
Giuseppe F. Italiano
Giovanni Pighizzini
Donald T. Sannella (Eds.)

 123

40th International Symposium, MFCS 2015
Milan, Italy, August 24–28, 2015
Proceedings, Part I

Mathematical
Foundations of
Computer Science 2015LN

CS
 9

23
4

AR
Co

SS

Lecture Notes in Computer Science 9234

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison, UK
Josef Kittler, UK
John C. Mitchell, USA
Bernhard Steffen, Germany
Demetri Terzopoulos, USA
Gerhard Weikum, Germany

Takeo Kanade, USA
Jon M. Kleinberg, USA
Friedemann Mattern, Switzerland
Moni Naor, Israel
C. Pandu Rangan, India
Doug Tygar, USA

Advanced Research in Computing and Software Science

Subline of Lecture Notes in Computer Science

Subline Series Editors

Giorgio Ausiello, University of Rome ‘La Sapienza’, Italy

Vladimiro Sassone, University of Southampton, UK

Subline Advisory Board

Susanne Albers, TU Munich, Germany

Benjamin C. Pierce, University of Pennsylvania, USA

Bernhard Steffen, University of Dortmund, Germany

Deng Xiaotie, City University of Hong Kong

Jeannette M.Wing, Microsoft Research, Redmond, WA, USA

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Giuseppe F. Italiano • Giovanni Pighizzini
Donald T. Sannella (Eds.)

Mathematical
Foundations of
Computer Science 2015
40th International Symposium, MFCS 2015
Milan, Italy, August 24–28, 2015
Proceedings, Part I

123

Editors
Giuseppe F. Italiano
Università di Roma “Tor Vergata”
Rome
Italy

Giovanni Pighizzini
Università degli Studi di Milano
Milan
Italy

Donald T. Sannella
University of Edinburgh
Edinburgh
UK

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-662-48056-4 ISBN 978-3-662-48057-1 (eBook)
DOI 10.1007/978-3-662-48057-1

Library of Congress Control Number: 2015945159

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

Springer Heidelberg New York Dordrecht London
© Springer-Verlag Berlin Heidelberg 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

Springer-Verlag GmbH Berlin Heidelberg is part of Springer Science+Business Media
(www.springer.com)

Preface

The series of MFCS symposia has a long and well-established tradition of encouraging
high-quality research into all branches of theoretical computer science. Its broad scope
provides an opportunity to bring together researchers who do not usually meet at
specialized conferences. The first symposium was held in 1972. Until 2012 MFCS
symposia were organized on a rotating basis in Poland, the Czech Republic, and
Slovakia. The 2013 edition took place in Austria, the 2014 edition in Hungary, while in
2015 MFCS was organized for the first time in Italy.

The 40th International Symposium on Mathematical Foundations of Computer
Science (MFCS 2015) was held in Milan during August 24–28, 2015. The scientific
program of the symposium consisted of five invited talks and 81 contributed papers.

To celebrate the 40th edition of the conference, a special invited talk was given by:

– Zoltán Ésik (University of Szeged, Hungary)

This talk was sponsored by the European Association of Theoretical Computer Science
(EATCS). The other invited talks were given by:

– Anindya Banerjee (IMDEA Software Institute, Spain)
– Paolo Boldi (University of Milan, Italy)
– Martin Kutrib (University of Giessen, Germany)
– Yishay Mansour (Microsoft Research, Hertzelia and Tel Aviv University)

We are grateful to all invited speakers for accepting our invitation and for their
excellent presentations at the symposium.

The 81 contributed papers were selected by the Program Committee (PC) out of a
total of 201 submissions. All submitted papers were peer reviewed and evaluated on the
basis of originality, quality, significance, and presentation. To support the selection
process, approximatively 600 reviews were written by PC members with the help of
external experts.

As is the MFCS tradition, a Best Paper Award and a Best Student Paper Award
sponsored by EATCS were assigned. The PC decided to assign these awards to the
following papers:

– “Strong Inapproximability of the Shortest Reset Word” by Paweł Gawrychowski
and Damian Straszak (Best Paper Award)

– “Maximum Minimal Vertex Cover Parameterized by Vertex Cover” by Meirav
Zehavi (Best Student Paper Award)

We thank all authors who submitted their work for consideration to MFCS 2015.
We wish to thank all PC members and external reviewers for their competent and
timely handling of the submissions. The success of the scientific program is due to their
hard work. During the selection process and for preparing these proceedings, we used
the EasyChair conference management system, which provided excellent support.

Owing to the large number of accepted papers, the proceedings of the conference were
divided into two volumes on a thematical basis: Logic, Semantics, Automata and
Theory of Programming (Vol. I) and Algorithms, Complexity and Games (Vol. II).

We gratefully acknowledge the support of the University of Milan (Università degli
Studi di Milano, Dipartimento di Informatica) and EATCS. Special thanks for the local
organization are due to Violetta Lonati (University of Milan). We also thank Bruno
Guillon (University Paris-Diderot, France) for the website design and maintenance.

June 2015 Giuseppe F. Italiano
Giovanni Pighizzini

Don Sannella

VI Preface

Conference Organization

Program Committee Chairs

Giuseppe F. Italiano,
co-chair

University of Rome “Tor Vergata”, Italy

Giovanni Pighizzini,
chair

University of Milan, Italy

Donald Sannella,
co-chair

University of Edinburgh, UK

Program Committee

Hee-Kap Ahn POSTECH, Korea
Andris Ambainis University of Latvia
Marie-Pierre Béal University of Paris-Est Marne-la-Vallée, France
Lars Birkedal Aarhus University, Denmark
Jarosław Byrka University of Wrocław, Poland
Luis Caires University of Lisbon “Nova”, Portugal
Bruno Codenotti CNR Pisa, Italy
Adriana Compagnoni Stevens Institute of Technology, USA
Erzsébet

Csuhaj-Varjú
Eötvös Loránd University, Budapest, Hungary

Artur Czumaj University of Warwick, UK
Rocco de Nicola IMT Lucca, Italy
Martin

Dietzfelbinger
Technical University of Ilmenau, Germany

Devdatt Dubashi Chalmers, Sweden
Amos Fiat Tel Aviv University, Israel
Enrico Formenti Nice Sophia Antipolis University, France
Pierre Fraigniaud CNRS and University Paris Diderot, France
Matt Franklin UC Davis, USA
Loukas Georgiadis University of Ioannina, Greece
Jan Holub Czech Technical University in Prague, Czech Republic
Markus Holzer University of Giessen, Germany
Martin Lange University of Kassel, Germany
Massimo Lauria KTH Royal Institute of Technology, Sweden
Inge Li Gørtz Technical University of Denmark
Alberto

Marchetti-Spaccamela
University of Rome “La Sapienza”, Italy

Elvira Mayordomo University of Zaragoza, Spain

Pierre McKenzie University of Montréal, Canada
Friedhelm Meyer auf der

Heide
University of Paderborn, Germany

Prakash Panangaden McGill University, Canada
Dana Pardubská Comenius University, Bratislava, Slovakia
Kunsoo Park Seoul National University, Korea
Alexander Rabinovich Tel Aviv University, Israel
Rajeev Raman University of Leicester, UK
Jean-Francois Raskin University of Brussels “Libre”, Belgium
Liam Roditty Bar-Ilan University, Israel
Marie-France Sagot Inria and University of Lyon 1, France
Piotr Sankowski University of Warsaw, Poland
Philippe Schnoebelen LSV, CNRS and ENS Cachan, France
Marinella Sciortino University of Palermo, Italy
Jiří Sgall Charles University, Prague, Czech Republic
Arseny Shur Ural Federal University, Russia
Mariya Soskova Sofia University, Bulgaria
Tarmo Uustalu Tallinn University of Technology, Estonia
Peter van Emde Boas University of Amsterdam, The Netherlands
Jan van Leeuwen Utrecht University, The Netherlands
Dorothea Wagner Karlsruhe Institute of Technology, Germany
Peter Widmayer ETH Zürich, Switzerland
Jiří Wiedermann Academy of Sciences, Czech Republic
Christos Zaroliagis University of Patras, Greece
Norbert Zeh Dalhousie University, Halifax, Canada

Steering Committee

Juraj Hromkovič ETH Zürich, Switzerland
Antonín Kučera, chair Masaryk University, Czech Republic
Jerzy Marcinkowski University of Wrocław, Poland
Damian Niwiński University of Warsaw, Poland
Branislav Rovan Comenius University, Bratislava, Slovakia
Jiří Sgall Charles University, Prague, Czech Republic

Additional Reviewers

Akutsu, Tatsuya
Allender, Eric
Almeida, Jorge
Amir, Amihood
Ananichev, Dmitry
Asarin, Eugene
Azar, Yossi
Bampas, Evangelos

Barto, Libor
Bärtschi, Andreas
Basset, Nicolas
Baum, Moritz
Becchetti, Luca
Berkholz, Christoph
Bernasconi, Anna
Bernstein, Aaron

Bevern, René van
Beyersdorff, Olaf
Bi, Jingguo
Bianchi, Maria Paola
Bienvenu, Laurent
Bille, Philip
Bioglio, Livio
Bläsius, Thomas

VIII Conference Organization

Blondin, Michael
Blumensath, Achim
Boella, Guido
Böhm, Martin
Bohmova, Katerina
Boker, Udi
Bollig, Benedikt
Bonacina, Ilario
Bonelli, Eduardo
Borassi, Michele
Bosek, Bartłomiej
Bozianu, Rodica
Bradfield, Julian
Bradley, Jeremy
Bremer, Joachim
Bresolin, Davide
Breveglieri, Luca
Bruse, Florian
Bulteau, Laurent
Cadilhac, Michaël
Canonne, Clément
Carayol, Arnaud
Cardinal, Jean
Carpi, Arturo
Cassez, Franck
Caucal, Didier
Cave, Andrew
Cerone, Andrea
Čevorová, Kristína
Chailloux, André
Chechik, Shiri
Cho, Dae-Hyung
Cicalese, Ferdinando
Cleophas, Loek
Colcombet, Thomas
Cording, Patrick Hagge
Dal Lago, Ugo
Damaschke, Peter
D’Angelo, Gianlorenzo
Davies, Peter
Dell, Holger
Della Monica, Dario
Dennunzio, Alberto
Dibbelt, Julian
Diestel, Reinhard
Dobrev, Stefan

Doyen, Laurent
Drees, Maximilian
Droste, Manfred
Drucker, Andrew
Ďuriš, Pavol
Eden, Alon
Englert, Matthias
Eppstein, David
Epstein, Leah
Erde, Joshua
Fasoulakis, Michail
Feldotto, Matthias
Fenner, Stephen
Fici, Gabriele
Fijalkow, Nathanaël
Filiot, Emmanuel
Flammini, Michele
Forejt, Vojtech
Forišek, Michal
Franciosa, Paolo
Frid, Anna
Frigioni, Daniele
Fuchs, Fabian
Fukuda, Komei
Gajardo, Anahi
Galesi, Nicola
Gavinsky, Dmitry
Gazdag, Zsolt
Giannopoulos, Panos
Giannopoulou, Georgia
Girard, Vincent
Gogacz, Tomasz
Goldenberg, Elazar
Goldwurm, Massimiliano
Göller, Stefan
Gordon, Colin S.
Goubault-Larrecq, Jean
Green, Fred
Grigorieff, Serge
Grosshans, Nathan
Grossi, Giuliano
Guillon, Pierre
Guo, Heng
Gusev, Vladimir
Habib, Michel
Halldorsson, Magnus M.

Hamann, Michael
Haviv, Ishay
Hoogeboom, Hendrik Jan
Hoyrup, Mathieu
Hrubes, Pavel
Huang, Chien-Chung
Huang, Sangxia
Hundeshagen, Norbert
Iliev, Petar
Itsykson, Dmitry
Jansen, Klaus
Jeandel, Emmanuel
Jecker, Ismaël
Jeż, Łukasz
Johannsen, Jan
Johnson, Matthew
Jones, Mark
Jung, Daniel
Kari, Jarkko
Kavitha, Telikepalli
Kempa, Dominik
Kernberger, Daniel
Kikot, Stanislav
Kim, Min-Gyu
Kim, Sang-Sub
Kis, Tamas
Klasing, Ralf
Klein, Kim-Manuel
Komusiewicz, Christian
Kontogiannis, Spyros
Kopczynski, Eryk
Korman, Matias
Koucký, Michal
Koutris, Paraschos
Krajíček, Jan
Královič, Rastislav
Krebs, Andreas
Kuich, Werner
Kulkarni, Janardhan
Kumar, Mrinal
La Torre, Salvatore
Laura, Luigi
Lázár, Katalin A.
Lazic, Ranko
Li, Shouwei
Limouzy, Vincent

Conference Organization IX

Lin, Jianyi
Löding, Christof
Loff, Bruno
Lombardy, Sylvain
López-Ortiz, Alejandro
Loreti, Michele
MacKenzie, Kenneth
Mäcker, Alexander
Mahajan, Meena
Malatyali, Manuel
Mamageishvili, Akaki
Mandrioli, Dino
Marathe, Madhav
Markarian, Christine
Martens, Wim
Martin, Russell
Mary, Arnaud
Massazza, Paolo
Mazoit, Frédéric
Mederly, Pavol
Meduna, Alexander
Mehrabi, Ali D.
Mendes de Oliveira,

Rafael
Mertzios, George
Mezzina, Claudio Antares
Miksa, Mladen
Miller, Joseph S.
Montanari, Angelo
Moscardelli, Luca
Müller, Moritz
Mundhenk, Martin
Nakagawa, Kotaro
Obraztsova, Svetlana
Oh, Eunjin
Okhotin, Alexander
Otachi, Yota
Ott, Sebastian
Otto, Martin
Oum, Sang-Il
Paluch, Katarzyna
Panagiotou, Konstantinos
Pantziou, Grammati

Papadopoulos, Charis
Parotsidis, Nikos
Paryen, Haim
Paul, Christophe
Pavlogiannis, Andreas
Pich, Ján
Pilipczuk, Marcin
Ponse, Alban
Pouly, Amaury
Praveen, M.
Pribavkina, Elena
Protti, Fabio
Provillard, Julien
Prutkin, Roman
Rabinovitch, Alex
Ramanujan, M.S.
Ramyaa, Ramyaa
Randour, Mickael
Rao, Michaël
Rasin, Oleg
Regan, Kenneth
Restivo, Antonio
Riveros, Cristian
Romashchenko, Andrei
Rutter, Ignaz
Rybicki, Bartosz
Sabharwal, Yogish
Salo, Ville
Salvail, Louis
Saurabh, Saket
Schaudt, Oliver
Schewe, Klaus-Dieter
Schmid, Markus L.
Schmidt, Jens M.
Schmitz, Sylvain
Seki, Shinnosuke
Serre, Olivier
Seto, Kazuhisa
Shen, Alexander
Shpilka, Amir
Siggers, Mark
Slaman, Theodore
Sloth, Christoffer

Smith, Adam
Son, Wanbin
Sornat, Krzysztof
Spoerhase, Joachim
Srinivasan, Srikanth
Stougie, Leen
Suchy, Ondřej
Taati, Siamak
Tagliaferri, Roberto
Tan, Tony
Thapen, Neil
Tichler, Krisztián
Tiezzi, Francesco
Todinca, Ioan
Torres Vieira, Hugo
Tribastone, Mirco
Trystram, Denis
Ucar, Bora
Uznański, Przemysław
Vaananen, Jouko
van Leeuwen, Erik Jan
Vandin, Andrea
Vanier, Pascal
Velner, Yaron
Veselý, Pavel
Vinyals, Marc
Vollmer, Heribert
Wacker, Arno
Ward, Justin
Watrigant, Rémi
Watrous, John
Weihrauch, Klaus
Williams, Ryan
Wollan, Paul
Yakaryilmaz, Abuzer
Yoon, Sang-Duk
Zeitoun, Marc
Ziadi, Tewfik
Zielinski, Pawel
Živný, Stanislav
Zündorf, Tobias

X Conference Organization

Invited Contributions

Modular Reasoning for Behavior-Preserving
Data Structure Refactorings

Anindya Banerjee

IMDEA Software Institute, Spain
anindya.banerjee@imdea.org

Abstract. A properly encapsulated data structure can be revised for refactoring
without affecting the behaviors of clients of the data structure. Encapsulation
ensures that clients are representation independent, that is, their behaviors are
independent of particular choices of data structure representations. Modular
reasoning about data structure revisions in heap-manipulating programs, how-
ever, is a challenge because encapsulation in the presence of shared mutable
objects is difficult to ensure for a variety of reasons.

– Pointer aliasing can break encapsulation and invalidate data structure invariants.
– Representation independence is nontrivial to guarantee in a generic manner, without

recourse to specialized disciplines such as ownership.
– Mechanical verification of representation independence using theorem provers is

nontrivial because it requires relational reasoning between two different data
structure representations. Such reasoning lies outside the scope of most modern
verification tools.

We address the challenge by reasoning in Region Logic [1, 2], a Hoare logic
augmented with state dependent “modifies” specifications based on simple notations
for object sets, termed “regions”. Region Logic uses ordinary first order logic assertions
to support local reasoning and also the hiding of invariants on encapsulated state, in
ways suited to verification using SMT solvers. By using relational assertions, the logic
can reason about behavior-preservation of data structure refactorings even in settings
where full functional pre/post specifications are absent. The key ingredient behind such
reasoning is a new proof rule that embodies representation independence.

This work is in collaboration with David A. Naumann and Mohammad Nikouei
(Stevens Institute of Technology).

This research is partially supported the US National Science Foundation (NSF). Any opinion, findings,
and conclusions or recommendations expressed in this material are those of the authors and do not
necessarily reflect the views of NSF.

References

1. Banerjee, A., Naumann, D.A., Rosenberg, S.: Local reasoning for global invariants, part I:
Region logic. J. ACM, 60(3), 18:1–18: 56 (2013)

2. Banerjee, A., Naumann, D.A.: Local reasoning for global invariants, part II: Dynamic
boundaries. J. ACM, 60(3), 19:1–19:73 (2013)

XIV Modular Reasoning for Behavior-Preserving

Minimal and Monotone Minimal Perfect
Hash Functions

Paolo Boldi

Dipartimento di Informatica,
Università degli Studi di Milano, Milan, Italy

Abstract. A minimal perfect hash function (MPHF) is a (data structure
providing a) bijective map from a set S of n keys to the set of the first n natural
numbers. In the static case (i.e., when the set S is known in advance), there is a
wide spectrum of solutions available, offering different trade-offs in terms of
construction time, access time and size of the data structure. MPHFs have been
shown to be useful to compress data in several data management tasks. In
particular, order-preserving minimal perfect hash functions have been used to
retrieve the position of a key in a given list of keys: however, the ability to
preserve any given order leads to an unavoidable Ω(n log n) lower bound on the
number of bits required to store the function. Recently, it was observed that very
frequently the keys to be hashed are sorted in their intrinsic (i.e., lexicograph-
ical) order. This is typically the case of dictionaries of search engines, list of
URLs of web graphs, etc. MPHFs that preserve the intrinsic order of the keys are
called monotone (MMPHF). The problem of building MMPHFs is more recent
and less studied (for example, no lower bounds are known) but once more there
is a wide spectrum of solutions available, by now. In this paper, we survey some
of the most practical techniques and tools for the construction of MPHFs and
MMPHFs.

Equational Properties of Fixed Point
Operations in Cartesian Categories:

An Overview

Zoltán Ésik

Department of Computer Science, University of Szeged, Szeged, Hungary

Abstract. Several fixed point models share the equational properties of iteration
theories, or iteration categories, which are cartesian categories equipped with a
fixed point or dagger operation subject to certain axioms. After discussing some
of the basic models, we provide equational bases for iteration categories and
offer an analysis of the axioms. Although iteration categories have no finite base
for their identities, there exist finitely based implicational theories that capture
their equational theory. We exhibit several such systems. Then we enrich iter-
ation categories with an additive structure and exhibit interesting cases where
the interaction between the iteration category structure and the additive structure
can be captured by a finite number of identities. This includes the iteration
category of monotonic or continuous functions over complete lattices equipped
with the least fixed point operation and the binary supremum operation as
addition, the categories of simulation, bisimulation, or language equivalence
classes of processes, context-free languages, and others. Finally, we exhibit a
finite equational system involving residuals, which is sound and complete for
monotonic or continuous functions over complete lattices in the sense that it
proves all of their identities involving the operations and constants of cartesian
categories, the least fixed point operation and binary supremum, but not
involving residuals.

Z. Ésik—Partially supported by grant no. ANN 110883 from the National Foundation for Scientific
Research of Hungary.

Reversible and Irreversible Computations
of Deterministic Finite-State Devices

Martin Kutrib

Institut für Informatik, Universität Giessen
Arndtstr. 2, 35392 Giessen, Germany

kutrib@informatik.uni-giessen.de

Abstract. Finite-state devices with a read-only input tape that may be equipped
with further resources as queues or pushdown stores are considered towards
their ability to perform reversible computations. Some aspects of the notion of
logical reversibility are addressed. We present some selected results on the
decidability, uniqueness, and size of minimal reversible deterministic finite
automata. The relations and properties of reversible automata that are equipped
with storages are discussed, where we exemplarily stick with the storage types
queue and pushdown store. In particular, the computational capacities, decid-
ability problems, and closure properties are the main topics covered, and we
draw attention to the overall picture and some of the main ideas involved.

Robust Inference and Local Algorithms

Yishay Mansour

Microsoft Research, Hertzelia and Tel-Aviv University, Hertzelia, Israel

Abstract. We introduce a new feature to inference and learning which we call
robustness. By robustness we intuitively model the case that the observation
of the learner might be corrupted. We survey a new and novel approach to
model such possible corruption as a zero-sum game between an adversary that
selects the corruption and a leaner that predict the correct label. The corruption
of the observations is done in a worse-case setting, by an adversary, where the
main restriction is that the adversary is limited to use one of a fixed know class
of modification functions. The main focus in this line of research is on efficient
algorithms both for the inference setting and for the learning setting. In order to
be efficient in the dimension of the domain, one cannot hope to inspect all the
possible inputs. For this, we have to invoke local computation algorithms, that
inspect only a logarithmic fraction of the domain per query.

This research was supported in part by The Israeli Centers of Research Excellence (I-CORE) program,
(Center No. 4/11), by a grant from the Israel Science Foundation (ISF), by a grant from United
States-Israel Binational Science Foundation (BSF).

Contents – Part I

Invited Contributions

Minimal and Monotone Minimal Perfect Hash Functions 3
Paolo Boldi

Equational Properties of Fixed Point Operations in Cartesian Categories:
An Overview . 18

Zoltán Ésik

Reversible and Irreversible Computations of Deterministic Finite-State
Devices . 38

Martin Kutrib

Robust Inference and Local Algorithms . 53
Yishay Mansour

Logic, Semantics, Automata and Theory of Programming

Uniform Generation in Trace Monoids. 63
Samy Abbes and Jean Mairesse

When Are Prime Formulae Characteristic? . 76
L. Aceto, D. Della Monica, I. Fábregas, and A. Ingólfsdóttir

Stochastization of Weighted Automata . 89
Guy Avni and Orna Kupferman

Algebraic Synchronization Criterion and Computing Reset Words. 103
Mikhail Berlinkov and Marek Szykuła

Recurrence Function on Sturmian Words: A Probabilistic Study 116
Valérie Berthé, Eda Cesaratto, Pablo Rotondo, Brigitte Vallée,
and Alfredo Viola

Exponential-Size Model Property for PDL with Separating Parallel
Composition . 129

Joseph Boudou

A Circuit Complexity Approach to Transductions . 141
Michaël Cadilhac, Andreas Krebs, Michael Ludwig,
and Charles Paperman

http://dx.doi.org/10.1007/978-3-662-48057-1_1
http://dx.doi.org/10.1007/978-3-662-48057-1_2
http://dx.doi.org/10.1007/978-3-662-48057-1_2
http://dx.doi.org/10.1007/978-3-662-48057-1_3
http://dx.doi.org/10.1007/978-3-662-48057-1_3
http://dx.doi.org/10.1007/978-3-662-48057-1_4
http://dx.doi.org/10.1007/978-3-662-48057-1_5
http://dx.doi.org/10.1007/978-3-662-48057-1_6
http://dx.doi.org/10.1007/978-3-662-48057-1_7
http://dx.doi.org/10.1007/978-3-662-48057-1_8
http://dx.doi.org/10.1007/978-3-662-48057-1_9
http://dx.doi.org/10.1007/978-3-662-48057-1_10
http://dx.doi.org/10.1007/978-3-662-48057-1_10
http://dx.doi.org/10.1007/978-3-662-48057-1_11

Locally Chain-Parsable Languages . 154
Stefano Crespi Reghizzi, Violetta Lonati, Dino Mandrioli,
and Matteo Pradella

Classes of Languages Generated by the Kleene Star of a Word. 167
Laure Daviaud and Charles Paperman

Relating Paths in Transition Systems: The Fall of the Modal Mu-Calculus . . . 179
Cătălin Dima, Bastien Maubert, and Sophie Pinchinat

Weighted Automata and Logics on Graphs. 192
Manfred Droste and Stefan Dück

Longest Gapped Repeats and Palindromes . 205
Marius Dumitran and Florin Manea

Quasiperiodicity and Non-computability in Tilings 218
Bruno Durand and Andrei Romashchenko

The Transitivity Problem of Turing Machines . 231
Anahí Gajardo, Nicolas Ollinger, and Rodrigo Torres-Avilés

Strong Inapproximability of the Shortest Reset Word. 243
Paweł Gawrychowski and Damian Straszak

Finitary Semantics of Linear Logic and Higher-Order Model-Checking 256
Charles Grellois and Paul-André Melliès

Complexity of Propositional Independence and Inclusion Logic 269
Miika Hannula, Juha Kontinen, Jonni Virtema, and Heribert Vollmer

Modal Inclusion Logic: Being Lax is Simpler than Being Strict 281
Lauri Hella, Antti Kuusisto, Arne Meier, and Heribert Vollmer

Differential Bisimulation for a Markovian Process Algebra. 293
Giulio Iacobelli, Mirco Tribastone, and Andrea Vandin

On the Hardness of Almost–Sure Termination . 307
Benjamin Lucien Kaminski and Joost-Pieter Katoen

Graphs Identified by Logics with Counting . 319
Sandra Kiefer, Pascal Schweitzer, and Erkal Selman

Synchronizing Automata with Extremal Properties 331
Andrzej Kisielewicz and Marek Szykuła

Ratio and Weight Quantiles . 344
Daniel Krähmann, Jana Schubert, Christel Baier, and Clemens Dubslaff

XX Contents – Part I

http://dx.doi.org/10.1007/978-3-662-48057-1_12
http://dx.doi.org/10.1007/978-3-662-48057-1_13
http://dx.doi.org/10.1007/978-3-662-48057-1_14
http://dx.doi.org/10.1007/978-3-662-48057-1_15
http://dx.doi.org/10.1007/978-3-662-48057-1_16
http://dx.doi.org/10.1007/978-3-662-48057-1_17
http://dx.doi.org/10.1007/978-3-662-48057-1_18
http://dx.doi.org/10.1007/978-3-662-48057-1_19
http://dx.doi.org/10.1007/978-3-662-48057-1_20
http://dx.doi.org/10.1007/978-3-662-48057-1_21
http://dx.doi.org/10.1007/978-3-662-48057-1_22
http://dx.doi.org/10.1007/978-3-662-48057-1_23
http://dx.doi.org/10.1007/978-3-662-48057-1_24
http://dx.doi.org/10.1007/978-3-662-48057-1_25
http://dx.doi.org/10.1007/978-3-662-48057-1_26
http://dx.doi.org/10.1007/978-3-662-48057-1_27

Precise Upper and Lower Bounds for the Monotone Constraint
Satisfaction Problem . 357

Victor Lagerkvist

Definability by Weakly Deterministic Regular Expressions with Counters
is Decidable . 369

Markus Latte and Matthias Niewerth

On the Complexity of Reconfiguration in Systems with Legacy
Components . 382

Jacopo Mauro and Gianluigi Zavattaro

Eliminating Recursion from Monadic Datalog Programs on Trees 394
Filip Mazowiecki, Joanna Ochremiak, and Adam Witkowski

Computability on the Countable Ordinals and the Hausdorff-Kuratowski
Theorem (Extended Abstract) . 407

Arno Pauly

Emergence on Decreasing Sandpile Models . 419
Kévin Perrot and Éric Rémila

Lost in Self-Stabilization . 432
Damien Regnault and Éric Rémila

Equations and Coequations for Weighted Automata. 444
Julian Salamanca, Marcello Bonsangue, and Jan Rutten

Author Index . 457

Contents – Part I XXI

http://dx.doi.org/10.1007/978-3-662-48057-1_28
http://dx.doi.org/10.1007/978-3-662-48057-1_28
http://dx.doi.org/10.1007/978-3-662-48057-1_29
http://dx.doi.org/10.1007/978-3-662-48057-1_29
http://dx.doi.org/10.1007/978-3-662-48057-1_30
http://dx.doi.org/10.1007/978-3-662-48057-1_30
http://dx.doi.org/10.1007/978-3-662-48057-1_31
http://dx.doi.org/10.1007/978-3-662-48057-1_32
http://dx.doi.org/10.1007/978-3-662-48057-1_32
http://dx.doi.org/10.1007/978-3-662-48057-1_33
http://dx.doi.org/10.1007/978-3-662-48057-1_34
http://dx.doi.org/10.1007/978-3-662-48057-1_35

Contents – Part II

Near-Optimal Asymmetric Binary Matrix Partitions 1
Fidaa Abed, Ioannis Caragiannis, and Alexandros A. Voudouris

Dual VP Classes . 14
Eric Allender, Anna Gál, and Ian Mertz

On Tinhofer’s Linear Programming Approach to Isomorphism Testing 26
V. Arvind, Johannes Köbler, Gaurav Rattan, and Oleg Verbitsky

On the Complexity of Noncommutative Polynomial Factorization 38
V. Arvind, Gaurav Rattan, and Pushkar Joglekar

An Algebraic Proof of the Real Number PCP Theorem 50
Martijn Baartse and Klaus Meer

On the Complexity of Hub Labeling (Extended Abstract). 62
Maxim Babenko, Andrew V. Goldberg, Haim Kaplan,
Ruslan Savchenko, and Mathias Weller

On the Complexity of Speed Scaling . 75
Neal Barcelo, Peter Kling, Michael Nugent, Kirk Pruhs,
and Michele Scquizzato

Almost All Functions Require Exponential Energy 90
Neal Barcelo, Michael Nugent, Kirk Pruhs, and Michele Scquizzato

On Dynamic DFS Tree in Directed Graphs . 102
Surender Baswana and Keerti Choudhary

Metric Dimension of Bounded Width Graphs . 115
Rémy Belmonte, Fedor V. Fomin, Petr A. Golovach,
and M.S. Ramanujan

Equality, Revisited . 127
Ralph Bottesch, Dmitry Gavinsky, and Hartmut Klauck

Bounding the Clique-Width of H-free Chordal Graphs 139
Andreas Brandstädt, Konrad K. Dabrowski, Shenwei Huang,
and Daniël Paulusma

http://dx.doi.org/10.1007/978-3-662-48054-0_1
http://dx.doi.org/10.1007/978-3-662-48054-0_2
http://dx.doi.org/10.1007/978-3-662-48054-0_3
http://dx.doi.org/10.1007/978-3-662-48054-0_4
http://dx.doi.org/10.1007/978-3-662-48054-0_5
http://dx.doi.org/10.1007/978-3-662-48054-0_6
http://dx.doi.org/10.1007/978-3-662-48054-0_7
http://dx.doi.org/10.1007/978-3-662-48054-0_8
http://dx.doi.org/10.1007/978-3-662-48054-0_9
http://dx.doi.org/10.1007/978-3-662-48054-0_10
http://dx.doi.org/10.1007/978-3-662-48054-0_11
http://dx.doi.org/10.1007/978-3-662-48054-0_12

New Bounds for the CLIQUE-GAP Problem Using Graph
Decomposition Theory. 151

Vladimir Braverman, Zaoxing Liu, Tejasvam Singh,
N.V. Vinodchandran, and Lin F. Yang

QMA with Subset State Witnesses . 163
Alex Bredariol Grilo, Iordanis Kerenidis, and Jamie Sikora

Phase Transition for Local Search on Planted SAT 175
Andrei A. Bulatov and Evgeny S. Skvortsov

Optimal Bounds for Estimating Entropy with PMF Queries 187
Cafer Caferov, Barış Kaya, Ryan O’Donnell, and A.C. Cem Say

Mutual Dimension and Random Sequences . 199
Adam Case and Jack H. Lutz

Optimal Algorithms and a PTAS for Cost-Aware Scheduling 211
Lin Chen, Nicole Megow, Roman Rischke, Leen Stougie,
and José Verschae

Satisfiability Algorithms and Lower Bounds for Boolean Formulas
over Finite Bases . 223

Ruiwen Chen

Randomized Polynomial Time Protocol for Combinatorial Slepian-Wolf
Problem . 235

Daniyar Chumbalov and Andrei Romashchenko

Network Creation Games: Think Global – Act Local. 248
Andreas Cord-Landwehr and Pascal Lenzner

Oblivious Transfer from Weakly Random Self-Reducible Public-Key
Cryptosystem . 261

Claude Crépeau and Raza Ali Kazmi

Efficient Computations over Encrypted Data Blocks 274
Giovanni Di Crescenzo, Brian Coan, and Jonathan Kirsch

Polynomial Kernels for Weighted Problems . 287
Michael Etscheid, Stefan Kratsch, Matthias Mnich, and Heiko Röglin

A Shortcut to (Sun)Flowers: Kernels in Logarithmic Space or Linear Time . . . 299
Stefan Fafianie and Stefan Kratsch

Metastability of Asymptotically Well-Behaved Potential Games:
(Extended Abstract) . 311

Diodato Ferraioli and Carmine Ventre

XXIV Contents – Part II

http://dx.doi.org/10.1007/978-3-662-48054-0_13
http://dx.doi.org/10.1007/978-3-662-48054-0_13
http://dx.doi.org/10.1007/978-3-662-48054-0_14
http://dx.doi.org/10.1007/978-3-662-48054-0_15
http://dx.doi.org/10.1007/978-3-662-48054-0_16
http://dx.doi.org/10.1007/978-3-662-48054-0_17
http://dx.doi.org/10.1007/978-3-662-48054-0_18
http://dx.doi.org/10.1007/978-3-662-48054-0_19
http://dx.doi.org/10.1007/978-3-662-48054-0_19
http://dx.doi.org/10.1007/978-3-662-48054-0_20
http://dx.doi.org/10.1007/978-3-662-48054-0_20
http://dx.doi.org/10.1007/978-3-662-48054-0_21
http://dx.doi.org/10.1007/978-3-662-48054-0_22
http://dx.doi.org/10.1007/978-3-662-48054-0_22
http://dx.doi.org/10.1007/978-3-662-48054-0_23
http://dx.doi.org/10.1007/978-3-662-48054-0_24
http://dx.doi.org/10.1007/978-3-662-48054-0_25
http://dx.doi.org/10.1007/978-3-662-48054-0_26
http://dx.doi.org/10.1007/978-3-662-48054-0_26

The Shifted Partial Derivative Complexity of Elementary Symmetric
Polynomials . 324

Hervé Fournier, Nutan Limaye, Meena Mahajan,
and Srikanth Srinivasan

Parameterized Algorithms for Parity Games . 336
Jakub Gajarský, Michael Lampis, Kazuhisa Makino, Valia Mitsou,
and Sebastian Ordyniak

Algorithmic Applications of Tree-Cut Width . 348
Robert Ganian, Eun Jung Kim, and Stefan Szeider

Log-Concavity and Lower Bounds for Arithmetic Circuits 361
Ignacio García-Marco, Pascal Koiran, and Sébastien Tavenas

Easy Multiple-Precision Divisors and Word-RAM Constants 372
Torben Hagerup

Visibly Counter Languages and the Structure of NC1 384
Michael Hahn, Andreas Krebs, Klaus-Jörn Lange, and Michael Ludwig

The Price of Connectivity for Cycle Transversals . 395
Tatiana R. Hartinger, Matthew Johnson, Martin Milanič,
and Daniël Paulusma

Upper and Lower Bounds on Long Dual Paths in Line Arrangements 407
Udo Hoffmann, Linda Kleist, and Tillmann Miltzow

A Numbers-on-Foreheads Game . 420
Sune K. Jakobsen

Faster Lightweight Lempel-Ziv Parsing . 432
Dmitry Kosolobov

Parallel Identity Testing for Skew Circuits with Big Powers
and Applications . 445

Daniel König and Markus Lohrey

On Probabilistic Space-Bounded Machines with Multiple Access to
Random Tape . 459

Debasis Mandal, A. Pavan, and N.V. Vinodchandran

Densest Subgraph in Dynamic Graph Streams . 472
Andrew McGregor, David Tench, Sofya Vorotnikova, and Hoa T. Vu

The Offline Carpool Problem Revisited . 483
Saad Mneimneh and Saman Farhat

Contents – Part II XXV

http://dx.doi.org/10.1007/978-3-662-48054-0_27
http://dx.doi.org/10.1007/978-3-662-48054-0_27
http://dx.doi.org/10.1007/978-3-662-48054-0_28
http://dx.doi.org/10.1007/978-3-662-48054-0_29
http://dx.doi.org/10.1007/978-3-662-48054-0_30
http://dx.doi.org/10.1007/978-3-662-48054-0_31
http://dx.doi.org/10.1007/978-3-662-48054-0_32
http://dx.doi.org/10.1007/978-3-662-48054-0_33
http://dx.doi.org/10.1007/978-3-662-48054-0_34
http://dx.doi.org/10.1007/978-3-662-48054-0_35
http://dx.doi.org/10.1007/978-3-662-48054-0_36
http://dx.doi.org/10.1007/978-3-662-48054-0_37
http://dx.doi.org/10.1007/978-3-662-48054-0_37
http://dx.doi.org/10.1007/978-3-662-48054-0_38
http://dx.doi.org/10.1007/978-3-662-48054-0_38
http://dx.doi.org/10.1007/978-3-662-48054-0_39
http://dx.doi.org/10.1007/978-3-662-48054-0_40

On Sampling Simple Paths in Planar Graphs According to Their Lengths . . . 493
Sandro Montanari and Paolo Penna

Degree-Constrained Subgraph Reconfiguration is in P 505
Moritz Mühlenthaler

Generalized Pseudoforest Deletion: Algorithms and Uniform Kernel 517
Geevarghese Philip, Ashutosh Rai, and Saket Saurabh

Efficient Equilibria in Polymatrix Coordination Games 529
Mona Rahn and Guido Schäfer

Finding Consensus Strings with Small Length Difference Between Input
and Solution Strings . 542

Markus L. Schmid

Active Linking Attacks . 555
Henning Schnoor and Oliver Woizekowski

On the Complexity of Master Problems . 567
Martijn van Ee and René Sitters

Efficient Algorithm for Computing All Low s-t Edge Connectivities
in Directed Graphs . 577

Xiaowei Wu and Chenzi Zhang

Maximum Minimal Vertex Cover Parameterized by Vertex Cover. 589
Meirav Zehavi

Fast Dynamic Weight Matchings in Convex Bipartite Graphs 601
Quan Zu, Miaomiao Zhang, and Bin Yu

Author Index . 613

XXVI Contents – Part II

http://dx.doi.org/10.1007/978-3-662-48054-0_41
http://dx.doi.org/10.1007/978-3-662-48054-0_42
http://dx.doi.org/10.1007/978-3-662-48054-0_43
http://dx.doi.org/10.1007/978-3-662-48054-0_44
http://dx.doi.org/10.1007/978-3-662-48054-0_45
http://dx.doi.org/10.1007/978-3-662-48054-0_45
http://dx.doi.org/10.1007/978-3-662-48054-0_46
http://dx.doi.org/10.1007/978-3-662-48054-0_47
http://dx.doi.org/10.1007/978-3-662-48054-0_48
http://dx.doi.org/10.1007/978-3-662-48054-0_48
http://dx.doi.org/10.1007/978-3-662-48054-0_49
http://dx.doi.org/10.1007/978-3-662-48054-0_50

Invited Contributions

Minimal and Monotone Minimal
Perfect Hash Functions

Paolo Boldi(B)

Dipartimento di Informatica, Università degli Studi di Milano, Milan, Italy
paolo.boldi@unimi.it

Abstract. A minimal perfect hash function (MPHF) is a (data struc-
ture providing a) bijective map from a set S of n keys to the set of the
first n natural numbers. In the static case (i.e., when the set S is known
in advance), there is a wide spectrum of solutions available, offering dif-
ferent trade-offs in terms of construction time, access time and size of the
data structure. MPHFs have been shown to be useful to compress data in
several data management tasks. In particular, order-preserving minimal
perfect hash functions have been used to retrieve the position of a key in
a given list of keys: however, the ability to preserve any given order leads
to an unavoidable Ω(n log n) lower bound on the number of bits required
to store the function. Recently, it was observed that very frequently the
keys to be hashed are sorted in their intrinsic (i.e., lexicographical) order.
This is typically the case of dictionaries of search engines, list of URLs
of web graphs, etc. MPHFs that preserve the intrinsic order of the keys
are called monotone (MMPHF). The problem of building MMPHFs is
more recent and less studied (for example, no lower bounds are known)
but once more there is a wide spectrum of solutions available, by now.
In this paper, we survey some of the most practical techniques and tools
for the construction of MPHFs and MMPHFs.

1 Introduction

A minimal perfect hash function maps bijectively a set S of n keys into the
set { 0, 1, . . . , n − 1 } of the first n natural numbers. The construction of such
functions in the static case (i.e., when S is known in advance and does not
change) was widely studied in the last years, leading to fundamental theoretical
results such as [1,2]. When comparing different techniques for building MPHFs
one should be aware of the trade-offs between construction time, evaluation
time and space needed to store the function. A general tenet is that evaluation
should happen in constant time (with respect to n), whereas construction is only
required to be feasible in a practical sense. The amount of space occupied by the
data structure is often the most important aspect when a construction is taken
into consideration; usually space is computed in an exact (i.e., non-asymptotic)
way. Some exact space lower bounds for this problem are known (they are pure
space bounds and do not consider evaluation time). One fundamental question
is how close to the space lower bound n log e + log log u one can stay if the
evaluation must be performed in constant time.
c© Springer-Verlag Berlin Heidelberg 2015
G.F. Italiano et al. (Eds.): MFCS 2015, Part I, LNCS 9234, pp. 3–17, 2015.
DOI: 10.1007/978-3-662-48057-1 1

4 P. Boldi

In this paper, I will describe two practical solutions: the first one provides
a structure that is simple, constant-time, asymptotically space-optimal (i.e.,
O(n)); its actual space requirement is about twice the lower bound. The sec-
ond one can potentially get closer to the lower bound, even if in practice this
would require an unfeasibly long construction time; nonetheless, it provides the
smallest known data structure (although it takes a long time to be built)—it
occupies about 1.44 times the lower bound.

From an application-oriented viewpoint, order-preserving minimal perfect
hash functions (OPMPHFs) have been used to retrieve the position of a key in a
given list of keys [3,4]. In [5] the authors note that all existing techniques for this
task assume that keys can be provided in any order, incurring an unavoidable
Ω(n log n) lower bound on the number of bits required to store the function.
However, very frequently the keys to be hashed are sorted in their intrinsic
(i.e., lexicographical) order. This is typically the case of dictionaries of search
engines, list of URLs of web graphs, etc. [6–8]. Thus, it is interesting to study
monotone minimal perfect hash functions (MMPHFs), that map each key of a
lexicographically sorted set to its ordinal position.

This problem is much younger (it was first defined and studied in [5]) and
much less is known about it; in particular, no non-trivial lower bound is available
as of now. I will here limit myself in describing two solutions with a different
space/time trade-off.

Overall, the purpose of this brief survey is to introduce the main tools and
techniques without any pretense of completeness but with the aim of showing
some key points that highlight the generality of some approaches and suggest
how they can be potentially used in other contexts and for different problems.

2 Definitions and Notation

Sets, Integers, Keys. For every natural number n, I let [n] = { 0, 1, . . . , n − 1 };
I occasionally use the same notation when n is a real number, omitting a ceiling
operation.

In the following, I will always assume that a universe U of u = |U | items
called keys is fixed; this set may in many applications be infinite, but unless
otherwise specified I will suppose that it is finite. Occasionally, I assume that U
is endowed with a total order ≤.

In most cases, the actual nature of the keys will be irrelevant, but later on I
will need to assume that u is a power of two, U = [u] and that the elements of U
are represented as binary strings of length log u (each x < u is represented by its
zero-left-padded binary expansion); in this case, ≤ is the lexicographic order of
binary strings (or, equivalently, the natural ordering of natural numbers). The
case of non-binary strings all of the same length follows as an easy generalization;
moreover, with a few modifications the stated results can apply also in terms of
the average string length of a set of variable-length strings [9].

Minimal and Monotone Minimal Perfect Hash Functions 5

Hash Functions. Given a positive integer m, an m-bucket hash function for U is
any function h : U → [m]. The term “hash function” is often used also to refer
to a data structure that computes the hash function itself.

Hash functions are an ingredient of many data structures and algorithms [10];
depending on the application, further properties may be required or desirable;
often such properties are stated with respect to a specific set of keys. Given
S ⊆ U with |S| = n and a hash function h : U → [m], one says that:

– h is perfect (PHF) iff it is injective;
– h is minimal perfect (MPHF) iff it is perfect and n = m;
– h is order-preserving with respect to some total order � on U iff x � y implies

h(x) ≤ h(y) for all x, y ∈ S;
– h is monotone iff it is order preserving with respect to ≤.

The distinction between order-preserving and monotone hash functions is not
moot; there are n! possible total orders on S, hence there is an obvious space
lower bound of Ω(n log n) for order-preserving hash functions. This lower bound
does not hold for monotone hash functions. Notice, though, that since monotone
hash functions are a special case of order-preserving hash functions (applied to
the natural order), any structure for the latter can be used to implement the
former, but not vice versa.

3 Generalities

Space/Time Complexity. Every hash function (data structure) requires some
time and space to be built; moreover, it needs some time to be evaluated and
occupies some amount of space. In this paper I consider the problem from a static
viewpoint, that is, I do not care much about construction complexity (albeit I
insist that construction should be feasible), but I study in detail the access
space/time trade-off. While time evaluation is only determined asymptotically,
I will try to make a precise (i.e., non-asymptotic) space estimate: this is essential,
because in many cases all non-trivial solutions are asymptotically equivalent, and
only an exact computation of the constants involved allows for a choice between
alternative approaches.

Hash Randomness. In the following, I often assume that one can “draw” a hash
function h : U → [m] at random; this is sometimes called “true randomness
assumption”, and turns out to simplify many proofs, but it is far from realistic.
The first problem is that there are mu such hash functions, so at least Ω(u log m)
bits are needed to describe one of them; moreover, even disregarding the space
occupied, the time needed for the evaluation is crucial and we need an efficient
implementation of the family of hash functions we are going to use. A large
stream of research is devoted to the determination of weaker conditions on the
hash functions available that still allow them to be used. Although I am well
aware of the problem, I am hereafter ignoring it altogether (the interested reader
can find more information, e.g., in [11]). Hence, I assume that a fully random

6 P. Boldi

hash function can be obtained, can be stored in constant space and evaluated in
time O((log u)/w), where w is the machine-word length: in fact, (log u)/w steps
are needed just to read a full key! Of course, if one assumes that w = Ω(log u),
hash values can be computed in constant time. The latter case will be referred to
as short-keys scenario, whereas the general case will be called long-keys scenario.

Rank and Select. I will make extensive use of the two basic building blocks
of several succinct data structures—rank and select. Given a bit array (or bit
string) b ∈ { 0, 1 }n (whose positions are indexed from 0) with t ones, rankb(p)
is the number of ones up to position p, exclusive (0 ≤ p ≤ n), whereas selectb(r)
is the position of the r-th one in b (0 ≤ r < t). Jacobson [12] offers a constant-
time implementation for the rank data structure that uses o(n) additional bits
besides the array b; furthermore, constant-time solutions exist that require as
little space as O(t/(log t)c) (for any desired c) over the information-theoretical

lower bound log
(

n
t

)
[13]. More practical solutions, like the Elias-Fano scheme,

are described in [14,15]. For very sparse sets, Elias-Fano can be rewarding in
terms of space, but the query time becomes O(log(n/t)).

Signatures. The fact that a hash function h : U → [m] is an MPHF for S ⊆ U
does not mean that it can be used to establish membership to S; in other words,
MPHFs cannot be used as static dictionaries. If you apply h to a key outside of
S you still get a result (a value in [m]) and you have no way to determine if the
key was an element of S in the first place. Whether this is an issue or not really
depends or your intended application. If you want to solve this problem you can,
of course, combine the MPHF with a (possibly approximate) dictionary (e.g.,
a Bloom filter [16]) that is used to test membership to S first. An alternative,
quite efficient, solution is to store an array of signatures: to do this, you first
choose an s-bit digesting function σ : U → [2s] that computes some digest
of each key, and then use an array S[−] of length m that, for every x ∈ S,
stores σ(x) in S[h(x)]. Now, if the data structure is queried with the key x,
first h(x) is computed and then S[h(x)] is checked against σ(x): if they coincide,
h(x) is returned, otherwise ⊥ is returned (to mean that x �∈ S). False negatives
(elements of S for which the data structure erroneously returns ⊥) cannot take
place, whereas the probability of false positives depends on the quality of the
signature function σ(−) and, of course, on the size s of the signature being used.
At an extreme, one can sign each key with the key itself (an “identity signature”),
using s = log u, which makes false positives impossible.

PHF Compression. Every hash function h : U → [m] that is a PHF for the set
S ⊆ U can be turned into a MPHF by using an extra array of m bits b, where
bi = 1 iff i is in the image of S through h, and by constructing an extra rank
data structure on b: the new MPHF h′ : U → [n] is defined as x 	→ rankb(h(x)).
Note that h′ has the same evaluation time as h (because the rank is computed in
constant time), and uses an extra space of m + o(m) bits. Moreover, if for some
reason the PHF h already contains (implicitly or explicitly) a representation of

Minimal and Monotone Minimal Perfect Hash Functions 7

the bit array b, the extra space reduces to o(m) bits. This technique will be
referred to as PHF compression.

4 Minimal Perfect Hash Functions

Fredman and Komlós proved [2] that no MPHF can occupy less than n log e +
log log u + O(log n) bits, as long as n2+ε ≤ u; this bound is essentially tight
[17, Sect.III.2.3, Thm.8], disregarding evaluation time. Approximately, if we
ignore lower-order terms, this result means that we cannot use less than log e ≈
1.44 bits/key.

One fundamental question is how close to the space lower bound n log e +
log log u one can remain if the evaluation must be performed in constant time.
The best theoretical results in this direction are given in [18], where a n log e +
log log u + O(n(log log n)2/ log n + log log log u) technique is provided (optimal
up to an additive factor) with expected linear-time construction. The technique
is only of theoretical relevance, though, as it yields a low number of bits per key
only for unrealistically large values of n.

In this section, I will present two methods that are both asymptotically
optimal and in practice obtain a space bound quite close to the limit. The first
one, introduced in [19], can be seen as an adaptation of [4]. The second one was
presented in [20] and uses a completely different approach. All the techniques
presented in this section work without any change for keys of variable length. In
this section, I will assume the short-keys scenario (so, hash-function evaluation
takes constant time); all results easily carry over to the long-keys scenario, but
evaluation of a hash function on x will require O(|x|/w) steps instead.

4.1 The MWHC Construction

The authors of [4] propose a clever and simple method to build OPMPHF. In
fact, although the authors do not discuss this fact, the very same method has
a much more general applicability: it allows one to store an arbitrary function
that associates an object (represented, w.l.o.g. as an r-bit vector) to each key
from a fixed set. More precisely, let r be a positive integer, S ⊆ U (with n = |S|)
and f : S → [2r] be fixed from now on. We want to build a data structure
that, given any input v ∈ U is able to output f(v) when v ∈ S; the behavior of
the data structure when v �∈ S is irrelevant. Of course, this construction can be
used in particular to store any prescribed minimal perfect hash function letting
r = log n and f be a bijection.

Preliminaries on Hypergraphs. Recall that a t-hypergraph H = (V,E) is defined

by a set of vertices V and by a set E ⊆
(

V
t

)
of1 hyperedges. A hypergraph

H = (V,E) is peelable [4,21] iff there exists a sequence (e1, x1), . . . , (em, xm)
where

1 I write

(
X
t

)
for the set of subsets of X of cardinality t.

8 P. Boldi

– e1, . . . , em are all the hyperedges of H (and each hyperedge appears exactly
once)

– xi ∈ ei for all i = 1, . . . , m
– xi �∈ e1 ∪ · · · ∪ ei−1.

The sequence e1, . . . , em is called the peeling order, and xi is called the hinge
of ei.

The 2-core is the maximal subset of vertices that induce a sub-hypergraph2

where all vertices have degree3 2 or more.

Theorem 1. A t-hypergraph is peelable iff it does not contain a 2-core. In par-
ticular, a 2-hypergraph (i.e., a graph) is peelable iff it is acyclic.

The Construction. Let now k and m be two positive integers, to be chosen later,
with m ≥ n (in fact, I shall choose m = ck · n� for some suitable ck ≥ 1).

Draw at random k hash functions h1, . . . , hk : U → [m] and consider the
hypergraph H = ([m], E) where E = {{h1(v), . . . , hk(v)} | v ∈ S}. Check that
the following conditions hold:

– for every v ∈ S, the values h1(v), . . . , hk(v) are all distinct (hence, H is a
k-hypergraph);

– |E| = n (i.e., the hyperedges corresponding to different elements of S are
different);

– H is peelable.

If any of these conditions fails to hold, repeat the process and generate k new
hash functions.

Theorem 2. Under the assumptions above, consider the following system of n
equations (whose indeterminates are a0, . . . , am−1):

ah1(v) + · · · + ahk(v) = f(v) ∀v ∈ S.

This system has a solution (a∗
0, . . . , a

∗
m−1) over Z2r such that a∗

x = 0 if x is not
a hinge.

Proof. Consider the peelable hypergraph H defined above, and let e1, . . . , em be
the peeling order, and xi be the hinge of ei. Moreover, let wi be the element of
S corresponding to the hyperedge ei. Consider the equations

ah1(wi) + · · · + ahk(wi) = f(wi)

in order of increasing i. Each equation contains at least one variable that never
appeared before (axi

): assign it so that the equation holds in Z2r ; if any other
previously unassigned variable appears in the equation, let it be equal to 0.

2 The sub-hypergraph induced by X ⊆ V is (X, EX) where EX = E ∩
(

X
t

)
.

3 The degree of a vertex is the number of hyperedges including it.

Minimal and Monotone Minimal Perfect Hash Functions 9

Theorem 2 implies that the computation of f(v) can be easily performed (in
constant time) by computing h1(v), . . . , hk(v) and then accessing to the corre-
sponding elements of an array that stores the solution of the system.

Choice of m and k. The choice of m determines how easy (or difficult) it will
be to find a hypergraph satisfying the assumptions (in particular, peelability):
if m is too small it will be hard (impossible, if m < n) to have a peelable graph,
whereas for large values of m almost all graphs will be peelable. In fact, this
is a zero-one law, i.e., there is a threshold value ck such that if m < ck · n
almost no hypergraph is peelable, whereas if m > ck ·n almost every hypergraph
is peelable. The values of ck have been determined in [21] (following the lines
of [4]) and the first few ones are c2 = 2, c3 ≈ 1.23, c4 ≈ 1.29, c5 ≈ 1.41. It turns
out, in fact, that c3 (henceforth called γ ≈ 1.23) is the minimum of the sequence,
which makes k = 3 and m = γ · n� the best choice.

Time and Space Complexity. The statement of Theorem 2 suggests that one can
either store, the actual solution (a∗

0, . . . , a
∗
m−1) (that requires mr = γnr ≈ 1.23 ·

nr bits, i.e., 1.23r bits/key), or its compressed version4 requiring (r +γ)n+o(n)
bits (i.e., r +1.23 bits/key), which is advantageous (ignoring the extra-space for
the rank/select structure) when r + γ < rγ, i.e., when r > 5.

In particular, using the MWHC construction to store a minimal perfect hash
(r = log n) allows one to solve the OPMPHF problem in O(n log n) bits, and
this is asymptotically optimal: in fact, there are n! possible MPHFs, hence they
require space Ω(n log n) to be stored.

Using the MWHC Construction to Build a MPHF. [19] (in fact, independently
of [4]) suggests that the same technique can be adapted to store a MPHF h :
U → [n] for a set S ⊆ U of n keys. Proceed as in the standard construction,
but decide the function f only after finding three hash functions h1, h2, h3 that
produce a peelable hypergraph. Now let r = 2 and f : S → [4] be defined so that
hf(v)+1(v) is the hinge of the hyperedge associated to v. By the very definition
of hinge, hf(v)+1(v) is distinct for distinct v ∈ S, so it represents a PHF. Also
observe that the proof Theorem 2 can be extended to solve the system modulo
2r − 1 (in our case, modulo 3); in that case, the solution (a∗

0, . . . , a
∗
m−1) (which

is zero on all non-hinges) can be taken so that it is non-zero on all hinges (just
use 3 instead of 0 for hinge variables, which is ok because 3 = 0 modulo 3). Thus
the m-bit vector b implicitly defined as bi = 0 iff a∗

i = 0 can be used to compress
the PHF v 	→ hf(v)+1(v). As a result, we obtain a MPHF using 2γn + o(n)
bits (that is, about 2.46 bits/key). This is approximately one bit larger than the
lower bound (in practice, the rank data structure can be implemented so that
the real number of bits is ≈ 2.65 [21]).

4 Keeping only the (at most) n non-zero a∗
i and storing their indices in an array on

which a rank/select structure is provided.

10 P. Boldi

4.2 Hash, Displace and Compress

This alternative approach, described in [20], strongly relies on the availability of
a sequence φ0, φ1, φ2, · · · : U → [m] of independent, fully random hash functions.
Although this assumption is apparently very unrealistic, there are many ways
to bypass it, for example the so-called “split-and-share trick” described in [22];
in practice, even more naive approaches can do the job, as explained in the
experimental section of [20].

The technique itself builds a PHF h : U → [(1 + ε)n], whence a MPHF can
be obtained by compression5. To build h a first-level hash function g : U → [r]
is chosen, that divides the universe into r buckets; g also implicitly divides the
set S into buckets

Bi = S ∩ g−1(i),

one for each i ∈ [r]. Now, for all indices i, we will determine a second-level hash
function fi : U → [(1 + ε)n] picking from the sequence φ0, φ1, Let us say
that fi = φσ(i). Then h will be defined by

x 	→ φσ(g(x))(x).

Overall, to compute h one just needs to have the values of σ.
The computation of σ is done through the following steps:

– The r buckets Bi are arranged by decreasing size;
– For every i, we let σ(i) be the first index � such that φ� is injective on

B0 ∪ · · · ∪ Bi.

The first question is how long it takes to find an index � that satisfies the
last condition. With a careful analysis, it turns out that, with high probability,
σ(i) < C log n for some suitable constant C, implying that the construction
requires O(n log n) steps. Moreover, the very same argument means that every
value of σ can be stored in log log n + O(1) bits, so the overall space required to
store the hash function uses log log n bits per key with very high probability.

In [20], the authors move one step further, and show that the σ(i)’s have
a geometrical distribution with O(1) expectation. Thus, using for example the
sophisticated compression schemes introduced in [23], one can compress σ in
O(n) bits (in expectation), thus using O(1) bits per key.

Theorem 3. ([20]). The construction described above requires expected time
O(n · (2n/r + 1/ε)n/r) and space O((1/ε)n).

Experimentally, suitable choices of r yield ≈ 2.05 bits/key (smaller than the
≈ 2.65 of the MWHC-based construction, but still much larger than the lower
bound ≈ 1.44), although the construction is about twenty times slower than the
MWHC-based one.
5 In [20] a variant is also discussed that directly produces a MPHF, but its construction

time is no longer linear in expectation.

Minimal and Monotone Minimal Perfect Hash Functions 11

5 Monotone Minimal Perfect Hash Functions

From an application-oriented viewpoint, order-preserving minimal perfect hash
functions (often dubbed OPMPHF, and pronounced “oomph”) have been used
to retrieve the position of a key in a given list of keys [3,4]. Since all existing
techniques for this task assume that keys can be provided in any order, there is
an unavoidable Ω(n log n) lower bound on the number of bits required to store
the function. However, very frequently the keys to be hashed are sorted in their
intrinsic (i.e., lexicographical) order. This is typically the case of dictionaries of
search engines, list of URLs of web graphs, etc. [6–8]. Thus, it is interesting to
explore monotone minimal perfect hashing—the problem of mapping each key
of a lexicographically sorted set to its ordinal position.

The first paper addressing this problem was [5], where the authors provided
two solutions with different space/time trade-off. The first solution (based on
longest common prefixes) provides6 O((log u)/w) access but requires O(log log u)
bits/key. The second solution (based on a so-called z-fast trie) requires just
O(log log log u) bits/key, but access time becomes O((log u)/w + log log u).

In this paper, I will limit myself to providing a full description of the for-
mer solution, and sketch the main ideas behind the second one. The techniques
described in this section require that the keys have all the same length, but they
can be adapted to keys of different length provided that S is prefix-free.

Both constructions (and also many of those described in [9]) rely on the idea
of (lexicographic) bucketing. The set of keys S is partitioned into m buckets
S0, . . . , Sm−1 preserving the lexicographic order; in other words, every key in
the i-th bucket Si are less than all the keys in bucket Si+1.

– A special function f : U → [m] called distributor maps every x ∈ S to the
index of the appropriate bucket (i.e., the bucket where x belongs).

– Then, for every i, a MMPHF hi : U → [|Si|] is stored for the set Si.
– Finally, a function � : [m] → [n] is provided such that �(i) =

∑
j<i |Sj |.

Clearly the function h : U → [n] defined by

h(x) = �(f(x)) + hf(x)(x)

is a MMPHF for S. The difference between the constructions is in how the
buckets are sized, and how the distributor and the other functions involved are
represented.

5.1 Longest Common Prefixes

The first solution, described in [5], is based on longest common prefixes. Let b
be a positive integer (to be decided later), and divide the set S into buckets Bi

6 In order to highlight better the differences between the various approaches, in this
section I consider the long-keys scenario.

12 P. Boldi

of size7 b, preserving order. Observe that � in this case is easy to implement,
because �(i) = b · i.

To build the distributor f : S → [m] (with m = n/b�), we first observe that
the longest common prefix of the keys in Si are all different. In fact, suppose
that pi is the longest common prefix of the keys of Si: then, either Si = {pi}
(in which case, pi is clearly not the longest common prefix of any other bucket),
or there are v, v′ ∈ Si such that pi0 is a prefix of v and pi1 is a prefix of v′

(otherwise, pi would not be “the longest”). Suppose that i < j and pi = pj = p:
then a key prefixed by pj0 = p0 would come after a key prefixed by pi1 = p1,
contradicting the fact that the buckets respect the lexicographic order of keys.

Now, let P = {p0, . . . , pm−1} be the set of the m longest common prefixes.
Let us store:

– The function f0 : S → [log u] mapping each key to the length of the longest
common prefix of the bucket the key belongs to;

– The function f1 : P → [m] mapping each longest common prefix to the index
of the bucket it corresponds.

The distributor f can now be defined as

f(x) = f1(x[: f0(x)])

where x[: t] is the prefix of length t of x. Both f0 and f1 are stored as MWHC
functions, and so are the m MMPHFs gi : U → [b].

Storing f0 requires (γ + log log u)n + o(n) bits; storing f1 requires (γ +
log m)m + o(m) bits; each function gi requires (γ + log b)b + o(b) bits. If we
let b = log n (hence m = n/ log n), we obtain

(γ + log log u)n +
γ + log n − log log n

log n
n +

n

log n
(γ + log log n) log n + o(n)

and since n = O(u), the space required is O(log log u) bits/key.
The function f0 is asymptotically the most space-consuming data structure.

This observation also implies that there is no point in trying to modify the way
in which the gi’s are represented (e.g., using a recursive approach).

5.2 Z-Fast Tries

The second approach to MMPHF construction that I want to present is based on
z-fast tries, defined in [5], and later studied in [9,24,25]. This time, the construc-
tion of the distributor f : U → [m] is based on the following observation. Divide
again the set S into m buckets, S0, S1, . . . , Sm−1, and let di be the largest (lexico-
graphically) element of Si, called the i-th delimiter. The set D = {d0, . . . , dm−1}
of delimiters can be used to build f , reducing the computation of f to a relative
ranking problem: given x ∈ S, f(x) is the number of d ∈ D such that d < x.
(We call it “relative ranking” because we only care about elements of S; on the
rest of the universe f may return any value). Now, in order to build f we will
use a trie-like structure, that I will sketch below.
7 The last bucket may, of course, be smaller than b.

Minimal and Monotone Minimal Perfect Hash Functions 13

Generalities on Tries. A binary (compacted) trie is a binary tree whose nodes
are labelled with binary strings; let Cγ be the label of node γ (called the content
of γ). The name Nγ of a node γ is defined recursively as follows:

– The name of the root is ε;
– If ξ is the left (right, resp.) child of γ, its name is NγCγ0 (NγCγ1, resp.).

The extent Eγ of a node γ is NγCγ . Given a set of binary strings D (in our case,
the set of delimiters), we let Trie(D) be the unique trie such that D is the set
of the extents of its leaves. From now on, I will refer to this trie.

Given any binary string x, the exit node of x is the node whose name is the
longest node name that is a prefix of x; I write exit(x) for the name of the exit
node. We say that x exits on the left if at the first mismatch between x and the
extent of its exit node, x contains a 0; otherwise, we say it exits on the right. By
convention, elements of D exit on the left. I write exitsRight(x) for the function
returning 1 if x ∈ S exits on the right, 0 if it exits on the left.

How the Distributor is Realized (I). For the moment, suppose that one is able
to compute, for every x ∈ S, the exit node and direction of x, i.e., exit(x) and
exitsRight(x). Suppose further that for every node name n one is able to compute
the number of leaves on the left (leftCount(n)) and below (belowCount(n)) that
node. Then, the distributor function f can be computed as

f(x) = leftCount(exit(x)) + exitsRight(x) · belowCount(exit(x)).

The computation of exit(x) will be the hardest part, so we first describe the
remaining ingredients. The exitsRight(−) function is a 1-bit function, that can
be represented using the MWHC technique, so it requires γ = O(1) bits/key.
The leftCount(−) and belowCount(−) functions can be implemented as follows:
let X = {Nγ , N+

γ | γ a node}, where N+
γ is defined to be the bit sequence

representing the successor8 of Nγ and having the same length as Nγ (for example,
if Nγ = 10011 then N+

γ = 10100). Of course, |X| = O(m); build a MMPHF
ξ : X → [|X|], and construct a bit-array of size |X| that contains a 1 in the
positions of the name of leaves. It is immediate to see that, for every node γ

leftCount(Nγ) = rank(ξ(Nγ))

belowCount(Nγ) = − leftCount(Nγ) +

{
rank(ξ(x1)) if Nγ = x0
rank(ξ(x1+)) if Nγ = x1.

Overall this data structure can be represented as an LCP-based MMPHF, requir-
ing O(m log log u) bits (to represent ξ), plus O(m) bits for the bit-array and the
corresponding rank structure.
8 If Nγ is a sequence of 1s, N+

γ will not be added to the set.

14 P. Boldi

How the Distributor is Realized (II). What we still have to explain is how the
function exit(−) is implemented. One trivial solution would be to actually store
Trie(D) and navigate it to determine the exit node for the input string x, but
this approach would require too much space and would impose a |x| = O(log u)
query time. We shall rather use an alternative approach, storing a much simpler
data structure (a z-fast trie) that contains enough information to navigate the
trie; on this structure we will proceed with a procedure that is similar to a binary
search, and is called fat binary search.

Given an integer interval (i.e., a finite set of consecutive natural numbers)
[� ..r], call 2-fattest the (unique) integer in the set that is divisible by the largest
possible power of 2. For every node γ of Trie(D), the handle Hγ of γ is the prefix
of Eγ whose length is the 2-fattest element of [|Nγ | ..|Eγ |].

The z-fast trie associated to Trie(D) is a map z that maps handles to pairs:
the handle Hγ is mapped to the pair (|Eγ |, σ(Eγ)) where σ(−) is an s-bit digest-
ing function.

In order to determine exit(x) for a given input x, we can compute the largest
i such that x[: i] is the name of a node or, equivalently9 the largest i such that
x[: i] is the extent of a node (the name of the exit node will thus be x[: i + 1]).

We keep track of an interval [� ..r] that contains the index i we are looking
for; at the beginning [� ..r] = [1 ..|x| − 1]. At every step, we take the 2-fattest
element t of [� ..r], and query z with x[: t]. Let z(x[: t]) = (u, γ); if u ≤ |x| and
σ(x[: u]) = γ, then we let � = u + 1; otherwise, we let r = t − 1. When � ≥ r,
the index i we were looking for is i = � − 1.

Fat binary search resembles standard binary search (and, like binary search, it
takes O(log |x|) = O(log log u) steps); it is based on the following easy property:
if t is the 2-fattest number in [� ..r], and � ≤ �′ ≤ t ≤ r′ ≤ r, then t is also
2-fattest in [�′ ..r′].

The map z requires O(m(s + log log u)) bits where s is the size of the sig-
natures; observe that choosing s too small yields a high probability of false
positives (sometimes you may believe that the x[: u] is an extent, while it is
not; this happens when σ(x[: u]) happens to coincide with the signature of an
extent).

If one lets s = log(n/m), the size of the z-trie becomes O(m(log(n/m) +
log log u)); the probability of an error is O(m/n), hence the expected number of
errors (elements of S that are misclassified) is O(m). Repeating the construction
O(1) times (in expectation), you obtain a O(m) worst-case guarantee on the
number of errors. Using the techniques described in [5, Sect. 5], we can store this
misclassified set in an explicit dictionary that uses the same amount of space as
z, along with a map that stores the correct output for this set of errors.

This way, the z-fast trie needs space O(m(log(n/m) + log log u)) and has
query time O(log log u). Letting m = n/ log log u, the z-fast trie requires O(n)
bits of space (i.e., constant number of bits/key). Also the ranking data structure
for leaf-counting takes O(m log log u) = O(n) bits of space. We finally have to

9 If exit(x) is the root, the algorithm will return i = −1, so it is still true that x[: i+1]
is the name of the exit node.

Minimal and Monotone Minimal Perfect Hash Functions 15

Table 1. Time and space complexities for the data structures presented in this paper.

Space Access time

bits/key short keys long keys

r-bit functions (4.1) min(r + γ, rγ) + o(1) O(1) O((log u)/w)

MPH MWHC (4.1) 2γ + o(1) (≈ 2.65) O(1) O((log u)/w)

HDC (4.2) O(1) (≈ 2.05) O(1) O((log u)/w)

MMPH LCP (5.1) O(log log u) O(1) O((log u)/w)

z-fast tr. (5.2) O(log log log u) O(log log u) O((log u)/w + log log u)

represent the gi: each of them requires (γ +log log log u) log log u+o(n) bits, and
to store m = n/ log log u of them we need O(log log log u) bits/key.

6 Conclusions

In Table 1 you can find a summary of the constructions I presented, so that
the different available trade-offs are more easily understood. This paper is not
intended to be an exhaustive survey of the existing techniques for the construc-
tion of minimal and monotone minimal perfect hash functions: the reader that
is interested in a more general presentation should for example start from [9,22].
My aim was rather to cherry-pick from the large body of literature on this topics
those constructions that I find particularly relevant, using two guiding principles:
my personal taste and the fact that I believe this is one of the situations where
the techniques are more interesting than the actual tools. I hope that even the
occasional reader has found some inspiration (or at least some pleasure) from
the algorithms I presented.

Acknowledgements. I want to thank Sebastiano Vigna for his comments and insight-
ful suggestions. This paper is partially funded by the Google Focused Award “Web
Algorithmics for Large-Scale Data Analysis”.

References

1. Fredman, M.L., Komlós, J., Szemerédi, E.: Storing a sparse table with O(1) worst
case access time. J. Assoc. Comput. Mach. 31, 538–544 (1984)

2. Fredman, M.L., Komlós, J.: On the size of separating systems and families of
perfect hash functions. SIAM J. Algebr. Discret. Methods 5, 61–68 (1984)

3. Fox, E.A., Chen, Q.F., Daoud, A.M., Heath, L.S.: Order-preserving minimal perfect
hash functions and information retrieval. ACM Trans. Inf. Sys. 9, 281–308 (1991)

4. Majewski, B.S., Wormald, N.C., Havas, G., Czech, Z.J.: A family of perfect hashing
methods. Comput. J. 39, 547–554 (1996)

16 P. Boldi

5. Belazzougui, D., Boldi, P., Pagh, R., Vigna, S.: Monotone minimal perfect hashing:
Searching a sorted table with O(1) accesses. In: Proceedings of the 20th Annual
ACM-SIAM Symposium On Discrete Mathematics (SODA), pp. 785–794, New
York, ACM Press (2009)

6. Boldi, P., Vigna, S.: The WebGraph framework i: compression techniques. In: Pro-
ceedings of the Thirteenth International World Wide Web Conference (WWW
2004), pp. 595–601, Manhattan, USA, ACM Press (2004)

7. Boldi, P., Rosa, M., Santini, M., Vigna, S.: Layered label propagation: a multireso-
lution coordinate-free ordering for compressing social networks. In: Srinivasan, S.,
Ramamritham, K., Kumar, A., Ravindra, M.P., Bertino, E., Kumar, R. (eds.) Pro-
ceedings of the 20th International Conference on World Wide Web, pp. 587–596.
ACM (2011)

8. Baeza-Yates, R.A., Ribeiro-Neto, B.: Modern Information Retrieval. Addison-
Wesley Longman Publishing Co. Inc., Boston (1999)

9. Belazzougui, D., Boldi, P., Pagh, R., Vigna, S.: Theory and practise of monotone
minimal perfect hashing. In: Proceedings of the Tenth Workshop on Algorithm
Engineering and Experiments (ALENEX), pp. 132–144. SIAM (2009)

10. Knuth, D.E.: The Art of Computer Programming. Addison-Wesley, Boston (1973)
11. Mitzenmacher, M., Vadhan, S.: Why simple hash functions work: exploiting the

entropy in a data stream. In: Proceedings of the Nineteenth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2008, pp. 746–755. Society for Indus-
trial and Applied Mathematics, Philadelphia (2008)

12. Jacobson, G.: Space-efficient static trees and graphs. In: 30th Annual Symposium
on Foundations of Computer Science (FOCS 1989), pp. 549–554. IEEE Computer
Society Press, Research Triangle Park, North Carolina (1989)

13. Patrascu, M.: Succincter. In: 49th Annual IEEE Symposium on Foundations of
Computer Science, pp. 305–313. IEEE Computer Society (2008)

14. Vigna, S.: Broadword implementation of rank/select queries. In: McGeoch, C.C.
(ed.) WEA 2008. LNCS, vol. 5038, pp. 154–168. Springer, Heidelberg (2008)

15. Gog, S., Petri, M.: Optimized succinct data structures for massive data. Software:
Practice and Experience (2014). To appear

16. Bloom, B.H.: Space-time trade-offs in hash coding with allowable errors. Commun.
ACM 13, 422–426 (1970)

17. Mehlhorn, K.: Data Structures and Algorithms 1: Sorting and Searching. EATCS
monographs on theoretical computer science, vol. 1. Springer, Heidelberg (1984)

18. Hagerup, T., Tholey, T.: Efficient minimal perfect hashing in nearly minimal space.
In: Ferreira, A., Reichel, H. (eds.) STACS 2001. LNCS, vol. 2010, pp. 317–326.
Springer, Heidelberg (2001)

19. Chazelle, B., Kilian, J., Rubinfeld, R., Tal, A.: The Bloomier filter: an efficient
data structure for static support lookup tables. In: Munro, J.I. (ed.) Proceedings
of the Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2004, pp. 30–39. SIAM (2004)

20. Belazzougui, D., Botelho, F.C., Dietzfelbinger, M.: Hash, displace, and compress.
In: Fiat, A., Sanders, P. (eds.) ESA 2009. LNCS, vol. 5757, pp. 682–693. Springer,
Heidelberg (2009)

21. Molloy, M.: Cores in random hypergraphs and Boolean formulas. Random Struct.
Algorithms 27, 124–135 (2005)

22. Dietzfelbinger, M.: Design strategies for minimal perfect hash functions. In:
Hromkovič, J., Královič, R., Nunkesser, M., Widmayer, P. (eds.) SAGA 2007.
LNCS, vol. 4665, pp. 2–17. Springer, Heidelberg (2007)

Minimal and Monotone Minimal Perfect Hash Functions 17

23. Fredriksson, K., Nikitin, F.: Simple compression code supporting random access
and fast string matching. In: Demetrescu, C. (ed.) WEA 2007. LNCS, vol. 4525,
pp. 203–216. Springer, Heidelberg (2007)

24. Belazzougui, D., Boldi, P., Pagh, R., Vigna, S.: Theory and practice of monotone
minimal perfect hashing. ACM J. Exp. Algorithmic 16, 3.2:1–3.2:26 (2011)

25. Belazzougui, D., Boldi, P., Pagh, R., Vigna, S.: Fast prefix search in little space,
with applications. In: de Berg, M., Meyer, U. (eds.) ESA 2010, Part I. LNCS, vol.
6346, pp. 427–438. Springer, Heidelberg (2010)

Equational Properties of Fixed Point Operations
in Cartesian Categories: An Overview

Zoltán Ésik(B)

Department of Computer Science, University of Szeged, Szeged, Hungary
ze@inf.u-szeged.hu

Abstract. Several fixed point models share the equational properties
of iteration theories, or iteration categories, which are cartesian cate-
gories equipped with a fixed point or dagger operation subject to certain
axioms. After discussing some of the basic models, we provide equa-
tional bases for iteration categories and offer an analysis of the axioms.
Although iteration categories have no finite base for their identities, there
exist finitely based implicational theories that capture their equational
theory. We exhibit several such systems. Then we enrich iteration cate-
gories with an additive structure and exhibit interesting cases where the
interaction between the iteration category structure and the additive
structure can be captured by a finite number of identities. This includes
the iteration category of monotonic or continuous functions over com-
plete lattices equipped with the least fixed point operation and the binary
supremum operation as addition, the categories of simulation, bisimula-
tion, or language equivalence classes of processes, context-free languages,
and others. Finally, we exhibit a finite equational system involving resid-
uals, which is sound and complete for monotonic or continuous functions
over complete lattices in the sense that it proves all of their identities
involving the operations and constants of cartesian categories, the least
fixed point operation and binary supremum, but not involving residuals.

1 Introduction

The semantics of recursion and iteration is usually captured by fixed points
of functions, functors, or other constructors. Fixed point operations have been
widely used in several branches of computer science including automata and
formal language theory and its generalizations, the semantics of programming
languages, abstract data types, process algebra and concurrency, rewriting, pro-
gramming logics and verification, complexity theory, and many other fields. The
study of the equational properties of fixed point operations was initiated in the
late 1960’s, see [7,25–27,63,65,66,68,73] for a sampling of some early references.

Iteration theories were introduced in 1980 in [9] and [27]. (In [27], they were
called generalized iterative theories.) The results obtained until the mid 1990’s

Z. Ésik—Partially supported by grant no. ANN 110883 from the National Founda-
tion for Scientific Research of Hungary.

c© Springer-Verlag Berlin Heidelberg 2015
G.F. Italiano et al. (Eds.): MFCS 2015, Part I, LNCS 9234, pp. 18–37, 2015.
DOI: 10.1007/978-3-662-48057-1 2

Equational Properties of Fixed Point Operations in Cartesian Categories 19

(summarized in [12,15]) indicated that they give a full account of the equational
properties of most fixed point operations used in computer science.

The aim of this paper is to provide an overview of some old (see e.g.
[27,32–34]) and some recent results (see e.g. [39,41,42]). Unlike in [12], instead of
Lawvere theories [55,62], here we base our treatment on the slightly more general
cartesian categories [5] and many-sorted theories [72]. There are several other
alternative formalisms such as abstract clones [23], or the functional languages
of μ-terms [4], or ‘let rec expressions’, etc.

The paper is organized as follows. In Sect. 2, we define some of the basic
fixed point models such as the cartesian categories of monotonic or continuous
functions of complete partial orders (cpo’s) or complete lattices, or the cate-
gories of complete metric spaces and contractions, trees and regular trees, etc.
Our models will be equipped with a parametrized fixed point operation, also
called dagger, such as the least or the unique fixed point operation. The main
result of this section shows that our basic models satisfy the very same set of
identities involving the operations and constants of cartesian categories and the
fixed point operation. These identities define iteration theories, or iteration cat-
egories. In Sect. 3, we give axioms for iteration categories, and in Sect. 4, we
offer an analysis of the axioms. Although there is no finite base of identities for
iteration categories, in Sect. 5 we exhibit several finite axiom systems involving
identities and implications (quasi-identities) that capture the equational theory
of iteration categories. In Sect. 6, we enrich some of our models with an addi-
tive structure. The main results indicate that in many models of computational
interest, the interaction between the iteration category structure and the addi-
tive structure can be described by a finite number of additional identities. This
holds for example for the cartesian categories of monotonic or continuous func-
tions of complete lattices with the least fixed point operation and the binary
pointwise supremum operation as addition. Finally, in Sect. 7, we add residua-
tion to the operations. We recall a recent result showing that there is a finite
system of identities involving residuals, which is sound in the standard models
of complete lattices and monotonic or continuous functions and complete for the
identities not involving residuation.

Some Notation. We will denote the composition of morphisms f : A → B
and g : B → C in a category C by g ◦ f : A → C and the identity morphism
corresponding to an object A by idA. For a nonnegative integer n ∈ N, we let
[n] denote the set {1, . . . , n}, so that [0] is the empty set. When X is a set, we
denote by X∗ the set of all finite sequences or words over X including the empty
sequence ε.

2 Models

All categories C considered in this paper will be cartesian categories [5]. Thus
we require the existence of a product diagram

πC1×···×Cn
i : C1 × · · · × Cn → Ci, i ∈ [n],

20 Z. Ésik

for any family of objects Ci, i ∈ [n], n ≥ 0, with the usual universal property.
When fi : A → Ci, i ∈ [n], is a family of morphisms in C, the unique mediating
morphism f : A → C1 × · · · × Cn with πC1×···×Cn

i ◦ f = fi for all i ∈ [n] will
be denoted 〈f1, . . . , fn〉. The morphism f is called the (target) tupling of the fi.
When n = 0, the tupling f is the unique morphism !A : A → T , where T is a
fixed terminal object. It holds that

idC1×···×Cn
= 〈πC1×···×Cn

1 , . . . , πC1×···×Cn
n 〉

for all objects C1, . . . , Cn, n ≥ 0, i.e., the identity morphisms are tuplings of
projections. A Lawvere theory [62] is a cartesian category whose objects are
the nonnegative integers such that each object n is the n-fold product of the
generating object 1.

Our cartesian categories C will be equipped with a dagger operation mapping
a morphism f : A × C → A to a morphism f† : C → A. We list some of the
categories of our interest.

1. CPOm (resp. CPOc) is the category of cpo’ s and monotonic (resp. contin-
uous) functions, see e.g. [24,53]. The dagger operation is the (parametrized)
least fixed point operation. In more detail, if f : A × B → A is monotonic,
where A,B are cpo’s, then for each y ∈ B, f†(y) is the least (pre-)fixed point
of the monotonic function fy : A → A defined by fy(x) = f(x, y) for all x ∈ A.
It is known that f† : B → A is also monotonic, and when f is continuous,
then so is f†.

2. CLm (resp. CLc), the category of complete lattices and monotonic (resp.
continuous) functions. The dagger operation is again the (parametrized) least
fixed point operation.

3. Let CM denote the cartesian category of all pointed complete metric spaces
and contractions (we only consider metric spaces such that the distance of any
two points is at most 1.) Thus, when M = (M,x0, d) and M ′ = (M ′, x′

0, d
′)

are pointed complete metric spaces and f : M → M ′ in CM, then
d′(f(x), f(y)) ≤ d(x, y) holds for all x, y ∈ M . The product of a family of
metric spaces is equipped with the usual maximum distance.
Regarding CM, we introduce only a partial dagger operation. However, this
partial dagger operation will still be sufficient for our purposes. The partial
dagger operation is given as follows. Suppose that f : A × B → A in CM,
where A and B are pointed complete metric spaces with distinguished points
x0 and y0. Then f† is defined iff limn→∞ fn

y (x0) exists for all y ∈ B. Moreover,
in this case, f†(y) = limn→∞ fn

y (x0) for all y. It is not difficult to prove that
when f† is defined, then it is a contraction B → A. Also, when fy is a proper
contraction, then f†(y) is the unique fixed point of fy by Banach’s theorem.

4. Suppose that S is a set of sorts and Σ is an S-sorted signature, so that
it contains a set of symbols Σu,s for each u ∈ S∗ and s ∈ S. The objects
of the category TreeΣ of Σ-trees are all words in S∗. A morphism u → s
(u = s1 . . . sn ∈ S∗, s ∈ S) is a partial Σ-tree of sort s in the sorted variables
Xu = {xu

1 , . . . , xu
n}. Such a tree may be seen as a labeled digraph, or as a

Equational Properties of Fixed Point Operations in Cartesian Categories 21

partial function N
∗ → (Σ ∪ Xu)∗, subject to certain properties, cf. [53,72].

When u, v ∈ S∗ with s = s1 . . . sn, a morphism u → v is an n-tuple f =
(f1, . . . , fn), where each fi is a tree u → si.
Composition is given by substitution for the variables and categorical product
corresponds to concatenation on objects. The projection morphisms are the
trees with a single node, labeled by a variable. Trees u → v may be equipped
with either a complete partial order [53], or a complete metric [3] and a
distinguished point, the undefined tree. When f : u × v → u, then f induces
a function over TreeΣ(v, u) defined by g
→ f ◦ 〈g, idv〉. The dagger operation
returns the least fixed point of this function, or alternatively, we may define
f† using the complete metric as for CM.

5. Consider the model TreeΣ and let u, v ∈ S∗ and s ∈ S. As usual, call a tree
f : u → s regular if it has a finite number of subtrees, cf. [53]. Moreover,
when f : u → v, then call f regular if its components are. It is known that
regular trees form a cartesian subcategory of TreeΣ closed under dagger. We
denote this category by RegΣ .

We now define terms that will be used to denote morphisms in our models.
Suppose that S0 is a set of basic types (or sorts) a, b, c, The set of product
types consists of all finite, possibly empty sequences u, v, w, . . . in S∗

0 . We usually
denote such a sequence u by a1 × · · · × an, where ai ∈ S0, for all i ∈ [n], and
call the integer |u| = n the length of u. Moreover, when u = a1 × · · · × am and
v = b1 × · · · × bn, we let u × v = a1 × · · · × am × b1 × · · · × bn.

For each u, v ∈ S∗
0 , let Δu,v be a countably infinite set of ‘morphism vari-

ables’. Then the sets TERMu,v of (typed) dagger terms, where u, v ∈ S∗
0 , are

defined by:

1. πu
i ∈ TERMu,ai

for all u = a1 × · · · × an ∈ S∗
0 and i ∈ [n].

2. f ∈ TERMu,v for all f ∈ Δu,v, u, v ∈ S∗
0 .

3. If t ∈ TERMu,v and t′ ∈ TERMv,w, where u, v, w ∈ S∗
0 , then t′ ◦ t ∈

TERMu,w.
4. If ti ∈ TERMu,ai

for all i ∈ [n], n ≥ 0, where u ∈ S∗
0 and ai ∈ S0 for all

i ∈ [n], then 〈t1, . . . , tn〉 ∈ TERMu,v, where v = a1 × · · · × an.
5. If t ∈ TERMu×v,u, then t† ∈ TERMv,u, where u, v ∈ S∗

0 .

Below, instead of t ∈ TERMu,v, we will usually write t : u → v.
When u, v ∈ S∗

0 with u = a1 × · · · × am and v = b1 × · · · × bn, we define
πu×v

u = 〈πu×v
1 , . . . , πu×v

m 〉 : u×v → u and πu×v
v = 〈πu×v

m+1, . . . , π
u×v
m+n〉 : u×v → v.

Sometimes we will also write πu×v
(1) for πu×v

u and πu×v
(2) for πu×v

v . More generally,
we define πu1×···×un

(i) for each u1, . . . , un ∈ S∗
0 and i ∈ [n] in the same way. We

will abbreviate the term (πu×v
u)† by ⊥v,u.

Suppose that u = a1 ×· · ·×am and ρ : [n] → [m]. Let v = aρ(1) ×· · ·×aρ(n).
Then we associate with ρ (and u) the base term

〈πu
ρ(1), . . . , π

u
ρ(n)〉 : u → v,

also denoted ρ. When m = n and ρ is a bijective function, we call it a base
permutation term. In particular, 〈πu

1 , . . . , πu
m〉 is a base permutation term that

22 Z. Ésik

we denote by idu. The inverse ρ−1 of a base permutation term u → u associated
with a bijection ρ : [n] → [n] with respect to u ∈ S∗

0 is the term associated with
the inverse ρ−1 of ρ.

For any terms t : u → v and t′ : u → w, where v and w have length m and
n, resp., we write 〈t, t′〉 as an abbreviation for

〈πv
1 ◦ t, . . . , πv

m ◦ t, πw
1 ◦ t′, . . . , πw

n ◦ t′〉 : u → v × w.

Moreover, when t : u → v and t′ : u′ → v′, we define t × t′ : u × u′ → v × v′ as
the term 〈t ◦ πu×u′

u , t′ ◦ πu×u′
u′ 〉.

When C is a cartesian category with a dagger operation and each basic type
a ∈ S0 is interpreted as an object A = [[a]] of C, then each u = a1 ×· · ·×an ∈ S∗

0

can naturally be interpreted as the object A1 × · · · × An, where Ai = [[ai]] for
all i ∈ [n]. In particular, [[ε]] is a fixed terminal object T (see also above). We
assume that [[uv]] = [[u]] × [[v]], for all u, v ∈ S∗

0 .
And if each f ∈ Δu,v, u, v ∈ S∗

0 , is interpreted as a morphism [[u]] → [[v]] in
C, then each term t ∈ TERMu,v, u, v ∈ S∗

0 , can be interpreted as a morphism
[[t]] : [[u]] → [[v]] in C. The constant πu

i , where u = a1 × · · · × an and i ∈ [n], is
interpreted as the projection [[a1]] × · · · × [[an]] → [[ai]] according to a selected
product diagram. We will assume that the selected product diagrams are ‘asso-
ciative on the nose’. In particular, we assume that when n = 1 and i = 1, then
the projection πu

i is the appropriate identity morphism. We skip the straight-
forward definition but remark that when t is a base term, its interpretation is a
tupling of projections, called a base morphism.

Suppose that t and t′ are in TERMu,v. Then we say that the formal equality
t = t′ is an identity. Let C be a cartesian category with a dagger operation. We
say that an identity t = t′ holds in C, or is satisfied by C, or is valid in C, if
[[t]] = [[t′]] holds for all interpretations over C. The equational theory of C is the
set of all identities satisfied by C.

The following theorem summarizes several results treated in [12]. (Regard-
ing CM, we only consider those interpretations that assign to each f ∈ Δu,v

a function which is a tupling of proper contractions and projections, and the
projections are assumed to pereserve the distinguished points.)

Theorem 1. The categories CPOm,CPOc,CLm,CLc,CM,TreeΣ ,RegΣ

satisfy the same set of identities.

Motivated by Theorem 1, we adopt the following semantic definition of iteration
categories.

Definition 1. We define an iteration category to be a cartesian category C with
a dagger operation satisfying all identities that hold in CPOm. An iteration
theory is an iteration category which is a Lawvere theory.

We say that a cartesian category C is nontrivial if there is some object A such
that πA×A

1 �= πA×A
2 . An equivalent condition is that some hom-set C(A,B)

has at least two morphisms. It is shown in essence in [71] that if C is nontriv-
ial cartesian category with a dagger operation which is an iteration category,

Equational Properties of Fixed Point Operations in Cartesian Categories 23

then either C satisfies exactly the identities that hold in all iteration categories,
or it satisfies exactly the identities satisfied by those iteration categories having
a unique morphism T → A for each object A, where T is a terminal object.

Some further iteration categories or theories are the continuous and ratio-
nal theories of [73], Elgot’s (pointed) iterative theories [26], matrix theories over
complete or inductive semirings [12,45]. theories of synchronization trees and
bisimulation equivalence classes of synchronization trees [13], matricial theories
of languages of finite and infinite words [12], theories of continuous functors
[10] and functor theories over algebraically complete categories [49], iteration
2-theories [19], or the more recent cartesian categories of stratified complete
lattices [43,50] used to solve fixed point equations involving non-monotonic func-
tions, or the categories of formal power series over complete semirings [48].

The fixed point operation appears in several different forms. In cartesian
categories with an appropriate additive structure on the hom-sets, it may be
replaced by a generalized star operation f
→ f∗, where f : A × B → A and
f∗ : A × B → A, or sometimes even by a star operation mapping a morphism
f : A → A to a morphism f∗ : A → A, as in matrix theories over semirings.
For details, see [12]. It is known that in cartesian categories, the fixed point
operation is equivalent to a certain trace or feedback operation that maps a
morphism f : A × B → A × C to a morphism ↑ f : B → C. See [6] and
[22,54,56], or [12].

3 Axiomatization

In the previous section, we gave a semantic definition of iteration categories.
In this section, we provide equational axioms for them consisting of axioms for
cartesian categories, and axioms involving dagger.

A possible set of cartesian axioms is [72]:

h ◦ (g ◦ f) = (h ◦ g) ◦ f, f : u → v, g : v → w, h : w → z

idv ◦ f = f = f ◦ idu, f : u → v

πv
i ◦ 〈f1, . . . , fn〉 = fi, v = a1 × · · · × an, fi : u → ai, i ∈ [n]

〈πv
1 ◦ f, . . . , πv

n ◦ f〉 = f, f : u → v, |v| = n

πa
1 = 〈πa

1 〉

Any model of these identities satisfies g = 〈g〉, where g : u → a. Also, the
following hold, for appropriate f, g, h, k:

〈〈f, g〉, h〉 = 〈f, 〈g, h〉〉
(f × g) × h = f × (g × h)

(f × g) ◦ 〈h, k〉 = (f ◦ h) × (g ◦ k)

Below we will implicitly always assume the cartesian identities.

24 Z. Ésik

The Conway identities [12] are the parameter (1), double dagger (2) and
composition identities (3) given below.

(f ◦ (idu × g))† = f† ◦ g, f : u × v → u, g : w → v (1)
(f ◦ (〈idu, idu〉 × idv))† = f††, f : u × u × v → u (2)

(f ◦ 〈g, πu×w
w 〉)† = f ◦ 〈(g ◦ 〈f, πv×w

w 〉)†, idw〉 (3)

where in the last identity, f : v × w → u, g : u × w → v.

Definition 2. A Conway category is a cartesian category equipped with a dagger
operation satisfying the Conway identities.

The terminology follows [12] and is due to the form of these identities in matrix
theories. Note that in Conway categories, the fixed point identity

f† = f ◦ 〈f†, idv〉, f : u × v → u (4)

is a particular instance of the composition identity, and the identity

(f ◦ πu×v
v)† = f, f : v → u (5)

is a particular instance of the fixed point identity (4), while

(f ◦ πu×v×w
u×v)† = f† ◦ πv×w

v , f : u × v → u (6)

is an instance of the parameter identity (1). The parameter, double dagger and
composition identities are sometimes called the identities of naturality, diagonal-
ity and dinaturality, see e.g. [71].

Conway categories satisfy several other non-trivial identities including the
Bekić identity [7,25] (called the pairing identity in [12])

〈f, g〉† = 〈f† ◦ 〈h†, idw〉, h†〉 (7)

or its ‘dual form’

〈f, g〉† = 〈k†, g† ◦ 〈k†, idw〉〉, (8)

where f : u × v × w → u and g : u × v × w → v and

h = g ◦ 〈f†, idv×w〉 : v × w → v

k = f ◦ 〈πu×w
u , g†, πu×w

w 〉 : u × w → u

with g = g ◦ (〈πu×v
v , πu×v

u 〉 × idw) : v × u × w → v. We will also make use of the
permutation identity that holds in all Conway categories:

(π ◦ f ◦ (π−1 × idv))† = π ◦ f†, (9)

where f : u × v → u and π : u → u is a base permutation term. An alternative
axiomatization of Conway categories consists of the identities (5), (6), (7) and
(9). For this and related facts, we refer to [12].

Equational Properties of Fixed Point Operations in Cartesian Categories 25

The Conway identities are quite powerful, for example, a general ‘Kleene
theorem’ holds in all Conway categories, and both the soundness and relative
completeness of Hoare’s logic can be proved just from the Conway identities,
cf. [11,12]. However, they are not complete for iteration categories. The missing
ingredient is captured by the notion of identities associated with finite automata.
In order to define these identities, we need to introduce some definitions and
notation.

Suppose that Q = (Q,Z) is a (deterministic) finite automaton, where Q is
the finite nonempty set of states, Z is the finite nonempty set of input letters
together with a right action Q × Z → Q, (q, z)
→ qz. Let Q = {q1, . . . , qn} and
Z = {z1, . . . , zm}, say. For each i ∈ [n], let

ρQi = 〈πun

(iz1)
, . . . , πun

(izm)〉 : un → um,

u ∈ S∗
0 , where we identify each state qi with the integer i. Moreover, let fQ :

un × w → un be the tupling of the terms f ◦ (ρQi × idw) : un × w → u, where
f : um × w → un.

Definition 3. [32] The identity C(Q) associated with Q is

(fQ)† = τn ◦ (f ◦ (τm × idw))†,

where f : um × w → u, τn : u → un is the diagonal 〈idu, . . . , idu〉 and τm

is defined similarly. Suppose that a state q = qi of Q is distinguished, so that
(Q, q) is an initialized finite automaton. The identity C(Q, q) associated with
(Q, q) is

πun

(i) ◦ (fQ)† = (f ◦ (τm × idw))†,

where f : um × w → u.

Suppose that C is a Conway category. Since the permutation identity holds in
C, the validity of the identity associated with a finite automaton Q does not
depend on the enumeration of the states or input letters. Also, C(Q) holds in C
iff C(Q, q) holds for all states q of Q.

Theorem 2. [27] The Conway identities and the identities associated with finite
automata form a complete set of identities of iteration categories.

Hence, these identities form a sound and complete axiomatization of iteration
categories. In [27], the ‘commutative identities’ were used instead of the identities
associated with finite automata. However, these are a very close variant of the
identities associated with finite automata.

4 Analysis of the Axioms

Are all identities associated with finite automata strictly needed for completeness
in Theorem 2? When is a set of identities consisting of the Conway identities

26 Z. Ésik

and a subcollection of the identities associated with finite automata complete?
In this section, we provide an answer to this question using the Krohn-Rhodes
decomposition of finite automata [51,52,61] and a result from [35].

Suppose that Q = (Q,Z) is a finite automaton. The action of Z on Q is
extended in the usual way to a right action Q × Z∗ → Q of Z∗ on Q. When
α ∈ Z∗, we call the function Q → Q defined by q
→ qα for all q ∈ Q the function
induced by α and denote it by αQ. These functions form a (finite) monoid M(Q)
whose multiplication is given by αQβQ = (αβ)Q = βQ ◦ αQ, for all α, β ∈ Z∗.

Suppose that S and S′ are finite semigroups. As usual, we say that S divides
S′, or S is a divisor of S′, if S is a homomorphic image of a subsemigroup of
S′. It is clear that this divisibility relation is transitive. It is known that if a
group G is a divisor of a finite semigroup S, then there is a group H in S such
that G is a homomorphic image of H. Moreover, we say that a finite group G is
simple if it is nontrivial and has no nontrivial homomorphic image other than
groups isomorphic to G (or equivalently, its only nontrivial normal subgroup is
G itself).

Let (Q, q) be an initialized finite automaton, where Q = (Q,Z). We call
(Q, q) an initially connected finite automaton if Q = {qα : α ∈ Z∗}.

Below we will write C |= C(Q) to mean that the cartesian category C
equipped with a dagger operation satisfies C(Q). We will use similar notation
for initially connected finite automata (Q, q).

Theorem 3. [33,42] Suppose that Q is a set of finite automata (initially con-
nected finite automata, resp.). Then the Conway identities and the identities
associated with the members of Q form a complete set of identities for iteration
categories iff for each finite simple group G there is some Q in Q ((Q, q) ∈ Q)
such that G divides the monoid M(Q) of Q.

The first part is from [33], and the second is from [42]. Each finite monoid M may
be seen as a finite automaton QM = (M,M) equipped with the natural right
action given by the multiplication operation of M . Hence, we may define the
identity C(M) associated with M as the identity C(QM) associated with QM .

Corollary 1. [32] Suppose that M is a set of finite monoids. Then the Conway
identities and the identities associated with the members of M form a complete
set of identities of iteration categories iff for each finite simple group G there is
some M ∈ M such that G divides M .

For each n ≥ 3, consider the n-state initially connected automaton (Qn, q1) with
state set {q1, . . . , qn}, an input letter inducing the cyclic permutation (q1 . . . qn)
and a letter inducing the transposition (q1q2), so that the monoid of Qn is
the symmetric group Sn of degree n. Then the Conway identities together with
any infinite subsystem of the identities associated with the initially connected
automata (Qn, q1) are complete for iteration categories, since every finite group

Equational Properties of Fixed Point Operations in Cartesian Categories 27

can be embedded in any large enough symmetric group. It is shown in [33] that
in Conway categories, the identity associated with (Qn, q1) may be reduced to

(f ◦ (τ2 × idw) ◦ 〈f ◦ 〈πu×w
u , (f†)n−2, πu×w

w 〉 πu×w
w 〉)† = (f ◦ (τ2 × idw))† (10)

where f : u2 × w → u and τ2 = 〈idu, idu〉 : u → u2. (Here, (f†)1 = f† and
(f†)m = f† ◦ 〈(f†)m−1, πu×w

w 〉 for all m ≥ 2.)

Theorem 4. [33] The Conway identities together with any infinite subcollection
of the identities (10) are complete for iteration categories.

Theorem 3 follows from Theorem 2 and the following result:

Theorem 5. [33,42] Suppose that Q is a set of finite automata (initially con-
nected finite automata, resp.) and Q is a finite automaton. Then C(Q) holds in
all Conway categories satisfying the identities associated with the members of Q
iff for every simple group divisor G of M(Q) there is some Q′ ∈ Q ((Q′, q′) ∈ Q,
resp.) such that G divides M(Q′).

In the rest of this section we outline a proof of one direction of Theorem5 which,
by using recent advances [42], is simpler than the one in [33].

We start by recalling the cascade composition of finite automata [51,52]. Let
Q = (Q,X) and Q′ = (Q′, Y) be finite automata. Suppose that ϕ is a function
Q×X → Y . For each q ∈ Q and x ∈ X, we will denote ϕ(q, x) by qx. The cascade
composition of Q and Q′ with respect to the connecting function ϕ is defined
as the finite automaton Q�ϕ Q′ = (Q × Q′,X) with action (q, q′)x = (qx, q′qx)
for all q ∈ Q, q′ ∈ Q′ and x ∈ X.

The direct product is a special case of the cascade composition. It is obtained
by letting X = Y and choosing ϕ to be the identity function X → X. Another
special case arises when Q is a trivial 1-state automaton. Then ϕ may be viewed
as a function X → Y , so that the cascade composition is obtained from Q′ by
changing the input set Y to X and defining the function induced by each letter
x ∈ X as the function induced by some letter y ∈ Y in Q′. In this special case,
we call the cascade composition a letter renaming of Q′.

Theorem 6. [32] Suppose that C is a Conway category. Let Q = Q1 �ϕ Q2 be
a cascade product of finite automata Q1 and Q2. If C |= C(Q2) then C |= C(Q)
iff C |= C(Q1).

Proposition 1. [32] Suppose that C is a Conway category. If Q′ is a subau-
tomaton of a finite automaton Q and C |= C(Q), then C |= C(Q′).

Suppose that Q = (Q,X) and Q = (Q,Y) are finite automata with the same
set of states. We say that Q′ is a word renaming of Q if each function induced
by a letter y ∈ Y in Q′ is induced by some word α ∈ X∗ in Q.

Theorem 7. [42] Suppose that C is a Conway category. If a finite automaton
Q′ is a word renaming of Q, and if C |= C(Q), then C |= C(Q′).

28 Z. Ésik

Let U denote a 2-state automaton with 3 input letters, inducing the identity
function and the 2 constant functions on the set of states. It is easy to see that
the following holds.

Proposition 2. [32] The identity C(U) holds in all Conway categories.

Let Q be a set of finite automata and C a Conway category satisfying the iden-
tities associated with the members of Q. Let Q be a finite automaton such that
every finite simple group dividing the monoid of Q divides the monoid of some
automaton in Q. In order to prove the sufficiency part of Theorem5, we need to
show that C |= C(Q).

By the Krohn-Rhodes decomposition theorem, Q can be constructed from
the automata in Q ∪ {U} by taking word renamings, cascade compositions,
subautomata and homomorphic images. While it is obvious by induction from
the above results that if Q can be constructed from Q∪{U} by using only word
renamings, cascade compositions and subautomata, then the identity associated
with Q holds in C, there seems to be no simple way of extending the induction
to homomorphic images. We outline a possible solution below.

If Q = (Q,Z) ∈ Q with M = M(Q), then consider the finite automaton
Q′ = (Q,M) where qm = quQ for all q ∈ Q and m = uQ ∈ M . By Theorem 7,
C |= C(Q′). Consider now the monoid automaton QM = (M,M). It is well-
known that QM can be embedded in a direct power of Q′. Thus, by Theorem 6,
it follows that C |= C(M). Also, if H is any group in M , then it follows using
Proposition 1 (and letter renaming) that C |= C(H). Consider a normal subgroup
N of H and the automata QH/N and QN associated with H/N and N , resp.
We have that C |= C(QN). It is well-known that QH is isomorphic to a cascade
product of a letter renaming of QH/N and QN , and since C |= C(QH) and
C |= C(QN), it follows from Theorem6 that C |= C(QH/N). Since every simple
group divisor of M divides some group H in M , and if N is a normal subgroup
of H then every simple group divisor of H divides either N or H/N , it follows
now by induction that C satisfies the identity associated with any simple group
divisor of M = M(Q). Since Q ∈ Q was arbitrary, we established that C satisfies
the identity associated with every simple group dividing the monoid of some
automaton in Q. Also, by a similar argument, we have:

Fact. If H is a finite group such that every simple group dividing H divides
the monoid of some member of Q, then C |= C(H).

Call a finite automaton Q = (Q,Z) a permutation automaton if each z ∈ Z
induces a permutation of Q. It follows that αQ is a permutation of Q for all
α ∈ Z∗, so that M(Q) is a group. Moreover, call Q = (Q,Z) a permutation-reset
automaton if each z ∈ Z induces a permutation or a constant map. Using the
above fact, it follows as in Sects. 13 and 14 of [32] that if Q is a permutation-reset
automaton such that every simple group divisor of M(Q) divides the monoid of
some automaton in Q, then C |= C(Q). In order to complete the proof of the
sufficiency part of Theorem 5, we need to establish this for all finite automata.

Suppose that Q = (Q,X) and Q′ = (Q′,X) are finite automata and h : Q →
Q′ is a surjective homomorphism Q → Q′. Call h a regular permutation-reset
homomorphism if the following conditions hold:

Equational Properties of Fixed Point Operations in Cartesian Categories 29

– For any two nontrivial congruence classes C,C ′ of ker(h) there is a word
α ∈ X∗ such that the restriction of αQ onto C is a bijection C → C ′.

– If C,C ′ are congruence classes of ker(h) and α ∈ Z∗ such that αQ maps C
into C ′, then the restriction of αQ onto C is either a constant function or a
bijection.

Let C be a congruence class of ker(h). Denote by M(C) the monoid of all func-
tions C → C obtained as restrictions of functions Q → Q in M(Q). When G is a
set of finite simple groups, call h a G-homomorphism if for any congruence class
C of ker(h), every simple group divisor of M(C) divides a group in G. A novel
proof of the Krohn-Rhodes theorem in [35] is based on the following result:

Theorem 8. [35] Let G be a set of finite simple groups and suppose that Q =
(Q,X) and Q′ = (Q′,X) are finite automata and h : Q → Q′ is a surjective G-
homomorphism Q → Q′. Then there is a sequence Q0, . . . ,Qn of finite automata
such that Q0 = Q, Qn = Q′ and for each i ∈ [n], there is a regular permutation-
reset G-homomorphism Qi−1 → Qi or Qi → Qi−1.

The next proposition is the final ingredient in our proof of the sufficiency part
of Theorem 5. Let G be as above.

Proposition 3. [32] Suppose that Q = (Q,X) and Q′ = (Q′,X) are finite auto-
mata and h : Q → Q′ is a regular permutation-reset G-homomorphism Q → Q′.
Suppose that C is a Conway category satisfying the identities C(G) associated
with the members G of G. Then C |= C(Q) iff C |= C(Q′).

Actually this result follows from Theorem6 by a construction showing that if h
is a regular permutation-reset G-homomorphism, then Q can be embedded in a
cascade product of Q′ and a permutation-reset automaton whose simple group
divisors are divisors of groups in G.

The proof of the sufficiency part of Theorem5 can now be completed as
follows. Suppose that Q is a set of finite automata. Let G contain an isomorphic
copy of the simple group divisors of the monoids of the automata in Q. Let C
be a Conway category satisfying all identities associated with the members of
Q. We already know that C satisfies the identity of any finite permutation-reset
automaton Q such that any finite simple group dividing M(Q) is isomorphic to
a group in G.

Now let Q denote a finite automaton such that every simple group divisor of
M(Q) has an isomorphic copy in G. We want to prove that C |= C(Q).

Consider the unique homomorphism from Q onto a trivial 1-state automaton
Q′. By Theorem 8, there is a finite sequence Q0, . . . ,Qn of finite automata such
that Q0 = Q, Qn = Q′ and for each i ∈ [n], there is a regular permutation-
reset G-homomorphism Qi−1 → Qi or Qi → Qi−1. It follows by repeated use
of Proposition 3 that C |= C(Q) iff C |= C(Q′). But the latter identity is easily
shown to hold in all Conway categories by repeated use of the double dagger
identity.

For initially connected finite automata, the sufficiency of Theorem5 now
follows from:

30 Z. Ésik

Proposition 4. [42] Suppose that (Q, q) is an initially connected finite automa-
ton and C is a Conway category. If C |= C(Q, q) then C |= C(Q).

Suppose that G is a set of nontrivial finite groups. Then there is a ‘variety’
VG of Conway categories corresponding to G which consists of those Conway
categories satisfying the identities associated with the members of G. (We have
VG1 ⊆ VG2) iff every finite simple group dividing a group in G1 divides a group
in G2.) The free categories (or rather, theories) in VG have been described in
[36]. In the particular case when G is empty, this description agrees with the
characterization of the free Conway categories [8].

5 Implicational Axiomatizations

As a corollary of Theorem 3, we obtain:

Theorem 9. [18] There is no finite complete set of identities of iteration cate-
gories.

For a more direct proof, we refer to [18]. Many non-finitely based equational
theories have a relatively finite axiomatization with respect to iteration cate-
gories (or theories), for example the equational theory of regular languages, or
bisimilarity equivalence classes of regular processes. See Sect. 6. Theorem 9 can
also be derived using these relative axiomatization results.

Although the equational theory of iteration categories is not finitely based,
it can be captured by a finite number of implications involving equalities, and
sometimes other relations depending on the context.

Our starting point is the identities associated with finite automata. In Con-
way categories, these are all consequences of the weak functoriality implications:

f ◦ (τn × idw) = τn ◦ g ⇒ f† = τn ◦ g†, n ≥ 2,

for all f : un×w → un and g : u×w → u, where τn : u → un is the n-fold tupling
〈idu, . . . , idu〉. Indeed, let f : um × w → u and g = f ◦ (τm × idw), then using the
notation introduced in Definition 3, we clearly have fQ◦(τn×idw) = τn◦g, hence
(fQ)† = τn ◦ g†, by weak functoriality. Since the weak functoriality implications
hold in CPO,CPOm,CM, ΣTree and many other models, we immediately
obtain:

Proposition 5. An identity holds in all iteration categories iff it holds in all
Conway categories satisfying weak functoriality.

The weak functoriality implications already appear in [27], where Proposition 5
is implicit. In fact, the commutative identities were introduced in [27] just in
order to make one step further by replacing these implications with weaker and
pure equational axioms that still guarantee completeness. The existence of an
iteration theory not satisfying the weak functoriality implication for n = 2 was
pointed out in [28]. It is shown in [29] that in Conway categories, if the weak

Equational Properties of Fixed Point Operations in Cartesian Categories 31

functoriality implications hold when u is a basic type a, then so do the generic
forms of these implications. Moreover, as shown in [14], for each n ≥ 2, there is
a Conway category satisfying the weak functorial implication for all 2 ≤ m ≤ n.
but not satisfying this implication for n + 1.

Another variant of Proposition 5 concerns functoriality with respect to ‘pure’
[12] or ‘strict’ morphisms:

Proposition 6. An identity holds in all iteration categories iff it holds in all
Conway categories satisfying the following rule:

f ◦ (h × idw) = h ◦ g ∧ h ◦ ⊥ε,u = ⊥ε,v ⇒ f† = h ◦ g†

for all f : u × w → u, g : v × w → v and h : u → v.

Again, this implication holds in most standard models. Thus, Proposition 6 is
clear from Proposition 5 since any base morphism is pure.

There are several other similar completeness results, including e.g. the
implication

f†† = g†† ⇒ f†† = (f ◦ 〈g†, idu×w〉)†,

where f, g : u × u × w → w, introduced in [12] as a generalization of an axiom
proposed for regular languages in [2], a version of the Scott induction principle
[44], or the (conditional) unique fixed point rule of Elgot [26], cf. [12,27].

In the ordered setting, the fixed point induction rule (or least pre-fixed point
rule) also gives rise to completeness. Call a cartesian category C ordered if each
hom-set C(A,B) comes with a partial order ≤ preserved by composition and
tupling. For example, CPOm,CPOc,CLm,CLc, equipped with the pointwise
order of functions, are all ordered. The cartesian categories TreeΣ and RegΣ

can also be turned into ordered cartesian categories. Each of the above models
satisfies the fixed point induction rule:

f ◦ 〈g, idv〉 ≤ g ⇒ f† ≤ g, (11)

for all f : u × v → u and g : v → u.

Theorem 10. [30] An identity holds in all iteration categories iff it holds in all
ordered cartesian categories equipped with a dagger operation satisfying the fixed
point (4) and parameter identities (1) and the fixed point induction rule (11).

In all such theories, the dagger operation is also monotonic. There is another,
stronger version of this result.

Theorem 11. [30] An identity holds in all iteration categories iff it holds in
all ordered cartesian categories equipped with a dagger operation satisfying the
fixed point (4), parameter (1) and pairing identities (7) and a weak form of the
fixed point induction rule: f ◦ 〈g, idv〉 = g ⇒ f† ≤ g, where f : u × v → u and
g : v → u.

32 Z. Ésik

A natural question concerns the axiomatic characterization of the inequalities
t ≤ t′ between dagger terms that hold in the models CPOm,CPOc, etc. Call
an iteration category C an ordered iteration category if it is an ordered cartesian
category such that dagger is monotonic and ⊥B,A ≤ f for all f : B → A, where
⊥B,A = (πA×B

A)†. Then an inequality t ≤ t′ holds in all cartesian categories
CPOm or in any of the standard ordered models mentioned above iff it holds in
all ordered iteration theories.

6 Relative Axiomatization

Several iteration categories have an additional structure, such as a partial order
or an additive structure. For example, each hom-set of the cartesian category
CLm or CLc is partially ordered by the pointwise ordering, and the binary
supremum operation gives rise to an additive structure.

In this section, we are interested in the interaction between the iteration cat-
egory structure and the additional structure. We review several relative axiom-
atization results showing that this interaction can often be described by a finite
number of additional identities. We extend our dagger terms with the formation
of terms of the form t+ t′, where t, t′ : u → v. Below we will often write t ≤ t′ as
an abbreviation for the identity t+ t′ = t′, where t, t′ are extended terms u → v.

We start by recalling a result from [34] that provides a characterization of
the identities of the models CLm or CLc equipped with binary supremum as
the + operation.

Theorem 12. [34] An identity between extended terms holds in all cartesian
categories CLm or CLc iff it holds in all iteration categories with an additive
structure satisfying the following identities:

(f + g) + h = f + (g + h), f, g, h : u → v (12)
f + g = g + f, f, g : u → v (13)

f + ⊥u,v = f, f : u → v (14)
(f + g) ◦ h = (f ◦ h) + (g ◦ h), f, g : v → w, h : u → v (15)

(πu2

(1) + πu2

(2))
† = idu (16)

f† ≤ (f + g)†, f, g : u × v → u (17)

In any model C of these axioms, the + operation is idempotent and defines a
partial order on each hom-set: when f, g : A → B, then f ≤ g iff f + g = g,
so that f + g is the supremum of f and g. It is clear that the operation + is
monotonic in both arguments, moreover, it follows by (15) that composition is
monotonic in the first argument. The last axiom asserts that dagger is monotonic,
and together with the other axioms implies that composition is also monotonic
in the second argument.

The fixed point induction rule (11) holds in the categories CLm and CLc.
Combining Theorem 12 with Theorem 10 we obtain:

Equational Properties of Fixed Point Operations in Cartesian Categories 33

Corollary 2. [34] An identity between extended terms holds in all cartesian
categories CLm or CLc iff it holds in all cartesian categories equipped with a
dagger operation satisfying the fixed point (4) and parameter identities (1), the
fixed point induction rule (11), and the identities (12) – (16).

In fact, (16) may be replaced in Corollary 2 by the following identity:

f + f = f, f : u → v (18)

There is a connection to formal languages, and context-free languages in
particular. Suppose that Σ is a finite alphabet and consider the category whose
objects are the finite sets with an A-indexed family f = (fa)a∈A of languages
(or just context-free languages) in (B∪Σ)∗ as a morphism B → A. Composition
is defined by substitution and the identity morphism idA is the family ({a})a∈A.
This category LangΣ (or CFΣ in the context-free case) has finite products
given on objects by disjoint union. Moreover, it has a + operation defined by
set union, and a dagger operation defined by least fixed points. Indeed, we may
view a morphism A × B → A as a ‘generalized context-free grammar’ with
nonterminals in A and terminal symbols in B ∪ Σ, possibly having an infinite
number of rules. Then for each a ∈ A, the a-component of f† : B → A is the
language generated from the nonterminal a.

Theorem 13. [39] An identity between extended terms holds in all cartesian
categories LangΣ or CFΣ iff it holds in all iteration categories with an additive
structure satisfying the identities (12) – (17).

It is remarkable that the very same identities also characterize simulation equiva-
lence [64,67] of processes, or synchronization trees (i.e., unfoldings of processes).
For details, we refer to [34].

There are several further relative axiomatization results. We mention a few.
Bisimulation equivalence [64,67] is weaker than simulation equivalence and can
be characterized by the first five identities (12) – (16) of Theorem 12, cf. [13].
For probabilistic and weighted bisimulation, we refer to [1,40]. In order to get
language equivalence, one needs to add

f ◦ (g + h) = (f ◦ g) + (f ◦ h), f : v → w, g, h : u → v

f ◦ ⊥u,v = ⊥u,w, f : v → w

Since by these identities, dagger can be replaced by a star operation and vice
versa, cf. [12], this is a categorical version of Krob’s result [60] on the axiomati-
zation of the equational theory of (regular) languages equipped with the regular
operations. For extensions of Krob’s theorem to rational power series we refer to
[17,46]. For implicational axiomatization of regular languages see [20,21,57–60],
for rational power series [17,47], and for regular tree languages and tree series
[16,31,37,38].

34 Z. Ésik

7 Adding Residuation

By Theorem 9, iteration categories have no finite base for their identities. The
same fact holds for the identities between extended terms involving + that hold
in the models CLm or CLc. In this section, we consider these standard models
together with + and (left) residuation. Following [41], we provide a simple sys-
tem of identities, involving the operations and constants of cartesian categories,
dagger, + and residuation, which, in addition to being sound, is complete for the
set of valid identities not involving residuation. A similar program was carried
out in [69] for Kleene algebras. Besides Corollary 2, the main tool of the com-
pleteness proof, borrowed from [69,70], is that the fixed point induction rule can
be transformed into an identity involving residuals.

Suppose that C is a cartesian category equipped with a + operation satisfy-
ing the identities (12) – (15) and (18). In particular, C is an ordered cartesian
category. We say that C is residuated if C is equipped with a binary operation

C(A,C) × C(A,B) → C(B,C)
(h, g)
→ h ⇐ g

such that f ◦ g ≤ h iff f ≤ (h ⇐ g) for all f : B → C, g : A → B and h : A → C.
We call h ⇐ g the (left) residual of h by g. For example, CLm and CLc are
residuated. If h : A → C and g : A → B, then h ⇐ g is the pointwise supremum
of all f : B → C with f ◦ g ≤ h.

The property of being residuated can be expressed by identities.

Proposition 7. Suppose that C is a cartesian category equipped with operations +
and ⇐ satisfying (12) – (15) and (18). Then C is residuated iff

(h ⇐ g) ◦ g ≤ h, g : u → v, h : u → w

f ≤ (f ◦ g) ⇐ g, f : v → w, g : u → v

and

h ⇐ g ≤ (h + h′) ⇐ g, g : u → v, h, h′ : u → w

hold.

The main result of this section is:

Theorem 14. [41] An identity between dagger terms possibly involving + (but
not involving ⇐) holds in all cartesian categories CLm or CLc iff it holds in all
cartesian categories equipped with a + operation satisfying (12) – (15), (18),
which are residuated and satisfy the fixed point identity (4), the parameter
identity (1) and

(g ⇐ 〈g, idv〉)† ≤ g, g : v → u

f† ≤ (f + g)†, f, g : u × v → u.

Actually some of the identities are redundant, see [41].

Equational Properties of Fixed Point Operations in Cartesian Categories 35

References

1. Aceto, L., Ésik, Z., Ingólfsdóttir, A.: Equational axioms for probabilistic bisimi-
larity. In: Kirchner, H., Ringeissen, C. (eds.) AMAST 2002. LNCS, vol. 2422, pp.
239–254. Springer, Heidelberg (2002)

2. Arkhangelsky, K.B., Gorshkov, P.V.: Implicational axioms for the algebra of regular
languages. Dokl. Akad. Nauk USSR Ser. A 10, 67–69 (1967). (in Russian)

3. Arnold, A., Nivat, M.: Metric interpretations of infinite trees and semantics of non
deterministic recursive programs. Theor. Comput. Sci. 11, 181–205 (1980)

4. Arnold, A., Niwinski, D.: Rudiments of µ-Calculus. North-Holland, Amsterdam
(2001)

5. Barr, M., Wells, C.: Category theory for computing science. Reprints Theory Appl.
Categories (22), 172 (2012)

6. Bartha, M.: A finite axiomatization of flowchart schemes. Acta Cybern. 8, 203–217
(1987)

7. Bekić, H.: Definable operation in general algebras, and the theory of automata
and flowcharts. Technical report, IBM Vienna (1969). Reprinted in: Programming
Languages and Their Definition - Hans Bekić (1936–1982). LNCS, vol. 177, pp.
30–55. Springer, Heidelberg (1984)

8. Bernátsky, L., Ésik, Z.: Semantics on flowchart programs and the free Conway
theories. ITA 32, 35–78 (1998)

9. Bloom, S.L., Elgot, C., Wright, J.B.: Solutions of the iteration equation and exten-
sions of the scalar iteration operation. SIAM J. Comput. 9, 25–45 (1980)

10. Bloom, S.L., Ésik, Z.: Equational logic of circular data type specification. Theor.
Comput. Sci. 63, 303–331 (1989)

11. Bloom, S.L., Ésik, Z.: Floyd-Hoare logic in iteration theories. J. ACM 38, 887–934
(1991)

12. Bloom, S.L., Ésik, Z.: Iteration Theories. Springer, Heidelberg (1993)
13. Bloom, S.L., Ésik, Z., Taubner, D.: Iteration theories of synchronization trees. Inf.

Comput. 102, 1–55 (1993)
14. Bloom, S.L., Ésik, Z.: Some quasi-varieties of iteration theories. In: Main, M.G.,

Melton, A.C., Mislove, M.W., Schmidt, D., Brookes, S.D. (eds.) MFPS 1993.
LNCS, vol. 802, pp. 378–409. Springer, Heidelberg (1994)

15. Bloom, S.L., Ésik, Z.: The equational logic of fixed points (Tutorial). Theor. Com-
put. Sci. 179, 1–60 (1997)

16. Bloom, S.L., Ésik, Z.: An extension theorem with an application to formal tree
series. J. Automata Lang. Comb. 8, 145–185 (2003)

17. Bloom, S.L., Ésik, Z.: Axiomatizing rational power series over natural numbers.
Inf. Comput. 207, 793–811 (2009)

18. Bloom, S.L., Ésik, Z.: Iteration algebras are not finitely axiomatizable. In: Gonnet,
G.H., Viola, A. (eds.) LATIN 2000. LNCS, vol. 1776, pp. 367–376. Springer, Hei-
delberg (2000)

19. Bloom, S.L., Ésik, Z., Labella, A., Manes, E.G.: Iteration 2-theories. Appl. Cate-
gorical Struct. 9, 173–216 (2001)

20. Boffa, M.: Une remarque sur les systémes complets d’identités rationnelles. ITA
24, 419–428 (1990)

21. Boffa, M.: Une condition impliquant toutes les identités rationnelles. ITA 29, 515–
518 (1995)

22. Cazanescu, V.E., Stefanescu, G.: Towards a new algebraic foundation of flowchart
scheme theory. Fund. Inform. 13, 171–210 (1990)

36 Z. Ésik

23. Cohn, P.M.: Universal algebra, 2nd edn. D. Reidel, Dordrecht (1981)
24. Davey, B.A., Priestly, H.A.: Introduction to lattices and order. Cambridge Univ.

Press, Cambridge (1990)
25. De Bakker, J.W., Scott, D.: A theory of programs. Technical report, IBM Vienna

(1969)
26. Elgot, C.C.: Monadic computation and iterative algebraic theories. In: Logic Col-

loquium 1973, Bristol. Studies in Logic and the Foundations of Mathematics, vol.
80, pp. 175–230. North-Holland, Amsterdam (1975)

27. Ésik, Z.: Identities in iterative and rational theories. Comput. Linguist. Comput.
Lang. 14, 183–207 (1980)

28. Ésik, Z.: Independence of the equational axioms of iteration theories. JCSS 36,
66–76 (1988)

29. Ésik, Z.: A note on the axiomatization of iteration theories. Acta Cybern. 9, 375–
384 (1990)

30. Ésik, Z.: Completeness of park induction. Theor. Comput. Sci. 177, 217–283 (1997)
31. Ésik, Z.: Axiomatizing the equational theory of regular tree languages (Extended

abstract). In: Meinel, C., Morvan, M. (eds.) STACS 1998. LNCS, vol. 1373, pp.
455–465. Springer, Heidelberg (1998)

32. Ésik, Z.: Group axioms for iteration. Inf. Comput. 148, 131–180 (1999)
33. Ésik, Z.: Axiomatizing iteration categories. Acta Cybern. 14, 65–82 (1999)
34. Ésik, Z.: Axiomatizing the least fixed point operation and binary supremum. In:

Clote, P.G., Schwichtenberg, H. (eds.) CSL 2000. LNCS, vol. 1862, pp. 302–316.
Springer, Heidelberg (2000)

35. Ésik, Z.: A proof of the Krohn-Rhodes decomposition theorem. Theor. Comput.
Sci. 234, 287–300 (2000)

36. Ésik, Z.: The power of the group axioms for iteration. Int. J. Algebr. Comput. 10,
349–373 (2000)

37. Ésik, Z.: Axiomatizing the equational theory of regular tree languages. J. Log.
Algebr. Program. 79, 189–213 (2010)

38. Ésik, Z.: Multi-linear iterative K-semialgebras. Electr. Notes Theor. Comput. Sci.
276, 159–170 (2011)

39. Ésik, Z.: A connection between concurrency and language theory. Electr. Notes
Theor. Comput. Sci. 298, 143–164 (2013)

40. Ésik, Z.: Axiomatizing weighted synchronization trees and weighted bisimilarity.
Theor. Comput. Sci. 534, 2–23 (2014)

41. Ésik, Z.: Residuated park theories. J. Log. Comput. 25, 453–471 (2015)
42. Ésik, Z.: Equational axioms associated with finite automata for fixed point opera-

tions in cartesian categories. Math. Struct. Comput. Sci. (to appear)
43. Ésik, Z.: Equational properties of stratified least fixed points (extended abstract).

In: de Paiva, V., de Queiroz, R., Moss, L.S., Leivant, D., de Oliveira, A. (eds.)
WoLLIC 2015. LNCS, vol. 9160, pp. 174–188. Springer, Heidelberg (2015)

44. Ésik, Z., Bernátsky, L.: Scott induction and equational proofs. Electr. Notes Theor.
Comput. Sci. 1, 154–181 (1985)

45. Ésik, Z., Kuich, W.: Inductive star-semirings. Theor. Comput. Sci. 324, 3–33
(2004)

46. Ésik, Z., Kuich, W.: Free iterative and iteration K-semialgebras. Algebra Univers.
67, 141–162 (2012)

47. Ésik, Z., Kuich, W.: Free inductive K-semialgebras. J. Log. Algebr. Program. 82,
111–122 (2013)

48. Ésik, Z., Kuich, W.: Solving fixed-point equations over complete semirings (to
appear)

Equational Properties of Fixed Point Operations in Cartesian Categories 37

49. Ésik, Z., Labella, A.: Equational properties of iteration in algebraically complete
categories. Theor. Comput. Sci. 195, 61–89 (1998)

50. Ésik, Z., Rondogiannis, P.: A fixed point theorem for non-monotonic functions.
Theor. Comput. Sci. 574, 18–38 (2015)

51. Gécseg, F.: Products of Automata. Springer, Berlin (1986)
52. Ginzburg, A.: Algebraic Theory of Automata. Academic Press, New-York (1968)
53. Goguen, J.A., Thatcher, J.W., Wagner, E.G., Wright, J.B.: Initial algebra seman-

tics and continuous algebras. J. ACM 24, 68–95 (1977)
54. Hasegawa, M.: Recursion from cyclic sharing: traced monoidal categories and mod-

els of cyclic lambda calculi. In: de Groote, P., Hindley, J.R. (eds.) TLCA 1997.
LNCS, vol. 1210, pp. 196–213. Springer, Heidelberg (1997)

55. Hyland, M., Power, J.: The category theoretic understanding of universal algebra:
Lawvere theories and monads. Electr. Notes Theor. Comput. Sci. 172, 437–458
(2007)

56. Joyal, A., Street, R., Verity, D.: Traced monoidal categories. Math. Proc. Camb.
Philos. Soc. 3, 447–468 (1996)

57. Kozen, D.: A completeness theorem for Kleene algebras and the algebra of regular
events. In: LICS 1991, pp. 214–225. IEEP Press (1991)

58. Kozen, D.: A completeness theorem for Kleene algebras and the algebra of regular
events. Inf. Comput. 110, 366–390 (1994)

59. Krob, D.: A complete system of B-rational identities. In: Paterson, M. (ed.) ICALP
1990. LNCS, vol. 443, pp. 60–73. Springer, Heidelberg (1990)

60. Krob, D.: Complete systems of B-rational identities. Theor. Comput. Sci. 89, 207–
343 (1991)

61. Krohn, K., Rhodes, J.L.: Algebraic theory of machines, I, principles of finite semi-
groups and machines. Trans. Am. Math. Soc. 116, 450–464 (1965)

62. Lawvere, F.W.: Functorial semantics of algebraic theories. Proc. Nat. Acad. Sci.
(USA) 50, 869–872 (1963)

63. Lehmann, D., Smyth, M.B.: Algebraic specification of data types: a synthetic app-
roach. Math. Sys. Theory 14, 97–139 (1981)

64. Milner, R.: Communication and Concurrency. Prentice-Hall, New York (1989)
65. Niwinski, D.: Equational µ-calculus. In: Skowron, A. (ed.) Computation Theory.

LNCS, vol. 208, pp. 169–176. Springer, Heidelberg (1985)
66. Niwinski, D.: On fixed-point clones (extended abstract). In: Kott, L. (ed.) ICALP

1986. LNCS, vol. 226, pp. 464–473. Springer, Heidelberg (1986)
67. Park, D.M.R.: Concurrency and automata on infinite sequences. In: Deussen, P.

(ed.) Theoretical Computer Science. LNCS, vol. 104, pp. 167–183. Springer, Hei-
delberg (1981)

68. Plotkin, G.: Domains. The Pisa notes. The University of Edinburgh, Edinburgh
(1983)

69. Pratt, V.: Action logic and pure induction. In: van Eijck, J. (ed.) Logics in AI
1990. LNCS, vol. 478, pp. 97–120. Springer, Heidelberg (1990)

70. Santocanale, L.: On the equational definition of the least prefixed point. Theor.
Comput. Sci. 295, 341–370 (2003)

71. Simpson, A.K., Plotkin, G.D.: Complete axioms for categorical fixed-point opera-
tors. In: LICS 2000, pp. 30–41. IEEE Press (2000)

72. Wagner, E.G., Bloom, S.L., Thatcher, J.W.: Why algebraic theories. In: Algebraic
Methods in Semantics, pp. 607–634. Cambridge University Press, New York (1986)

73. Wright, J.B., Thatcher, J.W., Wagner, E.G., Goguen, J.A.: Rational algebraic
theories and fixed-point solutions. In: FOCS 1976, pp. 147–158. IEEE Press (1976)

Reversible and Irreversible Computations
of Deterministic Finite-State Devices

Martin Kutrib(B)

Institut für Informatik, Universität Giessen, Arndtstr. 2, 35392 Giessen, Germany
kutrib@informatik.uni-giessen.de

Abstract. Finite-state devices with a read-only input tape that may be
equipped with further resources as queues or pushdown stores are con-
sidered towards their ability to perform reversible computations. Some
aspects of the notion of logical reversibility are addressed. We present
some selected results on the decidability, uniqueness, and size of minimal
reversible deterministic finite automata. The relations and properties of
reversible automata that are equipped with storages are discussed, where
we exemplarily stick with the storage types queue and pushdown store.
In particular, the computational capacities, decidability problems, and
closure properties are the main topics covered, and we draw attention to
the overall picture and some of the main ideas involved.

Keywords: Reversibility · Finite state devices · Minimality · Queue
and pushdown storage · Decidability · Closure properties

1 Introduction

Reversibility is a practically motivated property that has been investigated for
several automata models. Computers can be seen as information processing
devices which are physical realizations of such abstract models. From this view-
point it is natural to study the fundamental physical principle of reversibility,
which means in essence that every configuration has at most one unique succes-
sor configuration and at most one unique predecessor configuration. Moreover,
in [29] it has been argued that only the logically irreversible operations in a
computer necessarily dissipate energy by generating a corresponding amount of
entropy for every irreversibly erased bit of information. This observation strongly
suggests to study reversible computations without loss of information. A main
question in this setting is whether or not the computation of a given automaton
model can be made reversible in general.

The first investigations of reversible computations date back to the sixties
of the last century when the massively parallel model of cellular automata was
studied in this respect. It has been shown that the injectivity of the global tran-
sition function is equivalent to the reversibility of the automaton. It turned out
that global reversibility is decidable for one-dimensional cellular automata [1],
whereas the problem is undecidable for higher dimensions [16]. Nowadays it
c© Springer-Verlag Berlin Heidelberg 2015
G.F. Italiano et al. (Eds.): MFCS 2015, Part I, LNCS 9234, pp. 38–52, 2015.
DOI: 10.1007/978-3-662-48057-1 3

Reversible and Irreversible Computations 39

is known from [33] that every, possibly irreversible, one-dimensional cellular
automaton can always be simulated by a reversible one-dimensional cellular
automaton in a constructive way.

Later, in [6] reversible sequential machines, more precisely, Turing machines
have been studied. Again, a fundamental result is that every Turing machine
can be made reversible or, in other words, that any recursively enumerable lan-
guage can be accepted in a reversible way. Given this result, the question for
the efficiency of such a simulation almost suggests itself. Let the irreversible
computation take t time and s space. In [7] a first efficient reversible simulation
is proposed that uses s · tlog(3) time and s · log(t) space. So, for maximal t it
uses s2 space. In [30] a different method has been shown that uses only O(s)
space but at the cost of exponential time. In [9] a general upper bound on the
tradeoff between time and space that suffices for the reversible simulation of
irreversible computations is proved. It has the exponential time simulation and
the quadratic space simulation as extremes. The result shows that it is possible
to achieve subexponential time and subquadratic space simultaneously.

Valuable surveys with further references to literature are, for example, [17] for
cellular automata and [34], where one may find a summary of results on reversible
Turing machines, reversible cellular automata, and other reversible models such
as logic gates, logic circuits, or logic elements with memory, and [20] for further
aspects of reversibility (see also [4,21,22,25] for further investigations).

Logical reversibility has been studied also for further models such as
time-bounded Turing machines [5], two-way multi-head finite automata [3,35],
one-way multi-head finite automata [24], queue automata [26], and limited
automata [27].

Here we consider some aspects of reversibility in sequential devices that have
a read-only input tape and may be equipped with further storage resources.
The discussion is mainly restricted exemplarily to finite automata as well as to
queue and pushdown automata. The notion of reversibility and its possible defi-
nitions are discussed. Then we turn to the size of reversible finite automata. It is
well known that the minimal DFA accepting a given regular language is unique
up to isomorphism. So the relations between minimality and reversibility are of
natural interest, in particular, questions concerning the decidability, uniqueness,
and the size of a minimal reversible DFA in terms of the size of the equiva-
lent minimal DFA. Finally, the relations and properties of reversible automata
that are equipped with a pushdown store or a queue are discussed, where the
computational capacities, decidability problems, and closure properties are the
main topics.

2 Preliminaries and the Notion of Logical Reversibility

The reader is assumed to be familiar with the basic notions of automata theory as
contained, for example, in [12,15]. In the present paper we will use the following
notational conventions. An alphabet Σ is a non-empty finite set, its elements are
called letters or symbols. We write Σ∗ for the set of all words over the finite

40 M. Kutrib

alphabet Σ. The empty word is denoted by λ, and Σ+ = Σ∗ \ {λ}. The reversal
of a word w is denoted by wR and for the length of w we write |w|. We use ⊆
for inclusions and ⊂ for strict inclusions. In the following, two devices are said
to be equivalent if they accept the same language.

The devices we are interested in are computing machines with a finite number
of discrete internal states. The machines have a read-only input tape, may be
equipped with further resources, and evolve in discrete time, where each compu-
tation step is driven by a deterministic transition function. Given a configuration
representing the complete “global state” of a device, the transition function is
used to compute the successor configuration. The transition function depends on
the current internal state and on the status of further resources the machine is
equipped with. It gives the successor state and maybe changes the status of the
resources. In general, these devices are considered in terms of formal language
recognition. However, reversibility is a property of machines and not a prop-
erty of languages. So, notions as “the family of reversible regular languages”
are meaningless unless the reversibility of a regular language is defined by the
reversibility of a certain type of device that accepts it. For example, the deter-
ministic finite automaton (DFA) depicted in Fig. 1 accepts the regular language
a∗bb∗. Since any equivalent DFA must have a state with two incoming edges
which are labeled by the same input symbol, it cannot be reversible. So, from the
viewpoint of (deterministic) finite automata the language a∗bb∗ is irreversible.
However, in [19] it has been shown that reversible two-way deterministic finite
automata characterize the regular languages. This implies that every regular
language is accepted by some reversible two-way deterministic finite automaton
and, thus, from the viewpoint of (deterministic) two-way finite automata the
language a∗bb∗ is reversible.

s0 s1

a b

bstart

Fig. 1. An irreversible DFA accepting the language a∗bb∗, that cannot be accepted by
any reversible DFA.

Basically, the definition of logical reversibility of some type of device requires
that the device is deterministic and that any configuration must have at most one
predecessor. But these requirements do not define reversibility sufficiently. For
example, in which way is the predecessor configuration computed? May we use a
universal device? Do we have to use a device of the same type? Or else a device
with the same computational power? The idea to step the computation back
and forth anticipates not to use a universal machine in general. For the latter
question consider again the DFA of Fig. 1 that accepts the language a∗b+. If the
predecessor configuration has to be computed by a DFA as well, the given DFA

Reversible and Irreversible Computations 41

is irreversible. Once in state s1, it is impossible to get back uniquely on input
symbol b. However, if a DFA is equipped with an input window of size two, it
can compute the predecessor state. Moreover, deterministic finite automata with
window size two have the same power as DFA. So, if the predecessor configuration
may be computed with lookahead two, the given DFA is reversible. Further
results on gradual reversibility dependent on the size of lookaheads can be found
in [2,28].

Another question that comes up in connection with the computability of
predecessor configurations concerns the set of configurations that count. Do we
have to consider all possible configurations as potential predecessors? Or only
configurations that are reachable from some initial configurations, that is, con-
figurations that actually occur in computations? Consider for example the DFA
in Fig. 2. It is reversible for all reachable configurations, but it is irreversible if
all possible configurations count. Reversibility on reachable configurations is a
wider notion than reversibility on all configurations. It turns out that this makes
a big difference if machines are considered, but it does not make any difference
if languages are considered (see Sect. 4).

s1

s0 s3

s2 b

a

a

a
b

start

a a a b b b . . .

s3backward

Fig. 2. [20] A DFA (left) and an unreachable configuration (right).

