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Abstract. Finite-state devices with a read-only input tape that may be
equipped with further resources as queues or pushdown stores are con-
sidered towards their ability to perform reversible computations. Some
aspects of the notion of logical reversibility are addressed. We present
some selected results on the decidability, uniqueness, and size of minimal
reversible deterministic finite automata. The relations and properties of
reversible automata that are equipped with storages are discussed, where
we exemplarily stick with the storage types queue and pushdown store.
In particular, the computational capacities, decidability problems, and
closure properties are the main topics covered, and we draw attention to
the overall picture and some of the main ideas involved.
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1 Introduction

Reversibility is a practically motivated property that has been investigated for
several automata models. Computers can be seen as information processing
devices which are physical realizations of such abstract models. From this view-
point it is natural to study the fundamental physical principle of reversibility,
which means in essence that every configuration has at most one unique succes-
sor configuration and at most one unique predecessor configuration. Moreover,
in [29] it has been argued that only the logically irreversible operations in a
computer necessarily dissipate energy by generating a corresponding amount of
entropy for every irreversibly erased bit of information. This observation strongly
suggests to study reversible computations without loss of information. A main
question in this setting is whether or not the computation of a given automaton
model can be made reversible in general.

The first investigations of reversible computations date back to the sixties
of the last century when the massively parallel model of cellular automata was
studied in this respect. It has been shown that the injectivity of the global tran-
sition function is equivalent to the reversibility of the automaton. It turned out
that global reversibility is decidable for one-dimensional cellular automata [1],
whereas the problem is undecidable for higher dimensions [16]. Nowadays it
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is known from [33] that every, possibly irreversible, one-dimensional cellular
automaton can always be simulated by a reversible one-dimensional cellular
automaton in a constructive way.

Later, in [6] reversible sequential machines, more precisely, Turing machines
have been studied. Again, a fundamental result is that every Turing machine
can be made reversible or, in other words, that any recursively enumerable lan-
guage can be accepted in a reversible way. Given this result, the question for
the efficiency of such a simulation almost suggests itself. Let the irreversible
computation take t time and s space. In [7] a first efficient reversible simulation
is proposed that uses s · tlog(3) time and s · log(t) space. So, for maximal t it
uses s2 space. In [30] a different method has been shown that uses only O(s)
space but at the cost of exponential time. In [9] a general upper bound on the
tradeoff between time and space that suffices for the reversible simulation of
irreversible computations is proved. It has the exponential time simulation and
the quadratic space simulation as extremes. The result shows that it is possible
to achieve subexponential time and subquadratic space simultaneously.

Valuable surveys with further references to literature are, for example, [17] for
cellular automata and [34], where one may find a summary of results on reversible
Turing machines, reversible cellular automata, and other reversible models such
as logic gates, logic circuits, or logic elements with memory, and [20] for further
aspects of reversibility (see also [4,21,22,25] for further investigations).

Logical reversibility has been studied also for further models such as
time-bounded Turing machines [5], two-way multi-head finite automata [3,35],
one-way multi-head finite automata [24], queue automata [26], and limited
automata [27].

Here we consider some aspects of reversibility in sequential devices that have
a read-only input tape and may be equipped with further storage resources.
The discussion is mainly restricted exemplarily to finite automata as well as to
queue and pushdown automata. The notion of reversibility and its possible defi-
nitions are discussed. Then we turn to the size of reversible finite automata. It is
well known that the minimal DFA accepting a given regular language is unique
up to isomorphism. So the relations between minimality and reversibility are of
natural interest, in particular, questions concerning the decidability, uniqueness,
and the size of a minimal reversible DFA in terms of the size of the equiva-
lent minimal DFA. Finally, the relations and properties of reversible automata
that are equipped with a pushdown store or a queue are discussed, where the
computational capacities, decidability problems, and closure properties are the
main topics.

