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Abstract. We refine results about relations between Markov chains and
synchronizing automata. We express the condition that an automaton is
synchronizing in terms of linear algebra, and obtain upper bounds for
the reset thresholds of automata with a short word of a small rank. The
results are applied to make several improvements in the area.

We improve the best general upper bound for reset thresholds of finite
prefix codes (Huffman codes): we show that an n-state synchronizing
decoder has a reset word of length at most O(n log3 n). Also, we prove
the Černý conjecture for n-state automata with a letter of rank at most
3
√

6n − 6. In another corollary, based on the recent results of Nicaud, we
show that the probability that the Černý conjecture does not hold for a
random synchronizing binary automaton is exponentially small in terms
of the number of states. It follows that the expected value of the reset
threshold of an n-state random synchronizing binary automaton is at
most n7/4+o(1).

Moreover, reset words of the lengths within our bounds are com-
putable in polynomial time. We present suitable algorithms for this task
for various classes of automata for which our results can be applied.
These include (quasi-)one-cluster and (quasi-)Eulerian automata.

1 Introduction

We deal with deterministic finite automata (DFA) A = (Q,Σ, δ), where Q is a
non-empty set of states, Σ is a non-empty alphabet, and δ : Q × Σ �→ Q is the
complete transition function. We extend δ to Q × Σ∗ and 2Q × Σ∗ as usual, and
for the image (resp. preimage) of a set S under a word w we write shortly S.w
(resp. S.w−1). We denote Σ≤c = {w ∈ Σ∗ : |w| ≤ c}, the set of all words over Σ
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of length at most c. The empty word is denoted by ε. Throughout the paper, by
n we denote the cardinality |Q|, and by k we denote |Σ|.

A word w compresses a subset S ⊆ Q if |S.w| < |S|. Then we say that S is
compressible. The rank of a word w is |Q.w|. A reset word or a synchronizing
word is a word w ∈ Σ∗ of rank 1, that is, w takes the automaton to a particular
state no matter of the current state. An automaton is called synchronizing if
it possesses a reset word. An example of a synchronizing automaton from the
Černý series [12] is presented in Fig. 1 (left). One can verify that its shortest
reset word is ba3ba3b. The length of the shortest reset word is called the reset
threshold and is denoted by rt(A ).
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Fig. 1. The automaton C4 and the associated Markov chain for P (a) = 0.7, P (b) = 0.3

For detailed introduction to the theory of synchronizing automata we refer
reader to the surveys [19,27], and for the review of relations with coding theory
to [17]. For various applications, reset words allow to reestablish the control
under the system modeled by an automaton. So, the reset threshold serves as a
natural measure of synchronization. Thus, it is important to compute the reset
threshold from both theoretical and practical points of view.

The Černý conjecture, which is arguably the most longstanding open problem
in the combinatorial theory of finite automata, states that the reset threshold of
a synchronizing automaton is at most (n−1)2. This bound would be tight, since
Černý [12] constructed for each n a synchronizing automaton Cn with this reset
threshold. Moreover, the best upper bound known so far for the reset threshold
of a synchronizing n-state automaton is equal to n3−n

6 − 1 (for n ≥ 4) so is
cubic in n (see Pin [24]). Thus it is of certain importance to prove specific upper
bounds for various classes of synchronizing automata.

In this paper, we improve several results concerning reset thresholds. First,
we express the condition that an automaton is synchronizing in terms of linear
algebra, and derive upper bounds for automata with a word of a small rank
(Sect. 2). Then, we apply the results to improve upper bounds in several cases.
In Sect. 3 we show that the Černý conjecture holds for automata with a letter of
rank 3