Unless stated otherwise, in the sequel we tacitly make the appointment that
the backward steps of a computation are performed by another device of the
same type and that all configurations count.

3 Size of Reversible Finite Automata

It is well known that the minimal DFA accepting a given regular language is
unique up to isomorphism. So the relations between minimality and reversibil-
ity are of natural interest, in particular, questions concerning the decidability,
uniqueness, and the size of a minimal reversible DFA in terms of the size of the
equivalent minimal DFA.

Before we turn to the discussion of these relations, we recall some definitions.
A deterministic finite automaton (DFA) is a system M = 〈S,Σ, δ, s0, F 〉, where S
is the finite set of internal states, Σ is the alphabet of input symbols, s0 ∈ S is the

42 M. Kutrib

initial state, F ⊆ S is the set of accepting states, and δ : S ×Σ → S is the partial
transition function. Note, that here the transition function is not required to be
total. By δ← : S × Σ → 2S , with δ←(q, a) = { p ∈ S | δ(p, a) = q }, we denote the
reverse transition function of δ.

A DFA is reversible if every letter a ∈ Σ induces an injective partial mapping
from S to itself via the mapping δa : S → S with p �→ δ(p, a). In this case,
the reverse transition function δ← can be seen as a (partial) injective function
δ← : S × Σ → S.

A restricted variant of reversible deterministic finite automata has been
introduced and studied in the context of algorithmic learning theory in [2]; see
also [18]. The definition there requires that any reversible DFA has only one sole
accepting state. Sometimes these devices are called bideterministic DFA. For
this notion of reversibility the question for uniqueness and the size of a minimal
reversible DFA is settled, as a language L is accepted by a bideterministic DFA
if and only if the minimal DFA for L is reversible and has a unique final state
(see [36]).

Later this concept of reversibility has been extended in [36], so that multi-
ple accepting as well as multiple initial states are allowed. In particular, this
means that reversible DFA in this sense are nondeterministic devices. How-
ever, even these devices cannot accept the regular language a∗b∗ reversibly [36].
A further generalization of reversibility to quasi-reversibility, which even allows
nondeterministic transitions was introduced in [32] (see also [11]). However,
these quasi-reversible DFA may be exponentially more succinct than the minimal
reversible DFA.

Next we turn to discuss the question for decidability, uniqueness, and the
size of a minimal reversible DFA in the standard definition from above.

The example depicted in Fig. 3 answers the question whether a minimal
reversible DFA is unique.

s1 s3

s0

s2 s4

a

b

a, b

a

start

s1 s3

s0

s2 s4

a

b

a

b

a

start

Fig. 3. Non-isomorphic minimal reversible DFA for the finite language L = {aa, ab, ba}.

Theorem 1 ([14]). Let L be a regular language accepted by some reversible DFA.
Then a minimal reversible DFA accepting L is not necessarily unique, even not
up to isomorphism.

Reversible and Irreversible Computations 43

3.1 Trade-Offs

The first exponential lower bound for the state trade-off between a minimal
DFA and an equivalent minimal reversible DFA originates in [13]. By the 2n-
fold concatenation L2n of the finite language L = {aa, ab, ba} a lower bound
of Ω(1.001n) has been derived. So, the minimal reversible finite automaton for
some language can be exponentially larger than the minimal automaton. In [14]
the exact number of states of a minimal reversible DFA for the language L2n has
been shown; it is 22n+2 − 3. Since the minimal DFA for L2n has 6n + 1 states,
the blow-up in the number of states is in the order of 2n/3 = (3

√
2)n, which is

approximately 1.259n.
However, in the same paper [14] the lower bound has been improved.

A witness DFA is depicted in Fig. 4. Notice that no transitions are defined from
the sole accepting state. Clearly, the DFA is minimal, but not reversible. How-
ever, since the language accepted is finite, one readily sees that it can be accepted
by a reversible DFA. It is shown that the number of states of the minimal equiv-
alent reversible DFA is

∑n
i=1 Fn, where Fn denotes the nth Fibonacci number.

This is equal to Fn+2 − 1. From the closed form

Fn =
1√
5

·
(

1 +
√

5
2

)n
− 1√

5
·
(

1 − √
5

2

)n

and the fact that
(

1−√
5

2

)n

tends to zero, for large n, we see that the state blow-

up is in the order of
(

1+
√
5

2

)n

, that is, approximately 1.618n, the golden ratio Φ

to the power of n.

s0 s2 s4

s1 s3 s5

b b

a a a

a a

b b

start

Fig. 4. [14] A minimal DFA, for n = 6 states, where the minimal equivalent reversible
DFA needs

∑n
i=1 Fi = Fn+2 − 1 states.

Theorem 2 ([14]). For every n with n ≥ 3 there is an n-state DFA over a
binary input alphabet accepting a reversible language, such that any equivalent
reversible DFA needs at least Ω(Φn) states with Φ = (1+

√
5)/2, the golden ratio.

It is worth mentioning that the lower bound for the witness languages of
Theorem 2 is for a binary alphabet. It can be increased at the cost of more
symbols. For a k-ary alphabet one can derive the lower bound from the k-ary
Fibonacci function Fn = Fn−1 + Fn−2 + · · · + Fn−k. For k = 3 the lower bound
is of order 1.839n and for k = 4 it is of order 1.927n. For growing alphabet sizes
the bound asymptotically tends to 2n−1, that is, Ω(2n−1). This is precisely the
upper bound (for arbitrary alphabet sizes).

44 M. Kutrib

Theorem 3 ([14]). Let M be a minimal deterministic finite automaton with n
states, that accepts a reversible language. Then a minimal reversible determin-
istic finite automaton for L(M) has at most 2n−1 states.

3.2 Decidability

Now we turn to decidability questions in connection with (minimal) reversible
DFA. The first problem that comes into mind is the problem to decide whether a
given DFA is reversible or, more involved, whether it accepts a language that is
also accepted by some reversible DFA. The decision of the reversibility of DFA is
almost trivial. An inspection of the transition function and the set of accepting
states suffices. Moreover, this observation transfers also to languages accepted
by bideterministic automata in the notion of [2], because it is sufficient to verify
the reversibility of the minimal DFA for the language, which must have a unique
final state (see remark above). For languages accepted by nondeterministic DFA,
where the nondeterminism is limited to multiple initial states, it has been shown
in [36], that there is a polynomial time algorithm for testing whether the language
can be accepted by a reversible finite automaton.

For DFA the problem has been solved in [14] by proving the following struc-
tural characterization of regular languages that can be accepted by reversible
DFA in terms of their minimal DFA.

Theorem 4 ([14]). Let M = 〈S,Σ, δ, s0, F 〉 be a minimal deterministic finite
automaton. The language L(M) can be accepted by a reversible determinis-
tic finite automaton if and only if there do not exist useful states p, q ∈ S,
a letter a ∈ Σ, and a word w ∈ Σ∗ such that p �= q, δ(p, a) = δ(q, a), and
δ(q, aw) = q.

So, the characterization is based on the absence of a forbidden pattern in the
(minimal) deterministic state graph. Now, checking the absence of the forbidden
patterns yields an NL-complete decidability algorithm. The idea of proving NL
containment is to decide in NL whether a given DFA accepts a non-reversible
language by witnessing the forbidden pattern. Since NL is closed under comple-
mentation the containment of the reversibility problem within NL follows. For
the NL hardness, the NL-complete graph reachability problem is reduced to the
problem in question (with respect to deterministic logspace reductions).

Theorem 5 ([14]). Given a DFA M , the problem to decide whether L(M) is
accepted by any reversible DFA is NL-complete.

Another interesting decidability problem is to determine whether a given
reversible DFA is already minimal. Again with a forbidden pattern approach,
it is shown in [14] that the minimality of reversible DFA can be decided by an
NL-complete algorithm.

Theorem 6 ([14]). Given a DFA M , the problem to decide whether M is already
a minimal reversible deterministic finite automaton is NL-complete.

Reversible and Irreversible Computations 45

A further result in [14] is the effective construction of a minimal reversible DFA
out of a given DFA that accepts a reversible language. The basic idea how to
make a given DFA reversible is very intuitive: as long as there is an irreversible
state, copy this state and all states reachable from it, and distribute the incoming
transitions to the new copies. The absence of the forbidden pattern ensures that
this procedure eventually comes to an end.

4 Queues and Pushdown Stores

This section is devoted to discuss relations and properties of reversible automata
that are equipped with a pushdown store (DPDA) or a queue (DQA). Their
reversible variants have been introduced and studied in [23] and [26], where only
reachable configurations are relevant for reversibility. However, for pushdown
automata and queue automata this makes a difference only for machines, that
is, there are machines that are reversible on reachable but not on all configura-
tions. It does not make a difference for languages, that is, for any machine that
is reversible on reachable configurations there is an equivalent machine that is
reversible on all configurations. So, from the perspective of languages and lan-
guage classes it is safe to stick with either notion of reversibility.

Recall that a queue automaton, at each time step, may remove or keep the
symbol at the front and enters a (possibly empty) symbol at the end of the
queue. The transition depends on the current state, the current input symbol
or λ, and the symbols currently at the front and end of the queue. Often queue
automata are defined that can only see the symbol at the front of the queue.
However, with an eye towards reversible computations we extend the definition
as described. It is worth mentioning that the additional knowledge of the last
queue symbol does not increase the computational power of queue automata. For
reverse computation steps the head of the input tape is again moved to the left.
Moreover, the roles played by the front and end of the queue are interchanged.
That is, in reverse computation steps the symbols are removed from the end and
added to the front of the queue. We denote the relation from one configuration
to the next by �.

A DQA M with transition function δ is said to be reversible (REV-DQA),
if there exists a reverse transition function δ← inducing a relation �← from
one configuration to the next, so that c′ �←

c if and only if c � c′, for any two
configurations c, c′ of M (Fig. 5). See [26] for detailed definitions.

The following example is interesting insofar as the language is known not to
be accepted by any reversible pushdown automaton.

Example 7 ([26]). The deterministic linear context-free language { anbn |
n ≥ 1 } is accepted by the quasi realtime REV-DQA with state
set {q0, q1, q2}, queue alphabet {A0, B0, B1}, initial state q0, set of
accepting states {q2}, and empty queue symbol ⊥, where the tran-
sition functions δ and δ← are as follows. Let X ∈ {A0, B0, B1}.

46 M. Kutrib

· · · a b c · · ·

p A

B

X

...

· · · a b c · · ·

q B

X

Y

...

Fig. 5. Successive configurations of a REV-DQA, where δ(p, b, A, X) = (q, Y, remove)
(left to right) and δ←(q, b, B, Y) = (p, A, remove) (right to left).

The main idea of the construction is to provide two flags for the enqueued
symbols, namely the letter and its index. The letters characterize whether the
machine is in mode A or mode B. The machine is in mode A while reading a’s
from the input and is in mode B when reading b’s and checking whether the num-
ber of a’s and b’s coincide. The index describes in which state the machine was
in its last step. This information is necessary for the reverse transition function.

In order to obtain a reversible automaton some transition rules have to be
provided that cannot be used in any reachable configuration. For example, let
the REV-DQA perform the transition δ(q0, a, A0, A0) = (q0, A0, keep). Then
the reverse transition rule δ←(q0, a, A0, A0) = (q0, λ, remove) has to be defined.
However, applying this rule to the unreachable configuration, where the queue
content is A0B1A0 gives the predecessor configuration with queue content A0B1.
This implies that the (forward) transition rule δ(q0, a, A0, B1) = (q0, A0, keep)
has to be defined as well. �

For the sake of completeness, recall that the transition function of a deterministic
pushdown automaton maps the current state, the current input symbol or λ, and
the symbol at the top of the stack to the successor state and a new (possibly
empty) string at the top of the stack.

A DPDA M with transition function δ is said to be reversible (REV-DPDA),
if there exists a reverse transition function δ← inducing a relation �← from one
configuration to the next, so that c′ �←

c if and only if c � c′, for any two
configurations c, c′ of M . See [23] for detailed definitions.

Reversible and Irreversible Computations 47

4.1 Computational Capacity

In order to explore the general computational capacity of reversible queue
automata, the next result has been shown in [26]. It contrasts the situation
for pushdown automata and complements the situation for Turing machines,
where every Turing machine can be made reversible [6].

Theorem 8 ([26]). Let M be a deterministic queue automaton. Then there
exists a reversible queue automaton accepting the language L(M).

Combining this construction with the result from [37] that says that queue
automata without any time restriction describe the recursively enumerable lan-
guages, we obtain that reversible queue automata and Turing machines have the
same computational power.

Theorem 9 ([26]). Every recursively enumerable language is accepted by some
reversible queue automaton.

Giving a queue automaton arbitrary time for the computation may be a little
unfair compared with pushdown automata, because the former can always cycle
through the queue, thus, reading the whole storage content without destroying
any information. A natural possibility to overcome this advantage is studied
in [10] where queue automata are considered that work in quasi realtime. Quasi
realtime means that the number of consecutive λ-transitions is bounded by a
constant. It is shown in [10] that quasi realtime queue automata are less powerful
than queue automata without time restriction. However, for reversible queue as
well as pushdown automata there is the nice correspondence that both types of
automata if working in quasi realtime can be sped up to realtime.

Theorem 10 ([26]). For every quasi realtime reversible DQA an equivalent real-
time reversible DQA can effectively be constructed.

Theorem 11 ([23]). For every reversible DPDA an equivalent realtime
reversible DPDA can effectively be constructed.

Though both types of reversible devices have strictly less power when restricted
to (quasi) realtime computations, they still can accept all regular languages. The
idea is simply to simulate a given DFA, whereby the state history is remembered
in the storage.

On the other hand, any language known not to be accepted in realtime by a
pushdown automaton is a witness for the fact that reversible pushdown automata
are strictly weaker than the general pushdown automata. This raises the nat-
ural question whether all realtime DPDA languages are accepted by reversible
DPDA. This question has been answered negatively.

Theorem 12 ([23]). The realtime deterministic linear context-free language
{ anbn | n ≥ 0 } is not accepted by any reversible DPDA.

48 M. Kutrib

A similar result for queue automata has been established in [26]. In particular,
a language Lmcp is exhibited which is accepted by some realtime queue automa-
ton, but not by any realtime reversible queue automaton. In fact, the stronger
result is obtained that any reversible queue automaton accepting Lmcp takes at

least Ω
(

n2

log(n)

)
time steps.

Example 13 ([26]). We consider the regular language Lbin = ((aa+a)(bb+ b))+.
Then the language

Lmcp = { p$w1$w1$w2$w2$ · · · wnwn | p ∈ Lbin , n ≥ 0, wi ∈ {a, b}∗ }

is accepted by a realtime DQA. Informally, a DQA works as follows. The prefix
up to the first $ can be tested without using the queue, because it belongs to
a regular language. Then the first copy of each wi is stored in the queue and
subsequently compared and removed from the queue while reading the second
copy. Whenever the second copy matches the first copy, the automaton enters
an accepting state. Whenever a mismatch is detected, a non-accepting state is
entered so that the input is rejected. �

By using Kolmogorov complexity and incompressibility arguments, the lower
bound mentioned above has been shown.

Theorem 14 ([26]). Any reversible DQA accepting Lmcp has a time complexity

of Ω
(

n2

log(n)

)
.

This lower bound result raises the question for the costs of simulating any real-
time DQA, not necessarily reversible, by an equivalent reversible DQA. It turned
out that quadratic time is sufficient for such simulations.

Theorem 15 ([26]). Every realtime DQA can be simulated by a reversible DQA
that needs at most quadratic time.

This upper bound shows that quadratic time is the trade-off for making real-
time DQA reversible. On the other hand, the language Lmcp provides a lower
bound, which shows that there are cases where a quadratic time trade-off is
almost reached. Moreover, we have derived that for both types of automata the
reversible variant is strictly weaker than the realtime general variant.

We conclude the subsection by an incomparability result showing that the
language accepting capabilities of reversible (quasi) realtime DQA are different
from those of reversible pushdown automata. The context-free language {w#wR |
w ∈ {a, b}+ } is accepted by a reversible pushdown automaton [23], but not by
any even irreversible quasi realtime queue automaton [8,31]. On the other hand,
it is not hard to see that the non-context-free language { anbncn | n ≥ 1 } is
accepted by some realtime reversible DQA.

Theorem 16 ([26]). The families of languages accepted by realtime reversible
DQA and by reversible pushdown automata are incomparable.

Reversible and Irreversible Computations 49

4.2 Decidability and Closure Properties

Let us now turn to decidability aspects of reversible pushdown and queue
automata. Problems which are decidable for DPDA are decidable for reversible
DPDA as well.

Corollary 17. Finiteness, infiniteness, universality, equivalence, and regularity
are decidable for reversible DPDA.

On the other hand, inclusion is known to be undecidable for DPDA. By reduc-
tion of the Post’s correspondence problem it has been shown that inclusion is
undecidable for reversible DPDA, too.

Theorem 18 ([23]). Inclusion is undecidable for reversible DPDA.

The situation for reversible queue automata is in considerable contrast to the sit-
uation for reversible pushdown automata. By reduction of the emptiness problem
for deterministic linearly space bounded one-tape, one-head Turing machines,
so-called linear bounded automata, it has been shown that the emptiness prob-
lem for realtime reversible DQA is not even semidecidable. From this result
it is derived that all the commonly studied decidability questions are non-
semidecidable, too.

Theorem 19 ([26]). Emptiness, finiteness, infiniteness, universality, inclusion,
equivalence, regularity, and context-freeness are not semidecidable for realtime
reversible DQA.

These results bring us to the problem whether reversibility itself is decidable.
Here again, we have to distinguish between the reversibility of a machine and the
reversibility of the language accepted by a machine. Let us first shortly consider
the languages. The following theorem contrasts the situation for finite automata,
where the problem is decidable (see above).

Theorem 20 ([23]). It is undecidable whether the language accepted by a non-
deterministic pushdown automaton can be accepted by a reversible DPDA.

The same problem for deterministic pushdown automata is open.
Next, we consider the question of whether the reversibility of a machine in

question can be decided. Now we have to distinguish between the reversibility on
all or only on reachable configurations. This makes a big difference. While the
question of reversibility on all configurations is decidable just by by inspection of
the transition function, the question of reversibility on reachable configurations
becomes more involved. In particular, we obtain a difference between queue and
pushdown automata.

Theorem 21 ([26]). Reversibility on reachable configurations is not semidecid-
able for realtime DQA.

However, we have the decidability for pushdown automata. The size of a push-
down automaton is the length of its representation.

50 M. Kutrib

Theorem 22 ([23]). Let M be a deterministic pushdown automaton of size n.
Then it is decidable in time O(n4), whether M is reversible on reachable config-
urations. Moreover, the decision problem is P-complete.

Given a nondeterministic pushdown automaton, by inspecting the transition
function one can decide whether or not it is a DPDA. If the answer is yes, then
it can be decided whether it is reversible on reachable configurations by the
previous theorem. If it is not a DPDA, then it cannot be a reversible DPDA.
Therefore, the previous result transfers to nondeterministic devices.

Corollary 23 ([23]). Let M be a nondeterministic pushdown automaton of size
n. Then it is decidable in time O(n4), whether M is reversible on reachable
configurations. Moreover, the decision problem is P-complete.

Finally, we consider closure properties of the families in question. It turns out
that the families of languages accepted by realtime reversible queue automata
and reversible pushdown automata have similar closure properties. For exam-
ple, they are closed under complementation and inverse homomorphism, but are
not closed under union, intersection, intersection with regular languages, con-
catenation, reversal, and homomorphism. The closure properties of the language
families discussed are summarized in Table 1. The closure properties for general
(realtime) DQA may be found in [10].

Table 1. Closure properties of language families discussed. REG denotes the family of
regular languages.

Language class ∪ • R hλ h−1 ∩REG ∪REG ∩ ∼
REG + + + + + + + + +

realtime REV-DQA − − − − + − − − +

realtime DQA − − − − + + + − +

REV-DPDA − − − − + − − − +

DPDA − − − − + + + − +

References

1. Amoroso, S., Patt, Y.N.: Decision procedures for surjectivity and injectivity of
parallel maps for tesselation structures. J. Comput. Syst. Sci. 6, 448–464 (1972)

2. Angluin, D.: Inference of reversible languages. J. ACM 29, 741–765 (1982)
3. Axelsen, H.B.: Reversible multi-head finite automata characterize reversible log-

arithmic space. In: Dediu, A.-H., Mart́ın-Vide, C. (eds.) LATA 2012. LNCS, vol.
7183, pp. 95–105. Springer, Heidelberg (2012)

4. Axelsen, H.B., Glück, R.: A simple and efficient universal reversible turing machine.
In: Dediu, A.-H., Inenaga, S., Mart́ın-Vide, C. (eds.) LATA 2011. LNCS, vol. 6638,
pp. 117–128. Springer, Heidelberg (2011)

Reversible and Irreversible Computations 51

5. Axelsen, H.B., Jakobi, S., Kutrib, M., Malcher, A.: A hierarchy of fast reversible
turing machines. In: Krivine, J., Stefani, J.B. (eds.) Reversible Computation (RC
2015). LNCS, vol. 9138, pp. 29–44. Springer, Heidelberg (2015)

6. Bennett, C.H.: Logical reversibility of computation. IBM J. Res. Dev. 17, 525–532
(1973)

7. Bennett, C.H.: Time/space trade-offs for reversible computation. SIAM J. Comput.
18, 766–776 (1989)

8. Brandenburg, F.J.: Intersections of some families of languages. In: Kott, L. (ed.)
International Colloquium on Automata, Languages and Programming (ICALP
1986). LNCS, vol. 226, pp. 60–68. Springer, Heidelberg (1986)

9. Buhrman, H., Tromp, J., Vitányi, P.M.B.: Time and space bounds for reversible
simulation. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001.
LNCS, vol. 2076, pp. 1017–1027. Springer, Heidelberg (2001)

10. Cherubini, A., Citrini, C., Crespi-Reghizzi, S., Mandrioli, D.: QRT FIFO automata,
breadth-first grammars and their relations. Theoret. Comput. Sci. 85, 171–203
(1991)

11. Garćıa, P., de Parga, M.V., López, D.: On the efficient construction of quasi-
reversible automata for reversible languages. Inform. Process. Lett. 107, 13–17
(2008)

12. Harrison, M.A.: Introduction to Formal Language Theory. Addison-Wesley, Read-
ing (1978)

13. Héam, P.C.: A lower bound for reversible automata. RAIRO Inform. Théor. 34,
331–341 (2000)

14. Holzer, M., Jakobi, S., Kutrib, M.: Minimal reversible deterministic finite
automata. In: Potapov, I. (ed.) Developments in Language Theory (DLT 2015).
LNCS, Springer (to appear 2015)

15. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, Boston (1979)

16. Kari, J.: Reversibility and surjectivity problems of cellular automata. J. Comput.
Syst. Sci. 48, 149–182 (1994)

17. Kari, J.: Reversible cellular automata. In: De Felice, C., Restivo, A. (eds.) DLT
2005. LNCS, vol. 3572, pp. 57–68. Springer, Heidelberg (2005)

18. Kobayashi, S., Yokomori, T.: Learning approximately regular languages with
reversible languages. Theoret. Comput. Sci. 174, 251–257 (1997)

19. Kondacs, A., Watrous, J.: On the power of quantum finite state automata. In:
Foundations of Computer Science (FOCS 1997), pp. 66–75. IEEE Computer Soci-
ety (1997)

20. Kutrib, M.: Aspects of reversibility for classical automata. In: Calude, C.S.,
Freivalds, R., Kazuo, I. (eds.) Gruska Festschrift. LNCS, vol. 8808, pp. 83–98.
Springer, Heidelberg (2014)

21. Kutrib, M., Malcher, A.: Fast reversible language recognition using cellular
automata. Inform. Comput. 206, 1142–1151 (2008)

22. Kutrib, M., Malcher, A.: Real-time reversible iterative arrays. Theoret. Comput.
Sci. 411, 812–822 (2010)

23. Kutrib, M., Malcher, A.: Reversible pushdown automata. J. Comput. Syst. Sci.
78, 1814–1827 (2012)

24. Kutrib, M., Malcher, A.: One-way reversible multi-head finite automata. In: Glück,
R., Yokoyama, T. (eds.) RC 2012. LNCS, vol. 7581, pp. 14–28. Springer, Heidelberg
(2013)

52 M. Kutrib

25. Kutrib, M., Malcher, A., Wendlandt, M.: Real-time reversible one-way cellular
automata. In: Isokawa, T., Imai, K., Matsui, N., Peper, F., Umeo, H. (eds.)
AUTOMATA 2014. LNCS, vol. 8996, pp. 56–69. Springer, Heidelberg (2015)

26. Kutrib, M., Malcher, A., Wendlandt, M.: Reversible queue automata. In: Bensch,
S., Freund, R., Otto, F. (eds.) Non-Classical Models of Automata and Applications
(NCMA 2014), vol. 304, pp. 163–178. Austrian Computer Society, Vienna (2014).
www.books@ocg.at

27. Kutrib, M., Wendlandt, M.: Reversible limited automata. In: Machines, Compu-
tations, and Universality (MCU 2015). LNCS, Springer (to appear, 2015)

28. Kutrib, M., Worsch, T.: Degrees of reversibility for DFA and DPDA. In: Yamashita,
S., Minato, S. (eds.) RC 2014. LNCS, vol. 8507, pp. 40–53. Springer, Heidelberg
(2014)

29. Landauer, R.: Irreversibility and heat generation in the computing process. IBM
J. Res. Dev. 5, 183–191 (1961)

30. Lange, K.J., McKenzie, P., Tapp, A.: Reversible space equals deterministic space.
J. Comput. Syst. Sci. 60, 354–367 (2000)

31. Li, M., Longpré, L., Vitányi, P.M.B.: The power of the queue. SIAM J. Comput.
21, 697–712 (1992)

32. Lombardy, S.: On the construction of reversible automata for reversible languages.
In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo,
R. (eds.) ICALP 2002. LNCS, vol. 2380, p. 170. Springer, Heidelberg (2002)

33. Morita, K.: Reversible simulation of one-dimensional irreversible cellular automata.
Theoret. Comput. Sci. 148, 157–163 (1995)

34. Morita, K.: Reversible computing and cellular automata - a survey. Theoret. Com-
put. Sci. 395, 101–131 (2008)

35. Morita, K.: Two-way reversible multi-head finite automata. Fund. Inform. 110,
241–254 (2011)

36. Pin, J.E.: On reversible automata. In: Simon, I. (ed.) LATIN 1992. LNCS, vol.
583, pp. 401–416. Springer, Heidelberg (1992)

37. Vollmar, R.: Über einen Automaten mit Pufferspeicherung. Computing 5, 57–70
(1970)

Robust Inference and Local Algorithms

Yishay Mansour(B)

Microsoft Research, Hertzelia and Tel-Aviv University, Hertzelia, Israel
mansour.yishay@gmail.com

Abstract. We introduce a new feature to inference and learning which
we call robustness. By robustness we intuitively model the case that the
observation of the learner might be corrupted. We survey a new and novel
approach to model such possible corruption as a zero-sum game between
an adversary that selects the corruption and a leaner that predict the
correct label. The corruption of the observations is done in a worse-case
setting, by an adversary, where the main restriction is that the adversary
is limited to use one of a fixed know class of modification functions. The
main focus in this line of research is on efficient algorithms both for the
inference setting and for the learning setting. In order to be efficient in
the dimension of the domain, one cannot hope to inspect all the possible
inputs. For this, we have to invoke local computation algorithms, that
inspect only a logarithmic fraction of the domain per query.

1 Introduction

1.1 Motivating Scenarios

We advocate for a notion of robustness which combines a worst-case analysis with
probabilistic approaches of inference and learning. We start with a few motivat-
ing scenarios, that highlight the need to address robustness in both inference
and learning settings.

Spam filter: Consider a spam filter that uses multiple detectors to identify
whether a given e-mail is spam. The classical inference problem would be to
compute the probability that the e-mail is spam given the detectors’ output
(taking in to account their success probabilities). However, spammers are far
from being passive. They continuously adapt to the spam filters updates, trying
to bypass them. In the short time horizon we can expect spammers to “fool”
only a few detectors, while in the long time horizon they might be able to com-
pletely fool the spam filter. It is all about a game, a game between the spammers
and the detectors where spammers adjust to detectots and try to fool them. By
robustness, we emphasis our desire to classify correctly whether an e-mail is
spam, even when the output of a few detectors is corrupted adversarially (by
the spammer).

This research was supported in part by The Israeli Centers of Research Excellence
(I-CORE) program, (Center No. 4/11), by a grant from the Israel Science Foundation
(ISF), by a grant from United States-Israel Binational Science Foundation (BSF).

c© Springer-Verlag Berlin Heidelberg 2015
G.F. Italiano et al. (Eds.): MFCS 2015, Part I, LNCS 9234, pp. 53–60, 2015.
DOI: 10.1007/978-3-662-48057-1 4

54 Y. Mansour

Hardware failure: As a second motivating domain is hardware failures. Consider
a network setting where multiple detectors are used to identify failures. Each
detector has a different success probability of detecting correctly that a failure
occurred. A classical inference question is to determine the probability that a
failure occurred, given the detectors signals. The detectors themselves are addi-
tional hardware that is added to the network, and like any hardware, they mail
fail. This raises the question: what do you do when the detectors themselves are
faulty? In general, a Bayesian approach to modeling would add a prior over any
uncertainty that might occur. In this case it implies to give a probability distri-
bution over the various detectors to fail and their output once they fail. While
estimating the failure probability is plausible, it is highly optimistic to assume
that we have an accurate model of the device output once it fails. For a concrete
example consider a device that measures the bit error rate on a link. Detecting
that the device is not responding is rather easy, but what happens in the device
claims a 1% bit error rate on the link when actually there are no errors. What
probability should we give this even? This is the kind of issues that the Bayesian
approach has to address. In contrast, our robustness modeling takes a worst case
approach. For example, we would like to guarantee that any single detector fail-
ure would be overcome by the system. This worst case requirement leads us to
an adversarial modeling of the detectors’ failure and deriving an optimal robust
prediction given our observations is aimed at overcoming worse case failures.

Another hardware failure related domain is sensors. Inferences based on sen-
sors’ inputs have become a central aspect of wearable computing. One of the
main challenges is that sensors are noisy, and information from a variety of dif-
ferent sources should be integrated in order to verify particular facts. In the case
of bio-sensors for example, sensors of the same kind may measure a particular
feature, such as blood pressure, in different parts of the body, and their readings
should be integrated. At first sight this setting fits squarely into the context of
probabilistic inference. However, in many such settings some inputs (sensors)
might be corrupted in an unforeseeable manner (in addition to noise). This
unforeseeable corruption leads us naturally to a worst case modeling, where we
would like to provide the best inference guarantees assuming a few of the sensors
might “maliciously” (namely, worst case) malfunction.

Strategic behavior: Consider the following classification setting. Inputs, described
by attributes, are to be classified as having one of two labels. For example, an
input might represent an employee, the attributes might represent her perfor-
mance under various measures, and the classification function maps the values of
the attributes to a binary decision, such as “deserves a bonus” or not. Suppose
now that an adversary (a manager in the company? a trade union?) can manip-
ulate the attributes of inputs in some limited way. For example, the adversary
might round up or down the number of work hours that the employee reports,
or might over- or under-emphasize the employee’s contribution to a completed
project. We refer to such manipulations as corruption of the input. As a conse-
quence of this corruption, some employees that deserve a bonus (according to
the intended classification) might not get one, and vice versa. Robustness has

Robust Inference and Local Algorithms 55

the goal to design a classification algorithm that is imune to such corruption of
inputs. Thus, even if the algorithm observes only the corrupted input, in most
cases, the label that it predicts should match the label of the original (unknown)
uncorrupted input.

1.2 Model: Overview

Each instance (x, y) is composed from a set of attributes x ∈ X and a label
y ∈ {0, 1}, and there is a joint distribution D over (x, y). The classical inference
problem, is given x to predict y, while the classical learning problem is given a
sample S = {(xi, yi)} select a hypothesis h.

For our robustness modeling we add another layer which maps the x (uncor-
rupted input) to z (corrupted input). The learner now observes z and needs to
predict y. The main issue is how the corrupted inputs (z) are generated from
the uncorrupted ones (x).

The main feature of our model is that the corruption is done by an adversary,
which can map x to z using one of m modification rules ρ, i.e., ρ(x) = z. The
main limitation of the adversary is that the set of modification rules is fixed in
advance, and robustness is done with respect to it.

The model is now of a zero-sum game between the learner and the adversary,
where the learner selects a policy that maps observed signals (z) to predictions
(distributions over y) and the adversary selects a modification rule. The value
of the game is considered as the optimal error rate.

For the adversary we distinguish between two settings. In the static setting
the adversary selects the modification rule ρ before the uncorrupted inputs (x)
is realized. In the dynamic setting the adversary selects the modification rule
ρ after the uncorrupted inputs (x) is realized and based on it. Clearly, in the
dynamic setting the adversary has more power, which should intuitively translate
also to a higher optimal error rate.

For the learner we distinguish between two settings. In the learning setting,
the learner has a hypothesis class H and needs to select a hypothesis from that
class based on an observed sample. In the inference setting, the learner can use
an arbitrary prediction function, but has the additional power of querying the
joint distribution D on various inputs. (Intuitively, this can be viewed as an
oracle to solve the inference problem without corruption.)

1.3 Results: Highlights

The main results in [6,10] show that one can achieve efficient algorithms for the
inference and learning problem.

For the static inference setting, there is a randomized algorithm, that given
as an input the corrupted instance z output a prediction h(z). The algorithm
receives as an input a parameter ε > 0 and guarantees that the expected error
rate is at most error∗ + ε, where error∗ is the optimal error rate, i.e., the value
of the zero-sum game between the adversary and the learner. The running time

56 Y. Mansour

of the learner is polynomial in m, the number of modification rules, and n, the
dimension of X . The above is the main result of [10].

For the dynamic inference setting we have a similar result from [6]. The main
difference is that the running time of the algorithm is not polynomial in m (but
is polynomial in n). This implies that we have efficient algorithms only for a
constant number of modification rules, i.e., m = O(1).

For the learning setting is presented and address in [6]. In this setting we
have a hypothesis class H. We assume that we are given a sample of uncor-
rupted examples, and the goal is to learn a hypothesis which will do well on
possibly corrupted inputs. Given a sample, we can find a mixture of hypotheses
from H which will approximate well the best hypothesis for the given sample.
Assuming a large enough sample, we can show that the difference between the
error rate on the sample and on the distribution is negligible, and hence we have
generalization. The results for the learning setting appear in [6].

1.4 Algorithmic Techniques

In order to show the efficient inference results [6,10] one need to invoke local
computation algorithms.

For the static setting, the work of [10] uses a Linear Programming approach.
It shows that the exact optimal policy can be written as a solution of an expo-
nential size linear program. In order to derive an efficient algorithm, the linear
program special structure is exploited, and a careful sampling of the constraints
guarantees that the solution is a good approximation of the desired optimal
policy.

For the dynamic setting, the work of [6] shows that the optimal adversary
policy can be derived from a maximum matching on some bipartite graph, and
the optimal learner policy can be derived from a minimum vertex cover on the
same graph. Local computation algorithm for matching and vertex cover are used
to efficiently implement a near optimal policy for the learner and the adversary.

2 Related Work

A general direction of related work is inference in Bayesian setting (see, e.g.,
[9,14]). Given a partial observation of the realization of some of the variables,
the goal is to compute the probability distribution of other variables.

There is a vast literature in statistics and machine learning regarding var-
ious noise models. At large, most noise models assume a random process that
generates the noise. In computational learning theory the popular noise models
include: random classification noise [2], and malicious noise [8,16]. In the mali-
cious noise model, the adversary gets to arbitrarily corrupt some small fraction
of the examples; in contrast, in our model the adversary can always corrupt
every example, but only in a limited way.

Another vast literature which is remotely related is that of robust optimiza-
tion and stability, where the main task is to understand how minor changes in

Robust Inference and Local Algorithms 57

the input can affect the outcome of a (specific) algorithm (see, [4]). We differ in
two important ways from that literature. First, we do not assume any metric for
our corruptions, while in large part the robustness there is measured as a func-
tion of the norm of the modification. Second, that literature, to a large extent,
discusses the stability and robustness of specific algorithms, while our starting
point is trying to derive algorithms immune to such corruption.

Our works establishes a solid connection between local computation algo-
rithms (LCAs) and efficient learning. Local Computation Algorithms (LCA)
where introduced in [15], and LCAs for combinatorial problems such as max-
imal independent set and hypergraph 2-coloring were derived in [1,11,15]. We
build on the work of [12] that gave an LCA which finds a (1 − ε)-approximation
to the maximum matching to derive our near optimal inference. (An alternative
deterministic algorithm is given by [5].)

This line of work has also connections to Boolean functions analysis, where
the uncorrupted input can be viewed as an input to the Boolean function. That
literature is mainly concern with product distributions, and even more specif-
ically uniform distribution. Those work are interested in the study of balanced
function, which minimizes the maximal influence over all the variables [3,7].
While minimizing the average noise sensitivity and maximum influence is com-
monly used [13]. In some sense we are essentially minimizing the minimum noise
sensitivity.

3 Model

There is a finite domain X from which uncorrupted inputs are generated, and
a finite domain Z (possibly the same as X) which is the domain of corrupted
inputs. An arbitrary unknown target function f : X → {0, 1} maps each uncor-
rupted input x ∈ X to its classification f(x) = y ∈ {0, 1}. There is a distribution
D over the uncorrupted inputs X .

The adversary maps an uncorrupted input x ∈ X to a corrupted input z ∈ Z
(thus implicitly corrupting the input). There is a set R of m modification rules,
where ρi : X × Y → Z.

For the inference setting, the learner has the ability to query the joint dis-
tribution D on inputs (x, y) and also sample inputs (x, y) from the distribution
D. We will have two variants of the model, the static setting and the dynamic
setting. In the static setting the adversary selects the modification rule ρi ∈ R
independent of the realized input x. In the dynamic setting, the adversary selec-
tion may depend on the realized (x, y).1 In the dynamic setting we will also
assume that each corrupted input z can be generated by at most m distinct
(x, y) inputs, i.e., for any z ∈ Z we have |{(x, y) : ∃i ρi(x, y) = z}| ≤ m.2

1 One can clearly map the dynamic setting to the static setting, by encoding the
adversary action in the modification rules, but this will imply that the number of
modifications rules would be m|X|.

2 This also implicitly implies that in the dynamic setting |X |/m ≤ |Z| ≤ m|X |.

58 Y. Mansour

In the learning setting, the main difference is that the learner is limited to
a given hypothesis class H (which is used also for as a benchmark). Unlike the
inference setting, here the learner cannot query the distribution D and is limited
to a sample from D.

There is a loss function � that measures the loss of the learner’s prediction.
The optimal loss rate in the static model is

error∗ = min
h

max
ρi

E(x,y)∼D[�(h(ρi(x, y)), y)],

while for the dynamic model it is

error∗ = min
h

E(x,y)∼D[max
ρi

�(h(ρi(x, y)), y)].

The loss function that we use is the absolute loss, i.e., �(a, y) = |a − y|, which
for y ∈ {0, 1} is equivalent to the prediction error.

4 Main Results

In this section we outline the main results from [6,10]. The first result is an
efficient algorithm for inference in the static model.

Theorem 1 ([10, Theorem 4.1]). In the static inference setting, there exists
an ε-optimal randomized policy π̂, that given an observed signal z ∈ Z computes
π̂(z) in time polynomial in (n,m, 1/ε).

For the dynamic inference setting, we define a interference graph. Let Xb = {x :
f(x) = b}. The collision graph is a bipartite graph, where one side has X0 and
the other is X1. There is an edge between x0 ∈ X0 and x1 ∈ X1 if the adversary
can map both of then to the same corrupted input, i.e., there is a z ∈ Z and a
modification rule ρi such that ρi(x0) = ρi(x1) = z. A weighted inference graph
has each node x weighted by its probability D(x).

The following theorem characterizes the optimal policies for the adversary
and the learners as graph properties of the inference graph.

Theorem 2 ([6, Theorem 5]). The adversary can guarantee that the expected
fraction of errors (relative to the distribution D) is at least the weight of the
maximum vertex-weighted fractional matching in the weighted interference graph.
The learner can guarantee that the expected fraction of errors (relative to the
distribution D) is at most the weight of the minimum weighted vertex cover in
the weighted interference graph.

We now need to exhibit local computation algorithms for computing a matching
and a vertex cover, in order to define efficiently the optimal adversary and learner
policies. For unweighted matching the following establishes a local computation
algorithm.

Robust Inference and Local Algorithms 59

Theorem 3 ([12, Theorem 3]). There exists a local computation algorithm
with the following properties. Given ε > 0, and a graph G = (V,E) of bounded
degree d, the algorithm replies whether any given edge of G is in some matching in
time O(log4 |V |), using memory O(log3 |V |), and with failure probability at most
1/|V |. Furthermore, its responses to such edge queries are all consistent with
some maximal matching of G which is a (1 − ε)-approximation to the maximum
matching. (The big-Oh notation used here and latter hides constants which may
depend on d and 1/ε.)

It is well known that for bipartite graph, the maximum matching equals the
minimum vertex cover. In addition, there are simple transformations that given
a maximum matching produce a minimum vertex cover. However, we have only
an approximate maximum matching, and the know transformations fail in that
case. For this the following theorem was established.

Theorem 4 ([6, Theorem 12]). Given a fractional matching M with no aug-
menting paths of length 2�+1 or less, there is a randomized algorithm such that
expected weight of the output S of algorithm is at most (1+ 1

�)y(M), where y(M)
is the weight M .

Combining the vertex cover local algorithm with the prediction strategy, estab-
lishes the following theorem.

Theorem 5 ([6, Theorem 14]). In the dynamic inference setting, there exists
an ε-optimal randomized policy π̂, that given an observed signal z ∈ Z computes
π̂(z) in time polynomial in (n, 1/ε).

For the learning setting [6] the following establishes the learning.

Theorem 6 ([6, Theorem 4]). Given a hypothesis class H and an ERM oracle
for H, there is an algorithm that, with probability 1 − δ, computes an ε-optimal
learner hypothesis. The running time of the algorithm is polynomial in 1/ε, log 1/δ,
m and log |H|.

References

1. Alon, N., Rubinfeld, R., Vardi, S., Xie, N.: Space-efficient local computation
algorithms. In: SODA, pp. 1132–1139 (2012)

2. Angluin, D., Laird, P.: Learning from noisy examples. Mach. Learn. 2(4), 343–370
(1988)

3. Ben-Or, M., Linial, N.: Collective coin flipping, robust voting schemes and minima
of banzhaf values. In: FOCS, pp. 408–416 (1985)

4. Ben-Tal, A., El Ghaoui, L., Nemirovski, A.S.: Robust Optimization. Princeton
Series in Applied Mathematics. Princeton University Press, Princeton (2009)

5. Even, G., Medina, M., Ron, D.: Best of two local models: local centralized and
local distributed algorithms. In: CoRR, abs/1402.3796 (2014)

6. Feige, U., Mansour, Y., Schapire, R.: Learning and inference in the presence of
corrupted inputs. In: COLT (2015)

60 Y. Mansour

7. Kahn, J., Kalai, G., Linial, N.: The influence of variables on boolean functions. In:
FOCS, pp. 68–80 (1988)

8. Kearns, M.J., Li, M.: Learning in the presence of malicious errors. SIAM J.
Comput. 22(4), 807–837 (1993)

9. MacKay, D.J.C.: Information Theory. Inference and Learning Algorithms.
Cambridge University Press, New York (2002)

10. Mansour, Y., Rubinstein, A., Tennenholtz, M.: Robust probabilistic inference.
In: Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2015, San Diego, CA, USA, January 4–6, 2015, pp. 449–460
(2015)

11. Mansour, Y., Rubinstein, A., Vardi, S., Xie, N.: Converting online algorithms to
local computation algorithms. ICALP 1, 653–664 (2012)

12. Mansour, Y., Vardi, S.: A local computation approximation scheme to maximum
matching. In: APPROX-RANDOM, pp. 260–273 (2013)

13. Mossel, E., O’Donnell, R., Oleszkiewicz, K.: Noise stability of functions with low
influences invariance and optimality. In: FOCS, pp. 21–30 (2005)

14. Pearl, J.: Causality: Models, Reasoning, and Inference. Cambridge University
Press, New York (2000)

15. Rubinfeld, R., Tamir, G., Vardi, S., Xie, N.: Fast local computation algorithms.
In: ICS, pp. 223–238 (2011)

16. Valiant, L.G.: Learning disjunction of conjunctions. In: Proceedings of the 9th
International Joint Conference on Artificial Intelligence - Volume 1, IJCAI 1985,
pp. 560–566 (1985)

Logic, Semantics, Automata and Theory
of Programming

Uniform Generation in Trace Monoids

Samy Abbes1(B) and Jean Mairesse2

1 Université Paris Diderot/PPS CNRS UMR 7126
and IRISA/INRIA CNRS UMR 6074, Paris, France

samy.abbes@univ-paris-diderot.fr
2 UPMC/LIP6 CNRS UMR 7606, Paris, France

jean.mairesse@lip6.fr

Abstract. We consider the problem of random uniform generation of
traces (the elements of a free partially commutative monoid) in light
of the uniform measure on the boundary at infinity of the associated
monoid. We obtain a product decomposition of the uniform measure at
infinity if the trace monoid has several irreducible components—a case
where other notions such as Parry measures, are not defined. Random
generation algorithms are then examined.

Keywords: Trace monoid · Uniform generation · Möbius polynomial

1 Introduction

Uniform generation of finite-size combinatorial objects consists in the design of
a randomized algorithm that takes an integer k as input, and returns an object
of size k, such that each object of size k has equal probability to be produced.
This problem has been considered for many classes of objects from computer sci-
ence or discrete mathematics: words, trees, graphs are examples. Several general
approaches exist: recursive methods [11], the Markov chain Monte-Carlo method
with coupling from the past [12], or the Boltzmann sampler [10]. Other recent
approaches share a common guideline, namely first considering a notion of uni-
form measure on infinite objects in order to gain, afterwards, information on the
uniform distributions on finite objects. The theory of random planar graphs is
an example of application of this idea. In this paper, we investigate the uniform
generation of traces (elements of a trace monoid) and we base our approach on
the notion of uniform measure on infinite traces.

Given an independence pair (A, I), where I is an irreflexive and symmetric
relation on the finite alphabet A, the associated trace monoid M = M(A, I)
contains all congruence classes of the free monoid A∗, modulo equivalences of
the form ab = ba for all (a, b) ∈ I, see [6,8]. Elements of M are called traces.
Trace monoids are ubiquitous in Combinatorics, see [18]. They are also one of the
most basic models of concurrency under a partial order semantics [9]. Uniform
generation of traces is thus a fundamental question with possible applications
in probabilistic model checking of concurrent systems. Since our concern is with

c© Springer-Verlag Berlin Heidelberg 2015
G.F. Italiano et al. (Eds.): MFCS 2015, Part I, LNCS 9234, pp. 63–75, 2015.
DOI: 10.1007/978-3-662-48057-1 5

64 S. Abbes and J. Mairesse

partial order semantics, it differs from the sequential approach which targets
uniform generation of linear executions in models of concurrency [5].

Consider a trace monoid M, and, for each integer k ≥ 0, the finite set
Mk = {x ∈ M : |x| = k}. Let νMk

be the uniform distribution over Mk.
A crucial observation is that the probability measures (νMk

)k∈N are not consis-
tent. Consequently, the uniform measures νMk

cannot be reached by a recursive
sampling of the form x1·. . .·xk ∈ Mk , with the xi’s being sampled independently
and according to some common distribution over A.

To overcome the difficulty, several steps are necessary. First, we consider the
uniform measure at infinity for M, a notion introduced in [2] for irreducible
trace monoids, and extended here to the general case. Second, we prove a real-
ization result for the uniform measure at infinity by means of a Markov chain
on a combinatorial sub-shift. Last, we apply the results to the uniform sampling
of finite traces. None of the three steps is straightforward. Besides standard uni-
form sampling, it turns out that evaluating the uniform average cost or reward
associated with traces can be done in an efficient way.

An original feature of our approach is to define the measure at infinity for
general trace monoids and not only for irreducible ones. We show that the uni-
form measure at infinity of a reducible trace monoid decomposes as a product
of measures on irreducible components—contrasting with uniform distribution
at finite horizon. In general, the uniform measure at infinity charges the infinite
traces of the “largest” components of the monoid, and charges the finite traces
of the “smallest” components.

Another, different but related, notion of ‘uniform measure’ exists: the Parry
measure which is a uniform measure on bi-infinite sequences of an irreducible
sofic sub-shift [13,16]. The construction can be applied to trace monoids, defining
a ‘uniform measure’ on bi-infinite traces, but only for irreducible trace monoids.
Here we focus on single sided infinite traces instead of bi-infinite ones, and this
approach allows to relax the irreducibility assumption, and to construct a uni-
form measure at infinity for a general trace monoid. In case the trace monoid
is irreducible, we provide a precise comparison between the Parry measure,
restricted to single sided infinite traces, and our uniform measure at infinity. The
latter turns out to be a non-stationary version of the former. Another important
point is that our approach reveals the combinatorial structure hidden in the
uniform measure at infinity (and in the Parry measure).

The outline of the paper is the following. We first focus in a warm-up section
(Sect. 2) on the case of two commuting alphabets. Relaxing the commutativity
assumption, we arrive to trace monoids in Sect. 3. The purpose of Sect. 4 is
twofold: first, to compare the uniform measure with the Parry measure; and
second, to examine applications to the uniform sampling of finite traces.

2 Warm-Up: Uniform Measure for Commuting Alphabets

Let A and B be two alphabets and let M be the product monoid M = A∗ ×B∗.
The size of u = (x, y) in M is |u| = |x|+ |y|. Let ∂A∗ = AN be the set of infinite

Uniform Generation in Trace Monoids 65

A-words, let A∗ = A∗ ∪ AN, and similarly for ∂B∗ and B∗ . Define:

∂M =
{
(ξ, ζ) ∈ A∗ × B∗ : |ξ| + |ζ| = ∞}

, M = M ∪ ∂M .

Clearly one has ∂M = (A∗ × B∗) − (A∗ × B∗) and M = A∗ × B∗. Both A∗ and
B∗ are equipped with the natural prefix orderings, and M is equipped with the
product ordering, denoted by ≤. For u ∈ M, we put:

⇑ u = {v ∈ M : u ≤ v} , ↑ u = {ξ ∈ ∂M : u ≤ ξ} .

Let p0 = 1/|A| and q0 = 1/|B| . Without loss of generality, we assume that
|A| ≥ |B|, hence p0 ≤ q0 .

Lemma 1. For each real number p ∈ (0, p0], there exists a unique probability
measure νp on A∗ such that νp(⇑ x) = p|x| holds for all x ∈ A∗ . We have:

∀p ∈ (0, p0) νp(A∗) = 1 , νp0(∂A∗) = 1 .

The probability measures νp in Lemma 1 are called sub-uniform measures of
parameter p over A∗. The measure νp0 is the classical uniform measure on ∂A∗

which satisfies νp0(↑ x) = p
|x|
0 for all x ∈ A∗.

For each integer k ≥ 0, let νMk
denote the uniform distribution on Mk =

{(x, y) ∈ M : |(x, y)| = k} . Since |A| ≥ |B|, an element (x, y) ∈ Mk sampled
according to νMk

is more likely to satisfy |x| ≥ |y| than the opposite. In the
limit, it is natural to expect that infinite elements on the B side are not charged
at all, except if |A| = |B|. This is made precise in the following result.

Theorem 1. Let νA and νB be the sub-uniform measures of parameter p0 =
1/|A| over A∗ and B∗ respectively. The sequence (νMk

)k≥0 converges weakly to
the product measure ν = νA ⊗ νB.

We have: ν
(↑ (x, y)

)
= p

|x|+|y|
0 for all (x, y) ∈ M; and ν(∂A∗ × B∗) = 1 if

|A| > |B|, whereas ν(∂A∗ × ∂B∗) = 1 if |A| = |B|.
We say that the measure ν described in Theorem 1 is the uniform measure

on ∂M. We have the following “realization” result for ν.

Theorem 2. Let (an)n∈N be a sequence of i.i.d. and uniform random variables
(r.v.) over A. Let b0 be a r.v. over B ∪{1B∗} , where 1B∗ is the identity element
of B∗, and with the following law:

∀b ∈ B P(b0 = b) = p0 = 1/|A| , P(b0 = 1B∗) = 1 − p0/q0 = 1 − |B|/|A| .
Consider (bn)n∈N sampled independently in B ∪ {1B∗} , each bn with the same
law as b0 , but only until it reaches 1B∗ , after which bn is constant equal to 1B∗ .
Finally, set uk ∈ M for all integers k ≥ 0 by:

xk = a0 · . . . · ak−1 ∈ A∗ , yk = b0 · . . . · bk−1 ∈ B∗ , uk = (xk, yk) ∈ M .

Then (uk)k∈N converges in law towards ν . Furthermore, the random variable∨
k≥0 uk ∈ ∂M is distributed according to ν.

66 S. Abbes and J. Mairesse

Observe that 1B∗ will eventually appear in the sequence (bn)n∈N with prob-
ability 1 if and only if p0 < q0. In this case, (yn)n∈N is eventually equal to a
constant element of B∗ with probability 1. This is consistent with Theorem 1.
Observe also that (an, bn)n∈N forms a product Markov chain on A×(B∪{1B∗}).

Both results stated in Theorems 1 and 2 are particular cases of corresponding
results for trace monoids, as we will see next.

3 Uniform and Sub-uniform Measures for Trace Monoids

Basics on Trace Monoids. Let A be a finite alphabet equipped with an
irreflexive and symmetric relation I ⊆ A × A, called an independence relation.
The pair (A, I) is called an independence pair. Let I be the congruence relation
on the free monoid A∗ generated by the collection of pairs (ab, ba) for (a, b)
ranging over I. The trace monoid M = M(A, I) is defined as the quotient
monoid M = A∗/I, see [6,8,18]. The elements of M are called traces. The
identity element in the monoid is called the empty trace, denoted “1M”, and the
concatenation is denoted with the dot “·” .

The length of a trace u is well defined as the length of any of its representative
words and is denoted by |u|. The left divisibility relation on M is a partial order,
denoted by “≤” and defined by: u ≤ v ⇐⇒ ∃w v = u · w .

An intuitive representation of traces is given by Viennot’s heap of pieces
interpretation of a trace monoid [18]. We illustrate in Fig. 1 the heap of pieces
interpretation for the monoid M(A, I) with A = {a, b, c} and I = {(a, b), (b, a)}.

The length of traces corresponds to the number of pieces in a heap. The
relation u ≤ v corresponds to u being seen at bottom as a sub-heap of heap v.

The product monoid A∗ × B∗ from Sect. 2 is isomorphic to the trace monoid
M(Σ, I), where Σ = A ∪ B with A and B being considered as disjoint, and
I = (A × B) ∪ (B × A) .

Cliques and Height of Traces. Recall that a clique of a graph is a complete
subgraph (by convention, the empty graph is a clique). We may view (A, I) as a
graph. Given a clique c of (A, I), the product a1 · . . . · aj ∈ M is independent of
the enumeration (a1, . . . , aj) of the vertices composing c. We say that a1 · . . . ·aj

is a clique of M. Let C denote the set of cliques, including the empty clique 1M .
As heaps of pieces, cliques correspond to flat heaps, or horizontal layers.

Fig. 1. Two congruent words and the resulting heap (trace)

Uniform Generation in Trace Monoids 67

Traces are known to admit a canonical normal form, defined as follows [6].
Say that two non-empty cliques c, c′ are Cartier-Foata admissible, denoted by
c → c′, whenever they satisfy: ∀a ∈ c′ ∃b ∈ c (b, a) /∈ I. For every non
empty trace u ∈ M, there exists a unique integer n > 0 and a unique sequence
(c1, . . . , cn) of non-empty cliques such that: (1) u = c1 · . . . ·cn; and (2) ci → ci+1

holds for all i ∈ {1, . . . , n−1}. The integer n is called the height of u, denoted by
n = τ(u). By convention, we put τ(1M) = 0. The sequence (c1, . . . , cn) is called
the Cartier-Foata normal form or decomposition of u. In the heap interpretation,
the normal form corresponds to the sequence of horizontal layers that compose
a heap u, and the height τ(u) corresponds to the number of horizontal layers.

A useful device is the notion of topping of traces, defined as follows: for
each integer n ≥ 0, the n-topping is the mapping κn : M → M defined by
κn(u) = c1 · . . . · cn , where c1 → . . . → cp is the Cartier-Foata decomposition
of u, and where ci = 1M if i > p.

Boundary. Elementary Cylinders. Let C = C \ {1M} denote the set of non-
empty cliques. Traces of M are in bijection with finite paths of the automaton
(C,→), where all states are both initial and final. Denote by ∂M the set of infinite
paths in the automaton (C,→). We call ∂M the boundary at infinity, or simply the
boundary, of monoid M, and we put M = M ∪ ∂M. Elements of ∂M are called
infinite traces, and, by contrast, elements of M might be called finite traces.

By construction, an infinite trace is given as an infinite sequence ξ = (c1,
c2, . . .) of non-empty cliques such that ci → ci+1 holds for all integers i ≥ 1.
Note that the topping operations extend naturally to κn : M → M, defined by
κn(ξ) = c1 · . . . · cn , for ξ = (c1, c2, . . .).

We wish to extend the partial order relation ≤ from M to M. For this, we
first recall the following result [2, Cor. 4.2]: for u, v ∈ M, if n = τ(u), then
u ≤ v ⇐⇒ u ≤ κn(v). Henceforth, we put ζ ≤ ξ ⇐⇒ ∀n ≥ 0 κn(ζ) ≤ κn(ξ)
for ζ, ξ ∈ M, consistently with the previous definition in case ζ, ξ ∈ M. This
order is coarser than the prefix ordering on sequences of cliques.

For each u ∈ M, we define two kinds of elementary cylinders of base u:

↑ u = {ξ ∈ ∂M : u ≤ ξ} ⊆ ∂M , ⇑ u = {v ∈ M : u ≤ v} ⊆ M . (1)

The set M being countable, it is equipped with the discrete topology. The
set M is a compactification of M, when equipped with the topology generated
by the opens of M and all cylinders ⇑ u , for u ranging over M. This makes
M a metrisable compact space [1]. The set ∂M is a closed subset of M. The
induced topology on ∂M is generated by the family of cylinders ↑ u, for u
ranging over M. Finally, both spaces are equipped with their respective Borel
σ-algebras, F on M and F on M; the σ-algebra on each space is generated by
the corresponding family of cylinders.

Möbius polynomial. Principal Root. Sub-uniform Measures. We
recall [6,18] the definitions of the Möbius polynomial μM(X) and of the growth
series G(X) associated to M:

μM(X) =
∑
c∈C

(−1)|c|X |c| , G(X) =
∑

u∈M
X |u| =

∑
n≥0

λM(n)Xn , (2)

68 S. Abbes and J. Mairesse

where λM(n) = #{x ∈ M : |x| = n}. It is known that G(X) is rational, inverse
of the Möbius polynomial:

G(X) = 1/μM(X) .

It is also known [7,14] that μM(X) has a unique root of smallest modulus,
say p0 , which lies in the real interval (0, 1) if |A| > 1 (the case |A| = 1 is trivial).
The root p0 will be called the principal root of μM , or simply of M.

The following result, to be compared with Lemma 1, adapts the so-called
Patterson-Sullivan construction from geometric group theory. The compactness
of M is an essential ingredient of the proof for the case p = p0 , based on classical
results from Functional Analysis.

Theorem 3. For each p ∈ (0, p0], where p0 is the principal root of M, there
exists a unique probability measure νp on (M,F) such that νp(⇑ x) = p|x| holds
for all x ∈ M. On the one hand, if p < p0 , then νp is concentrated on M, and
is given by:

∀x ∈ M νp

({x})
= p|x|/G(p) . (3)

On the other hand, νp0 is concentrated on the boundary, hence νp0(∂M) = 1.
In this case, νp0(↑ x) = p

|x|
0 holds for all x ∈ M.

Definition 1. The measures νp on M described in Theorem 3 are called sub-
uniform measures of parameter p. The measure νp0 is called the uniform measure
on ∂M.

The following result relates the uniform measure on the boundary with the
sequence νMk

of uniform distributions over the sets Mk = {x ∈ M : |x| = k}.

Theorem 4. Let M be a trace monoid, of principal root p0 . The sequence of
uniform distributions (νMk

)k≥0 converges weakly toward the uniform measure
νp0 on ∂M.

Anticipating on Theorem5 below, Theorem 4 above has the following concrete
consequence. Fix an integer j ≥ 1, and draw traces of length k uniformly at
random, with k arbitrarily large. Then the j first cliques of the trace obtained
approximately behave as if they were a Markov chain (C1, . . . , Cj); and the
larger k, the better the approximation. Conversely, how this can be exploited for
random generation purposes, is the topic of Sect. 4.

Irreducibility and Irreducible Components. Generators of a trace monoid
only have partial commutativity properties. The following definition isolates the
parts of the alphabet that enjoy full commutativity.

Definition 2. Let (A, I) be an independence pair. The associated dependence
pair is (A,D) where D = (A × A) \ I. The connected components of the graph
(A,D) are called the irreducible components of M = M(A, I). To each of these
irreducible component A′ is associated the independence relation I ′ = I ∩ (A′ ×
A′). The corresponding trace monoids M′ = M(A′, I ′) are called the irreducible
components of the trace monoid M. If (A,D) is connected, then M is said to
be irreducible.

Uniform Generation in Trace Monoids 69

Direct products of trace monoids are trace monoids themselves. More precisely,
the following result holds.

Proposition 1. Let M = M(A, I) be a trace monoid. Then M is the direct
product of its irreducible components. As a measurable space and as a topolog-
ical space, M is the product of the M′, where M′ ranges over the irreducible
components of M. The Möbius polynomial μM(X) is the product of the Möbius
polynomials μM′(X), for M′ ranging over the irreducible components of M.

The sets Mk = {x ∈ M : |x| = k} do not enjoy a product decomposition
with respect to irreducible components of M, hence neither do the uniform
distributions νMk

over Mk . By contrast, sub-uniform measures have a product
decomposition, as stated below.

Proposition 2. Let M be a trace monoid, of principal root p0 , and let νp be a
sub-uniform measure on M with p ≤ p0 . Then νp is the product of measures ν′

on each of the M′, for M′ ranging over the irreducible components of M. The
measures ν′ are all sub-uniform measures on M′ of the same parameter p .

It follows from Proposition 1 that the principal root of a trace monoid M is the
smallest among the principal roots of its irreducible components. As a con-
sequence of Proposition 2, the uniform measure is a product of sub-uniform
measures ν′ over the irreducible components M′ of M. By Theorem 3, each
ν′ is either concentrated on M′ if the principal root p′ of M′ satisfies p′ > p0 ,
or concentrated on ∂M′ if p′ = p0 . Note that at least one of these sub-uniform
measures is actually uniform on the irreducible component.

Realization of Uniform and Sub-uniform Measures. The characterization
of the uniform measure by ν(↑ x) = p

|x|
0 (see Theorem 3) does not provide an

obvious recursive procedure for an algorithmic approximation of ν-generated
samples on ∂M. Since the uniform measure ν is, according to Proposition 2,
a product of sub-uniform measures, it is enough to focus on the algorithmic
sampling of sub-uniform measures on irreducible trace monoids.

Hence, let M be an irreducible trace monoid, of principal root p0 , and let M
be equipped with a sub-uniform measure νp with p ≤ p0 . Recall from Theorem 3
that νp is either concentrated on M or on ∂M according to whether p < p0 or
p = p0 .

Elements of M are given as finite paths in the graph (C,→), whereas elements
of ∂M are given as infinite paths in (C,→). In order to have a unified presentation
of both spaces, we use the following technical trick: instead of considering the
graph of non empty cliques (C,→), we use the graph of all cliques (C ,→),
including the empty clique. We keep the same definition of the Cartier-Foata
relation ‘→’ (see above). Note that c → 1M then holds for every clique c ∈ C ,
whereas 1M → c holds if and only if c = 1M. Hence 1M is an absorbing state in
(C ,→). Any path in (C,→), either finite or infinite, now corresponds to a unique
infinite path in (C ,→). If the original path (ck)1≤k≤N is finite, the corresponding
infinite path (c′

k)k≥1 in (C ,→) is defined by c′
k = ck for 1 ≤ k ≤ N and c′

k = 1M
for all k > N .

70 S. Abbes and J. Mairesse

For each trace ξ ∈ M, either finite or infinite, let (Ck)k≥1 be the infinite
sequence of cliques corresponding to the infinite path in (C ,→) associated with ξ.
The sequence (Ck)k≥1 is a random sequence of cliques; its characterization under
a sub-uniform measure νp is the topic of next result.

Theorem 5. Let M be an irreducible trace monoid of principal root p0 . Then,
with respect to the sub-uniform measure νp on M, with 0 < p ≤ p0 , the sequence
of random cliques (Ck)k≥1 is a Markov chain with state space C .

Let g, h : C → R be the functions defined by:

h(c) =
∑

c′∈C : c′≥c

(−1)|c′|−|c|p|c′| , g(c) = h(c)/p|c| . (4)

Then
(
h(c)

)
c∈C

is a probability vector over C , which is the distribution of the
initial clique C1 . This vector is positive on C, and h(1M) > 0 if and only if
p < p0 . The transition matrix of the chain, say P = (Pc,c′)(c,c′)∈C×C , is:

Pc,c′ =

{
0, if c → c′does not hold,
h(c′)/g(c), if c → c′holds,

(5)

with the line (P1M,c′)c′∈C corresponding to the empty clique undefined if p = p0 .
Conversely, if p ≤ p0 , and if (Ck)k≥1 is a Markov chain on C if p < p0 , respec-

tively on C if p = p0 , with initial distribution h defined in (4) and with transition
matrix P defined in (5), and if Yk = C1 · . . . · Ck , then (Yk)k≥1 converges weakly
towards the sub-uniform measure νp . Furthermore, the law of the random trace
C1 · C2 · . . . =

∨
k≥1 Yk ∈ M is the probability measure νp on M.

Theorem 5 for p = p0 already appears in [2]. Note: the function h : C → R

defined in (4) is the Möbius transform in the sense of Rota [3,17] of the function
f : c ∈ C �→ p|c| ; see [2] for more emphasis on this point of view.

As expected, we recover the results of Sect. 2 in the case of two commuting
alphabets A and B with |A| > |B|. Indeed, by Proposition 2 and Theorem 5,
the cliques (Ck)k≥1 form a product of two Markov chains: one on A (non empty
cliques of A∗) and the other one on B ∪ {1B∗} (cliques of B∗, including the
empty one).

4 Uniform Generation of Finite Traces

We have introduced in Definition 1 a notion of uniform measure on the bound-
ary of a trace monoid. This measure is characterized by its values on cylinders
in Theorem 3, as the weak limit of uniform distributions in Proposition 2, and
through the associated Cartier-Foata probabilistic process in Theorem5.

Because of the existence of the Cartier-Foata normal form of traces, the com-
binatorics of a trace monoid is entirely contained in the Cartier-Foata automaton,
either (C ,→) or (C,→). Looking at the Cartier-Foata automaton, say (C,→) on
non empty-cliques, as generating a sub-shift of finite type, it is interesting to
investigate the associated notion of uniform measure ‘à la Parry’ [13,15,16],

Uniform Generation in Trace Monoids 71

Fig. 2. (a) Illustration of a reducible system (b) Cartier-Foata automaton on non-
empty cliques of A∗ × B∗ generating the uniform measure on ∂(A∗ × B∗) if |A| > |B|

and to compare it with the uniform measure on the boundary previously intro-
duced. This comparison between the two notions of uniform measures will
enlighten the forthcoming discussion on uniform generation of finite traces.

Uniform Measure on the Boundary Versus Parry Measure. The Parry
measure associated with an irreducible sub-shift of finite type is formally defined
as the unique measure of maximal entropy on bi-infinite admissible sequences of
states of the sub-shift. It corresponds intuitively to the “uniform measure” on
such bi-infinite paths (see, e.g., [15]).

The Parry measure is only defined for irreducible sub-shifts for good reasons.
Indeed, if a sub-shift has, say, two parts X and Y , with Y an irreducible compo-
nent and such that going from X to Y is possible but not the other way around
as in Fig. 2(a), then one cannot define a “uniform measure” on bi-infinite paths
(it should put mass on paths spending an infinite amount of time both in X
and Y and be stationary, which is impossible). On the other hand, considering
a uniform measure on one-sided infinite sequences on such a compound system
makes perfect sense. This is the case, for instance, of the Cartier-Foata sub-shift
associated to the reducible trace monoids A∗ × B∗ with |A| > |B| studied in
Sect. 2: see Fig. 2(b).

For a general trace monoid M, the associated sub-shift (C,→) is irreducible if
and only if the monoid M is irreducible in the sense of Definition 2 (a well-known
result: see for instance [14, Lemma 3.2]). Therefore the comparison between the
uniform measure on the boundary, and the Parry measure, only makes sense in
this case.

Hence, let M be an irreducible trace monoid, of principal root p0 . In order
to take into account the length of cliques in the construction of the Parry mea-
sure, we consider the weighted incidence matrix B = (Bx,y)(x,y)∈C×C defined by
Bx,y = p

|y|
0 if x → y holds and by Bx,y = 0 if x → y does not hold.

Lemma 2. The non-negative matrix B has spectral radius 1. The vector g =
(g(c))c∈C defined by g(c) =

∑
c′∈C : c→c′ h(c′) for c ∈ C , where h has been defined

in (4), is B-invariant on the right: Bg = g.

Define the matrix C = (Cc,c′)(c,c′)∈C×C by:

∀c, c′ ∈ C Cc,c′ = Bc,c′ g(c′)/g(c) . (6)

Since g is right invariant for B, it follows that C is stochastic. Classically,
the Parry measure on bi-infinite paths in (C,→) is the stationary Markovian
measure of transition matrix C.

72 S. Abbes and J. Mairesse

Proposition 3. The matrix C defined in (6) coincides with the transition
matrix P defined in Theorem 5 for p = p0 , and restricted to C × C.

Proposition 3 asserts that the Markov chain associated with the Parry measure
has the same transition matrix as the probabilistic process on non-empty cliques
generated by the uniform measure on the boundary. But the Parry measure is
stationary whereas the uniform measure ν is not. Indeed, the initial distribution
of the Markov measure ν is h : C → R, which does not coincide with the
stationary measure of the chain (except in the trivial case of a free monoid).

To summarize: the notion of uniform measure on the boundary is adapted to
one-sided infinite heaps, independently of the irreducibility of the trace monoid
under consideration. If the monoid is irreducible, there is a notion of uniform
measure on two-sided infinite heaps, which correspond to a weighted Parry mea-
sure. Considering the projection of this Parry measure to one-sided infinite heaps,
and conditionally on a given initial clique, it coincides with the uniform measure
at infinity since they share the same transition matrix. But the two measures
globally differ since their initial measures differ.

Uniform Generation of Finite Traces, 0. The Parry measure is a standard
tool for a special type of uniform generation. Indeed, it provides an algorithmic
way of sampling finite sequences of a fixed length k, and uniformly if the first
and the last letters of the sequence are given. In our framework, besides the fact
that the Parry measure is only defined for an irreducible trace monoid, it also
misses the primary target of generating finite traces of a given length k among
all traces of length k.

Uniform Generation of Finite Traces, 1. Consider the problem, given a
fixed integer k > 1 and a trace monoid M = M(A, I), of designing a randomized
algorithm which produces a trace x ∈ M of length k, uniformly among traces of
length k. Sub-uniform measures on the trace monoid M allow to adapt to our
framework the technique of Boltzmann samplers [10] for solving this problem.

Consider a parameter p ∈ (0, p0) , where p0 is the principal root of M, and
let ξ ∈ M be sampled according to the sub-uniform measure νp . We have indeed
|ξ| < ∞ with probability 1 by Theorem3. Furthermore, Proposition 2 shows that
νp decomposes as a product of sub-uniform measures of the same parameter p,
over the irreducible components of M. For each component, sampling is done
through usual Markov chain generation techniques since both the initial mea-
sure and the transition matrix of the chain of cliques are explicitly known by
Theorem 5.

The algorithm is then the following: if |ξ| = k, then keep ξ; otherwise, reject ξ
and sample another trace. This eventually produces a random trace of length k,
uniformly distributed in Mk ; since νp is a weighted sum of all νMk

, as shown
by the expression (3).

As usual, the optimal parameter p, for which the rejection probability is
the lowest, is such that: Eνp

|ξ| = k, where Eνp
(·) denotes the expectation with

respect to νp . Ordinary computations show that Eνp
|ξ| is related to the derivative

of the growth function by Eνp
|ξ| = pG′(p)/G(p) = −pμ′

M(p)/μM(p) ; providing
an explicit equation

Uniform Generation in Trace Monoids 73

kμM(p) + pμ′
M(p) = 0 ,

to be numerically solved in p.
Unfortunately, the rejection probability approaches 1 exponentially fast as k

increases, making the algorithm less and less efficient. A standard way to over-
come this difficulty would be to consider approximate sampling [10], consisting
in sampling traces of length approximately k.

Uniform Generation of Finite Traces, 2: Evaluating an Average Cost.
Uniform generation is often done in order to evaluate the expected value of a cost
function. For this purpose, a more direct approach in our framework is based on
an exact integration formula given in Theorem6 below.

Let φ : Mk → R be a cost function, and consider the problem of evaluating
the expectation EνMk

(φ) , for a fixed integer k. For each integer k ≥ 0, let:

Mk = {x ∈ M : |x| = k} , λM(k) = #Mk , M(k) = {x ∈ M : τ(x) = k} .

To each function φ : Mk → R defined on traces of length k, we associate a
function φ : M(k) → R defined on traces of height k, as follows:

∀x ∈ M(k) φ(x) =
∑

y∈Mk : y≤x

φ(y) . (7)

Theorem 6. Let φ : M(k) → R be defined as in (7). Then the following equality
holds between the expectation with respect to the uniform distribution νMk

on Mk

on the one hand, and the expectation with respect to the uniform measure ν on
∂M on the other hand (whether M is irreducible or not):

EνMk
φ =

(
pk
0 · λM(k)

)−1 · Eνφ(C1 · . . . · Ck) . (8)

The generation of (Ck)k≥1 enables us to evaluate Eνφ(C1 · . . . · Ck) for any
integer k, provided the function φ can be efficiently computed. In turn, this
directly depends on the numbers θk(x) = #{y ∈ Mk : y ≤ x} of terms in the
sum (7) defining φ(x). The numbers θk(x) might be arbitrary large; for instance
θk

(
(a · b)k

)
= k + 1 for (a, b) ∈ I. However we have the following result.

Lemma 3. Assume that M is irreducible. Then, there exists C > 0 such that:

Eνθk(C1 · . . . · Ck) ≤ C .

To see this, apply (8) to the constant function φ = 1 on Mk , whose associated
function is φ = θk on M(k) , to obtain:

Eνθk(C1 · . . . · Ck) = pk
0 · λM(k) . (9)

The terms λM(k), coefficients of the growth series G(X) = 1/μM(X) , are
asymptotically equivalent to Cp−k

0 for some constants C > 0 if M is irre-
ducible [14]. The result in Lemma 3 follows.

74 S. Abbes and J. Mairesse

Applying usual techniques [4] to specifically retrieve all traces y ≤ x of
length k = τ(x) is feasible in time O(k) in average and allows to compute φ(x),
and consequently to estimate the expectation Eνφ(C1 · . . . ·Ck) via Markov chain
sampling and a Monte-Carlo algorithm.

By (9), applying the same estimation technique to the function φ = 1 yields
an estimate for the normalization factor pk

0 · λM(k) . In passing, this also yields
a Monte-Carlo estimate for the number λM(k). All together, we are thus able
to estimate with an arbitrary precision both terms in the right hand member
of (8), hence yielding an accurate estimation of EνMk

φ .
To summarize: generating the first k layers of traces under the uniform mea-

sure on the boundary allows to compute the expectation of an arbitrary com-
putable cost function φ : Mk → R , if M is irreducible. The same applies at the
cost of a greater complexity if M is not irreducible.

References

1. Abbes, S., Keimel, K.: Projective topology on bifinite domains and applications.
Theoret. Comput. Sci. 365(3), 171–183 (2006)

2. Abbes, S., Mairesse, J.: Uniform and Bernoulli measures on the boundary of trace
monoids. J. Combin. Theory Ser. A 135, 201–236 (2015)

3. Aigner, M.: A Course in Enumeration. Springer, Heidelberg (2007)
4. Bertoni, A., Goldwurm, M., Mauri, G., Sabadini, N.: Counting techniques for inclu-

sion, equivalence and membership problems. In: The Book of Traces, pp. 131–163.
World Scientific (1994)

5. Bodini, O., Genitrini, A., Peschanski, F.: Enumeration and random generation of
concurrent computations. In: Proceedings of AofA 2012, pp. 83–96. DMTCS (2012)

6. Cartier, P., Foata, D.: Problèmes combinatoires de commutation et
réarrangements. Lecture Notes in Math. Springer, Heidelberg (1969)

7. Csikvári, P.: Note on the smallest root of the independence polynomial. Combin.
Probab. Comput. 22(1), 1–8 (2013)

8. Diekert, V. (ed.): Combinatorics on Traces. LNCS, vol. 454. Springer, Heidelberg
(1990)

9. Diekert, V., Rozenberg, G. (eds.): The Book of Traces. World Scientific, Singapore
(1995)

10. Duchon, P., et al.: Boltzmann samplers for the random generation of combinatorial
structures. Combin. Probab. Comput. 13, 577–625 (2004)

11. Flajolet, P., Zimmermann, P., Van Cutsem, B.: Calculus for the random generation
of labelled combinatorial structures. Theoret. Comp. Sci. 218(2), 233–248 (1994)

12. Jerrum, M.: Counting, Sampling and Integrating: Algorithms and Complexity.
Springer, Berlin (2013)

13. Kitchens, B.P.: Symbolic Dynamics. One-sided, Two-sided and Countable State
Markov Shifts. Springer, Berlin (1998)

14. Krob, D., Mairesse, J., Michos, I.: Computing the average parallelism in trace
monoids. Discrete Math. 273, 131–162 (2003)

15. Lind, D., Marcus, B.: An Introduction to Symbolic Dynamics and Coding. Cam-
bridge University Press, Cambridge (1995)

16. Parry, W.: Intrinsic Markov chains. Trans. Amer. Math. Soc. 112(1), 55–66 (1964)

Uniform Generation in Trace Monoids 75

17. Rota, G.-C.: On the foundations of combinatorial theory I. Theory of Möbius
functions. Z. Wahrscheinlichkeitstheorie 2, 340–368 (1964)

18. Viennot, G.X.: Heaps of pieces, i : basic definitions and combinatorial lemmas. In:
Labelle, G., Leroux, P. (eds.) Combinatoire Énumérative. LNCS, vol. 1234, pp.
321–350. Springer, Heidelberg (2006)

When Are Prime Formulae Characteristic?

L. Aceto(B), D. Della Monica, I. Fábregas, and A. Ingólfsdóttir

ICE-TCS, School of Computer Science, Reykjavik University, Reykjavik, Iceland
{luca,dariodm,fabregas,annai}@ru.is

Abstract. In the setting of the modal logic that characterizes modal
refinement over modal transition systems, Boudol and Larsen showed
that the formulae for which model checking can be reduced to preorder
checking, that is, the characteristic formulae, are exactly the consistent
and prime ones. This paper presents general, sufficient conditions guaran-
teeing that characteristic formulae are exactly the consistent and prime
ones. It is shown that the given conditions apply to the logics character-
izing all the semantics in van Glabbeek’s branching-time spectrum.

1 Introduction

Model checking and equivalence/preorder checking are the two main approaches
to the computer-aided verification of reactive systems [3,6]. In model check-
ing, one typically describes the behaviour of a computing system using a state-
transition model, such as a labelled transition system [11], and specifications
of properties systems should exhibit are expressed using some modal or tempo-
ral logic. In this approach, system verification amounts to checking whether a
system is a model of the formulae describing a given specification. When using
equivalence/preorder checking instead, systems and their specifications are both
expressed in the same state-machine-based formalism. In this approach, check-
ing whether a system correctly implements its specification amounts to verify-
ing whether the state machines describing them are related by some suitable
notion of behavioural equivalence/preorder. (See [8,9] for taxonomic studies of
the plethora of behavioural relations that have been considered in the field of
concurrency theory.)

A bridge between model checking and equivalence/preorder checking is pro-
vided by the notion of characteristic formula [10,13]. Intuitively, a characteris-
tic formula provides a complete logical characterization of the behaviour of a
process modulo some notion of behavioural equivalence or preorder. At least for
finite labelled transition systems, such formulae can be used to reduce equiva-
lence/preorder checking to model checking effectively, and, as argued in [7], this

Research supported by the project 001-ABEL-CM-2013 within the NILS Science
and Sustainability Programme, the Spanish project STRONGSOFT TIN2012-39391-
C04-04, and the projects Nominal SOS (project nr. 141558-051) and Decidability and
Expressiveness for Interval Temporal Logics (project nr. 130802-051) of the Icelandic
Research Fund.

c© Springer-Verlag Berlin Heidelberg 2015
G.F. Italiano et al. (Eds.): MFCS 2015, Part I, LNCS 9234, pp. 76–88, 2015.
DOI: 10.1007/978-3-662-48057-1 6

When Are Prime Formulae Characteristic? 77

approach has better complexity than known algorithms for preorder checking.
A natural question to ask is for what kinds of logical specifications model check-
ing can be reduced to establishing a behavioural relation between an implemen-
tation and a labelled transition system that suitably encodes the specification.
To the best of our knowledge, this question was first addressed by Boudol and
Larsen, who showed in [5] that, in the context of the modal logic that charac-
terizes modal refinement over modal transition systems, the formulae that are
“graphically representable” (that is, the ones that are characteristic for some
process) are exactly the consistent and prime ones. (A formula is prime if when-
ever it implies a disjunction of two formulae, it implies one of the disjuncts.)
A similar result is given in [2] in the setting of covariant-contravariant simula-
tion. Moreover, each formula in the logics considered in [2,5] can be “graphically
represented” by a (possibly empty) finite set of processes.

To our mind, those are very pleasing results that show the very close connec-
tion between logical and behavioural approaches to verification in two specific
settings. But, how general are they? Do similar results hold for the plethora
of other process semantics and their modal characterizations studied in the lit-
erature? And, if so, are there general sufficient conditions guaranteeing that
characteristic formulae are exactly the consistent and prime ones? The aim of
this article is to provide answers to those questions.

From a methodological perspective, we follow a purely logical approach
towards the characterization of process semantics, which allows us to work in an
abstract and very general setting (described in Sect. 2): instead of investigating
each behavioural semantics separately, we define a process semantics as the pre-
order induced by some logic, i.e. a process p is smaller than a process q if the
set of logical properties of p is strictly included in that of q. By investigating
preorders defined in this way, we can identify common properties for all logically
characterized preorders, and thus we are able to give a general recipe to logically
characterize processes by means of consistent and prime formulae (characteri-
zation by primality). The first piece of our characterization by primality result
consists in showing that characteristic formulae are always consistent and prime
(Theorem 1). This result was already proven for specific semantics [2,5], and we
generalise it here to every logically characterized preorder. The converse is not
true in general. Therefore our main technical contribution is to provide suffi-
ciently general conditions guaranteeing that consistent and prime formulae are
characteristic formulae for some process.

In Sect. 3, we introduce the notion of decomposable logic and show that, for
such logics, consistent and prime formulae are characteristic for some process
(Theorem 2). (Intuitively, a logic is decomposable if, for each formula, the set
of processes satisfying it includes the set of processes satisfying a characteristic
formula and the logic is sufficiently expressive to witness this inclusion.) We then
proceed to identify features that make a logic decomposable, thus paving the way
to showing the decomposability of a number of logical formalisms (Sect. 3.1). In
particular, we prove that if the set of formulae satisfied by each process can
be finitely characterized in a suitable technical sense (see Definition 4), then,

78 L. Aceto et al.

under some mild assumptions, the logic is decomposable (Corollary 2). Moreover,
such finitely characterized logics can express the characteristic formula for each
process (Proposition 6(ii)).

In order to show the applicability of our general framework, we use it in
Sects. 4–5 to show that, for a variety of logical characterizations of process
semantics, characteristic formulae are exactly the consistent and prime ones.
In particular, this applies to all the semantics in van Glabbeek’s branching-time
spectrum. In all these cases, there is a perfect match between the behavioural and
logical view of processes: not only do the logics characterize processes up to the
chosen notion of behavioural relation, but processes represent all the consistent
and prime formulae in the logics.

Proofs of most of the technical results can be found in [1].

2 Process Semantics Defined Logically

We assume that L is a language interpreted over a non-empty set P , which we
refer to as a set of processes. Thus, L is equipped with a semantic function
�·�L : L → P(P) (where P(P) denotes the powerset of P), and we say that
p ∈ P satisfies φ ∈ L whenever p ∈ �φ�L. For all p, q ∈ P , we define the following
notions:

• L(p) = {φ ∈ L | p ∈ �φ�L}: the set of formulae in L that p satisfies; we assume
L(p) �= ∅, for each p ∈ P ;

• p↑L = {p′ ∈ P | L(p) ⊆ L(p′)}: the upwards closure of p (with respect to L);
• p and q are logically equivalent if L(p) = L(q);
• p and q are incomparable (with respect to L) iff neither L(p) ⊆ L(q) nor

L(q) ⊆ L(p) holds.

We say that a formula φ ∈ L is consistent iff �φ�L �= ∅. Formulae φ, ψ ∈ L are
said to be logically equivalent (or simply equivalent) iff �φ�L = �ψ�L. When it is
clear from the context, we omit the logic L in the subscript (and in the text). For
example, we write �φ� and p↑ instead of �φ�L and p↑L . We note that L(p) ⊆ L(q)
defines a preorder between processes, which we refer to as the logical preorder
characterized by L. We say that a preorder over P is logically characterized or
simply logical if it is characterized by some logic L.

For a subset S ⊆ P we say that:

• S is upwards closed iff p↑ ⊆ S for all p ∈ S;
• p ∈ S is minimal in S iff for each q ∈ S, if L(q) ⊆ L(p) then L(q) = L(p);
• p ∈ S is a least element in S iff L(p) ⊆ L(q) for each q ∈ S.

Clearly, if p is a least element in a set S, then p is also minimal in S. Notice
that, if a set S contains a least element, then it is the unique minimal element
in S, up to logical equivalence.

When Are Prime Formulae Characteristic? 79

2.1 Characteristic and Prime Formulae

We introduce here the crucial notion of characteristic formula for a process
[3,10,13] and the one of prime formula [2,5], in the setting of logical preorders
over processes. Our aim in this study is to investigate when these notions coin-
cide, thus providing a characterization of logically defined processes by means
of prime formulae, which sometimes we will refer to as characterization by
primality. To begin with, in this section we study such a connection in a very gen-
eral setting. As it turns out, for logically characterized preorders, the property
of being characteristic always implies primality (Theorem 1). The main focus
of this paper becomes therefore to investigate under what conditions a consis-
tent and prime formula is characteristic for some process in a logical preorder
(Sect. 3).

Definition 1 (Characteristic Formula). A formula φ ∈ L is characteristic
for p ∈ P iff for all q ∈ P it holds that q ∈ �φ� if and only if L(p) ⊆ L(q).

The following simple properties related to characteristic formulae will be useful
in what follows.

Proposition 1. The following properties hold for all p, q ∈ P and φ ∈ L:

(i) φ is characteristic for p if and only if �φ� = p↑ ;
(ii) a characteristic formula for p, if it exists, is unique up to logical equivalence

(and can therefore be referred to as χ(p));
(iii) if the characteristic formulae for p and q, namely χ(p) and χ(q), exist then

�χ(p)� ⊆ �χ(q)� if and only if L(q) ⊆ L(p).

Next we state two useful properties.

Proposition 2. The following properties hold: (i) for each φ ∈ L, �φ� is
upwards closed, and (ii) if p ∈ �φ� ⊆ �χ(p)�, then �φ� = �χ(p)�.

We now define what it means for a formula to be prime.

Definition 2 (Prime Formula). We say that φ ∈ L is prime iff for each non-
empty, finite subset of formulae Ψ ⊆ L it holds that �φ� ⊆ ⋃

ψ∈Ψ �ψ� implies
�φ� ⊆ �ψ� for some ψ ∈ Ψ .

Observe that our definition is a semantic version of the one given in [5]. This
serves our purpose to keep the discussion as abstract as possible. In this per-
spective, we want to abstract (at least at this point of the discussion) from
the syntactic details of the logical formalism, while the classic definition tacitly
applies only to languages that feature at least the Boolean connective ∨.

We provide here the first piece of our characterization by primality, by show-
ing that the property of being characteristic implies primality without any extra
assumption on the language L or its interpretation.

Theorem 1. Let φ ∈ L. If φ is a characteristic formula for some p ∈ P , then
φ is prime and consistent.

80 L. Aceto et al.

Proof. The formula φ is obviously consistent because p ∈ �χ(p)� = �φ�. Towards
proving that χ(p) is prime, we assume that �χ(p)� ⊆ ⋃

i∈I�ψi�, where I is finite
and non-empty. By our assumption, since p ∈ �χ(p)�, then for some i ∈ I, p ∈
�ψi� holds. As, by Proposition 2(i), �ψi� is upwards closed, using Proposition 1(i)
we can conclude that �χ(p)� = p↑ ⊆ �ψi� as we wanted to prove. �	
Notice that the converse is not true in general, that is, there exist formulae
that are consistent and prime but not characteristic. To see this, let P = Q,
L = R and �φ� = {p ∈ Q | φ ≤ p}. Clearly, all formulae are consistent. Then,
L(p) = {φ ∈ R | φ ≤ p} which implies that L(p) ⊆ L(q) iff p ≤ q iff q ∈ �p�.
This means that, for each p ∈ Q, φ = p is characteristic for p and therefore the
characteristic formula is well-defined for all p ∈ P . Furthermore �φ�∪�ψ� = {p ∈
Q | min{φ, ψ} ≤ p} for all φ, ψ ∈ L, which implies that all formulae are prime.
On the other hand φ =

√
2 �∈ Q cannot be characteristic for any process as �

√
2�

does not have a least element.

3 Characterization by Primality for Logical Preorders

In this section we introduce sufficient conditions under which the converse of
Theorem 1 is also true for logical preorders, that is, conditions guaranteeing
that every consistent, prime formula is characteristic.

As a first step, we introduce the notion of decomposable logic. We show that
if a logic is decomposable, then we have a logical characterization of processes by
primality. Some of the results involve the Boolean connectives ∧ and ∨, whose
intended semantics is the standard one.

Definition 3 (Decomposability). We say that a formula φ ∈ L is decompos-
able iff �φ� = �χ(p)� ∪ �ψp� for some p ∈ P and ψp ∈ L, with p �∈ �ψp�. We say
that L is decomposable iff all consistent formulae φ ∈ L are either decomposable
or characteristic for some p ∈ P .

The following theorem allows us to reduce the problem of relating the notions of
prime and characteristic formulae in a given logic to the problem of establishing
the decomposability property for that logic. This provides us with a very general
setting towards characterization by primality.

Theorem 2. If L is decomposable then every formula that is consistent and
prime is also characteristic for some p ∈ P .

3.1 Paths to Decomposability

The aim of this section is to identify features that make a logic decomposable,
thus paving the way towards showing the decomposability of a number of logical
formalisms in the next sections. First, we observe that if a characteristic formula
χ(p) exists for every p ∈ P , then what we are left to do is to define, for each φ ∈ L,
a formula ψp, for some p ∈ P , with the properties mentioned in Definition 3, as
captured by the following proposition.

When Are Prime Formulae Characteristic? 81

Proposition 3. Let L be a logic such that (i) χ(p) exists for each p ∈ P , and
(ii) for each consistent formula φ there exist p ∈ �φ� and ψp ∈ L such that
p /∈ �ψp� and �φ� \ �χ(p)� ⊆ �ψp� ⊆ �φ�. Then L is decomposable.

Clearly, when dealing with formalisms featuring at least the Boolean operators
¬ and ∧, as it is the case with the logic for the bisimulation semantics in Sect. 5,
such a formula ψp is easily defined as ¬χ(p) ∧ φ. This is stated in the following
corollary.

Corollary 1. Let L be a logic that features at least the Boolean connective ∧
and such that, for each p ∈ P , the formula χ(p) exists and there is some for-
mula χ̄(p) ∈ L where �χ̄(p)� = �χ(p)�c (the complement of �χ(p)�). Then L is
decomposable.

The situation is more complicated when it comes to the other logics for the
semantics in the branching-time spectrum (which we consider in Sect. 5) as nega-
tion is in general not expressible in these logics, not even for characteristic for-
mulae. Therefore, instead we will prove a slightly stronger statement than the
one in Corollary 1 by identifying a weaker condition than the existence of a
negation of the characteristic formulae (that we assume to exist) that also leads
to decomposability of the logic. This is described in the following proposition.

Proposition 4. Let φ ∈ L, p be a minimal element in �φ� such that χ(p) exists
in L, and let χ̄(p) be a formula in L such that {q ∈ P | L(q) �⊆ L(p)} ⊆ �χ̄(p)�.
Then, �φ� \ �χ(p)� ⊆ �χ̄(p)� holds.

In the next proposition, we build on the above result, and establish some con-
ditions, which are met by the logics we consider in Sect. 5 (apart for the one for
bisimulation semantics), and which immediately lead to decomposability.

Proposition 5. Let L be a logic that features at least the Boolean connective ∧
and such that:

(i) χ(p) exists for each p ∈ P ,
(ii) for each consistent φ, the set �φ� has a minimal element, and
(iii) for each p ∈ P , there exists a formula χ̄(p) such that p /∈ �χ̄(p)� and

{q ∈ P | L(q) �⊆ L(p)} ⊆ �χ̄(p)�.

Then, L is decomposable.

In order to apply the above result to prove decomposability for a logic L, we now
develop a general framework ensuring conditions (i) and (ii) in Proposition 5. To
this end, we exhibit a finite characterization of the (possibly) infinite set L(p) of
true facts associated with every p ∈ P . (In order to ensure condition (iii) of the
proposition, we will actually construct the formula χ̄(p) in each of the languages
considered in Sect. 5.)

Definition 4 (Characterization). We say that the logic L is characterized
by a function B : P → P(L) iff for each p ∈ P , B(p) ⊆ L(p) and for each
φ ∈ L(p) there exists a non-empty Ψ ⊆ B(p) such that

⋂
ψ∈Ψ �ψ� ⊆ �φ�. We

82 L. Aceto et al.

say that L is finitely characterized by B iff L is characterized by a function B
such that B(p) is finite for each p ∈ P . Finally, we say that B is monotonic iff
L(p) ⊆ L(q) implies B(p) ⊆ B(q) for all p, q ∈ P .

In what follows, we show that if a logic L features at least the Boolean connective
∧ and it is finitely characterized by B, for some monotonic B, then it fulfils
conditions (i) and (ii) in Proposition 5.

Proposition 6. The following statements hold.

(i) If L is characterized by B, then for each p, q ∈ P , B(p) ⊆ B(q) implies
L(p) ⊆ L(q).

(ii) If L features at least the Boolean connective ∧ and is finitely characterized
by B, then each p ∈ P has a characteristic formula in L given by χ(p) =∧

φ∈B(p) φ.
(iii) If L is finitely characterized by B, for some monotonic B, then for each

consistent φ ∈ L, the set �φ� has a minimal element.

It is worth pointing out that the Boolean connective ∧ plays a minor role in (the
proof of) Proposition 6(ii). Indeed, it is applied to formulae in B(p) only. Thus,
such a result can be used also to deal with logics that allow for a limited use of
such a connective, such as the logics for trace equivalence and other linear-time
semantics [9].

Finally, we can summarize the results in this section in the following corollary.

Corollary 2. Let L be a logic that features at least the Boolean connective ∧
and such that:

(i) L is finitely characterized by B, for some monotonic B, and
(ii) for each χ(p), there exists a formula χ̄(p) such that either

– �χ̄(p)� = �χ(p)�c, or
– p /∈ �χ̄(p)� and {q ∈ P | L(q) �⊆ L(p)} ⊆ �χ̄(p)�.

Then, L is decomposable.

In the remainder of the paper, we will present some applications of our general
results.

4 Application to Finitely Many Processes

As a first application, we investigate the case when the set P is finite and the
logic L features at least the Boolean connectives ∧ and ∨. Note that although P
itself is finite, it can contain processes with infinite behaviours, e.g., when p ∈ P
represents a labelled transition system with loops. If P is finite, so is L, up to
logical equivalence. Let Lfin be a set of representatives of the equivalence classes
of L modulo logical equivalence, and define Bfin(p) = Lfin(p) = L(p)∩Lfin, for
each p ∈ P . It is easy to see that L is finitely characterized by Bfin, according

When Are Prime Formulae Characteristic? 83

to Definition 4. Moreover, Bfin is clearly monotonic. Thus, by Proposition 6(ii),
χ(p) is well-defined for each p as

∧
ψ∈Bfin(p) ψ.

In order to show that L is decomposable, let us consider a consistent formula
φ ∈ Lfin, and let p be minimal in �φ� (the existence of such a p is guaranteed
by the finiteness of P). Now, either �φ� = �χ(p)� (in this case we are done), or
�φ� \ �χ(p)� �= ∅, and thus, the set S = {q ∈ P | q ∈ �φ�,Lfin(p) �= Lfin(q)} is
not empty. In this second case it is easy to see that ψp =

∨
q∈S χ(q) fulfils the

requirements of Definition 3. This can be summarized in the following theorem.

Theorem 3 (Characterization by Primality). Let L be a logic interpreted
over a finite set P that features at least the Boolean connectives ∧ and ∨. Then,
each formula φ ∈ L is consistent and prime if and only if φ is characteristic for
some p ∈ P .

5 Application to Semantics in van Glabbeek’s Spectrum

Our next task is to apply the result described in Corollary 2 to the semantics
in the branching-time spectrum, over finite trees and with finite set of actions.
All those semantics have been shown to be characterized by specific logics and
therefore inherit all the properties of logically defined preorders. We reason about
characterization by primality (Theorem 5) by showing that each logic is finitely
characterized by some monotonic B, and by building, for each characteristic
formula χ(p), a formula χ̄(p) with the properties specified in Proposition 5(iii).

The logics we focus on are the ones for the semantics in van Glabbeek’s
branching-time spectrum [8,9], namely simulation (S), complete simulation (CS),
ready simulation (RS), trace simulation (TS), 2-nested simulation (2S), and
bisimulation (BS). Their syntax and semantics are briefly described in what fol-
lows. For a comprehensive overview, we refer the reader to the corresponding lit-
erature. In the rest of this section spectrum denotes the set {S,CS,RS,TS, 2S,BS}
and we let X ∈ spectrum.

Syntax for Processes. The set of processes P over a finite set of actions Act
is given by the following grammar:

p :: = 0 | ap | p + p,

where a ∈ Act. Given a process p, we say that p can perform the action a and
evolve into p′, denoted p

a→ p′, iff (i) p = ap′ or (ii) p = p1 + p2 and either
p1

a→ p′ or p2
a→ p′ holds. Note that every process denotes a finite loop-free

labelled transition system.
We define the set of initials of p, denoted I(p), as the set {a ∈ Act | p

a→ p′

for some p′ ∈ P}. We write p
a→ if a ∈ I(p), and we write p � a→ if a �∈ I(p). We

define traces(p) as follows:

traces(p) = {ε} ∪ {aτ | ∃a ∈ Act ∃p′ ∈ P . p
a→ p′ and τ ∈ traces(p′)}.

84 L. Aceto et al.

Table 1. Semantic relations in van Glabbeek’s branching-time spectrum.

Semantic relation Definition

simulation (S) p �S q ⇔ for all p
a→ p′ there exists q

a→ q′ such that
p′ �S q′;

complete simulation (CS) p �CS q ⇔ for all p
a→ p′ there exists q

a→ q′ such that
p′ �CS q′, and I(p) = ∅ iff I(q) = ∅;

ready simulation (RS) p �RS q ⇔ for all p
a→ p′ there exists q

a→ q′ such that
p′ �RS q′, and I(p) = I(q);

trace simulation (TS) p �TS q ⇔ for all p
a→ p′ there exists q

a→ q′ such that
p′ �TS q′, and traces(p) = traces(q);

2-nested simulation (2S) p �2S q ⇔ for all p
a→ p′ there exists q

a→ q′ such that
p′ �2S q′, and q �S p;

bisimulation (BS) p �BS q ⇔ for all p
a→ p′ there exists q

a→ q′ such that
p′ �BS q′, and for all q

a→ q′ there exists p
a→ p′ such

that p′ �BS q′

For each trace τ = a1 . . . an, we write p
τ→ p′ for p

a1→ p1
a2→ p2 . . . pn−1

an→ p′.
Finally, for each p ∈ P , dep(p) is the length of the longest trace in traces(p).

Behavioural Preorders. The semantics of processes is expressed by preorder
relations, which, intuitively, classify processes according to their possible behav-
iours. Roughly speaking, a process follows another in the preorder (or it is above
it) if it exhibits at least the same behaviours as the latter. The semantic relations
in van Glabbeek’s branching-time spectrum are defined as follows.

Definition 5. For each p, q ∈ P and each X ∈ spectrum, �X is the largest
relation satisfying the corresponding condition in Table 1.

It is well-known that �BS � �2S � �TS � �RS � �CS � �S [8,9].

Syntax for Logics. Table 2 provides the definition of the syntax of the logics
that capture exactly the above mentioned process semantic relations. We treat
formulae of the form 0 and [a]ψ as syntactic shorthand for

∧
a∈Act[a]ff and

¬〈a〉¬ψ, respectively. The languages of the different logics yield the following
chain of strict inclusions: LS � LCS � LRS � LTS � L2S � LBS, corresponding
to formalisms with strictly increasing expressive power. Notice that, as it will
become clear after the definition of the satisfaction relation below, some of the
languages present some redundancy, in the sense that they could be replaced
with smaller ones, without any loss in expressiveness. For instance, a disjunction
is expressible in LBS using conjunction and negation, and suitably replacing tt
with ff and vice versa. We followed this approach because we find it helpful to
have syntactically larger languages corresponding to more expressive semantics.

Roughly speaking, each language consists of an “existential” and a “universal”
sub-language, as highlighted by the definitions in the second and the fourth col-
umn of Table 2 (φX :: = φ∃

X | φ∀
X for each X ∈ spectrum apart from simulation).

The “existential” sub-language (formulae derivable from the non-terminal φ∃
X)

When Are Prime Formulae Characteristic? 85

is common to all the logics and so is its definition (bottom line of Table 2). The
“universal” sub-language (formulae derivable from the non-terminal φ∀

X) is what
actually distinguishes the several languages: its definition is provided for each logic
in the corresponding row of Table 2 (see [1] for further explanations and expanded
definitions).

Table 2. Syntax of the logics in van Glabbeek’s branching-time spectrum. For every
X ∈ {S,CS,RS,TS, 2S,BS}, the language of LX is generated by the grammar rooted
in the non-terminal φX .

Semantics Syntax Semantics Syntax

S φS:: = φ∃
S TS

φTS:: = φ∃
TS | φ∀

TS

φ∀
TS:: = ff | [a]φ∀

TS

CS
φCS:: = φ∃

CS | φ∀
CS

φ∀
CS:: = 0

2S
φ2S:: = φ∃

2S | φ∀
2S

φ∀
2S:: = ¬φS

RS
φRS:: = φ∃

RS | φ∀
RS

φ∀
RS:: = [a]ff

BS
φBS:: = φ∃

BS | φ∀
BS

φ∀
BS:: = ¬φBS

φ∃
X :: = tt | ff | φX ∧ φX | φX ∨ φX | 〈a〉φX ∀X ∈ {S,CS,RS,TS, 2S,BS}

Satisfaction Relation. We give here the semantics of the logics, by describing
the satisfaction relation for the most expressive one, namely LBS, corresponding
to bisimulation semantics. The semantics for the other logics can be obtained by
considering the corresponding subset of clauses.

– p ∈ �tt� and p /∈ �ff�, for every p ∈ P ,
– p ∈ �φ1 ∧ φ2� iff p ∈ �φ1� and p ∈ �φ2�,
– p ∈ �φ1 ∨ φ2� iff p ∈ �φ1� or p ∈ �φ2�,
– p ∈ �〈a〉φ� iff p′ ∈ �φ� for some p′ ∈ P such that p

a→ p′,
– p ∈ �¬φ� iff p /∈ �φ�.

The following well-known theorem states the relationship between logics and
process semantics that allows us to use our general results about logically char-
acterized semantics.

Theorem 4 (Logical Characterization [8,9]). For each X ∈ spectrum and
for all p, q ∈ P , p �X q iff LX(p) ⊆ LX(q).

We observe that all the logics we consider feature the Boolean connective ∧, as
required by one of the assumptions of Corollary 2. In what follows, we show that
every logic meets also the other conditions of the corollary, that is, it is finitely
characterized by some monotonic B, and for each χ(p) there exists a formula
χ̄(p) such that p /∈ �χ̄(p)� and {q ∈ P | L(q) �⊆ L(p)} ⊆ �χ̄(p)�. We provide here
proof details for the illustrative case of ready simulation (RS) [4,9,12] only, and
refer the interested reader to [1] for further details. We recall the “expanded”
syntax of the corresponding logic LRS:

φRS :: = tt | ff | φRS ∧ φRS | φRS ∨ φRS | 〈a〉φRS | [a]ff .

86 L. Aceto et al.

5.1 Finite Characterization

We prove here that logics in van Glabbeek’s branching-time spectrum are finitely
characterized by some monotonic B (condition (i) in Corollary 2).

Lemma 1. Let X ∈ spectrum. LX is finitely characterized by B, for some
monotonic B.

Proof. We detail the case of ready simulation only. For this relation, the function
B is defined as B+(p) ∪ B−(p), where

– B+(p) = {tt} ∪ {〈a〉ϕ | ϕ =
∧

ψ∈Ψ ψ, Ψ ⊆ B(p′) and p
a→ p′}, and

– B−(p) = {[a]ff | p ∈ �[a]ff�, a ∈ Act}.

We have to show that, for each p ∈ P , (i) B(p) ⊆ L(p), (ii) B(p) is finite,
(iii) for each φ ∈ L(p) there exists a non-empty Ψ such that Ψ ⊆ B(p) and⋂

ψ∈Ψ �ψ� ⊆ �φ�, and (iv) for each q ∈ P , if L(p) ⊆ L(q) then B(p) ⊆ B(q).
Here we only deal with properties (iii) and (iv). The proof of property (iii)

is by induction on the structure of formulae. The cases φ = tt, φ = [a]ff ,
φ = ϕ1 ∨ ϕ2, and φ = ϕ1 ∧ ϕ2 are simple, and are omitted. Assume that φ =
〈a〉ϕ. By definition we have that ϕ ∈ L(p′) for some p

a→ p′. By the inductive
hypothesis, there exist formulae ψ1, . . . , ψn ∈ B(p′) (with n ≥ 1) such that⋂

i∈{1,...n}�ψi� ⊆ �ϕ�. We define ψ = 〈a〉∧
i ψi. Clearly, ψ belongs to B+(p) (by

construction) and �ψ� ⊆ �φ� (because
⋂

i∈{1,...n}�ψi� ⊆ �ϕ�).
Finally, we show that B(p) is monotonic (property (iv)). Consider p, q ∈ P ,

with L(p) ⊆ L(q). We want to show that φ ∈ B(p) implies φ ∈ B(q), for each
φ. Firstly, we observe that, by L(p) ⊆ L(q) and Theorem 4, p �RS q holds.
Thus, we have that I(p) = I(q) and, for each a ∈ Act and p′ ∈ P with p

a→ p′,
there exists q′ ∈ P such that q

a→ q′, and p′ �RS q′. Since I(p) = I(q), clearly
B−(p) = B−(q). In order to show that B+(p) ⊆ B+(q), we proceed by induction
on the depth of p. If I(p) = ∅, then I(q) = ∅ as well. Thus, we have that
B+(p) = B+(q) = {tt}, and the thesis follows. Otherwise (I(p) �= ∅), let us
consider a formula φ = 〈a〉ϕ ∈ B+(p) (the case when ψ = tt is trivial). By
definition of B+, there exist p′ ∈ P , with p

a→ p′, and Ψ ⊆ B(p′) such that
ϕ =

∧
ψ∈Ψ ψ. This implies the existence of q′ ∈ P such that q

a→ q′ and p′ �RS q′

(and therefore L(p′) ⊆ L(q′)). By the inductive hypothesis, B(p′) ⊆ B(q′) holds
as well, which means that Ψ ⊆ B(q′). Hence, we have that 〈a〉ϕ ∈ B+(q). �	

5.2 Existence of χ̄(·)
In what follows, we show that it is possible to build, for each χ(p), a formula
χ̄(p), with the properties described in Corollary 2(ii).

Lemma 2. Let X ∈ spectrum. For each χ(p) ∈ LX there exists a formula in
LX , denoted χ̄(p), such that (i) p �∈ �χ̄(p)� and (ii) {p′ ∈ P | p′ �� p} ⊆ �χ̄(p)�.

When Are Prime Formulae Characteristic? 87

Proof (sketch). We deal with the case of ready simulation only. The formula χ̄(p)
is defined as follows: χ̄(p) =

∨
a/∈I(p)〈a〉tt∨∨

a∈I(p)[a]ff ∨∨
a∈I(p)〈a〉∧

p
a→p′ χ̄(p′).

Both properties can be easily proved by induction on the depth of p.

Finally, the following theorem states our main result of this section.

Theorem 5 (Characterization by Primality). Let X ∈ spectrum and let
φ ∈ LX . Then, φ is consistent and prime if and only if φ is characteristic for
some p ∈ P . �	

6 Conclusions

In this paper, we have provided general sufficient conditions guaranteeing that
formulae for which model checking can be reduced to equivalence/preorder check-
ing are exactly the consistent and prime ones. We have applied our framework to
show that characteristic formulae are exactly the consistent and prime ones when
the set of processes is finite, as well as for all the semantics in van Glabbeek’s
branching-time spectrum. Our results indicate that the “characterization by pri-
mality result” first proved by Boudol and Larsen [5] in the context of the modal
logic that characterizes modal refinement over modal transition systems holds
in a wide variety of settings in concurrency theory. We feel, therefore, that this
study reinforces the view that there is a very close connection between the behav-
ioural and logical view of processes: not only do the logics characterize processes
up to the chosen notion of behavioural relation, but processes characterize all
the prime and consistent formulae.

In this paper, we have presented applications of our general framework to
branching-time semantics. However, ongoing, preliminary investigations indicate
that our framework can also be applied to obtain characterization by primality
results for the logics for the linear-time semantics in van Glabbeek’s spectrum [9].
By way of example, we mention here that we have already obtained such char-
acterizations for trace, complete trace, failures, readiness, possible futures, and
impossible futures semantics. We leave the study of further applications and of
possible generalizations of our results for future work.

References

1. Aceto, L., Della Monica, D., Fábregas, I., Ingólfsdóttir, A.: When are prime for-
mulae characteristic? (extended version). http://www.icetcs.ru.is/dario/techrep/
lc15.pdf

2. Aceto, L., Fábregas, I., de Frutos Escrig, D., Ingólfsdóttir, A., Palomino, M.:
Graphical representation of covariant-contravariant modal formulas. In: Proceed-
ings of the 18th EXPRESS. EPTCS, vol. 64, pp. 1–15 (2011)

3. Aceto, L., Ingólfsdóttir, A., Larsen, K.G., Srba, J.: Reactive Systems: Modelling,
Specification and Verification. Cambridge University Press, New York (2007)

4. Bloom, B., Istrail, S., Meyer, A.R.: Bisimulation can’t be traced. J. ACM 42(1),
232–268 (1995)

http://www.icetcs.ru.is/dario/techrep/lc15.pdf
http://www.icetcs.ru.is/dario/techrep/lc15.pdf

88 L. Aceto et al.

5. Boudol, G., Larsen, K.G.: Graphical versus logical specifications. Theor. Comput.
Sci. 106(1), 3–20 (1992)

6. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge
(1999)

7. Cleaveland, R., Steffen, B.: Computing behavioural relations, logically. In: Albert,
J.L., Monien, B., Artalejo, M.R. (eds.) Automata, Languages and Programming.
LNCS, vol. 510, pp. 127–138. Springer, Heidelberg (1991)

8. de Frutos-Escrig, D., Gregorio-Rodŕıguez, C., Palomino, M., Romero-Hernández,
D.: Unifying the linear time-branching time spectrum of process semantics. Logical
Methods Comput. Sci. 9(2), 1–74 (2013)

9. van Glabbeek, R.J.: The linear time-branching time spectrum I: The semantics of
concrete, sequential processes. In: Handbook of Process Algebra, pp. 3–99. Elsevier
(2001)

10. Graf, S., Sifakis, J.: A modal characterization of observational congruence on finite
terms of CCS. Inf. Control 68(1–3), 125–145 (1986)

11. Keller, R.M.: Formal verification of parallel programs. Commun. ACM 19(7),
371–384 (1976)

12. Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing. Inf. Comput.
94(1), 1–28 (1991)

13. Steffen, B., Ingólfsdóttir, A.: Characteristic formulae for processes with divergence.
Inf. Comput. 110(1), 149–163 (1994)

Stochastization of Weighted Automata

Guy Avni(B) and Orna Kupferman

School of Computer Science and Engineering, The Hebrew University,
Jerusalem, Israel

guy.avni@mail.huji.ac.il

Abstract. Nondeterministic weighted finite automata (WFAs) map
input words to real numbers. Each transition of a WFA is labeled by
both a letter from some alphabet and a weight. The weight of a run is
the sum of the weights on the transitions it traverses, and the weight
of a word is the minimal weight of a run on it. In probabilistic weighted
automata (PWFAs), the transitions are further labeled by probabilities,
and the weight of a word is the expected weight of a run on it. We
define and study stochastization of WFAs: given a WFA A, stochastiza-
tion turns it into a PWFA A′ by labeling its transitions by probabilities.
The weight of a word in A′ can only increase with respect to its weight
in A, and we seek stochastizations in which A′ α-approximates A for
the minimal possible factor α ≥ 1. That is, the weight of every word
in A′ is at most α times its weight in A. We show that stochastization
is useful in reasoning about the competitive ratio of randomized online
algorithms and in approximated determinization of WFAs. We study the
problem of deciding, given a WFA A and a factor α ≥ 1, whether there is
a stochastization of A that achieves an α-approximation. We show that
the problem is in general undecidable, yet can be solved in PSPACE for
a useful class of WFAs.

1 Introduction

A recent development in formal methods for reasoning about reactive systems
is an extension of the Boolean setting to a multi-valued one. The multi-valued
component may originate from the system, for example when propositions are
weighted or when transitions involve costs and rewards [16], and may also origi-
nate from rich specification formalisms applied to Boolean systems, for example
when asking quantitative questions about the system [7] or when specifying its
quality [1]. The interest in multi-valued reasoning has led to growing interest in
nondeterministic weighted finite automata (WFAs), which map an input word
to a value from a semi-ring over a large domain [12,23].

Many applications of WFAs use the tropical semi-ring 〈IR+ ∪ {∞}, min, +,
∞, 0〉. There, each transition has a weight , the weight of a run is the sum of the

The research leading to these results has received funding from the European
Research Council under the European Union’s Seventh Framework Programme
(FP7/2007-2013) / ERC grant agreement no 278410, and from The Israel Science
Foundation (grant no 1229/10).

c© Springer-Verlag Berlin Heidelberg 2015
G.F. Italiano et al. (Eds.): MFCS 2015, Part I, LNCS 9234, pp. 89–102, 2015.
DOI: 10.1007/978-3-662-48057-1 7

90 G. Avni and O. Kupferman

weights of the transitions taken along the run, and the weight of a word is the
minimal weight of a run on it. Beyond the applications of WFAs over the tropical
semi-ring in quantitative reasoning about systems, they are used also in text,
speech, and image processing, where the costs of the WFA are used in order to
account for the variability of the data and to rank alternative hypotheses [11,24].

A different kind of applications of WFAs uses the semi-ring 〈IR+ ∪
{∞},+,×, 0, 1〉. There, the weight of a run is the product of the weights of
the transitions taken along it, and the weight of a word is the sum of the weights
of the runs on it. In particular, when the weights on the transitions are in [0, 1]
and form a probabilistic transition function (that is, for every state q and letter
σ, the sum of the weights of the σ-transitions from q is 1), we obtain a proba-
bilistic finite automaton (PFA, for short). In fact, the probabilistic setting goes
back to the 60’s [25].

The theoretical properties of WFAs are less clean and more challenging than
these of their Boolean counterparts. For example, not all WFAs can be deter-
minized [23], and the problem of deciding whether a given WFA has an equiva-
lent deterministic WFA is open. As another example, the containment problem
is undecidable for WFAs [21]. The multi-valued setting also leads to new ques-
tions about automata and their languages, like approximated determinization
[3] or discounting models [13].

By combining the tropical and the probability semi-rings, we obtain a proba-
bilistic weighted finite automaton (PWFA, for short). There, each transition has
two weights, which we refer to as the cost and the probability. The weight that
the PWFA assigns to a word is then the expected cost of the runs on it. That
is, as in the tropical semi-ring, the cost of each run is the sum the costs of the
transitions along the run, and as in probabilistic automata, the contribution of
each run to the weight of a word depends on both its cost and probability. While
PFAs have been extensively studied (e.g., [6]), we are only aware of [20] in which
PWFAs were considered.

We introduce and study stochastization of WFAs. Given a WFA A, stochas-
tization turns it into a PWFA A′ by labeling its transitions with probabilities.
Recall that in a WFA, the weight of a word is the minimal weight of a run on it.
Stochastization of a WFA A results in a PWFA A′ with the same set of runs, and
the weight of a word is the expected cost of these runs. Accordingly, the weight
of a word in A′ can only increase with respect to its weight in A. Hence, we seek
stochastizations in which A′ α-approximates A for the minimal possible factor
α ≥ 1. That is, the weight of every word in A′ is at most α times its weight in
A. We note that stochastization has been studied in the Boolean setting in [14],
where a PFA is constructed from an NFA.1 Before describing our contribution,
we motivate stochastization further.
1 Beyond considering the Boolean setting, the work in [14] concerns the ability to

instantiate probabilities so that at least one word is accepted with probability arbi-
trarily close to 1. Thus, the type of questions and motivations are very different from
these we study here in the weighted setting.

Stochastization of Weighted Automata 91

In [2], the authors describe a framework for using WFAs over the tropical
semi-ring in order to reason about online algorithms. An online algorithm can
be viewed as a reactive system: at each round, the environment issues a request,
and the algorithm should process it. The sequence of requests is not known in
advance, and the goal of the algorithm is to minimize the overall cost of process-
ing the sequence. Online algorithms for many problems have been extensively
studied [8]. The most interesting question about an online algorithm refers to
its competitive ratio: the worst-case (with respect to all input sequences) ratio
between the cost of the algorithm and the cost of an optimal solution – one
that may be given by an offline algorithm, which knows the input sequence in
advance. An online algorithm that achieves a competitive ratio α is said to be
α-competitive.

The framework in [2] models optimization problems by WFAs, relates the
“unbounded look ahead”of the optimal offline algorithm with nondeterminism,
and relates the “no look ahead” of online algorithms with determinism. The
framework has been broaden to online algorithms with an extended memory or
a bounded lookahead, and to a competitive analysis that takes into an account
assumptions about the environment [3]. An additional useful broadening of the
framework would be to consider randomized online algorithms, namely ones that
may toss coins in order to choose their actions. Indeed, it is well known that many
online algorithms that use randomized strategies achieve a better competitive
ratio [8]. As we elaborate in Sect. 3.1, this means that rather than pruning the
WFA that models an optimization problem to a deterministic one, we consider
its stochastization.

Recall that not all WFAs have equivalent or even α-approximating determin-
istic WFAs. Stochastization is thus useful in finding an approximate solution to
problems that are intractable in the nondeterministic setting and are tractable in
the probabilistic one. We describe two such applications. One is reasoning about
quantitative properties of probabilistic systems. In the Boolean setting, while one
cannot model check probabilistic systems, typically given by a Markov chain or
a Markov decision process, with respect to a specification given by means of a
nondeterministic automaton, it is possible to take the product of a probabilistic
system with a deterministic or a probabilistic automaton, making model check-
ing easy for them [26]. In the weighted setting, a quantitative specification may
be given by a weighted automaton. Here too the product can be defined only
with a deterministic or a probabilistic automaton. By stochastizating a WFA
specification, we obtain a PWFA (a.k.a. a rewarded Markov chain in this con-
text [17]) and can perform approximated model checking. A second application is
approximated determinization. Existing algorithms for α-determinization [3,23]
handle families of WFAs in which different cycles that can be traversed by runs
on the same word cannot have weights that differ in more than an α multi-
plicative factor (a.k.a. “the α-twins property”). Indeed, cycles as above induce
problematic cycles for subset-construction-type determinization constructions.
As we show, stochastization can average such cycles, leading to an approximated-
determinization construction that successfully α-determinizes WFAs that do not

92 G. Avni and O. Kupferman

satisfy the α-twin property and thus could not be α-determinized using existing
constructions. Let us note that another candidate application is weighted lan-
guage equivalence, which is undecidable for WFAs but decidable for PWFA [20].
Unfortunately, however, weighted equivalence becomes pointless once approxi-
mation enters the picture.

Given a WFA A and a factor α ≥ 1, the approximated stochastization prob-
lem (AS problem, for short) is to decide whether there is a stochastization of
A that α-approximates it. We study the AS problem and show that it is in
general undecidable. Special tractable cases include two types of restrictions.
First, restrictions on α: we show that when α = 1, the problem coincides with
determinization by pruning of WFAs, which can be solved in polynomial time.
Then, restrictions on the structure of the WFA: we define the class of constant-
ambiguous WFAs, namely WFAs whose degree of nondeterminism is a constant,
and show that the AS problem for them is in PSPACE. On the other hand,
the AS problem is NP-hard already for 7-ambiguous WFAs, namely WFAs that
have at most 7 runs on each word. Even more restricted are tree-like WFAs, for
which the problem can be solved in polynomial time, and so is the problem of
finding a minimal approximation factor α. We show that these restricted classes
are still expressive enough to model interesting optimization problems.

Due to the lack of space, some examples and proofs are omitted and can be
found in the full version, in the authors’ URLs.

2 Preliminaries

A nondeterministic finite weighted automaton on finite words (WFA, for short)
is a tuple A = 〈Σ,Q,Δ, q0, τ〉, where Σ is an alphabet, Q is a finite set of
states, Δ ⊆ Q × Σ × Q is a total transition relation (i.e., for every q ∈ Q and
σ ∈ Σ, there is at least one state q′ ∈ Q with 〈q, σ, q′〉 ∈ Δ), q0 ∈ Q is an
initial state, and τ : Δ → IR+ is a weight function that maps each transition to
a non-negative real value, which is the cost of traversing this transition. If for
every q ∈ Q and σ ∈ Σ there is exactly one q′ ∈ Q such that 〈q, σ, q′〉 ∈ Δ,
then A is a deterministic WFA (DWFA, for short). We assume that all states
are reachable from the initial state. Consider a transition t = 〈q, σ, q′〉 ∈ Δ.
We use source(t), label(t), and target(t), to refer to q, σ, and q′, respectively.
It is sometimes convenient to use a transition function rather than a transition
relation. Thus, we use δA : Q × Σ → 2Q, where for q ∈ Q and σ ∈ Σ, we define
δA(q, σ) = {p ∈ Q : 〈q, σ, p〉 ∈ Δ}. When A is clear from the context we do not
state it implicitly.

A run of A on a word w = w1 . . . wn ∈ Σ∗ is a sequence of transitions
r = r1, . . . , rn such that source(r1) ∈ Q0, for 1 ≤ i < n we have target(ri) =
source(ri+1), and for 1 ≤ i ≤ n we have label(ri) = wi. For a word w ∈ Σ∗,
we denote by runs(A, w) the set of all runs of A on w. Note that since Δ is
total, there is a run of A on every word in Σ∗, thus |runs(A, w)| ≥ 1, for all

Stochastization of Weighted Automata 93

w ∈ Σ∗2. The value of the run, denoted val(r), is the sum of costs of transitions
it traverses. That is, val(r) =

∑
1≤i≤n τ(ri). We denote by first(r) and last(r)

the states in which r starts and ends, respectively, thus start(r) = source(r1)
and last(r) = target(rn). Since A is nondeterministic, there can be more than
one run on each word. We define the value that A assigns to the word w, denoted
val(A, w), as the value of the minimal-valued run of A on w. That is, for every
w ∈ Σ∗, we define val(A, w) = min{val(r) : r ∈ runs(A, w)}.

A probabilistic finite weighted automaton on finite words (PWFA, for short) is
P = 〈Σ,Q,D, q0, τ〉, where Σ, Q, q0, and τ are as in WFAs, and D : Q×Σ×Q →
[0, 1] is a probabilistic transition function. That is, it assigns for each two states
q, p ∈ Q and letter σ ∈ Σ the probability of moving from q to p with letter
σ. Accordingly, we have

∑
p∈Q D(q, σ, p) = 1, for every q ∈ Q and σ ∈ Σ. We

sometimes refer to a transition relation ΔD ⊆ Q×Σ ×Q induced by D. For two
states q, p ∈ Q and letter σ ∈ Σ, we have ΔD(q, σ, p) iff D(q, σ, p) > 0. Then,
τ : ΔD → IR+ assigns positive weights to transitions with a positive probability.
As in WFAs, we assume that all states are accessible from the initial state by
path with a positive probability. Note that if for every q ∈ Q and σ ∈ Σ, there
is a state p ∈ Q with D(q, σ, p) = 1, then P is a DWFA.

A run r = r1, . . . , rn of P on w = w1 . . . wn ∈ Σ∗ is a sequence of transitions
defined as in WFAs. The probability of r, denoted Pr[r], is

∏
1≤i≤n D(ri). Simi-

larly to WFAs, for w ∈ Σ∗, we denote by runs(P, w) the set of all runs of P on
w with positive probability. We define val(P, w) to be the expected value of a
run of P on w, thus val(P, w) =

∑
r∈runs(P,w) Pr[r] · val(r).

We say that a WFA A is k-ambiguous, for k ∈ IN, if k is the minimal number
such that for every word w ∈ Σ∗, we have |runs(A, w)| ≤ k. We say that a WFA
A is constant-ambiguous (a CA-WFA, for short) if A is k-ambiguous from some
k ∈ IN. The definitions for PWFAs are similar, thus CA-PWFAs have a bound
on the number of possible runs with positive probability.

A stochastization of a WFA A = 〈Σ,Q,Δ, q0, τ〉 is a construction of a PWFA
that is obtained from A by assigning probabilities to its nondeterministic choices.
Formally, it is a PWFA AD = 〈Σ,Q,D, q0, τ〉 obtained from A such that D is
consistent with Δ. Thus, ΔD = Δ. Note that since the transition function of
A is total, there is always a stochastization of A. Note also that if δ(q, σ) is a
singleton {p}, then D(q, σ, p) = 1.

Recall that in a nondeterministic WFA, the value of a word is the minimal
value of a run on it. Stochastization of a WFA A results in a PWFA AD with
the same set of runs, and the value of a word is some average of the values
of these runs. Accordingly, the value of a word in AD can only increase with
respect to its value in A. We would like to find a stochastization with which AD

approximates A
2 A different way to define WFAs would be to designate a set of accepting states.

Then, the language of a WFA is the set of words that have an accepting run, and
it assigns values to words in its language. Since it is possible to model acceptance
by weights, our definition simplifies the setting and all states can be thought of as
accepting.

94 G. Avni and O. Kupferman

Consider two weighted automata A and B, and a factor α ∈ IR such that
α ≥ 1. We say that B α-approximates A if, for every word w ∈ Σ∗, we have
1
α · val(A, w) ≤ val(B, w) ≤ α · val(A, w). We denote the latter also by 1

αA ≤
B ≤ αA. When α = 1, we say that A and B are equivalent. Note that A and B
are not necessarily the same type of automata.

A decision problem and an optimization problem naturally arise from this
definition:

– Approximation stochastization (AS, for short): Given a WFA A and a factor
α ≥ 1, decide whether there is a distribution function D such that AD α-
approximates A, in which case we say that AD is an α-stochastization of A.

– Optimal approximation stochastization (OAS, for short): Given a WFA A, find
the minimal α ≥ 1 such that there an α-stochastization of A.

Recall that for every distribution function D, we have that A ≤ AD. Thus,
in both the AS and OAS problems it is sufficient to require AD ≤ α · A.

Remark 1 [Tightening the Approximation by a Square-root Factor]. For
a WFA A and β ∈ [0, 1], let Aβ be A with costs multiplied by β. It is easy to see
that for all WFAs A and B, we have 1√

α
·A ≤ B1/

√
α ≤ √

α·A iff A ≤ B ≤ α·A.

In particular, taking B to be AD for some distribution function D for A, we have
that AD α-approximates A iff AD

1/
√

α

√
α-approximates A. It follows that when

altering of weights is possible, we can tighten the approximation by a square-root
factor. �

3 Motivation

In Sect. 1, we discussed the application of stochastization in reasoning about
quantitative properties of probabilistic systems, reasoning about randomized
online algorithms, and approximated determinization. Below we elaborate on
the last two.

3.1 A WFA-Based Approach to Reasoning
About Online Algorithms

In this section we describe [2]’s WFA-based approach to reasoning about online
algorithms and extend it to account for randomized ones. An online algorithm
with requests in Σ and actions in A corresponds to a function g : Σ+ → A that
maps sequences of requests (the history of the interaction so far) to an action to
be taken. In general, the algorithm induces an infinite state space, as it may be
in different states after processing different input sequences in Σ∗. For a finite set
S of configurations, we say that g uses memory S, if there is a regular mapping
of Σ∗ into S such that g behaves in the same manner on identical continuations
of words that are mapped to the same configuration.

Stochastization of Weighted Automata 95

We model the set of online algorithms that use memory S and solve an
optimization problem P with requests in Σ and actions in A, by a WFA AP =
〈Σ,S,Δ, s0, τ〉, such that Δ and τ describe transitions between configurations
and their costs, and s0 is an initial configuration. Formally, Δ(s, σ, s′) if the set
A′ ⊆ A of actions that process the request σ from configuration s by updating
the configuration to s′ is non-empty, in which case τ(〈s, σ, s′〉) is the minimal
cost of an action in A′.

An offline algorithm knows the sequence of requests in advance and thus can
resolve nondeterminism to obtain a minimal cost. Accordingly, the cost that an
offline algorithm with state space S assigns to a sequence of requests w ∈ Σ∗

is exactly val(AP , w). On the other hand, an online algorithm is a DWFA A′
P

obtained from AP by pruning nondeterministic choices. The competitive ratio of
the online algorithm, namely the ratio between its performance and that of the
offline algorithm, on the sequence of requests that maximizes this ratio, is then
the factor α such that A′

P α-approximates AP . A randomized online algorithm
for P that uses state space S can be viewed as a function from S to a probability
distribution on A, which induces a probabilistic transition function on top of AP .
Consequently, we have the following:

Theorem 1. Consider an online problem P and a set S of configurations. Let
AP be a WFA with state space S that models online algorithms for P that use
memory S. For all α ≥ 1, there is a randomized online algorithm for P using
memory S that achieves competitive ratio α iff AP has an α-stochastization.

Example 1. The Ski-rental Problem. Assume that renting skis costs $1 per
day and buying skis has a one-time cost of $M . The online ski-rental problem
copes with the fact it is not known in advance how many skiing days are left.
Given an input request “skiing continues today”, the online algorithm should
decide whether to buy or rent skis. Typically, it is also assumed that renting skis
is only allowed for at most m ≥ M consecutive days.

The WFA A induced by the ski-rental problem with parameters M and
m is depicted in Fig. 1. Formally, A = 〈{a}, {1, . . . ,m, qown},Δ, 1, τ〉, where Δ
and τ are described below. A state 1 ≤ i < m has two outgoing transitions:
〈i, a, i + 1〉 with weight 1, corresponds to renting skis at day i, and 〈i, a, qown〉
with weight M , corresponding to buying skis at day i. Finally, there are transi-
tions 〈m,a, qown〉 with weight M and 〈qown , a, qown〉 with weight 0. The optimal
deterministic online algorithm is due to [19]; rent skis for M −1 consecutive days,
and buy skis on the M -th day, assuming skiing continues. It corresponds to the
DWFA obtained by pruning all transitions but 〈i, a, i + 1〉, for 1 ≤ i < M , and
〈M,a, qown〉. This DWFA achieves an optimal approximation factor of 2 − 1

M .
We describe a simple probabilistic algorithm that corresponds to a stochas-

tization of A that achieves a better bound of 2 − 1.5
M . Intuitively, before skiing

starts, toss a coin. If it turns out “heads”, buy skis on the (M −1)-th day, and if
it turns out “tails”, buy on the M -th day. The corresponding distribution func-
tion D is depicted in red in Fig. 1. It is not hard to see that the worst case of this
stochastization is attained by the word aM for which we have val(A, aM) = M

96 G. Avni and O. Kupferman

1 2 . . . M − 1 M . . . m

qown

1 1 1 1 1
1
2 1 1 1

0
M

0
M

1
2 M 1

M M

Fig. 1. The WFA that is induced by the ski-rental
problem with parameters M and m.

q0 q11
2 , a, 0

a,0
b,0

1
2 , a, 0

b, 1

Fig. 2. A PWFA with no
equivalent DWFA.

and val(AD, aM) = 1
2 · (M − 2 + M) + 1

2 · (M − 1 + M) = 2M − 1.5, thus
val(AD, aM) ≤ (2 − 1.5

M) · val(A, aM). Finding the optimal distribution func-
tion takes care [9,18] and can achieve an approximation of 1 + 1

(1+1/M)M−1
≈

e/(e − 1) ≈ 1.582 for M � 1. �
In the full version, we describe a WFA corresponds to the classical paging

optimization problem. As we show there, it is sometimes useful to apply the
stochastization after extending the state space of AP . In the case of paging with a
cache of size k, determinization by pruning results in a k-approximation whereas
stochastization results in an Hk-approximation, for Hk = 1 + 1

2 + 1
3 + . . . + 1

k ≈
log(k). Thus, allowing the online algorithm to toss coins reduces the competitive
ratio from k to Hk.

3.2 Approximated Determinization

Not all WFAs can be determinized. Since some applications require deterministic
automata, one way to cope with WFAs that cannot be determinized is to α-
determinize them, namely construct a DWFA that α-approximates them, for
α ≥ 1. Our second application is an extension of the class of WFAs that can be
approximately determinized.

In [23], Mohri describes a determinization construction for a subclass of
WFAs – these that have the twins property. In [4], the authors define the
α-twins property, for α ≥ 1, and describe an α-determinization construction for
WFAs that satisfy it. We briefly define the properties below. Consider a WFA
A = 〈Σ,Q,Δ, q0, τ〉 and two states q1, q2 ∈ Q. We say that q1 and q2 are pairwise
reachable if there is a word u ∈ Σ∗ such that there are runs of A on u that end in
q1 and q2. Also, we say that q1 and q2 have the t-twins property if they are either
not pairwise reachable, or, for every word v ∈ Σ∗, if π1 and π2 are v-labeled cycle
starting from q1 and q2, respectively, then val(π1) ≤ t · val(π2). We say that A
has the α-twins property iff every two states in A have the α-twins property.
The α-twins property coincides with Mohri’s twins property when α = 1.

A
q0

q1

q2

a, 0

a, 0

b, 0

a,1
b,5

a,5
b,1

AD

q0

q1

q2

a, 0

a, 0

b, 0

a,1
b,5

a,5
b,1

1
2

1
2

D
q0

q1,
1
2

q2,
1
2

a, 0
b, 0 a,3

b,3

Fig. 3. An illustration of our algorithm for approximated determinization of WFAs.

Stochastization of Weighted Automata 97

The α-twins property can be thought of as a lengthwise requirement; there
might be many runs on a word, but there is a bound on how different the runs
are. Our algorithm applies to CA-WFAs. Recall that such WFAs have a dual,
widthwise, property: the number of runs on a word is bounded by some constant.
The algorithm proceeds as follows. Given a CA-WFA A, we first find an α-
stochastization AD of it. Since stochastization maintains constant ambiguity, we
obtain a CA-PWFA. As we show in Theorem7, CA-PWFA can be determinized,
thus we find an α-determinization of A.

Example 2. Consider the WFA A that is depicted in Fig. 3. Note that A is
2-ambiguous. The optimal stochastization of A is given by the distribution
function D that assigns D(q0, a, q1) = D(q0, a, q2) = 1

2 . The resulting PWFA
AD is also depicted in the figure. Then, we construct the DWFA D by apply-
ing the determinization construction of Theorem 7. Clearly, the DWFA D 3-
approximates A.

We note that A has the 5-twins property, and this is the minimal t. That is,
for every t < 5, A does not have the t-twins property. The DWFA D′ that is
constructed from A using the approximated determinization construction of [4]
has the same structure as D only that the self loops that have weight 3 in D,
have weight 5 in D′. Thus, D′ 5-approximates A.

4 Stochastization of General WFAs

In this section we study the AS and OAS problems for general WFA. We start
with some good news, showing that the exact stochastization problem can be
solved efficiently. Essentially, it follows from the fact that exact stochastization
amounts to determinization by pruning, which can be solved in polynomial time
[2]. See the full version for details.

Theorem 2. The exact stochastization problem can be solved in polynomial
time.

We proceed to the bad news.

Theorem 3. The AS problem is undecidable.

Proof. In Sect. 1 we mentioned PFA, which add probabilities to finite automata.
Formally, a PFA is P = 〈Σ,Q,P, q0, F 〉, where F ⊆ Q is a set of accepting
states and the other components are as in PWFAs. Given a word w ∈ Σ∗, each
run of P on w has a probability. The value P assigns to w is the probability of
the accepting runs. We say that P is simple if the image of P is {0, 1, 1

2}. For
λ ∈ [0, 1], the λ-emptiness problem for PFAs gets as input a PFA P, and the goal
is to decide whether there is a word w ∈ Σ∗ such that val(P, w) > λ. It is well
known that the emptiness problem for PFAs is undecidable for λ ∈ (0, 1) [6,22].
Furthermore, it is shown in [15] that the emptiness problem is undecidable for
simple PFAs and λ = 1

2 . In the full version we construct, given a simple PFA P,
a WFA A such that P is 1

2 -empty iff there is an 2+
√
7

3 -stochastization of A. �

98 G. Avni and O. Kupferman

5 Stochastization of Constant Ambiguous WFAs

Recall that a CA-WFA has a bound on the number of runs on each word. We
show that the AS problem becomes decidable for CA-WFAs. For the upper
bound, we show that when the ambiguity is fixed, the problem is in PSPACE.
Also, when we further restrict the input to be a tree-like WFAs, the OAS problem
can be solved in polynomial time. We note that while constant ambiguity is
a serious restriction, many optimization problems, including the ski-rental we
describe here, induce WFAs that are constant ambiguous. Also, many theoretical
challenges for WFAs like the fact that they cannot be determinized, apply already
to CA-WFA. We start with a lower bound, which we prove in the full version by
a reduction from 3SAT.

Theorem 4. The AS problem is NP-hard for 7-ambiguous WFAs.

Consider a k-ambiguous WFA A, a factor α, and a distribution function D. When
k is fixed, it is possible to decide in polynomial time whether AD α-approximates
A. Thus, a tempting approach to show that the AS problem is in NP is to bound
the size of the optimal distribution function. We show below that this approach
is doomed to fail, as the optimal distribution function may involve irrational
numbers even when the WFA has only rational weights.

Theorem 5. There is a 4-ambiguous WFA with rational weights for which every
distribution that attains the optimal approximation factor includes irrational
numbers.

Proof. In the full version we construct a WFA A that includes states q1, q2, and
q3, where for i = 1, 2, 3, the state qi has nondeterministic choices ti and t′i. We
define A so that for i �= j ∈ {1, 2, 3}, an optimal distribution function D satisfies
D(ti) · D(tj) = 1

2 . Thus, D(ti) = 1√
2
. �

We now turn to show that the AS problem is decidable for CA-WFAs. Our proof
is based on the following steps: (1) We describe a determinization construction
for CA-PWFAs. The probabilities of transitions in the CA-PWFA affects the
weights of the transitions in the obtained DWFA. (2) Consider a CA-WFA A.
We attribute each transition of A by a variable indicating the probability of
taking the transition. We define constraints on the variables so that there is
a correspondence between assignments and distribution functions. Let A′ be
the obtained CA-PWFA. Note that rather than being a standard probabilistic
automaton, it is parameterized, thus it has the probabilities as variables. Since
A′ has the same structure as A, it is indeed constant ambiguous. (3) We apply
the determinization construction to A′. The variables now appear in the weights
of the obtained parameterized DWFA. (4) Given α ≥ 1, we add constraints on
the variables that guarantee that the assignment results in an α-stochastization
of A. For that, we define a parameterized WFA A′′ that corresponds to αA−A′

and the constraints ensure that it assigns a positive cost to all words. (5) We
end up with a system of polynomial constraints, where the system is of size

Stochastization of Weighted Automata 99

polynomial in A. Deciding whether such a system has a solution is known to be
in PSPACE.3

We now describe the steps in more detail.

