2 (lines 32–52) shows three required handlers which are used to
manage the locks:

tryPreLock is called whenever a thread attempts to pre-lock shared data. For
each lock in its local lock set, the thread checks whether the lock versions are
inconsistent (line 35) and whether the lock is unavailable (line 36). Finally, the
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thread checks whether the lock has been pre-locked by another thread with a
higher priority (line 37). If any of these conditions are true, then the thread
releases all locks it has previously pre-locked and aborts (line 39) otherwise the
thread attempts to pre-lock the lock using an atomic Compare and Swap (CAS).
If the CAS fails then another thread must have accessed the lock. The thread
must then repeat lines 35–37 until it aborts or the CAS succeeds and it has the
highest priority so far of all the threads attempting to pre lock this lock.

tryLock is called when a thread successfully pre-locks every lock in its local lock
set. The thread attempts to lock each pre-locked lock (line 45). If any CAS fails
then the lock has been stolen by a higher priority thread and the original thread
must then release all locks and abort (lines 46–47).

releaseLocks is called when a thread commits or aborts. All pre-locked/locked
locks are released. Pre-locked locks must be released by CAS (line 50) in case
the lock has been stolen by another thread.

3 Related Work

Although STM research on the GPU is a recent research area at the time of writ-
ing, numerous implementations of software transactions for the GPU have been
implemented. Cederman et al. [1], for instance, implemented the first STM on
the GPU that works at the granularity of a thread-block (rather than the gran-
ularity of individual threads). By using a relatively coarse ‘thread-block gran-
ularity’, Cederman’s technique avoids dependency violations between threads
within a single block. Although this reduces contention due to the typically high
thread numbers used on the GPU, it does not accommodate workloads more
appropriate for STM execution.

Xu et al. have implemented an approach called GPUSTM [19] which, like
PR-STM, operates at the granularity of the thread. GPUSTM implements an
approach based on a combination of timestamp-based and value-based valida-
tion called ‘hierarchical based validation’. Their validation technique requires
that locks are sorted whenever transactional reading takes place to avoid the
possibility of livelock. The static priority rule used by PR-STM on the other
hand avoids the need to sort locks (our threads are effectively pre-sorted by
their priorities instead).

Research has also been explored in providing Hardware Transactional Mem-
ory (HTM) for the GPU. In particular, Fung et al. [4,5] proposed a technique
using value based validation like Xu’s work but required significant modifications
to the GPU architecture. Nasre et al. have also described generic modifications to
improve the performance of morph algorithms with irregular access patterns [12],
and [11] explored GPU techniques to speed up execution by reducing the usage
of atomic operations.

More recently, Holey et al. have provided Lightweight Software Transactions
for the GPU [9]. Three variations of STM design are described, namely: ESTM
(eager), PSTM (pessimistic) and ISTM (invisible reads). ESTM updates shared
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memory during transaction execution while updating an undo log to remove
those updates upon an abort. PSTM is a simpler version of ESTM which treats
reads and writes in the same manner, hence PSTM is more effective where trans-
actions regularly read and write to the same shared data. Like our approach,
ISTM can represent invisible reads to reduce conflicts during a transaction. None
of Holey’s techniques allow for lock stealing based on thread priorities however.
While Holey’s work compares the performance of their algorithms with the CPU,
they employ basic fine-grain and coarse-grain locking benchmarks. To our knowl-
edge neither Holey’s work, nor any of the other techniques described compare
their performance with an actual STM implementation on the CPU.

4 Evaluation

In this section we present results from a series of benchmarks to demonstrate the
performance of our system. We compare the performance of PR-STM against a
recently developed STM system for the GPU called GPU-STM [19] and a widely
used STM system for the CPU called TinySTM [3]. The tests were carried out
on a desktop PC with Nvidia Fermi GPU (GeForce GTX 590) which has 16 SMs,
operates at a clock frequency of 1225 MHz and has access to 1.5 GB of GDDR5
memory. All shared data and the global lock table are allocated in global memory,
while all local meta-data is stored in local memory. The global lock table data
accessed the L2 cache, while local memory accessed both the L1 and L2 caches.
The CPU tests were carried out on 2 × dual-core 3.07 GHz Intel(R) processors
with 16 GB of RAM. We used the Windows 7 Operating System. TinySTM used
the Time Stamp Contention Management Policy [16] with the Eager Write Back
configuration (with invisible reads).

The experiments use a benchmark called bank which accompanies TinySTM.
A configurable array of bank accounts represents the shared data from which
transactions withdraw and deposit funds. We allocated 10 MB of memory to
create roughly 2.5 million accounts. We required many accounts to accommo-
date the presence of many more threads in the GPU. We found that this number
of accounts allowed us to observe the effects of both low and high contention as
we varied scenario parameters. We also added several adaptations to the base
scenario, most notably the ability to vary the amount of shared data accessed
within a transaction (i.e. the number of bank accounts). This allowed us to
vary the likelihood of contention caused by longer transactions. We also imple-
mented changes to the hashing function used in all three STM systems so that we
could control the amount of shared data covered by a single lock to experiment
with the degree of false-sharing. Finally, we included results where the number
of threads are increased to observe the contention caused by high numbers of
threads featured in GPU applications.

In the following graphs we present results where: (i) all threads perform
update transactions (i.e. read and write operations) and (ii) 20 % of the threads
in the scenario execute read-only transactions. This was included to observe
the impact of invisible reads on the scenario. Each test lasted for 5 s and was
executed 10 times with the average results presented.



PR-STM: Priority Rule Based Software Transactions for the GPU 369

Fig. 2. Average throughput with increasing transaction size

4.1 Transaction Throughput

Figure 2 shows the degree of transaction throughput when the number of
accounts accessed per transaction is increased. The number of threads used
was kept constant at 512 threads for the GPU and 8 threads for the CPU.
These values were used as they provided the best performance in each system. In
Figs. 2(A) and (B), Y-axes show the number of transactions committed per sec-
ond and X-axes show the number of bank accounts accessed in each transaction.
As the GPU has many more threads than the CPU both PR-STM and GPU-
STM outperform TinySTM when the number of accessed accounts is low (below
16). As expected, when the transaction size increases the throughput of all three
STMs drops because inter-transaction conflicts are now more likely. The sharpest
drop in performance is witnessed in GPU-STM as the higher thread numbers
exacerbate the degree of conflicts. In the results with 20 % read only transactions
(Figs. 2(B) and (D)) throughput is marginally better. This is because fewer locks
are acquired and so fewer conflicts occur.

Figures. 2(C) and (D) show normalised throughput instead of the absolute
values shown in Figs. 2(A) and (B). This helps to differentiate the performance
when the transaction size increases beyond 16 accounts, where the values are
too close to read in absolute terms. Y-axes show the relative throughput of
PR-STM and TinySTM if we treat GPU-STM as 100 %. With more accounts
accessed we can see both PR-STM and TinySTM outperform GPU-STM. One
possible reason for this is that our algorithm does not have to sort the local lock
array at every read or write step (like GPU-STM ) while the higher number of
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Fig. 3. Average throughput with increasing lock coverage and increased threads

threads enjoyed by PR-STM remains a benefit to performance rather than a
hindrance.

4.2 STM Scalability

Figures. 3(A) and (B) show the degree of transaction throughput when the hash
function is modified. The hash function determines the number of accounts cov-
ered by a single lock; the lower the hash value the less chance that threads will
try to access the same lock when reading or writing to different shared data.
Both the number of threads used and the transaction size were kept constant
at 512(GPU)/8(CPU) and 128 respectively. Once again the Y axes show the
throughput in transactions per second and the X-axes show the hash function
value as the number of accounts covered by a single lock.

Figures 3(A) and (B) provide comparison between PR-STM, GPU-STM and
TinySTM with different hash values. As the hash value increases the perfor-
mance of TinySTM deteriorates due to the increased likelihood of false con-
flicts. Both PR-STM and GPU-STM, however, show increased throughput. This
is because PR-STM and GPU-STM can both take advantage of reduced lock-
querying (due to their lock-sets) and memory coalescing to reduce bus traffic
when querying the status of locks held. In Fig. 3(B), with 20 % read only threads,
performance is only slightly improved in all three techniques, but mostly in
TinySTM which gains the most benefit from invisible reads.

In Figs. 3(C) and (D), we increase the number of threads. In these two
graphs we only compare the performance of PR-STM and GPU-STM because
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TinySTM is limited by the relatively small number of threads afforded by the
CPU. Transaction throughput rises until 258 threads are used where inter-thread
conflicts begin to occur at a substantial rate. Below 258 threads, the possibility
of conflict is negligible because the high number of accounts used reduces the
probability that threads will access the same account. As the number of threads
increases, however, so too increases the rate of conflict and therefore the through-
put decreases markedly. As thread numbers increase, however, PR-STM begins
to improve once again, whereas GPU-STM levels out. The benefit of the work
produced by extra threads is cancelled out by the overhead caused by inter-
transactional contention. In Fig. 3(D) we can see that performance improves
marginally with the introduction of 20 % read only threads. All other factors
being equal, improvements in terms of read only transactions have little effect
on the GPU.

5 Conclusion

In this paper we have presented PR-STM, a new scalable STM technique for the
GPU which uses static thread ranking/priority to efficiently resolve contention
for shared locks. We have demonstrated the performance of our approach against
both GPU (GPU-STM ) and CPU (TinySTM ) software transactional memory
libraries which, to our knowledge, is the first time such testing has been done.
Results for transactional throughput and scalability demonstrate that our app-
roach performs better than both GPU-STM and TinySTM in almost all cases.

We believe there exists much scope for expanding our approach. In the short-
term we would like to enhance our Contention Management Policy to accom-
modate dynamic priorities and application semantics (this has been shown to
provide substantial performance improvements [17,18]). In the long-term we
would like to experiment with combining the GPU and the CPU within a hetero-
geneous transaction manager. The results suggest that the GPU is particularly
effective at processing large numbers of short transactions, while the presence
of read-only transactions provides only a small improvement to GPU perfor-
mance. Further testing will allow us to formulate transaction allocation strate-
gies, assigning work to either the CPU or the GPU based on the effectiveness of
each processing element to execute that work.
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Abstract. The relaxed semantics and rich functionality of one-sided
communication primitives of MPI-3 makes MPI an attractive candidate
for the implementation of PGAS models. However, the performance of
such implementation suffers from the fact, that current MPI RMA imple-
mentations typically have a large overhead when source and target of a
communication request share a common, local physical memory. In this
paper, we present an optimized PGAS-like runtime system which uses
the new MPI-3 shared-memory extensions to serve intra-node communi-
cation requests and MPI-3 one-sided communication primitives to serve
inter-node communication requests. The performance of our runtime sys-
tem is evaluated on a Cray XC40 system through low-level communication
benchmarks, a random-access benchmark and a stencil kernel. The results
of the experiments demonstrate that the performance of our hybrid run-
time system matches the performance of low-level RMA libraries for intra-
node transfers, and that of MPI-3 for inter-node transfers.

Keywords: MPI · One-sided communication · Remote-memory access ·
RMA · Partitioned global address space · PGAS

1 Introduction

The Message Passing Interface (MPI, [7]) is the de-facto communication stan-
dard for distributed-memory parallel programming. One particular advantage
for parallel programmers is the portability of MPI performance across systems
with different underlying network hardware: While HPC hardware vendors and
the MPI community spend considerable effort to optimize MPI implementa-
tions for the latest HPC network infrastructure, other alternative communica-
tion libraries typically do not have optimized support for a wide range of network
hardware. With the advent of the remote-memory access (RMA, also referred
to as one-sided communication) functionalities in MPI-2 [6] and the significant
improvement of the RMA in MPI-3 [7], MPI has become an adequate com-
munication backend for the implementation of partitioned global address space
(PGAS) programming models [11].

DASH [4] is a C++ template library which implements a PGAS-like program-
ming model. Unlike other PGAS models, DASH acknowledges the multi-level
c© Springer-Verlag Berlin Heidelberg 2015
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hierarchical or compositional nature of today’s supercomputing systems, e.g.
cores, processors, nodes, racks, islands, full system, and thus does not classify
data into remote and local only, but allows for various degrees of remoteness. The
template library sits on top of a runtime system (DART), which is responsible
for providing services to the DASH library, including the definition of semantics
and the abstraction of the underlying hardware. In particular, DART provides
functions for the management of teams (a concept similar to MPI communi-
cators), one-sided communications, collective operations, and global memory
management.

In an earlier paper [17], we have described DART-MPI, a portable imple-
mentation of the DASH runtime, that uses MPI-3 as low-level communication
substrate. There, we showed, that the overhead of DART-MPI RMA operations
on top of the corresponding MPI-3 operations is negligible in general. Most
other PGAS implementations however, do not use MPI as communication sub-
strate; UPC [2] for instance is frequently based on GASNet [1], while GA [9]
uses ARMCI [8] as underlying communication substrate.

Originally, all the RMA operations in DART-MPI are substantially mapped
directly to the corresponding MPI-3 RMA operations. In particular, DART-MPI
invokes MPI RMA operations when source and target of a transfer reside on the
same node and share local, physical memory. Alternatively, one could do direct
load/store operations without additional copies in the runtime layer. In this
paper, the contributions we make on DART-MPI are threefold:

– We utilize the MPI-3 shared-memory extensions to enable direct memory
access (memory sharing) for DART-MPI blocking operations for intra-node
transfers. However, we turn to the MPI RMA operations when the non-
blocking or inter-node data movements happen.

– We redefine the existing translation table to facilitate the reference to the
DART-MPI collective global pointer when beginning with the shared memory
window in mind.

– Using the low-level and application-level benchmarks, we show the improved
performance achieved by embedding the shared-memory-related functionality
into DART-MPI.

The rest of the paper is organized as follows: In Sect. 2, we present the back-
ground for our work. In Sect. 3, we describe the improved implementation of
DART-MPI and evaluate the performance of DART-MPI in Sect. 4. We summa-
rize in Sect. 5.

2 Background

From the perspective of PGAS models, the recent MPI-3 standard [7] signif-
icantly improves the one-sided communication system. The relaxation of the
RMA semantics, the concretization of the memory consistency model, the intro-
duction of new window types, fine-grained mechanisms for synchronization and
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data movement, and atomic operations, make MPI-3 RMA attractive as back-
end for PGAS implementations. Additionally, the results in Dinan et al. [3]
indicate that the new MPI-3 RMA system has performance advantages over
the MPI-2 interface. In this section, we briefly explain two new MPI-3 window
types: dynamically-allocated window and shared-memory window, which will play
a central role in understanding how to enable memory sharing within a node in
DART-MPI. A more detailed description of the other new functionalities can be
found in Hoefler et al. [5].

2.1 MPI Dynamically-Allocated Memory Window

A dynamically-allocated window is a new concept in MPI-3 that allows to arbi-
trarily grow and resize a given window by repeatedly attaching/detaching mul-
tiple, non-overlapping, user allocated memory regions to/from the associated
window object.

The function MPI Win create dynamic is called to generate a window object
d-win without associating any initial memory block with it. User allocated
memory is attached to d-win, and thus made available for RMA operations,
by invoking the function MPI Win attach, and detached with MPI Win detach.
Once memory regions are detached from d-win, they will not be the target of
any MPI RMA operation on d-win unless they are re-attached. Notably, any
local memory region may be attached and detached repeatedly, and multiple,
but non-overlapping memory regions are allowed to be attached to the same
window.

MPI Get address returns the address of the given memory and should be
called to validate the RMA operations on d-win. This is due to the fact that the
address of the target memory location is passed directly as window displacement
parameter to the MPI RMA operations. Therefore, the target process is required
to send the address of a certain memory location, that locals to it, to the origin
process who inquires for it.

Noticeably, Potluri et al. [13] have published benchmark results which demon-
strate that dynamically-allocated windows perform as good as the traditional
static MPI-created windows in terms of put latency.

2.2 MPI Shared-Memory Window

The unified memory model, which is fully supported in MPI-3 in order to utilize
the cache-coherence characteristics embodied in the modern hardware architec-
tures, is a requirement for exposing the MPI shared-memory window.

To collectively allocate the shared memory region across all processes in a
given communicator, MPI-3 defines a portable, shared-memory window alloca-
tion interface – MPI Win allocate shared to generate a shared-memory allocated
window object shmem-win. In addition, the communicator that the shmem-
win associates with should be a shared-memory capability communicator, which
means it is allowed to build a memory sharing region on top of this communica-
tor. Therefore, the additional function MPI Comm split type, as an extension of
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the function MPI Comm split, identifies sub-communicators on which the shared
memory region can be created with the type of MPI COMM TYPE SHARED.
The function MPI Win shared query is provided to query the base pointer to
the memory on the target process. Coupled with the shmem-win, the locally-
allocated memory can even be accessed by the MPI processes in the group of
shmem-win with immediate load/store operations. Such access pattern can make
data movements bypass the MPI layer and directly go through memory sharing,
which brings in significant performance improvement.

3 The DART-MPI Implementation Design

In this section, we explain the approach of enabling the memory sharing option
for the blocking RMA operations in DART-MPI and address the modifications
and improvements that are made with respect to the existing DART-MPI.

There are two types of DART global memory, collective and non-
collective [17]. The collective global memory, pointed to by a collective global
pointer, is created and distributed across the given team. The non-collective
global memory, pointed to by a non-collective global pointer, is only allocated
in the global address space of the calling unit. We assume that all the follow-
ing collective global memory blocks are allocated across team T consisting of P
units.

3.1 Communication Hierarchy of the DART-MPI Blocking RMA
Operations

To make the DART-MPI intra-node communication more efficient, we alter the
existing implementation to let the DART-MPI blocking operations deal with the
data locality explicitly. Note, that the DART-MPI non-blocking RMA interfaces
do not yet support the memory sharing as described earlier in this paper.

In the team creation code, the team T is split into sub-teams on which it is
possible to enable communication via sharing memory. We accomplish this by
calling MPI Comm split type with key MPI COMM TYPE SHARED. In addi-
tion, a d-win is generated without any memory attached when team T is created,
indicating one-to-one relationship is built between d-win and T . Such relation-
ship is stored in an array named dart win lists. Therefore, the position of the
team T in teamlist [17] can also be a perfect index into the array dart win lists.
The d-win can potentially be utilized to complete all the data movements where
the units are located in different sub-teams.

In the collective global memory allocation code, instead of allocating a block
of memory from a memory pool that is reserved for T , we need to create a
shmem-win spanning the memory of the specified size on each sub-team men-
tioned above. On top of that, each unit of the team T should attach the locally-
allocated memory to the d-win explicitly to make them available for the units
in the varying sub-teams. As the Fig. 1 shows, there are two overlapping win-
dows sharing the same memory region for different purposes. On the one hand,
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Fig. 1. Nesting of shared-memory window inside RMA window for blocking put/get
operations

the units covered by the same shmem-win can communicate with each other
via memory sharing (e.g., memcpy). On the other hand, the units located in
different sub-teams should turn to the d-win for completing the remote accesses
with MPI RMA operations. Note, that using shared-memory in the DART-MPI
non-blocking RMA operations is anything but trivial as for instance the direct
memcpy function itself is a blocking operation. Furthermore, the introduction
of DMA copy engine could be a workaround to support asynchronous memory
copying [16] for DART-MPI.

In the non-collective global memory allocation code, we provide two over-
lapping global windows, which indicates that all the DART-MPI non-collective
allocations fall into two pre-defined global windows. One of the two windows is
generated first spanning a large amount of shared memory region on the default
communicator – MPI COMM WORLD [7] for intra-node communications, the
other is then created with MPI Win create covering the above shared memory
region to enable the message transferring across different nodes. As a result, these
two windows share the same static shared memory region, and independently
implement the data movements on them in an efficient manner.

3.2 DART-MPI Collective Global Pointer Dereference

In this section, we mainly explain the collective global pointer dereference of the
updated DART-MPI since the non-collective global pointer basically continues
to use the original dereference mechanism.

Besides the altered communication pattern, the meaning of the member segid
in the global pointer is also re-specified for management convenience and data
access efficiency. Therefore, the segid in the collective global pointer is no longer
set to the related team ID but rather an increasing positive integer number,
which can be used to determine any collective global block uniquely.

With the aid of the translation table [17], collective global pointer can get
analyzed adequately. Thus it is critical for us to understand how the translation
table reacts to the hierarchical communication pattern and the modification
made in the global pointer, which also has an impact on the original collective
global pointer deference method.

To be consistent with the modified definition of segid in global pointer, the
key in the translation table is altered and the segid is utilized instead. The
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translation table is arranged in an ascending order based on the key segid. As
a result, we do not need to bind a separate translation table to each team,
instead a single translation table is active during the lifetime of a DART-MPI
program. Once a block of collective global memory is created, a unique segid and
the related shmem-win are generated and then added to the translation table
together, signifying the one-one relationship between collective global pointer
and the related shmem-win. In addition, according to the Sect. 2, we learn that
after attaching the shared memory region onto the d-win locally, the routine
MPI Get address should be invoked so as to collect the beginning address of the
local shared memory region of each unit in team T . Thus, the translation table
should also contain an array disp-set storing those separate addresses. As an
example, when unit i in the team T is targeted, then the ith item in the related
disp-set should be obtained and be utilized in the future to locate the target
memory location in unit i. The offset returned in the generated collective global
pointer is initialized to 0.

The location of target data is given by DART global pointer, which incor-
porates the information on the target unit, segid and a specific offset. For the
collective global pointer, in the case of intra-node communications, we firstly
query the appropriate shmem-win that covers the expected target location from
the translation table according to the segid, then decode the location with offset.
In the case of inter-node communications, we firstly query the disp-set , indicates
the beginning address of the window segment of each unit in team T , from the
translation table according to the segid, and then get the correct d-win from the
array dart win lists and translate the absolute unit id to the relative unit id i
in T , and finally access the remote data through MPI RMA operations, where
the value of offset+disp-set [i] is passed as parameter target disp.

4 Performance Evaluation

In the following, we evaluate the performance of DART-MPI using a set of bench-
marks which includes low-level communication and application benchmarks. All
the benchmarks are carried out on a Cray XC40 system named Hornet. Each
compute node features two Intel Haswell E5-2680v3 2.5 GHZ processors and con-
sists of 24 cores. The different compute nodes are interconnected through a Cray
Aries network using Dragonfly topology. They use the Cray-MPI implementation
of MPI-3.

Foremost, we are interested in the evaluation of the performance advantage
of our DART-MPI, using MPI-3 shared-memory and RMA, over native MPI-3
RMA. As shown in a previous paper [17], the difference in performance of DART-
MPI and MPI-3 RMA operations for non-local transfers is negligible. In that
sense, MPI-3 can be seen as a proxy for the old DART-MPI. We will thus not
show the latter explicitly in this paper. In addition, we compare DART-MPI with
two important PGAS implementations: UPC and OpenSHMEM, which are both
fully implemented and tuned on the Cray XC40 system. In all cases we use the
Cray compiler, which also supports UPC (through the compiler flag -h upc)
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Fig. 2. Blocking put/get latency on 2 ranks/units
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Fig. 3. Blocking put latency as a function of logically increasing distance between two
involved ranks/units on 256 PEs
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and OpenSHMEM (as a library). All low-level communication benchmarks are
averaged over 10000 executions. We do not show the error bars in the following
figures, as these are always small and would only confuse the plots.

4.1 Low-Level Communication Benchmarks

In this section, we assess the raw communication performance based on the
OSU Micro Benchmark [10]. Firstly, we test the average latencies of the blocking
operations of DART-MPI as well as the counterparts of MPI (with passive target
communication calls), UPC and OpenSHMEM [12] only in the case of intra-
node (communication within one node). Secondly, we evaluate how the blocking
put and get operations perform when increasing logical distance between two
involved processes for DART-MPI, MPI, UPC and OpenSHMEM.

Figure 2 shows the average latency of intra-node blocking put and get oper-
ations for message size ranging from 20 to 221. In all cases the latency roughly
keeps constant for small messages (here < 1024 byte). Beyond that the comple-
tion time is dominated by the actual message transfer time and basically grows
linearly with the message size as expected. Noticeably, the curves for UPC,
OpenSHMEM and DART-MPI are very close to each other. For small messages,
native MPI performs more than 10 times slower than the other three models.
This fully illustrates that the overhead of MPI one-sided operations is relatively
high compared to that of direct load/store operations when data movements
happen within one node.

A careful comparison shows, that DART-MPI always performs better for
blocking put operations than UPC (by about 20 %) and OpenSHMEM (by about
40 %), although such advantage becomes negligible as the message size increases.
For blocking get operations, the variance between them is much lower in absolute
terms, but the trend of curves seems to suggest that DART-MPI (and to a lesser
extend, also UPC) performs slightly slower than OpenSHMEM.

Next, we evaluate the performance of the blocking RMA operations as a
function of logical distance between source and target. We send messages of
fixed size from process 0 to target processes varying from 1 to 255. Note that
the job consists of 256 ranks/units in total, which corresponds to 11 nodes on
Hornet. Figures 3 and 4 show the performance of blocking put and get operations,
respectively, for the short message size of 8 bytes and the long message size of
1Mb as a function of logically increasing distance between the origin and target.

As expected the latency remains constant for message transfers within one
node. However, at a logical distance between 16 and 32, i.e., when leaving one
node and targeting the second one, the latency goes up significantly in all cases
except for native MPI, as the overhead of native MPI intra-node data transfers
is relatively high to begin with (as reported above). The curves for DART-
MPI nearly sit above those for native MPI for inter-node data transfers. This is
expected since DART-MPI falls back on MPI when communicating across nodes.
Both, however, perform in general slightly worse than UPC and OpenSHMEM in
latency for inter-node communications. An exception occurs when executing the
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Fig. 6. Five-point stencil performance comparison

OpenSHMEM blocking get operation when transferring large messages; it per-
forms 5 to 10 times worse than the other three models in latency. We do not have
an explanation for such behavior, but the full data set we have seems to suggest
that OpenSHMEM blocking get operations show relatively poor performance for
large messages.

4.2 Application Benchmarks

In this section we present the results of two application benchmarks, namely
Random Access and a stencil code kernel. All benchmarks were run on up to
1024 cores, i.e., 45 nodes on Hornet.

Random Access: The Random Access (RA) benchmark [14] is one of the HPC
Challenge benchmarks developed for the HPCS program. It consists of concur-
rent, atomic updates of random elements of a distributed array by all ranks [15].
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The general performance metric is giga-updates per second (GUPs). The mes-
sages involved are very small, i.e., 8 bytes. Figure 5 shows the performance in
terms of GUPs for the DART-MPI, native MPI, UPC and OpenSHMEM ver-
sions of the RA benchmark for the number of processes varying from 2 to 1024.
Interestingly, DART-MPI, UPC and OpenSHMEM achieve similar performance.
The performance of the native MPI version is relatively poor in all cases, and
the performance of the DART-MPI version suffers at large number of ranks due
to the underlying MPI.

The relative performance evaluation of the DART-MPI, UPC and OpenSH-
MEM versions is complex stemming from the fact, that the blocking get, put and
atomic operations are involved. DART-MPI performs slightly better than Open-
SHMEM when RA runs on a single node. However, we can see there is a clear
gap between the performance of DART-MPI and that of UPC and OpenSHMEM
when the application is carried out across nodes. This is due to the fact that the
amount of the inter-node remote accesses increases as the growing of the running
nodes. The inter-node communication time performance of DART-MPI is poor
relative to that of UPC and OpenSHMEM for smaller messages (e.g., 8 bytes),
as obvious from Figs. 3 and 4. In addition, the atomic operation contributes
partly to such performance gap between the DART-MPI, UPC and OpenSH-
MEM versions, respectively. Noticeably, although the increase in the number of
inter-node remote accesses exacerbates the performance of DART-MPI, DART-
MPI can still perform better than native MPI, which has to do with the fraction
of memory sharing for the intra-node data movements.

Five-Point 2D Stencil Computation: This kernel computes the 2D Poisson
equation by applying a five-point stencil on a square grid, and solving in an iter-
ative way with the Gauss-Seidel method. The grid of N ×N elements is decom-
posed evenly by rows among numprocs distributed processes. Each element holds
a 4-byte floating point number. The kernel uses extra halo zones to exchange
boundary elements between neighbors, A total of 4×N×(2×numprocs−2) bytes
of data per iteration is transmitted using blocking put operations. With those
halo data, all the inner grid cells can get updated successfully. We run the sten-
cil kernel until convergence of solution. The time recorded in the benchmark
includes the execution time of the Gauss-Seidel solver (local computation part)
and communication time for halo exchange.

We run the five-point stencil benchmark for DART-MPI, MPI, UPC and
OpenSHMEM versions on the grids of 64×64 elements and 1024×1024 elements
respectively. Figure 6(a) shows comparison results of a 64 × 64 grid distributed
across 4, 8 and 16 processes on a single node. We can see that the DART-MPI
version always performs slightly better than the UPC version, when all the data
movement happen within a single node. In addition, DART-MPI, UPC and
OpenSHMEM outperform native MPI by ∼ 35% for 16 processes.

The performance of the DART-MPI version degrades when there are data
movements across nodes. Figure 6(b) shows benchmark results of a 1024 × 1024
grid for 64, 128, 256 and 512 processes. The convergence time of the DART-MPI
and OpenSHMEM versions decreases as the number of processes involved is



Leveraging MPI-3 Shared-Memory Extensions 383

increased, which suggests that DART-MPI and OpenSHMEM are more scalable
than native MPI and UPC from the perspective of this benchmark.

5 Conclusions

DART-MPI is the runtime system for the PGAS-like C++ template library
DASH and built on top of MPI-3 one-sided communication primitives. In this
paper we present an optimized design of DART-MPI which uses the new MPI-3
shared-memory extension for intra-node communications. In essence, we nest
MPI-3 shared-memory windows inside RMA windows to do direct load/store
operations for intra-node transfers, and MPI-3 one-sided communication opera-
tions on the RMA windows for inter-node transfers.

We expect that this optimization will improve the performance of DART-
MPI for intra-node communication. To verify this claim, we run three classes
of benchmarks, namely low-level put/get benchmarks, a Random Access bench-
mark and a stencil application kernel on the Cray XC40 system. We evaluate
the performance of DART-MPI against that of native MPI. In addition, we com-
pare DART-MPI to OpenSHMEM and UPC as two other PGAS-like program-
ming models. The results of the evaluation demonstrate, first, that DART-MPI
performs significantly faster than MPI RMA when messages are transmitted
within a single node, i.e., that our optimization of DART-MPI leads to a better
intra-node communication performance, second, that the comparison to Open-
SHMEM and UPC show that the performance improvement that is brought by
our optimization makes DART-MPI comparable with UPC and OpenSHMEM.
Additionally, our performance evaluation also shows, that for some relevant oper-
ations – especially the inter-node RMA operations – DART-MPI still performs
slower than the alternative PGAS approaches.

In this paper, we have only considered blocking RMA put and get operations.
The current design of DART does not include an asynchronous progress engine,
and therefore relies on other parts of the software stack to do progress as neces-
sary for non-blocking operations. In particular, we rely on MPI for non-blocking
RMA operations and thus see no benefit for non-blocking DART operations.
An asynchronous progress engine which allows optimization of non-blocking
intra-node transfers is a subject of further research.
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Abstract. Hardware transactional memory (HTM) is becoming widely
available on modern platforms. However, software using HTM requires at
least two carefully-coordinated code paths: one for transactions, and at
least one for when transactions either fail, or are not supported at all. We
present the MCMS interface that allows a simple design of fast concurrent
data structures. MCMS-based code can execute fast when HTM support
is provided, but it also executes well on platforms that do not support
HTM, and it handles transaction failures as well. To demonstrate the
advantage of such an abstraction, we designed MCMS-based linked-list
and tree algorithms. The list algorithm outperforms all known lock-free
linked-lists by a factor of up to X2.15. The tree algorithm builds on Ellen
et al. [7] and outperforms it by a factor of up to X1.37. Both algorithms
are considerably simpler than their lock-free counterparts.

1 Introduction

Transactional memory (TM) is becoming an increasingly central concept in par-
allel programming. Recently, Intel introduced the TSX extensions to the x86
architecture, which include RTM: an off-the-shelf hardware that supports hard-
ware transactional memory. There are practical reasons for a developer to avoid
using hardware transactional memory. First, HTM is only available for some
of the computers in the market. Thus, a code that relies on HTM only suits a
fraction of the available computers and must be accompanied with a different
code base for the other platforms. Second, RTM transactions are “best effort”
and are not guaranteed to succeed. Thus, to work with HTM, a fall-back path
must also be provided and maintained, in case transactions repeatedly fail.

We propose a new programming discipline for highly-concurrent linearizable
objects that takes advantage of HTM when it is available, and still performs
reasonably (around X0.6) when it is not available. For this purpose, we suggest
to encapsulate the HTM inside an intermediate level operation. The intermedi-
ate operation is compiled to an HTM implementation on platforms that support
HTM, and to a non-transactional implementation otherwise. To a certain extent,
our intermediate operation can even be implemented with an “out of the box” fall-
back path for failing transactions. This fall-back path can be made lock-free, thus
rendering our operation a valid alternative for designing lock-free operations.

c© Springer-Verlag Berlin Heidelberg 2015
J.L. Träff et al. (Eds.): Euro-Par 2015, LNCS 9233, pp. 387–401, 2015.
DOI: 10.1007/978-3-662-48096-0 30
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The intermediate operation we find best suited for this purpose is a slight
variation of the well-known MCAS (Multi-word Compare And Swap) operation.
The MCAS operation executes atomically on several shared memory addresses.
Each address is associated with an expected-value and a new-value. An execution
of MCAS succeeds and returns true iff the content of each specified address equals
its expected value. In this case, the data in each address is replaced with the
new value. If any of the specified addresses contains data that is different from
the expected value, then false is returned and the content of the shared memory
remains unchanged.

We propose an extended interface of MCAS called MCMS (Multiple Compare
Multiple Swap), in which we also allow addresses to be compared without being
swapped. The extension is functionally redundant, because, in effect, comparing
an address without swapping it is identical to an MCAS in which this address’
expected value equals its new value. However, when implementing the MCMS
using transactional memory, it is ill-advised to write a new (identical) value to
replace an old one. Such a replacement may cause unnecessary transaction aborts.

In order to study the usability of the MCMS operation, we designed two
algorithms that use it. One for the linked-list data structure, and one for the
binary search tree. The MCMS tree is almost a straightforward MCMS-based
version of the lock-free binary search tree by Ellen et al. [7]. But interestingly,
attempting to design a linked-list that exploits the MCMS operation yielded
a new algorithm that is highly efficient. The main idea is to mark a deleted
node in a different and useful manner. Instead of using a mark on the reference
(like Harris [9]), or using a mark on the reference and additionally a backlink
(like Fomitchev and Ruppert [8]), or using a separate mark field (like the lazy
linked-list [11]), we mark a node deleted by setting its pointer to be a back-link,
referencing the previous node in the list. This approach works excellently with
transactions.1

We present three simple fall-back alternatives to enable progress in case RTM
executions of MCMS repeatedly fail. The simplest way is to use locks, in a
similar manner to lock-elision [14]. The second approach is to use CAS-based
MCMS [10] as a fall-back. The third alternative is a copying scheme, where a
new copy of the data structure is created upon demand to guarantee progress.
Both the linked-list and tree algorithm outperform their lock-free alternatives
when using either a lock-based fall-back path or a copying fall-back path. The
list algorithm performs up to X2.15 faster than Harris’s linked-list, and the tree
algorithm performs up to X1.37 faster than the tree of Ellen et al. A fall-back
path (that does not use transactions) is at times a bit faster (up to X1.1) and
at times a bit slower than the lock-free alternatives, depending on the specific
benchmark and configuration.

Another important advantage of programming with MCMS is that the
resulting algorithms are considerably simpler to design and debug compared to

1 This approach can also be used with locks. In fact, a lock-based version of this new
algorithm outperforms all known linked-list implementations. However, the design
of effective lock-based linked-lists is beyond the scope of this paper.
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standard lock-free algorithms that build on the CAS operation. The stronger
MCMS operation allows lock-free algorithms to be designed without requiring
complicated “helping” mechanisms that facilitate lock-freedom.

2 Related Work

The search of means for simplifying the design of highly concurrent data struc-
tures, and in particular lock-free ones, has been long and it led to several impor-
tant techniques and concepts. Transactional memory [12,16] is arguably the most
general of these; a transaction can pack any arbitrary operation to be executed
atomically. But the high efficacy comes with a cost. State of the art software
implementations of transactional memory incur a high performance cost, while
hardware support only spans across few platforms, and usually only provides
“best-effort” progress guarantee (e.g., the widely available Haswell RTM).

MCAS [13] is another tool for simplifying the design of concurrent data struc-
tures. It may be viewed as a special case of a transaction. Several CAS-based
software implementations of MCAS exist [10,17] with reasonable performance.
A similar, yet more restrictive primitive is the recent LLX/SCX [3]. These prim-
itives enable to atomically read several words, but write only a single word.
Atomically with the single write, it also allows to finalize other words, which
has the effect of blocking their value from ever changing again. A CAS-based
software implementation of these primitives is more efficient than any available
implementation of MCAS, and these primitives have been shown to be particu-
larly useful for designing trees [4]. Yet, allowing only a single word to be written
atomically can be too restrictive: our MCMS linked-list algorithm, which atom-
ically modifies two different pointers, cannot be easily implemented this way.

Dragojevic and Harris explored another form of restricted transactions in [6].
They showed that by moving much of the “book keeping” responsibility to the
user, and keeping transactions very small, almost all of the overhead of software
transactional memory can be avoided. Using their restricted transactions is more
complicated than using MCAS, and they did not explore hardware transactional
memory.

Speculative lock elision [14] is a technique to replace a mutual exclusion
lock with speculative execution (i.e., transaction). This way several threads may
execute the critical section concurrently. If a read/write or a write/write collision
occurs, the speculative execution is aborted and a lock is taken. [1] studies the
interaction between transactions and locks and identifies several pitfalls. Locks
that are well suited to work with transactions are proposed in [15]. Intel’s TSX
extension also includes support of Hardware Lock Elision (HLE). Our MCMS
interface lends itself to lock-elision, and also has the potential to use other fall-
back paths, which could be lock-free.

3 The MCMS Operation

In this section we specify the MCMS interface, its semantics and implementation.
The semantics of the MCMS interface are depicted in Fig. 1(left). The MCMS
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operation receives three parameters as input. The first parameter is an array of
CAS descriptors to be executed atomically, where each CAS descriptor has an
address, an expected value, and a new value. The second parameter, N , is
the length of the array, and the last parameter C signifies the number of entries
at the beginning of the array that should only be compared (but not swapped).
We use a convention that the addresses that should only be compared and not
swapped are placed at the beginning of the array. Their associated new value
field is ignored.

3.1 Implementing MCMS with Hardware Transactional Memory

Intel Haswell Restricted Transactional Memory (RTM) introduces three new
instructions: xbegin, xend, xabort. xbegin starts a transaction and receives
a code location to which execution should branch in case of a transaction abort.
xend announces the end of a transaction, and xabort forces an abort.

The implementation of MCMS, given in Fig. 1(right), is mostly straightfor-
ward. First, begin a transaction. Then check to see that all the addresses con-
tain their expected value. If not, complete the transaction and return false.
If all addresses hold the expected value, then write the new values, complete the
transaction and return true. If the transaction aborts, restart from the begin-
ning. However, before restarting, read all the addresses outside a transaction,
and compare them to the expected value. If one of them has a value different
than the expected value, return false.

This last phase of comparing after an abort is not mandatory, but has two
advantages. The first is that in case the transaction failed because another thread
wrote to one of the MCMS addresses, then it is possible for the MCMS to sim-
ply fail without requiring an additional transaction. The second advantage is
that it handles a problem with page faults under RTM. A page fault causes a
transaction to abort (without bringing the page). In such a case, simply retrying
the transaction repeatedly can be futile, as the transaction will repeatedly fail
without loading the page from the disk. Loading the addresses between trans-
actions renders the possibility of repeated failures due to page faults virtually
impossible.

3.2 Implementing MCMS Without TM Support

We also implemented the MCMS operation using the method of Harris et al. [10],
including some optimizations suggested in that paper. As Harris’s algorithm
refers to MCAS, and not MCMS, we used identical expected value and new
value for addresses that are only meant for comparison.

To execute an MCAS using Harris’s algorithm, an object describing the
MCAS operation is created. This descriptor holds an entry for each address
that is to be CASed, and this entry holds the address, the expected value, and
the desired new value. In addition, the MCAS descriptor holds a status field,
which indicates one of three possible states: undecided, failed, and succeeded.
After creating the descriptor, the target addresses are accessed one by one. For
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Fig. 1. The MCMS semantics (left) and its HTM implementation (right)

each address, a CAS is used in an attempt to change the value from the expected
value of the MCAS to a pointer that points to the MCAS descriptor. In fact,
this is not done using a simple CAS, but a more evolved mechanism (named
RDCSS in [10]) which also checks that the status field of the MCAS descriptor
is still undecided. The implementation of RDCSS itself relies only on simple CAS
operations, and is also described in [10].

If while executing the MCAS, an address that does not hold the expected
value is found, then the status field is changed to failed, and any target address
whose value was already changed from the expected value to a pointer to the
MCAS descriptor is changed back to the old value using a simple CAS. If, on
the other hand, all the addresses were successfully changed from the expected
value to a pointer to the MCMS descriptor, then the status field is changed to
succeeded, and all the target addresses are changed again, this time to hold the
desired new value, using a simple CAS. The full details of [10] are considerably
more complicated, and are not described here.

This MCAS algorithm burdens concurrent read executions. When a thread
reads an address that is a part of an ongoing MCAS execution, it will see the
pointer to the MCAS descriptor instead of the correct value (which is either the
expected value or the new value) that should logically be stored in the address.
Thus, every read execution must check that the read value is not a pointer to an
MCAS descriptor, and if it is, it must first participate in completing the MCAS
execution, and only afterwards return the (correct) value.

Our non-TM MCMS implementation is thus burdened with this complica-
tion. When the MCMS algorithm reads from an address that might be the target
of an MCAS, it must be able to tell whether that memory holds regular data,
or a special pointer to an MCAS descriptor. In our applications, we were able to
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steal the two least significant bits from target fields. For the list algorithm, each
target field holds a pointer to another node, and regular pointer values have zero
in those two bits. For the tree algorithm, each target field holds either a pointer
or a binary flag, and we shift the flag value to the left by two bits.

4 The Linked-List Algorithm

We consider a sorted-list-based set of integers, similar to [8,9,18], supporting the
insert, delete, and contains operations. Without locks, the main challenge
when designing a linked-list is to prevent a node’s next pointer from changing
concurrently with (or after) the node’s deletion. A node is typically deleted by
changing its predecessor to point to its successor. This can be done by an atomic
CAS, but such a CAS cannot by itself prevent an update to the deleted node’s
next pointer. For details, see [9].

Harris [9] solved this problem by partitioning the deletion of a node into
two phases. In the first phase, the node’s next pointer is marked, by setting a
reserved bit on this pointer. This locks this pointer from ever changing again,
but still allows it to be used to traverse the list. In the second phase, the node
is physically removed by setting its predecessor to point to its successor. Harris
uses the pointer least significant bit as the mark bit. This bit is typically unused,
because the next pointer points to an aligned address.

Harris’s mark bit is an elegant solution to the deletion problem, but Harris’s
algorithm still has some drawbacks. First, when a mark bit is used, traversing
the list requires an additional masking operation to be done whenever reading
a pointer. This operation poses an overhead on list traversals. Second, a thread
that fails a CAS (due to contention) often restarts the list traversal from the list
head. Fomitchev and Ruppert [8] suggested a remedy for the second drawback
by introducing back-links into the linked-list. The back-link is an additional field
in each node and it is written during the node’s deletion.

Fomitchev and Ruppert used three additional fields in each node in excess of
the obligatory key and next pointer fields. Those fields are: the mark bit (similar
to Harris), another flag bit (also adjoined to the next pointer), and a back-link
pointer. To delete a node, a thread first flags its predecessor, then marks the
node to be deleted, then writes the back-link from the node to the predecessor,
and finally physically removes the node (the same CAS that removes the node
also clears the flag of the predecessor.) Due to the overhead of additional CASes,
this list typically performs slower in practice compared to the list of Harris.

To illustrate the simplicity of the MCMS operation we present a new linked-
list algorithm. The MCMS list is simpler, faster (if HTM is available), and does
not use any additional fields on top of the key and next pointer fields. Similarly
to Fomitchev and Ruppert, the MCMS list never needs to start searching from
the head on a contention failure.

The crux of our algorithm is that it uses the atomic MCMS to atomically
modify the node’s next pointer to be a back-link simultaneously with deleting
it from the list (see Fig. 2(b)). Thus the next pointer points to the next node
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while the node is in the list, and acts as a back-link once the node is deleted.
Similar to [8,9,18] and others, we use a sentinel head node with a key of minus
infinity, and a tail node with a key of infinity.

The algorithm is given in Fig. 2(a)(left), and is surprisingly simple. The
search method receives three parameters, a key to search for, and pointers
to pointers to the left and right nodes. When the search returns, the pointer
fields serves as outputs. The left node is set to the last node with a key smaller
than the given search key. The right node is set to the first node with a key
equal to or greater than the search key. The left node parameter also serves as
in input for the method, and indicates where to start the search from.

An invariant of the algorithm is that if a node A (which was already inserted
to the list) points to node B, and B’s key is greater than A’s key, then both nodes
are currently in the list. When node B is deleted, modifying its next pointer to
point to A serves two purposes. First, it serves the purpose of the mark bit that
ensures any concurrent operation that might try to modify B’s next pointer will
fail, which is vital to the correctness of the algorithm. Yet, without necessitating
a masking operation before using the next pointer. Second, it establishes a back-
link, which other threads might use to avoid the necessity of redoing the search
from scratch. Yet, this back-link does not necessitate additional fields in the
object, nor specific checks before following this back-link.

5 The Binary Search Tree Algorithm

We base our tree algorithm on the binary search tree of Ellen et al. [7] (this tree
was shown in [5] to outperform both the lock-free skiplist Java implementation
and the lock-based AVL tree of Bronson et al. [2]). Our tree is also a leaf oriented
tree, meaning all the keys are stored in the leaves of the tree, and each internal
node has exactly two children. However, in their original algorithm, each internal
node stores a pointer to a designated Info object that stores all the information
required to complete an operation. When a thread initiates an operation, it first
searches the tree for appropriate location to apply it. Then it tests the internal
node Info pointer to see whether there is already an ongoing operation, and
helps such an operation if needed. Then it allocates an Info object describing
the desired change, and attempts to atomically make the appropriate internal
node points to this info object using a CAS. Then, it can proceed with the
operation, being aware that it might get help from other threads in the process.

MCMS allows all changes to take place simultaneously. This saves the algo-
rithm designer the need to maintain an Info object, and also boosts performance
in the common case, in which an HTM successfully commits. Similarly to a list,
a central challenge in a lock-free binary search tree is to ensure that pointers
of an internal node will not be modified while (or after) the node is deleted
(see [7] for details). For this purpose, in the MCMS tree algorithm, each inter-
nal node contains a mark bit (in addition to its key, and pointers to two chil-
dren). The mark bit is in a separate field, not associated with any pointer. Leaf
nodes contain only a key. Upon deleting an internal node, its mark bit is set.



394 S. Timnat et al.

Fig. 2. The list and tree algorithms

Each MCMS operation that changes pointers of a node also reads the mark bit
and compares it to zero. If the bit is set, the MCMS will return false without
changing the shared memory, guaranteeing that a deleted node’s pointers are
never mistakenly altered.

In order to avoid corner cases, we initialize the tree with two infinity keys,
∞1 and ∞2, such that ∞2 > ∞1 > any other value. The root always has
the value ∞2 its right child is always ∞2 and its left child is always ∞1. This
idea is borrowed from the original algorithm [7]. Both the insert and delete
operations begin by calling the search method. The search method traverses the
tree looking for the desired key, and returns a leaf (which will holds the desired
key if the desired key is in the tree), its parent, and its grandparent.
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To insert a key, replace the leaf returned by the search method with a subtree
containing an internal node with two leaf children, one with the new desired
key, and one with the key of the leaf being replaced (See Fig. 2(c)). An MCMS
operation atomically executes this exchange while guaranteeing the parent is
unmarked (hence, not deleted).

To delete a key, the grandparent pointer to the parent is replaced by a pointer
to the deleted node’s brother (See Fig. 2(d)), atomically with setting the parent
mark bit on, marking it as deleted, and guarding against concurrent (or later)
changes to its child pointers. An MCMS instruction also ensures that the grand-
parent is unmarked, and that the parent’s child pointers retain their expected
value during the deletion.

6 Fall-Back Execution for Failed Transactions

Formally, transactions are never guaranteed to commit successfully, and spuri-
ous failures may occur infinitely without any concrete reason. Our experimental
results show that such repeated failures are not observed in practice. Never-
theless, we implemented several fall-back avenues that general algorithms using
MCMS may benefit from, and we briefly overview them here. Each transaction
is attempted several times before switching to a fall-back execution path. The
number of retries is a parameter that can be tuned, denoted MAX FAILURES.

6.1 Using Locking for the Fall-Back Path

The idea of trying to execute a code snippet using a transaction, and take a
lock if the transaction fails to commit, is known as lock elision. We add a single
integer field, denoted lock to the data structure. In the HTM implementation of
MCMS, before calling xend the lock field is read, and compared to zero. If the
lock is not zero, xabort is called. This way, if any thread acquires the lock (by
CASing it to one) all concurrent transactions will fail. If an MCMS operation
fails to commit a transaction MAX FAILURES times, the thread tries to obtain
the lock by repeatedly trying to CAS it from 0 to 1 until successful. The MCMS
is then executed safely. When complete, the thread sets the lock back to 0.

Our implementation of lock-elision is slightly different than that of traditional
lock-elision. As described in Sect. 3.1, after each transaction abort we compare
each address to its expected value, and thus in many cases we can return false
after a failure without using any locking or transactions at all.

6.2 Non-Transactional MCMS Implementation as a Fall-Back Path

Another natural fall-back path alternative is to use the non-transactional MCMS
implementation of Harris et al., described in Sect. 3.2. While this implementation
was proposed for implementing the MCMS on a platform that does not support
HTM, it may also be used as a fall-back when hardware transactions repeatedly
fail. Several threads can execute this implementation of the MCMS operation
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concurrently. However, as mentioned in Sect. 3.2, during the execution of the
MCMS operations, the target addresses temporarily store a pointer to a special
operation descriptors instead of their “real” data. This requires a careful test
for any read of the data structure, which unfortunately comes with a significant
overhead.

We experimented with several different mechanisms to guarantee that each
read of the data structure is safe. The first mechanism is to always execute the
same read procedure that is applied when MCMS is implemented without TM,
as described in [10]. The second alternative is to use transactions for the reads
as well. Instead of doing a simple read, we can put the read in a transaction, and
before executing the transaction xend, read a lock field and abort if it does not
equal zero. Each thread that executes a non-transactional MCMS increments the
lock before starting it, and decrements the lock once the MCMS is completed.
The reads can be packed into a transaction in different granularity. One may
place each read in a different transaction and add a read of the lock field; but
one may also pack all the reads up to an MCMS into a single transaction and
add a single read of the lock. We tried a few granularities and found out that
packing five reads into a transaction was experimentally optimal.

6.3 A Copying-Based Fall-Back Path

A third avenue for implementing a fall-back for failing transactions is copying-
based. Again, a lock field is added. Additionally, a single global pointer which
points to the data structure is added. When accessing the data structure an
indirection is added: the external pointer is read, and the operation is applied to
the data structure pointed by it. As usual, each HTM based MCMS operation
compares the lock to zero before committing, and aborts if the lock is not zero.

Unlike previous solutions, in the copying fall-back implementation the lock
is permanent, and the current copy of the data structure becomes immutable.
After setting the lock to one, the thread creates a complete copy of the data
structure, and applies the desired operation on that copy. Other threads that
observes the lock is set act similarly. The new copy is associated with a new
lock that is initiated to zero. Then, a CAS attempts an atomic change of the
global pointer to point to the newly created copy instead of the original copy
of the data structure (from which it copied the data). Afterwards, execution
will continue as usual on the new copy, until the next time a thread will fail to
commit a transaction MAX FAILURES times.

7 Performance

In this section we present the performance of the different algorithms and vari-
ants discussed in this paper. In Figs. 3 and 4 we present the throughput of the list
and tree algorithms compared against their lock-free counterparts. Each line in
each chart represent a different variant of an algorithm. In the micro-benchmarks
tested each thread executes either 50 % insert and 50 % delete operations,
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or 20 % insert, 10 % delete, and 70 % contains operations. The operation
keys are integers that are chosen randomly and uniformly in a range of either
1–32, 1–1024, or 1–1048576. Before starting each test, a data structure is pre-
filled to 50 % occupancy with randomly chosen keys from the appropriate range.
Deleted nodes were not reclaimed. In addition to the reported results we also
tested a work-load of a 100 % contains, and a work-load of 25 % insert, 25 %
delete and 50 % contains We also tested a key range of 1–65536. The addi-
tional results are similar and are omitted from the figures for lack of space.

In all our experiments, we set the number of MAX FAILURES to be 7. With
this setting, we see MCMS operations that need to complete execution in the
fallback path. Reducing this parameter to 6 causes a (slight) performance degra-
dation in a few scenarios. We also tested the number of total MCMS transaction
aborts, and the number of MCMS operations that were completed in the fall-back
path, when valid. Higher MAX FAILURES values yield similar performance, but
with almost no executions in the fall-back path. This makes the measurements
less informative, so 7 was chosen.

The measurements were taken on an Intel Haswell i7-4770, with 4 dual
cores (overall 8 hardware threads) and 6 MB cache size, running Linux Suse.
Haswell processors with more cores that support HTM are currently unavailable.
The algorithms were written in C++ and compiled with GNU C++ compiler
version 4.5.

In each chart we present nine algorithms. One for the original lock-free algo-
rithm, which is either Harris’s linked-list, or the binary search tree of Ellen
et al. A line denoted HTM MCMS for the HTM based algorithm without any
fall-back path. A line denoted Software MCMS for the algorithm in which MCMS
is implemented without transactional memory, as described in Sect. 3.2. A line
denoted Locking for the algorithm in which MCMS is implemented using HTM,
and a locking fall-back path is used (Sect. 6.1). A line denoted Software Read
for an HTM based implementation with a non-transactional based MCMS fall-
back path (Sect. 6.2), where each read is executed as in Sect. 3.2. Three lines
denoted 1-Read, 5-Read, all-Read, for HTM based implementations with a non-
transactional based MCMS fall-back path (Sect. 6.2), where reads are executed
inside transactions in different granularity. And a line denoted Copying, for an
HTM based implementation with a copying based fall-back path (Sect. 6.3).

The fastest performing algorithm is always the HTM-based MCMS without
any fall-back path. On a range of 1048576 available keys, this list algorithm out-
performs Harris’s by 30–60 %; on a range of 1024 available keys, it outperforms
by 40–115 %, and on a range of 32 keys, it outperforms by 20–55 %. The tree
algorithm outperforms the tree of Ellen et al. by 6–37 %. For both data structures
the lock-based fall-back path adds very little overhead, and the corresponding
algorithms trail behind the algorithms without the fall-back path by 1–5 %.

The copying fall-back path algorithm also performs excellently for the linked-
list. On average, it performs the same as the lock-based algorithm, with a differ-
ence smaller than half a per cent. This makes the HTM MCMS algorithm with
the copying fall-back path the fastest lock-free linked-list by a wide margin.
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Fig. 3. MCMS-based lists vs. Harris’s linked-list. The x-axis represents the number of
threads. The y-axis represents the total number of operations executed per second (in
millions for key ranges 32 and 1024, in thousands for key range 1048576.)

The copying tree algorithm is not as good, trailing behind the pure HTM algo-
rithm by about 10 %. Yet this algorithm still beats the lock-free algorithm of
Ellen et al. in all number of threads for all benchmarks, excluding, surprisingly,
the benchmark of 100 % contains for 32 and 1024 available keys. This is surpris-
ing, because in this benchmark MCMS is not executed at all. We suspect that
the reason is the fact that the search method of the copying based tree receives
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Fig. 4. MCMS-based trees vs. the BST of Ellen et al. The x-axis represents the number
of threads. The y-axis represents millions of operations executed per second.

the root of the tree as an input parameter. In the pure HTM algorithm, the root
is known at compile time to be final (never changed once it is allocated), which
could allow the compiler to optimize its reading.

Using a CAS-based MCMS fall-back path does not work as well as the copy-
ing or the lock-based fall-back alternatives. For the list, packing five reads into a
transaction yields reasonable performance, usually beating Harris’s linked list
for a lower number of threads and a larger range of keys (up 20 % faster),
but trailing up to 40 % behind it for 8 threads in 32 or 1024 keys when the
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micro-benchmark is 50 % inserts and 50 % deletes. Packing all the reads into
a single transaction works quite badly for the longer lists, were the large num-
ber of reads causes the vast majority of reading transactions to abort. It also
works badly for a 32 keys range when the benchmark is 50 % inserts and 50 %
delete. The high number of MCMS transactions combined with read transac-
tions results in poor performance. For the tree, is at times better and at times
worse than the tree of Ellen et al., and the difference is up to 10 %. This holds
for the option of packing all the reads into a single transaction as well.

Aborts and Fall-back Executions. As expected from the performance results, the
number of MCMS executions that are completed in the fall-back path is low. For
instance, a copying of a list or a tree of 1048576 keys, which one would expect to
be costly, never takes place. On the other end, In a list of 32 keys, for 8 threads,
in the micro-benchmark of 50 % inserts and 50 % deletes, copying is executed
once every 5000 list operations. In a list of 1024, it is never executed. In a tree of
32 keys when executing with 8 threads, on the 50 % inserts and 50 % deletes
micro-benchmark, a copying occurs once every 1730 tree operations, and once
every 54000 operations for a tree of 1024 keys running 8 threads. In general,
note that once an MCMS is executed in the fall-back path, other MCMS’s may
abort as a result of the lock field being set.

8 Conclusions

In this paper we proposed to use MCMS, a variation of MCAS operation, as
an intermediate interface that encapsulates HTM on platforms where HTM is
available, and can also be executed in a non-transactional manner when HTM
is not available. We established the effectiveness of the MCMS abstraction by
presenting two MCMS-based algorithms, for a list and for a tree. When HTM is
available, these algorithms outperform their lock-free counterparts. We have also
briefly discussed possible “fall-back” avenues for when transactions repeatedly
fail. We have implemented these alternatives, and explored their performance
overhead.
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Abstract. Skyline queries are preference queries frequently used in
multi-criteria decision making to retrieve interesting points from large
datasets. They return the points whose attribute vector is not dominated
by any other point. Over the last years, sequential and parallel imple-
mentations over static datasets have been proposed for multiprocessors
and clusters. Recently, skyline queries have been computed over continu-
ous data streams according to sliding window models. Although sequen-
tial algorithms have been proposed and analyzed in the past, few works
targeting modern parallel architectures exist. This paper contributes to
the literature by proposing a parallel implementation for window-based
skylines targeting multicores. We describe our parallelization by focus-
ing on the cooperation between parallel functionalities, optimizations
of the reduce phase, and load-balancing strategies. Finally, we show
experiments with different point distributions, arrival rates and window
lengths.

Keywords: Continuous queries · Skyline queries · Sliding window ·
Parallel programming · Multicores

1 Introduction

Skyline queries are a particular class of preference queries that compute the set
of Pareto-optimal points from a given set. They have become commonplace in
real-time applications working on input data on-the-fly, such as network mon-
itoring, sensor networks, stock market trading and social media. Usually, data
are available in the form of continuous streams [1], i.e. sequences, possibly of
unlimited length, of points (tuples) received from heterogeneous sources.

Most of the existing research works have focused on centralized [2] or parallel
solutions [3,4] for traditional skyline queries over static datasets. Computing the
skyline over data streams is more challenging [5]. Due to the unbounded stream
length, the query is evaluated on substreams (windows) corresponding to equal-
sized time intervals. Tuples enter the window at their arrival and expire after a
fixed time interval called window length (denoted by Tw). In the literature a lazy
algorithm and an eager variant [5] have been proposed to maintain window-based
skylines with different features in terms of space and time efficiency.
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Parallel implementations of continuous skyline queries raise critical issues:
(i) how to partition the window among a set of parallel Workers, and (ii) how to
keep the partitions evenly sized in response to new point arrivals, pruning activi-
ties, and the expiration of old points. Existing works have only partially studied
these problems. In [6] the authors have described an approach in which the
computational load is moved from a centralized server to a set of data sites that
interact with the server to notify changes in their local skyline. In [7] the authors
have presented a parallel approach in the domain of uncertain streams, in which
the associativity of the skyline operator does not hold. Both the approaches do
not take into account any pruning phase of obsolete points, which is crucial to
reduce memory occupancy at the expense of a harder load balancing.

In this paper we propose a parallelization of continuous skyline queries on
multicores. We describe our parallelization as a MAP pattern with an asynchro-
nous reduce. We study optimizations related to the reduce phase, and we show
the effect of different load-balancing strategies. Then, we study the performance
of our parallelization with different point distributions, arrival rates and window
lengths. The results show good performance which proves the efficiency of our
implementation and the effectiveness of our load-balancing strategy.

This paper is organized as follows. Section 2 describes related works. Section 3
introduces some prerequisites and a description of the parallelized sequential
algorithm. Section 4 shows our parallelization which will be evaluated on a mul-
ticore architecture in Sect. 5. Finally, Sect. 6 concludes this paper.

2 Related Work

Skyline queries have been originally designed for static datasets by focusing
on index structures to cope with high dimensional data (B-Trees, R-Trees,
R*-Trees) [2]. Existing parallel solutions [3] share the idea of partitioning the
datasets into regions processed in parallel and finally merging the results thanks
to the associativity of the skyline operator.

On data streams a first work [8] has addressed n-of-N skyline queries, i.e.
the skyline is computed over a count-based window of the last n received tuples
(N is an upper bound to the window size). Time-based windows have been
firstly used for continuous skyline queries in [9], with the algorithm LookOut.
This solution does not perform any pruning strategy yielding to high memory
occupancy. More recently in the work [5] the authors have proposed the lazy
and the eager sequential algorithms for computing the skyline over streams with
a time-based sliding-window semantics. The former method delays most of the
computational work until the expiration of a skyline point. The latter, instead,
performs a pre-computation phase at each new point arrival in order to minimize
memory consumption at the expense of a higher processing burden.

Most of the previous approaches are centralized. Works proposing parallel
solutions are [6,10]. In the first one a centralized server collaborates with intelli-
gent data sites that notify the server of the changes affecting the global skyline.
The role of data sites is to avoid sending useless data by reducing the bandwidth
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usage. A similar idea has been applied in [10] for continuous skylines over wire-
less sensor networks. Part of the logic is moved to the sensors that filter input
data saving network bandwidth and energy. Parallel skyline queries over uncer-
tain data streams (with imprecise stream elements) have been discussed in [7]
by proposing a parallel implementation for multicores. This solution is highly
dependent from the case of uncertain streams, with parallel servers maintaining
skyline probabilities without performing pruning actions. This solution is dif-
ferent from our work, which focuses on time-based sliding-window skylines over
certain data streams with the pruning of obsolete points.

3 Continuous Skyline Queries: Eager Algorithm

The goal of the skyline operator is to determine the points received in the last
Tw time units that belong to the skyline set. Each point x is represented as a
tuple of d ≥ 1 attributes x = {x1, x2, . . . , xd}. Given two points x and y, we
say that x dominates y (denoted by x ≺ y) if and only if ∀i ∈ [1, d] xi ≤ yi
and ∃j | xj < yj . The skyline of a given set S is the subset of all the points
not dominated by any other point in S. The output of the skyline operator is a
stream of skyline updates expressed in the format (action, p, t), where action
indicates whether point p enters (ADD) or exits (DEL) the skyline at the specified
time t. The continuous skyline operator is characterized by three properties:

– Point Maintenance: if a new point x is not a skyline point at its arrival time,
it cannot be discarded immediately because it could become a skyline point
when all its dominators expire;

– Point Expiration: a skyline point x will be definitely removed from the system
when it reaches its expiration time;

– Pruning : once a point x arrives, the older points dominated by it (obsolete)
can be discarded since they will not be able to enter the skyline in the future.

The received points that cannot be pruned (non-obsolete points) must be stored
in a data structure denoted by DB. This data structure implements an abstract
data type with the following operations: the insertion of a new point, the removal
of an existing point, and the search of the critical dominator of a given point p
(see Def. 1). Several implementations can be used. Common solutions are arrays
and index structures for spatial searching such as R-trees and R*-trees [2,5].

In this paper we study a parallelization of the eager algorithm [5]. This
algorithm performs the pruning of obsolete points: only the points currently in
the skyline and those points candidate to enter the skyline in the future are
stored in DB. This property comes at the expense of a larger computational
effort w.r.t similar algorithms [6,7,10] such as the lazy variant which does not
perform pruning. The eager algorithm is based on the following concept:

Definition 1. The Skyline Influence Time of a point p (SITp) is the expiring
time of the youngest point r ∈ S dominating p (r is the critical dominator of p).



Parallel Skyline Queries on Multicores 405

The algorithm maintains an event list EL. Two types of events are sup-
ported: (i) skytime(p,t) indicates that point p will enter the skyline at time t,
(ii) expire(p,t) indicates the exit of point p from the skyline at time t. The ratio-
nale of the eager algorithm is to perform most of the work during the reception
of a new point in order to update the event list correspondently. Then, the events
are processed chronologically by emitting the changes in the skyline set through
ADD and DEL updates transmitted onto the output stream of the computation.

At the reception of a new point p the algorithm executes the following steps:

1. Pruning Phase: all the points in DB dominated by p must be removed and
their associated events cleared from EL. If a removed point was part of the
skyline, a DEL update is emitted onto the output stream;

2. Insertion Phase: the new point p is added to DB;
3. Search Phase: the critical dominator r of p in DB must be found. If it exists,

we add the event skytime(p, texpr ) into EL where texpr is the expiring time
of r, i.e. SITp = texpr . Otherwise, if r does not exist, p becomes a skyline point
immediately and we add the event expire(p, texpp ) into the event list.

The algorithm processes the events by using an internal timer. When an
event is triggered, there are two possibilities:

– in the case of a skytime(p,t) event the point p is added to the skyline and an
ADD update is emitted. A new event expire(p,texpp ) is added to EL;

– in the case of an expire event the associated point (which is part of the skyline)
is discarded from DB and its removal from the skyline is notified through a
DEL update.

This behavior allows us to define an important property:

Lemma 1. If a point p reaches its expiration time texpp at that time the point is
part of the skyline.

Proof. By contradiction let suppose that a point r, which dominates p, exists
and its expiration time is after the one of p. Since expiration times are defined
as texpr = tarrr +Tw and texpp = tarrp +Tw, this means that r has been received by
the system after p (tarrr > tarrp ). This is impossible because, in that case, being r
younger than p and dominating it, p would have been pruned when r arrived. �	

Therefore, for each non-obsolete point p in DB there are two possible situa-
tions. If a new point r dominating p is received before the timer reaches SITp, p
is pruned and its skytime event cleared from EL. Otherwise, when the internal
timer reaches SITp the corresponding skytime event is executed, p enters the
skyline and an ADD update is emitted. When point p reaches its expiration time,
for Lemma 1 it is part of the skyline. The point is deleted and a DEL update is
emitted. The expiration time of p matches the skyline influence time of the points
critically dominated by it, that are exactly the ones that have to be inserted into
the skyline as a consequence of p’s expiration.
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4 Parallelization Design

Our parallelization is based on the data-parallel paradigm. It is a composition
of a MAP pattern with an asynchronous reduce phase. The data structures DB
and EL are partitioned among a set of Workers interfaced with the input stream
and the output stream through an Emitter and a Collector functionality.

The implementation targets shared-memory architectures such as modern
multi/manycores. Emitter, Collector and Workers are implemented by standard
POSIX threads. Threads cooperate by exchanging pointers to shared data struc-
tures through push and pop operations on shared queues. In our implementation
we use the lock-free queues provided by the FastFlow library [11], which exhibit
great performance on cache-coherent multi-core chips.

4.1 Implementation

In the following we describe in detail the functionalities of our implementation
and their cooperation pattern. The parallelization is sketched in Fig. 1.

Fig. 1. Scheme of the parallel implementation: Emitter (E), Worker (W) and Collector
(C) threads interacting through push and pop operations on FastFlow queues.

Emitter: the role of the Emitter is to interface the input stream (implemented
by a TCP/IP socket) with the parallel computation. For each received point p
the Emitter performs the following sequence of actions:

1. it assigns a timestamp tarrp according to the current system time;
2. it assigns the ownership of p to a specific Worker Wk, which will store p in

its DBk until the internal time reaches p’s expiration time texpp = tarrp + Tw;
3. p is multicasted to all the Workers. The Emitter performs a push operation

on every input queue of the Workers. The message is the pair (p, k), where p
is the tuple data structure and k is the index of the owner.

The role of the Emitter is critical for load balancing, i.e. to keep the size of the
partitions of DB as similar as possible. To do that, the Emitter should implement
clever owner selection policies. This aspect will be discussed in Sect. 4.2.
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Workers: each Worker receives from the Emitter a stream of pairs (p, k). Any
Worker Wi performs the following actions:

1. the pruning from its local partition DBi all the points dominated by p; the
private event list ELi is cleared from the events related to the pruned points;

2. if a pruned point was in the skyline, a DEL update is generated;
3. Wi calculates the local SIT i

p corresponding to the expiration time of the
younger dominator of p in DBi. If p has no dominator in DBi then SIT i

p is
zero. Wi sends the value of SIT i

p to the Collector for the reduce phase;

After these actions all the Workers except the owner discard p, thus the
owner has a very limited additional overhead. The reduce phase is necessary to
determine the global value of SITp, which is the maximum between the local
SITip for all the partitions, i.e. SITp = maxn

i=1{SITip}. Because of its fine-grained
nature, the reduce is centralized in the Collector: C receives the values of SITip
from the Workers, calculates the global SITp and sends it to the owner Wk that:

4. if SITp = 0 p must be added to the skyline immediately: an expire(p, texpp )
event is added to ELk and an ADD update is transmitted to the Collector.
Otherwise, a skytime(p, SITp) event is added to ELk.

Workers are responsible for processing events in the correct order by pro-
ducing skyline updates to the Collector. Each Worker has an internal notion of
time that moves forward at each reception of a new point from the Emitter, i.e.
when a point p is received, the current time is set equal to tarrp . Before starting
the computation related to the received point, each Worker executes (unrolls)
all the events in its ELi with timestamp smaller than tarrp . ADD and DEL updates
are transmitted to the Collector when skytime and expire events arise.

Collector: this thread receives two types of messages from the Workers:

– reduce messages with the local SITip of a point p from Worker Wi. Once
all the SITip for i = 1, . . . , n have been received, the Collector computes
maxn

i=1{SITip} and sends this value only to the owner of point p;
– skyline updates need to be buffered by the Collector in order to transmit them

onto the output stream by respecting the chronological order. To do that, the
Collector buffers the updates and keeps them ordered by timestamp using a
priority queue. The Collector maintains the timestamp of the last received
update from each Worker (denoted by lst-ti). All the buffered updates with
timestamp smaller or equal than minn

i=1{lst-ti} can be safely transmitted onto
the output stream of the computation.

4.2 Optimizations

In this section we discuss two optimizations: (i) we design an asynchronous
reduce for the computation of the global SIT of each new point; (ii) we study
proper owner selection policies to balance the workload among Workers.



408 T. De Matteis et al.

Asynchronous Reduce: the value of the SIT of the last received point is the
result of a reduce involving the Workers and the Collector threads. In the basic
implementation the reduce is executed synchronously. The owner of the current
point p cannot start the computation on the next point r until the reduce result
is made available by the Collector.

According to the semantics of the eager algorithm the reduce can be per-
formed asynchronously. Let the owner of the current point p be the Worker Wk.
Instead of waiting the value SITp explicitly from the Collector, Wk can process
subsequent points received from the Emitter while SITp is not available yet. For
each successive point r the Worker Wk:

– searches the youngest dominator of r in its DBk: this operation uses the expire
time of the stored points and their spatial coordinates, thus it is independent
from SITp;

– all the points v ∈ DBk such that r ≺ v can be pruned. If p is one of the pruned
points, the value of SITp is no longer necessary.

In conclusion the asynchronous reduce works as follows:

1. when a new point is received by a Worker, whether it is the owner or not it
participates in the reduce phase without waiting for the result;

2. each Worker waits for messages either from the Emitter (a new point) or from
the Collector (reduce result);

3. when the reduce result is received from the Collector: (i) if the point has been
pruned the SIT is ignored; (ii) otherwise, a new event (skytime or expire) is
inserted into the event list of the owner according to the value of SIT (if it is
equal or greater to zero, see Sect. 3).

This optimization leads to a significant improvement in the performance
achieved by our implementation, as it will be shown in Sect. 5.

Owner Selection Policies: the ownership must be assigned in order to keep
the partitions DB1, . . . ,DBn evenly sized. This problem is particularly critical
in continuous skyline queries, since the cardinality of the partitions can change
significantly due to the variability of the arrival rate and the effect of the pruning.

In the literature a similar problem has been studied for skyline queries over
static datasets. Local skylines are computed for each partition and then merged
to define the global skyline. The partitions are usually determined using the
spatial coordinates of points as in the grid-based and angle-based schemes pro-
posed in [4]. In our case such approaches are not sufficiently effective: (i) in
the case of points not uniformly distributed the partitions can have very differ-
ent cardinalities; (ii) many skyline points can fall in few partitions, thus in our
parallelization some Workers might provide a very marginal contribution to the
skyline definition. In this paper we apply owner selection policies independent
from the spatial coordinates of points. We consider four heuristics:

– Round Robin (RR): the ownership is interleaved among Workers, i.e. point xj

is assigned to Worker Wi such that i = (j mod n) + 1;
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– On Demand (OD): the ownership of a new point is assigned to the first Worker
able to accommodate it in its input queue;

– Least Loaded Worker (LLW): each new point is assigned to the Worker with
the smaller partition of DB;

– Least Loaded Worker with Ownership (LLW+): this policy is an extension of
LLW in which, in addition to the size of the partitions, the Emitter takes into
account for each Worker the number of enqueued points for which it has been
designated as the owner.

For the last two policies the Emitter must know the size of the partitions and
the number of enqueued points owned by each Worker. We use shared counters
between the Emitter/Workers threads, implemented as std :: atomic < int >
of the standard C++ library with atomic increment/decrement operations.

Figure 2 shows a comparison on an Intel multicore composed of two Xeon
Sandy Bridge E5-2650 CPUs for a total of 16 cores operating at 2 GHz with
32 GB or RAM. Each core has private L1d (32 KB) and L2 (256 KB) caches.
Each CPU has a shared L3 cache of 20 MB. We use a configuration with 4.5 K
non-obsolete points distributed in 12 partitions (one per Worker). We measure
the difference between the biggest and the smallest partition, i.e. Δ = |DBmax|−
|DBmin|. We use five double precision floating-point numbers per point (d = 5).
Higher dimensionalities have minor effects on the results.

Fig. 2. Load balancing results: independent distribution. Average window size of 4.4 K
points. The same qualitative behavior is observed for the other point distributions.

The results show that the last two policies are able to produce partitions with
very similar cardinalities over the execution. This is an expected result because
the first two policies are independent from the actual load of the Workers. The
best policy is LLW+. Numerically we have the following values (Δavg + σ2):
RR:64.02 + 229, OD:34.13 + 1791, LLW:3.15 + 4.28, LLW+:2.55 + 4.05. As we can
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observe: (i) load-aware policies are able to obtain smaller Δavg with a signifi-
cantly lower variance; (ii) by taking into account the number of owned enqueued
points, the LLW+ policy is able to achieve a 20 % improvement than LLW.

5 Experiments

In this section we study the performance of our parallelization on the Intel mul-
ticore. We use the gcc compiler version 4.8.1 with the −O3 optimization flag.
We set the affinity of each thread on a different core. The maximum number
of Workers is 12 in our machine, since we have four threads for the Genera-
tor, Emitter, Collector and Consumer. Mapping two threads onto the same core
(hyperthreading) is not beneficial due to the aggressive busy-waiting synchro-
nization performed by pop and push operations on the FastFlow queues [11].

Data Distribution and Memory Usage: the effect of the pruning depends on
the spatial distribution of data. Analogously to existing works [5], we consider
three point distributions: the anticorrelated, correlated and independent ones
as shown in Fig. 3a for 2D points. In the correlated case a small set of points
dominate the others and the pruning phase is very intensive. The anticorrelated
case in on the opposite, with a large number of points that are part of the skyline
set. The third one is an intermediate case with points uniformly distributed in
the space. Fig. 3b shows the number of points maintained in DB with respect to
the total number of points received per sliding window (denoted by |W|). This
number is given by the product between the arrival rate of the input stream
and the window length, i.e. |W| = λ×Tw. The number of non-obsolete points is
at least three orders of magnitude smaller than the number of received points.
The pruning phase increases the processing time per tuple (all the dominated
points must be identified and removed) but it greatly saves memory occupancy.
In the worst case of the anticorrelated distribution, with 9M points received per
window we need to maintain only ∼ 9K non-obsolete points in DB (with four
doubles per point we need ∼ 280KB instead of ∼ 275MB).

These results have an important implication on the implementation design.
Only a little portion of the received points needs to be stored by the algorithm.
Furthermore, since our parallelization is a data-parallel solution, the set of non-
obsolete points is partitioned among n Workers further decreasing the size of
each DBi. According to [5,7], many existing applications of continuous skyline
queries (e.g. analysis of social media such as Twitter, Facebook and so on) are
executed with window lengths of few tens of seconds and arrival rates of several
thousands of points/sec, leading to a total number of points per sliding window in
the order of few millions of tuples. With these sizes, the {DBi}ni=1 data structures
are implemented by dynamic arrays (usually one per dimension, to increase data
locality in the cache hierarchy of multicores) without relying on additional index
structures (e.g. R-tree and R*-trees) that are beneficial with larger datasets.