2 Preliminaries and the Notion of Logical Reversibility

The reader is assumed to be familiar with the basic notions of automata theory as
contained, for example, in [12,15]. In the present paper we will use the following
notational conventions. An alphabet Σ is a non-empty finite set, its elements are
called letters or symbols. We write Σ∗ for the set of all words over the finite
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alphabet Σ. The empty word is denoted by λ, and Σ+ = Σ∗ \ {λ}. The reversal
of a word w is denoted by wR and for the length of w we write |w|. We use ⊆
for inclusions and ⊂ for strict inclusions. In the following, two devices are said
to be equivalent if they accept the same language.

The devices we are interested in are computing machines with a finite number
of discrete internal states. The machines have a read-only input tape, may be
equipped with further resources, and evolve in discrete time, where each compu-
tation step is driven by a deterministic transition function. Given a configuration
representing the complete “global state” of a device, the transition function is
used to compute the successor configuration. The transition function depends on
the current internal state and on the status of further resources the machine is
equipped with. It gives the successor state and maybe changes the status of the
resources. In general, these devices are considered in terms of formal language
recognition. However, reversibility is a property of machines and not a prop-
erty of languages. So, notions as “the family of reversible regular languages”
are meaningless unless the reversibility of a regular language is defined by the
reversibility of a certain type of device that accepts it. For example, the deter-
ministic finite automaton (DFA) depicted in Fig. 1 accepts the regular language
a∗bb∗. Since any equivalent DFA must have a state with two incoming edges
which are labeled by the same input symbol, it cannot be reversible. So, from the
viewpoint of (deterministic) finite automata the language a∗bb∗ is irreversible.
However, in [19] it has been shown that reversible two-way deterministic finite
automata characterize the regular languages. This implies that every regular
language is accepted by some reversible two-way deterministic finite automaton
and, thus, from the viewpoint of (deterministic) two-way finite automata the
language a∗bb∗ is reversible.

s0 s1

a b

bstart

Fig. 1. An irreversible DFA accepting the language a∗bb∗, that cannot be accepted by
any reversible DFA.

Basically, the definition of logical reversibility of some type of device requires
that the device is deterministic and that any configuration must have at most one
predecessor. But these requirements do not define reversibility sufficiently. For
example, in which way is the predecessor configuration computed? May we use a
universal device? Do we have to use a device of the same type? Or else a device
with the same computational power? The idea to step the computation back
and forth anticipates not to use a universal machine in general. For the latter
question consider again the DFA of Fig. 1 that accepts the language a∗b+. If the
predecessor configuration has to be computed by a DFA as well, the given DFA
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is irreversible. Once in state s1, it is impossible to get back uniquely on input
symbol b. However, if a DFA is equipped with an input window of size two, it
can compute the predecessor state. Moreover, deterministic finite automata with
window size two have the same power as DFA. So, if the predecessor configuration
may be computed with lookahead two, the given DFA is reversible. Further
results on gradual reversibility dependent on the size of lookaheads can be found
in [2,28].

Another question that comes up in connection with the computability of
predecessor configurations concerns the set of configurations that count. Do we
have to consider all possible configurations as potential predecessors? Or only
configurations that are reachable from some initial configurations, that is, con-
figurations that actually occur in computations? Consider for example the DFA
in Fig. 2. It is reversible for all reachable configurations, but it is irreversible if
all possible configurations count. Reversibility on reachable configurations is a
wider notion than reversibility on all configurations. It turns out that this makes
a big difference if machines are considered, but it does not make any difference
if languages are considered (see Sect. 4).

s1

s0 s3

s2 b

a

a

a
b

start

a a a b b b . . .

s3backward

Fig. 2. [20] A DFA (left) and an unreachable configuration (right).

Unless stated otherwise, in the sequel we tacitly make the appointment that
the backward steps of a computation are performed by another device of the
same type and that all configurations count.

3 Size of Reversible Finite Automata

It is well known that the minimal DFA accepting a given regular language is
unique up to isomorphism. So the relations between minimality and reversibil-
ity are of natural interest, in particular, questions concerning the decidability,
uniqueness, and the size of a minimal reversible DFA in terms of the size of the
equivalent minimal DFA.