Determinization of CA-WFAs. Before we describe the determinization con-
struction for CA-WFAs, we show that PWFAs are not in general determinizable.
This is hardly surprising as neither WFAs nor PFAs are determinizable. We note,
however, that the classic examples that show that WFAs are not determinizable
use a 2-ambiguous WFA, and as we show below, 2-ambiguous PWFAs are deter-
minizable.

Theorem 6. There is a PWFA with no equivalent DWFA.

Proof. Consider the PWFA depicted in Fig. 2. Assume towards contradiction
that there is a DWFA D that is equivalent to A. Let γ be the smallest absolute
value on one of B’s transitions. Then, B cannot assign values of higher precision
than γ. In particular, for n ∈ IN such that 2−n < γ, it cannot assign the value
2−n to the word anb. �
Consider a PWFA P = 〈Σ,Q,D, q0, τ〉. For a state q ∈ Q and σ ∈ Σ, we say
that P has a σ-probabilistic choice at q if there is a transition 〈q, σ, q′〉 ∈ ΔD

such that 0 < D(〈q, σ, q′〉) < 1. This is indeed a choice as ΔD must include
a different σ-labeled outgoing transition from q with positive probability. We
sometimes refer to such a choice simply as a probabilistic choice. We extend the
definition to runs as follows. Consider a run r = r1, . . . , rn of P on some word.
We say that r makes a probabilistic-choice at index 1 ≤ i ≤ n if there is a
label(ri)-choice at state source(ri). We then say that r chooses the transition ri.
Note that when Pr[r] > 0 and the probabilistic choices of r are i1, . . . , i�, then
Pr[r] =

∏
1≤j≤� D(tij).

Given P, we construct a DWFA D = 〈Σ,S,Δ, q′
0, τ

′〉 equivalent to P as
follows. The states of D are S ⊆ 2Q×[0,1]. Thus, a state in S is a set of pairs,
each consisting of a state q in P and the probability of reaching q. Thus, the
construction is similar to the subset construction used for determinizing NFWs,
except that each state in P is paired with the probability of visiting it in D. More
formally, consider such a state s = {〈q1, p1〉, . . . , 〈q�, p�〉} and a run r on a word
w ∈ Σ∗ that ends in s. Then, for 1 ≤ i ≤ �, we have pi = Pr[{r ∈ runs(P, w) :
r end in qi}]. We define the transitions and their weights accordingly: There
is a transition t = 〈s, σ, s′〉 ∈ Δ iff for every pair 〈q′

i, p
′
i〉 ∈ s′ we have p′

i =∑
〈qj ,pj〉∈q D(qj , σ, q′

i) · pj and p′
i > 0. For s ∈ S, the states of s are st(s) = {q ∈

Q : 〈q, p〉 ∈ s}. The weight of t is τ ′(t) =
∑

t′=〈qi,σ,q′
j〉∈st(q)×{σ}×st(q′) τ(t′) · pj ·

D(t′).
While it is not hard to see that D is equivalent to P, there is no a-priori bound

on the size of D. In the full version we show that when P is constant ambiguous,
3 The latter problem, a.k.a. the existential theory of the reals [10] is known to be NP-

hard and in PSPACE. Improving its upper bound to NP would improve also our
bound here.

100 G. Avni and O. Kupferman

then D has a finite number of states. Intuitively, we relate the probabilities
that appear in the states of D with probabilistic choices that the runs of P
perform. Then, we argue that a run of P on some word w ∈ Σ∗ performs at
most k − 1 probabilistic choices as every choice “spawns” another run of P on w
and |runs(P, w)| ≤ k. Thus, we can bound the number of states in D, implying
the following.

Theorem 7. Consider a k-ambiguous PWFA P with m transitions. There is a
DWFA D that is equivalent to P with mO(k2) states.

An Upper Bound for the AS Problem. We are now ready to present the
solution to the stochastization problem for CA-WFAs with weights in CQ+.
Given an input WFA A and a factor α ≥ 1, we construct a polynomial feasibility
problem. The input to such a problem is a set of n variables X and polynomial
constraints Pi(x) ≤ 0, for 1 ≤ i ≤ m. The goal is to decide whether there is a
point p ∈ IRn that satisfies all the constraints, thus Pi(p) ≤ 0, for 1 ≤ i ≤ m.
The problem is known to be in PSPACE [10].

Theorem 8. The AS problem for CA-WFAs is in PSPACE.

Proof. We describe the intuition and the details can be found in the full version.
Consider a k-ambiguous WFA A = 〈Σ,Q,Δ, q0, τ〉. We associate with A the
following constraints. First, let XD = {xt : t ∈ Δ} be a set of variables, and
let AD be a parameterized stochastization of A in which the probability of a
transition t is xt. Next, let DD be the parameterized DWFA obtained by applying
to AD the determinization construction of Theorem 7. Since the variables of AD

are the probabilities of the transitions and in the determinization construction
the probabilities move to the transition weights, the variables in DD appear only
in the weights.

The first type of constraints are ones that ensure that the assignment to
the variables in XD forms a probabilistic transition function. The second type
depends on α and ensures that DD ≤ α ·A. This is done by applying constraints
that ensures the emptiness of the parameterized WFA A′′ = (αA − DD). the
constraints are are based on Bellman equations, ensuring that the value of all
words in A′′ is positive. The number of additional constraints is then polynomial
in n and in the number of transitions of A′′. Thus, all in all we have polynomially
many constraints and the numbers that appear in them are of size polynomial
in the size of the weights of A. Thus, the size of the program is polynomial in
the size of A, and we are done. �
Remark 2. A different way to specify emptiness by constraints is to consider
all simple paths and cycles in the automaton, as was done in [5]. A polynomial
treatment of the exponentially many linear constraints then involves a separation
oracle, and the ellipsoid method. The method we use here has polynomially
many linear constraints to start with, and its implementation is considerably
more practical. �

Stochastization of Weighted Automata 101

Remark 3. [Solving the OAS Problem for Tree-like WFAs]. We say that a
WFA A is tree-like if the graph induced by its nondeterministic choices is a tree
(note that A is constant ambiguous if the graph is acyclic). Thus, intuitively,
for every nondeterministic choice t, there is one way to resolve other nondeter-
ministic choices in order to reach t. Note that the WFA that corresponds to the
ski-rental problem as well as the WFA from Example 2 are tree-like. In the full
version we show that for every fixed k ∈ IN, the OAS problem can be solved in
polynomial time for tree-like k-ambiguous WFAs. �

References

1. Almagor, S., Boker, U., Kupferman, O.: Formalizing and reasoning about quality.
In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013,
Part II. LNCS, vol. 7966, pp. 15–27. Springer, Heidelberg (2013)

2. Aminof, B., Kupferman, O., Lampert, R.: Reasoning about online algorithms with
weighted automata. TALG 6(2), 1–36 (2010)

3. Aminof, B., Kupferman, O., Lampert, R.: Formal analysis of online algorithms.
In: Bultan, T., Hsiung, P.-A. (eds.) ATVA 2011. LNCS, vol. 6996, pp. 213–227.
Springer, Heidelberg (2011)

4. Aminof, B., Kupferman, O., Lampert, R.: Rigorous approximated determinization
of weighted automata. TCS 480, 104–117 (2013)

5. Avni, G., Kupferman, O.: Parameterized weighted containment. TOCL 16(1),
6 (2014)

6. Azaria, P.: Introduction to Probabilistic Automata. Academic Press, Inc., London
(1971)

7. Boker, U., Chatterjee, K., Henzinger, T.A., Kupferman, O.: Temporal specifica-
tions with accumulative values. In: Proceedings of the 26th LICS, pp. 43–52 (2011)

8. Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis.
Cambridge University Press, Cambridge (1998)

9. Buchbinder, N., Jain, K., Naor, J.S.: Online primal-dual algorithms for maximizing
ad-auctions revenue. In: Arge, L., Hoffmann, M., Welzl, E. (eds.) ESA 2007. LNCS,
vol. 4698, pp. 253–264. Springer, Heidelberg (2007)

10. Canny, J.: Some algebraic and geometric computations in PSPACE. In: Proceed-
ings of the STOC, pp. 460–467 (1988)

11. Culik, K., Kari, J.: Digital images and formal languages. In: Rozenberg, G.,
Salomaa, A. (eds.) Handbook of Formal Languages. Beyond Words, pp. 599–616.
Springer, Heidelberg (1997)

12. Droste, M., Kuich, W., Vogler, H. (eds.): Handbook of Weighted Automata.
Springer, Heidelberg (2009)

13. Droste, M., Rahonis, G.: Weighted automata and weighted logics with discounting.
TCS 410(37), 3481–3494 (2009)

14. Fijalkow, N., Gimbert, H., Horn, F., Oualhadj, Y.: Two recursively inseparable
problems for probabilistic automata. In: Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik,
Z. (eds.) MFCS 2014, Part I. LNCS, vol. 8634, pp. 267–278. Springer, Heidelberg
(2014)

15. Gimbert, H., Oualhadj, Y.: Probabilistic automata on finite words: decidable and
undecidable problems. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf
der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6199, pp. 527–538.
Springer, Heidelberg (2010)

102 G. Avni and O. Kupferman

16. Henzinger, T.A.: From Boolean to quantitative notions of correctness. In: Proceed-
ings of the 37th POPL, pp. 157–158 (2010)

17. Howard, R.A.: Dynamic Probabilistic Systems, Volume II: Semi-Markov and Deci-
sion Processes. Vol. 2. Courier Corporation (2013)

18. Karlin, A.R., Manasse, M.S., McGeoch, L.A., Owicki, S.S.: Competitive random-
ized algorithms for nonuniform problems. Algorithmica 11(6), 542–571 (1994)

19. Karlin, A.R., Manasse, M.S., Rudolph, L., Sleator, D.D.: Competitive snoopy
caching. Algorithmica 3, 77–119 (1988)

20. Kiefer, S., Murawski, A.S., Ouaknine, J., Wachter, B., Worrell, J.: On the complex-
ity of equivalence and minimisation for q-weighted automata. LMCS, 9(1) (2013)

21. Krob, D.: The equality problem for rational series with multiplicities in the tropical
semiring is undecidable. IJAC 4(3), 405–425 (1994)

22. Madani, O., Hanks, S., Condon, A.: On the undecidability of probabilistic planning
and related stochastic optimization problems. Artif. Intell. 147(1–2), 5–34 (2003)

23. Mohri, M.: Finite-state transducers in language and speech processing. Comput.
Linguist. 23(2), 269–311 (1997)

24. Mohri, M., Pereira, F.C.N., Riley, M.: Weighted finite-state transducers in speech
recognition. Comput. Speech Lang. 16(1), 69–88 (2002)

25. Rabin, M.O.: Probabilistic automata. Inf. Control 6(3), 230–245 (1963)
26. Vardi, M.Y.: Probabilistic linear-time model checking: an overview of the

automata-theoretic approach. In: Katoen, J.-P. (ed.) AMAST-ARTS 1999, ARTS
1999, and AMAST-WS 1999. LNCS, vol. 1601, p. 265. Springer, Heidelberg (1999)

Algebraic Synchronization Criterion
and Computing Reset Words

Mikhail Berlinkov1(B) and Marek Szyku�la2

1 Institute of Mathematics and Computer Science,
Ural Federal University, Yekaterinburg, Russia

berlm@mail.ru
2 Institute of Computer Science, University of Wroc�law, Wroc�law, Poland

Abstract. We refine results about relations between Markov chains and
synchronizing automata. We express the condition that an automaton is
synchronizing in terms of linear algebra, and obtain upper bounds for
the reset thresholds of automata with a short word of a small rank. The
results are applied to make several improvements in the area.

We improve the best general upper bound for reset thresholds of finite
prefix codes (Huffman codes): we show that an n-state synchronizing
decoder has a reset word of length at most O(n log3 n). Also, we prove
the Černý conjecture for n-state automata with a letter of rank at most
3
√

6n − 6. In another corollary, based on the recent results of Nicaud, we
show that the probability that the Černý conjecture does not hold for a
random synchronizing binary automaton is exponentially small in terms
of the number of states. It follows that the expected value of the reset
threshold of an n-state random synchronizing binary automaton is at
most n7/4+o(1).

Moreover, reset words of the lengths within our bounds are com-
putable in polynomial time. We present suitable algorithms for this task
for various classes of automata for which our results can be applied.
These include (quasi-)one-cluster and (quasi-)Eulerian automata.

1 Introduction

We deal with deterministic finite automata (DFA) A = (Q,Σ, δ), where Q is a
non-empty set of states, Σ is a non-empty alphabet, and δ : Q × Σ �→ Q is the
complete transition function. We extend δ to Q × Σ∗ and 2Q × Σ∗ as usual, and
for the image (resp. preimage) of a set S under a word w we write shortly S.w
(resp. S.w−1). We denote Σ≤c = {w ∈ Σ∗ : |w| ≤ c}, the set of all words over Σ

M. Berlinkov—Supported by the Presidential Program “Leading Scientific Schools of
the Russian Federation”, project no. 5161.2014.1, the Russian Foundation for Basic
Research, project no. 13-01-00852, the Ministry of Education and Science of the
Russian Federation, project no. 1.1999.2014/K, and the Competitiveness Program
of Ural Federal University.
M. Szyku�la—Supported in part by Polish NCN grant DEC-2013/09/N/-
ST6/01194.

c© Springer-Verlag Berlin Heidelberg 2015
G.F. Italiano et al. (Eds.): MFCS 2015, Part I, LNCS 9234, pp. 103–115, 2015.
DOI: 10.1007/978-3-662-48057-1 8

104 M. Berlinkov and M. Szyku�la

of length at most c. The empty word is denoted by ε. Throughout the paper, by
n we denote the cardinality |Q|, and by k we denote |Σ|.

A word w compresses a subset S ⊆ Q if |S.w| < |S|. Then we say that S is
compressible. The rank of a word w is |Q.w|. A reset word or a synchronizing
word is a word w ∈ Σ∗ of rank 1, that is, w takes the automaton to a particular
state no matter of the current state. An automaton is called synchronizing if
it possesses a reset word. An example of a synchronizing automaton from the
Černý series [12] is presented in Fig. 1 (left). One can verify that its shortest
reset word is ba3ba3b. The length of the shortest reset word is called the reset
threshold and is denoted by rt(A).

1 2

34

b b

b

a

a

a

b a

1 2

34

0.3 0.3

0.3

0.7

0.7

0.7

0.3 0.7

Fig. 1. The automaton C4 and the associated Markov chain for P (a) = 0.7, P (b) = 0.3

For detailed introduction to the theory of synchronizing automata we refer
reader to the surveys [19,27], and for the review of relations with coding theory
to [17]. For various applications, reset words allow to reestablish the control
under the system modeled by an automaton. So, the reset threshold serves as a
natural measure of synchronization. Thus, it is important to compute the reset
threshold from both theoretical and practical points of view.

The Černý conjecture, which is arguably the most longstanding open problem
in the combinatorial theory of finite automata, states that the reset threshold of
a synchronizing automaton is at most (n−1)2. This bound would be tight, since
Černý [12] constructed for each n a synchronizing automaton Cn with this reset
threshold. Moreover, the best upper bound known so far for the reset threshold
of a synchronizing n-state automaton is equal to n3−n

6 − 1 (for n ≥ 4) so is
cubic in n (see Pin [24]). Thus it is of certain importance to prove specific upper
bounds for various classes of synchronizing automata.

In this paper, we improve several results concerning reset thresholds. First,
we express the condition that an automaton is synchronizing in terms of linear
algebra, and derive upper bounds for automata with a word of a small rank
(Sect. 2). Then, we apply the results to improve upper bounds in several cases.
In Sect. 3 we show that the Černý conjecture holds for automata with a letter of
rank 3

√
6n − 6, which improves the previous logarithmic result [22]. Also, basing

on the recent results of Nicaud [20], we show that the Černý conjecture holds for
a random synchronizing binary automaton with probability exponentially (in n)
close to 1, and that the expected reset threshold is at most n7/4+o(1).

Algebraic Synchronization Criterion and Computing Reset Words 105

The next important application of our results is an upper bound for the
length of the shortest reset words of finite prefix codes (Huffman codes), which
are one of the most popular methods of data compression. One of the problems
with compressed data is reliability in case of presence of errors in the compressed
text. Eventually, a single error may possibly destroy the whole encoded string.
One of the proposed solutions to this problem (for Huffman codes) are codes that
can be synchronized by a reset word, regardless of the possible errors. The reset
thresholds of binary Huffman codes was first studied by Biskup and Plandowski
[8,9], who showed a general upper bound of order O(n2 log n), where n is the
number of states of the decoder (equivalently, the number of words in the code).
They also proved that a word of this length can be computed in polynomial
time. The bound was later improved to O(n2) for a wider class of one-cluster
automata [2]. In Sect. 4 we prove an upper bound of order O(n log3 n). Note
that for some applications it can be also important to get bounds in terms of
the maximal length of the words in the code (see e.g. [11]).

Unlike the general case, the Černý conjecture has been approved for vari-
ous classes of automata such as circular [13,23], Eulerian [18] and one-cluster
automata with prime length cycle [26]. Later specific quadratic upper bounds
for some generalizations of these classes were obtained in [2,5]. However, no effi-
cient algorithm for finding reset words with lengths within the specified bounds
has been presented for these classes. Moreover, there is no hope to get a poly-
nomial algorithm for finding the shortest reset words in the general case, since
this problem has been shown to be FPNP[log]-hard [21]. Also, unless P = NP,
there is no polynomial algorithm for computing the reset threshold for a given
automaton within the approximation ratio nε for a certain ε > 0 even in the
case of a binary alphabet [15] (cf. also [6,16]).

In Sect. 5 we present polynomial algorithms for finding reset words of length
within the proven bounds. Our algorithms can be applied in particular to the
classes of decoders of finite prefix codes, and also to generalized classes of quasi-
Eulerian and quasi-one-cluster automata. Since from our results it is possible to
derive the bounds from [2,5,10,18,25,26], our algorithms apply to these bounds
as well.

The full version of this paper is available at [7].

2 Algebraic Synchronization Criterion

In this section we refine some results from [5], formulate the algebraic synchro-
nization criterion, and derive upper bounds for reset thresholds of automata with
a word of a small rank. For this purpose, we associate a natural linear structure
with an automaton A . By R

n we denote the real n-dimensional linear space of
row vectors. Without loss of generality, we assume that Q = {1, 2, . . . , n} and
then assign to each subset K ⊆ Q its characteristic vector [K] ∈ R

n, whose i-th
entry is 1 if i ∈ K, and 0, otherwise. For q ∈ Q we write [q] instead of [{q}] to
simplify the notation. By 〈S〉 we denote the linear span of S ⊆ R

n. The n × n
identity matrix is denoted by In.

106 M. Berlinkov and M. Szyku�la

Each word w ∈ Σ∗ corresponds to a linear transformation of Rn. By [w] we
denote the matrix of this transformation in the standard basis [1], . . . , [n] of Rn.
For instance, if A = C4 from Fig. 1 (left), then

[a] =
(

0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

)
, [b] =

(
1 0 0 0
0 1 0 0
0 0 1 0
1 0 0 0

)
, [ba] =

(
0 1 0 0
0 0 1 0
0 0 0 1
0 1 0 0

)
.

Clearly, the matrix [w] has exactly one non-zero entry in each row. In par-
ticular, [w] is row stochastic, that is, the sum of entries in each row is equal to
1. In virtue of row-vector notation (apart from [5]), we get that [uv] = [u][v]
for every two words u, v ∈ Σ∗. By [w]T we denote the transpose of the matrix
[w]. One easily verifies that [S.w−1] = [S][w]T . Let us also notice that within
this definition the (adjacency) matrix of the underlying digraph of A is equal
to

∑
a∈Σ[a].

Recall that a word w is a reset word if q.w−1 = Q, for some state q ∈ Q.
Thus, in the language of linear algebra, we can rewrite this fact as [q][w]T = [Q].
For two vectors g1, g2 ∈ R

n, we denote their usual inner (scalar) product by
(g1, g2). We say that a vector (matrix) is positive (non-negative) if it contains
only positive (non-negative) entries. Let p ∈ R

n
+ be a positive row stochastic

vector. Then ([Q], p) = 1, and a word w is a reset word if and only if there exists
q ∈ Q such that

([q.w−1], p) = ([q][w]T , p) = ([q], p[w]) = 1.

Now we need to recall a few properties of Markov chains. A Markov chain
of an automaton A is the random walk process of an agent on the underlying
digraph of A where each time an edge labeled by ai is chosen according to a
given probability distribution P : Σ �→ R. The matrix S(A , P) =

∑k
i=1 P (ai)[ai]

is called the transition matrix of this Markov chain. An example of a Markov
chain associated with the automaton A = C4 is presented in Fig. 1 (right) for
P (a) = 0.7, P (b) = 0.3 and its stationary distribution is α = (10

37 , 10
37 , 10

37 , 7
37).

A non-negative square matrix M is primitive if for some d > 0, the matrix Md

is positive. It is well known that if A is strongly connected and synchronizing,
then the matrix of the underlying digraph of A is primitive, and so is the matrix
of a Markov chain of A for any positive probability distribution P (see [1,5]).
The following proposition is due to the well known Perron-Frobenius theorem.

Proposition 1. Let M be a row stochastic n×n matrix. Then there exists a sta-
tionary distribution α ∈ R

n, that is, a non-negative stochastic vector satisfying
αM = α. Moreover, if M is primitive then α is unique and positive.

Call a set of words W ⊆ Σ∗ complete for a subspace V ≤ R
n, with respect to a

vector g ∈ V , if
〈g[w] | w ∈ W 〉 = V.

For a subset S ⊆ Q we define VS = 〈[p] | p ∈ S〉 ≤ R
n.

We aim to strengthen [5, Theorem 9]. Namely, we show that the condition
that A is synchronizing is not necessary if we require completeness for the

Algebraic Synchronization Criterion and Computing Reset Words 107

corresponding set of words, and that only completeness with respect to the
stationary distribution of A is required. As in [5] we construct an auxiliary
automaton. We fix two positive integers d1, d2 and two non-empty sets of words
W1 ⊆ Σ≤d1 , W2 ⊆ Σ≤d2 . Consider the automaton

Ac(W1,W2) = (R,W2W1, δAc
),

where R = {q.w | q ∈ Q, w ∈ W1} and W2W1 = {w2w1 ∈ Σ∗ | w2 ∈ W2, w1 ∈
W1}. The transition function δAc

is defined in compliance with the actions of
words in A , i.e. δAc

(q, w) = δ(q, w), for all q ∈ R and w ∈ W2W1. Note that
δAc

is well defined because q.w ∈ R for all q ∈ Q and w ∈ ΣAc
. Without loss of

generality we may assume that R = {1, 2, . . . , r} where r = |R|.
Let P1 and P2 be some positive probability distributions on the sets W1 and

W2, respectively, and denote [Pi] =
∑

w∈Wi
Pi(w)[w] for i = 1, 2. Then the r × r

submatrix formed by the first r rows and the first r columns of the matrix

S(Ac, P2P1) = [P2][P1] =
∑

w1∈W1,w2∈W2

P1(w1)P2(w2)[w2][w1]

is the transition matrix of the Markov chain on Ac. By Proposition 1 there exists
a steady state distribution α = α(Ac) ∈ VR, that is, a stochastic vector (with
first r non-negative entries) satisfying αS(Ac, P2P1) = α.

For a vector g ∈ R
n
+, by DS(g) we denote the number of different positive

sums of entries of g, i.e. DS(g) = |{(g, z) | z ∈ {0, 1}n}| − 1.

Theorem 1. Let A = (Q,Σ, δ) be an automaton and let

B = Ac(W1,W2) = (R,W2W1, δB),

be the automaton defined as above. If W2W1 is complete for VR with respect to
α, and w0 ∈ Σ∗ is a word with Q.w0 = R, then:

1. If x ∈ VR \ 〈[R]〉, then there exists w ∈ W2W1 such that (x, α[w]) > (x, α);
2. B is synchronizing and rt(B) ≤ DS(α) − 1;
3. A is synchronizing and

rt(A) ≤
{

|w0| + rt(B)(d1 + d2) ≤ |w0| + (DS(α) − 1)(d1 + d2) if R �= Q,
1 + (DS(α) − 2)(d1 + d2) if R = Q.

Proof. Let x ∈ VR \ 〈[R]〉. We have

(x, [q]) �= (x, α) for some q ∈ R. (1)

Since [q] ∈ VR and W2W1 is complete for VR with respect to α, we can
represent it as follows:

[q] =
∑

w1∈W1,w2∈W2

λw1,w2α[w2][w1] for some λw1,w2 ∈ R. (2)

108 M. Berlinkov and M. Szyku�la

Multiplying (2) by the vector [Q] we obtain

1 = ([q], [Q]) =
∑

w1∈W1,w2∈W2

λw1,w2(α[w2][w1], [Q]) =
∑

w1∈W1,w2∈W2

λw1,w2 . (3)

Multiplying (2) by the vector x we obtain

([q], x) =
∑

w1∈W1,w2∈W2

λw1,w2(α[w2][w1], x). (4)

Arguing by contradiction, suppose (x, α[u2][u1]) = (x, α) for every u1 ∈ W1,
u2 ∈ W2. Then by (3) and (4) we get that ([q], x) = (x, α) contradicts (1). Hence
(x, α[u2][u1]) �= (x, α), for some u1 ∈ W1, u2 ∈ W2.

Since α[P2][P1] = α, we have either (x, α[u2][u1]) > (x, α) or (x, α[v2][v1]) >
(x, α) for some other v1 ∈ W1, v2 ∈ W2. Thus Claim 1 follows.

The proof of Claims 2 and 3 follows from an application of the greedy exten-
sion algorithm from Sect. 5. �
Remark 1. If W2 is complete for R

n with respect to some vector g, then W2W1

is complete for VR with respect to g.

Criterion 1. Let α be a stationary distribution of the Markov chain associated
with a strongly connected n-state automaton A by a given positive probability
distribution P on the alphabet Σ. Then A is synchronizing if and only if there
exists a set of words W which is complete for R

n with respect to α.

Proof. If A is synchronizing then for each state q ∈ Q there is a reset word wq

such that Q.wq = q. Hence, W = {wq | q ∈ Q} is complete for R
n with respect

to α, because α[wq] = [q].
Let us prove the opposite direction. Set

W1 = {ε}, W2 = Σ≤n−1, and [P2] =
1
n

n−1∑
i=0

[P]i.

Then α[P2] = α, and W2 is complete for R
n with respect to α. Hence A is

synchronizing by Theorem1. �
Now we can provide an upper bound for the reset threshold, if we can find a
short word of a small rank.

Theorem 2. Let A = (Q,Σ, δ) be a synchronizing automaton. Then there is a
unique (strongly connected) sink component S = (S,Σ, δ). Let w be a word and
denote r = |Q.w|. Let 0 < d < n be the smallest positive integer such that Σ≤d is
complete for VS with respect to any stochastic vector g ∈ VS and for each q ∈ Q
there is a word uq ∈ Σ≤d such that q.uq ∈ S ∩ Q.w. Then

rt(A) ≤
{

(|w| + d)
(

r3−r
6

) − d if r ≥ 4;
|w| + (|w| + d)(r − 1)2 if r ≤ 3.

Algebraic Synchronization Criterion and Computing Reset Words 109

Proof. Let W1 = {w}, W2 = Σ≤d, w0 = w, and let P1, P2 be arbitrary positive
distributions on W1 and W2, respectively. We define B = Ac(W1,W2) as in
Theorem 1, and consider its sink component C = Sc(W1,W2) = (QC ,Σ,W2W1).
Clearly QC = Q.w ∩ S, and W2W1 is complete for VQC

≤ VS with respect to
any stochastic vector g ∈ VQC

. By Criterion 1 we obtain that C is synchronizing.
Since for each q ∈ Q.w there is a word uq ∈ W2 and so wq ∈ W2W1 (a letter of
B) which takes q to QC , the automaton B is synchronizing.

Since B is synchronizing, |Q.w0| = r, and |u| ≤ |w| + d for each u ∈ W2W1,
we have that rt(A) ≤ |w|+rt(B)(|w|+d). By Pin’s bound for the reset threshold
in the general case [24], rt(B) ≤ r3−r

6 − 1 for r ≥ 4. �

3 The Černý Conjecture and Random Automata

Using the new bound, we can extend the class of automata for which the Černý
conjecture is proven. In particular, we can improve the result from [22], where the
Černý conjecture is proven for automata with a letter of rank at most 1+log2 n.

Corollary 1. Let A = (Q,Σ, δ) be a synchronizing automaton. If there is a
letter of rank r ≤ 3

√
6n − 6, then A satisfies the Černý conjecture.

Another corollary concerns random synchronizing automata. We consider the
uniform distribution Ps on all synchronizing binary automata with n states,
which is formally defined by Ps(A) = P (A)/Pn, where P is the uniform distri-
bution on all n2n binary automata, and Pn is the probability that a uniformly
random binary automaton is synchronizing. It is known that Pn tends to 1 as n
goes to infinity [4,20].

Given an arbitrary small ε > 0 and n large enough, Nicaud [20] proved that
with probability at least 1 − O(n−1/8+ε) a uniformly random binary automaton
has a reset word of length n1+ε. He also proved that with probability at least
1 − O(exp(n−ε/4)), some word of length n3/4+3ε(1 + o(1)) has rank at most
n1/4+2ε. Since the probability that a uniformly random binary automaton is
synchronizing tends to 1, this also holds with asymptotically at least the same
probability for random synchronizing binary automata. The following statement
is a straightforward consequence of this result and our Theorem2.

Corollary 2. For any ε > 0 and n large enough, with probability at least
1 − O(exp(n−ε/4)), a random n-state synchronizing automaton with at least two
letters has a reset word of length at most n7/4+6ε(1 + o(1)), and so satisfies the
Černý conjecture. Therefore, the expected value of the reset threshold is at most
n7/4+o(1).

4 Synchronizing Finite Prefix Codes

A finite prefix code (Huffman code) T is a set of N (N > 0) non-empty words
{w1, . . . , wN} from Σ∗, such that no word in T is a prefix of another word in T .

110 M. Berlinkov and M. Szyku�la

A finite prefix code T is maximal if adding any word w ∈ Σ∗ to T does not
result in a finite prefix code. We consider only maximal prefix codes. A reset
word for the code T is a word w such that for any u ∈ Σ∗ the word uw is a
sequence of words from T .

One can easily see that a finite prefix code corresponds naturally to a DFA
called the decoder, whose states are proper prefixes of words from this code [9].
Formally, for a finite prefix code T we have the corresponding decoder AT , which
is the DFA (Q,Σ, δ) with Q = {qv | v is a proper prefix of a word in T }, and δ
defined as follows:

δ(qv, a) =

{
qva if va �∈ T ;
qε otherwise.

Clearly, a reset word w for a code is a reset word for its decoder, and Q.w = {qε}.
A decoder naturally corresponds to a rooted k-ary tree, thus the number of states
n = (kN − 1)/(k − 1), and it does not depend on the length of the words in the
code.

In [8,9] Biskup and Plandowski gave an O(nh log n) upper bound for the
reset thresholds of binary decoders, where h is the maximum length of a word
from the code. Since h can be linear in terms of n, this is an O(n2 log n) general
bound. Later, it was improved to O(n2) in [2]. However, in the worst case, only
decoders with a reset threshold in Θ(n) are known [9], and it was conjectured
that every synchronizing decoder possess a synchronizing word of length O(n).
Thus, there was a big gap between the upper and lower bounds for the worst
case. The following lemma is a simple generalization of [9, Lemma 14] to k-ary
decoders.

Lemma 1. Let AT = (Q,Σ, δ) be the n-state k-ary synchronizing decoder of a
finite prefix code T . There is a word w of rank r ≤ �logk n� and length r.

Since there exists a short word of small rank r, we can apply Theorem 2 to
improve the general upper bounds for the reset threshold of decoders.

Corollary 3. Let AT = (Q,Σ, δ) be the n-state k-ary synchronizing decoder of
a finite prefix code T , and let r = �logk n�. Then

rt(AT) ≤
{

2 + (r + n − 1)(r3−r
6 − 1) if r ≥ 4;

2 + (r + n − 1)(r − 1)2 if r ≤ 3.

If the size k of the alphabet is fixed, Corollary 3 yields O(n log3 n) upper bound
for the reset threshold, and O(n log2 n) upper bound for the length of a word
compressing a pair of states of a decoder.

Note that the word w from Lemma 1 can be easily computed in O(n2) time,
since there are O(n) words of length at most �logk n�. Then a reset word within
the bound of Corollary 3 can be computed in polynomial time by the algorithm
discussed in Sect. 5.

Algebraic Synchronization Criterion and Computing Reset Words 111

5 Finding Reset Words of the Bounded Lengths

Throughout this section suppose we are given a strongly connected automaton
A , a word w0 such that Q.w0 = R for some R ⊆ Q, a non-empty polynomial
set of words W1 with a positive distribution P1, and a set of words W2 with a
positive distribution P2, which satisfy Theorem 1.

Consider the case when W2 is of polynomial size. Then we can calculate the
dominant eigenvector α ∈ R

n of the matrix [P2][P1]. Under certain assumptions
on rationality of the distributions, it can be done in polynomial time.Next, depend-
ing on whether the bound is obtained by Theorem2 or Claim 2 of Theorem 1, we
use either a greedy compressing algorithm (such as in [14]), or the following greedy
extension algorithm, respectively.

The Greedy Extension Algorithm. We start from x0 = [q] for q ∈ R and
by Claim 1 of Theorem 1 find u0 ∈ W2W1 such that (x0, α[u0]) > (x0, α). For
i = 0, 1, . . . following this way until xi ∈ 〈[R]〉, find for xi+1 = xi[ui]t a word
ui+1 ∈ W2W1 such that (xi+1, α[ui+1]) > (xi+1, α). Since xi is a 1-0 vector, we
need at most DS(α) − 1 steps until xi = [q]([uiui−1 . . . u0])t = [R]. As the result
we return the word w0uiui−1 . . . u0. Notice that in the case when R = Q we can
choose q such that for some letter a ∈ Σ, we have |q.a−1| > 1 and set u0 = a. �
The problem is that usually W2 is given by Σ≤d for some d = poly(n). The
following reduction procedure allows to replace potentially exponential set W2

with a polynomial set of words W , whose the longest words are not longer than
those of W2.

The Reduction Procedure. The procedure takes a number d ≥ 0, and returns
a polynomial subset W ⊆ Σ≤d such that 〈W 〉 = 〈Σ≤d〉 and the maximum length
of words from W is the shortest possible.

We start with V0 = {In} and W = {ε}. In each iteration i ∈ {1, 2, . . .} we
first set Vi+1 = Vi. Then we subsequently check each letter a ∈ Σ and each word
u ∈ W of length i: If the matrix [ua] does not belong to the subspace Vi+1, we
add the word ua to W and the matrix [ua] to the basis of Vi+1. We stop the
procedure at the first iteration where nothing is added.

Since in an i-th iteration we have considered a ∈ Σ and u ∈ W of length less
than i in the previous iterations, by induction we get

Vi = 〈In(W ∩ Σ≤i)〉 = 〈InΣ≤i〉.

It follows from the ascending chain argument (see e.g. [18,26]) that for some
j < n we have

Vj = Vj+1 =

Thus the procedure is stopped at the first such j, and j ≤ min{d, n−1}. We get
that 〈W 〉 = Vj = 〈Σd〉. Since in each step we add only independent matrices as
the basis of Vi+1, we get |W | = dim(Vj). Also the lengths of words in W are at
most j ≤ min{d, n − 1}. �

112 M. Berlinkov and M. Szyku�la

Using the reduction procedure for total completeness we can replace Σd from
Theorem 2 by a polynomial W which is also complete for VS with respect to any
stochastic vector g ∈ VS . Hence, this yields a polynomial time algorithm finding
reset words of lengths within the bound of Theorem2.

In some situations we are interested only in completeness with respect to a
given vector α. Then we can find a reduced set W of potentially shorter words
than that obtained by the general reduction procedure.

The Reduction Procedure for α-Completeness. The procedure takes a
number d ≥ 0 and a vector α ∈ R

n, and returns a polynomial subset W ⊆ Σ≤d

such that 〈αW 〉 = 〈αΣ≤d〉 and the maximum length of words from W is the
shortest possible.

We just follow the general reduction procedure, where instead of matrix
spaces we consider vector spaces. It is enough to replace I0 by α, and we obtain
〈αW 〉 = Vj = 〈αΣ≤d〉. �
Remark 2. Instead of Σ≤d the reduction procedures can also reduce any set
of words W ′ ⊂ Σ∗ that is factor-closed. A set of words W ′ is factor-closed if
uvw ∈ W ′ implies that uw ∈ W ′, for each u, v, w ∈ Σ∗.

5.1 Synchronizing Quasi-Eulerian Automata

Let α be the probability distribution on Σ≤d induced by a probability distrib-
ution P : Σ �→ R

+ on the alphabet, that is, [P2] = 1
d+1

∑d
i=0[P]i. Suppose that

d < poly(n) is such that Σ≤d is complete for R
n with respect to α. Using the

reduction procedure, we can construct a set U of at most n words such that
〈αU〉 = 〈αΣ≤d〉 = R

n. However, α is not necessarily the stationary distribution
for some positive probability distribution on U . The following lemma solves this
problem.

Lemma 2. Let W = {au | u ∈ Suff(U), a ∈ Σ}, where Suff(U) is the set of
proper suffixes of U . Then there exists a positive probability distribution on W
such that α is the corresponding stationary distribution.

As an application we get a polynomial algorithm for finding a reset word for the
class of quasi-Eulerian automata, a generalization of Eulerian automata. We call
an automaton A quasi-Eulerian with respect to an integer c ≥ 0 if it satisfies
the following two conditions:

1. there is a subset Ec ⊆ Q containing n − c states such that only one of these
states, say s, can have incoming edges from the set Q \ Ec;

2. there exists a positive probability distribution P on Σ such that the columns
of the matrix [P] that correspond to the states from Ec \ {s} sum up to 1.

Within this definition, for c = 0 we get so-called pseudo-Eulerian automata,
and if additionally P is uniform on Σ, then we get Eulerian automata. The
upper bound 1+(n−2)(n−1) on the reset thresholds of Eulerian automata was

Algebraic Synchronization Criterion and Computing Reset Words 113

found by Kari [18], and extended to the class of pseudo-Eulerian automata by
Steinberg [25]. These results were generalized in [5, Corollary 11] by showing the
upper bound 2c(n − c + 1)(n − 1) for the class of quasi-Eulerian automata with
respect to a non-negative integer c. The following theorem gives a polynomial
time algorithm for finding reset words satisfying these bounds.

Theorem 3. Given a synchronizing automaton A which is quasi-Eulerian with
respect to an integer c ≥ 0, there is a polynomial time algorithm for finding a
reset word of length at most:

{
2c(n − c + 1)d if c > 0;
1 + (n − 2)d if c = 0,

where d ≤ n − 1 is the smallest integer such that Σ≤d is complete.

5.2 Synchronizing Quasi-One-Cluster Automata

The underlying digraph of a letter a ∈ Σ is the digraph with edges labeled by
a. Every connected component, called cluster, in the underlying digraph of a
letter has exactly one cycle, and possible some trees rooted on this cycle. An
automaton A = (Q,Σ, δ) is called one-cluster if there is a letter a ∈ Σ whose
underlying digraph has only one cluster. An automaton A is quasi-one-cluster
with respect to an integer c ≥ 0 if it has a letter whose underlying digraph has
a cluster such that there are at most c states in the cycles of all other clusters.
Clearly, one-cluster automata are quasi-one-cluster with respect to c = 0.

The Černý conjecture was proved for one-cluster automata with prime length
cycle [26]. Also, quadratic bounds for the reset thresholds in the general case of
one-cluster automata were presented [2,3,10,25]. In [5] the upper bound 2c(2n−
c − 2)(n − c + 1) was proved for quasi-one-cluster with respect to c.

The following theorem gives a polynomial algorithm finding a reset word for
quasi-one-cluster automata, whose length is of the mentioned bounds. It can be
also easily modified to deal with the bounds from [10] for one-cluster automata.

Theorem 4. Let A be a synchronizing automaton that is quasi-one-cluster with
respect to a letter a and c ≥ 0. Let C be the largest cycle of a and h be the maximal
height of the trees labeled by a. Let W1 = {ah+i | i ∈ {0, . . . , |C| − 1}}. Then
there is a polynomial algorithm for finding a reset word for A of length at most

{
2c(2n − c)(n − c + 1) if c > 0;
1 + (2n − r)(n − 2) if c = 0,

where r is the smallest dimension of 〈W1β〉 for β ∈ VC \ 〈[C]〉. In particular, if
|C| is prime then r = |C|.

114 M. Berlinkov and M. Szyku�la

References

1. Ananichev, D., Gusev, V., Volkov, M.: Slowly synchronizing automata and
digraphs. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281, pp.
55–65. Springer, Heidelberg (2010)

2. Béal, M.P., Berlinkov, M.V., Perrin, D.: A quadratic upper bound on the size of
a synchronizing word in one-cluster automata. Int. J. Found. Comput. Sci. 22(2),
277–288 (2011)

3. Béal, M.-P., Perrin, D.: A quadratic upper bound on the size of a synchronizing
word in one-cluster automata. In: Diekert, V., Nowotka, D. (eds.) DLT 2009. LNCS,
vol. 5583, pp. 81–90. Springer, Heidelberg (2009)

4. Berlinkov, M.V.: On the probability to be synchronizable (2013).
http://arxiv.org/abs/1304.5774

5. Berlinkov, M.V.: Synchronizing quasi-eulerian and quasi-one-cluster automata. Int.
J. Found. Comput. Sci. 24(6), 729–745 (2013)

6. Berlinkov, M.V.: On two algorithmic problems about synchronizing automata. In:
Shur, A.M., Volkov, M.V. (eds.) DLT 2014. LNCS, vol. 8633, pp. 61–67. Springer,
Heidelberg (2014)

7. Berlinkov, M.V., Szyku�la, M.: Algebraic synchronization criterion and computing
reset words (2014). http://arxiv.org/abs/1412.8363

8. Biskup, M.T.: Shortest synchronizing strings for huffman codes. In: Ochmański,
E., Tyszkiewicz, J. (eds.) MFCS 2008. LNCS, vol. 5162, pp. 120–131. Springer,
Heidelberg (2008)

9. Biskup, M.T., Plandowski, W.: Shortest synchronizing strings for huffman codes.
Theoret. Comput. Sci. 410(38–40), 3925–3941 (2009)

10. Carpi, A., D’Alessandro, F.: Independent sets of words and the synchronization
problem. Adv. Appl. Math. 50(3), 339–355 (2013)

11. Carpi, A., D’Alessandro, F.: Černý-like problems for finite sets of words. In: Pro-
ceedings of the 15th Italian Conference on Theoretical Computer Science, Perugia,
Italy, September 17–19, 2014. pp. 81–92 (2014)

12. Černý, J.: Poznámka k homogénnym eksperimentom s konečnými automatami.
Matematicko-fyzikálny Časopis Slovenskej Akadémie Vied 14(3), 208–216 (1964)

13. Dubuc, L.: Sur les automates circulaires et la conjecture de C̆erný. Informatique
Théorique et Applications 32, 21–34 (1998)

14. Eppstein, D.: Reset sequences for monotonic automata. SIAM J. Comput. 19,
500–510 (1990)

15. Gawrychowski, P., Straszak, D.: Strong inapproximability of the shortest reset
word. In: Italiano, G.F., et al. (eds.) MFCS 2015, Part I, LNCS 9234, pp. 243–255.
Springer, Heidelberg (2015)

16. Gerbush, M., Heeringa, B.: Approximating minimum reset sequences. In:
Domaratzki, M., Salomaa, K. (eds.) CIAA 2010. LNCS, vol. 6482, pp. 154–162.
Springer, Heidelberg (2011)

17. Jürgensen, H.: Synchronization. Inform. Comput. 206(9–10), 1033–1044 (2008)
18. Kari, J.: Synchronizing finite automata on Eulerian digraphs. Theoret. Comput.

Sci. 295(1–3), 223–232 (2003)
19. Kari, J., Volkov, M.V.: Černý’s conjecture and the road coloring problem. In:

Handbook of Automata. European Science Foundation (to appear)
20. Nicaud, C.: Fast synchronization of random automata (2014).

http://arxiv.org/abs/1404.6962

http://arxiv.org/abs/1304.5774
http://arxiv.org/abs/1412.8363
http://arxiv.org/abs/1404.6962

Algebraic Synchronization Criterion and Computing Reset Words 115

21. Olschewski, J., Ummels, M.: The complexity of finding reset words in finite
automata. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281, pp.
568–579. Springer, Heidelberg (2010)

22. Pin, J.E.: Utilisation de l’algèbre linéaire en théorie des automates. In: Act. Col-
louq. AFCET-SMF Math. Appl. II. pp. 85–92. AFCET (1978)

23. Pin, J.E.: Sur un cas particulier de la conjecture de Černý. Automata, Languages
and Programming. LNCS, pp. 345–352. Springer, Heidelberg (1978). in French

24. Pin, J.E.: On two combinatorial problems arising from automata theory. In: Pro-
ceedings of the International Colloquium on Graph Theory and Combinatorics,
vol. 75, pp. 535–548. North-Holland Mathematics Studies (1983)

25. Steinberg, B.: The averaging trick and the Černý conjecture. Int. J. Found. Com-
put. Sci. 22(7), 1697–1706 (2011)

26. Steinberg, B.: The Černý conjecture for one-cluster automata with prime length
cycle. Theoret. Comput. Sci. 412(39), 5487–5491 (2011)

27. Volkov, M.V.: Synchronizing automata and the Černý conjecture. In: Mart́ın-Vide,
C., Otto, F., Fernau, H. (eds.) LATA 2008. LNCS, vol. 5196, pp. 11–27. Springer,
Heidelberg (2008)

Recurrence Function on Sturmian Words:
A Probabilistic Study

Valérie Berthé1, Eda Cesaratto2, Pablo Rotondo3,
Brigitte Vallée4(B), and Alfredo Viola3

1 LIAFA, CNRS UMR 7089, University Paris Diderot, Paris, France
berthe@liafa.univ-paris-diderot.fr

2 Conicet and Universidad Nacional de General Sarmiento, Buenos Aires, Argentina
ecesarat@ungs.edu.ar

3 Universidad de la República, Montevideo, Uruguay
pabloedrot@gmail.com, viola@fing.edu.uy

4 GREYC, CNRS UMR 6072, University de Caen, Caen, France
brigitte.vallee@unicaen.fr

Abstract. This paper is a first attempt to describe the probabilistic
behaviour of a random Sturmian word. It performs the probabilistic
analysis of the recurrence function which provides precise information
on the structure of such a word. With each Sturmian word of slope α,
we associate particular sequences of factor lengths which have a given
“position” with respect to the sequence of continuants of α, we then let
α to be uniformly drawn inside the unit interval [0,1]. This probabilistic
model is well-adapted to better understand the role of the position in
the recurrence properties.

1 Introduction

The recurrence function measures the “complexity” of an infinite word and
describes the possible occurrences of finite factors inside it together with the
maximal gaps between successive occurrences. This recurrence function is thus
widely studied, notably in the case of Sturmian words (see [3,9]) which are in a
precise sense the simplest infinite words which are not eventually periodic (see
e.g. [8]). With each Sturmian word is associated an irrational number α, and
many of its characteristics depend on the continued fraction expansion of α.
This is in particular the case for the recurrence function n �→ Rα(n), where
the integer Rα(n) is the length of the smallest “window” which is needed for
discovering the set Lα(n) of all the finite factors of length n inside α. As this
set Lα(n) is widely used in many applications of Sturmian words (for instance
quasicrystals, or digital geometry), the function n �→ Rα(n) thus intervenes very
often as a pre-computation cost, and it is important to better understand this
function “on average”, when the real α is randomly chosen in the unit interval.

Most of the classical studies on the recurrence function deal with a fixed α,
and the usual focus is put on extremal behaviours of the recurrence function.

c© Springer-Verlag Berlin Heidelberg 2015
G.F. Italiano et al. (Eds.): MFCS 2015, Part I, LNCS 9234, pp. 116–128, 2015.
DOI: 10.1007/978-3-662-48057-1 9

Recurrence Function on Sturmian Words: A Probabilistic Study 117

Here, we adopt a “dual” approach which is probabilistic: with each α, we asso-
ciate particular sequences of indices n (i.e., factor lengths), which have a given
“position” with respect to the sequence of continuants (qk(α))k, we then let α
be uniformly drawn inside the unit interval, and we perform a probabilistic study
to better understand the role of the position in the recurrence function.

The expression of the recurrence function is recalled in Sect. 2. Our viewpoint
and our main results are given in Sect. 3. Proofs are provided in Sect. 4.

2 The Recurrence Function of Sturmian Words

Notation. In the sequel ϕ = (
√

5 − 1)/2 = 0.6180339 . . . stands for the inverse
of the golden ratio, and for two integers a, b, the set of integers n that satisfy
a ≤ n ≤ b is denoted by [[a, b]] := [a, b] ∩ N.

We consider a finite set A of symbols, called alphabet. Let u = (un)n∈N be an
infinite word in AN. A finite word w of length n is a factor of u if there exists an
index m for which w = um . . . um+n−1. Let Lu(n) stand for the set of factors of
length n of u. Two functions describe the set Lu(n) inside the word u, namely
the complexity and the recurrence function.

The (factor) complexity function of the infinite word u is defined as the
sequence n �→ pu(n) := |Lu(n)|. The eventually periodic words are the simplest
ones, in terms of the complexity function, and satisfy pu(n) ≤ n for some n.
The simplest words that are not eventually periodic satisfy the equality pu(n) =
n + 1 for each n ≥ 0. Such words do exist, they are called Sturmian words.
Moreover, Morse and Hedlund provided a powerful arithmetic description of
Sturmian words (see also [8] for more on Sturmian words).

Proposition 1 (Morse and Hedlund [9]). Associate with a pair (α, β) ∈
[0, 1]2 the two infinite words S(α, β) and S(α, β) whose n-th symbols are
respectively

un = 	α(n + 1) + β
 − 	αn + β
, un = �α(n + 1) + β� − �αn + β�.
Then a word u ∈ {0, 1}N is Sturmian if and only if it equals S(α, β) or S(α, β)
for a pair (α, β) formed with an irrational α ∈]0, 1[and a real β ∈ [0, 1[.

It is also important to study where finite factors occur inside the infinite word
u. An infinite word u ∈ AN is uniformly recurrent if every factor of u appears
infinitely often and with bounded gaps. More precisely, denote by wu(q, n) the
minimal number of symbols uk with k ≥ q which have to be inspected for
discovering the whole set Lu(n) from the index q. Then, the integer wu(q, n) is
a sort of “waiting time”. Then u is uniformly recurrent if each set {wu(q, n);
q ∈ N} is bounded, and the recurrence function n �→ Ru(n) is defined as

Ru(n) := max{wu(q, n); q ∈ N}.

We then recover the usual definition: Any factor of length Ru(n) of u contains
all the factors of length n of u, and the length Ru(n) is the smallest integer which
satisfies this property. The inequality Ru(n) ≥ pu(n) + n − 1 thus holds.

118 V. Berthé et al.

Any Sturmian word is uniformly recurrent. Its recurrence function only
depends on the slope α and is thus denoted by n �→ Rα(n). Moreover, it only
depends on α via its continuants. We now recall this notion which plays a central
role in the paper. Consider the continued fraction expansion of the irrational α

α =
1

m1 +
1

. . . +
1

mk +
1
. . .

= [m1,m2, . . . , mk, . . .].

The positive integers mk are called the partial quotients. The truncated expan-
sion [m1, . . . , mk] at depth k defines a rational, and the continuant qk(α) is the
denominator of this rational. The continuant sequence satisfies q−1 = 0, q0 = 1
and for any k ≥ 1 the recurrence qk = mkqk−1 + qk−2 for all k.

The following result due to Morse and Hedlund relates the recurrence func-
tion Rα(n) and the sequence k �→ qk(α) (Fig. 1).

Proposition 2 (Morse and Hedlund [9]). For any Sturmian word of slope
α, the recurrence function n �→ Rα(n) is piecewise affine and satisfies

Rα(n) = n − 1 + qk(α) + qk−1(α), for any n ∈ [[qk−1(α), qk(α) − 1]].

Fig. 1. Two instances of recurrence functions n �→ Rα(n) associated with α = ϕ2 (left)
and α = 1/e (right), with ϕ = (

√
5 − 1)/2 being the inverse of the golden ratio.

It is thus natural to study the quotient S(α, n) := (Rα(n) + 1)/n. When
n belongs to the interval [[qk−1(α), qk(α) − 1]], this quotient depends itself on
two quotients: the quotient xk(α) := qk−1(α)/qk(α), and the quotient yk(α) :=
n/qk(α), and

S(α, n) :=
Rα(n) + 1

n
= 1 +

1 + xk(α)
yk(α)

. (1)

Recurrence Function on Sturmian Words: A Probabilistic Study 119

As yk(α) belongs to the interval [xk(α), 1], the following bounds hold

2 + xk(α) ≤ Rα(n) + 1
n

≤ 2 +
1

xk(α)
(2)

(the lower bound holds for n close to qk(α) whereas the upper bound is attained
for n = qk−1(α)).

The ratio xk(α) belongs to]0, 1], and the Borel-Bernstein Theorem (see e.g.
[6]) proves that lim infk→∞ xk(α) = 0 for almost any irrational α. More precisely:

Proposition 3. (i) For any irrational real α, one has

lim inf
n→∞

Rα(n)
n

≤ 3.

(ii) [Morse and Hedlund] [9] For almost any irrational α, one has

lim sup
n→∞

Rα(n)
n log n

= +∞, and lim sup
n→∞

Rα(n)
n(log n)1+ε

= 0 for ε > 0.

3 Probabilistic Model and Main Results

The two extreme bounds in Eq. (2) may be very different, notably when xk(α) is
small. We wish to study the behaviour of the ratio S(α, n) when n is any integer
in [[qk−1(α), qk(α) − 1]]. Equation (1) shows the role of the quotient n/qk (called
yk(α) there) and leads to the notion of position.

3.1 Position

We consider a fixed sequence (μk)k with values in [0, 1[, and for each α ∈ I :=
[0, 1], and each k ∈ N, we consider the real number at (barycentric) position μk

inside the interval [[qk−1(α), qk(α) − 1]], namely

ñ
〈μk〉
k (α) := qk−1(α) + μk(qk(α) − qk−1(α)),

together with its integer part (which belongs to [[qk−1(α), qk(α) − 1]]),

n
〈μk〉
k (α) = 	ñ〈μk〉

k (α)
 = qk−1(α) + 	μk(qk(α) − qk−1(α))
.

The subsequence (n〈μk〉
k (α))k is the subsequence associated with the positions

μk.
We are interested in the subsequence of n �→ S(α, n) associated with the

subsequence {n
〈μk〉
k (α), k ∈ N}, and we then let S

〈μk〉
k (α) := S(α, n

〈μk〉
k (α)),

namely

S
〈μk〉
k (α) = 1 +

qk−1(α) + qk(α)

n
〈μk〉
k (α)

= 1 +
qk−1(α) + qk(α)

qk−1(α) + 	μk(qk(α) − qk−1(α)
 . (3)

120 V. Berthé et al.

If we drop the integer part in the expression of S
〈μk〉
k , we deal with the sequence

S̃
〈μk〉
k (α) := S(α, ñ

〈μk〉
k (α)), namely,

S̃
〈μk〉
k (α) = 1 +

qk−1(α) + qk(α)

ñ
〈μk〉
k (α)

= 1 +
qk−1(α) + qk(α)

qk−1(α) + μk(qk(α) − qk−1(α))
, (4)

which is expressed with the two sequences (xk(α))k and (μk) as

S̃
〈μk〉
k (α) = fμk

(xk(α)) with fμ(x) := 1 +
1 + x

x + μ(1 − x)
. (5)

The study of the function fμ provides a precise knowledge on the sequence
S̃

〈μk〉
k (α), that may be “tranfered” to the sequence S

〈μk〉
k (α) since the two

sequences are “close enough”. The following result provides such a first instance
of this strategy:

Proposition 4. Consider a sequence (μk)k with μk ∈ [0, 1], and let α ∈ [0, 1]\Q.

(i) Denote by mk the k-th partial quotient of α. Then, xk(α) ≤ 1/(mk + 1) and

S̃
〈μk〉
k (α) ∈

[
1 +

mk + 2
μkmk + 1

, 3
]

or S̃
〈μk〉
k (α) ∈

[
3, 1 +

mk + 2
μkmk + 1

]

depending whether μk ∈ [1/2, 1] or μk ∈ [0, 1/2].

(ii) The sequence S
〈μk〉
k (α) is bounded if α has bounded partial quotients or if the

sequence (μk) admits a strictly positive lower bound.

Proof. The map fμ : [0, 1] → R is strictly decreasing when μ ∈]0, 1/2[, and
strictly increasing when μ ∈]1/2, 1[. This is the constant function equal to 3 when
μ = 1/2. For any a ∈]0, 1[, the image fμ([a, 1]) is the interval with endpoints 3
and fμ(a). This proves Assertion (i).

With the two inequalities

ñ
〈μ〉
k ≥ n

〈μ〉
k ≥ qk−1 ≥ ϕ1−k, 0 ≤ ñ

〈μ〉
k − n

〈μ〉
k ≤ 1,

we obtain the inequality

0 ≤ S
〈μ〉
k − S̃

〈μ〉
k =

qk + qk−1

n
〈μ〉
k · ñ

〈μ〉
k

(ñ〈μ〉
k − n

〈μ〉
k) ≤ 1

qk−1

qk + qk−1

ñ
〈μ〉
k

≤ ϕk−1S̃
〈μ〉
k , (6)

and we apply (i).

3.2 Probabilistic Model

Let us describe now our probabilistic model. We choose a sequence (μk)k of
positions that will be fixed. This defines, for each real α, a sequence of indices
nk := n

〈μk〉
k , and then a sequence of real numbers k �→ S

〈μk〉
k (α). When the real

Recurrence Function on Sturmian Words: A Probabilistic Study 121

α is random, and uniformly drawn in the unit interval I = [0, 1], the sequence
k �→ S

〈μk〉
k becomes a sequence of random variables, and we study the mean

value and the distribution of the sequence k �→ S
〈μk〉
k for k → ∞.

For any position, the index n
〈μk〉
k belongs to the interval [[qk−1, qk −1]]. Then,

as the expectations for α ∈ [0, 1] of the two extreme sequences k �→ log qk−1(α),
k �→ log qk(α) satisfy the same estimates (see [7]), it is also the case for the
expectation for α ∈ [0, 1] of the sequence k �→ log n

〈μk〉
k (α). It thus satisfies

E[log n
〈μk〉
k] =

π2

12 log 2
k + O(1), (7)

and it is of linear growth with respect to k.

3.3 Results for a Constant Position µ

We first consider the case where the sequence (μk)k is a constant sequence that
takes a fixed value μ, and we study the expectation and the distribution of the
sequence k �→ S

〈μ〉
k of random variables, when k → ∞, as a function of the

position μ. Theorem 1 below shows that there are two main cases (Fig. 2):

(a) the case when μ = 0; here, the expectations are infinite, but the functions
k �→ S

〈0〉
k admit a limit density;

(b) the case when μ �= 0; here, both the expectations and the densities have a
finite limit; the case μ = 1/2 is particular, as the limit density is a Dirac
measure, concentrated at the value 3.

For indices n associated with parameters μ satisfying μ ≥ μ0 > 0, we exhibit a
behaviour for the sequence n �→ Rα(n) which is thus “linear on average”; the
“log n” behaviour of Proposition 3 does not occur in this case.

Theorem 1 (Fixed position μ). Let ϕ = (
√

5−1)/2 < 1. The following holds
for the random variables S

〈μ〉
k .

Fig. 2. On the left, the graph of limk→∞ E[S
〈μ〉
k] as a function of μ. On the right, the

graph of the density s〈0〉.

122 V. Berthé et al.

(i) [Expectations] For each μ ∈]0, 1], their expected values E[S〈μ〉
k] satisfy

E[S〈μ〉
k] = 1 +

1
log 2

| log μ|
1 − μ

+ O

(
ϕ2k

μ

)
+ O

(
ϕk | log μ|

1 − μ

)
, (8)

with the constants in the O–term being uniform with respect to μ and k.
(ii) [Limit density] For each μ ∈ [0, 1] with μ �= 1/2, they admit a limit density

s〈μ〉 equal to

s〈μ〉(x) =
1

log 2

(
1

(x − 1) |x(1 − μ) + μ − 2|
)
1Iµ

(x), (9)

where Iμ is the real interval with endpoints 3 and 1 + 1/μ.
More precisely, for any b ∈ Iμ, one has

P

[
S

〈μ〉
k ≤ b

]
=

∫ b

0

s〈μ〉(x) dx +
1
b
O

(
ϕk

)
,

where the constant of the O–term is uniform with respect to b and k. It is
also uniform with respect to μ when μ satisfies |μ−1/2| ≥ μ0 for any μ0 > 0.

3.4 Results When the Sequence µk → 0

We now focus on the difficult case, when the sequence (μk)k is no longer constant,
and we consider a sequence (μk)k of positions which tends to 0. We first consider
in Theorem 2 below sequences (μk)k which tend exponentially fast to 0, and we
observe that the expectations are of order k. We then consider general sequences
(μk)k which tend to 0, and we show that the associated random variables admit a
limit density, with a speed of convergence which depends on the sequence (μk)k.

Theorem 2 (Sequence μk → 0). The following holds for the random variables
S

〈μ〉
k associated with a sequence μk → 0.

(i) [Expectations] Consider the sequence μk = τk, with τ ∈ [ϕ2, 1[. Then

E[S〈τk〉
k] = k

| log τ |
log 2

+ O(1), (10)

where the constant hidden in the O–term is uniform with respect to τ and k.
For any α, and for each τ ∈ [ϕ2, 1[, there exists an increasing subsequence
N (α, τ) of indices n for which

E

[
Rα(n)

n
− 12| log τ |

π2
log n

]
= O(1) (n → ∞). (11)

For any τ < 1, if μk is drawn uniformly in [0, 1], the conditional expectation
with respect to the event [μk ≥ τk] satisfies

lim
k→∞

E

[
S

〈μk〉
k

∣∣∣[μk ≥ τk]
]

= 1 +
π2

6 log 2
.

Recurrence Function on Sturmian Words: A Probabilistic Study 123

(ii) [Limit density] For any sequence μk → 0, the random variables S
〈μk〉
k admit

as limit density the density s〈0〉 equal to

s〈0〉(x) =
1

log 2
1

(x − 1)(x − 2)
1[3,∞](x).

More precisely, for any b ≥ 3, the probability P[S〈μk〉
k ≥ b] satisfies

P[S〈μk〉
k ≥ b] =

1
log 2

log
(

b − 1
b − 2

)
+ O(μk) +

1
b
O

(
ϕk

)
,

where the constants hidden in the O–term are uniform to respect to b and k.
If now the sequences (bk)k and (μk)k satisfy the following three conditions
(bk → ∞, μk → 0 with bkμk → 0), then

lim
k→∞

bk · P
[
S

〈μk〉
k ≥ bk

]
=

1
log 2

.

Remark 1. The estimate (7) together with (10) yields (11). We have then exhib-
ited a log n behaviour “on average” for the ratio Rα(n)/n for (an infinity of)
particular subsequences n (which depend on α). On the contrary, when the posi-
tion is not too small, the ratio Rα(n)/n remains bounded (on average).

4 Strategy for the Proofs.

We begin with Theorem 1 which deals with a fixed position μ. There are three
main steps in the proof of Theorem 1.

(i) We drop the integer part in the expression of S
〈μ〉
k and deal with the sequence

S̃
〈μ〉
k (α) that can be written as fμ(xk(α)) (see (5))). This is an instance of a

smooth sequence (as defined in Sect. 4.1 below). We express its mean value
and its distribution with the k-th iterate of the Perron Frobenius operator H.

(ii) With the spectral properties of the operator H (described in Sect. 4.2), when
acting on the Banach space BV (I) of the functions of bounded variation on
the unit interval I, we obtain the asymptotics of the expectations and the
expression of the limit distribution, always for the sequence S̃

〈μ〉
k .

(iii) We return to the initial sequence S
〈μ〉
k with the following estimates

E[S〈μ〉
k] = E[S̃〈μ〉

k]
(
1 + O(ϕk)

)
, P[S〈μ〉

k ≤ b] − P[S̃〈μ〉
k ≤ b] = O

(
ϕk

b

)
, (12)

which are refinements of Eq. (6) and will be proven in an extended version.

Since the probabilistic estimates obtained in Theorem 1 are uniform with
respect to μ and k, we may extend them to the case where μ depends on k,
and we may study the interesting case where the sequence (μk)k tends to 0 for
k → ∞. We then obtain the results of Theorem 2.

Remark 2. There are two error terms in the asymptotic estimates (8) of the
expectations. The first one comes from the spectral gap of the Perron-Frobenius
operator and the second one arises when one takes into account integer parts in
the definition of S

〈μ〉
k .

124 V. Berthé et al.

4.1 Smooth Sequences

The sequence S̃
〈μ〉
k provides an instance of a smooth sequence, defined as follows:

Definition 1. A sequence of random variables (Tk) defined on the unit interval
I = [0, 1] is a smooth sequence if there exists a function f ∈ BV (I) for which

Tk(α) = f(xk(α)) with xk(α) =
qk−1(α)
qk(α)

for all α ∈ I.

Here, we deal with the function fμ defined in (5), whose inverse map gμ is

gμ : fμ(I) �→ [0, 1], gμ(x) =
−1 − μ + μx

2 − μ − x(1 − μ)
.

For μ ∈]0, 1[, the function fμ is integrable on I, and its L1–norm satisfies

‖fμ‖L1 = 1 +
1

1 − μ
+

1 − 2μ

(1 − μ)2
| log μ|, ‖f1‖L1 = 5/2.

Moreover, always for μ ∈]0, 1[, the function fμ is monotonic and thus of bounded
variation, with a total variation equal to (1/μ)|1−2μ|, hence ‖fμ‖BV = O(1/μ).
Remark that f0 does not belong to BV (I).

We now recall some basic facts on the underlying dynamical system, together
with the Perron-Frobenius operator, that will be useful in the sequel.

4.2 The Dynamical System and the Perron-Frobenius Operator

The Underlying Dynamical System. We consider the dynamical system
(I, V) associated with the unit interval I and the Gauss map V , defined by

V (x) =
1
x

−
⌊

1
x

⌋
=

{
1
x

}
for x �= 0, V (0) = 0.

The map V builds the continued fraction expansion of α, via the function
m(α) := 	1/α
, as

α = [m1,m2, . . . , mk, . . .] with mk+1(α) = m(V k(α)) for all k ≥ 0.

The inverse branches of V belong to the set

H :=
{

hm : x �→ 1
m + x

; m ≥ 1
}

,

and the inverse branches of V k belong to the set

Hk = {hm1 ◦ hm2 ◦ . . . ◦ hmk
: m1, . . . , mk ≥ 1} .

Recurrence Function on Sturmian Words: A Probabilistic Study 125

For a k-uple m = (m1,m2, . . . , mk), let hm := hm1 ◦ hm2 ◦ . . . ◦ hmk
. The linear

fractional transformation hm is expressed with two sequences of continuants
(pk)k, (qk)k under the form

hm(x) = hm1 ◦ hm2 ◦ . . . ◦ hmk
(x) =

1

m1 +
1

. . . +
1

mk + x

=
pk−1 x + pk

qk−1 x + qk
.

Remark that the continuants qk, pk which are just defined only depend on the
k-uple m = (m1,m2, . . . , mk). However, there is no conflict with our previous
definition of the sequence qk(α) given in Sect. 2, since, for any α which belongs
to the interval hm(I), the equality qk(α) = qk(m) holds.

The mirror property (described for instance in [1]) relates the coefficients of
h = hm1 ◦ hm2 ◦ . . . ◦ hmk

and those of its mirror ĥ := hmk
◦ hmk−1 ◦ . . . ◦ hm1 :

h(y) =
pk−1y + pk

qk−1y + qk
=⇒ ĥ(y) =

pk−1y + qk−1

pky + qk
.

Perron-Frobenius Operator. When the unit interval is endowed with a den-
sity f , after one iteration of V , it is endowed with the density

H[f](x) :=
∑
h∈H

|h′(x)| · f ◦ h(x),

and after k iterations of V , with the density

Hk[f](x) =
∑

h∈Hk

|h′(x)| · f ◦ h(x).

The operator H is called the Perron Frobenius operator.
Now, at x = 0, the two maps h and ĥ satisfy |h′(0)| = |ĥ′(0)| = 1/q2k, and the

equality qk−1/qk = ĥ(0) holds. With this remark, the k-th iterate Hk generates
the continuants qk,

Hk[f](0) =
∑

h∈Hk

1
q2k

f

(
pk

qk

)
=

∑
h∈Hk

1
q2k

f

(
qk−1

qk

)
. (13)

We now summarize some classical spectral properties of the operator H (see
e.g. [6] or [2]). When acting on the Banach space BV (I) of functions of bounded
variation, the operator H admits a unique dominant eigenvalue λ = 1, with
an eigenfunction proportional to ψ(x) = 1/(1 + x), and it has a subdominant
spectral radius equal to ϕ2. Moreover, the adjoint H∗ has an eigenmeasure pro-
portional to the Lebesgue measure. Then, for any g ∈ BV (I), the iterate Hk[g]
decomposes as

Hk[g](x) =?
1

log 2
1

1 + x
·
∫

I
g(x)dx + O(ϕ2k)‖g‖BV . (14)

126 V. Berthé et al.

4.3 Smooth Random Variables and Perron-Frobenius Operator

We now perform Step (i) in the proof of Theorem 1. The following lemma
(inspired by [5]) expresses the expectation and distribution of smooth sequences
in terms of the Perron-Frobenius operator H.

Lemma 1. Assume that (Tk) is a smooth sequence associated with the function
f . Then, the expected value E[Tk] and the distribution of the random variable
(Tk) are both expressed with the k-th iterate of the Perron-Frobenius operator H:

E[Tk] = Hk

[
f(x) · 1

1 + x

]
(0), P[Tk ∈ J] = Hk

[
1J ◦ f(x) · 1

1 + x

]
(0),

where J is a subinterval of I.

Proof. For each index k, consider the family of linear fractional transformations
h ∈ Hk. The intervals h(I) form a partition of the interval I, and the length of
the interval h(I) is expressed as a function of the continuants qk, as

|h(I)| =
1

qk(qk + qk−1)
=

1
q2k

⎛
⎜⎝ 1

1 +
qk−1

qk

⎞
⎟⎠.

Moreover Tk(α) is constant on the interval h(I), and equal to f(qk−1/qk). Finally

E[Tk] :=
∫

I
Tk(α)dα =

∑
h∈Hk

1
q2k

(
qk−1

qk

)
with
(x) =

1
1 + x

f(x).

With Relation (13), the last expression is exactly Hk[
](0).
We now consider, for any J ⊂ R, the probability P[Tk ∈ J] = E[1J ◦ Tk].

Using the same transforms as above (now applied to the function 1J ◦ f(x))
yields

P[Tk ∈ J] = Hk

[
1J ◦ f(x) · 1

1 + x

]
(0).

4.4 Asymptotic Study of Smooth Variables

We now perform Step (ii) in the proof of Theorem 1. Since the probabilistic
characteristics of the random variable Tk are expressed with the k-th iterate
of the Perron Frobenius operator H, their asymptotics will be related to the
dominant spectral properties of this operator when it acts on the Banach space
BV (I) of the functions of bounded variation on the unit interval, and we use
the decomposition (14).

Lemma 2. The following asymptotics hold, for any smooth sequence (Tk) rela-
tive to a function f ∈ BV (I):

E[Tk] =
1

log 2

∫
I

f(x) · 1
1 + x

dx + O(ϕ2k‖f‖BV),

Recurrence Function on Sturmian Words: A Probabilistic Study 127

P[Tk ∈ J] =
1

log 2

∫
I
1J ◦ f(x) · 1

1 + x
dx + O(ϕ2k),

where J is a subinterval of I. If moreover the function f is of class C1 and
monotonic, with an inverse function g, the random variable Tk admits a limit
density; for any interval [a, b] ⊂ f(I), one has

P[Tk ∈ [a, b]] =
1

log 2

∫ b

a

|g′(u)|
1 + g(u)

du + O(ϕ2k) =
1

log 2

∣∣∣∣log
1 + g(a)
1 + g(b)

∣∣∣∣ + O(ϕ2k).

Proof. This is just an easy application of the decomposition (14). For the distri-
bution, the norm ‖1J ◦ f · ψ‖BV admits an upper bound which neither depend
on the function f nor on the interval J .

The previous lemma entails the following asymptotics for the probabilistic
characteristics of the sequence S̃

〈μ〉
k . Recall that the density s〈μ〉 is defined in

(9).

Lemma 3. For μ ∈]0, 1], the two following asymptotic estimates, namely

E[S̃〈μ〉
k] = 1+

1
log 2

| log μ|
1 − μ

+O

(
ϕ2k

μ

)
, P

[
S̃

〈μ〉
k ∈ J

]
=

∫
J

s〈μ〉(x)dx+O(ϕ2k).

The second estimate also holds for μ = 0.

Proof. This is just the application of the previous lemma for f := fμ. The
function fμ belongs to BV (I) for μ > 0, with norm ‖fμ‖BV = O(1/μ).

This ends Step (ii) of the proof of Theorem 1. The estimates (12) needed in
Step (iii) will be proven in the extended version, together with some hints for
Theorem 2.

5 Conclusion

With a Sturmian word of slope α, and a sequence (μk), we have associated a
sequence of indices nk (lengths of factors) defined by their barycentric position
μk inside [[qk−1(α), qk(α) − 1]]. We then have elucidated the role played by the
position in the behaviour of the recurrence of a random Sturmian word.
We plan to extend our probabilistic study in three directions, and consider three
probabilistic models. The first two models were already dealt with in [4] for the
study of Kronecker sequences, and the last one has been considered in [10].

Reals with Bounded Partial Quotients. This type of slope α gives rise to Stur-
mian words whose recurrence function is proven to be linear (see Lemma 4). For
a bound M , we restrict α to the set R[M] of numbers whose partial quotients
are at most M , endowed with the Hausdorff measure, and we wish to observe
the transition when M → ∞.

128 V. Berthé et al.

Rational Numbers. This type of slope α gives rise to periodic words, and occurs
for Christoffel words. For a bound N , we restrict α to the set Q[N] of rationals
with denominator at most N , endowed with the uniform distribution, and we
wish to observe the transition when N → ∞. This will explain how a periodic
word “becomes” Sturmian.

Quadratic Irrationals. This type of slope α occurs for substitutive Sturmian
words. There is a natural notion of size associated with such numbers α, closely
related to the period of their continued fraction expansion, and we wish to
observe the transition when the size tends to ∞.

References

1. Adamczewski, B., Allouche, J.-P.: Reversals and palindromes in continued frac-
tions, heoret. Comput. Sci. 380, 220–237 (2007)

2. Bourdon, J., Daireaux, B., Vallée, B.: Dynamical analysis of α-Euclidean algo-
rithms. J. Algorithms 44, 246–285 (2002)

3. Cassaigne, J.: Limit values of the recurrent quotient of Sturmian sequences. The-
oret. Comput. Sci. 218, 3–12 (1999)

4. Cesaratto, E., Vallée, B.: Pseudo-randomness of a random Kronecker sequence.
An instance of dynamical analysis, Chapter 11. In: Berthé, V., Rigo, M. (eds.)
Combinatorics, Words and Symbolic Dynamics in the book Combinatorics, Words
and Symbolic Dynamics, pp. 405–448. Cambridge University Press (To appear)

5. Flajolet, P., Vallée, B.: Continued fraction algorithms, functional operators, and
structure constants. Theoret. Comput. Sci. 94, 1–34 (1998)

6. Losifescu, M., Kraaikamp, C.: Metrical Theory of Continued Fractions, Collection
Mathematics and Its Applications. Kluwer Academic Press, Dordrecht (2002)

7. Lévy, P.: Sur le développement en fraction continue d’un nombre choisi au hasard.
Compos. Math. 3, 286–303 (1936)

8. Lothaire, M.: Algebraic Combinatorics on Words. Encyclopedia of Mathematics
and Its Applications. Cambridge University Press, Cambridge (2002)

9. Morse, M., Hedlund, G.: Symbolics dynamics II. Sturmian trajectories. Am. J.
Math. 62, 1–42 (1940)

10. Vallée, B.: Dynamique des fractions continues à contraintes périodiques. J. Number
Theor. 72(2), 183–235 (1998)

Exponential-Size Model Property for PDL
with Separating Parallel Composition

Joseph Boudou(B)

IRIT, Toulouse University, Toulouse, France
joseph.boudou@irit.fr

Abstract. Propositional dynamic logic is extended with a parallel pro-
gram having a separating semantic: the program (α ‖ β) executes α and
β on two substates of the current state. We prove that when the compo-
sition of two substates is deterministic, the logic has the exponential-size
model property. The proof is by a piecewise filtration using an adapta-
tion of the Fischer-Ladner closure. We conclude that the satisfiability of
the logic is decidable in NEXPTIME.

1 Introduction

Propositional dynamic logic (PDL) is a multi-modal logic designed to reason
about behaviors of programs [10]. With each program α we associate a modal
operator [α], formulas [α]ϕ being read “all executions of α from the current
state lead to a state where ϕ holds”. The set of programs is structured by
some operators: sequential composition (α ; β) of programs α and β executes β
after α; nondeterministic choice (α ∪ β) of program α and β executes α or β,
nondeterministically; test ϕ? on formula ϕ does nothing but can be executed
only if the current state satisfies ϕ; iteration α∗ of program α executes α a
nondeterministic number of times. A limitation of PDL is the lack of a construct
to reason about concurrency.

Different extensions of PDL have been devised to overcome this limitation,
for instance interleaving PDL [1], PDL with intersection [11] and the concur-
rent dynamic logic [16]. PDL with storing, recovering and parallel composi-
tion (PRSPDL) [4] is another extension of PDL for concurrency. The key differ-
ence is that in PRSPDL, the program (α ‖ β) executes α and β in parallel on
two substates of the current state. Hence, (α ‖ β) being executable at some state
does not imply that α or β is executable at that state. Moreover, since states
can be separated in substates (and merged back), PRSPDL is related to the
Boolean logic of bunched implication (BBI) [17]. Indeed, a multiplicative con-
junction semantically similar to the one found in BBI can be defined in PRSPDL.
Thus PRSPDL can be compared to the classical version of the multi-modal logic
of bunched implication (MBIc) [7], a difference being that MBIc has only the
parallel composition as program constructs, limiting its expressive power [2].

This work was supported by the “French National Research Agency” (DynRes con-
tract ANR-11-BS02-011).

c© Springer-Verlag Berlin Heidelberg 2015
G.F. Italiano et al. (Eds.): MFCS 2015, Part I, LNCS 9234, pp. 129–140, 2015.
DOI: 10.1007/978-3-662-48057-1 10

130 J. Boudou

The combination of separation and concurrency provided by the paral-
lel construct of PRSPDL suggests some interesting applications. For instance,
a dynamic and concurrent logic on heaps of memory akin to separation log-
ics [8,18], may be envisioned. Moreover, as PDL has been adapted to differ-
ent contexts, a separating parallel composition may be of interest in some of
them. For instance, in dynamic epistemic logics [9], the parallel epistemic action
(!ϕ ‖!ψ) could mean that ϕ is announced to a group of agents and ψ is announced
to the agents not in that group. Despite this potential, there has been almost no
complexity analysis of dynamic logic with separating parallel composition. The
complexity of PRSPDL is not studied in [4]. In [3], PRSPDL interpreted over
frames where there is at most one decomposition of any state into substates is
proved to be highly undecidable.

In this paper, we study the complexity of PDL with separating parallel com-
position (PPDL). The language of this logic is the fragment of PRSPDL with-
out the store and recover programs which allow to access substates directly. We
focus on the class of �-deterministic frames where the composition of substates
is deterministic: there is at most one way to merge two states. This restriction
is quite natural and has been studied in many logics with separation like sep-
aration logics, ambient logics [6], BBI [13] and arrow logics [14]. We show that
for PPDL, �-determinism conveys some interesting properties, notably a strong
finite model property leading to a complexity upper bound of NEXPTIME for
the satisfiability problem. This result contrasts with the 2EXPTIME complex-
ity of other dynamic logics with concurrency like PDL with intersection [12] or
interleaving PDL [15]. To prove this result, we provide nontrivial adaptations of
existing methods (Fischer-Ladner closure and model unraveling) along with some
new concepts (placeholders, marking functions and the neat model property).

The paper is structured as follows. In the next section, the language and
semantic of PPDL is formally defined. In Sect. 3, the problem of decomposing
formulas of the forms [α ‖ β] ϕ is resolved by extending the language and by
adapting the Fischer-Ladner closure. In Sect. 4, the new concepts of threads,
twines and neat models are introduced. And in Sect. 5, it is proved that the
class of neat �-deterministic frames satisfies the same formulas as the class of
�-deterministic frames. In Sect. 6, the strong finite model property is proved by
piecewise filtration.

2 Propositional Dynamic Logic with Separating
Parallel Composition (PPDL)

Let Π0 be a countable set of atomic programs (denoted by a, b . . .) and Φ0 a
countable set of propositional variables (denoted by p, q . . .). The sets Π and Φ
of programs and formulas are defined by:

α, β := a | (α ; β) | (α ∪ β) | ϕ? | α∗ | (α ‖ β)
ϕ := p | ⊥ | ¬ϕ | [α] ϕ

PDL with Separating Parallel Composition 131

The negation construct is an involution: by definition, ¬¬ϕ = ϕ. Parentheses
may be omitted for clarity, but they are taken into account when counting occur-
rences of symbols. We write |α| and |ϕ| for the number of occurrences of symbols
in the program α and the formula ϕ, respectively. We define the abbreviations
� .= ¬⊥ and 〈α〉ϕ .= ¬ [α] ¬ϕ. The missing usual (additive) Boolean operators
can be defined too, starting with ϕ → ψ

.= [ϕ?] ψ. Additionally, a multiplicative
conjunction related to BBI [17] may be defined as

A frame is a tuple (W,R,�) where W is a non-empty set of states (denoted
by w, x, y . . .), R is a function associating a binary relation over W to each atomic
program and � is a ternary relation over W . Intuitively, x R(a) y means that
the program a can be executed in state x, reaching state y. Similarly, x � (y, z)
means that x can be split into the substates y and z or equivalently that y
and z can be merged to obtain x. When the merging of states is functional, the
frame is said to be �-deterministic. This is a common restriction, for instance
in separation logics, expressing the fact that the parts determine the whole.
Formally, a frame is �-deterministic iff for all x, y, w1, w2 ∈ W , if x � (w1, w2)
and y � (w1, w2) then x = y. The class of �-deterministic frames is denoted by
C�-det.

A model is a tuple (W,R,�, V) where (W,R,�) is a frame and V is a function
associating a subset of W to each propositional variable. A model is �-determin-
istic iff its frame is �-deterministic. The forcing relation � is defined by parallel
induction along with the extension of R to all programs:

M, x � p iff x ∈ V (p)
M, x � ⊥ never
M, x � ¬ϕ iff M, x � ϕ

M, x � [α] ϕ iff ∀y ∈ W, if x R(α) y then M, y � ϕ

x R(α ; β) y iff ∃z ∈ W, x R(α) z and z R(β) y

x R(α ∪ β) y iff x R(α) y or x R(β) y

x R(ϕ?) y iff x = y and M, x � ϕ

x R(α∗) y iff x R(α)∗
y

where R(α)∗ is the reflexive and transitive closure of R(α)
x R(α ‖ β) y iff ∃w1, w2, w3, w4 ∈ W,

x � (w1, w2) , w1 R(α) w3, w2 R(β) w4 and y � (w3, w4)

Given a class C of frames, a formula ϕ is satisfiable in C iff there exists a
model M = (W,R,�, V) and a state w ∈ W such that (W,R,�) ∈ C and
M, w � ϕ. The satisfiability problem of PPDL over a class C of frames is the
decision problem determining whether a PPDL formula is satisfiable in C.

3 Fischer-Ladner Closure

In [10], Ficher and Ladner proved the strong finite model property of PDL by
means of the filtration by a set of formulas called the Fischer-Ladner closure.

132 J. Boudou

To cope with nondeterministic choice and iteration, the original Fischer-Ladner
closure extends PDL’s language with new propositional variables. In the case of
PPDL, a more involved extension of the language is needed to cope with parallel
composition of programs. We first introduce this extension before defining the
Fischer-Ladner closure adapted to PPDL.

3.1 Placeholders and Marking Functions

In order to decompose formulas of the form [α ‖ β] ϕ into subformulas, the lan-
guage is extended with new atomic formulas called placeholders and parallel
composition symbols are distinguished by added indices. Using the same sets Φ0

and Π0 of propositional variables and atomic programs, the sets ΠPH , Φpure and
ΦPH of annotated programs, pure formulas and annotated formulas respectively,
are defined by parallel induction as follows:

α, β := a | (α ; β) | (α ∪ β) | ϕ? | α∗ | (α ‖i β)
ϕ := p | ⊥ | ¬ϕ | [α]ϕ
ψ := ϕ | (i, j) | ¬ψ | [α]ψ

where i ranges over N and j over {1, 2}. Moreover, for all i ∈ N, there must be
at most one occurrence of ‖i in any annotated program, any pure formula and
any annotated formula. The integers below the parallel composition symbols are
called indices. Formulas of the form (i, j) are called placeholders.

To interpret the annotated formulas, if placeholders were simply considered
as new propositional variables, it would be impossible to ensure that whenever
w � (x, y) and M, w � [α ‖i β] ϕ then M, x � [α] (i, 1) and M, y � [β] (i, 2).
Therefore we add flexibility in the interpretation of placeholders by adding mark-
ing functions which are functions from placeholders to subset of W . The set of
all such functions is denoted by BW . The empty marking function m∅

W ∈ BW

binds the empty set to all placeholders. The 4-ary forcing relation �F is defined
on all models M = (W,R,�, V), all w ∈ W , all m ∈ BW and all ϕ ∈ ΦPH by
parallel induction along with the extension of R to all annotated programs, in a
similar way than for PPDL except:

M, x,m �F (i, j) iff x ∈ m(i, j)

x R(ϕ?) y iff x = y and M, x,m∅

W �F ϕ

x R(α ‖i β) y iff ∃w1, w2, w3, w4,

x � (w1, w2) , w1 R(α) w3, w2 R(β) w4 and y � (w3, w4)

There exists a forgetful surjection · : Φpure −→ Φ associating to each pure
formula ϕ the formula ϕ obtained by removing all indices in ϕ. Thanks to the
following lemma, we will consider satisfiability of pure formulas instead of satis-
fiability of PPDL formulas.

Lemma 1. For all model M = (W,R,�, V), all ϕ ∈ Φpure and all w ∈ W ,
M, w,m∅

W �F ϕ iff M, w � ϕ.

PDL with Separating Parallel Composition 133

(μ, ϕ)

(μ, ¬ϕ)

(μ, [a]ϕ)

(μ, ϕ)

(μ, [α ; β]ϕ)

(μ, [α] [β]ϕ)

(μ, [α ∪ β]ϕ)

(μ, [α]ϕ) (μ, [β]ϕ)

(μ, [ϕ?]ψ)

(μ, ϕ) (μ, ψ)

(μ, [α∗]ϕ)

(μ, [α] [α∗]ϕ) (μ, ϕ)

(μ, [α ‖i β]ϕ)

(μ.L, [α] (i, 1)) (μ.R, [β] (i, 2)) (μ, ϕ)

Fig. 1. Fischer-Ladner closure calculus

3.2 Fischer-Ladner Closure

The Fischer-Ladner closure is a decomposition of any PDL formula into a set
containing sufficiently many subformulas for the filtration. In the case of PPDL,
we need to keep track of the level of separation (called depth) of each subfor-
mula. Hence we consider localized formulas. A location is a word on the alphabet
{L,R}, the empty word being denoted by ε. A localized formula is a pair (μ, ϕ)
composed of a location μ and a formula ϕ.

Then, given a localized formula (μ, ϕ) over Φ0 and Π0, we construct the
closure Cl(μ, ϕ) of (μ, ϕ) by applying the rules in Fig. 1. In the remain-
der of this paper we will be mainly interested in closure of localized formu-
las of the form (ε, ϕ0) where ϕ0 is a pure formula. For all pure formula
ϕ0 ∈ Φpure, we define the abbreviations FL(ϕ0) = Cl(ε, ϕ0) and SP(ϕ0) =
{α | ∃μ,∃ϕ, (μ, 〈α〉ϕ) ∈ FL(ϕ0)}. The cardinality of FL(ϕ0) is denoted by Nϕ0 .
The proof from [10] can be easily adapted to prove the following lemma:

Lemma 2. Nϕ0 is linear in |ϕ0|.

4 Threads, Twines and Neat Models

In this section, new concepts about PPDL’s models are introduced. These con-
cepts allow us to restrict the class of models to consider for satisfiability. In the
next section, we prove that any formula satisfiable in the class of �-deterministic
models is satisfied in a model with these additional properties. Firstly, to bound
the depth of separation of states, we introduce the notion of hierarchical models.
This directly corresponds to locations of formulas from the previous section.

Definition 1. Given a model M = (W,R,�, V), a function λ : W −→ {L,R}∗

is a hierarchy function for M iff

∀x, y, z ∈ W, x � (y, z) ⇒ λ(y) = λ(x).L and λ(z) = λ(x).R (1)
∀x, y ∈ W,∀α ∈ ΠPH , x R(α) y ⇒ λ(x) = λ(y) (2)

λ(x) is called the depth of x. A model for which there exists a hierarchy function
is a hierarchical model.

134 J. Boudou

Secondly, in order to restrict the number of states at each level of separa-
tion, the notion of reachability is extended. Given a �-deterministic model
M = (W,R,�, V), consider the reachability relation R∃ = ∪α∈ΠPH

R(α).
This relation is obviously reflexive. Hence its symmetric and transitive closure,
denoted by ∼, is an equivalence relation. The equivalence classes of W by ∼ are
called threads and ∼ the thread relation. Notice that if M is hierarchical, all
states in any thread T have the same depth, noted λ(T). To strengthen the link
between threads and depth, threads are grouped into pairs, each thread of a pair
corresponding to one side of the separations. These pairs of threads are called
twines and are formally defined as follows:

Definition 2. A twine is a pair (TL, TR) of threads such that for all x, y, z ∈ W
if x � (y, z) then y /∈ TR, z /∈ TL and y ∈ TL ⇔ z ∈ TR.

In the remainder of this paper, a twine (T1, T2) is identified with the set T1 ∪T2.
Obviously, if a thread T is such that for all (x, y, z) ∈�, y /∈ T and z /∈ T , then
for any thread T ′ having the same property, (T, T ′) is a twine. Such a thread is
called an isolated thread. It can be easily proved that if (T1, T2) and (T1, T3) are
twines, then either T1, T2 and T3 are isolated or T2 = T3. We can now define the
notion of neat models.

Definition 3. A model M = (W,R,�, V) is neat if it satisfies all the following
conditions:

1. For any thread T1 there exists a thread T2 such that (T1, T2) or (T2, T1) is a
twine;

2. There is exactly one isolated thread T0;
3. There exists a hierarchy function λ for M such that λ(T0) = ε.

5 Neat Model Property

In this section we will prove that whenever a pure formula is satisfiable in C�-det,
it is satisfiable in a �-deterministic neat model. Supposing the pure formula ϕ0

is satisfiable, the proof proceeds as follows:

– by Lemma 3 below, there exists a countable model MB satisfying ϕ0;
– in Sect. 5.1, MB is unraveled into MU.
– in Sect. 5.2, unreachable states from MU are pruned to obtain MN and MN

is proved to be a �-deterministic neat model satisfying ϕ0.

Lemma 3. For any satisfiable pure formula ϕ0, there exists a countable model
satisfying ϕ0.

Proof. By a proof similar to Corollary 6.3 in [3]. ��

PDL with Separating Parallel Composition 135

5.1 Unraveling

Let MB = (WB, RB,�B, VB) be a countable �-deterministic model satisfying
a formula ϕ0 at x′

0. We will construct the unraveling of MB at x′
0. The follow-

ing method is an adaptation of the well-known unraveling method (see [5] for
instance). The key difference is that the resulting model is not a tree-like model.

Let W∞ be a countably infinite set. For all k ∈ N we will construct the tuple
Uk = (Mk, hk) such that Mk = (Wk, Rk,�k, Vk) is a model with Wk ⊆ W∞
and hk is a homomorphism from Wk to WB, thus preserving valuation. The
initial tuple U0 is such that W0 = {x0} for some x0 ∈ W∞, R0(a) = ∅ for all
a ∈ Π0, �0= ∅ and h0(x0) = x′

0. Then for all k ∈ N, Uk+1 is constructed from
Uk by fixing one of the following defects for some v, w1, w2 ∈ Wk, a ∈ Π0 and
w′, w′

1, w
′
2 ∈ WB:

Successor Defect (v, a, w′). If hk(v) RB(a) w′ but there is no w ∈ Wk such
that hk(w) = w′ and v Rk(a) w, then Uk+1 is obtained from Uk by adding a
new state w ∈ W∞ \ Wk such that hk+1(w) = w′ and v Rk+1(a) w,

Split Defect (v, w′
1, w

′
2). If hk(v) �B (w′

1, w
′
2) but there are no w1, w2 ∈ Wk

such that hk(w1) = w′
1, hk(w2) = w′

2 and v �k (w1, w2), then Uk+1 is
obtained from Uk by adding two new states w1, w2 ∈ W∞ \ Wk such that
hk+1(w1) = w′

1, hk+1(w2) = w′
2 and v �k+1 (w1, w2).

Merge Defect (w′, w1, w2). If w′ �B (hk(w1), hk(w2)) but there is no w ∈ Wk

such that hk(w) = w′ and w �k (w1, w2), then Uk+1 is obtained from Uk

by adding a new state w ∈ W∞ \ Wk such that hk+1(w) = w′ and w �k+1

(w1, w2).

Since W∞, Π0 and WB are countable sets, there is a sequence δ0, δ1, . . . of
possible defects such that each possible defect appears infinitely often. We enforce
that for all k ∈ N, either δk is a defect for Uk fixed in Uk+1 or δk is not a defect
for Uk and Uk+1 = Uk. The unraveling MU = (WU, RU,�U, VU) of MB at x′

0 is
the union of Mk for all k ∈ N.

Proposition 1. MU is a �-deterministic model satisfying ϕ0.

To prove Proposition 1, we adapt the bounded morphism definition to PPDL
and prove Lemma 4.

Definition 4. Given two �-deterministic models M = (W,R,�, V) and M′ =
(W ′, R′,�′, V ′), a mapping h : M −→ M′ is a bounded morphism iff it satisfies
the following conditions for all v, w,w1, w2 ∈ W , w′, w′

1, w
′
2 ∈ W ′ and a ∈ Π0:

w and h(w) satisfy the same propositional variables (3)
v R(a) w ⇒ h(v) R′(a) h(w) (4)

h(v) R′(a) w′ ⇒ ∃w, h(w) = w′ and v R(a) w (5)
w � (w1, w2) ⇒ h(w) �′ (h(w1), h(w2)) (6)

h(w) �′ (w′
1, w

′
2) ⇒ ∃w1, w2,

{
h(w1) = w′

1, h(w2) = w′
2

and w � (w1, w2)
(7)

w′ �′ (h(w1), h(w2)) ⇒ ∃w, h(w) = w′ and w � (w1, w2) (8)

136 J. Boudou

Lemma 4. If h is a bounded morphism from M to M′, then for all w ∈ W and
ϕ ∈ Φ, M, w � ϕ iff M′, h(w) � ϕ.

Considering the functions (hk)k∈N
as subsets of WU × WB, we define h as their

union. We prove that h is a bounded morphism, the successor, split and merge
defects ensuring conditions (5), (7) and (8) respectively. Finally, since bounded
morphisms preserve �-determinism, Proposition 1 is proved. Despite MU not
being tree-like, it has the following form of acyclicity:

Proposition 2. For all x, y ∈ WU and all α, β ∈ ΠPH , if x R(α) y and y R(β)
x then x = y.

5.2 Pruning

In this section, we remove unreachable states from MU and prove that the
resulting model is neat. The method consists in identifying reachable threads
and relies on the fact that new reachable threads are added only by split defects.
We use a function r associating to each state x ∈ WU either the first state of x’s
thread if this thread is reachable or the special value Out otherwise. The function
r : WU −→ WU ∪ {Out} is formally defined by induction on the construction of
MU as follows:

0. Initially, r(x0) = x0 ;
1. When fixing a successor defect (w, a, v) by adding w′, r(w′) = r(w) ;
2. When fixing a split defect (w, v1, v2) by adding w1 and w2, if r(w) �= Out

then r(w1) = w1 and r(w2) = w2, otherwise r(w1) = r(w2) = Out ;
3. When fixing a merge defect δk = (v, w1, w2) by adding w, if there exists w′ ∈

Wk such that w′ �k (r(w1), r(w2)) then r(w) = r(w′), otherwise r(w) = Out.

The function r is well-defined because MU is �-deterministic. Then, the model
MN = (WN, RN,�N, VN) is defined as the reduction of MU to the worlds x for
which r(x) �= Out. The following proposition can easily be proved:

Proposition 3. MN is a �-deterministic model satisfying ϕ0 at x0.

It remains to prove that MN is neat. Let ∼N be the thread relation of MN.
The proof of Proposition 4 relies on the following two lemmas:

Lemma 5. For all x, y ∈ WN, r(x) = r(y) iff x ∼N y.

Lemma 6. If z �N (x, y) then there exists z′ ∈ WN such that z′ �N (r(x), r(y))
and (z′, r(x), r(y)) has been added to �U by a split defect.

Proposition 4. MN is neat.

Proof sketch. For the first two conditions of Definition 3, we prove the corre-
sponding two properties using Lemma 6:

1. For all x1, x2, y1, y2, z1, z2 ∈ WN, if z1 �N (x1, y1) and z2 �N (x2, y2) then
r(x1) = r(x2) ⇔ r(y1) = r(y2).

PDL with Separating Parallel Composition 137

2. x0 is the only x ∈ WN such that r(x) = x and for all (w, y, z) ∈�N, r(y) �= x
and r(z) �= x.

For the last condition of Definition 3, the hierarchy function λ is constructed
such that:

– λ(x0) = ε;
– for any split defect (w, v1, v2) adding w1 and w2 to WU, if r(w) �= Out then

λ(w1) = λ(w).L and λ(w2) = λ(w).R;
– for all x, λ(x) = λ(r(x)). ��

6 Piecewise Filtration

In this section, we prove the following proposition:

Proposition 5. Whenever a formula ϕ ∈ Φ is satisfiable in a �-deterministic
neat model, it is satisfiable in a �-deterministic finite model M = (W,R,�, V)
in which the cardinality of W is bounded by an exponential in the number of
symbols in ϕ.

Suppose MN = (WN, RN,�N, VN) is neat and MN, x0,m
∅

W �F ϕ0 for some
x0 ∈ WN and ϕ0 ∈ Φpure. Furthermore, we suppose λ is a hierarchical function
for MN such that λ(x0) = ε. The model MF satisfying Proposition 5 is induc-
tively constructed from MN. At the initial step, the filtration of the thread
containing x0 is added to MF. At the inductive steps, for each pair of states in
MF which must be connected by a parallel program, the filtration of a twine of
MN corresponding to this parallel program is added to MF.

In order to preserve the �-determinism of MN during the filtration, we
need to distinguish for any filtered twine, the forward (split) decomposition
from the backward (merge) one. For that matter, placeholders are duplicated
and the special pair {(0, 1), (0, 2)} of placeholders is used to mark the forward
decomposition. Formally, for any formula ϕ ∈ ΦPH and any k ∈ N, let fdup(k, ϕ)
be the formula obtained from ϕ by replacing each occurrence of (i, j) in ϕ by
(2i + k, j), for all i ∈ N and j ∈ {1, 2}. We define the sets

FL+(ϕ0) = {(μ, fdup(k, ϕ)) | k ∈ {1, 2}, (μ, ϕ) ∈ FL(ϕ0)} ∪
{((μ, (0, j)), (μ, ¬(0, j)) | j ∈ {1, 2} and ∃ϕ, (μ, ϕ) ∈ FL(ϕ0)}

SF+(ϕ0) =
{
ϕ

∣∣ ∃μ, (μ, ϕ) ∈ FL+(ϕ0)
}

The filtrations are done using the ≡m equivalence relations over WN, defined
for any marking function m ∈ BWN

such that x ≡m y iff λ(x) = λ(y) and for
all (μ, ϕ) ∈ FL+(ϕ0) if μ = λ(x) then MN, x,m �F ϕ ⇔ MN, y,m �F ϕ. The
functions Ω and Ψ are defined for all X ⊆ WN and m ∈ BWN

by:

Ω(X,m) =
{
Y ∩ X

∣∣ Y ∈ WN/≡m

}
Ψ(X,m) =

{
ϕ

∣∣ ∃x ∈ WN, (λ(x), ϕ) ∈ FL+(ϕ0) and MN, x,m �F ϕ
}

138 J. Boudou

Finally, the set PF references all the parallel program links for which we
may have to add the filtration of a twine. Formally, PF is the greatest subset of
N × P (

SF+(ϕ0)
) × SP(ϕ0) × P (

SF+(ϕ0)
)

such that for all (k, F, α,G) ∈ PF,
α is of the form (α1 ‖i α2) and there exists μ ∈ {L,R}∗ and ϕ ∈ ΦPH such
that (μ, 〈α〉ϕ) ∈ FL+(ϕ0) and for all ψ ∈ F ∪ G, (μ, ψ) ∈ FL+(ϕ0). Since
P (

SF+(ϕ0)
)

and SP(ϕ0) are finite, there exists a total order over PF with a
least element and such that (k, F, α,G) < (k′, F ′, α′, G′) implies k ≤ k′. This
order determines a bijective function from N to PF. Moreover, if (k, F, α,G) is
the nth tuple in PF then k ≤ n.

Now we inductively construct the models Mn = (Wn, Rn,�n, Vn) for n ∈ N,
where Wn ⊆ N × P (WN) × BWN

. The following invariants hold for all n ∈ N:

– for all (k,X,m) ∈ Wn, all ϕ ∈ Ψ(X,m) and all x ∈ X, MN, x,m �F ϕ;
– for all (k,X,m), (k′, Y,m′) ∈ Wn, if k = k′ then m = m′ and for all x ∈ X

and all y ∈ Y , x and y belong to the same twine and if x ≡m y then X = Y .

Initial step. Let T0 be the thread in MN containing x0. We set:

W0 =
{
(0,X,m∅

WN
)

∣∣ X ∈ Ω(T0,m
∅

WN
)
}

R0(a) = {((k,X,m), (k′,X ′,m′)) ∈ W0 × W0|
k = k′ and ∃x ∈ X,∃x′ ∈ X ′, x RN(a) x′}

�0 = ∅
V0(p) = {(k,X,m) ∈ W0 | p ∈ Ψ(X,m)}

If PF = ∅ then Mn = M0 for all n ∈ N. Otherwise the following inductive
step is applied.

Inductive step. Suppose Mn has already been defined and let (k, F, α1 ‖i α2, G)
be the nth tuple in PF. If for all X,Y ⊆ WN and all m ∈ BWN

, one of the
following conditions is not satisfied

Ψ(X,m) = F and Ψ(Y,m) = G (9)
(k,X,m) ∈ Wn and (k, Y,m) ∈ Wn (10)
∃x ∈ X,∃y ∈ Y, x RN(α1 ‖i α2) y (11)

then Mn+1 = Mn. Otherwise, by the invariants, there is exactly one tuple
(X,Y,m) satisfying (9) and (10). By condition (11), there exists x ∈ X, y ∈ Y
and w1, w2, w3, w4 ∈ WN such that x �N (w1, w2), w1 RN(α1) w3, w2 RN(α2)
w4 and y �N (w3, w4). The marking function mn+1 is defined such that

– mn+1(0, j) = {wj};

– mn+1(i, j) =
{

w
∣∣∣ ∃β1, β2.(β1 ‖ i−1

2
β2) ∈ SP(ϕ0) and wj RN(βj) w

}
if i is

odd;
– mn+1(i, j) =

{
w

∣∣∣ ∃β1, β2, (β1 ‖ i−2
2

β2) ∈ SP(ϕ0) and wj+2 RN(βj) w
}

if i is
even and positive.

PDL with Separating Parallel Composition 139

Since MN is neat, w1, w2, w3 and w4 belong to the same twine θ. For all t ∈ 1 . . 4,
there exists Xt ∈ Ω(θ,mn+1) such that xt ∈ Xt. Mn+1 is defined by:

Wn+1 = Wn ∪ {(n + 1,X,mn+1) | X ∈ Ω(θ,mn+1)}
Rn+1(a) = {((k,X,m), (k′,X ′,m′)) ∈ Wn+1 × Wn+1|

k = k′ and ∃x ∈ X,∃x′ ∈ X ′, x RN(a) x′}
�n+1 =�n ∪{((k,X,m), (n + 1,X1,mn+1), (n + 1,X2,mn+1)),

((k, Y,m), (n + 1,X3,mn+1), (n + 1,X4,mn+1))}
Vn+1(p) = {(k,X,m) ∈ Wn+1 | p ∈ Ψ(X,m)}

Finally, MF = (WF, RF,�F, VF) is defined as the union of Mn for all n ∈ N

and we prove that MF satisfies Proposition 5.

Proof sketch of Proposition 5. To prove that the cardinality of WF is bounded
by an exponential in |ϕ0|, we consider the graph whose vertices are sets of WF’s
states having the same first component and such that there is an edge from G to
G′ iff states in G′ have been added to MF to connect two states in G. We prove
that each vertex contains a exponential number of states and that the graph is a
tree with branching factor exponential in |ϕ0| and depth linear in |ϕ0|. �-deter-
minism of MF is ensured by the interpretation of the placeholders (0, 1) and
(0, 2). Finally, to prove the truth lemma, we prove the following properties by
simultaneous induction on |ϕ| for 1 and on |α| for 2 and 3:

1. For all (k,X,m) ∈ WF and all formula ϕ such that (λ(X), ϕ) ∈ FL+(ϕ0),
ϕ ∈ Ψ(X,m) ⇔ MF, (k,X,m),mF �F ϕ.

2. If (k,X,m) ∈ WF, x ∈ X, θx is the twine of x, Y ∈ Ω(θx,m), y ∈ Y ,
(λ(x), 〈α〉ϕ) ∈ FL(ϕ0) and x RN(α) y, then (k,X,m) RF(α) (k, Y,m).

3. If (k,X,m) RF(α) (k, Y,m) and [α]ϕ ∈ Ψ(X,m), then ϕ ∈ Ψ(Y,m). ��
Finally, since the model checking problem for PPDL is obviously polynomial

in the number of states of the model, we deduce a complexity upper bound:

Proposition 6. The satisfiability problem of PPDL interpreted over �-deter-
ministic frames is in NEXPTIME.

7 Conclusion

In this paper, we prove that PPDL interpreted over the class C�-det of �-deter-
ministic frames has a strong finite model property and that the satisfiability
problem of this logic is in NEXPTIME. This results rely on the neat model
property introduced in the paper and are obtained by a piecewise filtration
using an adaptation of the Fischer-Ladner closure. Because formulas with parallel
compositions cannot be properly decomposed into subformulas, the language is
extended with indices and placeholders. We hope these new concepts will be
useful in future works. We briefly list some possibilities. First, a tight complexity

140 J. Boudou

result for PPDL over C�-det remains to be found. Secondly, the complexity of
PPDL interpreted over the class of neat frames could be studied. Finally, since
no semantic equivalents of the multiplicative implication of BBI can be defined
in PPDL over C�-det, it could explicitly be added to the language.

References

1. Abrahamson, K.R.: Modal logic of concurrent nondeterministic programs. In:
Kahn, G. (ed.) Semantics of Concurrent Computation. LNCS, vol. 70, pp. 21–33.
Springer, Heidelberg (1979)

2. Balbiani, P., Boudou, J.: Iteration-free PDL with storing, recovering and parallel
composition: a complete axiomatization. J. Logic Comput. (2015, to appear)

3. Balbiani, P., Tinchev, T.: Definability and computability for PRSPDL. In:
Advances in Modal Logic, pp. 16–33. College Publications (2014)

4. Benevides, M.R.F., de Freitas, R.P., Viana, J.P.: Propositional dynamic logic with
storing, recovering and parallel composition. ENTCS 269, 95–107 (2011)

5. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge Tracts in Theo-
retical Computer Science, vol. 53. Cambridge University Press, Cambridge (2001)

6. Cardelli, L., Gordon, A.D.: Anytime, anywhere: modal logics for mobile ambients.
In: POPL, pp. 365–377. ACM (2000)

7. Collinson, M., Pym, D.J.: Algebra and logic for resource-based systems modelling.
Math. Struct. Comput. Sci. 19(5), 959–1027 (2009)

8. Demri, S., Deters, M.: Separation logics and modalities: a survey. J. Appl. Non
Class. Logics 25(1), 50–99 (2015)

9. van Ditmarsch, H., van der Hoek, W., Kooi, B.P.: Dynamic Epistemic Logic, vol.
337. Springer Science and Business Media, Heidelberg (2007)

10. Fischer, M.J., Ladner, R.E.: Propositional dynamic logic of regular programs. J.
Comput. Syst. Sci. 18(2), 194–211 (1979)

11. Harel, D.: Recurring dominoes: making the highly undecidable highly understand-
able (preliminary report). In: Budach, L. (ed.) Fundamentals of Computation The-
ory. LNCS, vol. 158, pp. 177–194. Springer, Heidelberg (1983)

12. Lange, M., Lutz, C.: 2-exptime lower bounds for propositional dynamic logics with
intersection. J. Symb. Log. 70(4), 1072–1086 (2005)

13. Larchey-Wendling, D., Galmiche, D.: The undecidability of boolean BI through
phase semantics. In: LICS, pp. 140–149. IEEE Computer Society (2010)

14. Marx, M., Pólos, L., Masuch, M.: Arrow Logic and Multi-modal Logic. CSLI Pub-
lications, Stanford (1996)

15. Mayer, A.J., Stockmeyer, L.J.: The complexity of PDL with interleaving. Theor.
Comput. Sci. 161(1–2), 109–122 (1996)

16. Peleg, D.: Concurrent dynamic logic. J. ACM 34(2), 450–479 (1987)
17. Pym, D.J.: The semantics and proof theory of the logic of bunched implications,

Applied Logic Series, vol. 26. Kluwer Academic Publishers (2002)
18. Reynolds, J.C.: Separation logic: A logic for shared mutable data structures.

In: LICS. pp. 55–74. IEEE Computer Society (2002)

A Circuit Complexity Approach
to Transductions

Michaël Cadilhac1(B), Andreas Krebs1,
Michael Ludwig1, and Charles Paperman2

1 Wilhelm Schickard Institut, Universität Tübingen, Tübingen, Germany
michael@cadilhac.name, mail@krebs-net.de,

ludwigm@informatik.uni-tuebingen.de
2 University of Warsaw and Warsaw Center of Mathematics

and Computer Science, Warsaw, Poland
Charles.Paperman@liafa.univ-paris-diderot.fr

Abstract. Low circuit complexity classes and regular languages exhibit
very tight interactions that shade light on their respective expressiveness.
We propose to study these interactions at a functional level, by investi-
gating the deterministic rational transductions computable by constant-
depth, polysize circuits. To this end, a circuit framework of independent
interest that allows variable output length is introduced. Relying on it,
there is a general characterization of the set of transductions realizable
by circuits. It is then decidable whether a transduction is definable in
AC0 and, assuming a well-established conjecture, the same for ACC0.

Introduction

The regular languages in circuit complexity classes play an instrumental role
in some of the most emblematic results of circuit complexity. The celebrated
result of Furst, Saxe and Sipser [11] shows that the regular language PARITY =
{w ∈ {0, 1}∗ | |w|1 ≡ 0 mod 2} is not in AC0, the class of constant-depth,
polysize, unbounded fan-in circuits. As PARITY belongs to ACC0 (which allows
in addition unbounded fan-in modulo gates), this separates AC0 and ACC0.
Barrington’s theorem [1] states that the regular languages are complete for the
class NC1 of logdepth, polysize, and constant fan-in circuits. Further, Koucký,
Pudlák, and Thérien [12] show that regular languages separate classes defined
by ACC0 circuits using linear number of gates and using linear number of wires.

The classification of regular languages within circuit complexity classes thus
attracted interest, culminating in the results of Barrington et al. [2] that entirely
describe the regular languages in AC0,ACC0 and NC1. The algebraic property
of regular languages studied therein deviates sharply from the prevailing line of
work at the time, which relied on the study of the syntactic monoids of regular
languages. (The syntactic monoid is the monoid of transformations of states of
the minimal automaton.) Indeed, PARITY /∈ AC0, while the language EVEN
of even-length words over {0, 1}, which has the same syntactic monoid, does

c© Springer-Verlag Berlin Heidelberg 2015
G.F. Italiano et al. (Eds.): MFCS 2015, Part I, LNCS 9234, pp. 141–153, 2015.
DOI: 10.1007/978-3-662-48057-1 11

142 M. Cadilhac et al.

belong to AC0. Hence the class of regular languages in AC0 does not admit a
characterization solely in terms of the syntactic monoids.

We propose to take this study to the functional case, that is, to characterize
the functions realized by rational transducers (i.e., input/output automata) that
are expressible by an AC0 circuit family. Similarly to the context at the time
of [2], we face a situation where, to the best of our knowledge, most characteriza-
tions focused on algebraic properties that would blur the line between PARITY
and EVEN (e.g., [14]).

We rely on a property we call continuity for a class of languages V, as bor-
rowed from the field of topology: a transduction τ is V-continuous if it preserves V
by inverse image (i.e., ∀L ∈ V, τ−1(L) ∈ V). It is well known that any trans-
duction τ is continuous for the regular languages; together with an additional
property on the output length of τ , this even characterizes deterministic trans-
ductions [3]. Namely, with d(u, v) = |u| + |v| − |u ∧ v|, where u ∧ v is the largest
common prefix of u and v, the latter property is that d(τ(u), τ(v)) ≤ k ×d(u, v),
a strong form of uniform continuity. Continuity thus appears as a natural invari-
ant when characterizing transductions—the forward behaviors of τ , that is, its
images, are less relevant, as any NP problem is the image of Σ∗ under an AC0

function [4]. Our contributions are three-fold:

– We propose a model of circuits that allows for functions of unrestricted out-
put length: as opposed to previous models, e.g., [19], we do not impose the
existence of a mapping between the input and output lengths.

– Relying on this model, we characterize the deterministic rational transduc-
tions computed by AC0 circuits with access to gates in a given class. This
characterization relies for one part on algebraic objects similar to the ones
used in [2], through the use of the modern framework of lm-varieties [18].
For the other part, we rely on the notion of continuity. This bears a striking
resemblance to the characterization of Reutenauer and Schützenberger [16] of
the transductions with a group as transition monoid.

– The characterization then leads to the decidability of the membership of a
deterministic rational transduction in AC0 or in ACC0. This is effective in the
sense that an appropriate circuit can be produced realizing the transduction.

In Sect. 1, we succinctly cover the automata- and circuit-theoretic notions
necessary to our presentation. In Sect. 2, we introduce the circuit model for
variable output length functions and argue for its legitimacy. In Sect. 3, we show
that studying the transition morphism of an automaton is equivalent to studying
the languages accepted at each of its states; this enables us to keep to a minimum
the algebraic references throughout our presentation. In Sect. 4, we show the
aforementioned characterization and delay to Sect. 5 its implications on AC0

and ACC0. We discuss the results and their limitations in Sect. 6.

1 Preliminaries

Monoid, morphisms, quotient. A monoid is a set equipped with a binary associa-
tive operation, denoted multiplicatively, with a unit element. For an alphabet Σ,

A Circuit Complexity Approach to Transductions 143

the set Σ∗ is the free monoid generated by Σ, its unit element being the empty
word ε. A morphism is a map ϕ : M → N satisfying ϕ(ab) = ϕ(a)ϕ(b) and
ϕ(1) = 1, with a, b ∈ M and 1 denoting the unit element of M and N . A mor-
phism ϕ : Σ∗ → T ∗ is an lm-morphism, where lm stands for length-multiplying,
if there is a k such that ϕ(Σ) ⊆ T k. Given a language L and a word u, the left
quotient of L by u is the set u−1L = {v | uv ∈ L}. The right quotient Lu−1 is
defined symmetrically. For w ∈ Σ∗ and a ∈ Σ, we let |w|a be the number of a’s
in w, i.e., the image of w under the morphism a 	→ 1, Σ \ {a} 	→ 0 into (N,+).

Circuits. We use standard notations, as presented for instance in [17] and [19].
By AC0, we denote the class of languages recognized by constant-depth, polysize
circuit families with Boolean gates of unbounded fan-in. We consider nonuniform
families, that is, we leave unconstrained the mapping from the input size n to
the circuit with n inputs. Such families recognize languages in L ⊆ {0, 1}∗; to
extend this to any alphabet Σ, we always assume there is a canonical map from
Σ to {0, 1}|Σ|, that lets us encode and decode words of Σ∗ in binary. A language
L naturally defines an L-gate which outputs 1 iff its input is in L; for instance,
{0, 1}∗1{0, 1}∗ defines the OR gate. For a class of languages V, we write AC0(V)
for languages recognized by AC0 circuit families with access to L-gates for all
L ∈ V. We let ACC0 = AC0(MOD) where MOD is the class of regular languages
on {0, 1}∗ of the form {|w|1 ≡ 0 mod k} for some k. Further, we define TC0 =
AC0(MAJ) where MAJ is the nonregular language {|w|1 ≥ |w|0 | w ∈ {0, 1}∗}.
We will occasionally rely on the conjectured and widely-believed separation of
ACC0 and TC0. Extending circuits to functions, a function f is in FAC0 if there
is a family of constant-depth, polysize circuits with multiple ordered output bits,
such that f(u) is the output of the circuit for input size |u|. We naturally extend
the notation AC0(V) to FAC0(V).

Automata. A deterministic automaton is a tuple A = (Q,Σ, δ, q0, F), where Q
is the finite set of states, Σ the alphabet, δ : Q × Σ → Q is a partial transition
function, q0 is the initial state, and F is the set of final states. We naturally
extend δ to words by letting δ(q, ε) = q, and δ(q, aw) = δ(δ(q, a), w) when δ(q, a)
is defined. We always assume that any state q is accessible and coaccessible, i.e.,
there is a word uv such that δ(q0, u) = q and δ(q, v) ∈ F . We write L(A, q) for
{w | δ(q0, w) = q}, and L(A) = ∪f∈F L(A, f) for the language of A. For two
states q, q′, we say that q can be separated from q′ in V if there is a language
L in V such that L(A, q) ⊆ L ⊆ L(A, q′). An automaton is all-separable in V
if each pair of distinct states can be separated in V. It is all-definable in V if
every language L(A, q) is in V. We often use the shorter terms V-all-separable
and V-all-definable, of self-explanatory meanings. We write REG for the class of
regular languages.

Continuity, Lm-varieties. A mapping f : Σ∗ → T ∗ is continuous for V, in short
V-continuous, if L ∈ V implies f−1(L) ∈ V—this name stems from the notion
of continuity in topology. The sets of regular languages recognized by circuit
families form a backbone of our work. It is thus natural to assume that these

144 M. Cadilhac et al.

sets be closed under operations that AC0 circuits can compute; this is formalized
as follows. A class of languages V is an lm-variety if it is a Boolean algebra of
languages closed under left and right quotient such that any lm-morphism is V-
continuous. It can be shown that if AC0(V)∩REG = V, then V is an lm-variety.
As is customary, we write QA for AC0 ∩REG and Msol for ACC0 ∩REG—these
names stem from the algebraic classes recognizing the languages: quasi-aperiodic
stamps and solvable monoids respectively, see Sect. 3 and [17] for more details.
In particular, ACC0 = TC0 iff AC0(Msol) ∩ REG = Msol [2]. In the sequel, the
symbol V always denotes some lm-variety of languages.

Transducers. A deterministic transducer is a tuple A = (Q,Σ, T, δ, ν, q0, F)
which is an automaton equipped with an additional alphabet T and a mapping
ν : Q × Σ → T ∗ of same domain as δ. We extend ν to words in Σ∗ by letting
ν(q, ε) = ε and ν(q, aw) = ν(q, a)ν(δ(q, a), w), when δ(q, a) is defined. The par-
tial function τ : Σ∗ → T ∗ mapping w ∈ L(A) to ν(q0, w) is called a transduction.
A transducer is said to be output-minimal if for every pair of states q, q′, there is
a word w such that either only one of δ(q, w) or δ(q′, w) is final, or both are and
ν(q, w) = ν(q′, w). For any transduction τ , we fix an arbitrary output-minimal
transducer MinT(τ) realizing it. Note that given a transducer, one can easily
compute an output-minimal transducer realizing the same transduction. We will
see that the choice of MinT(τ) does not bear any impact on the results.

We freely use Q,Σ, T, etc. when an automaton or a transducer is under study,
with the understanding that they are the relevant components of its defining
tuple. Our focus being solely on automata, transducers, and transductions that
are deterministic, we will omit mentioning determinism from now on.

2 Circuit Frameworks for Variable-Length Functions

In the literature, most of the work on functions computed by circuits focus on
variants of the class FAC0 (see, e.g., [19]). In these, multiple (ordered) output
gates are provided, and there is thus an implicit mapping from input length to
output length. Towards circumventing this limitation, we propose a few different
frameworks, and establish some formal shortcomings in order to legitimize our
final choice. Our main requirement is that functions defined using constant-
depth, polysize circuits should be AC0-continuous—this corresponds to a simple
composition of the circuits. In particular, FAC0 functions are AC0-continuous.

2.1 Noninversability

We first consider circuits with a pair of inputs 〈u, v〉, where the represented func-
tion is valued v on u if the circuit accepts the pair 〈u, v〉. By making no syntactic
distinction between input and output, any function has the same complexity as
its inverse if it is functional. We show that this blurs definability:

Proposition 1. There is an AC0-continuous transduction in FAC0 whose
inverse is functional and not AC0-continuous.

A Circuit Complexity Approach to Transductions 145

Proof. Consider the minimal, two-state automaton for L = 0∗(a0∗b0∗)∗ and turn
it into a transducer by letting ν(·, 0) = 0 and ν(·, a) = ν(·, b) = 1, and call τ
the resulting transduction. The FAC0 circuit for τ first checks that the input is
in L. This can be done as L ∈ AC0, a fact that can be seen relying on the logical
characterization of AC0: a word is in L iff its first non-0 letter is an a, its last
a b, and the closest non-0 letters to an a (resp. a b) are b’s (resp. a’s). Next,
the circuit simply maps 0 to 0 and a, b to 1. The transduction being in FAC0,
it is AC0-continuous. Now let σ = τ−1, it is clearly functional. But σ−1(L) is
PARITY, hence σ is not AC0-continuous. ��
Thus, much in the fashion of FAC0, this implies that there should be dis-
tinguished input and output gates. We next deal with how their lengths are
specified.

2.2 Output Length as a Parameter

Aiming for a natural and succinct model, we may want that the family of circuits
be parametrized solely by the input length. In such a framework, the presented
circuit for a given input length is equipped with a way to “deactivate” output
gates, in order to allow for different output lengths. Formalizing this idea further,
a deactivating circuit C with n inputs and m outputs is an usual circuit with
an extra input valued z, a new constant symbol. This new symbol behaves as
follows: 1 ∨ z = z ∨ 1 = 1, and any other combination of z with 0, 1,∨,∧,¬ is
valued z. The output of C on a given input is its usual output stripped of the z
symbol. The frameworks used in [5,10,14] are logic counterparts of this model.
Then:

Proposition 2. There is a transduction expressible as a constant-depth, poly-
size family of deactivating circuits which is not AC0-continuous.

Proof. The erasing morphism 0 	→ ε, 1 	→ 1 is a transduction τ that can be
expressed as a family of circuits as in the statement of the Proposition, but
τ−1(12N) is PARITY /∈ AC0. ��
We thus reach the following definition, that will serve as a basis for our study:

Definition 1 (Functional Circuits). A function τ : Σ∗ → T ∗ is expressed
as a circuit family (Cn

m)n,m≥0, where Cn
m is a circuit with n inputs and m + 1

outputs, if:
(∀u, v ∈ Σ∗) τ(u) = v ⇔ C

|u|
|v| (u) = (v, 1) .

The size of the family is the mapping from N to N ∪ {∞}, defined by n 	→
supm≥0 |Cn

m|. Similarly, the depth of the family is the mapping that associates n

to the supremum of the depths of each Cn
m. The class FAC0

v, standing for func-
tions in AC0 with variable output length, is the class of functions expressible
as a family of constant-depth, polysize circuits. The class FAC0

v(V) is defined in
the same fashion as AC0(V), and we let FACC0

v = FAC0
v(MOD).

146 M. Cadilhac et al.

Remark 1.

– Any function τ in FAC0
v(V) is such that n 	→ maxu∈Σn |τ(u)| has value in N,

that is, for a given input size, there is a finite number of possible output sizes.
More precisely, this mapping is polynomially bounded. We show this implies
that τ is AC0(V)-continuous. Let (Cn

m)n,m≥0 be the circuit family for τ . Given
a language L in AC0(V) expressed by the circuit family (Dn)n>0, τ−1(L)∩Σn

is recognized by the circuit that applies a polynomial number of circuits Cn
m

to the input, and checks that the only m such that Cn
m outputs (v, 1) is such

that v ∈ Dm.
– If for any n there is an m such that τ(Σn) ⊆ Σm, i.e., if τ is not of variable

output length, then τ ∈ FAC0
v(V) is equivalent to τ ∈ FAC0(V).

– We will be interested in functions from Σ∗ to N, and will speak of their
circuit definability. In this context, the function is either seen as taking value
in {1}∗, and dealt with using a variable-output-length circuit, or taking value
in {0, 1}∗ using an FAC0-like circuit, the output value then corresponding to
the position of the last 1 in the output. These two views are equivalent, and
hence we do not rely on a specific one. We note that (general) transductions
from Σ∗ to {1}∗ have been extensively studied in [7]; therein, Choffrut and
Schützenberger show that such a function is a transduction iff it has a strong
form of uniform continuity, akin to the one presented in the introduction, with
longest common subwords instead of prefixes.

3 Separability, Definability, and Lm-Varieties of Stamps

Recall that the transition monoid of an automaton A is the monoid under com-
position consisting of the functions fw : Q → Q defined by fw(q) = δ(q, w).
Historically, regular languages were studied through properties of the transition
monoids of their minimal automata (the so-called syntactic monoids). As previ-
ously mentioned, the minimal automata for EVEN ∈ AC0 and PARITY /∈ AC0

have the same transition monoid, hence the class AC0 ∩ REG admits no syntac-
tic monoid characterization. Starting with [2], the interest shifted to transition
morphisms of automata, i.e., the surjective morphisms ϕ : w 	→ fw. It is indeed
shown therein that a regular language is in AC0 iff ϕ(Σs)∪{ϕ(ε)} is an aperiodic
monoid for some s > 0 and ϕ associated with the minimal automaton.

A stamp is a surjective morphism from a free monoid to a finite monoid.
A systematic study of the classes of languages described by stamps turned out
to be a particularly fruitful research endeavor of the past decade [6,9,15,18].
Our use of this theory will however be kept minimal, and we will strive to only
appeal to it in this section. The goal of the forthcoming Lemma 1 is indeed to
express algebraic properties in a language-theoretic framework only.

Given a stamp ϕ : Σ∗ → M , we say that L is recognized by ϕ if there is a set
E ⊆ M such that L = ϕ−1(E)—in this case, we also say that L is recognized
by M , which corresponds to the usual definition of recognition (e.g., [17]). We
say that a stamp ϕ : Σ∗ → M lm-divides a stamp ψ : T ∗ → N if ϕ = η ◦ ψ ◦ h,
where h : Σ∗ → T ∗ is an lm-morphism and η : N → M is a partial surjective

A Circuit Complexity Approach to Transductions 147

morphism. The product of two stamps ϕ and ψ with the same domain Σ∗ is
the stamp mapping a ∈ Σ to (ϕ(a), ψ(a)). Finally, an lm-variety of stamps is a
class of stamps containing the stamps Σ∗ → {1} and closed under lm-division
and product. An Eilenberg theorem holds for lm-varieties: there is a one-to-one
correspondence between lm-varieties of stamps and the lm-varieties of languages
they recognize [18]. We show:

Lemma 1. Let A be an automaton, V an lm-variety of stamps, and V its cor-
responding lm-variety of languages. The following are equivalent:

(i) The transition morphism of A is in V;
(ii) A is V-all-definable;
(iii) A is V-all-separable.
Proof. (i) → (ii). Let ϕ be the transition morphism of A. Then L(A, q) = ϕ−1(E)
where E = {fw | fw(q0) = q}, hence L(A, q) ∈ V.
(ii) → (iii). This is immediate, as L(A, q) separates q from any other state.
(iii) → (i). Write Lq,q′ for the language separating q from q′. As each of these
are recognized by stamps in V and V is closed under product, the language
Lq = ∩q′ �=qLq,q′ is also recognized by a stamp in V. Similarly, taking the product
of the stamps recognizing the different Lq’s, we see that all of the Lq’s are
recognized by the same stamp ψ : Σ∗ → N in V; let thus Eq be such that
Lq = ψ−1(Eq). Let ϕ : Σ∗ → M be the transition morphism of A. We claim that
ϕ lm-divides ψ, concluding the proof as V is closed under lm-division. Define
η : N → M by η(ψ(w)) = ϕ(w). If η is well-defined, then it is a surjective
morphism, and we are done as ϕ = η ◦ ψ. Suppose ϕ(u) = ϕ(v), then there is
a p ∈ Q such that δ(p, u) = q and δ(p, v) is either undefined or a state q′ = q.
Let w be a word such that δ(q0, w) = p, then ψ(wu) ∈ Eq and ψ(wv) /∈ Eq,
hence ψ(u) = ψ(v), showing that η is well-defined. ��
Remark 2. For V = QA and V = Msol, the properties of Lemma 1 are decidable.

As advertised, the rest of this paper will now be free from (lm-varieties of) stamps
except for a brief incursion when discussing our results in Sect. 6. Lemma 1
enables a study that stands in the algebraic tradition with no appeal to its tools.

4 The Transductions in FAC0
v(V)

In sharp contrast with the work of Reutenauer and Schützenberger [16], we are
especially interested in the shape of the outputs of the transduction. It turns out
that most of its complexity is given by the following output-length function:
Definition 2 (τ#). Let τ be a transduction. The function τ# : Σ∗ → N is the
output-length function of MinT(τ) with all the states deemed final. In symbols,
τ#(w) = |ν(q0, w)|, with MinT(τ) as the underlying transducer.

Theorem 1. Let τ be a transduction and V be such that AC0(V) ∩ REG = V.
The following constitutes a chain of implications:

148 M. Cadilhac et al.

(i) τ ∈ FAC0
v(V);

(ii) τ is AC0(V)-continuous;
(iii) τ is V-continuous;
(iv) MinT(τ) is V-all-definable.
Moreover, if τ# ∈ FAC0

v(V) then (iv) implies (i). Somewhat conversely,
(i) implies τ# ∈ FAC0

v(V).

Proof. (i) → (ii). This was alluded to in Remark 1.
(ii) → (iii). This follows from the closure under inverse transductions of REG

and the hypothesis that the regular languages of AC0(V) are in V.
(iii) → (iv). Let q, q′ be two states of A = MinT(τ). We show that we can separate
q from q′. We distinguish the following cases, that span all the possibilities thanks
to the output-minimality of A. In each case, we build a language L separating
L(A, q) and L(A, q′), with L ∈ V relying on continuity and on V being an lm-
variety by hypothesis. By Lemma 1, we then conclude (iv).

– Case 1: There is a w such that only one of δ(q, w) or δ(q′, w) is in F . We
suppose δ(q, w) ∈ F , without loss of generality as V is closed under comple-
ment. Let L = (τ−1(T ∗))w−1, a word x is in L iff δ(q0, xw) ∈ F . This is the
case for all words in L(A, q) and for none in L(A, q′), hence L separates these
languages.

– Case 2: There is a w such that both δ(q, w) and δ(q′, w) are in F , and words
u, u′ such that ν(q, w) = u = u′ = ν(q′, w). Then we have two possibilities:

– Case 2.1: If |u| = |u′|. For a word x ∈ Σ∗, if τ(xw) ends with u, then δ(q0, x)
cannot be q′. Hence L = (τ−1(T ∗u))w−1 ∈ V separates L(A, q) from L(A, q′).

– Case 2.2: If |u| = |u′|. Define k ∈ N to be such that |u| ≡ |u′| mod k, and
let s ∈ {0, 1, . . . , k − 1}. Let x ∈ Σ∗ be such that s ≡ |ν(q0, x)| mod k.
Then if δ(q0, x) = q, we have |τ(xw)| ≡ s + |u| mod k, while δ(q0, x) = q′

makes this equation false. Hence the union L over every s of the languages
(τ−1(T kN+s+|u|))w−1 separates L(A, q) from L(A, q′).

(iv) → (i), assuming τ# ∈ FAC0
v(V). We construct an FAC0

v(V) circuit family
for τ . Fix an input size n and an output size m. Given an input x = x1x2 · · · xn,
we first check, using τ#, that the output length of τ on x is indeed m, and wire
this answer properly to the (m + 1)-th output bit. Next, the j-th output bit,
1 ≤ j ≤ m, is computed as follows. We apply τ# to every prefix of x, until
we find an i such that τ#(x<i) < j ≤ τ#(x≤i), where x<i = x1x2 · · · xi−1 and
similarly for x≤i. Relying on the languages L(A, q), we find the state q in MinT(τ)
reached by x<i, and let u = ν(q, xi). The j-th output bit then corresponds to
the (j − τ#(x<i))-th letter of u.

(i) → (τ# ∈ FAC0
v(V)). Suppose (i), this implies (iv). We construct an

FAC0(V) circuit family for τ#. Fix the input size n, and let x = x1x2 · · · xn

be the input. We can check, using the languages L(MinT(τ), q), in which state q
the word x ends when read. Let wq be a fixed word such that δ(q, wq) ∈ F , and
let r = |ν(q, wq)|. It suffices now to plug the word xwq in the circuit for τ ; the
value of τ#(x) is then the length of τ(xwq) minus r. ��

A Circuit Complexity Approach to Transductions 149

Remark 3. The proof of Theorem 1 shows that MinT(τ), and hence τ#, can be
arbitrarily chosen as long as it is output-minimal. The role of τ# is discussed at
greater length in Sect. 6.

5 An Application to AC0 and ACC0

Our primary focus is on the decidability of the membership of transductions in
small-complexity classes. Theorem 1, while providing a characterization of these
transductions, does not come with a decidable property in the general case—even
when some conjectured separations are presupposed. With AC0 and ACC0, the
functions τ# that can be expressed with circuits can however be characterized.

Definition 3 (Constant Ratio). A transducer has constant ratio if every two
words of the same length looping on a state produce outputs of the same length
from this state. In symbols, for any state q and any words u, v of the same length,
δ(q, u) = δ(q, v) = q implies |ν(q, u)| = |ν(q, v)|.
Remark 4. The name of the latter property stems from the fact that in such
a transducer, for any state q, there is a ratio θ such that if δ(q, u) = q, then
|ν(q, u)| = θ|u|. Indeed, suppose a transducer has constant ratio, and let u
and v be words with δ(q, u) = δ(q, v) = q for some q. Write |ν(q, u)| = θ1|u|
and |ν(q, v)| = θ2|v|. Then x = u|v| and y = v|u| are of the same length, and
θ1|u| × |v| = |ν(q, x)| = |ν(q, y)| = θ2|v| × |u|, hence θ1 = θ2.

Lemma 2. (Assuming ACC0 = TC0.) Let τ be a transduction. If τ# is in
FACC0

v, then MinT(τ) has constant ratio.

Proof. Suppose that A = MinT(τ) does not have constant ratio. We give a circuit
family in AC0 with τ#-gates for the language L = {w ∈ {0, 1}∗ | |w|0 = |w|1},
which is complete for TC0. Hence τ# cannot admit an FACC0

v circuit family.
As A does not have constant ratio, there are a state q in A and two words

u, v ∈ Σ∗ of the same length, such that δ(q, u) = δ(q, v) = q and �u = |ν(q, u)| is
different from �v = |ν(q, v)|. Further, let win (resp. wout) be such that δ(q0, win) =
q (resp. δ(q, wout) ∈ F), and let �in = |ν(q0, win)| (resp. �out = |ν(q, wout)|).

We describe the circuit for L for input size n. Let x denote the input. First,
the circuit transforms each 0 into u, and each 1 into input. The circuit can be
graphically represented as follows:

First, the circuit transforms each 0 into u, and each 1 into v—this can be done
as |u| = |v|. Then win is prepended and wout appended to it, and the resulting
word x′ is fed to τ#. The output is �in + |x|0 × �u + |x|1 × �v + �out, that is:

τ#(x′) = �in +
1
2
(|x|(�u + �v) + (|x|0 − |x|1)(�u − �v)) + �out .

150 M. Cadilhac et al.

Now (|x|0 − |x|1)(�u − �v) cancels out iff x has as many 0’s as 1’s. Hence x ∈ L
iff the output of τ# is �in + 1

2 |x|(�u + �v) + �out, which is verifiable in AC0. ��
Having a constant ratio provides an easy way to compute the length function:

Lemma 3. Let τ be a transduction. If MinT(τ) has constant ratio and is V-all-
definable, then τ# is in FAC0

v(V).

Proof. The circuit for τ# guesses a path without cycles for the input word, and
checks that, modulo cycling, it is indeed a correct path for it. The output value
is then entirely determined by the positions of the input at which this underlying
path is taken. We now give a more precise construction.

Let π = (q0, a0)(q1, a1) · · · (qk, ak) ∈ (Q × Σ)∗ be an accepting simple path
in A = MinT(τ), that is, qi+1 = δ(qi, ai), qk+1 = δ(qk, ak) ∈ F , and for i = j,
qi = qj . There is a finite number of such paths, and for each of them, the circuit
contains the following subcircuit. The subcircuit checks that the path in A for
the input word follows π, that is, if all the cycles are removed, then the resulting
path is π. To do so, for each possible values of 1 ≤ p0 < p1 < · · · < pk ≤ n such
that

∑
pi = n (there is a polynomial number of them), the subcircuit checks for

all i ≤ k that the prefix of length pi − 1 of the input is in L(A, qi), and that the
input at position pi is ai. If this holds for all i, then the input word follows the
path π, possibly cycling on each of the states qi, i ≤ k+1, and the output length
is entirely determined. Indeed, with θ0, θ1, . . . , θk+1 the ratios of q0, q1, . . . , qk+1

respectively, and � the sum of the output lengths of the transitions in π (i.e.,
τ#(a0a1 · · · ak)), the value of τ# on the input is:

θ0 × (p0 − 1) +
∑k

i=1 θi × (pi − pi−1 − 1) + θk+1 × (n − pk) + �. ��
Corollary 1. Let τ be a transduction. The following are equivalent, where the
the “resp.” part assumes ACC0 = TC0:

(i) τ ∈ FAC0
v (resp. ∈ FACC0

v);
(ii) τ is continuous for AC0 (resp. for ACC0) and MinT(τ) has constant ratio;
(iii) τ is continuous for QA (resp. for Msol) and MinT(τ) has constant ratio;
(iv) MinT(τ) is all-definable for QA (resp. for Msol) and has constant ratio.

Remark 5. It should be noted that the choice of MinT(τ) is again irrelevant.
Either all the output-minimal transducers for τ are constant ratio, or none are.

Theorem 2. It is decidable whether a transducer realizes an FAC0
v function.

If it does, then a circuit family can be constructed. The same holds for FACC0
v

assuming ACC0 = TC0.

Proof. This is a direct consequence of Corollary 1, together with the minimiza-
tion algorithm of [8], the fact that V-all-definability is decidable, and the fact
that it can be checked that a transducer has constant ratio: it is indeed enough
to check the property on cycles that do not go twice in the same state except
for the first. The constructions of Theorem 1 and Lemma 3 are then effective.��
Corollary 1 can be slightly strengthened for AC0, as in this case:

A Circuit Complexity Approach to Transductions 151

Proposition 3. If τ is QA-continuous, then MinT(τ) has constant ratio.

Proof. This is a variant of Lemma 2, where we only rely on the inverse image of
τ instead of a full circuit construction.

Suppose that A = MinT(τ) does not have constant ratio. There are a state q
in A = MinT(τ) and two words u, v ∈ Σ∗ of the same length, such that reading
u (resp. v) from q produces an output of length �u (resp. �v), and �u < �v. Now
the words y = u�v and z = v2�u are such that y produces an output of size
�y = �u × �v, and z produces an output of size �z = �v × 2�u = 2�y.

Now if τ is a QA-continuous transduction, so is the function τ ′ mapping
x ∈ {0, 1}∗ to a word on {a}∗ with �y × |x|1 + �z × |x|0 letters a—it is simply a
matter of replacing 1 with y, 0 with z, and correctly reaching the state q. But
τ ′−1(a2�yN) is PARITY: indeed, x has an odd number of 1 iff τ ′(x) contains an
odd number of blocks a�y . Hence τ ′ is not QA-continuous, and neither is τ . ��

6 Discussion and Limitations

1 We note that Proposition 3 fails in the case of ACC0, as the following example
shows. Consider the morphism h : a 	→ a, b 	→ aa. As the regular languages of
ACC0, Msol, are closed under inverse morphism (this is a consequence of Msol

being a variety), h is Msol-continuous. However, MinT(h) does not have constant
ratio. This was already noted in a different setting by Lange and McKenzie [13].