Effect of Asynchronous Reduce: we measure the benefit of the asynchronous
reduce on throughput. Throughput is the average number of points processed
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Fig. 3. Space distribution of points (anticorrelated, correlated and independent) and
effect of the pruning on the number of stored points.

Fig. 4. Comparison between synchronous and asynchronous reduce. Scenario: λ =
100K points/sec, Tw = 20 s, independent distribution and LLW+ owner selection policy.

per second. With different configurations in terms of arrival rate and window
length, we achieve an average gain between (10 ÷ 20) %. Figure 4 shows a scenario
with an arrival rate of 100K points/sec generated according to the independent
distribution with a window length Tw = 20 s. The average gain is of ∼ 10 % with
a peak of ∼ 15 % with 12 Workers. As we can observe from Fig. 4b, the gain
increases with the parallelism degree. The reason is that even the LLW+ policy
is not able to produce perfectly equal partitions. With high parallelism degrees
the partitions of DB are smaller and a slight difference in their cardinality has a
negative effect (higher in percentage) on throughput. The asynchronous reduce
is able to mitigate this slight load unbalance among Workers, by achieving better
throughput compared with the synchronous reduce implementation.

Throughput and Scalability: we show the throughput and the best scalability
achieved by our parallelization. For each distribution we use a different scenario
in terms of arrival rate and window length. The results are shown in Fig. 5. For
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Fig. 5. Throughput achieved with different point distributions.

all the scenarios the maximum number of cores (12) is not sufficient to achieve
the maximum throughput (equal to the arrival rate of the stream), hence we
are able to study how the throughput increases up to the maximum number of
physical cores of our machine. Figure 5d shows: the best throughput achieved
with the highest parallelism degree (B(12)), the best scalability (S(12)) measured
as the ratio between the throughput with 12 Workers and the one with just one
single Worker thread, the number of non-obsolete points (|DB|), the total num-
ber of points received per sliding window (|W|), and the pruning probability P.
The best throughput and scalability results are reported only for the LLW+ pol-
icy. With the correlated distribution we achieve the lowest scalability. Although
this scenario is characterized by the highest value of the arrival rate and window
length, the number of non-obsolete points is small due to a very high pruning
probability. In this case the computation is very fine grained and a slight differ-
ence in the cardinalities of the partitions (also of few units) prevents to achieve a
near-optimal scalability also with the LLW+ policy and the asynchronous reduce.
Near optimal results are achieved with the other two distributions.
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6 Conclusions

This paper presented a map-reduce parallelization of the skyline operator on
data streams, optimized with an asynchronous reduce phase and smart load
balancing strategies. The experiments confirmed that the LLW+ policy is the
best one, and near-optimal scalability can be achieved with the anticorrelated
and independent distributions. The correlated case is the most challenging due
to the very fine-grained nature of the computation, and deserves to be further
investigated in the future with possible run-time mechanisms enabling dynamic
adaptiveness to sustain highly variable input rates [12].
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2. Börzsönyi, S., Kossmann, D., Stocker, K.: The skyline operator. In: Proceedings
of the 17th International Conference on Data Engineering, pp. 421–430. IEEE
Computer Society, Washington, DC, USA (2001)

3. Im, H., Park, J., Park, S.: Parallel skyline computation on multicore architectures.
Inf. Syst. 36, 808–823 (2011)

4. Vlachou, A., Doulkeridis, C., Kotidis, Y.: Angle-based space partitioning for effi-
cient parallel skyline computation. In: Proceedings of the 2008 ACM SIGMOD
International Conference on Management of Data, SIGMOD 2008, pp. 227–238.
ACM, New York (2008)

5. Tao, Y., Papadias, D.: Maintaining sliding window skylines on data streams. IEEE
Trans. Knowl. Data Eng. 18, 377–391 (2006)

6. Lu, H., Zhou, Y., Haustad, J.: Efficient and scalable continuous skyline monitoring
in two-tier streaming settings. Inf. Syst. 38, 68–81 (2013)

7. Li, X., Wang, Y., Li, X., Wang, Y.: Parallelizing skyline queries over uncertain
data streams with sliding window partitioning and grid index. Knowl. Inf. Syst.
41, 277–309 (2014)

8. Lin, X., Yuan, Y., Wang, W., Lu, H.: Stabbing the sky: efficient skyline computa-
tion over sliding windows. In: Proceedings of the 21st International Conference on
Data Engineering, ICDE 2005, pp. 502–513 (2005)

9. Morse, M., Patel, J., Grosky, W.I.: Efficient continuous skyline computation. In:
Proceedings of the 22nd International Conference on Data Engineering, ICDE 2006,
pp. 108–108 (2006)

10. Xin, J., Wang, G., Chen, L., Zhang, X., Wang, Z.: Continuously maintaining sliding
window skylines in a sensor network. In: Kotagiri, R., Radha Krishna, P., Mohania,
M., Nantajeewarawat, E. (eds.) DASFAA 2007. LNCS, vol. 4443, pp. 509–521.
Springer, Heidelberg (2007)

11. Aldinucci, M., Danelutto, M., Kilpatrick, P., Meneghin, M., Torquati, M.: An
efficient unbounded lock-free queue for multi-core systems. In: Kaklamanis, C.,
Papatheodorou, T., Spirakis, P.G. (eds.) Euro-Par 2012. LNCS, vol. 7484, pp.
662–673. Springer, Heidelberg (2012)

12. Mencagli, G., Vanneschi, M.: Qos-control of structured parallel computations: a
predictive control approach. In: 2013 IEEE 5th International Conference on Cloud
Computing Technology and Science, pp. 296–303 (2011)



A Fast and Scalable Graph Coloring Algorithm
for Multi-core and Many-core Architectures

Georgios Rokos1(B), Gerard Gorman2, and Paul H.J. Kelly1

1 Software Performance Optimisation Group, Department of Computing,
Imperial College London, South Kensington Campus, London SW7 2AZ, UK

{georgios.rokos09,p.kelly}@imperial.ac.uk
2 Applied Modelling and Computation Group,

Department of Earth Science and Engineering, Imperial College London,
South Kensington Campus, London SW7 2AZ, UK

g.gorman@imperial.ac.uk

Abstract. Irregular computations on unstructured data are an impor-
tant class of problems for parallel programming. Graph coloring is often
an important preprocessing step, e.g. as a way to perform dependency
analysis for safe parallel execution. The total run time of a coloring algo-
rithm adds to the overall parallel overhead of the application whereas
the number of colors used determines the amount of exposed parallelism.
A fast and scalable coloring algorithm using as few colors as possible is
vital for the overall parallel performance and scalability of many irregu-
lar applications that depend upon runtime dependency analysis.

Çatalyürek et al. have proposed a graph coloring algorithm which
relies on speculative, local assignment of colors. In this paper we present
an improved version which runs even more optimistically with less thread
synchronization and reduced number of conflicts compared to Çatalyürek
et al.’s algorithm. We show that the new technique scales better on multi-
core and many-core systems and performs up to 1.5x faster than its pre-
decessor on graphs with high-degree vertices, while keeping the number
of colors at the same near-optimal levels.

Keywords: Graph coloring · Greedy coloring · First-fit coloring · Irreg-
ular data · Parallel graph algorithms · Shared-memory parallelism · Opti-
mistic execution · Many-core architectures · Intel®Xeon Phi™

1 Introduction

Many modern applications are built around algorithms which operate on irreg-
ular data structures, usually in form of graphs. Graph coloring is an important
preprocessing step, mainly as a means of guaranteeing safe parallel execution in
a shared-memory environment but also in order to enforce neighborhood heuris-
tics, e.g. avoid having adjacent graph edges collapse in sequence in graph coarsen-
ing [6]. Examples of such applications include iterative methods for sparse linear
systems [14], sparse tiling [19,20], eigenvalue computation [16], preconditioners
[12,18] and mesh adaptivity [7,10].
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Taking advantage of modern multi-core and many-core hardware requires not
only algorithmic modifications to deal with data races but also consideration of
scalability issues. The exposed parallelism of an irregular algorithm is directly
dependent on the number of colors used. The lower this number, the more
work-items are available for concurrent processing per color/independent set.
Additionally, there is usually some thread synchronization or reduction before
proceeding to the next independent set. A poor-quality coloring will only exag-
gerate the effects of thread synchronization on the parallel scalability of an appli-
cation. Following this observation, it is obvious that a good coloring algorithm
should be fast and scalable itself, so as to minimize its own contribution to the
total execution time of the application, and use as few colors as possible.

The simplest graph coloring algorithm is the greedy one, commonly known as
First-Fit (Sect. 2.1). There exist parallel versions for distributed-memory environ-
ments, but in this paper we focus on the intra-node, shared-memory case. Prob-
ably, the best known parallel algorithm is the one by Jones and Plassmann [13],
which in turn is an improved version of the originalMaximal Independent Set algo-
rithm by Luby [15]. There also exists a modified version of Jones-Plassmann which
uses multiple hashes to minimize thread synchronization [3]. A parallel greedy col-
oring algorithm based on speculative execution was introduced by Gebremedhin
and Manne [9]. Çatalyürek et al. presented an improved version of the original
speculative algorithm in [1] (Sect. 2.2). We took the latter one step further, devis-
ing a method which runs under an even more speculative scheme with less thread
synchronization (Sect. 3), without compromising coloring quality.

It must be pointed out that First-Fit variants which use ordering heuristics
were not considered here. Despite recent innovations by Hasenplaugh et al. [11],
those variants take considerably longer to run than the plain greedy algorithm
and in many cases do not achieve a sufficiently large improvement in the number
of colors to justify their cost. Runtime of coloring for the purpose of dynamic
dependency analysis becomes a serious consideration in problems like morph
algorithms [17], which mutate graph topology in non-trivial ways and constantly
invalidate existing colorings. In those cases, the graph has to be recolored in every
iteration of the morph kernel, so coloring becomes a recurring cost rather than a
one-off preprocessing step. As shown in [11], heuristic-based algorithms, although
achieving some reduction in the number of colors, take 4x-11x longer to run and
this would dominate the kernel’s runtime. A notable example is the edge-swap
kernel from our mesh adaptivity framework PRAgMaTIc1 [10], in which coloring
(using our fast method) already takes up 10 % of the total execution time.

The rest of this paper is organized as follows: In Sect. 2 we present the
serial greedy coloring algorithm and its parellel implementation by Çatalyürek
et al. We explain how the latter can be improved further, leading to our imple-
mentation which is described in Sect. 3 and evaluated against its predecessor in
Sect. 4. Finally, we briefly explain why the class of optimistic coloring algorithms
is unsuitable for SIMT-style parallel processing systems in Sect. 5 and conclude
the paper in Sect. 6.

1 https://github.com/meshadaptation/pragmatic.

https://github.com/meshadaptation/pragmatic
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2 Background

In this section we describe the greedy coloring algorithm and its parallel version
proposed by Çatalyürek et al.

2.1 First-Fit Coloring

Coloring a graph with the minimal number of colors has been shown to be an
NP-hard problem [8]. However, there exist heuristic algorithms which color a
graph in polynomial time using relatively few colors, albeit not guaranteeing an
optimal coloring. One of the most common polynomial coloring algorithms is
First-Fit, also known as greedy coloring. In its sequential form, First-Fit visits
every vertex and assigns the smallest color available, i.e. not already assigned to
one of the vertex’s neighbors. The procedure is summarized in Algorithm 1.

Algorithm 1. Sequential greedy coloring algorithm.
Input: G(V, E)
for all vertices Vi ∈ V do

C ← {colors of all colored vertices Vj ∈ adj(Vi)}
c(Vi) ← {smallest color �∈ C}

It is easy to give an upper bound on the number of colors used by the
greedy algorithm. Let us assume that the highest-degree vertex Vh in a graph
has degree d, i.e. this vertex has d neighbors. In the worst case, each neighbor
has been assigned a unique color; then one of the colors {1, 2, . . . , d+ 1} will be
available to Vh (i.e. not already assigned to a neighbor). Therefore, the greedy
algorithm can color a graph with at most d + 1 colors. In fact, experiments
have shown that First-Fit can produce near-optimal colorings for many classes
of graphs [4].

2.2 Optimistic Coloring

Gebremedhin and Manne introduced an optimistic approach to parallelizing the
greedy graph coloring algorithm [9]. They described a fast and scalable version
for shared-memory systems based on the principles of speculative (or optimistic)
execution. The idea is that we can color all vertices in parallel using First-Fit
without caring about race conditions at first (stage 1); this can lead to defective
coloring, i.e. two adjacent vertices might get the same color. Defects can then
be spotted in parallel (stage 2) and fixed by a single thread (stage 3).

Picking up where Gebremedhin and Manne left off, Çatalyürek et al.
improved the original algorithm by removing the sequential conflict-resolution
stage and applying the first two parallel stages iteratively. This work was pre-
sented in [1]. Each of the two phases, called tentative coloring phase and conflict
detection phase respectively, is executed in parallel over a relevant set of vertices.
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Like the original algorithm by Gebremedhin and Manne, the tentative coloring
phase produces a pseudo-coloring of the graph, whereas in the conflict detection
phase threads identify defectively colored vertices and append them into a list L.
Instead of resolving conflicts in L serially, L now forms the new set of vertices
over which the next execution of the tentative coloring phase will iterate. This
process is repeated until no conflicts are encountered.

Algorithm 2. The parallel graph coloring algorithm by Çatalyürek et al.
Input: G(V, E)
U ← V
while U �= ∅ do

#pragma omp parallel for � Phase 1 - Tentative coloring (in parallel)
for all vertices Vi ∈ U do � execute First-Fit

C ← {colors of all colored vertices Vj ∈ adj(Vi)}
c(Vi) ← {smallest color �∈ C}

#pragma omp barrier
L ← ∅ � global list of defectively colored vertices
#pragma omp parallel for � Phase 2 - Conflict detection (in parallel)
for all vertices Vi ∈ U do

if ∃Vj ∈ adj(Vi), Vj > Vi : c(Vj) == c(Vi) then
L ← L ∪ Vi � mark Vi as defectively colored

#pragma omp barrier
U ← L � Vertices to be re-colored in the next round

Algorithm 2 summarizes this coloring method. As can be seen, there is no
sequential part in the whole process. Additionally, speed does not come at the
expense of coloring quality. The authors have demonstrated that this algorithm
produces colorings using about the same number of colors as the serial greedy
algorithm. However, there is still a source of sequentiality, namely the two thread
synchronization points in every iteration of the while-loop. Synchronization can
easily become a scalability barrier for high numbers of threads and should be
minimized or eliminated if possible.

3 Implementation

Moving toward the direction of removing as much thread synchronization as
possible, we improved the algorithm by Çatalyürek et al. by eliminating one of
the two barriers inside the while-loop. This was achieved by merging the two
parallel for-loops into a single parallel for-loop. We observed that when a vertex
is found to be defective it can be re-colored immediately instead of deferring
its re-coloring for the next round. Therefore, the tentative-coloring and conflict-
detection phases can be combined into a single detect-and-recolor phase in which
we inspect all vertices which were re-colored in the previous iteration of the while-
loop. Doing so leaves only one thread synchronization point per round, as can
be seen in Algorithm 3. This barrier guarantees that any changes committed by
a thread are made visible system-wide before proceeding to the next round.
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Algorithm 3. The improved parallel graph coloring technique.
Input: G(V, E)
#pragma omp parallel for � perform tentative coloring on G; round 0
for all vertices Vi ∈ V do

C ← {colors of all colored vertices Vj ∈ adj(Vi)}
c(Vi) ← {smallest color �∈ C}

#pragma omp barrier
U0 ← V � mark all vertices for inspection
i ← 1 � round counter
while U i−1 �= ∅ do � ∃ vertices (re-)colored in the last round

L ← ∅ � global list of defectively colored vertices
#pragma omp parallel for
for all vertices Vi ∈ U i−1 do

if ∃Vj ∈ adj(Vi), Vj > Vi : c(Vj) == c(Vi) then � if they are (still) defective
C ← {colors of all colored Vj ∈ adj(Vi)} � re-color them
c(Vi) ← {smallest color �∈ C}
L ← L ∪ Vi � Vi was re-colored in this round

#pragma omp barrier
Ui ← L � Vertices to be inspected in the next round
i ← i + 1 � proceed to the next round

4 Experimental Results

In order to evaluate our improved coloring method, henceforth referred to as
Reduced Synchronization Optimistic Coloring (RSOC), and compare it to the
previous state-of-the-art technique by Çatalyürek et al., we ran a series of bench-
marks using 2D and 3D meshes of triangular and tetrahedral elements respec-
tively (commonly used in finite element and finite volume methods), alongside
randomly generated graphs using the R-MAT graph generation algorithm [2].
Simplicial 2D/3D meshes are used in order to measure performance and scala-
bility for our target application area [10], whereas RMAT graphs were used for
consistency with the experimental methodology used in Çatalyürek et al.’s pub-
lication; the authors state that those RMAT graphs “are designed to represent
instances posing varying levels of difficulty for the performance of multithreaded
coloring algorithms” [1].

For the 2D case we have used a 2D anisotropic mesh (adapted to the require-
ments of some CFD problem) named mesh2d, which consists of ≈ 250k vertices.
We also evaluate performance using two 3D meshes, taken from the University of
Florida Sparse Matrix Collection [5]. bmw32 is a mesh modelling a BMW Series
3 car consisting of ≈ 227k vertices, whereas pwtk represents a pressurized wind
tunnel and consists of ≈ 218k vertices. Finally, we generated three 16M -vertex,
128M -edge RMAT graphs, namely RMAT-ER (Erdős-Rényi), RMAT-G (Good) and
RMAT-B (Bad), randomly shuffling vertex indices so as to reduce the benefits of
data locality and large caches. For more information on those graphs the reader
is referred to the original publication by Çatalyürek et al. [1].
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The experiments were run on two systems: a dual-socket Intel®Xeon® E5-
2650 system (Sandy Bridge, 2.00 GHz, 8 physical cores per socket, 2-way hyper-
threading) running Red Hat®Enterprise Linux® Server release 6.4 (Santiago)
and an Intel®Xeon Phi™ 5110P board (1.053 GHz, 60 physical cores, 4-way
hyper-threading). Both versions of the code (intel64 and mic) were compiled
with Intel®Composer XE 2013 SP1 and with the compiler flags -O3 -xAVX.
The benchmarks were run using Intel®’s thread-core affinity support.

Table 1 shows the average execution time over 10 runs of both algorithms
on the 2 systems, Intel®Xeon® and Intel®Xeon Phi™, using the 3 finite ele-
ment/volume meshes and the 3 RMAT graphs. Rows preceded by “C” corre-
spond to the algorithm by Çatalyürek et al., rows preceded by “R” pertain to
the improved version. Timings for the meshes are given in milliseconds whereas
for the RMAT graphs they are in seconds. As can be seen, RSOC performs faster
than Çatalyürek et al. for every test graph on both platforms, while scaling bet-
ter as the number of threads increases, especially on Intel®Xeon Phi™.

Table 1. Execution time of both algorithms on 2 different platforms, Intel®Xeon®

and Intel®Xeon Phi™, with varying number of OpenMP threads and using the 3 finite
element/volume meshes and the 3 RMAT graphs. Rows preceded by “C” correspond
to the algorithm by Çatalyürek et al., rows preceded by “R” pertain to the improved
version. Timings for the meshes are given in milliseconds whereas for the graphs they
are in seconds.

Intel®Xeon® Intel®Xeon Phi™

Number of OpenMP threads Number of OpenMP threads

1 2 4 8 16 32 1 2 4 8 15 30 60 120 240

mesh2d C: 62.7 34.0 19.2 10.2 5.92 4.28 496 252 127 64.9 35.5 19.0 11.7 12.7 73.6

R: 62.2 31.3 17.7 9.42 5.50 4.05 495 249 125 63.3 34.5 17.9 10.7 10.5 69.4

bmw3 2 C: 58.1 33.5 14.4 7.84 4.73 3.61 468 235 118 60.0 33.1 18.0 11.5 12.7 74.2

R: 57.8 29.4 12.1 6.48 3.91 3.30 466 234 117 59.2 32.4 17.1 9.88 11.0 54.9

pwtk C: 40.1 24.0 14.5 8.07 4.96 3.65 465 233 117 59.6 33.2 18.2 11.1 12.9 74.4

R: 39.8 20.0 11.3 6.08 3.81 3.30 464 232 117 58.9 32.4 17.2 10.6 11.0 59.9

RMAT-ER C: 6.11 3.21 1.82 1.09 0.79 0.85 196 97.8 48.9 24.6 13.0 6.41 3.16 1.64 0.94

R: 6.09 3.20 1.81 1.08 0.78 0.85 196 98.0 49.0 24.7 13.1 6.43 3.16 1.64 0.95

RMAT-G C: 6.10 3.18 1.82 1.08 0.77 0.81 195 97.1 48.6 24.3 12.9 6.34 3.12 1.62 0.93

R: 6.07 3.17 1.81 1.07 0.77 0.81 195 97.3 48.7 24.4 13.0 6.38 3.13 1.63 0.93

RMAT-B C: 5.47 2.86 1.62 0.93 0.65 0.64 189 94.1 46.7 23.5 12.3 6.08 3.12 1.90 1.49

R: 5.46 2.83 1.60 0.92 0.64 0.63 189 94.0 46.9 23.5 12.4 6.02 2.95 1.60 1.00

Figures 1 and 2 show the relative speedup of RSOC over Çatalyürek et al.
for all test graphs on Intel®Xeon® and Intel®Xeon Phi™, respectively, i.e.
how much faster our implementation is than its predecessor for a given number
of threads. With the exception of RMAT-ER and RMAT-G on which there is no
difference in performance, the gap between the two algorithms widens as the
number of threads increases, reaching a maximum value of 50 % on Intel®Xeon
Phi™ for RMAT-B.
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Fig. 1. Speedup of RSOC relative to Çatalyürek et al. as the number of threads
increases on Intel®Xeon® E5-2650.
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Fig. 2. Speedup of RSOC relative to Çatalyürek et al. as the number of threads
increases on Intel®Xeon Phi™ 5110P.

Looking at the total number of coloring conflicts encountered throughout
the execution of both algorithms as well as the number of iterations each
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algorithm needs in order to resolve them, we can identify an additional source
of speedup for our algorithm (apart from the absence of one barrier). We will
use the Intel®Xeon Phi™ system for this study, as it is the platform on which
the most interesting results have been observed. Figures 3 and 4 depict the total
number of conflicts for the three meshes and the RMAT graphs, respectively.
When using few threads both algorithms produce about the same number of
conflicts. However, moving to higher levels of parallelism reveals that RSOC
results in much fewer defects in coloring for certain classes of graphs.

This observation can be explained as follows: In Çatalyürek et al. all threads
synchronize before entering the conflict-resolution phase, which means that they
enter that phase and start resolving conflicts at the very same time. Therefore,
it is highly possible that two adjacent vertices with conflicting colors will be
processed by two threads simultaneously, which leads once again to new defects.
In our improved algorithm, on the other hand, a conflict is resolved as soon as
it is discovered by a thread. The likelihood that another thread is recoloring a
neighboring vertex at the same time is certainly lower than in Çatalyürek et al.
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Fig. 3. Number of conflicts on Intel®Xeon Phi™ 5110P using mesh2d, bmw3 2 and pwtk.

The reduced number of conflicts also results in fewer iterations of the algo-
rithm, as can be seen in Figs. 5 and 6. Combined with the absence of one barrier
from the while-loop, it is only expected that our new algorithm ultimately out-
performs its predecessor. A nice property is that both algorithms produce color-
ings using the same number of colors, i.e. quality of coloring is not compromised
by the higher execution speed.
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5 SIMT Restrictions

Trying to run the optimistic coloring algorithms using CUDA on an Nvidia GPU
revealed a potential weakness. Neither algorithm terminated; instead, threads
spun forever in an infinite loop. This is due to the nature of SIMT-style multi-
threading, in which the lockstep warp execution results in ties never being bro-
ken. An example of why these algorithms result in infinite loops in SIMT-style
parallelism can be seen in Fig. 7, where we have a simple two-vertex graph and
two threads, each processing one vertex (this scenario is likely to actually occur
at a later iteration of the while-loop, where the global list of defects L is left
with a few pairs of adjacent vertices). At the beginning (a), both vertices are
uncolored. Each thread decides that the smallest color available for its own ver-
tex is red. Both threads commit their decision at the same clock cycle, which
results in the defective coloring shown in (b). In the next round the threads try
to resolve the conflict and decide that the new smallest color available is green.
The decision is committed at the same clock cycle, resulting once again in defects
(c) and the process goes on forever.

Theoretically, this scenario is possible for CPUs as well, although the prob-
ability is extremely low. We believe that there will always be some randomness
(i.e. lack of thread coordination) on CPUs which guarantees convergence of the
optimistic algorithms. This randomness can also be “emulated” on GPUs by
having a dynamic assignment of vertices to threads and making sure that two
adjacent vertices are always processed by threads of different warps.
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0 1

(a) Graph

0 1

(b) Round 1
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(c) Round 2

0 1

(d) Round 3

Fig. 7. Example of an infinite loop in SIMT-style parallelism when using one of the
optimistic coloring algorithms (Color figure online).

6 Conclusions

In this article we presented an older parallel graph coloring algorithm and showed
how we devised an improved version which outperforms its predecessor, being
up to 50 % faster for certain classes of graphs and scaling better on manycore
architectures. The difference becomes more pronounced as we move to graphs
with higher-degree vertices (3D meshes, RMAT-B graph).

This observation also implies that our method (with the appropriate exten-
sions) could be a far better option for d-distance colorings of a graph G, where Gd

is considerably more densely connected than G (graph Gd, the dth power graph
of G, has the same vertex set as G and two vertices in Gd are connected by an
edge if and only if the same vertices are within distance d in G).

Speed and scalability stem from two sources, (a) reduced number of conflicts
which also results in fewer iterations and (b) reduced thread synchronization
per iteration. Coloring quality remains at the same levels as in older parallel
algorithms, which in turn are very close to the serial greedy algorithm, meaning
that they produce near-optimal colorings for most classes of graphs.

Acknowledgments. The authors gratefully acknowledge funding from EPSRC grants
EP/I00677X/1 and EP/L000407/1 supporting this work.
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Abstract. A widely used principle in the design of concurrent programs
is isolation – the property that a task can operate on shared data with-
out interference from other tasks. In this paper, we introduce a new
approach to object-based isolation that is guaranteed to be deadlock-
free, while still retaining the rollback benefits of transactions. Further,
our approach differentiates between read and write accesses in its concur-
rency control mechanisms. Finally, since the generality of our approach
precludes the use of static ordering for deadlock avoidance, our runtime
ensures deadlock-freedom by detecting and resolving deadlocks at run-
time automatically, without involving the programmer.

Keywords: Object-Based isolation · Deadlock freedom · Lock compo-
sition · Read-Write locks · Delimited continuations

1 Introduction

Designing and implementing correct and efficient concurrent programs is a noto-
riously challenging task due to the possibility of data races. Programs must use
concurrency control mechanisms to ensure that multiple threads of execution do
not interfere with each other while sharing data in memory. One approach for
enforcing mutual exclusion is to use critical sections that execute in isolation
with respect to other interfering critical sections. Isolation is the property that
a thread can access shared data without interference from other threads.

Threads use locks to guard the operations performed while the lock is held;
this enforces isolation properties of a thread’s guarded operations. The domi-
nant concurrency control mechanism in high-level languages, such as Java and
C#, are mutual-exclusion locks [2]. Parallel programming models (e.g. OpenMP
4.0 [20], Cilk [8]) also rely on locks for implementing mutual exclusion. In fact,
there is comprehensive empirical evidence that programmers almost always use
mutual-exclusion locks to enforce isolation properties [7]. Transactional memory
offers a promising alternative to lock-based synchronization as a mechanism for
isolation. A programmer can reason about the correctness of code within a trans-
action and need not worry about interactions with other concurrently executing
transactions [14]. However, re-execution of conflicting transactions, and the log-
ging of data accesses to prepare for the possibility of rollback, add overhead and
often lead to poor performance even in the presence of moderate contention.
c© Springer-Verlag Berlin Heidelberg 2015
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The focus of this work is to provide a deadlock-free construct to sup-
port shared-exclusive object-based isolation in concurrent programs. When
threads can not coordinate their accesses to shared data, deadlocks can occur
while acquiring isolation privileges. When a deadlock can occur, a dynamically
assigned low-priority thread is forced to roll back and release privilege(s) it is
holding that is preventing a high-priority thread from making progress. Once
released, this allows the high-priority thread to acquire the privilege and make
progress. After the high-priority thread releases the conflicting privileges, the
low-priority thread can resume execution. Our construct combines the features
of transactions and shared-exclusive locks to resolve deadlocks and to minimize
re-executions due to conflicts. It also enables promotion of shared privileges to
exclusive privileges by rolling back part of the computation and re-executing it
with an exclusive privilege.

In summary, the contributions of this paper are as follows:

– We introduce object-based isolation as a high-level construct for deadlock-free
shared-exclusive mutual-exclusion.

– We describe an implementation approach for object-based isolation that
resolves deadlocks at runtime, exploits the rollback benefits of transactions,
and differentiates between read and write accesses in its concurrency control
mechanisms.

– We compare the performance obtained by our implementation of object-
based isolation with that of Java’s synchronized statement, the regular and
shared-exclusive locks available in the JDK [13], and with the Multiverse STM
library [18].

2 Background and Motivating Example

Large multi-threaded programs that involve concurrency control via the use of
multiple locks can be challenging to write. Deadlocks can occur when multiple
threads need the same locks but obtain them in a different order. Always acquir-
ing locks in a consistent order ensures that programs will not deadlock. But
this can be challenging (or even impossible) to ensure as the dynamic dispatch
capabilities or library composition features in many languages make it difficult
to know a program’s exact call graph structure at compile-time.

Using read-write (shared-exclusive) locks can significantly improve parallel
performance if the protected data is read frequently and modified only occa-
sionally. They can be acquired either for reading or for writing: multiple readers
may hold the lock simultaneously, but writers must acquire exclusive ownership
of the lock. Along with deadlocks, an issue while composing software compo-
nents is the need to promote read privileges to write privileges and vice versa.
Promoting (demoting) a write privilege to a read privilege carries no restrictions
and can be supported trivially with reentrant behavior. However, promoting a
read privilege to a write privilege is usually not permitted as doing so can lead
to inconsistent behavior and is prone to deadlocks. As we will see in Sect. 3.3,
our construct also supports promotion of read privileges to write privileges.
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2.1 Motivating Example

Our motivating example is the classic bank transaction; a transaction must debit
one account and credit another with a particular amount of money when legal
to do so. For proper accounting, it is essential that either both operations suc-
ceed or neither operation succeeds. This means that both operations should be
performed with transactional semantics to ensure the integrity of the system’s
state.

Listing 1.1. Classic bank transaction
example using read-write locks.
1 class BankTransactionRWLock {
2 def trySafe(from , to, amount) {
3 lock (from.readLock) {
4 if from.balance () > amount
5 transfer(from , to, amount)
6 return true
7 else
8 return false
9 } }

10 def transfer(from , to, amount) {
11 val low = min(from , to)
12 val high = max(from , to)
13 lock (low.writeLock) {
14 lock (high.writeLock) {
15 from.debit(amount)
16 to.credit(amount)
17 } } } }

Listing 1.2. Classic bank transaction
example using transaction memory solu-
tion with atomic blocks.
1 class BankTransactionAtomic {
2 def trySafe(from , to, amount) {
3 atomic {
4 if from.balance () > amount
5 transfer(from , to, amount)
6 return true
7 else
8 return false
9 } }

10 def transfer(from , to, amount) {
11 atomic {
12 from.debit(amount)
13 to.credit(amount)
14 } }
15 }

Listing 1.1 uses read-write locks to ensure fine-grained synchronization to
increase concurrency. To avoid deadlocks, it uses ordering of the bank accounts
to retrieve the locks (lines 11–12). However, composing of trySafe and transfer
can still lead to deadlock since the locks individual instances can still be acquired
out of order from multiple calls. In addition, deadlocks will also occur in systems
that do not allow promotion of read privileges (in trySafe()) to write privileges
(in transfer()).

Listing 1.2 displays the same example written using atomic blocks that offer
software transactional memory (STM) support. Deadlock is not possible in this
example as transactions never wait for one another; at least one transaction is
guaranteed to succeed in the presence of conflicts. In STMs, a conflict occurs
when two concurrent uncommitted transactions perform conflicting read or write
operations on the same bank accounts. However, the likelihood of aborting due
to intervening conflicting commits increases in longer running transactions or in
write-heavy workloads, causing deterioration in performance.

3 Object-Based Isolation as a High-Level Construct for
Concurrent Programming

In this section, we introduce Object-Based Isolation (OBI) as a high-level con-
struct for concurrent programming. Our goal for OBI is to combine the program-
mability of scoped synchronized blocks with the efficiency of read-write locks
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(RWLs) and the semantic guarantees of transactional execution (i.e. isolation,
deadlock freedom, optimistic concurrency). As with locks, mutual exclusion is
only guaranteed between instances of isolated statements; no such guarantees
exist between isolated and non-isolated statements. Assuming that there are
no data races between isolated and isolated/non-isolated statements, an
isolated statement executing in parallel is guaranteed to produce the same
answer (for the same input state) as when no other task/thread is executing at
the same time [14]. As with transactions (but not with locks), the programmer
is spared the burden of guaranteeing deadlock freedom – that burden is passed
on to the implementation instead.

As we will see, our proposed isolated statement is scoped, and (unlike trans-
actions) allows the user to specify a list of objects with read or write (R/W)
modes for which isolation is desired. Two isolated statements are only guaran-
teed to execute in mutual-execution if they have a non-conflicting intersection
in their shared-exclusive object sets. This allows isolated statements to exe-
cute critical sections that are guarded by explicitly specified objects, unlike in
transactions where critical sections appear to be guarded globally leading to
deadlock scenarios [16]. In transactional memory, a data access pattern with
frequent writes to shared data will induce numerous aborts; such issues do not
arise with isolated statements. isolated statements can be nested, and inner
statements can add to the set of objects acquired. No total order is imposed
on the nested isolated object list. This capability allows for the expression of
“non-cautious” concurrency patterns1 [21].

3.1 isolated Statements

Listing 1.3. Classic bank transaction exam-
ple using isolated blocks with read and
write privileges.
1 class BankTransactionIsolated {
2 def trySafe(from , to, amount) {
3 isolated(read(from)) {
4 if from.balance () > amount
5 transfer(from , to, amount)
6 return true
7 else
8 return false
9 } }

10 def transfer(from , to, amount) {
11 isolated(write(from), write(to)) {
12 from.debit(amount)
13 to.credit(amount)
14 } } }

The motivation for OBI is that
there are many cases when the
programmer knows the shared or
exclusive mode for the set of
objects that will be accessed in
the body of an isolated state-
ment. The specification of these
modes in the isolated argument
object set helps the runtime by
explicitly stating the objects that
need to be tracked. Listing 1.3 dis-
plays the bank transaction exam-
ple from Sect. 2.1 using isolated

statements. As with Java’s synchronized construct, isolated is reentrant and
scoped guaranteeing the absence of dangling unlock operations. Like RWLs,
isolated statements can acquire (R/W) access privileges on the argument

1 Cautious patterns require all reads to shared data to performed before mutations to
any of them.
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object. Unlike Java’s RWLs, object sets in nested isolated blocks allow pro-
motion of an object’s access privilege from shared mode to exclusive mode
(Sect. 3.3). For nested isolated constructs we follow open nested semantics [9],
they do not enforce atomicity. Our prevention scheme (Sect. 3.4) avoids deadlock
while acquiring privileges. While sequential composition of transactions to form
a single, larger transaction can cause deadlocks [16], composition of isolated
statements can never cause a deadlock.

3.2 Execution Mechanism

Since we allow free composition of isolated statements, we cannot guarantee
an order in the acquisition of privileges by isolated statements. Similarly, it is
impossible to prevent scenarios where a read privilege needs to be promoted to
a write privilege. As mentioned in Sect. 2.1, both these behaviors are prone to
deadlocks. As a result, our approach dynamically detects and resolves deadlocks
by allowing instances of isolated statements to abort by rolling back and re-
executing with possibly modified privileges when it is safer to do so.

Listing 1.4. Simple Counter that sup-
ports the clone-merge protocol. For
simple data structures, these can be
automated by a compiler.
1 class Counter(var value) {
2 def increment(amount) {
3 value += amount
4 }
5 def clone() {
6 return new Counter(value)
7 }
8 def merge(other: Counter) {
9 this.count = other.count;

10 } }

Roll backs during the execution of a
thread can leave shared data in an incon-
sistent state. Two key observations help
resolve this concern. Firstly, the inconsis-
tency occurs only due to objects that were
being modified, i.e. those objects execut-
ing with a write privilege. We resolve this
issue by employing a clone-merge proto-
col where a clone of the object is created
and used inside the body of the isolated.
When the isolated statement completes
successfully, this private clone is trivially

merged back into the source object since only one isolated gets to run with
write privileges. If an isolated statement aborts, the clone is not merged and
discarded. Listing 1.4 displays a simple integer counter class that supports
cloning and merging. Relying on the clone-merge protocol limits the applica-
bility of our approach on classes for which the source code is not available and a
clone method is cannot be generated automatically. The other approaches, such
as transactional memory and locks, do not suffer from this limitation.

Secondly, we need a scheme to dynamically identify the target program points
when a computation is rolled back. To address this concern, we use delimited
continuations (DeCont) [6] to roll back the computation. Each isolated state-
ment executes as a DeCont and the call stack is recursively unwound from nested
isolated statements to a target isolated statement during rollback. Since our
approach works on clones and only commits the results when successful, we can
handle roll backs very easily. When re-executing an isolated statement, a new
DeCont is created and executed.

With OBI, tracking every read and write is obviated as the programmer
explicitly declares the read and write object sets. Unlike transactions where
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every mutated object is committed at the end of the transaction, only object sets
opened in write mode are committed at the end of an isolated statement. We
employ a pessimistic control policy [9], where isolated statements only execute
their statements once they are guaranteed it is safe to do so. While the likelihood
of intervening conflicting commits increases in longer running transactions, such
situations do not arise with isolated statements. The guarantee relies on the
use of read-write lock semantics where an isolated statement is forced to wait
until it successfully acquires the desired read-write privilege.

In traditional transactions, a conflict is resolved by aborting and re-executing
or delaying one of the conflicting transactions. Similarly in conflicting scenarios,
at least one isolated statement aborts and re-executes later. However, the
difference with transactions lies in the situations identified as conflicts. With
our OBI, there are two scenarios that can cause conflicts. The first is when we
dynamically detect that a nested isolated statement is attempting to acquire
a write privilege for a previously acquired read privilege. The second is when
isolated statements participate in a deadlock cycle while attempting to obtain
a privilege as is possible in the bank transaction example.

3.3 Read-to-Write Promotion

It is not safe to simply promote a read privilege to a write privilege. Even if the
write privileges are promoted serially without rollback, the invariants that were
true while executing with read privileges may no longer hold due to intervening
writes. To address this issue, we recursively roll back the computation to the
outermost isolated statement that acquired the read privilege on the object.
The privilege for that instance of the isolated statement is dynamically updated
to a write privilege, and the statement re-executed. Listings 1.5 and 1.6 display
an example of the transformation that happens dynamically at runtime before
and after the read-to-write promotion, respectively. The read privilege for x in
the outermost isolated on line 2 is promoted to a write, and the statements in
lines 3 to 7 re-executed.

Listing 1.5. Snippet with nested
isolated statements that require read-
to-write promotion. Note that these
promotions could occur across deeply
nested blocks within different function
calls.
1 isolated (write(w)) {
2 isolated (read(x)) {
3 isolated (read(y)) {
4 isolated (read(x)) {
5 isolated (write(x)) {
6 ...
7 } } } } }

Listing 1.6. Snippet with nested
isolated statements after read-to-write
promotion. Note that this promotion
happens to the dynamic instance being
executed and not to the static version of
the code.
1 isolated (write(w)) {
2 isolated (write(x)) { // promoted
3 isolated (read(y)) {
4 isolated (read(x)) { //

unchanged
5 isolated (write(x)) {
6 ...
7 } } } } }
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3.4 Deadlock Resolution

While executing nested isolated statements, we rely on dynamically detecting
and resolving deadlocks. We associate unique ids with threads to prioritize them;
these priorities are used to resolve conflicts. When a thread acquires a read or
write privilege on an object, the thread is registered as an owner of the privilege
on the object. When another thread attempts to acquire the same privilege and
fails, it compares its priority with the owner of the lock. If it has a lower priority,
it aborts by rolling back its computation releasing any read or write privileges it
had acquired. If the failed thread has a higher priority order, it re-attempts to
acquire the lock. The lower priority thread will eventually release the lock, either
by aborting as mentioned above (Sect. 3.2) or by completing successfully, and
allow the higher priority thread to continue with its execution. This prioritization
strategy introduces unfairness in its scheduling policy but allows livelocks to be
ruled out in our isolated construct.

4 Implementation

In this section, we discuss our implementation of OBI presented in Sect. 3.
Despite any productivity promises, an abstraction must be implementable in
an efficient and scalable fashion for it to be accepted by programmers. The
isolated construct must incur a sufficiently low overhead to be useful in prac-
tice, especially for small transactions. Our implementation [12] is a Java-based
task-parallel runtime that supports async-finish style computations, though
our ideas can also be implemented in other thread-based languages including
C/C++. Our implementation conforms to the constraints imposed by a stan-
dard Java Virtual Machine (JVM). In particular, standard JVMs do not provide
support for DeConts or for storing and restoring the stack. The DeConts created
are thread independent and can be resumed on any worker thread.

We use an extended version of the open source bytecode weaver provided by
the Kilim framework [23] to support DeConts. The Kilim bytecode weaver works
by transforming the code of methods which can trigger rollback. It recognizes
such methods by the presence of a SuspendableException exception in the
method signature. It is important to note that no actual exceptions are thrown
or caught which minimize the overhead of capturing and resuming continuations.
Instead, the transformation performed is similar to a continuation passing style
transformation, except that only methods that can suspend are transformed.

The runtime maintains a pool of custom RWLs, this pool can be extended to
be one per user object. However, for ease of implementation we maintain a fixed
size list and hash objects to one of the locks. When an isolated block requires
a read or write privilege on an object, it hashes the object to a read-write lock
and attempts to acquire the read or write privilege. During a deadlock or a
read-to-write promotion conflict, the computation is rolled back by capturing
the continuation. In other failed attempts, the task suspends and registers itself
on a wait list and is resumed by moving itself into the work queue when the
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lock is available. Using continuations allows the worker thread to execute other
ready tasks while suspended tasks are stored away in a separate queue.

5 Experimental Results

In this section, we present an experimental evaluation of the isolated construct
introduced in this paper. We compare it against existing mutual-exclusion con-
structs available in the JDK - synchronized statement, JDK’s ReentrantLock,
and JDK’s ReentrantReadWriteLock [13]. The JDK variants of the benchmarks
were written to ensure there is no conflict (deadlock or read–to-write promo-
tion) scenario during execution. We also compare our implementation on micro-
benchmarks against the Multiverse library [18] whose STM implementation is
based on [3]. We ran the benchmarks on four eight-core IBM POWER7 proces-
sors running at 3.8 GHz each. Each node contains 256 GB of RAM; the software
stack includes IBM Java SDK Version 7. The JVM configuration flags used were
(-XX:-UseGCOverheadLimit -Xmx16384m -XX:+UseParallelGC -XX:+UseParallelOldGC). Each bench-
mark was configured to run using 32 worker threads and run for thirty iterations
in six separate JVM invocations. The arithmetic mean of the best fifty execu-
tion times (from the hundred and eighty iterations) are reported. Using the best
execution time allows us to minimize the effects of JVM warm up, just-in-time
compilation, and garbage collection.

5.1 Micro-Benchmarks

First, we compare the performance of the isolated construct on four
microbenchmarks. The first microbenchmark uses Bank Transaction (BT) like
those shown in Listings 1.1, 1.2, and 1.3. The second is an integer counter (CTR)
microbenchmark where the increments to the counter are protected in mutual-
exclusion blocks. The last two microbenchmarks are a concurrent read-write
benchmarks on dictionary (CD) and sorted linked list (CSLL) data structures
where the write percent is kept at 10 percent. The read and write operations
in the CD benchmark takes O(1) time while in the CSLL benchmark they take
O(N) time. All four lock variants perform similarly in BT, CTR, and CD as the
critical section blocks are relatively short. The Multiverse STM version performs
poorly compared to the other variants in the nested transactions BT benchmark.
In CSLL, the critical section blocks take O(N) time, hence the read-write lock
version performs better than the reentrant lock version. The synchronized ver-
sion performs better than the lock versions. The isolated version performs
better as its use of continuations avoids blocking the worker threads allows all
available read requests to be processed when there are no pending writes. The
performance benefit comes from avoiding the need to context switch threads.
Multiverse STM performs best on CSLL with a single transaction encapsulating
the entire read or write operation (Fig. 1).
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Fig. 1. Bank Transaction involves 6 million transactions on 8 thousand bank accounts.
Counter includes 6 million increment operations each on 8 counter objects. The Dic-
tionary benchmark 1 million operations with a write percent of 20 (split equal in put
and remove) and remaining as read get operations. The SortedList benchmark 100
thousand operations with a write percent of 20 (split equal in add and remove) and
remaining as read get operations. The y-axis represents program execution time, hence,
smaller is better.

5.2 Macro-Benchmarks

We consider two larger benchmarks: Labyrinth and Parallel Breadth-First Search
(BFS). The Labyrinth benchmark from the STAMP suite [17] is characterized by
long transaction lengths, large read-sets, large write-sets, long transaction times,
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Fig. 2. Labyrinth (left) using the configuration 512 randomly generated inputs on
dimension of 512 × 512 × 7. Simple BFS (right) on a randomly generated connected
graph with 500 thousand nodes and 5 million edges. The y-axis represents program
execution time, hence, smaller is better.
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and very high contention. The high contention causes the reentrant lock and
synchronized versions to perform poorly with very low scalability. The read-
write lock and isolated versions show improved performance as they allow
multiple read requests to proceed in parallel. Simple BFS is a naive parallel
implementation of the sequential BFS algorithm. In the BFS benchmark, the
read-write lock, reentrant lock, and synchronized variants allocated one lock per
graph node. The isolated version in our implementation shows higher overheads
as it relies on the runtime to allocate a handful of locks (256 to be exact) and
hashes on them (Fig. 2).

Note that the Java VM provides native support for synchronized state-
ments and locks, but not for continuations. Our implementation of isolated
uses DeConts without modifying the VM; the performance of our implemen-
tation would be greatly improved by using native support for DeConts in the
VM. Work by Stadler et al. [24] to provide such native support in a Java VM
reported over two orders magnitude speedup on micro-benchmarks compared to
a bytecode transformation approach.

6 Related Work

Most of the state-of-art lock-free language constructs are based on transactional
memory (TM) systems [10]. Both hardware transactional memory (HTM) [10]
and software transactional memory (STM) [9] guarantee lock-free and dead-
lock avoidance by employing a rollback. By using TM, users can employ both
coarse-grain and fine-grain parallelism, but have to pay for the overhead of roll-
back, especially for contention intensive (i.e. high conflict rate) critical sections.
Recently, Aida [15] provides a high-level minimalistic programming model simi-
lar to Transactional Memory [10], with a single construct (async isolated) to
define blocks of code to be executed concurrently and in isolation. Aida guaran-
tees deadlock-freedom and livelock-freedom. Both STM and Aida need compiler
support to instrument the memory accesses and enable the rollback mechanism.

Galois [19] is a runtime library-based approach, it provides library constructs
called optimistic iterators for packaging optimistic parallelism as iterations over
sets and for specifying the scheduling policy, and uses runtime scheme for detect-
ing the conflicting shared data accesses and recovering from those unsafe access
(i.e. rollback). Rajwar and Goodman based their technique on the observation
that programmers often used coarse-grained locking to be sure “all bases are
covered” and that programs can often run correctly even if the lock is never
acquired [22]. Hence, the conservative locking strategies that programmers often
use to ensure the correctness can frequently be elided dynamically, provided that
one can detect and roll back concurrent updates that would have been prevented
had the locking been performed. They built this work on speculative lock elision
by automatically wrapping transactions around the critical sections of sequences
of instructions detected at runtime as locks.

Lock inference [1,11] is a compiler-assisted approach to building efficient crit-
ical sections while also ensuring correctness. The basic idea is to employ compile-
time analysis to identify the “really necessary” locks for the given critical section.
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The efficiency depends on whether the static program analysis can precisely iden-
tify the lock set that should be applied to the critical section, i.e. in the presence
of ambiguous object references a coarse-grain locking has to be chosen.

In this paper, we introduced the object-based isolation that is a runtime
based mechanism provided to the user to efficiently build parallel application
with guaranteed deadlock avoidance and livelock-freedom. The user interface is
a language construct-like API, the advantage of this approach is that it provides
the user a simple interface to build fine-grain locking based parallel applications,
i.e. users can explicitly specifiy the mutual-excluded objects via our APIs. This
is also a lightweight isolation support compared with Aida [15] and STM [10]
which backups all objects within the language constructs specified scope. The
user does not need to specify task scheduling strategies like Galois, our parallel
runtime implicitly supports efficient scheduling mechanism (i.e. work-stealing).

Other approaches have exploited using lock-based implementation to improve
the efficiency of STM. Ennals utilizes a hybrid policy where a pessimistic app-
roach is used for write privileges, whereas an optimistic approach is used for read
accesses [5]. Dice and Shavit used an optimistic control policy and only obtain
locks before committing their writes, aborting the transaction if necessary [4].
Object-based isolation employs a pessimistic control policy for both read and
write privileges (i.e. obtain the read or write privileges eagerly). In [5], dead-
locks are detected while acquiring locks and a transaction can request another
transaction to abort. [4] employs timeouts (for acquiring process) to abort a
transaction and avoid deadlocks. Our approach does not require signaling the
other task, a lower priority task cooperatively aborts its transaction to allow
another task to make progress. The rollbacks of isolated statements happen
only till the relevant outer boundary (for example, as shown in the example
in Listing 1.6), unlike the above mentioned transaction approaches where the
outermost transaction needs to be aborted.

7 Summary

We introduced a new composable approach to object-based isolation that is guar-
anteed to be deadlock-free, while still retaining the rollback benefits of trans-
actions. Further, our approach differentiates between read and write accesses
in its concurrency control mechanisms. Our construct incurs a cost for creat-
ing and merging clones which may, for some (large) data structures, require
effort to implement efficiently by the programmer. We are currently exploring
the possibility of implementing the isolated construct with native VM sup-
port to extract more performance. We, ambitiously, envision a scenario where
the synchronized statement is replaced by the isolated construct semantics
in modern programming languages.
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Abstract. Large-scale network and graph analysis has received consid-
erable attention recently. Graph mining techniques often involve an iter-
ative algorithm, which can be implemented in a variety of ways. Using
PageRank as a model problem, we look at three algorithm design axes:
work activation, data access pattern, and scheduling. We investigate the
impact of different algorithm design choices. Using these design axes,
we design and test a variety of PageRank implementations finding that
data-driven, push-based algorithms are able to achieve more than 28x
the performance of standard PageRank implementations (e.g., those in
GraphLab). The design choices affect both single-threaded performance
as well as parallel scalability. The implementation lessons not only guide
efficient implementations of many graph mining algorithms, but also pro-
vide a framework for designing new scalable algorithms.

Keywords: Scalable computing · Graph analytics · PageRank · Multi-
threaded programming · Data-driven algorithm

1 Introduction

Large-scale graph analysis has received considerable attention in both the
machine learning and parallel programming communities. In machine learning,
many different types of task-specific algorithms have been developed to deal with
massive networks. In parallel computing, many different parallel programming
models and systems have been proposed for both shared memory and distributed
memory settings to ease implementation and manage parallel programs.

Recent research has observed that distributed graph analytics can have a sig-
nificant slowdown over shared-memory implementations, that is, the increase in
communication costs are not easily made up for by increase in aggregate process-
ing power or memory bandwidth. Furthermore, a remarkable number of “large”
graphs fit in the main memory of a shared memory machine; it is easy to fit
graphs with tens of billions of edges on a large workstation-class machine. Given
these factors, it is worth understanding how to efficiently parallelize graph ana-
lytics on shared-memory machines. A better understanding of how to implement
c© Springer-Verlag Berlin Heidelberg 2015
J.L. Träff et al. (Eds.): Euro-Par 2015, LNCS 9233, pp. 438–450, 2015.
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fast shared-memory analytics both greatly reduces the costs and enables richer
applications on commodity systems. Better implementation strategies also help
distributed implementations, as they tend to use shared-memory abstractions
within a host.

Many graph mining techniques usually involve iterative algorithms where
local computations are repeatedly done at a set of nodes until a convergence
criterion is satisfied. Let us define active nodes to be a set of nodes where com-
putations should be performed. Based on how the active nodes are processed, we
can broadly classify these iterative graph algorithms from three different points
of view: work activation, data access pattern, and scheduling. In this paper,
we present general approaches for designing scalable data-driven graph algo-
rithms using a case study of the PageRank algorithm. In particular, using the
three different algorithm design axes (i.e., work activation, data access pattern,
and scheduling), we present eight different formulations and in-memory parallel
implementations of PageRank algorithm. We show that by considering data-
driven formulations, we can have more flexibility in processing the active nodes,
which enables us to develop work-efficient algorithms. We focus our analysis on
PageRank in this manuscript, but our approaches and formulations can be easily
extended to other graph mining algorithms.

2 Work Activation

We first classify algorithms into two groups based on work activation: topology-
driven and data-driven algorithms. In a topology-driven algorithm, active nodes
are defined solely by the structure of a graph. For example, an algorithm which
requires processing all the nodes at each iteration is referred to as a topology-
driven algorithm. On the other hand, in a data-driven algorithm, the nodes
are dynamically activated by their neighbors, i.e., the nodes become active or
inactive in an unpredictable way. In many applications, data-driven algorithms
can be more work-efficient than topology-driven algorithms because the former
allows us to concentrate more on “hot spots” in a graph where more frequent
updates are needed.

2.1 Topology-Driven PageRank

To explain the concepts in more detail, we now focus our discussion on PageRank
which is a key technique in Web mining [4]. Given a graph G = (V, E) with a
vertex set V and an edge set E , let x denote a PageRank vector of size |V|. Also,
let us define Sv to be the set of incoming neighbors of node v, and Tv to be the
set of outgoing neighbors of node v. Then, node v’s PageRank, denoted by xv, is
iteratively computed by x

(k+1)
v = α

∑
w∈Sv

x(k)
w

|Tw| + (1 − α), where x
(k)
v denotes the

k-th iterate, and α is a teleportation parameter (0 < α < 1). Algorithm 1 presents
this iteration, which is the traditional power method that can be used to compute
PageRank. Given a user defined tolerance ε, the PageRank vector x is initialized
to be x = (1 − α)e where e denotes the vector of all 1’s. The PageRank values are
repeatedly computed until the difference between x

(k)
v and x

(k+1)
v is smaller than ε

for all the nodes. Since the Power method requires processing all the nodes at each
round, it is a topology-driven algorithm.
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Algorithm1. Topology-driven PageRank
Input: graph G = (V, E), α, ε
Output: PageRank x
1: Initialize x = (1 − α)e
2: while true do
3: for v ∈ V do

4: x(k+1)
v = α

∑

w∈Sv

x(k)
w

|Tw| + (1 − α)

5: δv = |x(k+1)
v − x(k)

v |
6: end for
7: if ‖δ‖∞ < ε then
8: break;
9: end if
10: end while

11: x =
x

‖x‖1

Algorithm2. Data-driven PageRank
Input: graph G = (V, E), α, ε
Output: PageRank x
1: Initialize x = (1 − α)e
2: for v ∈ V do
3: worklist.push(v)
4: end for
5: while !worklist.isEmpty do
6: v = worklist.pop()

7: xnew
v = α

∑

w∈Sv

xw

|Tw| + (1 − α)

8: if |xnew
v − xv| ≥ ε then

9: xv = xnew
v

10: for w ∈ Tv do
11: if w is not in worklist then
12: worklist.push(w)
13: end if
14: end for
15: end if
16: end while

17: x =
x

‖x‖1

2.2 Basic Data-Driven PageRank

Instead of processing all the nodes in rounds, we can think of an algorithm which
dynamically maintains a working set. Algorithm 2 shows a basic data-driven
PageRank. Initially, the worklist is set to be the entire vertex set. The algorithm
proceeds by picking a node from the worklist, computing the node’s PageRank,
and adding its outgoing neighbors to the worklist. To see the convergence of
the data-driven PageRank, let us rewrite the problem in the form of a linear
system. We define a row-stochastic matrix P to be P ≡ D−1A where A is an
adjacency matrix and D is the degree diagonal matrix. We assume that there is
no self-loop in the graph. Then, the PageRank computation can be written as
the linear system of (I − αP T )x = (1 − α)e, and the residual is defined to be
r = (1 − α)e − (I − αP T )x. In this setting, it has been shown in [9] that each
local computation in Algorithm 2 decreases the residual. Indeed, when a node
v’s PageRank is updated, its residual rv becomes zero, and αrv/|Tv| is added to
each of its outgoing neighbors’ residuals. Thus, we can show that Algorithm 2
converges, and on termination, it is guaranteed that the residual ‖r‖∞ < ε.

From the next section, we will focus on the data-driven formulation of PageR-
ank, and build up various variations of the data-driven PageRank.

3 Data Access Pattern

Data access pattern (or memory access pattern) is an important factor one
should consider for designing a scalable graph algorithm. When an active node
is processed, there can be a particular data access pattern. For example, some
algorithms require reading a value of an active node and updating its outgoing
neighbors, whereas some algorithms require reading values from incoming neigh-
bors of an active node and updating the active node’s value. Based on these data
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Algorithm3. Pull-Push-based PageRank
Input: graph G = (V, E), α, ε
Output: PageRank x
1: Initialize x = (1 − α)e
2: Initialize r = 0
3: for v ∈ V do
4: for w ∈ Sv do

5: rv = rv +
1

|Tw|
6: end for
7: rv = (1 − α)αrv

8: end for
9: for v ∈ V do
10: worklist.push(v)
11: end for
12: while !worklist.isEmpty do
13: v = worklist.pop()

14: xv = α
∑

w∈Sv

xw

|Tw| + (1 − α)

15: for w ∈ Tv do
16: rold

w = rw

17: rw = rw +
rvα

|Tv|
18: if rw ≥ ε and rold

w < ε then
19: worklist.push(w)
20: end if
21: end for
22: rv = 0
23: end while

24: x =
x

‖x‖1

Algorithm4. Push-based PageRank
Input: graph G = (V, E), α, ε
Output: PageRank x
1: Initialize x = (1 − α)e
2: Initialize r = 0
3: for v ∈ V do
4: for w ∈ Sv do

5: rv = rv +
1

|Tw|
6: end for
7: rv = (1 − α)αrv

8: end for
9: for v ∈ V do
10: worklist.push(v)
11: end for
12: while !worklist.isEmpty do
13: v = worklist.pop()
14: xnew

v = xv + rv

15: for w ∈ Tv do
16: rold

w = rw

17: rw = rw +
rvα

|Tv|
18: if rw ≥ ε and rold

w < ε then
19: worklist.push(w)
20: end if
21: end for
22: rv = 0
23: end while

24: x =
x

‖x‖1

access patterns, we can classify algorithms into three categories: pull-based, pull-
push-based, and push-based algorithms.

3.1 Pull-Based PageRank

In pull-based algorithms, an active node pulls (reads) its neighbors’ values and
updates its own value. Note that pull-based algorithms require more read oper-
ations than write operations in general because the write operation is only per-
formed on the active node. In the PageRank example, Algorithms 1 and 2 are
both pull-based algorithms because an active node pulls (reads) its incoming
neighbors’ PageRank values and updates its own PageRank.

3.2 Pull-Push-Based PageRank

In pull-push-based algorithms, an active node pulls (reads) its neighbors’ values
and also pushes (updates) its neighbors’ values. When we consider the cost for
processing an active node, pull-push-based algorithms might be more expensive
than pull-based algorithms as they require both read and write operations on
neighbors. However, in terms of information propagation, pull-push-based algo-
rithms can have advantages because in pull-push-based algorithms, an active
node can propagate information to its neighbors whereas in pull-based algo-
rithms, an active node passively receives information from its neighbors.
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Now, we transform the basic data-driven PageRank into a pull-push-based
algorithm. Recall that in Algorithm 2, whenever a node’s PageRank is updated,
the residuals of its outgoing neighbors are increased. Thus, to guarantee that the
maximum residual is smaller than ε, all the outgoing neighbors of an active node
should be added to the worklist. However, if we explicitly compute and maintain
the residuals, we do not need to add all the outgoing neighbors of an active node,
instead, we only need to add the outgoing neighbors whose residuals are greater
than or equal to ε. In this way, we can filter out some work in the worklist.
In Algorithm 3, the initial residual r(0) is computed by r(0) = (1 − α)αP Te
(lines 3–8). For each active node, it pulls its incoming neighbors’ PageRank
values (line 14), and pushes residuals to its outgoing neighbors (line 17). Then,
an outgoing neighbor w of the active node v is added to the worklist only if the
updated residual rw is greater than or equal to ε and its old residual is less than ε.
The second condition allows us to avoid having duplicates in the worklist (i.e., we
add a node to the worklist only when its residual crosses ε for the first time). In
this algorithm, there is a trade-off between overhead for residual computations
and filtering out work in the worklist. We empirically observe that in many cases,
the benefit of filtering overcomes the overhead for residual computations.

3.3 Push-Based PageRank

In push-based algorithms, an active node updates its own value, and only pushes
(updates) its neighbors’ values. Compared to pull-based algorithms, push-based
algorithms can be more costly in the sense that they require more write oper-
ations. However, push-based algorithms invoke more frequent updates, which
might be helpful to achieve a faster information propagation over the network.
Compared to pull-push-based algorithms, push-based algorithms can be more
efficient because they only require write operations instead of read & write oper-
ations. To design a push-based PageRank, we need to notice that the (k+1)-th
PageRank update of node v is equivalent to the sum of the k-th PageRank of
v and its k-th residual. This can be derived from the linear system formulation
which is discussed in Sect. 2.2. Thus, we can formulate a push-based PageRank as
follows: for each active node v, its PageRank is updated by x

(k+1)
v = x

(k)
v + r

(k)
v .

Algorithm 4 shows the full procedure. Note that the only difference between
Algorithms 3 and 4 is line 14. In Algorithm 4, an active node updates its own
PageRank and the residuals of its outgoing neighbors.

4 Scheduling

Task scheduling, the order in which tasks are executed, can be very important
to graph algorithms [11]. For example, in a data-driven PageRank, we see that
whenever a node v’s PageRank is updated, the total residual is decreased at
least by rv(1 − α). This implies that if we process “large residual” nodes first,
the algorithm might converge faster. Thus, we can define a node v’s priority
pv to be the residual per unit work, i.e., pv = rv/dv where dv = |Sv| + |Tv|
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for the pull-push-based PageRank, and dv = |Tv| in the push-based algorithm.
Realizing the potential benefits in convergence requires priority scheduling. In
priority scheduling, each task is assigned a value, the priority, and scheduled in
increasing (or decreasing) order. More sophisticated schedulers allow modifying
the priority of existing tasks, but this is an expensive operation not commonly
supported in parallel systems. Practical priority schedulers have to trade off sev-
eral factors: efficiency, communication (and thus scaling), priority fidelity, and
set-semantics. In general, both priority fidelity and set-semantics require signifi-
cant global knowledge and communication, thus are not scalable. To investigate
the sensitivity of PageRank to different design choices in a priority scheduler,
we use two different designs: one which favors priority fidelity but gives up
set-semantics and one which preserves set-semantics at the expense of prior-
ity fidelity. We compare these with scalable non-priority schedulers to see if the
improved convergence outweighs the increased cost of priority scheduling.

The first scheduler we use is the scalable, NUMA-aware OBIM priority sched-
uler [7]. This scheduler uses an approximate consensus protocol to inform a per-
thread choice to search for stealable high-priority work or to operate on local
near-high-priority work. Various underlying data-structures and stealing pat-
terns are aware of the machine’s memory topology and optimized to maximize
information propagation while minimizing cache coherence cost. OBIM favors
keeping all threads operating on high priority work and does not support either
set-semantics or updating the priority of existing tasks. To handle this, tasks are
created for PageRank every time a node’s priority changes, potentially generat-
ing duplicate tasks in the scheduler. Tasks with outdated priorities are quickly
filtered out at execution time (a process which takes only a few instructions).

The second scheduler we use is a bulk-synchronous priority scheduler. This
scheduler operates in rounds. Each round, all items with priority above a thresh-
old are executed. Generated tasks and unexecuted items are placed in the next
round. The range and mean are computed for the tasks, allowing the threshold
to be chosen for each round based on the distribution of priorities observed for
that round. This organization makes allowing priority updates simple, priorities
are recomputed every round. Further, set-semantics may be trivially maintained.
However, to minimize the overhead of bulk-synchronous execution, each round
must have sufficient work to amortize the barrier synchronization. This produces
a schedule of tasks which may deviate noticeably from the user requested order.

We also consider FIFO- and LIFO-like schedules (parallel schedulers cannot
both scale and preserve exact FIFO and LIFO order). It is obvious that a LIFO
scheduler is generally bad for PageRank. Processing nodes after a single neigh-
bor is visited will process the node once for each in-neighbor. FIFO schedulers
provide time for a node to accumulate pending changes from many neighbors
before being processed. We use a NUMA-aware scheduler, similar to that from
Galois and QThreads, to do scalable, fast FIFO-like scheduling.
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5 Related Work

Our approaches of considering three different algorithm design axes are mainly
motivated by the Tao analysis [12] where the concepts of topology-driven and
data-driven algorithms have been studied in the context of amorphous data-
parallelism. While Tao analysis has been proposed for a general parallel pro-
gramming framework, our analysis is geared more towards designing new scalable
data mining algorithms.

For scalable parallel computing, many different types of parallel program-
ming models have been proposed, e.g., Galois [10], Ligra [13], GraphLab [8],
Priter [15], and Maiter [16]. Since PageRank is a popular benchmark for paral-
lel programming models, various versions of PageRank have been implemented
in different parallel platforms in a rather ad hoc manner. Also, in data min-
ing communities, PageRank has been extensively studied, and many different
approximate algorithms (e.g., [1,6]) have been developed over the years [3]. The
Gauss–Seidel style update of PageRank is studied in [9], and parallel distrib-
uted PageRank also has been developed [5]. Our PageRank formulations can be
considered as some variations of these previous studies. Our contribution in this
paper is to systematically analyze and discuss various PageRank implementa-
tions in the perspective of designing scalable graph mining methodologies.

Even though we have focused our discussion on PageRank in this
manuscript, our approaches can be easily extended to other data mining
algorithms. For example, in semi-supervised learning, label propagation is a well-
known method [2] which involves fairly similar computations as PageRank. We
expect that our data-driven formulations can be applied to the label propaga-
tion method. Also, it has been shown that there is a close relationship between
personalized PageRank and community detection [1,14]. So, parallel data-driven
community detection can be another interesting application of our analysis.

6 Experimental Results

Experimental Setup. To see the performance and scaling sensitivity of
PageRank to the design considerations in this paper, we implement a variety
of PageRank algorithms, trying different scheduling and data access patterns.
All implementations are written using the Galois System [10]. Table 1 summa-
rizes the design choices for each implementation. Pseudo-code and more detailed
discussions of each appear in previous sections. We also compare our results to
a third-party baseline, namely GraphLab, varying such parameters as are avail-
able in that implementation. For all experiments, we use α = 0.85, ε = 0.01. We
use a 4 socket Xeon E7-4860 running at 2.27 GHz with 10 cores per socket and
128 GB RAM. GraphLab was run in multi-threaded mode.

Datasets. We use four real-world networks, given in Table 2. Twitter and Friend-
ster are social networks, and pld and sd1 are hyperlink graphs. These graphs
range from about 600 million edges to 3.6 billion edges. These range in size
for in-memory compressed sparse row representations from 2.7 GB to 14 GB for
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Table 1. Summary of algorithm design choices

Algorithm Activation Access Schedule

dd-push Data-driven Push FIFOs w/ Stealing

dd-push-prs Data-driven Push Bulk-sync Priority

dd-push-prt Data-driven Push Async Priority

dd-pp-rsd Data-driven Pull-Push FIFOs w/ Stealing

dd-pp-prs Data-driven Pull-Push Bulk-sync Priority

dd-pp-prt Data-driven Pull-Push Async Priority

dd-basic Data-driven Pull FIFOs w/ Stealing

power-iter Topology Pull Load Balancer

the directed graph. Most of the algorithms require tracking both in-edges and
out-edges, making the effective in-memory size approximately twice as large.

Table 2. Input graphs

# nodes # edges CSR size Source

pld 39M 623M 2.7G www.webdatacommons.org/hyperlinkgraph/

sd1 83M 1,937M 7.9G www.webdatacommons.org/hyperlinkgraph/

Twitter 51M 3,228M 13G www.twitter.mpi-sws.org/

Friendster 67M 3,623M 14G www.archive.org/details/friendster-dataset-201107

Results. Figure 1 shows runtime, self-relative scalability, and speedup against
the best single-threaded algorithm for the pld and twitter graphs. In Table 3, the
final speedups are shown on the other inputs. We note that GraphLab ran out of
memory for all but the smallest (pld) input. On pld, the serial GraphLab perfor-
mance was approximately the same as the closest Galois implementation, power-
iter, but GraphLab scaled significantly worse. Several broad patterns can be seen
in the results. First, all data-driven implementations outperform topology imple-
mentation. The best data-driven PageRank implementation is 28x faster than
GraphLab, and 10–20x faster than Galois power-iter, depending on the thread
count. Second, push-only implementations outperform pull-push implementa-
tions which outperform a pure pull-based version. Finally, priority-scheduled
versions scale better but perform worse than a fast, non-priority scheduler.

One surprising result is that pulling to compute PageRank and pushing
residuals outperforms a pure pull-based version (dd-pp-* vs. dd-basic). The read-
mostly nature of pull-based algorithms are generally more cache friendly. Push-
based algorithms have a much larger write-set per iteration, and writes to com-
mon locations fundamentally do not scale. The extra cost of the pushes, however,
is made up by a reduction in the number of tasks. Table 4 shows the number of

www.webdatacommons.org/hyperlinkgraph/
www.webdatacommons.org/hyperlinkgraph/
www.twitter.mpi-sws.org/
www.archive.org/details/friendster-dataset-201107
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Table 3. Speedup on 40 threads relative to best serial on sd1 and friendster (frd)

dd-push dd-push-prs dd-push-prt dd-
pp-rsd

dd-
pp-prs

dd-
pp-prt

dd-basic power-
iter

sd1 20.9 21.8 13.7 10.9 9.1 7.0 6.5 1.4

frd 18.5 17.1 9.0 14.7 11.5 6.2 9.2 6.1
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Fig. 1. Runtime, scalability and speedup on pld and twitter graphs. Our data-driven,
push-based PageRank achieves the best speedup.

completed tasks for each algorithm, andwe see that pull-pushmethods (dd-pp-rsd)
lead to 70–80% reduction in the number of tasks executed (compared to dd-basic).
The pushing of residual allows a node to selectively activate a neighbor, and thus
greatly reduces the total work performed (effectively, PageRanks are only com-
puted when they are needed). On the other hand, the basic pull algorithm must
unconditionally generate tasks for each of a node’s neighbors when the node is
updated. It is more understandable, though, that the push-only version outper-
forms all others. The pushing of residual is equivalent to the computation of PageR-
ank deltas, thus, the pull can be eliminated, with no extra cost. This both reduces
the number of edges inspected for every node, from in and out to just out, and
reduces the total computation (instructions). Serially, a deterministic scheduler
processes the same nodes, thus it does not save on total number of tasks, as can be
seen in Table 4 rows for dd-push and dd-pp-rsd. The variation in those rows is due
to the variation in scheduling order, especially at higher thread counts, though the
variation is relatively minor.
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Table 4. The number of completed tasks (unit: 106)

pld sd1 Twitter Friendster

Threads 1 40 1 40 1 40 1 40

dd-push 134 133 282 273 393 417 476 581

dd-push-prs 330 319 758 740 888 850 1076 1069

dd-push-prt 246 244 538 535 395 418 504 619

dd-pp-rsd 131 130 279 271 386 410 473 540

dd-pp-prs 311 303 712 716 963 835 1239 1212

dd-pp-prt 138 136 289 286 394 419 489 611

dd-basic 655 536 1029 896 1629 1526 1482 1356

power-iter 2606 2606 6716 6716 4297 4297 3104 3104

In Table 4, all reported numbers include all tasks (nodes) considered to make
scheduling decisions. For *-prt methods, this includes the nodes which are dupli-
cates in the worklist. For *-prs methods, this includes each round’s examination
of all the nodes in the worklist to pick the priority threshold. Priority scheduling
favoring priority order, *-prt, shows the high cost of duplicate items in the work-
list. This priority scheduler must insert duplicate tasks every time a node moves
to a new priority bin. This means that many tasks are useless, they discover as
their first action that there is nothing to do and complete. Figure 1 shows that
this has a distinct time cost. Although filtering out duplicates is not expensive,
the total work doing so is significant. Priority scheduling favoring set semantics,
*-prs, also must examine a significant number of nodes to determine which tasks
to pick at each scheduling round. We observe that the total number of nodes
in the worklist decreases rapidly, making the working set after several rounds
significantly smaller than the entire graph. This boost in locality helps offset the
extra data accesses.

It is interesting to see that optimizing for cache behavior (pull-based) may not
always be as effective as optimizing for pushing maximum information quickly
(push-based). The push-only PageRank (dd-push-*) is entirely read-write access,
while the pull-only version (dd-basic) does one write per node processed. In
general, read-mostly access patterns are significantly more cache and coher-
ence friendly. From this perspective, the pull-push versions, dd-pp-*, should be
worst as they have the read set of the pull versions and the write set of the
push versions. The extra writes are not just an alternate implementation of the
PageRank update, but rather influence the scheduling of tasks. The extra writes
weigh nodes, allowing nodes to only be processed when profitable. This improved
scheduling makes up for the increased write load. Given the scheduling benefits
of the residual push, it is easy to see that the push-only version is superior to
the pull-push version as it reduces the memory load and work per iteration. We
do note that when looking at the self-relative scalability of the implementations,
the read-mostly algorithms, while slower, have better scalability than the push
and pull-push variants.
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Table 5. Runtime of different PageRank implementations on pld dataset

GraphLab Galois

Threads sync async-fifo async-qfifo async-sweep async-prt power-iter dd-basic dd-pp-prt dd-push

40 478 secs. 500 secs. 788 secs. 4,186 secs. > 4 hrs. 132 secs. 62 secs. 58 secs. 17 secs.

32 496 secs. 580 secs. 804 secs. 5,162 secs. > 4 hrs. 155 secs. 82 secs. 67 secs. 22 secs.

16 594 secs. 618 secs. 970 secs. 9,156 secs. > 4 hrs. 299 secs. 140 secs. 118 secs. 36 secs.

8 845 secs. 898 secs. 1,292 secs. > 4 hrs. > 4 hrs. 510 secs. 269 secs. 193 secs. 53 secs.

1 3,332 secs. 5,194 secs. 5,098 secs. > 4 hrs. > 4 hrs. 3,650 secs. 2,004 secs. 1,415 secs. 355 secs

Third Party Comparison. Table 5 shows a comparison between our data-
driven PageRank algorithms (implemented using Galois) and GraphLab’s
PageRank implementations when varying the scheduling on pld dataset.
GraphLab supports different schedulers, though we find the simple synchronous
one the best. We note that the GraphLab’s asynchronous method refers to a
Gauss–Seidel style solver, which still is a bulk-synchronous, topology-driven app-
roach. The power-iter version (in Galois) is actually a classic synchronous imple-
mentation in this sense, but still notably faster. While GraphLab’s topology-
driven synchronous implementation has similar single threaded performance to
the Galois topology-driven synchronous implementation, power-iter scales much
better than GraphLab. Also, all the data-driven implementations (dd-*) are
much faster than GraphLab’s PageRank implementations.

7 Discussion

Priority scheduling needs some algorithmic margin to be competitive as it is more
costly. While it is not surprising that priority scheduling is slower than simple
scalable scheduling, this has some important consequences. First, the benefit is
dependent on both algorithmic factors and input characteristics. When schedul-
ing changes the asymptotic complexity of an algorithm, there can be huge mar-
gins available. In PageRank, there is a theoretical margin available, but it is rel-
atively small. This limits the extra computation that can be spent on scheduling
overhead without hurting performance. Secondly, the margin available depends
on input characteristics. For many analytic algorithms, scheduling increases in
importance as the diameter of the graph increases. Since PageRank is often run
on power-law style graphs with low diameter, we expect a small margin available
from priority scheduling.

Good priority schedulers can scale competitively with general purpose sched-
ulers. We observe that multiple priority scheduler implementations scale well.
We implement two very different styles of priority schedulers which pick differ-
ent points in the design and feature space. This is encouraging as it leads us
to believe that such richer semantic building blocks can be used by algorithm
designers. PageRank updates priorities often, a use case which is hard to support
efficiently and scalably. Even many high-performance, serial priority queues do
not support this operation. Constructing a concurrent, scalable priority sched-
uler which maintains set semantics by adjusting priorities for existing items in
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the scheduler is an open question. The reason is simply one of global knowl-
edge. Knowing whether to insert an item or whether it is already scheduled and
thus only needs its priority adjusted requires global knowledge of the system.
Maintaining and updating global knowledge concurrently in a NUMA system is
rarely scalable. For scalability, practical implementations will contain multiple
queues, meaning that not only does one need to track whether a task is scheduled,
but on which queue the task is scheduled. The scheduler we produced for *-prs
stores set semantics information by marking nodes in the graph and periodically
rechecks priority. This essentially introduces latency between updating a priority
and having the scheduler see the new priority. The amount of latency depends
on how many iterations proceed before rechecking. This number determines the
overhead of the scheduler.

