
Graphs Identified by Logics with Counting

Sandra Kiefer(B), Pascal Schweitzer, and Erkal Selman

RWTH Aachen University, Aachen, Germany
{kiefer,schweitzer,selman}@informatik.rwth-aachen.de

Abstract. We classify graphs and, more generally, finite relational
structures that are identified by C2, that is, two-variable first-order logic
with counting. Using this classification, we show that it can be decided
in almost linear time whether a structure is identified by C2. Our clas-
sification implies that for every graph identified by this logic, all vertex-
colored versions of it are also identified. A similar statement is true for
finite relational structures.

We provide constructions that solve the inversion problem for finite
structures in linear time. This problem has previously been shown to be
polynomial time solvable by Martin Otto. For graphs, we conclude that
every C2-equivalence class contains a graph whose orbits are exactly the
classes of the C2-partition of its vertex set and which has a single auto-
morphism witnessing this fact.

For general k, we show that such statements are not true by providing
examples of graphs of size linear in k which are identified by C3 but for
which the orbit partition is strictly finer than the Ck-partition. We also
provide identified graphs which have vertex-colored versions that are not
identified by Ck.

1 Introduction

The k-variable fragment of counting logic, denoted by Ck, is obtained from first-
order logic by adding counting quantifiers but only allowing formulas that use
at most k variables. These finite variable logics play a central role in the area
of model-checking since for them the model-checking problem and the equiva-
lence problem are solvable in polynomial time (see [11]). For a while, there was
the hope that for some fixed k the logic Ck can distinguish every pair of non-
isomorphic graphs. This would imply that the graph isomorphism problem is
solvable in polynomial time. However, in 1992, it was shown by Cai, Fürer and
Immerman [6] that Ω(n) variables are required to identify all graphs on n ver-
tices. Since the examples presented in that paper consist of graph isomorphism
instances which are actually known to be solvable in polynomial time, this also
shows that Ck does not capture polynomial time.

Concerning Ck, there are striking connections to other seemingly unrelated
areas. For example, there exist several Ehrenfeucht-Fräıssé type games charac-
terizing Ck [6,8,13]. Also strongly related is the (k −1)-dimensional version of a
well-known color refinement algorithm, named after Weisfeiler and Lehman by
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Babai (see [6]). It turns out that the (k−1)-dimensional Weisfeiler-Lehman algo-
rithm does nothing else but partition (k−1)-tuples of vertices according to their
Ck-types. Another surprising connection exists to linear programming. The k-th
level of the Sherali-Adams hierarchy of a natural linear integer programming for-
mulation of graph isomorphism essentially corresponds to the expressive power
of Ck [2,12].

Among the finite variable logics, the fragment C2 has been of particular
interest because its satisfiability problem is known to be decidable [10], and the
complexity of the decision problem has been studied extensively [22]. Numer-
ous results for this logic are known, we refer the reader to a survey by Grädel
and Otto [9]. In practice, due to its strength and the fact that it can be eval-
uated in almost linear time, the logic C2 (more specifically, the corresponding
1-dimensional Weisfeiler-Lehman algorithm) is an essential subroutine in all com-
petitive canonical labeling tools (see [20]). Very recent results concerning C2

include a paper by Krebs and Verbitsky studying the quantifier depth of C2-
formulas for C2-equivalence classes of graphs [17]. Kopczynski and Tan show
that for every fixed C2-formula, the set of those n for which there is a structure
with a universe of size n satisfying the formula is semilinear [16]. Moreover, they
describe the characteristics of the spectrum of a C2-formula.

While most of the results further above deal with the problem of distinguish-
ing two graphs from each other using finite variable counting logics, in this paper
we are concerned with the concept of distinguishing a graph from every other
non-isomorphic graph. We say that the graph is identified by the logic. More
formally, a graph (or a finite relational structure) G is identified by a logic L
if there is a sentence ϕ in L such that G satisfies ϕ and every graph (or finite
relational structure) which satisfies ϕ is isomorphic to G.