Before we turn to the discussion of these relations, we recall some definitions.
A deterministic finite automaton (DFA) is a system M = 〈S,Σ, δ, s0, F 〉, where S
is the finite set of internal states, Σ is the alphabet of input symbols, s0 ∈ S is the
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initial state, F ⊆ S is the set of accepting states, and δ : S ×Σ → S is the partial
transition function. Note, that here the transition function is not required to be
total. By δ← : S × Σ → 2S , with δ←(q, a) = { p ∈ S | δ(p, a) = q }, we denote the
reverse transition function of δ.

A DFA is reversible if every letter a ∈ Σ induces an injective partial mapping
from S to itself via the mapping δa : S → S with p �→ δ(p, a). In this case,
the reverse transition function δ← can be seen as a (partial) injective function
δ← : S × Σ → S.

A restricted variant of reversible deterministic finite automata has been
introduced and studied in the context of algorithmic learning theory in [2]; see
also [18]. The definition there requires that any reversible DFA has only one sole
accepting state. Sometimes these devices are called bideterministic DFA. For
this notion of reversibility the question for uniqueness and the size of a minimal
reversible DFA is settled, as a language L is accepted by a bideterministic DFA
if and only if the minimal DFA for L is reversible and has a unique final state
(see [36]).

Later this concept of reversibility has been extended in [36], so that multi-
ple accepting as well as multiple initial states are allowed. In particular, this
means that reversible DFA in this sense are nondeterministic devices. How-
ever, even these devices cannot accept the regular language a∗b∗ reversibly [36].
A further generalization of reversibility to quasi-reversibility, which even allows
nondeterministic transitions was introduced in [32] (see also [11]). However,
these quasi-reversible DFA may be exponentially more succinct than the minimal
reversible DFA.

Next we turn to discuss the question for decidability, uniqueness, and the
size of a minimal reversible DFA in the standard definition from above.

The example depicted in Fig. 3 answers the question whether a minimal
reversible DFA is unique.
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Fig. 3. Non-isomorphic minimal reversible DFA for the finite language L = {aa, ab, ba}.

Theorem 1 ([14]). Let L be a regular language accepted by some reversible DFA.
Then a minimal reversible DFA accepting L is not necessarily unique, even not
up to isomorphism.



Reversible and Irreversible Computations 43

3.1 Trade-Offs

The first exponential lower bound for the state trade-off between a minimal
DFA and an equivalent minimal reversible DFA originates in [13]. By the 2n-
fold concatenation L2n of the finite language L = {aa, ab, ba} a lower bound
of Ω(1.001n) has been derived. So, the minimal reversible finite automaton for
some language can be exponentially larger than the minimal automaton. In [14]
the exact number of states of a minimal reversible DFA for the language L2n has
been shown; it is 22n+2 − 3. Since the minimal DFA for L2n has 6n + 1 states,
the blow-up in the number of states is in the order of 2n/3 = ( 3

√
2)n, which is

approximately 1.259n.
However, in the same paper [14] the lower bound has been improved.

A witness DFA is depicted in Fig. 4. Notice that no transitions are defined from
the sole accepting state. Clearly, the DFA is minimal, but not reversible. How-
ever, since the language accepted is finite, one readily sees that it can be accepted
by a reversible DFA. It is shown that the number of states of the minimal equiv-
alent reversible DFA is

∑n
i=1 Fn, where Fn denotes the nth Fibonacci number.

This is equal to Fn+2 − 1. From the closed form

Fn =
1√
5

·
(

1 +
√

5
2

)n

− 1√
5

·
(

1 − √
5

2

)n

and the fact that
(

1−√
5

2

)n

tends to zero, for large n, we see that the state blow-

up is in the order of
(

1+
√
5

2

)n

, that is, approximately 1.618n, the golden ratio Φ

to the power of n.
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Fig. 4. [14] A minimal DFA, for n = 6 states, where the minimal equivalent reversible
DFA needs

∑n
i=1 Fi = Fn+2 − 1 states.