8 Conclusions

Although PageRank is a simple graph analytic algorithm, there are many
interesting implementation details one needs to consider to achieve a high-
performance implementation. We show that data-driven implementations are
significantly faster than traditional power iteration methods. PageRank has a
simple vertex update equation. However, this update can be mapped to the
graph in several ways, changing how and when information flows through the
graph, which vary significantly in performance. Within this space, one can also
profitably consider the order in which updates occur to maximize convergence
speed. While we investigate these implementation variants for PageRank, seeing
performance improvements of 28x over standard power iterations, these consid-
erations can apply to many other convergence-based graph analytic algorithms.
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Abstract. Exascale systems will exhibit much higher degrees of paral-
lelism both in terms of the number of nodes and the number of cores
per node. OpenMP is a widely used standard for exploiting parallelism
on the level of individual nodes. Although successfully used on today’s
systems, it is unclear how well OpenMP implementations will scale to
much higher numbers of threads. In this work, we apply automated per-
formance modeling to examine the scalability of OpenMP constructs
across different compilers and platforms. We ran tests on Intel Xeon
multi-board, Intel Xeon Phi, and Blue Gene with compilers from GNU,
IBM, Intel, and PGI. The resulting models reveal a number of scalability
issues in implementations of OpenMP constructs and show unexpected
differences between compilers.

Keywords: Performance modeling · OpenMP · Scalability

1 Introduction

In recent years, we saw a clear trend towards systems with more processing
cores per node. All types of processors used in high-performance computing,
including CPUs, GPUs, or accelerators such as Intel Xeon Phi, are nowadays
either multicore or manycore processors. As a result of this trend, the degree of
intra-node parallelism in supercomputers is on the rise. Before reaching exascale,
it will still have to grow by one or two orders of magnitude [1]. However, this poses
the question whether current implementations of multithreaded programming
models can scale to the large number of threads this will entail.

In this paper, we try to answer this question for OpenMP, a mature and
widely used API for multithreaded programming, and evaluate whether current
implementations would scale to much larger numbers of threads. To this end, we
adopt the automated performance-modeling method by Calotoiu et al. [2] and
generate empirical scaling models of the most common OpenMP constructs.
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The method takes measurements of execution time or other metrics at smaller
scales as input and produces human-readable growth functions as output which
describe the behavior for larger scales. To capture the cost of individual OpenMP
constructs, we extended the EPCC OpenMP micro-benchmark suite [3,4] and
combined it with the modeling toolchain. We evaluated OpenMP implementa-
tions from GNU, IBM, Intel, and PGI on Xeon, Xeon Phi, and Blue Gene. Our
main discoveries are:

– Previously unknown and potentially serious scalability limitations in imple-
mentations from GNU, IBM, and PGI

– Different behavioral classes depending on whether the number of threads is a
power of two or not

Among all the evaluated compilers, the GNU compiler is the most problematic
in terms of scalability.

The next section introduces the model generator we used to create the scaling
models and how it was customized for our study. In Sect. 3, we explain the
EPCC OpenMP benchmark suite along with our own extensions. Experimental
results for selected OpenMP constructs with particularly noteworthy behavior
are presented in Sect. 4. Then, we discuss related work in Sect. 5 and draw our
conclusion in Sect. 6.

2 Model Generation

The approach underlying our study rests on the identification of scalability bugs
using automated performance modeling [2]. A scalability bug is a part of a
program whose scaling behavior is unintentionally poor, that is, much worse
than expected. As computing hardware moves towards exascale, developers need
early feedback on the scalability of their software design so that they can adapt
it to the requirements of larger problem and machine sizes.

The input of the model generator is a set of performance measurements where
only one relevant parameter, in our case the number of threads, is varied while
all others are kept constant. The idea is to create functions that describe how a
metric, such as the execution time, the number of floating point operations, or
the number of bytes injected into the network, changes as the chosen parameter
is modified. Depending on the availability of measurements, such models can
be created for each function in a program or just one particular code region of
interest.

When generating performance models, we exploit the observation that they
are usually composed of a finite number n of terms, involving powers and loga-
rithms of the parameter x of interest:

f(x) =
n∑

k=1

ck · xik · logjk2 (x)

This representation is, of course, not exhaustive, but works in most practical sce-
narios, since it is a consequence of how most computer algorithms are designed.
We call it the performance model normal form (PMNF).
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In this paper, we vary the number of threads t and model the time overhead of
OpenMP constructs, i.e., the thread-management time lost in the OpenMP run-
time system when executing certain constructs. While changes of the arithmetic
intensity may restrict models of user code to specific segments of the domain
of t [5], we believe that such effects do not have to be considered when judging
the scalability of OpenMP runtime operations. Their critical resource is almost
always the latency of memory accesses and, in particular, of cache coherence pro-
tocols. Moreover, our experience suggests that neither the sets I, J chosen from
the set Q of rational numbers from which the exponents ik and jk are chosen
nor the number of terms n have to be arbitrarily large or random to achieve a
good fit. A possible assignment of all ik and jk in a PMNF expression is called a
model hypothesis. Trying all hypotheses one by one, we find coefficients ck with
optimal fit. Then we apply cross-validation [6] to select the hypothesis with the
best fit across all candidates.

For this study, we selected n = 2, I =
{
0, 1

4 ,
1
3 ,

1
2 ,

2
3 ,

3
4 , 1,

5
4 ,

4
3 ,

3
2 ,

5
3 ,

7
4 , 2

}
, and

J = {0, 1, 2}. Our choices for I and J reflect a range of behaviors, from perfect
to poor scalability, in 39 shades (13 options for i times 3 for j). In the case
of OpenMP constructs, we are not aware of any literature that specifies pre-
cise scalability expectations. This is why we operate under the not uncommon
assumption that anything significantly worse than logarithmic is unacceptable on
the path towards exascale. Given the jitter present in measurements of OpenMP
constructs with their minuscule execution times, we only allow one active term
plus a constant. Trying to model behaviors past the leading term is likely to
capture only noise. Note that we are not trying to create accurate models for
OpenMP constructs but rather want to draw the attention to unscalable behav-
ior. Making accurate predictions for the execution times of OpenMP constructs
at larger scales is beyond the scope of this work.

3 Benchmark Design

Our goal is to investigate the costs of individual OpenMP constructs for dif-
ferent compilers with a focus on the OpenMP runtime system, disregarding
actual workloads. For this purpose, we define time-based metrics that character-
ize the behavior of OpenMP constructs and that can be further used as an input
to the model generator. Because initial experiments indicated a high noise-to-
measurement ratio on some of the target platforms, we filter the raw data to
reduce noise and remove extreme outliers.

3.1 EPCC OpenMP Micro-Benchmarks

The EPCC OpenMP micro-benchmark suite [3,4] is an established and com-
prehensive collection of benchmarks that covers almost all OpenMP constructs.
The micro-benchmarks compare the cost of the constructs by measuring the
difference between a parallelized workload and the workload itself, while the
workload per thread is kept constant. Multiple executions (inner repetitions) of
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a given OpenMP construct scale the cost of the construct for easier measure-
ment and comparison with the reference workload. This inner measurement is
again repeated multiple times (outer repetitions) to calculate the average and the
standard deviation of the target construct. We modified the EPCC measurement
system to directly interface with our model generator.

3.2 Custom Benchmarks

While the EPCC benchmarks are well-designed to capture the overhead of copy-
ing data environments, they are less suited to precisely capture synchronization
overheads. Since they do not measure the costs of individual OpenMP con-
structs directly, the resulting timings are much more prone to noise. To mea-
sure the costs of OpenMP constructs in isolation, we therefore had to develop
additional benchmarks, which are designed as follows: (i) compute local clock
offsets between master and all the other threads; (ii) synchronize threads using
adjusted window-based mechanism (see next sub-section); (iii) take a per-thread
time stamp and call the OpenMP construct; (iv) take another per-thread time
stamp directly after the construct, or in the case of parallel or for, directly in
the construct. From these measurements, we then derive our metrics, providing
information on minimum construct cost (first out - last in), average cost (average
of end times - last in), etc. For example, in this way we can deduce the minimum
time a barrier was active across all threads.

3.3 Window-Based Adjusted Synchronization Mechanism

The quality of our models depends on how accurately we can measure the timings
of OpenMP constructs. All the threads should enter the construct at the same
time, such that we have a uniform start time that does not depend on the
particular construct being measured. A simple barrier synchronization is not
enough, since the only guarantee it provides is that all threads will have arrived
at the barrier before any thread leaves it. The solution, therefore, is to use a
synchronization mechanism that forces all the threads to exit the synchronization
construct at the same time. In this study, we use a variation of the window-based
synchronization mechanism for MPI collective operations [7]. This mechanism
forces the threads to wait until the agreed time-point is reached and only then
allows them to enter the target construct.

The window-based synchronization mechanism assumes that all threads use
the same clock. However, we discovered that this assumption does not apply
to all test platforms equally. On some platforms, such as the BCS systems of
RWTH Aachen University, which is described in Sect. 4.1, which consist of mul-
tiple motherboards, the high-precision timer used for our measurements was not
well synchronized across all boards. Since we observed considerable clock skew,
we had to calibrate clock offsets relative to the master thread using the cache
coherency mechanisms as communication medium. This type of synchronization
is similar to the NTP protocol [8].
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4 Results

For the sake of brevity, we focus on a few very important OpenMP constructs:
parallel, barrier, single, and for with all three schedule types (static,
dynamic and guided) and the firstprivate modifier. Since our benchmarks
consume a negligible amount of memory bandwidth, we can safely ignore band-
width saturation effects. This also applies to the firstprivate measurement,
which, in our case, uses a single eight-byte variable, which is sure to fit in the
cache. We specified a chunk size of 16 for all loop schedules.

All models shown in the following sections depend on the number of threads
as their sole parameter. Table 1 shows the performance models generated for the
above-mentioned constructs together with their adjusted coefficient of determi-
nation as an indicator of model quality. Figures 2, 3 and 4 provide fit-comparisons
between measurement and model. In general, we consider models with R̂2 � 0.95
valid descriptions of the observed behavior and define constructs with valid mod-
els of significantly faster than logarithmic growth to exhibit problematic scaling
behavior.

4.1 Setup

We conducted our study on three different systems: (i) a node of the BCS clus-
ter at RWTH Aachen University, (ii) an Intel Xeon Phi 7120 coprocessor, and
(iii) a node of an IBM Blue Gene/Q system. The BCS cluster [9] is an Intel Xeon
X7550-based hierarchical NUMA machine, where four boards with four sockets
each are connected via the Bull Coherence Switch (BCS) to create a shared-
memory domain of 128 physical cores. The Xeon Phi and the Blue Gene/Q
node have 61 and 16 physical cores, respectively, with 4-way simultaneous multi-
threading (SMT), i.e., four hardware threads per core. We used the GNU 4.9,
IBM XL 12.1, Intel 15, and PGI 14 compilers. To reduce the effects of noise,
we configured all benchmarks to generate at least 100 individual data points
for each metric, i.e., we set the outer-repetitions of EPCC to 100 and com-
piled our own benchmarks with 100 internal repetitions after the warmup phase.
We ran our benchmarks using numbers of threads that are either a power of
two, multiples of eight, or a sequence between two and the number of physi-
cal cores of a single CPU. Each benchmark was executed in both spread or
close configuration using OMP PROC BIND, with an additional binding to cores
via OMP PLACES="threads". Afterwards, we eliminated outliers by removing the
25 % best and 25 % worst values of a series. Since the close measurements were
noisier than the spread measurements on Intel platforms and largely identical
to spread measurements on Blue Gene, we exclusively focus on spread in this
paper.

4.2 GNU 4.9, Intel 15, and PGI 14 Compilers on BCS

Parallel. We obtain a timestamp on the master thread just before entering
the parallel construct and on each thread when it is ready for work in the
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parallel region. Then, we calculate the difference between the master timestamp
before entering the construct and the average of all timestamps after entering
the construct. We expect either close to constant behavior, e.g., if a thread pool
is used, or logarithmic behavior otherwise, as one could ideally implement a
tree-based thread-creation scheme.

Unfortunately, indiscriminately feeding data points for all thread counts into
the model generator did not yield any meaningful models. A subsequent man-
ual analysis of the available data showed separate trend functions for different
subsets of the data: for powers of two and for multiples of 16 with and without
an eight-thread offset. We call these classes PO2 (t = 2x), EVEN (t = 16x but
t �= 2x), and ODD (t = 16x + 8 but t �= 2x) with x ∈ {0, 1, .., 7}. The effects
observed for EVEN and ODD are most likely the result of the multi-board hard-
ware configuration of the BCS system. However, regardless of internal hardware
boundaries, PO2 measurements consistently follow their characteristic pattern
even if these thread counts are multiples of 16 with and without an eight-thread
offset.
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Fig. 1. Measurements of parallel on
the BCS node in spread configuration.
To make trends or their absence more
visible, we the connected the measure-
ment points with solid lines.

For example, as we can see in Figs. 2c
and d, the behavior in the ODD case
(half-circles) precludes the existence of a
unifying simple model for the GNU com-
piler. Models for EVEN have very low
R̂2 and will not be considered. Note that
the number of thread counts in EVEN
is very small because many multiples of
16 are at the same time powers of two
and, thus, belong to a different behavioral
class. In the remainder of the paper, we
therefore concentrate exclusively on PO2
and ODD. In contrast to GNU and PGI,
the Intel compiler shows no observable
differences between PO2 and ODD con-
figurations. We therefore omit ODD mod-
els for Intel on BCS in Table 1 and Fig. 2.
Obviously, not all compliers are sensitive to the machine architecture.

In Fig. 1, we see notable differences between GNU, Intel, and PGI compilers.
Using the PO2 and ODD configurations, we obtain two separate models each for
both the GNU and the PGI compiler (Fig. 2a). These four models show super-
logarithmic scaling behavior. In contrast, the Intel compiler exhibits a uniform
trend, but with low R̂2. The almost constant time visible in Fig. 1 for Intel
suggests the use of some form of stand-by threads that can be cost-efficiently
activated.

Barrier. We observe two different behavioral classes for the GNU compiler, while
we observe similarly uniform behaviors for Intel and PGI (Fig. 2b). The PO2
implementation of GNU shows super-linear growth in contrast to its somewhat
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(a) BCS parallel
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(b) BCS barrier
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(c) BCS static
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(d) BCS dynamic
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(e) BCS guided
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Fig. 2. Measurements (points) and models (lines) on the BCS node.

better-scaling ODD implementation. All but PGI ODD show worse-than-
logarithmic growth, indicating that logarithmic implementations are possible.

Loop Schedules. For the static schedule (Fig. 2c), we expect constant overhead
as no synchronization between threads is necessary and for dynamic (Fig. 2d) and
guided (Fig. 2e) some thread-dependent growth for synchronizing the assign-
ment of the remaining iterations. We obtained no acceptable PO2 models for
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Intel and PGI with static, as the model generator did not detect a clear trend;
visual analysis of the data suggests close to constant overheads (Fig. 2c).

Firstprivate. This modifier requires the compiler to broadcast the values of one
or more variables (in this particular case an 8-byte double) from the master
thread to all participant threads. We expect this operation to be very sensitive
to the hardware, as the latency between cores, sockets, and motherboards plays
a crucial role. The Intel compiler exhibits logarithmic overheads for copying the
data to each thread, whereas the overheads of both PGI and GNU grow faster.
Again, the GNU compiler shows two clearly separable behaviors. Models for Intel
and PGI show no sensitivity to the BCS hardware layout (Fig. 2f).

4.3 Intel 15 Compiler on Xeon Phi

On Xeon Phi, we expect less noise and more scalable OpenMP constructs. In
Fig. 3a, we observe distinct behaviors for the first 2 to 61 threads, between 62 and
122 threads, and between 123 to 244 threads. This coincides with the physical

Table 1. Scaling models for the BCS node, XeonPhi, and Blue Gene/Q. Measurements
with a † were generated using EPCC, measurements with � were generated using our
supplemental benchmarks. Each row showing models is followed by a row with the
corresponding adjusted coefficient of determination (R̂2). Since we are only interested
in the scaling behavior and do not strive to predict the overhead in absolute terms, all
models are shown in big O notation.
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structure of the Xeon Phi, which has 61 cores supporting four hardware threads
each. The first 122 threads show less spread in comparison with thread counts
above 122. Because the erratic runtimes above 122 threads prevent the use of
our model generator, we model the first two clusters only. We consider the first
2–61 threads in linear fashion, called LINEAR, and multiples of eight up to and
including 120 threads, called 8X. In addition, we also analyze powers of two
up to and including 64 threads, again called PO2. All results are available in
Table 1.
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Fig. 3. Measurements (points) and models (lines) on XeonPhi.

Parallel. The LINEAR and PO2 thread distributions have similar scalability
models and closely model the first 61 threads. For thread counts beyond 61, the
deviation becomes larger. The model derived from 8X configurations captures
the overall behavior of Xeon Phi thread creation quite well, including thread
counts above 122. The erratic runtimes for thread counts above 122 (Fig. 3a)
cannot be explained with our model normal form. When comparing the different
configurations, models generated from 8X base points seem to scale better.

Barrier. The behavior we observe is similar to the parallel construct. The PO2,
LINEAR and 8X configurations provide a good fit for their respective domains.
The erratic behavior above 122 threads is even more dominant here, which is why
again no models could be generated for this part of the domain (Fig. 3b). How-
ever, the measurements above 122 threads still suggest some undesirable perfor-
mance effect, potentially resulting from Xeon Phi’s internal network, something
that is traditionally hard to model

4.4 IBM XL 12.1 Compiler on Blue Gene/Q

Blue Gene/Q nodes are single-socket systems without any explicit cache hier-
archy. Analysis of our measurements showed very reliable data with very little
noise and no indication of multiple algorithms or thread-count depended hard-
ware scalability limitations. We therefore used only power-of-two configurations
as input for our model generator.



460 C. Iwainsky et al.

Parallel and Barrier. Contrary to our expectations, either the IBM implemen-
tation of OpenMP or the Blue Gene/Q architecture exhibits problematic scaling
behavior. We observe that metrics exhibit superlinear growth (see lower lines in
Fig. 4). The model for the barrier exhibits similar behavior with just an order of
magnitude lower overheads.
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Fig. 4. Measurements (points) and
models (lines) on BlueGene/Q.

Loop Schedules. For static scheduling,
which should have constant overhead, we
detected non scalable growth. The static
schedule showed runtimes and behavior
almost identical to the dynamic sched-
ule, suggesting that both use the same
algorithm; the guided scheduling clause
behaves similarly. While these results are
less of a concern for today’s Blue Gene/Q
systems with only 64 threads per node,
the scaling model indicates problematic
overheads of the OpenMP constructs for
larger thread counts on future systems
with similar architecture and software.
In comparison with the often logarithmic
implementations of the Intel Compiler, the IBM XL compiler shows considerable
room for improvement.

5 Related Work

Performance models can provide important insights into application and
systems. Manually-produced models were very effective in describing many
qualities and characteristics of applications, systems, and even entire tool
chains [10–12]. Recent work suggests to use source-code annotations [13] or spe-
cialized languages [14] to support developers in the creation of analytical perfor-
mance models.

There are other automated modeling methods besides the one underlying
our study. Many of these tools focus on learning the performance characteris-
tics automatically using various machine-learning approaches [15]. Zhai et al.
extrapolate single-node performance to complex parallel machines using a trace-
driven network simulator [16], whereas Wu and Müller extrapolate traces to
predict communications at larger scale [17]. Similar to our method, Carrington
et al. extrapolate trace-based performance measurements using a set of canonical
functions [18].

Several studies investigated the overheads of OpenMP constructs on various
platforms [19–22]. Similar to our work, many of them used the EPCC OpenMP
benchmark suite [4]. While they mainly concentrated on the implications the
overhead of OpenMP may have on the scalability of scientific applications, our
goal is to identify scalability issues in OpenMP implementations. One of the
first performance evaluation of OpenMP on XeonPhi was performed by Cramer
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et al. [23]. Eichenberger and O’Brien evaluated the overhead of the OpenMP
runtime on Blue Gene/Q [24].

6 Conclusion

In this work, we analyzed the scalability of OpenMP constructs using
automatically generated empirical performance models. We conducted exten-
sive evaluations of OpenMP implementations from Intel, GNU, PGI and IBM
on Intel-based nodes as well as on IBM Blue Gene/Q nodes. In many cases, the
behavior of OpenMP constructs deviated from our expectations and numerous
scalability issues became apparent. We expected either logarithmic or constant
growth of OpenMP overheads, but discovered mostly linear and super-linear
growth. Neither of the evaluated compilers proved to be the best implementa-
tion in all situations. The Intel compiler showed the best absolute performance
and scaling behavior for most of the metrics in our tests, but it was still sur-
passed by the PGI compiler on two occasions. Considering the increasing degree
of intra-node parallelism, OpenMP compilers will have to tackle theses scala-
bility issues in the future. Our benchmarking method is designed to support
this process, as it can be used to continuously evaluate implementations as their
scalability is improved.
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Christian Terboven for the fruitful discussions on scalability expectations for OpenMP
and for providing access to the BCS machine at RWTH Aachen University.

References

1. Stevens, R., et al.: Architectures and Technology for Extreme Scale Computing.
Technical report, ASCR Scientific Grand Challenges Workshop Series, December
2009

2. Calotoiu, A., Hoefler, T., Poke, M., Wolf, F.: Using automated performance mod-
eling to find scalability bugs in complex codes. In: Proceedings of the ACM/IEEE
Conference on Supercomputing (SC 2013), p. 45 (2013)

3. Bull, J.M.: Measuring synchronisation and scheduling overheads in OpenMP. In:
Proceedings of First European Workshop on OpenMP, pp. 99–105 (1999)

4. Bull, J.M., O’Neill, D.: A microbenchmark suite for OpenMP 2.0. ACM SIGARCH
Comput. Archit. News 29(5), 41–48 (2001)

5. Williams, S., Waterman, A., Patterson, D.: Roofline: an insightful visual perfor-
mance model for multicore architectures. Commun. ACM 52(4), 65–76 (2009)

6. Picard, R.R., Cook, R.D.: Cross-validation of regression models. J. Am. Stat.
Assoc. 79(387), 575–583 (1984)

7. Hoefler, T., Schneider, T., Lumsdaine, A.: Accurately measuring collective opera-
tions at massive scale. In: Proceedings of the IEEE International Parallel & Dis-
tributed Processing Symposium, IPDPS 2008, pp. 1–8 (2008)



462 C. Iwainsky et al.

8. Mills, D.L.: Internet time synchronization: the Network Time Protocol. IEEE
Trans. Commun. 39(10), 1482–1493 (1991)

9. Weyers, B., Terboven, C., Schmidl, D., Herber, J., Kuhlen, T.W., Müller, M.S.,
Hentschel, B.: Visualization of memory access behavior on hierarchical NUMA
architectures. In: Proceedings of the First Workshop on Visual Performance Analy-
sis, VPA 2014, Piscataway, NJ, USA, pp. 42–49. IEEE Press (2014)

10. Mathis, M.M., Amato, N.M., Adams, M.L.: A general performance model for paral-
lel sweeps on orthogonal grids for particle transport calculations. Technical report,
College Station, TX, USA (2000)

11. Pllana, S., Brandic, I., Benkner, S.: Performance modeling and prediction of par-
allel and distributed computing systems: a survey of the state of the art. In: Pro-
ceedings of the 1st International Conference on Complex, Intelligent and Software
Intensive Systems (CISIS), pp. 279–284 (2007)

12. Petrini, F., Kerbyson, D.J., Pakin, S.: The case of the missing supercomputer
performance: achieving optimal performance on the 8,192 processors of ASCI Q.
In: Proceedings of the ACM/IEEE Conference on Supercomputing (SC 2003), p.
55 (2003)

13. Tallent, N.R., Hoisie, A.: Palm: easing the burden of analytical performance mod-
eling. In: Proceedings of the International Conference on Supercomputing (ICS),
pp. 221–230 (2014)

14. Spafford, K.L., Vetter, J.S.: Aspen: a domain specific language for performance
modeling. In: Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis. SC 2012, Los Alamitos, CA, USA,
pp. 84:1–84:11. IEEE Computer Society Press (2012)

15. Lee, B.C., Brooks, D.M., de Supinski, B.R., Schulz, M., Singh, K., McKee, S.A.:
Methods of inference and learning for performance modeling of parallel applica-
tions. In: Proceedings of the 12th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (PPoPP 2007), pp. 249–258 (2007)

16. Zhai, J., Chen, W., Zheng, W.: PHANTOM: predicting performance of parallel
applications on large-scale parallel machines using a single node. SIGPLAN Not.
45(5), 305–314 (2010)

17. Wu, X., Mueller, F.: ScalaExtrap: trace-based communication extrapolation for
SPMD programs. In: Proceedings of the 16th ACM Symposium on Principles and
Practice of Parallel Programming (PPoPP 2011), pp. 113–122 (2011)

18. Carrington, L., Laurenzano, M., Tiwari, A.: Characterizing large-scale HPC appli-
cations through trace extrapolation. Parallel Process. Lett. 23(4), 1340008 (2013).
doi:10.1142/S0129626413400082

19. Fredrickson, N.R., Afsahi, A., Qian, Y.: Performance characteristics of OpenMP
constructs, and application benchmarks on a large symmetric multiprocessor. In:
Proceedings of the 17th Annual International Conference on Supercomputing, pp.
140–149. ACM (2003)

20. Fürlinger, K., Gerndt, M.: Analyzing overheads and scalability characteristics
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Abstract. Sparse matrices are common in scientific computing and
machine learning. By storing and processing only the non-zero elements
of a matrix containing mostly zeros, sparse matrix algorithms often
reduce computation and storage requirements of operations by an order
of complexity. The order of the rows and columns of the matrix can
have a significant impact on the efficiency of sparse direct methods. For
example, in a Cholesky decomposition, it is desirable to re-order the
input matrix so as to reduce the number of non-zeros in the factors. One
of the most effective methods for re-ordering is nested dissection, where
vertex separators are recursively found in the graph representation of
the matrix and are used to permute the rows and columns. In this work
we investigate the creation of vertex separators on shared memory par-
allel architectures and their use in nested dissection. We introduce a new
effective scheme for refining a vertex separator in parallel, and a special-
ized parallel task scheduling scheme for the nested dissection problem.
These algorithms have been implemented in the mt-Metis framework.
Our experiments show that mt-Metis is 1.5× faster than ParMetis while
producing orderings with 3.7 % fewer non-zeros and 14.0 % fewer opera-
tions.

1 Introduction

Sparse matrices are used in a variety of scientific computing and machine learn-
ing applications. Because sparse matrices do not store the zero-valued elements
which make up the majority of their entries, their use results in significant savings
of storage space as well as computation. Fill reducing orderings are permutations
on the input matrix which decrease the number of non-zero elements (fill-in) in
the output matrix of direct sparse methods [6]. For a Cholesky decomposition, we
want to find a re-ordering such that the Cholesky factor will have as little fill-in
as possible. One of the most effective methods for creating a fill reducing order-
ing is that of nested dissection [9,10]. In nested dissection, balanced minimum
vertex separators are recursively found in the graph representing the non-zero
pattern of the sparse matrix. The quality of the resulting ordering depends upon
being able to find small separators.

The problem of finding minimum size balanced vertex separators is known to
be NP-Hard [2]. Heuristic multilevel methods have been developed to find small
c© Springer-Verlag Berlin Heidelberg 2015
J.L. Träff et al. (Eds.): Euro-Par 2015, LNCS 9233, pp. 467–478, 2015.
DOI: 10.1007/978-3-662-48096-0 36
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vertex separators in near linear time [5,12,16,17]. Many of these approaches
include scalable distributed memory algorithms. While these algorithms work
well when each processor has its own memory hierarchy, their execution on mod-
ern multicore systems result in large degrees of memory contention and dupli-
cation. For generating edge separators, it has been shown that shared-memory
parallel algorithms can result in significant runtime and memory usage reduc-
tions [4,5,19].

Vertex separators pose several additional challenges to parallelism beyond
those of edge separators. Whereas most applications for edge separators demand
that the partitioning be generated quickly and place only moderate importance
on the quality of the separator, nested dissection places a much higher impor-
tance on quality. While the higher levels of recursion in nested dissection result
in independent tasks, they are still bounded by memory bandwidth on multicore
systems and are often unbalanced in their associated work. An effective approach
must effectively balance these tasks while achieving high cache utilization.

In this paper, we present shared memory parallel algorithms for generating
vertex separators and using those vertex separators to generate a fill reducing
ordering via nested dissection in parallel. Our contributions build on the previ-
ous work for creating edge separators using the multilevel paradigm on shared
memory architectures [19]. We adapt these algorithms for vertex separators and
introduce a new method for refining a vertex separator in parallel while mak-
ing minimal sacrifices in terms of separator size. We introduce specialized task
scheduling to maximize cache efficiency for the nested dissection problem. We
achieve up to 10× speedup on 16 cores, while producing orderings with only
1.0% more fill-in and requiring only 0.7% more operations than the serial ND-
Metis. This is 1.5× faster, 3.7% less fill-in, and 14.0% fewer operations than
ParMetis [16].

2 Definitions and Notation

In this work we deal with a simple undirected graph G = (V,E), consisting of a
set of vertices V , and a set of edges E. Each edge is composed of an unordered
pair of vertices (i.e., v, u ∈ V ).

We will denote the size of the vertex set by the scalar n = |V |, and the size
of the edge set by the scalar m = |E|. Vertices and edges can have non-negative
integer weights associated with them. The weight of a vertex v is denoted by η(v),
and the weight of an edge e is denoted by θ(e). If there are no weights associated
with the edges, then their weights are assumed to be one. The neighborhood of
a vertex v, that is the set of vertices adjacent to v, is denoted by Γ (v).

A vertex separator is a set of vertices of the graph S ⊂ V , such that when
removed it leaves two components A and B. Finding a vertex separator is often
subject to a balance constraint, ε. That is, we want to minimize |S| while satis-
fying:

2
max(|A|, |B|)

|A| + |B| ≤ 1 + ε.
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3 Background

For over two decades multilevel methods have been used with great success
for graph partitioning. These methods have been shown to be both extremely
fast and produce results of high quality [11,15,21,23]. First, increasingly coarser
graphs G1, . . . , Gs are generated from the original graph G0. This process is
known as the coarsening phase. Next, in the initial partitioning phase, a par-
titioning of the coarsest graph Gs, is made via some direct partitioning algo-
rithm (e.g., spectral bisection [22] or KL [18]). This initial solution is then
projected through the multiple graph levels, and is refined at each level as the
degrees of freedom are increased. This is known as the uncoarsening phase. Buluç
et al. [3] provide a thorough overview of modern multilevel approaches to graph
partitioning.

The use of threads to exploit shared memory parallelism has recently been
used to decrease runtimes and memory usage compared to that of traditional
parallel distributed memory codes. Chevalier and Pellegrini [5] presented PT-
Scotch, a parallel partitioning library exploiting both shared and distributed
memory parallelism. Threads are used to parallelize the coarsening phase, which
provides significant speedup even with refinement and several other steps being
performed serially. Çatalyürek et al. [4] similarly explored parallelizing the coars-
ening of hypergraphs via shared memory parallelism. LaSalle and Karypis [19]
investigated methods for effectively parallelizing all three phases of the multilevel
paradigm.

Originally proposed by George [9,10], nested dissection is a recursive algo-
rithm for generating fill reducing orderings of sparse matrices. The algorithm
works by recursively partitioning the graph representation of a symmetric sparse
matrix via vertex separators, ordering the rows and columns with partition A
first, B second, and S last. This new ordering can greatly reduce the required
memory and number of computations for performing Cholesky factorization.
Because at each level the vertex separators induce two disconnected compo-
nents, A and B, parallelism can efficiently be extracted by ordering A and B in
parallel.

As such, the creation of vertex separators for nested dissection can be paral-
lelized by processing A and B independently. The popular parallel partition-
ing packages ParMetis [16] and PT-Scotch [5] both follow similar multilevel
approaches to performing nested dissection. All p processors work cooperatively
to create the first log p levels of separators in parallel, before each processor
performs nested serial dissection on its subgraph.

4 Methods

This paper builds upon the previous work for multi-threaded multilevel graph
partitioning [19]. We use the same parallelization and coarsening strategies. Each
thread is assigned a set of vertices and their associated edges, and is responsible
for the computations on them.
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4.1 Coarsening

The coarsening phase consists of two steps: matching and contraction. During
matching, each vertex is either paired with a neighbor vertex, or itself. During
contraction, paired vertices are merged together to form coarse vertices in the
next coarser graph Gi+1.

The matching scheme we use is known as Heavy Edge Matching (HEM) [16].
This prioritizes edges for matching across based on their weight. Then, in a
matching vector M , the matches of vertices v and u are recorded, M(v) = u
and M(u) = v. As this matching is done without locks, it is possible for race
conditions to exist in determining if a vertex is unmatched. To resolve this issue,
the strategy proposed by Çatalyürek et al. [4] is used. Each thread re-iterates
over its set of vertices, and any vertex for which M(M(v)) �= v, is matched with
itself (M(v) = v). Because the number of vertices is orders of magnitude greater
than the number of threads, the number of broken matchings is extremely small.

Contraction is an inherently parallel process, as each coarse vertex in Gi+1

can be independently constructed given Gi and M . This process of matching
and contraction repeats until Gi is sufficiently small for the initial partitioning
phase.

4.2 Vertex Separators

The generation of vertex separators differs from edge separators in the initial
partitioning and uncoarsening phases.

Initial Separator Selection. A widely used method of generating a vertex
separator from an edge separator is to find a vertex cover of the set of cut
edges [22]. Because we apply refinement to the separator, we instead take all
boundary vertices as the initial separator of the coarsest graph Gs, and let
refinement thin the separator and possibly move it away from the boundary
set of vertices. We repeat this process several times and select the minimum
balanced separator. As these separators are generated and refined independently,
the process in inherently parallel. As the input graph is the same across the
generation of different separators, waiting until Gs is sufficiently small so as to
fit into shared cache is desirable.

Separator Refinement. After the current separator is projected from Gi to
Gi−1, it is refined. Refinement of a vertex separator consists of moving vertices
from the separator S into either partition A or partition B. If a vertex being
moved is connected to vertices on the opposite side of the separator, those ver-
tices are then pulled into the separator. The reduction in separator size from
moving vertex v ∈ S to A is

gain = η(v) −
∑

u∈Γ (v)∩B

η(u). (1)
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FM Refinement: The Fidducia-Mattheyses refinement (FM) algorithm [7], as
applied to the vertex separator problem [12], works as follows. First, priority
queues for moving vertices out of the separator to either partition are initialized
and filled with vertices in S. The priority of vertices in these queues is determined
by Eq. (1). Vertices are selected from either priority queue in order of gain,
except when one partition is overweight, in which case the vertex at the top
of the priority queue for the lower weight partition is selected. Once a vertex
is selected, it is moved out of the separator, and its neighbors in the opposite
partition are pulled into the separator. If the neighbors being pulled into the
separator have not been moved yet in this refinement pass, they are added to
the priority queue. Once both priority queues are emptied, the best observed
state is restored. To reduce runtime, this process is terminated early if a certain
number of moves past the best state have been made. Keeping track of the best
state and reverting to it, makes the FM algorithm inherently serial.

Greedy Refinement: The greedy algorithm moves vertices through the sepa-
rator to one side at a time. This is done so that at any given moment, the current
state of the separator is valid. First, the lowest weight side of the separator is
selected as the side to which all moves will be made in the first pass. Then,
each thread adds the vertices it owns that are part of the separator to its own
priority queue, using Eq. (1) for the priority. Each thread makes a local copy the
current partition weights which it uses to keep track of moves and enforce the
balance constraint. These weights are periodically synchronized with the global
weights as moves are made. While this makes it possible for refinement to violate
the balance constraint if enough vertices are moved before partition weights are
synchronized, it is unlikely as it is desirable for the balance constraint on vertex
separators in nested dissection to be large [13]. In practice we have not observed
Greedy refinement to cause imbalance.

Each thread then extracts vertices from its priority queue. If the vertex can
be moved out of the separator without violating the balance constraint, and has
a positive gain associated with it, it is moved. The neighboring vertices that
the thread owns have their connectivity information updated and are added to
the separator as applicable. Messages are sent to the threads owning the remote
vertices to notify them of the move.

Once the queue is empty, or the gain associated with moving the top vertex
is negative, the thread waits for the other threads to finish. The thread then
reads its messages, and updates its vertices accordingly. Finally, the threads
synchronize once more, and the process repeats with the other side selected.
While efficient, this method often results in lower quality than the serial FM
algorithm as it cannot break out of local minima.

Segmented FM Refinement: Because we want the improved quality that
results from breaking out of local minima, one possible solution is to have threads
perform FM on internal vertices (vertices which are not connected to vertices
owned by another thread). We will refer to this approach as Segmented FM
(SFM), which for these internal vertices works the same as the serial FM algo-
rithm and allows us to break out of local minima in parallel. External vertices,
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those that have neighbors belonging to other threads, are prevented from moving
out of the separator. This ensures that as long as each thread maintains a valid
separator for its vertices, the global separator will also be valid. Each thread
saves its best locally observed state, and independently reverts back to it at the
end of each pass.

For this method to be effective, each thread must have a large number of
internal vertices and few external vertices. To accomplish this, as a pre-processing
step, we create a k-way edge separator of the graph using the method described
in [19]. While this increases the runtime, it is a parallel step and scales well.
Furthermore, this pre-partitioning improves data locality, which is particularly
beneficial for nested dissection where we can use a single pre-partitioning for
the entire process. We select a value for k that is several times larger than the
number of threads and assign partitions to threads via hashing so that each
thread owns vertices in several locations of the graph. This is done so that many
of the threads will own vertices that will be part of the separator, and the work
during refinement will be distributed across multiple threads. We found using a
value of k that is five times the number of threads to be effective.

While this method allows us to find high quality local separators, the inability
to move external vertices prevents the separator from moving significantly. For
more than a few threads, this can have a significant impact on separator size as
is shown in Sect. 6.

Greedy with Segmented FM Refinement: Both Greedy refinement and
SFM refinement have their advantages and disadvantages. Greedy refinement’s
ability to move both internal and external vertices allows it to move the separa-
tor freely, but it cannot break out of local minima. SFM refinement can break
out of local minima for a thread’s internal vertices, however external vertices
anchor the separator in place, limiting the improvement. As quality is one of our
primary concerns, these disadvantages make both Greedy and SFM refinement
unattractive options on their own.

For this reason, we investigated a hybrid refinement strategy by overlapping
Greedy and SFM refinement passes. The first greedy pass thins the separator
and moves it to a local minima. Next, the SFM pass moves the sections of the
separator on internal vertices out of the local minima. The next Greedy pass
then allows the external vertices to catch up with the moved internal ones.
This process repeats until neither the Greedy pass nor the SFM pass move
any vertices. This provides an effective refinement scheme that can break out
of local minima and move external vertices in parallel, without leading to an
invalid separator.

4.3 Nested Dissection

Our parallel nested dissection algorithm works as follows. First, the threads
induce a vertex separator S cooperatively, and use this to split the graph into
parts A and B. The threads then split into two groups, with one group recursing
on A and the other recursing on B. This repeats until each thread group contains
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Table 1. Graphs used in experiments

Graph # Vertices # Edges Graph # Vertices # Edges

auto 448,695 3,314,611 delaunay n24 16,777,216 50,331,601

NLR 4,163,763 12,487,976 large fe 7,221,643 83,149,197

med fe 1,752,854 20,552,976 nlpkkt240 27,993,600 373,239,376

only a single thread. Each thread then finds a vertex separator serially for its
portion of the graph. It then spawns tasks for processing A and B, and adds
them to the work pool. As threads pull tasks from the work pool, they continue
to spawn new subtasks in this fashion. Once both A and B have been ordered,
the ordering of G is computed by placing A first, B second, and S last. When |A|
is small enough, it is ordered via the Multiple Minimum Degree algorithm [20].

Task Scheduling. Splitting the recursive calls on the graph parts A and B
into parallel tasks, allows us to dynamically balance the computational load.
However, we need to effectively utilize the cache to overcome memory bandwidth
restrictions. The task tree of nested dissection has several properties that we want
to keep in mind when scheduling the tasks. (1) The lower a task is on the tree (the
earlier it is generated), the larger the graph that is associated with it. (2) The
graph associated with a given task is a subgraph of the graph associated with
its parent’s task, thus the best cache use is achieved by having a task processed
immediately after its parent.

To maximize our cache use, we propose a task scheduling scheme specifically
for the nested dissection problem, that takes advantages of these properties. Our
scheduling scheme operates on two levels. Each thread maintains a local list of
tasks that it generates. It processes the tasks in its list in Last-In First-Out order
to ensure that whatever subgraph is currently cached is used by the next sched-
uled task as often as possible. When a thread runs out of tasks in its own list,
it steals tasks from neighboring threads in First-in First-out order (the largest
tasks). This not only ensures stolen tasks have enough work associated with them
to achieve cache re-use, also ensures that the stolen tasks are the ones least likely
to have their associated graph resident in another thread’s cache. In Sect. 6.3 we
compare this scheduling scheme against the generic scheme implemented in the
OpenMP runtime.

5 Experimental Methodology

The experiments in this paper were run on a HP ProLiant BL280c G6 with 2x
8-core Xeon E5-2670 @ 2.6 GHz system with 64 GB of memory. We used Intel C
Compiler, version 13.1, and the GNU GCC compiler 4.9.2. The algorithms eval-
uated here are implemented in mt-Metis 0.4.0, which is available from http://cs.
umn.edu/∼lasalle/mt-metis. We will refer to the new vertex separator and nested

http://cs.umn.edu/~lasalle/mt-metis
http://cs.umn.edu/~lasalle/mt-metis
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Table 2. Size of vertex separators

auto NLR med fe delaunay n24 large fe nlpkkt240

FM (serial) 2,133 1,811 2,166 3,507 6,421 156,564

Greedy 2,277 1,918 2,281 4,167 6,717 148,665

SFM 2,985 2,264 5,882 4,302 12,430 262,243

Greedy+SFM 2,205 1,821 2,071 3,492 6,024 146,523

Table 3. Refinement time in seconds

auto NLR med fe delaunay n24 large fe nlpkkt240

FM (serial) 0.044 0.178 0.104 0.898 0.336 3.183

Greedy 0.048 0.091 0.071 0.130 0.181 1.251

SFM 0.030 0.069 0.068 0.115 0.185 1.153

Greedy+SFM 0.050 0.101 0.062 0.147 0.134 2.678

dissection functionality as mt-ND-Metis in the following experiments. For com-
parison, we also used Metis [16] version 5.1.0 (referred to in the experiments
as ND-Metis) from http://cs.umn.edu/∼metis, ParMetis [17] version 4.0.3 from
http://cs.umn.edu/∼metis, and PT-Scotch [5] version 6.0.3 from http://www.
labri.fr/perso/pelegrin/scotch.

The results presented for vertex separators are the geometric means from 25
runs using different random seeds. The results presented for nested dissection
are the geometric means from 10 runs using different random seeds.

Table 1 details the graphs used for evaluation in Sect. 6. We opted to use
these graphs for varying sizes and domains. The auto, NLR, delaunay n24, and
nlpkkt240 graphs were obtained from the 10th DIMACS Implementation Chal-
lenge [1]. The graphs med fe and large fe are 3D finite element meshes used in
physics simulations.

6 Results

6.1 Vertex Separators

Table 2 shows the effect on separator size of the different refinement schemes.
We compare the three parallel methods run with 16 threads to that of serial
FM. SFM refinement resulted in large separators compared to that of serial FM,
due to its inability to move external vertices. Greedy refinement did much bet-
ter, finding separators only 6.1% larger than serial FM. The refinement scheme
combining both Greedy and SFM refinement passes, produced separators of com-
parable size to FM, and for several graphs found slightly smaller separators on
average. The number of external vertices that are prevented from being moved
when trying to break out of a local minima in this scheme is quite small due to
our pre-partitioning.

http://cs.umn.edu/~metis
http://cs.umn.edu/~metis
http://www.labri.fr/perso/pelegrin/scotch
http://www.labri.fr/perso/pelegrin/scotch
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Fig. 1. Strong scaling of mt-ND-Metis on 16 cores

Table 4. Improvement over OpenMP task scheduling

auto NLR med fe delaunay n24 large fe nlpkkt240

ICC OMP 68.9 % 38.3 % 48.7 % 30.4 % 39.9 % 25.9 %

GCC OMP 62.2 % 39.0 % 60.2 % 25.6 % 40.0 % 23.0 %

Table 3 shows the effect on runtime of the different refinement schemes. The
runtime of serial FM is included for comparison against the other three refine-
ment schemes run with 16 threads. None of the parallel refinement schemes
exhibit significant speedup over FM consistently. There are two reasons for
this. First, refinement operates on a small portion of the graph, and requires
frequent synchronization. Second, the parallel refinement schemes make more
passes before they settle on a separator. This also explains why the Greedy+SFM
scheme is sometimes faster than the SFM and Greedy schemes. It performs more
work per pass than either Greedy or SFM, but settles on a separator in fewer
passes.

Figure 1a shows the strong scaling of mt-ND-Metis generating vertex separa-
tors using up to 16 cores. The time shown includes the cost of pre-partitioning the
graph, which is why there is a slowdown observed between one and two threads.
The speedup achieved is largely dependent upon the size of the graph, and how
effectively the amount of work between synchronization points can hide the par-
allel overhead. Looking beyond two threads, the larger graphs achieve speedups
nearing 6× overall. Discounting the pre-partitioning time, the largest and third
largest graphs exhibit super linear scaling with speedups over 17×. This is due
to improved locality that comes from the pre-partitioning, and the extra cache
available on the second processor. This shows the importance of having a well
distributed graph, even on shared memory architectures.

6.2 Task Scheduling

Table 4 shows the percent improvement of our nested dissection task scheduling
scheme, over that of the implementation schemes provided by ICC [14] and
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Table 5. Comparison of nested dissection

auto NLR med fe delaunay n24 large fe nlpkkt240

ND-Metis

Fill-in 2.22e+08 2.05e+08 2.88e+08 7.24e+08 1.61e+09 1.98e+11

Operations 4.53e+11 1.25e+11 3.83e+11 7.39e+11 4.57e+12 1.93e+16

Time (s) 7.94 51.82 39.26 248.83 184.58 1148.52

mt-ND-Metis 16 Threads

Fill-in 2.31e+08 2.06e+08 2.87e+08 7.30e+08 1.55e+09 2.07e+11

Operations 5.06e+11 1.28e+11 3.71e+11 7.46e+11 3.94e+12 2.04e+16

Time (s) 1.44 4.67 4.44 17.85 16.34 93.80

ParMetis 16 Processes

Fill-in 2.29e+08 2.13e+08 3.10e+08 7.58e+08 1.60e+09 2.17e+11

Operations 4.94e+11 1.52e+11 4.98e+11 9.40e+11 4.51e+12 2.30e+16

Time (s) 1.60 6.21 6.43 29.52 31.17 169.84

PT-Scotch 16 Processes

Fill-in 2.52e+08 2.73e+08 3.84e+08 9.72e+08 1.93e+09 2.62e+11

Operations 5.89e+11 3.39e+11 8.70e+11 2.00e+12 8.57e+12 2.79e+16

Time (s) 1.12 5.83 7.46 26.82 39.33 678.65

GCC [8]. Our scheme was on average 41.1% faster than the ICC scheduler
and 40.6% faster than the GCC scheduler. This is because these schedulers
are designed to handle tasks with varying properties, whereas our specialized
scheduler takes advantage of the nature of the nested dissection task tree.

6.3 Nested Dissection

Figure 1b shows the strong scaling of mt-ND-Metis performing nested dissection.
For the smallest graph, auto, the achieved speedup is limited to 3.3×, as the
parallel overhead plays a significant role in the runtime. For the larger graphs,
the different graph operations performed dominate the runtime and hide the
parallel overhead. As a result, speedup of 6–10× is achieved on the other five
graphs. We see a greater speedup here than on just vertex separators as the cost
of performing nested dissection is significantly greater than that of creating a
k-way edge separator, and better hide its added cost.

Table 5 compares the orderings of mt-ND-Metis with that of ND-Metis,
ParMetis, and PT-Scotch, in terms of number of non-zeros in the Cholesky fac-
tor and the operations required to compute it. The runtimes to generate these
orderings are also included (excluding I/O, but including preprocessing). Making
efficient use of the multicore system, mt-ND-Metis was on average 1.5× faster
than the other two parallel methods, and 10.1× faster than the serial ND-Metis.
The number of operations required by orderings produced by mt-ND-Metis were
only 0.7% higher than those required by mt-ND-Metis, and 14.0% lower than
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those required by ParMetis or PT-Scotch. The hybrid refinement of mt-ND-
Metis enables these high quality results, close to that of ND-Metis. The high-
speed parallel vertex separator generation during the low levels of the nested
dissection tree coupled with the specialized task scheduling in the higher levels
enables mt-ND-Metis to produce orderings the fastest for all datasets except the
smallest.

7 Conclusion

In this work we presented new shared-memory parallel methods for producing
minimal balanced vertex separators and fill reducing orderings of sparse matrices.
Specifically, we introduced a new parallel refinement scheme that can break out of
local minima. We also introduced a task scheduling scheme specifically designed
for the nested dissection problem that outperforms OpenMP task schedulers
by 40.8%. We implemented these algorithms in mt-ND-Metis, and show that
produces orderings 1.5× faster than ParMetis [16] and PT-Scotch [5], and 10.1×
faster than ND-Metis [16]. The orderings produced by mt-ND-Metis result in
only 1.0% more fill-in and require only 0.7% more operations than those of
ND-Metis.

Acknowledgment. This work was supported in part by NSF (IIS-0905220, OCI-
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Abstract. Scientific workloads are often described by directed acyclic
task graphs. This is in particular the case for multifrontal factorization
of sparse matrices—the focus of this paper—whose task graph is struc-
tured as a tree of parallel tasks. Prasanna and Musicus [19,20] advocated
using the concept of malleable tasks to model parallel tasks involved in
matrix computations. In this powerful model each task is processed on a
time-varying number of processors. Following Prasanna and Musicus, we
consider malleable tasks whose speedup is pα, where p is the fractional
share of processors on which a task executes, and α (0 < α ≤ 1) is a
task-independent parameter. Firstly, we use actual experiments on mul-
ticore platforms to motivate the relevance of this model for our applica-
tion. Then, we study the optimal time-minimizing allocation proposed by
Prasanna and Musicus using optimal control theory. We greatly simplify
their proofs by resorting only to pure scheduling arguments. Building on
the insight gained thanks to these new proofs, we extend the study to dis-
tributed (homogeneous or heterogeneous) multicore platforms. We prove
the NP-completeness of the corresponding scheduling problem, and we
then propose some approximation algorithms.

1 Introduction

Parallel workloads are often modeled as directed acyclic task graphs, or DAGs,
where nodes represent tasks and edges represent dependencies between tasks.
Task graphs arise from many scientific domains, such as image processing,
genomics, and geophysical simulations. In this paper, we focus on task graphs
coming from sparse linear algebra, and especially from the factorization of sparse
matrices using the multifrontal method. Liu [18] explains that the computational
dependencies and requirements in Cholesky and LU factorization of sparse matri-
ces using the multifrontal method can be modeled as a task tree, called the
assembly tree. We therefore focus on dependencies that can be modeled as a
tree.
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In the abundant existing literature, several variants of the task graph schedul-
ing problem are addressed, depending on the ability to process a task in parallel:
tasks are either sequential (not amenable to parallel processing), rigid (request-
ing a given number of processors), moldable (able to cope with any fixed number
of processors) or even malleable (processed on a variable number of processors)
in the terminology of Drozdowski [6, Chap. 25]. When considering moldable and
malleable tasks, one has to define how the processing time of a task depends
on the number of allocated processors. Under some general assumptions, Jansen
and Zhang [14] derive a 3.29 approximation algorithm for arbitrary precedence
constraints, which is improved in a 2.62 approximation in the particular case
of a series-parallel precedence graph by Lepere et al. [16]. However, although
polynomial, these algorithms relies on complex optimization techniques, which
makes them difficult to implement in a practical setting.

In this study, we consider a special case of malleable tasks, where the speedup
function of each task is pα, where p is the number of processors allocated to the
task, and 0 < α ≤ 1 is a global parameter. In particular, when the share of
processors pi allocated to a task Ti is constant, its processing time is given by
Li/pα

i , where Li is the sequential duration of Ti. The case α = 1 represents
the unrealistic case of a perfect linear speed-up, and we rather concentrate on
the case α < 1 which takes into consideration the cost of the parallelization.
In particular α < 1 accounts for the cost of intra-task communications, without
having to decompose the tasks in smaller granularity sub-tasks with explicit
communications, which would make the scheduling problem intractable. This
model has been advocated by Prasanna and Musicus [20] for matrix operations,
and we present some new motivation for this model in our context. As in [20],
we also assume that it is possible to allocate non-integer shares of processors to
tasks. This amounts to assume that processors can share their processing time
among tasks. When task A is allocated 2.6 processors and task B 3.4 processors,
one processor dedicates 60 % of its time to A and 40 % to B. Note that this
is a realistic assumption, for example, when using modern task-based runtime
systems such as StarPU [3], KAAPI [9], or PaRSEC [4]. This allows to simplify
the scheduling problem and to derive optimal allocation algorithms.

Our objective is to minimize the total processing time of a tree of malleable
tasks. Initially, we consider a homogeneous platform composed of p identical
processors. To achieve our goal, we take advantage of two sources of parallelism:
the tree parallelism which allows tasks independent from each others (such as
siblings) to be processed concurrently, and the task parallelism which allows a
task to be processed on several processors. A solution to this problem describes
both in which order tasks are processed and which share of computing resources
is allocated to each task.

In [19,20], the same problem has been addressed by Prasanna and Musicus
for series-parallel graphs (or SP-graphs). Such graphs are built recursively as
series or parallel composition of two smaller SP-graphs. Trees can be seen as a
special-case of series-parallel graphs, and thus, the optimal algorithm proposed
in [19,20] is also valid on trees. They use optimal control theory to derive general
theorems for any strictly increasing speedup function. For the particular case of
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the speedup function pα, Prasanna and Musicus prove some properties of the
unique optimal schedule which allow to compute it efficiently. Their results are
powerful (a simple optimal solution is proposed), but to obtain these results
they had to transform the problem in a shape which is amenable to optimal
control theory. Thus, their proofs do not provide any intuition on the underlying
scheduling problem, yet it seems tractable using classic scheduling arguments.

In this paper, our contributions are the following:

• In Sect. 2, we show that the model of malleable tasks using the pα speed-up
function is justified in the context of sparse matrix factorization.

• In Sect. 4, we propose a new and simpler proof for the results of [19,20] on
series-parallel graphs, using pure scheduling arguments.

• In Sect. 5, we extend the previous study on distributed memory machines,
where tasks cannot be distributed across several distributed nodes. We provide
NP-completeness results and approximation algorithms.

2 Validation of the Malleable Task Model

In this section, we evaluate the model proposed by Prasanna and Musicus
in [19,20] for our target application. This model states that the instantaneous
speedup of a task processed on p processors is pα. Thus, the processing time of
a task Ti of size Li which is allocated a share of processors pi(t) at time t is
equal to the smallest value Ci such that

∫ Ci

0
(pi(t))

α
dt ≥ Li, where α is a task-

independent constant. When the share of processors pi is constant, Ci = Li/pα
i .

Our goal is (i) to find whether this formula well describes the evolution of the
task processing time for various shares of processors and (ii) to check that dif-
ferent tasks of the same application have the same α parameter. We target a
modern multicore platform composed of a set of nodes each including several
multicore processors. For the purpose of this study we restrict ourselves to the
single node case for which the communication cost will be less dominant. In this
context, pi(t) denotes the number of cores dedicated to task Ti at time t.

We consider applications having a tree-shaped task graph constituted of par-
allel tasks. This kind of execution model can be met in sparse direct solvers where
the matrix is first factorized before the actual solution is computed. For instance,
either the multifrontal method [7] as implemented in MUMPS [1] or qr mumps [5],
or the supernodal approach as implemented in SuperLU [17] or in PaStiX [12],
are based on tree-shaped task graphs (namely the assembly tree [2]). Each task
in this tree is a partial factorization of a dense sub-matrix or of a sparse panel.
In order to reach good performance, these factorizations are performed using
tiled linear algebra routines (BLAS): the sub-matrix is decomposed into 2D
tiles (or blocks), and optimized BLAS kernels are used to perform the necessary
operations on each tile. Thus, each task can be seen as a task graph of smaller
granularity sub-tasks.

As computing platforms evolve quickly and become more complex (e.g.,
because of the increasing use of accelerators such as GPUs or Xeon Phis),
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Fig. 1. Timings and α values for qr mumps frontal matrix factorization kernel

it becomes interesting to rely on an optimized dynamic runtime system to allo-
cate and schedule tasks on computing resources. These runtime systems (such
as StarPU [3], KAAPI [9], or PaRSEC [4]) are able to process a task on a pre-
scribed subset of the computing cores that may evolve over time. This motivates
the use of the malleable task model, where the share of processors allocated to
a task vary with time. This approach has been recently used and evaluated [13]
in the context of the qr mumps solver using the StarPU runtime system.

In order to assess whether tasks used within sparse direct solvers fit the
model introduced by Prasanna and Musicus in [20] we conducted an experimental
study on several dense linear algebra tasks. We used a test platform composed
of 4 Intel E7-4870 processors having 10 cores each clocked at 2.40 GHz and
having 30 MB of L3 cache for a total of 40 cores. The platform is equipped with
1 TB of memory with uniform access. We considered dense operations which are
representative of what can be met in sparse linear algebra computations, namely
the standard frontal matrix factorization kernel used in the qr mumps solver. We
used either block-columns of size 32 (1D partitioning) or square blocks of size
256 (2D partitioning). All experiments were made using the StarPU runtime.

Figure 1(a) presents the timings obtained when processing the qr mumps
frontal matrix factorization kernel on a varying number of processors. The log-
arithmic scales show that the pα speedup function models well the timings,
except for small matrices when p is large. In those cases, there is not enough
parallelism in tasks to exploit all available cores. We performed linear regressions
on the portions where p ≤ 10 to compute α for different task sizes (Fig. 1(b)). We
performed the same test for 2D partitioning and computed the corresponding α
values (using p ≤ 20). We notice that the value of α does not vary significantly
with the matrix size, which validates our model. The only notable exception is
for the smallest matrix (5000× 1000) with 1D partitioning: it is hard to effi-
ciently use many cores for such small matrices. In all cases, when the number
of processors is larger than a threshold the performance deteriorates and stalls.
Our speedup model is only valid below this threshold, which threshold increases
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with the matrix size. This is not a problem as the allocation schemes developed
in the next sections allocate large numbers of processors to large tasks at the top
of the tree and smaller numbers of processors for smaller tasks. In other words,
we produce allocations that always respect the validity thresholds of the model.
Finally, note that the value of α depends on the parameters of the problem (type
of factorization, partitioning, block size, etc.). It has to be determined for each
kernel and each set of blocking parameters.

3 Model and Notations

We assume that the number of available computing resources may vary with
time: p(t) gives the (possibly rational) total number of processors available at
time t, also called the processor profile. For the sake of simplicity, we consider
that p(t) is a step function. Although our study is motivated by an application
running on a single multicore node (as outlined in the previous section), we
use the term processor instead of computing core in the following sections for
readability and consistency with the scheduling literature.

We consider an in-tree G of n malleable tasks T1, . . . , Tn. Li denotes the
length, that is the sequential processing time, of task Ti. As motivated in the
previous section, we assume that the speedup function for a task allocated p
processors is pα, where 0 < α ≤ 1 is a fixed parameter. A schedule S is a set of
nonnegative piecewise continuous functions

{
pi(t)

∣
∣ i ∈ I

}
representing the time-

varying share of processors allocated to each task. During a time interval Δ, the
task Ti performs an amount of work equal to

∫
Δ

pi(t)αdt. Then, Ti is completed
when the total work performed is equal to its length Li. The completion time
of task Ti is thus the smallest value Ci such that

∫ Ci

0
pi(t)αdt ≥ Li. We define

wi(t) as the ratio of the work of the task Ti that is done during the time interval
[0, t]: wi(t) =

∫ t

0
pi(x)αdx

/
Li. A schedule is a valid solution if and only if:

• it does not use more processors than available: ∀t,
∑

i∈I pi(t) ≤ p(t);
• it completes all the tasks: ∃τ, ∀i ∈ I, wi(τ) = 1;
• and it respects precedence constraints: ∀i ∈ I,∀t, if pi(t) > 0 then, ∀j ∈ I, if

j is a child of i, wj(t) = 1.

The makespan τ of a schedule is computed as min{t | ∀i wi(t) = 1}. Our objective
is to construct a valid schedule with optimal, i.e., minimal, makespan.

Note that because of the speedup function pα, the computations in the follow-
ing sections will make a heavy use of the functions f : x �→ xα and g : x �→ x(1/α).
We assume that we have at our disposal a polynomial time algorithm to com-
pute both f and g. We are aware that this assumption is very likely to be wrong,
as soon as α < 1, since f and g produce irrational numbers. However, without
these functions, it is not even possible to compute the makespan of a schedule in
polynomial time and, hence, the problem is not in NP. Furthermore, this allows
us to avoid the complexity due to number computations, and to concentrate on
the most interesting combinatorial complexity, when proving NP-completeness
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results and providing approximation algorithms. In practice, any implementa-
tion of f and g with a reasonably good accuracy will be sufficient to perform all
computations including the computation of makespans.

In the next section, following Prasanna and Musicus, we will not consider
trees but more general graphs: series-parallel graphs (or SP graphs). An SP graph
is recursively defined as a single task, the series composition of two SP graphs, or
the parallel composition of two SP graphs. A tree can easily be transformed into
an SP graph by joining the leaves according to its structure, the resulting graph is
then called a pseudo-tree. We will use (i ‖ j) to represent the parallel composition
of tasks Ti and Tj and (i ; j) to represent their series composition. Thanks to the
construction of pseudo-trees, an algorithm which solves the previous scheduling
problem on SP-graphs also gives an optimal solution for trees.

4 Optimal Solution for Shared-Memory Platforms

The purpose of this section is to give a simpler proof of the results of [19,20]
using only scheduling arguments. We consider an SP-graph to be scheduled on
a shared-memory platform (each task can be distributed across the whole plat-
form). We assume that α < 1 and prove the uniqueness of the optimal schedule.

Our objective is to prove that any SP graph G is equivalent to a single task
TG of easily computable length: for any processor profile p(t), graphs G and TG

have the same makespan. We prove that the ratio of processors allocated to any
task Ti, defined by ri(t) = pi(t)/p(t), is constant from the moment at which Ti

is initiated to the moment at which it is terminated. We also prove that in an
optimal schedule, the two subgraphs of a parallel composition terminate at the
same time and each receives a constant total ratio of processors throughout its
execution. We then prove that these properties imply that the optimal schedule
is unique and obeys to a flow conservation property: the shares of processors
allocated to two subgraphs of a series composition are equal. When considering
a tree, this means that the whole schedule is defined by the ratios of processors
allocated to the leaves. Then, all the children of a node Ti terminate at the same
time, and its ratio is the sum of its children ratios.

We first need to define the length LG associated to a graph G, which will
be proved to be the length of the task TG. Then, we state a few lemmas before
proving the main theorem. We only present here sketches of the proofs, the
detailed versions can be found in [10].

Definition 1. We recursively define the length LG associated to a SP graph G:
•LTi

= Li •LG1 ; G2 = LG1 + LG2 •LG1‖G2 =
(
L1/α

G1
+ L1/α

G2

)α

Lemma 1. An allocation minimizing the makespan uses all the processors at
any time.

We call a clean interval with regard to a schedule S an interval during which
no task is completed in S.
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Lemma 2. When the number of available processors is constant, any optimal
schedule allocates a constant number of processors per task on any clean interval.

Proof. By contradiction, we assume that there exists an optimal schedule P of
makespan M , a task Tj and a clean interval Δ = [t1, t2] such that Tj is not
allocated a constant number of processors on Δ. By definition of clean intervals,
no task completes during Δ. |Δ| = t2 − t1 denotes the duration of Δ, I the set of
tasks that receive a non-empty share of processors during Δ, and p the constant
number of available processors.

We want to show that there exists a valid schedule with a makespan smaller
than M. To achieve this, we define an intermediate and not necessarily valid
schedule Q, which nevertheless respects the resource constraints (no more than
p processors are used at time t). This schedule is equal to P except on Δ.

The constant share of processors allocated to task Ti on Δ in Q is defined
by qi = 1

|Δ|
∫

Δ
pi(t)dt. For all t, we have

∑
i∈I pi(t) = p because of Lemma 1.

We get
∑

i∈I qi = p. So Q respects the resource constraints. Let WΔ
i (P) (resp.

WΔ
i (Q)) denote the work done on Ti during Δ under schedule P (resp. Q). We

have

WΔ
i (P) =

∫

Δ

pi(t)αdt = |Δ|
∫

[0,1]

pi(t1 + t|Δ|)αdt

WΔ
i (Q) =

∫

Δ

(
1

|Δ|
∫

Δ

pi(t)dt

)α

dx = |Δ|
(∫

[0,1]

pi(t1 + t|Δ|)dt

)α

As α < 1, the function x �→ xα is concave and then, by Jensen inequality [11],
WΔ

i (P) ≤ WΔ
i (Q). Moreover, as x �→ xα is strictly concave, this inequality is an

equality if and only if the function t �→ pi(t1 +t|Δ|) is equal to a constant on [0,1[
except on a subset of [0,1[ of null measure [11]. Then, by definition, pj is not
constant on Δ, and cannot be made constant by modifications on a set of null
measure. We thus have WΔ

j (P) < WΔ
j (Q). Therefore, Tj is allocated too many

processors under Q. It is then possible to distribute this surplus among the other
tasks during Δ, so that the work done during Δ in P can be terminated earlier.
This remark implies that there exists a valid schedule with a makespan smaller
than M ; hence, the contradiction. �

We recall that ri(t) = pi(t)/p(t) is the instantaneous ratio of processors
allocated to a task Ti.

Lemma 3. Let G be the parallel composition of two tasks, T1 and T2. If p(t)
is a step function, in any optimal schedule r1(t) is constant and equal to π1 =
1
/(

1 + (L2/L1)
1/α

)
= L

1/α
1

/
L1/α

1‖2 up to the completion of G.

Proof. First, we prove that r1(t) is constant on any optimal schedule.
We consider an optimal schedule S, and two consecutive time intervals A

and B such that p(t) is constant and equal to p on A and q on B, and S does
not complete before the end of B. Suppose also that |A|pα = |B|qα (shorten one
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Fig. 2. Schedules S and S ′ on A∪B. The abscissae represent the time and the ordinates
the ratio of processing power

interval otherwise), where —A— and —B— are the durations of intervals A and
B. By Lemma 2, r1(t) has constant values rA

1 on A and rB
1 on B. Suppose by

contradiction that rA
1 �= rB

1 .
We want to prove that S is not optimal, and so that we can do the same

work as S does on A ∪ B in a smaller makespan. We set r1 =
(
rA
1 + rB

1

)/
2. We

define the schedule S ′ as equal to S except on A ∪ B where the ratio allocated
to T1 is r1 (see Fig. 2).

The work W1 on task T1 under S and W ′
1 under S ′ during A∪B are equal to:

W1 = |A|pα
(
rA
1

)α
+ |B|qα

(
rB
1

)α
W ′

1 = rα
1 (|A|pα + |B|qα)

Then, with the concavity inequality and the fact that |B|qα = |A|pα, we can
deduce that W ′

1 > W1 and symmetrically that W ′
2 > W2.

Therefore, S ′ performs strictly more work for each task during A∪B than S.
Thus, as in Lemma 2, S is not optimal. So r1(t) is constant in optimal schedules.

There remains to prove that in an optimal schedule S, r1(t) = π1; hence, the
optimal schedule is unique. As p(t) is a step function, we define the sequences
(Ak) and (pk) such that Ak is the duration of the k-th step of the function p(t)
and p(t) = pk > 0 on Ak. The sum of the durations of the Ak’s is the makespan
of S. Then, if we note V =

∑
k |Ak|pα

k and r1 the value of r1(t), we have:

L1 =
∑

k

|Ak|rα
1 pα

k = rα
1 V and L2 =

∑

k

|Ak|(1 − r1)αpα
k = (1 − r1)αV

Then, r1 = 1/(1 + (L2/L1)1/α) = π1. �

Lemma 4. Let G be the parallel composition of tasks T1 and T2, with p(t) a
step function, and S an optimal schedule. Then, the makespan of G under S is
equal to the makespan of the task TG of length LG = L1‖2.

Proof. We characterize p(t) by the sequences (Ak) and (pk) as in the proof of
Lemma 3. We know by Lemma 3 that the share allocated to T1 is constant and
equal to π1pk on each interval Ak. Then, by summing the work done on each
interval for both tasks, one can prove that they are completed simultaneously,
and that this completion time is the same as that of task TG under the same
processor profile. �
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Theorem 1. For every graph G, if p(t) is a step function, G has the same
optimal makespan as its equivalent task TG of length LG (computed as in Defi-
nition 1). Moreover, there is a unique optimal schedule, and it can be computed
in polynomial time.

Proof. In this proof, we only consider optimal schedules. Therefore, when the
makespan of a graph is considered, this is implicitly its optimal makespan. We
first remark that in any optimal schedule, as p(t) is a step function and because
of Lemma 2, only step functions are used to allocate processors to tasks, and
so Lemma 4 can be applied on any subgraph of G without checking that the
processor profile is also a step function for this subgraph. We now prove the
result by induction on the structure of G.

• G is a single task. The result is immediate.
• G is the series composition of G1 and G2. By induction, G1 (resp. G2) has the

same makespan as task TG1 (resp. TG2) of length LG1 (resp. LG2) under any
processor profile. Therefore, the makespan of G is equal to LG = LG1 ; G2 =
LG1 + LG2 . The unique optimal schedule of G under p(t) processors is the
concatenation of the optimal schedules of G1 and G2.

• G is the parallel composition of G1 and G2. By induction, G1 (resp. G2) has
the same makespan as task TG1 (resp. TG2) of length LG1 (resp. LG2) under
any processor profile. Consider an optimal schedule S of G and let p1(t) be the
processor profile allocated to G1. Let S̃ be the schedule of (TG1 ‖ TG2) that
allocates p1(t) processors to TG1 . S̃ is optimal and achieves the same makespan
as S for G because TG1 and G1 (resp. TG2 and G2) have the same makespan
under any processor profile. Then, by Lemma 4, S̃ (so S) achieves the same
makespan as the optimal makespan of the task TG of length LG1‖G2 = LG.
Moreover, by Lemma 3 applied on (TG1 ‖ TG2), we have p1(t) = π1p(t). By
induction, the unique optimal schedules of G1 and G2 under respectively p1(t)
and (p(t) − p1(t)) processors can be computed. Therefore, there is a unique
optimal schedule of G under p(t) processor: the parallel composition of these
two schedules.

Therefore, there is a unique optimal schedule for G under p(t). Moreover, it
can be computed in polynomial time. We describe here the algorithm to compute
the optimal schedule of a tree G, but it can be extended to treat SP-graphs. The
length of the equivalent task of each subtree of G can be computed in polynomial
time by a depth-first search of the tree (assuming that raising a number to the
power α or 1/α can be done in polynomial time). Hence, the ratios π1 and π2

for each parallel composition can also be computed in polynomial time. Finally,
these ratios imply the computation in linear time of the ratios of the processor
profile that should be allocated to each task after its children are completed,
which describes the optimal schedule. �

5 Extensions to Distributed Memory

The objective of this section is to extend the previous results to the case where
the computing platform is composed of several nodes with their own private
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memory. In order to avoid the large communication overhead of processing a task
on cores distributed across several nodes, we forbid such a multi-node execution:
the tasks of the tree can be distributed on the whole platform but each task
has to be processed on a single node. We prove that this additional constraint,
denoted by R, renders the problem much more difficult. We concentrate first on
platforms with two homogeneous nodes and then with two heterogeneous nodes.

5.1 Two Homogeneous Multicore Nodes

In this section, we consider a multicore platform composed of two equivalent
nodes having the same number of computing cores p. We also assume that all
the tasks Ti have the same speedup function pα

i on both nodes. We first show
that finding a schedule with minimum makespan is weakly NP-complete, even
for independent tasks:

Theorem 2. Given two homogenous nodes of p processors, n independent tasks
of sizes L1, ..., Ln and a bound T, the problem of finding a schedule of the n tasks
on the two nodes that respects R, and whose makespan is not greater than T,
is (weakly) NP-complete for all values of the α parameter defining the speedup
function.

The proof relies on the Partition problem, which is known to be weakly (i.e.,
binary) NP-complete [8], and uses tasks of length Li = aα

i , where the ai’s are the
numbers from the instance of the Partition problem. We recall that we assume
that functions x �→ xα and x �→ x1/α can be computed in polynomial time. Details
can be found in the companion research report [10].

We also provide a constant ratio approximation algorithm. We recall that a
ρ-approximation provides on each instance a solution whose objective z is such
that z ≤ ρz∗, where z∗ is the optimal value of the objective on this instance.

Theorem 3. There exists a polynomial time
(

4
3

)α-approximation algorithm for
the makespan minimization problem when scheduling a tree of malleable tasks on
two homogenous nodes.

Due to lack of space, we refer the interested reader to the companion research
report for the complete description of the algorithm and proof [10]. The proof
of the approximation ratio consists in comparing the proposed solution to the
optimal solution on a single node made of 2p processors, denoted SPM. Such
an optimal solution can be computed as proposed in the previous section, and
is a lower bound on the optimal makespan on 2 nodes with p processors. The
general picture of the proposed algorithm is the following. First, the root of
the tree is arbitrarily allocated to the p processors of one of the two nodes.
Then, the subtrees Si’s rooted at the root’s children are considered. If none of
these subtrees is allocated more than p processors in SPM, then we show how
to “pack” the subtrees on the two nodes and bound the slow-down by

(
4
3

)α.
On the contrary, if one of the Si’s is allocated more than p processors in SPM,
then we allocate p processors to its root, and recursively call the algorithm on
its children and on the remaining subtrees.
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5.2 Two Heterogeneous Multicore Nodes

We suppose here that the computing platform is made of two processors of dif-
ferent processing capabilities: the first one is made of p cores, while the second
one includes q cores. We also assume that the parameter α of the speedup func-
tion is the same on both processors. As the problem gets more complicated,
we concentrate here on n independent tasks, of lengths L1, ..., Ln. Thanks to the
homogenous case presented above, we already know that scheduling independent
tasks on two nodes is NP-complete.

This problem is close to the Subset Sum problem. Given n numbers, the
optimization version of Subset Sum considers a target K and aims at finding
the subset with maximal sum smaller than or equal to K. There exists many
approximation schemes for this problem. In particular, Kellerer et al. [15] propose
a fully polynomial approximation scheme (FPTAS). Based on this result, an
approximation scheme can be derived for our problem.

Theorem 4. There exists an FPTAS for the problem of scheduling independent
malleable tasks on two heterogeneous nodes, provided that, for each task, L

1/α
i is

an integer.

The proof is complex and detailed in [10]. The assumption on the L
1/α
i s is

needed to apply the FPTAS of Subset Sum, which is valid only on integers.

6 Conclusion

In this paper, we have studied how to schedule trees of malleable tasks whose
speedup function on multicore platforms is pα. We have first motivated the use
of this model for sparse matrix factorizations by actual experiments. When using
factorization kernels actually used in sparse solvers, we show that the speedup
follows the pα model for reasonable allocations. On the machine used for our
tests, α is in the range 0.85–0.95. Then, we proposed a new proof of the optimal
allocation derived by Prasanna and Musicus [19,20] for such trees on single
node multicore platforms. Contrarily to the use of optimal control theory of the
original proofs, our method relies only on pure scheduling arguments and gives
more intuitions on the scheduling problem. Based on these proofs, we proposed
several extensions for two multicore nodes: we prove the NP-completeness of
the scheduling problem and propose a

(
4
3

)α-approximation algorithm for a tree
of malleable tasks on two homogeneous nodes, and an FPTAS for independent
malleable tasks on two heterogeneous nodes.

The perspectives to extend this work follow two main directions. First, it
would be interesting to extend the approximations proposed for the heteroge-
neous case to a number of nodes larger than two, and to more heterogeneous
nodes, for which the value of α differs from one node to another. This is a promis-
ing model for the use of accelerators (such as GPU or Xeon Phi). The second
direction concerns an actual implementation of the PM allocation scheme in a
sparse solver.
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Abstract. In this paper, we introduce elastic tasks, a new high-level
parallel programming primitive that can be used to unify task paral-
lelism and SPMD parallelism in a common adaptive scheduling frame-
work. Elastic tasks are internally parallel tasks and can run on a single
worker or expand to take over multiple workers. An elastic task can be
an ordinary task or an SPMD region that must be executed by one or
more workers simultaneously, in a tightly coupled manner.

This paper demonstrates the following benefits of elastic tasks:
(1) they offer theoretical guarantees: in a work-stealing environment
computations complete in expected time O(W/P + S + E lgP ), where
E = # of elastic tasks, W = work, S = span, P = # cores. (2) they offer
performance benefits in practice by co-scheduling tightly coupled par-
allel/SPMD subcomputations within a single elastic task, and (3) they
can adapt at runtime to the state of the application and work-load of
the machine.

We also introduce ElastiJ — a runtime system that includes work-
sharing and work-stealing scheduling algorithms to support computa-
tions with regular and elastic tasks. This scheduler dynamically decides
the allocation for each elastic task in a non-centralized manner, and pro-
vides close to asymptotically optimal running times for computations
with elastic tasks.

1 Introduction

As multicore machines become ubiquitous, task parallelism has emerged as a
dominant paradigm for parallel programming. Many programming languages
and libraries such as Cilk [10], Cilk Plus [1], Intel TBB [21], .Net Task Parallel
Library [17], and Habanero-Java [5] support this paradigm, in which the pro-
grammer expresses the logical parallelism by specifying sequential tasks and their
dependences, and a runtime scheduler maps the tasks on available processors.