Of course every graph is identified by some first-order sentence. However, by
[6], as mentioned above, there is no k ∈ N such that every graph is identified
by some formula in Ck. Let us focus on the case k = 2. It is not difficult to see
that all forests are identified by C2. Moreover, a graph is asymptotically almost
surely identified by C2, that is, the fraction of graphs of size n which are not
identified by C2 tends to 0 as n tends to infinity [3]. Even more strongly, it is
known [4] that the fraction of graphs which are not identified is exponentially
small in n. Similarly, a regular graph is asymptotically almost surely identified
by C3 [18]. However, not all graphs are identified. (For C2, consider a cycle of
length at least 6, for example.) The following question arises.

What is the structure of graphs that are identified by Ck?

Our results. We study graphs that are identified by C2 and provide a complete
classification for them. This classification can be used to draw several conclu-
sions about general properties of identified graphs. For example, one can derive
that if an undirected graph is identified by C2, then the C2-partition classes
of the vertices are exactly the orbits of the automorphism group of the graph.
This corollary is neither true when considering finite (relational) structures nor
when considering Ck with k > 2. For C2, we also conclude that if an undirected
graph is identified, every vertex-colored version of it is identified by C2 as well.
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This statement holds for finite relational structures, too, but is again not true
for Ck with k > 2. Using our classification, we show that in time O((n+m) log n)
it is possible to determine whether an undirected graph is identified by C2.

The proof of the correctness of our classification hinges upon explicit con-
structions that solve the inversion problem and the canonization problem for C2.
The inversion problem asks whether to a certain invariant a graph (or more gen-
erally, a finite structure) can be constructed. In the case of C2, such an invariant
is the count of the C2-types of pairs of vertices. A celebrated result by Otto [21]
shows that the inversion problem and the canonization problem for C2 can be
solved in polynomial time. As a side-product, our direct constructions provide
an alternative proof for this. In fact, we show that the inversion problem for C2

can be solved in linear time. Our constructions make use of circulant graphs
and doubly-circulant graphs. With these, we observe that every C2-equivalence
class contains a graph whose C2-partition classes are the orbits. More strongly,
there is a single automorphism of the graph witnessing this. (That is, there
is an automorphism ϕ such that for all pairs of vertices v, v′ that are in the
same C2-partition class there is an integer i such that ϕi(v) = v′.) To achieve
inversion for finite structures, we use an old 1-factorization construction due to
Walecki (see [19]) that decomposes the complete graph K2n into 2n − 1 disjoint
perfect matchings.

Building on the classification of graphs identified by C2, we also classify
finite structures that are identified by C2. For graphs, there is only one special
case that may appear within a C2-partition class (namely the cycle of length 5).
However, for finite structures there are 7 different special cases for a C2-partition
class, which are of sizes 3, 4, 5 and 6. Our classification theorem describes how
these may be combined to form structures that are identified by C2. Due to
the nature of the different special cases, the classification is more involved (see
Theorem 4). Nevertheless, we show that one can decide in almost linear time
whether a structure is identified by C2. Our characterization also provides a
graph-theoretical classification result. From the class of (possibly edge-colored
partially oriented) graphs, it explicitly lists all those (color-)regular graphs that
are determined up to isomorphism by their (color) degrees, see Theorem 3.

For the logics Ck with k > 2 we collect several negative results. One can first
observe that the triangular graphs form an infinite non-trivial class of strongly
regular graphs which are identified by C3, implying that any classification result
would have to include non-trivial infinite families [7,14].

Contrasting our results for C2, we provide examples of graphs that are iden-
tified by C3 but for which conclusions analogous to the ones mentioned above do
not hold. More specifically, we present graphs identified by C3 for which even the
logic Ck with k linear in the size of the graph does not correctly determine the
orbit partition. This yields graphs which the logic Ck identifies, but for which
not all vertex-colored versions are identified by Ck. These ideas are based on the
construction by Cai, Fürer and Immerman [6].