√
6n − 6, which improves the previous logarithmic result [22]. Also, basing

on the recent results of Nicaud [20], we show that the Černý conjecture holds for
a random synchronizing binary automaton with probability exponentially (in n)
close to 1, and that the expected reset threshold is at most n7/4+o(1).
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The next important application of our results is an upper bound for the
length of the shortest reset words of finite prefix codes (Huffman codes), which
are one of the most popular methods of data compression. One of the problems
with compressed data is reliability in case of presence of errors in the compressed
text. Eventually, a single error may possibly destroy the whole encoded string.
One of the proposed solutions to this problem (for Huffman codes) are codes that
can be synchronized by a reset word, regardless of the possible errors. The reset
thresholds of binary Huffman codes was first studied by Biskup and Plandowski
[8,9], who showed a general upper bound of order O(n2 log n), where n is the
number of states of the decoder (equivalently, the number of words in the code).
They also proved that a word of this length can be computed in polynomial
time. The bound was later improved to O(n2) for a wider class of one-cluster
automata [2]. In Sect. 4 we prove an upper bound of order O(n log3 n). Note
that for some applications it can be also important to get bounds in terms of
the maximal length of the words in the code (see e.g. [11]).

Unlike the general case, the Černý conjecture has been approved for vari-
ous classes of automata such as circular [13,23], Eulerian [18] and one-cluster
automata with prime length cycle [26]. Later specific quadratic upper bounds
for some generalizations of these classes were obtained in [2,5]. However, no effi-
cient algorithm for finding reset words with lengths within the specified bounds
has been presented for these classes. Moreover, there is no hope to get a poly-
nomial algorithm for finding the shortest reset words in the general case, since
this problem has been shown to be FPNP[log]-hard [21]. Also, unless P = NP,
there is no polynomial algorithm for computing the reset threshold for a given
automaton within the approximation ratio nε for a certain ε > 0 even in the
case of a binary alphabet [15] (cf. also [6,16]).

In Sect. 5 we present polynomial algorithms for finding reset words of length
within the proven bounds. Our algorithms can be applied in particular to the
classes of decoders of finite prefix codes, and also to generalized classes of quasi-
Eulerian and quasi-one-cluster automata. Since from our results it is possible to
derive the bounds from [2,5,10,18,25,26], our algorithms apply to these bounds
as well.

The full version of this paper is available at [7].

2 Algebraic Synchronization Criterion

In this section we refine some results from [5], formulate the algebraic synchro-
nization criterion, and derive upper bounds for reset thresholds of automata with
a word of a small rank. For this purpose, we associate a natural linear structure
with an automaton A . By R

n we denote the real n-dimensional linear space of
row vectors. Without loss of generality, we assume that Q = {1, 2, . . . , n} and
then assign to each subset K ⊆ Q its characteristic vector [K] ∈ R

n, whose i-th
entry is 1 if i ∈ K, and 0, otherwise. For q ∈ Q we write [q] instead of [{q}] to
simplify the notation. By 〈S〉 we denote the linear span of S ⊆ R

n. The n × n
identity matrix is denoted by In.
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Each word w ∈ Σ∗ corresponds to a linear transformation of Rn. By [w] we
denote the matrix of this transformation in the standard basis [1], . . . , [n] of Rn.
For instance, if A = C4 from Fig. 1 (left), then

[a] =
(

0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

)
, [b] =

(
1 0 0 0
0 1 0 0
0 0 1 0
1 0 0 0

)
, [ba] =

(
0 1 0 0
0 0 1 0
0 0 0 1
0 1 0 0

)
.

Clearly, the matrix [w] has exactly one non-zero entry in each row. In par-
ticular, [w] is row stochastic, that is, the sum of entries in each row is equal to
1. In virtue of row-vector notation (apart from [5]), we get that [uv] = [u][v]
for every two words u, v ∈ Σ∗. By [w]T we denote the transpose of the matrix
[w]. One easily verifies that [S.w−1] = [S][w]T . Let us also notice that within
this definition the (adjacency) matrix of the underlying digraph of A is equal
to

∑
a∈Σ[a].

Recall that a word w is a reset word if q.w−1 = Q, for some state q ∈ Q.
Thus, in the language of linear algebra, we can rewrite this fact as [q][w]T = [Q].
For two vectors g1, g2 ∈ R

n, we denote their usual inner (scalar) product by
(g1, g2). We say that a vector (matrix) is positive (non-negative) if it contains
only positive (non-negative) entries. Let p ∈ R

n
+ be a positive row stochastic

vector. Then ([Q], p) = 1, and a word w is a reset word if and only if there exists
q ∈ Q such that

([q.w−1], p) = ([q][w]T , p) = ([q], p[w]) = 1.