2 The major role that τ# plays in Theorem 1 raises several questions. First,
is it the case that all the complexity of a transduction is characterized by its
length function? In symbols, is it true that τ# ∈ FAC0

v(V) ⇒ τ ∈ FAC0
v(V)? The

following example shows that it is not. Consider the transduction from {0, 1}∗

to {a, b}∗ that outputs a if the word read so far is in PARITY, and b otherwise.
Then τ# is total and maps every word to its length, it is thus in FAC0

v. However,
w is in PARITY iff the last letter of τ(w) is an a, that is, τ−1({a, b}∗a) is
PARITY, hence τ is not QA-continuous, thus cannot be in FAC0

v.
Next, going down two levels in the statement of Theorem 1, we may wonder

whether the V-continuity of τ is equivalent to that of τ#. One direction is true,
but its converse fails, as the previous example shows:

Proposition 4. If τ is V-continuous, then so is τ#.

Proof. Suppose τ is V-continuous. Let E be a set of integers, and write ΣE for
the words of lengths in E. Suppose {a}E is in V; we show τ−1

(E) ∈ V.
From Theorem 1, A = MinT(τ) is V-all-definable. Let q be a state of A, and

w a word mapping q to a final state while outputing u. Then (τ−1(ΣE .u))w−1 ∩
L(A, q) is in V, as τ is V-continuous and {a}E ∈ V. Now the union of all these
sets for all states q is precisely τ−1

(E), hence it is in V. ��

3 Our interest in circuits obscured an equally interesting problem: characteriz-
ing the V-continuous transductions. A general question raised by our character-
ization is:

152 M. Cadilhac et al.

Question 1. Which lm-varieties V verify the following statement? A transduction
τ is V-continuous iff MinT(τ) is V-all-definable and τ# is V-continuous.

A direct consequence of Proposition 3 is that V = QA verifies Question 1.
Another such class is given in [16]; therein, Reutenauer and Schützenberger show
that the property holds for V = G, the (lm-)variety of group languages, that is,
languages with a group as syntactic monoid. More precisely, they show that τ is
G-continuous iff the transition monoid of MinT(τ) is a group; this latter property
is equivalent to: the transition morphism of MinT(τ) is a stamp Σ∗ → G, for
G a group. The set of such stamps is an lm-variety of stamps (see [6]), thus by
Lemma 1, their characterization is indeed of the form of Question 1.

4 It is interesting to note that the property on τ# of Question 1 vanishes for
groups: this can be seen as a consequence of Reutenauer and Schützenberger’s
characterization itself, as τ# has the same transition monoid as MinT(τ). On the
other hand it is shown in the same article that there are transductions with an
aperiodic monoid that are not continuous for aperiodic languages. This raises
the question:

Question 2. Which lm-varieties V verify the following statement? If a transduc-
tion τ is such that MinT(τ) is V-all-definable, then τ# is V-continuous.

5 Recall that a nondeterministic transduction is functional iff it is realized by
an unambiguous transduction (see, e.g., [3]). As circuits can read the input mul-
tiple times and in any direction, it seems that they can handle deterministic
and unambiguous transductions in the same fashion. Hence a generalization of
Theorem 1 to the unrestricted case of functional transductions should hold.

Acknowledgment. We thank Michael Blondin, Michael Hahn, and the referees.

References

1. Barrington, D.A.M.: Bounded-width polynomial size branching programs recognize
exactly those languages in NC1. J. Comp. Syst. Sc. 38, 150–164 (1989)

2. Barrington, D.A.M., Compton, K., Straubing, H., Thérien, D.: Regular languages
in NC1. J. Comput. Syst. Sci. 44(3), 478–499 (1992)

3. Berstel, J.: Transductions and Context-Free Languages, Leitfäden der Ange-
wandten Mathematik und Mechanik LAMM. Teubner, Stuttgart (1979)

4. Beyersdorff, O., Datta, S., Krebs, A., Mahajan, M., Scharfenberger-Fabian, G.,
Sreenivasaiah, K., Thomas, M., Vollmer, H.: Verifying proofs in constant depth.
TOCT 5(1), 2 (2013)

5. Bojańczyk, M.: Transducers with Origin Information. In: Esparza, J., Fraigniaud,
P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014, Part II. LNCS, vol. 8573, pp.
26–37. Springer, Heidelberg (2014)

6. Chaubard, L., Pin, J.É., Straubing, H.: First-order formulas with modular predi-
cates. In: LICS, pp. 211–220. IEEE (2006)

A Circuit Complexity Approach to Transductions 153

7. Choffrut, C., Schützenberger, M.P.: Counting with rational functions. Theor.
Comput. Sci. 58(1–3), 81–101 (1988)

8. Choffrut, C.: A generalization of Ginsburg and Rose’s characterization of G-S-M
mappings. In: Maurer, H.A. (ed.) ICALP 1979. LNCS, vol. 71, pp. 88–103. Springer,
Heidelberg (1979)

9. Esik, Z., Ito, M.: Temporal logic with cyclic counting and the degree of aperiodicity
of finite automata. Acta Cybern. 16(1), 1–28 (2003)

10. Filiot, E., Krishna, S.N., Trivedi, A.: First-order definable string transformations.
In: Raman, V., Suresh, S.P. (eds.) FSTTCS. LIPIcs, vol. 29, pp. 147–159 (2014)

11. Furst, M., Saxe, J.B., Sipser, M.: Parity, circuits, and the polynomial-time hierar-
chy. Theor. Comput. Syst. 17, 13–27 (1984)

12. Koucký, M., Pudlák, P., Thérien, D.: Bounded-depth circuits: separating wires
from gates. In: STOC, pp. 257–265. ACM (2005)

13. Lange, K.-J., McKenzie, P.: On the complexity of free monoid morphisms. In:
Chwa, K.-Y., Ibarra, O.H. (eds.) ISAAC 1998. LNCS, vol. 1533, pp. 247–255.
Springer, Heidelberg (1998)

14. Lautemann, C., McKenzie, P., Schwentick, T., Vollmer, H.: The descriptive com-
plexity approach to LOGCFL. J. Comput. Syst. Sci. 62(4), 629–652 (2001)

15. Pin, J.É., Straubing, H.: Some results on C-varieties. RAIRO-Theor. Inf. Appl.
39(01), 239–262 (2005)

16. Reutenauer, C., Schützenberger, M.P.: Variétés et fonctions rationnelles. Theor.
Comput. Sci. 145(1–2), 229–240 (1995)

17. Straubing, H.: Finite Automata, Formal Logic, and Circuit Complexity.
Birkhäuser, Boston (1994)

18. Straubing, H.: On logical descriptions of regular languages. In: Rajsbaum, S. (ed.)
LATIN 2002. LNCS, vol. 2286, pp. 528–538. Springer, Heidelberg (2002)

19. Vollmer, H.: Introduction to Circuit Complexity. Springer-Verlag, Berlin (1999)

Locally Chain-Parsable Languages

Stefano Crespi Reghizzi1, Violetta Lonati2,
Dino Mandrioli1, and Matteo Pradella1(B)

1 DEIB - Politecnico di Milano, Milan, Italy
{stefano.crespireghizzi,dino.mandrioli,matteo.pradella}@polimi.it

2 DI - Università degli Studi di Milano, Milan, Italy
lonati@di.unimi.it

Abstract. If a context-free language enjoys the local parsability prop-
erty then, no matter how the source string is segmented, each segment
can be parsed independently, and an efficient parallel parsing algorithm
becomes possible. The new class of locally chain-parsable languages
(LCPL), included in deterministic context-free languages, is here defined
by means of the chain-driven automaton and characterized by decidable
properties of grammar derivations. Such automaton decides to reduce
or not a factor in a way purely driven by the terminal characters,
thus extending the well-known concept of Input-Driven (ID) (visibly)
pushdown machines. LCPL extend and improve the practically relevant
operator-precedence languages (Floyd), which are known to strictly
include the ID languages, and for which a parallel-parser generator exists.
Consistently with the classical results for ID, chain-compatible LCPL are
closed under reversal and Boolean operations, and language inclusion is
decidable.

1 Introduction

Syntax analysis or parsing of context-free (CF) languages is a mature research
area, and good parsing algorithms are available for the whole CF family and for
the deterministic subfamily (DCFL) that is of concern here. Yet the classical
parsers are strictly serial and cannot profit from the parallelism of current com-
puters. An exception is the parallel deterministic parser [2,3] based on Floyd’s
[7] operator-precedence grammars (OPG) and their languages (OPL), which are
included in DCFL. This is a data-parallel algorithm that is based on a theoret-
ical property of OPG, called local parsability : any arbitrary factor of a sentence
can be deterministically parsed, returning the unique partial syntax-tree whose
frontier is the input string.

LL(k) and LR(k) grammars do not have this property, and their parsers must
scan the input left-to-right to build leftmost derivations (or reversed-rightmost
ones). On the contrary, the abstract recognizer of a locally parsable language,
called a local parser, repeatedly looks in some arbitrary position inside the input

Partially supported by PRIN 2010LYA9RH-006, and CNR-IEIIT.

c© Springer-Verlag Berlin Heidelberg 2015
G.F. Italiano et al. (Eds.): MFCS 2015, Part I, LNCS 9234, pp. 154–166, 2015.
DOI: 10.1007/978-3-662-48057-1 12

Locally Chain-Parsable Languages 155

string for a production right-hand side (RHS) and reduces it. The local parsabil-
ity property ensures the correctness of the syntax tree thus obtained, no matter
the position of reduction applications.

The informal idea of local parsability is occasionally mentioned in old research
on parallel parsing, and has been formalized for OPG in [2]. Our first contribution
is to propose the definition of a new and more general class of locally parsable
languages: the language family to be called Locally Chain-Parsable (LCPL),
which gains in generative capacity and bypasses some inconveniences of OPG.

The other contribution is towards a generalization of the well-known fam-
ily of input-driven (alias visibly push-down) languages (IDL) [1,11], which are
characterized by push-down machines that choose to perform a push/pop/stay
operation depending on the alphabetic class (opening/closing/internal) of the
current input character, without a need to check the top of stack symbol. Since
the attention IDL have recently attracted is due to their rich closure and decid-
ability properties, we hope that the introduction of a larger family of languages
with similar properties may be also of interest.

To understand in what sense our LCPL are input-driven, we first recall that
IDL generalize parenthesis languages, by taking the opening/closing characters
as parentheses to be balanced, while the internal characters are handled by a
finite-state automaton. It suffices a little thought to see that IDL have the local
parsability property, a fact also stemming from the fact that IDL are included in
OPL [6]. Yet, the rigid alphabetic 3-partition severely reduces their generative
capacity. If we allow the parser decision whether to push, pop, or stay, to be
based on a pair of adjacent terminal characters (more precisely on the precedence
relation �, �, =̇ between them), instead of just one as in the IDL, we obtain the
OPL family, which has essentially the same closure and decidability properties
[6,9]. Loosely speaking, we may say that the input that drives the automaton
for OPL is a terminal string of length two.

With the LCPL definition, we move further: the automaton bases its decision
whether to reduce or not a factor (which may contain nonterminals) on the purely
terminal string orderly containing: the preceding terminal, the terminals of the
factor, and the following terminal. Such triplet will be called a chain and the
machine a chain-driven automaton. For a given CF grammar, the length of chains
has an upper bound, which bounds the input portion that drives the choice of a
move by the recognizer.

The paper is organized as follows. After the Preliminaries, Sect. 3 introduces
the chain-driven machine as a recognizer for CF. Sect. 4 defines local chain
parsability for chain-driven automata and for grammars, and proves the two
notions to be equivalent; Sect. 4.1 extends the definition of chains and formu-
lates a decidability condition for local chain parsability based on the absence
of conflicts; Sect. 4.2 proves, among others, the Boolean closure and decidability
properties of LCPL. Section 5 establishes the strict inclusion of OPL (and hence
also IDL) within LCPL, and claims through a practical example that LCPG are
more suitable than OPG for specifying real programming languages. Section 6 is
on related work and draw some conclusions.

156 S. Crespi Reghizzi et al.

2 Preliminaries

For terms not defined here, we refer to any textbook on formal languages, e.g.
[8]. The terminal alphabet is denoted by Σ; it includes the letter # used as start
and end of text. Let Δ be an alphabet disjoint from Σ. A string β ∈ (Σ ∪ Δ)∗

is in operator form if it contains one or more terminals and does not contain a
factor from Δ2, i.e., no adjacent symbols from Δ; OF(Δ) denotes the set of all
operator form strings over Σ ∪ Δ.

A context-free grammar is a 4-tuple G = (VN ,Σ, P, S), where VN is the
nonterminal alphabet, P the set of rules, and S ⊆ VN is the set of axioms. The
total alphabet is V = VN ∪Σ. The stencil of a rule A → α is the rule N → σ(α),
where σ : VN → {N} maps every nonterminal to the new symbol N �∈ V .

The derivation relation for a grammar G is denoted as usual by ⇒G and
its reflexive and transitive closure by ∗⇒G. The set of sentential forms (s.f.)
generated by G is SFG = {α ∈ V ∗ | T

∗⇒G α, T ∈ S} and the language
generated is L(G) = SFG ∩ Σ∗. A grammar is invertible if no two rules have
identical r.h.s. A grammar is an operator grammar (OG) if all r.h.s.’s are in
OF(VN). Any CF grammar that does not generate ε admits an equivalent OG,
which can be assumed to be invertible [8]. Clearly, every s.f. of an OP grammar
is in OF(VN). In this paper we deal only with reduced OG.

The following naming convention is adopted, unless otherwise specified: low-
ercase Latin letters a, b, . . . denote terminal characters; uppercase Latin letters
A,B, . . . denote nonterminal characters; lowercase Latin letters x, y, z . . . denote
terminal strings; and Greek lowercase letters α, . . . , ω denote strings over Σ∪VN .

We use bold symbols to denote strings over an alphabet that includes the
square brackets, e.g. x ∈ (Σ ∪ {[,]})∗,α ∈ (Σ ∪ VN ∪ {[,]})∗. We introduce the
following short notation for frequently used operations based on projections: for
erasing all nonterminal symbols in a string α, we write α̂; for erasing all square
brackets, we write α̃; moreover, α =̂ β stands for α̂ = β̂ and α =̃ β stands for
α̃ = β̃. Also, we use αfirst and αlast for taking the first or last symbol in Σ from
a string α. The same notation is applied when VN is replaced by the state set
of a machine.

For a CF grammar G, the associated parenthesis grammar, denoted by [G],
is obtained by bracketing with ‘[’ and ‘]’ each r.h.s. of a rule of G. A grammar
G is structurally ambiguous if there exists x1 �= x2 ∈ L([G]) such that x1 =̃ x2.
Two grammars G,G′ are structurally equivalent if L([G]) = L([G′]).

3 Chain-Driven Automata

In this section, we present the core formalism of this paper, i.e., the chain-
driven automaton, that can be seen as an abstract parser for CF languages.
As stated in the introduction such type of abstract parser is particularly well-
suited to exploit parallel implementation. First we give and illustrate by example
the formal definition of chain-driven automaton, then we prove the equivalence
between chain-driven automata and CF grammars.

Locally Chain-Parsable Languages 157

The key driver in the search for a string to be reduced is the concept of
chain. According with the general philosophy of input-driven languages and other
similar families, such as, e.g., OPL, where the parsing actions by the recognizing
automata are determined exclusively on the basis of terminal characters, the
chains driving our automata contain only terminal characters

Definition 1. A chain is a triple a〈y〉b with a, b ∈ Σ and y ∈ Σ+; (a, b) is the
context and y the body of the chain.

A chain-driven automaton works by reducing the input string through a sequence
of reductions driven by a given set of chains; the automaton finds a given chain
within the input string and replaces its body with a state; then the mechanism is
applied recursively to the obtained string. Hence during the reduction steps the
input string is shortened and simultaneously enriched by the computed states;
chains being defined over the input alphabet, the portion of the input factor
to be reduced is detected depending on input symbols only; enriching states
are used then to (nondeterministically) determine which state will replace the
detected factor.

Definition 2. A chain-driven automaton is a tuple (Σ, Q,C, δ, F) where

– Σ is the input alphabet;
– Q is a finite set of states;
– C is a finite set of chains;
– δ : Σ×OF(Q)×Σ → P(Q) is the reduce function, where δ(a, γ, b) �= ∅ implies

a〈γ̂〉b ∈ C.
– F ⊆ Q is the set of final states.

A configuration of the automaton is a string γ ∈ OF(Q). The initial configuration
on input x ∈ Σ∗ is defined as #x#; a configuration #q# with q ∈ F is called an
accepting configuration. The reduction move is defined as follows: the automaton
may perform the move

α aγb β
a〈y〉b
�−−− α aqb β

where γ̂ = y, and δ(a, γ, b) � q. Hence, a move of the automaton deletes a factor
in OF(Q) (corresponding to the body of the chain in C, possibly enriched with
states in Q) and replaces it with a state.

A computation of the automaton is a sequence K0

c1
�−−− K1

c2
�−−− K2

c3
�−−−

· · · cn
�−−− Kn where Ki are configurations, ci are chains. When not relevant we

omit the chain and write simply K1 �−−− K2. We also use
∗

�−−− to denote the
reflexive and transitive closure of �−−−. The language accepted by the automaton
is defined as L(A) = {x ∈ Σ∗ | #x#

∗
�−−− #q# with q ∈ F}.

Example 1. Consider the language of arithmetic expressions on {e,+, ∗} with
the obvious meaning of symbols. A chain-driven automaton recognizing such
expressions can be defined as follows: C contains chains #〈+〉#, #〈+〉+, #〈∗〉#,
#〈∗〉+, +〈∗〉#, +〈∗〉+, +〈∗〉∗, #〈∗〉∗, and all chains a〈e〉b with a, b ∈ {#, ∗,+};

158 S. Crespi Reghizzi et al.

Q = {qe, q+, q∗}, F = Q, and δ is given in the following table, where the first
column collects the contexts (a, b), and the second row specifies the strings in
OF(Q) gathered according to their projection.

γ̂ = ∗ γ̂ = + γ̂ = e

qe∗qe q∗∗qe qe+qe q∗+qe q++qe qe+q∗ q∗+q∗ q++q∗ e

(#,#) (#,+) q∗ q+ qe
(+,#) (+,+) (+, ∗) (#, ∗) q∗ qe

(∗,#) (∗, ∗) (∗,+) qe

Here are two accepting computations for e + e ∗ e:

#e + e ∗ e#
#〈e〉+
�−−− #qe + e ∗ e#

+〈e〉∗
�−−− #qe + qe ∗ e#

∗〈e〉#
�−−− #qe + qe ∗ qe#

+〈∗〉#
�−−−

#qe + q∗#
#〈+〉#
�−−− #q+#;

#e + e ∗ e#
+〈e〉∗
�−−− #e + qe ∗ e#

∗〈e〉#
�−−− #e + qe ∗ qe#

#〈e〉+
�−−− #qe + qe ∗ qe#

+〈∗〉#
�−−−

#qe + q∗#
#〈+〉#
�−−− #q+#.

In general, the syntactic structure is not uniquely determined, since different
computations may associate different structures with the same accepted string.

As for grammars, we can formalize a notion of structural ambiguity by using
parenthesis automata.

Definition 3. For a chain-driven automaton A = 〈Σ, Q,C, δ, F 〉, the asso-
ciated parenthesis automaton is the chain-driven automaton [A] = 〈Σ ∪
{[,]}, Q, [C], δ′, F 〉 where [C] is the set of chains a〈[y]〉b such that a〈y〉b ∈ C,
and δ′ is defined by setting δ′(a, [γ], b) = δ(a, γ, b) whenever δ(a, γ, b) �= ∅.

A chain-driven automaton A is structurally ambiguous if L([A]) contains
two strings x1 �= x2 such that x1 =̃ x2.

For instance, consider a variant of the automaton of Example 1, where the con-
text (+,#) is moved from the second row to the first, and a new body qe + q+
is added to the second column. This automaton can perform two structurally
different computations for the input string e + e + e, namely, starting from con-
figuration #qe + qe + qe#:

#qe + qe + qe#
#〈+〉+
�−−− #q+ + qe#

#〈+〉#
�−−− #q+#, i.e. where the string is assigned

the structure [[[e]+[e]]+[e]]; and #qe+qe+qe#
+〈+〉#
�−−− #qe+q+#

#〈+〉#
�−−− #q+#,

where the structure is [[e] + [[e] + [e]]].

Definition 4. A chain-driven automaton A = 〈Σ, Q,C, δ, F 〉 is reduced if every
chain in C is used in some accepting computation.

W.l.o.g. in what follows we consider only reduced automata.
We are going to see that chain-driven automata recognize CF languages, and

can be seen as parsers for CF grammars: states of the automaton correspond to
nonterminals of the grammar; any string reduced by the automaton corresponds
to the r.h.s of some rule of the grammar, and any state computed by the reduction
function corresponds to the nonterminal at the l.h.s of the same rule.

Locally Chain-Parsable Languages 159

Definition 5. The chain a〈y〉b is a grammatical chain associated with G if there
exists a derivation

#T# ∗=⇒
G

α aAb β =⇒
G

α aγb β (1)

with γ̂ = y, T ∈ S. The set of grammatical chains associated with G is denoted
by CG.

Theorem 1. Chain-driven automata recognize the class of CF languages.

Proof. We prove that the language recognized by any chain-driven automaton
can be generated by a grammar, and vice versa. We first need the concept of
labeled transition system (LTS), which is a triple (S,Λ, τ) where S is an infinite
set of LTS states, Λ is a set of labels, and τ is a set of labelled state transitions
(i.e., τ ⊆ S × Λ × S).

Notice that both grammars and chain-driven automata can be seen as LTS.
Formally, a grammar can be seen as the LTS (VN ∪ OF(VN), C,⇐=) where the
LTS states are all strings in operator forms, the labels are all chains over Σ,
and ⇐= is defined by setting αaγbβ

c⇐= αaAbβ where c = a〈y〉b, A → γ is a
production of G and γ̂ = y. A chain-driven automaton can be seen as the LTS
(OF(Q), C, �−−−) where labels are the chains that drive the automaton, and �−−−
is the relation defined by the reduction moves.

Let G = (VN ,Σ, P, S). Define the chain-driven automaton AG =
〈Σ, Q, CG, δ, F 〉 where: Q = VN ; F = S is the set of axioms; CG is the set of
grammatical chains associated with G; δ is defined by setting B ∈ δ(a, γ, b) for
each production B → γ such that a[γ̂]b ∈ CG. Both G and AG define the same
LTS, except that for G the set of LTS states is SF(VN) whereas for A the LTS
states are the configurations of the automaton, i.e., strings #γ# ∈ SF(VN). In
particular, this means that the derivations T

∗⇒ x of G with T ∈ S are in bijection
with the computations #x#

∗
�−−− #T# and this implies that L(AG) = L(G).

Conversely, let A = 〈Σ, Q,C, δ, F 〉. Define the grammar GA = (VN ,Σ, P, S)
where: VN = Σ × Q × Σ S = {(#, q,#) | q ∈ F} P is the set of productions
(a0, q, an+1) → γ where q ∈ δ(a0, γ, an+1). Both A and GA define the same
LTS, except that for A the LTS states are configurations #q0a1q1a2 . . . anqn#
(any qi may be missing), whereas for GA the LTS states are written in the form
(#, q0, a1)a1(a1, q1, a2)a2 . . . an−1(an, qn,#). In particular, this means that com-

putations #x#
∗

�−−− #q# of A with q ∈ F are in bijection with the derivations
(#, q,#) ∗⇒ x of G and this implies that L(GA) = L(A). Notice that CG = C. �

Traditional general CF parsers proceed always left to right and produce a unique
representation of the syntax trees associated with the input string; our chain-
driven automata, instead, may nondeterministically produce any bottom-up pos-
sible traversal of the grammar’s trees, as it is illustrated by the parser of Exam-
ple 1 and by its structurally ambiguous modification. Clearly, A is structurally
unambiguous iff the equivalent grammar GA defined in the proof of Theorem 1
is structurally unambiguous, and vice versa.

160 S. Crespi Reghizzi et al.

4 Locally Chain-Parsable Languages

The following definitions formalize our intuitive idea of local parsability.

Definition 6. A local chain parser (LCPA) is a chain-driven automaton such
that, for every chain a〈y〉b, the following condition holds: if γ̂ = y, then

every computation α aγb β
∗

�−−− #qF # with qF ∈ F can be decomposed as
α aγb β

∗
�−−− α′ aγb β′

�−−− α′ aqb β′ ∗
�−−− #qF # with suitable α′, β′, and q.

Definition 7. A grammar is locally chain-parsable (LCPG) if, for every gram-
matical chain a〈y〉b, the following condition holds: if γ =̂ y, then each derivation
#T# ∗=⇒ αaγbβ with T ∈ S can be decomposed as #T# ∗=⇒ α′aAb β′ =⇒
α′aγb β′ ∗⇒ α aγb β. A language L is locally chain-parsable (LCPL) if it is
generated by a LCPG.

In other terms, for a grammar to be LCPG, we require what follows: for every
γ appearing with terminal context (a, b) at the end of some derivation starting
from #T#, γ has to be generated with a single production A → γ and such a
production has to be applied to a string where the nonterminal A already has
(a, b) as context.

Theorem 2. A language is LCPL if and only if it is recognized by a LCPA. An
LCPA recognizes any string in linear time.

Proof. The statement is a consequence of the fact the both constructions in the
proof of Theorem 1 preserve locality properties.

Concerning time complexity, it is well-known that every grammar can be
automatically transformed into a structurally equivalent invertible one [8]; thus,
if we apply such a procedure to a locally parsable grammar, the corresponding
local parser defined by Theorem 1 has a deterministic reduction function δ. It
is therefore a simple exercise to derive a traditional deterministic pushdown
automaton from a deterministic local parser: the former one simply restricts the
set of computations of the latter one to the reverse of the rightmost visit of
syntax trees. Thus, LCPL are (strictly) included in DCFL. �

Example 2. The following grammar G1, which generates the same arithmetic
expressions recognized by the chain-driven automaton of Example 1, is locally
parsable.

E → E + T | T ∗ F | e F → e
T → T ∗ F | e S = {E, T, F}

In fact, consider a generic derivation such as #E# ⇒ #E + T# ⇒ #E + T +
T# ⇒ #E + T ∗ F + T# ∗⇒ #e + e ∗ F + e# ⇒ #e + e ∗ e + e#. The result
of any derivation step is such that each terminal character is enclosed within
a context of a pair of terminals which univocally determines the stencil of the
last step of the derivation that produced it, independently on the non-terminals
involved in the derivation: e.g., every e can only be produced by a rule with

Locally Chain-Parsable Languages 161

stencil N → e; the only ∗ in the context (+,+) can only be produced through a
rule with stencil N → N ∗ N ; the first + is produced by the rule E → E + T in
the context (#,+) but there is no way to produce the second + within any of the
contexts (+,#), (∗,#), (∗, e), and (e, e), by means of an immediate derivation
with stencil N → N + N .

Thus, a possible bottom up parser can always decide which terminal part
of any r.h.s. to reduce by only inspecting the terminal parts of any sentential
form of length 3 plus its context: if it finds the terminal part α̂ of a rule A → α
within a context where G can generate any β with β =̂ α through an immediate
step of derivation B ⇒ β, then it can reduce the r.h.s to the corresponding
l.h.s. with the certainty that the same α̂ cannot be obtained as part of a more
complex derivation that does not produce it in a single step; notice also that the
reduction could be fully deterministic if G were invertible.

On the contrary, the following grammar G2, generating only additive expres-
sions, is not locally parsable.

X → E + X | E + E E → e
Y → Y + E | E + E S = {X,Y }

The grammatical chains associated with G2 are #〈+〉#, #〈+〉+, #〈e〉+, +〈e〉+,
+〈e〉#, and +〈+〉#. For instance, chain +〈+〉# is obtained by applying rule
X → E+E in the last step of the following derivation: #X# ∗⇒ #E+E+X# ⇒
#E + E + E + E#

Now consider the following derivation: #Y # ⇒ #Y +E# ⇒ #Y +E+E# ⇒
#E + E + E + E#. The factor γ = E + E occurs in context (+,#) but it is not
reduced in any step of the derivation. Hence, G2 is not locally parsable.

Informally, a possible parser, after having reduced all es to E, would be
confronted with the sentential form #E + E + E + E# and would not have
any indication to decide whether to apply X → E + E reducing the last +, or
Y → E + E reducing the first +.

4.1 Extended Chains, Conflicts and Decidability of the LCP
Property

Both LCPA and LCPG give a unique structure to each string of their respective
languages. To formalize this point, we first introduce the notion of extended
chain, that generalizes Definition 1.

Definition 8. Structured strings are special well-parenthesized strings over Σ∪
{[,]}, defined recursively as follows:

– y ∈ Σ+ are atomic structured strings;
– if ai ∈ Σ and yi = ε or yi = [vi] for some structured strings vi, then

y0a1y1a2 . . . anyn is a composed structured string if at least one yi is dif-
ferent from ε.

An extended chain (briefly xchain) is a string #[y]# where y is the body of
the xchain.

162 S. Crespi Reghizzi et al.

Any grammar or chain-driven automaton determines a set of xchains which
have an important role w.r.t the local parsability property.

Definition 9. Let A be a chain-driven automaton and G a grammar. An xchain
#[y]# is an A-xchain or a G-xchain, respectively, if there exist γ such that γ̂ = y
and

#[γ]#
∗

�−−−
[A]

#qF # with qF ∈ F or #T# ∗=⇒
[G]

#[γ]# with T ∈ S.

The sets of A-xchains and G-xchains are denoted respectively by XA and XG.

Remark 1. If GA is the grammar equivalent to the chain-driven automaton A, as
defined in the proof of Theorem 1, then XGA = XA; vice versa the chain-driven
automaton AG equivalent to a grammar G is such that XAG

= XG.

Example 3. Consider grammar G1 of Example 2. The sentential form [E + [[e] ∗
[e]]] is derived by the associated parenthesis grammar [G1] with the following
derivation #E# ⇒ #[E + T]# ⇒ #[E + [T ∗ F]]# ⇒ #[E + [T ∗ [e]]]# ⇒
#[E + [[e] ∗ [e]]]#; hence #[+[[e] ∗ [e]]]# is a G1-xchain. Other G1-xchains are
#[[+] + [∗[e]]]#, #[[[e] ∗ [e]] ∗ [e]]#, #[+[[∗[e]]∗]]#. Similarly, let A be the the
chain-driven automaton of Example 1; both computations for the string e+ e∗ e
presented in the same example define the xchain #[[e] + [[e] ∗ [e]]]#. One can
easily guess that A-xchains are the same as G1’s ones. Notice also that both G1

and A are such that, for each string y they can generate/recognize, there is only
one G1/A-xchain y such that ỹ = y.

The next definition introduces the concept of conflict between an xchain and
a chain. Intuitively, an xchain c conflicts with a chain s = a〈y〉b if c̃ contains
the string ayb but such occurrence of y does not correspond to the body of a
“subchain” of s.

Definition 10. An xchain conflicts with a chain a〈y〉b iff it can be decomposed
as xaybz where ỹ = y and y �∈ [+y]+. A set X of xchains and a set C of chains
are conflictual iff there is an xchain in X that conflicts with some chain in C.

Example 4. The xchain #[+[+[+[+]]]]# conflicts with the chain #〈+〉+ since
the prefix #[+[+ of the xchain projects onto # + +, but the first occurrence of
symbol + in the xchain is not bracketed; formally, the definition is satisfied with
x = ε, y = [+[, and z = [+[+]]]]#. Otherwise, #[[[+]+]+]+]# does not conflict
with #〈+〉+ since when # + + occurs in the xchain (once, as a prefix), the first
occurrence of symbol + is bracketed.

Example 5. By referring again to Example 2, with a little patience it can be ver-
ified that the set of G1-xchains does not exhibit any conflict with CG1 , whereas
XG2 and CG2 are conflictual. We next show that the property of having non-
conflictual XG and CG is decidable for any grammar G (and is supported by an
automatic tool.1) Also, G1 is locally parsable, whereas G2 is not. These remarks
leads to the main property stated in Theorem 4.
1 https://github.com/bzoto/chainsaw.

https://github.com/bzoto/chainsaw

Locally Chain-Parsable Languages 163

Theorem 3. The fact that XG and CG are nonconflictual is decidable for every
grammar G; the fact that XA and C are nonconflictual is decidable for every
automaton A driven by the set of chains C.

Proof. Let G be (VN ,Σ, P, S). We first introduce a grammar G′ = (VN ∪{T ′},Σ∪
{[,]}, P ′, {T ′}), such that T ′ �∈ VN and

P ′ = {A → [α′] | A → α ∈ P, where α′ = α or α′ is obtained from α

by erasing some (or every) nonterminals} ∪ {T ′ → #[T]# | T ∈ S}.

It is easy to see that G′ defines the language of all the G-xchains. For a grammat-
ical chain c, we can define a regular language R(c) = (Σ∪{[,]})∗ · a · ¬([+·y·]+) ·
b · (Σ ∪ {[,]})∗ that is the language of all the possible xchains that conflict
with c. Clearly,R′ :=

⋃
c∈CG

R(c) is also a regular language. G is conflictual
iff L(G′) ∩ R′ �= ∅; since L(G′) ∩ R′ is context-free, its emptiness problem is
decidable.

The statement for the automaton follows from Theorem 1 and Remark 1. �

Theorem 4. A chain-driven automaton A is a local parser if and only if XA
and the set C of chains driving A are not conflictual. A grammar G is locally
parsable if and only if XG and CG are not conflictual.

Theorems 4 and 3 imply the following result.

Corollary 1. The fact that a grammar is LCPG is decidable; the fact that a
chain-driven automaton is LCPA is decidable.

4.2 Basic Properties of Local Chain-Parsable Languages

LCP grammars and parsers associate a unique structure with each gener-
ated/accepted string x; such a structure is represented by an xchain #[x]#
with x =̃ x.

Theorem 5. LCP grammars and parsers are structurally unambiguous.

Proof. Both properties can be proved similarly reasoning by contradiction.
Assume that A is structurally ambiguous; then one can show that XA and the
set of chains that drive A are conflictual. By Theorem 4 this means that A is
not LCPA. For grammars the same results can be proved by using Corollary 1.

Definition 11. Two LCPA A1 = (Σ, Q1, C1, δ1, F1) and A2 = (Σ, Q2, C2, δ2,
F2) are compatible if XA1 ∪ XA2 and C1 ∪ C2 are not conflictual. Two LCPL
L1 and L2 are compatible if they are recognized by compatible LCPA.

Theorem 6. Let L be LCPL. Then its reversal LR is LCPL.

Theorem 7. Let A1 = (Σ, Q1, C1, δ1, F1) and A2 = (Σ, Q2, C2, δ2, F2) be com-
patible chain-driven automata recognizing respectively L1 and L2. Then L1 ∪L2,
L1 ∩ L2, and L1 \ L2 are LCPL.

164 S. Crespi Reghizzi et al.

Proof. W.l.o.g. we may assume that the set of states Q1 and Q2 are disjoint. Let
C = C1 ∪C2, and Q = (Q1 ∪{⊥, qerr})× (Q2 ∪{⊥, qerr}), with ⊥, qerr �∈ Q1 ∪Q2.
For each strings γ ∈ OF(Q), say γ = q0a1q1a2q2 · · · anqn with qi ∈ Q ∪ {ε},
define γ1 = p0a1p1a2p2 · · · anpn where pi is empty whenever qi is empty or has
⊥ as first component, and pi is the first component of qi in the other cases; γ2
is defined symmetrically. Then δ(a, γ, b) is as follows:

– δ(a, γ, b) is the set of all pairs (q1, q2) with q1 ∈ δ1(a, γ1, b) and q2 ∈ δ2(a, γ2, b),
if both δ1(a, γ1, b) and δ2(a, γ2, b) are nonempty;

– δ(a, γ, b) = ∅, if both δ1(a, γ1, b) and δ2(a, γ2, b) are undefined or empty;
– δ(a, γ, b) is the set of all pairs (qerr, q2) with q2 ∈ δ2(a, γ2, b), if only δ1(a, γ1, b)

is undefined or empty, and similarly for the symmetric case.

We remark that independent moves of a LCPA (i.e., moves that reduce non-
overlapping factors of the input string) can be applied in any order. For � ∈
{∩,∪, \}, the automaton for L1 � L2 is given by (Σ, Q,C, δ, F�), where: F∩ =
F1 × F2, F∪ = F1 × (Q2 ∪ {qerr}) ∪ (Q1 ∪ {qerr}) × F2), F\ = F1 × (Q \ F2 ∪
{qerr}). �

Corollary 2. The inclusion problem for compatible LCPL is decidable.

5 LCPL Versus Operator-Precedence
and Input-Driven Languages

It is worthwhile to examine the LCPL as an outgrowth of the classical OPL [7],
whose knowledge, both theoretically ([6,9] and for application to parallel parsing
[2]), has much progressed in recent years. OPL is a subfamily of DCFL having
the local parsability property and characterized by a bottom-up parser that is
driven by three binary precedence relations between terminals of the grammar,
defined as follows. Let α be a r.h.s.:

– a is equal in precedence to b (a .= b), if ab is a factor of α̂;
– a yields precedence to b (a�b), if b = αfirst and some s.f. contains aα as factor;
– a takes precedence over b (a � b), if a = αlast and some s.f. contains αb as

factor.

For a grammar to be an OPG, at most one relation may hold between a pair of
terminals. For instance, the relations for G1 in Example 2 are: +�+,+�∗,+�e,
∗�+, ∗�∗, ∗� e, e�+, e�∗. The language L3 = {cndn | n > 0}, generated e.g.
by A → cAd | cd, necessarily has the relations c � c, c=̇d, d � d. Its reversal L3

R

(generated by the mirror grammar) has the symmetric relations c�c, d=̇c, d�d;
therefore the language L4 = L3 ∪ L3

R has precedence conflicts such as c � c and
c � c and is easily proved not to be an OPL.

Next, after proving that OPL is strictly contained within LCPL, we argue
that the extra generative capacity of LCPG has practical value.

Theorem 8. The OPL family is strictly contained within the LCPL family.
Moreover every OPG is locally chain-parsable.

Locally Chain-Parsable Languages 165

Proof. To prove that every OPG G is LCP: the grammatical chains CG are
determined by the precedence relations of G, as follows: a〈c1 · · · ck〉b ∈ CG iff
a � c1, ci

.= ci+1 for every 1 ≤ i < k, and ck � b.
Consider now any G’s derivation of type #T# ⇒∗ αaγbβ with γ̂ = y,

a〈y〉b ∈ CG; since for each pair of terminals at most one precedence relation
holds, it is necessarily a � γfirst, γlast � b and .= holds between any pair of con-
secutive terminals in y. Thus, the above derivation must be decomposed into
#T# ⇒∗ α′aAbβ′ ⇒∗ α′aγbβ′ ⇒∗ αaγbβ: in fact deriving γ in separate steps
(e.g.: #T# ⇒∗ α′aγ1δ ⇒∗ α′aγ1γ2bβ

′ ⇒∗ αaγbβ, with γ1γ2 = γ, γ1 and γ2 �= ε)
would imply the existence of a � or of a � relation within γ in conflict with
the .= relation (in this example γ1last � γ2first).

The strict inclusion OPL ⊂ LCPL is witnessed by the previous language,
L4 = {cndn | n ≥ 1}∪{dncn | n ≥ 1}, which is recognized by the obviously local
automaton driven by the chains: #〈cd〉#, #〈dc〉#, c〈cd〉d, d〈dc〉c. �

Useful generative capacity of LCPG. LCPG permit to define relevant syntactic
constructs beyond the capacity of OPG. As an argument we present a well-
known practical construct: arithmetic expressions containing both unary and
binary minus signs, which notoriously introduce precedence conflicts. To keep the
example small, the next grammar features only subtraction and multiplication
and e as operand, but other operators and parentheses would be straightforward
to add. E is the only axiom:

E → e | −e | eX | −eX | E − e | E − −e | E − eX | E − −eX
X → ∗ e | ∗ − e | ∗ eX | ∗ − eX

To prove that this grammar has the LCP property, we have used the previously
mentioned tool. While traditional precedence parsers are forced to use some
trick (like diversifying the two types of minus in the preceding phase of lexical
analysis), our LCPG permits a pure syntactic approach.

6 Related Work and Conclusions

In addition to the mentioned relations of our work to the IDL, other classi-
cal lines of research present conceptual analogies to be briefly presented, and
have somewhat inspired our effort. Brevity forces us to limit explanations and
citations.

The NTS languages [5] are defined by the nonterminal separation property.
They enjoy the local parsability property in the following sense: if a factor (with
terminals and nonterminals) occurs in a sentence as a constituent, i.e., is gen-
erated by a nonterminal symbol, then, for every sentence, the same factor can
be reduced to the same symbol. NTS languages, however, are not input-driven,
because they rely on the presence of nonterminals for localizing the position of
a reduction.

Moving to another research area, the local parsability property is remindful
of the confluence property of Church-Rosser languages (also called McNaughton

166 S. Crespi Reghizzi et al.

languages): they are defined by string rewriting rules [4,10]. Such systems, under
the length-reducing hypothesis that ensures that the length of reduction chains
is not infinite, bear some similarity to our approach. But they are more powerful
than ours, because they define also deterministic context-sensitive languages.
Moreover, they are not input-driven in any sense, since the rules contain also
nonterminal symbols.

To sum up, to our knowledge, our class of automata and grammars differs
from all existing, somewhat related, models, either, or both, with respect to the
local parsability property and to the input-driven aspects.

This class properly extends the known input-driven classes, preserving impor-
tant closure properties, and maintains the decidability of the containment prob-
lem. This increased generative power can be exploited to define practical lan-
guages and to obtain efficient parallel parsers, thus extending the algorithm
presented in [3] for OPL and replicating the obtained benefits in terms of time
complexity and speed up. Further closure properties, in particular concatenation
and Kleene’s star, are still to be investigated.

The present paper represents a new step in the long term path towards a
general theory of local deterministic parsing.

References

1. Alur, R., Madhusudan, P.: Adding nesting structure to words. J. ACM 56(3), 1–43
(2009)

2. Barenghi, A., Crespi Reghizzi, S., Mandrioli, D., Pradella, M.: Parallel parsing of
operator precedence grammars. IPL 113, 245–249 (2013)

3. Barenghi, A., Crespi Reghizzi, S., Mandrioli, D., Pradella, M.: Parallel parsing
made practical. SCP (2015). under revision

4. Beaudry, M., Holzer, M., Niemann, G., Otto, F.: McNaughton families of languages.
TCS 290(3), 1581–1628 (2003)

5. Boasson, L., Sénizergues, G.: NTS languages are deterministic and congruential.
J. CSS 31(3), 332–342 (1985)

6. Crespi Reghizzi, S., Mandrioli, D.: Operator precedence and the visibly pushdown
property. J. CSS 78(6), 1837–1867 (2012)

7. Floyd, R.W.: Syntactic analysis and operator precedence. J. ACM 10(3), 316–333
(1963)

8. Harrison, M.A.: Introduction to Formal Language Theory. Addison Wesley, New
York (1978)

9. Lonati, V., Mandrioli, D., Panella, F., Pradella, M.: Operator precedence lan-
guages: Their automata-theoretic and logic characterization. SICOMP (2015). to
appear

10. McNaughton, R., Narendran, P., Otto, F.: Church-rosser thue systems and formal
languages. J. ACM 35(2), 324–344 (1988)

11. Mehlhorn, K.: Pebbling mountain ranges and its application of DCFL-recognition.
In: de Bakker, J.W., van Leeuwen, J. (eds.) ICALP 1980. LNCS, vol. 85. Springer,
Heidelberg (1980)

Classes of Languages Generated by the Kleene
Star of a Word

Laure Daviaud1 and Charles Paperman2(B)

1 LIF, UMR7279, CNRS, Aix-Marseille Université, Marseille, France
2 Warsaw University, Warsaw, Poland

charles.paperman@gmail.com

Abstract. In this paper, we study the lattice and the Boolean algebra,
possibly closed under quotient, generated by the languages of the form
u∗, where u is a word. We provide effective equational characterisations
of these classes, i.e. one can decide using our descriptions whether a given
regular language belongs or not to each of them.

1 Introduction

Equational descriptions of regular languages is a successful and long-standing
approach to obtain characterisations of classes of regular languages. One of the
first results about equational descriptions is Schützenberger’s theorem [10] on
star-free languages. In the case of a variety of regular languages, Reiterman’s
theorem [9] guarantees the existence of a characteristic set of profinite equations.
This theorem has been extended to several kinds of classes of languages, including
lattices and Boolean algebras. The reader could refer to [3,6] for a more detailed
presentation. Let U be the class of all languages of the form u∗, where u is a
word. The aim of this paper is to study the four classes of regular languages
L, B, Lq and Bq obtained respectively as the closure of U under the following
operations: finite union and finite intersection (lattice operations) for L, finite
union, finite intersection and complement (Boolean operations) for B, lattice
operations and quotients for Lq and Boolean operations and quotients for Bq.

Our main result is an equational characterisation for each of these four
classes. These equational characterisations being effective, they give as a coun-
terpart the decidability of the membership problem: One can decide whether
a given regular language belongs to L, B, Lq and Bq respectively. In addition
to describing L, B, Lq and Bq in terms of equations, our results also provide a
general form for the languages belonging to each of these classes.

Motivations. Our motivation for the study of these classes are threefold. First,
Restivo suggested a few years ago to characterise the variety of languages gen-
erated by the languages of the form u∗, where u is a word. Given that a variety
of languages is a class of regular languages closed under Boolean operations,

The second author is supported by WCMCS.

c© Springer-Verlag Berlin Heidelberg 2015
G.F. Italiano et al. (Eds.): MFCS 2015, Part I, LNCS 9234, pp. 167–178, 2015.
DOI: 10.1007/978-3-662-48057-1 13

168 L. Daviaud and C. Paperman

quotients and inverses of morphisms, our result can be viewed as a first step
towards the solution of Restivo’s problem.

Our second reason for studying these classes was to provide non trivial appli-
cations of the equational theory of regular languages as defined by Gehrke,
Grigorieff and Pin in [3,6]. There are indeed plenty of examples of known equa-
tional characterisations of varieties of languages, but not so much of classes of
languages that are not closed under inverses of morphisms or under quotients.

Our third motivation is rather a long term perspective since it has to do
with the (generalised) star-height problem, a long standing open problem on
regular languages [7]. It appears that a key step towards this problem would
be to characterise the Boolean algebra generated by the languages of the form
F ∗, where F is a finite language. The case F = {u} studied in this paper is
certainly a very special case, but it gives an insight into the difficulty of the
general problem.

Related Work. A related class is the class of slender languages [4,11], which
can be written as a finite union of languages of the form xu∗y, where x, u, y ∈ A∗.
The class of slender or full languages is a lattice closed under quotients that is
therefore characterised by a set of equations. These equations correspond in fact
to patterns that cannot be found in any minimal automaton that computes a
slender language. In our case, equations provided to characterise classes L, B,
Lq and Bq can also be seen as forbidden patterns in automata. Then, we deduce
normal forms for the languages in L, B, Lq and Bq.

Organization of the Paper. Section 2 gives classical definitions and proper-
ties about the algebraic automata theory and profinite semigroups. Section 3 is
dedicated to the study of the syntactic monoid of u∗ for a given word u. In
particular, we present useful algebraic properties of the syntactic monoid of u∗.
Section 4 presents equational theory of regular languages: it first gives classical
results, then presents the equations satisfied by u∗, and finally gives the charac-
terisations of L, Lq and Bq. The study of B is much more intricate and involves
specific tools that are given in Sect. 5. Finally, Sect. 6 presents decidability issues.
Sections 2 to 6 deal with alphabet with at least two letters. The case of a unary
alphabet is simpler and derives from the two-letter case. It is treated in Sect. 7.

Notations. We denote by A a finite alphabet with at least two letters, by A∗

the set of words on A, by 1 the empty word and by |u| the length of a word u.

2 Recognisability and the Profinite Monoid

In this section, we introduce the definitions of recognisability by monoids and of
profinite monoid. For more details, the reader could refer to [2].

Monoids and Recognisability. A monoid M is a set equipped with a binary
associative operation with a neutral element denoted by 1. The product of x
and y is denoted by xy. An element e of M is idempotent if e2 = e. An element

Classes of Languages Generated by the Kleene Star of a Word 169

0 ∈ M is a zero of M if for all x ∈ M , 0x = x0 = 0. Given two monoids M
and N , ϕ : M → N is a morphism if for all x, y ∈ M , ϕ(xy) = ϕ(x)ϕ(y) and
ϕ(1) = 1.

In a finite monoid, every element has an idempotent power: for all x ∈ M ,
there is nx ∈ N−{0} such that xnx is idempotent. The smallest nx satisfying this
property is called the index of x. Moreover, there is an integer n �= 0 such that
for all x ∈ M , xn is idempotent. For instance, one could take the product of the
nx. The smallest integer satisfying this property is called the index of the monoid
and is denoted by ω. Thus, xω is the unique idempotent in the subsemigroup
generated by x.

Given a monoid M and a morphism ϕ : A∗ → M , a language L is said to be
recognised by (M,ϕ) if there is P ⊆ M such that L = ϕ−1(P). The language L is
said to be recognised by M if there is ϕ such that (M,ϕ) recognises L. A language
is regular if and only if it is recognised by a finite monoid. Moreover, the smallest
monoid that recognises a regular language L is unique up to isomorphism and
is called the syntactic monoid of L. The associated morphism ϕ is called the
syntactic morphism and ϕ(L) is called the syntactic image of L. Furthermore,
for each word u, we call ϕ(u) the syntactic image of u with respect to L. The
syntactic monoid of a regular language can be computed as it is the transition
monoid of the minimal (deterministic) automaton of L.

Free Profinite Monoid. Given two words u and v, a monoid M separates u
and v if there is a morphism ϕ : A∗ → M such that ϕ(u) �= ϕ(v). If u �= v, there
is a finite monoid that separates u and v. A distance d can be defined on A∗ as
follows: d(u, u) = 0 and if u �= v, d(u, v) = 2−n where n is the smallest size of a
monoid that separates u and v. Moreover this distance is ultrametric.

Every finite monoid is seen as a metric space equipped with the distance
d(x, y) = 1 if x �= y and d(x, y) = 0 otherwise. This implies that every morphism
from A∗ to a finite monoid is a uniformly continuous function.

We briefly recall some useful definitions and results on the free profinite
monoid . We refer to [2] for an extended presentation of this subject. The free
profinite monoid of A∗, denoted by Â∗ can be defined as the completion for the
distance d of A∗. It is a compact space such that A∗ is a dense subset of Â∗. Its
elements are called profinite words. It is known that a language L is regular if
and only if L is open and closed in Â∗, where L is the topological closure of L
in Â∗.

Finally, every morphism from A∗ to some finite monoid M can be uniquely
extended to a uniformly continuous morphism from Â∗ to M . By abuse of nota-
tion, a morphism and its extension will be denoted by the same symbol.

The two following examples are profinite words that are not finite words and
that will be intensively used in the remainder of the paper.

Example 1. (Idempotent power). Given a word u ∈ A∗, the sequence (un!)n

converges in Â∗. Its limit is denoted by uω. Given a finite monoid M and a
morphism ϕ : Â∗ → M , ϕ(uω) = ϕ(u)ω.

170 L. Daviaud and C. Paperman

Example 2. (Zero [1,8]). Let A be an alphabet with at least two letters and fix a
total order on it. Let (un)n be the sequence of all words ordered by the induced
shortlex order. We set: v0 = u0 and for all n ∈ N, vn+1 = (vnun+1vn)(n+1)!. The
sequence (vn)n converges in Â∗ and we denote by ρA its limit. Given a finite
monoid M and a morphism ϕ : Â∗ → M , if M has a zero then ϕ(ρA) = 0.

3 The Languages u∗

As mentioned in the introduction, our goal is to describe classes generated by
the languages u∗. We will see in Sect. 4 that proving the correctness of such
characterisations requires a precise description of the structure of the syntactic
monoid of a given language u∗ and particularly of its idempotents.

Therefore, this section addresses this study by exhibiting some properties of
the syntactic monoid of u∗. Let us introduce two notions useful to study the
languages of the form u∗. A word u is said to be primitive if for all words v
and all integers n, the condition u = vn implies n = 1 and v = u. A word v is
said to be a conjugate of u if there are words u1, u2 such that u = u1u2 and
v = u2u1. The study of the syntactic monoid of u∗ highly depends on the fact
whether u is primitive or not. Without loss of generality, we consider now the
studied language to be of the form (um)∗ for u a primitive word and m a positive
integer.

In the syntactic monoid of (um)∗, there is a zero that is the syntactic image of
words that cannot be completed into a word of (um)∗. Idempotent elements are
exactly this zero, the neutral element and the syntactic images of the conjugates
of um. Thus there are |u|+2 idempotents. Moreover, if the idempotent power of a
syntactic image of a word is not zero, then this word has to be a power of
a conjugate of u. Finally, the index of the syntactic images of u and of its
conjugates is m. All these properties are instanciated in Example 3.

Example 3. We show in Fig. 1 the minimal deterministic automaton and monoid
representation of the language (aab)∗. The elements in boxes are the elements

Fig. 1. Minimal deterministic automaton and monoid representation of (aab)∗

Classes of Languages Generated by the Kleene Star of a Word 171

of the syntactic monoid of (aab)∗. An element has a star in its box if it is
idempotent. The conjugates of aab are aab, aba and baa. Finally, the syntactic
image of b2 is a zero of the monoid.

4 Equational Characterisations of L, Lq and Bq

This section covers the equational theory of regular languages. First, Sect. 4.1
presents known results about equations. Then Sect. 4.2 applies this theory to the
study of L, Lq and Bq, by giving equations that characterise them.

4.1 Equational Characterisations of Algebraic
Structures of Regular Languages

A lattice (resp. a Boolean algebra) of languages of A∗ is a class of languages
containing the empty language ∅, the full language A∗ and which is closed under
finite union and finite intersection (resp. finite union, finite intersection and
complement). A class of languages L is closed under quotients if for all L ∈ L,
for all u ∈ A∗, u−1L and Lu−1 belong to L. Recall that u−1L = {v | uv ∈ L}
and Lu−1 = {v | vu ∈ L}. Let u and v be two profinite words. A language
L ⊆ A∗ satisfies the equation u → v if the condition u ∈ L implies v ∈ L. It
satisfies u � v if for all words x, y, xuy ∈ L implies xvy ∈ L. The notation
u ↔ v is a shortcut for u → v and v → u and similarly u = v is a shortcut
for u � v and v � u. Observe that given a regular language L and its syntactic
morphism ϕ : A∗ → M , the language L satisfies u = v if and only if ϕ(u) = ϕ(v)
in M . A class of languages L is defined by a set of equations E if the following
equivalence holds: L ∈ L if and only if L satisfies all the equations in E.

The kind of equations used to describe a class of languages is strongly related
to its closure operations. The two following propositions formalise this statement.

Proposition 1. (Theorem 5.2 [3]). A class of regular languages is defined by
a set of equations of the form u → v (resp. u ↔ v) if and only if it is a lattice
(resp. a Boolean algebra) of regular languages.

Proposition 2. (Theorem 7.2 [3]). A class of regular languages is defined by
a set of equations of the form u � v (resp. u = v) if and only if it is a lattice
(resp. a Boolean algebra) of regular languages closed under quotients.

Equations with zero. The existence of a zero in a syntactic monoid is given
by the equations:

ρAx = xρA = ρA

If these equations are satisfied, we will use the notation 0 instead of ρA. For
example the set of equations:

{
ρA � x

ρAx = xρA = ρA

is replaced by 0 � x

172 L. Daviaud and C. Paperman

The zero has been used to describe several classes of languages. For instance,
the equations 0 � x for x ∈ A∗ describe exactly the so called nondense lan-
guages. Another example is the class of slender or full languages defined in the
introduction [4,11]. This class of languages is a lattice closed under quotients; it
is described by the following equations:

0 � x for x ∈ A∗

xωuyω = 0 for x, y ∈ A+, u ∈ A∗ and i(uy) �= i(x)

where i(v) is the first letter of v for any v ∈ A+ [5].

4.2 Characterisations of L, Lq and Bq

We give here a list of equations used in the study of L, Lq, Bq and B. The proofs
of the characterisations of these classes by some sets of equations are made in
two steps. We first verify that the equations are correct and then check for their
completeness. For the first step, it is sufficient to prove that for all words u,
the language u∗ satisfies the set of equations. From the nature of the equations
(→, ↔, �, =), we then obtain directly that the whole lattice, Boolean algebra
and their closure under quotients satisfy the given set of equations. This step of
correctness can be derived from the structure of the languages of the form u∗,
presented in Sect. 3. The second step is to prove that only the languages in the
desired structures satisfy the set of equations. This step is more intricate since
it requires a full understanding of the combinatorics of the classes we consider.
First we define the two following languages:

Pu =
⋃

p prefix of u

u∗p and Su =
⋃

s suffix of u

su∗

The equations:

xωyω = 0 for x, y ∈ A∗ such that xy �= yx (E1)
xωy = 0 for x, y ∈ A∗ such that y /∈ Px (E2)
yxω = 0 for x, y ∈ A∗ such that y /∈ Sx (E3)
xω � 1 for x ∈ A∗ (E4)
0 � 1 (E5)

x� ↔ xω+� for x ∈ A∗, � > 0 (E6)
xω → 1 for x ∈ A∗ (E7)

x → x� for x ∈ A∗, � > 0 (E8)

Some equations are clearly satisfied by u∗ such as equations (E8) and (E7).
Indeed, if v ∈ u∗ then for all �, v� is also a power of u and belongs to u∗

(E8). Similarly, 1 always belongs to u∗ (E7). Proving that u∗ satisfies the other
equation is more difficult and requires to analyse the structure of its syntactic
monoid. In particular, the role of the idempotents is important. The following
theorem gives the equational characterisations of Bq, Lq and L.

Classes of Languages Generated by the Kleene Star of a Word 173

Theorem 1. Over a finite alphabet with at least two letters:

1. The class Bq is defined by equations (E1), (E2)and (E3).
2. The class Lq is defined by equations (E1), (E2), (E3) and (E4).
3. The class L is defined by equations (E1), (E4) and (E8).

To prove these characterisations we introduce a normal form for the languages
in Bq, Lq and L. More precisely, we prove that a language that satisfies the
sets of equations can be written in a normal form. Finally, normal forms imply
membership in the classes Bq, Lq or L. We now sketch briefly the proofs.

We start with the most general class Bq and then we restrict to the classes
Lq and L by adding sets of equations in the equational characterisation. Hence,
let us start with Bq. First, we remark that the finite languages are in Bq, as for
instance, the language {aab}. Indeed, {aab} = a−1(aaab)∗∩(aab)∗. Given a word
u, and a non-negative integer r, we denote by u�r the language u∗ur. Since this
language can be rewritten as u∗ − {1, u, . . . , ur−1}, it belongs to Bq. Similarly,
by using the closure by quotient we capture the languages u�rp and su�r where
p (resp. s) is a prefix (resp. a suffix) of u. Finally, the following normal form
fully characterises the class Bq: if L is a nonfull language in Bq, then L can be
written as (

k⋃
i=1

u�ri

i pi

)
∪ F or

((
k⋃

i=1

u�ri

i pi

)
∪ F

)c

where (ui)i=1...k and F are finite sets of words, pi is a prefix of ui and (ri)i=1...k

are integers. We have sketched the proof that all the languages that can be
written in this normal form are in Bq. The difficult part is to prove that every
regular language that satisfies the equations can be written in the normal form.

We can achieve the reduction from Bq to Lq, that is removing the closure
by complement, by adding the set of equations (E4). in the equational charac-
terisation. Furthermore, we obtain that the normal form is a restriction of the
previous one: if L ∈ Lq is nonfull, then

L =

(
k⋃

i=1

u∗
i pi

)
∪ F

Remark 1. The proof is constructive: assuming that a language L satisfies the
set of equations, one can compute the words and the integers giving the normal
form.

Example 4. The language A∗aaA∗ is not in Bq. Indeed, the first equation is not
satisfied since the syntactic image of the words ab and b are idempotents, but
the syntactic image of abb is not syntactically equal to 0. However, the language
A∗(aa+ bb)A∗ satisfies the three sets of equations and is therefore in Bq but not
in L since the set of equations (E4) is not satisfied: the syntactic image of aa is
0, and by equation (E4), 0 � 1, so 1 should be in the language but that is not
the case. We can even give the normal form of this language:

A∗(aa + bb)A∗ = ((ab)∗ ∪ (ab)∗a ∪ (ba)∗ ∪ (ba)∗b)c

174 L. Daviaud and C. Paperman

In order to study L and B, we have to remove the “closure under quotients”
from the characterisations above. We deal with these cases by introducing an
intermediate Boolean algebra (resp. lattice) denoted by B̃ (resp. L̃). The latter
classes are generated by the following languages, which correspond to a certain
form of quotients:

Ũ = {(um)∗ur | u ∈ A∗, m > 0, 0 � r < m}
The study of these two classes is an intermediate step since:

B ⊆ B̃ ⊆ Bq and L ⊆ L̃ ⊆ Lq

Proposition 3. Over a finite alphabet with at least two letters:

1. The class B̃ is defined by equations (E1) and (E6).
2. The class L̃ is defined by equations (E1), (E6), (E5) and (E7).

From this proposition, we can see that the language presented in Example 4
A∗(aa + bb)A∗ is not in B̃, and therefore it is neither in L nor in B, since the
equation (E6) is not satisfied. Indeed, it is sufficient to consider the word aba,
and to remark that (aba)2aba ∈ A∗(aa + bb)A∗ but aba �∈ A∗(aa + bb)A∗. As for
the preceding cases, the languages in B̃ and L̃ can be written in a normal form:
if L is a nonfull language in B̃, then

L ∪ {1} =
k⋃

i=1

(um
i)∗uri

i or L − {1} =

(
k⋃

i=1

(um
i)∗uri

i

)c

Similarly, if L is a nonfull language in L̃, then L =
⋃k

i=1(u
m
i)∗uri

i where
(ui)i=1,...,k are words and m, (ri)i=1,...,k are integers. Finally, we can characterise
the classes L and B by restricting the set of integers ri that can be obtained in
the normal form of L̃ and B̃. Regarding L, one can prove that the only possible
choice for ri is 0. Thus, a nonfull language L in L is of the form L =

⋃k
i=1 u∗

i .
Unlike the class L, the case of B can not be deduced directly from the case of B̃
and it is much more complicated. It is the subject of the next section.

5 The Case of the Boolean Algebra B
We enter here the most intricate part of the description of the classes generated
by the languages of the form u∗. The idea is to restrict the possible integers ri we
can obtain in the description of B̃. For that, we will define equivalence relations
over the integers. Once this will be done, the main difficulty will be to translate
properties over integers into profinite equations. In order to do that, we will
introduce profinite numbers. This issue is addressed in Sect. 5.1 that first defines
which sets of integers are allowed for the ri and then translates it into equations.
Finally, Sect. 5.2 aggregates all these notions to give the characterisation of B.

Classes of Languages Generated by the Kleene Star of a Word 175

5.1 Equivalence Classes Over N and Profinite Numbers

Let m be an integer, and r and s be in {0, . . . , m − 1}, let us define r ≡m s if
and only if gcd(r,m) = gcd(s,m). Remark that ≡m is an equivalence relation.
Intuitively, a language in B with m as the index of its syntactic monoid, will not
be able to separate two integers that are equivalent with respect to ≡m. More
precisely, let L be a language in B with m as the index of its syntactic monoid
and r ≡m s. Then for all words u and for all k, k′, we have ukm+r ∈ L if and
only if uk′m+s ∈ L.

Example 5. We introduce the language L = (a2)∗ − (a6)∗. This language is, by
definition, in B. The index of its syntactic monoid is 6. Classes for ≡6 are {1, 5},
{2, 4} and {3}. Thus, L cannot separate a word in (a6)∗a2 from a word in (a6)∗a4.
Therefore, since (a6)∗a2 is in L, (a6)∗a4 is also in L. Since L belongs to B, it
also belongs to B̃ and we have a convenient normal form given by Proposition 3:

L = (a2)∗ − (a6)∗ = (a6)∗a2 ∪ (a6)∗a4.

The equivalence relation ≡m allows to give the form of the languages in B. The
next step is to translate it in terms of equations. The difficulty comes from
the fact that ≡m depends on the parameter m that represents the index of the
syntactic monoid of a given language. So, this cannot be directly translated into
a set of equations that are supposed to not depend on a specific language.

Profinite Numbers. Consider a one-letter alphabet B = {a} and the profinite
monoid B̂∗. There is an isomorphism from B∗ to N that associates a word to
its length. Then there is a unique set N̂ and a unique isomorphism ψ : B̂∗ → N̂

such that N ⊆ N̂ and ψ̂ coincides with ψ on N. Elements of N̂ are called profinite
numbers. They are limits of sequences of integers, in the sense of the topology
of the set of words on a one-letter alphabet. Given a word u, and a profinite
number α, uα corresponds to the profinite word that is the limit of the words
uαn where (αn)n is a sequence of integers converging to α.

Let P = {p1 < p2 < . . . < pn < . . .} be a cofinite sequence of prime
numbers. That is, a sequence of prime numbers such that only a finite number
of prime numbers are not used in the sequence. Consider the sequence defined
by zP

n = (p1 · · · pn)n!. The sequence (zP
n)n>0 is converging in N̂ and we denote

by zP its limit.
We can give now the last set of equations needed to characterise B and that

conveys the notion of equivalence over N defined above. Denote by Γ the set of
pairs of profinite numbers (dzP , dpzP) satisfying the three following conditions:

• P is a cofinite sequence of prime numbers,
• p ∈ P,
• if q divides d then q /∈ P.

Let us define the set of equations (E9) by:

xα ↔ xβ for all (α, β) ∈ Γ (E9)

176 L. Daviaud and C. Paperman

5.2 Characterisation of B
The following result combines the notions given in Sect. 5.1 and characterises
the class B.

Theorem 2. Over a finite alphabet with at least two letters, the class B is
defined by equations (E1), (E6) and (E9).

Sketch of the Proof. Firstly, we prove that u∗ satisfies (E1), (E6) and (E9).
For (E9), essentially, dpzP is a multiple of dzP so u∗ satisfies xdzP → xdpzP

.
Conversely, thanks to the definition of Γ , for n large enough, dzP

n+1 is a multiple
of dpzP

n and thus u∗ satisfies xdpzP → xdzP
.

The reverse implication is proved in two steps. First, we prove that if a nonfull
language L satisfies (E1), (E6) and (E9), then just like for the other classes, it
has a normal form:

L ∪ {1} =
k⋃

i=1

⋃
r∈Si

(um
i)∗ur

i or
(
L − {1})c =

k⋃
i=1

⋃
r∈Si

(um
i)∗ur

i

where m is an integer, (ui)i=1,...,k is a finite set of words, and Si is an equivalence
class of ≡m. We start by using the first part of Proposition 3 to prove that L
belongs to B̃. So L can be written as:

L ∪ {1} =
k⋃

i=1

(um
i)∗uri

i or L − {1} = (
k⋃

i=1

(um
i)∗uri

i)c

We prove that for all t ≡m r, ur belongs to L if and only if ut belongs to L. The
idea is the following: Let ϕ be the syntactic morphism of L, consider any cofinite
sequence of prime numbers P. If all the prime divisors of m are in P, then for
all n large enough, m divides zP

n and thus for all words x, ϕ(xdzP
) = ϕ(xω) =

ϕ(xdpzP
). If none of the prime divisors of m is in P, then for all n large enough,

zP
n is of the form km + 1. Then ϕ(xdzP

) = ϕ(xω+d) and ϕ(xdpzP
) = ϕ(xω+dp).

Finally, d and dp under the conditions that define the set Γ , represent integers
in the same equivalence class with respect to m that are then linked by (E9).
Other situations are combinations of these two.

Once we have the normal form for L, what is left is to prove that a language
that can be written in this normal form belongs to B. This is done by proving
that: ⋃

p∈rm

(um)∗up = (ud)∗ −
⋃

k s.t.
0�k�m

gcd(k,md) �=1

(ukd)∗

where rm is the equivalence class of r for ≡m and d = gcd(m, r).

Classes of Languages Generated by the Kleene Star of a Word 177

6 Decidability

The characterisations that are given in Theorems 1 and 2 yield as a counterpart
the decidability of the classes Bq, Lq, L and B: given a regular language L,
one can decide if L belongs to said classes. Every single equation is effectively
testable. The main issue is to test an infinite set of equations in finite time. The
idea is to test the equations in the syntactic monoid of L that is finite and thus
test a finite number of equations. The first step is to compute M , the syntactic
monoid of L, m its index, ϕ the syntactic morphism and P , the syntactic image
of L. They are all computable from the minimal automaton of L. Then, it is
sufficient to check if the sets of equations are satisfied directly in M and P ,
which are finite. More precisely:

(E4): For all x, y, z ∈ M , yxmz ∈ P ⇒ yz ∈ P
(E5): Particular case of (E4)
(E6): For all x ∈ M , for all 0 < � < m, x� ∈ P ⇔ xm+� ∈ P
(E7): Particular case of (E4)
(E8): For all x ∈ M , for all 0 < � � 2m, x ∈ P ⇒ x� ∈ P
(E9): Thanks to the notion of equivalence classes given in Sect. 5.1, testing equa-
tions in (E9) is the same as testing that for all x ∈ M , for all 0 � r, s < m such
that r ≡m s, xr ∈ P ⇔ xs ∈ P .

It is much more difficult to translate sets of equations (E1), (E2) and (E3)
in M since conditions”xy �= yx”,”y /∈ Px”and”y /∈ Sx” cannot be translated
directly in M .

(E1): Consider x, y ∈ M such that xmym �= 0. One has to check that for all
words u ∈ ϕ−1(x), v ∈ ϕ−1(y), uv = vu. This problem is decidable.
(E2): Consider x, y ∈ M such that xmy �= 0. One has to check that for all words
u ∈ ϕ−1(x), v ∈ ϕ−1(y), v ∈ Pu. This problem is decidable.
(E3): Same as (E2)

7 The Case of a Unary Alphabet

This section summarises results for a unary alphabet. In this case, the syntactic
monoid of a language of the form (ak)∗ has no zero and even more the construc-
tion of ρA, given in [1,8] for larger alphabets, does not make sense for a singleton
alphabet. But using the fact that a regular language on the alphabet A = {a}
is a finite union of languages of the form (aq)∗ap for non negative integers p and
q, we can derive from proofs made for the general case that Bq is the set of all
regular languages. The set Lq is the set of the languages that are finite unions
of languages of the form (aq)∗ap with p < q and is characterised by (E4). The
set L is the set of the languages that are finite unions of languages of the form
(aq)∗ and is characterised by (E4) and (E8). Finally, B is characterised by (E6)
and (E9).

178 L. Daviaud and C. Paperman

8 Conclusion

This paper offers an equational description of the lattice, Boolean algebra and
their closure under quotients generated by the languages of the form u∗. These
descriptions illustrate the power of the topological framework introduced by [3].
In particular, it gives us tools to describe in an effective way these classes of
languages.

A lot of combinatorial phenomena have been understood and analysed to
obtain these results. The next step could be to investigate either the case of the
classes of languages generated by F ∗ where F is a finite set of words, or the case
of the classes generated by u∗

1u
∗
2 . . . u∗

k with u1, . . . , uk some finite words. Each of
these questions are interesting to have a better understanding of the phenomena
that appear in the study of the variety generated by the languages u∗ and of the
generalised star-height problem.

References

1. Almeida, J., Volkov, M.V.: Profinite identities for finite semigroups whose sub-
groups belong to a given pseudovariety. J. Algebra Appl. 2(2), 137–163 (2003)

2. Almeida, J., Weil, P.: Relatively free profinite monoids: an introduction and exam-
ples. In: Semigroups, Formal Languages and Groups (York, 1993), of NATO Adv.
Sci. Inst. Ser. C Math. Phys. Sci., vol. 466, pp. 73–117. Kluwer Acad. Publ., Dor-
drecht (1995)

3. Gehrke, M., Grigorieff, S., Pin, J.É.: Duality and equational theory of regu-
lar languages. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M.,
Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126,
pp. 246–257. Springer, Heidelberg (2008)

4. Honkala, J.: On slender languages. In: Paun, B., Rozenberg, G., Salomaa, A.
(eds.)Current Trends in Theoretical Computer Science, pp. 708–716. World Sci-
entific Publishing, River Edge (2001)

5. Pin, J.É.: Mathematical foundations of automata theory. http://www.liafa.jussieu.
fr/∼jep/PDF/MPRI/MPRI.pdf

6. Pin, J.É.: Profinite methods in automata theory. In: Albers, S., Marion, J.-Y.
(eds.) 26th International Symposium on Theoretical Aspects of Computer Science
(STACS 2009), pp. 31–50. Internationales Begegnungs- und Forschungszentrum für
Informatik (IBFI), Schloss Dagstuhl, Germany (2009)

7. Pin, J.É., Straubing, H., Thérien, D.: Some results on the generalized star-height
problem. Inf. Comput. 101, 219–250 (1992)

8. Reilly, N.R., Zhang, S.: Decomposition of the lattice of pseudovarieties of finite
semigroups induced by bands. Algebra Univers. 44(3–4), 217–239 (2000)

9. Reiterman, J.: The Birkhoff theorem for finite algebras. Algebra Univers. 14(1),
1–10 (1982)

10. Schützenberger, M.P.: On finite monoids having only trivial subgroups. Inf. Control
8, 190–194 (1965)

11. Yu, S.: Regular languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of
Language Theory, vol. 1, chap. 2, pp. 679–746. Springer, Heidelberg (1997)

http://www.liafa.jussieu.fr/~jep/PDF/MPRI/MPRI.pdf
http://www.liafa.jussieu.fr/~jep/PDF/MPRI/MPRI.pdf

Relating Paths in Transition Systems:
The Fall of the Modal Mu-Calculus

Cătălin Dima1, Bastien Maubert2, and Sophie Pinchinat3(B)

1 Université Paris Est, LACL, UPEC, Créteil, France
dima@u-pec.fr

2 LORIA - CNRS / Université de Lorraine, Nancy, France
bastien.maubert@gmail.com

3 IRISA, Université de Rennes 1, Rennes, France
sophie.pinchinat@irisa.fr

Abstract. We revisit Janin and Walukiewicz’s classic result on the
expressive completeness of the modal mu-calculus w.r.t.MSO, when tran-
sition systems are equipped with a binary relation over paths. We obtain
two natural extensions of MSO and the mu-calculus: MSO with path
relation and the jumping mu-calculus. While “bounded-memory” binary
relations bring about no extra expressivity to either of the two logics,
“unbounded-memory” binary relations make the bisimulation-invariant
fragment of MSO with path relation more expressive than the jumping
mu-calculus: the existence of winning strategies in games with imperfect-
information inhabits the gap.

1 Introduction

Monadic second-order logic (MSO) is a standard for comparing expressiveness of
other logics of programs. Ground-breaking expressiveness results on MSO were
obtained first on “freely-generated” structures (words, trees, tree-like structures,
etc.) [26,29], then on “non-free” structures like grids [18] or infinite graphs gen-
erated by regularity-preserving transformations [8,10]. Some attention has also
been brought to the study of enrichments of MSO with unary predicate symbols
or with the “equal level” binary predicate (MSOeql) [11,25].

Many of these expressiveness results relate MSO with automata and modal
logics, among which Janin and Walukiewicz’s seminal result [17] showing that
the bisimulation-invariant fragment of MSO interpreted over transition systems
is captured by the μ-calculus. Notable exceptions to the classical trilogy between
MSO, modal logics and automata are MSO on infinite partial orders (see [23] for
partial results) and MSOeql (partial results can be found in [25]).

On the other hand, more recently there has been an increased interest in
the expressiveness and decidability of logics defined on structures in which two
“orthogonal” relations are considered: the so-called temporal epistemic (multi-
agent) logics [12], which combine time-passage relations and epistemic relations

Catalin Dima acknowledges financial support from the ANR project EQINOCS.
Bastien Maubert acknowledges financial support from the ERC project EPS 313360.

c© Springer-Verlag Berlin Heidelberg 2015
G.F. Italiano et al. (Eds.): MFCS 2015, Part I, LNCS 9234, pp. 179–191, 2015.
DOI: 10.1007/978-3-662-48057-1 14

180 C. Dima et al.

on the histories of the system [12,15]. A natural question that arises is whether
there exists a natural extension of MSO, of the μ-calculus, and of tree automata
for the temporal epistemic framework, and how would they compare?

Note that appropriate extensions of MSO, of the μ-calculusand of tree
automata would rely on two sorts of binary relations: those related to dynamic
behaviour and those related to epistemic features. While the temporal part of
these logics naturally refers to a tree-like structure, the epistemic part requires,
in order to model e.g. powerful agents with “perfect recall”, to consider binary
relations defined on histories. Such models neither are tree-like structures, nor
grid-like structures, nor graphs within the Caucal hierarchy. The only propos-
als in this direction that we know about are [1,24,27] and [19]. [27] mentions
an encoding of LTL with knowledge into Chain Logic with equal-level predi-
cate, a fragment of MSOeql. [24] introduces the epistemic μ-calculusand studies
its model-checking problem. [1] studies temporal logics over tree models with
“jump-edges” which capture observational indistinguishability. Each one con-
siders only one particular relation on histories, all three akin to synchronous
perfect recall. [19] proposes a generalization of tree automata, called jumping
tree automata, applying them to the study of temporal epistemic logics.

In this paper, we propose natural extensions of MSO and the μ-calculus,
respectively called MSO with path relation (MSO�) and the jumping μ-calculus
(L�μ). MSO� is MSO with an additional binary predicate, �, interpreted “trans-
versely” on the tree structure, according to the path relation. L�μ is a general-
ization of the epistemic μ-calculusdefined in [24]: it features a jumping modality
whose semantics relies on the path relation, generalizing the knowledge operator
K. The path relationsthat we consider are arbitrary and thus cover all variants
of indistinguishability relations of, e.g. [16], as well as settings not particularly
related to any epistemic interpretation [13]. We investigate whether L�μ is expres-
sive complete with regards to the bisimulation-invariant fragment of MSO�. For
the class of recognizable path relations(finite memory), we observe (Theorem 1)
that they add no expressivity w.r.t. the classical case hence the expressive com-
pleteness holds. We show however that the case of regular path relations breaks
this completeness: the class of reachability games with imperfect information
and synchronous perfect recall [5] where the first player wins cannot be defined
in the jumping μ-calculus, while being closed under bisimulation and definable in
our extension of MSO (Theorem 2). As an intermediate result, we show that the
jumping tree automata defined in [19] are equivalent to the jumping μ-calculus.

The paper runs as follows: in Sect. 2, we develop the framework of our study
on transition systems. We introduce in Sect. 3 the two extensions of MSO and
the μ-calculus, and state our results on expressive completeness (Theorems 1
and 2). In Sect. 4 we establish Theorem 1 and prove that jumping automata are
equivalent to the jumping μ-calculus, thanks to which we establish succinctness
and complexity results on the jumping μ-calculuswith recognizable path relation.
In Sect. 5 we establish our main result (Theorem 2) by proving that winning in
reachability games with imperfect information and synchronous perfect recall

Relating Paths in Transition Systems: The Fall of the Modal Mu-Calculus 181

is not definable in the jumping μ-calculus, unless the winning conditions are
observable (Theorem 3). We conclude, comment on the impacts of our results,
and give some perspectives in Sect. 6.

2 Preliminary Notions

We first fix a few basic notations. Given two words w and w′ over some alphabet
Σ, we write w � w′ if w is a prefix of w′; if w = a0a1 . . . ∈ Σω is an infinite
word we let, for each i ≥ 0, w[i] := ai and w[0, i] := a0a1 . . . ai. For a finite
word w = a0 . . . an−1 ∈ Σ∗, its length is |w| := n. Also, given a binary relation
R ⊆ A × B for every a ∈ A, we let R(a) := {b | (a, b) ∈ R}. In the rest of
the paper, we fix AP = {p, p′, . . .} a countable set of atomic propositions and
Act = {a, a′, . . .} a countable set of actions.

Definition 1. A transition system (over AP and Act) is a structure S =
(S, sι, {aS}a∈Act, {pS}p∈AP), where S is a countable set of states, sι is an initial
state, each aS is a binary relation over S and each pS is a subset of S.

The logics that we aim at are concerned with paths1 in transition systems, that
is, on their tree unfoldings. To ease the presentation, our trees have at most
countable branching degree, but, unless otherwise stated, our results still hold
for arbitrary degree. A tree is a nonempty, prefix-closed set τ ⊆ N

∗. An element
x ∈ τ is a node, and the empty word ε is the root of the tree. If x · i ∈ τ ,
x · i is a child of x. A node with no child is a leaf. A branch is a sequence
of nodes in τ (either finite or infinite) in which each node but the first one
is a child of the previous one; a branch is maximal if it is infinite or it ends
up in a leaf. We write x � y if y can be found on some branch that starts
in x, and we let [τ]x = {y | x � y} denote the subtree of τ rooted in x.
A markedtree (over AP and Act) is a pair t = (τ,m), where τ is a tree and
m : τ → (Act× 2AP) is a marking of the nodes, where m(x) = (a, �) means that
x was reached through action a and � is the set of atomic propositions that hold
in x; we may use notation ax and �x for a and � when m(x) = (a, �). Node y
is an a-child of a node x if y is a child of x and ay = a. The word of a node x
is w(x) := m(ε)m(x1) . . . m(xn), where ε x1 . . . xn(= x) is the (unique) branch
from the root to x. For a finite subset AP ⊂ AP, an AP -tree is a labeled tree
t = (τ,m) such that �x ⊆ AP , for every node x ∈ t (i.e. x ∈ τ).

Definition 2. Let S = (S, sι, {aS}a∈Act, {pS}p∈AP) be a transition system. The
unfolding tS of S is the markedtree (τ,m) with least tree τ such that: ε is asso-
ciated 2 to sι and � ε = {p | sι ∈ pS}, and for each node x ∈ τ associated to
state s, if 〈s −→ai si〉i∈I is an enumeration of the outgoing transitions from s
(with I ⊆ N) , then for each i ∈ I we have x · i ∈ τ , x · i is associated to si and
m(x · i) = (ai, {p ∈ AP | si ∈ pS}).
1 i.e. finite sequences of states and actions that start in the initial state and follow the
binary relations.

2 The notion of “associated state” is only used to define unfoldings and is left informal.

182 C. Dima et al.

Because in the following only actions and atomic propositions matter, the order-
ing of children nodes in trees is irrelevant, and the unfolding tS is therefore
uniquely defined up to isomorphism.

Definition 3. We call path relation a binary relation over (Act × 2AP)∗.

A path relationlinks finite paths of transition systems over AP and Act. It also
induces a binary relation between nodes of markedtrees (over AP and Act) in a
natural way by relating nodes x and y whenever their words w(x) and w(y) are
related. We use notation � for path relations.

Finally, we recall the classic notion of bisimulation [20].

Definition 4. A bisimulation between transition systems S and S ′ is a binary
relation Z ⊆ S × S′ such that, for all (s, s′) ∈ Z, for all p ∈ AP and a ∈ Act:

1. s ∈ pS iff s′ ∈ pS′
;

2. for all r ∈ aS(s), there is r′ ∈ aS′
(s′) such that (r, r′) ∈ Z;

3. and vice-versa.

We write S � S ′ whenever there is a bisimulation Z between S and S ′ such
that (sι, s

′
ι) ∈ Z. A class C of transition systems is closed under bisimulation, or

bisimulation closed if S ∈ C and S � S ′ imply S ′ ∈ C, for all S and S ′.

3 Expressive Completeness Issues

We fix a countable set of second order variables Var = {X,Y, . . .}. Given a
markedtree t = (τ,m), a valuation is a mapping V : Var → 2τ . For X ∈ Var and
T ⊆ τ , we let V [T/X] be the valuation that maps X to T , and which coincides
with V on all other variables.
Monadic second order logic with path relation (MSO�) is an extension of MSO
interpreted over transition systems with a path relation. Its syntax is as follows:

ψ::= sr(X) | p(X) | succ(X,Y) | X ⊆ Y | ¬ψ | ψ ∨ ψ′ | ∃X.ψ(X) | X�Y

where p ∈ AP and X,Y ∈ Var.
An MSO� formula ψ is interpreted over a markedtree t = (τ,m) with a

valuation V and a fixed path relation�; the fact that t with valuation V satisfies
ψ is written t, V |=� ψ, defined inductively as follows:

t, V |=� sr(X) if V (X) = {ε}
t, V |=� p(X) if for all x ∈ V (X), p ∈ �x

t, V |=� succ(X,Y) if V (X) = {x}, V (Y) = {y}, and y is a child of x
t, V |=� X ⊆ Y if V (X) ⊆ V (Y)
t, V |=� ¬ψ if t, V �|=� ψ and t, V |=� ψ ∨ ψ′ if t, V |=� ψ or t, V |=� ψ′

t, V |=� ∃X.ψ(X) if there is T ⊆ t s.t. t, V [T/X] |=� ψ(X)
t, V |=� X�Y if V (X) = {x}, V (Y) = {y}, and x�y

If ψ ∈ MSO� has no free variable, we simply write t |=� ψ, and S |=� ψ
whenever tS |=� ψ, for any transition system S. Let L(ψ,�) := {S | S |=� ψ}.

Relating Paths in Transition Systems: The Fall of the Modal Mu-Calculus 183

The jumping μ-calculus. The syntax of the �-jumping μ-calculus L�μ is:

where X ∈ Var, p ∈ AP, a ∈ Act, and in the last rule, X appears only under
an even number of negations (i.e. positively) in ϕ(X). We classically define the
dual operators , e.g. , and νX.ϕ := ¬μX.¬ϕ.

Given a path relation�, formulas of L�μ are interpreted over a marked tree
with a valuation V : Var → 2τ . We inductively define [[ϕ]]t,V

�
⊆ τ with t = (τ,m):

Note that, for each formula μX.ϕ(X), function T → [[ϕ(X)]]t,V [T/X]
�

is
monotone, and hence has a least fixpoint, namely [[μX.ϕ(X)]]t,V

�
. If ϕ ∈ L�μ has

no free variables, we write t |=� ϕ whenever ε ∈ [[ϕ]]t
�
, and S |=� ϕ whenever

tS |=� ϕ, for any transition system S. We let L(ϕ,�) := {S | S |=� ϕ}.

Expressive Completeness. For a logic L, a class C of transition systems is L-
definable if there is a formula of L whose set of models is exactly C.

Proposition 1. For every path relation�, every L�μ -definable class is closed
under bisimulation.

This result follows from Lemma 1 below.
Let � be a path relation. Note that a markedtree t can be turned into

a transition system t� over AP and Act′ := Act ∪ {a�}, where a� is a fresh
action symbol, by letting y ∈ a� t�(x) whenever x�y. The following lemma states
that if two transition systems are bisimilar (w.r.t. the transition relations only),
then their unfoldings enriched with a path relationare bisimilar w.r.t. both the
transition relations and the path relation.

Lemma 1. Let S and S ′ be two transition systems, and let � be a path relation.
If S � S ′, then t�S � t�S′ .

Proposition 2. Every L�μ -definable class is MSO�-definable.

Proposition 2 can easily be established with a straightforward extension of the
effective translation of μ-calculusformulas into MSO given, e.g. in [14, Ch14].

We now engage our main concern , the expressive completeness of L�μ with
respect to MSO�. As in [17], due to Proposition 1, this question can only be
addressed for bisimulation-closed classes of transition systems. We thus seek
properties on the path relation� so that L�μ is expressive complete with respect
to MSO�, in the following sense:

184 C. Dima et al.

Definition 5 (Expressive completeness). L�μ is expressive complete with
respect to MSO� if every bisimulation-closed class of transition systems that is
MSO�-definable is also L�μ -definable.

Note that the results in [17] do not adapt to MSO� since unfoldings of transition
systems with a path relationare not tree-like structures.

We briefly recall the notions of recognizable, regular and rational relations,
and we refer to [3] for details. Let Σ be a finite alphabet. A binary relation over
Σ∗ is rational if there is a transducer (i.e. a finite-state two-tape automaton)
that accepts precisely the pairs of words of the relation. A binary relation (over
Σ∗) is regular if it is accepted by a synchronous transducer3. The epistemic
relation of an agent with asynchronous perfect recall [22] is rational whereas the
epistemic relation of an agent with synchronous perfect recall [4,5] is regular.
A binary relation is recognizable if there is a finite-state word automaton over
Σ ∪ {#} that accepts words of the form w#w′, whenever w and w′ are related.
The epistemic relation of a “bounded-memory” agent is recognizable. We say
that a path relation� (over (Act×2AP)∗) is rational (resp. regular, recognizable)
if there are finite subsets A ⊂ Act and AP ⊂ AP such that � is equal to some
rational (resp. regular, recognizable) relation over (A × 2AP)∗. Finally, recall
that recognizable relations are strictly contained in regular relations, and so are
regular relations in rational relations.

Theorem 1. For any recognizable path relation, L�μ is expressive complete with
respect to MSO�.

Theorem 2. There are regular (hence rational) binary relations for which L�μ
is not expressive complete with respect to MSO�.

4 Tree Automata for the jumping µ-calculus

We prove that jumping tree automata (JTA), introduced in [19], are equivalent to
the jumping μ-calculus, which entails complexity and succinctness results for L�μ
with recognizable path relation, and we prove Theorem 1. We assume familiarity
with two-player turn-based games.

For a set X, B+(X) (with typical elements α, β . . .) is the set of formulas
built with elements of X as atomic propositions using only connectives ∨ and ∧,
and with � ∈ B

+(X). Let be the
set of automaton directions.

Definition 6. A jumping tree automaton (JTA)over AP is a structure A =
(AP,Q, qι, δ, C) where AP ⊂ AP is a finite set of atomic propositions, Q is a
finite set of states, qι ∈ Q is an initial state, δ : Q × 2AP → B

+(Dir × Q) is a
transition function, and C : Q → N is a colouring function.
3 i.e. it progresses at the same pace on each tape.

Relating Paths in Transition Systems: The Fall of the Modal Mu-Calculus 185

JTAs resemble alternating tree automata [14, Ch.9]. Action directions
are meant to go down the input tree, whereas the new jump

directions rely on an a priori given path relation. A JTA A with a
path relation� is written (A,�). Acceptance is defined on a two-player par-
ity game between Eve and Adam. Let t = (τ,m) be an AP -tree, and let
A = (AP,Q, qι, δ, C). We define the parity game Gt

A,� = (V, vι, E, VE , VA, C ′)
whose set of positions is V = τ × Q × B

+(Dir × Q), whose initial position is
vι = (ε, qι, δ(qι, �

ε)), and where a position (x, q, α) belongs to Eve iff α is of the
form , or . The possible moves in Gt

A,� are the following:

Deadlock positions are winning for Eve if of the form (x, q,�),
or , and winning for Adam otherwise. The colouring function C ′

of Gt
A,� is inherited from the one of A by letting C ′(x, q, α) = C(q). We let

L(A,�) = {S | Eve has a winning strategy in GtS
A,�}.

Proposition 3.

(a) For every formula ϕ ∈ L�μ , there is a JTA Aϕ such that, for every path
relation�, L(ϕ,�) = L(Aϕ,�),

(b) for every JTA A, there is an L�μ -formula ϕA such that, for every path
relation�, L(A,�) = L(ϕA,�).

Moreover, the translations are effective and linear.

When restricting to recognizable path relations, the folklore fact that recog-
nizable relations are MSO-definable gives the following.

Proposition 4. MSO� with recognizable path relationis not more expressive
than MSO.

Theorem 1 is obtained from Propositions 2 and 4 and the expressive completeness
of the μ-calculus w.r.t. MSO. This collapse of the jumping μ-calculus down to
the μ-calculus uses transformations that do not provide accurate complexity
bounds regarding the jumping μ-calculus. However, by Proposition 3 and the
relationship between two-way alternating automata and classic tree automata
[28] we get:

Proposition 5. The satisfiability problem for the jumping μ-calculuswith recog-
nizable path relationover transition systems with bounded branching degree is
Exptime-complete.

Proposition 6. For a fixed recognizable path relation, the jumping μ-calculuswith
path relationover transition systems with bounded branching degree is at most expo-
nentially more succinct than the μ-calculus.

186 C. Dima et al.

5 Games and the jumping µ-calculus

We focus on the property stating the existence of a winning strategy in two-
player turned-based reachability games with imperfect information. This prop-
erty gives us Theorem 2, for being bisimilar-invariant, expressible in MSO�, but
not expressible in L�μ (Theorem 4).

Two-player Games with Imperfect Information [2,9]. The players are Eve i and
Adam i . Eve i partially observes the positions, while Adam i has perfect infor-
mation. Let Obs = {o, o′, . . .} be a countable set of observations. An imperfect-
information game arena is a tuple Gi = (V, vι, {aGi}a∈Act, {oGi}o∈Obs), where
V is a set of positions, vι ∈ V is an initial position, each aGi

is a binary relation
over V and each oGi

is a subset of V such that {oGi}o∈Obs forms a partition
of V . An action a ∈ Act is available in v ∈ V if aGi

(v) �= ∅. We assume that
some action is available in every position, and that two positions with the same
observation share the same available actions. For v ∈ V , write ov the unique
observation such that v ∈ ov.

Players take turns, starting with Eve i . In current position v, Eve i chooses
an available action a and Adam i chooses a new position v′ ∈ aGi

(v). A play
(resp. partial play) is an infinite (resp. finite) sequence π = v0a1v1a2 . . . (resp.
ρ = v0a1v1 . . . anvn) such that v0 = vι and, for all i, vi+1 ∈ aGi

i+1(vi). In the syn-
chronous perfect recall setting [5], Eve i remembers the whole sequence of obser-
vations that she receives, and her actions. The indistinguishability equivalence
over partial plays is thus defined by: for ρ = v0a1 . . . anvn and ρ′ = v′

0a
′
1 . . . a′

nv′
n,

we let ρ ∼ ρ′ whenever, for all 1 ≤ i ≤ n, ovi
= ov′

i
and ai = a′

i.

Remark 1. Here, Eve remembers the sequence of actions. We point out that if
she does not, then Theorem 3 below does not hold.

A (uniform) strategy for Eve is a partial function σ : {vι}(Act · V)∗ → Act such
that for two partial plays ρ and ρ′, if ρ ∼ ρ′, then σ(ρ) = σ(ρ′). We say that a
play π = v0a1v1 . . . follows a strategy σ if for all i ≥ 0, ai+1 = σ(v0a1v1 . . . aivi).

A (reachability) game with imperfect information Gi is an imperfect-
information arena Gi = (V, vι, {aGi}a∈Act, {oGi}o∈Obs) together with a reach-
ability winning condition F ⊆ V . A strategy for Eve i is winning if every play
that follows it visits F . F is observable if for all positions v and v′, ov = ov′

implies (v ∈ F ⇔ v′ ∈ F).
Note that a game with imperfect information is a transition system over

AP = Obs∪{F} and Act. Note also that the relation ∼ on partial plays induces
a path relation, that we shall also write ∼.

Consider the class R(A,O) of reachability games with imperfect information
where actions range over A ⊆ Act and observations range over O ⊆ Obs. To
address logical definability, we restrict to games where A and O are finite sets.
Also, because we address μ-calculusdefinability, we close by bisimulation, so that
from now on a game is a transition system whose subsystem connected to the
initial position is a game as defined above.

Relating Paths in Transition Systems: The Fall of the Modal Mu-Calculus 187

Notice that the subclass R(A,O) where Eve i wins4 is bisimulation closed
since, according to [5], for any two imperfect-information reachability games Gi

and Gi′, if Gi � Gi′, then Eve i wins in Gi if, and only if, she wins in Gi′.

Theorem 3. The subclass of R(A,O) of games with observable winning condi-
tion where Eve i wins is definable in L∼

μ , namely by .

Actually, a result similar to Theorem 3 can be established for parity conditions.

Theorem 4. The subclass of R(A,O) where Eve i wins is not L∼
μ -definable.

Theorem 4 entails Theorem 2 since the subclass of R(A,O) where Eve i wins
is clearly MSO�[∼]-definable, closed under bisimulation, and the synchronous
perfect-recall relation ∼ is regular5.

Proof of Theorem 4. We prove that Theorem 4 holds, already when we consider
only two actions and one observation, i.e. A = {a0, a1} and O = {o}.

The proof is dealt with by contradiction: Assume that there is a formula
ΦWin ∈ L∼

μ such that for every Gi ∈ R(A,O), Gi |=∼ ΦWin if, and only if, Eve i has
a winning strategy in Gi. By Proposition 3, there is a JTA A = (AP,Q, qι, δ, C)
such that L(ΦWin,∼) = L(A,∼). Let N := |Q| + 1.

We describe 2N (unfoldings of) games in R(A,O) where Eve i wins. For each
one, we exhibit a winning strategy in the (perfect information) acceptance game
of A on this unfolding. We then employ the “pigeon hole” principle to show
that at least two of these “accepting” strategies can be combined into a new
“accepting” strategy of Eve, entailing acceptance by A of a game in R(A,O)
where Eve i has no winning strategy, hence the contradiction.

The family of game unfoldings that we consider is depicted in Fig. 1. They all
share the same unmarked tree τ , and for all k ∈ {1, . . . , 2N + 2}, [τ]yk

is the full
binary tree with action a0 (resp. a1) leading to the left (resp. right) child. Let
wk ∈ {0, 1}N be the binary representation of k − 1. Between the different trees
ti, the markingsonly differ on the leaves of [τ]y2N+1

and [τ]y2N+2
: for 1 ≤ i ≤ 2N ,

in [ti]y2N+1
and [ti]y2N+2

, the only nodes in F are y2N+1 · wi and y2N+2 · wi.
Finally, since Eve i is blind, her strategies are simply described by sequences of
actions.

For each 1 ≤ i ≤ 2N , write Gi = (V i, vi
ι, E

i, V i
E , V i

A, Ci) for Gti
A, ∼, i.e. the

acceptance game of A on ti with relation ∼.
Clearly, for each 1 ≤ i ≤ 2N , Eve i wins ti, and thus Eve wins Gi. Let σi be a

winning strategy for Eve in each game Gi. Let visitσi
: τ → 2Q associate to each

node of τ the set of states of A visited by strategy σi: formally, visitσi
(x) :=

{q | ∃π ∈ Out(Gi, σi),∃n ≥ 0,∃α ∈ B+(Dir × Q) s.t. π[n] = (x, q, α)}.
Since there are at most 2|Q| different such sets of states, and we have 2N

strategies with N = |Q|+1, there exist i �= j s.t. visitσi
(y2N+1) = visitσj

(y2N+1).
Fix such a pair (i, j), and define the game unfolding t0, obtained from ti by

4 i.e. has a winning strategy.
5 a one-state transducer that accepts it can easily be exhibited.

188 C. Dima et al.

ti tj

F. . .F. . .F

.

x1 xk x2N x2N+1 x2N+2

y1 yk y2N y2N+1 y2N+2

a0 a0 a0 a0 a0

a0 a0 a0 a0 a0

F

w1

F

wk

F

w2N

F

wi

F

wi

F. . .F. . .F

.

x1 xk x2N x2N+1 x2N+2

y1 yk y2N y2N+1 y2N+2

a0 a0 a0 a0 a0

a0 a0 a0 a0 a0

F

w1

F

wk

F

w2N

F

wj

F

wj

t0

F. . .F. . .F

.

x1 xk x2N x2N+1 x2N+2

y1 yk y2N y2N+1 y2N+2

a0 a0 a0 a0 a0

a0 a0 a0 a0 a0

F

w1

F

wk

F

w2N

F

wj

F

wi

Fig. 1. The tree ti, the tree tj , and the hybrid tree t0.

replacing the subtree [ti]y2N+1
with [tj]y2N+1

(see Fig. 1). Note that t0 is the
unfolding of a game in R(A,O). Let us write G0 = (V 0, v0

ι , E0, V 0
E , V 0

A, C0)
for Gt0

A, ∼. Observe that the three games Gi, Gj and G0 share the same set of
positions: V 0 = V i = V j = τ ×Q×B

+(Dir ×Q) that we now write V . Also, for
all 1 ≤ k ≤ 2N +2, � yk

0 = � yk

i = � yk

j (= {o}), that we now write �. We succinctly
write vq

k for positions (yk, q, δ(q, �)), which play an important role.
The following lemma allows us to transfer the existence of winning strategies

in positions vq
k from Gi and Gj to G0.

Lemma 2. 1. For all q ∈ Q and k �= 2N + 1, (G0, v
q
k) � (Gi, v

q
k), and

2. for all q ∈ Q and k �= 2N + 2, (G0, v
q
k) � (Gj , v

q
k).

By design of t0, Eve i has no winning strategy in t0. Therefore, t0 �|=∼ ΦWin, and
thence t0 /∈ L(A,∼), i.e. Eve does not have a winning strategy in the acceptance
game G0 of JTA A on t0 with path relation∼. We establish Proposition 7 below,
which provides a contradiction and terminates the proof of Theorem 4.

Proposition 7. Eve has a winning strategy in G0.

Proof sketch. Let us define Startτ := {ε, x1, . . . , x2N+2}, the two first levels of
τ , and StartG := {(x, q, α) ∈ V | x ∈ Startτ}. Every play in G0 starts in StartG .
Note that from any position of StartG , the same moves are available in G0,

Gi and Gj . In G0, we let Eve follow σi as long as the game is in StartG . If the
game remains in StartG for ever (by jumping infinitely), the obtained play is an
outcome of σi, which is winning for Eve in Gi. Because positions have the same
colour in all acceptance games, this play is also winning for Eve in G0. Otherwise,
the play exits StartG by going down the tree, hence it reaches some position vq

k.

Relating Paths in Transition Systems: The Fall of the Modal Mu-Calculus 189

Because vq
k has been reached by the winning strategy σi, it is a winning position

for Eve in the perfect-information parity game Gi. If k �= 2N + 1, by Point 1 of
Lemma 2, i.e. (G0, v

q
k) � (Gi, v

q
k), Eve also has a winning strategy from vq

k in G0.
If k = 2N + 1, because visitσi

(y2N+1) = visitσj
(y2N+1), σj also visits position

vq
k[2N + 1], and therefore vq

k[2N + 1] is a winning position for Eve in Gj . By
Point 2 of Lemma 2, i.e. G0, v

q
k � Gj , v

q
k, Eve also has a winning strategy from

vq
k in G0. ��

6 Conclusion and Perspectives

We have considered a general setting where transition systems are equipped with
path relations. We have proposed natural extensions of MSO and the μ-calculusin
this setting: MSO�, which is MSO with path relations, and L�μ , which is the
jumping μ-calculus. We have studied the question of whether the bisimulation-
invariant fragment of MSO� and L�μ have the same expressivity, like in [17]. In
the case of recognizable relations, the whole picture collapses to the classic case
(Theorem 1). However, for the synchronous perfect recall path relation (a regular
binary relation that captures models of agency with time and knowledge), the
answer is negative (Theorem 2).

Our results suggest that the adequate logic on transition systems with path
relations may lie in between L�μ and MSO�: on the one hand, the latter is
undecidable for regular path relations as simple as the “Equal Level” relation
[25]; on the other hand fundamental decidable properties, such as winning in two-
player imperfect-information games with perfect recall, are not captured by the
former (Theorem 4). Remark that this property is expressible in Alternating-time
Temporal Logic with imperfect information, which is therefore not subsumed by
the jumping mu-calculus, but whose model-checking is decidable for one agent
with synchronous perfect recall.

In addition, both the epistemic mu-calculus and imperfect-information games
are decidable for perfect-recall when the knowledge of the agents is hierarchically
ordered [7,21]. Recent results on games with imperfect information also signal
other classes of models with several agents and perfect recall that can be handled
[6]. So even for the case of several relations on paths, a logic that would encom-
pass both the (jumping) mu-calculus and games with imperfect information may
have good computational properties on interesting classes of systems.

References

1. Alur, R., Černý, P., Chaudhuri, S.: Model checking on trees with path equivalences.
In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 664–678.
Springer, Heidelberg (2007)

2. Apt, K.R., Grädel, E.: Lectures in Game Theory for Computer Scientists. Cam-
bridge University Press, Cambridge (2011)

3. Berstel, J.: Transductions and Context-free Languages, vol. 4. Teubner, Stuttgart
(1979)

190 C. Dima et al.

4. Berwanger, D., Chatterjee, K., De Wulf, M., Doyen, L., Henzinger, T.A.: Strategy
construction for parity games with imperfect information. Inf. Comput. 208(10),
1206–1220 (2010)

5. Berwanger, D., Kaiser, L.: Information tracking in games on graphs. J. Logic Lang.
Inf. 19(4), 395–412 (2010)

6. Berwanger, D., Mathew, A.B.: Games with recurring certainty. In: Proceedings of
SR Games with Recurring Certainty 2014, pp. 91–96 (2014)

7. Bozianu, R., Dima, C., Enea, C.: Model checking an epistemic mu-calculus with
synchronous and perfect recall semantics. In: TARK 2013 (2013)

8. Caucal, D.: On infinite transition graphs having a decidable monadic theory. Theor.
Comput. Sci. 290(1), 79–115 (2003)

9. Chatterjee, K., Doyen, L.: The complexity of partial-observation parity games.
In: Fermüller, C.G., Voronkov, A. (eds.) LPAR-17. LNCS, vol. 6397, pp. 1–14.
Springer, Heidelberg (2010)

10. Courcelle, B., Engelfriet, J.: Graph Structure and Monadic Second-Order Logic -
A Language-Theoretic Approach. Cambridge University Press, Cambridge (2012)

11. Elgot, C.C., Rabin, M.O.: Decidability and undecidability of extensions of second
(first) order theory of (generalized) successor. J. Symb. Log. 31(2), 169–181 (1966)

12. Fagin, R., Halpern, J., Moses, Y., Vardi, M.: Reasoning about knowledge. The MIT
Press, Boston (2004)

13. Grädel, E.: Model-checking games for logics of imperfect information. Theor. Com-
put. Sci. 493, 2–14 (2013)

14. Farwer, B.: 1 omega-Automata. In: Grädel, E., Thomas, W., Wilke, T. (eds.)
Automata, Logics, and Infinite Games. LNCS, vol. 2500, pp. 3–21. Springer, Hei-
delberg (2002)

15. Halpern, J.Y., van der Meyden, R., Vardi, M.Y.: Complete axiomatizations for
reasoning about knowledge and time. SIAM J. Comput. 33(3), 674–703 (2004)

16. Halpern, J.Y., Vardi, M.Y.: The complexity of reasoning about knowledge and
time. 1. Lower bounds. J. Comp. Sys. Sci. 38(1), 195–237 (1989)

17. Janin, D., Walukiewicz, I.: On the expressive completeness of the propositional mu-
calculus with respect to monadic second order logic. In: Sassone, V., Montanari,
U. (eds.) CONCUR 1996. LNCS, vol. 1119. Springer, Heidelberg (1996)

18. Matz, O., Schweikardt, N., Thomas, W.: The monadic quantifier alternation hier-
archy over grids and graphs. Inf. Comput. 179(2), 356–383 (2002)

19. Maubert, B., Pinchinat, S.: Jumping automata for uniform strategies. In: Proceed-
ings of FSTTCS 2013, pp. 287–298 (2013)

20. Park, D.: Concurrency and automata on infinite sequences. In: Deussen, P. (ed.)
Proceedings of 5th GI Conference on Theoretical Computer Science. Lecture Notes
in Computer Science, vol. 104, pp. 167–183. Springer, Heidelberg (1981)

21. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: POPL 1989, pp.
179–190. ACM Press (1989)

22. Puchala, B.: Asynchronous omega-regular games with partial information. In:
Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281, pp. 592–603. Springer,
Heidelberg (2010)

23. Reiter, F.: Distributed graph automata. CoRR: abs/1404.6503 (2014)
24. Shilov, N.V., Garanina, N.O.: Combining knowledge and fixpoints. Technical report

Preprint n.98, A.P. Ershov Institute of Informatics Systems, Novosibirsk 2002.
http://www.iis.nsk.su/files/preprints/098.pdf

25. Thomas, W.: Infinite trees and automaton-definable relations over omega-words.
Theor. Comput. Sci. 103(1), 143–159 (1992)

http://arxiv.org/abs/1404.6503
http://www.iis.nsk.su/files/preprints/098.pdf

Relating Paths in Transition Systems: The Fall of the Modal Mu-Calculus 191

26. Thomas, W.: Languages, automata, and logic. In: Rozenberg, G., Salomaa, A.
(eds.) Handbook of Formal Languages: Volume 3 Beyond Words, pp. 389–455.
Springer, Heidelberg (1997)

27. van der Meyden, R., Shilov, N.V.: Model checking knowledge and time in systems
with perfect recall. In: Pandu Rangan, C., Raman, V., Sarukkai, S. (eds.) FST
TCS 1999. LNCS, vol. 1738, pp. 432–445. Springer, Heidelberg (1999)

28. Vardi, M.Y.: Reasoning about the past with two-way automata. In: Larsen, K.G.,
Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp. 628–641. Springer,
Heidelberg (1998)

29. Walukiewicz, I.: Monadic second-order logic on tree-like structures. Theor. Com-
put. Sci. 275(1–2), 311–346 (2002)

Weighted Automata and Logics on Graphs

Manfred Droste and Stefan Dück(B)

Institute of Computer Science, Leipzig University, D-04109 Leipzig, Germany
{droste,dueck}@informatik.uni-leipzig.de

Abstract. Weighted automata model quantitative features of the
behavior of systems and have been investigated for various structures like
words, trees, traces, pictures, and nested words. In this paper, we intro-
duce a general model of weighted automata acting on graphs, which form
a quantitative version of Thomas’ unweighted model of graph acceptors.
We derive a Nivat theorem for weighted graph automata which shows
that their behaviors are precisely those obtainable from very particular
weighted graph automata and unweighted graph acceptors with a few
simple operations. We also show that a suitable weighted MSO logic is
expressively equivalent to weighted graph automata. As a consequence,
we obtain corresponding Büchi-type equivalence results known from the
recent literature for weighted automata and weighted logics on words,
trees, pictures, and nested words. Establishing such a general result has
been an open problem for weighted logic for some time.

Keywords: Quantitative automata · Graphs · Quantitative logic ·
Weighted automata · Büchi · Nivat

1 Introduction

In automata theory, the fundamentalBüchi-Elgot-Trakhtenbrot theorem [6,16,35]
established the coincidence of regular languages with languages definable in
monadic second order logic. This led both to practical applications, e.g. in verifi-
cation of finite-state programs, and to important extensions covering, for exam-
ple, trees [7,28,31], traces [32], pictures [18], nested words [1], and texts [21]; a
general result for graphs was given in [33].

At the same time as Büchi, Schützenberger [30] introduced weighted finite
automata and characterized their quantitative behaviors as rational formal power
series. Thismodel also quickly developed a flourishing theory (see [3,11,15,22,29]).
Recently, Droste and Gastin [9] introduced a weighted MSO logic and showed its
expressive equivalence to weighted automata. Soon, different authors extended
this result to weighted automata and weighted logics on trees [14], traces [25],
pictures [17], nested words [8,24], and texts [23].

However, a general result for weighted automata and weighted logics covering
graphs and linking the previous results remained, up to now, open. The main
contributions of this paper are the following.

S. Dück—supported by Deutsche Forschungsgemeinschaft (DFG), project DR
202/11-1 and Graduiertenkolleg 1763 (QuantLA).

c© Springer-Verlag Berlin Heidelberg 2015
G.F. Italiano et al. (Eds.): MFCS 2015, Part I, LNCS 9234, pp. 192–204, 2015.
DOI: 10.1007/978-3-662-48057-1 15

Weighted Automata and Logics on Graphs 193

• We establish a model of weighted automata on graphs, which extends both
Thomas’ graph acceptors [34] and the previous weighted automata models
for words, trees, pictures, and others. We show that this enables us to model
new quantitative properties of graphs which could not be expressed by the
previous models.

• To show the robustness of our model, we extend a classical result of Nivat
[27] to weighted automata on graphs, showing that their behaviors are exactly
those which can be constructed from very particular weighted graph automata
and recognizable graph languages using operations like morphisms and inter-
sections.

• We derive a Büchi-type equivalence result for the expressive power of weighted
automata and a suitable weighted logic on graphs. We obtain corresponding
equivalence results for structures like words, trees, pictures, and nested words
as a consequence.

• We show that if the underlying semiring of weights is idempotent, then both
our Nivat and Büchi type equivalence results can be sharpened, but not in
general.

We note that an interesting approach connecting pebble navigating weighted
automata and weighted first-order logic was given in [5,26]. The present
automata model is different, using tiles of graphs.

In our proofs, in comparison to the situation for words, trees, or pictures,
several difficulties arise. The crucial difference to previous approaches is a global
acceptance condition in form of a check of occurrence numbers of finite tiles
in runs of our automata on graphs; we need this condition to connect logic
and automata. Furthermore, since we are dealing with graphs, the under-
lying unweighted automata model cannot be determinized. Accordingly, the
unweighted logic subfragment covers only existential MSO. Also, the closure
under weighted universal quantifications requires new methods; here we employ
a theorem of Thomas [34] whose proof in turn relied on Hanf’s theorem [20].
Finally, in contrast to words, trees, pictures, or nested words, our general graphs
do not have a distinguished vertex, which yields technical complications.

All our constructions of weighted graph automata are effective. For technical
simplicity, here we assume that the weights stem from a commutative semiring.
Several constructions would also work for general semirings or for e.g. average
computations of weights; this will be later work. It is also tempting to investigate
now how the rich field of weighted graph algorithms could be utilized, e.g., for
developing decision procedures for weighted graph automata.

2 Graph Acceptors

In this section, we introduce the basic concepts around graphs and graph
acceptors. Following [34], we define a (directed) graph as a relational structure
G = (V, (Pa)a∈A, (Eb)b∈B) over two finite alphabets A and B, where V is the
set of vertices, the sets Pa (a ∈ A) form a partition of V , and the sets Eb

194 M. Droste and S. Dück

(b ∈ B) are disjoint irreflexive binary relations on V , called edges. We denote
with E =

⋃
b∈B Eb the set of all edges. A graph is bounded by t if every vertex has

an (in- plus out-) degree smaller than or equal to t. We denote with DGt(A,B)
the class of all finite directed graphs over A and B bounded by t.

We call a class of graphs pointed if every graph G of this class is pointed with a
vertex v, i.e. it has a unique designated vertex v ∈ V . Formally, this assumption
can be defined by adding a unary relation center to G with center = {v}.

Let r ≥ 0. We say the distance of u and v is at most r if there exists a
path (u = u0, u1, ..., uj = v) with j ≤ r and (ui, ui+1) ∈ E or (ui+1, ui) ∈ E
for all i < j. We denote with sphr(G, v), the r-sphere of G around the vertex v,
the unique subgraph of G pointed with v and consisting of all vertices with a
distance to v of at most r, together with their edges. We call τ = (G, v) an r-tile
if (G, v) = sphr(G, v), and may omit the r if the context is clear. The bound t
ensures that there exists only finitely many pairwise non-isomorphic r-tiles.

Definition 1 ([33,34]). A graph acceptor (GA) A over the alphabets A and B
is defined as a quadruple A = (Q,Δ,Occ, r) where

– Q is a finite set of states,
– r ∈ N0, the tile-size,
– Δ is a finite set of pairwise non-isomorphic r-tiles over A × Q and B,
– Occ, the occurrence constraint, is a boolean combination of formulas

“occ(τ) ≥ n”, where n ∈ N and τ ∈ Δ

Given a graph G of DGt(A,B) and a mapping ρ : V → Q, we consider the Q-
labeled graph Gρ ∈ DGt(A×Q,B), obtained by labeling every vertex v ∈ V also
with ρ(v). We call ρ a run (or tiling) of A on G if for every v ∈ V , sphr(Gρ, v)
is isomorphic to a tile in Δ.

We say Gρ satisfies occ(τ) ≥ n if there exist at least n vertices v ∈ V such
that sphr(Gρ, v) is isomorphic to τ . The semantics of Gρ satisfies Occ is then
defined in the usual way. We call a run ρ accepting if Gρ satisfies the constraint
Occ. We let L(A) = {G ∈ DGt(A,B) | there exists an accepting run ρ : V →
Q of A on G}, the language accepted by A. We call a language L ⊆ DGt(A,B)
recognizable if L = L(A) for some GA A.

Next, we introduce the logic MSO(DGt(A,B)), short MSO, cf. [34]. We denote
with x, y, ... and X,Y, ... first- and second-order variables ranging over vertices,
resp. over sets of vertices. The formulas of MSO are defined inductively by

ϕ ::=Pa(x) | Eb(x, y) | x = y | x ∈ X | ¬ϕ | ϕ ∨ ϕ | ∃x.ϕ | ∃X.ϕ

where a ∈ A and b ∈ B. An FO-formula is a formula of MSO without ∃X. An
EMSO-formula is a formula of the form ∃X1...∃Xk.ϕ where ϕ is an FO-formula.

The satisfaction relation |= for graphs and MSO-sentences is defined in the
natural way. For a sentence ϕ ∈ MSO, we define the language of ϕ as L(ϕ) =
{G ∈ DGt(A,B) | G |= ϕ}. We call a language L ⊆ DGt(A,B) MSO- (resp.
FO-) definable if L = L(ϕ) for some MSO- (resp. FO-) sentence ϕ.

Weighted Automata and Logics on Graphs 195

Theorem 2 ([34]). Let L ⊆ DGt(A,B) be a set of graphs. Then:

1. L is recognizable by a one-state GA iff L is definable by an FO-sentence.
2. L is recognizable iff L is definable by an EMSO-sentence.

3 Weighted Graph Automata

In this section, we introduce and investigate a quantitative version of graph
acceptors. In the following, let K = (K,+, ·, 0, 1) be a commutative semiring, i.e.
(K,+, 0) and (K, ·, 1) are commutative monoids, (x+y)·z = x·z+y ·z and 0·x =
x · 0 = 0 for all x, y, z ∈ K. Important examples of commutative semirings are
the Boolean semiring B = ({0, 1},∨,∧, 0, 1), the semiring of the natural numbers
N = (N,+, ·, 0, 1), and the tropical semirings Rmax = (R∪{−∞},max,+,−∞, 0)
and Rmin = (R ∪ {∞},min,+,∞, 0).

We say K is idempotent if the addition is idempotent, i.e. x + x = x for
all x ∈ K. The semirings B, Rmax, and Rmin are idempotent. For a general
introduction into the theory of semirings and extensive examples, see [11,19].

Definition 3. A weighted graph automaton (or weighted graph acceptor; wGA)
over A, B, and K is a tuple A = (Q,Δ,wt,Occ, r) where

– A′ = (Q,Δ,Occ, r) is a graph acceptor over the alphabets A and B,
– wt : Δ → K is the weight function assigning to every tile of Δ a value of K.

An accepting run ρ : V → Q of A on G is defined as an accepting run of A′ on
G. Let sphr

A(Gρ, v) be the tile of Δ which is isomorphic to sphr(Gρ, v). We let

wtA,G,ρ(v) = wt(sphr
A(Gρ, v)).

We define the weight wtA,G(ρ) of the run ρ of A on G as

wtA,G(ρ) =
∏
v∈V

wtA,G,ρ(v).

The behavior ‖A‖ : DGt(A,B) → K of A is defined, for each G ∈ DGt(A,B), as

‖A‖(G) =
∑

ρ accepting run of A on G

wtA,G(ρ).

We call any function S : DGt(A,B) → K a series. Then S is recognizable if
S = ‖A‖ for some wGA A.

By the usual identification of languages with functions assuming values in
{0, 1}, we see that graph acceptors are expressively equivalent to weighted graph
automata over the Boolean semiring B.

196 M. Droste and S. Dück

Example 4. The following wGA A counts the number of connected components
as exponent of 2. We define A = (Q,Δ,wt,Occ, r) over arbitrary alphabets
A and B, and the semiring K = (N,+, ·, 0, 1). We set r = 1, Occ = true, wt ≡ 1,
and Q = {q1, q2}. The set of tiles is defined as Δ = Δ1 ∪ Δ2, where

Δi = {τ | every vertex of τ is labeled with some (a, qi), a ∈ A}, i ∈ {1, 2}.

Then every connected component of a given graph G is tiled either completely
with q1 or completely with q2, thus ‖A‖(G) = 2m(G), where m(G) is the number
of connected components of G.

To count occurrences of tiles with a certain pattern, we introduce the following
notation. Let τ∗ be a finite set of tiles enumerated by τ∗ = {τ1, ..., τm}. For
N ∈ N, we define the formula

(∑
τ∈τ∗

occ(τ)
) ≥ N as

∨
∑m

i=1 ni=N
ni∈{0,...,N}

∧
i=1,...,m

occ(τi) ≥ ni. (1)

Using this formula, we can prove the following.

Lemma 5. Let S : DGt(A,B) → K be a series recognizable by a wGA A with
tile-size s. Then for all r ≥ s, S is recognizable by a wGA B with tile-size r.

Example 6. Using a weight function which applies the degree of the cen-
ter of a tile as weight, we can construct a wGA A1 satisfying ‖A1‖(G) =∏

v∈V degree(v). Using formula (1), we can also construct a wGA A2 with
‖A2‖(G) =

∑
v∈V degree(v). In both cases, we are free to choose a semiring

with the desired product or summation, and adjusting wt, we are able to only
multiply or sum over vertices of a certain form, e.g., only over vertices labeled
with a.

Example 7. The following wGA computes the ‘weighted diameter’ (i.e. the max-
imal distance between two vertices) of edge-weighted graphs up to a threshold
N ∈ N. Let A be a finite set and B = {1, ..., N} be the edge labels. Note
that, here, we sum over the edge labels when computing shortest paths between
vertices.

We define A = (Q,Δ,wt,Occ, 1) over A, B, and Rmax as follows. We set
Q = {0, ..., N} × {0, 1}. For a vertex v labeled also with (q,m) ∈ Q, we refer to
q as the state of v, and say v is marked if m = 1.

Let τ = (H, v) be a 1-tile with state k at the center v. Then Δ checks that
every vertex connected to v by an edge i has a state between max{0, k − i} and
min{k + i,N}. Furthermore, Δ checks that whenever k /∈ {0, N}, then there has
to be at least one vertex in τ which has state k − i. The weight function wt
assigns to τ the weight k if v is marked, and 0 otherwise. Finally, Occ checks
that we have exactly one vertex y with state 0 and exactly one marked vertex z.

Then we can show by induction that every state of a vertex has to be equal
to the distance of this vertex to y up to the threshold N . Furthermore, every

Weighted Automata and Logics on Graphs 197

run has the weight of the vertex z. Thus, A computes the maximum distance
between two vertices up to the threshold N , which is our desired property. Here,
the distance takes the edge-labels into account, whereas setting B = {1} yields
the unweighted setting and the geodesic distance to y up to the threshold N .

For a class C of graphs, we call the semiring K C-regular if for every k ∈ K, there
exists a wGA Ak with ‖Ak‖(G) = k for every G ∈ C. We call K regular if K is
DGt(A,B)-regular. We give two easy conditions which ensure regularity of K.

Lemma 8. If K is idempotent, then K is regular. If C is a class of pointed
graphs, then K is C-regular.

We extend the operations + and · of our semiring to series by defining point-wise
(S+T)(G) = S(G)+T (G) and (S�T)(G) = S(G)·T (G) for each G ∈ DGt(A,B).

Proposition 9. The class of recognizable series is closed under + and �.

In the following, we show that recognizable series are closed under projection.
Let h : A′ → A be a mapping between two alphabets. Then h defines naturally a
relabeling of graphs from DGt(A′, B) into graphs from DGt(A,B), also denoted
by h. Let S : DGt(A′, B) → K be a series. We define h(S) : DGt(A,B) → K by

h(S)(G) =
∑

G′∈DGt(A,B), h(G′)=G

S(G′). (2)

Proposition 10. Let S : DGt(A′, B) → K be a recognizable series and h : A′ →
A. Then h(S) : DGt(A,B) → K is recognizable.

4 A Nivat Theorem for Weighted Graph Automata

In this section, we establish a connection between unweighted recognizable
languages and recognizable graph series. Note that a corresponding result for
weighted automata on words (cf. [12]) makes crucial use of the possible deter-
minization of every unweighted word automaton. Unfortunately, this is not the
case for graph languages. To deal with this problem, we require either the under-
lying semiring to be idempotent or the considered languages to be recognizable
by a one-state graph acceptor. For a similar distinction, see [13].

Let S : DGt(A′, B) → K and L ⊆ DGt(A′, B). We consider h : A′ → A, and
the induced mappings h : DGt(A′, B) → DGt(A,B), and h(S) : DGt(A,B) →
K, as before, see formula (2). We define the restriction S ∩L : DGt(A′, B) → K
by letting (S ∩ L)(G) = S(G) if G ∈ L and (S ∩ L)(G) = 0, otherwise.

Let g : A′ → K be a map. Let G ∈ DGt(A′, B) and let LabG(v) ∈ A′ be
the label of a vertex v of G. We define the map prod ◦ g : DGt(A′, B) → K
by (prod ◦ g)(G) =

∏
v∈V g(LabG(v)). So, prod ◦ g : DGt(A′, B) → K is a very

particular series obtained by assigning, for a graph G ∈ DGt(A′, B), to each
vertex a weight (depending only on its label) and then multiplying all these
weights.

198 M. Droste and S. Dück

Let Nt(A,B,K) comprise all series S : DGt(A,B) → K for which there
exist an alphabet A′, a map g : A′ → K, a map h : A′ → A, and a recogniz-
able language L ⊆ DGt(A′, B) such that S = h((prod ◦ g) ∩ L). We denote by
N one

t (A,B,K) the set of series defined similarly but with a language L which is
recognizable by a one-state GA. Trivially, N one

t (A,B,K) ⊆ Nt(A,B,K).
Using closure properties of series, we get the following Nivat-Theorem for

weighted graph automata.

Theorem 11. Let K be a commutative semiring and S : DGt(A,B) → K be a
series. Then S is recognizable if and only if S ∈ N one

t (A,B,K). If K is idempo-
tent, then S is recognizable if and only if S ∈ Nt(A,B,K).

Proof (sketch). First, let S be recognizable by the wGA A = (Q,Δ,wt,Occ, r)
over A, B, and K. We set A′ = A × Q × wt(Δ). Let h be the projection of A′ to
A and let g be the projection of A′ to wt(Δ).

Let L ⊆ DGt(A′, B) be the language consisting of all graphs G′ over A′ and
B such that assigning to every vertex v′ of G′ the second component of the label
of v′ defines an accepting run of A on h(G′) and the added weights are consistent
with the weight function wt of A. We can construct a one-state GA accepting
L. It follows that S = h((prod ◦ g) ∩ L) ∈ N one

t (A,B,K).
For the converse, let A′ be an alphabet, g : A′ → K, h : A′ → A, L ⊆

DGt(A′, B) be a recognizable language, and S = h((prod ◦ g) ∩ L). We can
construct a wGA C which simulates prod ◦ g. Using that L is recognizable by a
one-state GA or that K is idempotent, we construct a wGA B with ‖B‖ = 1L.
Then Propositions 9 and 10 yield the result. ��
The following lemma and example show that in the general setting there exist
series in Nt(A,B,K) which are not recognizable. For this purpose, we say that
a GA A is unambiguous if for every graph G, A has at most one accepting run
on G. We call a graph language L unambiguously recognizable if there exists an
unambiguous GA accepting L.

We can show that the set of unconnected graphs is a recognizable language
which is not unambiguously recognizable. Showing that for every language which
is not unambiguously recognizable, the series 1L is not recognizable over N, we
obtain:

Lemma 12.

1. The class of unambiguously recognizable languages is a proper subclass of all
recognizable languages.

2. There exists a recognizable language L such that 1L is not recognizable over
the semiring of the natural numbers N.

Example 13. Using ideas of [13], we construct a series in Nt(A,B,K) which is
not recognizable, as follows. We let K = (N,+, ·, 0, 1), A′ = A, h be the identity
function, and g ≡ 1 be the constant function to 1. By Part 2 of Lemma 12,
let L be a recognizable language such that 1L is not recognizable. Then 1L =
h(prod ◦ g ∩ L) ∈ Nt(A,B,K).

Weighted Automata and Logics on Graphs 199

There also exist recognizable but not unambiguously recognizable languages
if we consider connected graphs. Over the class of pictures, the existence of such
a language was shown in [2].

5 Weighted Logics for Graphs

In the following, we introduce a weighted MSO logic for graphs, following the
approach of Droste and Gastin [9] for words. We also incorporate an idea of
Bollig and Gastin [4] to consider Boolean formulas.

Definition 14. We define the weighted logic MSO(K,DGt(A,B)), short MSO
(K), as

β ::= Pa(x) | Eb(x, y) | x = y | x ∈ X | ¬β | β ∨ β | ∃x.β | ∃X.β

ϕ ::= β | k | ϕ ⊕ ϕ | ϕ ⊗ ϕ | ⊕
x ϕ | ⊕

X ϕ | ⊗
x ϕ

where k ∈ K; x, y are first-order variables; and X is a second order variable.

In [9], the weighted connectors were also denoted by ∨, ∧, ∃x, ∃X, and ∀x. We
employ this symbolic change to stress the quantitative evaluation of formulas.

Let G ∈ DGt(A,B) and ϕ ∈ MSO(K). We follow classical approaches for
logics and semantics. Let free(ϕ) be the set of all free variables in ϕ, and let V
be a finite set of variables containing free(ϕ). A (V, G)-assignment σ is a function
assigning to every first-order variable of V an element of V and to every second
order variable a subset of V . We define σ[x → v] as the (V ∪ {x}, G)-assignment
mapping x to v and equaling σ everywhere else. The assignment σ[X → I] is
defined analogously.

We represent the graph G together with the assignment σ as a graph (G, σ)
over the vertex alphabet AV = A×{0, 1}V where 1 denotes every position where
x resp. X holds. A graph over AV is called valid, if every first-order variable is
assigned to exactly one position.

We define the semantics of ϕ ∈ MSO(K) as a function �ϕ�V : DGt(AV , B) →
K inductively for all valid (G, σ) ∈ DGt(AV , B), as seen in Fig. 1. For not valid
(G, σ), we set �ϕ�V(G, σ) = 0. We write �ϕ� for �ϕ�free(ϕ).

Whether a graph is valid can be checked by an FO-formula, hence the lan-
guage of all valid graphs over AV is recognizable. For the Boolean semiring B,
the unweighted MSO is expressively equivalent to MSO(B).

Lemma 15. Let ϕ ∈ MSO(K) and V a finite set of variables with V ⊇ free(ϕ).
Then �ϕ�V(G, σ) = �ϕ�(G, σ � free(ϕ)) for each valid (G, σ) ∈ DGt(AV , B).
Furthermore, if �ϕ� is recognizable, then �ϕ�V is recognizable.

We note that, in contrast to all previous papers of the literature on weighted
logic, in general, the converse of the second statement of Lemma 15 is not true. If
we restrict ourselves to pointed graphs or to an idempotent semiring, we can show
that �ϕ� is recognizable if and only if �ϕ�V is recognizable. However, to prove
the following statements, the implication above together with Proposition 10
suffices.

200 M. Droste and S. Dück

Lemma 16. Let �ϕ� be recognizable. Then �
⊕

x ϕ� and �
⊕

X ϕ� are
recognizable.

The difficult case is the
⊗

x-quantification (previously the universal quantifica-
tion [9]). Similarly to [9], our unrestricted logic is strictly more powerful than
our automata model. Therefore, we introduce the following fragment.

We call a formula ϕ ∈ MSO(K) almost FO-boolean if ϕ is built up inductively
from unweighted FO-formulas β and constants k using the connectives ⊕ and ⊗.

Proposition 17. Let ϕ be almost FO-boolean. Then �
⊗

x ϕ� is recognizable.

Proof (sketch). We follow the proof for the universal quantification for words [9]
with the crucial difference that we cannot determinize a GA. Let ϕ be almost
FO-boolean. We can show that ϕ is semantically equivalent to (k1 ⊗ ϕ1) ⊕ ... ⊕
(km ⊗ ϕm), where m ∈ N, ki ∈ K, and ϕi are unweighted FO-formulas. Using
an extended alphabet Ã = A × {1, ...,m}, we can encode the finitary structure
of �ϕ� into a language L̃. Since all ϕi are FO-formulas, we can show that L̃ is
FO-definable.

Applying Part 1 of Theorem 2, we get a one-state (in particular an unam-
biguous) GA Ã, accepting L̃. We transform Ã into a wGA A which adds the
weight defined by the second component of Ã to the tiles. Then we can show
that ‖A‖ = �

⊗
x ϕ�. ��

Let ϕ ∈ MSO(K). We call ϕ restricted if all unweighted subformulas β are
EMSO-formulas and for all subformulas

⊗
x ψ of ϕ, ψ is almost FO-boolean.

We call ϕ FO-restricted, if ϕ is restricted and all unweighted subformulas β are
FO-formulas. For the Boolean semiring B, the unweighted EMSO is expressively
equivalent to restricted MSO(B).

Note that, contrary to [9], we cannot relax our restriction to include
unweighted EMSO-formulas after

⊗
x because then our restricted weighted logic

would still be strictly stronger than EMSO, even for the Boolean semiring.
We can show that every weighted graph automaton can be simulated by

an FO-restricted MSO(K)-sentence. Together with the closure properties of this
section and Sect. 3, we obtain our main result.

Fig. 1. Semantics

Weighted Automata and Logics on Graphs 201

Theorem 18. Let K = (K,+, ·, 0, 1) be a commutative and regular semiring,
and let S : DGt(A,B) → K be a series. Then the following are equivalent:

1. S is recognizable.
2. S is definable by an FO-restricted MSO(K)-sentence.

If K is idempotent, then 1. and 2. are equivalent to

3. S is definable by a restricted MSO(K)-sentence.

Note that to ensure regularity of K, it suffices to assume K to be idempotent
(for instance as in the case of the tropical semirings) or to consider only pointed
graphs (cf. Lemma 8). Words, trees, pictures, and nested words can be seen as
pointed structures.

6 Words, Trees, and Other Structures

In this section, using ideas from Thomas [34], we show that existing quantitative
automata models over words [9], trees [14], pictures [17], and nested words [24]
can be seen as special incidences of weighted graph automata with the same
expressive power. Hence, we get previous equivalence results connecting weighted
logic and weighted automata over these structures as a consequence (in a slightly
modified version).

As already stated by [34], two significant differences to the previous models
are the occurrence constraint and the possibly bigger tile-size. As first step,
following [34], we give a sufficient condition to drop the occurrence constraint.
We say that a weighted graph automaton A = (Q,Δ,wt,Occ, r) is without
occurrence constraint, if Occ = true.

We call a class of graphs C ⊆ DGt(A,B) partial sortable if there exists an
element b0 ∈ B such that for every graph G = (V, (Pa)a∈A, (Eb)b∈B) of C, the
subgraph G′ = (V, (Pa)a∈A, Eb0) is acyclic, connected, and every vertex of G′

has at most one outgoing edge.
Note that words, trees, pictures, and nested words can be seen as graph

classes of this type. The following result is a weighted (and slightly more general)
version of Proposition 5.3 in [34].

Lemma 19. Let C ⊆ DGt(A,B) be partial sortable and S : C → K a recog-
nizable series. Then there exists a wGA B without occurrence constraint with
‖B‖ = S.

Definition 20. A weighted finite automata (wFA) A = (Q, I, F, δ, μ) consists
of a finite set of states Q, a set of initial states I ⊆ Q, a set of final states
F ⊆ Q, a set the transitions δ ⊆ Q × A × Q, and a weight function μ : δ → K.
We define an accepting run, the language of A, and recognizable word series as
usual (cf. [9,11,30]).

Now we consider words (trees, pictures, nested words, respectively) as rela-
tional structures, and hence also as graphs. Using Lemma 19, we can prove the
following.

202 M. Droste and S. Dück

Proposition 21. Let S : A∗ → K be a word series. Then S is recognizable by a
weighted graph automaton iff S is recognizable by a weighted finite automaton.

A similar result can be proved for trees, pictures, and nested words, and their
respective automata models defining recognizable series.

Note that this is possible because, essentially, we can reduce the tile-size of
a weighted graph automaton over these specific graphs from r to 1. In general,
this is not possible, and it is already stated by Thomas [34] as an open question
to precisely describe the class of graphs where the use of 1-tiles suffices.

We obtain the following consequence of Theorem 18 and Proposition 21.

Corollary 22 ([9]). For a word series S : A∗ → K the following are equivalent:

1. S is recognizable by a weighted finite automaton.
2. S is definable by an FO-restricted MSO(K)-sentence.

If we replace “word” by “tree”, “picture”, or “nested word”, we get a similar
result for all four automata models and and their respective logics.

Note that our implication (2) ⇒ (1) is a slightly weaker version of the results in
[9] since in our logic, we can apply

⊗
x-quantification (resp. universal quantifica-

tion) only to almost FO-boolean formulas, whereas in [9,10], we can use almost
MSO-boolean formulas.

As shown before, this difference originates from the fact that in the word
case EMSO = MSO, which is not true for pictures or graphs. In this sense, our
result captures the ‘biggest logic possible’, if we want to include pictures.

7 Conclusion

We introduced a weighted generalization of Thomas’ graph acceptors [33,34] and
a suitable weighted logic in the sense of Droste and Gastin [9]. For commutative
semirings, we proved a Nivat-like and a Büchi-like characterization of the expres-
sive power of weighted graph automata. We showed slightly stronger results in
the case of an idempotent semiring.

We showed that weighted word, tree, picture, or nested word automata are
special instances of these general weighted graph automata, which gives us results
of [9,14,17,24] as corollaries (under the appropriate restrictions to the underlying
logic). Although not considered explicitly, we conjecture that similar equivalence
results also hold for other finite structures like traces [25] or texts [23] and their
respective automata models. We gave several examples that our weighted graph
automata can recognize particular quantitative properties of graphs which were
not covered by previous automata models.

Most statements in this paper can also be proven for general semirings. In
this case, however, we would have to enforce an ordering of our graphs to get a
well-defined product of weights. Furthermore, we would need some restrictions on
the conjunction of our logic (similar to, e.g., [10]). Here, we restricted ourselves
to commutative semirings in order to avoid technical conditions.

Weighted Automata and Logics on Graphs 203

All the constructions given in this paper are effective. Subsequent research
could investigate applications of weighted graph algorithms for developing deci-
sion procedures for weighted graph automata.