SPMD parallelism [8] is an alternate paradigm for exploiting multicore par-
allelism, in which a fixed number of worker threads execute a single SPMD
region. There is general agreement that SPMD parallelism can outperform task
parallelism in certain cases, but task parallelism is more general than SPMD
c© Springer-Verlag Berlin Heidelberg 2015
J.L. Träff et al. (Eds.): Euro-Par 2015, LNCS 9233, pp. 491–503, 2015.
DOI: 10.1007/978-3-662-48096-0 38
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parallelism. There has even been work on compiler optimizations to automati-
cally transform fork-join regions of code to SPMD regions for improved perfor-
mance [7,18]. However, to the best of our knowledge, there has been no prior
work that combines task parallelism and SPMD parallelism in a single adaptive
runtime framework.

In this paper, we propose elastic tasks, a new primitive that helps bridge
the gap between task parallelism and SPMD parallelism. An elastic task u is
defined by: (1) w(u) — the execution requirement (work) of u; and (2) c(u) —
the maximum number of workers (capacity) that task u can use. Elastic tasks
are assumed to have linear scaling with c(u) and to exhibit locality benefits from
co-scheduling their internal parallelism, but they need not be data parallel. The
user need only provide two additional parameters for u, both being an estimation
rather than exact values: (1) the approximate length of the task on one worker
as w(u); and (2) the average parallelism of the task as c(u). When an elastic
task starts, it is assigned a(u) ≤ c(u) dedicated worker threads, which work on
only this task until the task completes. An elastic task with c(u) = 1 is just like
an ordinary task. An elastic task with c(u) > 1 is like an SPMD region which
must be executed by one or more workers simultaneously in a tightly coupled
manner.

We extend the work-sharing and work-stealing strategies [4] to handle com-
putations with elastic tasks. We prove that the work-sharing scheduler completes
a computation with work W and span S in O(W/P +S+E) time, where E is the
total number of elastic tasks. Similarly, the work-stealing scheduler completes
the computation in O(W/P + S + E lg P ) expected time.

Previous work, notably Wimmer and Träff [26] have considered a construct
for mixed-mode parallelism, but, in their work, the number of workers assigned to
a task is fixed, and user specified. In our scheduling strategy, if most workers are
busy, then the elastic task is assigned fewer workers, since there is already ample
parallelism in the rest of the program. If most workers are idle (or stealing), then
it indicates a lack of parallelism and more workers are assigned to an elastic task.
Finally, we are not aware of prior work that provides theoretical guarantees on
the completion time for this form of combination of sequential and elastic tasks.

We have implemented a runtime system which implements elastic tasks, and
include experimental results obtained from the work-stealing implementation.

In summary, the contributions of this paper are:

– the elastic task primitive, its definition, properties and requirements,
– theoretical proofs for the work-sharing and work-stealing runtimes,
– the ElastiJ runtime which executes computations with both sequential and

elastic tasks and automatically decides the number of workers assigned to an
elastic task,

– experimental results which indicate they provide locality benefits for certain
computations and provide runtime adaptability.

The rest of the paper is organized as follows: Sect. 2 discusses the motivation
for elastic tasks, Sect. 3 gives the theoretical proofs, Sect. 4 describes the imple-
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mentation details of ElastiJ, Sect. 5 presents the experimental results, Sect. 6
discusses related work and finally Sect. 7 concludes.

2 Motivation for Elastic Tasks

2.1 Benefits of Elasticity

Given a computation expressible as an elastic task, we have a few other alter-
natives. First, we could create a sequential task. However, this can increase the
critical path length (span) of the computation, thereby decreasing its parallelism.

Second, we could create an inelastic task where the programmer specifies the
number of workers (say m(u)) which must execute node u (as in [26]). In this
case, if the programmer accurately specifies m(u) to be large, then the sched-
uler must find all these workers. If most workers are busy, the scheduler must
either wait for a potentially long time (idle workers for long periods) or it must
interrupt workers in the middle of their execution leading to large overheads. If
the programmer artificially specifies m(u) to be small to avoid this, then we are
potentially wasting the internal parallelism of task u and decreasing the scala-
bility of the overall computation, as with sequential tasks. Also, it is difficult to
guarantee good performance theoretically for inelastic tasks.

Third, we could convert the task to a task parallel computation by dividing up
the computation into independent tasks that need not be co-scheduled. This may
be cumbersome if the different tasks need to communicate, since we must add a
control synchronization point for every communication link. This also increases
overheads; barriers within independently-scheduled tasks can be very inefficient.
In addition, as discussed next, this transformation means that different iterations
may be executed at very different times, leading to loss in locality.

2.2 Benefits of Co-Scheduling

Compared to sequential and inelastic tasks, with elastic tasks the program-
mer is only responsible for providing the capacity, not the precise number of
workers. The runtime then adjusts the number of workers allocated to the task
based on runtime conditions. Further we compare elastic tasks to task parallel
computations.

Cache Locality on Multicores: Consider a loop in which all iterations access
the same data. Using an elastic task forces all the iterations to be scheduled at
the same time, so the shared data will be brought into the shared cache. Instead,
had we converted this loop into a task parallel program, all the iterations would
have been their own task, possibly scheduled at different times. Since other tasks
that access other data may execute between different iterations of the loop, the
shared data may have to be brought in multiple times leading to poor cache
locality. We will show experimental results that validate this intuition in Sect. 5.

Locality on Future Architectures: While in this paper we show the impor-
tance of elastic tasks on multicores, we expect elastic tasks to become even more
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valuable for future extreme scale systems where collocation based on data sharing
will be critical for performance. Additionally, an elastic task with data-parallel
computations can also be automatically transformed into a GPU kernel using
existing tools [3,9,16]. The adaptability of elastic tasks to task granularity also
implies that applications can adjust to existing and future GPUs.

3 Theoretical Guarantees

We briefly state the theoretical guarantees proven in our technical report [22].

3.1 Model of Computation

Elastic tasks and normal sequential tasks are processor oblivious computations —
the programmer expresses the logical parallelism and the runtime scheduler
dynamically schedules and executes the computation on P worker threads.

The computation can be abstractly expressed as a computation DAG G;
nodes are computation kernels and edges are dependences between nodes. A node
is ready to execute when all its predecessors have been executed. Without loss of
generality, we assume the maximum out-degree of any node ≤2. There are two
types of nodes: strands — sequential chains of instructions and elastic nodes.

An elastic node u has the following properties: (1) Work w(u) is its execu-
tion time on one worker. (2) Capacity c(u) is its maximum internal parallelism.
(3) Before an elastic node u can execute, the runtime scheduler must allocate it
1 ≤ a(u) dedicated worker threads. Once u starts executing, these a(u) workers
can not work on anything else until u completes, and no other workers can work
on u’s work. (4) We assume that each elastic node provides linear speedup up to
c(u) workers and no speedup thereafter. When it is allocated c(u) workers, we
say that the node is saturated ; otherwise we say that it is unsaturated.

As with traditional task parallel processor oblivious computations, we define
two parameters for G. Work W is the sum of the computational requirements of
all nodes or the execution time on one processor. Span is the weighted length of
the longest path in the DAG where each node’s weight is equal to its span. Span
can also be seen as the execution time of the computation on an infinite number
of processors. The parallelism of the program is defined as W/S and describes
the maximum number of workers the computation can use effectively. Note that
the execution time of the computation on P workers is at least max{W/P, S}.

3.2 Theoretical Guarantees in a Work-Sharing Runtime

Theorem 1. Given a computation graph with work W , span S, and E elastic
nodes, the execution time of this computation on P workers using the work-
sharing scheduler is O(W/P + S + E).

The above theorem states that the work-sharing scheduler provides linear
speedup, and we prove this in the extended version of the paper [22].
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3.3 Theoretical Guarantees in a Work-Stealing Runtime

Extending the Work-Stealing Scheduler with Elastic Nodes. In a regular
work-stealing scheduler, a program is executed by P workers each having its
own private deque of ready nodes. At any time, a worker p may have a node u
assigned to it. When a worker finishes u, if p’s deque is empty, then p becomes
a thief, selects another worker p1 as a victim at random and tries to steal from
the top of p1’s deque. If p1’s deque is not empty and p gets a node, then the steal
attempt is successful, otherwise p tries to steal again. Blumofe and Leiserson [4]
prove that this randomized work-stealing scheduler finishes a computation with
work W and span S in expected time O(W/P + S) time on P worker threads.

For work-stealing schedulers with elastic nodes, a worker’s assigned node may
be a strand or an elastic node. The changes due to the elastic nodes affect what
happens on steals and when a worker is assigned an elastic node:

1. If p picks up an elastic node u, p starts waiting on u, instead of starting
execution.

2. When p is a thief, it randomly chooses a victim q. If q is waiting on an elastic
node u, then u is also assigned to p and p also starts waiting on it. At this
time a(u) is incremented by 1. Otherwise, p steals the node at the top of q’s
deque; if the deque is empty then p tries again.

3. While u is waiting, its total waiting time wait(u) is incremented by a(u) in
every time step.

4. An elastic node starts executing when either a(u) = c(u) — the node is
saturated; or its total wait time wait(u) ≥ w(u).

5. When an elastic node finishes executing, the worker that first enabled the
elastic node enables its children. All other workers assigned to the elastic
node start work stealing, as all their deques are empty at this time.

Analysis of Work-Stealing Scheduler

Theorem 2. Given a computation graph with E elastic nodes, work W and
span S, the expected execution time of this computation on P workers using the
work-stealing scheduler is O(W/P + S + E lg P ).

If we compare this result to the result for computations without elastic nodes,
we notice that the additional term is only E lg P . This term is negligible for any
computation where the number of elastic nodes is O(T1/P lg P ) — which implies
that most elastic nodes have parallelism Ω(P ) and at most 1/ lg P fraction of
the work of the computation is contained in elastic nodes.

We mention that the constant factors hidden within the asymptotic bounds
are not much larger than those hidden within the standard work-stealing bounds.
An additional terms similar to O(E lg P ) also appears in standard work-stealing
if we consider the contention on the child counter (generally ignored).

In this section, without loss of generality, we assume that each strand is a
unit time computation. A longer strand is simply expressed as a chain of unit
time strands. We separately bound the types of steps that a worker can take at
any time step. A worker could be working, waiting on an elastic node or stealing.
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The total number of work-steps is at most W ; and the total number of waiting
steps is at most W + PE. Therefore, we need only bound the steal steps.

We classify steal attempts in three categories: (1) regular steal attempts
occur when no elastic node is waiting and no unsaturated elastic node is execut-
ing. (2) waiting steal attempts are those that occur when some elastic node is
waiting. (3) irregular steal attempts occur when some unsaturated elastic node
is executing and no elastic node is waiting. We will bound the number of steal
attempts in these three categories separately.

Intuition for the Analysis. We adopt a potential function argument similar
to Arora et al.’s work-stealing analysis [2], henceforth referred to as ABP. In the
ABP analysis, each ready node is assigned a potential that decreases geometri-
cally with its distance from the start of the dag. For traditional work stealing,
one can prove that most of the potential is in the ready nodes at the top of the
deques. Therefore, Θ(P ) random steal attempts suffice to process all the nodes
on top of the deques. Therefore, one can prove that O(PS) steal attempts are
sufficient to reduce the potential to 0 in expectation. The ABP analysis does not
directly apply to bounding the number of steal attempts for computations with
elastic nodes because a steal may turn into a wait if the victim p has an assigned
node u. Since u may contain most of the potential (particularly if p’s deque
is empty), and u cannot be stolen, steals are not longer effective in reducing
the potential until u completes. Therefore, we must use a different argument to
bound the steal attempts that occur while u is assigned to p.

Regular Steal Attempts: These occur when either a worker is assigned an elastic
node (the normal ABP argument applies) or any elastic node that is assigned is
saturated and is executing. We use a potential function argument very similar
to the ABP argument, but on an augmented DAG in order to account for steal
attempts that occur while a saturated elastic node is executing.

Waiting Steal Attempts: These occur when some elastic node (say u) is
waiting — at this time, u is assigned to some worker(s), say p and p′. If any
worker q tries to steal from p or p′ during this time, then q also starts waiting on
u and a(u) increases by 1. Therefore, only a small number of steal attempts (in
expectation) can occur before a(u) = c(u) and u becomes saturated and stops
waiting. We use this fact to bound the number of waiting steal attempts.

Irregular Steal Attempts: These occur when no elastic node is waiting and some
unsaturated elastic node is executing. The analysis here is similar to the one we
used to account for idle steps in the work-sharing scheduler (see [22]). Since this
elastic node started executing without being saturated, it must have waited for
at least w(u) time — and during this time, all the workers not assigned to this
elastic node were busy doing either work or waiting steal attempts. Therefore,
any steal attempts by these workers can be amortized against these other steps.

The formal analysis can be found in the full technical report [22]. Below we
provide the essential components that lead to the work-stealing bound.

Lemma 1. Total number of regular steal attempts is O(PS + P lg(1/ε)) in
expectation.
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Lemma 2. There are O(P min{lg c(u), lg P}) steal attempts in expectation
while a particular elastic node u is waiting. Therefore, the expected number of
waiting steal attempts over the entire computation is O(PE lg P ).

Lemma 3. The total number of irregular steal attempts is at most O(W +
PE lg P ).

Proof of Theorem 2: Combining Lemmas 1, 2 and 3 tells us that the total
number of steal attempts over the entire computation is O(W + PS + PE lg P ).
In addition, we know that the total number of work steps and waiting steps is
at most O(W + PE). Therefore, if we add all types of steps and divide by P
(since we have P worker threads and each take 1 step per unit time), we get the
overall expected running time of O(W/P + S + E lg P ). ��

4 Implementation Details

We created ElastiJ, a system that supports the creation and execution of elastic
tasks. ElastiJ is build on top of the Habanero-Java library (HJlib) [14].

Elastic tasks are created using asyncElastic, a regular spawn call (async in
HJlib) with two additional parameters: work - w(u) and capacity - c(u). The
capacity of a task is the approximation of its average parallelism — for any task
we can simply assume that it is the task‘s work (w(u)) divided by its critical
path length (or span). The work w(u) is the total running time of the task on 1
processor. Many tools exist to measure parallelism; e.g., for CilkPlus programs,
Cilkview can be used to get c(u). Two additional optional parameters: (b(u),
e(u)) can be used to describe the computation much like describing the iteration
space for a loop. The runtime divides this range and assigns non-overlapping
ranges to the workers executing the elastic node, similar to OpenMP’s loop
static scheduling [19], except that the number of workers is dynamic. For non-
data-parallel computations these values can have a different meaning or simply
not be used; e.g., in Sect. 5.2 we use Quicksort, where the partition phase - a
computation that is not data parallel - is implemented as an elastic task.

ElastiJ uses a from-scratch work-sharing or work-stealing runtime imple-
mented in Java. We use the work-stealing runtime in our results due to its
better performance as shown in [10,12]. The runtime executes as described in
Sect. 3.3, but the mechanism threads join an elastic task differs. The simplest
approach is as follows: the first thread starts to wait w(u), the second thread
wakes up the first and both of them continue to wait for half of the remaining
time, and so on. This approach causes a lot of overhead due to the several sleep
and notify calls, in particular when many threads want to join at once. A better
approach is for the first thread to wait w(u) and store his wait start time. The
second thread uses this wait time to compute how much the first thread already
waited, and waits half of the remaining time, also storing the time he starts the
wait. The process goes on until the last thread either saturates the task or has
waited the remaining fraction of time and it wakes up all threads. This second
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approach has the advantage that each thread only goes to sleep once and is
woken up once when it can start the work. However it also experiences a lot
of overhead due to context-switching when the method wait is called. Since the
waiting threads do not perform any work, a more efficient approach observed
in practice is a bounded busy-wait approach. This third approach is the one we
used in our experiments. In addition, the runtime uses as the total wait time a
fraction of the full estimated work given to the task, in order to account for the
constant factor in the theoretical proof, and thus offer competitive performance.
The asyncElastic construct we propose also includes an implicit phaser [23] for
all workers that join the task. The use of phasers instead of barriers can provide
additional performance benefits [18].

5 Experimental Results

In this section, we use a series of benchmarks to demonstrate how elastic tasks
perform in different scenarios. We first assess if elastic tasks have the poten-
tial to provide better locality using a synthetic micro-benchmark. Next, we use
Quicksort and FFT algorithms to demonstrate that elastic tasks are easily inte-
grated into task-parallel recursive programs and provide easy adaptability to
task granularity. Finally, we evaluate the performance of ElastiJ using a set of
single-level fork-join benchmarks from the IMSuite [13] set; we show little or no
overhead from using elastic tasks and analyze their sensitivity to applications and
parameters. The performance results were obtained on two platforms: (1) IBM
POWER7: node with four eight-core POWER7 chips running at 3.86GHz, with
4 MB L3 cache per chip, and (2) Intel Westmere: node with 12 processor cores
per node Intel Xeon X5660 running at 2.83 GHz.

5.1 Benefit from Locality

In Sect. 2, we described scenarios when elastic tasks give locality benefits. In this
section, we evaluate this hypothesis by creating the following synthetic fork-join
style application: the benchmark spawns n tasks of type ua in a single finish
scope, where n is a multiple of the number of cores P . Each ua task accesses the
same M elements of a vector A. Each ua task spawn P ub tasks, and each ub
task accesses the same M elements of a different vector B. The capacity c(u) of
each elastic task is P , the maximum number of machine cores. All experiments
in this section were obtained on the POWER7 (P=32). The program accepts a
parameter to set the fraction α of ua tasks that are elastic tasks, and creates
n×α elastic tasks and (1−α)×n regular tasks (strands). The program spawns α
elastic tasks using asyncElastic, and (1−α) simulated elastic tasks using async.
This simulation essentially means creating P regular tasks for each elastic task.

We expect a locality benefit due to the co-scheduling of the elastic tasks since
all the workers executing the elastic task access the same array A. Therefore,
it is likely that A will remain in the shared cache while this elastic task is
executing. On the other hand, when we convert this elastic task into a normal
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task-parallel for-loop with P strands, these P strands may execute far apart in
time — therefore, some of the ub tasks may pollute the cache in the meantime.
The results below show this makes a difference when M is large enough to cause
the ub tasks to evict part of the A data from L3 cache.

We run experiments by varying the fraction of elastic tasks: 0% ≤ α ≤ 100%
(0 % means all tasks are regular tasks, while 100 % means all tasks are elastic).
All experiments report the average of the 20 best iterations over 3 runs, each with
30 iterations, to remove the JVM warm-up and variability between runs [11].

We set the size of the arrays to M = 1, 000, 000; with A being an array of
integers this adds to 4MB of data. Note that we ignore the L1 and L2 caches,
under the claim that the size chosen is large enough to ensure at least some
evictions from L3 cache. The results of the experiments are shown in Fig. 1a.
We notice that for elastic tasks the execution time remains essentially constant,
while for regular tasks the performance is degrading as we increase their number.
We ran an experiment with identical task size but with M = 64.000, and noticed
constant performance when varying from 0–100% so the action of splitting the
task cannot be the cause. We therefore go back to what we inferred and assume
the data accessed by tasks ua is being invalidated by tasks ub. We use the perf
tool on the POWER7 to confirm this. Figure 1b plots the cache misses obtained
by the perf tool. We see that the number of cache misses increases up to 1.7×
when using regular tasks as opposed to elastic tasks.

(a) Y-axis: time normalized
w.r.t. 0%.

(b) Y-axis: cache misses normal-
ized w.r.t. 0%.

Fig. 1. Microbenchmark comparing Elastic vs. Async task scheduling. X axis:% of
elastic tasks.

We conclude that the use of elastic tasks should be used in a setting where
their granularity amortizes the overhead of setting them up and that they can
offer performance benefits due to improved locality.

5.2 Adaptability

We argue that elastic tasks provide the benefit that they integrate seamlessly
with normal task parallelism which is suited to recursive algorithms. The quick-
sort algorithm is a recursive divide-and-conquer algorithm and can be easily
expressed as a task-parallel program using async-finish or spawn-sync constructs.
However, the divide step consists of a partition step. While partition can be
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expressed as a divide-and-conquer algorithm, that is a cumbersome implemen-
tation and many parallel implementations of quicksort simply use a sequential
partition algorithm.

In this section, we evaluate the benefit of implementing the partition algo-
rithm as an elastic task [25]. Note that the partition step is called at every level
of recursion. The advantage of using elastic tasks for expressing it is that the
number of workers assigned to this partition step is decided at runtime. At the
shallow levels of the recursion tree where there is not much other work being
done, the partition step will be automatically assigned more workers. At deeper
levels of the tree, when there is already enough other parallel work available,
the partition will execute mostly sequentially. Therefore, elastic tasks provide
automatic adaptability without any intervention needed by the programmer.

In Fig. 2a, we compare elastic and async parallel implementations for quick-
sort with a parallel partition phase implemented with N asyncs, with N=# of
machine cores, or as an elastic task. We present the results normalized w.r.t.
the aync runs. In Fig. 2b, we compare two implementations of FFT, where the
recombine phase is implemented either as a binary tree spawn using asyncs or
as an elastic task. The data sets we use are 107 and 108 for quicksort, and 222

and 223 for FFT. For both quicksort and FFT we used a rough estimate for the
work based on the array length; additional opportunities exist for auto-tuning
the work based on the input, recursion depth, etc. We present results for both
benchmarks on the POWER7 and the Westmere, by using the reporting the
average of the best iterations out of 90 iterations, using 3 JVM invocations [11].
We get up to 70 % gain for quicksort and up to 16 % gain for FFT from using
elastic tasks. We also note that the gains are larger when the data sizes increase
a trend that we believe will lead to increased benefits in larger scale applications.

5.3 Sensitivity Analysis

We use 8 benchmarks from the IMSuite Benchmark Suite [13] to compare regular
task spawning with the creation of elastic tasks. These benchmarks have a single-
level fork-join structure, i.e., there is at most a single forAll loop active at a time,

(a) Quicksort (b) FFT

Fig. 2. Elastic task runs normalized over Async runs. >1 means elastic runs are better.
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which means they do not offer any opportunity for benefits from elasticity. Our
goal is to demonstrate on-par performance with regular work stealing (Async
Finish primitives). We discover that elastic tasks can offer benefits even in this
scenario due to their resilience to the theoretical assumptions and to the elastic
task parameters. The benchmarks are: Bellman Ford, Byzantine Agreement,
Dijkstra, General Leader Election, Maximum Independent Set, Vertex Coloring,
k-Committee and Minimum Spanning Tree [13].

Figure 3 gives the results on the Westmere platforms (see the technical
report [22] for full experimental analysis). Figure 3a shows better performance
using elastic tasks for most benchmarks. The reason is that these benchmarks
fail to scale linearly past 8 cores and our work estimation offers better perfor-
mance by selecting fewer cores than the maximum. This means that elastic tasks
can be used to tune applications even when the theoretical guarantee of linear
scaling does not hold. So we looked into how sensitive the applications are to the
API parameters, in particular the estimated work (restricting the capacity only
limits parallelism so it makes no sense to restrict it). Figure 3b shows that the
times are large for the W/10 case, which is expected, since a small estimation
means not enough wait time for threads to join the task, thus wasting paral-
lelism. Conversely, with W large we delay the computation, which leads to two
combined causes for performance degradation: a longer wait time and a larger
running time on 12 cores. Overall, the running time variation when W is varied
is small and in many cases the added overhead is at most 10 %. In the few cases
where the percentage-wise variation is larger, the absolute time is very small
([22]).

(a) Y axis: Speedup. Geomean=1.160. (b) X axis: Time normalized on the run
using W.

Fig. 3. IMSuite results on Westmere. (a) The geomean is for elastic times normalized
over Async runs (>1 if elastic runs are better).

We conclude our overall results with the following observations: (a) elastic
tasks provide a common API for expressing task and SPMD parallelism and are
straightforward and easy to use; (b) they can benefit from locality due to their
coscheduling property; (c) they can be used to adapt the degree of parallelism
for recursive benchmarks; (d) they can offer comparable performance with forall
constructs, and are fairly resilient to the theoretical assumptions of elastic tasks
and to the user-provided parameters.
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6 Related Work

The closest related work is described as team-building [26] where programmers
express inelastic tasks and the runtime allocates all workers. As mentioned in
Sect. 1, our approach is quite distinct and we give theoretical proofs that our
enhanced scheduler gives the same asymptotic bounds as regular work-stealing.

The problem of thread scheduling for locality improvements has been inves-
tigated in depth for work-stealing schedulers [6,12,20], both shared memory [12]
and distributed [6,20]. ADAPT [15] proposes a framework implemented at OS
level, which adapts the number of threads in a program, on machines where
multiple programs concurrently. These works are orthogonal to elastic tasks.

A previous study [24] looked at a series of works which attempt to do
coscheduling of tasks in general; this requires a coordinated effort which adds a
lot of overhead in the absence of additional information. The authors formulate
a mathematical model to analyze current approaches. Our work eases the chal-
lenge of coscheduling of tasks, when computations are expressible as an elastic
task, and it can also be coupled with existing strategies. A more restrictive form
of co-scheduling is gang scheduling, generally used for inelastic tasks.

7 Conclusions

In this paper we introduced the concept of elastic tasks, a construct that enables
programmers to express adaptive parallel computations and rely on an elastic
runtime to offer good performance from locality and load balancing. We proved
that the work-stealing scheduler completes the computation in O(W/P + S +
E lg P ) expected time, where E is the total number of elastic tasks. We also
showed practical results, that elastic tasks have the potential of improving the
locality of computations, can yield comparable performance with regular tasks
and that they are able to adapt at runtime, based on the load of the application.

We are interested in extending our approach to take more of the machine
topology into account: the locality benefits of elastic tasks should be more pro-
nounced when workers assigned to an elastic task share a certain level of prox-
imity. As discussed in Sect. 2, elastic tasks are potentially useful for writing
portable applications for heterogeneous machines that contain CPUs and GPUs
and on distributed systems. Finally, elastic tasks have a potential to be useful
for multiprogramming environments.
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Abstract. Full waveform inversion (FWI) is an emerging subsurface
imaging technique, used to locate oil and gas reservoirs. The key chal-
lenges that hinder its adoption by industry are both algorithmic and
computational in nature, including storage, communication, and process-
ing of large-scale data structures, which impose cardinal impediments
upon computational scalability. In this work we will present a complete
matrix-free algorithmic formulation of a 3D elastic time domain spectral
element solver for both the forward and adjoint wave-fields as part of
a greater cloud based FWI framework. We discuss computational opti-
misation (SIMD vectorisation, use of Many Integrated Core architec-
tures, etc.) and present scaling results for two HPC systems, namely an
IBM Blue Gene/Q and an Intel based system equipped with Xeon Phi
coprocessors.

1 Introduction

In the field of exploration geophysics, Full Waveform Inversion (FWI) is regarded
as the state-of-the-art seismic imaging technique. The goal of which is to detect
and characterize subsurface geological structures such as ore minerals, hydro-
carbons, geothermal reservoirs and aquifers. As the approach utilizes a compre-
hensive representation of the interaction between wave physics and subsurface
properties, it offers unique advantages in terms of generality, fidelity, complex-
ity, and robustness, and is hence capable of imaging arbitrarily heterogeneous
compressional and shear wave velocity profiles of the subsurface constituents [1].
As a wavefield propagates through a medium of heterogeneous elastic properties,
waves are reflected off different material regions in the subsurface. Data acquisi-
tion is performed by recording the response of the subsurface to excitation using
an array of geophones deployed according to a predefined survey design [2].

By creating a computer model of the surveyed region (with a choice of sub-
surface material properties, or ‘earth model’) and assuming that a governing
equation such as the acoustic or elastic wave equations are representative of the
physics, a ‘forward’ simulation of the wavefield subject to the same excitation
can be performed. From this simulation, synthetically generated seismograms

c© Springer-Verlag Berlin Heidelberg 2015
J.L. Träff et al. (Eds.): Euro-Par 2015, LNCS 9233, pp. 507–518, 2015.
DOI: 10.1007/978-3-662-48096-0 39
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can be created and the discrepancy between the experimental and computa-
tional seismograms can be assessed and used define an objective function in
order to perform an inversion, minimising this descrepancy. At this point one
may infer that the current a-posteriori subsurface estimate model is a sufficient
approximation to reality, or alternatively, devise means to quantify uncertainty.

Two common approaches for the spatial discretization of a wave equation are
the finite difference and spectral element methods (SEM), both of which gener-
ally use an explicit time marching scheme when solved in the time domain. The
former technique is still the more common approach in the oil and gas industry,
while the latter technique is more commonly related to the earthquake commu-
nity, with much of the development in seismology performed by Komatitsch et al.
[3,4] with the well known SPECFEM code. The advantages of the spectral ele-
ment method lie in its applicability to unstructured meshes that can conform to
a surface topology or subsurface structures, superior numerical dispersion prop-
erties, while still yeilding an efficient scalable algorithm. As such it has been
used for large scale simulations [5] and incorporated the use of accelerators such
as graphics processing units [6,7].

Our formulation is based heavily on the work of Komatitsch et al. and relies
upon a high order spectral element discretization of the elastic wave equation and
enables computation of the ‘adjoint’ wavefield, and consequently the gradient (or
proximal function of which) of the objective function. The computational strat-
egy privides a scalable algorithm based on a hybrid distributed-shared memory
approach. The key contributions of the study are the investigation of compu-
tational optimisation including SIMD vectorisation and use of Many Integrated
Core (MIC) architectures for two HPC systems, namely an IBM Blue Gene/Q
and an Intel based system equipped with Xeon Phi coprocessors. This solver is
one component of a greater effort aimed at the development of a cloud-based
FWI framework.

2 Methods

The elastic wave equation [1] applied to a continuous solid is defined as

ρ∂ttui = ∂xj
σij + fi (1)

where x ∈ Ω ⊂ R
3 denotes a computational solid domain with boundary Γ,

t ∈ [0, T ], i, j ∈ [1, 2, 3], ρ(x) is the mass density, u(x, t) is the displacement
vector field, σ(x, t) is the stress tensor field, and f(x, t) is a seismic source mod-
eled in the form of a point source f(x, t) = θ(t)δ(x − xs) applied at xs using
a standard Ricker wavelet θ(t). Approximating the earth model with a linear
isotropic relation, the stress tensor is related to displacement gradients as

σij = λδij∂xk
uk + μ

(
∂xi

uj + ∂xj
ui

)
(2)
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where λ(x) and μ(x) are the first and second Lamé parameters respectively.
The elastic wave equation is subject to the standard initial conditions ui =
∂tui = 0, free surface boundary conditions σijnj = 0 and Clayton and Enquist
absorbing boundary conditions σijnj = −ρv∂tui respectively, where nj denotes
the normal to the boundary Γ and v denotes the elastic wave speed. Using
Galerkin projection with basis functions ψ, the weak form of the elastic wave
equation is

∫

Ω

ψρ∂ttuidΩ +
∫

Ω

∂xj
ψσijdΩ =

∫

Ω

ψfidΩ +
∫

Γ

ψσijdΓj . (3)

2.1 Discretization

Using the spectral element method for the spatial discretization, the computa-
tional domain is defined as a tesselation of Ne hexahedral elements (Fig. 1(c))
with the displacement field approximated as ui(x, t) ≈ ψpqr(x)ui,pqr(t), such
that
∫

Ωe

ψabcρψpqr∂ttui,pqrdΩ+
∫

Γe

ψabρvψpq∂tui,pq dΓ+
∫

Ωe

∂xj
ψabcσijdΩ=

∫

Ωe

ψabcfidΩ

(4)
In this specific formulation the basis functions ψpqr are taken to be a ten-
sor product of the family of N th order Lagrange polynomials ψpqr = 
p
q
r

(Fig. 1(b)). After applying a geometric transformation to a reference element
ξi ∈ [−1,+1] (Fig. 1(a)), performing the integration with Gauss-Legendre-
Lobatto (GLL) quadrature (Fig. 1(c)) [8], and then global assembly, gives the
system of ODEs

M(m)ü + C(m)u̇ + F(m,u) = s, s.t. u(0) = u̇(0) = 0 (5)

where u is the global set of displacements and m the global set of densities and
Lamé parameters λ and μ defined for GLL points from all spectral elements in

(a)

−1.0 −0.5 0.0 0.5 1.0
−0.4
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0.8

1.0
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�

(b) (c)

Fig. 1. Illustrations of (a) the transformation of a hexahedral element from x to ξ
coordinates, (b) a family of 8th order Lagrange polynomials defined for ξi ∈ [−1, +1],
(c) an 8th order spectral element depicting the locations of the GLL quadrature/nodal
points.
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the grid. The mass M and damping C matrices, force F and source s vectors are
given by

M =
Ne∑

e=1

N+1∑

f,g,h=1

wfwgwhψabcρψpqrJ
∣
∣
ξ1,f ,ξ2,g,ξ3,h

C =
Ne∑

e=1

N+1∑

f,g=1

wfwgψabρviψpqJ
∣
∣
ξ1,fξ2,g

F =
Ne∑

e=1

N+1∑

f,g,h=1

wfwgwh∂ξkψabc∂ξkxjσij,pqrJ
∣
∣
ξ1,f ,ξ2,g,ξ3,h

s =
Ne∑

e=1

N+1∑

f,g,h=1

wfwgwhψabcfiJ
∣
∣
ξ1,f ,ξ2,g,ξ3,h

(6)

where J defines the Jacobian of the transformation mapping to the reference ele-
ment, and wf denote the weights associated with the GLL quadrature. Due to the
cardinal interpolation properties of the Lagrange polynomials 
a(ξf ) = δaf and
the specific choice of GLL quadrature, the mass and damping matrices (which
don’t involve spatial derivatives of the Lagrange polynomials) are diagonal and
hence trivially assembled and stored as 1D arrays. It is worthwhile mentioning
that F(m,u) ≡ K(m)u where K is the well known (sparse, but non-diagonal),
stiffness matrix in solid mechanics, which linearly depends on m. Finally, in order
to perform the time integration, an explicit form of the Newmark Method [9] is
used:

un+1 = un + Δtu̇n + 1/2Δt2ün

ˆ̇u
n+1

= u̇n + 1/2Δt2ün+1

ün+1 = (M + 1/2ΔtC)−1
(
sn+1 − Cˆ̇u

n+1 − F(un+1)
)

u̇n+1 = ˆ̇u
n+1

+ 1/2Δt2ün+1 (7)

where it is important to note that due to the diagonality of M and C the inverse
required for the update of ün+1 in (7) is trivial and can in fact be precomputed
and stored as a 1D array once M and C have been assembled.

In order to update the earth model, a generic data misfit functional relat-
ing the solution of the discrete forward elastic model to the observed data is
defined as

J(u,m) =
∫ T

0

r(u,m, t)dt (8)

where the r(x) > 0 if x �= 0 is a noise model quantifying the error between
observed and computed displacements at a number of sensor locations. Estima-
tion of the earth model, m, given the observed data by variational approaches
(gradient descent or Quasi-Newton methods) requires the computation of ∂mJ .
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The latter is achieved by introducing the following adjoint equation

äT M − ȧT C + aT K = ∂ur, s.t. a(T ) = ȧ(T ) = 0. (9)

By defining the system of first order ODEs

β̇ =
(
äT ∂mM − ȧT ∂mC + aT ∂mK

)
u + ∂mr, s.t. β(0) = 0, (10)

then the gradient of the misfit functional is given by

∂mJ =
∫ T

0

β̇dt. (11)

The key drawback of the approach for computing ∂mJ is that computation of β̇
requires the storage of either u or a in the memory, as the former is integrated
forward in time and the latter is integrated backwards in time. Storage of either
discrete wavefield at each GLL point at every time step in memory would pro-
hibitively limit scalability. A number of techniques have been developed in order
to address this problem [10], such as storing the forward solution only on bound-
ary GLL points at each time step and then solving the elastic equation backward
in time with the adjoint using this data as boundary conditions [11], or using
some form of checkpoint strategy where the complete solution is stored periodi-
cally [12]. Our approach, is based heavily on a strategy from [10] where, in a first
step, (5) is integrated forwards in time and the complete elastic wavefield u, u̇,
ü is stored in memory at a series of checkpoint steps (Fig. 2). Then, in a second
step, (9) and (10) are integrated backwards in time using the Newmark and
Midpoint methods respectively. Between two checkpoints (5) is integrated for-
wards in time, and u is stored in memory at every time step between checkpoints
such that the right hand side of (10) can be evaluated.

Fig. 2. An illustration of the checkpointing strategy used in the computation of the
gradient. In the first loop u is integrated forward in time and at check points (black
dots) u, u̇, ü are stored in memory. In the second loop these checkpoints are used to
march u forward in time between two checkpoints where the entire displacement field is
stored in memory at each time step (red dots). a and β are then integrated backwards
in time from checkpoint to checkpoint allowing for β to be computed in (10) since all
of the required data u, a, ȧ, ä is stored in memory (Color figure online).



512 S. Moore et al.

Fig. 3. An illustration of a computational domain (left) that is discretized into spectral
elements and decomposed amongst multiple compute nodes (middle), where a given
processes’ portion of elements (right) are further separated into interior (blue) and
interface (red) elements (Color figure online).

2.2 Parallel Implementation

The spectral element and Newmark discretization methods allow for a rela-
tively simple explicit time marching scheme. The key contribution of this paper
is focussed on the parallel implementation of this solver involves a hybrid
distributed-shared memory approach implemented with MPI and OpenMP. The
distributed memory aspect involves a standard domain decomposition approach
where individual processes are responsible for the time marching over a unique
subset of spectral elements (Fig. 3). This approach implies that GLL points
shared by spectral elements on neighbouring processes will be duplicated and
so when the forces F(m,u) are assembled at each time step in the forward
or adjoint solve, the forces need to be exchanged and summed between any
processes that contain a duplicated GLL point. In order to hide the latency
of this data exchange, a processes’ elements can be grouped into interior and
interface elements (Fig. 3), processing the interface elements first, exchanging
forces on duplicate GLL points with non-blocking MPI sends and receives, and
processing the interior elements while the messages are in transit.

The shared memory parallelization is applied mainly to the computation of
the forces, as this is by far the most computationally intensive part of the algo-
rithm. The computation involves the use of multiple threads to process the dif-
ferent spectral elements within an interior or interface region, where an OpenMP
thread loops over the GLL points in an element, computes the displacement gra-
dients and stresses at each GLL point, performs the integration, and updates the
forces array, which is shared by all threads. The update involves a synchronized
write to the memory, which is achieved using OpenMP locks by maintaining
a lock for each shared GLL point; a more flexible and scalable approach com-
pared to using either a critical or named critical sections. Pseudocode for the
evalutation of the forces is presented in Algorithm 1.
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for region=interface:interior

#pragma omp for

for e=1:N_e // in region

for p,q,r=1:N+1 // each GLL point

Compute displacement gradients

Compute stresses

Integrate

omp_set_lock at GLL point pqr

Update global forces array

omp_unset_lock at GLL point pqr

end

end

if region==interface

MPI_Isend then MPI_Irecv forces on duplicate GLL points

end

MPI_WaitAll

end

Algorithm 1. Pseudocode for computation of forces at each time step.

2.3 Experimental Setup

Experiments were performed on two different systems, namely an IBM Blue
Gene/Q and the Intel based ‘Stampede’ supercomputers. Each Blue Gene/Q
compute node contains a 16 core 1.6 GHz A2 processor, with 16 GB of DDR3
memory. Each core supports four-way Symmetric Multithreading (SMT) and
in our implementation uses 64 threads per node. Each core has a Quad Float-
ing Point Unit (FPU) supporting 4-way double precision SIMD operations. The
code was compiled with the IBM XLC compiler. The Stampede compute nodes
contain two Intel Xeon E5-2680 8 core (Sandy Bridge) at 2.7 Ghz, one Intel
Xeon Phi SE10P 61 core (Knights Corner) coprocessor at 1.09 GHz, and 32 GB
of DRAM. The Sandy Bridge core has 256-bit vector registers and can be pro-
grammed using the 256-bit vector intrinsics. The Xeon Phi coprocessor is a Many
Integrated Cor architecture, the basis of which is a light-weight x86 core with
in-order instruction processing, coupled with heavy-weight 512bit SIMD regis-
ters and instructions. With these two features the Phi die can support 61 cores,
and can execute 8 double precision SIMD instructions. The code was compiled
and run using Intel Composer XE 2013 and Intel MPI Library 4.1.

The nature of the algorithm is such that most computations required at a
GLL point, such as the displacement gradients in the ξi and xi coordinates for
example:

∂ui

∂ξ1
=

N+1∑

f=1

(
∂
f

∂ξ1
ui

) ∣
∣
∣
ξ1,p

,
∂ui

∂x1
=

∂ui

∂ξ1

∂ξ1

∂x1
+

∂ui

∂ξ2

∂ξ2

∂x1
+

∂ui

∂ξ3

∂ξ3

∂x1
(12)

can be performed in a vectorizable fashion for i ∈ [1, 2, 3], with similar expres-
sions for displacement gradients in other directions, and with similar operations
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for the computation of stresses and the integration. Taking advantage of this
fact we used the QPX intrinsics on Blue Gene/Q such as vec mul, vec madd for
example, to perform multiply and multiply-add operations respectively, using
3 of the 4 available execution slots. Despite not using the full capacity of the
floating point unit, this approach significantly improves performance without
requiring development of a more complex algorithm. With the Sandy Bridge
core the same approach is also used, but with the AVX intrinsics. With the MIC
architecture on the other hand, the ability to perform 8 double precision SIMD
instructions would mean that this approach would make far less efficient use of
the SIMD registers. To test its full capacity a restriction was made to 7th order
Lagrange polynomials in the discretization (hence N +1 = 8) and the algorithm
for the computation of forces was restructured so that rather than vectorize
the computation of quantities in i ∈ [1, 2, 3], terms in the Lagrange polynomial
f ∈ [1−N+1] (12) were vectorized with KNC mutliply and a reduction instrinsic
such as mm512 mul pd and mm512 reduce add pd respectively.

3 Results and Discussion

To test the scalability of the solver, both strong and weak scaling runs were
performed on each system for a simulation of the forward wavefield only, without
checkpointing (since the nature of the algorithm means that the adjoint and β
fields will scale in the same way) applied to the SEG/EAGE Salt Model (Fig. 3),
where the subsurface material properties were interpolated onto a SEM grid
of the equivalent domain. On each Blue Gene/Q compute node 1 MPI process
was instantiated and multiple threads were instantiated on the 16 cores. To test
the distributed memory parallelization, Figs. 4(a) and (b) present the speedup
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Fig. 4. Strong scaling results for the forward solver presenting (a) speedup and (b) par-
allel efficiency for an internode run, testing the distributed memory parallelization on
Blue Gene/Q (Color figure online).
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and parallel efficiency for a grid comprising approximately 5.5 billion degrees of
freedom which is distributed over increasingly more compute nodes. As can be
observed the solver scales well out to 2048 compute nodes (which is in fact two
Blue Gene/Q ‘racks’). To test the shared memory parallelization Figs. 5(a)–(b)
present the speedup and parallel efficiency within a single compute node for a
grid comprising approximately 6.4 million degrees of freedom. As can be observed
the solver scales reasonably well to 16 threads per node. With 32 and 64 threads
per node however, the hardware threading capability is being utilized, which
shows an improvement but decreasing parallel efficiency, as expected. To test the
weak scalability Fig. 6 presents the run time for a sample 500 time steps with grid
portions comprising 6.4 million degrees of freedom per MPI process, implying
that with 1024 compute nodes the total grid size comprises approximately 6.5
billion degrees of freedom. As can be observed the solver performs reasonably
well requiring approximately 13 % greater run time for a grid approximately one
thousand times larger. Figures 7(a) and (b) present the speedup and parallel
efficiency for the grid comprising approximately 5.5 billion degrees of freedom
on Stampede. As can be observed the solver scales reasonably well out to 512
compute nodes. The speedup on Stampede is less than that on Blue Gene/Q on
for large node runs, the reason for which could be that the topology of nodes
allocated on Stampede are in general irregular, whereas as on Blue Gene/Q
the nodes allocated for a job have a structured topology resulting in good MPI
communication performance.
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Fig. 5. Strong scaling results for the forward solver presenting (a) speedup and (b) par-
allel efficiency for an intranode run, testing the shared memory parallelization on Blue
Gene/Q.

As previously mentioned, Stampede compute nodes are equipped with Intel
Xeon Phi (MIC) accelerators. In general, there are two ways in which MIC
accelerator could be used. Once a portion of the grid is allocated to a node, the
elements in the domain could be distributed between host and MIC, for instance,
the host operating on interface elements which involves MPI communication,
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Fig. 6. Weak scaling results for the forward solver presenting the run time for 500 time
steps on Blue Gene/Q (Color figure online).
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Fig. 7. Strong scaling results for the forward solver presenting (a) speedup and (b) par-
allel efficiency for an internode run, testing the distributed memory parallelization on
Stampede.

and the interior elements processing could be offloaded to MIC. However, this
approach involves the high overhead of data transfer across host and MIC each
time step to update the displacement gradients and global force array. The other
approach is to assign a portion of the grid to the MIC, and an MPI process
running on each MIC. This could be accomplished using the symmetric MPI
methodology between host and MIC. It becomes crucial in this approach to
balance the compute load between CPU and MIC. Since the core computation
part in the code involves irregular memory accesses, and hence poor last level
cache locality, the memory access problem becomes even severe on MIC where
a lot of threads compete for the memory interface controller. According to our
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Fig. 8. Strong scaling results for the forward solver comparing CPU and symmetric
CPU+MIC, presenting (a) runtime for an internode run testing the distributed memory
parallelization and (b) speedup for a MIC intranode run testing the shared memory
parallelization on Stampede.

experiments, we identified that on average, the code runs on a MIC (using 120
threads) 3 times slower than the host (using 16 cores). So, the approach used to
balance the load is to have 3 MPI tasks run on the CPU each using 5 threads and
1 MPI task runs on the MIC. Figure 8(a) presents strong scaling results for both
cases for a grid comprising approximately 115 million degrees of freedom, using
only the host to run 3 MPI processes with 5 OpenMP threads per process, and
additionally running 1 MPI task with 120 threads on the MIC. As the results
show, using the MIC, results in around 34 % improvement in performance. To
test the shared memory parallelization Fig. 8(b) presents the speedup within
a MIC for a grid comprising approximately 32 million degrees of freedom. As
can be observed the solver scales reasonably well to 60 threads per MIC. With
120 and 180 threads per MIC, the hardware threading capability (of which the
MIC has support up to 4 hardware threads per core) are utilized, which show
an improvement, but decreasing parallel efficiency. Since the code uses 512-bit
vector intrinsics, and since the vector unit is shared across the threads in a core,
there is no improvement when 240 threads are used.

4 Conclusions

A communication-avoiding, matrix-free formulation and parallelization strat-
egy for a 3D elastic spectral element forward, adjoint, and gradient solver has
been introduced. The proposed algorithmic framework requires minimal storage
and communication and shows remarkable scalability on large computational
domains. Future work will include the addition of the variational approach (using
∂mJ to update the earth model and thereby completing the FWI algorithm) and
integrating the solver with the cloud-based delivery model.
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Abstract. Numerically addressing scientific questions such as simulat-
ing drug diffusion through the human stratum corneum is a challenging
task requiring complex codes and plenty of computational resources. The
UG4 framework is used for such simulations, and though empirical tests
have shown good scalability so far, its sheer size precludes analytical
modeling of the entire code. We have developed a process which com-
bines the power of our automated performance modeling method and the
workflow manager JUBE to create insightful models for entire UG4 sim-
ulations. Examining three typical use cases, we identified and resolved a
previously unknown latent scalability bottleneck. In collaboration with
the code developers, we validated the performance expectations in each
of the use cases, creating over 10,000 models in less than a minute, a feat
previously impossible without our automation techniques.

1 Introduction

A broad variety of research questions in natural sciences is formulated in terms
of partial differential equations. The range of applications reaches from clas-
sical continuum field descriptions - such as fluid dynamics, electromagnetism,
or structure mechanics - over biological settings - e.g., drug diffusion through
the human skin or computational neuroscience - to non-physical settings such as
computational finance. Numerical simulations can be used to predict or compare
with measured physical behavior and help to gain insight into the underlying
physical processes. A software framework focusing on the grid-based solutions
of these problems is UG4 [28].

Such simulation codes demand increased computational resources to perform
larger and more refined simulations. Therefore, they must scale to the largest
computing clusters to benefit from available computing power. However, code
developers face two challenges: First, the source code is large, making manual
analysis and optimization of the code time consuming and error prone. This
creates a strong need for an automated workflow supporting scaling analysis.

c© Springer-Verlag Berlin Heidelberg 2015
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Second, code developers have to consume lots of computing resources for test-
ing and can only run tests up to their currently available process counts. This
requires a workflow that allows performance modeling using data from smaller
process counts and hence offers the possibility to resolve performance bottle-
necks at an early stage of code development. As a byproduct, the models for
the resource consumption provide users with an estimate for the requirements
of production runs.

We expanded the automated performance modeling approach by Calotoiu
et al. [7] to meet the mentioned requirements. This approach creates performance
models from a small number of test measurements with a small numbers of
processes. The models are used to detect potential performance bottlenecks and
to predict the resource consumption at larger core counts. We have combined this
approach with the workflow manager JUBE [30] to facilitate the submission and
collection of numerous test simulations that serve as inputs for the performance
modeling approach. In this paper we focus on the applicability of our approach in
realistic code development scenarios and show how scalability issues are detected.

We demonstrate the power of our automated performance modeling process
by applying it to the software framework UG4. Given its approximately half a
million lines of C++ code, manually modeling the performance of UG4 is practi-
cally impossible, which is why it provides a good example for the benefits of our
approach. The major contributions of our work are:

– An automated modeling approach in combination with an automated work-
flow manager for a fast and streamlined detection of scalability issues.

– Demonstration of the tool chain by applying it to the large simulation frame-
work UG4 focusing on human skin permeation simulations.

– Discussion of two performance issues detected by our approach.
– Validation of the UG4 scaling behavior.

The remainder of this paper is organized as follows. In Sect. 2, the UG4
simulation environment is presented, Sect. 3 outlines the modeling approach
and Sect. 4 gives an overview on the benchmark environment JUBE. Then, in
Sect. 5 we present three test cases where the tools are used in order to analyze
the UG4 simulation code. Sections 6 and 7 are dedicated to related work and
concluding remarks.

2 The UG4 Simulation Framework

The UG4 simulation framework (unstructured grids 4.0) [28] addresses the
numerical solution of partial differential equations and is implemented as a
C++ library. It uses grid-based discretization methods such as the finite ele-
ment method or the vertex-centered finite volume method [6]. Complex physical
geometries are resolved by hybrid, unstructured, adaptive, hierarchical grids in
up to three space dimensions. In addition, a strong focus of the software frame-
work is on efficient and highly scalable solvers, using algebraic and geometric
multigrid methods. The framework is parallelized using MPI. To simplify the
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Fig. 1. Illustration for a 1d parallel multigrid hierarchy distributed onto two processes.
Parallel copies are identified via horizontal (darker blue) and vertical interfaces (lighter
blue) (Color figure online)

usage, a separate library called PCL (parallel communication layer) has been
developed, which encapsulates the MPI calls and which provides lightweight struc-
tures for graph-based parallelization. A key feature of PCL is that parallel copies
of objects are not identified by global IDs. Instead, containers, called interfaces,
are used to store the parallel copies on each process in a well-defined order such
that identification can be done by these interfaces in an efficient way [20,21,28].

A typical simulation run consists of several phases, each with its own char-
acter, especially with respect to parallelization. At first, a computing grid is
required. In this specific work, we proceed as follows: A coarse grid describing
the domain is loaded onto one process. The grid is refined, creating new levels of
the multigrid hierarchy and after some refinements the finest grid level is distrib-
uted to empty processes, proceeding with the refinement in parallel. This process
can be iterated, successively creating a tree structure of processes holding parts
of the hierarchical grid. The grid refinement is mainly performed process-wise
and communication is only needed at redistribution stages [20]. An illustration
of the resulting hierarchy for a 1d distribution is shown in Fig. 1.

On the grid, the partial differential equations are discretized by assembling
large sparse matrices and corresponding vectors based on the grid element contri-
butions. Using only lower-dimensional parallel overlap (i.e., each full-dimensional
element is present on exactly one process, but the lower-dimensional boundary
has parallel copies on several processes), the assembly process can be performed
by traversing the full-dimensional elements only and therefore it is an inherent
parallel process. Given optimal load balancing, i.e., an equal distribution of the
elements across the processes, perfect scalability is expected for the assembly.

The most difficult part, from a parallelization perspective, is the subsequent
solution of the matrix equation. Since the algebraic structures are distributed,
solvers naturally involve parallel communication. Multigrid methods are of opti-
mal complexity (linear in the degrees of freedom) and thus a good candidate
for weak scaling. They compute corrections iteratively to approximate the solu-
tion. On every level, simple iterative schemes, called smoothers, are applied and
the problem is transferred to coarser grids in order to compute coarse correc-
tions [6,13]. Our multigrid solver is based on the above-mentioned hierarchically
distributed multigrid. Especially on coarser grid levels, where less computational
work has to be done, fewer processes are involved in the solution algorithm. In
addition, Krylov methods such as CG and BiCGStab are implemented [14].
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Their parallelization is mainly based on the parallelization of the matrix-vector
and vector-vector products that appear in their formulation.

3 Automated Performance Modeling

We developed an automatic performance-model generator [7,8] for the purpose
of simplifying the identification of scalability bottlenecks in complex codes. Our
targets are scalability bugs defined as parts of a code that scale worse than
expected. To this end, we create performance models for each part of the code
at the level of function calls to better identify potential problems. Our focus is
to create simple, easy to read, insightful models quickly, as opposed to detailed,
precise models. In our studies, not only execution time is considered as a perfor-
mance metric, but also requirements such as the number of bytes injected into
the network or the number of floating-point operations are taken into account.
This helps developers not only to uncover the existence of potential scalability
bottlenecks, but also to explain their causes. For brevity, we will only present a
short overview of the method.

When conducting a scalability study, our tool takes measurements of metrics
(e.g., time, flops, bytes sent, . . . ) at different processor counts {p1, . . . , pmax} for
each individual program region (e.g., function call) as input. This is accomplished
by instrumenting the application and generating parallel profiles at runtime,
which are then analyzed post-mortem. Models describing the growth are gener-
ated for each region, called kernel, and can be analyzed either in an interactive
GUI, which displays a call tree of the application annotated with performance-
model information, or in text form as a ranked list, ordered by either predicted
execution time at a larger scale pt > pmax, or asymptotic by behavior.

3.1 Model Generation

Our model generator rests on the observation that the models describing the
behavior of parallel programs as a function of the number of processes are usu-
ally finite combinations of terms composed of polynomials and logarithms. For
practical purposes, models with two or three terms are often sufficient. The per-
formance model normal form (PMNF) below describes our representation, which
covers the practical cases encountered so far by virtue of the way that computer
algorithms are designed.

f(p) =
n∑

k=1

ck · pik · logjk
2 (p)

Moreover, the sets I, J ⊂ Q from which the exponents ik and jk are chosen
from can be quite small and still allow a large number of different behaviors to
be modeled. After creating the sets I and J and choosing n, all possible model
assignments, called model hypotheses, can be tried and the best candidate is then
selected via cross-validation [19].
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Fig. 2. JUBE workflow ([30])

3.2 Recursive Multigrid Extension

One of the core assumptions of our method is that a code will generate the same
call tree for each of the different processor counts {p1, . . . , pmax}. This allows us
to traverse the call tree and compare each individual function call and its behav-
ior. However, within a weak scaling study, the number of grid levels increases
with the process count. Since the multigrid algorithm is based on recursive calls
for each grid level, the involved code kernels are visited recursively more often.
This leads to a different call tree for different processor counts, which required
us to develop a special method to be able to analyze multigrid applications. To
handle this issue, we developed an extension to our method that compares the
different performance measurements and creates a call tree containing only such
kernels which are present in all measurements. The information of kernels which
have to be removed is not lost, but rather added to the parent kernel of the one
pruned from the call tree.

4 Automated Benchmarking Environment

The automated modeling of numerical software codes demands numerous exper-
iments with varying execution parameters – such as process counts, used solvers,
or physical parameters – and multiple repetitions, in order to ensure statistical
significance. Configuring, compiling, running, verifying its correctness, and col-
lecting results means a lot of administrative work and produces a large amount
of data to be processed. Without a benchmarking environment, all these steps
have to be performed manually. To facilitate all these tasks, Forschungszentrum
Jülich provided and improved JUBE (Juelich Benchmarking Environment) [30],
a script-based framework created to easily perform benchmark runs for different
sets of parameters, execution sizes, compilation options, computer systems, and
to evaluate the results thereafter.

Figure 2 shows the steps that are performed by JUBE in sequence: prepa-
ration, compilation, and execution, where each step might exist multiple times.
Each of these steps can be adjusted to a given code or application by modifying
XML-based setup scripts. The created runs can be verified and parsed by auto-
matic pre- and post-processing scripts that filter out the desired information
and store it in a more compact form for manual interpretation. With JUBE, it
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Fig. 3. Computing grids for the skin problem showing corneocytes (green) and lipid
channels (red). Left: geometry ratios. Right: 3d grid for 10 layers of corneocytes (Color
figure online)

is easy to create combinatorial runs of multiple parameters. For example, in a
scaling experiment, one can simply specify multiple numbers of processes, differ-
ent solver setups, and physical parameters. JUBE will create one experiment for
each possible combination, submit all of them to the resource manager, collect
all results, and display them together.

5 Results

Using the tools from Sects. 3 and 4, we analyze the UG4 code in three substudies:
In the first two tests, we focus on modeling drug diffusion through the human
skin. First, we analyze the code behavior under weak scaling, then we vary
the diffusivity of the skin cells over several ranges of magnitude. In the third
study, we compare two different types of solvers, again under weak scaling: the
geometric multigrid solver and the unpreconditioned conjugate gradient (CG)
method.

Drug Diffusion though the Human Skin. The outermost part of the epi-
dermis (stratum corneum) consists of flattened, dead cells (corneocytes), that
are surrounded by an inter-cellular lipid. The stratum corneum is the natural
barrier to protect underlying tissue, but still allows for the throughput of certain
concentrations (e.g., drugs, medicine). The latter process can be modeled by a
diffusion process, in which the diffusion coefficient within the corneocytes differs
from the one in the lipid. Different geometric representations of the stratum
corneum have been used to compute the diffusional throughput [17].

In the following two studies, we use a brick-and-mortar model (Fig. 3).
Assuming diffusion driven transport in the two subdomains s ∈ {cor, lip} (cor-
neocyte, lipid), the governing equation is given by

∂tcs(t,x) = ∇ · (Ds∇cs(t,x)).

The diffusion coefficient Ds is assumed to be constant within each subdomain
s ∈ {cor, lip}, but may differ between subdomains. For the scalability analysis,
we compute the steady state of the concentration distribution.

As solver, we employ a geometric multigrid method, accelerated by an outer
conjugate gradient method. The multigrid uses a damped Jacobi smoother, two
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Table 1. Skin 3d study: Models for kernels creating MPI communicator groups (top),
sparse matrix assembling, and multigrid (bottom). |1 − R2|, the absolute difference
between R2 and the optimum scaled by 10−3, which can be considered a normalized
error, confirms the good quality of all models

(resp. three) smoothing steps in 2d (resp. 3d), a V-cycle, and an LU base solver.
The iterations are completed once an absolute residuum reduction of 10−10 is
achieved. The main difficulty of this problem is the bad aspect ratio of the
computational domain (0.1μm vs. 30μm for the lipid channels). This is resolved
by three (resp. five) steps of anisotropic refinement to enhance those ratios. Base
solvers are applied at a level where ratios are satisfactory.

Weak-scaling Analysis of the 3d Skin Model. Using the 3d skin model
described above, we fix the diffusion parameter to Dcor = 10−3. Table 1 shows
models for a scalability issue we detected. In these kernels, we create MPI com-
municator groups for each level of the multigrid hierarchy, excluding processes
from the group that do not own a grid part on the level. In order to inform
every process on these memberships, we employ an MPI Allreduce for an array
of length p, resulting in a p · O(MPI Allreduce) dependency, that will lead
to scalability issues for large process counts. In these kernels, we substituted
MPI Comm split for MPI Allreduce, also eliminating the linearly growing input.
First tests do not show a significant improvement in runtime, however now the
dependency is O(MPI Comm split), whose scaling properties have been analyzed
for exascale purposes [22]. Enhanced algorithms for MPI Comm split are known
to scale with O(log2 p) [24].

Besides the above-mentioned issue, no further scalability bugs were detected,
i.e., no kernel scales worse than logarithmically (see Table 1 for examples). The
accumulated wallclock times for coarse-grain kernels (Fig. 4) show good scaling
behavior, and bounded iteration counts are observed. Our empirical approach
even reveals a rather small but apparent O(log2

2 p) dependent kernel during solver
initialization where the matrix diagonal is communicated.
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Fig. 4. Left: Measured wallclock times (marks) and models (lines) for the assembly,
the multigrid solver initialization, and the solution of the skin 3d problem. Right, top:
Number of grid refinements (L), degrees of freedom (DoF) and number of iterations of
the solver (ngmg). Right, bottom: Performance models for the kernels

Fig. 5. Instationary (left) and stationary (right) solution for a 2d geometry

Varying the Diffusion Parameter. Our second substudy highlights the
demand for a workflow manager. Biological case studies can require a variation
of input parameters over 10 orders of magnitude. Combining this with 5–10 dif-
ferent process counts in scaling studies, several solver setups and repetitions for
jitter reduction, easily hundreds of measurement runs have to be performed. We
use the JUBE manager for this task. This allows us to easily schedule, collect, and
analyze these runs. As an illustration, we present a study resembling results by
Nägel et al. [17]: Fixing the lipid diffusion coefficient to Dlip = 1, we vary the dif-
fusion in the corneocytes in the range of Dcor = 102, 101, . . . , 10−7, 10−8. Figure 5

Table 2. Results of the parameter variation study of a 2d skin problem using 1024
MPI processes on 9 levels (43,476,225 DoFs)

Dcor 102 101 100 10−1 10−2 10−3 10−4 10−5 10−6 10−7 10−8

Fbot 1.7e1 9.4e0 1.7e0 1.9e−1 2.1e−2 3.1e−3 1.0e−3 8.0e−4 7.8e−4 7.7e−4 7.7e−4

niter 27 26 26 26 26 26 25 25 25 25 25
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Fig. 6. Left: Measured times (marks) and models (lines) for the assembling and solver
execution for the conjugate gradient (CG) and multigrid (GMG) methods. Right, top:
Number of grid refinements (L), degrees of freedom (DoF) and number of solver itera-
tions (ncg, ngmg). Right, bottom: Performance models for the kernels

illustrates the solution at an early time step and the stationary case. The biolog-
ically interesting fluxes at the bottom of the domain, Fbot :=

∫
∂Ωbot

∇c dS, and
the iteration count for the multigrid solver are collected using JUBE (Table 2).
The relatively constant iteration count over the whole range of physical parame-
ters shows the robustness of the solver. The performance validation of the solver
could have never been so thorough without the use of our automated process,
allowing us to handle, analyze, and refine hundreds of experimental runs and to
provide insights to developers as quickly as possible.

5.1 Analysis of Algebraic Solvers

This section demonstrates the usability of the presented approach to validate
performance expectations. We analyze two solvers with known weak scaling
properties: the nicely scaling multigrid method and the unpreconditioned con-
jugate gradient method with known weak-scaling issues. Our tests will confirm
the theoretical expectations.

Weak Scaling Comparison of Multigrid and Conjugate Gradient. To
allow a theoretical analysis, we choose a well known test problem: For the model
equation −Δc(x) = f(x),x ∈ [0, 1]2, discretized on a regular grid with mesh
size h, it is known that the extreme eigenvalues of the resulting matrix are
given by λmin = 8h−2 sin2(πh/2) and λmax = 8h−2 cos2(πh/2) and therefore,
the condition number is given by κ := λmax/λmin = tan−2(πh/2) [14]. For the
CG method, it is known that the error reduction factor in each iteration step
can be estimated by

√
κ−1√
κ+1

[14] and the number of iterations needed to achieve
a prescribed reduction of the initial error by a factor of δ can be estimated by
niter(δ) ≤ 1

2

√
κ ln(2

δ )+1. For the model problem under consideration and a fixed
reduction factor δ, one can use the known condition number, the Taylor-series
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Table 3. Models for CG solver kernels in the weak scaling study. |1−R2|, the absolute
difference between R2 and the optimum scaled by 10−3, which can be considered a
normalized error, confirms the good quality of all models

approximation of tan, and the fact that 1
h is proportional to 2nref , where nref is

the number of refinements of the unit square, to estimate that the number of
iterations niter ∼ √

κ = tan−1(πh/2) ≈ 2
πh ∼ 1

h ∼ 2nref is related to the grid
refinement and will increase roughly by a factor of two with each refinement.
In contrast, for the multigrid method it is known that the reduction rate is
independent of the mesh size and, thus, a constant number of iterations can be
expected [13].

The multigrid results are equivalent to the skin tests. However, for the unpre-
conditioned conjugate gradient method, our empirical performance models reveal
an O(

√
p) dependency, expected via the explanation above. We increase the

process count and work load by a factor of four under weak scaling. Ideally, a
constant time is expected, but due to the increase by a factor of two for the iter-
ation count, models as shown in Table 3 are observed. We emphasize that one
invocation of matrix-vector or vector-vector products does scale and the increase
is due to the iteration count increase. A remedy of this issue can not be achieved
by implementation alone, but must be achieved by a change of the mathematical
method, e.g., using multigrid. Figure 6 shows a wall-clock time comparison.

6 Related Work

Performance modeling has a long history. Manual models proved to be very effec-
tive in describing many qualities and characteristics of applications, systems, and
even entire tool chains [5,18]. Recent approaches advocate source-code annota-
tions [27] or specialized languages [25] to support developers in the creation of
analytical performance models.

Various automated modeling methods exist. Many of these focus on learn-
ing the performance characteristics automatically using various machine-learning
approaches [15]. Zhai et al. extrapolate single-node performance to complex par-
allel machines using a trace-driven network simulator [32], and Wu and Müller
extrapolate traces to predict communications at larger scale [31]. Similar to our
method, Carrington et al. extrapolate trace-based performance measurements
using a set of canonical functions [9].
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Numerous codes for the solution of partial differential equations exist, and
several employ multigrid methods. There are a number of highly scalable geo-
metric multigrid methods [4,12,23,26,29] and highly scalable algebraic multi-
grid [1–3]. Gahvari and Gropp model the performance of geometric [11] and
algebraic multigrid methods [10]. Nägel et al. present an overview of how to
treat skin permeation numerically [16].

7 Conclusion

UG4 is a framework with around half a million lines of code employed to solve
problems such as drug diffusion through the human skin. With UG4, we have
demonstrated the power of our performance modeling process as a fast and
streamlined way to detect scalability bugs and validate performance expectations
of simulation codes. The JUBE workflow manager vastly simplifies and acceler-
ates the acquisition of performance measurements and our performance modeling
method automates model creation. After removing a previously unknown per-
formance bottleneck and validating the scalability of entire simulations, we can
confidently claim that UG4 is ready for exascale.
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References

1. Baker, A., Falgout, R., Kolev, T., Yang, U.: Multigrid smoothers for ultra-parallel
computing. SIAM J. Sci. Comput 33, 2864–2887 (2011)

2. Baker, A.H., Falgout, R.D., Gamblin, T., Kolev, T.V., Schulz, M., Yang, U.M.:
Scaling algebraic multigrid solvers: on the road to exascale. In: Competence in
High Performance Computing 2010, pp. 215–226. Springer (2012)

3. Bastian, P., Blatt, M., Scheichl, R.: Algebraic multigrid for discontinuous galerkin
discretizations of heterogeneous elliptic problems. Numer. Linear Algebra Appl.
19(2), 367–388 (2012)

4. Bergen, B., Gradl, T., Rude, U., Hulsemann, F.: A massively parallel multigrid
method for finite elements. Comput. Sci. Eng. 8(6), 56–62 (2006)

5. Boyd, E.L., Azeem, W., Lee, H.H., Shih, T.P., Hung, S.H., Davidson, E.S.: A hier-
archical approach to modeling and improving the performance of scientific appli-
cations on the KSR1. In: Proceedings of the International Conference on Parallel
Processing (ICPP), pp. 188–192 (1994)

6. Braess, D.: Finite elements: Theory, Fast Solvers, and Applications in Solid
Mechanics. Cambridge University Press, Cambridge (2001)

7. Calotoiu, A., Hoefler, T., Poke, M., Wolf, F.: Using automated performance mod-
eling to find scalability bugs in complex codes. In: Proceedings of the ACM/IEEE
Conference on Supercomputing (SC13). ACM, Denver, CO, USA, November 2013



530 A. Vogel et al.

8. Calotoiu, A., Hoefler, T., Wolf, F.: Mass-producing insightful performance models.
In: Workshop on Modeling and Simulation of Systems and Applications. University
of Washington, Seattle, Washington, August 2014

9. Carrington, L., Laurenzano, M., Tiwari, A.: Characterizing large-scale HPC appli-
cations through trace extrapolation. Parallel Process. Lett. 23(4), 1340008 (2013)

10. Gahvari, H., Baker, A.H., Schulz, M., Yang, U.M., Jordan, K.E., Gropp, W.: Mod-
eling the performance of an algebraic multigrid cycle on HPC platforms. In: Pro-
ceedings of the International Conference on Supercomputing, pp. 172–181. ACM
(2011)

11. Gahvari, H., Gropp, W.: An introductory exascale feasibility study for FFTs and
multigrid. In: International Symposium on Parallel and Distributed Processing
(IPDPS), pp. 1–9. IEEE (2010)
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Abstract. We introduce a task-parallel framework for non-intrusive
Bayesian Uncertainty Quantification and Propagation of complex and
computationally demanding physical models on massively parallel com-
puting architectures. The framework incorporates Laplace asymptotic
approximations and stochastic algorithms along with distributed numer-
ical differentiation. Sampling is based on the Transitional Markov Chain
Monte Carlo algorithm and its variants while the optimization tasks asso-
ciated with the asymptotic approximations are treated via the Covari-
ance Matrix Adaptation Evolution Strategy. Exploitation of task-based
parallelism is based on a platform-agnostic adaptive load balancing
library that orchestrates scheduling of multiple physical model evalu-
ations on computing platforms that range from multicore systems to
hybrid GPU clusters. Experimental results using representative applica-
tions demonstrate the flexibility and excellent scalability of the proposed
framework.

Keywords: Task-based parallelism ·Bayesian uncertainty quantification

1 Introduction

Computational models for scientific and engineering problems are developed
based on the application of first principles, conservation laws and expert knowl-
edge. Recent technological advances in sensing, measurement and imaging tech-
nologies provide an unprecedented opportunity to assist model development with
an abundance of data. Data driven model discovery and evaluation of their pre-
dictive capabilities as in the context of Uncertainty Quantification and Propa-
gation (UQ+P) is currently a topic of renewed interest [1]. Fusing both expert
knowledge and experimental observations, Bayesian inference stands amongst
the prevalent UQ+P techniques. It is used for quantifying and calibrating uncer-
tainty models, as well as propagating these uncertainties in engineering simu-
lations to achieve updated robust predictions of system performance, reliability
and safety [2]. Common computational tools for performing Bayesian UQ+P
c© Springer-Verlag Berlin Heidelberg 2015
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include Laplace methods of asymptotic approximation [3] and stochastic algo-
rithms such as Markov Chain Monte Carlo (MCMC) and its variants [4].

Bayesian UQ+P tools involve global optimization problems, sampling from
probability distributions, as well as evaluating high dimensional integrals. The
computational challenge of Bayesian tools is the large number of model evalu-
ations required, specifically in cases of complex engineering models with high
resources requirements and time to solution. The need for multiple model evalu-
ations leads, on average, to long turn-around time for Bayesian analysis, limiting
its applicability when swift decisions are needed as in e.g. the case of earthquake
early warnings system [5]. The ability to efficiently harness available computa-
tional resources is paramount for the Bayesian UQ+P framework and defines its
applicability in engineering problems. The situation can be improved by advanc-
ing the computational efficiency of the models and by developing efficient UQ+P
algorithms and computational frameworks that exploit massively parallel com-
puting architectures. The focus of this paper is the latter.

A small number of parallel software frameworks for uncertainty quantification
studies are currently available to the scientific community, with a non-exhaustive
list containing: DAKOTA [6], PSUADE [7] and QUESO [8]. The parallelization
of these systems has been mostly based on MPI and either follows a master-
worker approach or applies domain decomposition to construct processor groups
where simulations are assigned for execution. Most systems exploit only one
level of parallelism, otherwise they rely on cumbersome implementations that
apply hard partitioning of processing units. In addition, they lack runtime sup-
port for asynchronous nested task-based parallelism and adaptive load balanc-
ing and they do not take into account heterogeneous computing architectures.
Consequently, they cannot counteract the increasing number of sources of load
imbalance, such as variable processing power and simulation time, hardware and
software faults and the irregularity of UQ algorithms.

We present a Bayesian computational framework for UQ that aims to address
the above mentioned issues. The framework is based on the TORC task-parallel
library for clusters [9], which is designed to provide unified programming and
runtime support for computing platforms that range from single-core systems to
hybrid multicore-GPU clusters and heterogenous Grid based supercomputers.
Within this framework, we implement population based MCMC methods, the
Transitional Markov Chain Monte Carlo (TMCMC) [10], Approximate Bayesian
Computational Subset-Simulation (ABC-SubSim) [11], while the Covariance
Matrix Adaptation Evolution Strategy (CMA-ES) [12] is used as an optimiza-
tion tool. Note that all the algorithms implemented have highly parallel task
graphs and thus are ideally suited for distributed and parallel computing.

2 Bayesian Formulation

In the Bayesian framework [13], the uncertainty in a parameter set θ ∈ Rn of a
model class M simulating an engineering system is first quantified using a prior
probability distribution function (PDF) π(θ|M) and then updated using the
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Bayes theorem to compute the posterior PDF p(θ|D,M) based on available mea-
surement data D as: p(θ|D,M) = p(D|θ,M)π(θ|M)/p(D|M) where p(D|θ,M)
is the likelihood of observing the data from the model class and p(D|M) is the
evidence of the model class. Assuming that the model predictions g(θ|M) and the
measurement data D = {ŷ} satisfy ŷ = g(θ|M) + e, where the prediction error
term e , accounting for measurement, computational and modeling errors, is
normally distributed with zero mean and covariance matrix Σ, the likelihood
p(D|θ,M) is given by [2] p(D|θ,M) = |Σ(θ)|−1/2(2π)−n/2 exp

[− 1
2J(θ;M)

]

where J(θ;M) = [ŷ − g(θ|M)]T Σ−1(θ)[ŷ − g(θ|M)], | · | denotes determinant,
and the parameter set θ is augmented to include parameters that are involved
in the model structure of the correlation matrix Σ.

Bayesian computational tools include of stochastic algorithms and asymp-
totic approximations. Stochastic algorithms include variants of the MCMC tech-
nique [14] that are used to draw samples from the posterior PDF. TMCMC
allows for the efficient execution of a large number of full system simulations
on heterogeneous clusters/computers as described in Sect. 3, and can capture
complex posterior PDFs. Using the Bayesian central limit theorem for large
amounts of data, the posterior distribution of the model parameters can be
asymptotically approximated by a Gaussian distribution centered at the most
probable value θ̂ = argminθ L(θ,M) of the model parameters, obtained by max-
imizing the posterior PDF p(θ|D,M) or equivalently minimizing the function
L(θ;M) = − ln p(θ|D,M) = 1

2J(θ;M)− ln π(θ|M) with covariance matrix equal
to the inverse of the Hessian of the function L(θ,M) evaluated at the most
probable value θ̂.

The asymptotic approximations for Bayesian model parameter and evidence
estimation involve the solution of an optimization problem and the calculation
of a single Hessian matrix [3]. Regarding the Hessian calculations, finite dif-
ference approximations of the gradient of the objective function scale up the
computational effort by a factor proportional to the number of uncertain para-
meters. Computations can be performed in parallel since the derivatives of the
objective function can be executed simultaneously, leaving the Time-to-Solution
(TTS) independent of the number of uncertain parameters. Herein, numerical
derivatives are calculated when needed fully in parallel using the non-intrusive
adaptive parallel numerical differentiation library [15]. Evolution strategies are
highly parallel and among several classes of evolution algorithms, CMA-ES [12]
has been shown not only to to converge fast in particular when searching for a
single global optimum, but to have an easily parallelizable task graph due to its
generation based updating. Herein a task-parallel version of the CMA-ES is used
to solve the single-objective optimization problems arising in Laplace asymptotic
approximations.

In some cases the likelihood is hard to formulate (e.g. in case of stochastic
model M) or hard to evaluate. ABC algorithms then are used to approximate
the likelihood function p(D|θ,M). A major difference of ABC algorithm as com-
pared with standard Bayesian techniques is that it considers model parameters
θ and model outputs x as a pair of random variables and aims at evaluating
the joint posterior distribution p((θ, x)|D,M). This can be done by applying
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Bayes theorem and the chain rule: p((θ, x)|D,M) ∝ p((θ, x)|M)p(D|(θ, x),M) =
p(θ|M)p(x|θ,M)p(D|(θ, x),M). The function p(D|(θ, x),M) has a smaller dis-
crepancy when the outcomes x are closer to the data D. ABC algorithms
replace the equality with an approximation: x ≈ D. If x and D are from a
high-dimensional space, we introduces a vector of summary statistics η(·) to
facilitate an easier comparison. The discrepancy between data and model out-
come is then given by ρ(η(x), η(D)) where ρ(·, ·) is some metric. An approx-
imate joint posterior is defined for a tolerance level δ as pδ((θ, x)|D,M) ∝
p(θ|M)p(x|θ,M)p(ρ(η(x), η(D)) ≤ δ|(θ, x),M) where δ controls the quality of
the posterior. Using the approximate posterior defined above, an ABC algo-
rithm can evaluate the approximate joint posterior by simulating θ ∼ p(θ|M)
and x ∼ p(x|θ,M) and accepting the generated pair (θ, x) if ρ(η(x), η(D)) ≤ δ.