Now we need to recall a few properties of Markov chains. A Markov chain
of an automaton A is the random walk process of an agent on the underlying
digraph of A where each time an edge labeled by ai is chosen according to a
given probability distribution P : Σ �→ R. The matrix S(A , P ) =

∑k
i=1 P (ai)[ai]

is called the transition matrix of this Markov chain. An example of a Markov
chain associated with the automaton A = C4 is presented in Fig. 1 (right) for
P (a) = 0.7, P (b) = 0.3 and its stationary distribution is α = (10

37 , 10
37 , 10

37 , 7
37 ).

A non-negative square matrix M is primitive if for some d > 0, the matrix Md

is positive. It is well known that if A is strongly connected and synchronizing,
then the matrix of the underlying digraph of A is primitive, and so is the matrix
of a Markov chain of A for any positive probability distribution P (see [1,5]).
The following proposition is due to the well known Perron-Frobenius theorem.

Proposition 1. Let M be a row stochastic n×n matrix. Then there exists a sta-
tionary distribution α ∈ R

n, that is, a non-negative stochastic vector satisfying
αM = α. Moreover, if M is primitive then α is unique and positive.

Call a set of words W ⊆ Σ∗ complete for a subspace V ≤ R
n, with respect to a

vector g ∈ V , if
〈g[w] | w ∈ W 〉 = V.

For a subset S ⊆ Q we define VS = 〈[p] | p ∈ S〉 ≤ R
n.

We aim to strengthen [5, Theorem 9]. Namely, we show that the condition
that A is synchronizing is not necessary if we require completeness for the
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corresponding set of words, and that only completeness with respect to the
stationary distribution of A is required. As in [5] we construct an auxiliary
automaton. We fix two positive integers d1, d2 and two non-empty sets of words
W1 ⊆ Σ≤d1 , W2 ⊆ Σ≤d2 . Consider the automaton

Ac(W1,W2) = (R,W2W1, δAc
),

where R = {q.w | q ∈ Q, w ∈ W1} and W2W1 = {w2w1 ∈ Σ∗ | w2 ∈ W2, w1 ∈
W1}. The transition function δAc

is defined in compliance with the actions of
words in A , i.e. δAc

(q, w) = δ(q, w), for all q ∈ R and w ∈ W2W1. Note that
δAc

is well defined because q.w ∈ R for all q ∈ Q and w ∈ ΣAc
. Without loss of

generality we may assume that R = {1, 2, . . . , r} where r = |R|.
Let P1 and P2 be some positive probability distributions on the sets W1 and

W2, respectively, and denote [Pi] =
∑

w∈Wi
Pi(w)[w] for i = 1, 2. Then the r × r

submatrix formed by the first r rows and the first r columns of the matrix

S(Ac, P2P1) = [P2][P1] =
∑

w1∈W1,w2∈W2

P1(w1)P2(w2)[w2][w1]

is the transition matrix of the Markov chain on Ac. By Proposition 1 there exists
a steady state distribution α = α(Ac) ∈ VR, that is, a stochastic vector (with
first r non-negative entries) satisfying αS(Ac, P2P1) = α.

For a vector g ∈ R
n
+, by DS(g) we denote the number of different positive

sums of entries of g, i.e. DS(g) = |{(g, z) | z ∈ {0, 1}n}| − 1.

Theorem 1. Let A = (Q,Σ, δ) be an automaton and let

B = Ac(W1,W2) = (R,W2W1, δB),

be the automaton defined as above. If W2W1 is complete for VR with respect to
α, and w0 ∈ Σ∗ is a word with Q.w0 = R, then:

1. If x ∈ VR \ 〈[R]〉, then there exists w ∈ W2W1 such that (x, α[w]) > (x, α);
2. B is synchronizing and rt(B) ≤ DS(α) − 1;
3. A is synchronizing and

rt(A ) ≤
{

|w0| + rt(B)(d1 + d2) ≤ |w0| + (DS(α) − 1)(d1 + d2) if R �= Q,
1 + (DS(α) − 2)(d1 + d2) if R = Q.