Theorem 2 ([14]). For every n with n ≥ 3 there is an n-state DFA over a
binary input alphabet accepting a reversible language, such that any equivalent
reversible DFA needs at least Ω(Φn) states with Φ = (1+

√
5)/2, the golden ratio.

It is worth mentioning that the lower bound for the witness languages of
Theorem 2 is for a binary alphabet. It can be increased at the cost of more
symbols. For a k-ary alphabet one can derive the lower bound from the k-ary
Fibonacci function Fn = Fn−1 + Fn−2 + · · · + Fn−k. For k = 3 the lower bound
is of order 1.839n and for k = 4 it is of order 1.927n. For growing alphabet sizes
the bound asymptotically tends to 2n−1, that is, Ω(2n−1). This is precisely the
upper bound (for arbitrary alphabet sizes).
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Theorem 3 ([14]). Let M be a minimal deterministic finite automaton with n
states, that accepts a reversible language. Then a minimal reversible determin-
istic finite automaton for L(M) has at most 2n−1 states.

3.2 Decidability

Now we turn to decidability questions in connection with (minimal) reversible
DFA. The first problem that comes into mind is the problem to decide whether a
given DFA is reversible or, more involved, whether it accepts a language that is
also accepted by some reversible DFA. The decision of the reversibility of DFA is
almost trivial. An inspection of the transition function and the set of accepting
states suffices. Moreover, this observation transfers also to languages accepted
by bideterministic automata in the notion of [2], because it is sufficient to verify
the reversibility of the minimal DFA for the language, which must have a unique
final state (see remark above). For languages accepted by nondeterministic DFA,
where the nondeterminism is limited to multiple initial states, it has been shown
in [36], that there is a polynomial time algorithm for testing whether the language
can be accepted by a reversible finite automaton.

For DFA the problem has been solved in [14] by proving the following struc-
tural characterization of regular languages that can be accepted by reversible
DFA in terms of their minimal DFA.

Theorem 4 ([14]). Let M = 〈S,Σ, δ, s0, F 〉 be a minimal deterministic finite
automaton. The language L(M) can be accepted by a reversible determinis-
tic finite automaton if and only if there do not exist useful states p, q ∈ S,
a letter a ∈ Σ, and a word w ∈ Σ∗ such that p �= q, δ(p, a) = δ(q, a), and
δ(q, aw) = q.

So, the characterization is based on the absence of a forbidden pattern in the
(minimal) deterministic state graph. Now, checking the absence of the forbidden
patterns yields an NL-complete decidability algorithm. The idea of proving NL
containment is to decide in NL whether a given DFA accepts a non-reversible
language by witnessing the forbidden pattern. Since NL is closed under comple-
mentation the containment of the reversibility problem within NL follows. For
the NL hardness, the NL-complete graph reachability problem is reduced to the
problem in question (with respect to deterministic logspace reductions).

Theorem 5 ([14]). Given a DFA M , the problem to decide whether L(M) is
accepted by any reversible DFA is NL-complete.

Another interesting decidability problem is to determine whether a given
reversible DFA is already minimal. Again with a forbidden pattern approach,
it is shown in [14] that the minimality of reversible DFA can be decided by an
NL-complete algorithm.

Theorem 6 ([14]). Given a DFA M , the problem to decide whether M is already
a minimal reversible deterministic finite automaton is NL-complete.
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A further result in [14] is the effective construction of a minimal reversible DFA
out of a given DFA that accepts a reversible language. The basic idea how to
make a given DFA reversible is very intuitive: as long as there is an irreversible
state, copy this state and all states reachable from it, and distribute the incoming
transitions to the new copies. The absence of the forbidden pattern ensures that
this procedure eventually comes to an end.