The existence of these graphs highlights an important fact. Even if a graph
is identified by the logic Ck, it is not clear that it is possible to take advantage
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of that in order to canonize the graph. This stands in contrast to a remark
in [6] claiming that a graph G identified by Ck can be canonized in polynomial
time. In fact, the crucial property required for the approach hinted at there
to be successful is that all vertex-colored versions of G need to be identified
by Ck. Indeed, if this property holds then a standard recursive individualization
approach canonizes the graph G. It would suffice to show that for all vertex-
colored versions of G the orbits are determined by the logic. However, with
a slight alteration of our construction, we obtain a graph G that is identified
by Ck and whose orbits are correctly determined, but for which there exist
vertex-colored versions whose orbits are not correctly determined.

Independently of our work, Arvind, Köbler, Rattan and Verbitsky [1] have
investigated the structure of undirected graphs identified by C2 obtaining results
similar to the ones we provide in Sect. 4. Throughout the document, proofs are
omitted. For these, we refer to the full version [15].

2 Preliminaries

Unless specified otherwise, a graph G is a finite undirected graph without loops,
its vertex set is V (G) and its edge set E(G). For P ⊆ V (G), the subgraph induced
by P is G[P ]. If all vertices have degree k then G is k-regular. A (k, �)-biregular
graph G on bipartition (P,Q) is a graph on vertex set P ∪̇ Q such that P
and Q are independent sets, every vertex in P has exactly k neighbors in Q and
every vertex in Q has exactly � neighbors in P . Two vertices v, v′ ∈ V (G) are
in the same orbit of G if G has an automorphism ϕ such that ϕ(v) = v′. The
orbit partition of G is the partition of V (G) into the orbits of G.

A graph G is identified by a logic L if there is a sentence ϕ in L such that
G satisfies ϕ and every graph which satisfies ϕ is isomorphic to G. A logic L
distinguishes two graphs G and G′ if there is a sentence ϕ in L such that
G |= ϕ and G′ �|= ϕ. We say that G and G′ are L-equivalent if they are not
distinguished by L.

The k-variable counting logic, denoted by Ck, is the k-variable fragment
of first-order logic enriched by counting quantifiers. For every t ∈ N we have
the counting quantifier ∃≥t. For a formula ϕ(x) with the free variable x and for
a graph G we have G |= ∃≥tx ϕ(x) if and only if there are at least t vertices
v ∈ V (G) such that G |= ϕ[v]. The variables in a Ck-formula are all from a fixed
k-element set, say {x1, . . . , xk}, but they can be reused. The Ck-type of a vertex
v in G is the set of all Ck-formulas ϕ(x) such that G |= ϕ[v]. The Ck-coloring of
G is the coloring of each vertex with its Ck-type. The Ck-partition of a graph
G is the partition of its vertex set induced by their Ck-types. Similarly, the Ck-
type of a tuple (v, w) is the set of Ck-formulas ϕ(x, y) such that G |= ϕ[v, w].
For a vertex v or a pair of vertices v, w to obtain the atomic Ck -type we
consider only quantifier-free Ck-formulas.

Let G be a graph and Π be a partition of V (G). We say that Π is equitable
if for all P,Q ∈ Π and v, v′ ∈ P , the vertices v and v′ have the same number of
neighbors in Q. A vertex coloring χ is called equitable if the partition induced
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by χ is equitable. A partition Π is coarser than a partition Π ′ if every partition
class of Π is contained in some class of Π ′. It is a well-known fact that the C2-
partition of a graph is its coarsest equitable partition. The C2-partition of
a graph with n vertices and m edges can be calculated in time O((m + n) log n)
by the color refinement procedure (see [5]).

2.1 Relational Structures and Partially Oriented Graphs

An edge-colored partially oriented graph (an ec-POG) is an edge-colored
directed graph (G, c) (with c an edge-coloring function) without loops such that
for every (v, w) ∈ E(G), it holds that if (w, v) ∈ E(G) then c((v, w)) = c((w, v)).
Slightly abusing terminology, we say that an edge (v, w) ∈ E(G) is undirected
if (w, v) ∈ E(G) and directed otherwise. We accordingly draw (v, w) and (w, v)
as one undirected edge between v and w and denote it by {v, w}. An ec-POG
(G, c) is complete if for all v, w ∈ V (G) with v �= w we have (v, w) ∈ E(G) or
(w, v) ∈ E(G).