Proof. Let x ∈ VR \ 〈[R]〉. We have

(x, [q]) �= (x, α) for some q ∈ R. (1)

Since [q] ∈ VR and W2W1 is complete for VR with respect to α, we can
represent it as follows:

[q] =
∑

w1∈W1,w2∈W2

λw1,w2α[w2][w1] for some λw1,w2 ∈ R. (2)
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Multiplying (2) by the vector [Q] we obtain

1 = ([q], [Q]) =
∑

w1∈W1,w2∈W2

λw1,w2(α[w2][w1], [Q]) =
∑

w1∈W1,w2∈W2

λw1,w2 . (3)

Multiplying (2) by the vector x we obtain

([q], x) =
∑

w1∈W1,w2∈W2

λw1,w2(α[w2][w1], x). (4)

Arguing by contradiction, suppose (x, α[u2][u1]) = (x, α) for every u1 ∈ W1,
u2 ∈ W2. Then by (3) and (4) we get that ([q], x) = (x, α) contradicts (1). Hence
(x, α[u2][u1]) �= (x, α), for some u1 ∈ W1, u2 ∈ W2.

Since α[P2][P1] = α, we have either (x, α[u2][u1]) > (x, α) or (x, α[v2][v1]) >
(x, α) for some other v1 ∈ W1, v2 ∈ W2. Thus Claim 1 follows.

The proof of Claims 2 and 3 follows from an application of the greedy exten-
sion algorithm from Sect. 5. �

Remark 1. If W2 is complete for R
n with respect to some vector g, then W2W1

is complete for VR with respect to g.

Criterion 1. Let α be a stationary distribution of the Markov chain associated
with a strongly connected n-state automaton A by a given positive probability
distribution P on the alphabet Σ. Then A is synchronizing if and only if there
exists a set of words W which is complete for R

n with respect to α.

Proof. If A is synchronizing then for each state q ∈ Q there is a reset word wq

such that Q.wq = q. Hence, W = {wq | q ∈ Q} is complete for R
n with respect

to α, because α[wq] = [q].
Let us prove the opposite direction. Set

W1 = {ε}, W2 = Σ≤n−1, and [P2] =
1
n

n−1∑
i=0

[P ]i.

Then α[P2] = α, and W2 is complete for R
n with respect to α. Hence A is

synchronizing by Theorem1. �

Now we can provide an upper bound for the reset threshold, if we can find a
short word of a small rank.

Theorem 2. Let A = (Q,Σ, δ) be a synchronizing automaton. Then there is a
unique (strongly connected) sink component S = (S,Σ, δ). Let w be a word and
denote r = |Q.w|. Let 0 < d < n be the smallest positive integer such that Σ≤d is
complete for VS with respect to any stochastic vector g ∈ VS and for each q ∈ Q
there is a word uq ∈ Σ≤d such that q.uq ∈ S ∩ Q.w. Then

rt(A ) ≤
{

(|w| + d)
(

r3−r
6

)
− d if r ≥ 4;

|w| + (|w| + d)(r − 1)2 if r ≤ 3.
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Proof. Let W1 = {w}, W2 = Σ≤d, w0 = w, and let P1, P2 be arbitrary positive
distributions on W1 and W2, respectively. We define B = Ac(W1,W2) as in
Theorem 1, and consider its sink component C = Sc(W1,W2) = (QC ,Σ,W2W1).
Clearly QC = Q.w ∩ S, and W2W1 is complete for VQC

≤ VS with respect to
any stochastic vector g ∈ VQC

. By Criterion 1 we obtain that C is synchronizing.
Since for each q ∈ Q.w there is a word uq ∈ W2 and so wq ∈ W2W1 (a letter of
B) which takes q to QC , the automaton B is synchronizing.

Since B is synchronizing, |Q.w0| = r, and |u| ≤ |w| + d for each u ∈ W2W1,
we have that rt(A ) ≤ |w|+rt(B)(|w|+d). By Pin’s bound for the reset threshold
in the general case [24], rt(B) ≤ r3−r

6 − 1 for r ≥ 4. �

3 The Černý Conjecture and Random Automata

Using the new bound, we can extend the class of automata for which the Černý
conjecture is proven. In particular, we can improve the result from [22], where the
Černý conjecture is proven for automata with a letter of rank at most 1+log2 n.