References

1. Alur, R., Madhusudan, P.: Adding nesting structure to words. J. ACM 56(3),
16:1–16:43 (2009)

2. Anselmo, M., Giammarresi, D., Madonia, M., Restivo, A.: Unambiguous recogniz-
able two-dimensional languages. ITA 40(2), 277–293 (2006)

3. Berstel, J., Reutenauer, C.: Rational Series and Their Languages. EATCS Mono-
graphs in Theoretical Computer Science, vol. 12. Springer, Heidelberg (1988)

4. Bollig, B., Gastin, P.: Weighted versus probabilistic logics. In: Diekert, V.,
Nowotka, D. (eds.) DLT 2009. LNCS, vol. 5583, pp. 18–38. Springer, Heidelberg
(2009)

5. Bollig, B., Gastin, P., Monmege, B., Zeitoun, M.: Pebble weighted automata and
weighted logics. ACM Trans. Comput. Log. 15(2), 15 (2014)

6. Büchi, J.R.: Weak second-order arithmetic and finite automata. Z. Math. Logik
und Grundlagen Math. 6, 66–92 (1960)

7. Doner, J.: Tree acceptors and some of their applications. J. Comput. Syst. Sci.
4(5), 406–451 (1970)

8. Droste, M., Dück, S.: Weighted automata and logics for infinite nested words. In:
Dediu, A.-H., Mart́ın-Vide, C., Sierra-Rodŕıguez, J.-L., Truthe, B. (eds.) LATA
2014. LNCS, vol. 8370, pp. 323–334. Springer, Heidelberg (2014)

9. Droste, M., Gastin, P.: Weighted automata and weighted logics. Theor. Comput.
Sci. 380(1–2), 69–86 (2007)

10. Droste, M., Gastin, P.: Weighted automata and weighted logics. In: Droste et al.
[11], chapter 5, pp. 175–211

11. Droste, M., Kuich, W., Vogler, H. (eds.): Handbook of Weighted Automata.
EATCS Monographs in Theoretical Computer Science. Springer, Heidelberg (2009)

12. Droste, M., Kuske, D.: Weighted automata. In: Pin, J.E. (ed.) Handbook:
“Automata: from Mathematics to Applications”. Europ. Mathematical Soc. (to
appear)

13. Droste, M., Perevoshchikov, V.: A Nivat theorem for weighted timed automata and
weighted relative distance logic. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Kout-
soupias, E. (eds.) ICALP 2014, Part II. LNCS, vol. 8573, pp. 171–182. Springer,
Heidelberg (2014)

14. Droste, M., Vogler, H.: Weighted tree automata and weighted logics. Theor. Com-
put. Sci. 366(3), 228–247 (2006)

15. Eilenberg, S.: Automata, Languages, and Machines, Pure and Applied Mathemat-
ics, vol. 59-A. Academic Press, New York (1974)

16. Elgot, C.C.: Decision problems of finite automata design and related arithmetics.
Trans. Am. Math. Soc. 98(1), 21–52 (1961)

17. Fichtner, I.: Weighted picture automata and weighted logics. Theory Comput. Syst.
48(1), 48–78 (2011)

18. Giammarresi, D., Restivo, A., Seibert, S., Thomas, W.: Monadic second-order
logic over rectangular pictures and recognizability by tiling systems. Inf. Comput.
125(1), 32–45 (1996)

204 M. Droste and S. Dück

19. Golan, J.S.: Semirings and their Applications. Kluwer Academic Publishers, Dor-
drecht (1999)

20. Hanf, W.: Model-theoretic methods in the study of elementary logic. In: Addison,
J., Henkin, L., Tarski, A. (eds.) The Theory of Models, pp. 132–145. Amsterdam,
North-Holland (1965)

21. Hoogeboom, H.J., ten Pas, P.: Monadic second-order definable text languages.
Theory Comput. Syst. 30(4), 335–354 (1997)

22. Kuich, W., Salomaa, A.: Semirings, Automata, Languages. EATCS Monographs
in Theoretical Computer Science, vol. 6. Springer, Heidelberg (1986)

23. Mathissen, C.: Definable transductions and weighted logics for texts. Theor. Com-
put. Sci. 411(3), 631–659 (2010)

24. Mathissen, C.: Weighted logics for nested words and algebraic formal power series.
In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A.,
Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 221–232. Springer,
Heidelberg (2008)

25. Meinecke, I.: Weighted logics for traces. In: Grigoriev, D., Harrison, J., Hirsch,
E.A. (eds.) CSR 2006. LNCS, vol. 3967, pp. 235–246. Springer, Heidelberg (2006)

26. Monmege, B.: Specification and Verification of Quantitative Properties: Expres-
sions, Logics, and Automata. Thèse de doctorat, ENS Cachan, France (2013)

27. Nivat, M.: Transductions des langages de Chomsky. Ann. de l’Inst. Fourier 18,
339–455 (1968)

28. Rabin, M.O.: Decidability of second order theories and automata on infinite trees.
Trans. Am. Math. Soc. 141, 1–35 (1969)

29. Salomaa, A., Soittola, M.: Automata-Theoretic Aspects of Formal Power Series.
Texts and Monographs in Computer Science. Springer, New York (1978)

30. Schützenberger, M.P.: On the definition of a family of automata. Inf. Control 4(2–
3), 245–270 (1961)

31. Thatcher, J.W., Wright, J.B.: Generalized finite automata theory with an applica-
tion to a decision problem of second-order logic. Math. Syst. Theory 2(1), 57–81
(1968)

32. Thomas, W.: On logical definability of trace languages. In: Diekert, V. (ed.) Pro-
ceedings of workshop ASMICS 1989, pp. 172–182. Technical University of Munich
(1990)

33. Thomas, W.: On logics, tilings, and automata. In: Leach Albert, J., Monien, B.,
Rodŕıguez-Artalejo, M. (eds.) ICALP 1991. LNCS, vol. 510, pp. 441–454. Springer,
Heidelberg (1991)

34. Thomas, W.: Elements of an automata theory over partial orders. In: Proceedings
of DIMACS Workshop POMIV 1996, pp. 25–40. AMS Press Inc, New York, USA
(1996)

35. Trakhtenbrot, B.A.: Finite automata and logic of monadic predicates (in Russian).
Doklady Akademii Nauk SSR 140, 326–329 (1961)

Longest Gapped Repeats and Palindromes

Marius Dumitran1 and Florin Manea2(B)

1 Faculty of Mathematics and Computer Science,
University of Bucharest, Academiei 14, 010014 Bucharest, Romania

marius.dumitran@fmi.unibuc.ro
2 Department of Computer Science, Christian-Albrechts University of Kiel,

Christian-Albrechts-Platz 4, 24118 Kiel, Germany
flm@informatik.uni-kiel.de

Abstract. A gapped repeat (respectively, palindrome) occurring in a
word w is a factor uvu (respectively, uRvu) of w. We show how to com-
pute efficiently, for every position i of the word w, the longest prefix u
of w[i..n] such that uv (respectively, uRv) is a suffix of w[1..i− 1] (defin-
ing thus a gapped repeat uvu – respectively, palindrome uRvu), and the
length of v is subject to various types of restrictions.

1 Introduction

Gapped repeats and palindromes have been investigated for a long time (see,
e.g., [1–7] and the references therein), with motivation coming especially from
the analysis of DNA and RNA structures, where tandem repeats or hairpin
structures play important roles in revealing structural and functional information
of the analysed genetic sequence (see [1,2,4] and the references therein). More
precisely, a gapped repeat (respectively, palindrome) occurring in a word w is
a factor uvu (respectively, uRvu) of w. The middle part v of such structures
is called gap, while the two factors u (or the factors uR and u) are called left
and right arms. Generally, the previous works were interested in finding all the
gapped repeats and palindromes, under certain restrictions on the length of the
gap or on the relation between the arm of the repeat or palindrome and the gap.

In this paper, we propose an alternative point of view in the study of gapped
repeats and palindromes. The longest previous factor table (LPF) was intro-
duced and considered in the context of efficiently computing Lempel-Ziv-like
factorisations of words (see [6,8]). Such a table provides for each position i of
the word the longest factor occurring both at position i and once again on a posi-
tion j < i. Several variants of this table were also considered in [6]: the longest
previous reverse factor (LPrF), where we look for the longest factor occurring
at position i and whose mirror image occurs in the prefix of w of length i− 1, or
the longest previous non-overlapping factor, where we look for the longest factor
occurring both at position i and somewhere inside the prefix of length i−1 of w.
Such tables may be seen as providing a comprehensive image of the long repeats
and symmetries occurring in the analysed word. In our work we approach the
construction of longest previous gapped repeat or palindrome tables: for each
c© Springer-Verlag Berlin Heidelberg 2015
G.F. Italiano et al. (Eds.): MFCS 2015, Part I, LNCS 9234, pp. 205–217, 2015.
DOI: 10.1007/978-3-662-48057-1 16

206 M. Dumitran and F. Manea

position i of the word we want to compute the longest factor occurring both
at position i and once again on a position j < i (or, respectively, whose mirror
image occurs in the prefix of length i − 1 of w) such that there is a gap (subject
to various restrictions) between i and the previous occurrence of the respective
factor (mirrored factor). Similar to the original setting, this should give us a
good image of the long gapped repeats and symmetries of a word.

A simple way to restrict the gap is to lower bound it by a constant; i.e., we
look for factors uvu (or uRvu) with |v| > g for some g ≥ 0. The techniques
of [6] can be easily adapted to compute for each position i the longest prefix
u of w[i..n] such that there exists a suffix uv (respectively, uRv) of w[1..i − 1],
forming thus a factor uvu (respectively, uRvu) with |v| > g. Here we consider
three other different types of restricted gaps.

We first consider the case when the length of the gap is between a lower bound
g and an upper bound G, where g and G are given as input (so, may depend on
the input word). This extends naturally the case of lower bounded gaps.

Problem 1. Given w of length n and two integers g and G, such that 0 ≤ g <
G ≤ n, construct the arrays LPrF g,G[·] and LPF g,G[·] defined for 1 ≤ i ≤ n:

a. LPrF g,G[i] = max{|u| | there exists v such that uRv is a suffix of w[1..i − 1]
and u is prefix of w[i..n], with g ≤ |v| < G}.

b. LPF g,G[i] = max{|u| | there exists v such that uv is a suffix of w[1..i−1] and
u is prefix of w[i..n], with g ≤ |v| < G}.

We are able to solve Problem 1(a) in linear time O(n). Problem 1(b) is solved
here in O(n log n) time. Intuitively, when trying to compute the longest prefix u
of w[i..n] such that uRv is a suffix of w[1..i − 1] with g < |v| ≤ G, we just have
to compute the longest common prefix between w[i..n] and the words w[1..j]R

with g < i − j ≤ G. The increased difficulty in solving the problem for repeats
(reflected in the increased complexity of our algorithm) seems to come from the
fact that when trying to compute the longest prefix u of w[i..n] such that uv is
a suffix of w[1..i − 1] with g < |v| ≤ G, it is hard to see where the uv factor may
start, so we have to somehow try more variants for the length of u. In [2], the
authors give an algorithm that finds all maximal repeats (i.e., repeats whose arms
cannot be extended) with gap between a lower and an upper bound, running in
O(n log n + z) time, where z is the number of such repeats. It is worth noting
that there are words (e.g., (a2b)n/3, from [2]) that may have Θ(nG) maximal
repeats uvu with |v| < G, so for G > log n and g = 0, for instance, our algorithm
is faster than an approach that would first use the algorithms of [2] to get all
maximal repeats, and then process them somehow to solve Problem 1(b).

In the second case, the gaps are only lower bounded; however, the bound on
the gap allowed at a position is defined by a function depending on that position.

Problem 2. Given w of length n and the values g(1), . . . , g(n) of g : {1, . . . , n} →
{1, . . . , n}, construct the arrays LPrF g[·] and LPF g[·] defined for 1 ≤ i ≤ n:

a. LPrF g[i] = max{|u| | there exists v such that uRv is a suffix of w[1..i − 1]
and u is prefix of w[i..n], with g(i) ≤ |v|}.

Longest Gapped Repeats and Palindromes 207

b. LPF g[i] = max{|u| | there exists v such that uv is a suffix of w[1..i − 1] and
u is prefix of w[i..n], with g(i) ≤ |v|}.

The setting of this problem can be seen as follows. An expert preprocesses the
input word (in a way specific to the framework in which one needs the problem
solved), and detects the length of the gap occurring at each position (so, com-
putes g(i) for all i). These values and the word are then given to us, to compute
the arrays defined in our problems. We are solve both problems in linear time.

Finally, following [4,5], we analyse gapped repeats uvu and palindromes uRvu
where the length of the gap v is upper bounded by the length of the arm u; these
structures are called long armed repeats and palindromes, respectively.

Problem 3. Given w of length n, construct the arrays LPal [·] and LRep[·], defined
for 1 ≤ i ≤ n:

a. LPal [i] = max{|u| | there exists v such that uRv is a suffix of w[1..i − 1], u is
a prefix of w[i..n], and |v| ≤ |u|}.

b. LRep[i] = max{|u| | there exists v such that uv is a suffix of w[1..i − 1], u is
a prefix of w[i..n], and |v| ≤ |u|}.

In [4] one proposes an algorithm finding the set S of all factors of a word of
length n which are maximal long armed palindromes (i.e., the arms cannot be
extended to the right or to the left) in O(n + |S|) time; no upper bound on the
possible size of the set S was given in [4], but it is widely believed to be O(n).
Using the algorithm of [4] as an initial step, we solve Problem 3(a) in O(n+ |S|)
time. In [5] the set of maximal long armed repeats with non-empty gap is shown
to be of linear size and is computed in O(n) time. We use this algorithm and
a linear time algorithm finding the longest square centred at each position of a
word to solve Problem 3(b) in linear time.

Our algorithms are generally based on efficient data-structures. On one hand,
we use efficient word-processing data structures like suffix arrays or longest com-
mon prefix structures. On the other hand, we heavily use specific data-structures
for maintaining efficiently collections of disjoint sets, under union and find ope-
rations. Alongside these data-structures, we make use of a series of remarks of
combinatorial nature, providing insight in the repetitive structure of the words.

2 Preliminaries

Let V be a finite alphabet; V ∗ denotes the set of all finite words over V . The
length of a word w ∈ V ∗ is denoted by |w|. The empty word is denoted by λ.
A word u ∈ V ∗ is a factor of v ∈ V ∗ if v = xuy, for some x, y ∈ V ∗; we say that
u is a prefix of v, if x = λ, and a suffix of v, if y = λ. We denote by w[i] the
symbol occurring at position i in w, and by w[i..j] the factor of w starting at
position i and ending at position j, consisting of the catenation of the symbols
w[i], . . . , w[j], where 1 ≤ i ≤ j ≤ n; we define w[i..j] = λ if i > j. The powers
of a word w are defined recursively by w0 = λ and wn = wwn−1 for n ≥ 1.

208 M. Dumitran and F. Manea

If w cannot be expressed as a nontrivial power (i.e., w is not a repetition) of
another word, then w is primitive. A period of a word w over V is a positive
integer p such that w[i] = w[j] for all i and j with i ≡ j (mod p). Let per(w) be
the smallest period of w. A word w with per(w) ≤ |w|

2 is called run; a run w[i..j]
(so, p = per(w[i..j]) < j−i+1

2) is maximal iff it cannot be extended to the left or
right to get a word with the same period p, i.e., i = 1 or w[i − 1] �= w[i + p − 1],
and, j = n or w[j + 1] �= w[j − p + 1]. In [9] it is shown that the number of
maximal runs of a word is linear and their list (with a run w[i..j] represented
as the triple (i, j,per(w[i..j])) can be computed in linear time. The exponent
of a maximal run w[i..j] occurring in w is defined as j−i+1

per(w[i..j]) ; the sum of the
exponents of all runs in a word of length n is O(n) (see [9]).

For a word u, |u| = n, over V ⊆ {1, . . . , n} we build in O(n) time the suffix
array as well as data structures allowing us to retrieve in constant time the length
of the longest common prefix of any two suffixes u[i..n] and u[j..n] of u, denoted
LCPu(i, j) (the subscript u is omitted when there is no danger of confusion).
Such structures are called LCP data structures in the following. For details, see,
e.g., [1,10], and the references therein.

In the solutions of the problems dealing with gapped palindromes inside a
word w (Problems 1(a), 2(a), and 3(a)) we construct the suffix array and LCP
data structures for the word u = w0wR, where 0 is a symbol lexicographically
smaller than all the symbols of V ; this takes O(|w|) time. To check whether
w[i..j] occurs at position � in w (respectively, w[i..j]R occurs at position � in w)
we check whether � + (j − i + 1) ≤ n and LCPu(i, �) ≥ j − i + 1 (respectively,
LCPu(�, 2|w| − j + w)) ≥ j − i + 1). To keep the notation free of subscripts,
when we measure the longest common prefix of a word w[1..j]R and word w[i..n]
we write LCP(w[1..j]R, w[1..i]), and this is in fact an LCP -query on u = w0wR;
when we measure the longest common prefix of a word w[j..n] and word w[i..n]
we write LCP(j, i), and this is in fact an LCP -query on w.

The suffix array of w0wR allows us to construct in linear time a list L of
the suffixes w[i..n] of w and of the mirror images w[1..i]R of the prefixes of
w (which correspond to the suffixes of length less than |w| of w0wR), ordered
lexicographically. Generally, we denote by Rank[i] the position of w[i..n] in the
ordered list of these factors, and by RankR[i] the position of w[1..i]R in L.

Our solutions rely on an efficient solution for the disjoint set union-find prob-
lem. This problem asks to maintain a family consisting initially of d disjoint
singleton sets from the universe U = [1, n + 1) (shorter for {1, . . . , n}) so that
given any element we can locate its current set and return the minimal (and/or
the maximal) element of this set (operation called find-query) and we can merge
two disjoint sets into one (operation called union). In our framework, we know
from the beginning the pairs of elements whose corresponding sets can be joined.
Under this assumption, a data-structure fulfilling the above requirements can be
constructed in O(d) time such that performing a sequence of m find and union
operations takes O(m) time in our model of computation (see [11]). As a par-
ticular case, this data structure solves with O(n) preprocessing time and O(1)
amortised time per operation the interval union-find problem, which asks to

Longest Gapped Repeats and Palindromes 209

maintain a partition of the universe U = [1, n + 1) into a number of d disjoint
intervals, so that given an element of U we can locate its current interval, and
we can merge two adjacent intervals of the partition.

In the solutions of both points of Problem1, we use the following variant of
the interval union-find problem.

Remark 1. Let U = [1, n+1). We are given integers d, k > 0 and for each i ≤ n/k
a partition Pi of U in d intervals, a sequence of d find-queries and a sequence of
d union-operations to be performed alternatively on Pi (that is, we perform one
find query then the one union operation, and so on, in the order specified in the
sequences). We can obtain the answers to all find-queries in O(n + nd

k) time.

We further give a lemma related to the union-find data structure.

Lemma 1. Let U = [1, n+1). We are given k intervals I1, . . . , Ik included in U .
Also, for each j ≤ k we are given a positive integer gj ≤ n, the weight of the
interval Ij. We can compute in O(n+k) time the values H[i] = max{gj | i ∈ Ij}
(or, alternatively, h[i] = min{gj | i ∈ Ij}) for all i ≤ n.

We conclude this section with a lemma that will be used in the solution of
Problem 3. It shows that how can compute in linear time the length of the
longest square centred at each position of a given word.

Lemma 2. Given a word w of length n we can compute in O(n) time the values
SC[i] = max{|u| | u is both a suffix of w[1..i − 1] and a prefix of w[i..n]}.
Proof. Note that each square u2 occurring in a word w is part of a maximal run
w[i′..j′] = pαp′, where p is primitive and p′ is a prefix of p, and u = q�, where q
is a cyclic shift of p (i.e., q is a factor of p2 of length |p|) and � ≤ α

2 .
So, if we consider a maximal run r = pαp′ and some � ≤ α

2 , we can easily
detect the possible centre positions of the squares having the form (q�)2 contained
in this run, with q a cyclic shift of p. These positions occur consecutively in the
word w: the first is the (|p|� + 1)th position of the run, and the last is the one
where the suffix of length |p|� of the run starts. So they form an interval Ir,�

and we associate to this interval the weight gr,� = |p|� (i.e., the length of an arm
of the square). In this way, we define O(n) intervals (as their number is upper
bounded by the sum of the exponents of the maximal runs of w), all contained
in [1, n + 1), and each interval having a weight between 1 and n. By Lemma 1,
we can process these intervals so that we can determine for each i ∈ [1, n + 1)
the interval of maximum weight containing i, or, in other words, the maximum
length SC[i] of a square centred on i. This procedure runs in O(n) time. 	

Remark 2. It is worth noting that using the same strategy as in the proof of
Lemma 2, one can detect the minimum length of a square centred at each position
of a word in O(n) time. This leads to an alternative solution to the problem of
computing the local periods of a word, solved in [12]. Compared to the solution
from [12], ours uses a relatively involved data structures machinery (disjoint sets
union-find structures), but is much shorter and seems conceptually simpler as it
does not require a very long and detailed combinatorial analysis of the properties

210 M. Dumitran and F. Manea

of the input word. The same strategy allows solving the problem of computing in
linear time, for integer alphabets, the length of the shortest (or longest) square
ending (or starting) at each position of a given word; this improves the results
from [13,14], where such a result was only shown for constant size alphabets.

3 Lower and Upper Bounded Gap

In this section we approach Problems 1(a) and 1(b). We give the full solution of
Problem 1(a), and then point out how this can be extended to solve Problem1(b).

Theorem 1. Problem 1(a) can be solved in linear time.

Proof. Let δ = G− g; for simplicity, assume that n is divisible by δ. Further, for
1 ≤ i ≤ n, let u be the longest factor which is a prefix of w[i..n] such that uR is
a suffix of some w[1..k] with g < i − k ≤ G; then, B[i] is the rightmost position
j such that g < i − j ≤ G and uR is a suffix of w[1..j]. Knowing B[i] means
knowing LPrF g,G[i]: we just have to return LPrF (w[i..n], w[1..j]R).

We split the set {1, . . . , n} into n
δ ranges of consecutive numbers: I0 =

{1, 2, . . . , δ}, I1 = {δ + 1, δ + 2, . . . , 2δ}, and so on. Note that for all i in some
range Ik = {kδ + 1, kδ + 2, . . . , (k + 1)δ} from those defined above, there are at
most three consecutive ranges where some j such that g < i − j ≤ G may be
found: the range containing kδ − G + 1, the range containing (k + 1)δ − g − 1,
and the one in between these two (i.e., the range containing kδ + 1 − g). More-
over, for some fixed i, we know that we have to look for B[i] in the interval
{i − G, . . . , i − g − 1}, of length δ; when we search B[i + 1] we look at the inter-
val {i + 1 − G, . . . , i − g}. So, basically, when trying to find B[i] for all i ∈ Ik,
we move a window of length δ over the three ranges named above, and try to
find for every content of the window (so for every i) its one element that fits the
description of B[i]. The difference between the content of the window in two con-
secutive steps does not seem major: we just removed an element and introduced
a new one. Also, note that at each moment the window intersects exactly two
of the aforementioned three ranges. We try to use these remarks, and maintain
the contents of the window such that the update can be done efficiently, and the
values of B[i] (and, implicitly, LPrF g,G[i]) can be, for each i ∈ I, retrieved very
fast. Intuitively, grouping the i’s on ranges of consecutive numbers allows us to
find the possible places of the corresponding B[i]’s for all i ∈ Ik in O(δ) time.

We now go into more details. As we described in the preliminaries, let L be
the lexicographically ordered list of the suffixes of w[i..n] of w and of the mirror
images w[1..i]R of the prefixes of w (which correspond to the suffixes of wR).
For the list L we compute the arrays Rank[·] and RankR[·]. We use the suffix
array for w0wR to produce for each of the ranges Ik computed above the set of
suffixes of w that start in the respective range (sorted lexicographically, in the
order they appear in the suffix array) and the set of prefixes of w ending in I,
ordered lexicographically with respect to their mirror image.

We consider now one of the ranges of indexes Ik = {kδ+1, kδ+2, . . . , (k+1)δ}
from the above, and show how we can compute the values B[i], for all i ∈ Ik. For

Longest Gapped Repeats and Palindromes 211

some i ∈ Ik we look for the maximum � such that there exists a position j with
w[j − � + 1..j]R = w[i..i + � − 1], and i − G ≤ j ≤ i − g. As already explained,
for the i’s of Ik there are three consecutive ranges where the j’s corresponding
to the i’s of Ik may be found. Let us denote them J1, J2, J3.

Now, for an i ∈ Ik we have that B[i] (for which g < i − B[i] ≤ G) belongs to
J ′

i ∪ J ′′
i , where J ′

i is an interval starting with i − G and extending until the end
of the range that contains i − G (which is one of the ranges J1, J2, J3) and J ′′

i is
an interval ending with i− g −1, which starts at the beginning of the range that
contains i − g − 1 (which is the range that comes next after the one containing
i−G). Referencing back to the intuitive explanation we gave at the beginning of
this proof, J ′

i ∪ J ′′
i is the window we use to locate the value of B[i] for an i ∈ Ik.

To compute B[i] for some i, take fi ∈ J ′
i such that LCP(w[1..fi]R, w[i..n]) ≥

LCP(w[1..j′]R, w[i..n]) for all j′ ∈ J ′
i . Similarly, take si ∈ J ′′

i such that for
all j′ ∈ J ′′

i we have LCP(w[1..si]R, w[i..n]) ≥ LCP(w[1..j′]R, w[i..n]). Once si

and fi computed, we just have to set B[i] = si if LCP(w[1..si]R, w[i..n]) ≥
LCP(w[1..fi]R, w[i..n]); we set B[i] = fi, otherwise. So, in order to compute, for
some i, the value B[i], that determines LPrF g,G[i], we first compute fi and si.

We compute for all the indices i ∈ Ik, considered in increasing order, the
values fi. We consider for each i ∈ Ik the interval J ′

i and note that J ′
i \ J ′

i+1 =
{i − G}, and, if J ′

i is not a singleton (i.e., J ′
i �= {i − G}) then J ′

i+1 ⊂ J ′
i . If J ′

i is
a singleton, than J ′

i+1 is, in fact, one of the precomputed range Ip, namely the
one which starts on position i + 1 − G (so, p = i−G

δ).
These relations suggest the following approach. We start with i = kδ +1 and

consider the set of words w[1..j]R with j ∈ J ′
i ; this set can be easily obtained in

O(δ) time by finding first the range J1 in which i − G is contained (which takes
O(1) time, as J1 = Ip for p =

⌊
i−G

δ

⌋
), and then selecting from J1 of the set of

prefixes w[1..d] of w, ending in J1 with d ≥ i−G (ordered lexicographically with
respect to their mirror image). The ranks corresponding to these prefixes in the
ordered list L (i.e., the set of numbers RankR[d]) define a partition of the universe
U = [0, 2n+1) in at most δ+2 disjoint intervals. So, we can maintain an interval
union-find data structures like in Remark 1, where the ranks are seen as limits of
the intervals in this structure. We assume that the intervals in our data structure
are of the form [a, b), with a and b equal to some RankR[da] and RankR[db],
respectively. The first interval in the structure is of the form [0, a), while the last
is of the form [b, 2n + 1). We now find the interval to which Rank[i] belongs;
say that this is [a, b). This means that the words w[1..da]R and w[1..db]R are the
two words of {w[1..d]R | d ∈ J ′

i} which are closest to w[i..n] lexicographically
(w[1..da]R is lexicographically smaller, w[1..db] is greater). Clearly, fi = da if
LCP(w[1..da]R, w[i..n]) ≥ LCP(w[1..db]R, w[i..n]) and fi = db, otherwise (in
case of a tie, we take fi to be the greater of da and db). So, to compute fi we
query once the union-find data structure to find a and b, and the corresponding
da and db, and then run two more LCP queries.

When moving on to compute fi+1, we just have to update our structure and
then run the same procedure. Now, i − G is no longer a valid candidate for
fi+1, and it is removed from J ′

i . So we just delete it from the interval union-find

212 M. Dumitran and F. Manea

data structure, and merge the interval ending right before RankR[i−G] and the
one starting with RankR[i − G]. This means one union operation in our interval
union-find structure. Then we proceed to compute fi+1 as in the case of fi.

The process continues until J ′
i is a singleton, so fi equals its single element.

Now, i − G is the last element of one of the ranges J1, J2, or J3; assume this
range is Ip. So far, we performed alternatively at most δ find queries and δ union
operations on the union-find structure. Now, instead of updating this structure,
we consider a new interval partition of [0, 2n + 1) induced by the ranks of the δ
prefixes ending in Ip+1. When computing the values fi for i ∈ Ik we need to
consider a new partition of U at most once: at the border between J1 and J2.

It is not hard to see from the comments made in the above presentation that
our algorithm computes fi ∈ Ik correctly. In summary, in order to compute fi,
we considered the elements i ∈ Ik from left to right, keeping track of the left
part J ′

i of the window J ′
i ∪ J ′′

i while it moved from left to right through the
ranges J1, J2 and J3. Now, to compute the values si for i ∈ Ik, we proceed in
a symmetric manner: we consider the values i in decreasing order, moving the
window from right to left, and keep track of its right part J ′′

i .
As already explained, by knowing the values fi and si for all i ∈ Ik and for

all k, we immediately get B[i] (and, consequently LPrF g,G[i]) for all i.
We now evaluate the running time of our approach. We can compute, in O(n)

time, from the very beginning of our algorithm the partitions of [1, 2n − 1) we
need to process (basically, for each Ik we find J1, J2 and J3 in constant time,
and we get the three initial partitions we have to process in O(δ) time), and we
also know the union-operations and find-queries that we will need to perform for
each such partition (as we know the order in which the prefixes are taken out
of the window, so the order in which the intervals are merged). In total we have
O(n/δ) partitions, each having initially δ + 2 intervals, and on each we perform
δ find-queries and δ-union operations. So, by Remark 1, we can preprocess this
data (once, at the beginning of the algorithm) in O(n) time, to be sure that the
time needed to obtain the correct answers to all the find queries is O(n). So, the
total time needed to compute the values fi for all i ∈ Ik and for all k is O(n).
Similarly, the total time needed to compute the values si for all i is O(n). Then,
for each i we get B[i] and LPrF g,G[i] in O(1) time.

Therefore, Problem 1(a) can be solved in linear time. 	

To solve Problem 1(b) we need to somehow restrict the range where the left arm
of the repeat uvu may occur. Thus, we search for u with 2k ≤ |u| ≤ 2k+1, for
each k ≤ log n; such a factor always start with w[i + 1..i + 2k] and may only
occur in the factor w[i − G − 2k+1..i − g]. If 2k ≥ G − g, using the dictionary of
basic factors data structures [15] and the results in [16], we get a constant size
representation of the occurrences of w[i + 1..i + 2k] in that range (which are a
constant number of times longer than the searched factor), and then we detect
which one of these occurrences produces the repeat uvu with the longest arm.
If 2k < G − g, we use roughly the same strategy to find the repeat uvu with the
longest arm and u starting in a range of radius 2k+1 centred around i − G or in
a range of length 2k+1 ending on i − g (again, these ranges are just a constant

Longest Gapped Repeats and Palindromes 213

number of times longer than the searched factor). To detect a repeat starting
between i − G + 2k+1 and i − g − 2k+1 we use the strategy from the solution of
Problem 1(a); in that case, we just have to return the longest common prefix of
w[i..n] and the words w[j..n] with i − G + 2k+1 ≤ j ≤ i − g − 2k+1. Overall, this
approach can be implemented to work in O(n log n) time.

Theorem 2. Problem 1(b) can be solved in O(n log n) time.

4 Lower Bounded Gap

To solve Problem 2(a) we need to find, for some position i of w, the factor w[1..j]R

with j ≤ i − g(i) that occurs closest to w[1..i] in the lexicographically ordered
list L of all the suffixes w[k..n] of w and of the mirror images w[1..k]R of its
prefixes. Doing this for all i takes O(n) time, as it can be reduced to answering
n find queries in an extended interval union-find data structure.

Theorem 3. Problem 2(a) can be solved in linear time.

To solve Problem 2(b) we use the following lemma.

Lemma 3. Given a word w, let L[i] = min{j | j < i,LCP(j, i) ≥ LCP(k, i) for
all k < i}. The array L[·] can be computed in linear time.

Another lemma shows how the computation of the array LPF g[·] can be con-
nected to that of the array L[·]. For an easier presentation, let B[i] denote the
leftmost starting position of the longest factor xi that occurs both at position i
and at a position j such that j + |xi| ≤ i − g(i); if there is no such factor xi,
then B[i] = −1. In other words, the length of the factor xi occurring at position
B[i] gives us LPF g[i]. In fact, LPF g[i] = min{LCP(B[i], i), i − g(i) − B[i]}.

Now, let L1[i] = L[i] and Lk[i] = L[Lk−1[i], for k ≥ 2; also, we define
L+[i] = {L[i], L[L[i]], L[L[L[i]]], . . .}.

The following lemma shows the important fact that B[i] can be obtained just
by looking at the values of L+[i]. More precisely, B[i] equals Lk[i], where k is
obtained by looking at the values Lj [i] ≤ i − g(i) and taking the one such that
the factor starting on it and ending on i−g(i)−1 has a maximal common prefix
with w[i..n]. Afterwards, Theorem4 shows that this check can be done in linear
time for all i, thus solving optimally Problem2.

Lemma 4. For a word w of length n and all 1 ≤ i ≤ n such that B[i] �= −1, we
have that B[i] ∈ L+[i].

Theorem 4. Problem 2(b) can be solved in linear time.

Proof. The main idea in this proof is that, to compute LPF g[i], it is enough to
check the elements j ∈ L+[i] with j ≤ i−g(i), and choose from them the one for
which min{LCP(j, i), i − g(i) − j} is maximum; this maximum will be the value
we look for. In the following, we show how we can obtain these values efficiently.

First, if j = L[i] for some i, we define the value end[j] = k ≤ LCP(L[j], i),
where |w[j..k]| ≤ min{LCP(L[j], i), k−L[j]}. Basically, for each position k′ ≤ k,

214 M. Dumitran and F. Manea

the longest factor x starting at L[j] and ending on k′ which also occurs at position
i is longer than any factor starting on position j and ending on k′ which also
occurs at position i. Now we note that if j ∈ L+[i] is the greatest element of this
set such that end[j] ≤ i − g(i) − 1, then LPF g[i] = min{LCP(j, i), i − g(i) − j}.
Clearly, end[j] can be computed in constant time for each j.

To be able to retrieve efficiently for some i the greatest element of this set
such that end[j] ≤ i − g(i) − 1 we proceed as follows.

First we define a disjoint-set union-find data structure on the universe U =
[1, n + 1), where the unions can be only performed between the set containing i
and that containing L[i], for all i. Initially, each number between 1 and n is a
singleton set in this structure. Moreover, our structure fulfils the conditions that
the efficient union-find data structure of [11] should fulfil.

Further, we sort in linear time the numbers i − g(i), for all i; we also sort
in linear time the numbers end[k] for all k ≤ n. We now traverse the numbers
from n to 1, in decreasing order. When we reach position j we check whether
j equals end[k] for some k; if yes, we unite the set containing k with the set
containing end[k] for all k such that end[k] = j. Then, if j = i − g(i) for some
i, we just have to return the minimum of the set containing i; this value gives
exactly the greatest element j ∈ L+[i] such that end[j] ≤ i − g(i) − 1. So, as
described above, we can obtain from it the value of LPF g[i]. The computation
of this array follows from the previous remarks.

To evaluate the complexity of our approach, note that we do O(n) union
operations and O(n) find queries on the union-find data structure. By the results
in [11], the time needed to construct the union-find data structure and perform
these operations on it is also O(n). From every find query we get in constant
time the value of a element LPF g[i]. So the solution of Problem2 is linear. 	

5 Long Armed Repeats and Palindromes

In this section we solve Problems 3(a) and 3(b).
Recall that a long armed palindrome (respectively, repeat) w[i..j]vw[i′..j′]

is called maximal if the arms cannot be extended to the right or to the left:
neither w[i..j + 1]v′w[i′ − 1..j′] nor w[i − 1..j]vw[i′..j′ + 1] (respectively, neither
w[i..j +1]v′w[i′..j′ +1] nor w[i−1..j]v′′w[i′ −1..j′]) are long armed palindromes
(respectively, repeats). Our solutions rely on the results of [4,5]. In [4] one pro-
poses an algorithm that, given a word of length n, finds the set S of all its factors
which are maximal long armed palindromes in O(n + |S|) time. In [5] the set of
maximal long armed repeats with non-empty gap is shown to be of linear size
and is computed in O(n) time for input words over integer alphabets.

In the following, we essentially show that given the set S of all factors of a
word which are maximal long armed palindromes (respectively, repeats) we can
compute the array LPal (respectively, LRep) for that word in O(n + |S|) time.

Theorem 5. Problem 3(a) can be solved in O(|S| + n), where S is the set of all
factors of the input word which are maximal long armed palindromes.

Longest Gapped Repeats and Palindromes 215

Proof. We assume that we are given an input word w, for which the set S is
computed, using the algorithm from [4].

Let us consider a maximal long armed palindrome w[i..i+�−1]vw[j..j+�−1],
with w[i..i + � − 1]R = w[j..j + � − 1]. For simplicity, let us denote by δ = |v| =
j − i− �, the length of the gap; here, i and j + �− 1 will be called the outer ends
of this palindrome, while j and i + � − 1 are the inner ends.

It is not hard to see that from a maximal palindrome one can get a family of
long armed palindromes whose arms cannot be extended by appending letters
simultaneously to their outer ends. We now show how this family of long armed
palindromes can be computed. Intuitively, we extend simultaneously the gap in
both directions, decreasing in this way the length of the arms of the palindrome,
until the gap becomes longer than the arm. The longest possible such extension
of the gap can be easily computed. Indeed, let r =

⌊
�−δ
3

⌋
. It is not hard to

check that for r′ ≤ r we have that w[i..i + � − r′ − 1]v′w[j + r′..j + � − 1], with
v′ = w[i+ �− r′ − 1..i+ �− 1]vw[j..j + r′ − 1], is a long armed palindrome whose
left arm cannot be extended by appending letters to their outer ends. For r′ > r
we have that w[i..i+�−r′−1]v′w[j+r′..j+�−1], with v′ = w[i+�−r′−1..i+�−
1]vw[j..j+r′ −1], is still a gapped palindrome, but it is not long armed anymore.
So, for a maximal long armed palindrome p = w[i..i + � − 1]vw[j..j + � − 1], we
associate the interval Ip = [j, j+r], and associate to it a weight g(Ip) = j+�−1.
Intuitively, we know that at each position j′ ∈ Ip there exists a factor u, ending
at position j + � − 1, such that uRv is a suffix of w[1..j′ − 1] for some v.

On the other hand, if u is the longest factor starting at some position j′ ≤ n
such that uRv is a suffix of w[1..j − 1], then the factor w[i..j] = uRvu is, in fact,
a maximal long armed palindrome xRyx(i.e., uR is a prefix of xR and u is a
suffix of x). In other words, u and uR could be extended simultaneously inside
the gap, but not at the outer ends.

Consequently, to compute LPal [i] for some i ≤ n we have to find the long
armed palindromes p ∈ S for which the interval Ip contains i. Then, we identify
which of these intervals has the greatest weight. Say, for instance, that the inter-
val Ipm which contains i, is the one that weight maximal weight k from all the
intervals containing i. Then LPal [j] = k − j + 1. Indeed, from all the factors u
starting at position j, such that uRv is a suffix of w[1..j′ −1] for some v, there is
one that ends at position k, while all the other end before k (otherwise, the inter-
vals associated, respectively, to the maximal long armed palindromes containing
each of these factors uRvu would have a greater weight). So, the palindrome
ending at position k is the longest of them all.

This allows us to design the following algorithm for the computation of
LPal [j]. We first use the algorithm of [4] to compute the set S of all max-
imal long armed palindromes of w. For each maximal long armed palindrome
p = w[i..i+�−1]w[i+�..j−1]w[j..j+�−1], we associate the interval Ip = [j, j+r],
where r =

⌊
�−δ
3

⌋
and δ = j−i−�, and associate to it the weight g(Ip) = j+�−1.

We process these |S| intervals, with weights and bounds in [1, n], in O(n + |S|)
time as in Lemma 1, to compute for each j ≤ n the maximal weight H[j] of an
interval containing j. Then we set LPal [j] = H[j] − j + 1.

216 M. Dumitran and F. Manea

The correctness of the above algorithm follows from the remarks at the begin-
ning of this proof. Its complexity is clearly O(|S| + n). 	

The solution of Problem 3(b) is very similar. First, we produce the list of all
maximal long armed repeats with non-empty gap, using the algorithm from [5].
This takes O(n) time. Then, just like we did in the previous proof, we compute,
for every position i, the prefix u of w[i..n] such that there exists a suffix uv
of w[1..i − 1] with 0 < |v| ≤ |u|. Then, for each position i, we compute using
Lemma 2 the longest square centred on position i. The answer to our problem is
obtained by just taking the maximum of these two values, for each i.

We get the following result.

Theorem 6. Problem 3(b) can be solved in O(n).

References

1. Gusfield, D.: Algorithms on Strings, Trees, and Sequences: Computer Science and
Computational Biology. Cambridge University Press, New York (1997)

2. Brodal, G.S., Lyngsø, R.B., Pedersen, C.N.S., Stoye, J.: Finding maximal pairs
with bounded gap. In: Crochemore, M., Paterson, M. (eds.) CPM 1999. LNCS,
vol. 1645, pp. 134–149. Springer, Heidelberg (1999)

3. Kolpakov, R.M., Kucherov, G.: Finding repeats with fixed gap. In: Proceedings of
SPIRE, pp. 162–168 (2000)

4. Kolpakov, R., Kucherov, G.: Searching for gapped palindromes. Theor. Comput.
Sci. 410, 5365–5373 (2009)

5. Kolpakov, R., Podolskiy, M., Posypkin, M., Khrapov, N.: Searching of gapped
repeats and subrepetitions in a word. In: Kulikov, A.S., Kuznetsov, S.O., Pevzner,
P. (eds.) CPM 2014. LNCS, vol. 8486, pp. 212–221. Springer, Heidelberg (2014)

6. Crochemore, M., Iliopoulos, C.S., Kubica, M., Rytter, W., Waleń, T.: Efficient
algorithms for two extensions of LPF table: the power of suffix arrays. In: van
Leeuwen, J., Muscholl, A., Peleg, D., Pokorný, J., Rumpe, B. (eds.) SOFSEM
2010. LNCS, vol. 5901, pp. 296–307. Springer, Heidelberg (2010)

7. Crochemore, M., Tischler, G.: Computing longest previous non-overlapping factors.
Inf. Process. Lett. 111, 291–295 (2011)

8. Crochemore, M., Ilie, L., Iliopoulos, C.S., Kubica, M., Rytter, W., Walen, T.:
Computing the longest previous factor. Eur. J. Comb. 34, 15–26 (2013)

9. Kolpakov, R., Kucherov, G.: Finding maximal repetitions in a word in linear time.
In: Proceedings of FOCS, pp. 596–604 (1999)

10. Kärkkäinen, J., Sanders, P., Burkhardt, S.: Linear work suffix array construction.
J. ACM 53, 918–936 (2006)

11. Gabow, H.N., Tarjan, R.E.: A linear-time algorithm for a special case of disjoint
set union. In: Proceeding of STOC, pp. 246–251 (1983)

12. Duval, J.-P., Kolpakov, R., Kucherov, G., Lecroq, T., Lefebvre, A.: Linear-time
computation of local periods. In: Rovan, B., Vojtáš, P. (eds.) MFCS 2003. LNCS,
vol. 2747, pp. 388–397. Springer, Heidelberg (2003)

13. Kosaraju, S.R.: Computation of squares in a string (preliminary version). In:
Crochemore, M., Gusfield, D. (eds.) CPM 1994. LNCS, vol. 807, pp. 146–150.
Springer, Heidelberg (1994)

Longest Gapped Repeats and Palindromes 217

14. Xu, Z.: A minimal periods algorithm with applications. In: Amir, A., Parida, L.
(eds.) CPM 2010. LNCS, vol. 6129, pp. 51–62. Springer, Heidelberg (2010)

15. Crochemore, M., Rytter, W.: Usefulness of the Karp-Miller-Rosenberg algorithm
in parallel computations on strings and arrays. Theoret. Comput. Sci. 88, 59–82
(1991)

16. Kociumaka, T., Radoszewski, J., Rytter, W., Waleń, T.: Efficient data structures
for the factor periodicity problem. In: Calderón-Benavides, L., González-Caro, C.,
Chávez, E., Ziviani, N. (eds.) SPIRE 2012. LNCS, vol. 7608, pp. 284–294. Springer,
Heidelberg (2012)

Quasiperiodicity and Non-computability
in Tilings

Bruno Durand1 and Andrei Romashchenko1,2(B)

1 LIRMM, University of Montpellier and CNRS, Montpellier, France
2 IITP RAS, Moscow, Russia

andrei.romashchenko@lirmm.fr

Abstract. We study tilings of the plane that combine strong proper-
ties of different nature: combinatorial and algorithmic. We prove the
existence of a tile set that accepts only quasiperiodic and non-recursive
tilings. Our construction is based on the fixed point construction [12]; we
improve this general technique and make it enforce the property of local
regularity of tilings needed for quasiperiodicity. We prove also a stronger
result: any Π0

1-class can be recursively transformed into a tile set so that
the Turing degrees of the resulting tilings consists exactly of the upper
cone based on the Turing degrees of the latter.

Keywords: Tiling · Wang tiles · Computability · Quasiperiodicity ·
Fixed point

1 Introduction

Tilings form a popular basis for many mathematical games, for games for the kids.
In science, they are popular tools for rather different researches, in chemistry (to
describe quasicrystalline structures, e.g., [6]), in pure logics (e.g. deciding classes
of first order predicates defined on their syntax, see [4]), in computational com-
plexity (as basic model for complexity, [5]). The first famous result about tilings
is the so-called domino problem: Berger proved that given a tile set, we cannot
decide algorithmically whether it can tile the plane, [1]. Within the proof, Berger
constructed the first aperiodic tile set — a tile set that can tile the plane but only
non-periodically. It was the first tile set that allows only tilings of the plane with
rather complex structure. Thus, rather simple local rules can imply quite nontriv-
ial global structure of a tiling.

Since Berger’s paper, quite a lot of different algorithmic and combinatorial
properties of aperiodic tilings were investigated. It was proven that a tile set
that accepts only aperiodic tilings, must accept uncountably many of them,
[13]. Many researchers tried to construct possibly simpler aperiodic tile sets
(e.g., [2,3,9,10,12]). The idea of “simplicity” was interpreted in several different
ways: as the number of tiles, algorithmic simplicity of the construction, etc.
Another avenue of research was constructing tile sets that guarantee not only
aperiodicity, but also more sophisticated properties of tilings: non-recursivity,
c© Springer-Verlag Berlin Heidelberg 2015
G.F. Italiano et al. (Eds.): MFCS 2015, Part I, LNCS 9234, pp. 218–230, 2015.
DOI: 10.1007/978-3-662-48057-1 17

Quasiperiodicity and Non-computability in Tilings 219

maximal algorithmic complexity (of each tiling), robustness and fault-tolerance
of tilings, and their combinations, [7,8,11,12].

The fundamental question “How complex can a tiling be?” also can be under-
stood in terms of Turing degrees of unsolvability. Some partial answers to this
question are known. First of all, we remark that for each tile set, the set of valid
tilings is effectively closed (i.e., belongs to the class Π0

1). In [11] the property
of cone-avoidance was proven: for each tile set τ and for every undecidable set
A there exists a τ -tiling T such that A is not Turing-reducible to T . Quite a
complete study of Turing degrees of tilings was given in [16] and [17].

Not surprisingly, the constructions that guarantee some nontrivial combina-
torial properties or involve simulation of a Turing machine require very different
technical features. So it is rather difficult to combine in one and the same tiling
properties of different nature. In this paper we try to do some kind of aggrega-
tion; we combine the combinatorial property of quasiperiodicity with complexity
issues. We prove that all upper cones of Turing degrees above any Π0

1 class can be
achieved by a tile set that produces only quasiperiodic tilings. This rather com-
plex theorem has a more concrete consequence: we build a tile set that produces
only quasiperiodic tilings, and none of these tilings is recursive.

Let us be more precise now. In this paper Wang tiles are unit squares with
colored sides. A tile set is a finite family of tiles. For a given tile set the domino
problem is to decide whether the entire plane can be tiled with these tiles. Here
we assume of course that we are given infinitely many copies of each tile (tiles
are prototypes); in other words, we are allowed to place translated copies of the
same tile into different sites of the plane (rotations are not allowed). In a correct
tiling the tiles in the neighbor cells must match (sides in contact must have the
same color).

If a tile set τ tiles the plane, we call these tilings τ -tilings. More formally, a τ -
tiling can be defined as a mapping F : Z2 �→ τ , where for each pair of neighboring
cells x, y ∈ Z

2 the colors of the tiles F (x) and F (y) match each other on their
neighboring sides. A tiling is called periodic if some nontrivial shift transforms
it into itself. A tiling F is called quasiperiodic (or uniformly recurrent) if every
pattern that appears in this tiling, appears in every sufficiently large square of F .

The domino problem (existence of a tiling with a given tile set) is algorith-
mically undecidable, [1]. An interesting and nontrivial fact (which follows from
Berger’s theorem) is that there exist tile sets that allow only aperiodic tilings of
the plane.

The main result of this article is the following theorem that claims that some
tile sets enforce at once two nontrivial properties of a tiling: quasiperiodicity and
non-computability.

Theorem 1. There exists a tile set (a set of Wang tiles) τ such that (i) there
exist τ -tilings of the plane, (ii) all τ -tilings are quasiperiodic, (iii) all τ -tiling
are non-computable.

220 B. Durand and A. Romashchenko

The tile set from Theorem 1 is not minimal (we cannot claim that all τ -tilings
contain the same finite pattern). In fact, minimality cannot be combined with
non computability: each minimal tile set allows at least one computable tiling,
see [15]. On the other hand, minimality can be combined with aperiodicity, see
Theorem 3 below.

Theorem 2. For every effectively closed set A there exists a tile set τ such that
(i) all τ -tilings are quasiperiodic, (ii) the Turing degrees of all τ -tiling make up
exactly the upper cone of A (i.e., the class of all Turing degrees d such that
d ≥T ω for at least one ω ∈ A).

For every tile set τ , the set of τ -tilings is alway effectively closed. Moreover, if
all τ -tilings are strongly quasiperiodic, then the class of Turing degrees of all
τ -tilings is known to be upward closed, see [17]. Thus, Theorem 2 gives a precise
characterisation of the Turing spectra of quasiperiodic tilings: they are exactly
the upward closed sets in Π0

1. Notice that Theorem 2 does not imply the result of
[18] (a construction of a minimal subshift of finite type with a nontrivial Turing
spectrum that consists of uncountably many cones with disjoint bases). The
reason is again that the tile sets we construct are not minimal subshifts (though
every tiling for our tile set is uniformly recurrent).

We prove Theorems 1 and 2 using the technique of fixed-point tilings from [12],
with some suitable extensions. Though conceptually this technique is not very
difficult, in order to meet the space limitations of the conference proceedings
and also to make the argument more accessible, we present it in a rather infor-
mal way, starting with a proof of a simpler Theorem3 below. Being somewhat
sketchy, we nevertheless do not skip any important part of the construction, and
we emphasise the parallels and differences with the previously known construc-
tion of a fixed-point tilings in [12].

The rest of the paper is organised as follows. First we remind the reader
the core ideas of the fixed-point tiling from [12] and explain how this technique
implies aperiodicity of tilings. Then we upgrade the construction and build a tile
set that combines the properties of aperiodicity and quasiperiodicity. After that
we adapt the proof for the main results of the paper.

2 Self-simulating Tilings (Reminder)

Our proof is based on the fixed point construction from [12]. The main idea of
this argument is that we can enforce in a tiling a kind of self-similar structure.
In what follows we remind the principal ingredients of this construction (here
we follow the notations from [12]). The reader familiar with this fixed-point
technique may skip this section and go directly to Sect. 3.

Let τ be a tile set and N > 1 be an integer. We call by a macro-tile an
N × N square correctly tiled by matching tiles from τ . Every side of a τ -macro-
tile contains a sequence of N colors (of tiles from τ); we refer to this sequence
as a macro-color. Further, let ρ be some set of τ -macro-tiles (of size N × N).
We say that τ implements ρ if (i) some τ -tilings exist, and (ii) for every τ -tiling

Quasiperiodicity and Non-computability in Tilings 221

there exists a unique lattice of vertical and horizontal lines that cuts this tiling
into N × N macro-tiles from ρ. (We do not require that all macro-tiles from
ρ appear in every τ -tiling.) The value of N is called the zoom factor of this
implementation.

A tile set τ is called self-similar if it implements some set ρ of τ -macro-tiles
with some zoom factor N > 1 and ρ is isomorphic to τ . This means that there
exist a one-to-one correspondence between τ and ρ such that the matching pairs
of τ -tiles correspond exactly to the matching pairs of ρ-macro-tiles. By definition,
for a self-similar tile set τ each tiling can be uniquely split into N ×N macro-tiles
(the set of all macro-tiles is isomorphic to the initial tile set τ); further, the grid
of macro-tiles can be grouped into blocks of size N2 × N2, where each block is
a macro-tile of rank 2 (again, the set of all macro-tiles of rank 2 is isomorphic
to the initial tile set τ), etc. It is not hard to deduce from this observation the
following statement.

Proposition 1 (Folklore). A self-similar tile set τ has only aperiodic tilings.

The proof is based on a simple observation: every period (if it exists) should
be a multiple of N , since the lattice of vertical and horizontal lines that cuts
this tiling into N × N macro-tiles must be unique. Similarly, a period must be
a multiple of N2 (to respect the uniquely defined grid of macro-macro-tiles), a
multiple of N3, etc. It follows that a period must greater than any integer; see
details in [12]. Thus, if we want to construct an aperiodic tile set, then it is
enough to present an instance of a self-similar tile set. Below we discuss a very
general construction of self-similar tile sets.

2.1 Implementing Some Given Tile Set with a Large
Enough Zoom Factor

Assume that we have a tile set ρ where each color is a k-bit string (i.e., the set
of colors C ⊂ {0, 1}k) and the set of tiles ρ ⊂ C4 is presented by a predicate
P (c1, c2, c3, c4) (the predicate is true if and only if the quadruple (c1, c2, c3, c4)
corresponds to a tile from ρ). Assume that we have some Turing machine M
that computes P . Let us show how to implement ρ using some other tile set τ ,
with a large enough zoom factor N .

We will build a tile set τ where each tile “knows” its coordinates modulo N .
This information is included in the tiles’ colors. More precisely, for a tile that
is supposed to have coordinates (i, j) modulo N , the colors on the left and on
the bottom sides should involve (i, j), the color on the right side should involve
(i + 1 mod N, j), and the color on the top side, respectively, involves (i, j + 1
mod N), see Fig. 1. This means that every τ -tiling can be uniquely split into
blocks (macro-tiles) of size N × N , where the coordinates of cells ranges from
(0, 0) in the bottom-left corner to (N − 1, N − 1) in top-right corner, Fig. 2. So,
intuitively, each tile “knows” its position in the corresponding macro-tile.

In addition to the coordinates, each tile in τ should have some supplemen-
tary information encoded in the colors on its sides. We refer to this additional

222 B. Durand and A. Romashchenko

Fig. 1. A tile instance. Fig. 2. A macro-tile.

information as the shade of the color. On the border of a macro-tile (where one
of the coordinates is zero) only two additional shades (say, 0 and 1) are allowed.
Thus, for each macro-tile of size N ×N the corresponding macro-colors represent
a string of N zeros and ones. We will assume that k � N . We allocate k bits
in the middle of a macro-tile sides and make them represent colors from C; all
other bits on the sides of a macro-tile are zeros.

Now we introduce additional restrictions on tiles in τ that will guarantee
the required property: the macro-colors on the macro-tiles satisfy the relation
P . To achieve this, we ensure that bits from the macro-tile side are transferred
to the central part of the tile, and the central part of a macro-tile is used to
simulate a computation of the predicate P . We fix which cells in a macro-tile are
“wires” (we may assume that wires do not cross each other) and then require
that these tiles carry the same (transferred) bit on two sides. The central part of
a macro-tile (of size, say m × m) should represent a time-space diagram of M’s
computation (the tape is horizontal, time goes up). This is done in a standard
way. We require that computation terminates in an accepting state (if not, no
correct tiling can be formed), see Fig. 3.

Turing
machine

Fig. 3. A macro-tile with an embedded
TM.

Universal
Turing
machine
program

Fig. 4. A macro-tile with an
embedded universal TM.

Quasiperiodicity and Non-computability in Tilings 223

To make this construction work, the size of macro-tile (the number N) should
be large enough: first, we need enough space for k bits to propagate, second, we
need enough time (i.e., height) so all accepting computations of M terminate in
time m and on space m (where the size of the computation zone m cannot be
greater than the size of a macro-tile).

In this construction the number of additional shades depends on the machine
M (the more states it has, the more additional shades we need to simulate the
computation in the space-time diagram). To avoid this dependency, we replace
M by a fixed universal Turing machine U that runs a program simulating M.
We may assume that the tape has an additional read-only layer. Each cell of this
layer carries a bit that never changes during the computation; these bits are used
as a program for the universal machine. So in the computation zone the columns
carry unchanged bits; the construction of a tile set guarantees that these bits
form the program for U , and the computation zone of a macro-tile represents a
view of an accepting computation for that program, see Fig. 4. In this way we
get a tile set τ that has O(N2) tiles and implements ρ. (This construction works
for all large enough N .)

In the updated construction the tile set still depends on the program simu-
lated in the computational zone. However, this dependency is essentially reduced:
the simulated program (and, implicitly, the predicate P) affects only the rules
for the tiles used in bottom line of the computational zone. The colors on the
sides of all other tiles are universal and do not depend on the simulated tile
set τ .

2.2 A Self-similar Tile Set: Implementing Itself

In the previous section we explained how to implement a given tile set ρ (repre-
sented as a program for the universal TM) by another tile set τ with large enough
zoom factor N . Now we want τ be isomorphic to ρ. This can be done using a
construction that follows Kleene’s fixed-point theorem. Note that most steps of
the construction of τ do not depend on the program for M (the coordinates of
tiles that make the skeleton of a macro-tile, the information transfer along the
wires, the propagation of unchanged program bits, and the space-time diagram
for the universal machine in the computation zone). Let us fix these rules as
part of ρ’s definition and set k = 2 log N + O(1), so that we can encode O(N2)
colors by k bits. From this definition we obtain a program π for the TM that
checks that macro-tiles behave like τ -tiles in this respect. We are almost done
with the program π. The only remaining part of the rules for τ is the hardwired
program. We need to guarantee that the computation zone in each macro-tile
carries the very same program π. But since the program is written on the tape
of the universal machine, it can be instructed to access its own bits and check
that if a macro-tile belongs to the computation zone, this macro-tile carries the
correct bit of the program.

It remains to explain the choice of N and m (note that the value of the zoom
factor N and the size of the computation zone m are hardwired in the program).
We need it to be large enough so the computation described above (which deals

224 B. Durand and A. Romashchenko

with inputs of size O(log N)) can fit in the computation zone. The computations
are rather simple (polynomial in the input size, i.e., O(log N)), so they easily fit
in space and time bounded by m = poly(log N). This completes the construction
of a self-similar aperiodic tile set.

Now it is not hard to verify that the constructed tile sets (1) allows a tiling
of the plane, and (2) each tiling is self-similar. Applying Proposition 1 we obtain
the following proposition.

Proposition 2 (R. Berger). There exists a tile set τ such that there exist
τ -tilings of the plane, and each τ -tiling is aperiodic.

In the next section we will upgrade the basic construction of the fixed-point tile
set. So far we should keep in mind that in such a tile set all tiles can be classified
into three types:

– the “skeleton” tiles that keep no information except for their coordinates in a
macro-tile; these tiles work as building blocks for our hierarchical structure;

– the “wires” that transmit the bits of macro-colors from the frontier of the
macro-tile to the computation zone;

– the tiles of the computation zone (intended to simulate the space-time diagram
of the Universal Turing machine).

The same is true for macro-tiles, super-macro-tiles, etc.; i.e., each macro-tile is
a “skeleton” block, or a part of a “wire”, or a cell in the computation zone in
the macro-tile of higher rank.

3 Quasiperiodicity and Aperiodicity

Before we approach the main result, we prove a simpler statement; we show that
there exists a tile set such that all tilings are both quasiperiodic and aperiodic.

Theorem 3. There exists a tile set (a set of Wang tiles) τ such that (i) there
exist τ -tilings of the plane; (ii) each τ -tiling is quasiperiodic; moreover, the set of
τ -tilings is minimal (i.e., all τ -tilings contain the same finite patterns); (iii) each
τ -tiling is aperiodic.

This result was originally proven in [14] (for a tile set τ constructed in [10]).

3.1 Supplementary Features: What Else We Can Assume
on the Fixed-Point Tiling

The general construction of a fixed-point tiling does not imply the property of
quasiperiodicity. In fact, for tilings described above, each pattern that includes
only “skeleton” tiles (or “skeleton” macro-tiles of some rank k) must appear
infinitely often, in all homologous position inside all macro-tiles of higher rank.
However, this is not the case for patterns that include tiles from the “commu-
nication zone” or the “communication wires”. Informally, the problem is that

Quasiperiodicity and Non-computability in Tilings 225

even a very small pattern can involve the information relevant for a macro-tile
of arbitrarily high rank. So we cannot guarantee that a similar pattern appears
somewhere in the neighborhood. To overcome this difficulty we need some new
idea and new technical tricks. First of all, without essential modification of the
construction we can enforce the following additional properties of a tiling:

– In each macro-tile, the size of the computation zone m is much less than the
size of the macro-tile N . Technically, in what follows we will need to reserve
free space in a macro-tile to insert O(1) (some constant number) of copies
of each 2 × 2 pattern from the computation zone (of this macro-tile). This
requirement is easy to meet. We may assume that the size of a computation
zone in a macro-tile of size N × N is only m = poly(log N).

– We require that the tiling inside the computation zone satisfies the property
of 2×2-determinicity : if we know all colors on the borderline of a 2×2-pattern
inside of the computation zone (i.e., a tuple of 8 colors), then we can uniquely
reconstruct the 4 tiles of this pattern. Again, we do not need any new idea:
this requirement is met if we simulate the space-time diagram of a Turing
machine in a natural way.

– The communication channels in a macro-tile (the wires that transmit the
information from the macro-color on the borderline of this macro-tile to the
bottom line of its computation zone) must be isolated from each other. The
distance between every two wires must be greater than 2 from each other.
That is, each 2 × 2-pattern can touch at most one communication wire.

Also we will need a somewhat more essential modification of the construction.
We discuss it in the next section.

4 Proof of Theorem3

To achieve the property of quasiperiodicity, we should guarantee that every finite
pattern that appears once in a tiling, must appear in each large enough square. If
a tile set τ is self-similar, then in every τ -tiling each finite pattern can be covered
by at most 4 macro-tiles (by a 2 × 2-pattern) of an appropriate rank. Thus, to
prove Theorem 3 it is enough to guarantee that each 2 × 2 group of macro-tiles
(of each rank) that ever appears in a tiling, must appear in eachl large enough
squares in it. This property is not true for the tile set constructed above. As
we noticed above, this is obviously true for a 2 × 2 pattern that involves only
skeleton macro-tiles (we can find an identical pattern in the neighboring macro-
tile of the appropriate rank); however, this property can be false for patterns that
touch the communication wires or the computation zone. To achieve the desired
property we need to modify the basic construction. To this end we implement
in our construction one new feature.

The New Feature: Notice that for each 2×2-window that touches the compu-
tation zone or the communication wires there exist only a bounded number c of
ways to tile them correctly (and make a correct tiling). This constant c depends
on the alphabet of the tape and the number of internal states of the Universal

226 B. Durand and A. Romashchenko

Turing machine. For each possible position of a 2×2-window in the computation
zone or in the communication wires and for each possible filling of this window
by tiles, we reserve a special 2 × 2-slot in a macro-tile (somewhere far away
from the computation zone and from all communication wires) and define the
neighbors around this slot in such a way that only these specific 2 × 2 patterns
can patch it. Note that the tiles around this “know” their real coordinates in
the bigger macro-tile, while the tiles inside the slot do not (they “believe” to
be tiles in the computation zone, though they are in a “slot” outside of it). An
example of such a slot is shown in Fig. 5. In Fig. 6 we show how these “slots”
are placed in a macro-tile. This simple trick is the sharpest difference between
this construction and the fixed-point tilings known before: now some tiles do not
“know” their real position in the ambient macro-tile.

(i, j)

(i, j + 1)

(i, j) (i, j + 1)

(i + 1, j)

(s, t)

(i + 1, j) (i + 2, j)

(i + 2, j)

(s + 1, t)

(i + 2, j) (i + 3, j)

(i + 3, j)

(i + 3, j + 1)

(i + 3, j) (i + 4, j)

(i, j + 1)

(i, j + 2)

(i, j + 1) (s, t)

(s, t)

(s, t + 1)

(s, t) (s + 1, t)

(s + 1, t)

(s + 1, t + 1)

(s + 1, t) (s + 2, t)

(i + 3, j + 1)

(i + 3, j + 2)

(s + 2, t) (i + 4, j + 1)

(i, j + 2)

(i, j + 3)

(i, j + 2) (s, t + 1)

(s, t + 1)

(s, t + 2)

(s, t + 1) (s + 1, t + 1)

(s + 1, t + 1)

(s + 1, t + 2)

(s + 1, t + 1) (s + 2, t + 1)

(i + 3, j + 2)

(i + 3, j + 3)

(s + 2, t + 1) (i + 4, j + 2)

(i, j + 3)

(i, j + 4)

(i, j + 3) (i + 1, j + 3)

(s, t + 2)

(i + 1, j + 4)

(i + 1, j + 3) (i + 2, j + 3)

(s + 1, t + 2)

(i + 2, j + 4)

(i + 2, j + 3) (i + 3, j + 3)

(i + 3, j + 3)

(i + 3, j + 4)

(i + 3, j + 3) (i + 4, j + 3)

Fig. 5. A ring of 12 “skeleton” tiles (the white squares) makes a slot for a 2×2-pattern
of tiles from the computation zone (the grey squares). In the picture we show the
“coordinates” encoded in the colors on the sides of each tile. The “real” coordinates of
the bottom-left corner of this slot are (i+ 1, j + 1), while the “natural” coordinates of
the corresponding patterns (when it appears in the computation zone) are (s, t) (Color
figure online).

Here we use (a) the property of 2 × 2-determinicity of the computation zone
(there is a unique way to put tiles in the “slot”), and (b) the fact that we
have enough room to put in a macro-tile the slots for all 2 × 2-patters that can
appear in the computation zone or along the communication wires. (Here we use
the fact that the size of the computational zone m × m and the lengths of all
communication wires O(1) × O(N) in a macro-tile are much less than the total
area of a macro-tile N × N .) This feature guarantees that each 2 × 2 pattern
from the computational zone appears at least once in each macro-tile (such a
pattern appears once in each macro-tile in the introduced “slots” and possibly
once again in the computation zone of this macro-tile).

We choose the positions of the “slots” in the macro-tile so that coordinates
can be computed by a short program in time polynomial in log N . We require
that the positions of all slots are disjoint, and they do not touch each other. This
precaution is needed to guarantee that the tiles used in the slots do not damage
the general structure of the macro-tiles.

Quasiperiodicity and Non-computability in Tilings 227

Universal
Turing
machine
program

Fig. 6. The array of “slots” (with patterns from the computation zone) embedded in
a macro-tile.

For a tile set with a new feature, every tiling enjoys a new property: every
2 × 2-pattern of tiles touching the computation zone or a communication wire,
must appear at least once in each macro-tile (hence, this pattern must appear
in each large enough square). Of course, the property of self-similarity implies
that similar statements hold for 2 × 2-pattern of macro-tiles of each ranks k.

Thus, we proved that every Nk ×Nk pattern that appear in a τ -tiling, must
appear in each large enough square in this tiling; moreover, this pattern must
appear in each large enough square in all τ -tilings. Hence, the constructed tile
set satisfies the requirements of Theorem 3.

5 From Aperiodicity to Non-computability

To prove Theorem 1, we need a slightly more sophisticated construction. We need
a self-similar tiling with variable zoom factor, see [12] for details. In this version
of the construction the size of a macro-tile of rank r is equal to Nr×Nr, for some
suitable sequence of zooms Nr, r = 1, 2, . . . We may assume that Nr = Cr for
some constant C. Now each macro-tile of rank r must “know” its own rank (that
is, the binary representation of r is written on the tape of the Turing machine
simulated on the computation zone). This information is used by a macro-tile to
simulate the next rank macro-tiles properly. The size of the computational zone
mr should also grow as a function of rank r (easily computable from r); again,
we may assume that mr = poly(log Nr).

Also we may require that all macro-tiles of rank r contain in their com-
putational zone the prefix (e.g., of length �log r) of some infinite sequence
X = x0x1x2 . . . The bits of this prefix are propagated by wires to the neigh-
boring macro-tiles, so all macro-tiles of the same rank contain the same bits
x0x1 . . . The usual self-simulation guarantees that the bits of X embedded into
a macro-tile of rank r +1 extends the prefix embedded in a macro-tile of rank r.

228 B. Durand and A. Romashchenko

Since the size of the computational zone increases as a function of rank r, the
entire tiling of the plane involves an infinite sequence of bits X.

The construction becomes interesting if we can enforce some special proper-
ties of the embedded sequence X. For example, we can guarantee that it is not
computable. Indeed, let us make the machine in the computation zone do some
new job: let it enumerate two non-separable enumerable sets (on each level r
we run the simulation for the number of steps that fits the computation zone
available in a macro-tile of rank r). Then we can require that X is a separator
between these two sets, and in each level, the machine verifies that the (partially)
enumerated sets are indeed separated by the given prefix of X. Combining all
ingredients together, we obtain a tile set τ , which is self-similar in a generalised
sense (with a variable zoom factor), with two nontrivial properties: all τ -tilings
are non-computable and quasiperiodic. Thus, we proved Theorem1.

A technical remark : Notice that in this construction we cannot control precisely
the sequence X embedded in the tiling (we can specify the two non-separable
enumerable sets that are “enumerated” in a tiling, but we cannot define uniquely
the separator X between them). Thus, our tile set accepts tilings corresponding
to infinitely many sequences X, and it is not minimal. This is not surprising: if
an effectively closed subshift contains no computable points, then it cannot be
minimal (see, e.g., [19]). In contrast to the proof of Theorem2, in the construction
used in this section we cannot claim that there exist only O(1) ways to fill by a
quadruple of macro-tiles of rank k a slot of size 2Nk × 2Nk placed somewhere in
a macro-tiles of rank (k+1). Indeed, these macro-tiles involve a prefix of X, and
there exist potentially many different sequences X. However, once X is fixed,
there rest only a constant number of 2×2 macro-tiles of rank k that fit the given
position in the next level macro-tile. This observation allows to reuse the “new
feature” from the proof of Theorem3.

With essentially the same technique we can prove Theorem 2. We employ
again the idea of embedding of an infinite sequence X in a tiling. Technically,
we require that all macro-tiles of rank k should involve on their computational
zone the same finite sequence of log k bits, which is understood as a prefix of
X; we guarantee that the prefix embedded in macro-tiles of rank (k + 1) is
compatible with the prefix available to the macro-tiles of rank k. Further, since
A is in Π0

1, we can enumerate the (potentially infinite) list of patterns that
should not appear in X. On each level, the macro-tiles allocate some part of the
available space and time (limited by the size of the computational zone available
on this level) to run the enumeration of A; every time a new element of A is
enumerated, the algorithm (simulated in the computational zone) verifies that
the found forbidden pattern does not appear in the prefix of X accessible to
macro-tiles of this level. Since the computational zone in a macro-tile of rank k
becomes bigger and bigger as k increases, the enumeration extends longer and
longer. Thus, a sequence X can be embedded in an infinite tiling, if and only if
this sequence does not contain any forbidden pattern (i.e., this X belongs to A).

What are the Turing degrees of tilings in the described tile set? For our tile
set, every tiling is defined by three infinite parameters: the sequence of bits X

Quasiperiodicity and Non-computability in Tilings 229

embedded in this tiling, and two sequences of integers σh, σv that specifies the
shifts (the vertical and the horizontal ones) of macro-tiles of each level relative
to the origin of the plane. This information is enough to reconstruct the tiling.
Indeed, σh and σv define the hierarchical structure of the macro-tiles: on each
level k we should split the macro-tiles of the previous rank into blocks of size
Nk × Nk (k-level macro-tiles), and there are N2

k ways to choose the grid of
horizontal and vertical lines that define this splitting. And the content of the
computational zones of all macro-tile is defined by the prefixes of X. Conversely,
given a tiling as an oracle, we can (computably) extract from it the digits of the
sequences X, σh, and σv. It remains to notice that σh and σv can be absolutely
arbitrarily. Thus, the Turing degree of a tiling is the Turing degree of (X,σh, σv),
which can be arbitrary degree not less than X. That is, the set of degrees of tilings
is exactly the upper closure of A. So we get the statement of Theorem 2.

Acknowledgements. We thank Laurent Bienvenu and Emmanuel Jeandel for many
prolific discussions. We are also very grateful to the three anonymous referees for excep-
tionally detailed and instructive comments.

References

1. Berger, R.: The undecidability of the domino problem. Mem. Am. Math. Soc. 66,
72 (1966)

2. Robinson, R.M.: Undecidability and nonperiodicity for tilings of the plane. Invent.
Math. 12, 177–209 (1971)

3. Grünbaum, B., Shephard, G.C.: Tilings and Patterns. A Series of Books in the
Mathematical Sciences. W.H. Freeman and Company, New York (1989)

4. Börger, E., Grädel, E., Gurevich, Y.: The Classical Decision Problem. Springer
Science and Business Media, Heidelberg (2001)

5. van Emde Boas, P.: Dominoes are Forever. Universiteit van Amsterdam, Mathe-
matisch Instituut, Amsterdam (1983)

6. Levitov, L.S.: Local rules for quasicrystals. Commun. Math. Phys. 119(4), 627–666
(1988)

7. Hanf, W.: Nonrecursive tilings of the plane I. J. Symbol. Logic 39, 283–285 (1974)
8. Myers, D.: Nonrecursive tilings of the plane II. J. Symbol. Logic 39, 286–294 (1974)
9. Culik II, K., Kari, J.: An aperiodic set of Wang cubes. J. UCS J. Univers. Comput.

Sci. 1(10), 675–686 (1996)
10. Ollinger, N.: Two-by-two substitution systems and the undecidability of the domino

problem. In: Beckmann, A., Dimitracopoulos, C., Löwe, B. (eds.) CiE 2008. LNCS,
vol. 5028, pp. 476–485. Springer, Heidelberg (2008)

11. Durand, B., Levin, L.A., Shen, A.: Complex tilings. J. Symbol. Logic 73, 593–613
(2008)

12. Durand, B., Romashchenko, A., Shen, A.: Fixed-point tile sets and their applica-
tions. J. Comput. Syst. Sci. 78(3), 731–764 (2012)

13. Durand, B.: Tilings and quasiperiodicity. Theor. Comput. Sci. 221(1), 61–75 (1999)
14. Ballier, A.: Propriétés structurelles, combinatoires et logiques des pavages. Ph.D.

thesis, Marseille, November 2009
15. Ballier, A., Jeandel, E.: Computing (or not) quasi-periodicity functions of tilings. In

Proceedings 2nd Symposium on Cellular Automata (JAC 2010), pp. 54–64 (2010)

230 B. Durand and A. Romashchenko

16. Jeandel, E., Vanier, P.: Π 0
1 sets and tilings. In: Ogihara, M., Tarui, J. (eds.) TAMC

2011. LNCS, vol. 6648, pp. 230–239. Springer, Heidelberg (2011)
17. Jeandel, E., Vanier, P.: Turing degrees of multidimensional SFTs. Theor. Comput.

Sci. 505, 81–92 (2013)
18. Hochman, M., Vanier, P.: A note on Turing degree spectra of minimal (2014).

arXiv:1408.6487
19. Hochman, M.: Upcrossing inequalities for stationary sequences and applications to

entropy and complexity. Ann. Probab. 37(6), 2135–2149 (2009)

http://arxiv.org/abs/1408.6487

The Transitivity Problem of Turing Machines

Anah́ı Gajardo1, Nicolas Ollinger2, and Rodrigo Torres-Avilés1(B)

1 Departamento de Ingenieŕıa Matemática and Centro de Investigación En Ingenieŕıa
Matemática (CI2MA), Universidad de Concepción, Centro de Modelamiento
Matemático (CMM), Universidad de Chile, Casilla 160-C, Concepción, Chile

{anahi,rtorres}@ing-mat.udec.cl
2 INSA Centre Val de Loire, University of Orléans,

LIFO EA 4022, 45067 Orléans, France
nicolas.ollinger@univ-orleans.fr

Abstract. A Turing machine is topologically transitive if every partial
configuration — that is a state, a head position, plus a finite portion of
the tape — can reach any other partial configuration, provided that they
are completed into proper configurations. We study topological transi-
tivity in the dynamical system models of Turing machines with moving
head, moving tape and for the trace-shift and we prove its undecidabil-
ity. We further study minimality, the property of every configuration
reaching every partial configuration.

Keywords: Reversible computing · Discrete dynamical systems ·
Symbolic dynamics · Topological dynamics · Computability

1 Introduction

Turing machines [16] provide a simple mechanical model of computation: an
agent equipped with a finite internal memory moves over a tape full of symbols
which can read and modify it; its movement as well as its interaction with its
memory and the tape is deterministically governed by a transition rule. Eventu-
ally, this rule may carry the machine to a halting configuration. A computation
can be performed by initializing the tape with an input word and decoding
the output on the halting tape. The universality of the model, asserted by the
Church-Turing thesis, the undecidability of the Halting Problem and its general-
izations like Rice’s theorem provide convenient tools to assert that any kind of
system, even “natural” systems like lattice gases dynamics [12], able to perform
universal computation has a particular strong form of unpredictability: even if
the complete information about the state of the system is available, determining
its asymptotic behavior is impossible. On the other hand, qualitative properties
of the system can be, and frequently are, undecidable. Even if all the system
parameters are given, there is no general procedure to determine whether the

This work has been supported by ECOS Sud – CONICYT project C12E05 and
partially supported by FONDECYT#1140684 and Basal PFB03.

c© Springer-Verlag Berlin Heidelberg 2015
G.F. Italiano et al. (Eds.): MFCS 2015, Part I, LNCS 9234, pp. 231–242, 2015.
DOI: 10.1007/978-3-662-48057-1 18

232 A. Gajardo et al.

system satisfies a given property. This is the case, for example, of dynamics over
a piecewise constant vector field in dimension three [1], where the Reachability
Problem, i.e., the problem of determining whether one region is reachable from
another, is undecidable. Proper dynamical properties, as periodicity, sentitiv-
ity, transitivity and limit set, have also been proved to be undecidable for some
classes of systems, in particular in the context of cellular automata [7,8,11]. The
main difficulty to establish such result is that, contrarily to the Turing machine
in the context of the Halting Problem, dynamical properties describe the sys-
tem behavior over the whole set of configurations. The property studied in this
paper, the transitivity of a Turing machine, is of the same nature.

The appropriate point of view is to study Turing machines as proper dynam-
ical systems as introduced by Moore [13] and further developed by Kůrka [9]
who formalized two associated topologies and establishes several properties for
them. Following that trend, several dynamical properties of Turing machines
were recently studied: periodicity [2,3,8], entropy [6,14] and equicontinuity [4].
Here we focus on topological transitivity : the existence of a point whose orbit
passes close to every other point of the space. Moreover, “most” of the points
have this characteristic. This gives to the system some kind of homogeneity
in the sense that some point wise properties become global when transitivity is
present. For example, in a transitive system there is a dichotomy between almost-
equicontinuity and sensitivity : either almost every point is stable or every point
is sensitive. On the other hand, transitivity is included in the most accepted
definitions of “chaos”.

In the context of Turing machines, transitivity imply that every “local config-
uration” is reachable from every other; but here the meaning of “local” is ambigu-
ous and it depends on the topology that we choose for our model. Kůrka [9]
proposes two different topologies for Turing machines, one gives preponderance
to the cell contents around the head (Turing Moving Tape model (TMT)) and
the other focuses on the cells that surround the position “0” of the tape (Turing
Moving Head model (TMH)). In this paper, we consider both models, as well as
the column factor of the TMT model: the trace-shift.

We establish that transitivity is undecidable in all the three considered mod-
els. The proof is performed by reduction from the Reachability Problem, through
a technique that consists into embedding a machine inside another in such a way
the first avoids transitivity of the second when reachability is satisfied. This
technique has proved to be very flexible and useful. It was also used in [3] to
prove the undecidability of the existence of periodic points in the TMT model.
It is also used here to prove the undecidability of another important dynamical
property: minimality.

2 Definitions

2.1 Turing Machines

A Turing machine M is a triple (Q,Σ, δ) where Q is the finite set of states, Σ is
the finite alphabet and δ : Q × Σ → Q × Σ × {−1, 0, 1} is the partial transition
function of M. The machine is complete if δ is a total function.

The Transitivity Problem of Turing Machines 233

A configuration of M is a triple (s, c, p) where s ∈ Q is the state of the
machine, c ∈ ΣZ is the content of the bi-infinite tape and p ∈ Z is the position of
the head on the tape. Instead of (s, c, p), we might use the following convenient
notation: (... c−1 .c0 ... cp cp+1 ...

s), where the dot before c0 is there to distinguish
the coordinate 0. A configuration (s, c, p) is halting if (s, cp) is a halting pair,
that is if δ(s, cp) is undefined.

A transition of the machine transforms a non-halting configuration (s, c, p)
into the configuration (t, c′, p + d) where δ(s, cp) = (t, a, d) and c′ is equal to c
in every position except for c′

p = a. The transition function is denoted by � and
its iteration zero or more times by �∗.

A configuration is periodic if the machine returns to that same configuration
after a finite number of transitions. The machine is aperiodic if it has no periodic
configuration.

The machine is surjective if every configuration can be obtained in one tran-
sition from at least one configuration and injective if every configuration can be
obtained in one transition from at most one configuration, called its preimage.
In a complete machine, surjectivity is equivalent to injectivity.

Every injective machine is a reversible machine: it can be assigned a
reverse. Indeed, an injective machine is characterized by a pair (ρ, μ), where
ρ : Q × Σ → Q × Σ is a partial injective function and μ : Q → {−1, 0, 1}, such
that δ(s, a) = (t, b, μ(t)) where ρ(s, a) = (t, b) for all state s and symbol a.
The reverse machine M−1 is the reversible Turing machine (Q,Σ, δ−1) where
δ−1(t, b) = (s, a,−μ(s)) for all s, a, t, b such that ρ(s, a) = (t, b). For every non-
halting configuration (s, c, p) transformed by M into the configuration (t, c′, p′),
the configuration (t, c′, p′ − μ(t)) is transformed by M−1 into the configuration
(s, c, p − μ(s)). A starting configuration of M is a halting configuration of M−1

and a starting pair of M is a halting pair of M−1. A reversible Turing machine
has as many starting pairs as halting pairs.

A partial configuration is a configuration (s, c, p) where c is a partial function
defined only on a finite and connected portion of the tape. Transitions extend
to partial configurations and are defined only when the head is pointing on a
defined symbol. A configuration completes a partial configuration if they coincide
on the intersection of their domains.

Reachability Problem. Given a Turing machine and a pair of states, decide
if, starting from a configuration in the first state, the machine can reach a con-
figuration in the second state after a finite number of transitions.

The reachability problem is known to be Σ0
1 -complete even if the input is

restricted to aperiodic reversible Turing machines [8] from a starting pair to a
halting pair. Moreover, one can fix the alphabet of the machine to be binary.

Transitivity Problem. Given a Turing machine, decide if, for every pair of
partial configurations, one can complete the first partial configuration in a con-
figuration that reaches the second partial configuration after a finite number of
transitions.

Theorem 1. The transitivity problem is in Π0
2 and is Π0

1 -hard.

234 A. Gajardo et al.

Before proving this main result of the paper, we relate it to topological properties
of the Turing machine dynamical systems and introduce a last key ingredient:
the SMART machine.

2.2 Topological and Symbolic Dynamics

A topological dynamical system is a pair (X,T), where the topological space X is
the phase space and the continuous function T : X → X is the global transition
function of the system. The orbit of a point x ∈ X is the infinite sequence
O(x) = (Tn(x))n∈N. A point x is periodic if Tn(x) = x for some n > 0.

A system (Y, T) is a subsystem of (X,T) if Y ⊆ X is closed and T (Y) ⊆ Y .
The smallest subsystem that contains a given point x is the closure of its orbit
O(x). A system (X,T) is transitive if it admits a transitive point, i.e. a point
x such that O(x) = X. A system where every point is transitive is a minimal
system. A system (Z,F) is a factor of (X,T) if there exists a continuous and
onto function ϕ : X → Z such that F ◦ ϕ = ϕ ◦ T . Factors inherit several
properties including transitivity. A convenient characterization of transitivity is
the following (see [10] for this and other details about dynamical systems).

Proposition 1. Given a compact and perfect set X, the dynamical system
(X,T) is transitive if and only if for every pair of open sets U , V , there exists
a time t such that T t(U) ∩ V �= ∅.
Let Σ be a finite alphabet. Words, infinite words and bi-infinite words are respec-
tively finite, right-infinite and bi-infinite sequences of symbols from Σ whose sets
are denoted respectively by Σ∗, the one-sided full shift ΣN and the two-sided
full shift ΣZ. A finite word v is a factor of another (finite or infinite) word z,
denoted by v
 z, if there exist two indexes i and j, such that v = zizi+1...zj .
The length of a finite word u is denoted by |u|.

Let T denote either Z or N. An element x of ΣT is an ordered sequence
x = (xi)i∈T

. The shift function σ is defined on ΣT by σ(y)i = yi+1, and it is
a bijective function if T = Z. The metric of the full shift is the Cantor metric:
d(x, y) = 2−i, where i = min{|n| : xn �= yn}. With this metric, ΣT is compact
and (ΣT, σ) is a topological dynamical system. The subsystems of (ΣT, σ) are
called subshifts. Frequently, we will prefer to denote ΣN by Σω, the set of right-
infinite sequences; and symmetrically, we will use ωΣ to denote the left-infinite
sequences.

The language L(S) of a subshift S is the set of its factors, i.e. L(S) =
{u ∈ Σ∗|∃z ∈ S, u
 z}. Conversely, every language L defines a subshift SL ={
z ∈ ΣN

∣∣∀u
 z, u ∈ L
}
. A set S is a subshift if and only if SL(S) = S.

2.3 Turing Machines Seen as Dynamical Systems

Let X = Q × ΣZ ×Z be the set of configurations of a complete Turing machine.
Endowing X with the product topology defines a topological dynamical system
(X,T). However, X is not a compact set. Following Kůrka [9], we reformulate
X to overcome this problem.

The Transitivity Problem of Turing Machines 235

Turing Machine with Moving Head (TMH). In this model, the head is
added as an element of the tape; then, the phase space is the set Xh ⊂ (Σ ∪Q)Z,
defined by Xh = {x ∈ (Σ ∪ Q)Z | |{i ∈ Z : xi ∈ Q}| ≤ 1}. The transition
function Th consists in one application of the local transition function δ, taking
in consideration that the head position is at the right of the unique cell that
contains a state on the tape. Configurations with no state in the tape are headless
configurations and are fixed points. The coding function ψ : X → Xh transforms
a configuration (s, c, p) into ψ(s, c, p) = x, where x is defined by xi = ci if i < p,
xp = s and xi = ci−1 if i > p.

By construction, Xh is a subshift. With the Cantor metric, ψ is continuous
and one-to-one and Xh = ψ(X). Configurations from Xh \ ψ(X) are exactly
the headless configurations. The transition function Th is continuous and partial
configurations are represented by factors xi...xj .

Turing Machine with Moving Tape (TMT). In this model, the head is fixed
at the origin and it is the tape which moves. The phase space is Xt = ωΣ×Q×Σω

and Tt consists in one application of δ by moving the tape instead of the head.
The onto coding function Γ : X → Xt transforms a configuration (s, c, p)

into (· · · cp−2cp−1, s, cpcp+1 · · ·). Endowing Xt with the product topology results
in a compact phase space and both Γ and Tt are continuous. By applying Γ to
a configuration, one loses information about the original head position. Partial
configurations are triples (u, s, v) ∈ Σ∗ × Q × Σ∗.

The Trace-Shift. The trace-shift St is the column shift associated to the mov-
ing tape model. It is obtained from the projection π : Xt → Q × Σ defined by
π(u, s, av) = (s, a). The trace-shift is the image of the factor map τ : Xt → St,
defined as τ(x) = (π(Tn

t (x)))n∈N
. The definition is generalized to partial config-

urations. The map τ is not invertible, but given a semi-infinite word w ∈ St, its
pre-image x is uniquely defined over the set of visited cells. For a given word w
either in St or in L(St), we define its canonical pre-image (u, s, v) as the smallest
finite (or infinite) configuration whose image by τ is w.

It is noteworthy to remark that when T is a reversible machine, St can be
defined as a subshift of ΣZ by redefining τ(u, r, u′) = (π(Tn

t (x)))n∈Z
, and all of

the results that we will establish in this paper remain true.

3 Transitivity of Turing Machines

3.1 Characterizing Transitivity Properties

By proposition 1, the property described in the Transitivity Problem is indeed
the topological transitivity in the TMH model.

Proposition 2. Let (Q,Σ, δ) be a complete Turing machine.

The TMH system (Xh, Th) is transitive if and only if for every pair of partial
configurations (u.u′) and (v.v′), there exists a completion x ∈ Xh of (u.u′) and
a time n ∈ N such that Tn

h (x) is a completion of (v.v′).

236 A. Gajardo et al.

The TMT system (Xt, Tt) is transitive if and only if for every pair of partial
configurations (u, s, u′) and (v, t, v′), there exists a completion (w, s, w′) ∈ Xt of
(u, s, u′) and a time n ∈ N such that Tn

t (w, s, w′) is a completion of (v, t, v′).
The trace-shift (St, σ) is transitive if and only if for every u, v ∈ L(St), there

exists a third word w ∈ L(St) such that uwv ∈ L(St).

We see from this that transitivity is in Π0
2 , since the existing configuration needs

to be specified only on a finite number of cells. A peculiarity of Turing models is
the relation between transitivity and periodic points of Th. In these points, the
head is enclosed in a finite part of the tape. Any perturbation of the configuration
that does not affect this part of the tape will not perturb the head. Thus, no
periodic point can be attained by a point outside its orbit, and the system cannot
be transitive. Moreover, when Th has a periodic point, transitivity is excluded
both from (Xt, Tt) and (St, σ) [5].

Proposition 3. (Xh, Th) transitive ⇒
(1)

(Xt, Tt) transitive ⇒
(2)

(St, σ)transitive.

Proof. (1) Any finite configuration of Xt corresponds to several finite configu-
rations of Xh, thus if a point exists that visits any finite configuration of Xh,
the same point will visit any finite configuration of Xt. (2) (St, σ) is a factor of
(Xt, Tt) thus it inherits its transitivity. �

Surjectivity is a necessary condition for transitivity, thus if the TMT or the TMH
models are transitive, the machine needs to be reversible. Note this is not the
case for trace-shift, as there exist non surjective Turing machines with surjective
trace-shift [15].

3.2 The SMART Machine

The SMART machine is the 4-state 3-symbols reversible complete Turing
machine depicted on Fig. 1. Among other properties, it is aperiodic, its trace-
shift is substitutive and it is minimal in TMT, as proven in [3]. We prove below
that it is also transitive in TMH.

The head of SMART zigzags over the lagoons of 0s, either to the right or
to the left, depending on its states and the surrounding symbols, as formalized
below and proved by recurrence over n in [3].

Lemma 1. For all n ∈ N and all symbols s+ ∈ {1, 2} and s∗ ∈ {0, 1, 2},

(
s∗ 0n 0 s+

b

)
�∗

(
s∗ 0n+1 s+
b

)
(B(n))(

s+ 0 0n s∗
d

)
�∗

(
s+ 0n+1 s∗

d

)
(D(n))

(
0 0n s+
p

) �∗
(

0n+1 s+
p

)
(P (n))

(
s+ 0n 0

q

) �∗
(

s+ 0n+1

q

)
(Q(n))

The Transitivity Problem of Turing Machines 237

Fig. 1. The SMART machine.

A key lemma for the minimality of SMART in [3] is that every partial con-
figuration can be produced inside a large enough block of 0 s guarded by 2 s.

Lemma 2. For every word u ∈ {0, 1, 2}∗ of length n, state s and every 1 � i �
n, there exist k, k′ ∈ N such that

(
.2 0k+k′+n−3 0 2

b

)
�∗

(
.2k u1 ... ui ... un2

k′

s

)
.

We now introduce two new technical lemmas.

Lemma 3. The configuration
(w2 .2 2w

p

)
reaches each of the configurations of

the family {(w2 0 0k .0k 0 2 0 2w

b

)}k∈N ∪ {(w2 0 0 0k .0k 0 2 0 0 2w

b

)}k∈N.

Proof. By a simple recurrence over k. From k to k + 1 apply the recurrence
hypothesis then B(2k), one step, P (2k), one step. From there one step gives the
even case. For the odd case apply Q(2k), one step, P (2k + 2) then 2 steps. �

Lemma 4. For every k ≤ n − 1,
(

.2 0n+2 0 2
b

)
reaches both

(
.2 2 0k 0 2 0n−k 2

b

)
and

(
.2 0n−k 2 0k 0 2 2

b

)
.

Proof. Apply B(n + 2), 2 steps, then D(n + 1). In the first case continue by 2
steps then repeat n − k − 1 times the sequence B(n − i), one step, P (n − i), 2
steps, from i = 0 to n − k − 1. In the second case continue by one step then
repeat n − k − 1 times the sequence Q(n − i + 1), 2 steps, D(n − i), one step,
and finish by one step. �

Theorem 2. The SMART machine is topologically transitive in TMH.

Proof. By Lemma 2 any possible partial configuration is reachable from a par-
tial configuration x′ with a certain amount of 0 in a certain position. Lemma4
establishes that x′ is reachable from a configuration x′′ with the 0s in the center.
Finally, Lemma 3 asserts that x′′ is always reachable from

(w2 .2 2w

p

)
. Therefore,

configuration
(w2 .2 2w

p

)
is a transitive point, and SMART is transitive. �

238 A. Gajardo et al.

4 The Complexity of Topological Transitivity

4.1 Construction Techniques

Our proof combines partial Turing machines to construct bigger ones. One key
technique from [8] is Reversing the time: given a reversible Turing machine M =
(Q,Σ, δ), one creates two new reversible machines M+ = (Q × {+}, Σ, δ+), and
M− = (Q × {−}, Σ, δ−), where (s,+) and (s,−) states represent M in state s
running respectively forwards and backwards in time.

The second key technique is the Embedding that inserts a machine inside the
transitions of another in such a way that the new machine has one or more prop-
erties that depends on some properties of the original machines. We distinguish
a host machine H = (Q,Σ, δ) and a reversible and innocuous invited machine I
that share the same alphabet.

Definition 1. A reversible machine is innocuous if every starting pair (s, a) is
associated to a unique halting pair (t, a) so that the evolution of every starting
configuration (s, c, p + μ(s)) where c(p) = a either is infinite or stops in the
halting configuration (t, c, p).

Remark 1. Innocuous machines can be obtained by gluing together the halting
pairs of M+ to the starting pairs of M−, so that a halting configuration computes
back to the starting configuration.

The embedding HI of the invited machine I in the host machine H is con-
structed from the disjoint union of H and I. Let (s1, a1), . . . , (sn, an) be the
starting pairs of I and (t1, a1), . . . , (tn, an) be the associated halting pairs.
Let δ(r, a) = (q, b,Δ) be a fixed transition of H. That transition is removed
from HI and replaced by the following transitions: δ(r, a) = (s1, a1, μ(s1)),
δ(t1, a1) = (s2, a2, μ(s2)), δ(t2, a2) = (s3, a3, μ(s3)), . . . , δ(tn, an) = (q, b,Δ),
as depicted on Fig. 2. Notice that HI is complete when H is complete.

If we start at a state of H in the resulting machine, we will see the evolution
of H, alternated with some intervals of time in which it is the machine I that
evolves.

Fig. 2. Embedding technique.

The Transitivity Problem of Turing Machines 239

4.2 Undecidability of Transitivities

Theorem 3. The problem to decide if a given reversible complete Turing
machine is transitive is Π0 1-hard in all three models: TMH, TMT and
trace-shift.

Proof. The proof proceeds by reduction of the Reachability Problem for binary
reversible aperiodic Turing machines. Let M be such a machine with a starting
pair (s, a) and a halting pair (t, b). Let $ be a new symbol not in Σ and consider
M ′ the copy of M with this new symbol: all the pairs (r, $) are both starting
and halting pairs of M ′. Let (p1, a1), . . . , (pm, am) be all the starting pairs of
M ′ except (s, a) and (q1, b1), . . . , (qm, bm) be all the halting pairs of M ′ except
(t, b). Take two copies of M ′ and apply Reversing the time to obtain 4 machines
M ′

1−, M ′
1+, M ′

2− and M ′
2+, then connect them according to Fig. 3 by adding the

following transitions to obtain the invited machine I:

δ(t1+, b) = (t1−, b,−μ(t)), δ(s1−, a) = (s1+, a, μ(s)),

δ(t2+, b) = (t2−, b,−μ(t)), δ(s2−, a) = (s2+, a, μ(s)),

δ(q1+i , bi) = (q2−
i , bi,−μ(qi)) ∀i ∈ {1, . . . , m}

δ(p1−
i , ai) = (p2+i , ai, μ(pi)) ∀i ∈ {1, . . . , m}

The starting pairs of I are the pairs (p1+i , ai) and the pairs (q1−
i , bi) for all i. The

machine I is innocuous as only three scenarios are possible from a starting pair:
(1) entering M1+ (or M1−) and staying there forever; (2) exit M1+ by (t1+, b)
(or M1− by (s1−, a)), the computation is then reversed inside M1− (or M1+)
and enters M2+ (or M2−) replaying the same scenario to exit M2− (or M2+)
leaving the tape identical to the beginning ; (3) exit M1+ (or M1−) by a halting
pair (q1+i , bi), the computation is then reversed in M2− (or M2+) leaving the
tape identical to the beginning. Consider the embedding SMARTI .

(Assertion 1). SMARTI may be transitive only if M cannot reach (t, b) from
(s, a). Indeed, if (s, a) can reach (t, b) in M then SMARTI admits a periodic
point and its trace shift cannot be transitive and by Proposition 3 none of the
models can be transitive.

(Assertion 2). The TMH system of SMARTI is transitive if M cannot reach
(t, b) from (s, a). Indeed, suppose that M cannot reach (t, b) from (s, a), then I
is aperiodic, and let (su, u, i) and (sv, v, j) be two partial configurations.

Case 1. su and sv are states of SMART. In this case we know that there exists
a finite context (su, u′, i) that extends (su, u, i) so that SMART reaches
(sv, v, j), because SMART is transitive. Let us complete u′ with the symbol
$ and lets analyze the behavior of SMARTI over x = (su, ω$u′$ω, i). First
of all, SMARTsI cannot stay an infinite amount of time inside I, because I
is aperiodic, and non periodic behavior needs an infinite amount of space to
be performed. The presence of the extraneous symbol $ in x, avoid this to
happen. Now, since I is innocuous, we will see the machine SMART evolving,
and thus configuration (sv, v, j) will be reached.

240 A. Gajardo et al.

Fig. 3. Invited machine for an embedding that is transitive if and only if (s, a) cannot
reach (t, b) in the evolution of M , used in the proof of Theorem3.

Case 2. su or sv is a state of I. In this case, lets add $ symbols around u and
v, and lets evolve the time backward from (sv, v, j) until the embedded
machine exits the invited machine I, and lets call (s′

v, $v′$, j′) the obtained
finite configuration. In the same way, we evolve the time forward from
(su, u, i) until exiting I, and we call (s′

u, $u′$, i′) the so obtained con-
figuration. If either suorsv are already in SMART, we just add the $ sym-
bols. Now we can apply Case 1 to (s′

u, $u′$, i′) and (s′
v, $v′$, j′) to prove the

existence of a completion u′′ of $u′$ such that (s′
u, u′′, i′) �∗ (s′

v, $v′$, j′).
Lets suppose that u′′ = w$u′$w′. Therefore, by construction, we have that
(su, wuw′, i) �∗ (s′

u, w$u′$w′, i′) �∗ (s′
v, $v′$, j′) �∗ (sv, v, j), which is

the desired conclusion.

From Proposition 3 we know that the classes of transitive machines for TMH,
TMT and the trace-shift are nested, Assertions 1 and 2 prove that all three
related problems are Π0

1 -hard. �

5 The Complexity of Minimality

A dynamical system (X,T) is minimal if O(x) = X for all x ∈ X. It is equiva-
lent to not have any no trivial proper subsystem. Every minimal system is also
transitive. In the context of Turing machines, we will found machines which have
a minimal TMT and a minimal trace-shift, the SMART machine is an example
of this [3]. There is no machine with a minimal TMH system, because this sys-
tem always contains fixed points: the headless configurations. As for transitivity,
minimality in the TMT model imply minimality in the trace-shift, by the factor
relation.

The Transitivity Problem of Turing Machines 241

Theorem 4. The problem to decide if a given reversible complete Turing
machine is minimal is Σ0

1 -hard for both TMT and trace-shift.

Proof. The proof proceeds by reduction of the Mortality problem for reversible
and aperiodic machines, proved undecidable in [8]. A Turing machine is mortal
if every configuration eventually halts. The mortality problem, that is to decide,
given a Turing machine, if it is mortal, is Σ0

1 -complete for reversible Turing
machines.

Let M be a reversible and aperiodic ternary Turing machine. Apply Reversing
the time to generate two machines M+ and M− and combine them into an
invited machine as per Fig. 4: for every halting pair (qi, bi) of M , add a transition
δ(q+i , bi) = (q−

i , bi,−μ(qi)). The machine I is innocuous, and we embed it into
SMART to produce SMARTI .

Fig. 4. Invited machine for an embedding that is minimal if and only if M is mortal,
used in the proof of Theorem4.

(Assertion 1). If the trace-shift of SMARTI is minimal, then M needs to be
mortal. Indeed, if M is not mortal, there is a trace that starts in a state of M+

and never exits this machine. Such a behavior is impossible in a machine with a
minimal trace-shift, where all the trajectories need to be transitive, and so they
must visit all the states of the machine.

(Assertion 2). If M is mortal, the TMT system of SMARTI is minimal. Indeed,
lets suppose that M is mortal, so its reverse is mortal too, and so is I. Let x be
an arbitrary configuration in the TMT system of SMARTI , we will prove that it
reaches every finite configuration (v, r, v′) in the TMT system. First, if r is a state
of SMART and x has also a state of SMART, it is clear that x reaches (v, r, v′)
because SMART is minimal and it is impossible to stay an infinite amount of
time inside I. Second, if x has a state in I, it comes from a configuration x′ that
do has a state in SMART, because the inverse of I is mortal. The orbit of x is
equal to the orbit of x′ except for a finite number of points, whose state is in
I, thus, by the previous argument, x can attain any finite configuration with a
state in SMART. Now, if r is a state of I, we can evolve SMARTI backward on
(v, r, v′) until to arrive to configuration (u, r′, u′) with a state r′ of SMART, this
is always possible because I is mortal. Through the former arguments, we know
that x visits (u, r′, u′), it thus visits (v, r, v′) too, and we conclude the proof of
assertion 2.

The class of machines with a minimal TMT system is contained in the class
of machines with a minimal trace-shift, thus Assertion 1 and 2 prove that the
two related problems are Σ0

1 -hard. �

242 A. Gajardo et al.

References

1. Asarin, E., Maler, O., Pnueli, A.: Reachability analysis of dynamical systems hav-
ing piecewise-constant derivatives. Theor. Comput. Sci. 138(1), 35–65 (1995)

2. Blondel, V.D., Cassaigne, J., Nichitiu, C.: On the presence of periodic configu-
rations in Turing machines and in counter machines. Theor. Comput. Sci. 289,
573–590 (2002)

3. Cassaigne, J., Ollinger, N., Torres-Avilés, R.: A Small Minimal Aperiodic Reversible
Turing Machine (2014, submitted to a journal). https://hal.archives-ouvertes.fr/
hal-00975244v1

4. Gajardo, A., Guillon, P.: Zigzags in turing machines. In: Ablayev, F., Mayr, E.W.
(eds.) CSR 2010. LNCS, vol. 6072, pp. 109–119. Springer, Heidelberg (2010)

5. Gajardo, A., Mazoyer, J.: One head machines from a symbolic approach. Theor.
Comput. Sci. 370, 34–47 (2007)

6. Jeandel, E.: Computability of the entropy of one-tape Turing machines. In: Mayr,
E., Portier, N. (eds.) Symposium on Theoretical Aspects of Computer Science
(STACS 2014), vol. 25, pp. 421–432 (2014)

7. Kari, J.: Rice’s theorem for the limit sets of cellular automata. Theor. Comput.
Sci. 127(2), 229–254 (1994)

8. Kari, J., Ollinger, N.: Periodicity and immortality in reversible computing. In:
Ochmański, E., Tyszkiewicz, J. (eds.) MFCS 2008. LNCS, vol. 5162, pp. 419–430.
Springer, Heidelberg (2008)

9. Kůrka, P.: On topological dynamics of Turing machines. Theor. Comput. Sci.
174(1–2), 203–216 (1997)

10. Kůrka, P.: Topological and Symbolic Dynamics. Société Mathématique de France,
Paris (2003)

11. Lukkarila, V.: Sensitivity and topological mixing are undecidable for reversible
one-dimensional cellular automata. Cell. Automata 5(3), 241–272 (2010)

12. Margolus, N.: Physics and computation. Ph.D. thesis, M.I.T., Cambridge, Mass.,
U.S.A. (1987)

13. Moore, C.: Generalized shifts: unpredictability and undecidability in dynamical
systems. Nonlinearity 4(2), 199–230 (1991)

14. Oprocha, P.: On entropy and turing machine with moving tape dynamical model.
Nonlinearity 19, 2475–2487 (2006)

15. Torres, R., Ollinger, N., Gajardo, A.: Undecidability of the surjectivity of the
subshift associated to a turing machine. In: Glück, R., Yokoyama, T. (eds.)
RC 2012. LNCS, vol. 7581, pp. 44–56. Springer, Heidelberg (2013)

16. Turing, A.: On computable numbers, with an application to the entscheidungsprob-
lem. Proc. London Math. Soc. 42(2), 230–265 (1936)

https://hal.archives-ouvertes.fr/hal-00975244v1
https://hal.archives-ouvertes.fr/hal-00975244v1

Strong Inapproximability
of the Shortest Reset Word

Pawe�l Gawrychowski1 and Damian Straszak2(B)

1 Institute of Informatics, University of Warsaw, Warsaw, Poland
gawry@mimuw.edu.pl

2 EPFL, Lausanne, Switzerland
damain.straszak@epfl.ch

Abstract. The Černý conjecture states that every n-state synchroniz-
ing automaton has a reset word of length at most (n − 1)2. We study
the hardness of finding short reset words. It is known that the exact
version of the problem, i.e., finding the shortest reset word, is NP-hard
and coNP-hard, and complete for the DP class, and that approximat-
ing the length of the shortest reset word within a factor of O(log n) is
NP-hard [Gerbush and Heeringa, CIAA’10], even for the binary alphabet
[Berlinkov, DLT’13]. We significantly improve on these results by show-
ing that, for every ε > 0, it is NP-hard to approximate the length of the
shortest reset word within a factor of n1−ε. This is essentially tight since
a simple O(n)-approximation algorithm exists.

1 Introduction

Let A = (Q,Σ, δ) be a deterministic finite automaton. We say that w ∈ Σ∗

resets (or synchronizes) A if |δ(Q,w)| = 1, meaning that the state of A after
reading w does not depend on the choice of the starting state. If at least one
such w exists, A is called synchronizing. In 1964 Černý conjectured that every
synchronizing n-state automaton admits a reset word of length (n − 1)2. The
problem remains open as of today. It is known that an n3−n

6 bound holds [16] and
that there are automata requiring words of length (n − 1)2. The conjecture was
proved for various special classes of automata [1,8,11,14,17,18]. For a thorough
discussion of the Černý conjecture see [19].

Computational problems related to synchronizing automata were also stud-
ied. It is known that finding the shortest reset word is both NP-hard and coNP-
hard [8]. Moreover, it was shown to be DP-complete [15].

In this paper, rather than looking at the exact version, we consider the prob-
lem of finding short reset words for automata, or to put it differently, the question

Supported by the NCN grant 2011/01/D/ST6/07164.
P. Gawrychowski—Currently holding a post-doctoral position at Warsaw Center of
Mathematics and Computer Science.
D. Straszak—Part of the work was carried out while the author was a student at
Institute of Computer Science, University of Wroc�law, Poland.

c© Springer-Verlag Berlin Heidelberg 2015
G.F. Italiano et al. (Eds.): MFCS 2015, Part I, LNCS 9234, pp. 243–255, 2015.
DOI: 10.1007/978-3-662-48057-1 19

244 P. Gawrychowski and D. Straszak

of approximating the length of the shortest reset word. For a given n-state syn-
chronizing automaton, we want to find a reset word which is at most α times
longer than the shortest one, where α can be either a constant or a function of n.
There is a simple polynomial time algorithm achieving O(n)-approximation [10].

Previous Work and Our Results. Berlinkov showed that finding an O(1)-
approximation is NP-hard by giving a combinatorial reduction from SAT [6].
Later, Gerbush and Heeringa [10] used the log n−approximation hardness of
SetCover [9] to prove that O(log n)-approximation of the shortest reset word is
NP-hard. Finally, Berlinkov [7] extended their result to hold even for the binary
alphabet, and conjectured that a polynomial time O(log n)-approximation algo-
rithm exists. We refute the conjecture by showing that, for every constant
ε > 0, no polynomial time n1−ε−approximation is possible unless P = NP. This
together with the simple O(n)−approximation algorithm gives a sharp threshold
result for the shortest reset word problem.

The mathematical motivation and its algorithmic version considered in this
paper are closely connected, although not in a very formal sense. All known
methods for proving bounds on the length of the shortest reset word are actu-
ally based on explicitly computing a short reset word (in polynomial time).
The best known method constructs a reset word of length n3−n

6 , while the
(most likely) true upper bound is just (n − 1)2, which is smaller by a factor
of roughly n

6 . Similarly, the best known (polynomial time) approximation algo-
rithm achieves O(n)-approximation. Hence it is reasonable to believe that an
o(n)-approximation algorithm could be used to significantly improve the upper
bound on the length of the shortest synchronizing word to o(n3). In this con-
text, our result suggests that improving the bound on the length of the shortest
synchronizing word to O(n3−ε) requires non-constructive tools.

The main insight is to start with the PCP theorem. We recall the notion of
constraint satisfaction problems, and using the result of H̊astad and Zuckerman
provide a class of hard instances of such problems with specific properties tailored
to our particular application. Then, we show how to appropriately translate such
a problem into a synchronizing automaton.

Organization of the Paper. We provide the necessary definitions and the
background on finite automata in the preliminaries. We also introduce the notion
of probabilistically checkable proofs and state the PCP theorem, then define
constraint satisfaction problems and their basic parameters.

In the next three sections we gradually move towards the main result. In
Sect. 3 we prove that (2 − ε)-approximation of the shortest reset word is NP-
hard. In Sect. 4 we strengthen this by showing that, for a small fixed ε > 0,
nε−approximation is also NP-hard. Finally, in Sect. 5, we provide more back-
ground on probabilistically checkable proofs and free bit complexity, and prove
that, for every ε > 0, even n1−ε-approximation is NP-hard. Even though the
final result subsumes Sects. 3 and 4, this allows us to gradually introduce the
new components.

Strong Inapproximability of the Shortest Reset Word 245

2 Preliminaries

DFA. A deterministic finite automaton (in short, an automaton) is a triple
A = (Q,Σ, δ), where Q is a nonempty finite set of states, Σ is a nonempty finite
alphabet, and δ is a transition function δ : Q × Σ → Q. In the usual definition
one includes additionally a starting state and a set of accepting states, which are
irrelevant in our setting. Equivalently, we can treat an automaton as a collection
of |Σ| transformations of a finite set Q. We consider words over Σ, which are
finite sequences of letters (elements of Σ). The empty word is denoted by ε, the
set of words of length n by Σn, and the set of all words by Σ∗. For w ∈ Σ∗, |w|
stands for the length of w and wi is the i-th letter of w, for any i ∈ {1, 2, . . . , |w|}.

If A = (Q,Σ, δ) is an automaton, then we naturally extend δ from single
letters to whole words by defining δ(q, ε) = q and δ(q, wa) = δ(δ(q, w), a). For
P ⊆ Q we denote by δ(P,w) the image of P under δ(·, w).

Synchronizing Automata. An automaton A = (Q,Σ, δ) is synchronizing if
there exists a word w for which |δ(Q,w)| = 1. Such w is then called a synchroniz-
ing (or reset) word and the length of a shortest such word is denoted by Syn(A).
One can check if an automaton is synchronizing in polynomial time by verifying
that every pair of states can be synchronized to a single state.

SynAppx(Σ,α)
Given a synchronizing n-state automaton A over an alphabet Σ, find a word
of length at most α · Syn(A) synchronizing A. Here both α and |Σ| can be
a function of n.

We are interested in solving SynAppx(Σ,α) in polynomial time, with α as
small as possible.

Alphabet Size. In the general case, the size of the alphabet can be arbitrary.
Our construction will use Σ = {0, 1, 2}, which can be then reduced to the binary
alphabet using the method of Berlinkov [7], which is based on encoding every
letter in binary and adding some intermediate states.

Lemma 1 (Lemma 7 of [7]). Suppose SynAppx({0, 1}, nα) can be solved in
polynomial time for some α ∈ (0, 1), then so can be SynAppx(Σ,O(nα)) for
any Σ of constant size.

PCP Theorems. We briefly introduce the notion of Probabilistically Checkable
Proofs (PCPs). For a comprehensive treatment refer to [5] or [2].

A polynomial-time probabilistic machine V is called a (p(n), r(n), q(n))-PCP
verifier for a language L ⊆ {0, 1}∗ if:

– for an input x of length n, given random access to a “proof” π ∈ {0, 1}∗,
V uses at most r(n) random bits, accesses at most q(n) locations of π, and
outputs 0 or 1 (meaning “reject” or “accept” respectively),

– if x ∈ L then there is a proof π, such that Pr[V (x, π) = 1] = 1,
– if x /∈ L then for every proof π, Pr[V (x, π) = 1] ≤ p(n).

246 P. Gawrychowski and D. Straszak

We consider only nonadaptive verifiers, meaning that the subsequently accessed
locations depend only on the input and the random bits, and not on the previous
answers, hence we can think that V specifies at most q(n) locations and then
receives a sequence of bits encoding all the answers. p(n) from the above defini-
tion is often called the soundness or the error probability. In some cases, also the
proof length is important. For a fixed input x of length n the proof length is the
total number of distinct locations queried by V over all possible 2r(n) runs of V
(on different sequences of r(n) random bits). The proof length is always at most
q(n) · 2r(n), and such a bound is typically sufficient for applications, however in
some cases we desire PCP-verifiers with smaller proof length.

The set of languages for which there exists a (p, r, q)-PCP verifier is denoted
by PCPp[r, q].

Theorem 2 (PCP Theorem [3,4]). NP = PCP1/2[O(log n), O(1)].

Constraint Satisfaction Problems. We consider Constraint Satisfaction
Problems (CSPs) over boolean variables. An instance of a general CSP over
N boolean variables x1, x2, . . . , xN is a collection of M boolean constraints φ =
(C1, C2, . . . , CM), where a boolean constraint is just a function C : {0, 1}N →
{0, 1}. A boolean assignment v : {0, 1}N → {0, 1} satisfies a constraint C if
C(v) = 1, and φ is satisfiable if there exists an assignment v : {0, 1}N → {0, 1}
such that Ci(v) = 1 for all i = 1, 2, . . . ,M . We define Val(φ) to be the maximum
fraction of constraints in φ which can be satisfied by a single assignment. In
particular Val(φ) = 1 iff φ is satisfiable.

We consider computational properties of CSPs. We are mainly interested
in CSPs, where every N -variable constraint has description of size poly(N) (as
opposed to the naive representation using 2N bits). A natural class of such
CSPs are CNF-formulas, where every constraint is a clause being a disjunction
of N literals, thus described in O(N) space. Another important class are qCSPs,
where every constraint depends only on at most q variables. Such a constraint
can be described using poly(N, 2q) space, which is polynomial whenever q =
O(log N). Formally, we say that a clause C depends on variable xi if there exists
an assignment v ∈ {0, 1}N such that C(v) changes after modifying the value of
xi and keeping the remaining variables intact. We define VC to be the set of all
such variables. It is easy to see that φ(C) is determined as soon as we assign the
values to all variables in VC . Finally, the following class will be of interest to us.

Definition 3. Let C be an N -variable constraint and let VC be the set of vari-
ables on which C depends. Consider all 2|VC | assignments {0, 1}VC → {0, 1}. If
only K of such assignments satisfy C, we write Fsat(C) ≤ K. Fsat(φ) ≤ K if
Fsat(C) ≤ K for every constraint C in φ.

According to the above definition, if φ is a qCSP instance then Fsat(φ) ≤ 2q.
A constraint C such that Fsat(C) ≤ K can be described by its set VC and a list of
at most K assignments to the variables in VC satisfying C. Thus the description
is polynomial in N and K. We will consider CSPs φ with Fsat(φ) ≤ poly(N)
and always assume that they are represented as just described.

Strong Inapproximability of the Shortest Reset Word 247

3 Simple Hardness Result

We start with a simple introductory result, which is that for any fixed constant
ε > 0, it is NP-hard to find for a given n-state synchronizing automaton A a
synchronizing word w such that |w| ≤ (2 − ε) · Syn(A). The final goal is to
prove a much strong result, but the basic construction presented in this section
is the core idea further developed in the subsequent sections. The construction
is not the simplest possible, nor the most efficient in the number of states of the
resulting automaton, but it provides good intuitions for the further proofs. For
a simpler construction in this spirit see [6].

Theorem 4. For every constant ε > 0, SynAppx({0, 1, 2}, 2−ε) is not solvable
in polynomial time, unless P = NP.

Idea. Fix ε > 0. We will reduce 3-SAT to our problem, that is, show that an
algorithm solving SynAppx({0, 1, 2}, 2 − ε) can be used to decide satisfiability
of 3-CNF formulas. This will stem from the following reduction. For a given
N -variable 3-CNF formula φ consisting of M clauses we can build in polynomial
time a synchronizing automaton Aφ such that:

1. if φ is satisfiable then Syn(Aφ) ≈ N ,
2. if φ is not satisfiable then Syn(Aφ) ≥ 2N .

This implies Theorem 4, since applying an (2 − ε)-approximation algorithm to
Aφ allows us to find out whether φ is satisfiable or not.

Construction. Let φ = C1 ∧ C2 ∧ . . . ∧ CM be a 3-CNF formula with
N variables x1, x2, . . . , xN and M clauses. We want to build an automaton
Aφ = ({0, 1, 2}, Q, δ) with properties as described above. Aφ consists of M gad-
gets, one for each clause in φ, and a single sink state s. All letters leave s intact,
that is, δ(s, 0) = δ(s, 1) = δ(s, 2) = s. We describe now a gadget for a fixed
clause C.

The gadget built for a clause C can be essentially seen as a tree with 8 leaves.
Each leaf corresponds to one of the assignments to 3 variables appearing in C.
First we introduce the uncompressed version of the gadget. Take all possible 2N

assignments and form a full binary tree of height N . Every edge in the tree is
directed from a parent to its child and has a label from {0, 1}. Every assignment
naturally corresponds to a leaf in the tree. We could potentially use such a tree
as the gadget, except that its size is exponential. We will fix this by merging
isomorphic subtrees to obtain a tree of size linear in N .

Let us denote by L0, L1, . . . , LN the vertices at levels 0, 1, . . . , N , respectively,
so that L0 = {r}, where r is the root, and LN is the set of leaves.

Suppose that the variable xk does not occur in C. Take any vertex v ∈ Lk−1

and denote the subtrees rooted at its children by T0 and T1. It is easy to see that
T0 and T1 are isomorphic and can be merged, so that we have two edges outgoing
from v, labeled by 0 and 1, respectively, and both leading to the same vertex
v′, which is the root of T0. We continue the merging until there are no more

248 P. Gawrychowski and D. Straszak

such vertices, which can be seen as “compressing” the tree. The last layer LN of
the resulting compressed tree contains states of the form qw

N , where w ∈ {0, 1}3
is some boolean assignment, and δ(qw

N , 0) = δ(qw
N , 1) = s if w satisfies C and

δ(qw
N , 0) = δ(qw

N , 1) = r otherwise.
The above defined tree-gadget will be further denoted by TC , and its root qε

0

will be usually referred to as r. To complete the definition, we set δ(q, 2) = r for
every q ∈ TC . See Fig. 1 for an example.

0, 1 0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0, 1

0

0

0
1

1

1

qε
0 qε

1 qε
2

q0
3 q0

4

q1
3 q1

4

q00
5

q01
5

q10
5

q11
5

q00
6

q01
6

q10
6

q11
6

s

0, 1

Fig. 1. Tree-gadget TC constructed for a clause C = x3 ∨ x5 and N = 6.

The automaton Aφ consists of M disjoint tree-gadgets TC1 , TC2 , . . . , TCM
and

a single “sink state” s. Formally, its set of states is Q =
∑M

i=1 TCi
∪ {s} and the

transition δ is defined above for every tree-gadget and the sink state s.

Properties ofAφ. The following properties of Aφ can be established.

Proposition 5. Consider a tree-gadget TC with root r constructed for a clause
C. If C depends only on variables xj1 , xj2 , xj3 then for any binary assignment
v ∈ {0, 1}N we have δ(r, v) = qw

N , where w = vj1vj2vj3 .

Proposition 5 immediately yields the following.

Corollary 6. Consider a tree-gadget TC constructed for a clause C, and let
w = vc be a binary word with |v| = N and c ∈ {0, 1}. If v is an assignment
satisfying C then δ(r, w) = s, otherwise δ(r, w) = r.

Since s is a sink state, synchronizing Aφ is equivalent to pushing all of its
states into s. Actually, it is enough to consider how to synchronize the set
R = {r1, r2, . . . , rM}, where ri is the root of the i-th tree-gadget TCi

. This is
because δ(TCi

, 2) = {ri} for every i, hence one application of letter 2 “synchro-
nizes” every gadget to its root and then it is enough to synchronize the roots.

It is already easy to see that Aφ is always synchronizing, because we can
synchronize gadgets one by one. The following lemma says that in case when φ
is satisfiable, we can synchronize Aφ very quickly.

Strong Inapproximability of the Shortest Reset Word 249

Lemma 7. If φ is satisfiable and v ∈ {0, 1}N is a satisfying assignment, then
the word w = 2v0 synchronizes Aφ. Therefore Syn(Aφ) ≤ N + 2.

Our next goal is to show that whenever φ is not satisfiable, Aφ cannot by syn-
chronized quickly. To this end, we prove the following.

Lemma 8. Suppose there exists a binary word of length less than 2N + 2 syn-
chronizing R to {s}. Then φ is satisfiable.

By Lemma 8, if there is no short binary word synchronizing R then φ is not
satisfiable. Using letter 2 does not help at all in synchronizing R as shown below.

Lemma 9. Suppose there exists a word w ∈ {0, 1, 2}∗ synchronizing R to {s}.
Then there is a word w′ ∈ {0, 1}∗ of length at most |w| synchronizing R to {s}.
We are now ready to prove Theorem 4.

Proof (of Theorem 4). Fix ε > 0 and suppose we can solve SynAppx({0, 1, 2},
2 − ε) in polynomial time. We will show that we can solve 3-SAT in polynomial
time. Let φ be any 3-CNF formula. We construct Aφ and approximate its shortest
reset word within a factor of 2−ε. By Lemma 7 if φ is satisfiable then Syn(Aφ) ≤
N + 2, and if φ is not satisfiable then by Lemmas 8 and 9 we have Syn(Aφ) ≥
2N +2. Hence, (2−ε)-approximation allows us to distinguish between those two
cases in polynomial time.
�

4 Hardness with Ratio nε

In this section we show that it is possible to achieve a stronger hardness result
using essentially the same reduction, but from a different problem. The problem
we reduce from is CSP with some specific parameters. Its hardness is proved
by suitably amplifying the error probability in the classical PCP theorem. We
provide the details below.

PCP, qCSP and Probability Amplification. We want to obtain a hard
boolean satisfaction problem, which allows us to perform more efficient reduc-
tions to SynAppx. The usual source of such problems are PCP theorems,
the most basic one asserting that NP = PCP1/2[O(log n), O(1)]. By sequen-
tial repetition we can obtain verifiers erring with much lower probability, i.e.,
NP = PCPε[O(log n), O(1)] for any fixed ε ∈ (0, 1). Combining such a verifier
with the construction of Aφ described in the previous section yields that it is
NP-hard to approximate the shortest reset word within a factor of α, for any
constant α. However, we aim for a stronger nε-hardness for some ε > 0. To this
end we need to construct PCP verifiers with subconstant error.

Sequential repetition used to reduce the error probability as explained above
has severe limitations. We want the error probability to be ≈ n−1. This requires
Θ(log n) repetitions, each consuming fresh O(log n) random bits, and results
in a verifier with the error probability bounded by n−1 using O(log n) queries.

250 P. Gawrychowski and D. Straszak

The total number of used random bits is then r = Θ(log2 n), which is too much,
since the size of the automaton polynomially depends on 2r. Fortunately, the
amount of used random bits can be reduced using the standard idea of a random
walk on an expander, resulting in the following theorem.

Theorem 10 (Subconstant Error PCP). NP ⊆ PCP1/n[O(log n),
O(log n)].

We use Theorem 10 to prove the following.

Theorem 11. There exists a polynomial time reduction f , which takes a 3-CNF
n-variable formula φ and returns a qCSP instance f(φ) with q = O(log n), such
that:

– if φ is satisfiable then Val(f(φ)) = 1,
– if φ is not satisfiable then Val(f(φ)) ≤ 1

n .

Construction. Let φ be an N -variables qCSP instance with M clauses and
q = O(log N). We want to construct a synchronizing automaton Aφ, such that
the length of its shortest reset word allows us to reconstruct Val(φ) up to some
error.

The construction of Aφ is exactly the same as the one given for 3-CNF
instances in Sect. 3. For a q-constraint C we build a tree-gadget TC with 2q

leaves, each corresponding to an assignment to the variables C depends on. As
previously, the automaton has one sink state s and M tree-gadgets, one for
every constraint. The construction still takes just polynomial time, the size of
the automaton is polynomial in M,N and 2q = poly(N).

Properties ofAφ. Similarly as in the previous sections, the following properties
of Aφ can be established.

Lemma 12. Let φ be a N -variable qCSP instance. If φ is satisfiable and v ∈
{0, 1}N is a satisfying assignment, then the word w = 2v0 synchronizes Aφ.
Therefore Syn(Aφ) ≤ N + 2.

For the case when φ is not satisfiable we need a stronger statement than the one
from Lemma 8.

Lemma 13. Let φ be a N -variable qCSP instance. If w synchronizes Aφ then
|w| ≥ 1

Val(φ) (N + 1).

Now we are ready to prove the main theorem of this section.

Theorem 14. There exists a constant ε > 0, such that SynAppx({0, 1, 2}, nε)
is not solvable in polynomial time, unless P = NP.

Strong Inapproximability of the Shortest Reset Word 251

Proof. We reduce 3-SAT to SynAppx({0, 1, 2}, nε), for some constant ε > 0.
Let φ be an n-variable 3-CNF formula φ. We use Theorem 11 to obtain a qCSP
instance f(φ) on N variables and then convert it into a G-state automaton Af(φ).
If φ is satisfiable, then by Lemma 12 Syn(Af(φ)) ≤ N + 2. On the other hand,
if φ is not satisfiable, then Val(f(φ)) ≤ 1/n, hence by Lemma 13 Syn(Af(φ)) ≥
n(N + 1). The ratio between those two quantities is n(N+1)

N+2 = Ω(n).
It remains to show that n = Ω(Gε) for some constant ε > 0. In other words,

we need to show that G is polynomial in n. This holds, because f is a polynomial
time reduction, hence N,M = poly(n) and the size of Af(φ) is polynomial with
respect to N,M, 2q, but q = O(log N) = O(log n) so 2q = poly(n).
�
Remark 15. By keeping track of all the constants, one can obtain nε−hardness
for ε ≈ 0.0095, but this is anyway subsumed by the next section.

5 Hardness with Ratio n1−ε

In this section we prove the main result of the paper. It is not enough to use the
reasoning from the previous section and simply optimize the constants. In fact,
the strongest hardness result that we can possibly obtain by applying Theorem10
is nε for some tiny constant ε > 0. This stems from the fact that in our reduction
we require the number of queries q to be logarithmic in the size of the instance.
If this is not the case, then the reduction takes superpolynomial time. However,
the crucial observation is that the reduction can be modified so that we do not
need the query complexity of the verifier to be logarithmic. It suffices that the
free bit complexity (defined below) is logarithmic.

Theorem 16. For every constant ε > 0, SynAppx({0, 1, 2}, n1−ε) is not
solvable in polynomial time, unless P = NP.

Free Bit Complexity and Stronger PCP Theorems. Let us first briefly
introduce the notion of free bit complexity. For a comprehensive discussion
see [5].

Definition 17. Consider a PCP verifier V using r random bits on any input
x. For a fixed input x and a sequence of random bits R ∈ {0, 1}r, define G(x,R)
to be the set of sequences of answers to the questions asked by V , which result
in an acceptance. We say that V has free bit complexity f if |G(x,R)| ≤ 2f and
there is a polynomial time algorithm which computes G(x,R) for given x and R.

The set of languages for which there exists a verifier with soundness p, free bit
complexity f , and proof length
 is denoted by FPCPp[r, f,
].

H̊astad in his seminal work [12] proved that approximating the maximum
clique within the factor n1−ε is hard, for every ε > 0. To obtain this result he
constructs PCP verifiers with arbitrarily small amortized free bit complexity1.
We state his result in a more recent and stronger version [13]:
1 Amortized free bit complexity is a parameter of a PCP verifier which essentially

corresponds to the ratio between the free bit complexity and the logarithm of error
probability.

252 P. Gawrychowski and D. Straszak

Theorem 18. For every ε > 0, there exist constants t ∈ N and α, β > 0 such
that NP ⊆ FPCP2−t [β log n, ε · t, nα].

In the next step we need to amplify the error probability, as we did in the
previous section. It turns out that the amplification using expander walks is too
weak for our purpose. H̊astad [12], following the approach of Bellare et al. [5],
uses sequential repetition together with a technique to reduce the demand for
random bits. (See Proposition 11.2, Corollary 11.3 in [5].) Unfortunately, this
procedure involves randomization, so his MaxClique hardness result holds under
the assumption that ZPP �= NP.

In his breakthrough paper Zuckerman [20] showed how to derandomize
H̊astad’s MaxClique hardness result by giving a deterministic method for ampli-
fying the error probability of PCP verifiers. He constructs very efficient ran-
domness extractors, which then by known reductions allow to perform error
amplification. One can conclude the following result from Theorem18 and his
result (see also Lemma 6.4 and Theorem 1.1 in [20]).

Theorem 19. For every ε > 0, there exist c, α > 0 such that for t = c log n it
holds that NP ⊆ FPCP2−t [(1 + ε)t, εt, nα].

Based on the above theorem, we can prove the following very strong analogue
of Theorem 11.

Theorem 20. For every ε > 0, there exists a polynomial time reduction f ,
which takes an n-variable 3-CNF formula φ and returns an N -variable CSP
instance f(φ) with M constraints, such that:

– N ≤ Mε,
– if φ is satisfiable then Val(f(φ)) = 1,
– if φ is not satisfiable then Val(f(φ)) ≤ 1

M1−ε ,
– Fsat(f(φ)) ≤ Mε.

Construction. Let φ be an N -variable CSP instance with M constraints such
that Fsat(φ) ≤ K (for a parameter K to be chosen later). We want to construct
an automaton Âφ of size polynomial in K and the size of φ such that Syn(Âφ) ≈

N
Val(φ) .

Using Aφ as in the previous sections gives an automaton of superpolynomial
size, so we need to tweak it. Take any constraint C and suppose it depends on
q variables. Consider the tree-gadget TC built for C. We cannot assume that
q = O(log n) as in the Sect. 4. In consequence, TC can be of exponential size,
because the only possible bound on its number of leaves is 2q. However, we have
a bound K on the number of essentially satisfying assignments. We will modify
the definition of TC , so that its size depends polynomially on K rather than 2q.

Observe that in the original construction, at most K out of 2q leaves of
TC correspond to satisfying assignments (think of K much smaller than 2q).
Imagine for a moment a subtree of TC corresponding to the at most K satisfying
assignments. The size of such subtree is at most NK, but it is not yet a good

Strong Inapproximability of the Shortest Reset Word 253

candidate for our gadget, because some transitions are not well defined. However,
this is not difficult to fix to obtain an equivalent compressed tree-gadget T̂C as
follows. Consider the example from Fig. 2 and let w be a state reached from the
leftmost state after applying 0. All leaves of the subtree rooted at w correspond
to non-satisfying assignments, hence the whole subtree can be replaced by a path
of appropriate length. We repeat such replacement for every node such that its
whole subtree contains only leaves corresponding to non-satisfying assignments,
but the subtree of its parent does not.

The automaton Âφ is built analogously to Aφ, with the crucial difference that
we use T̂C instead of TC . One can see that T̂C can be constructed in time poly-
nomial in its size by proceeding from the root down to the leaves. Furthermore,
the resulting automaton Âφ is small.

. . .

0, 1

0, 1

0, 1

1

1

1

1

1

1

0

0

0
0

0

0

. . .

0, 1

1

1

1

0

0
0

0, 1 0, 1 0, 1

Fig. 2. Compressing the tree. The grey and black leaves correspond to non-satisfying
and satisfying assignments, respectively (Color figure online).

Lemma 21. Suppose φ is an N -variable CSP instance with M constraints and
Fsat(φ) ≤ K. Then the size of Âφ is O(MN2K).

Properties of Âφ. The lemma below summarizes the properties of Âφ. Its proof
is very similar to the proofs of the lemmas summarizing the properties of Aφ

and hence skipped.

Lemma 22. Let φ be an N -variable CSP instance with M constraints and
Fsat(φ) ≤ K. Then Âφ is a synchronizing automaton of size O(MN2K), which
can be constructed in polynomial time. Furthermore, if φ is satisfiable then
Syn(Âφ) ≤ N + 2 and otherwise Syn(Âφ) ≥ N+1

Val(φ) .

Proof (of Theorem16). Fix any ε > 0. We reduce 3-SAT to SynAppx({0, 1, 2},
nε). Let φ be an n-variable 3-CNF formula. Then by Theorem 20 we can con-
struct an N -variable CSP instance f(φ) with M = poly(n) constraints and
Fsat(f(φ)) ≤ K = Mε, where N ≤ Mε. We know that if φ is satisfiable then
f(φ) is satisfiable as well and if φ is not satisfiable then Val(f(φ)) ≤ 1

M1−ε .
Then by Theorem 22 we can construct Âf(φ), which is an automaton of size

254 P. Gawrychowski and D. Straszak

O(MKN2) = O(M1+3ε). If φ is satisfiable, Syn(Âf(φ)) ≤ N + 2 and if φ is not
satisfiable then Syn(Âf(φ)) ≥ N+1

Val(f(φ)) . The ratio of those two bounds is:

N + 1
(N + 2)Val(f(φ))

= Θ

(
1

Val(f(φ))

)
= Θ

(
M1−ε

)

The size of the automaton Âf(φ) is G = O(M1+3ε), so the above ratio can be

related to the size of the automaton as Ω
(
G

1−ε
1+3ε

)
= Ω

(
G1−4ε

)
. Hence assuming

P �= NP, approximating the shortest reset word within ratio G1−4ε in polynomial
time is not possible.
�

References

1. Ananichev, D.S., Volkov, M.V.: Synchronizing generalized monotonic automata.
Theor. Comput. Sci. 330(1), 3–13 (2005)

2. Arora, S., Barak, B.: Computational Complexity: A Modern Approach, 1st edn.
Cambridge University Press, Cambridge (2009)

3. Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification and
the hardness of approximation problems. J. ACM 45(3), 501–555 (1998)

4. Arora, S., Safra, S.: Probabilistic checking of proofs: a new characterization of NP.
J. ACM 45(1), 70–122 (1998)

5. Bellare, M., Goldreich, O., Sudan, M.: Free bits, PCPs, and nonapproximability–
towards tight results. SIAM J. Comput. 27, 804–915 (1998)

6. Berlinkov, M.V.: Approximating the minimum length of synchronizing words is
hard. Theor. Comp. Sys. 54(2), 211–223 (2014)

7. Berlinkov, M.V.: On two algorithmic problems about synchronizing automata. In:
Shur, A.M., Volkov, M.V. (eds.) DLT 2014. LNCS, vol. 8633, pp. 61–67. Springer,
Heidelberg (2014)

8. Eppstein, D.: Reset sequences for monotonic automata. SIAM J. Comput. 19,
500–510 (1990)

9. Feige, U.: A threshold of ln n for approximating set cover. J. ACM 45(4), 634–652
(1998)

10. Gerbush, M., Heeringa, B.: Approximating minimum reset sequences. In:
Domaratzki, M., Salomaa, K. (eds.) CIAA 2010. LNCS, vol. 6482, pp. 154–162.
Springer, Heidelberg (2011)

11. Grech, M., Kisielewicz, A.: The Černý conjecture for automata respecting intervals
of a directed graph. Discrete Mathematics & Theoretical Computer Science 15(3),
61–72 (2013)

12. Hastad, J.: Clique is hard to approximate within n1−ε. In: Proceedings of the 37th
Annual Symposium on Foundations of Computer Science, FOCS 1996, pp. 627–636
(1996)

13. Hastad, J., Khot, S.: Query efficient PCPs with perfect completeness. In: Pro-
ceedings of the 42nd IEEE Symposium on Foundations of Computer Science, pp.
610–619, October 2001

14. Kari, J.: Synchronizing finite automata on Eulerian digraphs. Theor. Comput. Sci.
295, 223–232 (2003)

Strong Inapproximability of the Shortest Reset Word 255

15. Olschewski, J., Ummels, M.: The complexity of finding reset words in finite
automata. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281, pp.
568–579. Springer, Heidelberg (2010)

16. Pin, J.: On two combinatorial problems arising from automata theory. In: Com-
binatorial Mathematics Proceedings of the International Colloquium on Graph
Theory and Combinatorics, vol. 75, pp. 535–548. North-Holland (1983)

17. Rystsov, I.: Reset words for commutative and solvable automata. Theor. Comput.
Sci. 172(1–2), 273–279 (1997)

18. Steinberg, B.: The Černý conjecture for one-cluster automata with prime length
cycle. Theor. Comput. Sci. 412(39), 5487–5491 (2011)

19. Volkov, M.V.: Synchronizing automata and the Černý conjecture. In: Mart́ın-Vide,
C., Otto, F., Fernau, H. (eds.) LATA 2008. LNCS, vol. 5196, pp. 11–27. Springer,
Heidelberg (2008)

20. Zuckerman, D.: Linear degree extractors and the inapproximability of max clique
and chromatic number. In: Proceedings of the Thirty-Eighth Annual ACM Sym-
posium on Theory of Computing, STOC 2006, pp. 681–690 (2006)

Finitary Semantics of Linear Logic
and Higher-Order Model-Checking

Charles Grellois(B) and Paul-André Melliès(B)

Laboratoire PPS, Université Paris Diderot, Sorbonne Paris Cité, France
{grellois,mellies}@pps.univ-paris-diderot.fr

Abstract. In this paper, we explain how the connection between higher-
order model-checking and linear logic recently exhibited by the authors
leads to a new and conceptually enlightening proof of the selection prob-
lem originally established by Carayol and Serre using collapsible push-
down automata. The main idea is to start from an infinitary and colored
relational semantics of the λ Y -calculus formulated in a companion paper,
and to replace it by a finitary counterpart based on finite prime-algebraic
lattices. Given a higher-order recursion scheme G, the finiteness of its
interpretation in the resulting model enables us to associate to any MSO
formula ϕ a higher-order recursion scheme Gϕ resolving the selection
problem.

Keywords: Higher-order model-checking · Linear logic · Selection
problem · Finitary semantics · Parity games

1 Introduction

Higher-order recursion schemes (HORS) provide an abstract model of compu-
tation which appears to be perfectly adapted for the task of model-checking
functional programs. Indeed, Knapik, Niwinski and Urzyczyn established in [7]
that for n ≥ 1, the trees generated by order-n safe recursion schemes are exactly
those that are generated by order-n pushdown automata, and further, that they
have decidable MSO theories. The MSO-decidability result for safe HORS was
then extended a few years later to all HORS by Ong [9]. However, the MSO-
decidability theorem established by the four authors focuses on the decidability
of a “local” model-checking problem:

Suppose given a HORS G which generates an infinite tree 〈G〉. Is it
possible to decide for every MSO-formula ϕ whether the formula is valid
at the root of the infinite tree 〈G〉.

The MSO-decidability result means that the answer to this question is positive.
A more difficult “global” model-checking problem called the selection problem
in literature is to understand whether:

c© Springer-Verlag Berlin Heidelberg 2015
G.F. Italiano et al. (Eds.): MFCS 2015, Part I, LNCS 9234, pp. 256–268, 2015.
DOI: 10.1007/978-3-662-48057-1 20

Finitary Semantics of Linear Logic and Higher-Order Model-Checking 257

Given a HORS G and a MSO-formula ∃X ϕ[X] holding at the root of
the infinite tree 〈G〉, is it possible to compute a HORS Gϕ generating a
marked version 〈Gϕ〉 of the original tree 〈G〉, and such that the set of its
marked nodes is a witness U satisfying the MSO-formula ϕ[X].

Quite strikingly, Carayol and Serre established in a recent paper [2] that the
answer to this question is positive. They also noticed that the selection problem
follows from a purely automata-theoretic property of HORS, which was estab-
lished by Haddad in his PhD thesis [6]:

Given a HORS G and an alternating parity tree automaton A with the
same ranked alphabet, for every state q of the automaton A accepted
by the tree 〈G〉, it is possible to compute a HORS Gq generating an
accepting run-tree 〈Gq〉 of the automaton A on the tree 〈G〉 with initial
state q.

Of course, the run-tree 〈Gq〉 generated by the HORS Gq provides a witness of the
fact that the state q is accepting. But not only that: thanks to the equivalence
between MSO-formulas and alternating parity tree automata (APT), the fact
that the HORS Gq selects a specific run-tree 〈Gq〉 among all the run-trees with
initial state q provides a solution to the “selection problem”. The idea is simply
to extract from the run-tree 〈Gq〉 a specific witness X for the MSO-formula
∃X ϕ[X] satisfied by the tree 〈G〉.

In this article, we will show how to establish the existence of such a “higher-
order recursive” run-tree 〈Gq〉 from purely denotational arguments, based on a
new and fundamental connection with linear logic developed by the authors in
a series of recent papers [4,5]. In these papers, an infinitary and colored vari-
ant of the traditional semantics of linear logic is constructed, see [4] for details,
and shown to compute in a compositional way the set of accepting states of
an alternating parity tree automaton, see [5] for details. Despite the concep-
tual clarification this approach provides to higher-order model-checking, this
semantic account does not lead to any decidability result. The reason is that the
relational semantics of linear logic is a quantitative semantics, where finite types
are interpreted as infinitary objects. In order to establish decidability results,
one thus needs to shift to qualititative semantics where the interpretation of
finite types remains finite. This is precisely the purpose of the present paper: by
shifting from the relational semantics developed in [4,5] to the qualitative seman-
tics of linear logic provided by prime-algebraic lattices, we are able to establish
advanced decidability results like the theorem just mentioned by Carayol, Had-
dad and Serre. This is the first time, to our knowledge, that such a strong and
natural connection between model-checking and the most contemporary tools of
semantics (linear logic, relational semantics) is exhibited.