In the following, we consider finite relational structures over a fixed signature
σ = (R1, . . . , R�) where Ri has arity ri. The various definitions given for graphs
are analogously defined for structures. Let A be a finite relational structure with
universe A. For every i ∈ {1, . . . , �} we define a function ci : A2 → P({1, 2}ri) via
ci(v1, v2): =

{
(j1, . . . , jri

) ∈ {1, 2}ri |A |= Ri(vj1 , . . . , vjri
)
}

where, as usual, P
denotes the power set and {1, 2}ri denotes the set of all ri-tuples over {1, 2}. For
all v, w ∈ A with v �= w we let c(v, w): = (c1(v, w), . . . , c�(v, w)). Since for each i
the possible images of ci come from a set of bounded size, by using the order of
the relations Ri in σ, one can easily define a canonical linear ordering ≤ on the
image of c (for example, by using the lexicographic order). With the help of this
ordering, we define ec-POG(A): = ((A,EA), cA) as the complete ec-POG with
vertex set A, edge set EA: = {(v, w) | v, w ∈ A, v �= w and c(v, w) ≤ c(w, v)}
and the edge coloring cA: = c|EA

, the restriction of c to EA. Note that c(v, w)
uniquely determines the atomic C2-types of v, w, (v, w) and (w, v).

A partition Π of the vertex set of an ec-POG is equitable if for all P,Q ∈ Π,
for all v, v′ ∈ P and for every edge color c, the vertices v and v′ have the
same number of c-colored outgoing, incoming and undirected edges connecting
them to Q. An ec-POG is color-regular if for each edge color c every ver-
tex v has the same c-indegree, the same c-outdegree and the same c-degree for
undirected edges, respectively. An edge-colored undirected biregular graph on
bipartition (P,Q) is called color-biregular if for every edge color c the sub-
graph induced by the edges of color c is biregular on (P,Q). If the graph is
partially oriented, vertices in each bipartition class must additionally have the
same number of outgoing and incoming edges in each color.

3 Inversion

In this section, we treat the so-called inversion problem that is closely related
to the question which graphs are identified by C2. A complete invariant of an
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equivalence relation ≡ on a class C of structures is a mapping I from C to some
set S, such that A ≡ B if and only if I(A) = I(B). We say that I admits linear
time inversion if given s ∈ S one can construct in linear time a structure A
with I(A) = s or decide that no such structure exists. This algorithmic task
describes the inversion problem. Of course, if a structure A is identified then a
solution to the inversion problem must construct A when given I(A).

For C2, we show that a natural complete invariant, namely I2
C , admits lin-

ear time inversion. Otto [21] proved that this invariant admits polynomial time
inversion, not only for simple graphs, but for finite structures in general.

Given a graph G, one can canonically define a linear ordering P1 ≤ . . . ≤ Pt

on the classes of its coarsest equitable partition (see [21]). This ordering allows
us to define I2

C , mapping G to (s̄,M), where s̄ is the tuple (|P1|, . . . , |Pt|) and M
is a t × t matrix, such that every vertex in Pi has exactly Mij neighbors in Pj .
It is easy to see that I2

C is a complete invariant of C2.

3.1 Inversion for Graphs

Definition 1. A graph is circulant if it has an automorphism that consists
of exactly one (permutation) cycle. A graph on vertex set P ∪̇ Q is doubly-
circulant with respect to P and Q if it has an automorphism with exactly two
(permutation) cycles, one on P and the other on Q. A graph is multi-circulant
with respect to a partition {P1, . . . , P�} of its vertices if it has an automorphism
with exactly �(permutation) cycles, each on one of the Pi.

While circulant graphs are transitive and thus regular, not every regular graph
is transitive and not every transitive graph is circulant. Similarly, every doubly-
circulant graph is biregular but not every biregular graph is doubly-circulant.

It is well-known that circulant graphs can be constructed by numbering the
vertices from 0 to n−1, picking an arbitrary set S ⊆ {1, . . . , 
n/2�} of distances
and inserting all edges between pairs of vertices whose distance of indices in the
circular ordering is contained in S. A k-regular graph on n vertices exists exactly
if k ·n is even and k ≤ n−1. In this case a k-regular circulant graph on n vertices
can be constructed in linear time. We call this the circulant construction.