Corollary 1. Let A = (Q,Σ, δ) be a synchronizing automaton. If there is a
letter of rank r ≤ 3

√
6n − 6, then A satisfies the Černý conjecture.

Another corollary concerns random synchronizing automata. We consider the
uniform distribution Ps on all synchronizing binary automata with n states,
which is formally defined by Ps(A) = P (A)/Pn, where P is the uniform distri-
bution on all n2n binary automata, and Pn is the probability that a uniformly
random binary automaton is synchronizing. It is known that Pn tends to 1 as n
goes to infinity [4,20].

Given an arbitrary small ε > 0 and n large enough, Nicaud [20] proved that
with probability at least 1 − O(n−1/8+ε) a uniformly random binary automaton
has a reset word of length n1+ε. He also proved that with probability at least
1 − O(exp(n−ε/4)), some word of length n3/4+3ε(1 + o(1)) has rank at most
n1/4+2ε. Since the probability that a uniformly random binary automaton is
synchronizing tends to 1, this also holds with asymptotically at least the same
probability for random synchronizing binary automata. The following statement
is a straightforward consequence of this result and our Theorem2.

Corollary 2. For any ε > 0 and n large enough, with probability at least
1 − O(exp(n−ε/4)), a random n-state synchronizing automaton with at least two
letters has a reset word of length at most n7/4+6ε(1 + o(1)), and so satisfies the
Černý conjecture. Therefore, the expected value of the reset threshold is at most
n7/4+o(1).

4 Synchronizing Finite Prefix Codes

A finite prefix code (Huffman code) T is a set of N (N > 0) non-empty words
{w1, . . . , wN} from Σ∗, such that no word in T is a prefix of another word in T .
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A finite prefix code T is maximal if adding any word w ∈ Σ∗ to T does not
result in a finite prefix code. We consider only maximal prefix codes. A reset
word for the code T is a word w such that for any u ∈ Σ∗ the word uw is a
sequence of words from T .

One can easily see that a finite prefix code corresponds naturally to a DFA
called the decoder, whose states are proper prefixes of words from this code [9].
Formally, for a finite prefix code T we have the corresponding decoder AT , which
is the DFA (Q,Σ, δ) with Q = {qv | v is a proper prefix of a word in T }, and δ
defined as follows:

δ(qv, a) =

{
qva if va �∈ T ;
qε otherwise.

Clearly, a reset word w for a code is a reset word for its decoder, and Q.w = {qε}.
A decoder naturally corresponds to a rooted k-ary tree, thus the number of states
n = (kN − 1)/(k − 1), and it does not depend on the length of the words in the
code.

In [8,9] Biskup and Plandowski gave an O(nh log n) upper bound for the
reset thresholds of binary decoders, where h is the maximum length of a word
from the code. Since h can be linear in terms of n, this is an O(n2 log n) general
bound. Later, it was improved to O(n2) in [2]. However, in the worst case, only
decoders with a reset threshold in Θ(n) are known [9], and it was conjectured
that every synchronizing decoder possess a synchronizing word of length O(n).
Thus, there was a big gap between the upper and lower bounds for the worst
case. The following lemma is a simple generalization of [9, Lemma 14] to k-ary
decoders.

Lemma 1. Let AT = (Q,Σ, δ) be the n-state k-ary synchronizing decoder of a
finite prefix code T . There is a word w of rank r ≤ �logk n� and length r.

Since there exists a short word of small rank r, we can apply Theorem 2 to
improve the general upper bounds for the reset threshold of decoders.

Corollary 3. Let AT = (Q,Σ, δ) be the n-state k-ary synchronizing decoder of
a finite prefix code T , and let r = �logk n�. Then

rt(AT ) ≤
{

2 + (r + n − 1)( r3−r
6 − 1) if r ≥ 4;

2 + (r + n − 1)(r − 1)2 if r ≤ 3.

If the size k of the alphabet is fixed, Corollary 3 yields O(n log3 n) upper bound
for the reset threshold, and O(n log2 n) upper bound for the length of a word
compressing a pair of states of a decoder.