3 Software and Runtime Environment

Aiming at support of both low-cost desktop machines and HPC environments
from our Uncertainty Quantification and Optimization framework, we opted for
a parallelization approach that:

– offers efficient exploitation of multilevel task-based parallelism
– provides ease of programming, hiding low-level parallelization details and thus

facilitating algorithm development
– supports load balancing transparent to the user
– is highly portable and platform-agnostic, adapting automatically to the under-

lying hardware resources.

The Task-Parallel Library. In order to meet the above requirements, we
based the parallel implementation of our tools on the TORC task-parallel
library [9]. TORC provides a programming and runtime environment where
parallel programs can be executed unaltered on both shared and distributed
memory platforms. A TORC parallel application actually consists of multiple
MPI processes that run on the cluster nodes and have one or multiple workers.
Similarly to OpenMP, tasks are decoupled from the workers and thus the library
allows for arbitrary nesting of tasks. Each worker continuously dispatches and
executes tasks, submitted for execution to a set of priority queues. There is a
single set of such queues in each MPI process and tasks are submitted to the
queue that corresponds to the nesting level of parallelism they belong to. Task
and data management are performed asynchronously and transparently to the
user, by utilizing a server thread in each MPI process. The user can query the
execution environment, e.g. number of workers, and specify the local or remote
queue where each task will be submitted for execution. Due to the task stealing
mechanism, idle workers can steal and execute tasks that have been submitted to
a remote queue. An idle worker always try first to extract work from the lowest-
level non-empty local queue. If there is no work available, it tries to steal tasks
from the remote processes but starting from the highest-level queues. There-
fore, the programmer is responsible for the task distribution policy: typically,
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this involves cyclic distribution of first-level tasks among the workers and local
submission of inner-level tasks. Combined with task stealing, this policy favors
stealing of coarse-grain tasks and local execution of deeper levels of parallelism.
In the context of this work, task functions receive as input an evaluation point,
i.e. a set of parameters, and return a value computed at that point. The func-
tion can either include source code supplied by the user or invoke an external
simulation program. The injected user code can embrace intra-node parallelism
expressed with OpenMP directives or TORC tasks. Launching of external soft-
ware is based on the fork-exec system calls while input data and results are
communicated through the local filesystem. We do not pose any restrictions on
the external software, which can be sequential or parallel. If the execution time
of simulations is not high enough to hide the overhead of the launching proce-
dure, a proxy process is created at program initialization for each worker. This
process remains active throughout program execution, minimizing the spawning
overhead by running directly the simulations. In addition, a persistent commu-
nication path based on Unix-domain sockets is established between each worker-
proxy pair, minimizing the communication overheads.

When the application is executed with one process and multiple workers,
the library operates exclusively through hardware shared memory avoiding mes-
sage passing. TORC has been successfully used to provide runtime support to
OpenMP and extensions of it on clusters.

TMCMC. A brief sketch of the TMCMC algorithm [10] is depicted in Algo-
rithm1. At the initialization stage, the algorithm selects randomly C1 points
which will serve as starting points for the MCMC chains for the first generation
of the algorithm. The posterior evaluation for each point can be performed in
parallel, while each evaluation can require a fixed number (Nr) of simulations.
If Nr > 1 then the initialization exhibits two levels of parallelism that can be
fully exploited. Each generation (TMCMC stage) G involves the processing of
CG MCMC chains of variable length, according to the statistics for the set of
accepted points produced by the previous generation. As chains do not perform
the same number of steps, load imbalance is introduced in the algorithm. They
are instantiated with tasks and distributed appropriately to the workers, trying
to balance the total workload among them without relying exclusively on the task
stealing mechanism of TORC. At each step of a chain, the algorithm requires a
posterior evaluation, which in turn may involve multiple independent simulation
runs that are submitted for asynchronous execution as tasks. This exploitation of
second-level parallelism provides more effective utilization of hardware resources
as the higher number of tasks increases concurrency, resulting in better load
balancing and reduced idle time for the workers.

The task stealing mechanism is essential for the efficient management of the
irregular task parallelism exhibited by TMCMC. This irregularity is attributed to
the variable numbers of chains per generation and steps per chain. The complexity
of dealing with this irregularity becomes significantly higher if the execution time
of model evaluations varies. In many cases the execution time cannot be estimated
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Algorithm 1. TMCMC
1 Algorithm TMCMC()

// Initialization
2 θ = {}
3 for each randomly selected starting point c = 1, . . . , C1 do
4 Compute function value F (c) = Posterior (c);
5 add c, F (c) to the set θ

6 end
7 compute statistics for the function values of the set θ

// Main loop
8 for each generation g = 2, . . . , G do
9 select Cg starting points from the set θ

10 θ = {}
11 for each chain c = 1, . . . , Cg do
12 for each step s = 1, . . . , Sc do
13 propose next point p
14 Compute function value F (c, s) = Posterior (p);
15 accept/reject p, if accepted add it to the set θ

16 end

17 end
18 compute statistics for the function values of the set θ

19 end
20 return ;

21 Function Posterior(point p)
22 for t = 1, . . . , Nr do
23 perform model evaluation M(p, t)
24 end
25 combine the results and compute F (p)
26 return F (p);

beforehand because it strongly depends on the input parameters of the search
space where TMCMC is applied. Moreover, the execution time depends on the
processing power of the underlying hardware, which can exhibit significant vari-
ability on computing environments that utilize heterogeneous nodes and hybrid
computing architectures. TORC offers a programming and runtime environment
where the irregular nested parallelism of TMCMC can be easily expressed and
exploited at all possible levels, without making any assumption about the target
hardware platform.

Subset Simulation for Approximate Bayesian Computational. Approx-
imate Bayesian Computation Subset Simulation, ABC-SubSim, outlined in
Algorithm 2, uses MCMC to efficiently generate conditional samples to gradually
trace a rare event region. ABC-SubSim applies the idea of Subset Simulation to
a special case of Approximate Bayesian Computation. The structure of ABC-
SubSim is identical to that of TMCMC and differs in the following point: all
MCMC chains in SubSim always perform the same predefined number of steps,
in contrast to TMCMC where chain lengths are determined at runtime.

Asymptotic Approximation. The CMA-ES algorithm [12] includes, at each
generation, a set of function evaluations that can be performed concurrently.
The parallelization of CMA-ES using TORC is straightforward and involves
the cyclic distribution of the tasks to the available workers. A second level
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Algorithm 2. Subset Simulation
// Initialization with Random Sampling from Prior

1 z = {}
2 for each randomly selected starting point c = 1, . . . , C1 do
3 Compute function value F (c) = Prior (c);
4 add c, F (c) to the set z

5 end
6 sort and keep the first a% of the set z, set discrepancy for next generation

// Main loop
7 for each generation g = 2, . . . , G do
8 select Cg starting points from the set θ
9 z = {}

10 for each chain c = 1, . . . , Cg do
11 for each step s = 1, . . . , S do
12 accept/reject directions and propose next point p
13 Compute function value F (c, s) = Prior (p);
14 accept/reject p, if accepted add it to the set z, calculate acceptance rate ρ

15 end

16 end
17 sort and keep the first a% of the set z, set discrepancy for next generation, if ρ < 5 %

then exit algorithm
18 end

of parallelism can be activated only if the objective function invokes multiple
simulation runs, while load balancing issues arise on heterogeneous computing
platforms or for variable execution time of simulation runs. The evaluation of
the Hessian matrix is central to the Bayesian asymptotic approximation. This is
normally provided as output of an optimization methodology (CMA-ES in our
case). To select the appropriate differentiation step for each problem parameter,
we first spawn tasks that compute partial derivatives for several differentiation
steps. Then, we apply a Romberg extrapolation methodology to find the step
with the most accurate result for each parameter and finally we compute the
Hessian matrix. The multiple function evaluations introduce an additional level
of task parallelism in the gradient and Hessian calculations, exploited by a par-
allel numerical differentiation module that has been also built on top of TORC.

4 Applications

In this section, we exemplify the key features and assess the parallel perfor-
mance of our framework by performing UQ studies of representative applications.
In particular, we compare the time to solution as well as the computational cost
and PDF estimation efficiency for two engineering applications requiring signif-
icant computational resources. These applications exhibit significant TTS for
a single posterior evaluation and target multi-core and hybrid CPU/GPU clus-
ters. Furthermore, they demonstrate the coupling of third-party parallel scientific
software into our framework.

4.1 TMCMC and CMA-ES on a GPU Cluster

We perform UQ+P in the most widely used MD model, that of water. We use a 5-
site water model, TIP5P-E. The calibration data consist of the radial distribution
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function of oxygen-oxygen in bulk water and its experimental uncertainty. Each
evaluation of a posterior sample requires two full MD-simulation run, with the
MD-code GROMACS 5.0 compiled with hybrid CPU-GPU acceleration. The
final posterior value is computed by applying a post-processing stage which
invokes a Matlab script that processes the output of the simulation run. The
prediction error matrix Σ can be decomposed into three contributions with ele-
ments Σii = σ2

exp + σ2
ens + σ2

m. We estimate the σ2
ens ≈ 0.005. The experimental

uncertainty contributions eexp are known and finally, the additional model pre-
diction error term σ2

m is left to be determined from the inference process [16].
The parameters

(
εLJ
O−O, σLJ

O−O

)
and qO are the Lennard-Jones interaction para-

meters and charge interaction respectively. We use truncated Gaussian priors
for the three parameters with mean values based on the literature values for
TIP5P [17], with a standard deviation of 30% of θ̄π, whereas the hyperparame-
ter follows a Gamma prior, that is σ2

m ∼ Γ(1.5, 0.25).

Results. We present the timings and the results of the calibration of the
TIP5-P water model. We performed our simulations on 32 compute nodes of
the Piz Daint Cray XC30 cluster at the Swiss National SuperComputing Cen-
ter CSCS. Each node is equipped with an 8-core Intel Xeon E5-2670 processor
and one NVIDIA Tesla K20X GPU. TORC is initialized with a single worker
per node because each single posterior evaluation task fully utilizes a compute
node by means of the hybrid CPU/GPU configuration of GROMACS. Poste-
rior evaluations are invoked by a separate proxy server process that receives a
set of parameters, invokes the GROMACS model executions, the Matlab-based
post-processing phase and finally sends back the posterior value. This approach,
depicted in Fig. 1, minimizes runtime overheads because the Matlab environment
is initialized only once and, furthermore, it offers high flexibility and portability.

Fig. 1. Mapping of the parallel application on the compute nodes of the hybrid
CPU/GPU cluster. The MPI application, the proxy server and the Matlab code run
only on the cores while GROMACS is compiled with hybrid CPU/GPU configura-
tion. To avoid initialization overheads, the Matlab code was compiled to a dynamic
library and linked to the proxy process, replacing the Matlab executable depicted, for
simplicity reasons, in the figure.
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Each posterior evaluation requires between 17 and 21 min of wall clock-time in
the above mentioned computing architecture. The variation of the mean time for
completing each posterior evaluation is due to the different runtime for different
initial parameters. The variance in the evaluation time and the maximum chain
length are the main sources of load imbalance in this application. We address the
first issue by using 256 samples per generation, i.e. 8x the number of workers,
while we alleviate the second problem by sorting the chains according to their
length and then evenly distributing the total workload to the available workers.
The maximum chain length determines the lowest possible processing time for
each generation and the maximum number of workers above which execution
time does not improve and parallel efficiency is negatively affected.

Figure 2 (top, left) depicts the efficiency of TMCMC, while Fig. 2 (top, right)
depicts how the time of a single posterior evaluation varies over a total of 15
generations. The above solutions, along with the stealing mechanism of TORC,
minimize the idle time of workers and result in parallel efficiency higher than
97 % when every worker executes the same number of posterior evaluations.
The lower efficiency (≈88.4 %) for the 12th and 14th generation of TMCMC is
attributed to the fact that the maximum chain length was equal to 9 for both
cases, which imposes an upper limit of 88 % to the expected efficiency. Similar
behavior is observed in Fig. 2 (bottom) for the parallel CMA-ES, where parallel
efficiency and statistics for the evaluation time are reported every 10 generations.
We notice that the measured parallel efficiency is equal to 90.1 % at the end
of the 10th generation, which is due to the lower number of samples (64) per
generation and the high variance of the evaluation time. This variance decreases
as the algorithm evolves and the efficiency increases accordingly up to 97.4 %.

Fig. 2. Top: Parallel efficiency of TMCMC (left) and posterior evaluation time for the
MD simulation (right). Bottom: Corresponding figures for CMA-ES.
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Table 1. Computational effort of the MD calibration.

Method Generations Samples Evaluations TTS (hours) Overall efficiency

TMCMC 14 256 3584 ≈44.0 94.5 %

CMA-ES 50 64 3200 ≈36.7 95.4 %

Table 2. Mean values and Coefficient of Variation of the posterior distribution of the
model parameter, along with the LogEvidence values of each model class.

Class ε̄LJ
O−O uεLJ

O−O
σ̄LJ

O−O uσLJ
O−O

q̄O uqO σ̄2
m uσ2

m
LogEvidence

TMCMC 0.688 4.3 % 0.312 0.16 % 0.2417 0.76 % 0.00923 15.1 % 1401.34

CMA-ES 0.651 4.3 % 0.313 0.20 % 0.2392 0.81 % 0.01034 16.0 % 1414.21

The computational cost of the MD calibration with the two methods is pre-
sented in Table 1. The mean parameter estimates as well as their associated
uncertainty are summarized in Table 2. The coefficient of variation uθ of a para-
meter θ is defined as the sample standard deviation of that parameter over its
estimated mean θ̄.

4.2 ABC-Subsim on a Multicore Cluster

As a stochastic model we took the calibration of the Lennard-Jones potential
parameters for helium. To perform the calibration we used the data on the
Boltzmann factor fB =

〈
exp

(
− H

kBT

)〉
where H is the enthalpy of the system

of helium atoms, T is the temperature of the system, kB is the Boltzmann
constant and 〈·〉 denotes the ensemble average. The data was generated using
the software LAMMPS for a system of 1000 atoms for 20 ns in the NPT ensemble
with a timestep of 2fs. The system used for calibration consists of 1000 atoms
and is equilibrated for 2ns, following a production run in the NPT ensemble
for another 2ns with a 2fs timestep. We performed calibration with 2 different
settings. 1) Assuming the resulting Boltzmann factor distribution was Gaussian,

and a discrepancy function of: ρ(x, y) =
√

((μx − μy)/μx)2 + ((σx − σy)/σx)2.
In the second setting the discrepancy is the given: ρ(x, y) = DKL(P ||Q) where
DKL is the Kullback-Leibler divergence, P is the data distribution, Q is the
simulation outcome distribution of the Boltzmann factor.

Results. The algorithm runs a full molecular dynamic simulation for every
parameter set and hence requires a significant amount of computational work.
It also exhibits two levels of parallelism, as the Markov chains with different
seeds can be processed in parallel while each single simulation can also run in
parallel using the MPI version of LAMMPS.

The time to solution for each function evaluation varies with the given para-
meters, introducing load imbalance in the algorithm. We deal with this issue by
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submitting tasks with higher execution time first: we sort the samples according
to the value of the σ parameter before distributing the corresponding function
evaluation or Markov chain tasks to the workers. Moreover, we enhance this
scheme with the task stealing of TORC.

We performed our simulations on 512 compute nodes of the Piz Daint cluster
(4096 cores in total). TORC is initialized with two MPI workers per node and
each LAMMPS simulation utilizes 4 cores in turn. The population size was set
to be 15360 and the Markov chain length was equal to 5. The algorithm stops
when the acceptance rate drops below 5 %.

Table 3 summarizes the parallel performance of ABC-SubSim. Despite the
high variance of the time for a single simulation run, we observed that the effi-
ciency of the initialization phase (level 0) reaches 82 % as 15360 function eval-
uations are distributed among the 1024 workers. The lower efficiency (70.5 %)
of Level 1 is attributed to the existence of chains with high accumulated run-
ning times and the small number of available chains that correspond to each
worker (3072 chains in total, 3 chains per worker). As the algorithm evolves,
the efficiency increases and reaches 92 % for the last level, which exhibits a load
imbalance of approximately 8 % as computed by (Tmax−Tavg)/Tavg, where Tmax

and Tavg are the maximum and average time that the workers were busy during
the processing of the specific level. The information about the prior and the
posterior values of the parameters is given in Table 4.

Table 3. Detailed per-level performance results of ABC-SubSim on 512 nodes of Piz
Daint. Tf shows the mean and standard deviation of the simulation times and Tw is
the wall-clock time per generation, respectively. All the times are reported in seconds.

Level Tf Tw Efficiency

0 82 ± 83 1497 81.8 %

1 87 ± 57 1843 70.5 %

2 68 ± 10 1237 81.9 %

3 65 ± 6 1110 88.4 %

4 66 ± 5 1078 92.2 %

Table 4. Prior and posterior information of parameters of the Helium system in molec-
ular LAMMPS units. The number of generations Ngen computed before the acceptance
rate reached a threshold value of 5% and achieved tolerance levels δ for two models:
MG [Gaussian setting], MKL [Kullback-Leibler setting]. Prior bounds [θl, θr], mean
values θ̄ and coefficients of variation uθ of the Lennard-Jones parameters of Helium.

Model [σl, σr] σ̄ uσ [εl, εr] ε̄ uε Ngen δ

MG [0.1,0.8] 0.2452 11.5 % [0.01,1.0] 0.423 64.5 % 4 3.40×10−3

MKL [0.1,0.8] 0.2792 5.0 % [0.01,1.0] 0.117 15.4 % 6 6.70×10−2
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5 Conclusions

We presented a computational framework for large scale Bayesian uncertainty
quantification and stochastic optimization that can exploit massively parallel
and hybrid (CPU/GPU) computing architectures. The framework incorporates
several state-of-the-art stochastic algorithms for the computation of the like-
lihood that are capable of sampling from complex, multimodal posterior dis-
tribution functions. Built on top of the TORC task-parallel library, it offers
straightforward extraction and exploitation of multilevel task-based parallelism
in stochastic optimization and sampling algorithms. It targets both distributed
and shared memory systems in a platform-agnostic way and provides transpar-
ent load balancing for efficient scheduling of multiple function evaluations. The
Bayesian tools are written as clients upon the layer of the library and can be
integrated with legacy codes as well as black-box system models, resulting in
an easily extensible non-intrusive framework. The present framework aims to
facilitate the implementation of UQ+P on engineering applications and harness
the capabilities of contemporary and emerging HPC architectures. Current work
includes the development of surrogate models and performance studies on the
Intel Xeon Phi architecture.

Our open-source software can be downloaded from http://www.cse-lab.ethz.
ch/software/Pi4U. We acknowledge computational time at the Swiss National
Supercomputing Center CSCS under project number s448.

References

1. Owhadi, H., Scovel, C., Sullivan, T., McKerns, M., Ortiz, M.: Optimal uncertainty
quantification. SIAM Rev. 55(2), 271–345 (2013)

2. Beck, J.L., Yuen, K.V.: Model selection using response measurements: Bayesian
probabilistic approach. J. Eng. Mech. 130(2), 192–203 (2004)

3. Papadimitriou, C., Beck, J.L., Katafygiotis, L.S.: Asymptotic expansions for relia-
bility and moments of uncertain systems. J. Eng. Mech. 123(12), 1219–1229 (1997)

4. Chen, M.H., Shao, Q.M., Ibrahim, J.G.: Monte Carlo Methods in Bayesian Com-
putation. Springer, New York (2000)

5. Wu, S., Beck, J.L., Heaton, T.H.: Earthquake probability-based automated
decision-making framework for earthquake early warning applications. Comp. Aid.
Civ. Infr. Eng. 28, 737–752 (2013)

6. Adams, B., Bohnhoff, W., Dalbey, K., Eddy, J., Eldred, M., Gay, D., Haskell, K.,
Hough, P., Swiler, L.: DAKOTA, a multilevel parallel object-oriented framework
for design optimization, parameter estimation, uncertainty quantification, and sen-
sitivity analysis. Sandia Technical report (2013)

7. Lawrence Livermore National Laboratory. The PSUADE UQ project. http://
computation.llnl.gov/casc/uncertainty quantification/

8. Prudencio, E., Cheung, S.H.: Parallel adaptive multilevel sampling algorithms for
the Bayesian analysis of mathematical models. Int. J. Unc. Quan. 2(3), 215–237
(2012)

9. Hadjidoukas, P.E., Lappas, E., Dimakopoulos, V.V.: A runtime library for
platform-independent task parallelism. In: 20th International Conference on Par-
allel, Distributed and Network-Based Processing, pp. 229–236 (2012)

http://www.cse-lab.ethz.ch/software/Pi4U
http://www.cse-lab.ethz.ch/software/Pi4U
http://computation.llnl.gov/casc/uncertainty_quantification/
http://computation.llnl.gov/casc/uncertainty_quantification/


544 P.E. Hadjidoukas et al.

10. Ching, J.Y., Chen, Y.C.: Transitional markov chain Monte Carlo method for
Bayesian model updating, model class selection, and model averaging. J. Eng.
Mech. 133(7), 816–832 (2007)

11. Chiachio, M., Beck, J., Chiachio, J., Rus, G.: Approximate Bayesian computation
by subset simulation. SIAM J. Sci. Comput. 36, A1339–A1358 (2014)

12. Hansen, N., Muller, S.D., Koumoutsakos, P.: Reducing the time complexity of the
derandomized evolution strategy with covariance matrix adaptation (CMA-ES).
Evol. Comp. 11(1), 1–18 (2003)

13. Beck, J.L., Katafygiotis, L.S.: Updating models and their uncertainties. I: Bayesian
statistical framework. J. Eng. Mech. 124(4), 455–461 (1998)

14. Galbally, D., Fidkowski, K., Willcox, K., Ghattas, O.: Non-linear model reduction
for uncertainty quantification in large-scale inverse problems. Int. J. Num. Meth.
Eng. 81(12), 1581–1608 (2010)

15. Hadjidoukas, P.E., Angelikopoulos, P., Voglis, C., Papageorgiou, D.G., Lagaris,
I.E.: NDL-v2.0: A new version of the numerical differentiation library for parallel
architectures. Comput. Phys. Comm. 185(7), 2217–2219 (2014)

16. Angelikopoulos, P., Papadimitriou, C., Koumoutsakos, P.: Data driven, predictive
molecular dynamics for nanoscale flow simulations under uncertainty. J. Phys.
Chem. B 117(47), 14808–14816 (2013)

17. Rick, S.: A reoptimization of the five-site water potential (TIP5P) for use with
Ewald sums. J. Chem. Phys. 120, 6085–6093 (2004)



Parallelization of an Advection-Diffusion
Problem Arising in Edge Plasma Physics

Using Hybrid MPI/OpenMP Programming

Matthieu Kuhn1(B), Guillaume Latu2, Nicolas Crouseilles3,
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Abstract. This work presents a hybrid MPI/OpenMP parallelization
strategy for an advection-diffusion problem, arising in a scientific appli-
cation simulating tokamak’s edge plasma physics. This problem is the
hotspot of the system of equations numerically solved by the applica-
tion. As this part of the code is memory-bandwidth limited, we show
the benefit of a parallel approach that increases the aggregated memory
bandwidth in using multiple computing nodes. In addition, we designed
some algorithms to limit the additional cost, induced by the needed extra
inter nodal communications. The proposed solution allows to achieve
good scalings on several nodes and to observe 70 % of relative efficiency
on 512 cores. Also, the hybrid parallelization allows to consider larger
domain sizes, unreachable on a single computing node.

Keywords: Hybrid MPI/OpenMP · Advection-Diffusion · Plasma
physics

1 Introduction

In this work, we present a hybrid MPI/OpenMP parallelization strategy for an
advection-diffusion problem, arising in a scientific application simulating toka-
mak’s edge plasma physics called Emedge3D. In a previous work (see [6]), we pre-
sented parallelization using OpenMP, but also several optimizations for a shared
memory architecture. Enhancing this previous version is needed because of the
memory-bound aspect of the application. Some optimizations were described that
improved data access patterns, leading to better data locality. Even if one part of
the code was successfully optimized with techniques such as loop tiling, the most
consuming part of the code still suffered from a lack of performance on a 64-cores
shared memory node. However, results were satisfying for a smaller node of 12
cores (bi-socket Intel X5675 @ 3.06 GHz).
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Hence, we propose here to add a level of parallelism. To do so, we com-
bine the OpenMP paradigm to the MPI standard to target distributed memory
architectures. But, to achieve good efficiency, we show that several invasive mod-
ifications of the code have to be implemented. For example, considering 1D× 1D
FFT versus 2D FFT routines divides the communication volume by a factor 2.
Therefore, we consider in this paper an advection-diffusion equation. Even if it
is a reduced problem compared to the model used in Emedge3D, the Poisson
bracket (advection part) and the diffusion part (which is anisotropic) are the
most challenging and time consuming ones in Emedge3D.

In this paper, we consider the unknown temperature T = T (t, x, y, z), the
operator ∇·(A∇.) (where ∇ = (∂x, ∂y, ∂z)), and A a 3×3 matrix to be explicited.
This operator is coupled with an advection operator {φ, .} = ∂xφ∂y. − ∂yφ∂x.,
also called Poisson bracket. We consider the equation

∂tT + {φ, T} = ∇ · (A∇T ), x, y, z ∈ [−1, 1], t ≥ 0, (1)

with periodic boundary conditions along y, z, Dirichlet boundary condition
along x (classical in tokamak geometry) and φ the electric potential, assumed to
be given here.

In the following, we first describe the advection-diffusion problem addressed
in this work while providing the related work. Then, we present the numerical
methods and our validation test case. After that, we detail the proposed parallel
solutions to solve the advection-diffusion equation. Lastly, we give a performance
analysis of the best known solution.

2 The Advection-Diffusion Problem

Advection-diffusion problems are widely used in physics models (see [2,7]). Their
numerical approximation often requires recent techniques (see [11] for example).
However, most of the time, the diffusion operator is restricted to a 3D Laplacian,
whereas several relevant applications requires an anisotropic diffusion.

The problem considered here is 3D in space and time-dependant. The advec-
tion part is 2D, in the plane (x, y), and consists in a Poisson bracket. The same
operator can be found in Emedge3D’s model (see [2]). For the diffusion part, the
diffusion matrix A depends only on the spatial dimension x, corresponding to
the radial direction in the SLAB geometry of Emedge3D.

As in Emedge3D, two kinds of discretization are considered to approximate
spatial operators. First, a semi-spectral representation of 3D unknown is used
to compute the diffusion part, in which y and z directions are expressed in the
Fourier basis, and x in the real basis. Second, a representation in the full real
space for the 3 directions is employed to compute the Poisson bracket. This kind
of discretization is often encountered in nuclear fusion codes. As an illustration,
we can cite GKV and GENE (see [8] and [4]), and also XTOR and JOREK
(see [7] and [5]). These codes also try to take benefits of parallelization on both
shared and distributed memory systems.
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In Emedge3D, the execution time of a simulation is mostly driven by the
pressure equation (see [2,3,9]), which is similar to Eq. (1). The next section aims
to describe the numerical methods employed to solve the advection-diffusion
problem given by the following equation:

∂tT + {φ, T} = ∇ · (Ax∇T )with Ax =

⎛

⎝
a(x) 0 0
0 b(x) d(x)
0 d(x) c(x)

⎞

⎠ . (2)

3 Numerical Methods and Test Case

3.1 Spatial Discretization

This part deals with the spatial discretization used in the code. It presents first
the numerical method to compute the advection and then the spatial scheme to
solve the diffusion. These methods are extracted from Emedge3D.

The advection term is computed in the physical space (and not in semi-
spectral representation) with a finite difference method. Indeed, when the Pois-
son bracket operator is explicited in semi-spectral representation, it leads to a
convolution which has a quadratic computational complexity Θ(n2) (assuming
n=Ny Nz). This is why the discretization has to change by using FFT. Hence, it
results in a more desirable linearithmic computational complexity Θ(n log(n)).
This method is commonly used on nonlinear terms in case of a semi-spectral
discretization (see [10]). An Arakawa scheme of order 2 (see [1]) is employed to
compute this Poisson Bracket. This numerical method is often considered in the
plasma physics community because of its robustness and conservation proper-
ties. This discretization induces the computation of a 2D stencil in the plane
(x, y), the dimension z acts as a parameter. This spatial scheme has already
been studied in one of our former work (see [6]).

The diffusion operator is characterized by the diffusion matrix Ax given
by (2). As it only depends on the radial dimension x, it can be easily writ-
ten in the semi-spectral form. Hence, the unknown T is expressed in the Fourier
basis in the y and z directions. This implies manipulation of quantities of the
form:

T̂i,m,n := T̂ (xi,m, n) =
∫

R

∫

R

T (xi, y, z)exp(−i(my + nz))dy dz,

where xi stands for the grid points in the radial direction and (m,n) the Fourier
mode. The diffusion operator is solved with a classical finite volume method of
order 2 in the x direction, and spectral method in y and z directions:

∇ · (Ax∇T̂ )|i,m,n = a(xi+1/2)
T̂i+1,m,n − T̂i,m,n

Δx2
− a(xi−1/2)

T̂i,m,n − T̂i−1,m,n

Δx2

− (b(xi)m2 + c(xi)n2 + 2d(xi)mn)T̂i,m,n,

where Δx denotes the spatial step in the direction x and xi±1/2 = xi ± Δx/2.
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3.2 Temporal Discretization

The implemented time integration scheme uses an operator splitting between
advection and diffusion terms. It is due to the different spatial discretizations
employed to solve these operators. We denote by T k = T (tk, x, y, z) the solu-
tion at time tk = kΔt in the direct representation, with Δt the time step; and
T̂ k = T̂ (tk, x,m, n) in the semi-spectral representation, where m (respectively
n) stands for the mode number in the poloidal (respectively toroidal) direction.
Hence, we first consider the advection ∂tT + {φ, T} = 0, that we decide to solve
with a classical (explicit) Euler method T ∗ = T k + Δt

{
φ, T k

}
.

The second step consists in solving the diffusion part ∂tT̂ = ∇ · (Ax∇T̂ ).
Recall the diffusion is solved in the semi-spectral space. Hence, the temporal
scheme associated with the diffusion part is also applied in this representation.
The Euler method to solve this part writes: T̂ k+1 = T̂ ∗ + Δt∇ · (Ax∇T̂ ∗).

Notice this scheme is referred as the Lie splitting, which is of first order.
It can be upgraded to higher orders by using Strang splitting method. Also, as
it is an explicit method, a stability condition is imposed on the value of Δt. The
more restrictive stability condition comes from the diffusion operator. To bypass
this limitation, it is possible to implement implicit or (well chosen) semi-implicit
method (see [11] for example).

3.3 Analytical Test Case

This part gives a three dimensional analytical test case used to validate the
numerical methods presented earlier and the parallelization implementations.
The technique employed to construct our test case is called the Method of Man-
ufactured Solution (MMS). The equation to solve is:

∂tT + {φ, T} = ∇ · (Ax∇T ) + f, (3)

where φ=φ(x, y)=cos(πx) cos(πy) and f =f(t, x, y, z) is a given source function
added to perform the MMS. The solution we choose to reach for this test case
writes:

T (t, x, y) = 1 + sin(πx) sin(πy) sin(πz)e−t, (4)

where x, y, z ∈ [−1, 1], t ≥ 0. For the matrix Ax, we consider the functions:

a(x) = (2 + sin(πx)), b(x) = (2 + sin(πx))2,

c(x) = (2 + cos(πx))2, d(x) = (2 + sin(πx))(2 + cos(πx)).

Then, (4) is an analytical solution of (3) with the computed source term:

f(t, x, y, z) = −(T − 1) + ∂xφ∂xT − ∂yφ∂yT + b(x)π2(T − 1) + c(x)π2(T − 1)
− a′(x)∂xT − a(x)∂2

xT − 2d(x)∂2
y,zT.
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4 Parallelization MPI/OpenMP

In this section, we first introduce the sequential algorithm description. Then,
we explore the parallelization potential in the case of a distributed memory
architecture. To finish, we present the OpenMP and the hybrid MPI/OpenMP
parallelization of the code.

4.1 Sequential Algorithm

This part details the organization of the time loop in our simulation code, given
by Algorithm 1. The algorithm for the advection-diffusion can be decomposed
into 4 parts: the advection, the diffusion, the Fourier transforms and the trans-
positions of data in memory. In order to perform one temporal iteration, two
arrays are used: T1[Nz, Ny, Nx] to store the value of the time evolutive temper-
ature and T2[Nz, Ny, Nx] to store temporary results. In both arrays, data are
in semi-spectral data representation. Here, the notation T1[z, y, x] refers to the
value stored at position z ∗ (Ny ∗ Nx) + y ∗ (Nx) + x, with Nd the number of
points in direction d. As the advection source term fadv and the diffusion one
fdiff are known analytically, they are computed on the fly.

Discretization changes (real to semi-spectral and inverse) are encapsulated
into the diffusion step. Hence, the diffusion step divides into three parts, detailed
in Algorithms 2 and 3. Algorithm 2 consists in Fourier transforms in forward
direction (from R to C) in dimension y. In this Algorithm, buffery[∗] and
buffer2y[∗] are buffers of size Ny, used to store (z, y = ∗, x) slices contiguously
into the memory. This improves the temporal locality. The ∗ notation denotes
an operation along all the points of the given dimension. Endly, notation T̂
means that data are in semi-spectral representation (T̂ ∈ C). Notice that stor-
age dimensions order changes between input and output, going from [z, y, x] to
[y, z, x]. We compute this on the fly because the diffusion step and the FFT in
z direction are in a same external loop on y.

Algorithm 3 details Fourier transforms in z direction and the diffusion com-
putations. Here, the storage location bufferz[∗] is an array of size Nz, used to

Algorithm 1. One time loop iteration
Input: T1 = T (tn)

Algorithm:

T2 ← ∇ · (Ax∇T1) : Diffusion
T1 ← T1 + ΔtT2 : Euler scheme
T1 ← T1 + Δtfn

diff : Diffusion source
T2 ← {φ, T1} : Advection operator
T1 ← T1 − ΔtT2 : Euler scheme
T1 ← T1 + Δtfn

adv : Advection source

Output : T1 = T (tn+1)

Algorithm 2. FFT forward y

Input: T1[z, y, x] = Tn

Algorithm:

for all z do
for all x do

buffery[∗] ← T1[z, ∗, x]
buffer2y[∗] ← FFT(buffery[∗])
T̂1[∗, z, x] ← buffer2y[∗]

end for
end for

Output : T̂1[y, z, x] = T̂n
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temporarily store Fourier representation along z direction. Notice that these
FFT are also applied in-place, in order to maximize temporal locality on the
buffer. Buffers inxz[x, ∗] and outxz[x, ∗] aim to store 2D (x, z) slices, inxz[x, ∗]
for the input of the diffusion computation and outxz[x, ∗] for the output.

The backward Fourier transform on y dimension (from C to R) is very similar
to Algorithm 2 and is not presented here.

4.2 Parallelization Potential

For simplicity (implementation, readability and maintenance of the code done
by the physicists), we choose to consider algorithms which do not need ghost
cells between MPI processes.

The advection is solved in the direct representation (real space) of the
unknown. It consists in a 2D stencil on variables x, y. The third direction z
acts as a parameter here, and so it is a good candidate as parallelization axis.
The diffusion part is solved in the semi-spectral representation of the unknown.
It consists of a stencil in the x direction. Hence, it allows easier parallelization
along y or z axes.

Between the two last operators, it seems natural to change the domain decom-
position: arrays are parallelized with MPI along z for the advection and along y
for the diffusion part. Moreover, another distribution change occurs at the same
time to switch from semi-spectral to full real representation. It is computed via
Discrete Fourier Transforms (DFT), with the FFTW3 library. These FFT act on
the plane (y, z), corresponding to toroidal and poloidal directions of the tokamak
geometry.

Table 1. Parallelization potential on distributed memory architectures. Dependencies
include read statements (ghost cells not considered).

Step Axe Dependencies at (i, j, k) Parallelization considered

Advection x i − 1, i, i + 1 no

y j − 1, j, j + 1 no

z k yes

Diffusion x i − 1, i, i + 1 no

y j yes

z k yes

FFT 1D y x i yes

y j = ∗ no

z k yes

FFT 1D z x i yes

y j yes

z k = ∗ no
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Instead of computing the FFT with the 2D functions proposed by the FFTW3
library (as in the Emedge3D code), we decide to compute FFT dimension by
dimension (using 1D functions). It presents 3 major advantages:

– it operates on smaller data volumes, allowing more benefit from cache effects,
– it permits a larger set of possibilities for the parallelization on distributed

memory architecture, as we will see afterwards,
– it does not imply a loss of performance in the sequential case (even if an

additionnal transposition is needed). In particular, it allows to reuse data
loads between FFT 1D and other parts of the algorithm.

Finally, as parallelization axes change between the different parts of the code,
it remains to perform transpositions and redistributions of data, in order to have
needed data locally on the computation node. These transpositions will depend
on the chosen algorithm, and in particular on the way FFT are computed. Table 1
gives a summary of the last exposed parallelization possibilities.

4.3 OpenMP Parallel Version

Hereafter, an OpenMP parallel solution is introduced. Typically, the code con-
sists in applying spatial operators compounded of loop nests of depth 3 (one

Algorithm 3. FFT±1 z direction and
diffusion
Input: T̂ [y, z, x] = T̂n

Algorithm:

for all y do
for all x do

bufferz[∗] ← T̂ [y, ∗, x]
bufferz[∗] ← FFT(bufferz[∗])
inxz[x, ∗] ← bufferz[∗]

end for
for all x do

outxz[x, ∗] ← inxz[x, ∗] + Δt∇ ·
(Ax∇inxz[x, ∗])

end for
for all x do

bufferz[∗] ← outxz[x, ∗]
bufferz[∗] ← FFT−1(bufferz[∗])
T̂ [y, ∗, x] ← bufferz[∗]

end for
end for

Output : T̂ [y, z, x] = T̂n +Δt∇· (Ax∇T̂n)

Algorithm 4. Comms, FFT±1 z direc-
tion and diffusion
Input: Z dist[y, z, x] = T̂ (tn)
Algorithm:

pid ← current process rank
for all y local to process pid do

commzy: Y dist[y,*,*] ← Z dist[y,*,*]
for all x do

bufferz[∗] ← Y dist[y, ∗, x]
bufferz[∗] ← FFT(bufferz[∗])
inxz[x, ∗] ← bufferz[∗]

end for
for all x do

outxz[x, ∗] ← inxz[x, ∗] + Δt∇ ·
(Ax∇inxz[x, ∗])

end for
for all x do

bufferz[∗] ← outxz[x, ∗]
bufferz[∗] ← FFT−1(bufferz[∗])
Y dist[y, ∗, x] ← bufferz[∗]

end for
commyz: Z dist[y,*,*] ← Y dist[y,*,*]

end for

Output : Z dist[y, z, x] = T̂ (tn) + Δt∇ ·
(Ax∇T̂ (tn))
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for each spatial dimension). The parallelization strategy resides in distributing
the outermost loops. The clause collapse(2) is used in order to combine itera-
tions of two successive loops. All steps are parallelized with OpenMP. Regarding
the advection and the computations of the source terms, arrays are stored in
order z, y and x (C-like notation). Parallelization occurs on z and y dimensions.
Concerning the diffusion part, the FFT in y direction are parallelized along z
axis too (see Algorithm 2). For the FFT part in z and the diffusion operator (see
Algorithm 3), the parallelization directive is on the intermediate loops on dimen-
sion x. Notice the loops on dimension x can not be trivially merged, because of
a Write/Read dependency between the FFT and the diffusion parts. However,
as computations are coupled in a same y loop, the 2D slice computed for each y
index is small enough to fit in cache (L3 or L2).

4.4 Hybrid MPI/OpenMP Parallel Version

This part proposes a hybrid MPI/OpenMP parallel version of the code that
lowers the volume of communications.

The algorithm remains close to the OpenMP version, but with data and
outermost spatial loops distributed on the MPI processes. Hence, there are two
dimensions along which data are distributed. The first one is z direction. Data
are stored in [z, y, x] order, and 2D [y, x] slices are uniformly distributed on the
different processes. This distribution addresses the Arakawa method, the source
terms computations and FFT on y dimension. The second one is y direction.
This is the case for Algorithm 3, (FFT on z and diffusion). Indeed, to compute
1D FFT for direction z, each process must have all the points in that direction.

The two domain decompositions lead to two transposition steps implying
communications. These communications are added to Algorithm 3, using non-
blocking subroutines, in order to minimize communication overhead. Several
versions have been tested, but only the fastest one is presented. The communi-
cations are performed within the y loop of Algorithm 3 as we will see afterwards.

Algorithm 4 gives the communication steps, coupled with the FFT in direc-
tion z and the diffusion operator. In this Algorithm, notation commzy corre-
sponds to z to y transpose step (and inverse for commyz). Finally, Algorithm 5
describes how to transpose from a distribution in z to a distribution in y for
one given index iy. The inverse transformation is not detailed as it is completely
symmetric.

5 Performance Analysis

This section presents the numerical results and performances obtained for the
algorithms detailed in Sect. 4. For each run, 10 temporal iterations were per-
formed, with a (Nx, Ny, Nz) = (256, 256, 128) grid for mono-node tests and both
(256, 256, 128) and (1024, 1024, 512) for the multi-node case.
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Algorithm 5 . Transpose z → y:
commzy

Input: Z dist[NY,NZloc,NX],iy
Algorithm:

pid ← current process rank
for all process p �= pid do

Irecv(Y dist[iy,NZloc × p,NX]) from p
end for
for all process p �= pid do

Isend(Z dist[iy × p,NZloc,NX]) to p
end for
Wait for all communication to finish

Output: Y dist[iy,NZ,NX]

Tests were performed on two par-
allel computers: the Rheticus clus-
ter based at Aix-Marseille Univer-
sity, France, compounded of 1152
cores organized in 96 nodes of 2 bi-
socket X5675; and the Helios clus-
ter based in Rokkasho, Japan at the
International Fusion Energy Research
Center, compounded of 2 bi-socket
Xeon E5-2600 nodes. In terms of
configuration, we used Intel compiler
together with Open MPI version 1.6.3
and the FFTW3 library in version
3.3. Source codes were compiled with
-O2 -axSSE4.2 flags.

In the following, programs perfor-
mances are presented using notations: NCU the number of computing units (with
NCU= NTH× NP), NTH the number of OpenMP threads, NP the number of MPI
processes, t the execution time, SU the speedup relative to NCU, Eff% the relative
efficiency, and Tot% the percentage of time relative to the total execution time.

Notice that the performance analysis does not take into account initializa-
tion and diagnostics execution times. When not specified, results are obtained
with the Rheticus cluster. In a first part, results are presented for the OpenMP
version, then the hybrid MPI/OpenMP version on only one node, and finally
the hybrid MPI/OpenMP version on several nodes.

5.1 OpenMP Parallel Version

This part aims to evaluate the OpenMP parallelization of the code. Results are
presented for the unique grid size (Nx, Ny, Nz) = (256, 256, 128) as bigger tested
sizes do not change speedup and efficiency results.

Table 2. OpenMP: time loop.

Table 2 shows results for 10 tempo-
ral iterations. With this parallel ver-
sion, it is possible to reach a speedup
of 7.7 using the 12 cores of the comput-
ing node, giving an efficiency of 64 %.
It can obviously be observed that the
efficiency decreases when the number of
used threads increases. The reason is that
the needs of memory bandwidth resource
increases together with the added cores, as we will see afterwards.

Tables 3 and 4 show performances for the main parts of the time loop (the
diffusion and the advection). When increasing the number of threads for the
advection part, one can see execution times, speedups and hence efficiency scale
very well. On the contrary, the diffusion part still suffers from an efficiency
degradation, lowering to 55.3 % on the 12 cores of the node.
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The diffusion part contains the one dimensional FFT computations in y and z
directions. Let us have a look to the detail of computations inside the diffusion
step. The times of Table 3 include times of Tables 5 and 6. They also contain
the source term performance that is not explicited (although it shows nearly
ideal scalings). Notice that Table 6 contains the diffusion operator computations
together with the FFT in the z direction. The efficiency loss appears to be in the
parts containing the FFT computations: for example, efficiency drops to 41.4 %
for FFT on y on 12 threads. The FFT computations involve a high number of
memory operations (e.g. data reorganizations between FFT), and hence increase
the memory bandwidth requirements when adding computational cores.

Table 3. OpenMP: diffusion, source and fft
1D y and z.

NCU NTH t(sec) SU Eff% Tot%

1 1 5.77 1.00 100.0 65.9
4 4 1.80 3.21 80.4 70.4
8 8 1.12 5.17 64.6 74.6
12 12 0.87 6.63 55.3 76.3

Table 4. OpenMP: advection.

NCU NTH t(sec) SU Eff% Tot%

1 1 1.50 1.00 100.0 17.2
4 4 0.38 3.96 99.1 14.9
8 8 0.19 7.81 97.7 12.9
12 12 0.15 10.36 86.3 12.7

Table 5. OpenMP: fft 1D y. Table 6. OpenMP: diffusion and fft 1D z.

5.2 Hybrid MPI/OpenMP Parallel Version

This part evaluates the multi-node version of the code presented in Sect. 4.4. This
version aims to increase the number of computational nodes and the memory
resource (bandwidth and space). This is particularly critical when attempting
to reach targeted grid sizes. First, the deployment problem is addressed on one
node (NTH and NP per node) in order to get the best mono-node performance.

Table 7 presents results for different couples (NTH, NP)1 on one node. The
best couple is (3, 4), giving a 7.8 speedup on the 12 cores of the node. Also, com-
putation times on the 12 cores are very similar to the OpenMP parallel version
(see Table 2). This is surprising because this MPI version contains additional
memory operations and overheads due to communications between processes.

Table 8 shows how performances scale on several nodes, using the previous
(NTH, NP)=(3,4) per node deployment. The code was run on 12, 48, 96 and
192 computing units. On the 192 computing units, the code reaches a speedup
of 81, leading to 42.4 % efficiency. To understand the loss of efficiency, each part
of the code is also analyzed.
1 Our code imposes NP as a power of 2.
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Table 7. MPI/OpenMP: time loop. Table 8. MPI/OpenMP: time loop.

The advection part (Arakawa scheme and source term) and the diffusion
source term show very good efficiencies when increasing the number of nodes
(close to 100 %). Table 9 shows performances for the FFT on the dimension y.
Recall it does not include MPI communications. Whereas this part suffered from
a limited efficiency in case of the OpenMP only parallelization (see Table 5), it is
now able to reach a much better efficiency on the 192 computing units, reaching
81.8 %. Between 12 and 48 computing units (i.e. 1 and 4 nodes fully occupied), we
observe a surlinear speedup due to positive cache effects: the volume of processed
data per node is small enough to hold in the L3 cache.

Table 9. MPI/OpenMP: fft 1D y.

NCU NTH NP t(sec) SU Eff% Tot%

1 1 1 2.74 1.00 100.0 30.9
12 3 4 0.43 6.32 52.6 38.3
48 3 16 0.07 38.65 80.5 22.6
96 3 32 0.04 70.51 73.5 20.3
192 3 64 0.02 156.97 81.8 16.0

Table 10. MPI/OpenMP: comms, fft 1D z
and diffusion.

NCU NTH NP t(sec) SU Eff% Tot%

1 1 1 1.46 1.00 100.0 16.4
12 3 4 0.30 4.77 39.7 27.0
48 3 16 0.14 10.07 21.0 46.2
96 3 32 0.10 14.34 14.9 53.2
192 3 64 0.07 21.86 11.4 61.1

Hence, it is the last part containing the communications which is responsi-
ble for the loss of efficiency. Indeed, Table 10 shows a drop in efficiencies due
to the additional MPI communications needed to transpose data. Notice that
this drop is particularly important between 1 and 4 processes (from 100 % to
39.7 %) because of the apparition of intranode communications and saturation
of memory bandwidth, and again between 4 and 16 processes (from 39.7 % to
21 %) because of apparition of internode communications (involving the net-
work). After 4 nodes, the drop of efficiency starts to become less stringent.
Moreover, considering several nodes allows the user to handle bigger computa-
tional domains. This is the topic of the next Paragraph. The same study has
been performed on the former presented machine Helios. Results are globally
very close to those obtained on the Rheticus cluster, showing a speedup of 92
on 256 cores.

The bigger grid size (1024, 1024, 512) targeted by Emedge3D implies the
manipulation of 4 GB of memory per array. The no-MPI versions are not able
to run: the memory requirements are to high to be handled by a unique node.
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Each deployment uses 4 processes per node. The two last plots shows the
timings (left) and efficiencies (right) for 10 time loop iterations (dashed line)
and for the substep that includes communications (continuous line) as a func-
tion of the number of cores. They show a good scalability, leading to a relative
efficiency of 78.5 % for 384 cores. On 768 cores, we do not expect dramatic loss
of performance. Indeed, communication times diminish when adding cores and
remain a fraction of the global execution time (comprised between 40 % and
50 %). This is because the reference time on 4 nodes already includes intern-
odal communications. On Helios, the same (1024, 1024, 512) grid size led to an
efficiency of 70 % on 512 cores.

6 Conclusion

This work proposes a hybrid MPI/OpenMP parallelization strategy for an
advection-diffusion problem relevant to the model simulated by Emedge3D,
which is a dedicated code to study edge plasma physics in tokamaks.

The obtained parallel version allows to overcome the memory bandwith lim-
itation, which was one of the main bottlenecks of Emedge3D. Indeed, consider-
ing additional nodes allows one to add memory resources that are needed when
increasing the number of computing units. Plus, algorithm modifications (data
organization in memory, FFT 1D in each direction) are particularly critical to
reduce the amount of communications needed by the MPI version of the code.
For a domain of size (256, 256, 128), the parallel code is able to reach a speedup
of 81 on 192 computing units. In addition to that, the code is also able to handle
larger domain sizes, because adding nodes also increases available memory space.
For example, it is able to handle grids of size (1024, 1024, 512), leading to 4 GB
for each 3D array, with an efficiency of 78.5 % on 384 cores.

As an immediate extension, tests could be performed on larger parallel sys-
tems, to see the evolution of the communications’ scaling. Another axis is to
couple this parallelization strategy with semi-implicit numerical method in order
to increase the value of the time step Δt. Eventually, the integration of this par-
allelization strategy in Emedge3D code would enable to reach lower execution
times and larger domain sizes.
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Abstract. The precise semantics of floating-point arithmetic programs
depends on the execution platform, including the compiler and the tar-
get hardware. Platform dependencies are particularly pronounced for
arithmetic-intensive parallel numeric programs and infringe on the highly
desirable goal of software portability (which is nonetheless promised by
heterogeneous computing frameworks like OpenCL): the same program
run on the same inputs on different platforms often produces different
results. Serious doubts on the portability of numeric applications arise
when these differences are behavioral, i.e. when they lead to changes in
the control flow of a program. In this paper we present an algorithm
that takes a numeric procedure and determines an input that may lead
to different branching decisions depending on how the arithmetic in the
procedure is compiled. We illustrate the algorithm on a diverse set of
examples, characteristic of scientific numeric computing, where control
flow divergence actually occurs across different execution platforms.

1 Introduction

Many high performance computing applications make use of floating-point arith-
metic. It is well known that floating-point expressions produce different results
on different machines, due to lack of associativity, etc. Most practitioners assume
that this affects only the last few bits of a computation, and can safely be ignored.
In this paper, we present several examples where code run on different platforms
on the same inputs can produce not just different results but different control
flow. We use OpenCL as a programming language [9], which promises cross-
platform portability. Yet, as our experiments show, this promise does in fact not
guarantee portability of control flow.

All the computer hardware that we target complies with the IEEE 754–
2008 standard [5]. The code generated to run on compliant hardware has several
degrees of freedom. A compiler may reorder expressions, which affects the numer-
ical values of the results. An example of such reordering is the use of reductions
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to compute long sums by parallel threads. Further, the IEEE standard permits
the use of a fused multiply-add (FMA) instruction (which contracts a multi-
plication followed by an addition into a singly-rounded operation) but gives no
guidance on how a compiler should employ such an instruction (if it exists at
all). In most applications, there are several different, IEEE-compliant ways for
the compiler to implement an expression using FMA.

Using examples characteristic of floating-point computations in parallel com-
puting, we demonstrate in this paper that the above vagaries of IEEE floating
point can impact control flow in a platform-dependent way. We present an algo-
rithm that, given a numeric procedure, determines an input that may lead to
different branching decisions due to (fully IEEE compliant) expression reorder-
ing or the use/non-use of FMA instructions. Our two-stage algorithm first uses
symbolic execution to determine inputs that make a given branching decision
unreliable. It then examines such inputs for different ways of evaluating expres-
sions.

Motivating Example: Ray Tracing. Consider the following C program, taken from
http://www.cc.gatech.edu/∼phlosoft/photon/. We have elided the code follow-
ing the branching decision D > 0, since here we are merely interested in whether
that code is executed at all, depending on the execution platform.

float dot3(float *a, float *b) {

return a[0] * b[0] + a[1] * b[1] + a[2] * b[2]; }

int raySphere(float *r, float *s, float radiusSq) {

float A = dot3(r,r);

float B = -2.0 * dot3(s,r);

float C = dot3(s,s) - radiusSq;

float D = B*B - 4*A*C;

if (D > 0)

...; }

This code employs well-known high school arithmetic. When “arithmetic”
means floating point, however, the results are no longer so obvious: the compu-
tation of vector dot products in dot3, common in high performance libraries,
depends on the compiler’s choice to evaluate the sum left to right or vice versa,
and whether to use FMA instructions and in which of several possible ways.
For certain inputs, these choices translate into platform-dependent control flows
across the if statement involving D. Such divergence is likely not accounted for
and undesirable. In Sect. 2 we describe an algorithm to find such inputs. Our algo-
rithm determines that, given the following inputs (trailing 0’s omitted) to proce-
dure raySphere, the NVIDIA Quadro 600 GPU computes a value DN ≈ −3.56,
while an Intel 64-bit CPU computes DI ≈ 4.55; we observe DN � 0 � DI :

r = (−33.999900817871094, −54.0, −53.0); radiusSq = 0.000000029802322;
s = (−33.370471954345703, −53.0, −52.01855468750).

http://www.cc.gatech.edu/~phlosoft/photon/
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Related Work. The scientific computing community has long been aware that
floating point vagaries can affect a computation’s output. Shewchuk shows how a
near-zero determinant may cause flat-out incorrect results due to floating-point
rounding errors [10]. Several works have demonstrated that rounding errors can
cause the control flow of a floating-point program to differ from that of the
corresponding idealistic real-arithmetic program [2,6]. Our technique is distinct
in both motivational and technical aspects: (i) we compare the control flows
on different floating-point platforms; (ii) instead of a purely dynamic (testing)
approach, we use SMT technology to locate potentially problematic inputs.

2 Finding Inputs Witnessing Behavioral Non-portability

Motivated by the observations made in Sect. 1, the goal now is an algorithm
that determines inputs to the given program that are likely to expose behavioral
non-portability when the program is run on certain diverse execution platforms.

2.1 Problem Formulation

Behavioral non-portability is frequently caused by expressions whose floating-
point semantics is dependent on the evaluation order, and on the use of hardware
features such as fused multiply-add. We call such expressions volatile in this
paper. These are expressions <ve> defined by the following grammar:

<ve> :: <ve⊕ > | <ve⊗ >| <vedot> | <vefma >
<ve⊕ > :: <e> ⊕ . . . ⊕ <e>
<ve⊗ > :: <e> ⊗ . . . ⊗ <e>
<vedot> :: <e> ⊗ <e> ⊕ . . . ⊕ <e> ⊗ <e>
<vefma > :: fma(<e>,<e>,<e>)
<e> :: c | var | <ve> | <e> < op > <e>
<op> :: ⊕ | � | ⊗ | �
where c is a floating-point constant and var is a floating-point program variable.
The semantics of fma(x, y, z) is the term (x · y) ⊕ z, which represents the real
value x·y+z followed by a single rounding step. Volatile expressions are unparen-
thesized sums, products, dot products, or FMA expressions over floating-point
constants, variables, and other expressions.

Branch Point. We are interested in the effect of behavioral non-portability on
the program control flow and, therefore, on conditional statements such as if
statements and loops. We call such statements branch points. Each branch point
refers to a conditional q , which is a Boolean-valued formula over atomic floating-
point subformulas ψ of the (normalized) form

ψ::X � c, � ∈ {≤,≥, >,<,==} (1)

where c is a floating-point constant and X a floating-point valued expression.
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We can now define the concept we are investigating in this paper. The value of
the conditional q depends not only on the program input I, but also on platform
parameters such as the availability of FMA and decisions made by the compiler
about evaluating volatile expressions. We refer to an instantiation of such plat-
form parameters as an expression evaluation model M . For example, a particular
expression evaluation model might state that there is no FMA support, and that
sums and products are evaluated left-to-right. An expression evaluation model
therefore disambiguates among many of the common and IEEE-754 compliant
ways expressions can be rendered by the compiler.

Let q(I,M) denote the value of expression q for program inputs I (that cause
q to be reached) and expression evaluation model M , and consider a program P .

Definition 1 (Control-Flow Instability). Let q denote a Boolean-valued
expression used as a conditional in program P . Input I is said to cause control-
flow instability if there exist two evaluation models M1 and M2 such that

q(I,M1) �= q(I,M2). (2)

Intuitively, input I is a candidate for causing program P to exhibit differ-
ent control flows on different platforms, caused by different Boolean values of
the conditional q , for the same input I, computed on those platforms. Control
flow instabilities are likely undesirable. In the rest of this paper we describe an
algorithm that, given program P and a branch point with conditional q , deter-
mines whether there exists an input that renders the control flow unstable. The
algorithm efficiently searches through all possible inputs and evaluation models
with the goal of finding I, M1, M2 such that q(I,M1) and q(I,M2) differ.

2.2 Detecting Behavioral Non-portability: Overview

Our algorithm for finding behavioral non-portability proceeds in two phases.
Given is a program P with volatile expressions and a branch point, identified
by the user to be of interest, with conditional q over atomic subformulas of the
form ψi::Xi � ci (1). The first phase determines a candidate input, i.e. an input
I0 such that minor variations of I0 cause q to flip. Numerically, this requires
that there exists ψk in q such that Xk is close to ck for input I0. This phase is
implemented using symbolic execution: we build a formula for the path leading
from the program entry point to the conditional q . We change the comparison
operator in q to an equality = (or an approximate equality, see below) and solve
the obtained path formula using a constraint solver.

In the second phase, the algorithm computes the minimum and maximum
value of Xk for input I0 and under all possible expression evaluation models.
For two models that give rise to the minimum and maximum value, the chances
are that the value of Xk is on either side of ck, causing the conditional q to flip.
The algorithmic challenge is to search among all these models efficiently.

Figure 1 shows our overall approach. We explain the details of each step in
the following subsections.
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Fig. 1. Finding behavioral non-portability: overall approach

2.3 Phase I: Finding Candidate Input

Recall the form ψi::Xi � ci (1) of the n atomic subformulas of q . Let b1, . . . , bn
be fresh Boolean variables and q be the Boolean skeleton of q , i.e. the formula
obtained from q by replacing each ψi by bi. For a Boolean assignment A :
{b1, . . . , bn} → {0, 1}, let A|bi→v denote A except that bi is assigned value v.

Finding Critical Subexpression. A prerequisite for finding a candidate input
is to identify a critical subexpression ψk in the conditional q : an index k and a
Boolean assignment A0 such that, under that assignment, flipping the value of
ψk flips the value of q . We formalize this condition via the skeleton:

q(A0) �= q(A0|bk→¬bk(A0)) (3)

Algorithm 2.1 finds such an index k and a satisfying assignment A0. In line 2, we
use a SAT solver to check whether q(. . . , bk, . . .)� q(. . . ,¬bk, . . .) is satisfiable; �
denotes exclusive-or.

Algorithm 2.1. Finding Critical Subexpression
Input: Boolean formula q(b1, . . . , bn)

1 for k = 1 to n do
2 if q(. . . , bk, . . .) � q(. . . ,¬bk, . . .) satisfiable then
3 return index k and sat. assignment

Finding Candidate Input. In this step we generate, from the original C code,
constraints whose solutions serve as possible candidate inputs I0. We split the
generated constraints into the following parts:

1. Path Constraint φpath : this part symbolically encodes the execution path
from the program entry point to the conditional q , following the appropriate
branches at all intermediate program branch points.

2. Boolean Assignment Constraint φassgn : input I0 must assign to all subex-
pressions ψi, for i �= k, the same Boolean value as A0 (determined in (3)) to
bi, and this should hold independently of the expression evaluation model M :

∀M ∀i : i �= k ⇒ ψi(I0,M) = bi(A0) (4)
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Solving this constraint is very costly, not least due to the limited support
for floating-point arithmetic in automated solvers. We therefore interpret (4)
and other arithmetic constraints in this section over the reals. As a result,
φassgn simplifies to

∀i : i �= k ⇒ ψi(I0) = bi(A0) (5)

since real arithmetic results do not depend on the evaluation model. A prob-
lem is of course that we lose precision: real results may not hold in floating-
point arithmetic. However, the goal in Phase I is merely to determine an
input I0 that brings the conditional q close to the tipping point. The numer-
ical differences caused by the interpretation of the code over R instead of
over floating-point arithmetic will not affect this goal, as long as they are
small. The solution will be made precise in Phase II of the algorithm.

3. Approximation Constraint φappr : the critical subexpression ψk : Xk � ck
must be unreliable, i.e.:

Xk(I0) = ck ± ε, (6)

where ε is the smallest non-negative number that permits a solution to (6).

The total constraint for candidate inputs is then φpath ∧ φassgn ∧ φappr .
As an example, given the raySphere program from Sect. 1 with the volatile
expression D = B ⊗ B � 4 ⊗ A ⊗ C and the conditional D > 0, we generate the
real-arithmetic constraint B · B − 4 · A · C = 0 and pass it to a suitable decision
procedure for candidate input generation.

2.4 Phase II (a): Efficiently Searching Evaluation Models

Finding Extreme Evaluation Models. Given the candidate input I0 that
results in the conditional q to be unreliable, we now determine the minimum
and maximum value of X, under any possible expression evaluation model that
may reorder expressions and use FMA instructions. We first introduce algorithms
getMinT and getMaxT (T ∈ {⊕,⊗, dot, fma}) that compute these extreme values
in polynomial time when X is a basic volatile expression. Later we extend these
algorithms to handle general expressions.

Minimizing Volatile Sum: Given volatile expression ve⊕ = v1 ⊕ . . . ⊕ vn, where
the vi (1 ≤ i ≤ n) are floating-point constants, the goal is to efficiently determine
minM ve⊕(v ,M), i.e. ve⊕ minimized over all evaluation models M . To this end,
consider the following array, for 1 ≤ i ≤ j ≤ n:

N [i, j] =

{
vi if i = j
min
i≤k<j

{N [i, k] ⊕ N [k + 1, j]} if i < j (7)

We now claim that N [1, n] is the quantity we are looking for:

Theorem 1. N [1, n] = minM ve⊕(v,M).
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In order to prove this theorem, we strengthen it as follows:

Lemma 2. N [i, j] equals the minimum, over all possible orderings, of the
floating-point sum of the numbers in the range vi, . . . , vj.

Proof. We induct over the quantity j − i. If j − i = 0, then N [i, j] = vi = vj ,
and the claim follows since there is only one element.

For the inductive step, assume that for all i′, j′ such that j′ − i′ < j − i,
N [i′, j′] is the minimum value of the sum of the elements v′

i, . . . , v
′
j (IH). Let k

be one of the values that, in the definition of N [i, j], gives rise to the minimum,
i.e. N [i, j] = N [i, k] ⊕ N [k + 1, j]. Let further No[i, j] be the sum for any fixed
order o. We show that N [i, j] ≤ No[i, j].

The top-level ⊕ in the fixed-order sum No[i, j] splits the sum from i to j into
two sub-ranges i to l and l + 1 to j, such that i ≤ l and l + 1 ≤ j. Thus:

N [i, j] = N [i, k] ⊕ N [k + 1, j] { def. k and def. N [i, j] }
≤ N [i, l] ⊕ N [l + 1, j] { def. k: min sum in N [i, j] }
= rd(N [i, l] + N [l + 1, j]) { def. ⊕ ( + denotes addition in R }
≤ rd(No[i, l] + No[l + 1, j]) { IH: l − i < j − i, j − (l + 1) < j − i }
= No[i, l] ⊕ No[l + 1, j] { def. ⊕ }
= No[i, j] { def. l }.

The second ≤ step exploits the monotonicity of the rounding function rd . �

Value maxM ve⊕(v ,M) can be computed analogously. Both algorithms,
denoted getMin⊕ and getMax⊕ in the sequel, can be implemented in O(n3) time,
by filling N [i, j] “bottom-up”. We use similar procedures getMin⊗ and getMax⊗
to minimize and maximize volatile products. In the following we describe how
our method applies to the computation of extreme values for FMA expressions
and volatile dot products, resulting in the four procedures getMin{fma|dot} and
getMax{fma|dot}. The correctness argument and the algorithmic complexity are
the same as in the summation case and omitted.

Minimizing Volatile FMA: For an expression vefma = fma(v1, v2, v3), there are
only two possible evaluation models, namely using or not using FMA. These two
models can simply be compared against each other.

Minimizing Volatile Dot Product: Consider an expression vedot = v11 ⊗ v21 ⊕
. . . ⊕ v1n⊗v2n under an evaluation model that supports FMA. Here we need not
only consider different ways of parenthesizing the expression, but also different
ways of applying FMA. For example, for n = 3 the above expression can be
evaluated in many different ways, among others the following:

v11 ⊗ v21 ⊕ (v12 ⊗ v22 ⊕ v13 ⊗ v23) fma(v11, v21, v12 ⊗ v22 ⊕ v13 ⊗ v23)
fma(v11, v21, fma(v13, v23, v12 ⊗ v22)) fma(v13, v23, fma(v12, v22, v11 ⊗ v21))



Behavioral Non-portability in Scientific Numeric Computing 565

Our method can be used to compute the minimum over all different evaluation
models. The following equations determine minM vedot(v ,M) to be N [1, n]:

N [i, j] =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

v1i ⊗ v2i if i = j
min {fma(v1i, v2i, N [i + 1, j]),

min
i<k<j−1

{N [i, k] ⊕ N [k + 1, j]},

fma(v1j , v2j , N [i, j − 1])} if i < j

Minimizing General Volatile Expression: For an arbitrary floating-point expres-
sion e, we approximate the maximum and minimum values using interval analy-
sis [4]. Interval bounds on floating-point expressions soundly propagate to sums,
products, etc. as shown in Eq. (8) [7], where [e] denotes an interval bound on
expression e with lower and upper bounds ↓e and ↑e:

[e1 ⊕ e2] = [↓e1 ⊕ ↓e2, ↑e1 ⊕ ↑e2]
[e1 � e2] = [↓e1 � ↑e2, ↑e1 � ↓e2]
[e1 ⊗ e2] = [min(↓e1 ⊗ ↓e2, ↓e1 ⊗ ↑e2, ↑e1 ⊗ ↓e2, ↑e1 ⊗ ↑e2),

max(↓e1 ⊗ ↓e2, ↓e1 ⊗ ↑e2, ↑e1 ⊗ ↓e2, ↑e1 ⊗ ↑e2)]
[e1 � e2] = [e1 ⊗ [ 1

↑e2 , 1
↓e2 ]] if 0 �∈ [e2]

[veT (e1, . . . , en)] = getBoundT ([e1], . . . , [en]) (T ∈ {⊕,⊗, dot, fma})

(8)

Equation (8) suggests to find an interval for e under evaluation model varia-
tions by composing intervals for its subexpressions, computed recursively. In
particular, function getBoundT defined in Algorithm 2.2 computes an interval
for volatile expression ve, given intervals for subexpressions ei. The algorithm
considers all 2n combinations of lower/upper bound for expression ei (1 ≤ i ≤ n),
and call functions getMinT and getMaxT , which implement the min/max compu-
tations described earlier in this section. Note that at the “leaves” of the recursive
descent the ei’s are constants, so [ei] degenerates to the single point. The loop
in line 3 goes through one iteration in this case. For non-leaves, n is bounded
by the code size of expressions in the program text.

Using (8) we can prove that [↓e, ↑e] contains the exact interval [emin, emax].

Algorithm 2.2. getBoundT

Input: {[e1], [e2], . . . , [en]}
1 ↓e = +∞ ↑e = −∞
2 for (v1, . . . , vn) ∈ {↓e1, ↑e1}

× . . . × {↓en, ↑en} do
3 vmin = getMinT (v1, . . . , vn)

vmax = getMaxT (v1, . . . , vn)
↑e = max(↑e, vmax)
↓e = min(↓e, vmin)

4 return [↓e, ↑e]

Algorithm 2.3. Calibration
Input: constraint ψk: : Xk � ck,

interval [↓Xk, ↑Xk] that
does not contain ck

if ck < ↓Xk then
ε = ↓Xk − ck // ε > 0

else
ε = ↑Xk − ck // ε < 0 (↑Xk < ck)

φappr := Xk(I0) ≈ ck − ε



566 Y. Gu et al.

2.5 Phase II (b): Calibration

Given the conditional q over atomic subformulas ψi::Xi � ci, we use the above
methods to compute an input I0 and the interval [↓Xi, ↑Xi] (1 ≤ i ≤ n). We now
check whether these results satisfy our requirements from Sect. 2.3: φpath : given
input I0 the program follows the execution path that leads to the conditional q ;
φassgn : for i �= k, ψi has the same Boolean value as A0 assigns to bi, for both
bounds ↓Xi and ↑Xi; φappr : the values of ψk for Xk = ↓Xk and Xk = ↑Xk differ:
↓Xk � ck �= ↑Xk � ck.

If I0 does not satisfy φpath or φassgn , we ask the solver to generate a different
input I0, using a suitable blocking constraint. If I0 and the interval fail φappr ,
we further distinguish the following cases: (a) the lower and upper bounds of
Xk are the same: ↓Xk = ↑Xk. We deal with this as before by asking the solver
for a new input; or (b) ↓Xk �= ↑Xk but the two bounds are on the same side of
ck: ↓Xk � ck = ↑Xk � ck. Here we employ a step-by-step calibration strategy
shown in Algorithm2.3. If, for example, ck < ↓Xk, then the values returned by
I0 are slightly too large. We define ε to be the “error” ↓Xk − ck and adjust
formula φappr to account for this error, by reducing the point of comparison ck.
We now repeat the process using the new set of constraints. In our experiments,
we typically needed to go through 10–15 iterations of this calibration loop (see
Fig. 1) if we were able to find an unstable input. The process is halted after some
user-specified number of unsuccessful calibrations.

3 Empirical Results

We have vetted the algorithm described in Sect. 2 on several examples to generate
inputs that may trigger control flow divergence. The examples are then executed
on several different hardware platforms on these inputs, and the results are com-
pared. The examples include the ray tracing code from Sect. 1, long summations,
and molecular dynamics. More details are available at our website.1

Hardware Used in Comparisons. We target a range of different computer hard-
ware for our experiments, including: (1) two different CPUs (Intel and AMD
64 bit processors), (2) an AMD Radeon 6550D GPU, and (3) three different
NVIDIA GPUs (Quadro 600, Tesla C2075 and Tesla K20). All targets have
OpenCL compilers, provided by each manufacturer, which were used to gener-
ate the results. All the target hardware is IEEE 754–2008 compliant. The Intel
and AMD CPUs are 64 bits. Intel has FMA, but only in its multimedia instruc-
tions (AVX) which are not used in these experiments. The AMD processor does
not have FMA. The three NVIDIA GPUs all have FMA instructions and the
NVIDIA OpenCL compiler applies FMA aggressively. The AMD GPU does not
have hardware FMA instructions.

1 http://www.ccs.neu.edu/home/wahl/Research/FPA-Heterogeneous/Non-
Portability.

http://www.ccs.neu.edu/home/wahl/Research/FPA-Heterogeneous/Non-Portability
http://www.ccs.neu.edu/home/wahl/Research/FPA-Heterogeneous/Non-Portability
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Tool Specifics. We have implemented the algorithm on top of the KLEE symbolic
analysis engine [3] with LLVM-2.9. We use the Z3 theorem prover [8], version
4.3.2, as KLEE’s internal solver. The experiments are run on a Ubuntu 14.04.1
LTS machine with Intel Core-i7 3.10 GHz processor and 8 GB RAM. With the
exception of the calls to Z3 for finding the candidate inputs, the running time
of our algorithm is negligible and in the tens of milliseconds, which is
why we omit performance details.

Code Instrumentation. We test our algorithm on the C code version of the
examples. In the first step, we apply transformations to each program: we attach
a main function that calls the tested program, and we annotate the symbolic
variables and volatile expressions, so that our algorithm can detect these later.

For a conditional q in the execution path, there may exist multiple inputs
that exhibit control flow instability. In our experiments we split the domain of
each input variable into subintervals of length 0.01, and run our algorithm on
each of these subintervals. For ray tracing, for example, this produced 408 sets
of inputs over the range [−50, 50] that cause control flow instability according
to Definition 1.

3.1 Examples and Control Flow Divergence

Ray Tracing. The OpenCL ray tracing code was run with the 408 different sets
of inputs generated by our algorithm to produce results where D is close to zero.
Inputs provided were the three dimensions of the sphere: s[0], s[1] and s[2], the
three dimensions of the ray, r[0], r[1] and r[2] and the radiusSq. All 408 input
sets generated differences on different architectures. 45 of the 408 sets of inputs
produce results that are on either side of zero for the comparison when the same
code was run on different platforms.

Summation. Summations of floating-point values are common in scientific com-
puting. We compare serial C code which accumulates a value to a register, and
a reduction kernel, written in OpenCL which is the common way to implement
long summation on a parallel architecture. The result of the sum is compared to
a threshold, set to zero for these experiments.

We ran our OpenCL kernel for a sum of 32 values generated by the algorithm.
We received 100 different sets of inputs from the algorithm, of which 58 gave us
different results. Three sets of results are shown in Table 1. The reduction values
differed from the serial summation, as expected. Most platforms produced the
same results of the reduction sum except for the NVIDIA Tesla 2075, which
produced different results. These differences are due to reordering. We were able
to illustrate differences even with a short list of input values (32) where the
range of these values is small ([−1.05, 1]). For practical applications where both
the number of values and their range will be larger, we expect these differences
to be more dramatic.
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Table 1. Results for reduction sum (left) and MD (right)

Red Sum 1 Red Sum 2 Serial Sum

-4.6566E-8 -8.7544E-8 4.4936E-8

-5.9605E-8 -8.7544E-8 1.0547E-7

-5.9605E-8 -8.7544E-8 9.1502E-8

R1 R2

0.0 -2.3841858E-7

-2.3841858E-7 0.0

Molecular Dynamics. MD is a popular high performance computing application
with many versions available that run on parallel processors and on GPUs [1].
MD is sensitive to drift in floating-point calculations due to the large number of
time steps in simulation. Taufer et al. [11] show this and use a tuple of values
to represent both the floating-point number and its error. Our experiments use
open source code2 to calculate the Lennard Jones potential energy of molecular
systems. We specifically focus on the comparison with rrCut, a constant which
specifies the cutoff distance (see Listing 1.1). Atoms further away than rrCut
are assumed to not affect the result.

/* Doubly-nested loop over atomic pairs */

...

/* Computes the squared atomic distance */

for (rr=0.0, k=0; k<3; k++) {

dr[k] = r[j1][k] - r[j2][k];

dr[k] = dr[k] - SignR(RegionH[k],dr[k]-RegionH[k])

- SignR(RegionH[k],dr[k]+RegionH[k]);

rr = rr + dr[k]*dr[k]; }

/* Computes acceleration & potential within the cut-off distance */

if (rr < rrCut) { ... }

Listing 1.1. Molecular Dynamics

We implemented this code in OpenCL and ran it on our six target platforms.
We set rrCut to 2.25. The algorithm was used to generate inputs r[j1][0], r[j1][1],
r[j1][2], r[j2][0], r[j2][1], and r[j2][2] that bring rr close to 2.25. It found twelve
sets of values where this decision is on either side of rrCut. Table 1 shows the
difference between 2.25 and the value rr. 6 sets of inputs produced one of these
results and 6 sets produced the other. R1 results are produced by the two CPUs
and the AMD GPU, none of which use FMA. The R2 results are produced on
the NVIDIA GPUs, all of which use FMA. Note that MD simulations run for
a long time, and the value of rrCut affects the run time by determining how
many calculations are done. Our algorithm can be used to help set rrCut and
thus reduce the overall run time.

4 Conclusions and Future Work

We have shown that floating-point instabilities can lead to different control flows
in code, and have introduced an algorithm to find values that potentially exhibit
2 http://cacs.usc.edu/education/cs596/src/md/.

http://cacs.usc.edu/education/cs596/src/md/
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such instability when code is run on the same inputs on different machines.
Our algorithm can inform programmers whether their code has instabilities for
certain ranges of input and parameter choices. For molecular dynamics, it can
help improve run times by allowing an intelligent choice of cut off distance. In
the future we plan to improve the usability of the algorithm and to apply it to
more complicated examples.
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Abstract. We implement two classes of suffix array construction algo-
rithms on the GPU. The first, skew, makes algorithmic improvements
to the previous work of Deo and Keely to achieve a speedup of 1.45 ×
over their work. The second, a hybrid skew and prefix-doubling imple-
mentation, is the first of its kind on the GPU and achieves a speedup
of 2.3–4.4 × over Osipov’s prefix-doubling and 2.4–7.9 × over our skew
implementation on large datasets. Our implementations rely on two effi-
cient parallel primitives, a merge and a segmented sort. We also demon-
strate the effectiveness of our implementations in a Burrows-Wheeler
transform and a parallel FM index for pattern searching.

Keywords: Suffix array · Parallel · GPU · Skew · Prefix-doubling ·
Burrows-wheeler transform · FM index

1 Introduction

The suffix array (SA) of a string is the sorted set of all suffixes of the string.
This data structure is used in a broad spectrum of applications, including data
compression, bioinformatics, and text indexing. The suffix array, along with its
first construction algorithm, was introduced by Manber and Myers [11] as a more
space- and cache-efficient, and simpler to construct alternative to suffix trees.