A (k, �)-biregular graph on a bipartition (P,Q) with |P | = m and |Q| = n
exists exactly if k ·m = �·n as well as k ≤ n and � ≤ m (see, for example [16,21]).
In fact, under these conditions there exists such a graph that is doubly-circulant.

Lemma 1. For all k, �, m, n ∈ N with k ≤ n, � ≤ m and k · m = � · n, one
can construct in O(k · m) time a (k, �)-biregular graph on a bipartition (P,Q)
with |P | = m and |Q| = n, which is doubly-circulant with respect to P and Q.

The coarsest equitable partition of a graph is not necessarily its orbit partition.
However, one can use Lemma 1 to show that for each C2-equivalence class, there
is a representative whose coarsest equitable partition is the orbit partition.

Theorem 1. For every graph G, there is a C2-equivalent graph H which is
multi-circulant with respect to its coarsest equitable partition.
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Corollary 1. I2
C admits linear time inversion on the class of graphs.

Given an equivalence relation ≡ on a class C of structures, the canonization
problem for ≡ is the problem of finding a map c : C → C such that for every A ∈
C it holds that c(A) ≡ A and for all A,B ∈ C with A ≡ B we have c(A) = c(B).
The map c is called a canonization for ≡ and c(A) is the canon of A (with
respect to c). Typically, the goal is to find such a canonization c that can be
evaluated efficiently. As a consequence of the theorem we obtain two corollaries.

Corollary 2. Canonization for C2 of graphs can be done in O((n + m) log n)
time.

Corollary 3. If a graph G is identified by C2, then its coarsest equitable parti-
tion is the orbit partition.

It is natural to ask whether Corollary 3 holds for finite relational structures in
general. This is not the case since the unique 1-factorization of K6 is rigid (i.e.,
has no non-trivial automorphisms).

3.2 Inversion for Finite Relational Structures

Let A = (A,R1, . . . , R�) be a finite relational structure. We define A|2, the
restriction of A to arity 2, to be the relational structure (A,R′

1, . . . , R
′
�) with

R′
i: = {(v1, . . . , vri

) ∈ Ri | {v1, . . . , vri
}has at most 2 elements,} where ri is the

arity of Ri. Obviously, two relational structures A and B are C2-equivalent if
and only if A|2 and B|2 are C2-equivalent. Furthermore, A|2 and B|2 are C2-
equivalent if and only if ec-POG(A|2) and ec-POG(B|2) are C2-equivalent.
Hence, the inversion problem for I2C on finite relational structures reduces to
the inversion problem for I2C on ec-POGs.

The complete invariant I2C for the class of graphs has a well-known extension
to finite structures, which translates to the context of ec-POGs as follows: we
simply replace the matrix in the original definition of I2C with a matrix M such
that for all i, j ∈ {1, . . . , k} the entry Mij is a tuple encoding for each edge color d
the number of d-colored outgoing edges from a vertex in Pi to Pj . Similarly to
the case of graphs, in order to solve the inversion problem for ec-POGs it suffices
to solve it for the color-regular case (which corresponds to the inversion within
one C2-partition class) and for the color-biregular case (which corresponds to
the inversion between two C2-partition classes).

Color-regular case: Let n be the number of vertices. If n is odd, the degrees in
each color in the underlying undirected graph must be even. Consequently, the
circulant construction from Subsect. 3.1 can be adapted to perform the inversion
for directed and colored edges.

If n is even and more than one color degree is odd, we cannot apply the
circulant construction, which significantly complicates our task. In fact, as a
1-factorization (i.e., a partition of the edge set into perfect matchings) of K6

shows it might not be possible to construct a transitive graph with the given
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color degrees. Still, we can construct a canonical representative for the corre-
sponding C2-equivalence class as follows. We use the 1-factorization construction
due to Walecki (see [19]). For even n the construction decomposes the complete
graph Kn into n−1 disjoint perfect matchings. This decomposition can be made
canonical and computed in linear time (see also [23, Example 7.1.2.]). To obtain
a graph with specific color degrees we can define a color class to be the union of
a suitable number of 1-factors. We call this the matching construction. The
construction has the property that two matchings of the 1-factorization always
yield a Hamiltonian cycle. If we require directed edges, in which case in-degrees
must be equal to out-degrees, we pair a suitable number of matchings and orient
the obtained Hamiltonian cycles.