Note that the word w from Lemma 1 can be easily computed in O(n2) time,
since there are O(n) words of length at most �logk n�. Then a reset word within
the bound of Corollary 3 can be computed in polynomial time by the algorithm
discussed in Sect. 5.
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5 Finding Reset Words of the Bounded Lengths

Throughout this section suppose we are given a strongly connected automaton
A , a word w0 such that Q.w0 = R for some R ⊆ Q, a non-empty polynomial
set of words W1 with a positive distribution P1, and a set of words W2 with a
positive distribution P2, which satisfy Theorem 1.

Consider the case when W2 is of polynomial size. Then we can calculate the
dominant eigenvector α ∈ R

n of the matrix [P2][P1]. Under certain assumptions
on rationality of the distributions, it can be done in polynomial time.Next, depend-
ing on whether the bound is obtained by Theorem2 or Claim 2 of Theorem 1, we
use either a greedy compressing algorithm (such as in [14]), or the following greedy
extension algorithm, respectively.

The Greedy Extension Algorithm. We start from x0 = [q] for q ∈ R and
by Claim 1 of Theorem 1 find u0 ∈ W2W1 such that (x0, α[u0]) > (x0, α). For
i = 0, 1, . . . following this way until xi ∈ 〈[R]〉, find for xi+1 = xi[ui]t a word
ui+1 ∈ W2W1 such that (xi+1, α[ui+1]) > (xi+1, α). Since xi is a 1-0 vector, we
need at most DS(α) − 1 steps until xi = [q]([uiui−1 . . . u0])t = [R]. As the result
we return the word w0uiui−1 . . . u0. Notice that in the case when R = Q we can
choose q such that for some letter a ∈ Σ, we have |q.a−1| > 1 and set u0 = a. �
The problem is that usually W2 is given by Σ≤d for some d = poly(n). The
following reduction procedure allows to replace potentially exponential set W2

with a polynomial set of words W , whose the longest words are not longer than
those of W2.

The Reduction Procedure. The procedure takes a number d ≥ 0, and returns
a polynomial subset W ⊆ Σ≤d such that 〈W 〉 = 〈Σ≤d〉 and the maximum length
of words from W is the shortest possible.

We start with V0 = {In} and W = {ε}. In each iteration i ∈ {1, 2, . . .} we
first set Vi+1 = Vi. Then we subsequently check each letter a ∈ Σ and each word
u ∈ W of length i: If the matrix [ua] does not belong to the subspace Vi+1, we
add the word ua to W and the matrix [ua] to the basis of Vi+1. We stop the
procedure at the first iteration where nothing is added.

Since in an i-th iteration we have considered a ∈ Σ and u ∈ W of length less
than i in the previous iterations, by induction we get

Vi = 〈In(W ∩ Σ≤i)〉 = 〈InΣ≤i〉.

It follows from the ascending chain argument (see e.g. [18,26]) that for some
j < n we have

Vj = Vj+1 = . . . .

Thus the procedure is stopped at the first such j, and j ≤ min{d, n−1}. We get
that 〈W 〉 = Vj = 〈Σd〉. Since in each step we add only independent matrices as
the basis of Vi+1, we get |W | = dim(Vj). Also the lengths of words in W are at
most j ≤ min{d, n − 1}. �
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Using the reduction procedure for total completeness we can replace Σd from
Theorem 2 by a polynomial W which is also complete for VS with respect to any
stochastic vector g ∈ VS . Hence, this yields a polynomial time algorithm finding
reset words of lengths within the bound of Theorem2.

In some situations we are interested only in completeness with respect to a
given vector α. Then we can find a reduced set W of potentially shorter words
than that obtained by the general reduction procedure.

The Reduction Procedure for α-Completeness. The procedure takes a
number d ≥ 0 and a vector α ∈ R

n, and returns a polynomial subset W ⊆ Σ≤d

such that 〈αW 〉 = 〈αΣ≤d〉 and the maximum length of words from W is the
shortest possible.

We just follow the general reduction procedure, where instead of matrix
spaces we consider vector spaces. It is enough to replace I0 by α, and we obtain
〈αW 〉 = Vj = 〈αΣ≤d〉. �

Remark 2. Instead of Σ≤d the reduction procedures can also reduce any set
of words W ′ ⊂ Σ∗ that is factor-closed. A set of words W ′ is factor-closed if
uvw ∈ W ′ implies that uw ∈ W ′, for each u, v, w ∈ Σ∗.