4 Queues and Pushdown Stores

This section is devoted to discuss relations and properties of reversible automata
that are equipped with a pushdown store (DPDA) or a queue (DQA). Their
reversible variants have been introduced and studied in [23] and [26], where only
reachable configurations are relevant for reversibility. However, for pushdown
automata and queue automata this makes a difference only for machines, that
is, there are machines that are reversible on reachable but not on all configura-
tions. It does not make a difference for languages, that is, for any machine that
is reversible on reachable configurations there is an equivalent machine that is
reversible on all configurations. So, from the perspective of languages and lan-
guage classes it is safe to stick with either notion of reversibility.

Recall that a queue automaton, at each time step, may remove or keep the
symbol at the front and enters a (possibly empty) symbol at the end of the
queue. The transition depends on the current state, the current input symbol
or λ, and the symbols currently at the front and end of the queue. Often queue
automata are defined that can only see the symbol at the front of the queue.
However, with an eye towards reversible computations we extend the definition
as described. It is worth mentioning that the additional knowledge of the last
queue symbol does not increase the computational power of queue automata. For
reverse computation steps the head of the input tape is again moved to the left.
Moreover, the roles played by the front and end of the queue are interchanged.
That is, in reverse computation steps the symbols are removed from the end and
added to the front of the queue. We denote the relation from one configuration
to the next by �.

A DQA M with transition function δ is said to be reversible (REV-DQA),
if there exists a reverse transition function δ← inducing a relation �← from
one configuration to the next, so that c′ �←

c if and only if c � c′, for any two
configurations c, c′ of M (Fig. 5). See [26] for detailed definitions.

The following example is interesting insofar as the language is known not to
be accepted by any reversible pushdown automaton.

Example 7 ([26]). The deterministic linear context-free language { anbn |
n ≥ 1 } is accepted by the quasi realtime REV-DQA with state
set {q0, q1, q2}, queue alphabet {A0, B0, B1}, initial state q0, set of
accepting states {q2}, and empty queue symbol ⊥, where the tran-
sition functions δ and δ← are as follows. Let X ∈ {A0, B0, B1}.
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· · · a b c · · ·

p A

B

X

...

· · · a b c · · ·

q B

X

Y

...

Fig. 5. Successive configurations of a REV-DQA, where δ(p, b, A, X) = (q, Y, remove)
(left to right) and δ←(q, b, B, Y ) = (p, A, remove) (right to left).

The main idea of the construction is to provide two flags for the enqueued
symbols, namely the letter and its index. The letters characterize whether the
machine is in mode A or mode B. The machine is in mode A while reading a’s
from the input and is in mode B when reading b’s and checking whether the num-
ber of a’s and b’s coincide. The index describes in which state the machine was
in its last step. This information is necessary for the reverse transition function.

In order to obtain a reversible automaton some transition rules have to be
provided that cannot be used in any reachable configuration. For example, let
the REV-DQA perform the transition δ(q0, a, A0, A0) = (q0, A0, keep). Then
the reverse transition rule δ←(q0, a, A0, A0) = (q0, λ, remove) has to be defined.
However, applying this rule to the unreachable configuration, where the queue
content is A0B1A0 gives the predecessor configuration with queue content A0B1.
This implies that the (forward) transition rule δ(q0, a, A0, B1) = (q0, A0, keep)
has to be defined as well. �

For the sake of completeness, recall that the transition function of a deterministic
pushdown automaton maps the current state, the current input symbol or λ, and
the symbol at the top of the stack to the successor state and a new (possibly
empty) string at the top of the stack.

A DPDA M with transition function δ is said to be reversible (REV-DPDA),
if there exists a reverse transition function δ← inducing a relation �← from one
configuration to the next, so that c′ �←

c if and only if c � c′, for any two
configurations c, c′ of M . See [23] for detailed definitions.
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4.1 Computational Capacity

In order to explore the general computational capacity of reversible queue
automata, the next result has been shown in [26]. It contrasts the situation
for pushdown automata and complements the situation for Turing machines,
where every Turing machine can be made reversible [6].

Theorem 8 ([26]). Let M be a deterministic queue automaton. Then there
exists a reversible queue automaton accepting the language L(M).