Color-biregular case: Our doubly-circulant construction for graphs can be altered
to handle colored directed edges.

Corollary 4. I2
C admits linear time inversion on finite relational structures.

Corollary 5. Canonization for C2 of a relational structure A = (A,R1, . . . , R�)
over a fixed signature can be done in time O((n + m) log n) where n = |A| and
m = |R1| + · · · + |R�|.

4 Characterization of the Graphs Identified by C2

Here we examine the graphs that are identified by the logic C2 and give a
complete characterization of them.

Definition 2. Let T be a tree with a designated vertex v. For i ∈ {1, . . . , 5}
let (Ti, vi) be an isomorphic copy of (T, v). Let F be the disjoint union of the
five trees (Ti, vi) and E be the edge set of a 5-cycle on vertex set {v1, . . . , v5}.
Then we call the graph obtained from F by inserting the edges in E, a bouquet.

A bouquet forest is a disjoint union of vertex-colored trees and non-isomorphic
vertex-colored bouquets.

For sets P , Q we define [P,Q]: = {{v, w} | v �= w, v ∈ P, w ∈ Q}.

Definition 3. Let G be a graph with C2-coloring χ. We define the flip
of G as the vertex-colored graph (F, χ) with V (F ) = V (G) and E(F ) =
E(G) Δ ([P1, Q1] ∪ . . . ∪ [Pt, Qt]), where the (Pi, Qi) are all pairs of (not nec-
essarily distinct) C2-partition classes of G which satisfy |[Pi, Qi] ∩ E(G)| >
|[Pi, Qi] \ E(G)|. We say that (F, χ) is a flipped graph. If χ is the C2-coloring
of F and (F, χ) is a flipped graph, we also say that F is flipped.

Here, the symbol Δ in the definition denotes, the symmetric difference. The
notions of a flip and a bouquet forest allow us to obtain the following classification.

Theorem 2. A graph is identified by C2 if and only if its flip is a bouquet forest.

Corollary 6. Given a graph with n vertices and m edges, we can decide whether
it is identified by C2 in time O((m + n) log n).
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A second corollary of Theorem 2 is concerned with vertex colorings of graphs
that are identified by C2.

Corollary 7. Let (G,χ) be a vertex-colored graph which is identified by C2 and
let χ′ be a vertex coloring of G which induces a finer partition on V (G) than χ
does. Then (G,χ′) is also identified by C2.

Our classification result actually provides us with some deeper structural insight
that we describe next.

For a (k, �)-biregular graph on bipartition (P,Q) we introduce the three fol-
lowing notations. (1) P � Q ⇐⇒ k = � = 0, (2) P

.= Q ⇐⇒ k = � = 1
and (3) P � Q ⇐⇒ k ≥ 2 and � = 1.

For a graphGwithC2-partitionΠ, we define the skeletonSG ofG as the graph
with V (SG) = Π and E(SG) = {{P,Q} | P

.= Q or P � Q in the flip of G}.
Since they can appear only once per connected component of the skeleton,

we call a C2-partition class that is a 5-cycle or a matching an exception. Our
classification of finite relational structures that are identified by C2, which we
give in the next section, depends on the structural properties that can be proven
for identified graphs. These can be summarized as follows.

Corollary 8. A flipped graph G is identified by C2 if and only if the following
hold: (1) Each C2-partition class induces a graph identified by C2 (i.e., the
induced graph has no edges or it is a matching or a 5-cycle), (2) for all C2-
partition classes P and Q we have P � Q, P

.= Q, P � Q or Q � P , (3) the
skeleton SG is a forest, (4) there is no path P0, P1, . . . , Pt in SG with P0 � P1

and Pt−1 � Pt in G, (5) there is no path P0, P1, . . . , Pt in SG where P0 � P1

and G[Pt] is a 5-cycle or a matching, and (6) in every connected component
of SG there is at most one exception.