5.1 Synchronizing Quasi-Eulerian Automata

Let α be the probability distribution on Σ≤d induced by a probability distrib-
ution P : Σ �→ R

+ on the alphabet, that is, [P2] = 1
d+1

∑d
i=0[P ]i. Suppose that

d < poly(n) is such that Σ≤d is complete for R
n with respect to α. Using the

reduction procedure, we can construct a set U of at most n words such that
〈αU〉 = 〈αΣ≤d〉 = R

n. However, α is not necessarily the stationary distribution
for some positive probability distribution on U . The following lemma solves this
problem.

Lemma 2. Let W = {au | u ∈ Suff(U), a ∈ Σ}, where Suff(U) is the set of
proper suffixes of U . Then there exists a positive probability distribution on W
such that α is the corresponding stationary distribution.

As an application we get a polynomial algorithm for finding a reset word for the
class of quasi-Eulerian automata, a generalization of Eulerian automata. We call
an automaton A quasi-Eulerian with respect to an integer c ≥ 0 if it satisfies
the following two conditions:

1. there is a subset Ec ⊆ Q containing n − c states such that only one of these
states, say s, can have incoming edges from the set Q \ Ec;

2. there exists a positive probability distribution P on Σ such that the columns
of the matrix [P ] that correspond to the states from Ec \ {s} sum up to 1.

Within this definition, for c = 0 we get so-called pseudo-Eulerian automata,
and if additionally P is uniform on Σ, then we get Eulerian automata. The
upper bound 1+(n−2)(n−1) on the reset thresholds of Eulerian automata was
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found by Kari [18], and extended to the class of pseudo-Eulerian automata by
Steinberg [25]. These results were generalized in [5, Corollary 11] by showing the
upper bound 2c(n − c + 1)(n − 1) for the class of quasi-Eulerian automata with
respect to a non-negative integer c. The following theorem gives a polynomial
time algorithm for finding reset words satisfying these bounds.

Theorem 3. Given a synchronizing automaton A which is quasi-Eulerian with
respect to an integer c ≥ 0, there is a polynomial time algorithm for finding a
reset word of length at most:

{
2c(n − c + 1)d if c > 0;
1 + (n − 2)d if c = 0,

where d ≤ n − 1 is the smallest integer such that Σ≤d is complete.

5.2 Synchronizing Quasi-One-Cluster Automata

The underlying digraph of a letter a ∈ Σ is the digraph with edges labeled by
a. Every connected component, called cluster, in the underlying digraph of a
letter has exactly one cycle, and possible some trees rooted on this cycle. An
automaton A = (Q,Σ, δ) is called one-cluster if there is a letter a ∈ Σ whose
underlying digraph has only one cluster. An automaton A is quasi-one-cluster
with respect to an integer c ≥ 0 if it has a letter whose underlying digraph has
a cluster such that there are at most c states in the cycles of all other clusters.
Clearly, one-cluster automata are quasi-one-cluster with respect to c = 0.

The Černý conjecture was proved for one-cluster automata with prime length
cycle [26]. Also, quadratic bounds for the reset thresholds in the general case of
one-cluster automata were presented [2,3,10,25]. In [5] the upper bound 2c(2n−
c − 2)(n − c + 1) was proved for quasi-one-cluster with respect to c.

The following theorem gives a polynomial algorithm finding a reset word for
quasi-one-cluster automata, whose length is of the mentioned bounds. It can be
also easily modified to deal with the bounds from [10] for one-cluster automata.

Theorem 4. Let A be a synchronizing automaton that is quasi-one-cluster with
respect to a letter a and c ≥ 0. Let C be the largest cycle of a and h be the maximal
height of the trees labeled by a. Let W1 = {ah+i | i ∈ {0, . . . , |C| − 1}}. Then
there is a polynomial algorithm for finding a reset word for A of length at most

{
2c(2n − c)(n − c + 1) if c > 0;
1 + (2n − r)(n − 2) if c = 0,

where r is the smallest dimension of 〈W1β〉 for β ∈ VC \ 〈[C]〉. In particular, if
|C| is prime then r = |C|.
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