The straightforward way to generate a suffix array from a string is to simply
sort all suffixes of that string using a comparison-based sorting algorithm. For
a string of length n, this construction takes O(n log n) suffix comparisons and
each suffix comparison has time complexity O(n), so the total time needed is
O(n2 log n). The key insight to develop a more efficient algorithm is to leverage
the fact that suffixes are not arbitrary strings but related to each other.

The existing suffix array construction algorithms (SACAs) that leverage this
property can be divided into three classes: prefix-doubling, recursive and induced
copying. The first class of SACAs, prefix-doubling, sorts the suffixes of a string
by their prefixes, the length of which is doubled every iteration. The idea was
c© Springer-Verlag Berlin Heidelberg 2015
J.L. Träff et al. (Eds.): Euro-Par 2015, LNCS 9233, pp. 573–587, 2015.
DOI: 10.1007/978-3-662-48096-0 44
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originally proposed by Karp et al. [7], first applied to suffix array construction by
Manber and Myers [11] (MM), and later optimized by Larsson and Sadakane [8]
(LS). LS is more efficient than MM, because it removes the unnecessary scan-
ning of fully sorted suffixes from the previous pass. The second class of SACAs
recursively sorts a subset of the suffixes, use the order of the sorted subset to
infer the order of remaining subset, and finally merge the two sorted subsets
to get the order of the entire set. The skew algorithm proposed by Kärkkäinen
and Sanders [6] (KS) is a popular linear-time recursive algorithm. The final class
of SACAs, induced copying, is non-recursive and uses already-sorted suffixes to
quickly induce a complete order of the suffixes. Like the recursive formulation,
their time complexity is O(n).

The recent explosion in data sizes and the emergence of commodity data-
parallel processors motivate efficient parallel implementations of SACAs. In this
paper, we focus on highly data-parallel SACAs that are suitable for implementa-
tion on devices such as many-core GPUs and multi-core CPUs. Because of their
high arithmetic and memory throughput, these processors are well-suited for
data-intensive computing tasks such as SACAs. However, parallelizing SACAs
is a significant challenge.

Both Osipov [15] and Deo and Keely [2] have done seminal work on highly
parallel SACAs on GPUs. Deo and Keely analyze the aforementioned three
SACA classes and conclude that induced copying has numerous data depen-
dencies and note a lack of parallel approaches to exploit this technique. Osipov
concludes that prefix-doubling algorithms are more cost-efficient to implement
on the GPU compared with the linear-time recursive skew approach, because
the former only requires fast GPU radix sorting of (32-bit key, 32-bit value)
pairs, while skew needs to sort large tuples by comparison-based sorting and
merging. On the other hand, Deo and Keely conclude that skew is best suited
for the GPU as all its phases can be readily mapped to a data-parallel architec-
ture, while prefix-doubling has an irregular, data-dependent number of unsorted
groups across phases, and the amount of work per group in each iteration is
non-uniform.

Recently, Liu et al. [10] and Pantaleoni [16] have proposed scalable, space-
efficient methods that exploit the sorting speed of modern GPUs for blockwise
suffix sorting targeting bioinformatics applications to work specifically with large
collections of relatively short DNA strings. Because the GPU has limited mem-
ory, Liu et al. focus on dividing the large inputs into several sets and sorting
each set using a GPU-accelerated method while Pantaleoni solves the problem
using insertion, with GPU sorting new blocks and CPU inserting the symbols
into the external final result.

In this work, we address the parallel SACA problem by designing, imple-
menting, and comparing two different formulations of SACAs on NVIDIA GPUs.
We make three main contributions.

1. Our skew approach incorporates several optimizations that yield a speedup
of 1.45x over Deo and Keely’s implementation.
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2. We also implement a hybrid non-recursive skew/prefix-doubling SACA that
overcomes the parallelization challenges identified by Deo and Keely and
performs much better than Osipov’s plain prefix-doubling. Comparing our
two implementations, we revisit Deo and Keely’s conclusions on the most
appropriate formulation for parallel SACAs, demonstrate that a recursive
doubling-like formulation can be efficiently mapped to GPUs and that our
hybrid implementation in general produces the fastest SACA implementa-
tion on GPUs. The speedup is as high as 12.76× over Deo and Keely’s skew
implementation, up to 4.4× over Osipov’s parallel prefix-doubling, and 7.9×
over our optimized skew implementation.

3. We integrate our hybrid implementation into our GPU implementation of the
Burrows-Wheeler transform (BWT) and an FM index-based pattern search
application.

2 Background and Preliminaries

We begin with the algorithmic background for the string algorithms we imple-
mented. Section 2.1 provides the notation for suffix array construction that we
use throughout the paper. Readers already familiar with the Burrows-Wheeler
Transform (Sect. 2.2), the FM index (Sect. 2.3), and GPU terminology (Sect. 2.4)
can skip to Sect. 3.

2.1 The Suffix Array

Consider an input string x of length n ≥ 1 ending with a lexicographically
smallest suffix ($). We denote the suffix starting at position i (i.e., x[i, . . . , n−1])
by suffix i. For convenience, let suffixes with starting position i where i mod 3 �≡ 0
be S12, suffixes with starting position j where j mod 3 ≡ 0 be S0, and suffixes
with starting position k where k mod 3 ≡ 1 be S1.

The suffix array (SA) of x is defined as an n + 1 length array such that
SA[j]=i means “suffix i is the jth suffix of x in ascending lexicographical order”.
The inverse suffix array (ISA) is defined as follows:

ISA[i] = j ⇐⇒ SA[j] = i

This implies that suffix i has rank j in lexicographic order. ISA is also called
the lexicographic ranks of suffixes. For convenience, we denote the suffix array
of S12 by SA[12] and that of S0 as SA[0], correspondingly for the inverse suffix
array, ISA[12] and ISA[0], and we denote the lexicographic ranks of S1 by ISA[1].

Both algorithms we describe sort prefixes with increasing length h ≥ 1. We
will refer to this partial ordering as an h-order of suffixes. Suffixes that are equal
under h-order are given the same rank, and put into the same h-group. If the
sorting process is stable, h-groups with a larger h are refinements over their
counterparts with a smaller h. Suffixes in a partial h-order are stored with their
indexes in an approximate suffix array SAh, and their ranks in ISAh.
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2.2 The Burrows-Wheeler Transform

The BWT of a string is generated by lexicographically sorting the cyclic shift
of the string to form a string matrix and taking the last column of the matrix.
The BWT groups repeated characters together by permuting the string; it is
also reversible, which means the original string can be recovered. These two
characteristics make BWT a popular choice for a compression pipeline stage
(for instance, bzip2). It is directly related to the suffix array: the sorted rows in
the matrix are essentially the sorted suffixes of the string and the first column
of the matrix reflects a suffix array. The BWT of a string x can be computed
from its SA as follows:

BWT[i] =

{
x[SA[i] − 1] if SA[i] > 0
$ if SA[i] = 0

Table 1 shows an example of the SA, ISA and BWT of the input string “banana”
as follows.

Table 1. SA, ISA and BWT for the example string “banana”.

i Suffix Sorted suffix SA[i] ISA[i] Sorted rotations BWT[i]

0 banana$ $ 6 4 $banana a

1 anana$ a$ 5 3 a$banan n

2 nana$ ana$ 3 6 ana$ban n

3 ana$ anana$ 1 2 anana$b b

4 na$ banana$ 0 5 banana$ $

5 a$ na$ 4 1 na$bana a

6 $ nana$ 2 0 nana$ba a

2.3 The FM Index

Proposed by Ferragina and Manzini [4], the FM (Full-text, Minute-space) index
is a compressing and indexing method that allows compression of input text while
still supporting fast arbitrary pattern searches. It is a lightweight compressed
suffix array that combines the BWT and the suffix array data structure. The
compressed index can be used to efficiently find the number of occurrences of
a pattern from the text, as well as locate the position of each occurrence. The
authors describe an algorithm called backward search that calculates how many
times a pattern occurs in BWT-compressed text without decompressing it. We
refer the reader to the original paper [4] for further detail.

2.4 The Graphics Processor Unit (GPU)

In the following discussion we use NVIDIA CUDA terminology. Modern GPUs
are massively parallel processors that support tens of thousands of hardware-
scheduled threads running simultaneously. These threads are organized into
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blocks and the hardware schedules blocks of threads onto hardware cores. High-
end NVIDIA GPUs have on the order of 16 streaming-processor (SP) cores,
each of which contains 32-wide SIMD (single-instruction, multiple-data) units
that run 32 threads in lockstep. GPUs also feature a memory hierarchy of per-
thread registers, per-block shared memory, and off-chip global DRAM accessible
to all threads. CUDA programs (“kernels”) specify the number of blocks and
threads per block under a SIMT (single-instruction, multiple-thread) program-
ming model. Lindholm et al. [9] provides more detail on modern GPU hardware
and Nickolls et al. [14] on the GPU programming model.

Efficient GPU programs have enough work per kernel to keep all hardware
cores busy (load-balancing); strive to reduce thread divergence (when neighbor-
ing threads branch in different directions); aim to access memory in large contigu-
ous chunks to maximize achieved memory bandwidth (coalescing); and minimize
communication between CPU and GPU. Designing an SACA that achieves all of
these goals is a significant challenge. We also prioritize using high-performance
parallel algorithmic GPU primitives (e.g., scan, radix sort, compact, segmented
sort) when applicable.

3 Algorithms and Analysis

We implement two fast parallel SACAs, skew (Sect. 3.1) and a skew/prefix-
doubling hybrid (Sect. 3.2).

3.1 Parallel Skew Algorithm

Our first approach is implementing the skew algorithm using massively parallel
kernels based on KS [6] and similar to the OpenCL implementation of Deo and
Keely [2]. We compare our implementation of skew with Deo and Keely’s in
Fig. 1 and now describe several algorithmic optimizations over their work.

Both methods start by extracting S12 and S0 from an input string (line 2)
and launching a 3-step least significant digit (LSD) radix sort using Merrill and
Grimshaw’s approaches [12] to find the order of S12 based on their first triplets

Fig. 1. Left, Deo and Keely’s skew implementation pseudocode; right, ours.



578 L. Wang et al.

(line 3 to line 5). In the first iteration, each triplet is composed of the first three
characters of each S12. The ranks of the triplets are then used as the value for
the key-value sort in the recursive iterations.

The ranks are computed by counting unique triplets. In practice, this is
done by first comparing each triplet against its predecessor, storing a flag of 1
whenever they are unequal, and then doing a prefix-sum of the list of flags. We
use the same flagging method as Deo and Keely to tell if S12 are fully sorted
(line 6 right and line 7 left), but we do the prefix-sum only when the suffixes are
not fully sorted instead of immediately after computing the flagging list (line 7
right and line 6 left). This change saves us from having to compute SA[12] from
ISA[12] if we are at the end of the recursion and the suffixes are fully sorted
(line 10 and 11 left). After the recursion, they continue to compute SA[0] by
sorting S0 with a 2-step LSD radix sort of (the first character of suffix i, rank
of suffix i + 1) pairs where suffix i ∈ S0 and thus suffix i + 1 ∈ S12 whose rank
is known from the previous steps (line 13 and 14 left). We use a faster one-step
radix sort because the order of the ranks of S1 (equivalent to ISA[1]) can be
filtered out from ISA[12] (result of line 7 right) using a compact operation (line
11 and 12 right).

The above optimizations allow our implementation to only use 2/3 of Deo
and Keely’s memory bandwidth in the recursive part, and 3 fewer memory trans-
actions in the last round.

Finally, we optimize the merge step that combines the two sorted suffix arrays
SA[0] and SA[12] while avoiding load-imbalance. Deo and Keely use the merge
technique of Satish et al. [18], binary search, and memory locality optimizations
of Davidson et al. [1]. Their work suffers from load-imbalance due to having two
separate-sized lists being processed independently. Instead, we utilize vectorized
sorted search to map threads and blocks to equally sized sections of each par-
tition, which successfully avoids load-imbalance. This method is based on the
Merge Path approach of Green et al. [5] and implemented as a merge primitive
in the second author’s Modern GPU library1 and is described here for the first
time in the literature.

The two keys to an efficient GPU merge operation are (1) dividing the two
sorted inputs into independent chunks of equal sized work and (2) ensuring that
the outputs of each of those chunks of work are contiguous in the final merged
output. This contrasts with Deo and Keely’s approach, where chunk size is not
uniform. The key operation, then, is to identify the split points. The obvious way
would require a two-dimensional search across both input arrays; Merge Path
instead describes an elegant transformation to an one-dimensional search along
a diagonal that connects the two input arrays.

Our implementation performs a two-part, hierarchical split: first dividing the
entire input into equal-sized tiles that can be assigned to blocks, then dividing
each tile into equal-sized subtiles that can be assigned to threads. The merge is
completely parallel (not cooperative) between threads; its inputs are in shared

1 Code is available at http://nvlabs.github.io/moderngpu and described in http://
nvlabs.github.io/moderngpu/merge.html.

http://nvlabs.github.io/moderngpu
http://nvlabs.github.io/moderngpu/merge.html
http://nvlabs.github.io/moderngpu/merge.html
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memory and its outputs are in registers. The result is a highly load-balanced,
parallel-friendly implementation that achieves a throughput of greater than half
the peak bandwidth of the GPU, compared to 12.1 % of the theoretical peak for
the implementation by Green et al. [5].

3.2 Skew/Prefix-Doubling

Deo and Keely’s work marked a significant milestone as the first implementation
of a linear-time SACA skew on the GPU. However, skew on GPUs has two
significant disadvantages:

1. As the skew formulation is recursive, we cannot parallelize across iterations.
2. At the end of each iteration, we may have sets of triplets that are fully sorted.

However, to keep the algorithm recursive, we cannot declare these fully sorted
suffixes complete and leave them out of further iterations; instead we must proc-
ess them on every iteration, which results in a large amount of redundant work.

To address these two disadvantages, we turn to a combination of skew and
prefix-doubling, which turns out to be a better fit for modern GPU architectures.

In our implementation, we still leverage our skew framework: we keep the first
step of skew, which reduces the string size by a factor of 2/3, and the final skew
merge stage, which is trivial. Only after the first step of skew do we transition to
our non-recursive better-performing prefix-doubling implementation. In the first
stage, we select all S12 suffixes, forming 3-character substrings, and do a 25-bit
radix sort (25 bits for 3 chars from a constant alphabet in the range [0 . . . 255]
plus a sentinel letter $) on those substrings. Then we compute the ranks of
S12 and assign the ranks into an inverse suffix array (ISA[12]). From now on,
we work with suffixes in partially-sorted order rather than text order. In other
words, after this initial radix sort, all suffixes with the same 3-character prefix
are contiguous in our array (i.e.,“Fun” is next to “Funicular”) no matter where
they appear in the original text.

Next, in our prefix-doubling step, we sort by (ISA[SA[i]+δ], ISA[SA[i]+2δ])
pairs, where δ is the length of prefix which doubles in each iteration until all
suffixes are in their own segments, which we define as a set of suffixes that are
equal up to the current substring length. These are each given a rank (the index
of the first element in the segment within the string). The rank of the segment
next to the current one is used as the key for the next pass, and on each iteration,
we double the length of the prefix. The key to high prefix-doubling performance
is our ability to sort efficiently within segments, even though the number of
segments and their sizes are non-uniform and are not known at compile time
(this is the specific concern about prefix-doubling raised by Deo and Keely). We
address this with an efficient segmented sort primitive, which we describe next.
In our implementation, we also identify suffixes at the end of each iteration that
are singletons in their own segments—their final positions in the suffix array are
fixed, so we re-rank and compact them out of the working suffix array. This way,
future iterations only need to consider suffixes whose final positions are not yet
fixed.



580 L. Wang et al.

Segmented Sort. The input to segmented sort is a contiguous list of segments
with a variable number of unsorted items per segment; the output is the same
list of segments but with items sorted within each segment. One way to solve
this problem is to sort each segment one at a time, but it is likely on a highly
parallel machine that many (or even most) segments will not have enough work
to fill the machine. Another approach is to do a full sort over all items, but this is
inefficient because it ignores the significant work that has already been completed
in classifying the items into segments. We wish to both work on all segments
simultaneously but still leverage the presence of segments. The challenge for an
efficient segmented sort implementation is the variation in the size and number
of segments. This method is implemented as a segmented-sort primitive in the
second author’s Modern GPU library2 and is described here for the first time in
the literature. An efficient segmented sort is the difference-maker in developing
a competitive prefix-doubling implementation.

The core of our segmented sort implementation is merging, in the same style
as the previously-described merge kernel. For illustrative purposes, consider a full
merge sort of a single segment. We would begin by dividing the work into equal-
sized blocks, sort each block of elements independently, then use our efficient
merge to merge blocks of work together, starting with many small merges and
concluding with one large merge. We have previously claimed that the most
efficient way for us to merge is to use fixed-size blocks of work, which gives us
straightforward parallelization and perfect load balancing.

Howdowe adapt such amerge in the presence of segments?Wemust respect the
segmentation during the merge, and the way we do this is using a key insight: Dur-
ing a merge of two contiguous lists, the only segment that is affected by the merge is
one that spans the boundary between two blocks. All other segments involved in this
merge are copied without change from input to output. We illustrate this in Fig. 2.

The final optimization is early exit. The number of input boundaries is cut in
half on each iteration, so once a segment no longer crosses an active input bound-
ary, we can conclude that segment is fully sorted and mark it as inactive. A tile
with no active segments is done with its work and can exit. Especially with a large
number of small segments, this early-exit optimization dramatically decreases the
number of passes over the data, the required memory bandwidth, and the over-
all runtime.

Comparison Against Plain Prefix-Doubling Implementation. Our hybrid prefix-
doubling method has several optimizations over the pure prefix-doubling imple-
mentation by Osipov [15]. He modifies MM by replacing chunks of (32-bit key,
32-bit value) radix sort with a single (32-bit key, 64-bit value) radix sort. At the
end of each iteration, he filters out fully-sorted suffixes to avoid unnecessary
re-sorting, similar to LS. Throughout the implementation, he uses parallel prim-
itives including prefix-sum, radix sort, random gather from and scatter to mem-
ory based on Merrill’s back40computing library3.

2 Code is available at http://nvlabs.github.io/moderngpu and described in http://
nvlabs.github.io/moderngpu/segsort.html.

3 https://code.google.com/p/back40computing/.

http://nvlabs.github.io/moderngpu
http://nvlabs.github.io/moderngpu/segsort.html
http://nvlabs.github.io/moderngpu/segsort.html
https://code.google.com/p/back40computing/
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Fig. 2. Segmented Sort example. Consider an input string composed of 16 random
characters grouped into four irregular segments (the first row). The head of each seg-
ment is marked with carets. First, we divide the characters equally into four blocks of
four elements each, then launch four “blocksorts” to sort four inputs each while main-
taining segment order. Next, we merge the first block with the second and the third
block with the fourth. Note in the merge of the third and fourth blocks, two separate
segments are involved, but only the first segment—the one that crosses the boundary
between the two inputs—changes as a result of the segmented merge. Finally, there’s
one active input boundary left in the middle but with no segment crossing it, which
means all segments are fully sorted and there’s no need for further merging, so this is
an early-exit. The final result is segments in the same order as the input, but sorted
within each segment (the last row).

In our method, the first step of skew—a single pass of (32-bit key, 25-bit
value) radix sort—is inexpensive and gives us a reduction ratio of 0.67. This is
significantly better than Osipov’s initial sorting of the first 4 characters. Also,
our massively parallel segmented sort primitive has better locality than radix-
sorting integer tuples across global memory. Furthermore, our induction step in
the skew framework is cheaper than a radix sort when sorting the remaining
1/3 suffixes. Though we need an additional merge in the final step, our parallel
merge primitive is quite efficient (see Sect. 3.1). We compare our approach with
Osipov’s pure prefix-doubling implementation in Fig. 3.

Skew vs. Prefix-Doubling. Skew with a difference cover modulo 3 is a “prefix
tripling” technique4, tripling the pace at which it samples its ranks each round.
It is more efficient as a prefix-tripler than an integer alphabet sort, because
the 2-integer segmented sort of prefix-doubling is certainly much faster than the
3-integer radix sort of skew. In its radix sort, skew uses the most significant digit
simply to get the suffix back in its original segment, which comes for free with
prefix-doubling’s segmented sort. Furthermore, skew cannot drop fully-sorted
suffixes, because it needs to transform their ranks into the new coordinate system

4 A difference cover D modulo h, denoted by Dh, is a set of integers i ∈ {0, . . . , h− 1}
such that i ≡ k − j (mod h) for some j, k ∈ Dh. For example, {1, 2} is a difference
cover modulo 3 and {1, 2, 4} is a difference cover modulo 7.
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Fig. 3. Left, Osipov’s parallel prefix-doubling description; right, our skew/prefix-
doubling.

in which they will be sampled by the remaining unsorted suffixes. With prefix-
doubling, suffixes are ranked in the same coordinate system (i.e., where they
would be placed in the final sorted suffix array) throughout the computation,
and since there is no need to re-rank fully-sorted suffixes, we can remove them
from the problem.

For real-world texts, this makes prefix-doubling more efficient than skew.
Skew has a solid reduction ratio of 0.67, regardless of the data. Prefix-doubling
has a worst-case reduction ratio of 1.0 (if the pass fails to resolve any suffixes),
but has a reduction ratio on real-world text that is usually favorable.

4 Experiments and Results

In this section we present a detailed experimental evaluation of our implemen-
tations of suffix array algorithms. For a more thorough comparison, we re-
implement Deo and Keely’s method using a current state-of-the-art radix sort
primitive from Merrill’s CUB library5 merge primitive on an NVIDIA GPU
using CUDA. For convenience, we call Deo and Keely’s OpenCL parallel skew
implementation on an AMD GPU dk-amd-SA, our CUDA implementation of Deo
and Keely’s approach dk-nvidia-SA, Osipov’s parallel prefix-doubling osipov-SA,
our parallel skew implementation skew-SA, and our parallel hybrid skew/prefix-
doubling implementation spd-SA.

Our experimental setup is an Intel Core i7-3770K 3.5 GHz 4-core machine
with 16 GB RAM and 8 MB L3 cache. We used an NVIDIA Tesla K20c GPU
(launch date: November 2012; process: 28 nm; peak single-precision floating-
point throughput: 3.524 TFLOPS; peak memory bandwidth: 208 GB/s). Deo
and Keely’s OpenCL implementation was on an AMD Radeon 7970 GPU (launch
date: December 2011; process: 28 nm; peak single-precision floating-point
throughput: 3.789 TFLOPS; peak memory bandwidth: 264 GB/s). The AMD
GPU has slight peak performance advantages over the NVIDIA GPU we used,
5 http://nvlabs.github.io/cub/.

http://nvlabs.github.io/cub/
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but despite differences in programming environment and GPU architecture, we
believe results from the two GPUs are directly comparable. We compiled and
ran dk-nvidia-SA, skew-SA, spd-SA, and osipov-SA using CUDA 6.0 and Visual
Studio 2010 on 64-bit Windows 7.

For evaluation, we use the same input datasets as Deo and Keely along with
two larger datasets. The input strings range in size from 10 KB to 110 MB and are
collected from the Calgary Corpus, Large Canterbury Corpus, Manzinis Corpus,
Protein Corpus, and Silesia Corpus [13]. We compare the four GPU implementa-
tion results against Mori’s highly tuned, OpenMP-assisted CPU implementation
libdivsufsort 2.0.1 [13] based on induced copying on a 4-core PC, using its own
internal runtime measurement, which excludes disk access time.

Figure 4 summarize our performance results and we make the following
observations:

– On datasets of sufficient size (on the order of 1 MB for the skew implemen-
tations, smaller for spd-SA), all four GPU implementations are faster than
the CPU baseline. Roughly speaking, the skew implementations are twice as
fast as the CPU version, osipov-SA has a 4× speedup, and spd-SA’s speedup
ranges from 6× to 11×.

– Macroscopically, the fluctuations in the speedups of spd-SA and osipov-SA
for the same datasets suggest that the behavior of our hybrid prefix-doubling
spd-SA is similar to that of osipov-SA, and our skew-SA with dk-amd-SA and
dk-nvidia-SA.

– spd-SA is 2.3× to 4.4× faster than osipov-SA.
– skew-SA is consistently 1.45× faster than dk-amd-SA and 1.1× faster than

dk-nvidia-SA.
– Both prefix-doubling based GPU implementations outperform the three skew

based methods on most datasets.

In general the performance of the GPU implementations track each other.
The datasets with the highest speedups on GPUs are those with a non-uniform
prefix distribution (e.g., chr22dna, which contains DNA sequences of only 4 dif-
ferent characters), whereas more uniformly distributed prefixes yield smaller
speedups. The peaks of the speedup happen because the GPU implementations
(especially our hybrid skew/prefix-doubling) are faster on non-uniform prefixes.
For skew, a more uniform dataset results in more iterations in the recursive step,
and thus takes longer time. For prefix-doubling, uniform datasets give us fewer
segments for separation and thus result in less parallelism.

We take a closer look at two datasets for skew-SA and spd-SA. The first is a
scalability test on increasing amounts of text data from the English Wikipedia
dump “enwik8”6, shown in Fig. 5 at left. In general, the larger the dataset, the
higher the throughput; it takes an input size of many millions of characters for
both approaches to reach the throughput asymptote. At 10 MB, skew-SA has a
2× speedup and spd-SA a 9× speedup over libdivsufsort.

6 http://cs.fit.edu/∼mmahoney/compression/textdata.html.

http://cs.fit.edu/~mmahoney/compression/textdata.html
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Fig. 4. Runtimes (top) of five suffix array construction implementations over corpus
datasets; the datasets are those chosen by Deo and Keely [2] in addition to two larger
datasets for which we have no dk-amd-SA measurements. The CPU implementation
libdivsufsort is the baseline for speedup comparisons (bottom). The five GPU imple-
mentations are dk-amd-SA, dk-nvidia-SA, osipov-SA, skew-SA, and spd-SA.
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Fig. 5. Left, throughput on plain text “enwik8” as dataset size scales; right, throughput
on a dataset consisting only of the repeated letter ‘A’, using the same legend as left
graph.

The second is an artificial dataset composed of only the repeated single char-
acter ‘A’. This is a pathologically bad case for prefix-doubling because (except
for suffixes near the end of the string) every input position has an identical pre-
fix on every iteration until the last one, so spd-SA cannot divide the prefixes
into multiple segments—they all land in the same segment. Moreover, because
those prefixes in that segment are lexicographically identical, they have worst-
case sorting behavior. Skew’s performance is much more predictable; although
skew must recurse all the way to the base case and cannot finish early, it is not
pathologically bad as with prefix-doubling. Nonetheless, except for very large
inputs, spd-SA’s performance still exceeds skew-SA’s. Induced copying is much
better suited for this dataset. For a 10 MB all-‘A’ input, libdivsufsort completes
in 40 ms, compared with 224 ms for skew-SA and 196 ms for spd-SA.

Application Tools Implementation. The most recent release of the CUDA Data
Parallel Primitives (CUDPP) Library7 uses our optimized skew implementation
in its parallel Burrows-Wheeler Transform (BWT) [17] and bzip2 data com-
pression functions. As predicted, both gain significant speedups from replacing
string sort with a suffix array algorithm [3]. We also implement our fast hybrid
skew/prefix-doubling in a parallel BWT and use it as a partial step in imple-
menting parallel FM index backward search, along with CUB’s DeviceHistogram
routine and cudppMultiscan from CUDPP 2.2. We measured the performance of
the parallel BWT and FM index based on our fast hybrid skew/prefix-doubling
on “enwik8” and “chr22dna” datasets and show our results in Table 2.

7 http://cudpp.github.io/.

http://cudpp.github.io/
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Table 2. Throughput of the BWT and FM index’s backward search using our spd-SA.

Dataset enwik8 chr22.dna

BWT (Millions of characters/s) 132.5 116.4

FM index (Millions of characters/s) 28.6 77

5 Conclusions

Much of the interesting work in GPU computing has been the result of brute-
force techniques, judiciously applied. Often, GPU computing practitioners have
found that the loss of efficiency by using brute force is more than offset by the
performance advantages of the GPU. Of the three classes of suffix array con-
struction algorithms, skew is perhaps the most suitable for brute-force methods,
and was chosen by Deo and Keely, and ourselves when we began our work.

However, the maturation of GPU computing is leading to the development
of elegant, efficient, load-balanced algorithmic building blocks that are designed
for, and run well on the GPU. The merge and segmented sort implementations
in this paper make the difference between an SACA that is uncompetitive vs.
an SACA that is best in class. We expect that the next frontier in GPU SACAs
will be tackling the third class of SACAs—induced copying. The research chal-
lenge is to determine whether the inherent algorithmic efficiency of their CPU
implementation will translate into the GPU domain.
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6. Kärkkäinen, J., Sanders, P.: Simple linear work suffix array construction. In: Pro-
ceedings of the 30th International Conference on Automata, Languages and Pro-
gramming, ICALP 2003, pp. 943–955. Springer, Heidelberg (2003). http://dl.acm.
org/citation.cfm?id=1759210.1759301

7. Karp, R.M., Miller, R.E., Rosenberg, A.L.: Rapid identification of repeated pat-
terns in strings, trees and arrays. In: Proceedings of the Fourth Annual ACM
Symposium on Theory of Computing STOC 1972, pp. 125–136 (1972)

8. Larsson, N.J., Sadakane, K.: Faster suffix sorting. Theor. Comput. Sci. 387(3),
258–272 (2007)

9. Lindholm, E., Nickolls, J., Oberman, S., Montrym, J.: NVIDIA Tesla: a unified
graphics and computing architecture. IEEE Micro 28(2), 39–55 (2008)

10. Liu, C.M., Luo, R., Lam, T.W.: GPU-accelerated BWT construction for large
collection of short reads (2014). arXiv preprint arXiv:1401.7457

11. Manber, U., Myers, G.: Suffix arrays: a new method for on-line string searches. In:
Proceedings of the First Annual ACM-SIAM Symposium on Discrete Algorithms.
pp. 319–327. SODA ’90 (1990)

12. Merrill, D., Grimshaw, A.: Revisiting sorting for GPGPU stream architectures.
Technical report CS2010-03, Department of Computer Science, University of Vir-
ginia (2010)

13. Mori, Y.: libdivsufsort, version 2.0.1 (2010). https://code.google.com/p/libdiv-
sufsort/wiki/SACA Benchmarks

14. Nickolls, J., Buck, I., Garland, M., Skadron, K.: Scalable parallel programming
with CUDA. ACM Queue 6, 40–53 (2008)

15. Osipov, V.: Parallel suffix array construction for shared memory architectures. In:
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Abstract. Barriers are a fundamental synchronization primitive, under-
pinning the parallel execution models of many modern shared-memory
parallel programming languages such as OpenMP, OpenCL or Cilk, and
are one of the main challenges to scaling. State-of-the-art barrier syn-
chronization algorithms differ in tradeoffs between critical path length,
communication traffic patterns and memory footprint. In this paper, we
evaluate the efficiency of five such algorithms on the Intel Xeon Phi
coprocessor. In addition, we present a novel hybrid barrier implemen-
tation that exploits the topology, the memory hierarchy and streaming
stores of the Xeon Phi architecture to achieve a 3× lower overhead than
the Intel OpenMP barrier implementation (ICC 14.0.0), thus outper-
forming, to the best of our knowledge, all other implementations, and
which we evaluate on the CG and MG kernels from the NAS Parallel
Benchmarks, the direct N-body simulation kernel and the EPCC bar-
rier OpenMP microbenchmark. The optimized barriers presented in the
paper are available at https://github.com/arodchen/cbarriers released
as free software.

Keywords: Barrier synchronization · Scalability · Algorithms · Many-
core architectures · Intel Xeon Phi

1 Introduction

Multi- and many-core systems have become the norm, and their efficient exploita-
tion requires efficient and scalable synchronization mechanisms. Barriers are one
of the fundamental synchronization primitives, underpinning the parallel execu-
tion models of many modern shared-memory parallel programming languages
such as OpenMP, OpenCL or Cilk. The optimization of software barrier syn-
chronization has been widely studied [2,7–9,12,18], yet no algorithm has proven
optimal across the wide variety of parallel architectures. Indeed, each algorithm
comes with its own set of tradeoffs with respect to communication complexity
(volume) and patterns, length of the critical path, and memory footprint. For
any given architecture, the optimal algorithm is largely dependent on factors
such as the system’s topology, the structure of the memory hierarchy, and the
characteristics of the system interconnect.
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The focus of this paper is to analyze and optimize the efficiency of barrier
synchronization on the Intel Xeon Phi coprocessor. Based on the Intel MIC
(Many Integrated Core) Architecture, that provides a commodity off-the-shelf
many-core system, the Xeon Phi has up to 61 cores, each 4-way multithreaded,
for a maximum of 244 logical threads. At this scale, the efficiency of barrier syn-
chronization is crucial for performance in synchronization intensive workloads.

Our first contribution is a thorough evaluation of the behavior of cur-
rent state-of-the-art barrier algorithms, and an analysis of their tradeoffs for the
memory hierarchy of Xeon Phi. We show that while the best algorithm depends
on run-time conditions, a single statically chosen algorithm is only marginally
outperformed in a small number of cases. Our second contribution is a novel
and more efficient hybrid algorithm, mixing different (existing) barrier algo-
rithms at different levels of granularity of synchronization, and optimized with
streaming store instructions to write full cache lines, that eliminate a costly
read-for-ownership cache coherency operation. We show that our hybrid app-
roach outperforms all previous algorithms on the Intel Xeon Phi coprocessor.

Section 2 presents key features of the Xeon Phi and the resulting method-
ological constraints for experiments. Section 3 reviews the state-of-the-art bar-
rier synchronization algorithms and their implementations. Our optimizations
and our new hybrid synchronization scheme are presented in Sect. 4. Section 5
presents our experimental findings. Finally, Sect. 6 discusses previous work on
Xeon Phi barrier optimization, and Sect. 7 summarizes our work. The optimized
barriers presented in the paper are available at https://github.com/arodchen/
cbarriers released under the Apache v2.0 free software license.

2 Intel Xeon Phi Coprocessor

We experimented on a 60-Core Xeon Phi 5110P with base frequency of 1.053GHz.
Cores are in-order, 4-way SMT, using a bidirectional ring interconnect. Each
core has 32 KB of L1 and 512 KB of L2 cache. The state of the distributed
L2 cache is controlled by a distributed tag directory implementing the GOLS
protocol [10]. The coherence of L1 and L2 caches is maintained by a modified
MESI protocol. However the GOLS protocol makes it possible to emulate the
Owner state, enabling a MOESI-like functionality. 8GB of GDDR5 RAM is
accessed through 8 dual channel memory controllers connected through a ring
interconnect interface.

The 512-bit SIMD instructions were used to optimize barrier synchroniza-
tion in the SIMD barrier [4]. SIMD stores, also known as streaming stores, use
a vector size matching that of a cache line. As a result, such store instructions
do not need to issue a read-for-ownership request in the cache coherence pro-
tocol. Store instructions with the no-read hint can be either globally ordered
(vmovnrap[d/s]), providing a total store order type consistency, or non globally
ordered (vmovnrngoap[d/s]), leading to a weaker memory consistency.

The execution of HW threads can be paused, using the delay r32/r64
instruction, which forces the processor to halt the fetch and issue of further
instructions for a parametric number of cycles. The pause instruction is not
available.

https://github.com/arodchen/cbarriers
https://github.com/arodchen/cbarriers
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3 Barrier Synchronization Algorithms

Many algorithms have been proposed for barrier synchronization. One of the
simplest, and least scalable, is the Sense-reversing centralized barrier. It uses two
global variables, a counter and a flag, and one thread-local flag called sense. The
synchronization counter is initialized with the number of threads in the barrier,
the global flag is set to false and all local sense flags are set to true. Upon
reaching a barrier, each thread registers its arrival by atomically decrementing
the counter, then waits while the value of the global flag is different from its
local flag. The last thread to complete the atomic operation, when the counter
reaches zero, re-initializes the counter, flips the global flag and its local flag. The
other threads eventually perceive that the global sense has changed and pass the
barrier, flipping their own flag. This technique, called sense-reversing, allows the
reuse of the same barrier variables for the next synchronization round.

To reduce the contention on shared variables, the combining-tree barrier [18]
organizes the participating threads in a tree, using an algorithm similar to a
centralized barrier at each node of the tree: the last thread to decrement the
synchronization counter of a node recursively proceeds to decrement the counter
of its parent, while the other threads wait on node-level release flags for notifi-
cation that the barrier has passed. It is also possible to use a global release flag,
trading a shorter critical path for additional contention on the global flag.

Realizing that atomic operations were only necessary to reach a consensus
on the arrival order of threads, Hensgen et al. [8] proposed the static tournament
barrier. Instead of discriminating on arrival order, it relies on a statically deter-
mined thread, called winner, that will automatically progress to the next round
once all other threads, the losers, have arrived at a given node of the tree. In
this way, it is only necessary to determine whether all threads are accounted for,
irrespectively of their arrival order, which does not require atomic operations.
The initial version of the algorithm by Hensgen et al. [8] was later improved
by Mellor-Crummey et al. [12] with a tree-based Notification Phase and sense-
reversing to avoid re-initializing the barrier state. The static f-way tournament
by Grunwald et al. [7] generalizes the static tournament approach, with an arbi-
trary number of participants per round. To avoid cases where a static winner
arrives early and busy-waits on a location yet to be set by one or multiple
losers, the dynamic f-way tournament barrier [7] lets the winner identify itself
by checking the value of adjacent memory locations marked by other threads
upon arrival.

A shortcoming shared by all previous algorithms is that they all require two
phases: registration of threads arrival - Registration Phase and notification of
threads arrival - Notification Phase. However, these phases can be merged, at
the cost of additional communication, by providing each thread with sufficient
information to locally decide when the barrier can be passed. The first instance
of this class of barriers was the butterfly barrier [2]. When the number of threads
participating in the barrier is not a power of 2, the dissemination barrier [8] can
be a more efficient solution. In the dissemination barrier pattern, a thread i in
round r notifies another thread j = (i + 2r) mod N by writing its local flag,
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Fig. 1. Hybrid dissemination barrier rationale.

which is sense-reversed, to a dedicated memory location, where N is the number
of threads, i, j ∈ [0, N − 1] and r ∈ [0, �log2 N�]. Each thread can proceed to the
next round as soon as its notification variable is set to the appropriate value for
the current round. In this way, synchronization is achieved in �log2 N� rounds.
The f-way dissemination barrier [9] is a generalized version, where each thread
can notify f other threads in one round, requiring only �logf+1 N� rounds to
complete. If f = N − 1, then it will be a broadcast barrier (all-to-all communi-
cation) requiring N ∗ (N − 1) notifications.

4 Hybrid Barrier

We came to the design of the hybrid barrier from the observation that, on sys-
tems with a hierarchical topology, different algorithms can be optimal for dif-
ferent levels in the hierarchy. As always, the objective is to minimize inter-core
communication while exploiting the low cost of intra-core communication. Dur-
ing our preliminary evaluation, we observed that the most efficient algorithms
were the dissemination barrier and the combining tree with arity 4. Figure 1b
shows the communication patterns of a dissemination barrier. Evidently, each
round contains at least one inter-core communication edge, which will be slower
and will consequently determine the critical path for each round. We therefore
propose to rely on the centralized sense-reversing barrier (equivalent to the com-
bining tree with arity 4) for the intra-core phase, then revert to dissemination
once a single thread remains per core. A similar approach was discussed by
Cownie [5]. Figure 1a and Listing 1.1 show the scheme and pseudocode of the
hybrid algorithm.

Busy-Waiting Amortization. Busy-waiting on the same memory location can
have a negative impact on performance because of the increased memory traffic,
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void /* Hybrid Barrier */
hb_wait( hb_Bar_t * hb, /* Shared Data */

tp_Data_t * tp)/* Thread Private Data */
{
sr_Bar_t * srB = hb->srB[ tp->srBId ];
int srBC = fetch_and_add( & (srB->count), -1);
int tpsrBS = tp->srBSense;

if ( srBC == 1 )
{ /* last thread inside core to arrive */
/* call to dissemination barrier */
dsmn_wait( hb->dsmnB, tp);
mic_store( & (srB->count), srB->threadsNum);
mic_store( & (srB->sense), tpsrBS);

} else
{ /* non-last thread to arrive */
while ( tpsrBS != srB->sense )
{
mic_pause( );

}
}
mic_store( & (tp->srBSense), ! tpsrBS);

}

Listing 1.1. Hybrid barrier wait method.

inline static void
mic_pause( )
{
_mm_delay_32( ARCH_MIC_DELAY);

}

Listing 1.2. Busy-waiting delay.

static inline void
mic_store( volatile void *addr, int data)
{
#if __use_streaming_stores
_mm512i siVec =
_mm512_set1_epi32( data);

_mm512_storenr_ps( addr,
_mm512_castsi512_ps( siVec));

#else
*addr = data;

#endif
}

Listing 1.3. Utilization of streaming
stores.

leaving less bandwidth to other threads. This effect was previously noted [1] and
we empirically determined (see Sect. 5) the appropriate delay to amortize the
impact of busy-waiting while balancing the additional latency this introduces
for a thread to perceive a store operation. The delay can be introduced with
the mm delay32 intrinsic, as shown in Listing 1.2, the parameter specifies the
number of idle cycles.

Streaming Stores. Streaming stores can reduce barrier overhead [11] when
storing notification values to flags in the Notification Phase or reinitializing
counters in the combining tree or sense-reversing centralized barrier. Listing 1.3
details the implementation of the mic store function. Note that, contrary to
Caballero et al. [4], we use the globally ordered version of streaming stores; Sect. 5
presents the rationale for this.

5 Experimental Results

5.1 Benchmarks

EPCC OpenMP Microbenchmarks. We implemented a part of the EPCC
OpenMP microbenchmark [3] evaluating the overhead of the standalone barrier
primitive, which will be referred to as EPCC.

NAS Parallel Benchmarks. We chose the CG and MG kernels from the C
versions [16] of the NAS Parallel Benchmarks (NASPB) [13] in order to evaluate
the efficiency of barrier synchronization [4,15,17]. As the original inputs for
these benchmarks lead to a low frequency of barrier synchronization, even using
the smallest class S, which makes it difficult to observe barrier overhead, we
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Table 1. Barrier frequency in NASPB for inputs Y and S.

NAS Parallel Benchmark Kernel CG MG

Input Class S Y S Y

Frequency, 103 barriers per second 6.4 21.6 8.7 12.4

introduced our own input class Y for these 2 NASPB kernels. The frequencies
of barrier synchronization in both classes S and Y are presented in Table 1.
Class Y consists of inputs {na = 240; nonzer = 2; niter = 300; shiftY = 5.0} for
CG and {problem size = 16; nit = 800} for MG. We also added a collapse(2)
clause to the relevant OpenMP parallel loops in the MG kernel, as suggested
in [4], to increase the amount of parallelism which would otherwise not lead to a
reasonable load balance. The collapse clause is used to specify that a loop nest
is not only parallel on the first loop construct annotated, but also at a deeper
level (parameter of the clause), which allows to collapse multiple loops into a
single loop that is subsequently parallelized.

Direct N-body Simulation. We implemented a direct N-body simulation
kernel to evaluate the efficiency of barrier synchronization in the task where
synchronization cannot be relaxed. It was shown that using more relaxed syn-
chronization constructs, like phasers, is more efficient than using barriers for CG
and MG [17]. In the direct N-body simulation kernel we have implemented, each
thread calculates the coordinates and velocities of a single particle, so that the
frequency of barriers will be the highest. Coordinates and velocities of a single
particle are stored within a private memory location which can fit into a single
cache line. This kernel will be referenced as NBODY in the rest of the article.

To test our barrier implementations without interfering with the rest of the
OpenMP implementation, we replaced the calls to the kmpc barrier function,
which is the internal barrier function in the Intel OpenMP library, with a tram-
poline, barrier trampoline , that calls the function implementing the desired
barrier algorithm.

5.2 Naming Convention and Methodology

For the remainder of this paper, the geomean overhead of a barrier (or execution
time per barrier) is measured in our experiments on EPCC as the geometric mean

of its overhead across the different thread counts; so Ogeomean = N

√∏N
i=1 Oni

,
where N is the number of different thread counts, ni is the number of threads in
element i in the vector of different thread counts, and On is a barrier overhead
for n participating threads. For CG, MG, and NBODY, we use execution time
of a kernel instead of the overhead of a single barrier. On charts representing
the geomean overhead (execution time), horizontal lines show the best (green,
low horizontal line) and the worst (red, high horizontal line) geomean overhead
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respectively, calculated as geometric mean of the best and the worst barrier
overheads for each number of threads amongst all algorithms.

The best geomean overhead represents the practical lower bound of syn-
chronization overhead, which could be achieved given an oracle that predicts
the best possible algorithm in every configuration. The performance of this
ideal meta-algorithm shows the loss of performance resulting from using a
single algorithm compared to the ideal performance that could (theoretically)
be achieved by selecting algorithms dynamically with an oracle.

Individual barrier algorithms on the charts can be identified by their signa-
tures. A signature uniquely identifies an algorithm by two 3–5 letter abbrevia-
tions and a number. The first abbreviation corresponds to the algorithm and its
variations: sr - centralized sense-reversing barrier; dsmn - dissemination barrier;
dsmnH - hybrid dissemination barrier; ct - combining tree barrier; stn - static
tournament barrier; dtn - dynamic tournament barrier; ls - tree-based notifica-
tion with local flags; gs - broadcast notification using a single global flag; omp -
Intel OpenMP barrier.

The second part of the signature defines whether the waiting loops contained
the 64-cycle delay (which will be discussed below) - pause, or contained no
delay - spin. This part is meaningless for Intel OpenMP barrier.

The last part is a number corresponding to the arity of the tree for tree algo-
rithms, the number of ways for a n-way dissemination barrier and meaningless
for the centralized sense-reversing barrier and Intel OpenMP barrier.

All of our experiments rely on a balanced strategy for thread mapping, map-
ping threads to cores with the least load first. This type of thread affinity is
enabled in Intel OpenMP by setting the environment variable KMP AFFINITY to
balanced; the KMP LIBRARY variable was set to turnaround; the KMP BLOCKTIME
variable was set to infinite; and the number of threads was controlled by set-
ting the OMP NUM THREADS variable.

Each data point was obtained from 10 measurements and represented by a
box plot. Unless otherwise indicated in a figure, the number of threads varies
from 8 to 232 in increments of 8. The arities tested were: 2, 3, 4, 8, 16 and 32 for
the combining tree barrier; 2, 3, 4 and 5 for the static tournament barrier; and
2, 3 and 4 for the dynamic tournament barrier.

5.3 Experimental Data and Discussion

Figure 2 shows the results for geomean overhead of barrier synchronization
algorithms on EPCC, and Fig. 3 shows the results of the ideal meta-algorithm
on EPCC.

Global Sense vs Local Sense. The overhead of tree barriers with global
notification flag gs is much higher than that of barriers with a combining tree
Notification Phase ls as can be seen on Fig. 2, where the fastest gs variant is
close to 2× slower than the slowest ls variant.

It can be observed that a combining tree with global flag in Notification
Phase has higher geomean overhead than a centralized sense-reversing barrier,
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Fig. 2. Geomean overhead of barrier synchronization algorithms on EPCC.

and the higher the tree arity, the less the overhead. This indicates that another
hybrid algorithm should be investigated: a single global counter for the Regis-
tration Phase, like in the centralized sense-reversing barrier, and a tree-based
Notification Phase.

Delayed Busy-Waiting. As it can be seen from Fig. 2, where the geomean
overhead for different algorithms follows increasing order, the same algorithm
with delayed busy-waiting pause outperform the undelayed spinning variants
spin in the majority of cases. Due to this fact, we did not consider undelayed
busy-waiting in our further experiments.

Sizing the Delay for Spinning. To determine a suitable value (number of
sleep cycles) to pass as parameter to the delay instruction conveniently provided
on Xeon Phi, we evaluated delay values in the range from 0 to 128 cycles with
step 8 on EPCC. Above 128 cycles, the performance starts to degrade as the
delay introduces too much latency for waiting threads.

The best performance was obtained with a 64 cycle delay that was used in all
subsequent experiments. In future studies, this parameter can be investigated
further as it is likely to depend on runtime conditions, such as the level of
contention on the interconnect.

Hybrid Barrier. Figures 2 and 3 show that the hybrid dissemination barrier
is the closest to the ideal meta-algorithm on synthetic benchmarks. Indeed, as
confirmed by the results presented in Fig. 4, the few instances where the hybrid
barrier is not the most efficient in Fig. 3 only correspond to minor timing vari-
ability up to 60 threads, up to which point the algorithms have similar overhead.
Above 72 threads, the hybrid barrier overhead is considerably lower than that
of the dissemination barrier.

Streaming Stores. A non globally ordered streaming store is unordered in
respect to other stores, meaning that other store instructions issued subsequently
by the same thread can overtake it and become visible to other threads earlier.
This relaxation of the memory ordering constraints makes it tempting to rely
on this instruction for implementing barriers, as suggested by Cownie [5] and
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Fig. 3. Overhead of the ideal bar-
rier synchronization meta-algorithm on
EPCC.

Fig. 4. Dissemination barrier (black
boxplots) compared to hybrid dissem-
ination barrier (red triangles) (Color
figure online).

implemented by Caballero et al. [4]. However, we observed 5 % less overhead
on average for top performing barrier implementations on EPCC when using
globally ordered streaming stores over both ordinary stores and non globally
ordered streaming stores, having on average the same effect on barriers overhead.

Real-World Kernels. The most efficient barrier algorithms selected above
were evaluated on the CG and MG kernels of the NAS Parallel Benchmarks
and direct N-body simulation kernel. Our results are presented in Fig. 5. Hybrid
dissemination barrier is superior over the other algorithms on CG and NBODY,
while combining tree barrier with arities grater than 2 is slightly better than
dissemination barrier on MG.

Effects of the Ring Interconnect. As discussed by Dolbeau [6], the address
of the shared memory location used for communicating among threads may have
a significant effect on latency, and therefore on barrier overhead. We observed
the same behavior, induced by the ring interconnect and the distributed tag
directories, on a centralized sense-reversing barrier. Figures 6a, b, and c show
three sets of performance results obtained on EPCC for 1 to 60 threads. Within
each experiment, the data for a given number of threads was obtained in a single
execution, containing multiple iterations where the same memory locations are
re-used to store synchronization variables. The only difference between the three
experiments is the effective memory addresses allocated and used for the syn-
chronization variables. It is apparent that the variability of performance results
is negligible within a given set, but it is significant in-between sets. The graph
in Fig. 6d shows the same benchmark, but for each thread count the benchmark
was re-launched for every iteration, thus allocating different memory regions.

This variability is explained by the ring topology and the distributed tag
directories. Indeed, in this configuration, each cache line is attributed a tag
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Fig. 5. Comparison of barrier synchronization algorithms on CG and MG kernels of
NAS Parallel Benchmarks and direct N-body simulation kernel.

Fig. 6. Impact of non-uniform cache line access latency.
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directory which is queried whenever a core misses in both L1 and L2 for that
specific line, requiring a round-trip from the core to the adequate tag directory.
This means that the delay of communications between threads during a bar-
rier is dependent on the distances between threads and the tag directories that
are responsible for the cache lines used in the synchronization. As threads are
mapped to cores in a circular order along the ring interconnect, the barrier over-
head will follow an S-shaped curve as in Fig. 6c. If the selection of a tag directory
is equiprobable, then (on average) the overhead of the barrier will increase lin-
early with the number of threads, following the average straight line apparent in
Fig. 6d. Unfortunately the selection of tag directories is not under explicit user
control, which introduces extra variability in the barrier overhead.

6 Related Work

A barrier using SIMD instructions was proposed by Caballero et al. [4], achiev-
ing a 2.84× lower barrier overhead on EPCC than the Intel OpenMP barrier.
However, they implemented their algorithm with non globally ordered stream-
ing stores, which we showed to lead to a missed opportunity for 5 % overhead
reduction.

Dolbeau [6] showed that address selection is an important factor influencing
barrier overhead due to non-uniform access time to distributed tag directories.
Thus, a combining tree of specific topology and topology-aware memory allo-
cation would allow to lower the overhead of barrier synchronization. However,
there is no explicit way to control topological aspects of memory allocation on
Intel Xeon Phi systems. A direct comparison of this barrier against the Intel
OpenMP barrier generated an initial speedup of 2.41×, further showing that
address selection leads to an improvement to 2.85×. The technique employed to
control memory allocation for this result is based on a trial-and-error approach
for reverse-engineering the hashing function used by the tag directories.

Finally, Ramos and Hoefler [14] proposed a model for dissemination barrier
synchronization and also compare with the Intel OpenMP barrier. However, the
experiments only showed equivalent performance with the Intel implementation.

7 Conclusions

We have optimized the performance of five state-of-the-art barrier synchroniza-
tion algorithms on the Intel Xeon Phi coprocessor and provided a novel hybrid
variant based on different algorithms to synchronize at intra-core and inter-core
levels. Comparing our hybrid algorithm with previous implementations, we have
observed lower overheads in the experiments on EPCC barrier microbenchmark
and an improved performance on direct N-body simulation kernel and on two
NAS Parallel Benchmarks, CG and MG. In other words, we have presented
the fastest known barrier implementation for Intel Xeon Phi. These optimized
barriers are available at https://github.com/arodchen/cbarriers released as free
software.

https://github.com/arodchen/cbarriers
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In addition, we have provided an analysis of key specificities of the Xeon
Phi system, in particular characterizing: (1) the impact of the ring interconnect
and distributed tag directories leading to non-uniform cache line access latencies;
(2) the performance degradation that can result from spin-based synchronization
with insufficient delay; and (3) the positive impact of using globally ordered
streaming stores for fine grained synchronization.
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Abstract. Leveraging optimization techniques (e.g., register blocking
and double buffering) introduced in the context of KBLAS, a Level 2
BLAS high performance library on GPUs, the authors implement dense
matrix-vector multiplications within a sparse-block structure. While
these optimizations are important for high performance dense kernel
executions, they are even more critical when dealing with sparse lin-
ear algebra operations. The most time-consuming phase of many multi-
component applications, such as models of reacting flows or petroleum
reservoirs, is the solution at each implicit time step of large, sparse spa-
tially structured or unstructured linear systems. The standard method
is a preconditioned Krylov solver. The Sparse Matrix-Vector multipli-
cation (SpMV) is, in turn, one of the most time-consuming operations
in such solvers. Because there is no data reuse of the elements of the
matrix within a single SpMV, kernel performance is limited by the speed
at which data can be transferred from memory to registers, making the
bus bandwidth the major bottleneck. On the other hand, in case of a
multi-species model, the resulting Jacobian has a dense block structure.
For contemporary petroleum reservoir simulations, the block size typi-
cally ranges from three to a few dozen among different models, and still
larger blocks are relevant within adaptively model-refined regions of the
domain, though generally the size of the blocks, related to the number
of conserved species, is constant over large regions within a given model.
This structure can be exploited beyond the convenience of a block com-
pressed row data format, because it offers opportunities to hide the data
motion with useful computations. The new SpMV kernel outperforms
existing state-of-the-art implementations on single and multi-GPUs using
matrices with dense block structure representative of porous media appli-
cations with both structured and unstructured multi-component grids.

1 Introduction

Simulating the flow in porous media enables the petroleum industry to character-
ize the production potential of oil fields and to optimize their development. It is
also used in geological sequestration of carbon dioxide to mitigate anthropogenic
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climate change. The most time-consuming operation (up to 80 % of the total sim-
ulation time) in such simulations is the solution of large, sparse spatially struc-
tured or unstructured linear systems at each integration time step. The Sparse
Matrix-Vector multiplication (SpMV) is the innermost computational kernel in
such solvers and therefore, its performance impacts directly the solvers’ over-
all performance. As opposed to more compute-intensive Level 3 BLAS kernels
(e.g., matrix-matrix multiplication), the SpMV performance suffers from lack of
data reuse and is thus limited by the speed at which data can be transferred
from memory to registers. For the multi-species versions of the aforementioned
applications and many others that drive investment in high performance, the
resulting Jacobian has a dense block structure. For contemporary petroleum
reservoir simulations, the block size typically ranges from three to a few dozen,
and still larger blocks are relevant within adaptively model-refined regions of
the domain. This structure can be exploited beyond the convenience of a block
compressed row data format, because it offers opportunities to hide data motion
with useful computations.

We leverage optimization techniques, such as register blocking and double
buffering, introduced in the context of KBLAS [2], a Level 2 BLAS high perfor-
mance library on GPUs, originally designed for dense matrix-vector multiplica-
tions. While these optimizations are important for high performance dense kernel
executions, they are even more critical when dealing with sparse linear algebra
operations, due to irregular memory accesses and low compute-intensity kernels.
The new SpMV kernel outperforms existing state-of-the-art implementations on
GPUs using matrices with dense multi-component blocks on structured-grid and
random spatial block distributions. A multi-GPU SpMV interface allows simu-
lation of larger problem sizes, while increasing the level of concurrency.

The reminder of the paper is organized as follows. Section 2 presents related
work. Section 3 reviews the source of sparse with dense block Jacobian struc-
ture in mesh-based PDE applications. Section 4 describes the framework for a
uniform design strategy for such matrices and presents its different features and
functionalities. The implementation details of the high performance SpMV ker-
nels are given in Sect. 5. Section 6 shows the SpMV performance results on GPUs
and compares it against state-of-the-art high performance SpMV implementa-
tions with various data layouts. Section 7 illustrates the performance impact
after integrating our SpMV kernel into a sparse iterative solver library and we
conclude in Sect. 8.

2 Related Work

The literature is rich in contributions for GPU-accelerated SpMV. Bell and
Garland [7] proposed SpMV implementations for several formats including Com-
pressed Sparse Row (CSR), ELLPACK [14], and the Coordinate (COO) format.
They also proposed HYB, which is a hybrid format that combines both the ELL-
PACK format with the COO format, in an effort to reduce the padding overhead
of the ELLPACK format.
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Monakov et al. [18] proposed a sliced version of the ELLPACK format, where
each slice is separately stored in the ELLPACK format. Vázquez et al. [20] pro-
posed the ELLPACK-R format that adds auxiliary information to avoid com-
puting the extra padded zeros. Choi et al. [9] proposed a parameterized blocked
version of the ELLPACK format that proves to be competitive for block-sparse
matrices, although it is restricted to certain block sizes, and targets mainly Fermi
generation GPUs. Kreutzer et al. [16] generalized the sliced ELLPACK format
to the SELL-C-σ format [15], in an effort to provide a unified sparse storage
format across different architectures. The SELL-C-σ format has been improved
and optimized for GPUs by Antz et al. [3], by introducing some zero padding
to satisfy the memory constraints of the GPU architecture, hence called the
SELL-P format.

Fig. 1. The BSR format.

Ashari et al. [4]
proposed an adaptive
algorithm for SpMV
using the CSR for-
mat (called ACSR),
where additional meta-
data are used with the
standard CSR format
that help achieve better GPU utilization. ACSR is mainly proposed for adaptive
graph applications, where the structure of the graph adjacency matrix changes
frequently, thus making the preprocessing step a serious bottleneck.

We are mainly interested in the Blocked Sparse Row (BSR) format, which is
the blocked version of the CSR format. It was first introduced for CPU archi-
tectures by Im et al. [11,12]. The BSR format targets sparse matrices that are
naturally blocked, as shown in Fig. 1. It uses one integer per block to store its
column index, as well as an integer to denote the start of every block row. In
cases specific to structured grid problems, Godwin et al. [10] proposed a format
called Column Diagonal Storage (CDS), which assigns only one integer for a
group of blocks located at the same diagonal/off-diagonal. The work by Choi
et al. [9] suggested GPU specific optimizations for the BSR format that were
not enough to outperform the cuSPARSE HYB kernel [7]. They concluded that
the BSR will be dominated by a reduction step that is affected by the num-
ber of blocks per block row. This work revisits the BSR formats and proposes
some optimization techniques for a wide range of block sizes. The BSR format
supports any structure of a block-sparse matrix.

Among all the aforementioned sparse formats, the cuSPARSE HYB format
along with the SELL-P format usually achieve the best performance on the GPU
across several matrices, as long as the matrix structure does not change during
the simulation.

3 Multi-component Applications

Numerous applications result in sparse matrices of dense blocks, where the first
nontrivial block size is 2 (e.g., streamfunction and vorticity in fluid dynamics)
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and the block size ranges up to hundreds in realistic contemporary applica-
tions that drive high performance computing (e.g., detailed kinetics models of
hydrocarbon-air combustion). In the applications expressed as PDEs that moti-
vate this work, the number of components is related to the number of fields
defined over the domain. The blocks are square because each field (e.g., density,
pressure, momentum, internal energy, concentration of a given species in a given
phase in a given charge state) has its own conservation equation.

If the conservation equations were decoupled, all blocks would be diagonal
and the data structures designed for this paper would not be relevant for high
performance. However, most systems of conservation laws (see Eq. 1) couple the
fields defined at each point through possibly several types of physical interde-
pendencies.

∂(ρφk)
∂t

+∇· (ρvφk)−∇· (μk∇φk) = Fk(φ1, φ2, · · · , φK), k = 1, 2, · · · ,K. (1)

In the typical convection-diffusion-reaction system shown, the convection terms
couple the momenta to all convected components. The momenta are products of
density (ρ) and velocities (v), and the density is a function of the mass fractions
and thermodynamic state of all of the species (φ1, φ2, · · · , φK) in the system.
The gradient operator acting on the density couples degrees of freedom across
the grid points in the stencil, so the typical off-diagonal component of the off-
diagonal blocks is nonzero. The diffusion terms couple the degrees of freedom to
each other because the diffusion coefficients (μk) are also complex functions of
the mass fractions and thermodynamic state at each point. Again, the gradient
operator couples the degrees of freedom across the grid points in the stencil, so
that the off-diagonal blocks are best regarded as fully dense. The structure of
the reaction terms for the creation and consumption of each component (Fk)
may lead to some exploitable sparsity within the diagonal blocks since not all
components react with all others. However, the diagonal blocks are often factored
as part of a block preconditioner to pre-scale the system and the blocks are best
regarded as full in this case.

Equation 1 is a simplified schema of systems described by first principles
in, e.g., [8] for porous media applications or [21] for reacting flows. In turn,
such systems may be regarded as embedded in multiphysics applications for
which computational modelers increasingly prefer fully implicit solvers [13] for
reasons of numerical efficiency, stability, and/or robustness. Past generations
of modelers lacking powerful high performance solvers have tended to employ
operator splitting to solve such systems in a series of steps that leave behind
first-order temporal splitting errors and potentially destabilizing mechanisms.
Splitting also weakens temporal locality and arithmetic intensity. Contemporary
high performance solver software allows such users to more fully exploit the
inexpensive flops of a GPU and reduce expensive memory thrashing.
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4 A Uniform Design Strategy for SpMV

Fig. 2. Hierarchical register blocking.

We propose a uniform design
strategy for the SpMV kernel
based on the BSR format. Such
strategy builds on the same
design ideas used in the KBLAS
library [1,2].

Hierarchical Register Block-
ing. Using the BSR format, the
matrix is naturally described
using square dense blocks of
size bs × bs, with no padding
assumed. We define the term working set to denote the minimum amount of
work assigned to a thread block (TB) at one time. A working set is generally
different from a block. A working set can be equivalent to: (1) one block, (2)
multiple adjacent blocks in the same block row, or (3) part of a block. The block
size bs drives how a working set is defined. A working set should always fit into
registers. Its dimensions are assumed to be nb × width, where nb and width are
two design parameters. A working set is always processed using a thread array.
In general, a TB consists of Nta thread arrays (Nta ≥ 1). This allows a TB to
process multiple working sets concurrently. Each thread array is restructured
to nb × Ntg threads, where every nb threads are called a thread group (nb can
be any value, not necessarily a warp). A working set is further subdivided into
vertical slices. Each vertical slice is assigned to one thread group. A vertical slice
is further subdivided horizontally among threads in a thread group. As shown in
Fig. 2, each thread needs ept registers to store a segment of a row of the matrix.
The width is equal to Ntg × ept.

Double Buffering. The proposed strategy incorporates a double buffering
scheme in order to hide memory latency and overlap computation with data
prefetching. Each TB requires a storage large enough to fit at least two working
sets. Considering Fig. 2, each thread needs two independent buffers, each one is
ept in length.

5 High Performance Kernel Implementations

This section discusses how the aforementioned design ideas can be applied for
the SpMV kernel.

Dividing Block Size Range. We propose three kernels to divide the spectrum
of the block size. All kernels are available through the KSPARSE library1. Kernel
K1 can process small values of bs, strictly 2 through 5. Kernel K2 is applicable
to medium blocks starting from 5 up to 45. Kernel K3 is assigned for large blocks
starting from 45 and beyond.
1 http://ecrc.kaust.edu.sa/Pages/ksparse.aspx.

http://ecrc.kaust.edu.sa/Pages/ksparse.aspx
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Fig. 3. K1/K2 structure.

These ranges are not strict, except for
K1, which cannot be applied to blocks larger
than 5 × 5. The above ranges are specified
according to our experiments on a Kepler
K20c GPU. With very little programming
effort, ranges can be adapted to the test
environment.

Small Blocks (K1). Kernel K1 assumes
that a warp can read one or more blocks in
one memory transaction. So, a working set
spans multiple adjacent blocks in a block
row. So nb = bs, but width is multiples of
bs. Figure 3 shows the hierarchy of the over-
all kernel design, where thread arrays are
strictly warps. Each warp is truncated to be
fully divisible by bs2, then restructured to
nb×Ntg threads, where Ntg=

⌊
32
bs2

⌋×bs. This
restricts ept to be 1. A truncated warp can
process Nbrowsta consecutive block rows
(Nbrowsta ≥ 1). If, for example, bs = 3,
then a warp is truncated into 27 threads, that read 3 blocks at one memory
transaction.

Medium Blocks (K2). The design of K2 is similar to K1 (Fig. 3), except that
thread arrays are not strictly warps. K2 assumes that a working set is always
equivalent to one block. This implies nb = width = bs. The value Ntg is in a
tuning parameter ≤ nb. Since width = bs, it is not always possible to subdivide
the working set into vertical slices of the same width (e.g. consider bs = 17).
Given a block size bs, and a number of thread groups Ntg ≤ bs, we define,

(1) eptmax =
⌈

bs
Ntg

⌉
, and (2) threshold = (Ntg − (bs mod Ntg)) mod Ntg. To

hold one block in registers, every thread needs at maximum eptmax registers.
However, threads in thread groups < threshold use only eptmax − 1 registers.
This amount is different from the total register usage, which is decided solely by
the compiler.

Large Blocks (K3). Since K3 targets very large blocks, each block can be sub-
divided into multiple working sets. Therefore, K3 uses multiple TBs to process
a block. The dimensions of the working set are exposed as tuning parameters.
Each group of

⌈
bs
nb

⌉
TBs behave like a mini-grid of a dense GEMV kernel around

every matrix block. Figure 4 shows the structure of the K3 grid. The next section
presents the performance results of the proposed SpMV kernels.
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6 Performance Results and Analysis

Fig. 4. K3 structure.

We denote an SpMV
operation using the BSR
format as BSRMV. The
performance of KSPARSE
is compared against the
NVIDIA BSRMV kernel
available in cuSPARSE.
We also compare against
the NVIDIA HYB for-
mat [7], and the SELL-P
format [3] (which is based
on the SELL-C-σ format [15]). The two latter formats are known for their high
performance and friendliness to GPU architectures. We consider only real matri-
ces. Performance is shown for double precision. However, we emphasize that the
same performance behavior, including speedups and achieved memory band-
width, holds also for single precision. The online version of KSPARSE supports
both single and double precisions.

System Setup. The performance test experiments are conducted on a system
with 16-core Intel Xeon CPU E5-2650 (2.00 GHz) and four Tesla K20c GPU
(ECC off). The system runs Ubuntu 14.04.1 LTS, CUDA driver version 340.32,
and CUDA Toolkit 5.5. Through a set of bandwidth micro-benchmarks, the
sustained memory performance is measured at 184.18 GB/s. This is 88.5 % from
the theoretical memory bandwidth (208 GB/s). Results are properly averaged
among multiple runs.

Matrix Test Suite. We use synthetically generated matrices using a matrix
generator that produces two extreme cases for matrices with dense block sub-
structure. The first is a structured matrix that has exactly seven block diagonals,
which is typical for matrices arising from 3D scalar structured-grid problems
from low-order finite differences. The second matrix type has a nonzero block
main diagonal and otherwise random column placements of the remaining non-
zero blocks per row. The number of non-zero blocks per block row is randomly
generated between two input values to the generator. Sparsity is kept at least
at 99.9 %. The number of rows/columns of the matrix is at least 1M, with at
least 99.9 % sparsity. Figure 5 shows spy plots for sample structured and random
matrices produced from our matrix generator. PDE applications on grids aris-
ing from low-order local discretizations of control volume or finite element type,
unstructured by virtue of irregular domain geometry or adaptive refinement, lie
between the structured and random cases. They tend to have superior regular-
ity in the number of blocks per row and superior spatial locality relative to the
random matrices. For space considerations, they are not considered herein.
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(a) Structured case. (b) Random case.

Fig. 5. Spy plots for sample structured/random matrices.

Single GPU Performance. The single GPU performance is shown in Fig. 6.
For structured matrices, the cuSPARSE-HYB and SELL-P kernels can exploit
the structure and match or outperform KSPARSE for relatively small block
sizes. As the block sizes gets bigger, KSPARSE can achieve up to 42 % and
49 % speedups against cuSPARSE-HYB and SELL-P respectively. Against
cuSPARSE-BSR, and starting block sizes 6 and up, KSPARSE is between 1.34 ×
to 4.11 × faster. For the random case tests, KSPARSE outperform all other ker-
nels in most cases, achieving speedups up to 2.15 ×, 1.52 ×, and 4.08 × against
cuSPARSE-HYB, SELL-P, and cuSPARSE-BSR respectively. We note that the
cuSPARSE-HYB kernel fails to run for some tests, where its memory footprint
exceeds the GPU memory. Multi-GPU Scaling. A multi-GPU BSRMV can
be broken down into individual calls to the single GPU BSRMV kernel, pro-
vided that matrix distribution among GPUs allows the local sparse submatrix
to be individually described using the BSR format. As an example, we present
the multi-GPU scaling when block rows and their respective column indices are
assigned in a 1D cyclic manner among GPUs. The integer array that holds row
pointers has to be reevaluated for each GPU. After building the local row pointer
array, it is straightforward to launch a BSRMV kernel on each GPU. Figure 7
shows the double precision performance of KSPARSE for 1, 2, and 4 GPUs on
the same node. The figure shows an almost linearly scaling performance. The
only overhead of using multi-GPUs is a synchronization point to ensure that all
GPUs are finished.

7 Impact on Sparse Iterative Solver

This section presents the impact of using KSPARSE on a sparse iterative solver
based on GMRES [19]. The purpose of this part is to show the speedup achieved
by using KSPARSE instead of cuSPARSE when calling the SpMV kernel based
on the BSR format. Solver-related issues like implementation quality, conver-
gence rate, and others are beyond the scope of this work. We use CUSP [6] as
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(a) Structured case.

(b) Random case.

Fig. 6. Single GPU performance.

the library implementing GMRES. This is an open-source C++ library that pro-
vides a high level template implementation of sparse linear solvers. CUSP is used
by PETSc [5] within its GPU component [17]. We use an example implemen-
tation of GMRES from CUSP that uses a single GPU. We have added support
for the BSR format inside CUSP. We show the GMRES execution time for a
non-preconditioned system with at least a million unknowns. The solver stops
at a residual norm of 10-5 or after reaching 1000 iterations. The solver is also
set to restart every 50 iterations. We use synthetically generated structured
matrices similar to Fig. 5(a). Figure 8 shows the execution time of GMRES. As
expected from the SpMV performance, cuSPARSE achieves better execution
time for GMRES using block sizes 2 and 4, achieving speedups up to 12 %. For
block size 3, the KSPARSE-based solver almost matches its cuSPARSE counter-
part. For block sizes 5 and up, the KSPARSE-based GMRES achieves speedups
ranging 1.14 × to 2.62 ×, depending on the performance of the BSRMV kernel
given a particular block size.
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(a) Structured case.

(b) Random case.

Fig. 7. Multi-GPU performance.

Fig. 8. Execution time of CUSP-GMRES.
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8 Conclusion and Future Work

We have designed an SpMV kernel (part of the KSPARSE library) for solv-
ing large sparse structured or unstructured linear systems, in the context of
applications that feature multi-component models, typified by contemporary
porous media simulations, resulting in dense block Jacobian structure. Using a
uniform design strategy based on hierarchical register blocking and double buffer-
ing optimization techniques, the new SpMV kernel outperforms existing state-
of-the-art implementations on GPUs by achieving significant speedups using
matrices with large dense block structure from applications with structured and
unstructured multi-component grids. The proposed multi-GPU SpMV interface
highlights an almost linearly scaling performance. Integrating our KSPARSE
SpMV kernel into a sparse iterative solver library improves the overall perfor-
mance up to 2.62 × speedup, as the block size increases. We plan to investigate
the implementation of KSPARSE on distributed memory environments and to
study the impact of high network interconnect linking remote GPUs on the
overall iterative solver.
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Abstract. An increasingly large number of HPC systems rely on het-
erogeneous architectures combining traditional multi-core CPUs with
power efficient accelerators. Designing efficient applications for these sys-
tems has been troublesome in the past as accelerators could usually
be programmed only using specific programming languages – such as
CUDA – threatening maintainability, portability and correctness. Several
new programming environments try to tackle this problem; among them
OpenACC offers a high-level approach based on directives. In OpenACC,
one annotates existing C, C++ or Fortran codes with compiler directive
clauses to mark program regions to offload and run on accelerators and
to identify available parallelism. This approach directly addresses code
portability, leaving to compilers the support of each different accelerator,
but one has to carefully assess the relative costs of potentially portable
approach versus computing efficiency. In this paper we address precisely
this issue, using as a test-bench a massively parallel Lattice Boltzmann
code. We implement and optimize this multi-node code using OpenACC
and OpenMPI. We also compare performance with that of the same
algorithm written in CUDA, OpenCL and C for GPUs, Xeon-Phi and
traditional multi-core CPUs, and characterize through an accurate time
model its scaling behavior on a large cluster of GPUs.

Keywords: OpenACC · OpenMPI · Lattice Boltzmann methods ·
Accelerator computing · Performance analysis

1 Introduction and Background

Lattice Boltzmann (LB) methods are widely used in computational fluid dynam-
ics, to simulate flows in two and three dimensions. From the computational point
of view, LB methods have a large degree of available parallelism so they are suit-
able for massively parallel systems.

Over the years, LB codes have been written and optimized for large clusters
of commodity CPUs [1], for application-specific machines [2–4] and even for
c© Springer-Verlag Berlin Heidelberg 2015
J.L. Träff et al. (Eds.): Euro-Par 2015, LNCS 9233, pp. 613–624, 2015.
DOI: 10.1007/978-3-662-48096-0 47
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FPGAs [5]. More recently work has focused on exploiting the parallelism of
powerful traditional many-core processors [6], and of power-efficient accelerators
such as GPUs [7,8] and Xeon-Phi processors [9].

As diversified HPC architectures emerge, it is becoming more and more
important to have robust methodologies to port and maintain codes for sev-
eral architectures. This need has sparked the development of frameworks, such
as the Open Computing Language (OpenCL), able to compile codes efficiently
for several accelerators. OpenCL is a low level approach: it usually obtains
high performances at the price of substantial changes in the code and large
human efforts, seriously posing a threat to code correctness and maintainability.
Other approaches start to emerge, mainly based on directives: compilers generate
offload-functions for accelerators, following “hints” provided by programmers as
annotations to the original – C, C++ or Fortran – codes [12]. Examples along this
direction are OpenACC [13] and OpenMP4 [14]. Other proposals, such as the
Hybrid Multi-core Parallel Programming model (HMPP) proposed by CAPS,
hiCUDA [15], OpenMPC [16] and StarSs [17] follow the same line. OpenACC
today is considered the most promising approach. In many ways its structure
is similar to OpenMP (Open Multi-Processing) [18]: both frameworks are direc-
tive based, but while OpenMP is more prescriptive, e.g. one maps work-loads
explicitly using distribute constructs, OpenACC is more descriptive. Indeed,
with OpenACC the programmer only specifies that a certain loop should run
in parallel on the accelerator and leaves the exact mapping to the compiler.
This approach leaves more freedom to the compiler and the associated runtime
support, offering in principle more space for performance portability.

So far very few OpenACC implementations of LB codes have been described
in literature: [19] focus on accelerating through OpenACC a part of a large
CFD application optimized for CPU; several other works describe CUDA [21]
or OpenCL [10,11] implementations; also scalability on GPU clusters has been
rarely addressed [22]. In this paper we focus on the design and optimization
of a multi-GPU LB code analyzing performances between a portable high level
approach like OpenACC and lower level approaches like CUDA.

This paper is structured as follows: Sect. 2 gives a short overview of LB meth-
ods; Sect. 3 describes in details our OpenACC implementation, and Sect. 4 ana-
lyzes performance results and compares with similar codes written in CUDA,
OpenCL and C for GPUs, Xeon-Phi accelerators and traditional multi-core CPUs.

2 Lattice Boltzmann Models

Lattice Boltzmann methods (LB) are widely used in computational fluid dynam-
ics, to describe flows in two and three dimensions. LB methods [23] are discrete
in position and momentum spaces; they are based on the synthetic dynamics of
populations sitting at the sites of a discrete lattice. At each time step, populations
hop from lattice-site to lattice-site and then incoming populations collide among
one another, that is, they mix and their values change accordingly. Over the
years, many different LB models have been devised, in 2 and 3 dimensions with
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different degrees of accuracy [24]. LB models in n dimensions with y populations
are labeled as DnQy; in this paper, we consider a state-of-the-art D2Q37 model
that correctly reproduces the thermo-hydrodynamical equations of motion of a
fluid in two dimensions and automatically enforces the equation of state of a
perfect gas (p = ρT ) [25,26]; this model has been extensively used for large scale
simulations of convective turbulence (see e.g., [27–29]).