Plan of the Paper. We start by recalling in Sect. 2 the notion of higher-order
recursion scheme and its correspondence with the λY -calculus. We then recall in
Sect. 3 the notion of alternating parity tree automaton. In Sect. 4, we introduce a
finitary colored semantics of the λY -calculus, which we use in Sect. 5 to interpret

258 C. Grellois and P.-A. Melliès

λ-terms. We define a parameterized fixpoint in this model in Sect. 6, obtaining
colored semantics of the λY -calculus. In Sect. 7, we use the finiteness of the
model to prove the decidability of the local model-checking and of the selection
problem. We finally conclude in Sect. 8.

2 Higher-Order Recursion Schemes and the λY -Calculus

Higher-order Recursion Schemes. The set of simple types of the λ-calculus
is generated by the grammar σ, τ ::= o | σ → τ . We write t :: σ when a (possibly
open) λ-term t has simple type σ. Given a ranked alphabet Σ, a finite set of
variables V, a finite set of simply-typed non-terminals N , and a distinguished
non-terminal S ∈ N , a higher-order recursion scheme (HORS) is the data, for
every non-terminal F ∈ N , of a closed simply-typed λ-term

R(F) = λx1. . . . λxn. t (1)

of same type as the non-terminal F ∈ N , with constants in Σ, where xi ∈ V and
t :: o is a λ-term of ground type without λ-abstractions. Note that an element
a ∈ Σ of arity n is represented as a constant of type o → · · · → o → o with same
arity n. For each non-terminal F ∈ N , the data provided by R(F) is equivalently
represented as a rewrite rule

F t1 . . . tn →G t[xi ← ti].

Every higher-order recursion scheme G generates a potentially infinite Σ-labelled
ranked tree noted 〈G〉 and called its value tree. This tree is simply obtained by
applying an infinite number of times and in a fair way the rewrite rules →G of
the HORS G starting from the start symbol S ∈ N .

Example 1. Given Σ = { if : 2, data : 1, Nil : 0 }, consider the HORS G{
S = L Nil
L = λx. if x (L (data x)) (2)

which abstracts a simple program whose function Main (abbreviated as S) calls a
function Listen (denoted L), starting from an empty list. The function Listen
either returns a stack of data, or receives a new element and pushes it on the
current stack. The value tree 〈G〉 of this scheme, depicted in Fig. 1, provides an
abstraction of the set of potential executions of the program. Note that even
though the program Main is very simple, its value tree 〈G〉 is not regular, since
it admits an infinite number of different subtrees.

λ-calculus with Recursion. It is well-known among the specialists of the
λ-calculus that higher-order recursion schemes can be nicely represented as
simply-typed λ-terms in a λ-calculus extended with a fixpoint operator Y . The
resulting λY -calculus is thus defined by adding to the simply-typed λ-calculus,
a fixpoint operator Yσ of type σ → σ together with a rewriting rule for every
simple type σ:

Yσ M →δ M (Yσ M)

Finitary Semantics of Linear Logic and Higher-Order Model-Checking 259

if

if

if

...data

data

Nil

data

Nil

Nil

Fig. 1. An order-1 value tree.

(if, q0)

(if, q1)

(if, q0)

...

(data, q1)

...

(if, q0)

(if, q1)

...

(if, q0)

...

Fig. 2. An APT run-tree.

Proposition 1. For every HORS G of ranked alphabet Σ, there exists a closed
λY -term t :: o with constants in Σ, such that the λY -term t converges to the
value-tree 〈G〉 in the traditional sense of Böhm trees in the λY -calculus. Con-
versely, there exists for every closed λY -term t :: o with constants in Σ a HORS
G of the same ranked alphabet Σ, such that the λY -term t converges to 〈G〉.
An important benefit of this equivalence property is that the λY -calculus is very
well understood from the semantic point of view, and thus somewhat simpler to
study mathematically speaking than higher-order recursion schemes.

3 MSO and Alternating Parity Tree Automata

As explained in the introduction, there is a beautiful correspondence between
the formulas of monadic second-order logic (MSO) and alternating parity tree
automata, which we briefly recall here for the sake of completeness.

Proposition 2. For every ranked alphabet Σ, one has the following equivalence:

– Every MSO formula ϕ over Σ-labelled trees can be translated to an APT Aϕ

of the same ranked alphabet Σ, such that ϕ holds at the root of a Σ-labelled
tree T iff Aϕ has an accepting run-tree over T from its initial state q0.

– Conversely, every APT A of ranked alphabet Σ can be translated to a MSO
formula ϕA of the same ranked alphabet, such that for every Σ-labelled tree
T , A has an accepting run-tree over T from its initial state q0 if and only if
the MSO-formula ϕA holds at the root of T .

Recall that alternating parity tree automata (APT) are non-deterministic top-
down tree automata with the additional ability to duplicate or to erase subtrees.
Typical transitions are thus of the form

δ(q0, if) = (2, q0) ∧ (2, q1) δ(q1, if) = (1, q1) ∧ (2, q0) (3)

When a node labelled with if is visited in state q0, its left subtree is “dropped” or
“erased” while the right one is “explored twice” or “duplicated”, with q0 as initial

260 C. Grellois and P.-A. Melliès

state in one copy, and q1 as initial state in the other copy. The second transition
does not use alternation, and would be usually written as (q1, if, q1, q0) ∈ Δ
in a nondeterministic tree automaton. Run-trees of an alternating parity tree
automaton are unranked, and their shape may differ a lot from the original tree.
The effect of the transitions (3) over the tree of Fig. 1 is depicted in Fig. 2. In
general, a transition is of the shape

δ(q, a) =
∨
i∈I

∧
j∈Ji

(di,j , qi,j) =
∨
i∈I

ϕi (4)

where the union stands for non-determinism, and the conjunction for alternation:
after i is chosen, for every j ∈ Ji, the automaton runs with state qi,j over a copy
of its subtree in direction di,j . For every i, we say that ϕi is a conjunctive clause
of the formula δ(q, a).

Seen from an automata-theoretic point of view, monadic second-order (MSO)
logic is equivalent to the modal μ-calculus. As such it enables one to express
safety properties (typically, that a given state “error” is never encountered) as
well as liveness properties (typically, that a given state “happy” is visited infi-
nitely often). The safety properties are inductive: it is enough to check that
no finite approximation of a computation enters an error state, while the live-
ness properties are coinductive, since they specify infinitary behaviors. More-
over, MSO logic and the modal μ-calculus are sufficiently expressive to alternate
these inductive and coinductive specifications. This alternation is handled by
extending APT with a parity condition over their run-trees. Alternating par-
ity automata are thus equipped with a coloring function Ω : Q → N, which
associates a color to each state q of the automaton. This coloring of the states
q ∈ Q of the automaton induces a coloring of the nodes of its run-trees, in the
expected way. Following the principles of parity games, an infinite branch of such
a run-tree is declared winning when the greatest color occurring infinitely often
in it is even. A run-tree of the automaton is then accepted precisely when all its
infinite branches are winning. In the sequel, we find convenient to consider the
set Col = Ω(Q)
{ε} of colors appearing in the alternating parity automaton A
under study. The extra color ε is added as a neutral color, in order to reflect the
comonadic nature of colors, as we will explain in the later Sect. 4. The following
definition will also be useful in the sequel, in order to connect the alternating
parity automaton A and the finitary semantics of linear logic:

Definition 1. Given a state q ∈ Q and an n-ary constructor a ∈ Σ, we say
that an n-tuple α ∈ (Pfin(Col × Q))n satisfies the formula δ(q, a) when α is of
the form

α = ({ (c1i1 , q1i1) | i1 ∈ I1} , . . . , { (cnin , qnin) | in ∈ In})

and there exists an n-tuple of subsets J1 ⊆ I1, . . . , Jn ⊆ In such that

n∧
k=1

∧
jk∈Jk

(k, qkjk) (5)

Finitary Semantics of Linear Logic and Higher-Order Model-Checking 261

defines a conjunctive clause of the formula δ(q, a), and such that moreover

∀k ∈ {1, . . . , n} ∀j ∈ Jk ckj = Ω(qkj).

In other words, α is an n-tuple of sets {(c1ik , q1ik) | ik ∈ Ik} of states annotated
with colors, each of them corresponding to one of the n subtrees below the symbol
a. Moreover, each such set should contain a subset {(Ω(q1ik), q1ik) | ik ∈ Jk}
of appropriately colored states, such that (5) defines a conjunctive clause of
the formula δ(q, a). The general idea is that the n-tuple is allowed to contain
more colored states than what is stricly required for the transition δ(q, a) to
be performed by the alternating parity automaton A. This definition will be
crucial in the construction of the finitary semantics which, we will see, is based
on downward-closed sets and subtyping.

4 The Scott Semantics of Linear Logic

Here, we adapt the infinitary and colored relational semantics of linear logic for-
mulated in [4,5] to the finitary Scott semantics, where formulas of linear logic
are interpreted as partial orders. The semantics of linear logic is qualitative in
the technical sense that its exponential modality ! is interpreted using the finite
powerset construction, which transports finite sets into finite sets, in contrast
to the finite multiset construction used in the traditional and quantitative rela-
tional semantics. The terminology of Scott semantics comes from the fact that
in the derived semantics of the simply-typed λ-calculus, every type is inter-
preted as a prime algebraic complete lattice, and every simply-typed λ-term as
a Scott-continuous function. So, let ScottL denote the category with preorders
A = (A, ≤A) as objects and downward-closed binary relations R ⊆ A × B
as morphisms (A, ≤A) → (B, ≤B). Here, by a downward-closed relation, we
mean a binary relation R such that for all a, a′ ∈ A and b, b′ ∈ B, one has :

(a, b) ∈ R and a ≤A a′ and b′ ≤B b ⇒ (a′, b′) ∈ R.

The binary relation R is thus downward closed in the partial order (A,≤A)op ×
(B,≤B) interpreting the formula (A,≤A) � (B,≤B) in the Scott semantics.
The intuition guiding this property is that if a binary relation R interpreting a
proof of linear logic can produce an output b from an input a, then the same
binary relation can also produce a less informative output b′ from a more infor-
mative input a′. It is well-known in the literature on linear logic that this “sat-
uration property” is essential in order to obtain a relational semantics of linear
logic with a qualitative (that is, based on finite sets instead of finite multisets)
interpretation of the exponential modality. This remark is generally attributed
to Ehrhard, see [8] for details. The composition in ScottL is relational, since
relational composition preserves the property of being downward-closed. The
identity morphism over (A, ≤A) is

idA = { (a′, a) | a ≤A a′ }

262 C. Grellois and P.-A. Melliès

ScottL is a compact closed category with products, with

(A, ≤A) ⊗ (B, ≤B) = (A × B, ≤A × ≤B) 1 = ({�}, =)
(A, ≤A) & (B, ≤B) = (A
 B, ≤A
 ≤B) � = (∅, ∅)

(A, ≤A)⊥ = (A, ≥A)

The exponential modality

! : A �→ !A : ScottL −→ ScottL

is then defined by associating to the ordered set (A,≤A) the set Pfin(A) of finite
subsets of A, where two finite subsets u and v are ordered in the following way:

u ≤!A v ⇐⇒ ∀a ∈ u, ∃b ∈ v, u ≤A v.

Recall that the endofunctor ! is transports every morphism R : A → B of the
category ScottL to the following morphism:

!R = { (u, v) ∈ !A× !B | ∀ b ∈ v ∃ a ∈ u (a, b) ∈ R } : !A → !B

The endofunctor ! is in fact a comonad and defines a Seely category, and thus
a model of full propositional linear logic, based on the category ScottL, see for
instance [11].

The Coloring Comonad. As we have shown in [4,5], the treatment of colors
by alternating parity automata follows essentially the same comonadic principles
as the treatment of copies in linear logic. This connection between higher-order
model checking and linear logic leads to a coloring monoidal comonad � on the
relational semantics of linear logic, which we adapt here to the qualitative Scott
semantics. To that purpose, we fix a finite set of colors Col containing a neutral
element ε, and consider the coloring function Q → Col which associates a color
to every state of a parity tree automaton A, see the previous discussion in Sect. 3.
The modality � is then defined in the following way for an ordered set (A,≤A)
and a morphism R : (A,≤A) → (B,≤B):

� (A, ≤A) = (A, ≤A)& · · · & (A, ≤A)
∼= ({(c, a) | c ∈ Col, a ∈ A} , ≤� A)

(c1, a) �R (c2, b) iff c1 = c2 and a R b

where (c1, a) ≤� A (c2, a′) iff c1 = c2 and a ≤A a′. The comonadic structure of
� is provided by the following structural morphisms

digA = {((max(c1, c2), a), (c1, (c2, a
′))) | a′ ≤A a} : �A → ��A

derA = {((ε, a), a′) | a′ ≤A a} : �A → A
mA,B = {(((c, a), (c, b)), ((c, (a′, b′)))) | a′ ≤A a, b′ ≤B b} : �A ⊗ �B → �(A ⊗ B)

m1 = { (�, (c, �)) | c ∈ Col } : 1 → � 1

Finitary Semantics of Linear Logic and Higher-Order Model-Checking 263

As we did in the case of the relational semantics [4,5], we define a distributive
law λ : ! ◦ � ⇒ � ◦ ! between the comonads ! and � defined as the natural
transformation:

λA =
{({(

cj , a′
j

)}
, (c, {ai})

) | ∀ i ∃ j c = cj and ai ≤A a′
j

}
: !�A → � !A

The existence of such a distributive law λ enables us to equip the composite
functor ��� = ! ◦ � with a comonadic structure. It appears moreover that this
colored exponential functor ��� satisfies the axioms of a Seely category, and thus
defines a model of full propositional linear logic. We denote by ScottL��� its
Kleisli category.

5 A Finitary Interpretation of the Simply-Typed
λ-calculus

In order to simplify the discussion, we suppose given an alternating parity tree A
over a signature Σ, with set of states Q and with transition function δ. As a
Kleisli category associated to a model of linear logic, the category ScottL��� is
cartesian closed and thus a model of the simply-typed λ-calculus. The simple
types are interpreted inductively as

[[σ → τ]] = ��� [[σ]] � [[τ]] and [[o]] = ⊥⊥ = (Q, =)

The interpretation of the simply-typed λ-terms is standard, except for the inter-
pretation of the elements of the ranked alphabet Σ, seen as here constants of
the simply-typed λ-calculus, which are interpreted as follows:

[[a]]A = { (α, q) | q ∈ Q and α satisfies the formula δ(q, a) }
As explained in [5] in the case of the quantitative relational semantics of linear
logic, this interpretation of the elements of Σ corresponds to a Church encod-
ing of the alternating parity automaton A, encoded in the present case in the
qualitative Scott semantics of linear logic.

Example 2. Recall the two transitions (3) introduced as running example in
Sect. 3:

δ(q0, if) = (2, q0) ∧ (2, q1) δ(q1, if) = (1, q1) ∧ (2, q0)

Setting ci = Ω(qi), these transitions imply that

(u1, u2, q0) ∈ [[if]]A and (v1, v2, q1) ∈ [[if]]A

for all finite sets u1, u2, v1, v2 ∈ ���⊥⊥ = Pfin (Col × Q) satisfying moreover that
{(c0, q0), (c1, q1)} ⊆ u2, that (c1, q1) ∈ v1 and that (c0, q0) ∈ v2.

Using these interpretations in ScottL of the elements of the ranked alphabet Σ,
we construct the interpretation

[[Γ � t :: τ]]A ⊆ (���[[σ1]] ⊗ · · · ⊗ ���[[σn]]) � [[τ]]

264 C. Grellois and P.-A. Melliès

q ≤⊥⊥ q
∀ (c, α) ∈ u ∃ (c, β) ∈ v α ≤A β

u ≤ A v

v ≤ A u α ≤B β

u → α ≤ A B v → β

Fig. 3. Inference rules for the preorders associated with simple types.

∃ () ∈ u α ≤[[σ]] α
Ax

x : u :: σ x : α :: σ

Γ, x : u :: σ M : α :: τ
λ

Γ λx. M : u → α :: σ → τ

Γ0 M : {(c1, β1), . . . , (cn, βn)} → α :: σ → τ Γi N : βi :: σ (∀i)
App

Γ0 ∪ c1 Γ1 ∪ · · · ∪ cn Γn M N : α :: τ

q ∈ Q and α satisfies δ(q, a)
δ

a : α → q :: σ

Fig. 4. Type-theoretic computation of denotations in ScottL���

of any λ-term t of type τ in a context of typed variables Γ , with constants in
the ranked alphabet Σ. An alternative way to describe this interpretation is to
express it as an intersection type system with subtyping, in the style of Coppo,
Dezani, Honsell and Longo [3] and more recently Terui [11] in the framework of
linear logic. In this formulation, sequents are of the following form

Γ = x1 : u1 :: σ1, . . . , xn : un :: σn � t : α :: τ

where ui ∈ ���[[σi]] and α ∈ [[τ]]. The typing rules are presented in Fig. 4, with
the subtyping relation ≤A defined inductively in Fig. 3. Note that the coloring
�c Γ of a context is defined inductively as

�c (x : u :: σ, Γ) = x : �c u :: σ, �c Γ
�c { (ci, αi) } = { (max(c, ci), αi) }

Proposition 3. The sequent

Γ = x1 : u1 :: σ1, . . . , xn : un :: σn � t : α :: τ

is provable in this intersection type system if and only if

(u1, . . . , un, α) ∈ [[Γ � t :: τ]]A ⊆ (��� [[σ1]] ⊗ · · · ⊗ ���[[σn]]) � [[τ]]

6 The recursion operator Y

At this stage, we are ready to shift from the colored semantics of the simply-
typed λ-calculus formulated in Sect. 5 to a colored semantics of the simply-
typed λY -calculus. To that purpose, we construct a Conway operator Y in the

Finitary Semantics of Linear Logic and Higher-Order Model-Checking 265

category FinScottL defined as the full subcategory of ScottL consisting of
the finite ordered sets. Note that FinScottL defines a Seely category, and thus
a model of full propositional linear logic. We will see in the next section that
the finitary nature of the model will enable us to establish the decidability of
the selection problem (Theorem 3). On the other hand, shifting from ScottL
to FinScottL means that we cannot interpret any more infinitary types like
the type of natural numbers. The Conway operator Y is defined a family of
operations YX,A transporting a binary downward-closed relation

R : ���X ⊗ ���A � A

into a binary downward-closed relation

YX,A(R) : ���X � A

and satisfying a series of conditions originally stated by Bloom and Esik [1]
in cartesian closed categories, and adapted in [4] to the particular framework
of Seely categories. Note that such a Conway operator on FinScottL defines a
Conway operator in the sense of [1] in the cartesian-closed category FinScottL���.
Just as in the case of the relational semantics, see [4] for details, the important
point here is that the colors added to the original Scott semantics will enable
us to alternate least and greatest fixpoints (and thus inductive and coinductive
reasoning) in the definition of the fixpoint operator Y, using the appropriate
parity condition.

Semantic Run-trees. Given a relation R : ���X ⊗ ���A � A and a ∈ A, we
define the set comp(R, a) of semantic run-trees of R producing a ∈ A as the
set of possibly infinite (X
 A)-labelled trees, with nodes colored by elements of
Col, and such that the four conditions below are satisfied:

1. the root of the tree is labelled by a, and has neutral color ε,
2. the inner nodes of the tree are labelled by elements of the set A,
3. the leaves are labelled by elements of the set X
 A,
4. for every node labelled by an element b ∈ A:

– if b is an inner node, letting a1, · · · , an denote the labels of its children
belonging to A and x1, · · · , xm the labels belonging to X:

b

an· · ·a1xm· · ·x1

and letting ci (resp. dj) be the color of the node labelled xi (resp. aj),

({(c1, x1), · · · , (cm, xm)} , { (d1, a1), · · · , (dn, an)} , b) ∈ R

– if b is a leaf, then (∅, ∅, b) ∈ R.

266 C. Grellois and P.-A. Melliès

At this point, we adapt to semantic run-trees the usual acceptance condition
on the run-trees of an alternating parity automata: an infinite branch of the
semantic run-tree is winning if and only if an element of Col\{ε} occurs infinitely
often along it, and if the maximal such element is even. A semantic run-tree is
declared winning if and only if all its infinite branches are.

Given a semantic run-tree witness, we define the set leaves(witness) ⊆ ���X
as the set of elements (c, x) where (c′, x) is a leaf of witness labelled with x ∈ X,
and c is the maximal color encountered on the path from the leaf to the root of
witness.

Fixpoint Operator. We now define the fixpoint of a binary relation

R : ���X ⊗ ���A � A

as the downward-closed binary relation

YX,A (R) = { (u, a) | ∃witness ∈ comp(R,a) with u = leaves(witness)
and witness is a winning semantic run-tree. } (6)

Proposition 4. The fixpoint operator Y is a Conway operator over FinScottL.
The Kleisli category FinScottL��� of ��� is therefore a model of the λY -calculus.

As in Sect. 5, we find useful and even illuminating to formulate a type-theoretic
counterpart to our definition of the Conway operator YX,A provided by the
following typing rule Yσ which should be added to the type system of Fig. 4 :

Yσ
Γ0 � M : {(c1, β1), . . . , (cn, βn)} → α :: σ → σ Γi � Yσ M : βi :: σ

Γ0 ∪ �c1 Γ1 ∪ · · · ∪ �cn Γn � Yσ M : α :: σ

In the resulting intersection type system, derivations of infinite depth are allowed,
and have colored nodes, defined as follows:

– for every occurrence of the rule Yσ, we assign color ci to the node Γi � Yσ M :
βi :: σ.

– all the other nodes are assigned the neutral color ε.

An infinite derivation tree is then accepted when all its branches are winning,
in the same sense as for the branches of a semantic run-tree.

Theorem 1. Given a λY -term t, the sequent

Γ = x1 : u1 :: σ1, . . . , xn : un :: σn � t : α :: τ

has a winning derivation tree in the type system with fixpoints iff

(u1, . . . , un, α) ∈ [[Γ � t :: τ]]A ⊆ (��� [[σ1]] ⊗ · · · ⊗ ���[[σn]]) � [[τ]]

Finitary Semantics of Linear Logic and Higher-Order Model-Checking 267

At this point, we take advantage of the correspondence recalled in Proposition 1
between higher-order recursion schemes (HORS) on the ranked alphabet Σ, and
closed λY -terms with constants in the same alphabet Σ. Indeed, the correspon-
dence enables us to justify the following typing rule for HORS :

Γ0, F : {(c1, β1), . . . , (cn, βn)} :: σ 	 R(F) : α :: σ Γi 	 F : βi :: σ (∀ i)

Γ0 ∪ �c1 Γ1 ∪ · · · ∪ �cn Γn 	 F : α :: σ

which provides a direct mean to type the HORS G in the intersection type
system, in such a way as to reflect its interpretation [[G]]A ⊆ Q in the Scott
semantics.

7 Decidability of the Selection Problem

The first theorem of the section establishes a perfect correspondence between
our finitary interpretation [[G]]A of the higher-order recursion scheme G in the
Scott semantics, and the set of accepting states of the automaton A :

Theorem 2. An alternating parity tree automaton A has an accepting run-tree
with initial state q0 over the value tree 〈G〉 of a higher-order recursion scheme G
if and only if q0 ∈ [[G]]A.

By Theorem 1, checking whether q0 ∈ [[G]]A is equivalent to checking whether
there exists a derivation of the sequent ∅ � S : q0 :: o in the colored inter-
section type system defined in Sect. 6. Since the interpretation of simple types
in FinScottL is finite, only finitely many intersection types and contexts may
occur in such a derivation. Hence, searching for a derivation of the sequent
∅ � S : q0 :: o reduces in this case to solving a finite parity game whose nodes
are precisely the sequents of the derivation tree. This has the following immediate
consequence:

Corollary 1. The local model-checking problem is decidable.

Recall moreover that the existence of a winning strategy in a finite parity game
implies that there exists a memoryless winning strategy. In this setting, winning
strategies correspond to winning derivation trees of the intersection type sys-
tem, and memoryless strategies correspond to derivation trees admitting a finite
representation using backtracking pointers. From such a finite representation π,
one can define a higher-order recursion scheme Gq on a ranked alphabet ΣA
obtained from Σ by annotating every terminal a with elements of its interpre-
tation [[a]]A. The HORS Gq has a non-terminal Fα(o) for every occurrence o of
the non-terminal F in the finite representation π of the derivation tree, where
α is the intersection type of the occurrence o of F in π. Each occurrence o of a
non-terminal F then induces a rewrite rule Fα(o) →Gq

term(o) where term(o)
is an annotated version of the λ-term R(F) coming from the original scheme G.
The annotation of term(o) is obtained by annotating the non-terminals and the

268 C. Grellois and P.-A. Melliès

terminals of R(F) with the intersection types occurring in the finite represen-
tation π of the derivation tree. This defines a higher-order recursion scheme Gq,
which generates a run-tree 〈Gq〉 of the alternating parity tree automaton A over
〈G〉. As a consequence:

Theorem 3. The selection problem is decidable.

8 Conclusions and Perspectives

In this paper, we explain how to apply our semantic approach to higher-order
model-checking based on linear logic, in order to establish the decidability of
local model-checking and of the selection problem. Our approach provides a
rigorous and compositional approach to higher-order model-checking, and adapts
to the inductive-coinductive framework of MSO logic a nice and well-established
connection between linear logic, Scott domains, and intersection types. Future
work includes a detailed comparison with a similar line of work on finite models
of the λ Y -calculus currently developed by Salvati and Walukiewicz [10].

References

1. Bloom, S.L., Ésik, Z.: Fixed-point operations on CCC’s. Part I. Theor. Comput.
Sci. 155(1), 1–38 (1996)

2. Carayol, A., Serre, O.: Collapsible pushdown automata and labeled recursion
schemes: equivalence, safety and effective selection. In: LICS 2012. pp. 165–174.
IEEE Computer Society (2012)

3. Coppo, M., Dezani-Ciancaglini, M., Honsell, F., Longo, G.: Extended Type Struc-
tures and Filter Lambda Models. In: Lolli, G., Longo, G., Marcja, A. (eds.) Logic
Colloquium 82, pp. 241–262. North-Holland, Amsterdam (1984)

4. Grellois, C., Melliès, P.-A.: An infinitary model of linear logic. In: Pitts, A. (ed.)
FOSSACS 2015. LNCS, vol. 9034, pp. 41–55. Springer, Heidelberg (2015)

5. Grellois, C., Melliès, P.A.: Relational semantics of linear logic and higher-order
model-checking. http://arxiv.org/abs/1501.04789. (accepted at CSL 2015)

6. Haddad, A.: Shape-preserving transformations of higher-order recursion schemes.
Ph.D. thesis, Université Paris Diderot (2013)

7. Knapik, T., Niwiński, D., Urzyczyn, P.: Higher-order pushdown trees are easy. In:
Nielsen, M., Engberg, U. (eds.) FOSSACS 2002. LNCS, vol. 2303, pp. 205–222.
Springer, Heidelberg (2002)

8. Melliès, P.A.: Categorical semantics of linear logic. In: Interactive Models of Com-
putation and Program Behaviour, Panoramas et Synthses 27. pp. 1–196. Soci Math-
matique de France (2009)

9. Ong, C.H.L.: On model-checking trees generated by higher-order recursion
schemes. In: LICS, pp. 81–90 (2006)

10. Salvati, S., Walukiewicz, I.: A model for behavioural properties of higher-order
programs (2015). https://hal.archives-ouvertes.fr/hal-01145494

11. Terui, K.: Semantic evaluation, intersection types and complexity of simply typed
lambda calculus. In: Tiwari, A. (ed.) RTA 2012. LIPIcs, vol. 15, pp. 323–338.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Wadern (2012)

http://arxiv.org/abs/1501.04789
https://hal.archives-ouvertes.fr/hal-01145494

Complexity of Propositional Independence
and Inclusion Logic

Miika Hannula1, Juha Kontinen1, Jonni Virtema2(B), and Heribert Vollmer2

1 University of Helsinki, Department of Mathematics and Statistics, Helsinki, Finland
{miika.hannula,juha.kontinen}@helsinki.fi

2 Leibniz Universität Hannover, Institut für Theoretische Informatik,
Fakultät für Elektrotechnik und Informatik, Hanover, Germany

jonni.virtema@uta.fi, vollmer@thi.uni-hannover.de

Abstract. We classify the computational complexity of the satisfiabil-
ity, validity and model-checking problems for propositional independence
and inclusion logic and their extensions by the classical negation.

Keywords: Propositional logic · Team semantics · Dependence · Inde-
pendence · Inclusion · Satisfiability · Validity · Model-checking

1 Introduction

Dependence logic [17] is a new logical framework for formalising and studying
various notions of dependence and independence that are important in many sci-
entific disciplines such as experimental physics, social choice theory, computer
science, and cryptography. Dependence logic extends first-order logic by depen-
dence atoms

dep(x1, . . . , xn, y) (1)

expressing that the value of the variable y is functionally determined on the val-
ues of x1, . . . , xn. Satisfaction for formulas of dependence logic is defined using
sets of assignments (teams) and not in terms of single assignments as in first-
order logic. Whereas dependence logic studies the notion of functional depen-
dence, independence and inclusion logic (introduced in [6] and [5], respectively)
formalize the concepts of independence and inclusion. Independence logic (inclu-
sion logic) is obtained from dependence logic by replacing dependence atoms by
the so-called independence atoms x ⊥y z (inclusion atoms x ⊆ y). The intuitive
meaning of the independence atom is that the variables of the tuples x and z
are independent of each other for any fixed value of the variables in y, whereas
the inclusion atom declares that all values of the tuple x appear also as values
of y. In database theory these atoms correspond to the so-called embedded mul-
tivalued dependencies and inclusion dependencies (see, e.g., [7]). Independence
atoms have also a close connection to conditional independence in statistics.

The first and the second author was supported by the Academy of Finland grants
264917 and 275241. The third author was supported by a grant from the Jenny and
Antti Wihuri Foundation.

c© Springer-Verlag Berlin Heidelberg 2015
G.F. Italiano et al. (Eds.): MFCS 2015, Part I, LNCS 9234, pp. 269–280, 2015.
DOI: 10.1007/978-3-662-48057-1 21

270 M. Hannula et al.

The topic of this article is propositional team semantics which has received
relatively little attention so far. On the other hand, modal team semantics has
been studied actively. Since the propositional logics studied in this article are
fragments of the corresponding modal logics, some upper bounds trivally transfer
to the propositional setting. The study of propositional team semantics as a sub-
ject of independent interest was initiated after surprising connections between
propositional team semantics and the so-called inquisitive semantics was discov-
ered (see [19] for details). The first systematic study on the expressive power of
propositional dependence logic and many of its variants is due to [19,20]. In the
same works natural deduction type inference systems for these logics are also
developed, whereas in [16] a complete Hilbert-style axiomatization for proposi-
tional dependence logic is presented.

The computational aspects of (first-order) dependence logic and its variants
have been actively studied, and are now quite well understood. On the other
hand, the complexity of the propositional versions of these logics have not been
systematically studied except for [18] in which the validity problem of propo-
sitional dependence logic was shown to be NEXPTIME-complete. In this article
we study the complexity of satisfiability, validity and model-checking of propo-
sitional independence and inclusion logic and their extensions by the classical
negation. The classical negation has turned out to be a very powerful connective
in the settings of first-order and modal team semantics, see e.g., [11] and [12].
Our results (see Table 1) show that the same is true in the propositional setting.
In particular, our main result shows that the satisfiability and validity problems
of the extensions of propositional independence and inclusion logic by the clas-
sical negation are complete for alternating exponential time with polynomially
many alternations (AEXPTIME(poly)).

2 Preliminaries

In this section we define the basic concepts and results relevant to team-based
propositional logics. We assume that the reader is familiar with propositional logic.

2.1 Syntax and Semantics

Let D be a finite, possibly empty, set of proposition symbols. A function s : D →
{0, 1} is called an assignment. A set X of assignments s : D → {0, 1} is called a
team. The set D is the domain of X. We denote by 2D the set of all assignments
s : D → {0, 1}.

Let Φ be a set of proposition symbols. The syntax for propositional logic
PL(Φ) is defined as follows.

ϕ ::= p | ¬p | (ϕ ∧ ϕ) | (ϕ ∨ ϕ), where p ∈ Φ.

We write Var(ϕ) for the set of all proposition symbols that appear in ϕ. We
denote by |=PL the ordinary satisfaction relation of propositional logic defined via
assignments in the standard way. Next we give team semantics for propositional
logic.

Complexity of Propositional Independence and Inclusion Logic 271

Table 1. Overview of the results (completeness results if not stated otherwise, ∼ refers
to classical negation).

SAT VAL MC

PL[⊥c] NP in coNEXPTIMENP NP

PL[⊆] EXPTIME [10] coNP in P [9]

PL[⊥c,∼],PL[⊆,∼] AEXPTIME(poly) AEXPTIME(poly) PSPACE

Definition 1. Let Φ be a set of atomic propositions and let X be a team. The
satisfaction relation X |= ϕ is defined as follows.

X |= p ⇔ ∀s ∈ X : s(p) = 1.

X |= ¬p ⇔ ∀s ∈ X : s(p) = 0.

X |= (ϕ ∧ ψ) ⇔ X |= ϕ and X |= ψ.

X |= (ϕ ∨ ψ) ⇔ Y |= ϕ and Z |= ψ, for some Y,Z such that Y ∪ Z = X.

Note that in team semantics ¬ is not the classical negation (denoted by ∼ in this
article) but a so-called dual negation that does not satisfy the law of excluded
middle. Next proposition shows that the team semantics and the ordinary seman-
tics for propositional logic defined via assignments coincide.

Proposition 1 ([17]). Let ϕ be a formula of propositional logic and let X be
a propositional team. Then X |= ϕ iff ∀s ∈ X : s |=PL ϕ.

The syntax of propositional dependence logic PD(Φ) is obtained by extending
the syntax of PL(Φ) by

ϕ ::= dep(p1, . . . , pn, q) , where p1, . . . , pn, q ∈ Φ.

The semantics for the propositional dependence atoms are defined as follows:

X |= dep(p1, . . . , pn, q) ⇔ ∀s, t ∈ X : s(p1) = t(p1), . . . , s(pn) = t(pn)
implies that s(q) = t(q).

The next proposition is very useful when determining the complexity of PD, and
it is proved analogously as for first-order dependence logic [17].

Proposition 2 (Downwards Closure). Let ϕ be a PD-formula and let Y ⊆ X
be propositional teams. Then X |= ϕ implies Y |= ϕ.

In this article we study the variants of PD obtained by replacing dependence
atoms in terms of the so-called independence or inclusion atoms: The syntax of
propositional independence logic PL[⊥c](Φ) is obtained by extending the syntax
of PL(Φ) by the grammar rule

ϕ ::= q ⊥p r,

272 M. Hannula et al.

where p, q, and r are finite tuples of proposition variables (not necessarily of the
same length). The syntax of propositional inclusion logic PL[⊆](Φ) is obtained
by extending the syntax of PL(Φ) by the grammar rule

ϕ ::= p ⊆ q,

where p and q are finite tuples of proposition variables with the same length.
Satisfaction for these atoms is defined as follows. If p = (p1, . . . , pn) and s is an
assignment, we write s(p) for (s(p1), . . . , s(pn)).

X |= q ⊥p r ⇔ ∀s, t ∈ X : if s(p) = t(p)
then there exists u ∈ X : u(pq) = s(pq) and u(r) = t(r).

X |= p ⊆ q ⇔ ∀s ∈ X∃t ∈ X : s(p) = t(q).

It is easy to check that neither PL[⊥c] nor PL[⊆] is a downward closed logic
(cf. Proposition 2). However, analogously to first-order inclusion logic [5], the
formulas of PL[⊆] have the following closure property.

Proposition 3 (Closure Under Unions). Let ϕ ∈ PL[⊆] and let Xi, for
i ∈ I, be teams. Suppose that Xi |= ϕ, for each i ∈ I. Then

⋃
i∈I Xi |= ϕ.

We will also consider the extensions of PL, PL[⊥c] and PL[⊆], by the classical
negation ∼ with the standard semantics:

X |= ∼ϕ ⇔ X |= ϕ.

These extensions are denoted by PL[∼], PL[⊥c,∼] and PL[⊆,∼], respectively.

2.2 Auxiliary Operators

The following additional operators will be used in this paper:

X |= ϕ � ψ ⇔ X |= ϕ or X |= ψ,

X |= ϕ ⊗ ψ ⇔ ∀Y,Z ⊆ X : if Y ∪ Z = X, then Y |= ϕ or Z |= ψ,

X |= ϕ � ψ ⇔ ∀Y ⊆ X : if Y |= ϕ, then Y |= ψ,

X |= max(x1, . . . , xn) ⇔ {(s(x1), . . . , s(xn)) | s ∈ X} = {0, 1}n.

If X |= max(x), we say that X is maximal over x. If tuples x and y are pairwise
disjoint and X |= max(x)∧x ⊥ y, then we say that X is maximal over x for all
y. For the proof of the following proposition, see Appendix of the arXiv version
of the paper ([8]).

Proposition 4. dep(·) , � ,⊗,�, and max(·) translate into PL[∼] in polyno-
mial time.

Complexity of Propositional Independence and Inclusion Logic 273

Table 2. Complexity of satisability, validity, and model checking of PL and PD. All
results are completeness results.

SAT VAL MC References

PL NP coNP NC1 [1,3,13]

PD NP NEXPTIME NP [4,14,18]

2.3 Satisfiability, Validity, and Model Checking in Team Semantics

Next we define satisfiability and validity in the context of team semantics. Let
L be a logic with team semantics. A formula ϕ ∈ L is satisfiable, if there exists
a non-empty team X such that X |= ϕ. A formula ϕ ∈ L is valid, if X |= ϕ
holds for every non-empty team X such that the proposition symbols that occur
in ϕ are in the domain of X.1 Note that when the team is empty, satisfaction
becomes easy to decide (see Proposition 6 in Appendix of the arXiv version [8]).

The satisfiability problem SAT(L) and the validity problem VAL(L) are then
defined in the obvious manner: Given a formula ϕ ∈ L, decide whether the
formula is satisfiable (valid, respectively). The variant of the model checking
problem that we are concerned in this article is the following: Given a formula
ϕ ∈ L and a team X, decide whether X |= ϕ. See Table 2 for known complexity
results on PL and PD.

3 Complexity of Satisfiability and Validity

In this section we consider the complexity of the satisfiability and validity prob-
lems for propositional independence logic and inclusion logic, and their exten-
sions by the classical negation ∼.

3.1 The Logics PL[⊥c] and PL[⊆]

We consider first the complexity of satisfiability and validity for propositional
independence logic. The following simple lemma turns out to be very useful.

Lemma 1. Let ϕ ∈ (PL[⊥c]) and X a team such that X |= ϕ. Then {s} |= ϕ,
for all s ∈ X.

Proof. The claim is proved using induction on the construction of ϕ. It is easy
to check that a singleton team satisfies all independence atoms, and the cases
corresponding to disjunction and conjunction are straightforward. �

Theorem 1. SAT(PL[⊥c]) is complete for NP.

1 It is easy to show that all of the logics considered in this article have the so-called
locality property, i.e., satisfaction of a formula depends only on the values of the
proposition symbols that occur in the formula [5].

274 M. Hannula et al.

Proof. Note first that since SAT(PL) is NP-complete, it follows by Proposition
1 that SAT(PL[⊥c]) is NP-hard. For containment in NP, note that by Lemma 1,
a formula ϕ ∈ PL[⊥c] is satisfiable iff it is satisfied by some singleton team {s}.
It is immediate that for any s, {s} |= ϕ iff {s} |= ϕT , where ϕT ∈ PL is acquired
from ϕ by replacing all independence atoms by (p ∨ ¬p). Thus it follows that ϕ
is satisfiable iff ϕT is satisfiable. Therefore, the claim follows. �

Theorem 2. VAL(PL[⊥c]) is hard for NEXPTIME and is in coNEXPTIMENP.

Proof. Since the dependence atom dep(x, y) is equivalent to the independence
atom y ⊥x y and VAL(PD) is NEXPTIME-complete [18], hardness for NEXPTIME
follows. We will show in Theorem 9 on p. 10 that the model checking problem for
PL[⊥c] is complete for NP. It then follows that the complement of the problem
VAL(PL[⊥c]) is in NEXPTIMENP: the question whether ϕ is in the complement
of VAL(PL[⊥c]) can be decided by guessing a subset X of 2D, where D contains
the set of proposition variables appearing in ϕ, and checking whether X |= ϕ.
Therefore VAL(PL[⊥c]) ∈ coNEXPTIMENP. �

Next we turn to propositional inclusion logic.

Theorem 3. ([10]). SAT (PL[⊆]) is complete for EXPTIME.

We end this section by determining the complexity of VAL(PL[⊆]).

Theorem 4. VAL(PL[⊆]) is complete for coNP.

Proof. Recall that PL is a sub-logic of PL[⊆], and hence VAL(PL[⊆]) is hard
for coNP. Therefore, it suffices to show VAL(PL[⊆]) ∈ coNP. It is easy to check
that, by Proposition 3, a formula ϕ ∈ PL[⊆] is valid iff it is satisfied by all
singleton teams {s}. Note also that, over a singleton team {s}, an inclusion
atom (p1, . . . , pn) ⊆ (q1, . . . , qn) is equivalent to the PL-formula

∧
1≤i≤n

(pi ∧ qi) ∨ (¬pi ∧ ¬qi).

Denote by ϕ∗ the PL-formula acquired by replacing all inclusion atoms in ϕ by
their PL-translations. By the above, ϕ is valid iff ϕ∗ is valid. Since VAL(PL) is
in coNP the claim follows. �

3.2 The Logics PL[⊥c,∼] and PL[⊆,∼]

Next we incorporate classical negation in our logics. The main result of this
section is that the satisfiability and validity problems for PL[⊥c,∼] and PL[⊆,∼]
are complete for AEXPTIME(poly). The upper bound follows by an exponential-
time alternating algorithm where alternation is bounded by formula depth. For
the lower bound we first relate AEXPTIME(poly) to polynomial-time alternat-
ing Turing machines that query to oracles obtained from a quantifier prefix of
polynomial length. We then show how to capture this characterization with our
logics.

Complexity of Propositional Independence and Inclusion Logic 275

First we observe that classical negation gives rise to polynomial-time reduc-
tions between validity and satisfiability problems. Hence, we restrict attention
to satisfiability hereafter.

Proposition 5. Let ϕ ∈ PL[C,∼] where C ⊆ {dep(·) ,⊥c,⊆}. Then one can
construct in polynomial time formulae ψ, θ ∈ PL[C,∼] such that

(i) ϕ is satisfiable iff ψ is valid, and
(ii) ϕ is valid iff θ is satisfiable.

Proof. We define

ψ := max(x) � ((p ∨ ¬p) ∨ (ϕ ∧ ∼(p ∧ ¬p))),
θ := max(x) ∧ (∼(p ∧ ¬p) � ϕ),

where x lists Var(ϕ). Note that X |= ∼(p∧¬p) iff X is non-empty. It is straight-
forward to show that (i) and (ii) hold. Also by Proposition 4, ψ and θ can be
constructed in polynomial time from ϕ. �
First we show the upper bound for SAT(PL[⊥c,⊆,∼]).

Theorem 5. SAT (PL[⊥c,⊆,∼]) ∈ AEXPTIME(poly).

Proof. First construct an APTIME algorithm for MC(PL[⊥c,⊆,∼]) such that
its alternation is bounded by the size of ϕ. Such an algorithm is presented in
Appendix of the arXiv version ([8]) and it considers triples (T, ϕ, I) where T is
a team, ϕ a formula, and I ∈ {0, 1}, and it alternates if ϕ is either a conjunction
or a disjunction. Then, given ϕ ∈ PL[⊥c,⊆,∼], it suffices to existentially guess a
possibly exponential-size team T with domain Var(ϕ), and then implement the
algorithm on (T, ϕ, 1). �
Let us then turn to the lower bound. We show that the satisfiability problems
of PL[⊥c,∼] and PL[⊆,∼] are both hard for AEXPTIME(poly). For this, we first
relate AEXPTIME(poly) to polynomial-time oracle Turing machines. This app-
roach is originally due to Orponen in [15], where the classes ΣEXP

k and ΠEXP
k of

the exponential-time hierarchy were characterized by polynomial-time constant-
alternation oracle Turing machines that query to k oracles. Recall that the
exponential-time hierarchy corresponds to the class of problems that can be
recognized by an exponential-time alternating Turing machine with constantly
many alternations. In the next theorem we generalize Orponen’s characteriza-
tion to exponential-time alternating Turing machines with polynomially many
alternations (i.e. the class AEXPTIME(poly)) by allowing queries to polynomially
many oracles.

By (A1, . . . , Ak) we denote an efficient disjoint union of sets A1, . . . , Ak, e.g.
(A1, . . . , Ak) = {(i, x) : x ∈ Ai, 1 ≤ i ≤ k}.

Theorem 6. A set A belongs to the class AEXPTIME(poly) iff there exist a
polynomial f and a polynomial-time alternating oracle Turing machine M such
that, for all x,

x ∈ A iff Q1A1 . . . Qf(n)Af(n)(M accepts x with oracles (A1, . . . , Af(n))),

276 M. Hannula et al.

where n is the length of x and Q1, . . . , Qf(n) alternate between ∃ and ∀, i.e.,
Qi+1 ∈ {∀,∃} \ {Qi}.
Proof. The proof is a straightforward generalization of the proof of Theorem 5.2.
in [15] (See Appendix of the arXiv version [8]). �

Using this theorem we now prove Theorem 7. For the quantification over oracles
Ai, we use repetitively ∨ and ∼. For simulating the computation of an alternat-
ing polynomial-time oracle Turing machine, we first quantify over polynomially
many boolean sequences of polynomial length and then simulate the computa-
tion of a deterministic polynomial-time Turing machine which queries to the
quantified oracles.

Theorem 7. SAT(PL[⊥c,∼]) and SAT(PL[⊆,∼]) are hard for AEXPTIME(poly).

Proof. Let A ∈ AEXPTIME(poly). From Theorem 6 we obtain a polynomial f
and an alternating oracle Turing machine M with running time bounded by g.
By [2], the alternating machine can be replaced by a sequence of word quantifiers
over a deterministic Turing machine. (Strictly speaking, [2] speaks only about a
bounded number of alternations, but the generalization to the unbounded case
is straightforward.) W.l.o.g. we may assume that each configuration of M has
at most two configurations reachable in one step. It then follows by Theorem 6
that one can construct a polynomial-time deterministic oracle Turing machine
M∗ such that x ∈ A iff

Q1A1 . . . Qf(n)Af(n)Q
′
1y1 . . . Q′

g(n)yg(n)

(M∗ accepts (x,y1, . . . ,yg(n))with oracles (A1, . . . , Af(n))),

where Q1, . . . , Qf(n) and Q′
1, . . . , Q

′
g(n) are alternating sequences of quantifiers

∃ and ∀, and each yi is a g(n)-ary sequence of propositional variables where n
is the length of x. Note that M∗ runs in polynomial time also with respect to
n. Using this characterization we now show how to reduce in polynomial time
any x to a formula ϕ in PL[⊥c,∼] (or in PL[⊆,∼]) such that x ∈ A iff ϕ is
satisfiable. We construct ϕ inductively. As a first step, we let

ϕ := max(qry) ∧ pt ∧ ¬pf ∧ ϕ1

where

– q and r list propositional variables that are used for encoding oracles;
– y lists propositional variables that occur in y1, . . . ,yg(n) and in zi that are

used to simulate configurations of M∗ (see phase (3) below);
– pt and pf are propositional variables that do not occur in qry.

(1) Quantification Over Oracles. Next we show how to simulate quantifi-
cation over oracles. Wl.o.g. we may assume that M∗ queries binary strings that
are of length h(n) for some polynomial h. Let q be a sequence of length h(n)
and r a sequence of length log(f(n)) + 1. For i ∈ N, we let bin(i) denote a

Complexity of Propositional Independence and Inclusion Logic 277

binary representation of i (with an appropriate number of insignificant zeros).
For a string of bits b = b1 . . . bk and a sequence s = (s1, . . . , sk) of proposition
symbols, we write s = b for

∧k
i=1 si = bi where si = 0 and si = 1 denote ¬si

and si, respectively. The idea is that, given a team X over qr, an oracle Ai,
and a binary string a = a1 . . . ah(n), the membership of a in Ai is expressed by
X |= ∼¬(q = a ∧ r = bin(i)). Note that the latter indicates that there exists
s ∈ X mapping q �→ a and r �→ bin(i). Following this idea we next show how to
simulate quantification over oracles Ai. We define ϕi, for 1 ≤ i ≤ f(n), induc-
tively from root to leaves. Depending on whether Ai is existentially or universally
quantified, we let

∃ : ϕi := r = bin(i) ∨ (α ∧ ϕi+1), ∀ : ϕi := ∼r = bin(i) ⊗ (∼α � ϕi+1),

where α is defined in SAT(PL[⊥c,∼]) and in SAT(PL[⊆,∼]) respectively as
follows:

α := max(y) ∧ y ⊥ qr,

α :=
|y|∧
i=1

qry1 . . . yi−1pf ⊆ qry1 . . . yi ∧
|y|∧
i=1

qry1 . . . yi−1pt ⊆ qry1 . . . yi.

Let us explain the idea behind the definitions of ϕi, first in the case of existential
quantification. Assume that we consider a formula ϕi and a team X where

X |= α ∧ ϕi, (2)

and {s ∈ X | s(r) = bin(i)} is maximal over qy. Then by (2) we may choose
two subsets Y,Z ⊆ X, Y ∪ Z = X, where Y |= r = bin(i) and Z |= α ∧ ϕi+1.
The idea is that Z must include all assignments s ∈ X where s(r) = bin(i), and
it may exclude an arbitrary number of assignments s ∈ X where s(r) = bin(i).
Hence since {s ∈ X | s(r) = bin(i)} is maximal over qy, the set {s(q) | s ∈
Z, s(r) = bin(i))} can be chosen to be an arbitrary subset of {0, 1}|q|. The only
restriction for this choice is that it must be uniform with respect to values of
y, meaning that Z must remain maximal over y for all qr. This is ensured by
requiring that Z |= α.

Universal quantification is simulated analogously. This time we range over
all subsets Y,Z ⊆ X where Y ∪ Z = X. By (2) for all such Y and Z, we have
that Z |= ∼α � ϕi+1 if Y |= ∼r = bin(i). Hence for all subsets Z having only
s ∈ X with s(r) = bin(i) removed from it, Z |= ∼α � ϕi+1. This means that
such subsets Z satisfy ϕi+1 whenever they are formed uniformly with respect
to values of y. Analogously to the existential case, we now observe that this
corresponds to universal quantification of Ai.

(2) Quantification Over Propositional Variables. Next we show how to
simulate the quantifer block Q′

1y1 . . . Q′
g(n)yg(n)∃z where z lists all propositional

variables that occur in y but not in any yi (i.e. the remaining variables that
occur when simulating M∗). Assume that this quantifier block is of the form
Q∗

1y1 . . . Q∗
l yl, and let ψ1 := ϕf(n)+1. We define ψi again top-down inductively.

For 1 ≤ i ≤ l, depending on whether Q∗
i is ∃ or ∀, we let

278 M. Hannula et al.

∃: ψi := dep(yi) ∨ (dep(yi) ∧ ψi+1),
∀: ψi := ∼dep(yi) ⊗ (∼dep(yi) � ψi+1).

Let us explain the idea behind the two definitions of ψi, first in the case of
existential quantification. Assume that we consider a formula ψi and a team X
where

X |= α ∧ ϕi, (3)

and X is maximal over yi . . . yl for all qry1 . . . yi−1. By (3) we may choose two
subsets Y,Z ⊆ X, Y ∪ Z = X, where Y |= dep(yi) and Z |= dep(yi) ∧ ψi+1.
There are now two options: either we choose Z = {s ∈ X | s(yi) = 0} or
Z = {s ∈ X | s(yi) = 1}. Since X is maximal over yi . . . yl for all qry1 . . . yi−1,
we obtain that Z � qr = X � qr and Z is maximal over yi+1 . . . yl for all
qry1 . . . yi. Hence no information about oracles is lost in this quantifier step.

The case of universal quantification is analogous to the oracle case. Hence
we obtain that (3) holds iff both {s ∈ X | s(yi) = 0} and {s ∈ X | s(yi) = 1}
satisfy ψi+1.

(3) Simulation of Computations. Next we define ψg(n)+1 that simulates
the polynomial-time deterministic oracle Turing machine M∗. Note that this
formula is evaluated over a subteam X such that X |= dep(y), and a ∈ Ai

iff X |= ∼¬(q = a ∧ r = bin(i)). Using this it is now straightforward to con-
struct a propositional formula θ such that ∃c(X[bi/yi][c/z] |= θ) if and only if
M∗ accepts (x, b1, . . . , bg(n)) with oracle (A1, . . . , Af(n)). Here X[a/x] denotes
the team {s(a/x) : s ∈ X} where s(a/x) agrees with s everywhere except
that it maps x pointwise to a. Each configuration of M∗ can be encoded with
a binary sequence zi of length O(t(n)) where t is a polynomial bounding the
running time of M∗. Then it suffices to define ψl+1 as a conjunction of formu-
lae θstart(z0), θmove(zi,zi+1), θfinal(zt(n)) describing that z0 corresponds to the
initial configuration, zi determines zi+1, and zt(n) is in accepting state. �

By Proposition 5, and Theorems 5 and 7 we now obtain the following.

Theorem 8. Satisfiability and validity of PL[⊥c,∼]) and PL[⊆,∼] are complete
for AEXPTIME(poly).

4 Complexity of Model Checking

In this section we consider the related model checking problems.

Theorem 9. MC(PL[⊥c,]) is complete for NP.

Proof. The upper bound follows since the model checking problem for modal
independence logic is NP-complete [11]. Since dependence atoms can be expressed
efficiently by independence atoms (see the proof of Theorem 2), the lower bound
follows from the NP-completeness of MC(PD) (see Table 2).

The following unpublished result was shown by Hella.

Complexity of Propositional Independence and Inclusion Logic 279

Theorem 10. ([9]). MC(PL[⊆]) is in P.

Theorem 11. MC(PL[∼]),MC(PL[⊥c,]), and MC(PL[⊆,∼]) are complete for
PSPACE.

Proof. For the upper bounds recall from Theorem 5 that MC(PL[⊥c,⊆,∼]) can
be decided in APTIME which is exactly PSPACE [2]. For the lower bounds, we
reduce to MC(PL[∼]) from QBF (quantified Boolean formula problem) which
is known to be PSPACE-complete. Let Q1x1 . . . Qnxnθ be a quantified boolean
formula. Let r be a sequence of propositional variables such that its length is
log(n) + 1, and let T := {s1, . . . , sn} where si(r) writes i in binary. We define
inductively top-dow a ϕ ∈ PL[∼] such that

Q1x1 . . . Qnxnθ is true iff T |= ϕ. (4)

Let ϕ := ϕ1, and for 1 ≤ i ≤ n, depending on whether xi is existentially or
universally quantified we let

∃: ϕi := r = bin(i) ∨ ϕi+1,
∀: ϕi := ∼r = bin(i) ⊗ ϕi+1.

Finally, we let ϕn+1 := θ(ψi/xi) where ψi := ∼¬r = bin(i), the meaning of
which is that si exists in the team. Now the above simulation of universal and
existential quantification is analogous to that of oracles in the proof of Theorem
7, and hence we may reason that (4) holds. Also T and ϕ can be constructed in
polynomial time, and therefore we obtain the result. �

5 Conclusion

As it is apparent from the summary of our new contributions depicted in Table 1,
a couple open questions still remain:

– Is VAL(PL[⊥c]) complete for coNEXPTIMENP?
– Is MC(PL[⊆]) complete for P?
– Are SAT(PL[∼]) and VAL(PL[∼]) complete for AEXPTIME(poly)? For this,

it would suffice to find a polynomial-time translation of independence or
inclusion atom in PL[∼].

References

1. Buss, S.: The Boolean formula value problem is in ALOGTIME. In: Proceedings of
the Nineteenth Annual ACM Symposium on Theory of Computing, STOC 1987,
pp. 123–131, ACM, New York (1987)

2. Chandra, A.K., Kozen, D.C., Larry, S.J.: Alternation. J. ACM 28(1), 114–133
(1981)

3. Cook, S.A.: The complexity of theorem-proving procedures. In: Proceedings of the
Third Annual ACM Symposium on Theory of Computing, STOC 1971, pp. 151–
158. ACM, New York (1971)

280 M. Hannula et al.

4. Ebbing, J., Lohmann, P.: Complexity of model checking for modal dependence
logic. In: Bieliková, M., Friedrich, G., Gottlob, G., Katzenbeisser, S., Turán, G.
(eds.) SOFSEM 2012. LNCS, vol. 7147, pp. 226–237. Springer, Heidelberg (2012)

5. Galliani, P.: Inclusion and exclusion dependencies in team semantics: on some
logics of imperfect information. Ann. Pure Appl. Logic 163(1), 68–84 (2012)

6. Grädel, E., Väänänen, J.: Dependence and independence. Stud. Logica 101(2),
399–410 (2013)

7. Hannula, M., Kontinen, J.: A finite axiomatization of conditional independence
and inclusion dependencies. In: Beierle, C., Meghini, C. (eds.) FoIKS 2014. LNCS,
vol. 8367, pp. 211–229. Springer, Heidelberg (2014)

8. Hannula, M., Kontinen, J., Virtema, J., Vollmer, H.: Complexity of propositional
independence and inclusion logic. In: CoRR, (2015). abs/1504.06135

9. Hella, L.: Private communication
10. Hella, L., Kuusisto, A., Meier, A., Vollmer, H.: Modal inclusion logic: Being lax

is simpler than being strict. In: Italiano, G.F., et al. (eds.) MFCS 2015, Part I,
LNCS, vol. 9234, pp. 281–292. Springer, Heidelberg (2015)

11. Kontinen, J., Müller, J.-S., Schnoor, H., Vollmer, H.: A van Benthem theorem for
modal team semantics. In: CoRR (2014). abs/1410.6648

12. Kontinen, J., Nurmi, V.: Team logic and second-order logic. Fundam. Inform.
106(2–4), 259–272 (2011)

13. Levin, L.A.: Universal search problems. Probl. Inf. Transm. 9(3), 265–266 (1973)
14. Lohmann, P., Vollmer, H.: Complexity results for modal dependence logic. Stud.

Logica 101(2), 343–366 (2013)
15. Orponen, P.: Complexity classes of alternating machines with oracles. In: Diaz,

J. (ed.) Automata, Languages and Programming. LNCS, vol. 154, pp. 573–584.
Springer, Heidelberg (1983)

16. Sano, K., Virtema, J.: Axiomatizing propositional dependence logics. In: CoRR
(2014). abs/1410.5038

17. Väänänen, J.: Dependence Logic. Cambridge University Press, Cambridge (2007)
18. Virtema, J.: Complexity of validity for propositional dependence logics. In: Peron,

A., Piazza, C. (eds.) Proceedings Fifth International Symposium on Games,
Automata, Logics and Formal Verification, GandALF 2014, Verona, Italy. EPTCS,
vol. 161, pp. 18–31, 10–12 September 2014

19. Yang, F.: On extensions and variants of dependence logic. Ph.D. thesis, University
of Helsinki (2014)

20. Yang, F., Väänänen, J.: Propositional logics of dependence and independence. In:
Part I. CoRR (2014). abs/1412.7998

http://arxiv.org/abs/1504.06135
http://arxiv.org/abs/1410.6648
http://arxiv.org/abs/1410.5038
http://arxiv.org/abs/1412.7998

Modal Inclusion Logic: Being Lax is Simpler
than Being Strict

Lauri Hella1, Antti Kuusisto2, Arne Meier3(B), and Heribert Vollmer3

1 School of Information Sciences, University of Tampere,
Kanslerinrinne 1 B, 33014 Tampere, Finland

lauri.hella@uta.fi
2 Department of Philosophy, Stockholm University, SE-106 91 Stockholm,

Sweden and DTU Compute, Technical University of Denmark,
Richard Petersens Plads 324, 2800 Kgs. Lyngby, Denmark

antti.j.kuusisto@gmail.com
3 Institut für Theoretische Informatik, Leibniz Universität Hannover,

Appelstr. 4, 30167 Hannover, Germany
{meier,vollmer}@thi.uni-hannover.de

Abstract. We investigate the computational complexity of the satisfi-
ability problem of modal inclusion logic. We distinguish two variants of
the problem: one for strict and another one for lax semantics. The com-
plexity of the lax version turns out to be complete for EXPTIME, whereas
with strict semantics, the problem becomes NEXPTIME-complete.

1 Introduction

Dependence logic was introduced by Jouko Väänänen [13] in 2007. It is a first-
order logic that enables one to explicitly talk about dependencies between vari-
ables. It thereby generalizes Henkin quantifiers and also, in a sense, Hintikka’s
independence-friendly logic. Dependence logic can be used to formalize phenom-
ena from a plethora of scientific disciplines such as database theory, social choice
theory, cryptography, quantum physics, and others. It extends first-order logic
by specific terms dep(x1, . . . , xn−1, xn) known as dependence atoms, expressing
that the value of the variable xn depends on the values of x1, . . . , xn−1, i.e., xn

is functionally determined by x1, . . . , xn−1. As such a dependence does not make
sense when talking about single assignments, formulas are evaluated over sets of
assignments, called teams. The semantics of the atom dep(x1, . . . , xn−1, xn) is
defined such that it is true in a team T if in the set of all assignments in T , the
value of xn is functionally determined by the values of x1, . . . , xn−1.

In addition to dependence atoms, also generalized dependency atoms have
been introduced in the literature. Examples include the independence atom
(asserting that two sets of variables are informationally independent in a team),
the non-emptiness atom (asserting that the team is non-empty), and, most
importantly to the present paper, the inclusion atom �x ⊆ �y for vectors of vari-
ables �x, �y, asserting that in a team, the set of tuples assigned to �x is included

c© Springer-Verlag Berlin Heidelberg 2015
G.F. Italiano et al. (Eds.): MFCS 2015, Part I, LNCS 9234, pp. 281–292, 2015.
DOI: 10.1007/978-3-662-48057-1 22

282 L. Hella et al.

in the set of tuples assigned to �y. This corresponds to the definition of inclusion
dependencies in database theory, which state that all tuples of values taken by
the attributes �x are also taken by the attributes �y.

Väänänen [14] also introduced dependence atoms into modal logic. There
teams are sets of worlds, and a dependence atom dep(p1, . . . , pn−1, pn) holds in
a team T if there is a Boolean function that determines the value of pn from the
values of p1, . . . , pn−1 in each world in T . The so obtained modal dependence logic
MDL was studied from the point of view of expressivity and complexity in [12].
Following the above mentioned developments in first-order dependence logic,
modal dependence logic was also extended by generalized dependency atoms in
[7], such as, e.g., independence atoms and inclusion atoms.

In the context of first-order dependence logic and its variants, two alternative
kinds of team semantics have been distinguished, lax and strict semantics [2].
Lax semantics is the standard team semantics, while for strict semantics, some
additional uniqueness or strictness properties are required. In the modal context,
this mainly concerns the diamond modality ♦. Usually, i.e., in lax semantics, a
formula ♦ϕ holds in a team T if there is a team S such that every world in T has
at least one successor in S and ϕ holds in S. (Also, the worlds in S are required
to have a predecessor in T .) In strict semantics, we require that S contains, for
every world in T , a unique successor given by a surjection f : T → S. (In first-
order logic, strict semantics for the existential quantifier is defined similarly.) In
both the modal and the first-order context, the operator known as splitjunction
is also defined differently for lax and strict semantics (see Sect. 2 below).

For many variants of first-order and modal dependence logic, there is no dis-
tinction in expressive power between the two semantics. However, the choice of
semantics plays a role in independence and inclusion logics, i.e., team semantics
over (first-order) logics with the independence and inclusion atoms. For exam-
ple, in the first-order case, inclusion logic under strict semantics has the same
expressive power as dependence logic, i.e., ESO (existential second order logic)
[3] and hence NP, while under lax semantics it is equivalent to greatest fixpoint
logic and hence can express exactly the polynomial-time decidable properties
over finite ordered structures.

The purpose of the present paper is to exhibit a further context in which
a quite dramatic difference between the two flavours of team semantics exists.
We turn to modal inclusion logic and study the computational complexity of
its satisfiability problem. For lax semantics, we show EXPTIME-completeness by
proving the upper bound via a translation to a variant of PDL, and the lower
bound by a reduction from a succinct encoding of a P-complete problem. Satisfi-
ability under strict semantics is shown NEXPTIME-complete using a translation
into two-variable logic with counting (upper bound) and a chain of reductions
from a dependence version of QBF-validity (lower bound). The complexity dif-
ference also holds for the finite satisfiability problem.

Modal Inclusion Logic: Being Lax is Simpler than Being Strict 283

2 Preliminaries

Let Π be a countably infinite set of proposition symbols. The set of formulas of
modal inclusion logic MInc is defined inductively by the following grammar.

ϕ ::= p | ¬p | (ϕ1 ∧ ϕ2) | (ϕ1 ∨ ϕ2) | p1 · · · pk ⊆ q1 · · · qk | �ϕ | ♦ϕ,

where p, p1, . . . , pk, q1, . . . , qk ∈ Π are proposition symbols and k is any positive
integer. The formulas p1 · · · pk ⊆ q1 · · · qk are called inclusion atoms. For a set
Φ ⊆ Π, we let MInc(Φ) be the sublanguage where propositions from Φ are used.
Observe that formulas are essentially in negation normal form; negations may
occur only in front of proposition symbols.

A Kripke model is a structure M = (W,R, V), where W �= ∅ is a set (the
domain of the model, or the set of worlds/states), R ⊆ W × W is a binary rela-
tion (the accessibility or transition relation), and V : Π → P(W) is a valuation
interpreting the proposition symbols. Here P denotes the power set operator.

The language of basic unimodal logic is the sublanguage of MInc without
formulas p1 · · · pk ⊆ q1 · · · qk. We assume that the reader is familiar with standard
Kripke semantics of modal logic; we let M,w � ϕ denote the assertion that the
point w ∈ W of the model M satisfies ϕ according to standard Kripke semantics.
We use the symbol � in order to refer to satisfaction according to standard
Kripke semantics, while the symbol |= will be reserved for team semantics, to
be defined below, which is the semantics MInc is based on.

Let T be a subset of the domain W of a Kripke model M . The set T is called
a team. The semantics of the inclusion atoms p1 · · · pk ⊆ q1 · · · qk is defined such
that M,T |= p1 · · · pk ⊆ q1 · · · qk iff for each u ∈ T , there exists a point v ∈ T
such that

∧
i ∈ {1,..,k}

(
u ∈ V (pi) ⇔ v ∈ V (qi)

)
. The intuition here is that every

vector of truth values taken by p1, . . . , pk, is included in the set of vectors of
truth values taken by q1, . . . , qk.

Let M = (W,R, V) be a Kripke model and T ⊆ W a team. Define the
set of successors of T ⊆ W to be R(T) := {s ∈ W | ∃s′ ∈ T : (s′, s) ∈ R}.
Also define R〈T 〉 := {T ′ ⊆ W | ∀s ∈ T∃s′ ∈ T ′ s.t. (s, s′) ∈ R and ∀s′ ∈
T ′ ∃s ∈ T s.t. (s, s′) ∈ R }, the set of legal successor teams. The following
clauses together with the above clause for inclusion atoms define lax semantics
for MInc.

M,T |=� p ⇔ w ∈ V (p) for all w ∈ T.
M, T |=� ¬p ⇔ w �∈ V (p) holds for all w ∈ T.
M, T |=� ϕ ∧ ψ⇔ M,T |=� ϕ and M,T |=� ψ.
M, T |=� ϕ ∨ ψ⇔ M,S |=� ϕ and M,S′ |=� ψ for some S, S′ ⊆ T such that

we have S ∪ S′ = T.
M, T |=� �ϕ ⇔ M,R(T) |=� ϕ.
M, T |=� ♦ϕ ⇔ ∃T ′ ∈ R〈T 〉 : M,T ′ |=� ϕ

The other semantics for MInc, strict semantics, differs from the lax semantics
only in its treatment of the disjunction ∨ and diamond ♦. Therefore, all other

284 L. Hella et al.

clauses in the the definition of |=s are the same as those for |=�. The clauses for
∨ and ♦ in strict semantics are as follows.

M,T |=s ϕ ∨ ψ ⇔ M,S |=s ϕ and M,S′ |=s ψ for some S, S′ ⊆ T such that
S ∪ S′ = T and S ∩ S′ = ∅.

M, T |=s ♦ϕ ⇔ M,f(T) |=s ϕ for some function f : T → W such that
(u, f(u)) ∈ R for all u ∈ T. (Here f(T) = { f(u) |u ∈ T }.)

The difference between lax and strict semantics is as the terms suggest. In
strict semantics, the division of a team with the splitjunction ∨ is strict; no point
is allowed to occur in both parts of the division contrarily to lax semantics. For
♦, strictness is related to the use of functions when finding a team of successors.

It is well known and easy to show that for a formula ϕ of modal logic, i.e.,
a formula of MInc without inclusion atoms, M,T |=� ϕ iff ∀w ∈ T (M,w � ϕ),
where � denotes satisfaction in the standard sense of Kripke semantics. The
same equivalence holds for |=s. This is the so-called flatness property.

The satisfiability problem of MInc with lax (strict) semantics, is the problem
that asks, given a formula ϕ of MInc, whether there exists a nonempty team T
and a model such that M,T |=� ϕ (M,T |=s ϕ) holds. Two different problems
arise, depending on whether lax or strict semantics is used. The corresponding
finite satisfiability problems require that a satisfying model has a finite domain.

3 Computational Complexity

3.1 Upper Bound for Lax Semantics

In this section we show that the satisfiability and finite satisfiability problems
of MInc with lax semantics are in EXPTIME. The result is established by an
equivalence preserving translation to propositional dynamic logic extended with
the global and converse modalities. It is well-known that this logic is complete
for EXPTIME (see [1,6,15]). In fact, we will only need multimodal logic with the
global modality and converse modalities for our purposes.

Let Π and R be countably infinite sets of proposition and binary rela-
tion symbols, respectively. We define the following modal language L via
ϕ ::= p | ¬ϕ | (ϕ1 ∧ ϕ2) | 〈R〉ϕ | 〈R−1〉ϕ | 〈E〉ϕ. Here p ∈ Π, R ∈ R, and
E is a novel symbol. The (classical Kripke-style) semantics of L is defined with
respect to ordinary pointed Kripke models (M,w) for multimodal logic. Let
M = (W, {R}R∈R, V) be a Kripke model, where V : Π → P(W) is the valua-
tion function interpreting proposition symbols. The following clauses define the
semantics of L (notice that we use the turnstile � instead of |=, which is reserved
for team semantics in this paper).

M,w � p ⇔ w ∈ V (p) and M,w � ¬ϕ ⇔ M,w �� ϕ
M,w � ϕ1 ∧ ϕ2 ⇔ M,w � ϕ1 and M,w � ϕ2

M,w � 〈R〉ϕ ⇔ M,u � ϕ for some u such that wRu
M,w � 〈R−1〉ϕ ⇔ M,u � ϕ for some u such that uRw
M,w � 〈E〉ϕ ⇔ M,u � ϕ for some u ∈ W

Modal Inclusion Logic: Being Lax is Simpler than Being Strict 285

We next define a satisfiability preserving translation from modal inclusion
logic to L. We let [R] and [E] denote ¬〈R〉¬ and ¬〈E〉¬, respectively. Before we
fix the translation, we define some auxiliary formulas.

Let θ be a formula of MInc. We let SUB(θ) denote the set of subformulas
of θ; we distinguish all instances of subformulas, so for example p ∧ p has three
subformulas (the right and the left instances of p and the conjunction itself).
For each formula ϕ ∈ SUB(θ), fix a fresh proposition symbol pϕ that does not
occur in θ. We next define, for each ϕ ∈ SUB(θ), a novel auxiliary formula χϕ.

If ϕ ∈ SUB(θ) is a literal p or ¬p, we define χϕ := [E]
(

pϕ → ϕ
)
.

Now fix a symbol R ∈ R, which will ultimately correspond to the diamond
used in modal inclusion logic. For the remaining subformulas ϕ of θ, with the
exception of inclusion atoms, the formula χϕ is defined as follows.

1. χϕ∧ψ := [E]
(

(pϕ∧ψ ↔ pϕ) ∧ (pϕ∧ψ ↔ pψ)
)

2. χϕ∨ψ := [E]
(

pϕ∨ψ ↔ (pϕ ∨ pψ)
)

3. χ�ϕ := [E]
(

(p�ϕ → [R]pϕ) ∧ (pϕ → 〈R−1〉p�ϕ)
)

4. χ♦ϕ := [E]
(

(p♦ϕ → 〈R〉pϕ) ∧ (pϕ → 〈R−1〉p♦ϕ

))
We then define the formulas χα, where α ∈ SUB(θ) is an inclusion atom.

We appoint a fresh binary relation Rα for each inclusion atom in θ. Assume α
denotes the inclusion atom p1 · · · pk ⊆ q1 · · · qk. We define

χ+
α :=

∧
i ∈ {1,..,k}

[E]
(
(pα ∧ pi) → 〈Rα〉(pα ∧ qi)

)
,

χ−
α :=

∧
i ∈ {1,..,k}

[E]
(
(pα ∧ ¬pi) → 〈Rα〉(pα ∧ ¬qi)

)
,

χα := χ+
α ∧ χ−

α ∧ ∧
i ∈ {1,...,k}

[E]
(〈Rα〉qi → [Rα]qi

)
.

Finally, we define ϕθ := pθ ∧ ∧
ϕ ∈SUB(θ)

χϕ .

Theorem 1. The satisfiability and finite satisfiability problems for modal inclu-
sion logic with lax semantics are in EXPTIME.

Proof. We will show that any formula θ of modal inclusion logic is satisfiable
iff its translation ϕθ is. Furthermore, θ is satisfiable over a domain W iff ϕθ is
satisfiable over W , whence we also get the desired result for finite satisfiability; L
has the finite model property since it clearly translates to two-variable logic via a
simple extension of the standard translation (see [1] for the standard translation).

Let M = (W,R, V) be a Kripke model. Let I(θ) ⊆ SUB(θ) be the set of
inclusion atoms in θ. Assume that M,X |=� θ, where X is a nonempty team.
We next define a multimodal Kripke model N := (W,R, {Rα}α ∈ I (θ), V ∪ U),
where U : { pϕ | ϕ ∈ SUB(θ)} → P(W) extends the valuation function V .

Define U(pθ) = X. Thus we have M,U(pθ) |=� θ. Working from the root
towards the leaves of the parse tree of θ, we next interpret the remaining predi-
cates pϕ inductively such that the condition M,U(pϕ) |=� ϕ is maintained.

Assume U(pψ∧ψ′) has been defined. We define U(pψ) = U(pψ′) = U(pψ∧ψ′).
As M,U(pψ∧ψ′) |=� ψ ∧ ψ′, we have M,U(pψ) |=� ψ and M,U(pψ′) |=� ψ′.

286 L. Hella et al.

Assume then that U(pψ∨ψ′) has been defined. Thus there exist sets S and S′

such that M,S |=� ψ and M,S′ |=� ψ′, and furthermore, S ∪ S′ = U(pψ∨ψ′).
We define U(pψ) = S and U(pψ′) = S′. Consider then the case where U(p♦ϕ)
has been defined. Call T := U(p♦ϕ). As M,T |=� ♦ϕ, there exists a set T ′ ⊆ W
such that each point in T has an R-successor in T ′, and each point in T ′ has an
R-predecessor in T , and furthermore, M,T ′ |=� ϕ. We set U(pϕ) := T ′. Finally,
in the case for p�ϕ, the set U(pϕ) is defined to be the set of points that have an
R-predecessor in U(p�ϕ).

We have now fixed an interpretation for each of the predicates pϕ. The
relations Rα, where α is an inclusion atom, remain to be interpreted. Let
p1 · · · pk ⊆ q1 · · · qk be an inclusion atom in θ, and denote this atom by α. Call
T := U(pα). Let u ∈ T . Since M,T |=� α, there exists a point v ∈ T such that
for each i ∈ {1, . . . , k}, u ∈ V (pi) iff v ∈ V (qi). Define the pair (u, v) to be in Rα.
In this fashion, consider each point u in T and find exactly one corresponding
point v for u, and put the pair (u, v) into Rα. This fixes the interpretation of Rα.

Let w ∈ X = U(pθ). Recalling how the sets U(pϕ) were defined, it is now
routine to check that N,w � ϕθ.

We then consider the converse implication of the current theorem. Thus we
assume that N,w � ϕθ, where N is some multimodal Kripke model in the
signature of ϕθ and w a point in the domain of N . We let W denote the domain
and V the valuation function of N .

For each ϕ ∈ SUB(θ), define the team Xϕ := V (pϕ). We will show by
induction on the structure of θ that for each ϕ ∈ SUB(θ), we have N,Xϕ |=� ϕ.
Once this is done, it is clear that M,Xθ |=� θ, where M is the restriction of N
to the signature of θ, and we have Xθ �= ∅.

Now recall the definition of the formulas χϕ, where ϕ ∈ SUB(θ). Let p ∈
SUB(θ). It is clear that N,Xp |=� p, since N,w � χp. Similarly, we infer that
N,X¬q |=� ¬q for ¬q ∈ SUB(θ).

Consider then a subformula p1 · · · pk ⊆ q1 · · · qk of ϕ. Denote this inclusion
atom by α. Consider a point u ∈ Xα. If u satisfies pi for some i ∈ {1, . . . , k},
then we infer that since N,w � χ+

α , there exists a point vi ∈ Xα that satisfies qi.
Similarly, if u satisfies ¬pj , we infer that since N,w � χ−

α , there exists a point
vj ∈ Xα that satisfies ¬qj . To conclude that N,Xα |=� α, it suffices to show
that all such points vi and vj can be chosen such that such that vi = vj for all
i, j ∈ {1, . . . , k}. This follows due to the third conjunct of χα.

Having established the basis of the induction, the rest of the argument is
straightforward. We consider explicitly only the case where the subformula under
consideration is ♦ϕ. Here we simply need to argue that for each u ∈ X♦ϕ, there
exists a point v ∈ Xϕ such that uRv, and for each u′ ∈ Xϕ, there exists a point
v′ ∈ X♦ϕ such that v′Ru′. This follows directly, since N,w � χ♦ϕ. ��

3.2 Lower Bound for Lax Semantics

In this section we prove that the satisfiability problem of MInc with lax semantics,
MInc-lax-SAT, is hard for EXPTIME. We do this by reducing the succinct version

Modal Inclusion Logic: Being Lax is Simpler than Being Strict 287

of the following P-hard problem to it which is closely related to the problem
PATH SYSTEMS [4, p. 171].

Definition 1. Let PER be the following problem: An instance of PER is a struc-
ture A = (A,S) with A = {1, . . . , n} and S ⊆ A3. A subset P of A is S-persistent
if it satisfies the condition (∗) if i ∈ P , then there are j, k ∈ P such that
(i, j, k) ∈ S. A is a positive instance if n ∈ P for some S-persistent set P ⊆ A.

It is well known that structures (A,S) as above can be represented in a succinct
form by using Boolean circuits. Namely if C is Boolean circuit with 3 · l input
gates then it defines a structure AC = (AC , SC) given below. We use here the
notation
(a1, . . . , al) for the natural number i, whose binary representation is
(a1, . . . , al). Let AC = {1, . . . , 2l}, and for all i, j, k ∈ A, let (i, j, k) ∈ SC if
and only if C accepts the input tuple (a1, . . . , al, b1, . . . , bl, c1, . . . , cl) ∈ {0, 1}3l,
where i =
(a1, . . . , al), j =
(b1, . . . , bl) and k =
(c1, . . . , cl). We say that C is
a succinct representation of AC .

Definition 2. The succinct version of PER, S-PER, is the following problem:
An instance of S-PER is a circuit C with 3l input gates. C is a positive instance,
if AC is a positive instance of PER.

Proposition 1. S-PER is EXPTIME-hard with respect to PSPACE reductions.

Proof. (Idea.) The succinct version of the CIRCUIT VALUE problem is poly-
nomial space reducible to S-PER. Since succinct CIRCUIT VALUE is known to
be EXPTIME-complete (see [9, Sect.20]), the claim follows. For the details of the
proof, see the technical report [5]. ��

We will next show that S-PER is polynomial time reducible to the satisfiabil-
ity problem of MInc with lax semantics, and hence the latter is also EXPTIME-
hard. In the proof we use the following notation: If T is a team and p1, . . . , pn

are proposition symbols, then T (p1, . . . , pn) is the set of all tuples (a1, . . . , an) ∈
{0, 1}n such that for some w ∈ T , at = 1 ⇐⇒ w ∈ V (pt) for t ∈ {1, . . . , n}.
Note that the semantics of inclusion atoms can now be expressed as

M,T |= p1 · · · pn ⊆ q1 · · · qn ⇐⇒ T (p1, . . . , pn) ⊆ T (q1, . . . , qn).

Theorem 2. The satisfiability and finite satisfiability problems for MInc with
lax semantics are hard for EXPTIME with respect to PSPACE reductions.

Proof. Let C be a Boolean circuit with 3l input gates. Let g1, . . . , gm be the
gates of C, where g1, . . . , g3l are the input gates and gm is the output gate. We
fix a distinct Boolean variable pi for each gate gi. Let Φ be the set {p1, . . . , pm}
of proposition symbols. We define for each i ∈ {3l + 1, . . . , m} a formula θi ∈
MInc(Φ) that describes the correct operation of the gate gi:

θi =

⎧⎪⎨
⎪⎩

pi ↔ ¬pj if gi is a NOT gate with input gj

pi ↔ (pj ∧ pk) if gi is an AND gate with inputs gj and gk

pi ↔ (pj ∨ pk) if gi is an OR gate with inputs gj and gk

288 L. Hella et al.

Let ψC be the formula
(∧

3l+1≤i≤m θi

) ∧ pm. Thus, ψC essentially says that the
truth values of pi, 1 ≤ i ≤ m, match an accepting computation of C.

Now we can define a formula ϕC of MInc(Φ) which is satisfiable if and only if
C is a positive instance of S-PER. For the sake of readability, we denote here the
variables corresponding to the input gates gl+1, . . . , g2l by q1, . . . , ql. Similarly,
we denote the variables p2l+1, . . . , p3l by r1, . . . , rl.

ϕC := ψC ∧ q1 · · · ql ⊆ p1 · · · pl ∧ r1 · · · rl ⊆ p1 · · · pl ∧ pm · · · pm ⊆ p1 · · · pl.

Note that ϕC can clearly be constructed from the circuit C in polynomial time.
Assume first that ϕC is satisfiable. Thus there is a Kripke model M =

(W,R, V) and a nonempty team T of M such that M,T |=� ϕC . Consider the
model AC = (AC , SC) that corresponds to the circuit C. We define a subset P
of AC as follows: P := {
(a1, . . . , al) | (a1, . . . , al) ∈ T (p1, . . . , pl)}.

Observe first that since M,T |=� pm and M,T |=� pm · · · pm ⊆ p1 · · · pl,
(1, . . . , 1) ∈ T (p1, . . . , pl) and hence 2l =
(1, . . . , 1) ∈ P . Thus, it suffices to
show that P is SC-persistent. To prove this, assume that i =
(a1, . . . , al) ∈ P .
Then there is a state w ∈ T such that w ∈ V (pt) ⇐⇒ at = 1 for 1 ≤ t ≤ l.

Define now bt, ct ∈ {0, 1}, 1 ≤ t ≤ l, by the condition

bt = 1 ⇐⇒ w ∈ V (qt) and ct = 1 ⇐⇒ w ∈ V (rt).

As M,T |=� ψC , it follows from flatness that M,w � ψC . By the definition of
ψC , this means that the circuit C accepts the input tuple (a1, . . . , al, b1, . . . , bl,
c1, . . . , cl). Thus, (i, j, k) ∈ SC , where j =
(b1, . . . , bl) and k =
(c1, . . . , cl).

We still need to show that j, k ∈ P . To see this, note that since M,T |=�

q1 · · · ql ⊆ p1 · · · pl, there exists w′ ∈ T such that

w′ ∈ V (pt) ⇐⇒ w ∈ V (qt) ⇐⇒ bt = 1 for 1 ≤ t ≤ l.

Thus, (b1, . . . , bl) ∈ T (p1, . . . , pn), whence j ∈ P . Similarly we see that k ∈ P .
To prove the other implication, assume that C is a positive instance of the

problem S-PER. Then there is an SC-persistent set P ⊆ AC such that 2l ∈ P .
We let M = (W,R, V) be the Kripke model and T the team of M such that

– T = W is the set of all tuples (a1, . . . , am) ∈ {0, 1}m that correspond to
an accepting computation of C and for which
(a1, . . . , al),
(al+1, . . . , a2l),

(a2l+1, . . . , a3l) ∈ P ,

– R = ∅, and V (pt) = {(a1, . . . , am) ∈ W | at = 1} for 1 ≤ t ≤ m.

We will now show that M,T |=� ϕC , whence ϕC is satisfiable. Note first that
M,T |=� ψC , since by the definition of T and V , for any w ∈ T , the truth values
of pi in w correspond to an accepting computation of C.

To prove M,T |=� q1 · · · ql ⊆ p1 · · · pl, assume that (b1, . . . , bl) ∈ T (q1, . . . , ql).
Then i :=
(b1, . . . , bl) ∈ P , and since P is SC-persistent, there are j, k ∈ P such
that (i, j, k) ∈ SC . Thus, there is a tuple (a1, . . . , am) ∈ {0, 1}m corresponding
to an accepting computation of C such that (a1, . . . , al) = (b1, . . . , bl), j =

(al+1, . . . , a2l) and k =
(a2l+1, . . . , a3l). This means that (a1, . . . , am) is in T ,

Modal Inclusion Logic: Being Lax is Simpler than Being Strict 289

and hence (b1, . . . , bl) ∈ T (p1, . . . , pl). The claim M,T |=� r1 · · · rl ⊆ p1 · · · pl is
proved in the same way.

Note that since M,T |= pm, we have T (pm, . . . , pm) = {(1, . . . , 1)}. Fur-
thermore, since 2l =
(1, . . . , 1) ∈ P and P is SC-persistent, there is an ele-
ment (a1, . . . , am) ∈ T such that (a1, . . . , al) = (1, . . . , 1). Thus, we see that
(1, . . . , 1) ∈ T (p1, . . . , pl), and consequently M,T |=� pm · · · pm ⊆ p1 · · · pl. ��
Corollary 1. The satisfiability and finite satisfiability problems of modal inclu-
sion logic with lax semantics are EXPTIME-complete with respect to PSPACE
reductions.

Note that the formula ϕC used in the proof of Theorem2 is in propositional
inclusion logic, i.e., it does not contain any modal operators. Thus, our proof
shows that the satisfiability problem of propositional inclusion logic is already
EXPTIME-hard. Naturally, this problem is also in EXPTIME, since propositional
inclusion logic is a fragment of MInc.

Corollary 2. The satisfiability and finite satisfiability problems of propositional
inclusion logic with lax semantics are EXPTIME-complete with respect to PSPACE
reductions.

3.3 Upper Bound for Strict Semantics

In this section we show that the satisfiability and finite satisfiability problems
for MInc with strict semantics are in NEXPTIME. The proof is a simple adapta-
tion of the upper bound argument for lax semantics, but uses two-variable logic
with counting, FOC2, which has NEXPTIME-complete satisfiability and finite
satisfiability problems [11] (but no finite model property).

Let θ be a formula of MInc. The equisatisfiable translation of θ is obtained
from the formula ϕθ, which we defined when considering lax semantics. It is
clear that ϕθ translates via a simple extension of the standard translation into
FOC2; see [1] for the standard translation of modal logic. Let t(ϕθ) denote the
FOC2-formula obtained by using the (extension of the) standard translation. For
each ϕ ∈ SUB(ϕθ), let t(χϕ) denote the translation of the subformula χϕ of ϕθ;
see the argument for lax semantics for the definition of the formulas χϕ. The
only thing we now need to do is to modify the formulas t(χ♦ϕ) and t(χϕ∨ψ).

In the case of t(χϕ∨ψ), we simply add a conjunct stating that the unary
predicates pϕ and pψ are interpreted as disjoint sets: ¬∃x(pϕ(x) ∧ pψ(x)).

To modify the formulas t(χ♦ϕ), we appoint a novel binary relation R♦ϕ for
each formula ♦ϕ ∈ SUB(θ). We then define the formula β which states that R♦ϕ

is a function from the interpretation of p♦ϕ onto the interpretation of pϕ.

β := ∀x
(
p♦ϕ(x) → ∃=1y(R♦ϕxy ∧ pϕ(y)

) ∧ ∀x∀y
(
R♦ϕxy → (p♦ϕ(x) ∧ pϕ(y))

)
∧ ∀y

(
pϕ(y) → ∃x(p♦ϕ(x) ∧ R♦ϕxy)

)
.

Define β′ := ∀x∀y
(
R♦ϕxy → Rxy

)
, where R is the accessibility relation of modal

inclusion logic. The conjunction β ∧ β′ is the desired modification of t(χ♦ϕ).

290 L. Hella et al.

The modification of t(ϕθ), using the modified versions of t(χϕ∨ψ) and t(χ♦ϕ),
is the desired FOC2-formula equisatisfiable with θ. The proof of the following
theorem is practically identical to the corresponding argument for lax semantics.

Theorem 3. The satisfiability and finite satisfiability problems for MInc with
strict semantics are in NEXPTIME.

3.4 Lower Bound for Strict Semantics

Theorem 4. The satisfiability and finite satisfiability problems for MInc with
strict semantics are NEXPTIME-hard.

Proof. We will provide a chain of reductions from Dependence-QBF-Validity (in
short DQBF-VAL) to Inclusion-QBF-Validity (in short IncQBF-VAL), and finally
to satisfiability of MInc with strict semantics.

Peterson et al. [10] introduced a so-to-speak dependence version of QBF by
extending the usual QBF syntax to allow stating on which universally quanti-
fied propositions an existentially quantified proposition solely depends. Instances
of the problem are of the form (∀p1)(∃q1\P1) · · · (∀pk)(∃qk\Pk) ϕ (�), where
each set Pi contains a subset of the propositions {p1, . . . , pi} quantified univer-
sally superordinate to qi, and ϕ is a propositional logic formula in the variables
{p1, . . . , pk} ∪ {q1, . . . , qk}. The set Pi indicates that the choice for the value of
qi is given by a Boolean function that takes as inputs only the values of the
variables in Pi (see [10] for the full details).

By well-known standard arguments in the field of team semantics, it is easy
to show that the formula of Eqn. (�) can be written in the alternative form
(where pi lists the variables in Pi)

(∀p1)(∃q1) · · · (∀pk)(∃qk)
(
ϕ ∧

∧
i∈{1,...,k}

dep(pi, qi)
)
, (1)

with the following semantics (where M is a Kripke model and T is a team).

– M,T |= ∀p ψ iff M ′, T p |= ψ, where T p is obtained from T by simultaneously
replacing each w ∈ T by two new worlds u, v that agree with w on all propo-
sitions other than p, and the points u, v disagree with each other on p. M ′

is obtained from M by modifying the domain W of M to the new domain
W ′ = T p ∪ (W \ T), and modifying the valuation of M to a new one that
agrees with the specification of T p; outside T p the new valuation agrees with
the old one. The accessibility relation does not play a role here.

– M,T |= ∃p ψ iff M ′, Tp |= ψ, where Tp is obtained from T by simultaneously
replacing each w ∈ T by a new world u that agrees with w on propositions
other than p, and may or may not agree with w on p. Similarly to the case
above, M ′ is obtained from M by modifying the domain W of M to the new
domain W ′ = Tp ∪ (W \ T), and modifying the valuation of M to a new one
that agrees with the specification of Tp; outside Tp the new valuation agrees
with the old one. The accessibility relation does not play a role here.

Modal Inclusion Logic: Being Lax is Simpler than Being Strict 291

– The connectives ∨ and ∧ are interpreted exactly as in the case of modal
inclusion logic using strict semantics. Literals p, ¬p are also interpreted as in
modal inclusion logic.

– M,T |= dep(p1, . . . , pk, q) if each pair of worlds in T that agree on the truth
values of each of the propositions p1, . . . , pk, also agree on the value of q.

Our formulation of the DQBF-VAL problem of Peterson et al. [10], with
alternative inputs such as those in Eq. 1, is equivalent to the original problem.
Peterson et al. showed that their problem lifts the computational complexity
from PSPACE-completeness (for the standard quantified Boolean formula valid-
ity) to in fact NEXPTIME-completeness.

Inclusion-QBF (IncQBF) is a language obtained from our formulation of
the Dependence-QBF (DQBF). It translates the expressions dep(p1, . . . , pk, q)
to inclusion atoms in the way we next describe. Inspired by Galliani et al.
[3], we observe that inclusion atoms can simulate formulas dep(p1, . . . , pk, q),
as the following example demonstrates: ∀p∀q∃r(dep(q, r) ∧ ϕ) is equivalent to
∀p∀q∃r(∀s(sqr ⊆ pqr)∧ϕ), where ϕ is a formula of propositional logic. This can
be generalized to work for expressions with conjunctions of atoms dep(p1, . . . , pk,
q) for arbitrary k.

Now, for the last step, we need to explain how IncQBF-VAL finally reduces
to MInc-strict-SAT. This is just a slight modification of the standard proof of
Ladner showing PSPACE-hardness of plain modal logic via a reduction from
QBF validity [8]. The idea is to enforce a complete assignment tree. Further,
one uses clause propositions which are true if the corresponding literal holds.
Let us denote the formula which enforces the described substructure by ϕstruc

(for details, see [8]). The final formula is obtained from an IncQBF-VAL instance
∃r1∀r2 · · · �rn(ϕ ∧ χ) where ϕ is the conjunctive normal form formula and χ is
the conjunction of the inclusion atoms (stemming from the translation above);
the final formula is then a formula of type ϕstruc∧♦� · · · �(ϕ∧χ), where � = �
if � = ∀ and � = ♦ if � = ∃. Let us denote this translation by the function
f which can be computed in polynomial time. Then it is easy to verify that
ϕ ∈ IncQBF-VAL iff f(ϕ) ∈ MInc-strict-SAT. It is straightforward to observe
that this covers also the case for finite satisfiability. ��
Corollary 3. The satisfiability and finite satisfiability problems of modal inclu-
sion logic with strict semantics are NEXPTIME-complete.

4 Conclusion

We have compared the strict and lax variants of team semantics from the
perspective of satisfiability problems for modal inclusion logic MInc. Interest-
ingly, the problems differ in complexity. Strict semantics leads to NEXPTIME-
completeness, while lax semantics gives completeness for EXPTIME. For the jour-
nal version we plan to include a stronger polynomial-time reduction result for
the EXPTIME lower bound of MInc-lax-SAT. In the future it will be interest-
ing to study model checking problems for MInc under strict and lax semantics.

292 L. Hella et al.

Also, the complexity of validity problems for MInc and, related to this, proof-
theoretic properties of the logic remain to be investigated.

Acknowledgements. The authors thank the anonymous referees for their comments.
The third author is supported by DFG grant ME 4279/1-1. The second author acknowl-
edges support from Jenny and Antti Wihuri Foundation.

References

1. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University Press,
Cambridge (2001)

2. Galliani, P.: Inclusion and exclusion dependencies in team semantics - on some
logics of imperfect information. Ann. Pure Appl. Logic 163(1), 68–84 (2012)

3. Galliani, P., Hannula, M., Kontinen, J.: Hierarchies in independence logic. In:
Ronchi Della Rocca, S. (ed.) Proceedings of Computer Science Logic 2013. Leibniz
International Proceedings in Informatics (LIPIcs), vol. 23, pp. 263–280 (2013)

4. Greenlaw, R., Hoover, H.J., Ruzzo, W.L.: Limits to Parallel Computation:
P-Completeness Theory. Oxford University Press, Oxford (1995)

5. Hella, L., Kuusisto, A., Meier, A., Vollmer, H.: Modal inclusion logic: Being lax is
simpler than being strict. arXiv, 1504.06409 (2015)

6. Hemaspaandra, E.: The price of universality. Notre Dame J. Formal Logic 37(2),
174–203 (1996)

7. Kontinen, J., Müller, J.-S., Schnoor, H., Vollmer, H.: Modal independence logic. In:
Goré, R., Kooi, B.P., Kurucz, A. (eds.) Proceedings of Advances in Modal Logic,
vol. 10, pp. 353–372. College Publications, London (2014)

8. Ladner, R.: The computational complexity of provability in systems of modal
propositional logic. SIAM J. Comput. 6(3), 467–480 (1977)

9. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Reading (1994)
10. Peterson, G., Azhar, S., Reif, J.H.: Lower bounds for multiplayer noncooperative

games of incomplete information. Comput. Math. Appl. 41, 957–992 (2001)
11. Pratt-Hartmann, I.: Complexity of the two-variable fragment with counting quan-

tifiers. JoLLI 14(3), 369–395 (2005)
12. Sevenster, M.: Model-theoretic and computational properties of modal dependence

logic. J. Logic Comput. 19(6), 1157–1173 (2009)
13. Väänänen, J.: Dependence Logic. Cambridge University Press, Cambridge (2007)
14. Väänänen, J.: Modal dependence logic. In: Apt, K., van Rooij, R. (eds.) New

Perspectives on Games and Interaction, pp. 237–254. Amsterdam University Press,
Amsterdam (2008)

15. van Eijck, J.: Dynamic epistemic logics. In: Baltag, A., Smets, S. (eds.) Johan van
Benthem on Logic and Information Dynamics, pp. 175–202. Springer, Heidelberg
(2014)

Differential Bisimulation for a Markovian
Process Algebra

Giulio Iacobelli1, Mirco Tribastone2(B), and Andrea Vandin2

1 Computing and Systems Engineering, Federal University of Rio de Janeiro,
Rio de Janeiro, Brazil

2 IMT Institute for Advanced Studies Lucca, Lucca, Italy
mirco.tribastone@imtlucca.it

Abstract. Formal languages with semantics based on ordinary differ-
ential equations (ODEs) have emerged as a useful tool to reason about
large-scale distributed systems. We present differential bisimulation, a
behavioral equivalence developed as the ODE counterpart of bisimula-
tions for languages with probabilistic or stochastic semantics. We study
it in the context of a Markovian process algebra. Similarly to Markovian
bisimulations yielding an aggregated Markov process in the sense of the
theory of lumpability, differential bisimulation yields a partition of the
ODEs underlying a process algebra term, whereby the sum of the ODE
solutions of the same partition block is equal to the solution of a single
(lumped) ODE. Differential bisimulation is defined in terms of two sym-
metries that can be verified only using syntactic checks. This enables the
adaptation to a continuous-state semantics of proof techniques and algo-
rithms for finite, discrete-state, labeled transition systems. For instance,
we readily obtain a result of compositionality, and provide an efficient
partition-refinement algorithm to compute the coarsest ODE aggregation
of a model according to differential bisimulation.

1 Introduction

There has been increasing attention to models of computation based on ordi-
nary differential equations (ODEs). This has been mainly prompted by a line of
research which interprets an ODE as the deterministic (called fluid or mean-field)
approximation [16,17] of a continuous time Markov chain (CTMC) underlying
languages with Markovian semantics [6,11,24]. The ODE semantics provides the
behavior of a (concurrent) program as a continuous trajectory representing the
concentration of processes over time.

In this paper we consider the following problem: How to compare programs
with ODE semantics? Our main contribution is to lift the notion of bisimulation
to languages with ODE semantics. To put it in context, let us draw a parallel with

This work was partially supported by the EU project QUANTICOL, 600708. The
postdoctoral fellowship of G.I. is supported by CAPES. Part of this research has
been carried out while the three authors were at University of Southampton, UK.

c© Springer-Verlag Berlin Heidelberg 2015
G.F. Italiano et al. (Eds.): MFCS 2015, Part I, LNCS 9234, pp. 293–306, 2015.
DOI: 10.1007/978-3-662-48057-1 23

294 G. Iacobelli et al.

established results of aggregation of CTMCs obtained from a Markovian seman-
tics of a high-level language such as process algebra (e.g., [2,4,14]). This involved
finding behavioural relations that induce a partition of the CTMC states which
satisfies the property of ordinary lumpability [3]: a smaller CTMC can be con-
structed where each state (a macro-state) is the representative of the states in a
block; the probability of being in a macro-state is equal to the sum of those of
being in the block’s states. Here we proceed analogously. We introduce differen-
tial bisimulation (DB), an equivalence relation that captures symmetries in the
ODE semantics according to the well-known theory of ODE lumpability [23]: the
solution to each ODE representing an equivalence class is equal at all time points
to the sum of the solutions of the ODEs of the states in that equivalence class.

We study DB for Fluid Extended Process Algebra (FEPA) [25], a fragment
of PEPA [14] with ODE semantics, extended to also capture the product-based
synchronisation mechanism of [4,12]. A FEPA model is a composition of fluid
atoms, each representing a population of identical copies in parallel of the same
sequential process, describing its evolution over its set of local states. The inter-
action between fluid atoms occurs via shared channels. A FEPA model encodes
a family of systems, parametric in the population sizes of each fluid atom. Under
appropriate scaling conditions each member is represented by the same ODEs,
one for each local state of each fluid atom, giving the evolution of the number
of sequential processes exhibiting that local state.

Differential bisimulation is an equivalence relation over local states of a
process. This is in contrast to Markovian bisimulations, which are defined over
states of a CTMC. However, DB can be seen as a natural generalization. Indeed
it consists of two conditions, the first of which is essentially a Larsen-Skou
style bisimulation (cf. [18]) over local states. When a process consists of a
fluid atom with one replica (i.e., a single sequential process), the ODE and the
CTMC semantics coincide, and DB collapses onto strong equivalence, PEPA’s
Markovian bisimulation. In the CTMC case such a condition suffices to imply
lumpability, informally because the CTMC transition diagram of a process term
with an arbitrary synchronization tree structure is isomorphic to the transition
system of a single sequential process (by mapping each CTMC state to a named
choice term). In the ODE semantics, instead, the synchronization structure is
encoded in the function governing the ODE evolution. This is taken into account
with the second condition of DB: we introduce the novel concept of structural
interface, an equivalence relation for local states with same capability to interact
with the environment. Both conditions can be checked statically, i.e., syntacti-
cally over the process term. Due to the relation with Markovian bisimulation, it
is possible to adapt partition-refinement algorithms available for discrete-state
labeled transition systems (e.g. [1,13,20]), offering an efficient way to compute
the coarsest ODE aggregation of a model up to DB.

2 Preliminaries: FEPA

The grammar of FEPA has two levels. The first level specifies a fluid atom, i.e.
a sequential process evolving over a discrete state space. Let A denote the set

Differential Bisimulation for a Markovian Process Algebra 295

of actions and K the set of constants. Each P ∈ K is a sequential component,

defined as P
def
=

∑
i∈IP

(αi, ri).Pi, where IP is an index set,αi ∈ A, ri ∈ R≥0

is a rate, and Pi ∈ K. The multi-set of outgoing transitions from P , denoted

by out(P), is defined as the one containing a transition P
(αi,ri)−−−−→ Pi for each

occurrence of (αi, ri).Pi in the definition of P . We now define the second level of
the grammar. The parallel operator is parameterised by a binary synchronisation
function, denoted by H(·, ·). As discussed, we support two such functions, H =
min and H = · (product). According to the chosen interpretation, fluid atoms
may correspond to, e.g., jobs and servers in a computing system, or to molecular
species in a chemical reaction network.

Definition 1 (FEPA Model). A FEPA model M is generated by

M ::= P :: M ‖H
L M, with L ⊆ A and P ∈ K

Let G(M) be the set of fluid atoms of a FEPA model M, recursively defined
as G(P) = {P}, and G(M1 ‖H

L M2) = G(M1) ∪ G(M2). For P ∈ G(M), the
local states of P , denoted B(P), are the smallest set such that P ∈ B(P) and

if P ′ ∈ B(P) and P ′ (α,r)−−−→ P ′′ ∈ out(P ′), then P ′′ ∈ B(P). We use B(M) for⋃
P∈G(M)B(P). For any two P,Q ∈ G(M), we assume B(P) ∩ B(Q) = ∅. This is

without loss of generality (e.g., by renaming with fresh variables). For P ∈B(M)
we use A(P) for the set of actions labeling transitions from P . The compositional
operator ‖H

L , parametrized by an action set and by the function H, specifies the
type of synchronisation and the channels used for interaction. Notably, different
instantiations of H can appear in a FEPA model.

Example 1. Let MF � P1 ‖H
{α} Q1, with P1, Q1 defined as

P1
def
= (β, r).P2 + (β, r).P3, P2

def
= (α, s).P1, P3

def
= (α, s).P1

Q1
def
= (γ, 2r).Q2, Q2

def
= (α, s).Q1

We now move to the semantics of FEPA, starting from two quantities specifying
local states’ dynamics, independently from their possible interaction with other
local states.

Definition 2 (Apparent and Total Conditional Rate). Let M be a FEPA
model, P ∈ B(M), B ⊆ B(M) and α ∈ A. The α-apparent rate of P and the
total α-conditional transition rate from P to B are defined, respectively, as

rα(P) �
∑

P
(α,r)−−−→P ′∈out(P)

r q[P,B, α] �
∑

P ′∈B

∑
P

(α,r)−−−→P ′∈out(P)

r

The α-apparent rate of a local state P can be understood as a normalized
capacity, i.e., the capacity at which a unitary concentration of P -processes per-
forms α-transitions. The total α-conditional transition rate restricts the former

296 G. Iacobelli et al.

with respect to a set of target local states; e.g., for MF of Example 1 we have
rβ(P1) = 2r, and q[P1, {P2}, β] = r.

Since a fluid atom is a representative of a group of sequential components of
the same type, the specification is completed by fixing the group size.

Definition 3 (Concentration Function). Let M be a FEPA model. We
define an initial population function for M as ν0 : B(M) → N0, and a con-
centration function for M as ν : B(M) → R≥0.

Definition 4 (Population-dependent Apparent Rate). Let M be a FEPA
model, ν a concentration function, and α∈A. The apparent rate of α in M with
respect to ν is

rα(M1 ‖H
L M2, ν)�

{
H(

rα(M1, ν), rα(M2, ν)
)
, if α ∈ L,

rα(M1, ν) + rα(M2, ν), if α /∈ L,

rα(P, ν)�
∑

P ′∈B(P)

νP ′ · rα(P ′) .

The α-apparent rate in M is the total rate at which α can be performed,
for some ν. It is affected by synchronisations, e.g., in MF of Example 1 we
have rα(MF, ν) = min(s νP2 + s νP3 , s νQ2), or rα(MF, ν) = (s νP2 + s νP3)s νQ2 ,
depending on the chosen synchronisation function H. The α-apparent rate in M
is intended as the overall speed at which α is performed in the model; e.g., it
is zero if νQ2 is zero, capturing the blocking effect of synchronisation for both
choices of H.

Definition 5 (Model Influence). Let M be a FEPA model, ν a concentration
function for M, α ∈ A, and P ∈ B(M). The model influence on P due to α in
M is defined as

Fα(M1 ‖H
L M2, ν, P) �

⎧
⎨

⎩

Fα(Mi, ν, P) rα(M1‖H
L M2,ν)

rα(Mi,ν)
, if P ∈ B(Mi), α ∈ L,

Fα(Mi, ν, P), if P ∈ B(Mi), α �∈ L,

Fα(P, ν, P ′) �
{
1 if P ′ ∈ B(P),
0 otherwise,

where rα(M1‖H
L M2,ν)

rα(Mi,ν)
is defined as 0 when rα(Mi, ν) = 0.

Model influence captures the effect exerted by the model M on the rate at which
a local state P performs an action. In other words, the actual α-component
rate of P in M with concentration ν is given by the rate at which P would
evolve on its own, i.e., νP · rα(P), weighted by the influence of the model on it,
i.e., Fα(M, ν, P).

We are now ready to define the ODE semantics of a FEPA model.

Definition 6 (ODE Semantics). Let M be a FEPA model, E ⊆ R
B(M) and f :

E →R
B(M) the vector field whose components are defined for each P ∈ B(M) as:

fP (ν) �
∑
α∈A

∑
P ′∈B(M)

νP ′q(P ′, P, α)Fα(M, ν, P ′) −
∑
α∈A

νP rα(P)Fα(M, ν, P)

Differential Bisimulation for a Markovian Process Algebra 297

The ODE system ν̇ = f(ν) with initial condition ν0 governs the evolution of ν
over time.

The rate of change in the concentration of a local state P depends on the actual
rate at which each local state P ′ performs transitions towards P , minus the
actual rate at which P performs any transition. For instance, the ODEs of MF

of Example 1 are:

ν̇P1 = sH(νP2 + νP3 , νQ2) − 2r νP1 ν̇Q1 = sH(νP2 + νP3 , νQ2) − 2r νQ1

ν̇P2 = r νP1 − s νP2

H(νP2 + νP3 , νQ2)
νP2 + νP3

ν̇Q2 = 2r νP1 − sH(νP2 + νP3 , νQ2)

ν̇P3 = r νP1 − s νP3

H(νP2 + νP3 , νQ2)
νP2 + νP3

(1)

3 Differential Bisimulation and ODE Lumpability

The second level of the FEPA grammar defines a tree-like structure which
strongly affects the ODE semantics. To take this into account in our differen-
tial bisimulation, we introduce the notion of interface actions, which intuitively
captures all actions which affect the dynamics of a local state as a result of an
interaction.

Definition 7 (Bound and Interface Actions). Let M be a FEPA model,
and P ∈ B(M). The set of bound actions of P in M is defined as

D(P,M) �
{

L ∪ D(P,Mi), if M = M1 ‖H
L M2 and P ∈ B(Mi),

∅, otherwise.

Also, theinterface actions of P in M are I(P,M) � D(P,M) ∩ A(P). Lastly,
for any B ⊆ B(M), we use D(B,M) for

⋃
P∈BD(P,M), and I(B,M) for⋃

P∈BI(P,M).

The following notion of structural interface captures symmetries among the
states of a FEPA model with respect to the rigid tree-like structure of the model.

Definition 8 (Structural Interface). Let M be a FEPA model, and P,Q ∈
B(M). Then P and Q have the same structural interface in M, written P

s.i.=M
Q, iff

(i) A(P) = A(Q), and
(ii) if there exists an M = M1 ‖H

L M2 within M with P ∈ B(M1), and Q ∈
B(M2) (or vice versa), then I(P,M) = I(Q,M) = ∅.

Proposition 1. For M a FEPA model, s.i.=M is an equivalence relation.1

1 All proofs are provided in the extended technical report [15].

298 G. Iacobelli et al.

Considering Example 1 we have D(P1,MF) = D(P2,MF) = {α}, I(P1,

MF) = ∅, and I(P2,MF) = {α}. Also, we have P2
s.i.=MF P3, P3 	s.i.=MF Q2, and

P2 	s.i.=MF Q2 (capturing, for instance, that α is used by P2 and Q2 to interact in
a specific fashion).

We can now provide the notion of differential bisimulation for FEPA models.

Definition 9 (Differential Bisimulation). Let M be a FEPA model, R an
equivalence relation over B(M), and P = B(M)/R. We say that R is a differ-
ential bisimulation for M (DB) iff for all (P, P ′) ∈ R and α ∈ A we have:

(i) q[P,B, α] = q[P ′, B, α], for all B ∈ P,
(ii) P

s.i.=M P ′.

We define differential bisimilarity for M, denoted by �∼ , as the union of all DBs
for M, and we say that P, P ′ ∈ B(M) are differential bisimilar iff s

�∼ s′.

As usual, we are interested in the largest differential bisimulation. We now
show that differential bisimilarity is a DB, and thus it is the largest one. To do
this, we prove that the transitive closure of the union of DBs is a differential
bisimulation.

Proposition 2. Let M be a FEPA model, I be a set of indices, and Ri a DB
for M, for all i ∈ I. The transitive closure of their union R = (

⋃
i∈I Ri)∗ is a

DB for M.

The next theorem states that DB is preserved under composition of FEPA models.

Theorem 1 (Differential Bisimulation is a Congruence). Let M1, M2

be two FEPA models, and R1, R2 be two differential bisimulations for M1 and
M2, respectively. Then R1∪R2 is a differential bisimulation for M1 ‖H

L M2, for
any L⊆A.

Remark 1. An interesting connection between differential bisimulation and its
Markovian analogues, like Markovian bisimulation [13] and PEPA’s strong equiv-
alence [14] arises: condition (i) of DB corresponds to the condition required by
Markovian bisimulation and by strong equivalence. However, in the Markovian
cases states of the underlying labelled transition system (semantic elements) are
related, while DB relates the states of the fluid atoms (syntactic elements). This
requires to explicitly treat the influence exerted by the model on each local state
(condition(ii)). Such information is instead implicitly present in the transition
systems considered in the Markovian cases.

We now show that DB induces an ODE aggregation in the sense of the theory
of ODE lumpability (e.g., [23]). We first exemplify it considering Example 1, for
which it can be shown that P2

�∼ P3. Using the variable renaming νP23 = νP2+νP3 ,
by the linearity of the differential operator we can aggregate Eq. 1 as

ν̇P1 = sH(νP23 , νQ2) − 2r νP1 ν̇Q1 = sH(νP23 , νQ2) − 2r νQ1

ν̇P23 = 2r νP1 − sH(νP23 , νQ2) ν̇Q2 = 2r νP1 − sH(νP23 , νQ2)

Differential Bisimulation for a Markovian Process Algebra 299

If the initial conditions are such that ν0P23 = ν0P2 + ν0P3 , the solutions sat-
isfy νP23(t) = νP2(t)+νP3(t) for all t. As discussed, this is analogous to ordinary
lumpability in CTMCs, where the probability of being in a state of the aggre-
gated chain is equal to the sum of the probabilities of being in the states of the
related equivalence class [3].

Noteworthy, condition(i) of DB does not capture ODE aggregation if ignor-
ing structural interface. Assuming β = γ, {{P1, Q1},{P2, P3, Q2}} satisfies con-
dition(i). Yet, P2 	s.i.=MF Q2 and P3 	s.i.=MF Q2. This results in ODEs with nonlinear
terms in νP2 and νQ2 , such as H(νP2+νP3 , νQ2), which cannot be written in terms
of νP2 + νQ2 .

We formalize such ODE aggregation in terms of ODE lumpability by an
aggregation matrix. Given a FEPA model M and a partition P of B(M), the
aggregation matrix of P has |P|× |B(M)| components given as (MP)i,j = 1
if Pj ∈ Bi, and (MP)i,j = 0 otherwise, where Bi ∈ P and Pj ∈ B(M), with
i∈{1, . . . , |P|} and j ∈{1, . . . , |B(M)|}.

Definition 10 (ODE Lumpability). Let M be a FEPA model, f its vector
field, and P a partition of B(M). The ODE system ν̇ = f(ν) is lumpable by
MP if and only if

MPf(ν) = MPf(MPMPν), for all ν, (2)

where MP is any generalized right inverse of MP , i.e., a matrix satisfying
MPMP = I.

The vector ν has |B(M)| components, each being the concentration of a local
state of M at a certain time. For P a partition of B(M), MPν has |P| compo-
nents, each equal to the sum of the components of ν in the corresponding block.
The vector MPMPν has again |B(M)| components, obtained by first summing
the components of ν in each block (MPν) and subsequently redistributing it to
the local states of the block. Equation 2 demands that the sum of the dynamics
of local states of a block, i.e., MPf(ν), can be expressed as a function of the
aggregated vector, i.e., MPν, only.

Theorem 2 (Differential Bisimulation and Lumpability). Let M be a
FEPA model, R a differential bisimulation, and P =B(M)/R. The ODEs of M
are lumpable by MP .

Proof (sketch). We have to show that Eq. 2 holds. The proof uses Proposition 4
and Lemma 4 given in [15], and here discussed. For ν a concentration function
for M and P a partition of B(M), we define [ν]P , the P-redistribution of ν, as

[ν]P = MPMPν. (3)

Thus, we have to show that for any ν it holds MPf(ν) = MPf([ν]P). Recall-
ing the definition of the aggregation matrix MP , it is enough to show that for
any B ∈ P and ν∑

P∈B

fP (ν) =
∑
P∈B

fP (MPMPν) =
∑
P∈B

fP ([ν]P),

300 G. Iacobelli et al.

i.e., we verify Eq. 2 componentwise. Summing over P ∈ B both sides of f of
Definition 6, and using that

∑
P∈B q(P ′, P, α) = q[P ′, B, α], as well as a decom-

position of the sum over states, i.e.,
∑

P ′∈B(M)(·) =
∑

B∈P
∑

P ′∈B(·), we obtain

∑
P∈B

fP (ν) =
∑
α∈A

∑
P ′∈B(M)

νP ′ q[P ′, B, α]Fα(M, ν, P ′)

−
∑
P∈B

νP

∑
B̃∈P

∑
α∈A

q[P, B̃, α]Fα(M, ν, P)

=
∑
B̃∈P

∑
P ′∈B̃

∑
α∈A

q[P ′, B, α]Fα(M, ν, P ′)νP ′

−
∑
P∈B

∑
B̃∈P

∑
α∈A

q[P, B̃, α]Fα(M, ν, P)νP

(4)

We are left with showing that for any ν Eq. 4 does not change if we replace ν
with [ν]P . This corresponds to saying that it can be expressed as a function of the
sums of the concentrations in each block of P only. For any P and any B ∈ P we
can write

∑
α∈A q[P,B, α]Fα(M, ν, P) =

∑
α∈A(P)q[P,B, α]Fα(M, ν, P) , which

follows from observing that any α 	∈A(P) brings 0-contribution to the equation
(because α /∈ A(P) =⇒ rα(P) = 0 =⇒ q[P,B, α] = 0,∀B). We now exploit the
fact that P is induced by a DB on B(M), as sketched below in the following
three points.

(i) We have that for all B ∈ P, for all Q,Q′ ∈ B, q[Q, B̃, α] = q[Q′, B̃, α] for
all B̃ ∈ P and all α ∈ A, which, in turn, implies A(Q) = A(Q′).

(ii) We show, in Proposition 4, that for all B ∈ P, and all Q,Q′ ∈ B,
Fα(M, ν,Q) = Fα(M, ν,Q′) for all ν and all α ∈ A(Q) = A(Q′).
Thus, it holds that for all B, B̃ ∈ P, all P,P ′ ∈ B, and all ν,∑

α∈A q[P, B̃, α]Fα(M, ν,P) =
∑

α∈A q[P ′, B̃, α]Fα(M, ν,P ′). That is, the
summation is equal for all local states of block B. Proposition 4 establishes
a relation between structural interface Definition 8 and model influence Def-
inition 5, essentially saying that if two local states have the same structural
interface within a model, then they receive the same influence from the
model.

(iii) We show, in Lemma 4, that for any P ∈ B(M), α and ν it holds
Fα(M, ν, P) = Fα(M, [ν]P , P). This is used to infer that for any B, B̃∈P,
any P ∈B and any ν:∑

α∈A
q[P, B̃, α]Fα(M, ν, P) =

∑
α∈A

q[P, B̃, α]Fα(M, [ν]P, P).

That is, the summation can be expressed as a function of the sums of the con-
centration in each block of P. In other words, the model influence received by a
local state depends on the concentration of the other local states only through
the sum of the concentrations within blocks of P, thus a change in the concen-
trations which preserves the total concentrations of each block does not affect
the model influence.

Differential Bisimulation for a Markovian Process Algebra 301

1 D i f f e r e n t i a l B i s im i l a r i t y (M ,P) :=

2 Ref ineSI (M ,P) // Re f ine P wrt c ond i t i o n (i i)

3 RefineQ (M ,P) // I t e r a t i v e l y r e f i n e s P wrt c ond i t i o n (i)

4 Ref ineSI (M ,P) :=

5 f o ra l l (α ∈ A(M))

6 refineAccordingToComp (α, P) // Re f ine P wrt comp[α] , f o r a l l α

7

8 RefineQ (M ,P) :=

9 Spls = A(M) × P // A l l (α, B) are con s i d e r ed as cand i da t e

s p l i t t e r s

10 while (Sp l s �= ∅)

11 (α, Bspl) = pop(Sp l s) // choose and remove a cand i da t e s p l i t t e r

12 Sp l i t (α, Bspl, P,Spls) // s p l i t a l l b l o c k s o f P wrt (α, Bspl)

Algorithm 1. An algorithm for computing differential bisimilarity

Now that all the proof ingredients have been provided, we can rewrite Eq. 4
as follows, where we use that for any B∈P,

∑
P∈B [ν]PP =

∑
P∈B νP , which arises

from Eq. 3 and the fact that the matrix MP must satisfy MPMP = I:

∑
P∈B

fP (ν) =
∑
B̃∈P

∑
α∈A

q[P ′, B, α]Fα(M, ν, P ′)
∑

P ′∈B̃

νP ′

−
∑
B̃∈P

∑
α∈A

q[P, B̃, α]Fα(M, ν, P)
∑
P∈B

νP

=
∑
B̃∈P

∑
α∈A

q[P ′, B, α]Fα(M, [ν]P , P ′)
∑

P ′∈B̃

[ν]PP ′

−
∑
B̃∈P

∑
α∈A

q[P, B̃, α]Fα(M, [ν]P, P)
∑
P∈B

[ν]PP =
∑
P∈B

fP ([ν]P)

�

4 Computing Differential Bisimilarity

We now provide an efficient algorithm for computing differential bisimilarity
obtained by extending and reusing well-known partition refinement algorithms,
e.g. [1,13,20].

In order to apply partition refinement to differential bisimilarity, let us first
note that condition (ii) of DB can be dealt with as an initialization step that
pre-partitions the local states according to their structural interface. Instead,
condition (i) requires the usual partition-refinement treatment: starting from the
partition obtained after initialization, the blocks are iteratively split until there
exists a block and an action (i.e., a candidate splitter) for which condition (i)
does not hold. The algorithm takes in input any initial partition P, useful e.g.
to specify local states that should not be equated, and terminates giving the
largest differential bisimilarity which refines P for the considered model.

302 G. Iacobelli et al.

Overview. DifferentialBisimilarity, our algorithm, is given in Algorithm1,
where M is the input FEPA model and P the initial partition. We use A(M)

for the set of actions in M, and T (M)�{[P ′ (α,r)−−−→P ′′ ∈out(P ′) |P ′ ∈B(M)]} for
its multi-set of transitions. Note that |A(M)| ≤ |T (M)|. Also, we use tM for
|T (M)|, and sM for |B(M)|, and we do not distinguish an equivalence relation
from its induced partition. RefineSI implements the initialization step, yielding
the coarsest refinement of P with respect to condition (ii). RefineQ iteratively
computes the coarsest refinement satisfying condition (i). Overall, the algorithm
is correct, as the iterative refinements preserve condition (ii). It is assumed that
M is stored as the list T (M), requiring O(tM) space. In order to represent
partitions P, B(M) is stored as a list, while a block of P is a list of pointers to
its states, requiring in total O(tM + sM) to store M.

RefineSI. This procedure is based on a simple rephrasing of Definition 8: given
a FEPA model M and P1, P2 ∈ B(M) with A(P1) = A(P2), we have P1

s.i.= P2

if and only if for all α ∈ A(P1) and for all occurrences M = M1 ‖L M2 within
M with α ∈ L ∩ A(P1) we have that P1 and P2 either belong to the same Mi,
or do not belong to any of the two (i.e., P1, P2 	∈ B(M)). Also, if two states
have the same innermost compositional operator binding α, then they share all
outers too. No further information is required about compositional operators,
and thus we assume that each P ∈ B(M) has a list comp containing an entry
per action in A(P), each being a triple storing the action, the (identifier of the)
innermost compositional operator affecting P and binding the key action, and
the side of the operator to which P belongs. Also, each comp is assumed to be
sorted with respect to a total oderdering on A. We use comp[α] for the values
associated with α in comp. For instance, for M=M1 ‖L M2, id∗ the identifier
of ‖L, P1 ∈ B(M1) and α ∈ A(P1) ∩ L, we have P1.comp[α] = (id∗, left) if no
further compositional operators binding α appear in the syntax-tree path leading
to P1. All comp require O(tM) space in total: each P.comp has at most one entry
per transition with source P , and thus at most tM entries appear in all comp.
By defining a total ordering on comp’s values, RefineSI reduces to iteratively
sorting all P ∈ B(M) according to P.comp[α] for all α ∈ A(M) (Line 6).2 The
sorting for each α can be performed in O(sM · logsM), and if we scan A(M)
according to the ordering of A we can access the elements of the lists in constant
time, requiring O(tM · sM · logsM) time to perform the sorting. Overall, this
yields O(tM · sM · logsM) time complexity.

Theorem 3. Let M be a FEPA model and P a partition of B(M). RefineSI
computes the coarsest refinement of P satisfying condition (ii). It can be imple-
mented with time and space complexities O(tM · sM · logsM) and O(tM + sM),
respectively.

RefineQ. Condition (i) ignores compositional operators. Thus, RefineQ treats
M as a stochastic labeled transition system (STLS), i.e. a transition system
2 P.comp[α] is nil if α �∈ A(P), and free if α ∈ A(P) and α �∈ D(P, M), so to tell

apart states performing different actions.

Differential Bisimulation for a Markovian Process Algebra 303

(with a root per fluid atom) where transitions are labeled by an action and a
real. This allows us to use the algorithm for Markovian bisimilarity of SLTSs
presented in [9,13]. In fact, as discussed, condition (i) corresponds to Markovian
bisimulation. Indeed, RefineQ is a straightforward rephrasing of the algorithm
of [9,13] to FEPA notation. An in-depth discussion of the algorithm can be found
in [9,13], while we hereby give a high-level description. We start recalling the
algorithm’s complexities.

Theorem 4 (Adapted from [13]). For M a FEPA model and P a partition
of B(M), RefineQ gives the coarsest refinement of P satisfying condition (i)
of DB. It can be realized with time and space complexities O(tM · logsM) and
O(tM + sM), respectively.

Refinements are based on splitters (α,Bspl), with α ∈ A(M) and Bspl ∈ P:
a block B ∈ P is split with respect to (α,Bspl) in disjoint sub-blocks, each
containing states with same total α-conditional transition rate towards Bspl.
RefineQ starts (Line 9) generating a set Spls of initial potential splitters (α,B)
for each α∈A(M) and B∈P. Then, Lines 10–12 iterate until there are potential
splitters to be considered: a splitter is selected and removed from Spls, and the
procedure Split is invoked to refine each block of P according to the selected
splitter, and to generate new candidate splitters. Due to space constraints we do
not detail the Split procedure.

Summary. Theorems 3 and 4 allow us to conclude that DifferentialBisimil-
arity has time and space complexities O

(
tM · sM · logsM

)
and O(tM + sM),

respectively.

5 Related Work

The label equivalence presented in [26] captures exact fluid lumpability, a different
notion of ODE lumpability than the one captured by DB, where processes are
equivalent whenever their ODE solutions are equal at all time points, provided
they have same initial conditions. Label equivalence works at a coarser level of
granularity than DB, as it relates whole fluid atoms, and not their individual
local states, essentially requiring an isomorphism between them. Further, the
conditions for equivalence in [26] include universal quantifiers over the uncount-
able set of concentration functions which are difficult to check automatically.
Indeed, no algorithm for computing the coarsest partition was developed for
label equivalence. In contrast, DB is given in terms of syntactic elements only,
allowing us to provide an efficient algorithm to compute the largest one of a
model. In [25] the same authors extended the framework of [26] to the notion of
ODE lumpability considered in this paper, for which, however, the same limita-
tions as those of label equivalence apply.

The relationship between formal languages and ODEs induced by their
semantics has been studied also in other contexts, with complementary
approaches. In [7] it is presented a model-order reduction technique for κ [8],

304 G. Iacobelli et al.

a rule-based language for chemical systems representing bindings between mole-
cules in an explicit graph-based way. The aggregation method, called fragmen-
tation, identifies a linear transformation of the state space yielding a subspace
with a closed dynamics, i.e., whose ODEs depend only on the variables of that
subspace. This may give an improper lumping (see [19]), as the same state may
appear in more than one aggregate, and thus it is not necessarily induced by
a partition of the state space. More practically, it can be shown that MF of
Example 1 can be encoded in κ in case H = ·, but it is not reduced by frag-
mentation. (Dually, there exist κ’s models which can be encoded in FEPA that
are reduced by fragmentation but not by DB). However, clearly, the two tar-
get languages are different; κ is based on the law of mass action, where the
rate of interaction is proportional to the product of the participants’ concen-
trations, similarly to FEPA’s H = ·. Instead, FEPA is process-based, with the
rule of interaction implicit in the rigid compositional structure, while a chemi-
cal system is an unstructured set of interacting species. Also, FEPA allows for
a synchronisation semantics based on capacity-sharing arguments (in the case
H = min).

More closely related is the bisimulation in [5], which induces both ODE
lumpabilities of Definition 10 and [26]. The difference is again in the language-
specific definitions of equivalence. While DB is a relation over process algebra
terms, in [5] symmetries are exploited between binding sites of κ agents. Also, [5]
requires stronger symmetries than DB, as the latter considers those specific to
the notion of lumpabilty of Definition 10 only. For example, it can be shown that
the DB {{P1}, {P2, P3}, {Q1}, {Q2}} of MF of Example 1 does not satisfy the
notion of lumpability of [26].

The combination of the notion of bisimulation and ODEs has been explored
also by the control theory community, most notably in the work of Pappas and
co-authors (e.g., [10,21]) and van der Schaft [22]. However, the setting is differ-
ent. When studied for model reduction, they essentially deal with a state space
representation with an explicit output map, e.g., the matrix C in the linear
dynamical system ẋ = Ax+Bu, y = Cx. A bisimulation is thus related to unob-
servability subspaces (cf. [21, Sect. 8.1] and [22, Corollary 6.4]). By contrast, in
this paper we work with a nonlinear system in the form ẋ = A(x) (with A a
nonlinear vector field) where bisimulation is related to aggregation; in the aggre-
gated model only a linear combination of the original state space variables can be
recovered. More in general, the bisimulations in [10,21,22] are defined directly at
the level of the dynamical system (either in discrete or continuous time) whereas
DB is defined at the language level, as a relation between process terms.

6 Conclusion

We presented differential bisimulation, a behavioral relation for process calculi
with ordinary differential equation (ODE) semantics. This study follows the line
of research on equivalence relations for quantitative models of computation. In
particular, differential bisimulation is defined as a relation over a discrete set of

Differential Bisimulation for a Markovian Process Algebra 305

process terms inducing an aggregation of the ODEs, analogously to Markovian
bisimulations for process calculi which lead to the lumping of the underlying
Markov process. Differential bisimulation allows relating local states of some-
what heterogenous processes instead of essentially isomorphic ones, as required
in previous work. In addition, it is given in terms of syntactic conditions and it
does not involve universal quantifiers over the expressions determining the ODE
system. This, together with a conceptual similarity with Markovian bisimula-
tions, allowed for the development of a partition-refinement algorithm for com-
puting differential bisimilarity, largely reusing available results in the Markovian
setting. As with its Markovian counterparts, differential bisimulation provides
only sufficient conditions for ODE lumping. In this respect, an interesting line
of investigation will be how to relax the current assumptions to obtain coarser
aggregations. Another interesting problem is whether differential bisimulation
implies lumpability also of the underlying Markov chain obtained when consid-
ering a Markovian semantics.

References

1. Baier, C., Engelen, B., Majster-Cederbaum, M.E.: Deciding bisimilarity and simi-
larity for probabilistic processes. J. Comput. Syst. Sci. 60(1), 187–231 (2000)

2. Bernardo, M.: A survey of Markovian behavioral equivalences. In: Bernardo, M.,
Hillston, J. (eds.) SFM 2007. LNCS, vol. 4486, pp. 180–219. Springer, Heidelberg
(2007)

3. Buchholz, P.: Exact and ordinary lumpability in finite Markov chains. J. Appl.
Probab. 31(1), 59–75 (1994)

4. Buchholz, P.: Markovian process algebra: composition and equivalence. In: Pro-
ceedings of 2nd PAPM Workshop. Erlangen, Germany (1994)

5. Camporesi, F., Feret, J.: Formal reduction for rule-based models. ENTCS 276,
29–59 (2011)

6. Ciocchetta, F., Hillston, J.: Bio-PEPA: a framework for the modelling and analysis
of biological systems. TCS 410(33–34), 3065–3084 (2009)

7. Danos, V., Feret, J., Fontana, W., Harmer, R., Krivine, J.: Abstracting the differ-
ential semantics of rule-based models: exact and automated model reduction. In:
LICS, pp. 362–381 (2010)

8. Danos, V., Laneve, C.: Formal molecular biology. TCS 325(1), 69–110 (2004)
9. Derisavi, S., Hermanns, H., Sanders, W.H.: Optimal state-space lumping in Markov

chains. Inf. Process. Lett. 87(6), 309–315 (2003)
10. Haghverdi, E., Tabuada, P., Pappas, G.J.: Bisimulation relations for dynamical,

control, and hybrid systems. TCS 342(2–3), 229–261 (2005)
11. Hayden, R.A., Bradley, J.T.: A fluid analysis framework for a Markovian process

algebra. TCS 411(22–24), 2260–2297 (2010)
12. Hermanns, H., Rettelbach, M.: Syntax, semantics, equivalences, and axioms for

MTIPP. In: Proceedings of Process Algebra and Probabilistic Methods, pp. 71–87.
Erlangen (1994)

13. Hermanns, H., Siegle, M.: Bisimulation algorithms for stochastic process algebras
and their BDD-based implementation. In: Katoen, J.-P. (ed.) AMAST-ARTS 1999,
ARTS 1999, and AMAST-WS 1999. LNCS, vol. 1601, p. 244. Springer, Heidelberg
(1999)

306 G. Iacobelli et al.

14. Hillston, J.: A Compositional Approach to Performance Modelling, CUP. Cam-
bridge University Press, New York (1996)

15. Iacobelli, G., Tribastone, M., Vandin, A.: Differential bisimulation for a Markovian
process algebra. Extended Version. QUANTICOL TR-QC-04-2015 (2015). http://
milner.inf.ed.ac.uk/wiki/files/W232G9A7/mfcs2015ExtendedTRpdf.html

16. Kurtz, T.G.: Solutions of ordinary differential equations as limits of pure jump
Markov processes. J. Appl. Probab. 7(1), 49–58 (1970)

17. Kurtz, T.G.: Approximation of Population Processes, vol. 36. SIAM, Philadelphia
(1981)

18. Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing. Inf. Comput.
94(1), 1–28 (1991)

19. Okino, M.S., Mavrovouniotis, M.L.: Simplification of mathematical models of
chemical reaction systems. Chem. Rev. 2(98), 391–408 (1998)

20. Paige, R., Tarjan, R.: Three partition refinement algorithms. SIAM 16(6), 973–989
(1987)

21. Pappas, G.J.: Bisimilar linear systems. Automatica 39(12), 2035–2047 (2003)
22. van der Schaft, A.J.: Equivalence of dynamical systems by bisimulation. IEEE TAC

49, 2160–2172 (2004)
23. Toth, J., Li, G., Rabitz, H., Tomlin, A.S.: The effect of lumping and expanding on

kinetic differential equations. SIAM J. Appl. Math. 57(6), 1531–1556 (1997)
24. Tribastone, M., Gilmore, S., Hillston, J.: Scalable differential analysis of process

algebra models. IEEE TSE 38(1), 205–219 (2012)
25. Tschaikowski, M., Tribastone, M.: A unified framework for differential aggregations

in Markovian process algebra. JLAMP 84(2), 238–258 (2015)
26. Tschaikowski, M., Tribastone, M.: Exact fluid lumpability for Markovian process

algebra. In: Koutny, M., Ulidowski, I. (eds.) CONCUR 2012. LNCS, vol. 7454, pp.
380–394. Springer, Heidelberg (2012)

http://milner.inf.ed.ac.uk/wiki/files/W232G9A7/mfcs2015ExtendedTRpdf.html
http://milner.inf.ed.ac.uk/wiki/files/W232G9A7/mfcs2015ExtendedTRpdf.html

On the Hardness of Almost–Sure Termination

Benjamin Lucien Kaminski(B) and Joost-Pieter Katoen(B)

Software Modeling and Verification Group,
RWTH Aachen University, Aachen, Germany

{benjamin.kaminski,katoen}@cs.rwth-aachen.de

Abstract. This paper considers the computational hardness of comput-
ing expected outcomes and deciding (universal) (positive) almost–sure
termination of probabilistic programs. It is shown that computing lower
and upper bounds of expected outcomes is Σ0

1– and Σ0
2–complete, respec-

tively. Deciding (universal) almost–sure termination as well as deciding
whether the expected outcome of a program equals a given rational value
is shown to be Π0

2–complete. Finally, it is shown that deciding (universal)
positive almost–sure termination is Σ0

2–complete (Π0
3–complete).

Keywords: Probabilistic programs · Expected outcomes · Almost–sure
termination · Positive almost–sure termination · Computational
hardness

1 Introduction

Probabilistic programs [1] are imperative programs with the ability to toss a
(possibly) biased coin and proceed their execution depending on the outcome of
the coin toss. They are used in randomized algorithms, in security to describe
cryptographic constructions (such as randomized encryption) and security exper-
iments [2], and in machine learning to describe distribution functions that are
analyzed using Bayesian inference [3]. Probabilistic programs are typically just
a small number of lines, but hard to understand and analyze, let alone algorith-
mically. This paper considers the computational hardness of two main analysis
problems (and variations thereof) for probabilistic programs:

1. Computing expected outcomes: Is the expected outcome of a program variable
smaller than, equal to, or larger than a given rational number?

2. Deciding [universal] (positive) almost–sure termination: Does a program ter-
minate [on all inputs] with probability one (within an expected finite number
of computation steps)?

The first analysis problem is related to determining weakest pre–expectations
of probabilistic programs [4,5]. Almost–sure termination is an active field of
research [6]. A lot of work has been done towards automated reasoning for

This research is funded by the Excellence Initiative of the German federal and state
governments and by the EU FP7 MEALS project.

c© Springer-Verlag Berlin Heidelberg 2015
G.F. Italiano et al. (Eds.): MFCS 2015, Part I, LNCS 9234, pp. 307–318, 2015.
DOI: 10.1007/978-3-662-48057-1 24

308 B.L. Kaminski and J.-P. Katoen

almost–sure termination. For instance, [7] gives an overview of some particu-
larly interesting examples of probabilistic logical programs and the according
intuition for proving almost–sure termination. Arons et al. [8] reduce almost–
sure termination to termination of non–deterministic programs by means of a
planner. This idea has been further exploited and refined into a pattern–based
approach with prototypical tool support [9].

Despite the existence of several (sometimes automated) approaches to tackle
almost–sure termination, most authors claim that it must intuitively be harder
than the termination problem for ordinary programs. To mention a few,
Morgan [10] remarks that while partial correctness for small–scale examples is
not harder to prove than for ordinary programs, the case for total correctness of a
probabilistic loop must be harder to analyze. Esparza et al. [9] claim that almost–
sure termination must be harder to decide than ordinary termination since for
the latter a topological argument suffices while for the former arithmetical rea-
soning is needed. The computational hardness of almost–sure termination has
however received scant attention. As a notable exception, [11] establishes that
deciding almost–sure termination of certain concurrent probabilistic programs
is in Π0

2 .
In this paper, we give precise classifications of the level of arithmetical reason-

ing that is needed to decide the aforementioned analysis problems by establishing
the following results: We first show that computing lower bounds on the expected
outcome of a program variable v after executing a probabilistic program P on
a given input η is Σ0

1–complete and therefore arbitrarily close approximations
from below are computable. Computing upper bounds, on the other hand, is
shown to be Σ0

2–complete, thus arbitrarily close approximations from above are
not computable in general. Deciding whether an expected outcome equals some
rational is shown to be Π0

2–complete.
For the second analysis problem—almost–sure termination—we obtain that

deciding almost–sure termination of a probabilistic program P on a given input
η is Π0

2–complete. While for ordinary programs we have a complexity leap when
moving from the non–universal to the universal halting problem, we establish
that this is not the case for probabilistic programs: Deciding universal almost–
sure termination turns out to be Π0

2–complete, too. The case for positive almost–
sure termination is different however: While deciding (non–universal) positive
almost–sure termination is Σ0

2–complete, we show that universal positive almost–
sure termination is Π0

3–complete.

2 Preliminaries

As indicated, our hardness results will be stated in terms of levels in the arith-
metical hierarchy—a concept we briefly recall:

Definition 1 (Arithmetical Hierarchy [12,13]). For every n ∈ N,
the class Σ0

n is defined as Σ0
n =

{A ∣∣ A =
{
x

∣∣ ∃y1 ∀y2 ∃y3 · · ·
∃/∀yn : (x, y1, y2, y3, . . . , yn) ∈ R}

, R is a decidable relation
}
, the class

On the Hardness of Almost–Sure Termination 309

Π0
n is defined as Π0

n =
{A ∣∣ A =

{
x

∣∣ ∀y1 ∃y2 ∀y3 · · · ∃/∀yn : (x, y1, y2,

y3, . . . , yn) ∈ R}
, R is a decidable relation

}
and the class Δ0

n is defined
as Δ0

n = Σ0
n ∩ Π0

n. Note that we require that the values of the variables are
drawn from a recursive domain. Multiple consecutive quantifiers of the same
type can be contracted to one quantifier of that type, so the number n really
refers to the number of necessary quantifier alternations rather than to the
number of quantifiers used. A set A is called arithmetical, iff A ∈ Γ 0

n , for
Γ ∈ {Σ, Π, Δ} and n ∈ N. The arithmetical sets form a strict hierarchy, i.e.
Δ0

n ⊂ Γ 0
n ⊂ Δn+1 and Σ0

n �= Π0
n holds for Γ ∈ {Σ, Π} and n ≥ 1. Furthermore,

note that Σ0
0 = Π0

0 = Δ0
0 = Δ0

1 is exactly the class of the decidable sets and Σ0
1

is exactly the class of the recursively enumerable sets.