Combining this construction with the result from [37] that says that queue
automata without any time restriction describe the recursively enumerable lan-
guages, we obtain that reversible queue automata and Turing machines have the
same computational power.

Theorem 9 ([26]). Every recursively enumerable language is accepted by some
reversible queue automaton.

Giving a queue automaton arbitrary time for the computation may be a little
unfair compared with pushdown automata, because the former can always cycle
through the queue, thus, reading the whole storage content without destroying
any information. A natural possibility to overcome this advantage is studied
in [10] where queue automata are considered that work in quasi realtime. Quasi
realtime means that the number of consecutive λ-transitions is bounded by a
constant. It is shown in [10] that quasi realtime queue automata are less powerful
than queue automata without time restriction. However, for reversible queue as
well as pushdown automata there is the nice correspondence that both types of
automata if working in quasi realtime can be sped up to realtime.

Theorem 10 ([26]). For every quasi realtime reversible DQA an equivalent real-
time reversible DQA can effectively be constructed.

Theorem 11 ([23]). For every reversible DPDA an equivalent realtime
reversible DPDA can effectively be constructed.

Though both types of reversible devices have strictly less power when restricted
to (quasi) realtime computations, they still can accept all regular languages. The
idea is simply to simulate a given DFA, whereby the state history is remembered
in the storage.

On the other hand, any language known not to be accepted in realtime by a
pushdown automaton is a witness for the fact that reversible pushdown automata
are strictly weaker than the general pushdown automata. This raises the nat-
ural question whether all realtime DPDA languages are accepted by reversible
DPDA. This question has been answered negatively.

Theorem 12 ([23]). The realtime deterministic linear context-free language
{ anbn | n ≥ 0 } is not accepted by any reversible DPDA.
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A similar result for queue automata has been established in [26]. In particular,
a language Lmcp is exhibited which is accepted by some realtime queue automa-
ton, but not by any realtime reversible queue automaton. In fact, the stronger
result is obtained that any reversible queue automaton accepting Lmcp takes at

least Ω
(

n2

log(n)

)
time steps.

Example 13 ([26]). We consider the regular language Lbin = ((aa+a)(bb+ b))+.
Then the language

Lmcp = { p$w1$w1$w2$w2$ · · · $wn$wn | p ∈ Lbin , n ≥ 0, wi ∈ {a, b}∗ }

is accepted by a realtime DQA. Informally, a DQA works as follows. The prefix
up to the first $ can be tested without using the queue, because it belongs to
a regular language. Then the first copy of each wi is stored in the queue and
subsequently compared and removed from the queue while reading the second
copy. Whenever the second copy matches the first copy, the automaton enters
an accepting state. Whenever a mismatch is detected, a non-accepting state is
entered so that the input is rejected. �

By using Kolmogorov complexity and incompressibility arguments, the lower
bound mentioned above has been shown.

Theorem 14 ([26]). Any reversible DQA accepting Lmcp has a time complexity

of Ω
(

n2

log(n)

)
.

This lower bound result raises the question for the costs of simulating any real-
time DQA, not necessarily reversible, by an equivalent reversible DQA. It turned
out that quadratic time is sufficient for such simulations.

Theorem 15 ([26]). Every realtime DQA can be simulated by a reversible DQA
that needs at most quadratic time.

This upper bound shows that quadratic time is the trade-off for making real-
time DQA reversible. On the other hand, the language Lmcp provides a lower
bound, which shows that there are cases where a quadratic time trade-off is
almost reached. Moreover, we have derived that for both types of automata the
reversible variant is strictly weaker than the realtime general variant.

We conclude the subsection by an incomparability result showing that the
language accepting capabilities of reversible (quasi) realtime DQA are different
from those of reversible pushdown automata. The context-free language {w#wR |
w ∈ {a, b}+ } is accepted by a reversible pushdown automaton [23], but not by
any even irreversible quasi realtime queue automaton [8,31]. On the other hand,
it is not hard to see that the non-context-free language { anbncn | n ≥ 1 } is
accepted by some realtime reversible DQA.