5 General Finite Structures

To generalize our results to finite structures, it suffices to analyze which edge-
colored partially oriented graphs (i.e., ec-POGs) are identified.

Theorem 3. Let G be a color-regular complete ec-POG. Then C2 identifies G
if and only if G is (1) an undirected complete graph with only one edge color,
(2) undirected and has two edge colors, one of which induces a perfect matching,
or (3) one of the exceptions depicted in Fig. 1.

Fig. 1. The special cases that occur in the classification in Theorem 3
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We will now describe how to combine such building blocks to form a larger
identified ec-POG. By interpreting non-edges as edges of a special color we only
need to consider complete graphs.

Definition 4. Let G be a vertex-colored ec-POG and let P and Q be two disjoint
subsets of V (G). We introduce the relation P ≡3

3 Q to denote the fact that the
graph induced by the edges running between P and Q is the graph K3,3 with three
edge colors which each induce a perfect matching between P and Q.

To define the relations P � Q, P
.= Q, P � Q for edge-colored graphs we always

consider the graph induced by the edge color class that contains fewer edges and
ignore orientations. It is not difficult to see that if the number of edges in the
first color is equal to the number of edges in the second color then choosing
either induced graph yields the same results. Note that with this convention the
relations P � Q, P

.= Q, P � Q in particular imply that there are only at most
two colors among the edges running between P and Q.

Lemma 2. Let G be a vertex/edge-colored undirected graph that is identified
by C2. If P and Q are distinct C2-partition classes of G, then P � Q, P

.= Q,
P � Q, Q � P or P≡3

3Q.

In an identified ec-POG, we call every C2-partition class which does not induce
an undirected complete graph with only one edge color an exception (i.e., any
class that does not fall under Item 1 of Theorem 3). Similarly, we call every pair
of C2-partition classes P and Q for which P≡3

3Q holds an exception.
Let G be a vertex/edge-colored graph. As before, we define the vertices of

the skeleton SG to be the C2-partition classes of G. Two distinct vertices P , Q
in SG are adjacent in SG if the corresponding classes in G do not satisfy P � Q.
For identified structures, we obtain a theorem similar to Corollary 8 for graphs.

Theorem 4. Let G be a vertex-colored ec-POG. Then G is identified by C2

if and only if the following hold: (1) Each C2-partition class induces a graph
identified by C2, (2) for all C2-partition classes P and Q we have P � Q, P

.=
Q, P � Q, Q � P or P≡3

3Q, (3) the skeleton SG is a forest, (4) there is
no path P0, P1, . . . , Pt in SG with P0 � P1 and Pt−1 � Pt, (5) there is no
path P0, P1, . . . , Pt in SG where P0 � P1 and Pt is an exception, and (6) in
every connected component of SG there is at most one exception.

Corollary 9. Given a finite relational structure A with a universe of size n over
a fixed signature we can decide in time O(n2 log n) whether it is identified by C2.

Using the classification we also obtain an extension of Corollary 7 to ec-POGs
and, more generally, to finite relational structures.

Corollary 10. If a finite relational structure A is identified by C2, then every
finite relational structure obtained from A by adding unary relations is also iden-
tified by C2.
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6 Higher Dimensions

Considering triangular graphs [7,14] we see that for k > 2 any classification result
for graphs identified by Ck must include an infinite number of non-trivial graphs.
This already indicates that the situation for k = 2 is special. We show that
statements analogous to Corollaries 3 and 7 do not hold for higher dimensions.
For this we use the construction from [6].

Theorem 5. For every k > 2, there is a graph H of size O(k) identified by C3

for which the Ck-partition is strictly coarser than the orbit partition. Moreover,
not all vertex-colored versions of H are identified by Ck.

Even if a graph is identified and the orbits are correctly determined by Ck, it
may still be the case that this does not hold for all colored versions of the graph.

Theorem 6. For every k > 2, there is a graph H of size O(k) which is identified
by C3 such that the Ck-partition classes are the orbits of H but there are vertex-
colored versions of H that are not identified by Ck and for which the Ck-partition
classes are not the orbits of H.

References
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