Next, we recall the concept of many–one reducibility and completeness:

Definition 2 (Many–One Reducibility and Completeness [13–15]). Let
A, B be arithmetical sets and let X be some appropriate universe such that
A,B ⊆ X. A is called many–one–reducible to B, denoted A ≤m B, iff there
exists a computable function f : X → X, such that ∀x ∈ X :

(
x ∈ A ⇐⇒ f(x) ∈

B)
. If f is a function such that f many–one reduces A to B, we denote this by

f : A ≤m B. Note that ≤m is transitive.
A is called Γ 0

n–complete, for Γ ∈ {Σ, Π, Δ}, iff both A ∈ Γ 0
n and A is

Γ 0
n–hard, meaning C ≤m A, for any set C ∈ Γ 0

n . Note that if A is Γ 0
n–complete

and A ≤m B, then B is necessarily Γ 0
n–hard. Furthermore, note that if A is Σ0

n–
complete, then A ∈ Σ0

n\Π0
n. Analogously if A is Π0

n–complete, then A ∈ Π0
n\Σ0

n.

3 Probabilistic Programs

In order to speak about probabilistic programs and the computations performed
by such programs, we briefly introduce the syntax and semantics we use:

Definition 3 (Syntax). Let Var be the set of program variables. The set Prog
of probabilistic programs adheres to the following grammar:

Prog −→ v :=e | Prog; Prog | {Prog} [p] {Prog} | WHILE (b) {Prog},

where v ∈ Var, e is an arithmetical expression over Var, p ∈ [0, 1] ⊆ Q, and
b is a Boolean expression over arithmetic expressions over Var. We call the set
of programs that do not contain any probabilistic choices the set of ordinary
programs and denote this set by ordProg.

The presented syntax is the one of the fully probabilistic1 fragment of the
probabilistic guarded command language (pGCL) originally due to McIver and
Morgan [4]. We omitted skip–, abort–, and if–statements, as those are syn-
tactic sugar. While assignment, concatenation, and the while–loop are standard
programming constructs, {P1} [p] {P2} denotes a probabilistic choice between
programs P1 (with probability p) and P2 (with probability 1 − p). An opera-
tional semantics for pGCL programs is given below:
1 Fully probabilistic programs may contain probabilistic but no non–deterministic

choices.

310 B.L. Kaminski and J.-P. Katoen

Definition 4 (Semantics). Let the set of variable valuations be denoted
by V = {η | η : Var → Q+}, let the set of program states be denoted by
S =

(
Prog∪{↓})×V×I×{L, R}∗, for I = [0, 1]∩Q+, let �e�η be the evaluation of

the arithmetical expression e in the variable valuation η, and analogously let �b�η

be the evaluation of the Boolean expression b. Then the semantics of proba-
bilistic programs is given by the smallest relation � ⊆ S×S which satisfies the
following inference rules:

(assign) 〈v := e, η, a, θ〉 � 〈↓, η[v �→ max{�e�η, 0}], a, θ〉

(concat1)
〈P1, η, a, θ〉 � 〈P ′

1, η′, a′, θ′〉
〈P1; P2, η, a, θ〉 � 〈P ′

1; P2, η′, a′, θ′〉
(concat2) 〈↓; P2, η, a, θ〉 � 〈P2, η, a, θ〉

(prob1) 〈{P1} [p] {P2}, η, a, θ〉 � 〈P1, η, a · p, θ · L〉
(prob2) 〈{P1} [p] {P2}, η, a, θ〉 � 〈P2, η, a · (1 − p), θ · R〉

(while1)
�b�η = True

〈WHILE (b) {P}, η, a, θ〉 � 〈P; WHILE (b) {P}, η, a, θ〉

(while2)
�b�η = False

〈WHILE (b) {P}, η, a, θ〉 � 〈↓, η, a, θ〉

We use σ �k τ in the usual sense.

The semantics is mostly straightforward except for two features: in addition to
the program that is to be executed next and the current variable valuation, each
state also stores a sequence θ that encodes which probabilistic choices were made
in the past (Left or Right) as well as the probability a that those choices were
made. The graph that is spanned by the �–relation can be seen as an unfolding
of the Markov decision process semantics for pGCL provided by Gretz et al. [5]
when restricting oneself to fully probabilistic programs.

4 Expected Outcomes and Termination Probabilities

In this section we formally define the notion of an expected outcome as well the
notion of (universal) (positive) almost–sure termination. We start by investigat-
ing how state successors can be computed.

It is a well–known result due to Kleene that for any ordinary program P and
a state σ the k-th successor of σ with respect to � is unique and computable. If,
however, P is a probabilistic program containing probabilistic choices, the k-th
successor of a state need not be unique, because at various points of the execution
the program must choose a left or a right branch with some probability. However,
if we resolve those choices by providing a sequence of symbols w over the alphabet

On the Hardness of Almost–Sure Termination 311

{L, R} that encodes for all probabilistic choices which occur whether the Left
or the Right branch shall be chosen at a branching point, we can construct a
computable function that computes a unique k-th successor. Notice that for this
purpose a sequence of finite length is sufficient. We obtain the following:

Proposition 1 (The State Successor Function). Let S⊥ = S∪{⊥}. There
exists a total computable function T: N×S×{L, R}∗ → S⊥, such that for k ≥ 1

T0(σ, w) =

{
σ, if w = ε,

⊥, otherwise,

Tk(σ, w) =

⎧⎪⎨
⎪⎩

Tk−1(τ, w′), if σ = 〈P, η, a, θ
〉 � 〈P ′, η′, a′, θ · b

〉
= τ,

with w = b · w′ and b ∈ {L, R, ε},

⊥ otherwise.

So Tk(σ, w) returns a successor state τ , if σ �k τ , whereupon exactly |w| infer-
ences must use the (prob1)– or the (prob2)–rule and those probabilistic choices
are resolved according to w. Otherwise Tk(σ, w) returns ⊥. Note in particular
that for both the inference of a terminal state 〈↓, η, a, θ〉 within less than k steps
as well as the inference of a terminal state through less or more than |w| prob-
abilistic choices, the calculation of Tk(σ, w) will result in ⊥. In addition to T,
we will need two more computable operations for expressing expected outcomes,
termination probabilities, and expected runtimes:

Proposition 2. There exist two total computable functions α : S⊥ → Q+ and
℘ : S⊥ × Var → Q+, such that

α(σ) =

{
a, if σ = 〈↓, , a, 〉
0, otherwise,

℘(σ, v) =

{
η(v) · a, if σ = 〈↓, η, a, 〉
0, otherwise,

where represents an arbitrary value.

The function α takes a state σ and returns the probability of reaching σ. The
function ℘ takes a state σ and a variable v and returns the probability of reaching
σ multiplied with the value of v in the state σ. Both functions do that only if
the provided state σ is a terminal state. Otherwise they return 0. Based on the
above notions, we now definie expected outcomes, termination probabilities and
expected times until termination:

Definition 5 (Expected Outcome, Termination Probability, and
Expected Time until Termination). Let P ∈ Prog, η ∈ V, v ∈ Var,
σP,η = 〈P, η, 1, ε〉, and for a finite alphabet A let A≤k =

⋃k
i=0 Ai. Then

1. the expected outcome of v after executing P on η, denoted EP,η(v), is

EP,η(v) =
∞∑

k=0

∑
w∈{L, R}≤k

℘
(
Tk(σP,η, w), v

)
,

312 B.L. Kaminski and J.-P. Katoen

2. the probability that P terminates on η, denoted PrP,η(↓), is

PrP,η(↓) =
∞∑

k=0

∑
w∈{L, R}≤k

α
(
Tk(σP,η, w)

)
,

3. the expected time until termination of P on η, denoted EP,η(↓), is

EP,η(↓) =
∞∑

k=0

⎛
⎝1 −

∑
w∈{L, R}≤k

α
(
Tk(σP,η, w)

)
⎞
⎠ .

The expected outcome EP,η(v) as defined here coincides with the weakest pre–
expectation wp.P.v (η) à la McIver and Morgan [4] for fully probabilistic pro-
grams. In the above definition for EP,η(v), we sum over all possible numbers of
inference steps k and sum over all possible sequences from length 0 up to length
k for resolving all probabilistic choices. Using ℘ we filter out the terminal states
σ and sum up the values of ℘(σ, v).

For the termination probability PrP (↓), we basically do the same but we
merely sum up the probabilities of reaching final states by using α instead of ℘.

For the expected time until termination EP,η(↓), we go along the lines of [6]:
It is stated there that the expected time until termination of P on η can be
expressed as

∑∞
k=0 Pr(“P runs for more than k steps on η”) =

∑∞
k=0

(
1−Pr(“P

terminates within k steps on η”)
)
. We have expressed the latter in our set–up.

In order to investigate the complexity of calculating EP,η(v), we define three
sets: LEXP, which relates to the set of rational lower bounds of EP,η(v), REXP,
which relates to the set of rational upper bounds, and EXP which relates to the
value of EP,η(v) itself:

Definition 6 (LEXP, REXP, and EXP). The sets LEXP,REXP, EXP ⊂
Prog × V × Var × Q+ are defined as (P, η, v, q) ∈ LEXP iff q < EP,η(v),
(P, η, v, q) ∈ REXP iff q > EP,η(v), and (P, η, v, q) ∈ EXP iff q = EP,η(v).

Regarding the termination probability of a probabilistic program, the case of
almost–sure termination is of special interest: We say that a program P termi-
nates almost–surely on input η iff P terminates on η with probability 1. Further-
more, we say that P terminates positively almost–surely on η iff the expected
time until termination of P on η is finite. Lastly, we say that P terminates uni-
versally (positively) almost–surely, if it does so on all possible inputs η. The
problem of (universal) almost–sure termination can be seen as the probabilistic
counterpart to the (universal) halting problem for ordinary programs.

In the following, we formally define the according problem sets:

Definition 7 (Almost–Sure Termination Problem Sets). The sets AST ,
PAST , UAST , and PAST are defined as follows:

On the Hardness of Almost–Sure Termination 313

(P, η) ∈ AST ⇐⇒ PrP,η(↓) = 1 (P, η) ∈ PAST ⇐⇒ EP,η(↓) < ∞
P ∈ UAST ⇐⇒ ∀η : (P, η) ∈ AST P ∈ UPAST ⇐⇒ ∀η : (P, η) ∈ PAST

Notice that both PAST ⊂ AST and UPAST ⊂ UAST hold.

5 The Hardness of Computing Expected Outcomes

In this section we investigate the computational hardness of deciding the sets
LEXP, REXP, and EXP. The first fact we establish is the Σ0

1–completeness of
LEXP. This result is established by reduction from the (non–universal) halting
problem for ordinary programs:

Theorem 1 (The Halting Problem [16]). The halting problem is a subset
H ⊂ ordProg×V, which is characterized as (P, η) ∈ H iff ∃k∃η′ : Tk(σP,η, ε) =
〈↓, η′, 1, ε〉. Let H denote the complement of the halting problem, i.e. H =
(ordProg × V) \ H. H is Σ0

1–complete and H is Π0
1–complete.

Theorem 2. LEXP is Σ0
1–complete.

Proof. For showing LEXP ∈ Σ0
1 , observe that (P, η, v, q) ∈ LEXP iff ∃ y : q <∑y

k=0

∑
w∈{L, R}≤k ℘

(
Tk(σP,η, w), v

)
, which is a Σ0

1–formula. Figure 1 (left)
gives an intuition on this formula. For establishing Σ0

1–hardness we use a reduc-
tion function f : H ≤m LEXP with f(Q, η) = (P, η, v, 1/2), where P is the
program v := 0; {v := 1}[1/2]{TQ; v := 1} and TQ is an ordinary program that
simulates Q on η. For details see [17]. ��
Theorem 2 implies that LEXP is recursively enumerable. This means that all
lower bounds for expected outcomes can be effectively enumerated by some algo-
rithm. Now, if upper bounds were recursively enumerable as well, then expected
outcomes would be computable reals. However, the contrary will be shown by
establishing that REXP is Σ0

2–complete, thus REXP �∈ Σ0
1 and hence REXP

is not recursively enumerable. Σ0
2–hardness will be established by a reduction

from the complement of the universal halting problem for ordinary programs:

Theorem 3 (The Universal Halting Problem [16]). The universal halt-
ing problem is a subset UH ⊂ ordProg, which is characterized as P ∈ UH
iff ∀ η : (P, η) ∈ H. Let UH denote the complement of UH, i.e., UH =
ordProg \ UH. UH is Π0

2–complete and UH is Σ0
2–complete.

Theorem 4. REXP is Σ0
2–complete.

Proof. For showing REXP ∈ Σ0
2 , observe that (P, η, v, q) ∈ REXP iff

∃ δ ∀ y : q − δ >
∑y

k=0

∑
w∈{L, R}≤k ℘

(
Tk(σP,η, w), v

)
, which is a Σ0

2–formula.
Figure 1 (right) gives an intuition on this formula. For establishing Σ0

2–hardness
we use a reduction function f : UH ≤m REXP with f(Q) = (P, η, v, 1), where
η is arbitrary but fixed and P is the probabilistic program

314 B.L. Kaminski and J.-P. Katoen

q

∃y −→

EP,η(v)

(P, η, v, q) ∈ LEXP
q

←− ∀ y −→

∃ δ
EP,η(v)

(P, η, v, q) ∈ REXP

Fig. 1. Schematic depiction of the formulae defining LEXP and REXP, respectively.
In each diagram, the solid line represents the monotonically increasing graph of∑y

k=0

∑
w∈{L, R}≤k ℘

(
Tk(σP,η, w), v

)
plotted over increasing y.

i := 0; {c := 0} [0.5] {c := 1};
while (c �= 0){i := i + 1; {c := 0} [0.5] {c := 1}};
k := 0; {c := 0} [0.5] {c := 1};
while (c �= 0){k := k + 1; {c := 0} [0.5] {c := 1}};
v := 0; TQ,

where TQ is a program that assigns the value 2k+1 to the variable v if and
only if Q halts on input gQ(i) after exactly k steps (otherwise it assigns 0 to v)
and gQ : N → V is a computable bijection, such that ∀z ∈ Var :

(
gQ(i)

)
(z) �= 0

implies that z occurs in Q. For details see [17]. ��
Finally, we establish the following result regarding exact expected outcomes:

Theorem 5. EXP is Π0
2–complete.

Proof. For EXP we can construct a Π0
2–formula from the two formulae defining

LEXP and REXP. For establishing Π0
2–hardness we use the same reduction

function f from the proof of Theorem 4 since for that function it holds that
f : UH ≤m EXP. For details see [17]. ��

6 The Hardness of Deciding Probabilistic Termination

This section presents the main contributions of this paper: Hardness results on
several variations of almost–sure termination problems. We first establish that
deciding almost–sure termination of a program on a given input is Π0

2–complete:

Theorem 6. AST is Π0
2–complete.

Proof. For proving AST ∈ Π0
2 , we show AST ≤m EXP using the reduction

function f : AST ≤m EXP with f(Q, η) = (P, η, v, 1), where v does not occur
in Q and P is the program v := 0; Q; v := 1.

For establishing Π0
2–hardness we use a reduction function f ′ : UH ≤m AST

with f ′(Q) = (P ′, η), where η is arbitrary but fixed and P ′ is the program

On the Hardness of Almost–Sure Termination 315

i := 0; {c := 0} [0.5] {c := 1};
while (c �= 0){i := i + 1; {c := 0} [0.5] {c := 1}};
SQ,

where SQ is an ordinary program that simulates Q on gQ(i) and gQ : N → V is
the bijection from the proof of Theorem 4. For details see [17]. ��
While for ordinary programs there is a complexity leap when moving from the
halting problem for some given input to the universal halting problem, we estab-
lish that there is no such leap in the probabilistic setting, i.e. UAST is as hard
as AST :

Theorem 7. UAST is Π0
2–complete.

Proof. For showing UAST ∈ Π0
2 , consider that by Theorem 6 there must exist

a decidable relation R such that (P, η) ∈ AST iff ∀ y1 ∃ y2 : (y1, y2, P, η) ∈ R.
By that we have that P ∈ UAST iff ∀ η ∀ y1 ∃ y2 : (y1, y2, P, η) ∈ R, which is a
Π0

2–formula.
It remains to show that UAST is Π0

2–hard. This can be done by proving
AST ≤m UAST as follows: On input (Q, η) the reduction function f : AST ≤m

UAST computes a probabilistic program P that first initializes all variables
according to η and then executes Q. ��
We now investigate the computational hardness of deciding positive almost–sure
termination: It turns out that deciding PAST is Σ0

2–complete. Thus, PAST
becomes semi–decidable when given access to an H–oracle whereas AST does
not. We establish Σ0

2–hardness by a reduction from UH. This result is partic-
ularly counterintuitive as it means that for each ordininary program that does
not halt on all inputs, we can compute a probabilistic program that does halt
within an expected finite number of steps.

Theorem 8. PAST is Σ0
2–complete.

Proof. For showing PAST ∈ Σ0
2 , observe that (P, η) ∈ PAST iff ∃ c ∀ � : c >∑�

k=0

(
1 − ∑

w∈{L, R}≤k α
(
Tk(σP,η, w)

))
, which is a Σ0

2–formula. For more
details on this formula see [17].

It remains to show that PAST is Σ0
2–hard. For that we use a reduction

function f : UH ≤m PAST with f(Q) = (P, η), where η is arbitrary but fixed
and P is the program

c := 1; i := 0; x := 0; term := 0; InitQ;
while (c �= 0){

StepQ; if (term = 1){Cheer; i := i + 1; term := 0; InitQ}
{c := 0} [0.5] {c := 1}; x := x + 1 } ,

where InitQ ∈ ordProg is a program that initializes a simulation of the program
Q on input gQ(i) (recall the bijection gQ : N → V from Theorem 4), StepQ ∈
ordProg is a program that does one single (further) step of that simulation and
sets term to 1 if that step has led to termination of Q, and Cheer ∈ ordProg is a

316 B.L. Kaminski and J.-P. Katoen

program that executes 2x many effectless steps. In the following we refer to this
as “cheering”2.

Correctness of the reduction: Intuitively, the program P starts by simulating
Q on input gQ(0). During the simulation, it—figuratively speaking—gradually
looses interest in further simulating Q by tossing a coin after each simulation
step to decide whether to continue the simulation or not. If eventually P finds
that Q has halted on input gQ(0), it “cheers” for a number of steps exponential
in the number of coin tosses that were made so far, namely for 2x steps. P then
continues with the same procedure for the next input gQ(1), and so on.

The variable x keeps track of the number of loop iterations (starting from
0), which equals the number of coin tosses. The x–th loop iteration takes place
with probability 1/2x. One loop iteration consists of a constant number of steps
c1 in case Q did not halt on input gQ(i) in the current simulation step. Such an
iteration therefore contributes c1/2x to the expected runtime of the probabilistic
program P . In case Q did halt, a loop iteration takes a constant number of steps
c2 plus 2x additional “cheering” steps. Such an iteration therefore contributes
c2+2x/2x = c2/2x + 1 > 1 to the expected runtime. Overall, the expected run-
time of the program P roughly resembles a geometric series with exponentially
decreasing summands. However, for each time the program Q halts on an input,
a summand of the form c2/2x +1 appears in this series. There are now two cases:

(1) Q ∈ UH, so there exists some input η with minimal i such that gQ(i) = η on
which Q does not terminate. In that case, summands of the form c2/2x + 1
appear only i− 1 times in the series and therefore, the series converges—the
expected time until termination is finite, so (P, η) ∈ PAST .

(2) Q �∈ UH, so Q terminates on every input. In that case, summands of
the form c2/2x + 1 appear infinitely often in the series and therefore, the
series diverges—the expected time until termination is infinite, so (P, η) �∈
PAST . ��

The final problem we study is universal positive almost–sure termination. In
contrast to the non–positive version, we do have a complexity leap when moving
from non–universal to universal positive almost–sure termination. We will estab-
lish that UPAST is Π0

3–complete and thus even harder to decide than UAST .
For the reduction, we make use of the following Π0

3–complete problem:

Theorem 9 (The Cofiniteness Problem [16]). The cofiniteness problem
is a subset COF ⊂ ordProg, which is characterized as P ∈ COF iff

{
η

∣∣ (P, η) ∈
H}

is cofinite. Let COF denote the complement of COF , i.e. COF = ordProg\
COF . COF is Σ0

3–complete and COF is Π0
3–complete.

Theorem 10. UPAST is Π0
3–complete.

Proof. By Theorem 8, there exists a decidable relation R such that (P, η) ∈
PAST iff ∃ y1 ∀ y2 : (y1, y2, P, η) ∈ R. Therefore UPAST is definable by P ∈
UPAST iff ∀ η ∃ y1 ∀ y2 : (y1, y2, P, η) ∈ R, which gives a Π0

3–formula.
2 The program P cheers as it was able to prove the termantion of Q on input gQ(i).

On the Hardness of Almost–Sure Termination 317

Σ0
1 Π0

1

Δ0
1

Σ0
2 Π0

2

Δ0
2

Σ0
3 Π0

3

Δ0
3

...

H H

UH UH

COF COF

LEXP
semi–decidable

decidable

PAST
REXPwith access to

H–oracle:
semi–decidable

EXP
AST

not
semi–decidable;
even with
access to
H–oracle

not
semi–decidable;
even with
access to
UH–oracle

UAST

UPAST

Fig. 2. The complexity landscape of determining expected outcomes and deciding (uni-
versal) (positive) almost–sure termination.

It remains to show that UPAST is Π0
3–hard. This is established by a reduc-

tion function f : COF ≤m UPAST such that f(Q) gives nearly the same program
as the reduction function from the proof of Theorem 8 except that in f(Q) the
initialization i := 0 is omitted. Thus, on input η the resulting program P also
simulates Q successively on all inputs but starting from input gQ

(
η(i)

)
instead

of gQ(0). For details, see [17]. ��

7 Conclusion

We have studied the computational complexity of solving a variety of natural
problems which appear in the analysis of probabilistic programs: Computing
lower bounds, upper bounds, and exact expected outcomes (LEXP , REXP, and
EXP), deciding non–universal and universal almost–sure termination (AST and
UAST), and deciding non–universal and universal positive almost–sure termi-
nation (PAST and UPAST). Our complexity results are summarized in Fig. 2.
All examined problems are complete for their respective level of the arithmeti-
cal hierarchy. We conjecture that all our results remain valid for programs with
(minimizing) demonic non–determinism à la McIver and Morgan [4].

Future work consists of identifying program subclasses for which some of the
studied problems become easier. One idea towards this would be to investigate
the use of quantifier–elimination methods such as e.g. Skolemization.

318 B.L. Kaminski and J.-P. Katoen

Acknowledgements. We would like to thank Luis Maŕıa Ferrer Fioriti (Saarland
University) and Federico Olmedo (RWTH Aachen) for the fruitful discussions on the
topics of this paper. Furthermore, we are very grateful for the valuable and constructive
comments we received from the anonymous referees on an earlier version of this paper.

References

1. Kozen, D.: Semantics of Probabilistic Programs. J. Comput. Syst. Sci. 22(3), 328–
350 (1981)

2. Barthe, G., Köpf, B., Olmedo, F., Béguelin, S.Z.: Probabilistic relational reasoning
for differential privacy. ACM Trans. Program. Lang. Syst. 35(3), 9 (2013)

3. Borgström, J., Gordon, A., Greenberg, M., Margetson, J., van Gael, J.: Measure
transformer semantics for Bayesian machine learning. LMCS 9(3), 1–39 (2013).
Paper Number 11

4. McIver, A., Morgan, C.: Abstraction, Refinement and Proof for Probabilistic Sys-
tems. Springer, New York (2004)

5. Gretz, F., Katoen, J.P., McIver, A.: Operational versus weakest pre-expectation
semantics for the probabilistic guarded command language. Perform. Eval. 73,
110–132 (2014)

6. Fioriti, L.M.F., Hermanns, H.: Probabilistic termination: Soundness, completeness,
and compositionality. In: POPL 2015, pp. 489–501. ACM (2015)

7. Sneyers, J., De Schreye, D.: Probabilistic termination of CHRiSM programs. In:
Vidal, G. (ed.) LOPSTR 2011. LNCS, vol. 7225, pp. 221–236. Springer, Heidelberg
(2012)

8. Arons, T., Pnueli, A., Zuck, L.D.: Parameterized verification by probabilistic
abstraction. In: Gordon, A.D. (ed.) FOSSACS 2003. LNCS, vol. 2620, pp. 87–102.
Springer, Heidelberg (2003)

9. Esparza, J., Gaiser, A., Kiefer, S.: Proving termination of probabilistic programs
using patterns. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol.
7358, pp. 123–138. Springer, Heidelberg (2012)

10. Morgan, C.: Proof rules for probabilistic loops. In: Proceedings of the BCS-FACS
7th Refinement Workshop, Workshops in Computing. Springer (1996)

11. Tiomkin, M.L.: Probabilistic termination versus fair termination. TCS 66(3), 333–
340 (1989)

12. Kleene, S.C.: Recursive predicates and quantifiers. Trans. AMS 53(1), 41–73 (1943)
13. Odifreddi, P.: Classical Recursion Theory: The Theory of Functions and Sets of

Natural Numbers. Elsevier, Amsterdam (1992)
14. Post, E.L.: Recursively enumerable sets of positive integers and their decision prob-

lems. Bull. AMS 50(5), 284–316 (1944)
15. Davis, M.D.: Computability, Complexity, and Languages: Fundamentals of Theo-

retical Computer Science. Academic Press, Cambridge (1994)
16. Odifreddi, P.: Classical Recursion Theory, vol. II. Elsevier, Amsterdam (1999)
17. Kaminski, B.L., Katoen, J.P.: On the Hardness of Almost-Sure Termination. ArXiv

e-prints, June 2015

Graphs Identified by Logics with Counting

Sandra Kiefer(B), Pascal Schweitzer, and Erkal Selman

RWTH Aachen University, Aachen, Germany
{kiefer,schweitzer,selman}@informatik.rwth-aachen.de

Abstract. We classify graphs and, more generally, finite relational
structures that are identified by C2, that is, two-variable first-order logic
with counting. Using this classification, we show that it can be decided
in almost linear time whether a structure is identified by C2. Our clas-
sification implies that for every graph identified by this logic, all vertex-
colored versions of it are also identified. A similar statement is true for
finite relational structures.

We provide constructions that solve the inversion problem for finite
structures in linear time. This problem has previously been shown to be
polynomial time solvable by Martin Otto. For graphs, we conclude that
every C2-equivalence class contains a graph whose orbits are exactly the
classes of the C2-partition of its vertex set and which has a single auto-
morphism witnessing this fact.

For general k, we show that such statements are not true by providing
examples of graphs of size linear in k which are identified by C3 but for
which the orbit partition is strictly finer than the Ck-partition. We also
provide identified graphs which have vertex-colored versions that are not
identified by Ck.

1 Introduction

The k-variable fragment of counting logic, denoted by Ck, is obtained from first-
order logic by adding counting quantifiers but only allowing formulas that use
at most k variables. These finite variable logics play a central role in the area
of model-checking since for them the model-checking problem and the equiva-
lence problem are solvable in polynomial time (see [11]). For a while, there was
the hope that for some fixed k the logic Ck can distinguish every pair of non-
isomorphic graphs. This would imply that the graph isomorphism problem is
solvable in polynomial time. However, in 1992, it was shown by Cai, Fürer and
Immerman [6] that Ω(n) variables are required to identify all graphs on n ver-
tices. Since the examples presented in that paper consist of graph isomorphism
instances which are actually known to be solvable in polynomial time, this also
shows that Ck does not capture polynomial time.

Concerning Ck, there are striking connections to other seemingly unrelated
areas. For example, there exist several Ehrenfeucht-Fräıssé type games charac-
terizing Ck [6,8,13]. Also strongly related is the (k −1)-dimensional version of a
well-known color refinement algorithm, named after Weisfeiler and Lehman by

c© Springer-Verlag Berlin Heidelberg 2015
G.F. Italiano et al. (Eds.): MFCS 2015, Part I, LNCS 9234, pp. 319–330, 2015.
DOI: 10.1007/978-3-662-48057-1 25

320 S. Kiefer et al.

Babai (see [6]). It turns out that the (k−1)-dimensional Weisfeiler-Lehman algo-
rithm does nothing else but partition (k−1)-tuples of vertices according to their
Ck-types. Another surprising connection exists to linear programming. The k-th
level of the Sherali-Adams hierarchy of a natural linear integer programming for-
mulation of graph isomorphism essentially corresponds to the expressive power
of Ck [2,12].

Among the finite variable logics, the fragment C2 has been of particular
interest because its satisfiability problem is known to be decidable [10], and the
complexity of the decision problem has been studied extensively [22]. Numer-
ous results for this logic are known, we refer the reader to a survey by Grädel
and Otto [9]. In practice, due to its strength and the fact that it can be eval-
uated in almost linear time, the logic C2 (more specifically, the corresponding
1-dimensional Weisfeiler-Lehman algorithm) is an essential subroutine in all com-
petitive canonical labeling tools (see [20]). Very recent results concerning C2

include a paper by Krebs and Verbitsky studying the quantifier depth of C2-
formulas for C2-equivalence classes of graphs [17]. Kopczynski and Tan show
that for every fixed C2-formula, the set of those n for which there is a structure
with a universe of size n satisfying the formula is semilinear [16]. Moreover, they
describe the characteristics of the spectrum of a C2-formula.

While most of the results further above deal with the problem of distinguish-
ing two graphs from each other using finite variable counting logics, in this paper
we are concerned with the concept of distinguishing a graph from every other
non-isomorphic graph. We say that the graph is identified by the logic. More
formally, a graph (or a finite relational structure) G is identified by a logic L
if there is a sentence ϕ in L such that G satisfies ϕ and every graph (or finite
relational structure) which satisfies ϕ is isomorphic to G.

Of course every graph is identified by some first-order sentence. However, by
[6], as mentioned above, there is no k ∈ N such that every graph is identified
by some formula in Ck. Let us focus on the case k = 2. It is not difficult to see
that all forests are identified by C2. Moreover, a graph is asymptotically almost
surely identified by C2, that is, the fraction of graphs of size n which are not
identified by C2 tends to 0 as n tends to infinity [3]. Even more strongly, it is
known [4] that the fraction of graphs which are not identified is exponentially
small in n. Similarly, a regular graph is asymptotically almost surely identified
by C3 [18]. However, not all graphs are identified. (For C2, consider a cycle of
length at least 6, for example.) The following question arises.

What is the structure of graphs that are identified by Ck?

Our results. We study graphs that are identified by C2 and provide a complete
classification for them. This classification can be used to draw several conclu-
sions about general properties of identified graphs. For example, one can derive
that if an undirected graph is identified by C2, then the C2-partition classes
of the vertices are exactly the orbits of the automorphism group of the graph.
This corollary is neither true when considering finite (relational) structures nor
when considering Ck with k > 2. For C2, we also conclude that if an undirected
graph is identified, every vertex-colored version of it is identified by C2 as well.

Graphs Identified by Logics with Counting 321

This statement holds for finite relational structures, too, but is again not true
for Ck with k > 2. Using our classification, we show that in time O((n+m) log n)
it is possible to determine whether an undirected graph is identified by C2.

The proof of the correctness of our classification hinges upon explicit con-
structions that solve the inversion problem and the canonization problem for C2.
The inversion problem asks whether to a certain invariant a graph (or more gen-
erally, a finite structure) can be constructed. In the case of C2, such an invariant
is the count of the C2-types of pairs of vertices. A celebrated result by Otto [21]
shows that the inversion problem and the canonization problem for C2 can be
solved in polynomial time. As a side-product, our direct constructions provide
an alternative proof for this. In fact, we show that the inversion problem for C2

can be solved in linear time. Our constructions make use of circulant graphs
and doubly-circulant graphs. With these, we observe that every C2-equivalence
class contains a graph whose C2-partition classes are the orbits. More strongly,
there is a single automorphism of the graph witnessing this. (That is, there
is an automorphism ϕ such that for all pairs of vertices v, v′ that are in the
same C2-partition class there is an integer i such that ϕi(v) = v′.) To achieve
inversion for finite structures, we use an old 1-factorization construction due to
Walecki (see [19]) that decomposes the complete graph K2n into 2n − 1 disjoint
perfect matchings.

Building on the classification of graphs identified by C2, we also classify
finite structures that are identified by C2. For graphs, there is only one special
case that may appear within a C2-partition class (namely the cycle of length 5).
However, for finite structures there are 7 different special cases for a C2-partition
class, which are of sizes 3, 4, 5 and 6. Our classification theorem describes how
these may be combined to form structures that are identified by C2. Due to
the nature of the different special cases, the classification is more involved (see
Theorem 4). Nevertheless, we show that one can decide in almost linear time
whether a structure is identified by C2. Our characterization also provides a
graph-theoretical classification result. From the class of (possibly edge-colored
partially oriented) graphs, it explicitly lists all those (color-)regular graphs that
are determined up to isomorphism by their (color) degrees, see Theorem 3.

For the logics Ck with k > 2 we collect several negative results. One can first
observe that the triangular graphs form an infinite non-trivial class of strongly
regular graphs which are identified by C3, implying that any classification result
would have to include non-trivial infinite families [7,14].

Contrasting our results for C2, we provide examples of graphs that are iden-
tified by C3 but for which conclusions analogous to the ones mentioned above do
not hold. More specifically, we present graphs identified by C3 for which even the
logic Ck with k linear in the size of the graph does not correctly determine the
orbit partition. This yields graphs which the logic Ck identifies, but for which
not all vertex-colored versions are identified by Ck. These ideas are based on the
construction by Cai, Fürer and Immerman [6].

The existence of these graphs highlights an important fact. Even if a graph
is identified by the logic Ck, it is not clear that it is possible to take advantage

322 S. Kiefer et al.

of that in order to canonize the graph. This stands in contrast to a remark
in [6] claiming that a graph G identified by Ck can be canonized in polynomial
time. In fact, the crucial property required for the approach hinted at there
to be successful is that all vertex-colored versions of G need to be identified
by Ck. Indeed, if this property holds then a standard recursive individualization
approach canonizes the graph G. It would suffice to show that for all vertex-
colored versions of G the orbits are determined by the logic. However, with
a slight alteration of our construction, we obtain a graph G that is identified
by Ck and whose orbits are correctly determined, but for which there exist
vertex-colored versions whose orbits are not correctly determined.

Independently of our work, Arvind, Köbler, Rattan and Verbitsky [1] have
investigated the structure of undirected graphs identified by C2 obtaining results
similar to the ones we provide in Sect. 4. Throughout the document, proofs are
omitted. For these, we refer to the full version [15].

2 Preliminaries

Unless specified otherwise, a graph G is a finite undirected graph without loops,
its vertex set is V (G) and its edge set E(G). For P ⊆ V (G), the subgraph induced
by P is G[P]. If all vertices have degree k then G is k-regular. A (k, �)-biregular
graph G on bipartition (P,Q) is a graph on vertex set P ∪̇ Q such that P
and Q are independent sets, every vertex in P has exactly k neighbors in Q and
every vertex in Q has exactly � neighbors in P . Two vertices v, v′ ∈ V (G) are
in the same orbit of G if G has an automorphism ϕ such that ϕ(v) = v′. The
orbit partition of G is the partition of V (G) into the orbits of G.

A graph G is identified by a logic L if there is a sentence ϕ in L such that
G satisfies ϕ and every graph which satisfies ϕ is isomorphic to G. A logic L
distinguishes two graphs G and G′ if there is a sentence ϕ in L such that
G |= ϕ and G′ �|= ϕ. We say that G and G′ are L-equivalent if they are not
distinguished by L.

The k-variable counting logic, denoted by Ck, is the k-variable fragment
of first-order logic enriched by counting quantifiers. For every t ∈ N we have
the counting quantifier ∃≥t. For a formula ϕ(x) with the free variable x and for
a graph G we have G |= ∃≥tx ϕ(x) if and only if there are at least t vertices
v ∈ V (G) such that G |= ϕ[v]. The variables in a Ck-formula are all from a fixed
k-element set, say {x1, . . . , xk}, but they can be reused. The Ck-type of a vertex
v in G is the set of all Ck-formulas ϕ(x) such that G |= ϕ[v]. The Ck-coloring of
G is the coloring of each vertex with its Ck-type. The Ck-partition of a graph
G is the partition of its vertex set induced by their Ck-types. Similarly, the Ck-
type of a tuple (v, w) is the set of Ck-formulas ϕ(x, y) such that G |= ϕ[v, w].
For a vertex v or a pair of vertices v, w to obtain the atomic Ck -type we
consider only quantifier-free Ck-formulas.

Let G be a graph and Π be a partition of V (G). We say that Π is equitable
if for all P,Q ∈ Π and v, v′ ∈ P , the vertices v and v′ have the same number of
neighbors in Q. A vertex coloring χ is called equitable if the partition induced

Graphs Identified by Logics with Counting 323

by χ is equitable. A partition Π is coarser than a partition Π ′ if every partition
class of Π is contained in some class of Π ′. It is a well-known fact that the C2-
partition of a graph is its coarsest equitable partition. The C2-partition of
a graph with n vertices and m edges can be calculated in time O((m + n) log n)
by the color refinement procedure (see [5]).

2.1 Relational Structures and Partially Oriented Graphs

An edge-colored partially oriented graph (an ec-POG) is an edge-colored
directed graph (G, c) (with c an edge-coloring function) without loops such that
for every (v, w) ∈ E(G), it holds that if (w, v) ∈ E(G) then c((v, w)) = c((w, v)).
Slightly abusing terminology, we say that an edge (v, w) ∈ E(G) is undirected
if (w, v) ∈ E(G) and directed otherwise. We accordingly draw (v, w) and (w, v)
as one undirected edge between v and w and denote it by {v, w}. An ec-POG
(G, c) is complete if for all v, w ∈ V (G) with v �= w we have (v, w) ∈ E(G) or
(w, v) ∈ E(G).

In the following, we consider finite relational structures over a fixed signature
σ = (R1, . . . , R�) where Ri has arity ri. The various definitions given for graphs
are analogously defined for structures. Let A be a finite relational structure with
universe A. For every i ∈ {1, . . . , �} we define a function ci : A2 → P({1, 2}ri) via
ci(v1, v2): =

{
(j1, . . . , jri

) ∈ {1, 2}ri |A |= Ri(vj1 , . . . , vjri
)
}

where, as usual, P
denotes the power set and {1, 2}ri denotes the set of all ri-tuples over {1, 2}. For
all v, w ∈ A with v �= w we let c(v, w): = (c1(v, w), . . . , c�(v, w)). Since for each i
the possible images of ci come from a set of bounded size, by using the order of
the relations Ri in σ, one can easily define a canonical linear ordering ≤ on the
image of c (for example, by using the lexicographic order). With the help of this
ordering, we define ec-POG(A): = ((A,EA), cA) as the complete ec-POG with
vertex set A, edge set EA: = {(v, w) | v, w ∈ A, v �= w and c(v, w) ≤ c(w, v)}
and the edge coloring cA: = c|EA

, the restriction of c to EA. Note that c(v, w)
uniquely determines the atomic C2-types of v, w, (v, w) and (w, v).

A partition Π of the vertex set of an ec-POG is equitable if for all P,Q ∈ Π,
for all v, v′ ∈ P and for every edge color c, the vertices v and v′ have the
same number of c-colored outgoing, incoming and undirected edges connecting
them to Q. An ec-POG is color-regular if for each edge color c every ver-
tex v has the same c-indegree, the same c-outdegree and the same c-degree for
undirected edges, respectively. An edge-colored undirected biregular graph on
bipartition (P,Q) is called color-biregular if for every edge color c the sub-
graph induced by the edges of color c is biregular on (P,Q). If the graph is
partially oriented, vertices in each bipartition class must additionally have the
same number of outgoing and incoming edges in each color.

3 Inversion

In this section, we treat the so-called inversion problem that is closely related
to the question which graphs are identified by C2. A complete invariant of an

324 S. Kiefer et al.

equivalence relation ≡ on a class C of structures is a mapping I from C to some
set S, such that A ≡ B if and only if I(A) = I(B). We say that I admits linear
time inversion if given s ∈ S one can construct in linear time a structure A
with I(A) = s or decide that no such structure exists. This algorithmic task
describes the inversion problem. Of course, if a structure A is identified then a
solution to the inversion problem must construct A when given I(A).

For C2, we show that a natural complete invariant, namely I2
C , admits lin-

ear time inversion. Otto [21] proved that this invariant admits polynomial time
inversion, not only for simple graphs, but for finite structures in general.

Given a graph G, one can canonically define a linear ordering P1 ≤ . . . ≤ Pt

on the classes of its coarsest equitable partition (see [21]). This ordering allows
us to define I2

C , mapping G to (s̄,M), where s̄ is the tuple (|P1|, . . . , |Pt|) and M
is a t × t matrix, such that every vertex in Pi has exactly Mij neighbors in Pj .
It is easy to see that I2

C is a complete invariant of C2.

3.1 Inversion for Graphs

Definition 1. A graph is circulant if it has an automorphism that consists
of exactly one (permutation) cycle. A graph on vertex set P ∪̇ Q is doubly-
circulant with respect to P and Q if it has an automorphism with exactly two
(permutation) cycles, one on P and the other on Q. A graph is multi-circulant
with respect to a partition {P1, . . . , P�} of its vertices if it has an automorphism
with exactly �(permutation) cycles, each on one of the Pi.

While circulant graphs are transitive and thus regular, not every regular graph
is transitive and not every transitive graph is circulant. Similarly, every doubly-
circulant graph is biregular but not every biregular graph is doubly-circulant.

It is well-known that circulant graphs can be constructed by numbering the
vertices from 0 to n−1, picking an arbitrary set S ⊆ {1, . . . ,
n/2�} of distances
and inserting all edges between pairs of vertices whose distance of indices in the
circular ordering is contained in S. A k-regular graph on n vertices exists exactly
if k ·n is even and k ≤ n−1. In this case a k-regular circulant graph on n vertices
can be constructed in linear time. We call this the circulant construction.

A (k, �)-biregular graph on a bipartition (P,Q) with |P | = m and |Q| = n
exists exactly if k ·m = �·n as well as k ≤ n and � ≤ m (see, for example [16,21]).
In fact, under these conditions there exists such a graph that is doubly-circulant.

Lemma 1. For all k, �, m, n ∈ N with k ≤ n, � ≤ m and k · m = � · n, one
can construct in O(k · m) time a (k, �)-biregular graph on a bipartition (P,Q)
with |P | = m and |Q| = n, which is doubly-circulant with respect to P and Q.

The coarsest equitable partition of a graph is not necessarily its orbit partition.
However, one can use Lemma 1 to show that for each C2-equivalence class, there
is a representative whose coarsest equitable partition is the orbit partition.

Theorem 1. For every graph G, there is a C2-equivalent graph H which is
multi-circulant with respect to its coarsest equitable partition.

Graphs Identified by Logics with Counting 325

Corollary 1. I2
C admits linear time inversion on the class of graphs.

Given an equivalence relation ≡ on a class C of structures, the canonization
problem for ≡ is the problem of finding a map c : C → C such that for every A ∈
C it holds that c(A) ≡ A and for all A,B ∈ C with A ≡ B we have c(A) = c(B).
The map c is called a canonization for ≡ and c(A) is the canon of A (with
respect to c). Typically, the goal is to find such a canonization c that can be
evaluated efficiently. As a consequence of the theorem we obtain two corollaries.

Corollary 2. Canonization for C2 of graphs can be done in O((n + m) log n)
time.

Corollary 3. If a graph G is identified by C2, then its coarsest equitable parti-
tion is the orbit partition.

It is natural to ask whether Corollary 3 holds for finite relational structures in
general. This is not the case since the unique 1-factorization of K6 is rigid (i.e.,
has no non-trivial automorphisms).

3.2 Inversion for Finite Relational Structures

Let A = (A,R1, . . . , R�) be a finite relational structure. We define A|2, the
restriction of A to arity 2, to be the relational structure (A,R′

1, . . . , R
′
�) with

R′
i: = {(v1, . . . , vri

) ∈ Ri | {v1, . . . , vri
}has at most 2 elements,} where ri is the

arity of Ri. Obviously, two relational structures A and B are C2-equivalent if
and only if A|2 and B|2 are C2-equivalent. Furthermore, A|2 and B|2 are C2-
equivalent if and only if ec-POG(A|2) and ec-POG(B|2) are C2-equivalent.
Hence, the inversion problem for I2C on finite relational structures reduces to
the inversion problem for I2C on ec-POGs.

The complete invariant I2C for the class of graphs has a well-known extension
to finite structures, which translates to the context of ec-POGs as follows: we
simply replace the matrix in the original definition of I2C with a matrix M such
that for all i, j ∈ {1, . . . , k} the entry Mij is a tuple encoding for each edge color d
the number of d-colored outgoing edges from a vertex in Pi to Pj . Similarly to
the case of graphs, in order to solve the inversion problem for ec-POGs it suffices
to solve it for the color-regular case (which corresponds to the inversion within
one C2-partition class) and for the color-biregular case (which corresponds to
the inversion between two C2-partition classes).

Color-regular case: Let n be the number of vertices. If n is odd, the degrees in
each color in the underlying undirected graph must be even. Consequently, the
circulant construction from Subsect. 3.1 can be adapted to perform the inversion
for directed and colored edges.

If n is even and more than one color degree is odd, we cannot apply the
circulant construction, which significantly complicates our task. In fact, as a
1-factorization (i.e., a partition of the edge set into perfect matchings) of K6

shows it might not be possible to construct a transitive graph with the given

326 S. Kiefer et al.

color degrees. Still, we can construct a canonical representative for the corre-
sponding C2-equivalence class as follows. We use the 1-factorization construction
due to Walecki (see [19]). For even n the construction decomposes the complete
graph Kn into n−1 disjoint perfect matchings. This decomposition can be made
canonical and computed in linear time (see also [23, Example 7.1.2.]). To obtain
a graph with specific color degrees we can define a color class to be the union of
a suitable number of 1-factors. We call this the matching construction. The
construction has the property that two matchings of the 1-factorization always
yield a Hamiltonian cycle. If we require directed edges, in which case in-degrees
must be equal to out-degrees, we pair a suitable number of matchings and orient
the obtained Hamiltonian cycles.

Color-biregular case: Our doubly-circulant construction for graphs can be altered
to handle colored directed edges.

Corollary 4. I2
C admits linear time inversion on finite relational structures.

Corollary 5. Canonization for C2 of a relational structure A = (A,R1, . . . , R�)
over a fixed signature can be done in time O((n + m) log n) where n = |A| and
m = |R1| + · · · + |R�|.

4 Characterization of the Graphs Identified by C2

Here we examine the graphs that are identified by the logic C2 and give a
complete characterization of them.

Definition 2. Let T be a tree with a designated vertex v. For i ∈ {1, . . . , 5}
let (Ti, vi) be an isomorphic copy of (T, v). Let F be the disjoint union of the
five trees (Ti, vi) and E be the edge set of a 5-cycle on vertex set {v1, . . . , v5}.
Then we call the graph obtained from F by inserting the edges in E, a bouquet.

A bouquet forest is a disjoint union of vertex-colored trees and non-isomorphic
vertex-colored bouquets.

For sets P , Q we define [P,Q]: = {{v, w} | v �= w, v ∈ P, w ∈ Q}.

Definition 3. Let G be a graph with C2-coloring χ. We define the flip
of G as the vertex-colored graph (F, χ) with V (F) = V (G) and E(F) =
E(G) Δ ([P1, Q1] ∪ . . . ∪ [Pt, Qt]), where the (Pi, Qi) are all pairs of (not nec-
essarily distinct) C2-partition classes of G which satisfy |[Pi, Qi] ∩ E(G)| >
|[Pi, Qi] \ E(G)|. We say that (F, χ) is a flipped graph. If χ is the C2-coloring
of F and (F, χ) is a flipped graph, we also say that F is flipped.

Here, the symbol Δ in the definition denotes, the symmetric difference. The
notions of a flip and a bouquet forest allow us to obtain the following classification.

Theorem 2. A graph is identified by C2 if and only if its flip is a bouquet forest.

Corollary 6. Given a graph with n vertices and m edges, we can decide whether
it is identified by C2 in time O((m + n) log n).

Graphs Identified by Logics with Counting 327

A second corollary of Theorem 2 is concerned with vertex colorings of graphs
that are identified by C2.

Corollary 7. Let (G,χ) be a vertex-colored graph which is identified by C2 and
let χ′ be a vertex coloring of G which induces a finer partition on V (G) than χ
does. Then (G,χ′) is also identified by C2.

Our classification result actually provides us with some deeper structural insight
that we describe next.

For a (k, �)-biregular graph on bipartition (P,Q) we introduce the three fol-
lowing notations. (1) P � Q ⇐⇒ k = � = 0, (2) P

.= Q ⇐⇒ k = � = 1
and (3) P � Q ⇐⇒ k ≥ 2 and � = 1.

For a graphGwithC2-partitionΠ, we define the skeletonSG ofG as the graph
with V (SG) = Π and E(SG) = {{P,Q} | P

.= Q or P � Q in the flip of G}.
Since they can appear only once per connected component of the skeleton,

we call a C2-partition class that is a 5-cycle or a matching an exception. Our
classification of finite relational structures that are identified by C2, which we
give in the next section, depends on the structural properties that can be proven
for identified graphs. These can be summarized as follows.

Corollary 8. A flipped graph G is identified by C2 if and only if the following
hold: (1) Each C2-partition class induces a graph identified by C2 (i.e., the
induced graph has no edges or it is a matching or a 5-cycle), (2) for all C2-
partition classes P and Q we have P � Q, P

.= Q, P � Q or Q � P , (3) the
skeleton SG is a forest, (4) there is no path P0, P1, . . . , Pt in SG with P0 � P1

and Pt−1 � Pt in G, (5) there is no path P0, P1, . . . , Pt in SG where P0 � P1

and G[Pt] is a 5-cycle or a matching, and (6) in every connected component
of SG there is at most one exception.

5 General Finite Structures

To generalize our results to finite structures, it suffices to analyze which edge-
colored partially oriented graphs (i.e., ec-POGs) are identified.

Theorem 3. Let G be a color-regular complete ec-POG. Then C2 identifies G
if and only if G is (1) an undirected complete graph with only one edge color,
(2) undirected and has two edge colors, one of which induces a perfect matching,
or (3) one of the exceptions depicted in Fig. 1.

Fig. 1. The special cases that occur in the classification in Theorem 3

328 S. Kiefer et al.

We will now describe how to combine such building blocks to form a larger
identified ec-POG. By interpreting non-edges as edges of a special color we only
need to consider complete graphs.

Definition 4. Let G be a vertex-colored ec-POG and let P and Q be two disjoint
subsets of V (G). We introduce the relation P ≡3

3 Q to denote the fact that the
graph induced by the edges running between P and Q is the graph K3,3 with three
edge colors which each induce a perfect matching between P and Q.

To define the relations P � Q, P
.= Q, P � Q for edge-colored graphs we always

consider the graph induced by the edge color class that contains fewer edges and
ignore orientations. It is not difficult to see that if the number of edges in the
first color is equal to the number of edges in the second color then choosing
either induced graph yields the same results. Note that with this convention the
relations P � Q, P

.= Q, P � Q in particular imply that there are only at most
two colors among the edges running between P and Q.

Lemma 2. Let G be a vertex/edge-colored undirected graph that is identified
by C2. If P and Q are distinct C2-partition classes of G, then P � Q, P

.= Q,
P � Q, Q � P or P≡3

3Q.

In an identified ec-POG, we call every C2-partition class which does not induce
an undirected complete graph with only one edge color an exception (i.e., any
class that does not fall under Item 1 of Theorem 3). Similarly, we call every pair
of C2-partition classes P and Q for which P≡3

3Q holds an exception.
Let G be a vertex/edge-colored graph. As before, we define the vertices of

the skeleton SG to be the C2-partition classes of G. Two distinct vertices P , Q
in SG are adjacent in SG if the corresponding classes in G do not satisfy P � Q.
For identified structures, we obtain a theorem similar to Corollary 8 for graphs.

Theorem 4. Let G be a vertex-colored ec-POG. Then G is identified by C2

if and only if the following hold: (1) Each C2-partition class induces a graph
identified by C2, (2) for all C2-partition classes P and Q we have P � Q, P

.=
Q, P � Q, Q � P or P≡3

3Q, (3) the skeleton SG is a forest, (4) there is
no path P0, P1, . . . , Pt in SG with P0 � P1 and Pt−1 � Pt, (5) there is no
path P0, P1, . . . , Pt in SG where P0 � P1 and Pt is an exception, and (6) in
every connected component of SG there is at most one exception.

Corollary 9. Given a finite relational structure A with a universe of size n over
a fixed signature we can decide in time O(n2 log n) whether it is identified by C2.

Using the classification we also obtain an extension of Corollary 7 to ec-POGs
and, more generally, to finite relational structures.

Corollary 10. If a finite relational structure A is identified by C2, then every
finite relational structure obtained from A by adding unary relations is also iden-
tified by C2.

Graphs Identified by Logics with Counting 329

6 Higher Dimensions

Considering triangular graphs [7,14] we see that for k > 2 any classification result
for graphs identified by Ck must include an infinite number of non-trivial graphs.
This already indicates that the situation for k = 2 is special. We show that
statements analogous to Corollaries 3 and 7 do not hold for higher dimensions.
For this we use the construction from [6].

Theorem 5. For every k > 2, there is a graph H of size O(k) identified by C3

for which the Ck-partition is strictly coarser than the orbit partition. Moreover,
not all vertex-colored versions of H are identified by Ck.

Even if a graph is identified and the orbits are correctly determined by Ck, it
may still be the case that this does not hold for all colored versions of the graph.

Theorem 6. For every k > 2, there is a graph H of size O(k) which is identified
by C3 such that the Ck-partition classes are the orbits of H but there are vertex-
colored versions of H that are not identified by Ck and for which the Ck-partition
classes are not the orbits of H.

References

1. Arvind, V., Köbler, J., Rattan, G., Verbitsky, O.: On the power of color refinement.
In: FCT 2015, (to appear 2015)

2. Atserias, A., Maneva, E.N.: Sherali-adams relaxations and indistinguishability in
counting logics. SIAM J. Comput. 42(1), 112–137 (2013)

3. Babai, L., Erdös, P., Selkow, S.M.: Random graph isomorphism. SIAM J. Comput.
9(3), 628–635 (1980)

4. Babai, L., Kucera, L.: Canonical labelling of graphs in linear average time. In:
FOCS 1979, pp. 39–46. IEEE Computer Society (1979)

5. Berkholz, C., Bonsma, P., Grohe, M.: Tight lower and upper bounds for the com-
plexity of canonical colour refinement. In: Bodlaender, H.L., Italiano, G.F. (eds.)
ESA 2013. LNCS, vol. 8125, pp. 145–156. Springer, Heidelberg (2013)

6. Cai, J., Fürer, M., Immerman, N.: An optimal lower bound on the number of
variables for graph identifications. Combinatorica 12(4), 389–410 (1992)

7. Chang, L.-C.: The uniqueness and nonuniqueness of the triangular association
scheme. Sci. Record. 3, 604–613 (1959)

8. Dawar, A., Holm, B.: Pebble games with algebraic rules. In: Czumaj, A., Mehlhorn,
K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012, Part II. LNCS, vol. 7392, pp.
251–262. Springer, Heidelberg (2012)

9. Grädel, E., Otto, M.: On logics with two variables. Theor. Comput. Sci. 224(1–2),
73–113 (1999)

10. Grädel, E., Otto, M., Rosen, E.: Two-variable logic with counting is decidable. In:
LICS 1997, pp. 306–317. IEEE Computer Society (1997)

11. Grohe, M.: Finite variable logics in descriptive complexity theory. Bull. Symbolic
Log. 4(4), 345–398 (1998)

12. Grohe, M., Otto, M.: Pebble games and linear equations. In: Cégielski, P., Durand,
A. (eds.) CSL 2012, of LIPIcs, vol. 16, pp. 289–304 (2012)

13. Hella, L.: Logical hierarchies in PTIME. Inf. Comput. 129(1), 1–19 (1996)

330 S. Kiefer et al.

14. Hoffman, A.J.: On the uniqueness of the triangular association scheme. Ann. Math.
Statist. 31(2), 492–497 (1960)

15. Kiefer, S., Schweitzer, P., Selman, E.: Graphs identified by logics with counting.
CoRR, abs/1503.08792 (2015). full version of the paper

16. Kopczynski, E., Tan, T.: Regular graphs and the spectra of two-variable logic with
counting. CoRR, abs/1304.0829 (2013)

17. Krebs, A., Verbitsky, O.: Universal covers, color refinement, and two-variable logic
with counting quantifiers: Lower bounds for the depth. CoRR, abs/1407.3175
(2014)

18. Kucera, L.: Canonical labeling of regular graphs in linear average time. In: FOCS
1987, pp. 271–279. IEEE Computer Society (1987)

19. Lucas, E.: Récréations mathématiques. 2ième éd., nouveau tirage. Librairie Scien-
tifique et Technique Albert Blanchard, Paris (1960)

20. McKay, B.D., Piperno, A.: Practical graph isomorphism, II. J. Symb. Comput. 60,
94–112 (2014)

21. Otto, M.: Canonization for two variables and puzzles on the square. Ann. Pure
Appl. Logic 85(3), 243–282 (1997)

22. Pratt-Hartmann, I.: Complexity of the two-variable fragment with counting quan-
tifiers. J. Log. Lang. Inf. 14(3), 369–395 (2005)

23. West, D.B.: Introduction to Graph Theory, 2nd edn. Pearson, Upper Saddle River
(2000)

Synchronizing Automata
with Extremal Properties

Andrzej Kisielewicz(B) and Marek Szyku�la

Department of Mathematics and Computer Science,
University of Wroc�law,Wroc�law, Poland

andrzej.kisielewicz@math.uni.wroc.pl, msz@cs.uni.wroc.pl

Abstract. We present a few classes of synchronizing automata exhibit-
ing certain extremal properties with regard to synchronization. The first
is a series of automata with subsets whose shortest extending words are
of length Θ(n2), where n is the number of states of the automaton.
This disproves a conjecture that every subset in a strongly connected
synchronizing automaton is cn-extendable, for some constant c, and in
particular, shows that the cubic upper bound on the length of the short-
est reset words cannot be improved generally by means of the extension
method. A detailed analysis shows that the automata in the series have
subsets that require words as long as n2/4+O(n) in order to be extended
by at least one element.

We also discuss possible relaxations of the conjecture, and propose
the image-extension conjecture, which would lead to a quadratic upper
bound on the length of the shortest reset words. In this regard we present
another class of automata, which turn out to be counterexamples to a
key claim in a recent attempt to improve the Pin-Frankl bound for reset
words.

Finally, we present two new series of slowly irreducibly synchronizing
automata over a ternary alphabet, whose lengths of the shortest reset
words are n2 − 3n + 3 and n2 − 3n + 2, respectively. These are the first
examples of such series of automata for alphabets of size larger than two.

1 Introduction

In this paper we deal with deterministic finite (semi) automata (DFA) A =
(Q,Σ, δ), where Q is a non-empty set of states, Σ is a non-empty alphabet, and
δ : Q × Σ �→ Q is the complete transition function. We extend δ to Q × Σ∗ and
2Q × Σ∗ in a natural way. The image δ(S,w) is denoted shortly by Sw, and
the preimage δ−1(S,w) = {q ∈ Q | qw ∈ S} is denoted by Sw−1. Throughout
the paper, by n we denote the cardinality |Q|. The rank of a word w ∈ Σ∗ is
the cardinality |Qw|. A word w of rank 1 is called a synchronizing word. An
automaton for which there exists a synchronizing word is called synchronizing.

Andrzej Kisielewicz—Supported in part by Polish MNiSZW grant IP 2012 052272.
Marek Szyku�la—Supported in part by Polish NCN grant DEC-2013/09/N/
ST6/01194.

c© Springer-Verlag Berlin Heidelberg 2015
G.F. Italiano et al. (Eds.): MFCS 2015, Part I, LNCS 9234, pp. 331–343, 2015.
DOI: 10.1007/978-3-662-48057-1 26

332 A. Kisielewicz and M. Szyku�la

The reset length is the length of the shortest reset words. A word w compresses
a subset S ⊆ Q if |Sw| < |S|, and a subset that admits such a word is called
compressible.

The famous Černý conjecture states that every synchronizing automaton
A with n states has a reset word of length ≤ (n − 1)2. This conjecture was
formulated by Černý in 1964 [8], and is considered the longest-standing open
problem in combinatorial theory of finite automata. So far, the conjecture has
been proved only for a few special classes of automata, and the best general
upper bound proven is n3−n

6 − 1 (n ≥ 4). It is known that it is enough to prove
the conjecture for strongly connected automata. We refer to [13,21] for excellent
surveys discussing recent results.

Many partial results towards the solution of the Černý conjecture use the
so-called extension method (e.g. [4,5,7,9,12,16–18]). The essence of this method
is to look for a sequence of (short) words w1, . . . , wn−1 such that S1 = {q} for
some q ∈ Q, Sk+1 = Skw−1

k , and |Sk+1| > |Sk| for k ≥ 1. Then, necessarily,
Sn = Q, and the word wn−1 . . . w2w1 is synchronizing. (It may happen that a
shorter sequence of words does the job.) In other words, we try to extend subsets
of Q, starting from a singleton, rather than to compress subsets starting from
Q. In connection with this method we say that S ⊆ Q is m-extendable if there
is a word w of length at most m with |Sw−1| > |S|. An automaton A is m-
extendable, if each subset of its states is m-extendable. For example, Kari [12]
proved that automata whose underlying digraph is Eulerian are n-extendable.
A simple calculation shows that such automata satisfy the Černý conjecture.

Unfortunately, it is not true, in general, that each strongly connected syn-
chronizing automaton is n-extendable. In [6] Berlinkov has constructed a series
of strongly connected synchronizing automata with subsets for which the short-
est extending words are of length 2n−3. Thus they are not cn-extendable for any
constant c < 2. However, it remained open whether each synchronizing automa-
ton is 2n-extendable. The question was also posed in [13]. Its importance comes
from the fact, that it would imply a quadratic upper bound for the length of the
shortest reset words, and many proofs of the Černý conjecture for special cases
rely on the fact that subsets are extendable by short words.

In Sect. 2 we present a series A2m−1 of strongly connected synchronizing
automata with n = 2m − 1 states that are not cn-extendable for any constant
c. We show that they have subsets whose shortest extending words have length
n2/4+O(n). It follows that, in general, the extension method cannot be used to
improve the cubic upper bound. On the other hand, we propose a possible weak-
ening of the condition of m-extendability, which would imply quadratic upper
bounds. To prove some lower bound on the constant in our conjecture, a series of
automata B2m is presented, which turn out to be also connected with a recent
attempt to improve the Pin-Frankl bound [20]. It provides counterexamples of
arbitrary order to the false statement in [20, Lemma3], in addition to the single
counterexample on 4 states constructed in [10].

Automata with reset lengths close to the Černý bound (n − 1)2 are referred
to as slowly synchronizing. Such extremal series and particular examples of

Synchronizing Automata with Extremal Properties 333

automata are of special interest, and there are only a few of them known
[1–3,11,15,19]. The first known such series is the famous Černý series [8], reach-
ing the Černý bound (n − 1)2. The authors of [1] found 10 infinite series of
extremal automata other than the Černý series over binary alphabets. Yet, until
now, no non-trivial series of synchronizing automata with reset length n2+O(n)
have been found for larger alphabets.

Of course, we are not interested in examples that can be obtained just
by adding arbitrary letter to binary slowly synchronizing automata. We call
an automaton irreducibly synchronizing, if removing any letter yields a non-
synchronizing automaton. In Sect. 4 we present two such series over a ternary
alphabet, with the reset lengths n2 − 3n + 3 and n2 − 3n + 2, respectively.

2 A Series with Quadratically Extendable Subsets

For m ≥ 3, let n = 2m − 1. Let A2m−1 = 〈Q2m−1, {a, b}, δ2m−1〉 be the automa-
ton shown in Fig. 1. Q2m−1 = {q1, . . . , q2m−1} and δ2m−1 is defined as follows:

δ2m−1(qi, a) =

⎧⎪⎨
⎪⎩

q1, if i = m,

qm+1, if i = 2m − 1,

qi+1, otherwise,

δ2m−1(qi, b) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

qi, if 1 ≤ i ≤ m − 1,

q2m−1, if i = m,

qm, if i = 2m − 1,

qi−m, otherwise.

qmq1 . . . qm−2 qm−1

a

a a a a

q2m−1qm+1 . . . q2m−2

a

a a a

b b b

bbb b

Fig. 1. The automaton A2m−1

It is easily verified that A2m−1 is strongly connected. Let us define QU =
{qm+1, . . . , q2m−1} and QD = {q1, . . . , qm}. First we show that A2m−1 is syn-
chronizing by a word of length 2m2 − 2m + 2 = (n2 + 3)/2.

Proposition 1. The word babamb(am−1bamb)m−2 synchronizes A2m−1 to the
state q1.

334 A. Kisielewicz and M. Szyku�la

Proof. First observe that Qbabamb = QD \ {qm}. It suffices to ensure that if
S = {q1, . . . , qi} for i = 2, . . . , m − 1, then Sam−1bamb = {q1, . . . , qi−1}. Indeed,
Sam−1 = {q1, . . . , qi−1, qm}; then qmbamb = q1 and {q1, . . . , qi−1} is mapped by
the action of bamb to itself.
�
The following result allows us to refute the hypothesis that there exists a constant
c > 0 such that each subset in a synchronizing automaton is cn-extendable. We
first prove a weaker estimation of order Θ(n2), because it also allows to refute
the hypothesis, while it has a simpler proof.

For any S ⊆ Q we say that qi ∈ S ∩ QU is covered (in S) if qib ∈ S.

Lemma 1. Let S � Q be a non-empty set, whose states from S ∩ QU are all
covered in S. Then a shortest word w such that |Sw−1 ∩ QD| > |S| has length
at least m.

Proof. Let w = ak . . . a1 be a shortest word of length k such that |Sw−1∩QD| >
|S|. Let Si = Sa−1

1 . . . a−1
i for i = 0, . . . , k. So, S0 = S, and Sk = Sw−1.

Since the length of w is assumed to be the least possible, the action of ak

cannot be a permutation, and therefore ak = b. Moreover, since the transforma-
tion induced by b maps only one state from QD to QU , namely qmb = q2m−1,
Sk−1 must contain q2m−1, and must not contain qm. Thus, q2m−1 is not covered
in Sk−1.

For any T ⊆ Q, Tb−2 ∩ QD ⊆ T ∩ QD. It follows that, if ak−1 = b, then
|Sk−2 ∩ QD| = |Sk ∩ QD|, which contradicts the assumption about the shortest
length. Hence ak−1 = a. Now, it follows that Sk−2 contains qm+1, which is
uncovered. Consequently, ak−2 = a, as any preimage under b does not contain
an uncovered state other than q2m−1. Similarly, Sk−3 contains uncovered state
qm+2 (provided m > 3). Repeating this argument 2m − 1 − (m + 2) = m − 3
times we have that ai = a for k − 1 ≥ i ≥ k − m + 1, and |w| = k ≥ m as
required.
�
Theorem 1. The shortest words extending the subset QU have length at least
2 + m(m − 3)/2�.
Proof. Let u = ak . . . a1 be a shortest word such that |QUu−1| > |QU |. Obvi-
ously, u ends with b, that is, a1 = b, since QUa−1 = QU . Also, as in the proof of
Lemma 1, ak = b. Moreover, QUb−1 = {qm}.

For a subset X ⊆ Q we define d(X) = |X ∩ QD|. Observe that |Xb−1| ≤
2d(X) + 1.

Let
T = {qm}a−1

2 . . . a−1
k−1.

Since |QUu−1| = |Ta−1
k | ≥ m, and ak = b, we have that m ≤ 2d(T) + 1, and so,

d(T) ≥ (m − 1)/2�.
Thus, we have u = bvb, where v = ak−1 . . . a2, and {qm}v−1 = T . We define

by induction the consecutive factors of v as follows: v = v�v�−1 . . . v1, T0 = {qm},
and for each i = 1, 2, . . . , �, Ti = {qm}v−1

1 . . . v−1
i , and vi is the shortest factor

of v such that d(Ti) > d(Ti−1). Since they are the shortest words whose inverse

Synchronizing Automata with Extremal Properties 335

action increases the number d(Ti−1), each vi begins with b, and the increase is
by one: d(Ti) = d(Ti−1) + 1. Moreover, for each i, all the states in Ti ∩ QU are
covered in Ti.

By applying Lemma 1 for each Ti, we obtain |vi| ≥ m. Since d(qm) = 1 and
d(T) ≥ (m−1)/2�, we have that � ≥ (m−3)/2�. Thus |u| ≥ 2+m(m−3)/2�
as required.
�
The lower bound in the theorem above is rather rough. While it suffices to refute
the conjecture in question, it is natural to ask for a better estimation. In this
connection we have the following

Theorem 2. The shortest words extending the subset QU have length m2 +
O(m). Any non-empty proper subset S ⊂ Q can be extended by a word of length
at most m2 + O(m).

The proof of this result is much longer and involved than the proof of Theorem 1,
and therefore it is not reproduced here. We describe only its main idea.

The beginning of the proof is the same as in the proof of the previous theorem.
We make use of the fact that to extend the set {qm} to a set of cardinality 2d
(for some d) one needs to obtain first a set {qm}w−1 = X = U ∪D with |D| ≥ d,
D ⊆ QD, U ⊆ QU . Next, we show that to achieve this aim the most effective
(using a shortest word) is the greedy procedure described below.

First we use the word w = ba2m−3ba2. It is easy to check that {qm}w−1 =
{q1, qm}. Then we use repeatedly u = ba2m−1, obtaining the sets {q1, . . . , qi, qm}
for i = 2, 3, . . . , d. Using the greedy strategy we can find a word extending QU

of length m2 − 3m/2 + 4, in case of even m, and m2 − m + 2, in case of odd m.
This yields easily the second statement. The main difficulty is to demonstrate
that the greedy strategy is the most efficient one. It requires to consider other
possible strategies and to introduce special terminology to handle this.

We need to remark, that the fact that the greedy strategy is the most efficient
way to extend the subset {qm} by a chosen number of elements does not mean
that it is the most efficient way to extend the subset QU . The problem is that
after obtaining the required number of states in D, which in case of even m is
exactly m/2, we may still need a translation of D, so that the required number of
states is in D∩{q1, . . . , qm−2} (and applying subsequently b doubles the number
of states). We have checked that sometimes different strategies to extend QU

lead to words of the same length as the one obtained by the greedy strategy.
It may happen that there are cases when a different strategy is slightly more
efficient (within O(m) summand).

Note also, that if the Černý conjecture is true, then every synchronizing
automaton is (n − 1)2-extendable, thus asymptotically no better bound is pos-
sible. However, we also believe that our series represents the worst possible case
up to O(n), that is, we conjecture that every strongly connected synchronizing
automaton is (n2/4 + O(n))-extendable.

It is possible to define a similar series for all even n = 2m (Fig. 2). The
counterparts of Theorems 1 and 2 can be proved in a similar way.

336 A. Kisielewicz and M. Szyku�la

qmq1 . . . qm−2 qm−1

a

a a a a

q2mqm+1 . . . q2m−2 q2m−1

a

a a a a

b b b

bbb b b

Fig. 2. The automaton A2m

3 Relaxing the Extension Property

In view of the examples of subsets that are not extendable by words of length n
[6], some efforts were made to relax the extension conjecture (see also the discus-
sion in [13]). For example, one could suppose that extending an easily (linearly)
extendable subset cannot lead to a difficultly (quadratically) extendable sub-
set (this is so]for A2m−1, and in general, would allow us to prove a quadratic
bound for the length of the shortest reset words). Berlinkov proposed1 the fol-
lowing relaxed conservative extension conjecture: There exists a constant c such
that if a subset S ⊂ Q can be extended to a subset T ⊂ Q by a word v of length
at most cn (T = Sv−1 ⊃ S), then also T can be extended by a word u of length
at most cn (Tu−1 ⊃ T).

This holds true for the series from [6] and also for our series A2m−1. However,
we construct a counterexample by modifying our series; see Fig. 3. Observe that
S = {qm+1, . . . , q2m−1} is extended by a to T = S ∪ {q2m}. But then we must
apply b−1, resulting in {qm}. Again, the arguments from the proof of Theorem 1
hold and we need a word of length Ω(n2) to extend it to a subset larger than S.
So in fact, this is a counterexample for the stronger statement with v of length
1 and without assuming that Tu−1 contains T .

3.1 Image Extending Conjecture

One may observe that the subsets Q2m−1 requiring long extending words are
images of Q2m−1 under the action of no word. Hence, they cannot appear as
intermediate subsets in the process of applying the consecutive letters of a syn-
chronizing word. From the point of view of the extension method, if we consider
prefixes w1w2 . . . wi with |Qw1 . . . wi| > |Qw1 . . . wi+1|, we only need to find

1 First Russian-Finnish Symposium on Discrete Mathematics (RuFiDiM 2011).

Synchronizing Automata with Extremal Properties 337

qmq1 . . . qm−2 qm−1

a

a a a a

q2m−1qm+1 . . . q2m−2 q2m

a

a a a

b b b

bb

a

bb b

Fig. 3. An automaton with a quadratically extendable preimage

extending words for the images Qw1 . . . wi+1. Thus, to apply iteratively extend-
ing words starting from a singleton, at each step, the resulted preimage must be
also an image, or at least it needs to contain an image of the larger cardinality
than the set in question.

This restriction leads to the following weaker conjecture that we believe is
true.

Conjecture 1 (Image-Extension). There exists a constant c such that, for every
strongly connected synchronizing automaton A = (Q,Σ, δ) and every non-
empty S ⊂ Q with Qw = S for some w ∈ Σ∗, there exists a word u of length at
most cn and a subset T ⊂ Q such that T ⊆ Su−1, Qv = T for some v ∈ Σ∗, and
|T | > |S|.

This conjecture implies a quadratic bound on the length of the shortest syn-
chronizing word, yet we show that it cannot be a tool to prove the Černý con-
jecture because of the following

Proposition 2. The constant c in Conjecture 1 must be at least 3/2.

Proof. For n = 2m ≥ 8, consider the automaton B2m from Fig. 4. Clearly B2m is
strongly connected. To show that it is synchronizing, it is sufficient to prove that
every pair of states can be compressed. Let {p, q} be a pair of distinct states.
Suppose that p and q lie in different cycles of a; without loss of generality,
p ∈ {qm+1, . . . , q2m−1} and q ∈ {q1, . . . , qm}. Since the lengths of the cycles of a
are relatively prime, by a word of the form ai we can map p, q to any other pair
of states with pai ∈ {qm+1, . . . , q2m−1} and qai ∈ {q1, . . . , qm}. In particular, we
can map them to q2m−1 and qm. Then b compresses this pair. If p and q lie in
the upper cycle (qm+1, . . . , q2m−1) of a, then by a word of the form ai we can
map one of the states to q2m−2 so that the second state is not mapped to q2m−1.
Then using b results in a pair of states in different cycles of a, and we repeat

338 A. Kisielewicz and M. Szyku�la

q1 . . . qm−3 qm−2 qm−1 qm

a

a a a a a

b b b

qm+1 . . . q2m−3 q2m−2 q2m−1

q2m

b b

a

a a a a

abb

b

b b

Fig. 4. The automaton B2m

the argument above. Similarly, if p and q lie in the lower cycle (q1, . . . , qm), then
we can map one of them to qm−1 and the second one to a state other than qm,
and again apply b. Finally, if p = q2m then either using b or ab (depending on q)
results in a pair without q2m.

Consider now S = {qm−3, qm−2}. Since b can reduce the size of the subset
only by 1, and a is a permutation, there exists a word of rank 2. Then we can
map the resulted pair {p, q} onto S by the arguments above. Thus S is an image
of Q under the action of some word.

We show that the shortest words extending S have length 3n
2 − 1. Let u be a

shortest extending word of S. To simplify notation in the remaining part of the
proof, we consider the reversed word w = uR, and the inverse actions a−1, b−1

of both letters.
Obviously w starts with am−2, since applying b earlier does not result in a

new set, or results in a proper subset in the case of {qm, q1}. Then we have
{qm−1, qm}, and we consider the following two cases:

1. The next letter is b. Here we have {q2m−2}, and the next part of w is am−2,
which results in {q2m−1}. Then there must be b2, and we obtain {q2m−1, qm}.
The length of w considered so far is (m − 2) + 1 + (m − 2) + 2 = 2m − 1.

2. The next letter is a. Here we have {qm−2, qm−1}, and the next letter is b.
The next part of w is am−2, which results in {q2m−1, qm}. The length of w
considered so far is (m − 2) + 1 + 1 + (m − 2) = 2m − 2.

Since w is a shortest word, the second case must take place. The next part
of w must be am−1, which maps {q2m−1, qm} to {q2m−1, q1}. Then b2 is the
shortest word extending {q2m−1, q1}, which results in {q2m−1, qm, q1}. Therefore,
the length of w is 2m − 2 + (m − 1) + 2 = 3m − 1 = 3n/2 − 1.
�

Synchronizing Automata with Extremal Properties 339

3.2 Separating States

The series of automata B2m in Fig. 4 has another interesting property connected
with a recent attempt to improve the Pin-Frankl bound [20]. Lemma 3 in the
above mentioned paper, claiming that for every state q there exists a word w of
length at most n such that q �∈ Qw, turned out to be false. In a recent short note
[10] the authors present a certain automaton on 4 states and show that it is a
counterexample to the statement in [20, Lemma3]. In this connection it is worth
observing that our series B2m provides counterexamples of arbitrary order.

It is not difficult to prove the following

Proposition 3. The shortest words w such that q2m �∈ Qw are of length 2m +
2 = n + 2.

The length w in our proposition exceeds n only by 2. It is interesting whether
there are counterexamples requiring still longer words than those of length n+2.
The open question in [10] asks whether there exists a constant c such that, for
any finite automaton and its state q, there exists a word w of length not greater
than cn such that q �∈ Qw.

4 Slowly Synchronizing Automata on a Ternary Alphabet

In this section we present two series of ternary irreducibly slowly synchronizing
automata. They turn out to be related to the digraph Wn defined in [2]. They
are of interest since so far only such series over a binary alphabet have been
known.

Let Qn = {q1, . . . , qn}, n ≥ 3, and Σ = {a, b, c}. Let Mn = 〈Qn,Σ, δn〉 and
M ′

n = 〈Qn,Σ, δ′
n〉 be the automata shown in Figure 5. The transition functions

δn and δ′
n are defined as follows:

δ(qi, a) =

{
qi+1, if 1 ≤ i ≤ n − 1,

q2, if i = n,
δ(qi, c) =

⎧⎪⎨
⎪⎩

qn, if i = 1,

qi, if 2 ≤ i ≤ n − 1,

q1, if i = n,

δ(qi, b) =

{
q2, if i = 1,

qi, if 2 ≤ i ≤ n − 1,
δ′(qi, c) =

{
qi, if 1 ≤ i ≤ n − 1,

q1, if i = n,

and δ′(qi, a) = δ(qi, a), δ′(qi, b) = δ(qi, b), otherwise.
In determining the reset length of the series we applied a technique, which

is alternative to that of [1,2]. Our method is based on analyzing the behavior of
the inverse BFS algorithm finding the length of the shortest reset words [14] and
is suitable, in general, for a more mechanical way to establish the reset lengths of
concrete automata. Also, it may lead to simpler proofs in case of larger alphabets
(when the number of induced automata by combinations of letters is large). It
relies on the fact, that when we are applying the inverse actions of letters starting
from all singletons, then the number of new resulted sets is always bounded by a

340 A. Kisielewicz and M. Szyku�la

n :

qn−1

qn

q1

q2

q3

. . .a

a

a

a, b

a

a

c

c
b, c

b, cb, c

b

n :

qn−1

qn

q1

q2

q3

. . .a

a

a

a, b

a

a

c

c

b, c

b, cb, c

b

Fig. 5. Mn with reset length n2 − 3n + 3, and M ′
n with reset length n2 − 3n + 2

very small constant. In fact, a particular form of this method was first used for
the Černý series [8]. Interestingly, this method also works fine in a very similar
way for all slowly synchronizing series defined in [1–3], as they all have this
property.

For a synchronizing automaton A = 〈Q,Σ, δ〉 with n > 1 states, we define
the sequence of families (Li) of the subsets of Q. Let L0 be the family of all the
singletons, which are a common end of more than one edge with the same label.
We will define Li inductively for i ≥ 1. Let L′

i = {Sa−1 : S ∈ Li−1, a ∈ Σ}. A
set S ∈ L′

i is called visited, if |S| = 1 or there is T ∈ Lj , T ⊇ S for j < i, or
there is T ∈ L′

i, T � S. We define Li to be the set of all non-visited sets from
L′

i.
The proof of the following lemma in a more general form can be found in [14,

Theorem1].

Lemma 2. There exists a shortest reset word w such that for any suffix u of w
of length i, {q}u−1 ∈ Li for some q ∈ Q. The smallest i such that Q ∈ Li is the
reset length of the automaton.

Theorem 3. For n ≥ 3, the automata Mn and M ′
n are irreducibly synchro-

nizing. The first has reset length n2 − 3n + 3, and the second has reset length
n2 − 3n + 2.

Proof. One easily verifies that the word acb(an−2cb)n−3 synchronizes Mn, and
has the length 3+(n−2+2)(n−3) = n2 −3n+3. Also the word cb(an−2cb)n−3

synchronizes M ′
n, and has the length n2 − 3n + 2.

We show that there is no shorter reset word for Mn. By Lemma 2, it is
sufficient to show what is the smallest i such that Qn ∈ Li, which is the length
of the shortest reset words. Here only q2 is a common end of more than one edge
with the same label, so L0 = {{q2}}.

We claim that for each i with 0 ≤ i ≤ n − 3, Lin = {{q2, . . . , q2+i}},
L(i−1)n+4 = {{qn−2, qn−1, qn, q1, . . . , qi−1}} if 2 ≤ i ≤ n − 3, and L(i−1)n+4 =
L4 = {{qn−2, qn−1}} if i = 1. The proof follows by induction. Clearly for i = 0

Synchronizing Automata with Extremal Properties 341

the claim holds. Consider some i, and assume that the claim holds for i′ ≤ i, so
Lin = {{q2, . . . , q2+i}}. We will show the claim for i + 1, that is, for L(i+1)n and
Lin+4.

The action of c−1 for the set from Lin results in the same set, so we have
Lin+1 = {S1, T1}, where S1 = {qn, q1, . . . , q1+i} was obtained by the action of
a−1 and T1 = {q1, . . . , q2+i} by the action of b−1. Consider the sets obtained
from S1. Observe that if a set contains both qn and q1, then only the action of
a−1 can result in a non-visited set. If i = 0 then S1a

−1 = {qn, q1}a−1 = {qn−1}
is a visited singleton. If i ≥ 1 then S2 = S1a

−1 = {qn−1, qn, q1, . . . , qi}. But
S2a

−1 is {qn−2, qn−1} if i = 1, or {qn−2, qn−1, qn, q1, . . . , qi−1} if i ≥ 2; so S2a
−1

is visited by the assumption of L(i−1)n+4. Consider the sets obtained from T1.
Only T2 = T1c

−1 = {qn, q2, . . . , q2+i} is non-visited. Then let T3 = T2a
−1 =

{qn−1, qn, q1, . . . , q1+i}. For T2b
−1 = {qn, q1, . . . , q2+i} observe that in the next

step it results either in T3 or in itself. Only the action of a−1 applied to T3

results in a non-visited set, so Lin+4 = {{qn−2, qn−1}} if i = 0, and Lin+4 =
{{qn−2, qn−1, qn, q1, . . . , qi}} if i ≥ 1. Now, if i = 0 then only the action of a−1

results in a non-visited set over the next n − 4 steps resulting in Ln = {q2, q3}.
Similarly, if i ≥ 1 then by the next i − 1 steps by the action of a−1 we have
{qn−1−i, . . . , qn, q1}. Again, through the next n − 3 − i steps only the action of
a−1 results in a non-visited set, and we finally have L(i+1)n = {{q2, . . . , q3+i}}.

From the claim it follows that Qn does not appear in L for i ≤ (n− 3)n, and
L(n−3)n = {{q2, . . . , qn−1}}. Then applying (acb)−1 or (bcb)−1 results in Qn, and
there is no shorter such word as is easily verified. Hence L(n−3)n+3 = {{Qn}}
and so i = (n − 3)n + 3 = n2 − 3n + 3 is the length such that Qn ∈ Li.

The proof for the automaton M ′
n follows exactly in the same way, with the

following two exceptions: T2 = {qn, q1, . . . , q2+i}, and finally we apply (cb)−1 to
the set from L(n−3)n, resulting in Qn.

It remains to show that removing any letter in Mn (M ′
n) results in a non-

synchronizing automaton. Indeed, removing the letter a results in unconnected
states q3, . . . , qn−1. The only compressible pairs of states are {q1, qn} under a,
and {q1, q2} under b. Observe that it is not possible to map the pair {qn−1, qn}
to {q1, qn}: Only a maps a state from Qn \ {q1, qn} to {q1, qn}, and it maps
exactly one such state. However both q1 and qn are mapped by a to Qn\{q1, qn}.
Hence removing the letter b results in a non-synchronizing automaton. Removing
the letter c makes q1 unreachable from the other states, hence no pair can be
compressed except {q1, qn} and {q1, q2}.
�
It seems that when we admit more letters in the alphabet, then it is more
difficult to find any series of irreducible strongly connected slowly synchronizing
automata. Although there are many binary series with the reset length n2 +
O(n) (obtained by modifying the series from [1,2]), it is only Mn and M ′

n that
are known over a ternary alphabet, and no such series is known over a larger
alphabet. Thus it becomes an interesting problem to find more such series, if
they exist at all.

342 A. Kisielewicz and M. Szyku�la

Acknowledgment. We are grateful to Jakub Kowalski and anonymous referees for
careful proofreading.

References

1. Ananichev, D., Gusev, V., Volkov, M.: Slowly synchronizing automata and
digraphs. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281, pp.
55–65. Springer, Heidelberg (2010)

2. Ananichev, D.S., Volkov, M.V., Gusev, V.V.: Primitive digraphs with large expo-
nents and slowly synchronizing automata. J. Math. Sci. 192(3), 263–278 (2013)

3. Ananichev, D.S., Volkov, M.V., Zaks, Y.I.: Synchronizing automata with a letter
of deficiency 2. In: Ibarra, O.H., Dang, Z. (eds.) DLT 2006. LNCS, vol. 4036, pp.
433–442. Springer, Heidelberg (2006)

4. Béal, M.P., Berlinkov, M.V., Perrin, D.: A quadratic upper bound on the size of
a synchronizing word in one-cluster automata. Int. J. Foundations Comput. Sci.
22(2), 277–288 (2011)

5. Berlinkov, M., Szyku�la, M.: Algebraic synchronization criterion and computing
reset words. In: Italiano, G.F., et al (eds.) MFCS 2015. Lecture Notes in Computer
Science, vol. 9234, pp. 103–115 (2015)

6. Berlinkov, M.V.: On a conjecture by Carpi and D’Alessandro. Int. J. Foundations
Comput. Sci. 22(7), 1565–1576 (2011)

7. Berlinkov, M.V.: Synchronizing quasi-eulerian and quasi-one-cluster automata. Int.
J. Foundations Comput. Sci. 24(6), 729–745 (2013)

8. Černý, J.: Poznámka k homogénnym eksperimentom s konečnými automatami.
Matematicko-fyzikálny Čas. Slovenskej Akad. Vied 14(3), 208–216 (1964). in
Slovak

9. Dubuc, L.: Sur les automates circulaires et la conjecture de C̆erný. Informatique
théorique et Appl. 32, 21–34 (1998). in French

10. Gonze, F., Jungers, R.M., Trahtman, A.N.: A note on a recent attempt to improve
the Pin-Frankl bound. Discrete Math. Theoret. Comput. Sci. 17(1), 307–308 (2015)

11. Gusev, V.V., Pribavkina, E.V.: Reset thresholds of automata with two cycle
lengths. In: Holzer, M., Kutrib, M. (eds.) CIAA 2014. LNCS, vol. 8587, pp. 200–
210. Springer, Heidelberg (2014)

12. Kari, J.: Synchronizing finite automata on Eulerian digraphs. Theoret. Comput.
Sci. 295(1–3), 223–232 (2003)

13. Kari, J., Volkov, M.V.: Černý’s conjecture and the road coloring problem. In:
Handbook of Automata. European Science Foundation (2013, to appear)

14. Kisielewicz, A., Kowalski, J., Szyku�la, M.: Computing the shortest reset words of
synchronizing automata. J. Comb. Optim. 29(1), 88–124 (2015)

15. Roman, A.: A note on Černý conjecture for automata over 3-letter alphabet. J.
Automata Lang. Comb. 13(2), 141–143 (2008)

16. Rystsov, I.K.: Quasioptimal bound for the length of reset words for regular
automata. Acta Cybernetica 12(2), 145–152 (1995)

17. Steinberg, B.: The averaging trick and the Černý conjecture. Int. J. Foundations
Comput. Sci. 22(7), 1697–1706 (2011)

18. Steinberg, B.: The Černý conjecture for one-cluster automata with prime length
cycle. Theoret. Comput. Sci. 412(39), 5487–5491 (2011)

19. Trahtman, A.N.: An efficient algorithm finds noticeable trends and examples con-
cerning the Černy conjecture. In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006.
LNCS, vol. 4162, pp. 789–800. Springer, Heidelberg (2006)

Synchronizing Automata with Extremal Properties 343

20. Trahtman, A.N.: Modifying the upper bound on the length of minimal synchroniz-
ing word. In: Owe, O., Steffen, M., Telle, J.A. (eds.) FCT 2011. LNCS, vol. 6914,
pp. 173–180. Springer, Heidelberg (2011)

21. Volkov, M.V.: Synchronizing automata and the Černý conjecture. In: Mart́ın-Vide,
C., Otto, F., Fernau, H. (eds.) LATA 2008. LNCS, vol. 5196, pp. 11–27. Springer,
Heidelberg (2008)

Ratio and Weight Quantiles

Daniel Krähmann(B), Jana Schubert, Christel Baier, and Clemens Dubslaff

Faculty of Computer Science, Technische Universität Dresden, Dresden, Germany
{kraehmann,schubert,baier,dubslaff}@tcs.inf.tu-dresden.de

Abstract. Several types of weighted-automata models and formalisms
to specify and verify constraints on accumulated weights have been stud-
ied in the past. The lack of monotonicity for weight functions with pos-
itive and negative values as well as for ratios of the accumulated values
of non-negative weight functions renders many verification problems to
be undecidable or computationally hard. Our contribution comprises
polynomial-time algorithms for computing ratio and weight quantiles in
Markov chains, which provide optimal bounds guaranteed almost surely
or with positive probability on, e.g., cost-utility ratios or the energy con-
version efficiency.

1 Introduction

Markov decision processes (MDPs) and Markov chains with weight assignments
are widely used for modeling resource-aware systems. A quantitative analysis
in terms of probabilistic model checking (PMC) allows to reason about perfor-
mance, dependability and reliability properties, e.g., the expected energy costs
or the utility gained until a goal is reached. Classical logics, such as extensions of
probabilistic computation-tree logic (PCTL) [1,17], focus on non-negative weight
assignments and enjoy broad tool support, e.g., by probabilistic model checkers
Prism [24] and Mrmc [27]. To model a device where a battery is recharged and
drained or to reason about cost-utility ratios, these classical approaches are not
sufficient. However, accumulated (not necessarily positive) weights along paths
or ratios thereof are no longer monotonic, which makes the design of algorithms
much harder. It is hence not surprising that several undecidability results [6,7]
show limitations on the algorithmic analysis of weighted models. This motivated
the research on specialized models such as energy games [14,15,25]. In the prob-
abilistic setting of energy games, one natural task is to compute the minimal
initial energy budget required to almost surely ensure an ω-regular property
while not running out of energy, i.e., the accumulated weight is always positive.
This computation can be done in pseudo-polynomial time [14].

The authors are supported by the DFG through the collaborative research cen-
tre HAEC (SFB 912), the Excellence Initiative by the German Federal and
State Governments (cluster of excellence cfAED and Institutional Strategy), the
Graduiertenkolleg QuantLA (1763), Deutsche Telekom Stiftung, the EU-FP-7 grant
MEALS (295261).

c© Springer-Verlag Berlin Heidelberg 2015
G.F. Italiano et al. (Eds.): MFCS 2015, Part I, LNCS 9234, pp. 344–356, 2015.
DOI: 10.1007/978-3-662-48057-1 27

Ratio and Weight Quantiles 345

In this paper, we establish polynomial-time computation schemes for weight
and ratio quantiles in finite-state Markov chains. Let wgt stand for the accumu-
lated value of a weight function and let ratio stand for the quotient of accumu-
lated values of two non-negative weight functions. Then, our main contribution
is stated by the following theorem, where ∇ is either the temporal modality �
(invariance), ♦ (reachability), ♦� (persistence), or �♦ (repeated reachability).
More details on the notations are explained later in Sect. 2.

Theorem 1. When ϕ is a Rabin or Streett side constraint, the following quan-
tiles with ∇ ∈ {♦,�,♦�,�♦} are computable in polynomial time:

(i) Qu>0
ϕ [∇wgt] = sup{z ∈ Z : Pr(∇(wgt>z) ∧ ϕ) > 0},

(ii) Qu=1
ϕ [∇wgt] = sup{z ∈ Z : Pr(∇(wgt>z) ∧ ϕ) = 1},

(iii) Qu>0
ϕ [∇ratio] = sup{q ∈ Q : Pr(∇(ratio>q) ∧ ϕ) > 0},

(iv) Qu=1
ϕ [∇ratio] = sup{q ∈ Q : Pr(∇(ratio>q) ∧ ϕ) = 1}.

Intuitively, weight quantiles stand for optimal thresholds which can be guaran-
teed with positive probability (i) or almost surely (ii), e.g., for optimal battery
levels achieved at some point (∇ = ♦), at any point (∇ = �), at any point after
an initialization phase (∇ = ♦�), or at infinitely many moments (∇ = �♦)
during an execution of the system. Similar thresholds are established by positive
(iii) and almost-sure (iv) ratio quantiles, e.g., guarantees on the cost-utility ratio
such as the energy conversion efficiency indicated through the ratio between
energy put into the system and converted into something useful. The latter
quantitative measures could be used to compare engines or computer hardware
concerning their energy-transmission properties. Also deviations of such quan-
tiles, e.g., the value |Qu>0

ϕ [∇ratio] − Qu=1
ϕ [∇ratio]|, could serve as a measure of

dispersion, where high dispersion indicates great adaptivity, and low dispersion
may come along with stability and robustness of the system.

As we show in this paper, the computation of the quantiles in Theorem 1 relies
on algorithms to decide whether ∇(wgt>z)∧ϕ (or ∇(ratio>q)∧ϕ, respectively)
holds almost surely or with positive probability. Using results from basic random-
walk theory and variants of shortest-path algorithms, we establish polynomial-
time decision procedures for these problems. Whereas solving the weight decision
problems within a simple binary search turns out to be sufficient to compute
weight quantiles in polynomial time, this is not the case for ratio quantiles. Here,
our solution relies on establishing a finite, but exponentially large set of rational-
valued candidates for the ratio quantiles and on solving a best-approximation
problem using the so-called continued-fraction method [22].

Related Work. Algorithms to compute quantiles in Markovian models with
non-negative weight functions have been investigated for weight-bounded reacha-
bility properties in [2,23,32]. In the qualitative case, [32] established a polynomial-
time algorithm based on shortest-path algorithms. For Markov chains with weight
functions as we consider them in this paper containing both, negative and positive
values, a näıve reduction to unit-weight Markov chains exists but causes an expo-
nential blow-up [3,10]. In Table 1, we summarized upper complexity bounds for

346 D. Krähmann et al.

Table 1. Known and new complexity bounds for weight decision problems.

Problem Unit weight Unit multi-weight Weight Multi-weight

Pr(�(wgt>z)) > 0 PTime [10,12] ExpTime [12] ExpTime [10,12] 2ExpTime [12]

PTime ExpSpace-complete

Pr(�(wgt>z)) = 1 PTime [3]

weight decision problems already established for unit weight models or through
the reduction mentioned above. Complexity bounds shown in this paper are in
bold. Concerning the interplay between multiple weight functions, several authors
proposed linear-programming techniques for the synthesis of strategies satisfying
multiple mean-payoff objectives [9], Boolean combinations of PCTL-like proba-
bility and expectation constraints [18], or constraints on the ratio of accumulated
weights [33] and its long-run behavior. Known mean-payoff objectives [9,30] over
one weight function wgt are tightly connected to ♦�-ratio objectives we consider
in this paper. This can be seen by choosing the weight function wgt as nominator
and a simple step counter as the denominator of a ♦�-ratio objective (see also
Remark 3).

Organization. Section 2 summarizes basic concepts on weighted Markov chains.
In Sect. 3 we develop polynomial-time algorithms for solving ratio and weight deci-
sion problems used to prove our main contribution (Theorem 1). The proof itself
is issued in Sect. 4. We close with concluding remarks in Sect. 5. Omitted proofs
can be found in the technical report [28].

2 Theoretical Foundations

The reader is supposed to be familiar with standard concepts of temporal logic,
model checking and basic results from finite Markov-chain theory (see, e.g.,
[5,16,21,26]). We briefly summarize our notations and recall some basic con-
cepts used throughout the paper.

Markov Chains and Path Notations. A Markov chain is a tuple M =
(S, ι, P), where S is non-empty finite set of states, ι ∈ S is an initial state, and
P : S × S → [0, 1] is a transition probability matrix for which

∑
s′∈S P (s, s′) = 1

for all s ∈ S. Note that within this definition, we suppose that all states s ∈ S are
reachable from ι. A transition is a pair (s, s′) ∈ S×S where P (s, s′) > 0. Non-
empty finite (infinite) sequences of states comprised of consecutive transitions are
called finite (infinite) paths. The set of all finite (infinite) paths of M is denoted
by FinPathsM (InfPathsM, respectively). FinPathsMs and InfPathsMs stand for
the corresponding sets of paths starting in state s. The length of a finite path π̂,
denoted by |π̂|, is defined as the number of transitions taken in π̂, e.g., |s0 s1 s2| =
2. The first and the last state of a finite path π̂ are denoted by first(π̂) and last(π̂),
respectively. A cycle ϑ is a finite path where |ϑ| > 0 and first(ϑ) = last(ϑ). We call
a finite path π̂ simple, if π̂ visits each state at most once. A cycle ϑ = π̂ first(π̂)

Ratio and Weight Quantiles 347

is simple if π̂ is. We often use standard notions of temporal logics to describe
events (i.e., measurable sets of paths) or state properties in Markov chains. For
example, given a set C of states in M, ♦C denotes the event to reach some state
in C eventually, i.e., the set of all infinite paths containing a state of C. We write
s |= ∃♦C to denote that some state in C is reachable from s. For a Markov chain
M = (S, ι, P) we consider ω-regular properties over a set of atomic propositions
AP, linked to M through a labeling function L : S → 2AP.

Probability Space and Steady-State Probability. The probability space
associated to M and a state s formalizes the intuitive notion of probabilities of
measurable sets of sample runs in M. Given a finite path π̂ = s0 s1 . . . sn, the
cylinder set of π̂, denoted by Cyl(π̂), consists of all infinite paths of M having
π̂ as a prefix. Cylinder sets constitute a basis of a σ-algebra on InfPathsMs , on
which PrM

s is defined as the unique probability measure where PrM
s (Cyl(π̂)) =

P (s0, s1)·P (s1, s2)· . . . ·P (sn−1, sn) if s0 = s and PrM
s (Cyl(π̂)) = 0 otherwise. For

PrM
ι we often write simply Pr. A bottom strongly connected component (BSCC)

of M is a set of states C, where all states of C can reach each other but none
of the states in S\C. It is well-known that almost all paths of a Markov chain
eventually enter a BSCC C and visit all states of C infinitely often. For almost all
infinite paths π that enter C, the frequency of visiting state s is the steady-state
probability SC(s) of s in C, defined as SC(s) = limn→∞ |{k ∈ {0, . . . , n} : π[k] =
s}|/(n + 1). The vector (SC(s))s∈C is the unique solution of the flow equations∑

s′∈C P (s, s′) · SC(s′) = SC(s) with the side constraint
∑

s′∈C SC(s′) = 1, which
are computable in time polynomial in the size of M.

Weighted and Energy-Utility Markov Chains. We refer to (M,wgt) as a
weighted Markov chain if M is a Markov chain and wgt : S × S → Z is a weight
function. The accumulated weight of a finite path π̂ = s0 s1 s2 . . . sn is defined
by wgt(π̂) = wgt(s0, s1)+ . . . +wgt(sn−1, sn). Hence, wgt(s) = 0 for every s ∈ S.
A cycle ϑ is said to be positive if wgt(ϑ) > 0. Likewise, a cycle ϑ is negative
if wgt(ϑ) < 0. Given z ∈ Z and �	 ∈ {<,≤,=,≥, >}, the event �(wgt �	 z) is
defined as the set of paths π = s0 s1 . . . ∈ InfPathsM where

π |= �(wgt �	 z) iff wgt(s0 s1 . . . sn) �	 z for all n ∈ N>0.

Analogously, π |= ♦(wgt �	 z) iff wgt(s0 s1 . . . sn) �	 z for some n ∈ N>0, and
π |= ♦�(wgt �	 z) iff there exists k ∈ N such that wgt(s0 s1 . . . sn) �	 z for all
n ∈ N≥k, and π |= �♦(wgt �	 z) iff there exist infinitely many n ∈ N with
wgt(s0 s1 . . . sn) �	 z. In the remainder of the paper the modality ∇ stands for
one of the temporal operators ♦, �, ♦�, �♦.

An energy-utility Markov chain is a tuple (M, energy, utility) consisting of a
Markov chain M with two weight functions energy : S×S → N>0 and utility : S×
S → N. The energy-utility ratio, briefly called ratio, is defined as the function
ratio : FinPathsM → Q≥0 given by ratio(π̂) = utility(π̂)/energy(π̂), where |π̂| > 0,
and ratio(π̂) = 0, otherwise. As before, we use LTL-like notations to describe
events ∇(ratio �	 q) for a given rational number q. For instance, π |= �(ratio �	 q)
iff ratio(s0 s1 . . . sn) �	 q for every n ∈ N>0 where π = s0 s1 . . . ∈ InfPathsM.

348 D. Krähmann et al.

Expected Weight and Long-Run Ratio. Given a BSCC C of an weighted
Markov chain (M,wgt), the expected weight of C is defined as EC(wgt) =∑

s,s′∈C wgt(s, s′) · SC(s) · P (s, s′). It is well-known that for almost all infinite
paths π = s0 s1 . . . of an energy-utility Markov chain (M, energy, utility) the
long-run ratio L(ratio)(π) = limn→∞ ratio(s0 s1 . . . sn) is well-defined. That is,
almost all paths π eventually reaching a BSCC C have the same long-run ratio,
namely LC(ratio) = EC(utility)/EC(energy). We refer to LC(ratio) as the long-
run ratio of C. Observe that LC(ratio) is rational and can be computed in time
polynomial in the size of M and the encoding length of energy and utility [4].

3 Ratio and Weight Decision Problems

To establish Theorem 1, we rely on the following theorem to whose proof we
dedicate this section.

Theorem 2. When ϕ is a Rabin or Streett side constraint, the following deci-
sion problems can be solved in polynomial time:

(i) Pr(∇(wgt>z) ∧ ϕ) > 0, (ii) Pr(∇(wgt>z) ∧ ϕ) = 1,
(iii) Pr(∇(ratio>q) ∧ ϕ) > 0, (iv) Pr(∇(ratio>q) ∧ ϕ) = 1.

First, we give a graph-based characterization for the stated problems without
the side constraint ϕ. Then, we generalize our results for arbitrary ω-regular side
constraints and sketch a polynomial-time decision procedure.

Ratio-Weight Transformation. Ratio constraints for energy-utility Markov
chains are reducible to weight constraints in weighted Markov chains [3,7]:
Given an energy-utility Markov chain (M, energy, utility) and q ∈ Q≥0, there
exists a weight function wgtq for M such that the events ∇(ratio �	 q) and
∇(wgtq �	 0) with �	 ∈ {<,≤,=,≥, >} coincide. The definition of wgtq is as
follows: Suppose q = a/b with a, b ∈ N, then wgtq : S × S → Z is given by
wgtq(s1, s2) = b·utility(s1, s2) − a·energy(s1, s2). Hence, it suffices to consider
weight constraints.

Graph-Based Characterization. We focus on the event �(wgt>z) and pro-
vide a graph-based characterization for Pr(�(wgt>z)) > 0, which crucially relies
on the expected weight of BSCCs. Similar characterizations can be obtained for
Pr(�♦(wgt>z)) > 0 and Pr(�♦(wgt>z)) = 1. The case Pr(�(wgt>z)) = 1 is
straight-forward [3] and the other cases for the operators ♦ and ♦� can be shown
through basic dualities.

In the following, let M = (S, ι, P,wgt) be a weighted Markov chain and z ∈ Z

be a threshold. When a BSCC C contains negative cycles and EC(wgt) < 0 or
EC(wgt) = 0, any path reaching C does not contribute to the probability mass
Pr(�(wgt>z)), i.e., Pr(�(wgt>z)∧♦C) = 0. For the remaining BSCCs C we can
state conditions under which Pr(�(wgt>z) ∧ ♦C) is positive. To establish such
further conditions, we employ the following notations.

Ratio and Weight Quantiles 349

The constraint-distance function cdist : S × Z → Z ∪ {±∞} can be seen as
constraint variant of standard longest-paths: cdist(s, z) = supπ̂ wgt(π̂) where the
supremum ranges over all finite paths π̂ starting from ι and ending in s such
that wgt(
) > z for all prefixes
 of π̂ with |
| ≥ 1. The minimal-credit function
μ : S → N ∪ {+∞} is defined by μ(s) = inf{k ∈ N : s |= ∀�(wgt > −k)}.

Proposition 1. Pr(�(wgt>z)) > 0 iff there exists a BSCC C with s ∈ C such
that one of the following two conditions holds:

(i) EC(wgt) > 0 and cdist(s, z) = +∞, or
(ii) EC(wgt) = 0, C contains no negative cycles, and μ(s) + z < cdist(s, z).

Our proof of Proposition 1 shares some ideas with proofs presented in [10,12]
for unit-weighted Markov chains and ∇ ∈ {♦,�}.

Intuitively, (i) requires that there exists a path π̂ reaching C which contains a
positive cycle and where the accumulated weight of each prefix is always greater
than z. As EC(wgt) > 0 ensures that for every s ∈ C there exists n ∈ N with
PrM

s (�(wgt > −n)) > 0, the existence of π̂ implies Pr(�(wgt>z) ∧ ♦C) > 0.
Condition (ii) asks for a path π̂ reaching a state s ∈ C accumulating at least
μ(s)+z, where the accumulated weight of each non-empty prefix always exceeds
z. As a BSCC with expected weight zero contains a negative cycle if and only if
it contains a positive cycle, μ(s) is finite and PrM

s (�(wgt > −μ(s))) = 1. Hence,
the existence of such π̂ also implies Pr(�(wgt>z) ∧ ♦C) > 0.

Concerning the reverse implication, i.e., Pr(�(wgt>z)) > 0 implies either
condition (i) or (ii), notice that Pr(�(wgt>z)) > 0 entails the existence of a
BSCC C such that Pr(�(wgt>z) ∧ ♦C) > 0. If EC(wgt) > 0, then there is a
finite path starting in ι whose weight does not drop below z and which ends in
a positive cycle from some s ∈ C. This fact finally implies (i). If C is as in (ii),
we rely on the observation that then PrM

s (�(wgt > −μ(s)+1)) = 0 for all s ∈ C.
For all other BSCCs C we have Pr(�(wgt>z) ∧ ♦C) = 0.

Analogous characterizations can be provided for the constraints Pr(�♦(wgt >
z)) > 0 and Pr(�♦(wgt>z)) = 1, in which cases it suffices to consider standard
shortest or longest paths instead of the constraint distance.

Polynomial-Time Decision Procedure. Due to Proposition 1 it suffices to
argue that cdist(s, z) and μ(s) can be computed in polynomial time in order
to complete the proof of Theorem 1. Whereas cdist(s, z) can be computed
using a modified Bellman-Ford algorithm, μ(s) is computable using any stan-
dard shortest-path algorithm. For every BSCC C as in (ii) holds μ(s) − 1 =
−mins′∈C distmin(s, s′), where distmin(s, s′) is the length of the shortest path
from s to s′. Remember, if C is a BSCC with EC(wgt) = 0 and C contains no
negative cycles, then the accumulated weight of each cycle in C is zero. Notice,
μ(s) ∈ N for all s ∈ C.

Remark 1. In order to decide the qualitative decision problems of Theorem 2
without side constraints ϕ, it suffices to consider the underlying graph structure
of the Markov chain and the expected weights of the BSCCs. Hence, using stan-
dard approaches we can generalize the decision procedure to involve non-trivial

350 D. Krähmann et al.

ω-regular side constraints. If ϕ is a Streett or Rabin condition, then the BSCCs
of M can be partitioned into sets Cϕ and C¬ϕ such that for all infinite paths π
eventually entering some BSCC C, π |= ϕ if and only if C ∈ Cϕ.

A natural question is whether the result of Theorem 2 can be extended when
dealing with constraints for multiple weight functions. The closely related termi-
nation problem for Markov chains with multiple unit-weight functions is known
to be solvable in polynomial time in the size of the Markov chain and in expo-
nential time in the number of weight functions [12]. However, by exploiting the
ExpSpace-completeness of the coverability problem for vector addition systems
with states [8,13,29], we obtain the following result.

Proposition 2. Given weight functions wgt1, . . . ,wgtd and z1, . . . , zd ∈ Z, the
problem whether Pr(�(wgt1>z1)∧ . . . ∧�(wgtd>zd)) > 0 is ExpSpace-complete.

4 Computing Ratio and Weight Quantiles

In this section, we sketch the proof of our main result (Theorem 1) stating that
ratio and weight quantiles are computable in polynomial time. As discussed in
Remark 1, it suffices to consider quantiles without side constraints, i.e., ϕ = true.
In the remainder of this section let M be either a weighted Markov chain or
an energy-utility Markov chain as introduced in Sect. 2. Assume ∇ is given as
before. We use Qu∗[∇wgt] as a short-hand notation for both Qu>0

true [∇wgt] and
Qu=1

true [∇wgt]. Qu∗[∇ratio] is used analogously.
Whereas the weight quantile valuesQu∗[∇wgt] can either be computed directly

using a BSCC analysis or a binary search on a finite interval of integers, the ratio
quantiles are much more involved. The standard reduction of ratio constraints to
weight constraints used in Sect. 3 is not adequate for computing ratio quantiles.
This is mainly due to fact that the transformation from ratio objectives (ratio>q)
to weight objectives (wgtq>0) depends on the threshold q. We even have to show
that ratio quantiles are rational as the supremum of an infinite subset of Q can be
irrational. Our computation scheme for ratio quantiles relies on the identification
of a finite, but exponentially large set of rational values containing the quantile
value, and on the reduction to a best-approximation problem, which can be solved
in polynomial time using the continued-fraction method.

4.1 Weight Quantiles

We sketch the approach towards polynomial-time algorithms for the compu-
tation of ∇-weight quantiles by considering quantiles of the form Qu∗[�wgt].
The argument for Qu∗[♦wgt] is analogous and the quantiles Qu∗[♦�wgt] and
Qu∗[�♦wgt] can be computed by using BSCC analysis only.

The almost-sure �-weight quantile Qu=1[�wgt] can be computed using stan-
dard minimal-distance algorithms, as for every z ∈ Z, Pr(�(wgt>z)) = 1 if and
only if there is no path π̂ ∈ FinPathsMι satisfying wgt(π̂) ≤ z [3,6]. In order
to compute the positive �-weight quantile Qu>0[�wgt] it suffices to compute

Ratio and Weight Quantiles 351

integers a and b such that Qu>0[�wgt] ∈ ([a, b]∩Z)∪{−∞}. If a and b are com-
putable in polynomial time, Qu>0[�wgt] is computable in polynomial time using
a binary search on [a, b]∩Z together with the decision procedure of Theorem 2.

Proposition 3. Let minwgt and maxwgt be the minimum and the maximum of
wgt, respectively. Then,

Qu>0[�wgt] ∈ {
z ∈ Z : min {0, 2·|S|·minwgt} ≤ z ≤ maxwgt

} ∪ {−∞}
.

4.2 Ratio Quantiles

The computation of ∇-ratio quantiles relies on the idea that one can effectively
approximate the quantile value up to an arbitrarily precision using Theorem 2.
We can then deduce the exact quantile value from a sufficiently accurate approx-
imation by solving a best-approximation problem using the continued-fraction
method. Crucial for applying this technique is that Qu∗[∇ratio] turns out to be
rational and its denominator is bounded by some computable natural number.
These ideas are summarized in the following lemma, which is proven by solv-
ing the following best-approximation problem [22]: Given N ∈ N>0 and α ∈ Q,
one asks for some β ∈ Q with denominator at most N that minimizes |α − β|.
By [22, Theorem 5.1.9], this best-approximation problem for N and α is solv-
able in time polynomial in the encoding length of N and α, using the so-called
continued-fraction method.

Lemma 1. For N ∈ N and α ∈ Q≥0 there exists at most one β ∈ Q such that
|α − β| < 1/(2N2) and β ∈ {a/b : a ∈ N and b ∈ [1, N] ∩ N}. If such a β exists,
it can be computed in time polynomial in the encoding length of N and α.

In fact, if such a β exists, the requirement |α − β| < 1/(2N2) ensures that
it is the unique solution of the best-approximation problem for N and α. We
now focus on relating ratio quantiles to Lemma 1, i.e., we show that we can
find N ∈ N and α ∈ Q such that |α − Qu∗[∇ratio]| < 1/(2N2) as well as
Qu∗[∇ratio] ∈ {a/b : a ∈ N and b ∈ [1, N] ∩ N}. Notice that if both, N and α
are computable in polynomial time, we can conclude Theorem 1 for the ratio
case. Intuitively spoken, the first requirement asks for an approximation of the
quantile up to a given precision. The second one demands that the ratio quantile
is rational and that its denominator can be bounded.

Approximation of Ratio Quantiles. We can check in polynomial time
whether Pr(∇(ratio>q)) > 0 holds for a given rational number q (Theorem 2). The
same applies for the almost-sure case. Hence, given r ∈ Q such that Qu∗[∇ratio] ≤
r, we can approximate the quantile up to an arbitrary precision ε in time polyno-
mial in the size of M and logarithmic in 1/ε and r using a binary search on the
interval [0, r]. When maxu denotes the maximum of utility and mine the minimum
of energy, Qu∗[∇ratio] ≤ r with r = maxu/mine, since every finite path π̂ sat-
isfies ratio(π̂) ≤ maxu/mine. Remember that the requirements of energy ensure
mine = 0. Clearly, maxu and mine are computable in polynomial time in the size
of energy and utility. These facts yield to the following proposition.

352 D. Krähmann et al.

Proposition 4. For N ∈ N there is an α ∈ Q computable in polynomial time
such that |α − Qu∗[∇ratio]| ≤ 1/(2N2).

Bounding the Denominator. It is not enough to show that the quantile
Qu∗[∇ratio] is rational in order to apply Lemma 1. We have to furthermore
show that the denominator of Qu∗[∇ratio] can be bounded and such a bound
can be computed in polynomial time. The idea is to state finitely many rational
numbers which serve as candidates for the exact quantile values. Let

QBSCC = {LC(ratio) : C is a BSCC},

Qpath = {ratio(π̂) : π̂ simple path starting in ι}, and
Qcycle = {ratio(ϑ) : ϑ simple cycle}.

Each of these sets are finite, contain only rational values and may provide can-
didates for the quantile values Qu∗[�ratio]. In fact, all possible candidates for
Qu∗[∇ratio] are covered through Qall = QBSCC ∪ Qpath ∪ Qcycle .

Proposition 5. Qu∗[∇ratio] ∈ Qall = QBSCC ∪ Qpath ∪ Qcycle .

We now sketch a proof for Proposition 5. If ∇ ∈ {♦�,�♦} the claim is a conse-
quence of the fact that almost all paths π ∈ InfPathsMι eventually enter a BSCC
C and limn→∞ ratio(π[. . . n]) = LC(ratio). Hence, we even have the stronger result
Qu∗[♦�ratio],Qu∗[�♦ratio] ∈ QBSCC . Thus, for these quantiles we establish a
polynomial-time computation scheme without employing Lemma 1.

To prove Qu>0[�ratio] ∈ Qall we show the following statement: If q ∈ Q\Qall

and Pr(�(ratio>q)) > 0, then there exists q′ ∈ Qall , q<q′ such that for all ε ∈
Q>0, Pr(�(ratio > q′−ε)) > 0. Assume Pr(�(ratio>q)) > 0 where q ∈ Q \ Qall .
Using the assumption q /∈ Qall , Proposition 1 together with the ratio-weight
transformation (c.f. Sect. 3) implies the existence of a BSCC C and a finite path
π̂q reaching C such that LC(ratio) > q, π̂q contains a cycle ϑ with ratio(ϑ) > q,
and every non-empty prefix
 of π̂q satisfies ratio(
) > q. We call π̂q a witness
for Pr(�(ratio>q)) > 0. Let q′ ∈ Qall be the smallest element of Qall such that
q < q′ and ε ∈ Q>0. Outgoing from π̂q we can construct a finite path π̂q′−ε that
serves as a witness for Pr(�(ratio > q′−ε)) > 0.

ι s1, n

1, 5 1, 1

Energy-utility
Markov chain.
Transitions are

labeled by
utility, energy.

For example, consider the Markov chain with the two states
ι and s depicted on the right, depending on n ∈ N. First suppose
n = 100. Using the characterization given in Proposition 1 and
the ratio-weight transformation, π̂2/100 = ι ι ι s is a witness for
Pr(�(ratio > 2/100)) > 0. Since we can iterate ι arbitrarily often,
given ε ∈ Q>0 there exists k ∈ N such that π̂1/5−ε = ιks is
a witness for Pr(�(ratio > 1/5−ε)) > 0. If we assume n = 1,
then π̂′

1/6 = ι ι ι s is a witness for Pr(�(ratio > 1/6)) > 0. As
ratio(ι ι) < ratio(π̂′

1/6) we now do not iterate the state ι and
achieve a witness for (1−ε). For arbitrary ε ∈ Q>0 the path
π̂′
1−ε = ι s is a witness for Pr(�(ratio > 1−ε)) > 0.

Ratio and Weight Quantiles 353

Remark 2. In fact one can improve Proposition 5:

Qu=1[�ratio] = min(Qcycle ∪ Qpath),
Qu>0[♦ratio] = max(Qpath ∪ Qcycle),

Qu=1[�♦ratio] = Qu=1[♦�ratio] = min(QBSCC), and
Qu>0[�♦ratio] = Qu>0[♦�ratio] = max(QBSCC).

Let us now draw the consequences towards a proof of Theorem 1. Since Qall

is exponential, Proposition 5 directly yields an exponential-time computation
procedure for ratio quantiles. However, we can avoid the computation of Qall :
Proposition 5 implies that the denominator of a ratio quantile is bounded by the
maximum of the set M = {|S|·maxe} ∪ {den(LC(ratio)) : C is a BSCC}. Here,
maxe is the maximum of the function energy, and den(q) denotes the denominator
of a rational number q. The set M can be computed in polynomial time and hence
we obtain the following proposition, which completes our proof for Theorem 1.

Proposition 6. One can compute a natural number N in polynomial time such
that Qu∗[∇ratio] ∈ {a/b : a ∈ N and b ∈ [1, N] ∩ N}.
Putting things together, we obtain the open part of Theorem 1, i.e., the quantile
Qu∗[∇ratio] can be computed in polynomial time: First compute N as given in
Proposition 6, then compute α from Proposition 4, and finally apply Lemma 1
and solve the best-approximation problem for N and α.

Remark 3. Mean-payoff objectives [9,30] are tightly connected to our ♦�-ratio
objectives where energy is restricted to energy(s, s′) = 1 for all s, s′ ∈ S. When
π = s0 s1 s2 . . . is an infinite path, its mean-payoff is defined by

MP(π) = lim inf
n→∞

1
n + 1

∑n

i=0
utility(si, si+1).

Then, e.g., Qu>0[♦�ratio] = sup{q ∈ Q : Pr(MP>q)>0}, which is a consequence
of the following implications with π ∈ InfPathsM and q ∈ Q≥0: π |= ♦�(ratio>q)
implies MP(π) ≥ q, and vice versa, MP(π) > q implies π |= ♦�(ratio≥q). Notice
that [9] and [30] consider MDPs instead of Markov chains.

5 Conclusions

We considered the optimization problem of computing quantile values over a sim-
ple parametrized logic with ratio and weight objectives. For weighted Markov
chains we established efficient algorithms to exactly compute quantiles where the
ratio or weight objective under an ω-regular side constraint has to be fulfilled
almost-surely or with positive probability. Whereas in the case of weight quan-
tiles a simple binary search and a polynomial-time decision procedure for weight
objectives is sufficient, ratio quantiles required a more sophisticated approach,
namely by applying the continued-fraction method. The presented techniques
can be used to establish polynomial-time algorithms also for various extensions of
the objectives we considered. For instance, the initialization phase after which the

354 D. Krähmann et al.

ratio threshold q has to be always exceeded in a persistence event ♦�(ratio>q)
might be conditioned by a set of triggering states T , which could be expressed
in LTL fashion as an event (¬T)U(T ∧ �(ratio>q)) [31].

The extension towards p-quantiles, i.e., quantiles where the ratio or weight
objective holds not only almost surely or with positive probability but its prob-
ability exceeds a given threshold p, is not straight forward and an efficient
exact computation cannot be expected. Already the corresponding �-weight
decision problem in unit-weight Markov chains can be shown to be PosSLP-
hard [3,10,19]. Thus, a polynomial-time (or even NP) decision procedure is not
possible without a major breakthrough in exact numerical analysis. However,
weight p-quantiles can be computed by computing corresponding almost-sure
and positive quantiles q=1 and q>0 in polynomial time as presented in this
paper, and performing a simple binary search on [q=1, q>0] applying well-known
polynomial-space algorithms for analyzing probabilistic one-counter automata
[11]. As weight and ratio decision problems are interreducible in linear time, this
approach can also be used to approximate ratio p-quantiles.

Acknowledgements. We thank Stefan Kiefer for pointing us to the continued-
fraction method and its application [20].

References

1. Andova, S., Hermanns, H., Katoen, J.P.: Discrete-time rewards model-checked. In:
Larsen, K.G., Niebert, P. (eds.) FORMATS 2003. LNCS, vol. 2791, pp. 88–104.
Springer, Heidelberg (2004)

2. Baier, C., Daum, M., Dubslaff, C., Klein, J., Klüppelholz, S.: Energy-utility quan-
tiles. In: Badger, J.M., Rozier, K.Y. (eds.) NFM 2014. LNCS, vol. 8430, pp. 285–
299. Springer, Heidelberg (2014)

3. Baier, C., Dubslaff, C., Klein, J., Klüppelholz, S., Wunderlich, S.: Probabilis-
tic model checking for energy-utility analysis. In: van Breugel, F., Kashefi, E.,
Palamidessi, C., Rutten, J. (eds.) Horizons of the Mind. LNCS, vol. 8464, pp.
96–123. Springer, Heidelberg (2014)

4. Baier, C., Dubslaff, C., Klüppelholz, S.: Trade-off analysis meets probabilistic
model checking. In: CSL-LICS 2014, pp. 1:1–1:10. ACM (2014)

5. Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press, Cambridge
(2008)

6. Baier, C., Klein, J., Klüppelholz, S., Wunderlich, S.: Weight monitoring with linear
temporal logic: complexity and decidability. In: CSL-LICS 2014, pp. 11:1–11:10.
ACM (2014)

7. Boker, U., Chatterjee, K., Henzinger, T.A., Kupferman, O.: Temporal specifica-
tions with accumulative values. In: LICS 2011, pp. 43–52. IEEE Computer Society
(2011)

8. Bozzelli, L., Ganty, P.: Complexity analysis of the backward coverability algorithm
for VASS. In: Delzanno, G., Potapov, I. (eds.) RP 2011. LNCS, vol. 6945, pp.
96–109. Springer, Heidelberg (2011)

Ratio and Weight Quantiles 355

9. Brázdil, T., Brozek, V., Chatterjee, K., Forejt, V., Kucera, A.: Two views on
multiple mean-payoff objectives in Markov decision processes. Logical Methods
Comput. Sci. 10(1), 1–29 (2014)

10. Brázdil, T., Brozek, V., Etessami, K., Kucera, A., Wojtczak, D.: One-counter
Markov decision processes. In: SODA 2010, pp. 863–874. SIAM (2010)

11. Brázdil, T., Esparza, J., Kiefer, S., Kucera, A.: Analyzing probabilistic pushdown
automata. Formal Methods Syst. Des. 43(2), 124–163 (2013)

12. Brázdil, T., Kiefer, S., Kucera, A., Novotný, P., Katoen, J.-P.: Zero-reachability in
probabilistic multi-counter automata. In: CSL-LICS 2014. ACM (2014)

13. Cardoza, E., Lipton, R., Meyer, A.R.: Exponential space complete problems for
Petri nets and commutative semigroups (preliminary report). In: STOC 1976, pp.
50–54. ACM (1976)

14. Chatterjee, K., Doyen, L.: Energy and mean-payoff parity Markov decision
processes. In: Murlak, F., Sankowski, P. (eds.) MFCS 2011. LNCS, vol. 6907, pp.
206–218. Springer, Heidelberg (2011)

15. Chatterjee, K., Doyen, L.: Energy parity games. Theoret. Comput. Sci. 458, 49–60
(2012)

16. Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge
(2000)

17. de Alfaro, L.: Formal Verification of Probabilistic Systems. PhD thesis, Stanford
University, Department of Computer Science (1997)

18. Etessami, K., Kwiatkowska, M., Vardi, M.Y., Yannakakis, M.: Multi-objective
model checking of Markov decision processes. Logical Methods Comput. Sci. 4(4),
1–21 (2008)

19. Etessami, K., Yannakakis, M.: Recursive Markov chains, stochastic grammars, and
monotone systems of nonlinear equations. J. ACM 56(1), 1:1–1:66 (2009)

20. Etessami, K., Yannakakis, M.: On the complexity of Nash equilibria and other
fixed points. SIAM J. Comput. 39(6), 2531–2597 (2010)

21. Freedman, D.: Markov Chains. Springer, New York (1983)
22. Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial

Optimization. Springer, Heidelberg (1993)
23. Haase, C., Kiefer, S.: The odds of staying on budget. In: Halldórsson, M.M., Iwama,

K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015. LNCS, vol. 9135, pp. 234–
246. Springer, Heidelberg (2015)

24. Hinton, A., Kwiatkowska, M., Norman, G., Parker, D.: PRISM: a tool for automatic
verification of probabilistic systems. In: Hermanns, H., Palsberg, J. (eds.) TACAS
2006. LNCS, vol. 3920, pp. 441–444. Springer, Heidelberg (2006)

25. Juhl, L., Guldstrand Larsen, K., Raskin, J.-F.: Optimal bounds for multiweighted
and parametrised energy games. In: Liu, Z., Woodcock, J., Zhu, H. (eds.) He
Festschrift. LNCS, vol. 8051, pp. 244–255. Springer, Heidelberg (2013)

26. Kallenberg, O.: Foundations of Modern Probability. Springer, New York (2002)
27. Katoen, J.-P., Zapreev, I., Hahn, E., Hermanns, H., Jansen, D.: The ins and outs

of the probabilistic model checker MRMC. Perform. Eval. 68(2), 90–104 (2011)
28. Krähmann, D., Schubert, J., Baier, C., Dubslaff, C.: Ratio and weight quan-

tiles. Technical report, Technische Universität Dresden (2015). http://wwwtcs.inf.
tu-dresden.de/ALGI/PUB/MFCS15/

29. Rackoff, C.: The covering and boundedness problems for vector addition systems.
Theoret. Comput. Sci. 6(2), 223–231 (1978)

30. Randour, M., Raskin, J.-F., Sankur, O.: Percentile queries in multi-dimensional
Markov decision processes. In: CAV 2015. LNCS. Springer, Heidelberg (2015, to
appear)

http://wwwtcs.inf.tu-dresden.de/ALGI/PUB/MFCS15/
http://wwwtcs.inf.tu-dresden.de/ALGI/PUB/MFCS15/

356 D. Krähmann et al.

31. Schubert, J.: Weight and ratio objectives in annotated Markov chains. Master’s
thesis, TU Dresden (2015)

32. Ummels, M., Baier, C.: Computing quantiles in Markov reward models. In: Pfen-
ning, F. (ed.) FOSSACS 2013 (ETAPS 2013). LNCS, vol. 7794, pp. 353–368.
Springer, Heidelberg (2013)

33. von Essen, C., Jobstmann, B.: Synthesizing systems with optimal average-case
behavior for ratio objectives. In: iWIGP 2011. EPTCS, vol. 50, pp. 17–32 (2011)

Precise Upper and Lower Bounds
for the Monotone Constraint

Satisfaction Problem

Victor Lagerkvist(B)

Department of Computer and Information Science,
Linköping University, Linköping, Sweden

victor.lagerkvist@liu.se

Abstract. Themonotone constraint satisfaction problem (MCSP) is the
problem of, given an existentially quantified positive formula, decide
whether this formula has a model. This problem is a natural gener-
alization of the constraint satisfaction problem, which can be seen as
the problem of determining whether a conjunctive formula has a model.
In this paper we study the worst-case time complexity, measured with
respect to the number of variables, n, of the MCSP problem parameter-
ized by a constraint language Γ (MCSP(Γ)). We prove that the com-
plexity of the NP-complete MCSP(Γ) problems on a given finite domain
D falls into exactly |D| − 1 cases and ranges from O(2n) to O(|D|n). We
give strong lower bounds and prove that MCSP(Γ), for any constraint
language Γ over any finite domain, is solvable in O(|D′|n) time, where
D′ is the domain of the core of Γ , but not solvable in O(|D′|δn) time for
any δ < 1, unless the strong exponential-time hypothesis fails. Hence,
we obtain a complete understanding of the worst-case time complexity
of MCSP(Γ) for constraint languages over arbitrary finite domains.

1 Introduction

The constraint satisfaction problem over a constraint language Γ (CSP(Γ)) is a
widely studied computational problem which can be described as the problem of,
given a conjunctive formula over Γ , verify whether there exists a model of this
formula. In general the CSP(Γ) problem is NP-complete, and much research has
been made to separate tractable from NP-hard cases [3,13]. A related question
to establishing dichotomies between tractable and intractable cases is to study
the complexity differences between NP-complete CSP problems. Let n denote
the number of variables in a given CSP(Γ) instance. Is it then, for example,
possible to characterize all constraint languages Γ such that CSP(Γ) is solvable
in O(cn) time for some c ∈ R? Ultimately, one would like to have a table, which
for every constraint language Γ contains a constant c ∈ R such that CSP(Γ)
is solvable in O(cn) time but not in O(dn) time for any d < c. Clearly, even
assuming P �= NP, such a table would be very difficult, if not impossible, to
obtain. A more feasible approach is to order all NP-complete CSP problems by
their relative worst-case time complexity, i.e., CSP(Γ) lies below CSP(Δ) in this
c© Springer-Verlag Berlin Heidelberg 2015
G.F. Italiano et al. (Eds.): MFCS 2015, Part I, LNCS 9234, pp. 357–368, 2015.
DOI: 10.1007/978-3-662-48057-1 28

358 V. Lagerkvist

ordering if CSP(Γ) is solvable in O(cn) time whenever CSP(Δ) is solvable in
O(cn) time. Jonsson et al. [9] studied the structure of this ordering for Boolean
CSP problems and proved that it had a minimal element. With this “easiest”
Boolean CSP problem they obtained lower bounds for all NP-complete Boolean
CSP problems and proved that there does not exist any NP-complete Boolean
CSP(Γ) problem solvable in subexponential time, unless the exponential-time
hypothesis fails. A similar study was later conducted for Boolean optimization
problems where analogous results and lower bounds were obtained [10].

In this paper we continue this line of research in the context of the
monotone constraint satisfaction problem parameterized by a constraint lan-
guage Γ (MCSP(Γ)). This problem can be viewed as a generalization of the CSP
problem where the objective is to determine whether an existentially quantified
first-order formula without negation over Γ has a model. This problem has been
studied by Hermann and Richoux [6], who gave a dichotomy theorem for arbi-
trary finite domains, separating tractable from NP-complete cases. This result
was later extended to also cover the case of infinite domains [1]. Closure prop-
erties of disjunctive logic formulas was investigated by Fargier and Marquis [5]
but with regards to knowledge representation problems. We are now interested
in the aforementioned questions regarding the worst-case time complexity of
MCSP(Γ), and in particular how well the ordering between the complexity of
NP-complete MCSP(Γ) problems can be approximated. As a tool to compare
and relate worst-case running times between NP-complete MCSP(Γ) problems,
we utilize a restricted form of polynomial-time reductions, which only increases
the number of variables within instances by a constant, constant variable reduc-
tions (CV-reductions). It is readily verified that if MCSP(Γ) is CV-reducible to
MCSP(Δ) then MCSP(Γ) is solvable in O(cn) time whenever MCSP(Δ) is solv-
able in O(cn) time (where n denotes the number of variables in a given instance).
We begin in Sect. 3.1 by first giving a straightforward condition to check whether
MCSP(Γ) is CV-reducible to MCSP(Δ). This proof makes use of the alge-
braic approach to constraint satisfaction problems [8] and the Galois connection
between strong partial endomorphism monoids and weak Krasner algebras with-
out existential quantification [2]. In Sect. 3.2 we use this result to obtain a full
understanding of the applicability of CV-reductions to the MCSP(Γ) problem.
Let Γ be an arbitrary constraint language over a finite domain D and let D′

denote the domain of the core of Γ (the reader unfamiliar with this model theo-
retical concept is advised to quickly consult Sect. 2.2). We prove that MCSP(Γ)
is exactly as hard as the full MCSP over D′, i.e. the MCSP problem where all
relations over D′ are allowed to occur in constraints. This furthermore implies
that there are at most |D| − 1 possible cases for the worst-case complexity of
MCSP(Γ).

With the help of the results from Sect. 3 we in Sect. 4 turn to the prob-
lem of determining lower bounds for MCSP(Γ). To prove these lower bounds
we relate the complexity of MCSP to the strong exponential-time hypothesis
(SETH), i.e. the conjecture that the Boolean satisfiability problem is not solv-
able in O(2δn) time for any δ < 1 [4,7]. We prove the following: if the SETH

Precise Upper and Lower Bounds for the Monotone Constraint Satisfaction 359

holds then MCSP(Γ) is solvable in O(cn) time but not in O(cδn) time for any
δ < 1, where c is the size of the domain of the core of Γ . As a side result we
prove an analogous result also hold for the CSP problem: if the Boolean CSP
problem is not solvable in O(2δn) for any δ < 1 then the CSP problem over any
finite domain D is not solvable in O(|D|δn) for any δ < 1. Hence, for any finite
domain D and any c ∈ {1, . . . , |D|}, we obtain a complete classification of the
MCSP problems solvable in O(cn) time but not in O(cδn) time for any δ < 1. In
contrast to the CSP problem we can therefore not only approximate the ordering
between the complexity of NP-complete MCSP problems, but actually obtain
a complete understanding. While these results do not directly carry over to the
CSP problem, we still believe that some of the involved techniques could be
useful when studying the time complexity of other problems parameterized by
constraint languages.

2 Preliminaries

In this section we introduce constraint languages, the monotone constraint satis-
faction problem, and give a brief introduction to the necessary algebraic concepts
required in the subsequent treatment.

2.1 Constraint Languages and Functions

Let D ⊂ N be a finite domain. Let RelD denote the set of all finitary relations
over D. For a relation R ∈ RelD we let ar(R) denote its arity. For each i ∈ D let
ci denote the constant relation {(i)}. Let idD(i) = i be the identity function over
D, EqD = {(i, i) | i ∈ D} the equality relation, and NeqD = {(i, j) ∈ D2 | i �= j}
the inequality relation. Given a function f on D we let img(f) denote its image. If
the domain is clear from the context we simply write id, Eq and Neq, respectively.
A constraint language Γ over D is a finite or infinite set of relations Γ ⊆ RelD
such that EqD ∈ Γ . Hence, whenever we speak of a constraint language we
assume that this language contains the equality relation.

We usually represent relations as logical formulas, and use the notation
R(x1, . . . , xn) ≡ φ to denote the n-ary relation R = {(f(x1), . . . , f(xn)) | f
is a model of φ}. A monotone formula over a constraint language Γ is logical
formula with free variables x1, . . . , xn of the form ∃y1, . . . , yn.φ, where φ is a
quantifier-free formula over x1, . . . , xn, y1, . . . , ym consisting of disjunction, con-
junction, over positive literals of the form Ri(xi), where Ri ∈ Γ , and xi is a tuple
of variables over x1, . . . , xn, y1, . . . , ym. A quantifier-free monotone formula is a
monotone formula without existential quantification. These restricted classes of
logical formulas will be important in Sect. 2.3 when we define the monotone con-
straint satisfaction problem, and in Sects. 2.4 and 2.5 where we discuss closure
properties of relations.

360 V. Lagerkvist

2.2 Cores of Constraint Languages

A constraint language {R′
1, . . . , R

′
m} over D′ ⊆ D is a substructure of a con-

straint language {R1, . . . , Rm} over D if each R′
i ⊆ Ri. A homomorphism h of

a constraint language {R1, . . . , Rm} to a constraint language {R′
1, . . . , R

′
m} over

D′ is a function h : D → D′ such that (h(a1), . . . , h(aar(Ri))) ∈ R′
i for every i and

every (a1, . . . , aar(Ri)) ∈ Ri. Here we tacitly assume that constraint languages
can be viewed as relational structures, i.e. that the relations are given as an
ordered sequence and have an associated signature. A constraint language Γ is a
core if there does not exist a homomorphism to a proper substructure of Γ , and
we say that Γ ′ is a core of Γ if Γ ′ is a core and there exists a homomorphism
from Γ to Γ ′. Since the cores of a constraint language Γ are equivalent up to
isomorphism we typically speak of the core of Γ and let Core(Γ) denote this
constraint language. The core-size of Γ is the size of the domain of Core(Γ).

2.3 The Monotone Constraint Satisfaction Problem

Let Γ be a constraint language over D. Recall that a constraint language in our
notation always includes the equality relation over D. The monotone constraint
satisfaction problem over Γ (MCSP(Γ)) is defined as follows.

Instance: A tuple (V, φ) where V is a set of variables and φ a quantifier-free
monotone formula over Γ and V .
Question: Is there a function f : V → D such that f is a model of φ?

Even if Eq /∈ Γ we typically write MCSP(Γ) instead of MCSP(Γ ∪ {Eq}).
Given an instance I = (V, φ) of MCSP(Γ) we let ||I|| denote the number of bits
required to represent I and Constraints(I) = {Ri(xi) | Ri(xi) is a constraint
application in φ}, where each Ri ∈ Γ and xi is a tuple of variables over V of
length ar(Ri).

Example 1. Consider the problem MCSP({c1, c2}) over the Boolean domain
{1, 2}, where c1 = {(1)} and c2 = {(2)}. Then MCSP({c1, c2}) can be seen as a
variant of the Boolean satisfiability problem, with the distinction that instances
are not necessarily in conjunctive normal form.

Hermann and Richoux [6] classified the complexity of MCSP(Γ) with respect
to polynomial-time many-one reductions. Since we are interested in a more fine-
grained analysis of the complexity of MCSP(Γ) we introduce a restricted form
of reduction which only increases the number of variables within instances by
an additive constant.

Definition 2. Let Γ and Δ be two constraint languages. A constant variable-
reduction (CV-reduction) from MCSP(Γ) to MCSP(Δ) is a computable func-
tion f from the instances of MCSP(Γ) to the instances of MCSP(Δ) such that
for every instance (V, φ) of MCSP(Γ):

Precise Upper and Lower Bounds for the Monotone Constraint Satisfaction 361

– f((V, φ)) can be computed in O(poly(||(V, φ)||)) time,
– (V, φ) is satisfiable if and only if f((V, φ)) is satisfiable,
– f((V, φ)) = (V ′, φ′) where |V ′| = |V | + O(1).

We write MCSP(Γ) ≤CV MCSP(Δ) as a shorthand for this reduction. In
other words a CV-reduction is a polynomial-time many one reduction which
only increases the number of variables by a constant. The utility of these reduc-
tions stems from the fact that if MCSP(Γ) is solvable in O(cn · poly(||I||)) time
for some constant c ≥ 1, and if MCSP(Δ) ≤CV MCSP(Γ), then MCSP(Δ) is
also solvable in O(cn · poly(||I||)) time.