Theorem 16 ([26]). The families of languages accepted by realtime reversible
DQA and by reversible pushdown automata are incomparable.



Reversible and Irreversible Computations 49

4.2 Decidability and Closure Properties

Let us now turn to decidability aspects of reversible pushdown and queue
automata. Problems which are decidable for DPDA are decidable for reversible
DPDA as well.

Corollary 17. Finiteness, infiniteness, universality, equivalence, and regularity
are decidable for reversible DPDA.

On the other hand, inclusion is known to be undecidable for DPDA. By reduc-
tion of the Post’s correspondence problem it has been shown that inclusion is
undecidable for reversible DPDA, too.

Theorem 18 ([23]). Inclusion is undecidable for reversible DPDA.

The situation for reversible queue automata is in considerable contrast to the sit-
uation for reversible pushdown automata. By reduction of the emptiness problem
for deterministic linearly space bounded one-tape, one-head Turing machines,
so-called linear bounded automata, it has been shown that the emptiness prob-
lem for realtime reversible DQA is not even semidecidable. From this result
it is derived that all the commonly studied decidability questions are non-
semidecidable, too.

Theorem 19 ([26]). Emptiness, finiteness, infiniteness, universality, inclusion,
equivalence, regularity, and context-freeness are not semidecidable for realtime
reversible DQA.

These results bring us to the problem whether reversibility itself is decidable.
Here again, we have to distinguish between the reversibility of a machine and the
reversibility of the language accepted by a machine. Let us first shortly consider
the languages. The following theorem contrasts the situation for finite automata,
where the problem is decidable (see above).

Theorem 20 ([23]). It is undecidable whether the language accepted by a non-
deterministic pushdown automaton can be accepted by a reversible DPDA.

The same problem for deterministic pushdown automata is open.
Next, we consider the question of whether the reversibility of a machine in

question can be decided. Now we have to distinguish between the reversibility on
all or only on reachable configurations. This makes a big difference. While the
question of reversibility on all configurations is decidable just by by inspection of
the transition function, the question of reversibility on reachable configurations
becomes more involved. In particular, we obtain a difference between queue and
pushdown automata.

Theorem 21 ([26]). Reversibility on reachable configurations is not semidecid-
able for realtime DQA.

However, we have the decidability for pushdown automata. The size of a push-
down automaton is the length of its representation.
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Theorem 22 ([23]). Let M be a deterministic pushdown automaton of size n.
Then it is decidable in time O(n4), whether M is reversible on reachable config-
urations. Moreover, the decision problem is P-complete.

Given a nondeterministic pushdown automaton, by inspecting the transition
function one can decide whether or not it is a DPDA. If the answer is yes, then
it can be decided whether it is reversible on reachable configurations by the
previous theorem. If it is not a DPDA, then it cannot be a reversible DPDA.
Therefore, the previous result transfers to nondeterministic devices.

Corollary 23 ([23]). Let M be a nondeterministic pushdown automaton of size
n. Then it is decidable in time O(n4), whether M is reversible on reachable
configurations. Moreover, the decision problem is P-complete.

Finally, we consider closure properties of the families in question. It turns out
that the families of languages accepted by realtime reversible queue automata
and reversible pushdown automata have similar closure properties. For exam-
ple, they are closed under complementation and inverse homomorphism, but are
not closed under union, intersection, intersection with regular languages, con-
catenation, reversal, and homomorphism. The closure properties of the language
families discussed are summarized in Table 1. The closure properties for general
(realtime) DQA may be found in [10].

Table 1. Closure properties of language families discussed. REG denotes the family of
regular languages.

Language class ∪ • R hλ h−1 ∩REG ∪REG ∩ ∼
REG + + + + + + + + +

realtime REV-DQA − − − − + − − − +

realtime DQA − − − − + + + − +

REV-DPDA − − − − + − − − +

DPDA − − − − + + + − +
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