From a computational point of view this physically very accurate LB scheme
is more complex than simpler LB models; this translates into higher requirements
in terms of storage (each lattice points has 37 populations), memory bandwidth
and floating-point throughput (at each time step, ≈ 7600 double-precision float-
ing point operations are performed per lattice point).

Populations (fl(x, t) l = 1 · · · 37) are defined at the sites of a discrete and
regular 2-D lattice; each fl(x, t) has a given lattice velocity cl; populations evolve
in (discrete) time according to the following equation:

fl(x, t + Δt) = fl(x − clΔt, t) − Δt

τ

(
fl(x − clΔt, t) − f

(eq)
l

)
(1)

Macroscopic quantities, density ρ, velocity u and temperature T are defined
in terms of the fl(x, t) and of the cls (D is the number of space dimensions):

ρ =
∑

l

fl, ρu =
∑

l

clfl, DρT =
∑

l

|cl − u|2 fl; (2)

the equilibrium distributions (f (eq)
l ) are known function of these macroscopic

quantities [23], and τ is a suitably chosen relaxation time. In words, (1) stip-
ulates that populations drift from lattice site to lattice site according to the
value of their velocities (propagation) and, on arrival at point x, they inter-
act among one another and their values change accordingly (collision). One
can show that, in suitable limiting cases and after appropriate renormalizations
are applied, the evolution of the macroscopic variables defined in (2) obey the
thermo-hydrodynamical equations of motion of the fluid.

An LB code takes an initial assignment of the populations, in accordance
with a given initial condition at t = 0 on some spatial domain, and iterates (1)
for all points in the domain and for as many time-steps as needed; boundary-
conditions at the edges of the integration domain are enforced at each time-step
by appropriately modifying population values at and close to the boundaries.

The LB approach offers a huge degree of easily identified parallelism. Indeed,
(1) shows that the propagation step amounts to gathering the values of the
fields fl from neighboring sites, corresponding to populations drifting towards
x with velocity cl; the following step (collision) then performs all mathematical
processing needed to compute the quantities in the r.h.s. of (1), for each point
in the grid. One sees immediately from (1), that both steps above are fully
uncorrelated for different points of the grid, so they can be executed in parallel
according to any schedule, as long as step 1 precedes step 2 for all lattice points.

In practice, an LB code executes a loop over time steps, and at each iterations
applies three kernels: propagate, bc and collide.
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Fig. 1. Left: LB populations in the D2Q37 model, hopping to nearby sites during the
propagate phase. Right: populations fl are identified by an arbitrary label; for each l
population data is stored contiguously in memory.

propagate moves populations across lattice sites according to the pattern of
Fig. 1, collecting at each site all populations that will interact at the next phase
(collide). In our model populations move up to three lattice sites per time
step. Computer-wise, propagate moves blocks of memory locations allocated at
sparse addresses, corresponding to populations of neighbor cells.

bc executes after propagation and adjusts populations at the edges of the
lattice, enforcing appropriate boundary conditions (e.g., constant temperature
and zero velocity at the top and bottom edges of the lattice). For the left and
right edges, we usually apply periodic boundary conditions. This is conveniently
done by adding halo columns at the edges of the lattice, where we copy the
rightmost and leftmost columns (3 in our case) of the lattice before starting the
propagate step. After this is done, points close to the boundaries are processed
as those in the bulk.

collide performs all mathematical steps needed to compute the population
values at each lattice site at the new time step, as per (1). Input data for this
phase are the populations gathered by the previous propagate phase. This step
is the most floating point intensive part of the code.

3 Implementation and Optimization of the D2Q37 Model

Our implementation uses CUDA-aware MPI and start one MPI rank per GPU
to have GPU-to-GPU transfers transparently handled by the MPI library. The
lattice is copied on the accelerator memory at the beginning of the loop over
time-steps, and then all three kernels – propagate, bc and collide – run on
the accelerator. Data is stored in memory in the Structure-of-Array (SoA) format
scheme, where arrays of all populations are stored one after the other. This helps
exploit data-parallelism and enables data-coalescing when accessing data needed
by work-items executing in parallel. On each MPI-rank the physical lattice is
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// processing of bulk

propagateBulk ( f2 , f1 ) ; // async execution on queue (1)

bcBulk ( f2 , f1 ) ; // async execution on queue (1)

collideInBulk ( f2 , f1 ) ; // async execution on queue (1)

// execution of pbc step

#pragma acc host_data use_device ( f2 ) {
for ( pp = 0 ; pp < 37 ; pp++ ) {

MPI_Sendrecv ( &(f2 [ . . . ] ) , 3∗NY , . . . ) ;
MPI_Sendrecv ( &(f2 [ . . . ] ) , 3∗NY , . . . ) ;

} }
// processing of the three leftmost columns

propagateL ( f2 , f1 ) ; // async execution on queue (2)

bcL ( f2 , f1 ) ; // async execution on queue (2)

collideL ( f1 , f2 ) ; // async execution on queue (2)

// processing of the three rightmost columns

propagateR ( f2 , f1 ) ; // async execution on queue (3)

bcR ( f2 , f1 ) ; // async execution on queue (3)

collideR ( f1 , f2 ) ; // async execution on queue (3)

Fig. 2. Scheduling of operations started by the host at each time step. Kernels process-
ing the lattice bulk run asynchronously on the accelerator, and overlap with MPI com-
munications executed by the host.

surrounded by halo columns and rows: for a physical lattice of size Lx × Ly, we
allocate NX ×NY points, with NX = Hx +Lx +Hx and NY = Hy +Ly +Hy.

We split our 2-D physical lattice of size Lx × Ly on N accelerators along the
X dimension; GPUs are connected in a ring-scheme and each one hosts a sub-
lattice of Lx/N × Ly points. With this splitting, halo-columns are allocated at
successive memory locations, so we do not need to gather halo data on contiguous
buffers before communication. At the beginning of each time-step left- and right-
halos are updated: we copy population data coming from the three adjoining
physical columns of the neighbor nodes in the ring to the left and right halos.
This is done by an MPI node-to-node communication step that we call periodic
boundary condition (pbc). Once this is done, all remaining steps are local to each
MPI-rank so they run in parallel.

At each iteration of the loop over time steps, each MPI-rank first update its
halo columns using pbc(), and then runs in sequence propagate(), bc() and
collide() on its local lattice.

As lattice data is stored in the SoA format, pbc exchanges 37 buffers, each
of 3 columns, with its left and right neighbors. It executes a loop over the
37 populations and each iteration performs two MPI send-receive operations,
respectively for the left and the right halo (see Fig. 2). On GPUs, we exploit
CUDA-aware MPI features, available in the OpenMPI library and use data
pointers referencing GPU-memory buffers as source and destination, making the
code more compact and readable. In OpenACC this is controlled by the #pragma
acc host data use device(p) clause, that maps a GPU memory pointer p into
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inline void propagate (
const data_t∗ restrict prv , data_t∗ restrict nxt ) {
int ix , iy , site_i ;
#pragma acc kernels present ( prv ) present ( nxt )
#pragma acc loop gang independent

for ( ix=HX ; ix < ( HX+SIZEX ) ; ix++) {
#pragma acc loop vector independent

for ( iy=HY ; iy<(HY+SIZEY ) ; iy++) {
site_i = ( ix∗NY ) + iy ;
nxt [ site_i ] = prv [ site_i−3∗NY+1] ;
nxt [ NX∗NY+site_i ] = prv [ NX∗NY+site_i−3∗NY ] ;
. . . .

} } }

Fig. 3. OpenACC pragmas in the body of the propagate() function; pragmas before
the loops instruct the compiler to generate corresponding accelerator kernel and con-
figure the grid of threads and blocks.

host space, so it can be used as an argument of the MPI send and receive func-
tions. Also, communications between GPUs are optimized in the library and
implemented according to physical location of buffers and the capabilities of
the devices involved, also enabling peer-to-peer and GPUDirect RDMA features.
Figure 3 shows the code of the propagate function. For each lattice site we update
the values of the populations, copying from the prv array onto the nxt array.
The body of propagate is annotated with several OpenACC directives telling the
compiler how to organize the kernel on the accelerator. #pragma acc kernels
present(prv) present(nxt) tells the compiler to run the following instruc-
tions on the accelerator; it also carries the information that the prv and nxt
arrays are already available on the accelerator memory, so no host-accelerator
data transfer is needed; #pragma acc loop gang independent states that each
iteration of the following loop (over the X-dimension) can be run by different
gangs or block of threads; #pragma acc loop vector independent tells the
compiler that iterations of the loop over Y-dimension can likewise be run as
independent vectors of threads. Using these directives the compiler structures
the thread-blocks and block-grids of the accelerator computation such that: one
thread is associated to and processes one lattice-site; each thread-block processes
a group of lattice sites lying along the Y-direction, and several blocks process
sites along the X-direction. This allows to expose all available parallelism.

We split bc() in two kernels, processing the upper and lower boundaries.
They run in parallel since there is no data dependencies among them. We have
not further optimized this step because its computational cost is small compared
to the other phases of the code.

The collide() kernel sweeps all lattice sites and computes the collisional
function. The code has two outer loops over X and Y dimensions of the lattice,
and several inner loops to compute temporary values. We have annotated the
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Fig. 4. Profiling of one time step. pbc (yellow line marked as “MPI”) and the kernels
processing the bulk of the lattice (blue line marked as “Bulk”) fully overlap (Color
figure online).

outer loops as we did for propagate(), making each thread to process one lattice
site. Inner loops are computed serially by the thread associated to each site.

Performance wise, pbc() is the most critical step of the code, since it involves
node-to-node communications that can badly affect performance and scaling. We
organize the code so node-to-node communications are (fully or partially) over-
lapped with the execution of other segments of the code. Generally speaking,
propagate, bc and collide must execute one after the other, and they cannot
start before pbc has completed. One easily sees however that this dependency
does not apply to all sites of the lattice outside the three leftmost and rightmost
border columns (we call this region the bulk of the lattice). The obvious conclu-
sion is that processing of the bulk can proceed in parallel with the execution of
pbc, while the sites on the three leftmost and rightmost columns are processed
only after pbc has completed. OpenACC abstracts concurrent execution using
queues; function definitions flagged by #pragma acc async(n) directive enqueue
the corresponding kernels asynchronously on queue n, leaving the host free to
perform other tasks concurrently. In our case, this happens for propagateBulk,
bcBulk and collideBulk, which start on queue 1 (see Fig. 2), while the host con-
currently executes the MPI transfers of pbc. After communications complete, the
host starts three more kernels on two different queues (2 and 3) to process the
right and left borders, so they can execute in parallel if sufficient resources on
the accelerator are available. This structure allows to overlap pbc with all other
steps of the code, most importantly with collideBulk, which is the most time
consuming kernel, giving more opportunities to hide communication overheads
when running on a large number of nodes.

Figure 4 shows the profiling of one time step on one GPU on a lattice of
1080 × 2048 points split across 24 GPUs. MPI communications started by pbc
are internal (MemCopy DtoD), moving data between GPUs on the same host,
or external (MemCopy DtoH and HtoD) moving data between GPUs on dif-
ferent hosts. The actual scheduling is as expected: both types of GPU-to-GPU
communications fully overlap with propagate, bc and collide on the bulk.

4 Results and Conclusions

We start our performance analysis comparing OpenACC code with CUDA,
OpenCL and C implementations of the same LB algorithm developed for NVIDIA
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Table 1. Performance comparison between single (1CPU) and dual (2CPU) Intel 18-
core CPUs (Haswell-v3 micro architecture), NVIDIA K40 GPUs and Intel Xeon-Phi
7120; the lattice size is 1920 × 2048 points. All quantities are defined in the text.

Tesla K40 Xeon-Phi 7120 E5-2699-v3

Code Version CUDA OCL OACC OCL 1CPU C 2CPU C

TPbc+Prop [msec] 13.78 15.80 13.91 30.46 120.71 61.40

GB/s 168.91 147.33 167.37 76.42 19.53 37.91

Ep 59 % 51 % 58 % 22 % 29 % 28 %

TBc [msec] 4.42 6.41 2.76 3.20 1.62 0.80

TCollide [msec] 39.86 136.93 78.65 72.79 136.24 67.95

Ec 45 % 13 % 23 % 34 % 34 % 34 %

TWC/iter [msec] 58.07 159.14 96.57 106.45 259.79 131.88

MLUPS 68 25 41 37 15 30

GPUs, Intel Xeon-Phi and Intel traditional multi-core CPUs. For OpenACC we
have used PGI compiler version 14.10, while for GPUs we have used CUDA
version 6.5, and for Xeon-Phi and multicore-CPUs the Intel compiler version 14.

We started with an early version for Intel commodity CPUs, using OpenMP
to handle parallelism over all available cores (18 in this case) of each CPU, and
controlling vectorization via intrinsics functions [30]. We then developed a CUDA
version [20,21], optimized for Fermi and Kepler architectures, and an OpenCL
version that we have run on NVIDIA and Intel Xeon-Phi accelerators [11,31].

Table 1 summarizes performance figures on a reference lattice of 1920 × 2048
sites. The first lines refer to the propagate kernel; we show the execution time,
the effective bandwidth, and the efficiency Ep computed w.r.t. the peak mem-
ory bandwidth; the table then lists execution times of the bc function; For the
collide kernel, we show the execution time and the efficiency Ec as a fraction
of peak performance. Finally, we show the wall-clock execution time (WcT) and
the corresponding Millions Lattice UPdate per Second (MLUPS) – counting the
number of sites handled per second – of the full production-ready code. For
propagate, which is strongly memory bound, the CUDA and OpenACC ver-
sions run at ≈ 60% of peak, while the OpenCL version is 10% slower. For the
collide kernel – the most computationally intensive part of the code – the
OpenACC code has an efficiency of 23% while the CUDA version doubles this
figure, running at 45% of peak. The lower performance of the OpenACC code
can likely be explained by latency overheads caused by two factors: (i) popu-
lation values are used several times within the computation of the collide, and
repeatedly read from global-memory; (ii) constant values like the coefficients of
the Hermite polynomial expansion are stored on global memory. On the other
hand the CUDA version [21] is more performing because explicit control with
cudaMemcpyToSymbol allows to store constant values on low-latency constant-
memory; OpenACC is not able to do that due to the large number of terms and
their dependencies and then they are computed at run time. CUDA also uses
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Fig. 5. Ta and Tb for the time model defined in the text on a lattice of 1080 × 5736
points as a function of the number of GPUs. The black points are the execution times
of the code with all asynchronous steps enabled.

registers more efficiently, allowing to fully unroll inner loops, while on OpenACC
this has a negative effect. A CUDA version which does not use these two opti-
mizations matches the performance of the OpenACC code.

The OpenCL version is respectively 2X and 3X slower than OpenACC and
CUDA. This reflects that the current version of the NVIDIA OpenCL driver
does not optimize for the Kepler architecture (it can not exploit features intro-
duced with the Kepler architecture, e.g. the capability to address 255 registers
per thread) [11]. Comparing performances of our code across all architectures –
CPUs, GPUs and Xeon-Phi accelerators – we see that on GPUs, using CUDA,
collide runs ≈ 3.5X faster than on a single-CPU and 1.7X than on a dual-CPU
using C, and ≈ 1.8X faster than the Xeon-Phi using OpenCL.

We now discuss in details the scaling behaviour of our implementation for a
large number of GPUs. We model the execution time of the whole program as
T ≈ max{Ta, Tb}, with Ta and Tb defined as:

Ta = Tbulk + TborderL + TborderR, Tb = TMPI + TborderL + TborderR

and Tbulk, TborderL, TborderR are respectively the sums of the execution times of
propagate, bc and collide on the bulk, and on the left and right halos, while
TMPI refers to MPI communications.

This model is in good agreement with data measured on an Infiniband-
interconnected cluster with 6 GPUs on each node: we first profile the execu-
tion time of each kernel and MPI communication running them in sequence, i.e.
without any overlap, and then measure the execution time of the whole pro-
gram with all asynchronous steps enabled. Figure 5 shows the values of Ta and
Tb for a lattice of 1080 × 5736 points. The histograms show the times taken by
each part of the code when running serially while the black dots show the time
taken by the asynchronous code. For this choice of the lattice size, we see that
T ≈ Ta up to 24 GPUs as communications are fully hidden behind the execution
of the program on the bulk; as long as this condition holds, the code enjoys full
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Fig. 6. Strong scaling behavior of the OpenACC code as a function of the number of
GPUs (n) for several lattice sizes. Points are experimental data and dashed lines are
the predictions of our timing model.

scalability. As we increase the number of GPUs (≥ 30) T ≈ Tb, communications
become the bottleneck and the scaling behavior necessarily degrades.

We further characterize the execution time assuming, to first approximation,
that bulk processing is proportional to (Lx × Ly), boundary conditions scale as
Lx, and communication and borders processing scales as Ly; so, on n GPUs

T (Lx, Ly, n) = max
{

α
Lx

n
Ly + β

Lx

n
, γLy

}
+ δLy

We extract the parameters (α, β, γ and δ) from the profiling data of Fig. 5, and
define the function Sr(Lx, Ly, n) = T (Lx,Ly,1)

T (Lx,Ly,n) to predict the relative speedup for
any number of GPUs and any lattice size. Figure 6 shows the (strong) scaling
behaviour of our code for several lattice sizes relevant for physics simulations;
dots are measured values and dashed lines are plots of Sr() for different values
of Lx and Ly. Values of Sr() are in good agreement with experimental data, and
predict the number of GPUs for which the code does not scale any more. For
large lattices (5040 × 10752) the code has an excellent scaling behavior up to
48 GPUs, slightly underestimated by our model as constants are calibrated on
smaller lattices and then more sensitive to overheads.

In conclusion, we have successfully ported, tested and benchmarked a com-
plete lattice Boltzmann code using OpenACC, and characterized its perfor-
mances through an accurate time model. Our experience with OpenACC is very
positive from the point of view of porting and programmability. The effort to port
existing codes to OpenACC is reasonably limited and easy to handle; we started
from an existing C version and marked through pragmas regions of code to offload
and run on accelerators instructing the compiler to identify and exploit available
parallelism. However, major changes in the structure of the code cannot be han-
dled by compilers, so the overall organization must be (at least partially) aware
of the target architectures; for example, in our case it is crucial to organize data
as Structure of Arrays to allow to coalesce performance-critical memory accesses.
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Concerning performance results, one is ready to accept that the use of a high level
programming model trades better programmability with computing efficiency:
we consider a performance drop of ≤ 20% a satisfactory result. While the per-
formance is not as good as we would like, we understand the reasons behind
this gap and expect that compiler improvements will be able to narrow it. We
believe that our analysis provides important feedbacks to help improve the per-
formance of OpenACC. As an interim step, interoperability between OpenACC
and CUDA allows to foster the high productivity of OpenACC and still get full
performance by using CUDA for the most performance critical kernels.
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Abstract. Intel Many Integrated Core (MIC) architectures have been
playing a key role in modern supercomputing systems due to the fea-
tures of high performance and low power consumption. This makes them
become an attractive choice to accelerate HPC applications. MPI-3 RMA
is an important part of the MPI-3 standard. It provides one-sided seman-
tics that reduce the synchronization overhead and allow overlapping of
communication with computation. This makes the RMA model the first
target for developing scalable applications with irregular communica-
tion patterns. However, an efficient runtime support for MPI-3 RMA
with simultaneous use of both processors and co-processors is still not
well exploited. In this paper, we propose high-performance and scalable
runtime-level designs for MPI-3 RMA involving both the host and Xeon
Phi processors. We incorporate our designs into the popular MVAPICH2
MPI library. To the best of our knowledge, this is the first research work
that proposes high-performance runtime designs for MPI-3 RMA on Intel
Xeon Phi clusters. Experimental evaluations indicate a reduction of 5X
in the uni-directional MPI Put and MPI Get latency for 4 MB mes-
sages between two Xeon Phis, compared to an out-of-the-box version
of MVAPICH2. Application evaluations in the symmetric mode show
performance improvements of 25% at the scale of 1,024 processes.

1 Introduction

The emerging co-processors such as Intel Many Integrated Cores (MICs) [2] and
accelerators such as NVIDIA GPUs have been widely used to accelerate scien-
tific applications. The features of high performance and low power consumption
per watt they offer have made them as key components in modern HPC sys-
tems. In the recent Top500 list [16] (November 2014), 75 systems in total are
using either accelerator or co-processor technology, including Tianhe-2, Titan,
and Stampede in the top 10 supercomputers. Networking technologies, such as
InfiniBand (IB) [1], have also rapidly evolved over the years to offer low latency
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and high bandwidth communication to address the increasing communication
requirements of current generation peta-scale applications.

Intel’s Xeon Phi co-processor, based on the Many Integrated Core (MIC)
architecture, packs up to 1 TFLOP of double precision performance in one
chip. Several programming models, including MPI, OpenMP and others, used
on multi-core architectures can run on Xeon Phi. So applications developed for
multi-core systems could be easily ported to Xeon Phi. Xeon Phi also offers three
usage modes for application developers: (1) Offload mode: It can be used as an
accelerator to offload compute intensive regions of an application, using compiler
directives. (2) Native mode: It can also be used in a many-core hosted mode to
run applications. (3) Symmetric mode: It also offers a Symmetric mode where
processes can be launched on both the co-processor and host.

Several scientific applications have already been successfully ported to lever-
age the compute power offered by Xeon Phi [7,8]. To maximize the performance
of applications, several studies have optimized runtime systems for the send-recv
based communication using new features available on Xeon Phi clusters. One-
sided communication has been seen as a suitable model for Exascale Comput-
ing especially for applications with irregular communication patterns [5]. MPI-3
RMA provides one-sided semantics that reduce the synchronization overhead
and allow overlapping of communication with computation. However, an effi-
cient runtime support for MPI-3 RMA with simultaneous use of both processors
and co-processors is still not well exploited.

To design a high-performance runtime for MPI-3 RMA, we need to cover win-
dow creation, communication and synchronization operations with existing and
new channels available on Xeon Phi Clusters. For applications running in Native
or Symmetric modes, different communication paths can be involved in MPI
processes, such as Intra-MIC (MIC-MIC), Intra-Node (HOST-MIC), Inter-Node
(HOST-MIC), Inter-Node (MIC-MIC), etc. To maximize the utilization of com-
pute resources on MIC-based systems, it is imperative that all these operations
are efficiently designed. In this work, we propose efficient and truly one-sided
MPI-3 RMA designs to address the following important challenges:

– What are the bottlenecks involved in optimizing data transfers inside a node
or across nodes with processor and co-processor?

– Can all the communication operations be implemented in a truly one-sided
manner?

– What are the potential benefits of such a runtime design on the performance
and scalability of parallel applications?

In this paper, we present a high-performance and scalable design of MPI-3
RMA on Intel Xeon Phi clusters. We also carry out a detailed analysis of our
designs and evaluate them with various micro-benchmarks and applications. Our
experimental evaluations show that our proposed design could reduce the uni-
directional MPI Put and MPI Get latency for 4 MB messages from Xeon Phi
to Xeon Phi by 5X. The design improves the performance of MPI-3 RMA based
Graph500 by 25 % with 1,024 processes in symmetric mode. To the best of our
knowledge, this is the first research work that proposes high-performance runtime
designs for MPI-3 RMA on Intel Xeon Phi clusters.
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2 Background

In this section, we briefly discuss MPI-3 RMA programming model. Later, we
describe the communication channels available on Xeon Phi Clusters.

2.1 MPI-3 RMA

The MPI one-sided interface enables direct access to the memory of other
processes through a window. Window is a memory region which can be accessed
by processes in the same communicator. MPI-3 RMA introduces six communi-
cation routines to access windows. Synchronization modes provided by MPI-3
can be classified as passive (no explicit participation from the target) or active
(involves both origin and target). All of these communication operations are non-
blocking and are not guaranteed to complete, either locally or remotely, until a
consequent synchronization operation (e.g. MPI Win unlock) occurs.

2.2 Communication Channels on Intel Xeon Phi Clusters

For processes running on MIC Clusters, there are three modes of inter-process
communication: the shared-memory channel, the Symmetric Communication
Interface (SCIF) channel, and the IB-verbs channel. SCIF is a socket-like API
for communication between processes on the MIC and host within the same sys-
tem [4]. The Intel Manycore Platform Software (MPSS) for MIC provides two
ways of using IB verbs for communications on MIC clusters. A direct OFED
communication stack is provided to support the Symmetric mode of communi-
cation on just the MIC or between the MIC and host. Alternatively, the MPSS
also provides implementation of IB verbs over the SCIF API, called IB-SCIF, for
intra-node communications. Our previous study showed that the current genera-
tion processor chipsets from Intel have a limited peak bandwidth when the HCA
is directly accessing the accelerator memory. A Proxy-based approach is usu-
ally used to overcome this limitation [13]. Our work differentiates from previous
design in that we implement MPI-3 RMA communications with truly one-sided
schemes. Detailed description of the designs is presented in Sect. 3.3.

3 Proposed Designs

RMA runtime

Window management Synchronization

Communication

IB SCIF
Shared

memory

MPI RMA programing model

Fig. 1. Overview of MVAPICH2
MPI-3 RMA over Xeon Phi Clus-
ters

In this section, we present efficient MPI-
3 RMA communication runtime designs for
Intel MIC clusters. Figure 1 gives an overview
of our proposed designs including window
management, communication and synchro-
nization operations.
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3.1 Designs for Window Creation

In the window creation phase, each process discovers its neighbors and its loca-
tion whether it is running on the MIC or HOST. The process with the lowest
MPI rank of all running processes on the same MIC is assigned as the MIC leader
process. The window is registered with the IB HCA and PCIe device to enable
both IB verbs and SCIF communications. After registrations, all MPI processes
call MPI Allgather to get other processes’ window information (window base,
remote descriptor for IB network, remote offset for SCIF, etc.). Then, the MIC
leader process sends all the window information to a helper process running
on the host. The purpose of this helper process and this message exchange is
mainly for the truly one-sided implementation which will be discussed in detail in
later subsection. To provide high-performance one-sided communications, SCIF
requires the source and target buffers to be 64-bit aligned. Thus, we align win-
dows inside the library if the start address given by the user is not aligned. Fur-
ther, as the registration is an expensive operation, we enhance the registration
cache scheme used by MVAPICH2, to enable caching SCIF registration han-
dlers. The whole procedure used for MPI Win allocate is shown in Algorithm 1.
For a traditional window that is created by MPI Win create, each process needs
to store address information of all other processes for data transfers. For newly
introduced window routines in MPI-3 RMA, each process only needs to store
per node address information instead of per process. The MPI-3 RMA window
can also be implemented as a symmetric heap where the window base on all
processes is the same. In this case, each process only needs to store one window
address which can be used for all processes.

3.2 Designs for Intra-node Communication

In this subsection, we propose designs for the intra-node MIC-MIC, HOST-
MIC and MIC-HOST communications. Here we focus on MPI Get and MPI Put
operations.

Intra-node MIC-MIC Communication. For RMA communications operat-
ing on windows created by MPI Win create, the communication is implemented
over the two-sided based shared memory channel. The origin process copies a
header and the data into a shared memory region allocated during MPI Init and
the receiver process keeps polling for any incoming messages, detects the header
and copies the data into the destination buffer. For RMA communications oper-
ating on a window backed by shared memory, the origin process could directly
access the remote process window and finish the transfer by just one copy from
the origin to the target buffer. These two designs work well for small messages.
For large messages, relatively weak performance of single core on the MIC incurs
high overhead with memcpy operation for data transfers. An alternative design
is to use the SCIF channel to transfer large messages. The MPI Put is mapped to
scif writeto which transfers the data from its source buffer to the target process’s
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window. The MPI Get is mapped to scif readfrom to read the data from a target
process’s window into its own buffer.

Intra-node MIC-HOST and HOST-MIC Communication. There are
two design alternatives for each of these two communication paths. One design is
going through the native IB channel, and the other one is using the SCIF channel.
We find that a single channel could perform the best for all message sizes, so we
introduce a hybrid design which automatically chooses the best channel based
on the communication pattern and message sizes. For small messages, the native
IB channel always delivers better performance than the SCIF channel, so we use
native IB channel for small messages in this scenario. For large message transfers,
IB reads from the MIC memory will hit the bandwidth limitation introduced
in [13]. This limitation adds significant overhead for MIC-HOST MPI Put and
HOST-MIC MPI Get operations. To avoid this bottleneck, we take advantage of
the SCIF channel for these two transfers. In our experiments, we find that SCIF
transfers also deliver better bandwidth than HOST initialized IB transfers for
large messages. So our design uses the low latency IB channel for small messages
and the SCIF channel for large messages.

Algorithm 1. Details of MPI Win allocate

1 /* MPI Process running on the HOST or MIC */
2 if local rank = 0 then
3 shm open(size)
4 Bcast(node comm, shm hnd)

5 else
6 Bcast(node comm, shm hnd)
7 win base ← mmap()

8 end
9 rkey ← ib register(win base)

10 scif off ← scif register(win base)
11 /* MPI processes exchange window info */
12 Allgather(comm, {rkey, scif off, win base})
13 if on mic & local rank = 0 then
14 /* Send information to helper process */
15 Send(helper process, {rkey, scif off, win base})
16 end
17 /* Helper process running on Host */
18 Recv({rkey, scif off, win base})
19 for k = 0; k < node size; k++ do
20 buffer.scif off[k] ← scif off[k]
21 buffer.win base[k] ← win base[k]

22 end
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3.3 Designs for Inter-node Communication

In this subsection, we present design alternatives for inter-node MIC-MIC,
HOST-MIC and MIC-HOST communications.

Inter-node MIC-MIC Communication. For small messages, the IB channel
could be used for data exchange between MICs sitting on different nodes. For
large data transfers between MICs, the IB transfer reading from a remote MIC
will hit the same bandwidth limitation. To overcome this limitation, a two step
based approach is proposed. The first step transfers the data from the MIC to
the HOST, and then the HOST initializes IB transfers to the remote target in the
second step. In order to achieve this two-step based transfer, we need to launch
a helper process on the HOST to take care of the intermediate transfer. To
implement this design in a truly one-sided manner, there are several challenges:

– Which communication channel should be used for each step?
– How can the helper process directly read/write from/to the window of MPI

processes?
– How to avoid an active participation of the target process, to achieve best

computation/communication overlap?

For the first step, we choose the SCIF channel that always performs the best
for intra-node large message transfers. There are two alternative designs for the
first step: (1) The MIC process sends the first handshake message to notify the
helper process. The helper process responds with an intermediate address after
receiving the notification. The real data transfer starts in the third step. (2) The
other way is that the MIC process sends its source address and the SCIF offset
together with the notification message. When the helper process receives the
data, it could directly read the source buffer via the SCIF channel. In order
to reduce the participation of the source and target to the minimum and thus
achieve the best overlap, we choose the second way in our design. For the second
step, we choose the IB channel to transfer data from the helper process to the
remote target process. There are also two alternative designs here: (1) The helper
process explicitly exchanges address and other window related information with
the target process. In other words, this approach requires the participation of the
target and an explicit synchronization during the data transfer. (2) The helper
process stores all window related information during the window creation phase
as indicated in Sect. 3.1. In this way, the helper process could directly access the
remote target process window. With the objective of achieving a truly one-sided
design and avoid a synchronization with the target process, our solution uses the
second design.

In addition to ensure the one-sided semantics, the selected paths offer the
best performance as they involve the DMA SCIF read initiation from the Host
to the remote MIC. However, we still need to manage data transferred in each
channel to get the peak bandwidth. Congestion in either channel will hurt the
overall performance. To make the overall transfer work efficiently, we transfer
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Fig. 2. Detailed designs of inter-node MIC-MIC communications

the data in a pipelined manner. The data is moved block by block from the
MIC process to the helper process via PCIe bus using SCIF and from the helper
process to the target process via the IB channel. As long as the helper process
receives one complete block from the MIC process, it issues RDMA write to the
remote target process. When the helper process finishes writing all blocks, it will
send a FIN message to the origin process. This two-step pipeline based design
is shown in Fig. 2(a) and (b).

Inter-node MIC-HOST and HOST-MIC Communication. For small
message transfers, the native IB channel always performs the best, so our design
takes advantage of the native IB channel for small messages. For large messages,
an MPI Put from an MIC to a HOST or an MPI Get from a HOST to an MIC
both will hit the bandwidth limitation if directly using the IB native channel. To
avoid this bottleneck, we use the same two-step pipeline based design to stage
the data to a helper process first, then initializing IB transfers. For the MIC-
HOST MPI Get and HOST-MIC MPI Put, we use direct IB channel transfers
for all message sizes.

3.4 Design for Atomic Operations

Since the IB HCA has already supported the fetch and add and com-
pare and swap operations with 64 bits element size, our first design takes advan-
tage of this hardware feature. We use this feature for MPI atomic operation with
64 bits element size. This design only involves the origin process for the atomic
operations. For other message sizes which are not supported by the IB hardware,
MPI atomic operations are implemented over two-sided based communications.
When the origin process issues an atomic operation to the target process, it
sends out a packet including a header and the data to the target process. After
the target process receives the packet, it uses the kernel based atomic support
to do the operation and returns the final result to the origin process. We do not
need to consider the two-step based pipeline design here, since atomic operations
only involve small messages.
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3.5 Synchronization

Synchronization operations ensure that window regions are ready to be accessed
by other processes and all previous communication operations have been com-
pleted. In this work, we keep the same control messages and designs used for
both active synchronization and passive synchronization in the Host. Our work
extends current design by ensuring that the data transmission going through our
proposed channels also completes when the synchronization operation returns.
For transfers via SCIF channel, we call SCIF APIs to ensure that all issued
SCIF operations have completed in synchronization routines. For transfers via
the two-step based pipeline channel, we check the FIN message returned from
the helper process to ensure that the data has been received by target process.
Note that waiting for the FIN message involves only a memory polling which
leads to the best performance.

4 Experimental Evaluation

In this section, we describe the experiments to evaluate the efficacy of the pro-
posed design.

4.1 Experimental Setup

We use the TACC Stampede [15] system for experiments. Each Stampede
node has a dual socket containing Intel Sandy Bridge (E5-2680) dual octa-core
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Fig. 5. Communication computation overlap evaluation

processors running at 2.70 GHz. It has 32 GB of memory, a SE10P (B0-KNC)
coprocessor and a Mellanox IB FDR MT4099 HCA. The host processors are run-
ning CentOS release 6.3 (Final), with kernel version 2.6.32-431.17.1.el6.x86 64.
The KNC runs MPSS 2.1.4346-16. The compiler suite used is Intel com-
poser xe 2013.2.146. Our designs are integrated in the popular MVAPICH2 [12]
MPI library. We use OSU Micro-Benchmarks (OMB) 4.4 for evaluation perfor-
mance of point-to-point communication. We then present evaluation using an
RMA based LU kernel and MPI-3 RMA based Graph500 benchmark [9].

In this section, we first present experiments studying the impact of our
designs for intra-node and inter-node communication on performance of point-to-
point operations. ‘MV2-Def’ is the default version of MVAPICH2-MIC using the
shared memory channel and native IB interface for MPI-3 RMA communication
operations. ‘MV2-Proposed’ represents our proposed designs using the shared
memory, SCIF and IB channels for inter-node and intra-node communications.

4.2 Micro-Benchmark Level Evaluation

We present the performance results of MPI Put and MPI Get uni-directional
latency benchmarks in Figs. 3 and 4, respectively. For the intra-node MIC-MIC
communication, MV2-Def uses the shared memory channel for all message sizes,
whereas MV2-Proposed uses the shared memory channel for small messages
and the SCIF channel for large messages. From the results, we see that the
SCIF channel helps reduce the large message latency significantly. For the intra-
node MIC-HOST MPI Put and HOST-MIC MPI Get results, MV2-Def uses IB
channels for all message sizes, whereas our proposed design uses the IB channel
for small messages and the SCIF channel for large messages. The HOST-MIC
MPI Get operation latency for 4 MB messages are 3949.6 and 721 µs respectively
for MV2-Def and MV2-Proposed, which is a 5X reduction.

The Inter-node MPI Put and MPI Get performance results are presented in
Figs. 6 and 7, respectively. For the inter-node MIC-HOST MPI Put and HOST-
MIC MPI Get, MV2-Def uses the IB channel for all message sizes, which has
overhead for large messages; MV2-Proposed uses the SCIF channel staging
data from the MIC to the Host, then the HOST issues IB transfer to the
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destination process. For the MIC-HOST MPI Put of 4 MB message sizes, the
latencies are 3947.9 and 700 µs for MV2-Def and MV2-Proposed, respectively,
which is a 5X reduction. For the inter-node HOST-MIC MPI Put and MIC-
HOST MPI Get, both MV2-Def and MV2-Proposed use direct IB transfer for
all messages, because th Host initialized IB transfer doesn’t have bandwidth
limitation. For the inter-node MIC-MIC results, MV2-Def uses the IB channel
for all message sizes, where MV2-Proposed uses two-step based transfers. That
is why we also see big improvements in this case.

Figure 5 demonstrates the impact of the proposed design on communication
computation overlap. The overlap benchmark is a two process test that measures
the latency observed at the origin MPI process for MPI Get and MPI Win flush
on the window at the target process. During this time, the target process goes
into a busy loop (mimicking computation) which is increased in each step.
In Fig. 5, Send-recv-based means implementing communication over two-sided
based designs, which involves both the origin and the target process in the com-
munication. Our proposed design is a truly one-sided based implementation. By
achieving near 98 % communication-computation overlap, the communication
time of our proposed design is constant when the computation time increases,
whereas the communication time keeps increases for the two-sided based design.

4.3 Application Level Evaluation

We use a modified version of the SPLASH LU benchmark written with MPI
RMA to demonstrate the benefits of our proposed designs. This experiment
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Fig. 8. Application evaluations

uses 16 MPI processes per Xeon Phi in the native mode. The SPLASH LU
benchmark does dense LU factorization. The dense 8192× 8192 matrix is divided
into blocks of size 128× 128 each. Figure 8(a) shows the execution time of the
benchmark for the proposed design from 32 to 128 processes. We observed that
MV2-Proposed outperforms the MV2-Def by a factor of 24 % on 128 processes.
The improvement seen by our design is due to the overlapping of the computation
and communication time and efficient inter-node and intra-node Xeon Phi to
Xeon Phi communication.

We also show the impact of our designs using an MPI-3 RMA based Graph500
benchmark [9] with processes running across MICs and hosts. In this experiment,
we run 16 processes on each host and Xeon Phi. The results are presented in
Fig. 8(b). We run the test with increasing number of processes on the MIC and
Host from 128 to 1,024. We use scale 22 and edge factor 16 for the evaluation.
We see that MV2-Proposed consistently delivers benefits compared to MV2-
Def. The performance benefits come from our proposed design which optimizes
all these communications. With 1,024 processes (512 on the host and 512 on
the MIC), the execution times are 15.1 and 11.3 s, respectively, which is a 25 %
improvement.

We then present the performance evaluation results of the same Graph500
benchmark for native mode. In this experiment, each node is running 16 Xeon Phi
processes, and the total number of processes varies from 128 to 1,024. We present
the BFS kernel time in Fig. 8(c). We can see that the proposed design performs
better than MV2-Def at all system scales. MV2-Proposed performs better than
MV2-Def because of two reasons: (1) The low latency and high bandwidth SCIF
channel benefits intra-node large message sizes. (2) Our proposed two-step based
design benefits inter-node data transfers. One thing we noticed was that the
execution time increases with the increase in system size. This could mean that
the Graph500 has some scalability limitations on native mode.

5 Related Work

Many researchers have explored different ways to utilize computing power of
Xeon Phi. Currently, most explorations have tried to make use of the architec-
ture’s offload mode of computation [7]. Larry Meadow’s work investigates the
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performance of WRF on the Xeon Phi using symmetric mode of computation
and shows significant speedup [8]. MPICH-3.1 also has supports for MIC archi-
tecture using shared memory, TCP/IP, and SCIF based communication [11].
Direct communication between MIC accelerators across nodes is supported by
DCFA-MPI [14] and Intel MPI [3]. Potluri et al. address efficient communication
between processes within a single node or across different nodes for MPI two-
sided communications [13]. Luo et al. [10] present studies supporting UPC on
MIC architecture. Gerstenberger et al. have shown their work of implementing
MPI-3 One-sided interface over RDMA networks with buffer-less protocols [6].
However, our work differentiates from previous work in that we propose truly
one-sided and high-performance designs for MPI-3 RMA for symmetric and
many-core hosted mode over InfiniBand networks.

6 Conclusion

In this work, we propose truly one-sided and high-performance designs for MPI-
3 RMA on Intel Xeon Phi clusters. We present our designs for the window
creation, communication and synchronization routines in MPI-3 RMA. We take
advantage of Intel’s low level communication API, SCIF, in addition to the
standard communication channels like shared memory and IB verbs to efficiently
support all possible data movement paths in the Native/Symmetric mode. Our
proposed designs improve the point-to-point latency of intra-node and inter-node
Xeon Phi to Xeon Phi uni-directional MPI Put and MPI Get by 5X compared
to an out-of-the-box version of MVAPICH2-MIC. We also evaluate our designs
with a SPLASH LU application kernel and MPI-3 RMA based Graph500. The
MPI RMA based SPLASH LU benchmark indicates a reduction of 24 % at 128
processes with the native mode. The Graph500 benchmark shows improvements
of up to 25 % improvement with 1,024 processes. As part of our future work,
we plan to re-design MPI applications with MPI-3 RMA over Xeon Phi and
evaluate the impact of our designs on a broader range of applications.
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Abstract. Convolutional neural networks (CNNs) are one of the most
successful deep architectures in machine learning. While they achieve
superior recognition rate, the intensive computation of CNNs limits their
applicability. In this paper, we propose a method based on separable fil-
ters to reduce the computational cost. By using Singular Value Decom-
positions (SVDs), a 2D filter in the CNNs can be approximated by the
product of two 1D filters, and the 2D convolution can be computed via
two consecutive 1D convolutions. We implemented a batched SVD rou-
tine on GPUs that can compute the SVD of multiple small matrices
simultaneously, and three convolution methods using different memory
spaces according to the filter size. Comparing to the state-of-art GPU
implementations of CNNs, experimental results show that our methods
can achieve up to 2.66 times speedup in the forward pass and up to 2.35
times speedup in the backward pass.

Keywords: Convolutional neural networks · Deep learning · Graphic
processing units · Separable filters

1 Introduction

Deep learning has gained popularity recently in machine learning owing to its
great recognition ability. The success of deep learning lies in its hierarchical
features composition, which constructs features hierarchically from low levels to
higher ones. By which, one can obtain more useful features for learning than
that of “shallow learning”. Architectures or models that utilize this concept are
called deep architectures.

Among various deep architectures, convolutional neural networks (CNNs),
proposed by LeCun et al. [16], achieve superior recognition ability, especially
for images [26]. CNNs exploit the idea of hierarchical features composition by
a sequence of convolutions and pooling operations, followed by classification
operations such as logistic regressions [16,26] or SVMs [20,24]. Many industrial
applications were built based on CNNs, for example, the face recognition systems
of Google and Facebook [15,23], and the search engine of Baidu [10].

c© Springer-Verlag Berlin Heidelberg 2015
J.L. Träff et al. (Eds.): Euro-Par 2015, LNCS 9233, pp. 638–649, 2015.
DOI: 10.1007/978-3-662-48096-0 49
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One drawback of CNNs is their high computational cost. There are some
approaches to accelerate the training speed. Glorot et al. used a biologically
plausible activation function called rectified linear unit (ReLU), which converges
faster than the commonly used sigmoid logistic and tanh activation functions [8].
Mamalet et al. proposed a method to combine the convolutions with the average
pooling operations which leads to 1.6× speedup [18]. Mathieu et al. performed
convolutions in Fourier domain through FFTs and achieve 3× speedup [19].
Cuda-convnet and Caffe drastically shortened the training time by using well-
optimized GPU codes [1,13].

In this paper, we propose a method based on the separable filters to improve
the performance convolution calculation on GPU. If a 2D filter is a rank 1 matrix
of dimension p×q, it can be decomposed into a product of two 1D filters [22], and
the computation cost is decreased by a factor of (pq/(p+ q)) theoretically. Many
works have utilized this idea to accelerate the performance of CNNs, such as
[5,12,17,21,25]. However, how to implement separable filters on GPU for better
performance is still under investigation.

The implementation of separated filters on GPU requires two kernels. One is
to decompose the separated filters and the other is to compute two 1D convolu-
tions consecutively. We used singular value decomposition (SVD) to obtain the
approximation and implemented a batched SVD kernel. For the computation
of convolutions, we designed three implementations that use different memory
spaces. The performance of those methods are varied for different filter sizes.

The contributions of this paper are summarized as follows:

– Design and implement batched SVD kernel on GPU.
– Design and implement GPU kernels to compute consecutive 1D filters.
– Analyze the performance and recognition accuracy of CNNs using approxi-

mate separable filters.

The rest of this paper is organized as follows. The notation and background
knowledge including the architecture of CNNs in is introduced in Sect. 2. In Sect. 3,
the SVD approximation algorithm and the proposed method are illustrated. In
Sect. 4, the details of our GPU implementations are described. Experiment results
are presented in Sect. 5. In Sect. 6, conclude and future work are given.

2 Background

2.1 Convolutional Neural Networks

Neural networks (NNs) are powerful models for machine learning due to their
capability of learning nonlinear and complex mappings from input data to out-
puts. In [16], convolutional neural networks (CNNs) have been widely applied
to image processing nowadays. CNNs perform a sequence of convolutions and
pooling operations to extract features, which are then served as the input to
classification operations such as logistic regressions and SVMs.
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The convolution is an important operation in image processing field, which
can be used to detect edges, to blur images, to sharpen details, etc. The con-
volution of two matrices X ∈ R

m×n and F ∈ R
p×q is Y = X ⊗ F , where X is

called the input and F is called the filter.
After convolutions, the pooling layer takes place. It summarizes a small subset

of the input by taking their maximum or average. The outputs of the pooling
layer are the features invariant to shifts because the same results will always be
obtained no matter where the specific values are located in the pooling region.

CNNs construct deep architectures by stacking multiple stages, each of which
consists of one convolutional layer and one pooling layer. There is an additional
classification layer in the final stage, and the nonlinear activation functions are
usually applied element-wisely between two stages [4].

2.2 Separable Filters

A 2D filter is separable if it can be expressed as an outer product of two vectors,
so that a 2D convolution operation is equal to the combination of two 1D con-
volutions. The following proof is based on [22]. Let Y and X be m × n matrices
and F be a p × q filter. By the definition of 2D convolution:

Y = X ⊗ F,

yi,j =

p
2∑

k=− p
2

q
2∑

l=− q
2

xi+k,j+l · fk,l, (1)

where xi,j = 0 for i < 0, i ≥ m and j < 0, j ≥ n.
Suppose an p × q matrix F = uvT , where u and v are vectors of length p

and q respectively. The element fk,l in F can be expressed as

fk,l = uk · vl. (2)

By substituting (2) into (1) we can get:

yi,j =

p
2∑

k=− p
2

q
2∑

l=− q
2

xi+k,j+l · fk,l =

p
2∑

k=− p
2

q
2∑

l=− q
2

xi+k,j+l · uk · vl

=

p
2∑

k=− p
2

⎛

⎝

q
2∑

l=− q
2

xi+k,j+l · vl

⎞

⎠

︸ ︷︷ ︸
1D convolution with X and v

·uk. (3)

Equation (3) first convolves X with v, and then convolves again with u. This
equals to perform two 1D convolutions.
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2.3 Singular Value Decomposition

In linear algebra, the singular value decomposition (SVD) is a decomposition of
a matrix having the form:

A = UΣV T (4)

where A is an m × n matrix and m ≥ n, U is an m × m orthogonal matrix, V is
an n × n orthogonal matrix, and Σ is an m × n diagonal matrix. The diagonal
elements of Σ are called singular values and are sorted in the descending order.
If A has rank r, the tailing (n − r) entries are zeros. The m columns of U are
the left singular vectors while the n columns of V are the right singular vectors.

The SVD can be used to obtain the low rank matrix approximation. Let Σk

be a diagonal matrix that keeps the first k entries and zeros out the last (r − k)
entries in Σ. By multiplying Σk with U and V , we obtain a truncated matrix
Ak = UΣkV T . Let B be any matrix with rank k. It can be shown that

‖A − Ak‖F ≤ ‖A − B‖F ,

where ‖·‖F denotes Frobenius norm of matrices. This shows that the error
between A and Ak is smaller than the error between A and any other matrix B
with rank k [6].

Alternatively, the SVD can be viewed as a weighted sum of rank 1 matrices.
Let ui and vi be the i-th column of U and V respectively, and σi be the i-th entry
along the diagonal of Σ. Equation (4) can be rewritten as A =

∑r
i=1 σiuiv

T
i .

3 Algorithms

3.1 Filters Approximated by SVD

A 2D filter is separable into two 1D filters if it is a rank 1 matrix. But most
2D filters in CNNs are unlikely to be rank 1. As a result, we use the SVD
decomposition to generate rank 1 matrices to approximate the filters, which is the
well-known problem low rank matrix approximation. The common approaches to
solve SVD are the Jacobi Algorithm and the Golub Kahan Algorithm [9], which
are implemented in many LAPACK libraries [3,7]. Since we only interest in
the rank 1 matrix approximation, the Power Method is used to decompose the
matrix [9].

The power method is used to find the largest eigenvalue in magnitude and the
corresponding eigenvector of a matrix. The power method performs refinements
iteratively to approximate the largest eigenvalue in magnitude. The convergence
rate is

∣
∣
∣λ1
λ0

∣
∣
∣, where λ0 and λ1 are the largest and the second largest eigenvalues

in magnitude [9].
Let F be a p × p filter (assume all filters in CNNs are square.), and be

decomposed into F = UΣV T . By pre-multiplying FT to F , we obtain FT F =
V Σ2V T , which can be applied through the power method to find the largest
eigenvalue λ0 and the corresponding eigenvector v0, i.e. the singular value σ0 =√

λ0, and the right singular vector. The left singular vector u0 can be obtained
by u0 = 1

σ0
Fv0. The algorithm is provided in Algorithms 1 and 2.
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Algorithm 1. The Power Method
Input: Matrix A
Output: The largest eigenvalue in magnitude λ and the corresponding eigenvector v

of A
1: Randomly initialize a vector b0 such that ‖b0‖ = 1
2: k = 0
3: repeat
4: k = k + 1
5: uk = Abk−1

6: bk = uk/ ‖uk‖
7: until convergence
8: v = bk

9: λ = bT
k Abk

10: return λ and v

Algorithm 2. Rank 1 Filter Approximation
Input: Filter F
Output: The largest singular value in magnitude σ and the right and the left singular

vector v and u of F
1: B = F T F
2: Compute Power Method: [λ, v] = PowerMethod(B)
3: σ =

√
λ

4: u = 1
σ
Fv

5: return σ, v and u

3.2 CNNs Training Based on Separable Filters

The standard backpropagation algorithm consists of a forward pass and a back-
ward pass. In the forward pass, it approximates 2D filters by two 1D filters
as shown in Algorithm 2, and performs two 1D convolutions. In the backward
pass, it reuses computed 1D filters to perform two 1D convolutions as well. The
approximations are computed once in one batch (or mini-batch) iteration, and
it is computed again when the filters (parameters) are updated.

To apply rotations to 1D filters, we have to flip the row filters in left/right
direction and flip the column filters in up/down direction.

4 GPU Implementations

This section presents the GPU implementations based on cuda-convnet. Two
major kernels are focused: batched SVDs and separable convolutions.

4.1 Batched SVDs

There are many GPU accelerated LAPACK libraries, such as CULA [11] and
MAGMA [2], capable of computing SVDs. However, they are designed to parallelize
over one problem with rather large size (more than 1000 × 1000). What needed
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in CNN is to solve many (several hundreds) but small (usually less than 15 × 15)
SVDs simultaneously. Furthermore, we only need the largest singular value and the
corresponding singular vectors. Other libraries do not meet those requirements.

We implemented the batched SVDs based on Algorithm2 and assign each
SVD problem to one block in the GPU. Some considerations relating to perfor-
mance are addressed. First, there are several matrix-matrix and matrix-vector
multiplications involved. Their data can be completely stored in the shared
memory for fast computation because of their small dimensions. Second, in
Algorithm 1, the number of iterations required for convergence are different
among filters. It is unsatisfied that we have to wait for a few of the SVDs to
converge while most of them are already finished. Therefore, in addition to the
termination criterion stated in Algorithm1, we set an upper limit for the num-
ber of iterations which stops the SVD computations no matter whether they are
converged or not.

Third, the initialization of the vector b0 in Algorithm 1 is an important fac-
tor for the convergence. A vector that is close to the eigenvector requires less
iterations than those of a vector that is far from it. We can initialize b0 to be
the eigenvector in the previous batch iteration for fast convergence, since the
eigenvector in this batch iteration is more close to that in the previous batch
iteration than to a random vector.

4.2 Separable Convolutions

We implemented the separable convolutions by the tiling algorithm which pro-
ceeds as follows.

1. Divide the input into several small tiles to fit each of them into the fast but
small memory.

2. Perform the convolutions in parallel.
3. Store the results to the destinations (the slow memory).

In the step 1, in addition to loading input data within the tile region, we have
to load the “halo region” of the half of the filter size outside of the tile region.
As can be seen in Fig. 1, the larger the filter size, the more the number of
memory accesses are required. Therefore, we have implemented three versions
which utilize different memory spaces according to their filter sizes: register-
based method, one-pass method, and two-pass method.

Fig. 1. An example illustrating the tile and the halo region.
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Register-Based Method. For small filter, it is possible to load the whole data
(the tile and the halo region) into the register file, which is the fastest but least
memory and is only private to its thread. We load all data into the register file
and let every thread perform convolutions in parallel. Because the register file
cannot be indexed dynamically at runtime, we hardcode the filter sizes by using
C++ templates, which allow the same code to be compiled for different sizes
according to compile-time parameters. Below shows the partial code:

template<unsigned int filterSize> __global__ void conv(...)
...
if (filterSize>=3) ...//will be evaluated at compile time.

One-Pass Method. For larger filters, the whole data cannot fit into the register
file and will cause the exceeding data be spilled into the slow memory. Thus, the
one-pass method loads the data into the shared memory in which the data can
be shared among the block. This method proceeds as follows.

1. Load all data into the shared memory.
2. Perform the first convolutions in parallel.
3. Store the intermediate results to the shared memory.
4. Wait until all threads are finished.
5. Perform the second convolutions with the intermediate results.
6. Store the final results to the destinations.

The above steps are similar to that of the register-based method. The major
difference is the synchronization in the step 4. It has to wait all intermediate
results are correctly stored in the shared memory because they are required for
the second convolutions.

Two-Pass Method. In the one-pass method, a larger filter implies a larger
halo region, which accounts for more memory accesses and the operation counts.
The two-pass method solves this problem by breaking the computation in the
one-pass method into two independent computations, which are

1. Computation 1:
(a) Load data into the shared memory.
(b) Perform the first convolutions in parallel.
(c) Store the intermediate results to the slow memory.

2. Computation 2:
(a) Load the intermediate results into the shared memory.
(b) Perform the second convolutions in parallel.
(c) Store the final results to the destinations.

The two computations are identical except that they take different input data.
There is no explicit synchronization between the two computations and an addi-
tional memory is required to store the intermediate results. Figure 2 illustrates
one-pass method and two-pass method pictorially.
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(a) one-pass method (b) two-pass method

Fig. 2. Comparison of one-pass method and two-pass method.

Comparison of Three Implementations. Let the size of tile be m × m and
the size of filter be p × p. Table 1 compares the number of memory accesses and
operation counts of three implementations of separable filter and the traditional
2D convolution.

Table 1. Comparison of memory accesses and operation counts of three implementa-
tions of separable filters and traditional 2D convolution.

Method Memory access Operation count

Register-based (m + p)2 + m2 2m2p + mp2

One-pass (m + p)2 + m2 2m2p + mp2

Two-pass 2(m(m + p) + m2) 2m2p

2D Convolution (m + p)2 + m2 m2p2

5 Experiments

This section reports the evaluation results of the speed and the recognition accu-
racy for the proposed methods. All experiments were performed on the NVIDIA
Tesla K20m GPU which has 5 GB memory and 2496 cores. Computation time
is measured in milliseconds.

5.1 Evaluation of SVD Approximations

We report the computation time of our method by performing 1024 SVDs for
different matrix sizes. We have set the relative error to be 10−6 and the max
number of iterations to be to 100. As can be seen in Table 2, there are less than
20 % of the SVDs not converged under the limit. Without this limit, the compu-
tation time was increased because some SVDs required thousands of iterations
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to converge. The computation time can be further reduced by using the eigen-
vector in the previous batch iterations as the initial vector. This reduced the
computation time by 27 % ∼ 77 % as the size increases.

Table 2. Average number of iterations of batched SVD.

Filter Initial With Unconv. No. Total Reduced

size vector limit SVDs Iter. time time[%]

3 Random No 0 17.74 0.15

Random Yes 8 (0.77 %) 16.52 0.15 0 %

Previous Yes 0 7.74 0.11 27 %

7 Random No 0 41.26 0.49

Random Yes 56 (5.44 %) 39.08 0.36 27 %

Previous Yes 1 (0.02 %) 9.14 0.18 63 %

11 Random No 0 62.85 0.86

Random Yes 127 (12.37 %) 52.72 0.57 34 %

Previous Yes 25 (2.46 %) 10.89 0.23 73 %

15 Random No 0 83.68 1.33

Random Yes 204 (19.86 %) 62.22 0.91 32 %

Previous Yes 48 (4.63 %) 11.56 0.31 77 %

5.2 Evaluation of CNNs

We first compared the speed of our method with the original cuda-convnet and
then compared the recognition accuracy.

Evaluation of Speed. The speed of the three implementations are compared
with various filter sizes. For all experiments, we used 64 feature maps for both
of the input and output. These settings are typical configurations in CNNs. The
tile size is 16 × 16, which means each feature map has 16 tiles.

Figure 3 shows the computation time for the forward pass. For small filter
sizes (less than 5), the register-based method is the fastest, but it slows down
rapidly as the filter size increases. For the one-pass and the two-pass method, the
computation time is increased more smoothly comparing to the register-based
method. They are faster when the filter size is larger than 7. But overall, the
separated filters methods are faster than cuda-convnet, which implements 2D
convolutions. For the forward pass, the speedup is up to 2.66 times; and for the
backward pass, the speedup is up to 2.35 times.

Evaluation of Recognition Accuracy. We evaluated the proposed method
for image classification with the CIFAR-10 dataset [14]. CIFAR-10 consists of
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Fig. 3. Speed of the forward pass comparison with respect to the filter size.

60000 32 × 32 color images in 10 classes, with 6000 images per class. There are
50000 training images and 10000 testing images. The 10 classes are airplane,
automobile, bird, cat, deer, dog, frog, horse, ship, and truck.

We construct two CNNs with different architectures. The first architecture
(layers-18pct.cfg) consists of 3 convolutional layers, each of which followed by
a pooling layer, and a logistic regression layer. All of the convolutional layers
have filter size 5, and the input and output feature maps are 3 and 32, 32
and 32, 32 and 64 for the first, the second, and the third convolutional layer.
The second architecture (layers-conv-local-11pct.cfg) consists of 4 convolutional
layers, 2 pooling layers followed by the first 2 convolutional layers, and a logistic
regression layer. The first 2 convolutional layers have filter size 5 and the last
convolutional layers have filter size 3. The input and output feature maps are 3
and 64, 64 and 64, 64 and 64, 64 and 32 respectively. The experimental results
are shown in the Table 3. Only slight accuracy degradation are observed when
the sparable filter methods are used.

Table 3. Comparison of classification accuracy.

Architecture Implementation Accuracy (%)

3-layer Our Method 81.07

CNN cuda-convnet 81.25

4-layer Our Method 87.42

CNN cuda-convnet 88.71

6 Conclusion

In this paper, we proposed a performance improving method for training CNNs
based on separable filters. First, by using the SVDs, the 2D filters in the
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convolutional layers can be approximated by the product of two 1D filters. Then,
these approximated 1D filters were used to perform two 1D convolutions, which
reduces the computation cost. We presented a batched SVDs that can compute
multiple small matrices simultaneously, and three methods which used different
memory spaces according to the filter size. For small filter sizes, it was possible to
load the entire data into the register file to efficiently compute the convolutions.
For large filter sizes, we used the tiled algorithm to compute the convolutions
in the shared memory. Our method achieved 1.38× ∼ 2.66× speedup in the
forward and the backward pass. The overall training time could be reduced by
13 % with 1 % drop in the recognition accuracy.

Table 4. Percentage of the largest singular value in all singular values.

Filter size 3 5 7 9 11 13
σ1∑n
i=1 σi

60% 42 % 31 % 24% 20 % 18 %

Because only the rank 1 filter approximations are used in our method, though
a large speedup is achieved,the error also becomes large as the filter size increases.
Table 4 shows the percentage of the largest singular values in the summation of
all singular values for different filter sizes. In the future work, we will explore the
higher rank filter approximation which can reduce the computation cost while
sustain the recognition accuracy. One direction will be the use of multi-GPU in
which multiple rank 1 filters are computed to form the full rank filters. Another
direction is to combine the FFT method in [19] with our method.
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Abstract. Sparse triangular solvers are typically parallelized using
level-scheduling techniques, but parallel efficiency is poor on high-
throughput architectures like GPUs. We propose using an iterative app-
roach for solving sparse triangular systems when an approximation is
suitable. This approach will not work for all problems, but can be suc-
cessful for sparse triangular matrices arising from incomplete factoriza-
tions, where an approximate solution is acceptable. We demonstrate the
performance gains that this approach can have on GPUs in the context
of solving sparse linear systems with a preconditioned Krylov subspace
method. We also illustrate the effect of using asynchronous iterations.

1 Introduction

Solves with sparse triangular matrices are difficult to parallelize efficiently, due
to the often irregular structure of sparse matrices and the sequential nature of
forward and backward substitution. The most common way to parallelize sparse
triangular solves is to use a “level scheduling” technique [22]. A “level” consists
of the unknowns that can be computed in parallel, given the dependency graph
implied by the sparse matrix. The levels are processed in sequence until all the
unknowns are computed. Depending on the sparse matrix, there may be a very
large number of levels or not enough work within a level to efficiently utilize
highly parallel architectures such as graphics processing units (GPUs).

In this paper, we investigate the approach of using an iterative method to
solve sparse triangular systems. It is unconventional to apply iterative methods
to triangular systems because such systems can be solved directly. However, due
to high efficiency sparse-matrix vector product codes that have been vigorously
developed in recent years, including on GPUs, iterations with sparse triangu-
lar matrices can be very fast compared to forward and backward substitution.
In this paper, we use the Jacobi iterative method, although nonstationary meth-
ods and polynomial methods can also be used. Because triangular matrices are
non-normal, the Jacobi method may diverge and cause overflow before converg-
ing, depending on the degree of non-normality of the matrix. However, for many
types of sparse triangular matrices, such as the triangular parts of matrices
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from discretizations of partial differential equations, and from incomplete fac-
torizations of these matrices, the triangular matrices have a degree of diagonal
dominance that can avoid divergence of the Jacobi iterations. Thus, although
Jacobi iterations will not work for all matrices, there are large, useful classes of
matrices for which Jacobi iterations can be a viable approach for solving sparse
triangular systems.

The iterative approach taken here is particularly applicable and competitive
when only an approximate solution is sought, meaning, only a small number of
Jacobi iterations are necessary. This is the situation when the triangular solves
are used in preconditioned Krylov subspace methods for solving linear systems.
Here, the triangular matrices themselves, such as from incomplete factorizations,
are only approximations and approximate solves are acceptable when applying
the preconditioner. By using approximate solves, the total number of iterations
of the Krylov subspace method may be larger than when exact solves are used,
but the total execution time may be much smaller.

We investigate the use of Jacobi iterations (also called sweeps in this paper)
and a “block-asynchronous” variant to apply an incomplete LU (ILU) factoriza-
tion preconditioner. The asynchronous variant does not synchronize the updates
of variables within each sweep and may have improved convergence rate and
execution time. When a fixed number of synchronous Jacobi sweeps are used,
the operator is fixed, and standard Krylov subspace methods may be used. For
the asynchronous variant, the operator is not fixed and therefore we use a flex-
ible method, in particular, flexible GMRES (F-GMRES) [21] which we have
implemented in the MAGMA [13] library for GPUs.

The acceleration of sparse triangular solves is the subject of much current
research, e.g., [19], but almost all this research is based on the level scheduling
idea [2,12,23]. Efficient implementations on state-of-the-art hardware still pose a
challenge [14,15,26]. Another approach to parallelizing sparse triangular solves
is to use partitioned inverses [1,20]. Here, a triangular matrix is written as a
product of sparse triangular factors; each triangular solve is then a sequence of
sparse matrix vector multiplications. The use of a sparse approximate inverse for
a triangular matrix has been considered in [10,24], as well as the idea of approxi-
mating the inverse ILU factors via a truncated Neumann series [24,25]. The latter
is similar to the idea of using Jacobi sweeps presented in this paper. The use
of Jacobi sweeps for for sparse triangular solves was recommended in [6] for the
Intel MIC architecture. Asynchronous iterations for these sweeps were not con-
sidered. The potential of replacing synchronous Jacobi with block-asynchronous
Jacobi for more efficient use of the GPU hardware was investigated in [3] and
applied to smoothers for geometric multigrid methods in [4].

This paper is organized as follows. Section 2 first provides some background
and Sect. 3 gives details about the actual implementations for the methods
we use for the experimental part (Sect. 4) in this paper. Section 4.1 describes
our test environment, in Sect. 4.2 we compare the convergence of classical
Jacobi and a block-asynchronous version when solving sparse triangular systems.
For the latter, we investigate the effect of scheduling the GPU thread blocks
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consistently with the data dependency order in the triangular factors. We also
compare the execution time with level-scheduling triangular solves. In Sect. 4.3
we investigate the impact of approximate triangular solves when used in precon-
ditioned F-GMRES(50). We conclude in Sect. 5.

2 Background

2.1 Jacobi Method and Asynchronous Iteration

Classical relaxation methods like Jacobi or Gauss-Seidel are defined using a spe-
cific update order of the vector components and imply synchronization between
the distinct iterations. The number of components that can be computed in
parallel in an iteration depends on whether the update of a component uses
only information from the previous iteration (Jacobi type) or also information
from the current iteration (Gauss-Seidel type). Using newer information gener-
ally results in faster convergence. This however comes at the price of reduced
parallelism: Gauss-Seidel is inherently sequential and requires a strict update
order; for Jacobi, all components are updated simultaneously within one itera-
tion. Asynchronous relaxation methods do not obey any update order. Instead
they iterate the components in a nondeterministic fashion, always using the
newest available values of the other components. The implied fine-grained par-
allelism and the lack of synchronization makes asynchronous methods attractive
for GPUs, which themselves operate in an asynchronous-like fashion. At the same
time, asynchronous iteration methods require the target matrix to have stronger
properties to ensure convergence. For the asynchronous relaxation suitable for
linear systems, a sufficient condition for convergence is given if the spectral radius
of the positive iteration matrix, ρ(|M |), is smaller than unity [11]. If this conver-
gence condition is fulfilled, a block-asynchronous Jacobi iteration, where subsets
of components are iterated in synchronous fashion and asynchronous updates are
used in-between the subsets, also converges [5]. The Jacobi iteration for solving
Ax = b can be written as

xk+1 = D−1
(
b − (A − D)xk

)

xk+1 = D−1b + Mxk (1)

where D the diagonal part of A [5]. For the triangular systems that arise in
the context of incomplete factorization preconditioning, we denote the iteration
matrices as ML and MU for the lower and upper triangular, respectively. Let
DL and DU be the diagonal parts of the triangular factors L and U , and let I
be the identity matrix. For the diagonal of L being all ones,

ML = D−1
L (DL − L) = I − L, MU = D−1

U (DU − U) = I − D−1
U U. (2)

Hence, ML is strictly lower triangular and MU is strictly upper triangular, which
implies that the spectral radius of both iteration matrices is zero. Therefore,
the asynchronous method converges in the asymptotic sense for any triangular
system [11].
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2.2 Incomplete LU Preconditioning

An ILU factorization is the approximate factorization of a nonsingular sparse
matrix A into the product of a sparse lower triangular matrix L and a sparse
upper triangular matrix U , A ≈ LU , where nonzeros or fill-in are only permitted
in specified locations. The basic algorithm, called ILU(0), approximates the LU
factorization by allowing only nonzero elements in L and U that are nonzero in
A. In this case, the sparsity pattern of L and U matches the sparsity pattern of
the system matrix A. The ILU factorization can also be computed efficiently in
parallel on GPUs using a fine-grained parallel iterative algorithm [6,7].

3 Block-Asynchronous Jacobi on GPUs

If we allow Jacobi to use newer information in the component updates, the
resulting asynchronous iteration can be realized in a single kernel that over-
writes the iteration input vector with the updated values. The algorithm may
be considered as block-asynchronous Jacobi as components handled by the same
GPU thread block are updated simultaneously in Jacobi fashion, but the distinct
thread blocks are executed asynchronously without enforcing a certain update
order. Using newer information from remote components has the potential of
improving the convergence, but carries the danger of degraded convergence if
some components are updated several times in a row without using newer infor-
mation about the other components [5].

The order in which the components are updated depends on the scheduling
of the GPU thread blocks. GPUs use the concept of thread blocks to apply a
kernel operation to data, and typically not all data is processed at the same
time, but some thread blocks are scheduled before others [16]. The components
handled by one GPU thread block are updated in parallel using the newest
available information for the other components. Unfortunately, GPUs generally
do not allow insight or modifications to the thread block execution order. How-
ever, backward-engineering experiments reveal that the thread blocks are usually
scheduled in consecutive increasing order. With Gauss-Seidel converging usually
faster than Jacobi, this motivates us to update the components in dependency
order. For triangular matrices with a small bandwidth, i.e. the triangular factors
arising from the RCM-reordered systems, this effect may be small. For matrix
entries with a distance to the diagonal larger than the thread block size, updat-
ing in dependency order is equivalent to an Gauss-Seidel update, which would
be equivalent to an exact substitution for this matrix component. For the lower
triangular solve, updating the components in dependency order is equivalent to
scheduling the thread blocks in consecutive increasing order. For the upper tri-
angular solve, this scheduling order is against the dependency order, and faster
convergence should be achieved by reversing the scheduling order. We investigate
the effect of the thread block scheduling order in Sect. 4.2.

For classical (synchronous) Jacobi, the thread block scheduling has no
impact, as no new information from the current iterate is used. This however
implies, that the algorithm’s implementation can not be realized in a single
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kernel overwriting the iteration input vector with its output (neglecting the case
of the hardware parallelism being larger than the iteration vector length). Either
separate input/output vectors have to be used, or the Jacobi is realized in two
kernels where the first computes the sparse matrix vector product and the second
performs the update.

4 Experimental Results

4.1 Test Environment

The experimental results were obtained using a Tesla K40 GPU (Kepler microar-
chitecture) with a theoretical peak performance of 1,682 GFlop/s (double pre-
cision). The 12 GB of GPU main memory, accessed at a theoretical bandwidth
of 288 GB/s, was sufficiently large to hold all the matrices and all the vectors
needed in the iteration process. Although all operations are handled by the accel-
erator, we mention for completeness that the host was being an Intel Xeon E5
processor (Sandy Bridge). The implementation of all GPU kernels is realized in
CUDA [16], version 7.0 [18], using a thread block size of 128, NVIDIA’s sparse
matrix vector product was taken from the cuSPARSE library version 7.0 [17].
Double precision computations were used. To account for the non-deterministic
properties of the asynchronous methods, the reported results are averaged over
50 runs.

Nonsymmetric test matrices were selected from the University of Florida
sparse matrix collection (UFMC) [8], and are listed in Table 1. We also included a
test matrix arising from a finite difference discretization of the Laplace operator
in 3D with Dirichlet boundary conditions. A 27-point stencil was used on a
64 × 64 × 64 mesh. Although this latter matrix is symmetric, we treat it as
nonsymmetric in our experimental tests. The sparsity plots for all test matrices
are given in Fig. 1.

Reverse Cuthill-McKee (RCM) ordering is well-known to reduce the matrix
bandwidth and can produce more accurate incomplete factorization precondi-
tioners [9]. Except for the dc test problem where RCM reordering fails to reduce
the bandwidth, we consider all test matrices in RCM ordering (all matrices have
symmetric structure). Note that we do not use multicolor orderings as these typ-
ically degrade the approximation properties of ILU preconditioners [9] although
these orderings can enhance the parallelism for level scheduling.

Table 1. Test matrices.
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chp dc sto ven lap

Fig. 1. Sparsity plots of test matrices listed in Table 1.

4.2 Sparse Triangular Solves

In this section, we report experimental results on convergence and performance
when solving sparse triangular systems with relaxation methods. In these sys-
tems, the right-hand side is the vector of all ones, and the initial guess is the
zero vector. Figures 2 and 3 show results for ILU(0) factors from two very dif-
ferent test problems, lap and dc, respectively. In each figure, the top set of
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Fig. 2. For the lower and upper triangular ILU(0) factors of the lap problem, conver-
gence (left) and runtime (right) of the synchronous Jacobi and the block-asynchronous
Jacobi (averaged results).
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Fig. 3. For the lower and upper triangular ILU(0) factors of the dc problem, conver-
gence (left) and runtime (right) of the synchronous Jacobi and the block-asynchronous
Jacobi (averaged results).

graphs show results for lower triangular solves, and the bottom set of graphs
show results for upper triangular solves.

The results show that the block-asynchronous methods converge faster than
the classical Jacobi methods. In the lower triangular case, forward thread block
ordering gives faster convergence than backward thread block ordering, as pre-
dicted in Sect. 3. The convergence of backward thread block ordering is very
similar to that of classical Jacobi, as the method tends not to use newly com-
puted information within an iteration. The opposite of the above statements is
true for the upper triangular case.

The timing results follow the same trends as the convergence results. We note
that for the dc problem, the timings for the upper triangular solves are much
higher than the timings for the lower triangular solves. This will be explained
at the end of this subsection.

The graphs also show results for a Jacobi implementation based on the sparse
matrix vector product from NVIDIA’s cuSPARSE library [17]. Naturally, the
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Table 2. Runtime comparison [ms] between the exact triangular solve using the cuS-
PARSE level-scheduling implementation and one Jacobi sweep.

Matrix Factor Exact triangular solve Single Jacobi sweep

chp L 7.84 0.10

U 7.07 0.10

dc L 0.62 0.23

U 4.65 26.57

sto L 21.61 0.40

U 24.16 0.37

ven L 17.49 0.23

U 14.81 0.23

lap L 12.13 0.66

U 11.57 0.65

optimization level of this routine is significantly higher than of our CUDA based
implementations. In the end, the cuSPARSE based Jacobi is the overall win-
ner in terms of runtime. However, from comparing the results of synchronous
and block-asynchronous Jacobi, it can be deduced that applying the same level
of optimization to the kernel for block-asynchronous iteration would make it
superior also to the cuSPARSE based Jacobi. In the remainder of the paper we
use the cuSPARSE based Jacobi implementation. There is no “asynchronous”
sparse matrix vector product in cuSPARSE (which would give “approximate”
and nondeterministic results) that we could use to implement a more efficient
block-asynchronous Jacobi kernel.

Table 2 compares the runtime for exact sparse triangular solves from the
NVIDIA cuSPARSE library to the runtime of one single Jacobi sweep. The data
reveals that a Jacobi sweep typically costs a fraction of the total time for an
exact sparse triangular solve using level scheduling (although multiple sweeps
will generally be needed for an approximate solve). Only for the test case dc,
which comes from circuit simulation modeling, one Jacobi sweep on the upper
triangular system is more expensive than the level-scheduling exact solve. The
reason for this is the structure of this matrix: very unbalanced lengths of rows
in the upper triangular part of this matrix (see Fig. 1 for the dc matrix, where
some rows have many more nonzeros than others) causes load imbalance in the
GPU kernels. Performance could be improved by using a load balanced sparse
matrix vector product kernel.

4.3 ILU-Preconditioned FGMRES

Figures 4 and 5 show the impact of replacing the exact triangular solves by
approximate triangular solves in an ILU(0) preconditioned F-GMRES(50) solver.
The left side of these figures relates the number of relaxation sweeps in the
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Fig. 4. F-GMRES(50) convergence (left) and runtime (right) when using either exact
or approximate triangular solves for the test matrices from UFMC.
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Fig. 5. F-GMRES(50) convergence (left) and runtime (right) when using either exact
or approximate triangular solves for the lap test case.

approximate triangular solve to the F-GMRES(50) iteration count. According
to the convergence results on the triangular solves in the previous section, the
block-asynchronous Jacobi algorithm schedules the thread blocks in dependency
order. This is forward thread block scheduling when solving the lower triangular
systems, and backward thread block scheduling when solving the upper trian-
gular systems. In many cases, the faster convergence of the block-asynchronous
Jacobi accounting for the dependency order compared to the synchronous Jacobi
is reflected in the top level solver convergence: e.g., for chp, ven and lap,
the left-hand side plots show that on average, fewer F-GMRES(50) iterations
are required for block-asynchronous Jacobi than for classical Jacobi. The error
bars for block-asynchronous Jacobi indicate one standard deviation above and
below the mean. They reveal that especially when using only few sweeps of
block-asynchronous Jacobi, significant variation in the solver iterations may be
expected. For systems with most entries close to the diagonal, the standard devi-
ation is very small, and the iteration counts are almost identical to those using
synchronous Jacobi. In general, few sweeps of the approximate triangular solve
are sufficient to get the same F-GMRES(50) iteration count like when using
exact triangular solves.

The right-hand side of Fig. 4 (respectively Fig. 5 for the lap problem) relates
the F-GMRES(50) convergence with respect to the runtime. Applying few sweeps
of the relaxation method is usually less expensive than a level-scheduling exact
solve, and can reduce the top-level solver execution time. In particular, the faster
preconditioner application can compensate for a few additional iterations. Except
for the dc problem (Fig. 4), where the sparse matrix vector product suffers from
the unbalanced nonzero distribution, all problems benefit from replacing the
level scheduling triangular solve by an approximate solve in the preconditioner
application. We noticed that synchronous Jacobi usually requires a few addi-
tional F-GMRES(50) iterations. In terms of performance, synchronous Jacobi
still beats block-asynchronous Jacobi. This is due to the performance of the
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cuSPARSE sparse matrix vector kernel that the synchronous Jacobi is based on.
As previously mentioned, the block-asynchronous Jacobi would likely outperform
the synchronous counterpart if it were optimized the same way.

Separate experiments on a consumer card of NVIDIA’s Kepler architecture
(not shown here) revealed that block-asynchronous Jacobi becomes even more
attractive when there is less hardware parallelism. This is due to the fact that
fewer GPU thread blocks can be scheduled simultaneously, resulting in a higher
ratio of Gauss-Seidel-to-Jacobi-type of updates, which improves convergence.

5 Conclusions

We investigated the potential of approximate triangular solves for an
incomplete LU factorization preconditioner on GPU accelerators, replacing the
level-scheduled exact forward and backward substitutions with classical and
block-asynchronous Jacobi iterations allowing for fine-grained parallelism. We
analyzed the trade-off between convergence penalty caused by lower precondi-
tioning accuracy and enhanced parallelism for several test matrices. We have
shown that few sweeps of an iterative method are often sufficient to provide the
same preconditioner quality as the top-level solver. Even if additional iterations
are required by the approximate triangular solve, they are in many cases compen-
sated by faster preconditioner application. Future research will focus on porting
the approximate triangular solve to other hardware architectures, and investi-
gating the potential of faster information propagation by adding local Jacobi
sweeps for cached values for components handled by the same thread block, and
using overlapping iteration blocks.
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Abstract. Heterogeneous computing involves the combined use of
processing elements with different architectures and is widely consid-
ered a prerequisite in the quest for higher performance and lower power
consumption. To support this trend, the OpenMP standard has been
recently augmented with directives that target systems consisting of
general-purpose hosts and accelerator devices that may execute portion
of a unified application code. In this work we present the first implemen-
tation of the OpenMP 4.0 accelerator directives for the Parallella board,
a very popular credit-card sized multicore system consisting of a dual-
core ARM host processor and a distinct 16-core Epiphany co-processor.
We discuss in detail the necessary compiler and runtime infrastructures
of our prototype, both for the host and the co-processor sides.

1 Introduction

Multicore processing units have become the dominant elements of modern com-
puting systems. Personal workstations pack multiple compute cores in a socket,
while high performance supercomputers combine general purpose multicore cpus
with specialized accelerator devices such as gpgpus, dsps and application-
specific fpgas. As a result, modern system architectures present a mix of dif-
ferent processor and memory hierarchies within the same system. At the same
time the building blocks of such heterogeneous computing nodes are designed
for different workload scenarios; multicore cpus perform best in coarse grained
tasks, while accelerators reach their computational potential in large scale data
and fine grained vector processing.

The real challenge is to provide programming models that enable the extrac-
tion of satisfactory performance while also keeping programmer productivity at
high levels in application development. Programming models such as OpenCL
and cuda [10] provide very efficient albeit rather primitive mechanisms for an
application to exploit the hardware capabilities of gpgpus and other devices.
In addition, the heterogeneity of the system architecture leads to heterogeneous
programming styles, requiring different code bases for the host cpu and the
accelerators.
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OpenMP, the de facto standard for shared-memory programming has
been recently augmented with new directives that target arbitrary accelerator
devices [17]. In the spirit of OpenACC [16], OpenMP 4.0 provides a higher level
directive-based approach which allows the offloading of portions of the appli-
cation code onto the processing elements of an attached accelerator, while the
main part executes on the general-purpose host processor. What is important is
that the application blends the host and the device code portions in a unified
and seamless way, even if they refer to distinct address spaces.

The Parallella computer platform [5] is a recent and very popular credit
card-sized multicore computer designed to be energy efficient and deliver high
performance. It is an open source project and its processing power comes from a
dual-core arm cpu and a 16- or 64-core embedded accelerator, named Epiphany.
The accelerator delivers up to 32 gflops (102 gflops, for the 64-core version)
and is based on a 2D-mesh NoC of tiny, high performance, floating-point capable
risc cores with a shared global address space.

In this work we present the design and implementation of an OpenMP
infrastructure for the Parallella board. It is the first OpenMP implementation
for this particular system and also one of few OpenMP 4.0 implementations
in general. We discuss both the compiler transformations and the runtime sys-
tems that provide the necessary support for the host and the device parts. Our
implementation supports concurrent execution of multiple independent kernels.
In addition it allows OpenMP directives within each offloaded kernel, supporting
dynamic parallelism within the Epiphany.

The rest of the paper is organized as follows. In Sect. 1.1 we give an overview
of related work. In Sect. 2 we present background material on the new OpenMP
4.0 device directives and summarize the Parallella board architecture along with
its native programming models. We then describe our prototype implementa-
tion in detail in Sect. 3 while in Sect. 4 we present performance measurements.
Section 5 concludes this work.

1.1 Related Work

Support for OpenMP 4.0 devices is fairly limited yet, both in the compiler side
and the device side. In fact, the only commercial compiler that currently supports
the target construct is the Intel icc compiler and the only device it supports is
the Xeon Phi [12]. Details of the offload procedure in the icc compiler are given
in [15].

Preliminary support for the OpenMP target construct is also available in
the rose compiler. Chunhua et al. [13] discuss their experiences on implementing
a prototype called HOMP on top of the rose compiler, which generates code
for cuda devices.

The GNU C Compiler has very recently added generic target support,
designed to be tailored by device manufacturers, and combined with a runtime
for the Intel Xeon Phi [1] accelerator. Bertolli et al. [7] propose a method to
coordinate threads in an nvidia gpu using a single kernel as opposed to multi-
ple kernels; they also discuss how their methods could be implemented as part of
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the llvm compiler implementation of OpenMP 4.0. Finally, in [14] the authors
present their implementation of OpenMP 4.0 on a TI Keystone II, where they
use the dsp cores as devices to offload code to.

Regarding the Parallella board, higher-level parallel programming models
are lacking. Offloading code to the Epiphany multicore chip is possible mainly
through the native low-level esdk [4] or using OpenCL as provided by the
coprthr sdk [8]. The latter also provides a threading api similar to posix.
Aaberge [3] analyzes the performance of Parallella and compares the two pro-
gramming models, finding that generally the esdk outperforms OpenCL. Finally,
Varghese et al. [6] use the esdk and raw assembly code to benchmark the
Epiphany IV 64-core chip. They assess the effort required to extract good per-
formance while noting the need for familiar, higher-level programming models.

2 Background

2.1 The OpenMP 4.0 Device Model

One of the goals of version 4.0 of the OpenMP API [17] is to provide a state of
the art, platform-agnostic model for heterogeneous parallel programming. The
extensions introduced since the previous version are designed to support multiple
devices (for example accelerators, coprocessors, gpgpus, etc.) without the need
to create separate code bases for each device. The programmer simply marks
portions of the (unified) source code to be offloaded to a particular device; the
details of data and code allocations, mappings and movements are orchestrated
by the compiler. The execution model is a host-centric one: program execution
starts at the host processor (also considered a device) until one of the newly
introduced constructs is met, which may cause the creation of data environment
and the execution of a specified portion of code on a given device. The most
important new directives are the target-related ones which mark the code and
the data that are to be offloaded.

The target directive is used to transfer control flow to a device. The code in
the associated structured block (kernel) is offloaded and executed directly on the
device side, while the host task waits until the kernel finishes its execution. Each
target directive may contain its own data environment which is initialized when
the kernel starts and freed when the kernel ends its execution. In order to avoid
repetitive creation and deletion of data environments, the target data directive
allows the definition of a data environment which persists among successive
kernel executions. Furthermore, the programmer can use the target update
directive between successive kernel offloads to explicitly update the values of
variables which are shared between the host and the device.

The memory for the data environment of a device is regarded as an
autonomous extension of the OpenMP memory model. The data environment
can be manipulated through map clauses within target data and target direc-
tives. These clauses determine how the specified variables are handled within the
data environment. When an alloc map type is used an uninitialized variable is
defined, whereas with a to map type the variable is additionally initialized from
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Fig. 1. The Epiphany mesh in a Parallella-16 board

the value of the corresponding host variable. If variable is mapped as from then
an uninitialized device variable is defined; when the specified directive region
finishes, the value of the device variable is copied back to the original host vari-
able. If no type is specified or the type is tofrom, the variable is considered
mapped as both to and from. Finally, the variables declared within declare
target directives are also allocated in the global scope of the target device, and
their lifetime equals the program execution time.

2.2 Parallella Board Overview

The Parallella-16 board [5] is an 18-core credit card sized computer and comes
with standard peripheral ports such as USB, Ethernet, HDMI, GPIO, etc. The
computational power of the $99 board comes from its two processing modules.
The main (host) processor is a dual-core arm Cortex A9 with 32 KiB L1 cache
per core and 512KiB shared L2 cache, built within a Zynq 7010 or 7020 SoC. The
other is an Epiphany 16-core chip which is used as a co-processor. The board
has 1 GiB of DDR3 RAM, addressable by both the arm cpu and the Epiphany.
The former runs Linux OS and uses virtual addresses while the latter runs no
OS and has a flat, unprotected memory map.

The Epiphany co-processor offers an impressive power efficiency that can
reach up to 70 gflop/Watt, depending on the chip version. Two configurations
of the Epiphany co-processor are currently available: the Epiphany-16 (with 16
cores and a 4 × 4 mesh NoC) and the Epiphany-64 (with 64 cores and an 8 × 8
mesh NoC). Although our discussion here holds for both versions, we refer mostly
to the first one since it is widely available and is what our board contains. This
particular chip is clocked at 600MHz and has a peak performance of approxi-
mately 25 gflops (single-precision) with a maximum power dissipation of less
than 2 Watt.
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The architecture of the Epiphany is designed around a 64×64 mesh intercon-
nect, so (in theory) systems up to 4096 Epiphany cores (ecores) are possible,
by combining 16- and 64-core chips. On the Parallella-16 board, the Epiphany
chip is pinned on a 4× 4 submesh of the virtual 64× 64 mesh whose north-west
coordinates are (32, 8), as shown in Fig. 1. The chip has four eLinks (west, east,
north and south), that may be used to interconnect it with other chips. In the
current version of the Epiphany-16 chip the west eLink is inactive and the east
eLink is connected to the Zynq host. Notice that the mesh NoC actually contains
three separate meshes: the fast cMesh for writing on-chip memory, the xMesh
for off-chip writes and the slowest rMesh for reading remote memory.

Each ecore is a 32-bit superscalar risc processor, capable of performing
single-precision floating point operations, equipped with 32 KiB local scratchpad
memory and two dma engines. All ecores share a 32-bit address space with each
one owning a 1MiB unique addressable slice; the scratchpad memory provides
physically 32KiB of this slice. All memory is available through regular load/store
instructions.

The Zynq, which is connected to the east eLink of the Epiphany, is perceived
as the eastern part of the mesh. Based on the column-first routing scheme of the
NoC, the Zynq can emulate the memory space of the cores in the 52 leftmost
columns of the 64× 64 virtual mesh, giving access to most of the board ram
to the Epiphany. A 32-MiB portion of the system ram is left outside the Linux
virtual memory manager area. From the Epiphany side it corresponds to the 32
cores located in coordinates from (35, 32) to (35, 63). This is designated as shared
memory and is physically addressable by both the arm and the Epiphany.

All common programming tools are available for the arm host processor. For
the Epiphany, the Epiphany Software Development Kit (esdk) is available [4],
which includes a C compiler and runtime libraries for both the host (ehal) and
the Epiphany (elib). A typical C program that utilizes the esdk adheres to
the following pattern: Initially the host executes some initializations and the
sequential part of the application. Next, in order to offload code (kernel) to the
co-processor it (a) initializes the Epiphany, (b) prepares the shared memory with
all the data needed for the computation, (c) forms a workgroup of ecores and
(d) triggers the execution of the kernel. All host-ecore communication occurs
through the shared memory.

3 Implementing OpenMP 4.0 on the Parallella

Our implementation is based on the ompi OpenMP compiler [11]. ompi is a
lightweight OpenMP C infrastructure, composed of a source-to-source compiler
and a flexible, modular runtime system. The input of the compiler consists of
C code annotated with OpenMP pragmas and the output is an intermediate
multithreaded code augmented with calls to the runtime system. A native com-
piler is used to generate the final executable. ompi is an open source project
that adheres to OpenMP V3.1 and targets general purpose SMPs and multicore
platforms.
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3.1 Compiling for the New Device Directives

The compiler has been extended to support the new OpenMP device model.
In particular the input grammar has been modified to accommodate the new
target-related directives. New nodes have been defined for the abstract syntax
tree that represent the user code and new code generation routines have been
introduced to produce the transformed code. The code generation phase now
produces multiple output files, one for each different kernel (i.e. target region),
plus the host code. The later contains the host part of the user program plus
all kernels, since the host may be called to execute any of them, upon various
runtime conditions. The kernel files are compiled using the esdk tools.

When handling a target data directive, the compiler prepares a new data
environment by injecting calls to the runtime system for each variable that
appears in a map clause. The calls depend on the map type; specifically,

– For alloc-mapped variables, memory allocation calls are injected at the start
of the construct block.

– For to-mapped variables, we additionally inject memory copy calls.
– from-mapped variables, are treated as alloc ones with additional calls to copy

their values back to the original variable at the end of the construct block.
– For variables mapped as tofrom, we inject code as if the variable was both a
to- and a from-mapped one.

The above calls are preceded by a runtime call to mark the beginning of a new
data environment; this is needed because the runtime system has to track the
nesting of target/target data constructs for each device so as to activate the
appropriate data environment when offload time comes.

The target construct is more complex because it behaves like a target data
construct while in addition it offloads and executes code on the device by actually
transferring both the code and the data environment to/from the device. For its
transformation outlining is used, in a manner similar to the parallel and task
constructs: the associated construct block is moved to a new function (kernel)
which will serve as the offloaded kernel, with a single argument which points
to the necessary data environment. In its place, a runtime call to offload the
outlined kernel is placed.

Before the actual outlining of the construct takes place, the construct block
is analyzed in order to discover any variables used in the code which were created
outside of the construct (i.e. in parent target data regions). These, combined
with the ones explicitly marked by map clauses, form the complete data environ-
ment of the kernel function. Depending on the type of mapping, variables in the
data environment will be created as local copies of the original variable, initial-
ized or not, or as pointers to the shared memory. Variables already existing in a
parent data environment are replaced by pointers to their storage. For the Paral-
lella, all such variables are stored in the shared memory area. For alloc-mapped
variables we simply create a local variable with the same name within the kernel.
We treat to-mapped variables in the same way we treat firstprivate variables
in a task construct; a snapshot of the original variable is created by allocating
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Fig. 2. Shared memory organization

space in the shared memory which is then initialized from the original variable.
If the variable is of scalar type, a local variable is also defined within the kernel
function and its value is copied from the shared memory in order to optimize
access speed. No local copies are created for array types, due to the very strin-
gent ecore memory budget. The situation is similar for from-mapped variables.
Here however, after the offload returns, the value is copied back from the shared
memory to the original variable. Variables mapped as tofrom as well as vari-
ables which did not appear in any map clause are treated as if they appeared in
a map(to:) clause with the extra copy-back steps of the from-mapped variables.

Finally, the target update directive is replaced by runtime calls to copy
every variable in a from (or to) motion clause from (to) the shared memory to
(from) the original host variable.

3.2 Runtime Architecture

At the host (Zynq) side the runtime system consists of two parts; the first is
a full-fledged OpenMP runtime library, part of the regular ompi infrastructure,
necessary for supporting execution on the two arm cores. The second part pro-
vides additional functionality, which is required for controlling and accessing the
Epiphany device.

The communication between the Zynq and the ecores occurs through the
shared memory portion of the system ram as described earlier. The shared mem-
ory is divided in two sections, see Fig. 2(b). The first section is called Device
Control Data (dcd) area, and it has a fixed size of 4KiB; it is used transpar-
ently by ompi for kernel coordination and manipulation of parallel teams cre-
ated within the Epiphany. The second part is used for storing the kernel data
environments and part of the tasking infrastructure of the Epiphany OpenMP
runtime described later. More specifically, during the preparation for offloading
a kernel, a region is allocated to store the data environment of the kernel. This
contains variables or pointers to variables which appeared in enclosing target or
target data constructs and are not stored in the local memories of the ecores.
An example is shown in Fig. 2(a). Variables X and Y in line 4 are annotated
as tofrom. This causes a copy of each one to be created in the shared memory.
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Fig. 3. Offloading a kernel containing dynamic parallelism

In line 5 the variable k is annotated as to and along with two pointers to X and Y
form the data environment of the kernel. The beginning of the data environment
is stored as a pointer in dcd, and is used by the kernel when starting its execu-
tion. All the above are stored at the higher end of the shared memory, leaving
the lower end available for the programmer (e.g. for storing libraries which do
not fit in the ecore local memories).

In order to be able to control the ecores independently through elib calls,
the initialization phase creates 16 workgroups, one for each of the available
Epiphany’s cores and puts them to the idle state for energy and thermal effi-
ciency. For offloading a kernel, the first idle core is chosen and the precompiled
object file is loaded to it for immediate execution. Because the current version
of ehal does not provide a way for an ecore to notify directly the host for
kernel completion, a special region of the dcd is designated to store special flags
set by the ecores. The dcd infrastructure has a thread-safe design; this allows
multiple host threads to offload multiple independent kernels concurrently onto
the Epiphany.

3.3 OpenMP Within the Epiphany

The ecores do not execute any operating system and there is no provision for
creating and handling dynamic parallelism (e.g. threads) within the Epiphany
chip. In addition, the 32KiB local memory of each ecore is quite limited, unable
to handle sophisticated OpenMP runtime structures in addition to application
data. As such, supporting OpenMP within the device side of the board is non-
trivial.

The creation of a parallel team within an offloaded kernel is depicted graph-
ically in Fig. 3. When a kernel is offloaded to a specific ecore, the core executes
its sequential part until a parallel region is encountered; the core will create a
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new team and become the master of the team. Because only the host can activate
other Epiphany cores, the master core sends a request to the host through the
device control data (dcd) section in shared memory, requesting the activation of
a number of cores. The host-side thread which offloaded the kernel will activate
as many cores as possible to satisfy the master request. A copy of the same kernel
is then offloaded to the newly activated cores. The activated cores begin their
execution by fetching all the appropriate information regarding the parallel team
and its master core from the dcd section in shared memory. Immediately after
that they spin waiting for the master to signal the execution of the parallel code.
Once all required cores have been activated, the master has access to the actual
team size and the coordinates of the team cores. A local flag is then set to release
the team cores and let them execute the parallel region. During the parallel code
execution all synchronization between the cores occurs through their fast local
memories. When the region completes, the cores return to the idle, power saving
state, while the master core informs the host thread about the termination of
the parallel team. The host marks the idling cores as available for future use,
and sends an acknowledgment to the master. The latter continues with the rest
of kernel code.

We note that another, possibly faster, strategy for supporting dynamic par-
allelism would be to have all ecores loaded with the kernel(s) in advance and
spin, waiting for the master to signal them which kernel to execute. However,
this would increase power consumption dramatically and thus we did not pursue
it further.

To support the OpenMP worksharing constructs (single, for, sections),
the infrastructure originally designed for the host was trimmed down to a min-
imum so as to minimize its memory footprint; this is linked and offloaded with
each kernel. The corresponding coordination among the participating ecores
utilizes the structures stored in the local memory of the team’s master core. This
is possible because an ecore can access any address in the Epiphany address
space. In particular, while an ecore may access its own scratchpad memory
using local addresses (which range from 016 to 7FFF16), its memory can also be
globally accessed by all cores using its row and column coordinates: if r and c
are the row and the column of a core, the start of its scratchpad memory is at
address r × 400000016 + c× 10000016. The mesh coordinates of the master core
are available to all team cores through the dcd area in shared memory.

The esdk libraries for the Epiphany provide mechanisms for locks and bar-
riers between the ecores. Their implementation is highly optimized to exploit
the fast cMesh subnetwork as much as possible. Because they assume that the
synchronized cores belong to the same workgroup, we modified them in order to
adhere with our multiple cooperating workgroup organization. Additionally the
barrier was augmented with task execution extensions. Our prototype tasking
infrastructure is based on a blocking shared queue stored in the local memory
of the master ecore. The corresponding task data environments are stored in
the shared memory.
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Table 1. Size of empty kernel
(bytes)

Scenario ompi esdk

1 kernel 7092 2232

16-core team 10560 3084

Fig. 4. Overhead results of EPCC benchmark

4 Measurements

We have conducted a number of tests in order to measure the efficiency of
our offloading mechanisms alongside the space and timing performance of the
OpenMP runtime within the Epiphany accelerator. Our board is the Parallella-
16 SKUA101020 and we use esdk 5.13.9.10. The system runs Ubuntu 14.04 with
kernel 3.12.0 armv7l GNU/Linux. gcc and e-gcc v.4.8.2 were used as back-end
compilers for ompi.

4.1 Memory Footprint

To examine the memory overhead of our Epiphany runtime, which gets linked
with each offloaded kernel, we created a set of simple OpenMP programs. The
kernels were compiled with “-O3 -funroll-loops” flags and we used the e-size tool
of the esdk to examine the produced elf object files. The results are shown in
Table 1. In the first scenario, one effectively empty kernel is offloaded, containing
only a single assignment. It can be seen that ompi incures a 4.5KiB overhead
as compared to an identical kernel created using the native elib. Examining
the elf, it is seen that our runtime requires approximately 1KiB more for its
internal data and another 3.5KiB for its runtime routines. In the second scenario
we create a team of 16 cores running the previous trivial kernel; for ompi this
is accomplished through a parallel directive while for the esdk program we
create a workgroup of 16 cores which are synchronized using a barrier. While the
data section remains constant, the additional offloaded runtime routines cause
an increase in the text section; approximately 7KiB more than the corresponding
native kernel are required. Additional functionality is offloaded if the kernel con-
tains worksharing constructs and this accounts for another 3KiB approximately.
All in all, ompi was found to require 4–10KiB more than a similarly structured
esdk-based kernel. While this is certainly non-negligible, we note that (a) our
prototype has not been optimized yet, (b) some portions could be moved to
shared memory as a tradeoff between local memory space and speed and (c) the
programmability gains are rather significant.
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4.2 Overheads

The epcc micro-benchmarks suite [9] is widely used to measure OpenMP con-
struct overheads for a particular implementation. In order to measure ompi over-
heads within the Epiphany, we created a modified version of the benchmarks.
Their basic routines are offloaded through target directives and executed as ker-
nels without further modifications. Measurements are taken from the host side,
after subtracting any offloading costs. In Fig. 4 we present a sample of the results
regarding the overheads of parallel, for, single and barrier constructs. The
results are quite satisfactory, in all but the parallel construct. This is explained
in part, because as described in Sect. 3.2, the formation of a dynamic team of
cores incurs significant host-device communication, which includes additional
kernel offloads. However, it should be stressed that offloading even an empty
kernel has an overhead of at least 0.1 s, needed for resetting the core(s) that will
execute it. Eliminating this cost, would require keeping all ecores active all the
time, sacrificing power efficiency.

4.3 Mandelbrot Application

We tested ompi using a simple version of the Mandelbrot deep zoom application
which calculates a Mandelbrot set and zooms in and out up to 10500× at six
predefined points. The whole frame by frame image is written directly to the
frame buffer of the Parallella board (with a resolution of 1024 × 768), resulting
in an impressive colorful video. The full traversal generates 204 frames per zoom
point. The code for this application is one of the examples included with the
esdk in order to exhibit the real time performance possibilities of the Epiphany
chip. Initially a host thread activates all 16 cores to execute the computation
kernel. The kernel itself distributes the work statically among the cores; each
core calculates the colors for a region of the image and writes the values to the
frame buffer. At the end of each frame, all cores inform the host thread and wait
to be synchronized. When all cores finish their caculations for the particular
frame the host signals them to continue with the next one.

In order to utilize OpenMP, we unified the host and Epiphany code in a single
file, moving the kernel code into a target region. Next, we removed all calls to
esdk and replaced them with OpenMP pragmas, and finally we removed the
synchronization code, since this functionality is now carried out by a barrier.
The generated kernel size was 11794 bytes; the original kernel was 4728 bytes,
in comparison. The execution results are shown in Table 2. We give the total
number of frames and the frame rate (i.e. the total number of frames divided by
the execution time) for the original application and the OpenMP-based version.
For comparison we also provide results of the application when the Zynq is used
as the device that executes the kernels. In any given column, the differences
between the frame rates is natural because of the variability of pixel calculations
(darker pixels incur fewer computations).

As it can be easily seen, the original esdk application performs from 8 %
to 13 % better than the OpenMP-based one. We consider this as a very small
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Table 2. Frames per second for the Mandelbrot deep zoom application (1024 × 768)

#frames esdk@Epiphany ompi@Epiphany ompi@Zynq

204 17.854 15.829 4.139

408 15.250 13.630 3.469

612 13.411 12.292 3.015

816 12.528 11.632 2.794

1020 13.330 12.304 2.997

1224 14.486 13.234 3.288

difference, given that our prototype is not yet highly optimized. Moreover, the
OpenMP version, without any further modifications resulted in a total of 198
program lines, while the original required 301 lines of code. What is more impor-
tant is that the programmability gains are huge. We achieved on average 90 %
of the performance of the original application with a mere 5 OpenMP pragmas.
Finally, notice that the Epiphany achieves up to 4× more frames per second as
compared to the Zynq.

5 Conclusion and Future Work

We presented the design of the first OpenMP 4.0 infrastructure for the Parallella
board. Our system treats the Epiphany-16 as an accelerator device, attached to a
dual-core arm host processor and allows the dynamic creation of parallel teams
within the device itself. While not highly optimized yet, our prototype is able to
support OpenMP 4.0 applications delivering performance up to 92 % of hand-
written low-level esdk code as observed for a particular application.

Currently, our prototype has a number of limitations which have to do with
the handling of OpenMP internal control variables (icvs) which are mostly lack-
ing for the Epiphany. Another limitation is the lack of sophisticated management
for the shared memory in the host runtime. The memory segments defined for
kernel and tasking data environments are relinquished in the order they were
allocated, which may cause unnecessary fragmentation. We are currently work-
ing on an improved allocator.

Our future work is concentrated mostly on two areas; first, optimize the cur-
rent implementation and second, implement additional OpenMP functionality.
For the former, we are working on minimizing both the memory footprint of the
device runtime as well as its overheads for the OpenMP constructs. For the lat-
ter, our next target is the support of the new teams and distribute directives,
which create a given number of thread teams within the accelerator, and divide
loop iterations among them.

Acknowledgment. The authors would like to thank Adapteva for providing them
with a Parallella-16 board through the Parallella University Program.
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Abstract. We introduce a systematic analysis in order to fuse CUDA
kernels arising in efficient iterative methods for the solution of sparse
linear systems. Our procedure characterizes the input and output vectors
of these methods, combining this information together with a dependency
analysis, in order to decide which kernels to merge. The experiments
on a recent NVIDIA “Kepler” GPU report significant gains, especially
in energy consumption, for the fused implementations derived from the
application of the methodology to three of the most popular Krylov
subspace solvers with/without preconditioning.

Keywords: Graphics processors · CUDA · Sparse linear systems · Iter-
ative solvers

1 Introduction

The solution of sparse linear systems [12] is an ubiquitous problem in ranking and
search methodologies for the web, boundary value problems and finite element
models for partial differential equations, economic modeling, and information
retrieval, among others. The interest of these applications has given rise to a very
large number of sophisticated sparse matrix storage layouts, libraries and algo-
rithms for general-purpose processors (CPUs); see, e.g., [1,7,8,15]. NVIDIA also
supports the solution of sparse linear systems on graphics processors (GPUs),
via the libraries CUBLAS and cuSPARSE, which respectively contain (CUDA)
GPU kernels operating on vectors and sparse matrices.

Despite the importance of energy consumption [9,11], few analyses of sparse
linear algebra operations focus on this metric [3]. One particular source of energy
inefficiency during the execution of an iterative solver [12] on a heterogeneous
CPU-GPU server is that, when implemented via calls to the GPU kernels in
CUBLAS/cuSPARSE, the CPU thread in control of the GPU repeatedly invokes
fine-grain CUDA kernels of low cost and, therefore, short duration. Even if the
solver avoids most data transfers between (the memories of) CPU and GPU,
this continuous stream of kernel calls often prevents the CPU from entering an
energy-efficient C-state. In [2] we introduced the fusion of GPU kernels as a
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means to avoid this power-hungry scenario, for the particular case of the con-
jugate gradient (CG) method [12]. The results in that work report significant
energy gains combined with a slight improvement in performance on a platform
equipped with an Intel i7-3770K plus an NVIDIA “Fermi” GTX480 board. In
this paper we make the following major contributions:

– We evolve [2] into a systematic analysis of the fusion of GPU kernels aris-
ing in a representative collection of sparse linear solvers: CG, BiCG and
BiCGStab [12], including Jacobi-based preconditioned versions of these.

– We include three alternative implementations (scalar CSR, 2-D vector CSR
and ELL [6]) for the sparse matrix-vector multiplication (SpMV), with differ-
ent properties/characterization which impact the possibilities of merging the
corresponding solvers.

– We experimentally demonstrate the benefits of kernel fusion in a platform
comprising an Intel Core i3770K plus an NVIDIA “Kepler” K20c GPU.

The rest of the paper is structured as follows. In Sect. 2 we briefly review
related work on the fusion of GPU kernels. In Sect. 3 we present the iterative
solvers targeted in our work, identifying the mathematical operations that are
implemented as CUDA kernels. Furthermore, we provide a systematic charac-
terization of these GPU kernels, defining the properties that allow the fusion of
two (or more) kernels. Finally, in Sects. 4 and 5 we respectively evaluate the new
merged iterative solvers and discuss the conclusions from this work.

2 Related Work

Kernel fusion has received considerable attention in the past as an optimization
technique via, e.g., increased memory locality, lower overhead by eliminating
multiple calls to kernels, and richer space for compiler optimizations. For brevity,
we next discuss a few efforts that specifically target fusion of GPU kernels.

In [10] the authors analyze how to fuse several types of CUDA kernels (map,
reduce, and combinations of these) corresponding to BLAS-1 and dense BLAS-
2 operations. Our work specifically targets iterative solvers for sparse linear
systems, and leads us to consider a richer set of operations, different from those
in [10]. Furthermore, we break the implementation of reduction kernels into two
stages so that one of them, which concentrates most of the computational work,
can still be fused.

In [14] the authors study the fusion of CUDA kernels with the purpose of
improving their power-energy efficiency by accommodating a higher and better
balanced utilization of the GPU cores. Three classes of fusions are identified in
their paper: “inner thread”, “inner thread block”, and “inter thread block”, and
their effects are simulated using two general benchmarks. Our fusions correspond
to the first class as, for the type of operations arising in sparse linear algebra,
this option yields a fair balance of the workload. Our approach differs in that we
focus on the type of kernel fusions arising in sparse linear algebra, we provide
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a precise characterization of the kernels arising in this domain, and we offer
experimental performance and energy results.

In [13] the authors propose the fusion of CUDA kernels arising in iterative
sparse linear systems to improve performance, but only consider merging kernels
that provide the same functionality and have no dependencies among them. The
authors of [4] apply the techniques described in [2] to the iterative solution of
sparse linear systems via BiCGStab. None of these works provides a systematic
characterization of the GPU kernels and the conditions that allow their fusion.

3 Systematic Kernel Fusion for Sparse Iterative Solvers

3.1 Overview of Iterative Solvers for Sparse Linear Systems

Given a linear system Ax = b, where A ∈ R
n×n is sparse, b ∈ R

n contains the
independent terms, and x ∈ R

n is the sought-after solution, iterative projection
methods based on Krylov subspaces, in combination with an appropriate pre-
conditioner, often outperform the most efficient direct solvers available today in
terms of memory consumption and execution time [12].

Concerning the computational effort of iterative Krylov subspace methods,
in practical applications the cost of the iteration loop is dominated by one or two
SpMV involving A. Given a sparse matrix A with nz nonzero entries, in general
the cost of the SpMV is roughly 2nz floating-point arithmetic operations (flops).
Additionally, the loop body contains several vector operations that require O(n)
flops each.

Figure 1 offers an algorithmic description of the preconditioned BiCG method.
In general, we use Greek letters for scalars, lowercase for vectors and uppercase
for matrices. There, the user-defined parameter τmax sets an upper bound on
the relative residual for the computed approximation to the solution xj , and
(z1, z2) denotes the inner product (dot) of vectors z1, z2. The method involves
two SpMV as well as several BLAS-1 (vector) operations per iteration (axpy,
xpay and dot). The application of the Jacobi preconditioner matrix M requires
an element-wise product of two vectors.

The preconditioned BiCG method in Fig. 1 contains all the GPU kernels that
appear also in the preconditioned CG and BiCGStab. In the following section
we characterize these kernels from the point of view of the type of access they
perform to the data/results, we employ the preconditioned BiCG in order to
present the systematic fusion of GPU kernels, and we generalize these principles
to other variants of BiCG as well as other solvers.

3.2 Characterization of GPU Kernels for Sparse Iterative Solvers

A GPU kernel K performs a mapped access to a vector v if each thread of K
accesses one of the elements of v, independently of other threads, and the global
access is coalesced. We note that this property can be applied separately to the
kernel input and output vectors. For the specific kernels identified in the sparse
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A → M Compute Jacobi preconditioner
Initialize r0, r

∗
0 , p0, p

∗
0, x0, σ0, τ0; j := 0

while (τj > τmax) Loop for iterative solver
1. vj := Apj 1. SpMV
2. αj := σj/(vj , p

∗
j ) 2. dot

3. xj+1 := xj + αjpj 3. axpy
4. rj+1 := rj − αjvj 4. axpy
5. zj := M−1rj+1 5. JPred (Jacobi preconditioner)
6. v∗

j := AT p∗
j 6. SpMV

7. r∗
j+1 := r∗

j − αjv
∗
j 7. axpy

8. z∗
j := M−1r∗

j+1 8. JPred (Jacobi preconditioner)
9. ζj := (zj , r

∗
j+1) 9. dot

10. βj := ζj/σj 10. Scalar op
11. σj = ζj 11. Scalar op
12. pj+1 := zj + βjpj 12. xpay (axpy-like)
13. p∗

j+1 := z∗
j + βjp

∗
j 13. xpay (axpy-like)

14. τj+1 :=‖ rj+1 ‖2 14. Vector 2-norm (dot + sqrt)
j := j + 1

endwhile

Fig. 1. Algorithmic formulation of the preconditioned BiCG method.

Table 1. Types of access to the vector inputs/output of the GPU kernels.

Operation Input vector(s) Output vector

x y y

axpy y := αx + y mapped mapped mapped

xpay y := αy + x mapped mapped mapped

dot α := xT y = (x, y) mapped mapped unmapped

JPred y := M−1x – mapped mapped

SpMV scalar CSR y := Ax unmapped – mapped

SpMV vector CSR y := Ax unmapped – unmapped

SpMV ELL y := Ax unmapped – mapped

iterative solvers, we can then characterize their access types as shown in Table 1.
For SpMV, we consider three well-known kernels/implementations [6]: scalar
CSR, vector CSR and ELL.

3.3 Fusion of GPU Kernels

We first discuss two factors that may impact the performance that can be
attained by merging two GPU kernels:

Grid dimensionality (1D, 2D or 3D). For kernels that operate on vectors,
this parameter has little impact on the performance. Therefore, for simplicity,
a practical approach is to enforce the same dimensionality for both kernels
by, e.g., setting that to the highest one of the two kernels.
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Grid dimensions (number of threads per block and number of blocks).
The approach here is, for simplicity, to enforce the same grid dimensions for
both kernels, and to set the dimensions to the largest values employed by any
of the two kernels. However, this must be done with care, as this parameter
may have a real effect on the performance of the kernels.

Fusing kernels is targeted to improve performance and/or energy consump-
tion, but obviously should produce the results of a non-fused execution. Let us
elaborate now the properties that two GPU kernels, namely K1 and K2, must
exhibit in order to participate in a fusion:

– In case K1 and K2 do not share any data (i.e., are independent), they can
always be merged.

– Consider that K1 produces an result or output vector v that is also an input
for K2, denoted hereafter as K1

v→ K2. (That is, there exists a read-after-write
or RAW data dependency between K1 and K2, dictated by the type and order
of shared access to vector v.) For the type of (dependent) kernels arising in
the sparse iterative solvers, the fusion is possible if K1/K2 perform a mapped
access to the output/input vector v. This guarantees that (i) both kernels
apply the same mapping of threads to the vector elements shared (exchanged)
via registers; (ii) both kernels apply the same mapping of thread blocks to
the vector elements shared (exchanged) via shared memory; and (iii) a global
barrier is not necessary between the two kernels.

From the characterization in Table 1, we easily derive that axpy, xpay and
JPred can be always merged with any other dependent kernel (one or more of
them) of the same sort (i.e., axpy, xpay and JPred). Also, the scalar CSR and
ELL versions of SpMV can be merged with any kernel of these three types that
consumes the vector resulting from the product, i.e., SpMV (scalar CSR, ELL)

y→
K2 ∈ {axpy,xpay,JPred} can be merged; but K1 ∈ {axpy,xpay,JPred} y→
SpMV cannot for any version of the sparse matrix-vector product.

The reduction kernel dot is a special case that needs a tailored implemen-
tation so that it can be efficiently merged in K1

y→ dot. Concretely, in [2] we
divided this kernel into two stages, say dotini and dotfin, with the first one being
implemented as a GPU kernel which performs the costly element-wise products
and subsequent reduction within a thread block, producing a partial result in
the form of a temporary vector with one entry per block. This is followed by
routine dotfin, which completes the operation by repeatedly reducing the con-
tents of this vector into a single scalar via a sequence of calls to GPU kernels.
The important aspect to note at this point is that, because the reduction pro-
ceeds within blocks, this initial stage of the reduction performs a mapped read of
the input vectors, and therefore can be efficiently merged in the sequence K1 ∈
{axpy,xpay,JPred,SpMV} y→ dotini. Routine dotfin is in practice imple-
mented as a sequence of GPU kernels with mapped/unmapped input/output;
see [2]. In consequence, this collection of kernels cannot be merged into a single
one themselves, and dotfin

y→ K2 cannot be fused.
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3.4 Fusions in BiCG

We next apply the previous fusion principles to the preconditioned BiCG with
SpMV based on the scalar CSR or ELL format, and we summarize the results
for the (2-D) vector CSR format and the non-preconditioned version.

The left-hand side graph in Fig. 2 identifies the dependencies (using arrows/
edges) between operations of the preconditioner BiCG, with the nodes and their
numeric labels identifying the operations within the loop body of the solver; see
Fig. 1. (For simplicity, we do not include the operations before the loop body
or the dependencies between different iterations.) As argued earlier, the dot
operations (2, 9 and 14) are partitioned into two stages (a or b, correspond-
ing respectively to kernel dotini and routine dotfin) in order to facilitate the
fusion of the first part, if possible, with a previous kernel. The node colors dis-
tinguish between the four different operation types: SpMV, dot, axpy/xpay
and JPred. The patterns on top and bottom of each node specify, respectively,
the type of mapping for the input and output vector(s) of each operation. Con-
cretely, the parallel lines correspond to a mapped operator and the chessboard
pattern an unmapped one. Operations 10 and 11 are special cases as they only
receive/produce (input/output) one scalar and are merged into a single node.

The right-hand side graph in Fig. 2 illustrates one specific fusion of kernels
among the several possibilities dictated by the kernel dependencies and the map-
pings of the input/output vectors. The fusions are encircled by thick lines and

Fig. 2. Dependencies between GPU kernels and fusions (left and right, respectively) for
the preconditioned BiCG solver with SpMV based on the scalar CSR or ELL format.
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designate four macro-kernels: {1-2a}, {3-4-5-6-7-8-9a-14a}, {9b-10-11-14b},
{12-13}; plus a single-node (macro-)kernel: {2b}. The arrowless lines connect
groups of independent kernels (e.g., 3 and 4). For simplicity, we do not include all
the connections within a group. The arrows identify dependencies inside macro-
kernels (e.g., from 4 to 5) and between them (e.g., from {1-2a} to {2b}).

Our fused version of the preconditioned BiCG, when SpMV employs the
alternative vector CSR format (with unmapped input and output for SpMV),
differs from that in Fig. 2 in that the two matrix-vector operations (kernels 1
and 6) are merged together; in addition, due to the unmapped output of ker-
nel 1, kernel 2a becomes a single-node macro-kernel. The resulting macro-kernels
are therefore: {1-6}, {2a}, {2b}, {3-4-5-7-8-9a-14a}, {9b-10-11-14b} and
{12-13}. Also, for all variants of the BiCG solver (based on scalar CSR, vector
CSR and ELL SpMV), the fusion graphs of their non-preconditioned counter-
parts simply differ in that kernels 5 and 8, corresponding to the application of
the preconditioner, are not present.

These particular fusions were chosen following the fusion principles exposed
in this section and some general performance guidelines:

– The fusions can be decided by performing a systematic analysis of each ker-
nel, starting e.g. at 1, 2, etc., with those labeled with a higher number, tak-
ing into account the dependencies and the type of input/output (mapped or
unmapped). In general, the strategy is to reduce as much as possible the total
number of macro-kernels, in order to avoid the associated performance and
energy overheads. For the preconditioned BiCG, the right-hand side graph in
Fig. 2 presents the minimum number of macro-kernels due to the restrictions
imposed by the unmapped output vectors of the three dot operations (2a/b,
9a/b and 14a/b). We note that 10+11 could have been instead merged with
{12-13} but we selected the first option for performance reasons.

– The dependencies between operations within the same macro-kernel specify a
partial order for their execution. In principle, independent kernels are merged
by integrating their instructions into a single code one after another. As an
exception, for performance reasons, when the initial or final stages of two
independent dot operations are merged together into a single macro-kernel
(e.g., 9a with 14a; and also 9b with 14b), their instructions are interleaved in
the code. (Interleaving of multiple dot operations was proposed in [4].)

– Alternatively, 6 can be merged with {1-2a}, but this option was discarded
because, for the scalar CSR and ELL implementations of SpMV, the result
attained lower performance.

3.5 Fusions in CG and BiCGStab

Figure 3 presents the fusion graphs for the preconditioned versions of CG and
BiCGStab1 when SpMV is based on the scalar CSR or ELL format. For the
CG solver, the only difference when SpMV employs the vector CSR format
1 For BiCGStab, nodes 7 and 12 of the graph actually embed two dependent operations

of type axpy/xpay each. For brevity, they are represented with a single node each.
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Fig. 3. Fusions of GPU kernels in the preconditioned CG and BiCGStab solvers (left
and right, respectively) with SpMV based on the scalar CSR or ELL format. The colors
of the nodes match those employed for the preconditioned BiCG solver, and identify
the same four types of operations: SpMV, dot, axpy/xpay and JPred.

is that kernels 1 and 2a become two separate single-node macro-kernels. The
same applies to the two SpMV in BiCGStab, i.e. kernels 1 and 5, which become
an isolated macro-kernel each. As in the BiCG solver, the non-preconditioned
versions of CG and BiCGStab differ in that the nodes corresponding to the
preconditioner application (5 for the former and 4, 13 in the latter) disappear.

The graphs in Fig. 3 contain the minimum number of macro-kernels. Due to
stricter dependencies of CG and BiCGStab compared with BiCG, the number
of alternative fusions in the former two is reduced to instead joining 7+8 with 9
in CG, and 10+11 with 12-13 in BiCGStab.

In summary, the study of this collection of cases (three solvers, with and
without preconditioner, and three different implementations of SpMV) exposes
that, for the type of operations involved in these iterative solvers, the two stages
of the dot operations act as barriers (or synchronization points), enforcing a
particular fusion/division of the macro-kernels.

4 Experimental Evaluation

In this section we evaluate the performance and energy gains of the merged solvers,
comparing them with non-fused counterparts. For this purpose, we employ several
sparse matrices from the University of Florida Matrix Collection (UFMC)2 and a
difference discretization of the 3D Laplace problem; see Table 2. The coefficient
2 http://www.cise.ufl.edu/research/sparse/matrices/.

http://www.cise.ufl.edu/research/sparse/matrices/
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Table 2. Description and properties of the test matrices from the UFMC (left) and
the 3D Laplace problem (right). In the matrix names, fem 3dth2 corresponds to the
“FEM 3D nonlinear thermal problem”.

Matrix nz n nz/n

bmwcra1 1 10,641,602 148,770 71.53
crankseg 2 14,148,858 63,838 221.63
F1 26,837,113 343,791 78.06
inline 1 38,816,170 503,712 77.06
ldoor 42,493,817 952,203 44.62
audikw 1 77,651,847 943,645 82.28
fem 3dth2 3,489,300 147,900 23.59

Matrix nz n nz/n

A100 6,940,000 1,000,000 6.94
A126 13,907,370 2,000,376 6.94
A159 27,986,067 4,019,679 6.94
A200 55,760,000 8,000,000 6.94
A252 111,640,032 16,003,001 6.94

matrix A for audikw 1 and inline 1 is too large to be stored in the ELL format
and these combinations of matrix case/storage format are excluded from the
evaluation. Moreover, A is unsymmetric for fem 3dth2 and, therefore, cannot
be tackled via the CG solver. For all cases, the solution vector was chosen to
have all entries equal 1, and the independent vector was set to b = Ax. The
iterative solvers were initialized with the starting guess x0 = 0. All experiments
were done using ieee single precision (SP) arithmetic. While the use of double
precision (DP) arithmetic is in general mandatory for the solution of sparse linear
systems, the use of mixed SP-DP in combination with iterative refinement leads
to improved execution time and energy consumption when the target platform
is a GPU accelerator [5].

The target architecture is a Linux server (CentOS release 6.2 with kernel
2.6.32) equipped with a single Intel Core i7-3770K CPU (3.5 GHz, four cores)
and 16 Gbytes of DDR3 RAM, connected via a PCI-e 2.0 bus to an NVIDIA
“Kepler” K20c GPU (compute capability 3.5, 706 MHz, 2,496 CUDA cores) with
5 GB of GDDR5 RAM integrated into the accelerator board. Power was collected
using a National Instruments (NI) Data Acquisition System, composed of the
NI9205 module and the NIcDAQ-9178 chassis, and plugged to the lines that
connect the output of the power supply unit with motherboard and GPU.

In total, we evaluated CG, BiCG and BiCGStab, with and without precon-
ditioning, using three different implementations of SpMV (scalar CSR, vector
CSR and ELL), and five different versions of each solver:

– cublasL is a plain version of the solver implemented via calls to CUBLAS
kernels from the legacy programming interface of this library, combined with
ad-hoc implementations of SpMV. In this version, one or more scalars may be
transferred between the main memory and the GPU memory address space
each time a kernel is invoked and/or its execution is completed.

– cublasN is an evolved version of the previous implementation that, whenever
possible, maintains the scalars in the GPU memory (via the new interface
of CUBLAS), in order to avoid unnecessary communication/synchronization
between CPU and GPU.

– cuda replaces the CUBLAS (vector) kernels in the previous version by our
ad-hoc implementations, including the two-stage dot.

– merge applies the fusions described in Sect. 3.
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Fig. 4. Execution time and energy consumption for CG, BiCG and BiCGStab solvers
(top, middle and bottom, resp.) without and with preconditioner (left and right, resp.).

– merge 10 applies the fusions as well and, in addition, only checks the conver-
gence every 10 iterations of the solver, thus reducing the amount of synchro-
nizations between CPU and GPU due to the evaluation of this test.

In review, there are 3 solvers, 2 preconditioning modes, 3 implementations of
SpMV, and 5 versions of the solver; i.e., 90 combinations. Furthermore, we
execute these configurations under the polling and blocking CUDA synchroniza-
tion modes, and evaluate them for 12 test matrices (11 for CG), collecting the
time and energy per iteration for each scenario. In order to reduce the number of
results to show, (i) we report the variations in time/energy of the different imple-
mentations with respect to cublasL executed in polling mode; (ii) in addition,
we summarize the results for the matrix test cases into a single average value,
giving the same weight to all of matrix tests; and (iii) finally, we consider only
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the vector CSR implementation of SpMV for the UFMC cases and the ELL
variant for the Laplace problems since our experiments showed that these are
the best options from the point of view of performance.

With these considerations, Fig. 4 reports the time and energy variations for
three solvers (CG, BiCG, BiCGStab) with/without preconditioning and five ver-
sions of each (cublasL, cublasN, cuda, merge, merge 10), executed under
two different synchronization modes (polling and blocking).

The first aspect to note is that all plots in Fig. 4 reflect the same qualitative
trend, independently of the specific solver and whether or not the preconditioner
is present. Let us consider, e.g., the top-left plot (CG solver without precondi-
tioner). Compared with the baseline case (cublasL executed in polling mode),
the two non-fused versions cublasN and cuda only experience a slight increase
in both time and energy (around 1 % and 2 %, resp.) when operating under
the polling mode. For the alternative blocking mode, these versions present an
appealing reduction of the energy consumption (above 9 %), but unfortunately
this comes at the cost of a more visible performance penalty (a time increase
superior to 6 %). The desired combination (reduction in both time and energy)
is attained by the merged versions (merge and merge 10). Both algorithms
report a decrease of execution time superior to 5 %, except for merge executed
in blocking mode, for which the variation of time is negligible. The best com-
bination is clearly merge 10, which combines this reduction of time with a
remarkable decrease of energy consumption, superior to 15 %.

In general, the best option is to employ merge 10 executed in blocking mode.
Compared with the baseline case, the reduction in time for all solvers and precon-
ditioning modes is between 5.1 % and 10.2 %, while from the energy perspective
the savings vary between 4.0 % and 20.0 %. Comparing merge 10 with the same
implementation executed in polling mode, the blocking mode basically matches
its performance (around the same execution time) while producing higher energy
gains, especially for CG and BiCGStab.

5 Concluding Remarks

We have introduced and applied a systematic methodology to derive fused ver-
sions of three popular iterative solvers (with and without preconditoning) for
sparse linear systems. An analysis of the type of access that the threads in charge
of a kernel’s execution perform on the kernel inputs and outputs, together with
the observation of the data dependencies between kernels, determine the can-
didates to be fused. For performance and energy efficiency reasons, the general
goal is to minimize the number of macro-kernels that results from the applica-
tion of the fusions. From this point of view, we obtain reductions from 10→5,
13→5 and 14→8 for the preconditioned versions of CG, BiCG and BiCGStab,
respectively. The gains are experimentally demonstrated on a recent CPU-GPU
architecture, consisting of an Intel “Sandy-Bridge” multicore processor and an
NVIDIA “Kepler” GPU. Compared with plain versions of the solvers based
on CUBLAS and ad-hoc implementations of SpMV, the fused versions attain
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remarkable energy savings when executed in blocking mode. Furthermore, in
general they match the performance of an execution of the same versions when
executed in the performance-active but power-hungrier polling mode.
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Abstract. GPUs are now one of the mainstream high-performance
processors, embodying rich sets of computational as well as bandwidth
resources. However, an individual GPU application typically does not
exploit the resources on a GPU in its entirety, and thus concurrent exe-
cution of multiple applications may be advantageous in terms of total
execution time and energy, by multiplexing on less utilized resources.
Although modern GPU features such as Hyper-Q allow such a con-
current execution, it is at the risk of causing device memory shortage,
and thus crashing the application or even the entire node. Our Mobile
CUDA realizes safe, concurrent execution of multiple, unmodified CUDA
applications using a transparent checkpointing approach, and achieves
both improved throughput and energy savings for a mix of applica-
tions exhibiting different GPU resource requirements on multiple GPUs.
Performance evaluation using the Rodinia benchmark suite shows that
Mobile CUDA reduces total execution time by 18.4 % and total energy
by 5.5 % on mixed workloads.

1 Introduction

Graphics Processing Units (GPUs) are now mainstream processors for HPC
workloads. Due to their origin in graphics processing, which is essentially embar-
rassingly parallel, a typical GPU architecture integrates many small SIMD cores
for high floating-point performance as well as a large number of memory con-
trollers for high memory bandwidth. Furthermore, they are also called many-core
processors to express their generality beyond graphics processing. There are var-
ious general-purpose programming environments for GPUs, including NVIDIA
CUDA [7], OpenCL and OpenACC, that are used to achieve application accel-
eration. Here we focus our attention on CUDA, although our proposal can be
applied to other programming environments as well.

A given CUDA application normally utilizes only a limited portion of GPU’s
resources intensively. The usage depends on the characteristics of the application,
usually its computational intensity. For example, N-body simulations and dense
matrix multiplications are floating-point compute intensive, while most CFD
applications generally require frequent memory accesses and high bandwidth,

c© Springer-Verlag Berlin Heidelberg 2015
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i.e. they are memory intensive. As such, if only a single CUDA application is
running on a GPU, there are idle and wasted GPU resources during its execution.

Concurrent execution of multiple CUDA applications with different resource
requirements could utilize the GPU resources more efficiently. Multiplexing the
execution to maximize resource usage at a given time can result in increased
throughput, reduction of execution time, and possibly reduction in energy con-
sumption as well. However, there are several challenges with the näıve application
of the scheme with respect to system safety; most seriously, since CUDA applica-
tions are programmed with the assumption of exclusive GPU usage, concurrent
executions could cause shortages in device memory, terminating the application,
and even possibly crashing the system. One could estimate the memory usage of
each application with techniques such as test execution, but it could be expen-
sive and moreover, there will be no guarantee that the application would not
allocate more memory.

Our proposed Mobile CUDA is a computing environment that enables trans-
parent, safe, and concurrent execution of multiple unmodified CUDA applica-
tions on multiple GPUs. Mobile CUDA is based on applying the swap-in and out
checkpoint approach on each application in order to satisfy the capacity limit
of device memory and maximize the opportunity of concurrent execution. Com-
pared to previous work, our checkpoint implementation is more general, robust,
and works on modern versions of CUDA runtime. Performance evaluation using
the Rodinia benchmark suite [1] shows that Mobile CUDA successfully sched-
ules applications with differing resource requirements without causing any errors,
and reduces total execution time by 18.4 % and total energy by 5.5 % on mixed
workloads.

2 Background

2.1 Concurrent Execution of Multiple CUDA Applications

Early incarnations of GPUs with so-called programmable shaders facilitated
massive parallelism but did not support concurrent execution of multiple appli-
cation codes. This changed in a limited fashion when NVIDIA introduced the
G9X/GT200 series GPUs that allowed concurrent execution of one CUDA ker-
nel and up to two PCI-Express data transfers using DMA controllers, making it
possible to overlap data transfers with computation. The succeeding Fermi GPU
architecture allowed concurrent execution of multiple CUDA kernels. However,
this was restricted to kernels within the same CUDA application context and
only a part of the kernels were executed concurrently. The follow-on Kepler GPU
architecture finally allowed fully concurrent execution of multiple CUDA kernels
from different CUDA applications, a feature which was called Hyper-Q.

2.2 Swap-in and -out Checkpointing of CUDA Applications

Given the Hyper-Q capability, we could now select and schedule a set of appli-
cations to run concurrently on a GPU that would maximize the resource usage
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and thus achieve higher throughput and reduced overall runtime. This entails
that the scheduling and execution of multiple types of applications can be multi-
plexed on a single device. However, since the device memory usage of each GPU
dynamically changes based on application activities, and there is no on-demand
paging for current GPUs, we can select and run the set of applications that
will maximize resource usage on the device within the bounds of device memory
capacity. When we run out of device memory, we could suspend one or more
applications with their data on device memory being saved to host memory in
order to release the device memory. Such arbitrary swap-in and out of CUDA
application is equivalent to checkpoint and restart in fault-tolerance and process
migration. The question then is, how do we checkpoint CUDA applications?

In 2009, Takizawa et al. proposed CheCUDA [10], the first checkpoint and
restart library for CUDA applications. CheCUDA was a system-level checkpoint
based on BLCR [5]; although BLCR did not directly support CUDA applications
because of its inability to save the state of GPU devices, they discovered that
BLCR works if all CUDA contexts are destroyed at the time when checkpoint
is being taken. After the BLCR checkpoint procedure has finished, CheCUDA
restores all CUDA resources. In order to achieve this, CheCUDA employs vir-
tual address for device memory by overriding the data types using class libraries.
Since CheCUDA requires re-compilation of the application’s source code, it can-
not handle software in binary format, e.g. most commercial applications. In
contrast, Mobile CUDA does not require source code re-compilation and thus
does not suffer from such limitations.

NVCR [8] also checkpoints/restarts CUDA applications that use the CUDA
driver API and works transparently without re-compilation of the source codes.
In addition, NVCR inherently supported CUDA applications that use the CUDA
runtime API, because in old versions of CUDA prior to CUDA 4.0, all the
runtime API routines called the driver API internally to access the GPU. Similar
to CheCUDA, NVCR also employs BLCR as an underlying checkpointing library,
but uses another technique — replay of memory-related CUDA API calls — to
restore the same addresses in the CUDA context, and it works transparently
without modification to the application binaries. We inherit the same approach
in Mobile CUDA, but now we have to handle the runtime API separately, a more
difficult task as we see later. Also, we do not checkpoint the entire application
process to storage, but rather leave it suspended in place and facilitate migration
between multiple GPUs on the same machine.

3 Mobile CUDA

In general, the precise amount of device memory required to execute an appli-
cation is unknown to application users until execution time, and moreover, the
size of occupied device memory often fluctuates during the execution. CUDA
6.0 supports unified memory which enables on-demand paging between device
memory and host memory, but the contents of the pages are merely mirrored
between both memory spaces; so we are still faced with restrictions of device
memory capacity.



690 T. Suzuki et al.

Instead, Mobile CUDA constantly monitors the device memory usage of each
CUDA application; if an application tries to allocate an additional device mem-
ory region larger than the remaining free memory size, it is suspended via
checkpointing, that is, Mobile CUDA saves all GPU data onto host memory
and releases all GPU resources. On the other hand, if a CUDA application
releases a memory region or exits, other suspended CUDA applications could
potentially restart execution. On systems with multiple GPU devices, CUDA
applications may migrate and restart on another GPU device. By setting the
LD LIBRARY PATH environment variable, CUDA applications load our MOCU
library instead of NVIDIA’s CUDA runtime library to allow for transparent
checkpoint/migration. The CUDA runtime API calls are thus monitored and
forwarded appropriately. The MOCU manager in turn collects the information
such as device memory usage from the MOCU libraries, and is responsible for
co-scheduling the CUDA applications to multiple GPUs given their memory
constraints.

3.1 Checkpointing CUDA Applications

As mentioned, NVCR’s replay technique is currently the only scheme that keeps
device memory addresses exactly identical before and after the suspension of
CUDA applications. Although Mobile CUDA principally employs the same tech-
niques, there are various improvements and additions. Since the time NVCR was
developed for the CUDA driver API 2.3 and 3.0, the implementation of CUDA
runtime library changed significantly as noted above, and a set of new techniques
are required to support the mainstream CUDA runtime API. In particular for
the CUDA runtime API version 5.5 and above, it is impossible to clear the con-
text using the CUDA driver API as was for NVCR; instead, a CUDA runtime
API function call cudaDeviceReset needs to be called. Also, unlike with NVCR,
suspended applications are not really suspended per second, but are blocked at
recv() system call to wait until the GPU is re-assigned to that application. We
will also outline the extensions we have made in the following subsections.

3.2 Device Memory Management

Mobile CUDA uses socket API calls for communication. To minimize the over-
head, the MOCU library communicates with the MOCU manager only when
the state of the CUDA application changes. This includes changes in the device
memory usage level caused by allocation or release API calls of CUDA. In addi-
tion to such memory-related API calls, the device memory usage also changes
when a CUDA context is created or destroyed on a device.

For low-level CUDA driver API, it is the responsibility of the application
to first explicitly create a CUDA context. The context allocates at least 64 MB
of device memory, along with device-side variables statically declared using the
‘ device ’ keyword. For the CUDA runtime API, however, the CUDA context is
implicitly created when the first resource allocation is attempted on the device.
The MOCU library communicates with the MOCU manager at each CUDA
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runtime API call until the MOCU manager detects the CUDA context of the
application; at this point, Mobile CUDA is fully initialized. After this, the MOCU
library only communicates at the CUDA runtime API calls relevant to device
memory allocation1.

Whenever a CUDA application attempts to allocate device memory, the
MOCU library intercepts the call and first sends the requested device mem-
ory size to the MOCU manager and queries its availability. If available, the
MOCU library then calls the actual memory allocation API; otherwise, the
MOCU library suspends the application execution and the application is check-
pointed/swapped out to the host memory. When a CUDA application tries to
release device memory, the actual API call is made immediately and the size
of the released memory is sent to the MOCU manager. If a memory allocation
request from any of the suspended applications can be satisfied by any GPU as a
result of this, the MOCU manager can then (co-)schedule that application to that
GPU. MOCU manager may also swap-in an application if another application
is checkpointed/swapped out or terminates. In both cases, the MOCU manager
selects an application to resume. Currently this is prioritized by the order of
connection to the MOCU manager, but in future versions we will exploit the
co-scheduling efficiency aspect as experimented in Sect. 4.

__device__ float v[1024 * 1024];

__global__ void kernel(float *s) { ..... };

int main(int argc, char **argv) {
float *p;
cudaEvent_t s, e;

cudaSetDevice(0);
cudaEventCreate(&s);
cudaEventCreate(&e);
cudaMalloc((void **)&p, sizeof(float) * 1024 * 1024);
....

}

Fig. 1. A simplified code using the CUDA runtime API

Since multiple CUDA applications might allocate memory concurrently, the
MOCU manager manages “reserved memory size” and “allocated memory size”
for each application. The reserved memory size is the amount of memory that the
application wants to allocate. The MOCU library first sends this number to the
MOCU manager and asks if there is enough free memory. If the MOCU manager
knows that there is enough memory, it allows the MOCU library to allocate the
memory on the device. However, the actual allocation might fail or the actual
amount of allocated memory might exceed the requested memory (due to various

1 In the current version of CUDA (6.5 as of this writing) the CUDA context is created
immediately at the first call to the runtime API, but this feature allows safeguarding
for future versions in which this assumption might change.
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overheads). In any case, the MOCU library sends the result of the allocation to
the MOCU manager. The MOCU manager then updates the “allocated memory
size” variable to reflect the actual allocated memory size and resets the reserved
memory size variable. The reason we need these two variables is the MOCU
manager cannot know the actual amount of allocated memory at the request
time. Moreover, two applications can concurrently request memory allocation.
Thus, the reserved memory is for estimating the amount of memory used, and
the allocated memory is for the actual allocated size. The MOCU Manager
estimates the availability of device memory by using the NVIDIA Management
Library (NVML), and allows allocation if available memory (=free memory size
- reserved memory size) is greater than required memory (=requested memory
size + 64 MB safety margin).

CUDA application MOCU library MOCU manager CUDA runtime library

__cudaRegisterFatBinary()
connect()

Assign a GPU device
Call API

__cudaRegisterVar()
Send size of device variable

No change in GPU assign 
Call API

cudaSetDevice()

cudaEventCreate() Call API
Check CUDA context

Context is detected

cudaEventCreate() Call API

cudaMalloc()

Call API

Can I allocate 
4MB device memory?

OK, go ahead

allocated

Fig. 2. MOCU library and MOCU manager

Figure 1 shows a simplified CUDA code while Fig. 2 describes how this code
works with Mobile CUDA. As seen in Fig. 2, a CUDA application using the
CUDA runtime API calls several internal CUDA commands before entering the
main function.

Firstly, ‘ cudaRegisterFatBinary()’ is called to register CUDA fat binaries.
In this function, the MOCU library connects to the MOCU manager and asks for
a GPU assignment. The MOCU manager chooses one of the GPU device with
the lowest load (= number of processes). At the same time, 64 MB of memory is
reserved on the device for the CUDA context. Since the sample code declares a
device variable ‘v’, cudaRegisterVar() is called to register each device variable.
The MOCU library increases the reserved memory size by the variable size and
sends the new size to the MOCU manager.
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The application then enters the main function. Here, cudaSetDevice() actu-
ally does nothing because Mobile CUDA virtualizes the GPU devices and
presents only one GPU to the application. Next, cudaEventCreate() is the first
API call to allocate a GPU resource. After calling this function, the MOCU
library asks the MOCU manager if the CUDA context exists or not. At this
time, MOCU Manager detects the context and updates the allocated memory
of the application with the reserved memory size. For the second call of cud-
aEventCreate(), MOCU library simply calls the actual API.

On call to cudaMalloc(), the MOCU library sends a 4 MB memory allocation
request to the MOCU manager. The MOCU manager determines the availability
of device memory and, if available, it allows the MOCU library to call the actual
cudaMalloc(). If not available, the MOCU manager sends a suspend request to
the MOCU library, and the application then releases all CUDA resources and
waits until it could be assigned to any of the GPUs that can fulfill its memory
requirement.

3.3 Mobile CUDA Optimizations

Mobile CUDA allows applications to use CUDA pinned memory which enables
fast data transfer between host and device. Mobile CUDA also needs to transfer
data for the swap-in and swap-out of CUDA applications, however we cannot
use pinned memory for host-side buffer because pinned memory is related to the
CUDA context, which will be destroyed. Due to this restriction, currently we are
forced to using pageable host memory instead of CUDA pinned memory, causing
possible performance overhead. One optimization implemented is that uninitial-
ized memory regions will not be saved nor restored. This works efficiently, for
example, when the application allocates multiple device memory regions and one
of the allocations fails due to shortage of device memory.

Mobile CUDA limits the maximum number of CUDA applications running on
each device. Running two applications concurrently may be much more beneficial
than running each application exclusively. However, concurrently running six
applications may not yield better performance than running five applications.
Assigning many applications to a single device increases data movement between
host and device, and the GPU resources will be quickly exhausted with only a
few co-scheduled applications.

Mobile CUDA also can set a limit on the number of applications that can
start execution. If a large number of applications connect to the MOCU manager,
applications requiring a small amount of memory (small apps) will be more likely
to get swapped in over those requesting larger memory (large apps). By limiting
the number of the applications that can start, we reduce the probability of small
apps preempting large apps.

4 Performance Evaluation

We performed a series of benchmarks to evaluate how much time and energy reduc-
tion we can achieve by using the Mobile CUDA. Table 1 shows the specification
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Table 1. Specification of the system used in the performance evaluation

CPU Intel Xeon CPU E5-2687W (3.10 GHz, 8 cores, Sandy Bridge EP) × 2

M/B Supermicro X9DRG-QF (Intel C602 chipset, four PCI-E Gen3 x16 slots)

Memory DDR3-1600 Registered ECC DIMM, 8 GB × 16

GPU NVIDIA Tesla K20c (5 GB)

OS CentOS 6.4 x86–64

CUDA Version 5.5 (Driver 319.76)

of the system used in our performance evaluation. The system has four Kepler
GPU devices with 5 GB device memory each, and 128 GB host memory. We used
CUDA applications from the Rodinia benchmark suite [1]. Since these applica-
tions have short execution times with default launch parameters, we modified their
command line arguments to increase data size, time steps or number of iterations
as described in Table 2. The CUDA source code itself was not modified. Table 2
also shows new execution time and device memory usage of each application. Sev-
eral Rodinia applications that did not provide a clear way to increase their work-
load/execution time were excluded from the evaluation.

Table 2. List of applications from Rodinia benchmark

Label Application Time [sec] Memory [MB] Command-line arguments

(1) Back Propagation 78.30 201 ./backprop 1000000

(2) b+tree 59.23 83 ./b+tree.out file

../../data/b+tree/mil.txt command

../../data/b+tree/command.txt

(3) CFD Solver 65.57 92 ./euler3d

../../data/cfd/missile.domn.0.2M

(4) dwt2d 56.87 285 ./dwt2d 192.bmp -d 4096 × 2048 -f -5 -l 3

(5) gaussian 61.14 337 ./gaussian -s 6000

(6) HotSpot 67.39 64 ./hotspot 512 2 1000000

../../data/hotspot/temp 512

../../data/hotspot/power 512

output.out

(7) kmeans 37.42 194 ./kmeans -o -i

../../data/kmeans/kdd cup -l 1000

(8) leukocyte 57.34 65 ./leukocyte

../../data/leukocyte/testfile.avi 500

(9) lud 71.49 1086 ./lud cuda ../../data/lud 16384.dat

(10) Needleman-Wunsch 88.18 2110 ./needle 16384 10

(11) pathfinder 78.25 1988 ./pathfinder 5000000 100 20

(12) srad v1 45.94 963 ./srad 2000 2 1

(13) srad v2 56.88 3136 ./srad 16384 8192 0 127 0 127 0.5 150

(14) streamcluster 188.60 2200 ./sc gpu 10 20 256 2097152 2097152 1000

none output.txt 1
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Fig. 3. Limiting parameters of Mobile CUDA and their execution time
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In total 14 applications were selected and each one executed five times in
one benchmark round. We performed 10 such rounds with randomized order
of applications in each round and averaged the total execution times. As the
baseline, we used simple scheduling which assigns a single GPU exclusively to
the application based on a first-come-first-serve policy.

The maximum number of active applications is defined as α · p + β, where
p is the number of devices, α is the number of applications allowed to execute
concurrently on one device, and β is the number of extra applications which are
allowed to enter the out-of-order execution buffer. We evaluated the impact of
choosing parameters α and β on the aggregated execution time as the first step.
Parameter p is defined by the hardware set-up and equals 4 in our case.

Figure 3 shows the total execution time using Mobile CUDA, x-axis labels
indicate parameters (α,β) and “simple” means normal execution. With Mobile
CUDA, we launched all of the 70 application instances at the beginning, and
many of them were blocked at the cudaRegisterFatBinary() function in the
MOCU library to wait for the response of the MOCU manager. On the other
hand, the simple execution launched p applications on p devices. The overall
execution time is mostly influenced by the choice of α. In case of α = 1, Mobile
CUDA has no advantage and has around 7 % overhead. α = 2 gives the best
result, and α = 3 is the second best. In the case of α = 4, the execution time
with Mobile CUDA is almost the same with the one of simple execution. We
found (α, β) = (2, 4) to be the best combination of parameters that reduces
the execution time by 18.4 % and these values were used for the subsequent
experiments.
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Table 3. Relative execution time of the application in row, in the case of concurrent
execution with another application in column.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)

(1) 2.03 2.02 2.02 1.01 1.13 2.03 1.10 1.14 1.21 1.95 1.96 1.90 1.17 1.12

(2) 2.00 1.96 1.80 1.02 1.61 1.76 1.14 1.13 1.17 1.70 1.90 1.90 1.21 1.18

(3) 2.01 2.16 1.96 1.04 1.74 1.94 1.16 1.15 1.14 1.86 1.93 1.90 1.33 1.23

(4) 1.03 1.02 0.94 1.21 0.96 0.96 0.95 0.96 0.97 0.94 0.96 0.99 0.95 1.03

(5) 10.1 2.59 2.34 1.01 2.03 2.31 1.16 1.14 1.26 2.18 4.61 7.06 1.35 1.23

(6) 2.02 2.24 2.03 1.03 1.79 2.00 1.17 1.13 1.14 1.90 1.94 1.92 1.30 1.21

(7) 2.09 1.36 1.32 1.14 1.22 1.25 1.09 1.05 1.08 1.24 1.97 1.68 1.19 1.05

(8) 1.15 1.11 1.09 1.03 1.07 1.10 1.04 1.19 1.04 1.09 1.15 1.16 1.06 1.03

(9) 1.25 1.26 1.23 1.01 1.03 1.25 1.03 1.03 1.57 1.25 1.26 1.21 1.05 1.02

(10) 2.04 2.31 2.09 1.03 1.84 2.06 1.17 1.14 1.18 1.97 1.95 1.96 - 1.22

(11) 1.97 1.95 1.95 1.02 1.19 1.96 1.09 1.13 1.21 1.90 1.88 1.32 - 1.12

(12) 2.01 1.94 1.94 1.01 1.09 1.96 1.09 1.11 1.14 1.89 1.94 1.85 1.15 1.08

(13) 3.54 2.79 2.56 1.39 1.99 2.47 1.18 1.16 1.39 - - 3.08 - -

(14) 2.51 1.65 1.55 1.03 1.37 1.51 0.97 0.97 1.05 1.47 2.03 2.10 - 1.02

Figure 4 shows the power consumption during the execution with and with-
out Mobile CUDA. We measured the AC Power of the machine using OMRON
RC3008 in once per second frequency. Mobile CUDA increases power consump-
tion which indicates that GPU resources are heavily utilized. But as the exe-
cution with Mobile CUDA completes earlier, the total energy consumption is
reduced. The energy consumption for all 70 application instances was 775kJ with
Mobile CUDA and 820kJ without Mobile CUDA, thus Mobile CUDA achieved
5.5 % reduction in overall energy consumption.

Table 3 shows the relative execution time of a given application when it is
concurrently executed with another application. For example, when applications
(1) and (10) are executed concurrently, application (1) takes 1.95x longer and
application (10) takes 2.04x longer compared with the case when those appli-
cations are executed exclusively. The hyphens (‘-’) in the table indicate that
it is impossible to execute the applications concurrently due to device memory
capacity. Let a and b be the relative execution times of applications A and B,
respectively, when executed concurrently. In this case, the relative processing
speed of the GPU can be determined as 1/a + 1/b. When this value is greater
than 1.0, the concurrent execution is advantageous. Table 4 shows 1/a + 1/b for
all application pairs from the benchmark.

Most values in Table 4 are above 1.0, which means the concurrent execution
increases efficiency for those application pairs. Diagonal values correspond to the
concurrent execution of instances of the same application. For the Back Prop-
agation (1), Gaussian (5), and hotspot (6), it is evident that such execution is
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Table 4. Relative processing speed of two applications executed concurrently

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)

(1) 0.98 1.00 1.62 1.96 0.98 0.99 1.39 1.75 1.62 1.00 1.02 1.02 1.14 1.29

(2) 1.02 1.02 1.96 1.01 1.01 1.61 1.78 1.65 1.02 1.04 1.21 1.18 1.45

(3) 1.02 2.02 1.00 1.01 1.62 1.79 1.69 1.02 1.03 1.04 1.14 1.46

(4) 1.66 2.03 2.02 1.93 2.02 2.03 2.03 2.02 2.00 1.78 1.94

(5) 0.99 0.99 1.68 1.81 1.77 1.00 1.06 1.06 1.24 1.54

(6) 1.00 1.66 1.79 1.67 1.01 1.03 1.03 1.17 1.49

(7) 1.86 1.91 1.90 1.66 1.42 1.51 1.69 1.98

(8) 1.68 1.93 1.80 1.76 1.77 1.81 2.01

(9) 1.27 1.65 1.61 1.70 1.67 1.93

(10) 1.01 1.04 1.04 - 1.50

(11) 1.06 1.07 - 1.38

(12) 1.08 1.19 1.41

(13) - -

(14) 1.97

inefficient. It can be explained by the fact that those applications have only one
kernel and spend most of the time within it — concurrent executions of the same
kernel does not give any advantage.

On the other hand, dwt2d (4), kmeans (7), srad v2 (13), and streamclus-
ter (14) require data transfers between host and device, so instances of these
applications can be efficiently overlapped. Application srad v1 (12) spends most
of its execution time in kernels, however concurrent execution of this applica-
tion’s instances is efficient. That is because it has multiple kernels of different
characteristics.

5 Related Work

Mobile CUDA environment essentially virtualizes GPU devices. There are other
existing solutions for GPU virtualization, such as vCUDA [9] and GViM [4].
Both of them provide access to GPU devices from applications running on virtual
machines but do not support concurrent execution.

Hyper-Q, pioneered in Kepler GPU, makes it easy to write pipelined GPU
code. Many applications achieved speedups using Hyper-Q [6,11]. However, it is
only applicable in the scope of a single application. Moreover, device memory
usage has to be managed by the application code.

Endo et al., propose HHRT library [3] which enables swap-in and -out of data
on GPU devices with small modification to the source code. However, HHRT has
a different objective. Its aim is to hide data transfer latencies in a single MPI
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application, and it does not consider concurrent execution of multiple different
applications as Mobile CUDA does.

rCUDA [2] virtualizes the GPUs on remote host as if they were local.
Although it uses a similar API interception technology, its intentions are com-
pletely different, and does not allow co-scheduling of different CUDA processes
beyond Hyper-Q. VGRIS [12] is a scheduling framework for VMs to share a sin-
gle GPU in a paravirtualized environment. Although similar to Mobile CUDA in
that there is a scheduling manager and GPU API calls are intercepted to allow
for scheduling of processes, its application area is gaming, and thus focuses on
rapid context switching of multiple gaming contexts, and does not allow for
checkpointing as with Mobile CUDA.

6 Conclusion and Future Work

Performance of CUDA applications is generally bottlenecked by certain GPU
resources, leaving other resources under-utilized. Concurrent execution of mul-
tiple CUDA applications can use GPU resources efficiently and reduce total
execution time and energy, especially when those applications exhibit different
demands for GPU resources and/or execution patterns. Such a concurrent execu-
tion scenario cannot be achieved by simply running applications simultaneously
as it can cause GPU device memory shortage. To provide safe and concurrent
execution transparently, we have proposed the Mobile CUDA computing envi-
ronment. Based on the checkpointing approach, Mobile CUDA assigns GPU
resources to CUDA applications to maximize the concurrency.

In order to suspend, resume and migrate unmodified CUDA applications,
Mobile CUDA uses the MOCU manager, which is responsible for managing and
scheduling all the GPU resources on the machine, and the MOCU library, which
provides real-time API to the applications. By minimizing the communication
between them, we achieved negligible overhead for using Mobile CUDA. In the
performance evaluation using CUDA applications from Rodinia benchmark, we
demonstrated that Mobile CUDA reduced the total execution time by 18.4 %,
and total energy consumption by 5.5 %.

Future work includes the automatic, intelligent co-scheduling of applications
with differing resource requirements onto the same GPU, dealing with device-
level dynamic memory allocations when source is available, and possibly merging
the features with HHRT.
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