2.4 Closure Operators on Functions and Relations

Let R be a k-ary relation over a finite domain D. A unary function e over D is said
to be an endomorphism of R if (e(a1), . . . , e(ak)) ∈ R for every (a1, . . . , ak) ∈ R.
In this case we also say that e preserves R or that R is invariant under e.
This notion is extended to constraint languages in the obvious way. Given a
constraint language Γ we let EndD(Γ) denote the set of all endomorphisms over
D of Γ . Similarly, given a set of unary functions E over D we let InvD(E) denote
the set of all relations over D that are invariant under E. Since the domain is
typically clear from the context we usually just write End(Γ) and Inv(E). Sets
of the form End(Γ) and Inv(E) are known as endomorphism monoids and weak
Krasner algebras, respectively. Despite these rather enigmatic names they are
in fact quite easy to grasp: End(Γ) is a set of unary functions containing the
identity function id which is closed under functional composition; Inv(E) is a set
of relations closed under monotone formulas [2]. The latter means that whenever
Γ ⊆ Inv(E) then Inv(E) also contains all relations of the form R(x1, . . . , xn) ≡ φ,
where φ is a monotone formula over Γ . If we let 〈Γ 〉 = Inv(End(Γ)) we obtain the
following Galois connection between weak Krasner algebras and endomorphism
monoids.

Theorem 3 ([2]). Let Γ and Δ be two constraint languages. Then Γ ⊆ 〈Δ〉 if
and only if End(Δ) ⊆ End(Γ).

Using this Galois connection, Hermann and Richoux [6] proved that the com-
plexity of MCSP(Γ), up to polynomial-time many one reductions, is determined
by the endomorphisms of Γ .

Theorem 4 ([6]). Let Γ and Δ be two finite constraint languages. If End(Γ) ⊆
End(Δ) then MCSP(Δ) is polynomial-time many-ony reducible to MCSP(Γ).

With this result they obtained a dichotomy theorem for MCSP(Γ) for con-
straint languages Γ over arbitrary finite domains, proving that MCSP(Γ) is
NP-complete if and only if End(Γ) does not contain a constant endomorphism,
i.e. an endomorphism e which for some j ∈ D satisfies e(i) = j for all i ∈ D.

Theorem 5 ([6]). Let Γ be constraint language. Then MCSP(Γ) is NP-
complete if and only if End(Γ) does not contain a constant endomorphism.

362 V. Lagerkvist

2.5 Restricted Closure Operators on Functions and Relations

We are now interested in closure operators based on quantifier-free monotone
formulas. To get a similar Galois connection as in Theorem 6 we need a slight
modification to the End(·) operator. An n-ary partial function f over D is
a map f : X → D where X ⊆ Dn. Let dom(f) = X. If f and g are
two partial functions then g is a subfunction of f if dom(g) ⊆ dom(f) and
f(x1, . . . , xn) = g(x1, . . . , xn) for all (x1, . . . , xn) ∈ dom(g). A set F of partial
functions is strong, if, whenever f ∈ F , then F also contains all subfunctions
of f . Given a set of partial functions F we let Strong(F) denote the smallest
strong set of partial functions containing F . A unary partial function e is said
to be a partial endomorphism of a k-ary relation R if (e(a1), . . . , e(ak)) ∈ R for
all (a1, . . . , ak) ∈ R such that (a1), . . . , (ak) ∈ dom(e). Again, this notion easily
generalizes to constraint languages. Let pEndD(Γ) denote the set of all partial
endomorphisms over D to a constraint language Γ over D. As usual we omit the
domain D when it is clear from the context. A set of the form pEnd(Γ) is known
as a strong partial endomorphism monoid [2] and is a strong, composition-closed
set of unary partial functions containing the identity function. The utility of these
definitions stems from the following: if E is a set of unary partial functions and
if Γ ⊆ Inv(E), then Inv(E) also contains all relations R(x1, . . . , xn) ≡ φ, where
φ is a quantifier-free monotone formula over Γ [2]. For a constraint language Γ
let 〈Γ 〉�∃ = Inv(pEnd(Γ)). We have the following Galois connection.

Theorem 6 ([2]). Let Γ and Δ be two constraint languages. Then Γ ⊆ 〈Δ〉�∃
if and only if pEnd(Δ) ⊆ pEnd(Γ).

As will be made clear in Sect. 3, this Galois connection will allow us to obtain
a corresponding result to Theorem 4, where we prove that the partial endomor-
phims of a constraint language Γ determines the complexity of MCSP(Γ) up to
O(c|V |) time complexity.

3 The Complexity of Monotone Constraint Satisfaction

By Theorem 5 we can for every Γ ⊆ RelD easily determine whether MCSP(Γ) is
NP-complete or in P. We are interested in a more fine-grained analysis of the NP-
complete MCSP problems with respect to CV-reductions. We first (in Sect. 3.1)
prove that the partial endomorphisms of a constraint language determines the
complexity of the MCSP problem with respect to CV-reductions. In Sect. 3.2 we
then use partial endomorphism to obtain a full understanding of the applicability
of CV-reductions for the MCSP problem.

3.1 Partial Endomorphisms and CV-reductions

We first prove an easy, but very important, theorem which gives a conditition
for obtaining a CV-reduction from one MCSP problem to another.

Precise Upper and Lower Bounds for the Monotone Constraint Satisfaction 363

Theorem 7. Let Γ and Δ be two finite constraint languages. If pEnd(Γ) ⊆
pEnd(Δ) then MCSP(Δ) is CV-reducible to MCSP(Γ).

Proof. Since pEnd(Γ) ⊆ pEnd(Δ) we can exploit the Galois connection to infer
that Δ ⊆ 〈Γ 〉�∃. This furthermore implies that every R ∈ Δ can be expressed as
a quantifier-free monotone formula over Γ . Since both languages are finite we
can easily find all such definitions in constant time, with respect to the size of
Γ and Δ. Now let I = (V, φ) be an instance of MCSP(Δ). For each constraint
Ri(xi) ∈ Constraints(I) replace it by its equivalent quantifier-free monotone
formula over Γ . Let I ′ = (V, φ′) be the resulting instance. Then I ′ is satisfiable
if and only if I is satisfiable. Since we do not introduce any fresh variables, and
since the reduction runs in O(poly(||I||)) time, it follows that the reduction is a
CV-reduction. ��
Since we are working over arbitrary finite domains we are interested in simplyf-
ing things whenever possible. The following theorem offers such a simplification
whenever End(Γ) contains a non-injective endomorphism, i.e., when the core-size
of Γ is strictly smaller than |D|. The proof is simple and is therefore omitted.

Theorem 8. Let Γ be a finite constraint language. Then (1) MCSP(Γ) ≤CV

MCSP(Core(Γ)) and (2) MCSP(Core(Γ)) ≤CV MCSP(Γ).

3.2 Intervals of Strong Partial Endomorphism Monoids

By Theorem 7 we now have a relatively simple property for determining whether
MCSP(Γ) is CV-reducible to MCSP(Δ). This condition is sufficient to guar-
antee the existence of a CV-reduction, but as we will see in this section, there
are many cases that are not covered. Assume e.g. that pEnd(Γ) ⊂ pEnd(Δ).
Could it then still be the case that MCSP(Δ) is CV-reducible to MCSP(Γ)?
In this section we obtain a complete understanding of when such CV-reductions
are possible. Our main technical tool for accomplishing this is to study intervals
of strong partial endomorphism monoids.

Definition 9. Let End(Γ) be an endomorphism monoid over D. The strong
partial monoid interval of End(Γ) is the set

I(End(Γ)) = {pEnd(Δ) | End(Δ) = End(Γ)}.

The smallest element in this set is given by Strong(End(Γ)) and the largest ele-
ment by

⋃ I(End(Γ)) =
⋃

pEnd(Δ)∈I(End(Γ)) pEnd(Δ). Hence, this set can indeed
be viewed as a bounded interval. We illustrate this definition by an example.

Example 10. Consider the Boolean domain D = {1, 2} and let E = {id}, i.e. the
smallest Boolean endomorphism monoid consisting only of the unary projection
function. Recall that c1 = {(1)}, c2 = {(2)}, let c(1,2) = {(1, 2)}, and let e1
and e2 be the two partial functions e1(2) = 1, e2(1) = 2, which are undefined
otherwise. Define pEnd(Γ1), . . . ,pEnd(Γ4) as:

364 V. Lagerkvist

– pEnd(Γ1) = Strong({id}), Γ1 = {c1, c2},
– pEnd(Γ2) = pEnd(Γ1) ∪ {e1}, Γ2 = {c1, c(1,2)}
– pEnd(Γ3) = pEnd(Γ1) ∪ {e2}, Γ3 = {c2, c(1,2)}, and
– pEnd(Γ4) = pEnd(Γ1) ∪ pEnd(Γ2) ∪ pEnd(Γ3), Γ4 = {c(1,2)}.

Then one can prove that I(E) = {pEnd(Γ1),pEnd(Γ2),pEnd(Γ3),pEnd(Γ4)},
and it is readily verified that the inclusions pEnd(Γ4) ⊃ pEnd(Γ3) ⊃ pEnd(Γ1)
and pEnd(Γ4) ⊃ pEnd(Γ2) ⊃ pEnd(Γ1) hold.

In Example 10 one can also prove that MCSP(Γ1) ≤CV MCSP(Γ4). Due to
the inclusion structure between these strong partial endomorphism monoids this
furthermore implies that MCSP(Γ1), . . ., MCSP(Γ4) are all CV-reducible to
each other, and hence solvable within exactly the same O(c|V |) running time.
We are now interested in whether this holds when considering strong partial
endomorphism monoid intervals over arbitrary finite domains. To accomplish
this we first need a better characterization of the largest element

⋃ I(End(Γ)).

Definition 11. Let E = End(Γ) be an endomorphism monoid over D =
{1, . . . , k}. The relation E(D) is defined as E(D) = {(e(1), . . . , e(k)) | e ∈ E}.

The notation E(D) is a mnemonic with the intended meaning that we are con-
structing a relation that is closed under every endomorphism in E.

Theorem 12. Let E = End(Γ) be an endomorphism monoid over D. Then
pEnd({E(D)}) =

⋃ I(End(Γ)).

Proof. First, we prove that pEnd({E(D)}) ∈ I(E), i.e. that End({E(D)}) = E.
By definition E(D) is closed under every function in E, so the inclusion
E ⊆ End({E(D)}) holds. Let e ∈ End({E(D)}) and let (e(1), . . . , e(k)) =
(a1, . . . , ak). Observe that (a1, . . . , ak) ∈ E(D) since e preserves E(D). By
definition of E(D) there then exists e′ ∈ E such that (e′(1), . . . , e′(k)) =
(e(1), . . . , e(k)) = (a1, . . . , ak). Hence, e ∈ E.

Second, we prove that pEnd(E(E)) ⊇ pEnd(Δ) for any pEnd(Δ) ∈ I(E).
Let e ∈ pEnd(Δ). Assume towards contradiction that e /∈ pEnd({E(D)}). Then
there exists (b1, . . . , bk) ∈ E(D) such that (e(b1), . . . , e(bk)) /∈ E(D). Let e′ ∈
End({E(D)}) = End(Δ) be the total function satisfying (e′(1), . . . , e′(k)) =
(a1, . . . , ak). Observe that such a function must exist according to the definition
of E(D). Then define the unary function g as g(i) = e(e′(i)) for every i ∈ D.
Clearly, g is a total function which does not preserve E(D) since e is defined on
img(e′), but this is a contradiction since g ∈ End(Δ) = End({E(D)}). ��
By combining Theorems 7 and 12 we obtain the following lemma.

Lemma 13. Let Γ be a finite constraint language over D and let E = End(Γ).
Then MCSP({E(D)}) ≤CV MCSP(Γ).

We now have all the machinery in place to characterize the complexity of
MCSP(Γ). In particular, we want to prove the converse of Lemma13, i.e. that

Precise Upper and Lower Bounds for the Monotone Constraint Satisfaction 365

MCSP(Γ) is CV-reducible to MCSP({E(D)}). To prove this we first investigate
the expressive power of the relation E(D). Recall that NeqD denotes the binary
inequality relation over D.

Theorem 14. Let Γ be a finite constraint language over D and let D′ ⊆ D be
the domain of Core(Γ). Then MCSP({NeqD′}) ≤CV MCSP(Γ).

Proof. Let k′ = |D′|, k = |D|, and let e be the homomorphism from Γ to
Core(Γ). Observe that e ∈ End(Γ), img(e) = D′, and that there does not exist
any e′ ∈ End(Γ) such that |img(e′)| < |img(e)|. We prove that MCSP({NeqD′})
is CV-reducible to MCSP({E(D)}), which according to Lemma 13 is sufficient
to prove the claim. Let t = (e(1), . . . , e(k)) ∈ E(D). Assume without loss of
generality that {e(1), . . . , e(k′)} = D′, i.e., that e is injective on the k′ first
arguments. Since img(e) = D′ this means that for every i > k′ there exists a
j ≤ k′ such that t[i] = t[j]. Let h : {k′ + 1, . . . , k} → {1, . . . , k′} be a func-
tion satisfying t[i] = t(h(i)) for every i ∈ {k′ + 1, . . . , k}. Let R(x1, . . . , xk′) ≡
E(D)(x1, . . . , xk′ , xh(k′+1), . . . , xh(k)), i.e. k′-ary relation obtained by identify-
ing all arguments that are equal in the tuple t. We now claim that if i �= j
then t′[i] �= t′[j] for every t′ ∈ R. Assume to the contrary that there exists
t′ ∈ R such that t[i] = t[j] for some i �= j. According to the definition of
R this implies that there exists a tuple t′′ ∈ E(D) such that t′′[i] = t′′[j],
and, furthermore, that t′′[h(j′)] = t′′(j′) for every j′ ∈ {1, . . . , k′}. By letting
e′(1) = t′′[1], . . . , e′(k) = t′′[k], we see that img(e′) ⊂ img(e), a contradiction.
Hence, all elements are distinct in every tuple t′ ∈ R.

For the reduction, let I = (V, φ) be an instance of MCSP({NeqD′}).
We introduce k′ fresh variables y1, . . . , yk′ and introduce the constraint
R(y1, . . . , yk′). For each constraint Neq(xi, xj) ∈ Constraints(I) replace it by
(Eq(xi, y1) ∧ (Eq(xj , y2) ∨ . . . ∨ Eq(xj , yk′))) ∨ . . . ∨ (Eq(xi, yk′) ∧ (Eq(xj , y1) ∨
. . . ∨ Eq(xj , yk′−1))). Let I ′ be the resulting instance over the variables V ∪
{y1, . . . , yk′}. Clearly, if I is satisfiable then it is easy to find a satisfying assign-
ment to I ′. Similarly, if I ′ is satisfiable then one can apply e to the satisfying
assignment to get an assignment over D′. It follows that the reduction is a CV-
reduction since k′ is a constant depending only on D and Γ . ��
This shows that MCSP(Γ) is at least as hard as MCSP({NeqD′}) where D′

is the domain of Core(Γ). One might now wonder exactly how powerful the
relation NeqD is. Due to space constraints, we omit the proof, but it is in fact
not difficult to see that whenever we have access to this appearingly simple
relation, then MCSP({NeqD}) is as hard as MCSP(RelD).

Theorem 15. Let D be a finite domain. Then MCSP(RelD) ≤CV MCSP
({NeqD}).

Put together, Theorems 14 and 15 imply that MCSP(Γ) is always CV-reducible
to MCSP({End(Γ)(D)}), which results in the following corollary. The proof is
straightforward and therefore omitted.

Corollary 16. Let Γ and Δ be two finite constraint languages over D, with
core-size c and d, respectively. If d ≤ c then MCSP(Δ) ≤CV MCSP(Γ).

366 V. Lagerkvist

4 Upper and Lower Bounds for the Complexity
of Monotone Constraint Satisfaction

With Corollary 16 in Sect. 3 we now have a powerful condition for verifying
whether MCSP(Γ) is CV-reducible to MCSP(Δ). Moreover, since MCSP(Γ)
is solvable in O(d|V | · poly(||I||)), where d is the core-size of Γ , we have an
obvious upper bound on the complexity of MCSP(Γ) for all finite constraint
languages. Proving lower bounds, i.e. the problem of proving that a problem
is not solvable in O(cδ|V |) time for any δ < 1, is much more challenging and
usually requires stronger complexity theoretical assumptions than P �= NP. Let
SAT denote the Boolean satisfiability problem where instances are given as a
tuple (V, φ), where V is a set of variables and φ a conjunctive formula where
each clause is a disjunction of positive and negative literals over V . The strong
exponential-time hypothesis (SETH) is the conjecture that SAT is not solvable
in O(2δ|V |) time for any δ < 1 [4,7]. Using the SETH we can not only prove that
MCSP(RelD) is not solvable in O(2δ|V |) time for any δ < 1, unless the SETH
fails, but that MCSP(RelD) is not solvable in O(|D|δ|V |) for any δ < 1.

Theorem 17. Let D be a finite domain. If the SETH holds then MCSP(RelD)
is not solvable in O(|D|δ|V |) time for any δ < 1.

Proof. Assume that MCSP(RelD) is solvable in O(|D|δ|V |) time for some δ < 1.
Let I = (V, φ) be an instance of SAT over the variables V = {x1, . . . , xn} and
the formula φ. Let K ≥ 1 and L = � K

log2(|D|)�. The exact value of K, which is a
constant depending on δ and D, will be determined later. Assume without loss
of generality that n ≡ 0 (mod K). We will partition V into subsets of size K and
show that every such subset can be represented by L variables over D. Hence,
let V1, . . . , V n

K
be such a partition of V . Let f : {1, . . . , n} → {1, . . . , n

K } be a
function satisyfing f(i) = j if and only if xi ∈ Vj . For every Vi introduce L fresh
variables yi1 , . . . , yiL

, and observe that we in total require n·L
K new variables. Let

h : {x1, . . . , xn} → {1, . . . , K} be a function which is injective on every Vi, i.e.,
every variable in a subset Vi of V is assigned a unique index from 1 to K.

Let bD be an injective function from {0, 1}K to DL. Such a function exists
since by definition 2K ≤ |D|L. The purpose of bD is to convert a K-ary Boolean
sequence to an L-ary tuple over D. For each i ∈ {1, . . . , L} define the L-ary
relation R+

i = {bD(x1, . . . , xK) | (x1, . . . , xi−1, 1, xi+1, . . . , xK) ∈ {0, 1}K}, and
the L-ary relation R−

i = {bD(x1, . . . , xK) | (x1, . . . , xi−1, 0, xi+1, . . . , xK) ∈
{0, 1}K}.

Let (�i1 ∨ . . . ∨ �ik
), �ij

= xij
or �ij

= ¬xij
, be a clause in φ. Let zi1 , . . . , zik

such that zij
= + if �ij

= xij
and zij

= − if �ij
= ¬xij

. For each literal �ij

let Vf(ij) be the partition corresponding to xij
and let yf(ij)1 , . . . , yf(ij)L

be the
corresponding variables over D. Then replace the clause (�i1 ∨ . . . ∨ �ik

) with

R
zi1
h(xi1)

(yf(i1)1 , . . . , yf(i1)L
) ∨ . . . ∨ R

zij

h(xij
)(yf(ij)1 , . . . , yf(ij)L

).

This reduction might appear to be complicated but essentially just follows
the intuition that we can replace every variable set Vi with the corresponding

Precise Upper and Lower Bounds for the Monotone Constraint Satisfaction 367

variables over D. Let I ′ be the resulting instance of MCSP(RelD) over n·L
K

variables. It is now easy to verify that I ′ is satisfiable if and only if I is satisfiable.
Hence, SATcanbe solved inO(|D|δ· n

K ·L) time.Nowobserve thatO(|D|δ· n
K ·L)⊆

O(|D|δ· n
K ·(K

log2(|D|)+1)) = O(|D|δ·(n
log2(|D|)+

n
K)) = O((|D|δ·(n+n·log2(|D|)

K))
1

log2(|D|))
= O(2δ·(n+n·log2(|D|)

K)) = O(2n·(δ+ δ·log2(|D|)
K)). Since δ and log2(|D|) are constants

depending only on the domain D, SAT is solvable in O(2n·(δ+ε)) time for every ε >
0, by choosing a large enough value of K. Hence, we can find an ε > 0 such that
SAT is solvable in O(2nδ′

) for some δ′ = δ+ε < 1. This contradicts the SETH, and
the result follows. ��
Let Γ be a constraint language over D and let D′ be the domain of Core(Γ). By
Theorem 15 we know that MCSP(RelD′) is CV-reducible to MCSP(Γ). Hence,
we get the following corollary of Theorem 17.

Corollary 18. Let Γ be a constraint language over a finite domain and let d be
the core-size of Γ . If MCSP(Γ) is NP-complete then MCSP(Γ) is solvable in
O(d|V |) time but not in O(dδ|V |) for any δ < 1, unless the SETH fails.

We can also obtain lower bounds for CSP(RelD) by using a similar proof strategy
as in Theorem 17, but there is a caveat: relations in CSP instances are usually
represented as list of tuples. Hence, if we replace a clause (x1 ∨ . . . ∨ xn) by
its corresponding constraint, then the resulting instance might be exponentially
larger than the original SAT instance, since a clause of the form (x1 ∨ . . . ∨ xn)
can be compactly represented by a single tuple. However, we can obtain lower
bounds for CSP(RelD) vis-à-vis the complexity of CSP(Rel{1,2}).

Corollary 19. Assume that CSP(Rel{1,2}) is not solvable in O(2δ|V |) time for
any δ < 1. Then, for any finite domain D, CSP(RelD) is not solvable in
O(|D|δ|V |) time for any δ < 1.

5 Concluding Remarks

In this paper we have obtained a complete classification of the worst-case time
complexity of MCSP(Γ). Most of the proofs make heavy use of the Galois con-
nection between strong partial endomorphism monoids and weak Krasner alge-
bras without existential quantification. Obtaining similar results for the CSP
problem would likely be extremely difficult since one in this case needs to con-
sider partial functions of arbitrary high arity [9,11]. However, recent research
in partial clone theory suggests that arity bounded sets of partial functions in
many cases are expressive enough to characterize partial functions of arbitrary
arity [12]. Hence, an interesting continuation of research would e.g. be to con-
sider only binary or ternary partial functions, and investigate if such a restriction
could be used increase our understanding of the worst-case time complexity of
CSP and related problems.

Acknowledgments. The author is grateful towards Peter Jonsson for several helpful
discussions regarding the content of this paper, and to the anonymous reviewers for
many suggestions for improvement.

368 V. Lagerkvist

References

1. Bodirsky, M., Hermann, M., Richoux, F.: Complexity of existential positive first-
order logic. In: Ambos-Spies, K., Löwe, B., Merkle, W. (eds.) CiE 2009. LNCS,
vol. 5635, pp. 31–36. Springer, Heidelberg (2009)

2. Börner, F.: Basics of galois connections. In: Creignou, N., Kolaitis, P.G., Vollmer,
H. (eds.) Complexity of Constraints. LNCS, vol. 5250, pp. 38–67. Springer,
Heidelberg (2008)

3. Bulatov, A.: A dichotomy theorem for constraint satisfaction problems on a
3-element set. J. ACM 53(1), 66–120 (2006)

4. Calabro, C., Impagliazzo, R., Paturi, R.: The complexity of satisfiability of small
depth circuits. In: Chen, J., Fomin, F.V. (eds.) IWPEC 2009. LNCS, vol. 5917, pp.
75–85. Springer, Heidelberg (2009)

5. Fargier, H., Marquis, P.: Disjunctive closures for knowledge compilation. Artif.
Intell. 216, 129–162 (2014)

6. Hermann, M., Richoux, F.: On the computational complexity of monotone con-
straint satisfaction problems. In: Das, S., Uehara, R. (eds.) WALCOM 2009. LNCS,
vol. 5431, pp. 286–297. Springer, Heidelberg (2009)

7. Impagliazzo, R., Paturi, R.: On the complexity of k-SAT. J. Comput. Syst. Sci.
62(2), 367–375 (2001)

8. Jeavons, P.: On the algebraic structure of combinatorial problems. Theor. Comput.
Sci. 200, 185–204 (1998)

9. Jonsson, P., Lagerkvist, V., Nordh, G., Zanuttini, B.: Complexity of SAT prob-
lems, clone theory and the exponential time hypothesis. In: Proceedings of
the 24th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA-2013),
pp. 1264–1277 (2013)

10. Jonsson, P., Lagerkvist, V., Schmidt, J., Uppman, H.: Relating the time com-
plexity of optimization problems in light of the exponential-time hypothesis. In:
Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds.) MFCS 2014, Part II. LNCS,
vol. 8635, pp. 408–419. Springer, Heidelberg (2014)

11. Lagerkist, V., Wahlström, M.: Polynomially closed co-clones. In: Proceedings
of the 44th International Symposium on Multiple-Valued Logic (ISMVL-2014),
pp. 85–90 (2014)

12. Lagerkist, V., Wahlström, M., Zanuttini, B.: Bounded bases of strong partial
clones. In: Proceedings of the 45th International Symposium on Multiple-Valued
Logic (ISMVL-2015) (2015) (To appear)

13. Schaefer, T.: The complexity of satisfiability problems. In: Proceedings of the 10th
Annual ACM Symposium on Theory Of Computing (STOC-78), pp. 216–226. ACM
Press (1978)

Definability by Weakly Deterministic Regular
Expressions with Counters is Decidable

Markus Latte(B) and Matthias Niewerth

Universität Bayreuth, Bayreuth, Germany
{markus.latte,matthias.niewerth}@uni-bayreuth.de

Abstract. We show that weakly deterministic regular expressions with
counters (WDREs) —as they are used in XML Schema— are at most
exponentially larger than equivalent DFAs. As a consequence, the prob-
lem, whether a given DFA is equivalent to any WDRE, is decidable in
EXPSPACE.

1 Introduction

Deterministic or one-unambiguous regular expressions have been a topic of
research since they were formally defined by Brüggemann-Klein and Wood in
order to investigate a requirement in the ISO standard for the Standard Gener-
alized Markup Language (SGML), where they were introduced to ensure efficient
parsing. XML Schema, the current industry standard schema language for XML,
also requires that the regular expressions defining its content models are deter-
ministic. More precisely, an XML Schema is essentially a regular tree grammar
in which right-hand sides of rules are weakly deterministic regular expressions
with counting (WDREs) [6]. In the light that XML Schema is so wide-spread,
it is surprising that WDREs are not well-understood. It is known that WDREs
cannot define all regular word languages [6] but it is not yet known if it can be
decided whether a given regular word language can be defined by a WDRE. In
this paper, we prove that the latter problem is decidable in EXPSPACE.

Related Work. Brüggemann-Klein and Wood [3] first described an algorithm to
decide whether there exist a deterministic regular expression — without coun-
ters but with Kleene stars — (DRE) for a given regular language. There has
been further research on this BKW algorithm in [5,14]. Gelade et al. analysed
weakly and strongly deterministic regular expressions [6]. Bex et al. investigated
algorithms for approximating regular languages by DREs [1]. Kilpeläinen and
Tuhkanen provide PTIME algorithms for the membership problem of WDREs [10]
and the problem checking whether a given regular expression with counters is
weakly deterministic [11]. The latter complexity has been improved to linear time
in [9]. Chen and Lu provide efficient algorithms checking whether an expression

M. Latte and M. Niewerth—Supported by grant number MA 4938/21 of the
Deutsche Forschungsgemeinschaft (Emmy Noether Nachwuchsgruppe).

c© Springer-Verlag Berlin Heidelberg 2015
G.F. Italiano et al. (Eds.): MFCS 2015, Part I, LNCS 9234, pp. 369–381, 2015.
DOI: 10.1007/978-3-662-48057-1 29

370 M. Latte and M. Niewerth

with counting is strongly deterministic [4]. There has been previous research
on descriptional complexity of DREs [12]. Dag Hovland investigated efficient
matching algorithms for (deterministic) regular expressions with counters using
automata with counters [7,8].

Structure of the Proof. We limit the size of WDREs in several stages.

– Define some normal form that normalizes the structure of immediately nested
counters. (Sect. 3)

– Partition all nodes in the parse tree of an expression in looping subexpressions
and non-looping subexpressions. (Sect. 4)

– Show that a leaf-directed path in the parse tree consisting only of looping
subexpression has at most polynomial length in the alphabet size when count-
ing each block of immediately nested counters as length one. (Sect. 4)

– Show that each leaf-directed path in the parse tree has at most polynomially
many non-looping subexpressions in the size of a minimal DFA. (Sect. 5)

– Define iterators to recover in a DFA the effective counters of a looping subex-
pression. (Sect. 6)

– Limit the number of immediately nested counters logarithmically and the
upper bounds of each counter linearly in the size of a minimal DFA. (Sect. 7)

In Sect. 8, we connect all partial results to show that a minimal WDRE is at
most exponentially larger than an equivalent DFA and in Sect. 9, we show a
corresponding exponential lower bound for the size of WDREs.

2 Preliminaries

A language is a (possibly infinite) set of strings over a finite alphabet Σ. For any
language L, we define first(L) = {a ∈ Σ | ∃w ∈ Σ∗. aw ∈ L} and followlast(L) =
{a ∈ Σ | ∃v ∈ L,w ∈ Σ∗. vaw ∈ L}. The left quotient of a language L by a
word u is u−1 L := {w | uw ∈ L} and by a language U is U −1 L :=

⋃
u∈U u−1 L.

For all N ⊆ N, let LN abbreviate
⋃

n∈N Ln where Ln is the n-fold concatenation.
A (deterministic, finite) automaton (or DFA) A is a tuple (Q, δ, q0, F), where

Q is a set of states, δ : Q × Σ ⇀ Q is a partial transition function, q0 is the
initial state, and F is the set of final states. By δ∗ we denote the extension of
δ to strings (and languages), i.e., δ∗(q, w) is the state that can be reached from
q by reading w. The language of A is L(A) := {w ∈ Σ∗ | δ∗(q0, w) ∈ F}. We
define the size of an automaton to be the number of its states.

We let N and N+ denote the natural numbers with and without zero. Addition
and multiplication are one-sidedly expanded on subsets of N and understood
pointwise. We set I ⊗ J :=

{ ∑j
k=1 ik | j ∈ J and ik ∈ I for 1 ≤ k ≤ j

}
as the

product of two subsets I, J of N. Because (2N,⊗, {1}) is a monoid, the product is
canonically extended to lists, written as

⊗
. The product ⊗ is not commutative,

as [a . . . b] ⊗ {c} = [ac . . . bc] �= c[a . . . b] = {c} ⊗ [a . . . b] if a < b and c > 1.
We define C<ω :=

{
[c− . . . c+] | (c−, c+) ∈ N2 \ {(0, 0)} and c− ≤ c+

}
,

Cω := {N,N+}, and C := C<ω ∪Cω, as the sets of finite, infinite and all counters.

Definability by Weakly Deterministic Regular Expressions 371

Each counter is just a subset of N. Let C ∈ C be a counter. Then we use C−

and C+ to denote min C and supC, respectively and C� to denote max(1, C−).
If C− = C+, we may denote the counter by the singleton set {C−}. Lists of
(finite) counters live in [C] and [C<ω], respectively. The concatenation symbol
for counters is “·” or is omitted.

The regular expressions over Σ are defined as follows: ε, ∅ and every
Σ-symbol is a regular expression; and whenever r and s are regular expressions,
then so are (rs), (r+s), and (r)C , where C is a counter. For readability, we usu-
ally omit parentheses. Sometimes we write r · s instead of rs to emphasize that
two expressions are concatenated. As syntactic sugar, r

�C denotes the expression
(. . . ((r)C1)C2 . . .)CN for any regular expression r and list �C = C1 ·. . .·CN ∈ [C] of
counters with Ci ∈ C for each i. The language of a regular expression r, denoted
by L(r), is defined as usual. For instance, L(rC) := L(r)C for C ∈ C. Thus, the
usual Kleene star is a synonym for the counter N in our setting. Although we
do not explicitly consider the left-bounded interval [c . . .] as a counter for c ≥ 2,
the expression r[c...] can be emulated by (rN+)[c...c]. For each regular expression
r, we let first(r) = first(L(r)) and followlast(r) = followlast(L(r)).

Intuitively, a regular expression is weakly deterministic if the following holds.
When reading the input string from left to right, the expression always allows
to match each symbol of that string uniquely against a position in the expres-
sion, without looking ahead. However, which counter is incremented might be
ambiguous — in contrast to strong determinism [6].

Formally, let r̄ be the regular expression obtained from r by annotating
every alphabet symbol with its position in the expression. For example, for
r = b∗a(b∗a)∗ we have r̄ = b∗

1a2(b∗
3a4)∗. A regular expression r is weakly deter-

ministic if for all a ∈ Σ and all waiv, wajv
′ ∈ L(r̄) the annotations i and j

are equal. We denote the class of weakly deterministic regular expressions with
counters by WDRE.

The expression (a + b)∗a is not deterministic as already the first symbol in
the string aaa could be matched by either the first or the second a in the expres-
sion. The equivalent expression b∗a(b∗a)∗, on the other hand, is deterministic.
Brüggemann-Klein and Wood showed that not every (non-deterministic) regular
expression is equivalent to a deterministic one [3]. Thus, semantically, not every
regular language can be defined with a deterministic regular expression.

A WDRE r is reentrant iff whenever an alphabet symbol occurs in first(r)
and in followlast(r) then both occurrences are justified by the same position in
r. Intuitively, a reentrant WDRE is allowed to occur under a counter. It is easy
to see that a WDRE r is reentrant iff r∗ is a WDRE. We denote the set of all
reentrant WDREs by WDRE

���

. The size of a WDRE r denoted by |r| is the
number of nodes of its parse tree plus the sum of the logarithms of the upper
bounds of all its finite counters.

3 Normal Form

In this section, we will give a normal form for WDREs based on the following
rewrite rules.

372 M. Latte and M. Niewerth

Lemma 1. Let a, b ∈ N such that a ≤ b, let c, d ∈ N+, Cω ∈ Cω, and C ∈ C.

[1 . . . c] ⊗ [0 . . . d] = [0 . . . cd] [0 . . . c] ⊗ [a . . . b] = [0 . . . bc]
[1 . . . c] ⊗ [1 . . . d] = [1 . . . cd] [0 . . . c] ⊗ Cω = N

[1 . . . c] ⊗ Cω = Cω N ⊗ C = N

N+ ⊗ C = [C− . . . 2C�−1] ⊗ N+ (1)

A challenge to our goal is that the operation ⊗ does not preserve intervals
in general as [5 . . . 6] ⊗ [3 . . . 4] = {15, . . . , 18, 20, . . . , 24}.

Lemma 2. Let r ∈ WDRE and �C, �D ∈ [C]. L(r �C) = L(r �D), if
⊗ �C =

⊗ �D.

Definition 3. Let r be a WDRE. The expression r is in normal form, iff the
following conditions are true for every subexpression s

�C with �C = C1 · . . . · CN

and every i ≤ N :

ε ∈ L(s) → 0 ∈ C1 0 ∈ Ci → i = N

1 ∈ Ci & i < N → 1 /∈ Ci+1 Ci ∈ Cω → i = N

Furthermore, ∅ occurs in a WDRE r, iff r = ∅, ε occurs in a WDRE r, iff r = ε
and the counter {1} does not occur.

As for the first condition, the empty words allows to lower C−
1 . The remaining

conditions can be achieved by the rewriting rules from Lemma1 via Lemma 2.
Furthermore, it is well known that we need ∅ only to represent the empty lan-
guage. We can get rid of ε by replacing εC with ε, ε · s and s · ε with s, and ε+ s
and s + ε with s[0...1]. We note that expressions in normal form can be slightly
larger than minimal expressions, as the application of (1) can add at most one
to the size for each counter above some N+ counter.

From now on, all considered WDREs are implicitly assumed to be in normal
form. If we require some WDRE to be minimal, we mean a minimal WDRE among
all WDREs in normal form.

4 Looping Subexpression

In this section, we define looping subexpressions and limit how many looping
subexpressions can be nested into each other.

Definition 4. The relation is inductively defined as a subset of WDRE

���

× [C] × WDRE.

Definability by Weakly Deterministic Regular Expressions 373

Informally, states that s occurs under the counters �C in r and that
it is possible to reenter s silently, i.e., without parsing the hypothetical input
word for r any further. A subexpression s is looping (in r), denoted by , if

for some �C ∈ [C].

We emphasize that does not imply that s
�C is a subexpression of r, as

the notation explicitly ignores some side branches in the parse tree. The negation
of is denoted by .

Example 5. In (a[2...3]b[0...1])∗, the subexpressions a, a[2...3], and a[2...3]b[0...1]

are looping while b[0...1] is not. Moreover, b is looping in b[0...1] although the
counter exposes every reenter as pointless.

To restrict the maximal length of paths containing only looping subexpres-
sions, we use the measure μ : 2Σ∗ → 2Σ × 2{ε} × 2Σ defined as follows.

L �→ (
first(L), L ∩ {ε}, followlast(L)

)
The implicit order is the lexicographic order over the inclusion where the left
position is the most significant one. The measure is extended to regular expres-
sions by considering their languages. For example, a · b∗ is smaller than a∗

although their followlast-sets are incomparable.

Lemma 6. Concerning the right argument of , the rule Loopctr decreases
the measure weakly, while the rules Loop+ and Loop• decrease the measure
strictly. The rules are read upwards.

Proof. We use the notation as stated in the rules. With ∪̇ we denote the union
of two disjoint sets.

Rule Loopctr: We have first(rC) = first(r), followlast(rC) ⊇ followlast(r) and that
ε ∈ L(r) implies ε ∈ L(rC).

Rule Loop+: Because r0+r1 ∈ WDRE, first(r0+r1) = first(r0)∪̇first(r1). Assume
that first(ri) = first(r0 + r1). Then, first(r1−i) = ∅, and thus L(r1−i) ⊆ {ε}.
However, the normal form excludes this situation.

Rule Loop•: The side condition “ε ∈ L(r1−i)” entails that ε ∈ L(r0r1) iff ε ∈
L(ri). Moreover, the weak determinism of r0r1 entails that

first(r0r1) = first(r0) ∪̇ first(r1)︸ ︷︷ ︸
iff ε ∈ L(r0)

, and

followlast(r0r1) =
(
first(r1) ∪̇ followlast(r0)

)
∪︸ ︷︷ ︸

iff ε ∈ L(r1)

followlast(r1) ,

and is also is responsible for the disjoint unions. So far, the measure is
weakly decreasing. Because of the mentioned side condition and because r is
in normal form, L(r1−i) contains the empty word and a further word. Thus,
first(r1−i) �= ∅. Therefore, if i = 0 then followlast(r0r1) � followlast(r0), and
otherwise first(r0r1) � first(r1). ��

374 M. Latte and M. Niewerth

Theorem 7. In any expression, the length of any path of therein looping subex-
pressions is bounded by 2|Σ|2 if every maximal group of immediately nested coun-
ters is counted as one.

Proof. By Lemma 6 and the definition of μ. ��

5 Non-Looping Subexpression

The following lemma will allow us to characterize languages of non-looping
subexpressions by means of (simple) DFA operations that do not increase the
size of an equivalent DFA.

Lemma 8. If and u is a word that leads parsing in r to s, then

u −1 R ∩ (
first(SZ)Σ∗ ∪ (SZ ∩ {ε})

)
= S · Z (2)

where R stands for L(r), S for L(s) and Z :=
(
S −1 u −1 R

) \ (
followlast(S)Σ∗).

Proof. Let Y denote the language on the left side of (2).

–Direction ⊆. We silently use that r and s are weakly deterministic. Let x ∈ Y .
Since ux ∈ R, the parsing of first(x) is handled by s or x = ε ∈ S. Thus,
x = yz for some y ∈ S and some z /∈ followlast(S)Σ∗. Therefore, x =
y · y −1 u −1 (ux) ∈ S · (

(S −1 u −1 R) \ (followlast(S)Σ∗)
)

= S · Z.
–Direction ⊇. To show u−1 R ⊇ SZ, let s0, s1 ∈ S and z ∈ Z such that us1z ∈ R.

The parsing of the factor s1 in us1z does not require the support of any root-
ward counter, because s is not looping in r. Therefore, s1 can be replaced by
any word in S, for instance by s0. In other words, s0z ∈ u −1 R. ��

Theorem 9. Let r be a minimal WDRE, and let A be an equivalent DFA with
n states. Every leaf-directed path p in r hosts at most n3(|Σ| + 1)2 non-looping
subexpressions. For any non-looping subexpression s on p, there exists a DFA
with at most n + 1 states.

Proof sketch. The length of paths that only have disjunctions and concatenations
and take the right branch of each concatenation is limited by n(|Σ| + 1). The
basic idea is, that these paths can contain only n concatenations, as the language
of the right side of a concatenation can be constructed in the automaton by just
choosing a different initial state. Disjunctions restrict the set of first symbols,
i.e., after each concatenation, there can be at most |Σ| consecutive disjunctions.

Finally, whenever a path leading to a non-looping subexpression has some
counter or uses the left branch of a concatenation, then Lemma 8 entails that
the corresponding DFA essentially has less transitions than the DFA for the
subexpression at the beginning of the path. Indeed, the left quotient and the
intersection in (2) can be read as local modifications of R’s DFA. To unravel S
from the right-hand side of (2), we remove those transitions, that leave some state
reached after reading some word from S and using a symbol not in followlast(S).
As Z is nonempty in this case, such transitions have to exist.

Each automaton construction does not change the set of states. The only excep-
tion is caused by the reduction of the first-set in the case of disjunctions and of
Lemma 8: the initial state is duplicated but without its incoming transitions. ��

Definability by Weakly Deterministic Regular Expressions 375

6 Iterators

In this section we will introduce iterators to connect the size of finite automata
equivalent to some WDRE r such that with the size of automata accepting
a unary representation of

⊗ �C. This allows us in the next section to analyse the
counters in �C without looking at the concrete language accepted by s.

Definition 10. An iterator for r ∈ WDRE

���

is a pair (x0, x1) of words such that

(x0x1)�k/2� xk mod 2
0 ∈ L(r)� iff k = � or ε ∈ L(r) and k ≤ �

for all k, � ∈ N.

Intuitively, reading both words of an iterator alternatively requires a hypo-
thetical counter at the top of r, as the parsing cannot be continued within r.

Lemma 11. Let r ∈ WDRE

���

such that the topmost operator of r is not a
counter. Then there is an iterator for r.

Proof sketch. If r is a letter, then we use (r, r) as iterator. If r = r0 + r1, we use
(v0, v1) as iterator. And if r = r0r1, an iterator is (v0v1, v0v1). In the last two
cases, vi is a shortest word in L(ri) \ {ε}. ��

The next technical lemma will be used to lift the iterator property from s to r
�C

whenever . In the following theorem, we use the lemma to limit the size
of DFAs accepting exactly the words of lengths from

⊗ �C.

Lemma 12. If then L(r) ∩ L(s∗) ⊆ L(s�C).

Proof. The more general statement “L(r �D) ∩ L(s∗) ⊆ L(s�C �D) for all non-empty
�D ∈ [C] such that r

�D is in normal form” implies the claim with [1 . . . 1] or [0 . . . 1]
as D depending on whether ε ∈ L(r). For Loop0, the list �C is empty and s = r,
yielding the statement. For the other rules, we prefer the notation of Definition 4.

Rule Loopctr: The induction hypothesis is instantiated with C · �D as �D.
Rule Loop•: Let v ∈ L

(
(r0r1)

�D
)∩L(s∗). Because v ∈ L(s∗) and because (r0r1)

�D

is deterministic, the matching of v against (r0r1)
�D considers no leafs outside

the parse tree of s, i.e., r1−i is always matched against the empty word.
Therefore, L

(
(r0r1)

�D
) ∩ L(s∗) ⊆ L(r �D

i) ∩ L(s∗). The induction hypothesis
yields the statement.

Rule Loop+: Let v ∈ L
(
(r0 + r1)

�D
) ∩ L(s∗). As with Loop•, the matching of

v against (r0 + r1)
�D considers no leafs outside the parse tree of s. Thus,

the side branch r1−i contributes empty words at the most. Because �D is not
empty and since (r0+r1)

�D is in normal form, the existence of ε-contributions
entails that

⊗ �D is downward closed. Hence, the omitted ε-contributions can
be simulated by a smaller instance in

⊗ �D. Thus, v ∈ L
(
r

�D
i

) ∩ L(s∗). The
induction hypothesis yields v ∈ L(s�C �D). ��

376 M. Latte and M. Niewerth

Let 1 be some fixed letter. For each n ∈ N,
〈
n
〉

stands for 1n. The operation is
extended to sets. A DFA expresses a subset N of N iff its language is

〈
N

〉
.

Theorem 13. Let s, �C and r be such that and s does not have a counter
as topmost operation. If there is a DFA with n states for the language L(r), then
there is a DFA with 2n + 1 states for

〈⊗ �C
〉
.

Proof. The statement is trivial for �C = ε, therefore we assume �C �= ε. Due to
Lemma 11, the expression s has an iterator (x0, x1). Let g : {1}∗ → Σ∗ be the
function 1k �→ (x0 x1)�k/2� xk mod 2

0 . If ε ∈ L(s), then the normal form entails
that each counter in �C starts with 0 and thus N :=

⊗ �C is downward closed.
Independently of whether ε ∈ L(s), Definition 10 therefore comes down to the
statement: g(1k) ∈ L(s)N iff k ∈ N , for all k ∈ N. A simple induction on

yields L(s�C) ⊆ L(r), because the additional side branches do not harm.
Since g(1k) ∈ L(s)k ⊆ L(s∗) due to Definition 10, we obtain from Lemma 12
that g(1k) ∈ L(r) implies g(1k) ∈ L(s�C) for k ∈ N. All together, g−1

(
L(r)

)
=

g−1
(
L(s)�C

)
=

〈⊗ �C
〉

=
〈
N

〉
, where g−1 denotes the pre-image under g. The

language g−1(L(r)) is expressible by a 2n-state DFA, which can be shown by
some kind of product construction of the DFA for L(r) with the two-state DFA
keeping track whether the next string should be x0 or x1. ��

7 Upper Bounds for Counters

In this section we give an upper bound on the number and values of counters
of a minimal WDRE r based on the size n of an equivalent minimal DFA. We
show that the upper bound of each finite counter is bounded linearly in n and
that the number of immediately nested counters is bounded logarithmically in
n. The former is established by showing, that each “large” upper bound can be
replaced by a smaller one without changing the language.

We define h : [C] → N as h(C1 · . . . · CN) :=
∏

i≤N C�
i . We show in a series

of technical lemmas, that if then h(�C) iterations of C can be absorbed
by the counters in �C. This will allow us to bound C linearly in h(�C), while we
show that h(�C) is itself bounded linearly in the minimal DFA equivalent to r.

Lemma 14. Let C ∈ C<ω, and let c+, h ∈ N+ such that c+ ≥ C−(1 + h), then
C ⊆ [C− . . . c+] ⊗ (

1 + hN
)
.

Proof. Let n ∈ N, then c+(1+hn) ≥ C−(1+h)(1+hn) ≥ C−(
1 + h(n+1)

)
, and

thus the (1+hn)th and the (1+h(n+1))th incarnation of [C− . . . c+] are overlap-
ping. Because c+ > 0, the maximal number representable by the jth incarnation
of [C− . . . c+] is strictly growing with j. Therefore, the set [C− . . . c+]⊗(

1+hN
)

covers each number from C− onwards. ��
Lemma 15. Let C ∈ C and h ∈ N. Then,

(
1 + C�hN

) ⊗ C ⊆ C ⊗ (
1 + hN

)
.

Definability by Weakly Deterministic Regular Expressions 377

Proof. Let c ∈ C and n1, . . . , nc, h ∈ N.∑
i≤c

1 + C�hni = c + C�h
∑
i≤c

ni ∈ C ⊗
{

1 + h
∑
i≤c

ni

}
⊆ C ⊗ (1 + hN)

where “∈” holds because {c, C�} ⊆ C, and “⊆” because of ⊗’s monotonicity. ��
The subsequent statements until Lemma 18 assume that each expression deter-
mines its position within its hosting expression. In this context, r[s ← s′] denotes
the substitution of (the position of) s with s′ in an expression r.

Lemma 16. Let r, s, s′ ∈ WDRE and �C, �D ∈ [C] such that . Then
L(s) ⊆ L(s′)1+h(�C �D)N implies L(r) ⊆ L(r[s ← s′])1+h(�D)N.

Proof. Induction on where �D is quantified internally. The list �D names
hypothetical counter at the top of r. In the case of Loop0, the list �C is empty,
and s = r. For the remaining rules, we prefer the notation of Definition 4.

Rule Loop+:

L(r) ⊆ L(ri + r1−i)

⊆ L
(
ri[s ← s′]

)1+h(�D)N ∪ L(r1−i) (sem. of + and IH)

⊆ (
L(ri[s ← s′]) ∪ L(r1−i)

)1+h(�D)N (monotonicity of 1+)

⊆ L(r[s ← s′])1+h(�D)N (sem. of + and [←])

Rule Loop•: The argument is analogous to Loop+’s case but with additional
use of ε ∈ L(r1−i).

Rule Loopctr: As the rule addresses the counters �CC instead of �C, the aimed
implication is adjusted accordingly. The induction hypothesis for C �D as �D

entails that L(r) ⊆ L(r[s ← s′])1+h(C· �D)N. With help of Lemma 15 and the
definition of h, we get (1 + h(C · �D)N) ⊗ C ⊆ C ⊗ (1 + h(�D)N). Finally, the
substitution [s ← s′] commutes with C . ��

Lemma 17. Let r, s, s′ ∈ WDRE, let �C ∈ [C], let and Cω ∈ Cω such that
. Then L(s) ⊆ L(s′)1+h(�C)N implies L(r) ⊆ L(r[s ← s′]).

Proof. By induction on “ ”. Eventually the rule Loopctr justifies the
statement with for some r0. For an empty list �D, Lemma 16
entails that L(r0) ⊆ L(r0[s ← s′])1+N. Because (1 + N) ⊗ Cω ⊆ N+ ⊗ Cω ⊆ Cω

and because Cω commutes with the substitution, L(rCω
0) ⊆ L(rCω

0 [s ← s′]). ��
Lemma 18. Let C0 ∈ C<ω, �C ∈ [C], and Cω ∈ Cω. If for some
minimal WDRE r, then C+

0 ≤ C�
0 · (

1 + h(�C)
)
.

Proof. For the sake of contradiction, assume that C+
0 > c+ := C�

0 · (
1 + h(�C)

)
.

Set s− := s[C−
0 ...c+] and r− := r[sC0 ← s−]. These expressions are weakly

deterministic, because [C−
0 . . . c+] ∈ C. Due to monotonicity, L(r−) ⊆ L(r).

For the other direction, Lemma 14 entails that L(sC0) ⊆ L(s−)1+h(�C)N. Thus,
Lemma 17 yields L(r) ⊆ L(r−). Therefore, L(r−) = L(r) although |r−| < |r|. ��

378 M. Latte and M. Niewerth

The previous restriction of counters is related with the transformation into
the star normal form [2]. There, (s0s1 + s2)∗ is rewritten as (s0 + s1 + s2)∗ if
ε ∈ L(s0s1), for instance. One incarnation of s0s1 is replaced with two of s0 + s1

while the Kleene star can absorb arbitrarily many incarnations. Because C also
admits finite intervals, the absorption quantum here depends on the stack of
counters under which the expression appears effectively.

Definition 19. A list C1 · . . . · CN ∈ [C] of counters propagates 0 iff 0 ∈ Ci

together with i ≤ j implies 0 ∈ Cj for all i, j ≤ N .

Lemma 20. Let �C · �D ∈ [C] such that �C propagates 0. If
⊗

(�C · �D) is expressible
by an n-state DFA, then h(�C) < n.

Proof. For every C ∈ C and N ⊆ N, min
(
(C⊗N)\{0}) = C� ·max

(
1,min(N)

)
.

A simple induction using the 0-propagation entails that

min
(⊗

(�C · �D) \ {0}
)

= h(�C) · min
(⊗

�D \ {0}
)

≥ h(�C) .

The number on the left is strictly bounded by n − 1 because the smallest non-
empty word is reachable in the DFA without any loop. ��
Lemma 21. Let N ∈ N, let C1, . . . , CN ∈ C<ω. If

⊗N
i=1 Ci is expressible by an

n-state DFA, then
∏N

i=1 C+
i < n.

Proof. Because
⊗N

i=1 Ci is finite, the DFA lacks in loops. ��

Theorem 22. Let s, t ∈ WDRE, C ∈ C<ω, and �C ∈ [C] such that . If
s is minimal and L(s) is expressible by an n-state DFA, then C+ ≤ 4n.

Proof. We remove all outermost counters of t. The normal form guarantees
that these removed counters are finite. Thus, there is a list �C0 ∈ [C<ω] such
that where u denoted the obtained pruned subexpression. By transi-
tivity, . Because u does not have a counter as topmost operation,
Theorem 13 entails that

⊗(
�C0 · C · �C

)
is expressible by a (2n + 1)-state DFA.

If �C consists only of finite counters, then Lemma 21 bounds C+. Otherwise,
�C can be written as �C<ω · Cω · �Cω+1 such that �C<ω ∈ [C<ω], Cω ∈ Cω, and
�Cω+1 ∈ [C]. The normal form entails that C �C<ω propagates 0. By Lemmas 18
and 20, we have C+ ≤ C� · (

1 + h(�C<ω)
) ≤ 2h(C �C<ω) ≤ 4n. ��

Theorem 23. Let s, t, �C0, �C1 be such that and t does not have
a counter as topmost operation. If L(s) is expressible by an n-state DFA, then
|�C0| ≤ 2 lg(n) + 4.

Proof. The normal form ensures that at most the last counter of �C0 belongs
to Cω. If so the last counter can be attributed to �C1. Formally, there are �C2 ∈
[C<ω] and �C3 ∈ [C] such that �C0

�C1 = �C2
�C3 and |�C2| ≥ |�C0| − 1. The normal

form also entails that �C2 propagates 0. The set
⊗ �C2 ⊗ ⊗ �C3 is expressible by

Definability by Weakly Deterministic Regular Expressions 379

an (2n + 1)-state DFA due to Theorem 13. Thanks to Lemma 20, h(�C2) ≤ 2n.
Therefore, the number of counters which deny 0 or 1 is bounded by lg(2n). In
front of, between, and after those counters, at most one other counter appears.
Thus, |�C0| ≤ |�C2| + 1 ≤ (

2 lg(2n) + 1
)

+ 1 ≤ 2 lg(n) + 4. ��

8 Upper Bound

Theorem 24. Let A be a DFA with n states such that L(A) is expressible by a
WDRE. Then a minimal WDRE for L(A) is of size at most 2O(|Σ|4n3 lg2(n)) and
all of its finite counters are bounded by O(n).

Proof. We show that the parse tree of a minimal WDRE has depth at most
O(|Σ|4n3 lg(n)

)
and the upper bounds of (finite) counters are all bounded by

O(n). As the parse tree is binary, this directly yields the claimed size bound.
Let r be a minimal WDRE in normal form equivalent to A. By Theorem 9, any

leaf-directed path in the parse tree of r can host at most n3(|Σ|+1)2 non-looping
subexpressions. Furthermore, each non-looping subexpression has an automaton
with at most n+1 states. By Theorem 23, each block of immediately nested coun-
ters has at most 2 lg(n + 1) + 4 counters. Combining this with Theorem7 yields
that any leaf-directed path consisting only of looping sub-expressions has length
at most 2|Σ|2(2 lg(n + 1) + 4). Altogether, we get that the depth of the parse
tree is bounded by O(|Σ|4n3 lg(n)

)
. Finally, we can apply Theorem22 to bound

the values of counters. Let C be a finite counter of r, such that , where
t is the subexpression below C and s is the lowest non-looping subexpression of
r above C. Applying Theorem22 yields that C+ ≤ 4(n + 1). ��
Corollary 25. Let L be a regular language. If L is given by a DFA (a regular
expression without counters, a regular expression with counters), it can be decided
in EXPSPACE (2-EXPSPACE, 3-EXPSPACE), whether there is some WDRE for r.

Proof. Compute aDFAA for L with linearly (exponentially, double exponentially)
many states. Enumerate [11] each WDRE up to the size bound of Theorem24 and
test whether its language is L: (i) Unravel all counters [6] while ignoring weak
determinism. (ii) Test the obtained general regular expression against A. ��

9 Lower Bound

We adapt an existing proof showing that WDREs without counters are exponen-
tially larger than minimal DFAs from [13].

Theorem 26. There exists a family of languages (Ln)n∈N such that the minimal
DFA for Ln has size Θ(n), and every minimal WDRE for Ln has size 2Ω(n).

380 M. Latte and M. Niewerth

Proof sketch. As [13], we consider the finite languages Ln = L
(
(a + b)[0...n] · b

)
for every n ∈ N. The minimal DFA for Ln has 2n + 2 states. By an inductive
proof, it can be shown, that the minimal WDRE rn for the language Ln is of the
form a · rn−1 + b · r

[0...1]
n−1 which directly proves the assumption. ��

The main difference to the proof in [13] is that we have to consider counters in
the inductive step. We note that Theorem 26 is independent of our normal form.

10 Conclusion

We have shown both an exponential upper and an exponential lower bound for
the size of WDREs in terms of minimal DFA size. This easily gives an EXPSPACE
upper bound for the decision problem, given a DFA does there exist an equiva-
lent WDRE, solving an open problem from [6]. However, the complexity of this
decision problem is still open, as we only have an NL lower bound that carries
over from the problem for expressions without counters [14]. Especially, it is
unclear, whether there is an adaption of the BKW algorithm presented in [3]
that includes counters.

In [12,13], the descriptional complexity of DREs has been analysed. We
believe, that the lower bounds for expression size can be transferred to WDREs,
as the language families used in the proofs should not benefit from the use of
counters.

References

1. Bex, G.J., Gelade, W., Martens, W., Neven, F.: Simplifying XML Schema: effortless
handling of nondeterministic regular expressions. In: ACM SIGMOD, pp. 731–744.
ACM (2009)

2. Brüggemann-Klein, A.: Regular expressions into finite automata. TCS 120(2),
197–213 (1993)

3. Brüggemann-Klein, A., Wood, D.: One-unambiguous regular languages. Inf. Com-
put. 142(2), 182–206 (1998)

4. Chen, H., Lu, P.: Checking determinism of regular expressions with counting. In:
Yen, H.-C., Ibarra, O.H. (eds.) DLT 2012. LNCS, vol. 7410, pp. 332–343. Springer,
Heidelberg (2012)

5. Czerwiński, W., David, C., Losemann, K., Martens, W.: Deciding definability by
deterministic regular expressions. In: Pfenning, F. (ed.) FOSSACS 2013 (ETAPS
2013). LNCS, vol. 7794, pp. 289–304. Springer, Heidelberg (2013)

6. Gelade, W., Gyssens, M., Martens, W.: Regular expressions with counting: weak
versus strong determinism. SIAM J. Comp. 41(1), 160–190 (2012)

7. Hovland, D.: Regular expressions with numerical constraints and automata with
counters. In: Leucker, M., Morgan, C. (eds.) ICTAC 2009. LNCS, vol. 5684, pp.
231–245. Springer, Heidelberg (2009)

8. Hovland, D.: The membership problem for regular expressions with unordered
concatenation and numerical constraints. In: Dediu, A.-H., Mart́ın-Vide, C. (eds.)
LATA 2012. LNCS, vol. 7183, pp. 313–324. Springer, Heidelberg (2012)

Definability by Weakly Deterministic Regular Expressions 381

9. Kilpeläinen, P.: Checking determinism of XML schema content models in optimal
time. Inf. Syst. 36(3), 596–617 (2011)

10. Kilpeläinen, P., Tuhkanen, R.: Towards efficient implementation of XML schema
content models. In: DocEng, pp. 239–241. ACM (2004)

11. Kilpeläinen, P., Tuhkanen, R.: One-unambiguity of regular expressions with
numeric occurrence indicators. Inf. Comput. 205(6), 890–916 (2007)

12. Losemann, K., Martens, W., Niewerth, M.: Descriptional complexity of determin-
istic regular expressions. In: Rovan, B., Sassone, V., Widmayer, P. (eds.) MFCS
2012. LNCS, vol. 7464, pp. 643–654. Springer, Heidelberg (2012)

13. Losemann, K., Martens, W., Niewerth, M.: Closure properties and descriptional
complexity of deterministic regular expressions. Submitted, (2015)

14. Lu, P., Bremer, J., Chen, H.: Deciding determinism of regular languages. TOCS
57(1), 1–43 (2014)

On the Complexity of Reconfiguration
in Systems with Legacy Components

Jacopo Mauro(B) and Gianluigi Zavattaro

Department of Computer Science and Engineering,
University of Bologna / INRIA, Bologna, Italy

jmauro@cs.unibo.it

Abstract. In previous works we have proved that component reconfig-
uration in the presence of conflicts among components is non-primitive
recursive, while it becomes poly-time if there are no conflicts and under
the assumption that there are no components in the initial configura-
tion. The case with non-empty initial configurations was left as an open
problem, that we close in this paper by showing that, if there are legacy
components that cannot be generated from scratch, the problem turns
out to be PSpace-complete.

1 Introduction

Modern software systems are obtained as combination of software artefacts hav-
ing complex interdependencies. Their composition, configuration and manage-
ment is a difficult task, traditionally performed manually or by writing low level
configuration scripts. Recently, many high level languages and tools like, for
instance, TOSCA [17] or Engage [8] have been proposed to support the appli-
cation manager in this difficult task. By adopting these tools, it is possible to
describe the software components required to realise the system, define their
interdependencies and specify the configuration actions to be executed to actu-
ally deploy an instance of the desired system. In some limited cases and under
some specific assumptions (no circular component dependencies), such tools
automatically synthesise the configuration actions to be executed. Automatic
deployment is becoming more and more important for these tools especially due
to the advent of virtualization technologies, like in Cloud Computing, that makes
it possible to quickly acquire and release computing resources in order to deploy
new software systems or reconfigure running applications on-demand.

In previous works [5,7,14] we have performed a rigorous and systematic
analysis of the automatic deployment problem. We have proved that in gen-
eral the problem is undecidable, it is non-primitive recursive if component inter-
dependencies do not include numerical constraints, and it is poly-time if also
conflicts among components are not considered. This last result was proved by
restricting our attention on the deployment of an application from scratch, that
is, by assuming that the initial configuration is empty. This result is of par-
ticular interest because it underpins the recent industrial trend of using the so

c© Springer-Verlag Berlin Heidelberg 2015
G.F. Italiano et al. (Eds.): MFCS 2015, Part I, LNCS 9234, pp. 382–393, 2015.
DOI: 10.1007/978-3-662-48057-1 30

On the Complexity of Reconfiguration in Systems with Legacy Components 383

called “immutable servers” [16]. The application is divided in stateless compo-
nents/services that are deployed on virtual machines. When a new version of the
component is developed or the virtual machine needs updates (e.g., new security
patches have to be installed), instead of upgrading in-place the virtual machine,
a new one is created and the old one destroyed. According to this approach,
since all the needed components can be freshly generated, the result proven in
[14] shows that a new deployment can be efficiently computed simply generat-
ing a new configuration from scratch, without considering or reusing existing
components.

Unfortunately the “immutable servers” approach has also some disadvan-
tages. First of all, it requires that every application is carefully designed to ensure
that important data is stored and not lost when the old servers are destroyed.
System upgrades are usually slower because creating new virtual servers takes
more time than performing an upgrade in-place. But, most importantly, this
approach cannot be adopted in presence of legacy components, a scenario that
often happens in practice due to software applications that for several reasons,
like incompatibility with novel computing architectures or cost purposes, cannot
be replaced and must be kept in-place.

Given these premises, the following question arises. How complex is the recon-
figuration problem of deciding if a final configuration can be reached in the pres-
ence of components that cannot be switched off and re-deployed from scratch?
The goal of this paper is to address this last question, proving that reconfigura-
tion is no longer polynomial, but it turns out to be PSpace-complete.

More precisely, we first report the formalisation of the reconfiguration prob-
lem using the Aeolus component model adopted in [14] (Sect. 2). Then we show
that the problem can be solved by performing a symbolic forward search of the
new configurations that can be reached from a given initial one (Sect. 3). The
symbolic approach allows for a finite representation of all the (possibly infinite)
reachable configurations. Unfortunately, the number of possible symbolic config-
urations is exponential; we mitigate this blow up by adopting a nondeterministic
polynomial-space visit of the (symbolic) search space. Finally, we show that it is
not possible to significantly improve our algorithm as we prove that the recon-
figuration problem is indeed PSpace-hard (Sect. 4). The proof is by reduction
from the reachability problem in 1-safe Petri nets [2].

For space reasons, proofs are reported in [15].

2 Formalising the Reconfiguration Problem

In this section we recapitulate the fragment of the Aeolus model used to formally
define the reconfiguration problem. This fragment of Aeolus [14] is exactly the
one used by the planner Metis [13], a tool for finding deployment plans start-
ing from an empty initial configuration integrated in an industrial deployment
platform [6].1 In the Aeolus model, a component is a grey-box showing relevant
1 W.r.t. the Aeolus model [5], the fragment used by Metis does not allow the use of

capacity constraints, conflicts, and multiple state changes.

384 J. Mauro and G. Zavattaro

internal states and the actions that can be acted on the component to change its
state during (re)configuration. Each state activates provide-ports and require-
ports representing functionalities that the component provides and needs. Active
require-ports must be bound to active provide-ports of other components.

The problem that we address in this paper is verifying the existence of a plan
(i.e., a correct sequence of configuration actions like component instantiation,
binding, or internal state changes) that, given a universe of available components
and an initial component configuration, leads to a configuration where a target
component is in a given state.

As an example, consider the task of reconfiguring a system setting up a MySQL
master-slave replication avoiding the downtime of an existing legacy MySQL data-
base. Reconfigurations of this kind are frequent in practice, and are nowadays per-
formed by system administrators who execute reconfiguration receipts that are
part of their know-how. According to the Aeolus model, the problem can be for-
malised as follows. The involved components are two distinct database instances,
one in master mode and one in slave mode. We assume to start from a configu-
ration with only one legacy running instance, that will become the master in the
new configuration. To activate the slave, a dump of the data stored in the mas-
ter is needed. Moreover, the master has to authorise the slave. This is a circular
dependency that is resolved by forcing a precise order in which the reconfigura-
tion actions can be performed: the master first requires authentication of the slave
that, subsequently, requires the dump from the master.

In Fig. 1, following the Aeolus model, we depict how to configure MySQL
components as master or as slave. We assume the master component to be a
legacy one, meaning that it can not be created from scratch but has to be used
as deployed in the initial configuration. This is technically obtained setting a
dummy state with no outgoing transitions as the initial one. In this way, no newly
legacy component could be generated and moved in a state that is different from
the dummy one. Apart from the initial dummy state, the master component

Fig. 1. MySQL master-slave instances (in black the initial configuration, in grey the
parts added by the reconfiguration and the new state of the master) (Color figure
online).

On the Complexity of Reconfiguration in Systems with Legacy Components 385

has 5 more states. The uninst state is followed by inst and serving. In serving,
the master activates the provide-port mysql used by the clients to access the
database service. When replication is needed, in order to enter the final master
serving state, it first traverses the state auth that requires the IP address from
the slave, and the state dump to provide the dump to the slave. The slave has
instead 4 states, an initial uninst state and 3 states which complement those of
the master during the replication process.

The formal definition of the Aeolus model is based on the notion of component
type, used to specify the behaviour of a particular kind of component. In the
following, I denotes the set of port names and Z the set of components.

Definition 1 (Component Type). The set Γ of component types ranged over
by T , T1, T2, . . . contains 4-tuples 〈Q, q0, T,D〉 where:

– Q is a finite set of states containing the initial state q0;
– T ⊆ Q × Q is the set of transitions;
– D is a function from Q to a pair 〈P,R〉 of port names (i.e., P,R ⊆ I)

indicating the provide-ports and require-ports that each state activates. We
assume that the initial state q0 has no requirements (i.e., D(q0) = 〈P, ∅〉).

Configurations describe systems composed by components and their bindings.
A binding connects a component providing a functionality with a component
requiring it. Each component has a unique identifier, taken from the set Z.
A configuration, ranged over by C1, C2, . . ., is given by a set of available compo-
nent types, a set of component instances in some state, and a set of bindings.

Definition 2 (Configuration). A configuration C is a quadruple 〈U,Z, S,B〉
where:

– U ⊆ Γ is the finite universe of the available component types;
– Z ⊆ Z is the set of the currently deployed components;
– S is the component state description, i.e., a function that associates to com-

ponents in Z a pair 〈T , q〉 where T ∈ U is a component type 〈Q, q0, T,D〉,
and q ∈ Q is the current component state;

– B ⊆ I × Z × Z is the set of bindings, namely 3-tuples composed by a port,
the component that provides that port, and the component that requires it; we
assume that the two components are distinct.

Notation We write C[z] as a lookup operation that retrieves the pair 〈T , q〉 =
S(z), where C = 〈U,Z, S,B〉. On such a pair we then use the postfix projection
operators .type and .state to retrieve T and q, respectively. Similarly, given
a component type 〈Q, q0, T,D〉, we use projections to decompose it: .states,
.init, and .trans return the first three elements; .P(q) and .R(q) return the
two elements of the D(q) tuple. Moreover, we use .prov (resp. .req) to denote the
union of all the provide-ports (resp. require-ports) of the states in Q. When there
is no ambiguity we take the liberty to apply the component type projections to
〈T , q〉 pairs. Example: C[z].R(q) stands for the require-ports of component z in
configuration C when it is in state q.

386 J. Mauro and G. Zavattaro

As formalised below, a configuration is correct if all the active require-ports
are bound to active provide-ports.

Definition 3 (Correctness). Let us consider the configuration C = 〈U,Z,
S,B〉.

We write C |=req (z, r) to indicate that the require-port of component z, with
port r, is bound to an active port providing r, i.e., there exists a component
z′ ∈ Z \ {z} such that 〈r, z′, z〉 ∈ B, C[z′] = 〈T ′, q′〉 and r is in T ′.P(q′).

The configuration C is correct if for every component z ∈ Z with S(z) =
〈T , q〉 we have that C |=req (z, r) for every r ∈ T .R(q).

In Aeolus configurations evolve by means of (deployment) actions.

Definition 4 (Actions). The set A contains the following actions:

– stateChange(z, q, q′) changes the state of the component z ∈ Z from q to q′;
– bind(r, z1, z2) creates a binding between the provide-port r ∈ I of the compo-

nent z1 and the require-port r of z2 (z1, z2 ∈ Z);
– unbind(r, z1, z2) deletes the binding between the provide-port r ∈ I of the

component z1 and the require-port r of z2 (z1, z2 ∈ Z);
– new(z : T) creates a new component of type T in its initial state. The new

component is identified by a unique and fresh identifier z ∈ Z;
– del(z) deletes the component z ∈ Z.

The execution of actions is formalised by means of a labelled transition system
on congurations, which uses actions as labels.

Definition 5 (Reconfigurations). Reconfigurations are denoted by transitions
C α−→ C′ meaning that the execution of α ∈ A on the configuration C produces a
new configuration C′. The transitions from a configuration C = 〈U,Z, S,B〉 are
defined as follows:

C stateChange(z,q,q′)−−−−−−−−−−−−→ 〈U, Z, S′, B〉
if C[z].state = q and
(q, q′) ∈ C[z].trans and

S′(z′) =

{ 〈C[z].type, q′〉 if z′ = z
C[z′] otherwise

C bind(r,z1,z2)−−−−−−−−→ 〈U, Z, S, B ∪ 〈r, z1, z2〉〉
if 〈r, z1, z2〉 �∈ B
and r ∈ C[z1].prov ∩ C[z2].req

C unbind(r,z1,z2)−−−−−−−−−−→ 〈U, Z, S, B \ 〈r, z1, z2〉〉
if 〈r, z1, z2〉 ∈ B

C new(z:T)−−−−−−→ 〈U, Z ∪ {z}, S′, B〉
if z �∈ Z, T ∈ U and

S′(z′) =

{ 〈T , T .init〉 if z′ = z
C[z′] otherwise

C del(z)−−−−→ 〈U, Z \ {z}, S′, B′〉
if S′(z′) =

{⊥ if z′ = z
C[z′] otherwise

and

B′ = {〈r, z1, z2〉 ∈ B | z �∈ {z1, z2}}

A deployment plan is simply a sequence of actions that transform a correct
configuration without violating correctness along the way.

Definition 6 (Deployment Plan). A deployment plan P from a correct con-
figuration C0 is a sequence of actions α1, . . . , αm s.t. there exists C1, . . . , Cm cor-
rect configurations s.t. Ci−1

αi−→ Ci.

On the Complexity of Reconfiguration in Systems with Legacy Components 387

In the following, exploiting the fact that reconfigurations are deterministic, we
denote the deployment plan α1, . . . , αm from C0 also with the sequence of recon-
figurations steps C0

α1−→ C1
α2−→ · · · αm−−→ Cm.

We now have all the ingredients to define the reconfiguration problem, that
is our main concern: given a universe of component types and an initial config-
uration, we want to know whether and how it is possible to deploy at least one
component of a given component type T in a given state q.

Definition 7 (Reconfiguration Problem). The reconfiguration problem
has as input a universe U of component types, an initial correct configuration
C0, a component type Tt, and a target state qt. The output is yes if there exists
a deployment plan P = C0

α1−→ C1
α2−→ · · · αm−−→ Cm s.t. Cm[z] = 〈Tt, qt〉, for some

component z in Cm. Otherwise, it returns no, stating that no such plan exists.

As an example, considering Fig. 1, we can see that there are deployment plans
that lead from the initial configuration (in black) to the final MySQL master-
slave replication configuration. For instance, such a plan could start with the
creation of the slave instance, followed by a state change to the inst state and
the creation of a binding between the ports slave ip of the two components. At
this point, the master component can perform two state changes, reaching the
dump state. Then, after another binding is established between the dump ports,
the slave can be moved to its serving state by performing two state changes.
Finally, the master can enter in the master serving state by performing a state
change. Note that every action in the deployment plan will correspond to one or
more concrete instructions. For instance, the state change from the serving to the
auth state in the master corresponds to issue the command grant replication

slave on *.* to user@’slave ip’.
The addition of a dummy initial state to define the master component cap-

tures its legacy nature. Indeed, since no other state of the master component is
reachable from the initial one, no component created from scratch can provide
the same functionalities of the deployed master. For this reason, only the master
component present in the initial configuration can be used to reach the target.

system

inst

uninst

m_mysql

s_mysql

Fig. 2. Target

Notice that the restriction to consider one target state
only in the definition of the reconfiguration problem is not
limiting: one can require several target pairs 〈Tt, qt〉 by
adding dummy provide-ports enabled only by the compo-
nents of type Tt in state qt and a dummy target component
that requires all such provides. For instance, Fig. 2 depicts
the dummy target component that in , Inststate requires
both an active master and an active slave as needed in the
MySQL master-slave reconfiguration discussed above.

3 Solving the Reconfiguration Problem

In this section we present a nondeterministic polynomial space algorithm that
resolves the reconfiguration problem, thus the problem is proved to be in PSpace

388 J. Mauro and G. Zavattaro

(as a consequence of the Savitch’s theorem [18] stating the equivalence between
NPSpace and PSpace). The idea is to perform a nondeterministic forward explo-
ration of the reachable configurations. This visit could be in principle arbitrar-
ily long because infinitely many different configurations could be potentially
reached. The main result that we prove in this section is that it is sufficient
to consider a bounded amount of possibly reachable abstract configurations. In
abstract configurations the bindings are not considered, but only the compo-
nent type and state of the components are taken into account. Moreover, in
abstract configurations, only the components present in the initial configuration
are precisely represented, while for all the other components that are dynamically
created, it is only considered the presence or absence of instances of components
of type T in state q, thus abstracting away from their precise number.

In order to abstract away from the bindings and consider only the component
types and states, we define the following equivalence among configurations.

Definition 8 (Configuration Equivalence). Two configurations 〈U,Z, S,B〉
and 〈U,Z ′, S′, B′〉 are equivalent (〈U,Z, S,B〉 ≡ 〈U,Z ′, S′, B′〉) iff there exists a
bijective function ρ from Z to Z ′ s.t. S(z) = S′(ρ(z)) for every z ∈ Z.

The research of the existence of the deployment plan is done on abstract configu-
rations where bindings are not considered. We now show that this is not restric-
tive because every plan has a corresponding normalised plan where unbinding
actions are absent and binding actions are generated as soon as possible.

Definition 9 (Normalised Deployment Plan). A deployment plan P =
C0

α1−→ · · · αm−−→ Cm is normalised iff:

– it does not contain unbind actions,
– if Ci for i ∈ [1,m − 1] can be extended with a bind action then

αi+1−−−→ is a bind
action,

– Cm cannot be extended with a bind action.

Lemma 1. Given a deployment plan P = C0
α1−→ C1

α2−→ · · · αm−−→ Cm there exists

a normalised deployment plan P′ = C0
α′

1−→ C′
1

α′
2−→ · · · α′

n−−→ Cn such that Cn ≡ Cm.

In the remainder of the section, we assume a given universe U of component
types; so we can consider that the set of distinct component type and state
pairs 〈T , q〉 is finite. Let k be its cardinality. Moreover, we assume a given initial
configuration C0 having the initial set of components Z0.

We are now ready to define our abstractions B consisting of pairs of functions
〈Bi,Bc〉. Components are divided into two groups, those that were present in the
initial configuration and those that were dynamically created : the first ones are
precisely counted by the function Bi, while for the second ones only the presence
of a component type and state pair 〈T , q〉 is checked by the function Bc.

Definition 10 (Abstract Configuration). An abstract configuration B is a
pair of functions 〈Bi,Bc〉 that associate to every pair 〈T , q〉 respectively a natural
number and a boolean value.

On the Complexity of Reconfiguration in Systems with Legacy Components 389

It is immediate to see that (given a universe U of component types and an initial
set Z0 of components) the set of possible abstract configurations is finite: both
functions have a domain bound by k, Bc is a boolean function, and the sum of
the values in the codomain of Bi is bound by |Z0|, i.e., the number of initial
components, because such components can only be destroyed and not created.

A concretisation of an abstract configuration 〈Bi,Bc〉 is defined w.r.t. a set
of initial components Z. These components occur according to the component
type/state pairs counted by Bi, while the other components satisfy the pres-
ence/absence indication of the boolean function Bc. In the definition of concreti-
sation we use the following notations: C#

〈T ,q〉(Z) is the number of components in
Z of type T in state q in the configuration C, while Z − Z ′ is the set difference
between two sets of components Z and Z ′.

Definition 11 (Concretisation). Given an abstract configuration B =
〈Bi,Bc〉 and a set of components Z we say that a correct configuration C =
〈U,Z ′, S,B〉 is one concretisation of B w.r.t. Z if the following hold:

– Bi(〈T , q〉) = C#
〈T ,q〉(Z);

– if ¬Bc(〈T , q〉) then C#
〈T ,q〉(Z

′ − Z) = 0;

– if Bc(〈T , q〉) then C#
〈T ,q〉(Z

′ − Z) > 0.

We denote with γ(B, Z) the set of concretisations of B w.r.t. Z. We say that an
abstract configuration B is correct w.r.t. Z if it has at least one concretisation
(formally γ(B, Z) 	= ∅).
In the following, we usually consider concretisations w.r.t. the initial set of com-
ponents Z0, and we simply use γ(B) to denote γ(B, Z0).

We now define the notion of deployment plan on abstract configurations and
formalise its correspondence with concrete normalised plans.

Definition 12 (Abstract Deployment Plan). We write B −→ B′ with B 	= B′

if there exists C α−→ C′ for some C ∈ γ(B) and C′ ∈ γ(B′).

A first lemma proves that each normalised deployment plan has a corresponding
abstract version.

Lemma 2. Given a normalised deployment plan P = C0
α1−→ · · · αm−−→ Cm there

is an abstract deployment plan B0 −→ · · · −→ Bn s.t. C0 ∈ γ(B0) and Cm ∈ γ(Bn).

The opposite correspondence (each abstract plan has at least one corresponding
normalised concrete plan) is more complex to be formalised and proved. The
intuition is that, given an abstract configuration B = 〈Bi,Bc〉 that can be reached
by an abstract plan, there exist normalised deployment plans able to reconfi-
gure exactly the initial components as indicated by Bi, and deploy an arbitrary
number of instances of other components in the type and state indicated by the
boolean function Bc.

390 J. Mauro and G. Zavattaro

Lemma 3. Given a correct configuration C0 that cannot be extended with bind
actions and an abstract deployment plan B0 −→ · · · −→ Bn = 〈Bi,Bc〉 such that
C0 ∈ γ(B0) then there is a normalised deployment plan C0

α1−→ · · · αm−1−−−−→ Cm s.t.:

– Cm ∈ γ(Bn);
– for all natural numbers j〈T ,q〉 > 0, for every component type T and state q

such that Bc(〈T , q〉), then Cm
#
〈T ,q〉(Zm − Z0) = j〈T ,q〉 where Zm and Z0 are

the components of Cm and C0 respectively.

Algorithm 1. Nondeterministic check for C0 = 〈U,Z0, S,B〉 and target Tt, qt

for all 〈T , q〉 pairs in the universe U do
Bi(〈T , q〉) = C#

〈T ,q〉(Z0)

Bc(〈T , q〉) = False

counter = 0
while counter ≤ |Z0|k ∗ 2k do � k is the number of 〈T , q〉 pairs in U

guess B′
i, B′

c

if 〈Bi, Bc〉 �−→ 〈B′
i, B′

c〉 then return Failure

if B′
i(Tt, qt) > 0 or B′

c(Tt, qt) then return Success

counter = counter + 1; Bi = B′
i; Bc = B′

c
return Failure

In order to check if a solution to the reconfiguration problem exists, it is
possible to consider all the possible abstract plans. This can be done using the
nondeterministic Algorithm 1. Starting from the abstract representation 〈Bi,Bc〉
of the initial configuration C0, it performs a nondeterministic exploration of
the reachable abstract configurations until either a configuration containing the
target 〈Tt, qt〉 is reached or at least K = |Z0|k ∗ 2k abstract steps have been
considered, where |Z0| is the quantity of components of the initial configuration
and k is the number of different 〈T , q〉 pairs in the universe U . K is an upper
bound to the number of different abstract configurations: |Z0|k is an upper bound
to the different combinations of states for the initially available components,
while 2k is the number of possible sets of 〈T , q〉 pairs.

Assuming n the size of the input we have that |Z0| ≤ n, k ≤ n and there-
fore all the variables of the nondeterministic Algorithm 1 can be encoded in
O(n log(n)) space. For this reason (and for Savitch’s theorem [18]) we can con-
clude that the reconfiguration problem is in PSpace.

Theorem 1. The reconfiguration problem is PSpace.

4 The Reconfiguration Problem Is PSpace-hard

PSpace-hardness of the reconfiguration problem is proved by reduction from
the reachability problem in 1-safe Petri nets, which is indeed known to be a
PSpace-hard problem [2]. We start with some background on Petri nets.

On the Complexity of Reconfiguration in Systems with Legacy Components 391

A Petri net is a tuple N = (P, T,m0), where P and T are finite sets of
places and transitions, respectively. A finite multiset over the set P of places
is called a marking, and m0 is the initial marking. Given a marking m and
a place p, we say that the place p contains a number of tokens equal to the
number of instances of p in m. A transition t ∈ T is a pair of markings denoted
with •t and t•. A transition t can fire in the marking m if •t ⊆ m (where ⊆ is
multiset inclusion); upon transition firing the new marking of the net becomes
n = (m \ •t) � t• (where \ and � are the difference and union operators for
multisets, respectively). This is written as m → n. We use →∗ to denote the
reflexive and transitive closure of →. We say that m′ is reachable from m if
m →∗ m′. A Petri net P is 1-safe if in every reachable marking every place
has at most one token. Reachability of a specific marking mt from the initial
marking m0 is PSpace-complete for 1-safe nets [2].

We now consider a given 1-safe Petri net N = 〈P, T,m0〉 and discuss how to
encode it in Aeolus component types. We will use two types of legacy compo-
nents: one modelling the places and one for the transitions. The simplest com-
ponent type, denoted with Tp and depicted in Fig. 3a, is the one used to model
a place p ∈ P . Namely, a place p is encoded as one instance of Tp. A token is
present in p if the component of type Tp is in the on state. There could be just
one of these components deployed simultaneously. This can be obtained simply
adding this component to the initial configuration in the on or off state, accord-
ing to the initial marking, and make these two states non reachable from the
initial state q0 . The token could be created starting from the off state follow-
ing a protocol consisting of providing the port ap and then requiring the port
onp. Symmetrically, a token can be removed by providing the port bp and then
requiring the port off p. The component provides the port onp when it is in the
on state, the port offp when it is in the off state.

The transitions in T can be represented with a single component of type TT

depicted in Fig. 3b. The uniqueness of this component is guaranteed, as done for
Tp, by adding it to the initial configuration and forbidding outgoing transitions

off

on

ap bp
onp

q0
offp

qa qb

(a) Token in place p.

q0

...

q

qt1

qth

Consumption Production

Consumption Production

t

(b) Transitions component.

bp offp

......

(c) Consumption from p.

ap onp

......

(d) Production in p.

Fig. 3. 1-safe Petri net encoding

392 J. Mauro and G. Zavattaro

from the initial state q0 . This component is assumed to be present in the initial
configuration in state q. From this state it can nondeterministically select one
transition t to fire, by entering a corresponding qt state. The subsequent state
changes can be divided into two phases: consumption and production. These
phases respectively model the consumption of tokens from the places in the
preset of t and the production of tokens in the places in the postset of t. The
consumption and production of tokens have been already discussed above: con-
sumption (see Fig. 3c) is obtained by providing and requiring the ports bp and
off p, production (see Fig. 3d) by providing and requiring the ports ap and onp.

We now consider a marking mt of the 1-safe Petri net N . We can check
whether mt is reachable in N by considering the following Aeolus reconfigura-
tion problem. The initial configuration consists of an instance of TT , in state q,
plus a component of type Tp for every place p, in on or off depending on the
initial marking m0. The target to be considered consists of a configuration in
which a port onp is active for all places p ∈ mt, a port offp is active for all
places p 	∈ mt and the port t is active indicating that no transition is currently
in execution. Checking these requirements can be easily done, as explained in
Sect. 2, by adding a dummy component having a target state requiring all the
ports as explained above. Hence, we have the following.

Theorem 2. The reconfiguration problem is PSpace-hard.

5 Related Work and Conclusions

To the best of our knowledge, there is no work that formally studies the complex-
ity of automatic reconfiguration of component systems. A significant part of the
related literature focuses on the problem of dynamic re-allocation of resources,
e.g., [3,10]. Other works focus on the nature of the reconfiguration problem, like
in [19] where a classification of the reconfiguration problems is made based on its
causes, namely failures, system updates, and user requests. This work, however,
does not consider the complexity of establishing the reconfiguration steps.

Different tools to compute the (optimal) final configuration exist, e.g., [4,12].
However, all these approaches just focus on the target configuration to reach
without computing the deployment steps. AI Planning Technologies [9] have
been used to generate automatically the actions to reconfigure a system [1,11].
However, these techniques have scalability issues. Conversely, tools like Metis [13,
14] or Engage [8] are able to compute the deployment steps needed to reach
a target configuration but in simplified contexts: Metis imposes empty initial
configurations while Engage forbids circular dependencies.

In this work we proved that extending these tools to deal also with recon-
figurations may be too computationally expensive. Indeed, PSpace-completeness
means that there are at least some cases where solving a reconfiguration problem
requires a huge computational effort. For instance, our hardness proof shows that
this can happen in the presence of legacy components that can not be recreated
from scratch and may be required to perform cycles of deployment actions.

On the Complexity of Reconfiguration in Systems with Legacy Components 393

As a future work we plan to investigate limitations to be imposed to the Aeo-
lus model (e.g., limiting the shape of the automata describing the components
lifecycle) in order to have more efficient solutions for the reconfiguration prob-
lem. Another approach could be to relax completeness, by designing algorithms
that could give negative answers even if a solution exists. solution exists.

References

1. Chen, M., Poizat, P., Yan, Y.: Adaptive composition and QoS optimization of
conversational services through graph planning encoding. In: Web Services Foun-
dations (2014)

2. Cheng, A., Esparza, J., Palsberg, J.: Complexity results for 1-safe nets. Theor.
Comput. Sci. 147, 117–136 (1995)

3. Choi, H.W., Kwak, H., Sohn, A., Chung, K.: Autonomous learning for efficient
resource utilization of dynamic VM migration. In: ICS (2008)

4. Cosmo, R.D., Lienhardt, M., Treinen, R., Zacchiroli, S., Zwolakowski, J., Eiche,
A., Agahi, A.: Automated synthesis and deployment of cloud applications. In: ASE
(2014)

5. Cosmo, R.D., Mauro, J., Zacchiroli, S., Zavattaro, G.: Aeolus: a component model
for the cloud. Inf. Comput. 239, 100–121 (2014)

6. Di Cosmo, R., Eiche, A., Mauro, J., Zavattaro, G., Zacchiroli, S., Zwolakowski,
J.: Automatic Deployment of Software Components in the Cloud with the Aeolus
Blender. Technical report, Inria Sophia Antipolis (2015)

7. Di Cosmo, R., Mauro, J., Zacchiroli, S., Zavattaro, G.: Component reconfiguration
in the presence of conflicts. In: ICALP (2013)

8. Fischer, J., Majumdar, R., Esmaeilsabzali, S.: Engage: a deployment management
system. In: PLDI (2012)

9. Ghallab, M., Nau, D.S., Traverso, P.: Automated Planning - Theory and Practice.
Elsevier, Amsterdam (2004)

10. Gmach, D., Rolia, J., Cherkasova, L., Belrose, G., Turicchi, T., Kemper, A.: An
integrated approach to resource pool management: Policies, efficiency and quality
metrics. In: DSN (2008)

11. Herry, H., Anderson, P., Wickler, G.: Automated planning for configuration
changes. In: LISA (2011)

12. Hewson, J.A., Anderson, P., Gordon, A.D.: A declarative approach to automated
configuration. In: LISA (2012)

13. Lascu, T.A., Mauro, J., Zavattaro, G.: A planning tool supporting the deployment
of cloud applications. In: ICTAI (2013)

14. Lascu, T.A., Mauro, J., Zavattaro, G.: Automatic component deployment in the
presence of circular dependencies. In: FACS (2013)

15. Mauro, J., Zavattaro, G.: On the Complexity of Reconfiguration in Systems with
Legacy Components. Technical report, INRIA Sophia Antipolis (2015)

16. Morris, K.: Immutableserver (2013). http://martinfowler.com/bliki/
ImmutableServer.html

17. OASIS. Topology and Orchestration Specification for Cloud Applications
(TOSCA) Version 1.0. http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/
TOSCA-v1.0-os.html

18. Savitch, W.J.: Relationships between nondeterministic and deterministic tape com-
plexities. J. Comput. Syst. Sci. 4(2), 177–192 (1970)

19. Wang, S., Du, F., Li, X., Li, Y., Han, X.: Research on dynamic reconfiguration
technology of cloud computing virtual services. In: CCIS (2011)

http://martinfowler.com/bliki/ImmutableServer.html
http://martinfowler.com/bliki/ImmutableServer.html
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html

Eliminating Recursion from Monadic Datalog
Programs on Trees

Filip Mazowiecki(B), Joanna Ochremiak, and Adam Witkowski

University of Warsaw, Warsaw, Poland
{f.mazowiecki,ochremiak,a.witkowski}@mimuw.edu.pl

Abstract. We study the problem of eliminating recursion from monadic
datalog programs on trees with labels taken from an infinite alphabet. We
show that the boundedness problem, i.e., determining whether a datalog
program is equivalent to some nonrecursive one is undecidable but the
decidability is regained if the descendant relation is disallowed. Under
similar restrictions we obtain decidability of the problem of equivalence
to a given nonrecursive program. We investigate the connection between
these two problems in more detail.

1 Introduction

Among logics with fixpoint capabilities, one of the most prominent is datalog,
which augments unions of conjunctive queries (positive existential first order
formulae) with recursion. Datalog originated as a declarative programming lan-
guage, but later found many applications in databases as a query language. The
gain in expressive power does not, however, come for free. Compared to unions
of conjunctive queries, evaluating a datalog program is harder [23] and basic
properties such as containment or equivalence become undecidable [22].

Since the source of the difficulty in dealing with datalog programs is their
recursive nature, the first line of attack in trying to optimize such programs is to
eliminate the recursion. It is well-known that a nonrecursive datalog program can
be rewritten as a union of conjunctive queries. The main focus of this paper is
therefore the equivalence of recursive datalog programs to unions of conjunctive
queries.

Example 1. The programs in this example work on databases that use binary
predicates likes and knows, and a unary predicate trendy. First, consider the
following pair of datalog programs:

P1

buys(X,Y) ← likes(X,Y)

buys(X,Y) ← trendy(X), buys(Z, Y)

P ′
1

buys(X,Y) ← likes(X,Y)

buys(X,Y) ← trendy(X), likes(Z, Y)

The program P1 is recursive because its second rule refers to the predicate
buys. It can be shown that P1 is equivalent to the nonrecursive program P ′

1.
Consider, on the other hand, the following pair of programs:

c© Springer-Verlag Berlin Heidelberg 2015
G.F. Italiano et al. (Eds.): MFCS 2015, Part I, LNCS 9234, pp. 394–406, 2015.
DOI: 10.1007/978-3-662-48057-1 31

Eliminating Recursion from Monadic Datalog Programs on Trees 395

P2

buys(X,Y) ← likes(X,Y)

buys(X,Y) ← knows(X,Z), buys(Z, Y)

P ′
2

buys(X,Y) ← likes(X,Y)

buys(X,Y) ← knows(X,Z), likes(Z, Y)

It can be shown that P2 is not equivalent to the nonrecursive program P ′
2.

Moreover, this program is not equivalent to any nonrecursive program.

The example above (taken from [19]) presents two approaches to eliminating
recursion from datalog programs. Either we want to determine for a given dat-
alog program if it is equivalent to some nonrecursive datalog program or decide
whether a given datalog program is equivalent to a given nonrecursive program.
These problems bear some similarities but in general they are distinct. The latter
is decidable [12], while the former, called the boundedness problem, is not [16,17].

Negative results for the full datalog fueled interest in its restrictions [4,7,8].
Important restrictions include monadic programs, using only unary predicates
in the heads of rules; linear programs, with at most one use of an intensional
predicate per rule; and connected programs, where within each rule all variables
that are mentioned are connected to each other. Throughout this paper only
monadic datalog programs are considered. In [13] Cosmadakis et al. show that
for such programs the boundedness problem becomes decidable. Moreover, they
use the same techniques to prove that the containment problem of two monadic
datalog programs is decidable. These results suggest that under some additional
assumptions the boundedness problem and the equivalence problem are more
related.

In this paper we study connected, monadic datalog programs restricted to
tree-structured databases. Our models are finite trees whose nodes carry labels
from an infinite alphabet that can be tested for equality. Over such structures
the problem of equivalence to a given union of conjunctive queries is known to be
undecidable [1,18]. We show that the boundedness problem is also undecidable.
In some cases, however, we regain decidability of both problems in the absence of
the descendant relation. On ranked trees we show that the equivalence and the
boundedness problems become decidable (in 2-ExpTime). On unranked trees
we prove that the equivalence of a linear program to a non-recursive one is
ExpSpace-complete. We finish with an analysis of the connection between the
equivalence and the boundedness problems and show that under some assump-
tions they are equi-decidable.

Organization. In Sect. 2 we introduce datalog programs and some basic defini-
tions. In Sect. 3 we deal with the problem of equivalence to a given nonrecursive
datalog program. In Sect. 4 we analyze the boundedness problem. Finally, in
Sect. 5 we explore the connection between the two approaches to eliminating
recursion from datalog programs and show that under some assumptions the
arising decision problems are equi-decidable. We conclude in Sect. 6 with possi-
ble directions for future research. Due to the page limit most of the proofs are
moved to the appendix, available online.

396 F. Mazowiecki et al.

2 Preliminaries

In this paper we work over finite trees labeled with letters from an infinite
alphabet Σ. The trees are unranked by default, but we also work with ranked
trees, in particular with words. We use the standard notation for axes: ↓, ↓+

stand, respectively, for child and descendant relations. We assume that each
node has one label. A binary relation ∼ holds between nodes with identical
labels and there is a unary predicate a for each a ∈ Σ, holding for the nodes
labeled with a.

We begin with a brief description of the syntax and semantics of datalog; for
more details see [2] or [9]. A datalog program P over a relational signature
S is a finite set of rules of the form head ← body where head is an atom
over S and body is a (possibly empty) conjunction of atoms over S written as a
comma-separated list. All variables in the body that are not used in the head are
implicitly quantified existentially. The size of a rule is the number of different
variables that appear in it.

The relational symbols, or predicates, in S fall into two categories. Exten-
sional predicates are the ones explicitly stored in the database; they are never
used in the heads of rules. In our setting they come from {↓, ↓+,∼} ∪ Σ. The
alphabet Σ is infinite, but the program P uses only its finite subset which we
denote by ΣP . Intensional predicates, used both in the heads and bodies, are
defined by the rules.

The program is evaluated by generating all atoms (over intensional pred-
icates) that can be inferred from the underlying structure (tree) by applying
the rules repeatedly, to the point of saturation. Each inferred atom can be wit-
nessed by a proof tree: an atom inferred by a rule r from intensional atoms
A1, A2, . . . , An is witnessed by a proof tree with the root labeled by r, and n chil-
dren which are the roots of the proof trees for atoms Ai (if r has no intensional
predicates in its body then the root has no children).

There is a designated predicate called the goal of the program. We will often
identify the goal predicate with the program, i.e., we write P(X) if the goal
predicate of the program P holds on the node X. When evaluated in a given
database D, the program P results in the unary relation P(D) = {X ∈ D |
such that P(X) holds}. If P(D) ⊆ Q(D) for every database D then we say that
the program P is contained in the program Q. If the containment holds both
ways then the programs P and Q are equivalent.

Example 2. The program below computes the nodes from which one can reach
some label a along a path where each node has a child with identical label and
a descendant with label b (or has label b itself).

P (X) ← X↓Y, P (Y), X↓Y ′, X ∼ Y ′, Q(X) (p1)

P (X) ← a(X) (p2)

Q(X) ← X↓Y,Q(Y) (q1)

Q(X) ← b(X) (q2)

p1

q1

q2

p1

q2 p2

c

c b

b a

Eliminating Recursion from Monadic Datalog Programs on Trees 397

The intensional predicates are P and Q, and P is the goal. The proof tree shown
in the center witnesses that P holds in the root of the tree on the right.

The notion of proof trees comes from papers on datalog over general structures
(see e.g. [12]). As shown in Example 2 a proof tree illustrates how the program
evaluates. If there is no restriction on the structures then for a given proof
tree one can always find a model such that the proof tree witnesses a correct
evaluation of the program. On tree structures this is no longer the case. Firstly,
we allow only one label for every node, so rules like P (X) ← a(X), b(X) cannot
be satisfied. Moreover, nodes have a unique father. Because of this it is not easy
to determine whether a given proof tree is a witness of an evaluation of the
program on some model and it does not suffice to eliminate unsatisfiable rules.
Proof trees for which such a model exists will be called satisfiable proof trees.

Example 3. The program below goes down a tree along a path labeled with a.
Then it goes up the tree until it finds a node labeled with b.

P (X) ← X↓Y, a(Y), P (Y) (p3)

P (X) ← Q(X) (p4)

Q(X) ← Y ↓X,Q(Y) (q3)

Q(X) ← b(X) (q4)

p3

p4

q3

q4

p3

p3

p4

q3

q4

The first proof tree is satisfiable, but the second proof tree is not satisfiable
because it enforces both labels a and b on the same node.

In this paper we consider only monadic programs, i.e., programs whose inten-
sional predicates are at most unary. Moreover, throughout the paper we assume
that the programs do not use 0-ary intensional predicates. For general programs
this is merely for the sake of simplicity: one can always turn a 0-ary predicate Q
to a unary predicate Q(X) by introducing a dummy variable X. For connected
programs (described below) this restriction matters.

For a datalog rule r, let Gr be a graph whose vertices are the variables
used in r and an edge is placed between X and Y if the body of r contains
an atomic formula X↓Y or X↓+Y . In Gr we distinguish a head node and
intensional nodes. The latter are all variables from the body of r used by
intensional predicates. A program P is connected if for each rule r ∈ P, Gr is
connected1.

Previous work on datalog on arbitrary structures often considered the case of
connected programs [13,16]. The practical reason is that real-life programs tend
to be connected (cf. [3]). Also, rules which are not connected combine pieces of
unrelated data, corresponding to the cross product, an unnatural operation in
1 One could consider a definition allowing additionally nodes connected by the equality

relation but we expect that this would be as hard as the disconnected case e.g.
the main problem we leave open in Sect. 3, the equivalence of child-only non-linear
programs, becomes undecidable by the results of [18] for boolean queries.

398 F. Mazowiecki et al.

the database context. It seems even more natural to assume connectedness when
working with tree-structured databases. We shall do so. We write Datalog(↓, ↓+)
for the class of connected monadic datalog programs, and Datalog(↓) for con-
nected monadic programs that do not use the relation ↓+.

A datalog program is linear if the right-hand side of each rule contains at
most one atom with an intensional predicate (proof trees for such programs are
single branches). For linear programs we shall use the letter L, e.g., L-Datalog(↓)
means linear programs from Datalog(↓). The program from Example 2 is con-
nected, but not linear. The program from Example 3 is both connected and
linear.

Conjunctive queries (CQs) are existential first order formulae of the form
∃x1 . . . xk φ, where φ is a conjunction of atoms. We will consider unions of
conjunctive queries (UCQs), corresponding to nonrecursive programs with a
single intensional predicate (goal) which is never used in the bodies of rules.
Since UCQs can be seen as datalog programs, we can speak of connected UCQs
and as for datalog, we shall always assume connectedness. We denote the classes
of connected queries by CQ(↓, ↓+), CQ(↓), UCQ(↓, ↓+), UCQ(↓), respectively.

3 Equivalence

The problem if two given programs P,Q are equivalent or one is contained
in another one are called the equivalence problem and the containment
problem. For datalog programs the containment problem can be reduced to
the equivalence problem. Let P be a datalog program and let Q be a UCQ.
Then P ⊆ Q iff P ∨ Q ≡ Q. Notice that this reduction does not depend on the
type of the programs (e.g., disallowing ↓+ relation; or assuming linearity) but
relies on the fact that datalog programs are closed under the disjunction.

The containment problem for datalog programs has been studied on trees
in other contexts [1,6,15,18]. In [18] containment of datalog programs in UCQs
on data trees was analyzed in detail for boolean queries, which are queries that
return the answer ’yes’ if they are satisfied in some node of a given database,
and the answer ’no’, otherwise. More formally, a datalog program P defines a
boolean query PBool(D) which equals 1 iff P(D) is nonempty and 0 otherwise.

The containment problem is usually solved by considering the dual problem.
For unary queries, it is the question whether there exist a database D and X ∈ D
such that P(X) and ¬Q(X), where ¬Q = D\Q(D). For boolean queries, it is the
question if there exist a database D and X,Y ∈ D such that P(X) and ¬Q(Y).
For datalog programs over trees, if we allow the ↓+ relation this distinction does
not make much of a difference (intuitively because using ↓+ one can move from
a node X to any node Y). Thus a closer look at the proofs of Theorem 1 and
Proposition 3 from [18] gives the following.

Proposition 1. Over ranked and unranked trees the containment problem of
L-Datalog(↓, ↓+) programs in UCQ(↓, ↓+) is undecidable.

In the rest of this section we work only with fragments of datalog without the ↓+

relation. We start with ranked trees.

Eliminating Recursion from Monadic Datalog Programs on Trees 399

Theorem 1. The containment problem is 2 -ExpTime-complete for Datalog(↓)
over ranked trees. In the special case of words it is PSpace-complete.

The above result yields tight complexity bounds for the equivalence problem of
Datalog(↓) programs to UCQ(↓) programs over ranked trees. To prove Theorem 1
we show that it suffices to solve this problem for trees over a finite alphabet. We
then define automata that simulate the behavior of datalog programs, modifying
the approach of [18]. The new construction gives better complexity results for
non-linear programs2.

In the rest of this section we focus on the equivalence problem of Datalog(↓)
programs to UCQ(↓) programs over unranked trees. For the containment prob-
lem, this question was left open in [1].

For boolean queries, the containment problem of Datalog(↓) programs in
UCQ(↓) programs was proved undecidable in [18]. Decidability was restored for
the linear fragment, for which it was shown to be 2-ExpTime-complete. We
improve the complexity for unary queries using different techniques.

Theorem 2. The containment problem of an L-Datalog(↓) program in a UCQ(↓)
program is ExpSpace-complete over unranked trees.

Unfortunately our approach does not generalize to the non-linear case. On the
other hand, the proof of undecidability provided in [18] also cannot be adapted
to work in our setting3. We leave the question of the decidability of containment
for non-linear programs as an open problem.

We conclude with the following lemma (notice that we do not assume linearity).

Lemma 1. The containment problem of UCQ(↓) queries in Datalog(↓) is in
NPTime over ranked and unranked trees.

As a corollary of Theorem 2 and Lemma 1 we obtain the main result of this
section. The lower bound is carried from the containment problem.

Theorem 3. The equivalence problem of an L-Datalog(↓) program to a UCQ(↓)
program is ExpSpace-complete over unranked trees.

4 Boundedness

Consider a datalog program P with a goal predicate P . By Pi(D) we denote the
collection of facts about the predicate P that can be deduced from a database
D by at most i applications of P. More formally, Pi(D) is the subset of P(D)

2 In [18] the non-linear case required an additional exponential blow-up. However, the
improvement of complexity is not caused by considering unary instead of boolean
queries. It is easy to see that Theorem 1 holds also in the boolean case.

3 Indeed, the main idea of the undecidability proof is to use the UCQ Q to find errors
in the run of a Turing machine encoded by the program P. If the nonrecursive query
Q is unary it can only find errors close to the node X, such that P(X).

400 F. Mazowiecki et al.

derived using proof trees of height at most i, where the height of a tree is the
length of the longest path from its root to a leaf. Then obviously

P(D) =
⋃
i≥0

Pi(D).

We say that the program P is bounded if there exists a number n, depending
only on P, such that for any database D, we have P(D) = Pn(D). Intuitively
this means that the depth of recursion is independent of the input database4.

Each proof tree corresponds to a conjunctive query in a natural way. There-
fore, we can always translate a datalog program to an equivalent, but possibly
infinite, union of conjunctive queries. If the program is bounded then it is equiv-
alent to a union of finitely many of these conjunctive queries. For full datalog it
is known that the opposite implication is also true, i.e., a program is bounded iff
it is equivalent to a (finite) UCQ [20]. The same holds for the class Datalog(↓).

Proposition 2. Let P ∈ Datalog(↓). Then P is bounded iff it is equivalent to a
union of conjunctive queries Q ∈ UCQ(↓).

We remark that the above characterization is based on the existence of so-called
canonical databases for CQs (see e.g. [11]) in Datalog(↓). The following exam-
ple shows that without canonical databases equivalence to some UCQ does not
necessarily imply boundedness. It relies on the fact that ↓+ is the transitive
closure of ↓.

Example 4. The program P ∈ Datalog(↓, ↓+) on the left is not bounded – finding
b in a tree can take arbitrarily long. The program P ′ on the right is a UCQ
equivalent to P.

P

P (X) ← X↓+Y, a(Y)

P (X) ← X↓Y,Q(Y)

Q(X) ← X↓Y,Q(Y)

Q(X) ← b(X)

P ′
P (X) ← X↓+Y, a(Y)

P (X) ← X↓+Y, b(Y)

The problem if a given program P is bounded is called the boundedness prob-
lem. We obtain a negative result for L-Datalog(↓, ↓+).

Theorem 4. The boundedness problem for L-Datalog(↓, ↓+) is undecidable over
words and ranked or unranked trees.

In the following we work with fragments of datalog without the ↓+ relation. For
decidability results we use the automaton-theoretic approach of [13].

Theorem 5. The boundedness problem for Datalog(↓) over words is in PSpace.

In the case of trees the same technique can be applied but the complexity
increases.
4 Observe that we are only interested in the output on the goal predicate. This is why

the property we consider is sometimes called the predicate boundedness [17].

Eliminating Recursion from Monadic Datalog Programs on Trees 401

Theorem 6. The boundedness problem for Datalog(↓) over ranked trees is in
2 -ExpTime.

Over words, the relations ↓ and ↓+ are interpreted as the “next position” and
the “following position”. Let X be a position in a word w. The n-neighbourhood
of X in w is an infix of w, which begins on position max(1,X − n) and ends on
position min(|w|,X + n). The following lemma is motivated by Proposition 3.2
of [13].

Lemma 2. Let P be a Datalog(↓) program. Then P is bounded iff there exists
n > 0 such that for every word w and position X if X ∈ P(w) then X ∈ P(v),
where v is the n-neighbourhood of X in w.

Proof. (of Theorem 5) A word w such that for some position X in w we have
X ∈ P(w) but X �∈ P(v), where v is the n-neighbourhood of X in w will be
called an n-witness. By Lemma 2 a Datalog(↓) program P is unbounded iff there
exist n-witnesses for arbitrarily big n > 0.

Consider a Datalog(↓) program P. Let Σ0 be an alphabet that contains the
set of labels used explicitly in the rules of P together with N “fresh” labels,
where N is the size of the biggest rule in P. It is known [18] (and easy to verify)
that any word w can be relabeled so that the obtained word w′ uses only labels
from Σ0, and for each position X we have that X ∈ P(w) iff X ∈ P(w′). This is
also true with respect to infixes, i.e., for every infix v of w, and every position X
it holds that X ∈ P(v) iff X ∈ P(v′), where v′ is the corresponding infix of w′.
Hence, we can verify the existence of n-witnesses over the finite alphabet Σ0.

In the proof of Theorem 1 a nondeterministic automaton is introduced that
recognizes words over the alphabet Σ0 satisfying P. More precisely, the con-
structed automaton AP works over the alphabet Σ0 ×{0, 1}, and accepts a word
w iff it has exactly one position X marked with 1 such that X ∈ P(w). We
denote the language recognized by AP by L(AP). The size of this automaton is
exponential in the size of P.

Similarly, we obtain an automaton NP recognizing these words over the
alphabet Σ0 × {0, 1} which have exactly one position marked with 1 but do
not belong to L(AP). The size of NP is also exponential in the size of P (there
is no exponential blow up because the constructions in the proof of Theorem 1
go through alternating automata) and the language it recognizes will be denoted
L(NP). Note that this language is closed under infixes containing the marked
position.

We define a nondeterministic automaton BP which accepts exactly those
words belonging to L(AP) which have an infix that belongs to L(NP). The states
and transitions of BP are the states and transitions of the product automaton
AP ×NP together with the states and transitions of two copies of the automaton
AP denoted A1

P and A2
P . Let qinit be the initial state of NP . For each state q

of A1
P we add to BP an epsilon transition from the state q to the state (q, qinit)

of the product automaton. Now, let F be the set of final states of NP . For each
state q of A2

P and each qfin ∈ F we add to BP an epsilon transition from the
state (q, qfin) to q. The initial state of BP is the initial state of A1

P and the final

402 F. Mazowiecki et al.

states of BP are the final states of A2
P . Hence, an accepting run of the automaton

BP starts in A1
P , moves to the product automaton at some point, reads an infix

that belongs to L(NP) and finally goes to A2
P to accept.

Let N be the number of states of the product automaton AP × NP plus 1.
Suppose that BP accepts an N -witness w. Then, due to the pumping lemma,
it accepts n-witnesses for arbitrarily big n > 0. To end the proof show that
checking whether BP accepts some N -witness is in NLogSpace in the size of
the automata AP and NP (i.e., in PSpace in the size of P).

An N -witness is a word that belongs to L(AP) but the N -neighbourhood
of the position marked with 1 belongs to L(NP). The NLogSpace algorithm
simulates a run of the automaton BP . The size of BP is exponential in the size
of P but its states and transitions can be generated on the fly in polynomial
space. The algorithm guesses a state from the AP × NP part and checks if it
is reachable from the initial state. This is a simple reachability test which is
in NLogSpace. Then it guesses some run of the AP × NP part, counts the
number of transitions done before the one marked with 1, and ensures that it
is at least N . After the transition marked with 1 it ensures that the automaton
makes at least N more transitions before leaving the AP × NP part. For both
of these counting procedures we need log(N) tape cells. Finally, the algorithm
performs a second reachability test to check if the automaton can reach a final
state.

There are three possible ways of how an N -witness v may look like. For
simplicity, the algorithm described above does not deal with the case when the
N -neighbourhood that belongs to L(NP) is shorter then 2N + 1 (which can
happen if it begins at the first position of w or ends at the last position of w).
Those possibilities can be verified similarly. �
Notice that if P is bounded then N from the proof above is the bound on the
depth of recursion. Since the size of the constructed automaton is exponential in
the size of the program P, the UCQ which is equivalent to this program consists
of proof trees of size at most exponential in the size of P.

5 Boundedness vs Equivalence

In this section we focus on the similarities between the boundedness and the
equivalence problem for datalog programs. In Sects. 3 and 4 those problems are
treated separately but with similar techniques. Also in [13], where boundedness
and equivalence are considered for monadic programs on arbitrary structures,
both problems are solved using the same automata-theoretic construction. For
these reasons we investigate the connection between the two problems in more
detail. In contrast to the previous sections, in this section the structures under
consideration are not necessarily trees or words.

Definition 1. A class C of datalog programs over a fixed class of databases is
called well-behaved if:

Eliminating Recursion from Monadic Datalog Programs on Trees 403

1. For every P ∈ C all UCQs corresponding to the proof trees for P belong to C;
2. Containment of a UCQ in a datalog program is decidable for C.

Condition (1) is satisfied for most natural classes of programs. In particular by
the class of all datalog programs on arbitrary structures and the class Datalog(↓)
on trees. For the class of datalog programs on arbitrary structures Condition
(2) is also known to hold true (see [10,14,21]). Lemma 1 shows that the class
Datalog(↓) on trees satisfies Condition (2). Hence both those classes are well-
behaved. On the other side there are classes for which Condition (2) is not true.
For example if we allow for data inequality in the signature then the containment
problem can be undecidable even if both programs are UCQs (see [5]).

We say that C has a computable bound if there exists a computable func-
tion f such that if a datalog program P in C is bounded and f(P) = n then
P(D) = Pn(D) for any database D, i.e., for bounded programs the function f
returns a bound on the depth of recursion. For programs which are not bounded
f returns some arbitrary natural numbers.

Example 5. It follows from the results of [13] that the class of monadic data-
log programs on arbitrary structures has a computable bound. It is not stated
explicitly but a closer analysis of the proofs shows that this bound is polynomial
in the size of the automaton used to check if a program P is bounded. For exam-
ple, for a linear connected program the size of such an automaton is exponential
in the size of the program.

The following theorem for a well-behaved class C with a computable bound
establishes a connection between the problems of boundedness and equivalence
to a given UCQ.

Theorem 7. For any well-behaved class C with a computable bound the following
conditions are equivalent:

1. Boundedness is decidable,
2. It is decidable whether two programs are equivalent, given that one of them is

a UCQ.

Proof. Let f be the computable bound for C. For the implication from (1) to
(2), let P,Q ∈ C and assume that Q is a UCQ. Since C is well-behaved, we only
need to show how to decide if P ⊆ Q. If P is bounded, let n = f(P). Then P is
equivalent to the UCQ P ′ that corresponds to the proof trees for P of height at
most n. Since UCQ containment is decidable, the claim follows.

Suppose now that P is not bounded. Even then P can be equivalent to Q (see
Example 4). Let R be a program containing the rules of both programs P and
Q. We can assume that the intensional predicates in P and Q are all different.
We add two rules to R: R(X) ← P(X) and R(X) ← Q(X). The goal predicate
R holds for X iff we have P(X) or Q(X). The atoms Q(X) are all inferred in
one step. So, if R is unbounded then there exists X satisfying P(X) such that
Q(X) does not hold, and hence P is not contained in Q. If R is bounded then
using f we construct an equivalent UCQ R′ and check whether it is equivalent
to Q. If this is the case then P is contained in Q. Otherwise it is not.

404 F. Mazowiecki et al.

For the other implication, consider a datalog program P ∈ C and let f(P) = n.
Then P is bounded iff P(D) = Pn(D) for any database D. Let Q be the UCQ
that corresponds to the proof trees of P of height at most n. It suffices to decide
whether the programs P and Q are equivalent. But this is decidable from the
assumption that C is well-behaved. �
While assuming that a class of programs is well-behaved is natural, the existence
of a computable bound is a strong assumption. It is needed since an algorithm
that solves the boundedness problem might not be constructive, meaning that
we do not know how big the equivalent UCQ is. However, deciding if such a
function exists is usually as hard as solving the boundedness problem. From
Example 5 we know that monadic programs on arbitrary structures have a com-
putable bound. On the other hand, the undecidability results of the boundedness
problem for datalog on arbitrary structures rely heavily on the fact that such
a computable bound does not exist. In [16,17] the authors present reductions
from the halting problem for 2-counter machines and Turing machines. If a dat-
alog program is bounded then the size of the equivalent UCQ corresponds to the
length of an accepting run of these machines, which of course cannot be bounded
by a computable function. The results of our paper are, in this sense, similar: the
positive results provide computable bounds whereas the negative results rely on
the fact that such a function does not exist. For these reasons we conjecture that
for well-behaved classes of datalog programs the decidability of the boundedness
problem is equivalent to the decidability of finding a computable bound.

6 Conclusions

The equivalence to a given nonrecursive program and the boundedness problem
for Datalog(↓, ↓+) are undecidable. To regain decidability we considered programs
that do not use the ↓+ relation. We showed that equivalence to a given UCQ over
ranked trees is decidable, and over unranked trees it is decidable in the case of
linear programs. We also showed the decidability of boundedness on words and
ranked trees. We leave open the questions of decidability of boundednness and
equivalence to a UCQ of non-linear Datalog(↓) programs over unranked trees.

We also investigated the connection between the boundedness and the equiv-
alence to a UCQ. We showed that these problems are equivalently decidable for
classes of programs with a computable bound. We suspect, however, that the
existence of a computable bound for a class of programs is equivalent to the
decidability of the boundedness problem. We also leave this as an open problem.

Acknowledgments. We are grateful to Anca Muscholl, Pierre Bourhis and Filip
Murlak for helpful discussions and constructive comments that lead to a great improve-
ment of the presentation of this paper. The first and third authors were supported by
Poland’s National Science Center grant 2013/09/N/ST6/01170, the second author was
supported by Poland’s National Science Center grant 2013/11/D/ST6/03075.

Eliminating Recursion from Monadic Datalog Programs on Trees 405

References

1. Abiteboul, S., Bourhis, P., Muscholl, A., Wu, Z.: Recursive queries on trees and
data trees. In: ICDT, pp. 93–104 (2013)

2. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison Wesley,
Boston (1995)

3. Bancilhon, F., Ramakrishnan, R.: An amateur’s introduction to recursive query
processing strategies. In: ACM SIGMOD, pp. 16–52 (1986)

4. Benedikt, Michael, Bourhis, Pierre, Senellart, Pierre: Monadic Datalog Contain-
ment. In: Czumaj, Artur, Mehlhorn, Kurt, Pitts, Andrew, Wattenhofer, Roger
(eds.) ICALP 2012, Part II. LNCS, vol. 7392, pp. 79–91. Springer, Heidelberg
(2012)

5. Björklund, Henrik, Martens, Wim, Schwentick, Thomas: Optimizing Conjunc-
tive Queries over Trees Using Schema Information. In: Ochmański, Edward,
Tyszkiewicz, Jerzy (eds.) MFCS 2008. LNCS, vol. 5162, pp. 132–143. Springer,
Heidelberg (2008)

6. Bojańczyk, Miko�laj, Murlak, Filip, Witkowski, Adam: Containment of Monadic
Datalog Programs via Bounded Clique-Width. In: Halldórsson, Magnús M., Iwama,
Kazuo, Kobayashi, Naoki, Speckmann, Bettina (eds.) ICALP 2015. LNCS, vol.
9135, pp. 427–439. Springer, Heidelberg (2015)

7. Bonatti, P.: On the decidability of containment of recursive datalog queries - pre-
liminary report. In: PODS, pp. 297–306 (2004)

8. Calvanese, D., De Giacomo, G., Vardi, M.: Decidable containment of recursive
queries. Theor. Comput. Sci. 336(1), 33–56 (2005)

9. Ceri, S., Gottlob, G., Tanca, L.: Logic Programming and Databases. Springer-
Verlag, New York Inc (1990)

10. Chandra, A., Lewis, H., Makowsky, J.: Embedded implicational dependencies and
their inference problem. In: STOC, pp. 342–354 (1981)

11. Chandra, A., Merlin, P.: Optimal implementation of conjunctive queries in rela-
tional data bases. In: STOC, pp. 77–90 (1977)

12. Chaudhuri, S., Vardi, M.: On the equivalence of recursive and nonrecursive datalog
programs. In: PODS, pp. 55–66 (1992)

13. Cosmadakis, S., Gaifman, H., Kanellakis, P., Vardi, M.: Decidable optimization
problems for database logic programs (preliminary report). In: STOC, pp. 477–
490 (1988)

14. Cosmadakis, S., Kanellakis, P.: Parallel evaluation of recursive rule queries.
In: PODS, pp. 280–293 (1986)

15. Frochaux, A., Grohe, M., Schweikardt, N.: Monadic datalog containment on trees.
In: Proceedings of the 8th Alberto Mendelzon Workshop on Foundations of Data
Management (2014)

16. Gaifman, H., Mairson, H., Sagiv, Y., Vardi, M.: Undecidable optimization problems
for database logic programs. J. ACM 40(3), 683–713 (1993)

17. Hillebrand, G., Kanellakis, P., Mairson, H., Vardi, M.: Undecidable boundedness
problems for datalog programs. J. Log. Program. 25(2), 163–190 (1995)

18. Mazowiecki, Filip, Murlak, Filip, Witkowski, Adam: Monadic Datalog and Reg-
ular Tree Pattern Queries. In: Csuhaj-Varjú, Erzsébet, Dietzfelbinger, Martin,
Ésik, Zoltán (eds.) MFCS 2014, Part I. LNCS, vol. 8634, pp. 426–437. Springer,
Heidelberg (2014)

19. Naughton, J.: Data independent recursion in deductive databases. J. Comput. Syst.
Sci. 38(2), 259–289 (1989)

406 F. Mazowiecki et al.

20. Naughton, J., Sagiv, Y.: A simple characterization of uniform boundedness for a
class of recursions. J. Log. Program. 10, 232–253 (1991)

21. Sagiv, Y.: Optimizing datalog programs. In: Minker, J. (ed.) Foundations of Deduc-
tive Databases and Logic Programming, pp. 659–698. Morgan Kaufmann, Los Altos
(1988)

22. Shmueli, O.: Equivalence of datalog queries is undecidable. J. Log. Program. 15(3),
231–241 (1993)

23. Vardi, M.: The complexity of relational query languages (extended abstract).
In: STOC, pp. 137–146 (1982)

Computability on the Countable Ordinals
and the Hausdorff-Kuratowski Theorem

(Extended Abstract)

Arno Pauly(B)

Clare College, University of Cambridge, Cambridge, UK
Arno.Pauly@cl.cam.ac.uk

Abstract. While there is a well-established notion of what a computable
ordinal is, the question which functions on the countable ordinals ought
to be computable has received less attention so far. In order to remedy
this, we explore various potential representations of the set of countable
ordinals. An equivalence class of representations is then suggested as
a standard, as it offers the desired closure properties. With a decent
notion of computability on the space of countable ordinals in place, we
can then state and prove a computable uniform version of the Hausdorff-
Kuratowski theorem.

1 Introduction

In Turing’s seminal paper [34], he suggested to call a real number computable iff
its decimal expansion is. However, in the corrections [35], he pointed out that
it is better to use the definition that a real number is computable, iff there is a
computable sequence of rational intervals collapsing to it (an idea by Brouwer).
Both definitions yield the same class of real numbers – but the natural notions
of what a computable function on the real numbers that come along with them
differ. For example, x �→ 3x is only computable regarding the latter, but not the
former notion.

We shall show that there is a similar phenomenon regarding the notion of
a computable ordinal: While there is a very well-established notion of what a
computable ordinal is, various equivalent definitions do yield different notions
of what a computable function on the countable ordinal is. Like multiplication
with 3 for the real numbers, some simple functions such as the maximum of
two ordinals fail to be computable w.r.t. several common representations of the
ordinals; whereas others do yield nice effective closure properties. We will inves-
tigate some candidates, and suggest one equivalence class of representations as
the standard to be adopted.

As an application, we continue a research programme to investigate concepts
from descriptive set theory in the very general setting of represented spaces, and
in a fashion that produces both classical and effective results simultaneously.

A full version is available as [28].

c© Springer-Verlag Berlin Heidelberg 2015
G.F. Italiano et al. (Eds.): MFCS 2015, Part I, LNCS 9234, pp. 407–418, 2015.
DOI: 10.1007/978-3-662-48057-1 32

408 A. Pauly

A survey of this approach is given in [27]. One of the first theorems studied in
this way is the Jayne-Rogers theorem [16] (simplified proof in [22]); a computable
version holding also in some non-Hausdorff spaces was proven by the author and
de Brecht in [30] using results about Weihrauch reducibility in [1]. Our goalhere is
to state and prove a corresponding version of the Hausdorff-Kuratowski theorem.

1.1 Represented Spaces

We shall briefly introduce the notion of a represented space, which underlies
computable analysis [37]. For a more detailed presentation we refer to [26].
A represented space is a pair X = (X, δX) of a set X and a partial surjec-
tion δX :⊆ N

N → X (the representation). A represented space is called complete,
iff its representation is a total function.

A multi-valued function between represented spaces is a multi-valued func-
tion between the underlying sets. For f :⊆ X ⇒ Y and F :⊆ N

N → N
N, we call

F a realizer of f (notation F � f), iff δY (F (p)) ∈ f(δX(p)) for all p ∈ dom(fδX).

A map between represented spaces is called computable (continuous), iff it
has a computable (continuous) realizer. Similarly, we call a point x ∈ X com-
putable, iff there is some computable p ∈ N

N with δX(p) = x. We write X ∼= Y
to denote that X and Y are computably isomorphic.

Given two represented spaces X, Y we obtain a third represented space
C(X,Y) of functions from X to Y by letting 0n1p be a [δX → δY]-name for f , if
the n-th Turing machine equipped with the oracle p computes a realizer for f . As
a consequence of the UTM theorem, C(−,−) is the exponential in the category
of continuous maps between represented spaces, and the evaluation map is even
computable (as are the other canonic maps, e.g. currying).

Based on the function space construction, we can obtain the hyperspaces of
open O, closed A, overt V and compact K subsets of a given represented space
using the ideas of synthetic topology [8].

Let Δ :⊆ N
N → N

N be defined on the sequences containing only finitely
many 0s, and let it map those to their tail starting immediately after the last
0, with each entry reduced by 1. This is a surjection. Given a represented space
X = (X, δX), we define the represented space X∇ := (X, δX ◦ Δ). Informally, in
this space, finitely many mindchanges are allowed. The operation ∇ even extends
to an endofunctor on the category of represented spaces [29,39].

1.2 Weihrauch Reducibility

Several of our results are negative, i.e. show that certain operations are not
computable. We prefer to be more precise, and not to merely state failure of

Computability on the Countable Ordinals 409

computability. Instead, we give lower bounds for Weihrauch reducibility. The
reader not interested in distinguishing degrees of non-computability may skip
the remainder of the subsection, and in the rest of the paper, read any statement
involving Weihrauch reducibility (≤W, ≡W, <W) as merely indicating the non-
computability of the maps involved.

Definition 1 (Weihrauch Reducibility). Let f, g be multi-valued functions
on represented spaces. Then f is said to be Weihrauch reducible to g, in sym-
bols f ≤W g, if there are computable functions K,H :⊆ N

N → N
N such that

K〈id, GH〉 � f for all G � g.

The relation ≤W is reflexive and transitive. We use ≡W to denote equivalence
regarding ≤W, and by <W we denote strict reducibility. By W we refer to the
partially ordered set of equivalence classes. As shown in [3,25], W is a distributive
lattice. The algebraic structure on W has been investigated in further detail in
[5,15].

A prototypic non-computable function is LPO : N
N → {0, 1} defined via

LPO(0N) = 1 and LPO(p) = 0 for p = 0N. The degree of this function was
already studied by Weihrauch [36].

A few years ago several authors (Gherardi and Marcone [9], P. [24,25], Brat-
tka and Gherardi [2]) noticed that Weihrauch reducibility would provide a very
interesting setting for a metamathematical inquiry into the computational con-
tent of mathematical theorems. The fundamental research programme was out-
lined in [2], and the introduction in [4] may serve as a recent survey.

2 Representations of the Space of Countable Ordinals

We shall investigate several representations of the set of all countable ordinals
(to be denoted by COrd), and identity their equivalence classes up to computable
translations. Along the way, we shall see how the representations of the countable
ordinals restrict to the finite ordinals, and compare to established representa-
tions of the natural numbers. Theorem 3 will establish a number of candidates
as equivalent, and we shall tentatively propose to consider these the standard
representations of COrd. An investigation of which operations on the countable
ordinals are computable is postponed until Sect. 3.

Our first candidate is a straightforward adaption of Kleene’s notation [18]
of the recursive ordinals to a representation of the countable ordinals. Here and
below we use a countable standard pairing function 〈 , 〉 :

(
N

N
)N → N

N.

Definition 2. We define δK :⊆ N
N → COrd inductively via:

1. δK(0p) = 0
2. δK(1p) = δK(p) + 1
3. δK(2〈p0, p1, p2, . . .〉) = supi∈N δK(pi), provided that ∀i ∈ N δK(pi) < δK(pi+1).

A potential modification of the preceding definition that immediately comes to
mind would be to drop the restriction of sup’s to increasing sequences. We thus
arrive at:

410 A. Pauly

Definition 3. We define δnK :⊆ N
N → COrd inductively via:

1. δnK(0p) = 0
2. δnK(1p) = δnK(p) + 1
3. δnK(2〈p0, p1, p2, . . .〉) = supi∈N δnK(pi).

A third definition proceeding along similar lines can be extracted from
Moschovakis’ definition of the Borel codes in [21]:

Definition 4. We define δM :⊆ N
N → COrd inductively via:

1. δM(0p) = 0
2. δM(1〈p0, p1, p2, . . .〉) = supi∈N (δM(pi) + 1).

Another scheme to obtain representations of the countable ordinals starts with
the view of countable ordinals as the heights of countable wellfounded relations.
A countable relation is given by two sets A ⊆ N and R ⊆ N×N, where A denotes
which points are present, and then R provides the order relation. There are three
common spaces of subsets of N, the open subsets O(N), the closed subsets A(N)
or the clopens O(N) ∧ A(N). The computable points in these spaces are the
recursively enumerable, the co-recursively enumerable and the decidable subsets
of N respectively. Thus, we arrive at a number of representations:

Definition 5. Let X,Y ∈ {O(N),A(N),O(N) ∧ A(N)}. We define a repre-
sentation δX,Y

R :⊆ N
N → COrd by δX,Y

R (〈p, q〉) = α, iff α is the height of
the poset (A,≺), where p is an X-name for A, q an Y -name for R, and
∀i, j ∈ A (i ≺ j ⇔ 〈i, j〉 ∈ R).

Potentially, it would appear to be more appropriate to consider countable ordi-
nals as order types of countable wellorders, rather than just heights of well-
founded orders. This is the approach taken by Hamkins and Li [20].

Definition 6. Let X,Y ∈ {O(N),A(N),O(N)∧A(N)}. Let δX,Y
wR :⊆ N

N → COrd
be the restriction of δX,Y

R to those 〈p, q〉 where q encodes a wellorder.

Finally, we introduce a representation tailor-made for the formulation and proof
of a computable Hausdorff-Kuratowski theorem below. Let a nice relation be a
well-founded quasi-order � on N, such that ∀n, n � 0, and whenever n ≺ m,
then n > m.

Definition 7. We define a representation δnR :⊆ {0, 1}N → COrd by δnR(p) =
α, iff the relation �p defined via n �p m iff p(〈n,m〉) = 1 is a nice relation of
height α+1 (the height of any nice relation is a countable successor ordinal, and
every countable successor ordinal arises as the height of some nice relation).

To obtain some initial understanding of how the various representations work,
we shall consider what happens to the finite ordinals. Besides the usual natural
numbers N, also the spaces N<, N> and N

∇, where a number n is represented by
a non-decreasing, respectively non-increasing, respectively arbitrary sequence of
integers which eventually converge to n.

Observation 1.
(
id : N∇ → N

) ≡W (id : N< → N) ≡W CN; (id : N> → N) ≡W

LPO∗ and LPO ≤W (id : N> → N<).

Computability on the Countable Ordinals 411

Proposition 1.

1. (COrd, δK) |N ∼= N

2. (COrd, δnK) |N ∼= N<

3. (COrd, δM) |{n∈N|n>0} ∼= (N<) |{n∈N|n>0}
4.

(
COrd, δ

A(N),Y
wR

)
|N ∼=

(
COrd, δ

A(N),Y
R

)
|N ∼= N

∇ (regardless of the choice of
Y ∈ {O(N),A(N),O(N) ∧ A(N)})

5.
(
COrd, δ

O(N),O(N)
wR

)
|N ∼= N<

We can extend Proposition 1 (3) to:

Lemma 1. (COrd, δM) |{α>0} ∼= (COrd, δnK) |{α>0}

Merely requiring the domain of the structure to be enumerable, rather than
decidable, does not impact the representation at all though. For not necessarily
wellordered relations, the same applies to the relation itself.

Lemma 2.
(
COrd, δ

O(N),Y
R

) ∼=
(
COrd, δ

O(N)∧A(N),Y
R

)
and

(
COrd, δ

O(N),Y
wR

) ∼=(
COrd, δ

O(N)∧A(N),Y
wR

)

Lemma 3.
(
COrd, δ

X,O(N)
R

) ∼=
(
COrd, δ

X,O(N)∧A(N)
R

)

Proof. Essentially, whenever new information about the relationship between
two already settled points occurs, one can create a fresh copy of everything
encountered so far. As smaller relations (w.r.t subset inclusion) have smaller
height, the extra copy does not impact the ordinal represented thus. ��
Theorem 1. Let δ be a representation of COrd such that

1. 0 ∈ (COrd, δ)
2. +1 : (COrd, δ) → (COrd, δ)
3. sup : C(N, (COrd, δ)) → (COrd, δ)

are all computable. Then id : (COrd, δnK) → (COrd, δ) is computable.

Proof. Induction along the definition of δnK. ��
Theorem 2. The following representations are equivalent:

δnK δnR δ
O(N)∧A(N),O(N)∧A(N)
R

δ
O(N),O(N)∧A(N)
R δ

O(N)∧A(N),O(N)
R δ

O(N),O(N)
R

Theorem 3.

1. (id : (COrd, δK) → (COrd, δnK)) is computable,
but CN ≤W (id : (COrd, δnK) → (COrd, δK))

412 A. Pauly

2. (id : (COrd, δM) → (COrd, δnK)) is computable,
but LPO ≡W (id : (COrd, δnK) → (COrd, δM))

3.
(
id : (COrd, δnK) → (COrd, δ

X,A(N)
R)

)
is computable,

but LPO∗ ≤W

(
id : (COrd, δ

X,A(N)
R) → (COrd, δK)

)
4.

(
id : (COrd, δnK) → (COrd, δ

A(N),Y
R)

)
is computable,

but LPO∗ ≤W

(
id : (COrd, δ

A(N),Y
R) → (COrd, δK)

)
5.

(
id : (COrd, δO,O

wR) → (COrd, δnK)
)

is computable,

but
(
id : (COrd, δnK) → (COrd, δA∧O,A∧O

wR)
)

is not computable.
6. (id : (COrd, δK) → (COrd, δM)) is computable,

but CN ≤W (id : (COrd, δM) → (COrd, δK))

Definition 8. We will consider the equivalence class of δnK identified in
Theorem 2 as the standard representation of COrd, and thus abbreviate COrd :=
(COrd, δnK).

Besides COrd, we will also consider COrdM := (COrd, δM), COrdK :=
(COrd, δK) and COrdHL := (COrd, δA∧O,A∧O

wR). Their mutual relations are
demonstrated in Fig. 1. The representations using well-founded structures given
as closed sets would seem to be too weak to be of much interest, and thus will
no longer be considered.

COrdK COrdM COrd

COrdHL

Fig. 1. Translatability between the representations. The dashed arrow refers to the
Open Question 2

3 Computability on COrd

In order to justify the stance that the represented space COrd really is the space
of countable ordinals, we shall investigate the computable operations on it and
related properties.

Theorem 4. The following operations are computable:

1. + : COrd × COrd → COrd
2. × : COrd × COrd → COrd
3. sup : COrdN → COrd
4. (−1) : COrd → COrd, where (−1) (α + 1) = α and for limit ordinals γ,

(−1)(γ) = γ

Computability on the Countable Ordinals 413

5. Smaller : COrd ⇒ COrdN where (αi)i∈N ∈ Smaller(α) iff {0} ∪ {β ∈ COrd |
β < α} = {αi | i ∈ N}

6. (α, β) �→ αβ : COrd × COrd → COrd

Proposition 2. LPO∗ ≤W (− : COrd × COrd → COrd)

4 Computability on COrdK

In order to define the concept of a computable ordinal, Kleene’s definition result-
ing in the space COrdK seems to be the typical choice. A strong reason to reject
COrdK as the natural candidate for computability on the countable ordinals
nonetheless, lies in the following result:

Proposition 3. LPO ≤W (max : COrdK × COrdK → COrdK)

The reason that calling the computable elements in COrdK the computable
ordinals is justified regardless of COrdK not being the right space lies in the fact
that both COrdK and COrd have the same computable points. This situation is
somewhat reminiscent of Turing’s transient mistake of defining the computable
real numbers via the decimal expansion at first [34] before correcting himself
[35].

Proposition 4. The map UpperBound : COrd ⇒ COrdK defined by β ∈
UpperBound(α) iff β ≥ α is computable.

Proof. The computation proceeds by induction, using the representations δnK
and δK. For 0 and successor, both representations agree anyway. Given a supre-
mum α = supn∈N αn, we apply UpperBound to each αn to obtain an upper
bound βn. Now β = supn∈N (β0 + . . . βn) is a valid output for UpperBound(α)
(note that addition is computable on COrdK). ��
Corollary 1. The computable elements of COrdK, COrdM and COrd are the
same.

Proof. From Proposition 4 in conjunction with Theorem 4 (5). ��

5 COrdM and Boundedness

Given that COrdM is very similar to COrd, only differing in the properties of
0, and that COrd has the better closure properties (as sup is not computable on
COrdM

1), one may wonder what the point of this space is. The special treatment
of 0 in COrdM allows us to obtain a very useful extension of the ≤-relation on
COrdM, which ultimately can be used to prove that all continuous functions
from Baire space into the countable ordinals are bounded:
1 Any algorithm attempting to compute sup on COrdM needs to decide whether or

not the result is 0 after finitely many steps – and this questions essentially is LPO.

414 A. Pauly

Theorem 5 (Gregoriades, Kispéter and P. [10]2). For every continuous
(even: every Borel-measurable) function f : NN → COrdM there is some α ∈
COrd such that ∀p ∈ N

N f(p) ≤ α.

Corollary 2. For every continuous (even: every Borel-measurable) function f :
N

N → COrd there is some α ∈ COrd such that ∀p ∈ N
N f(p) ≤ α.

Proof. Using Theorem 5 together with Proposition 4. ��
Corollary 3. There is no total representation δ : NN → COrd such that id :
(COrd, δ) → COrd could be Borel measurable.

Unfortunately, the proof of Theorem 5 is entirely non-constructive and does not
offer a way to extract a bound from a description of the function. As a result of
Spector establishes the corresponding version in the computable discrete realm,
there seems to be hope for a positive answer to at least the weak version of the
following:

Question 1. Is the function sup : C(NN,COrd) → COrd computable? Is the
multifunction UpperBound : C(NN,COrd) ⇒ COrd computable?

6 Computability on COrdHL

Computability on the space COrdHL was studied by Joel Hamkins and Zhenhao
Li in [20]. We briefly survey some of their results:

Theorem 6 (Hamkins and Li [20]). The following operations are computable:

1. + : COrdHL × COrdHL → COrdHL

2. × : COrdHL × COrdHL → COrdHL

3. (α, β) �→ αβ : COrdHL × COrdHL → COrdHL

4. α + 1 �→ α :⊆ COrdHL → COrdHL

5. ωCK + ω �→ ωCK :⊆ COrdHL → COrdHL

As with Proposition 3 for COrdK, the first item of the following justifies our
rejection of COrdHL as proposed standard computability structure on the count-
able ordinals. We point out that the technique introduced in [20, Theorem 16]
essentially is a Wadge game relative to the representation, similar to the gener-
alizations of the classical Wadge hierarchy on N

N to represented spaces in [31]
by Pequignot and [7] by Duparc and Fournier.

Theorem 7 (Hamkins and Li [20]). The following operations are not
computable:

1. max : COrdHL × COrdHL → COrdHL

2. α �→ max{α, ω + 1} : COrdHL → COrdHL

3. ω × α �→ α :⊆ COrdHL → COrdHL

2 This result essentially is folklore.

Computability on the Countable Ordinals 415

4. Reducen :⊆ COrdHL → COrdHL where Reducen(ω) = n and Reducen

(ω + ω) = ω
5. D :⊆ COrdHL → {0, 1} where D(ω) = 0 and D(ω + 1) = 1

Corollary 4. id : COrdHL → COrdK is not computable.

An open question raised in [20] is whether the supremum of strictly increasing
sequences of ordinals can be computed. This boils down to the following:

Question 2 (Hamkins and Li [20]). Is id : COrdK → COrdHL computable?

Finally, we point out that the investigations in [20, Sect.5] concern the point
degree spectrum of COrdHL (without using this terminology, though). Point
degree spectra of represented spaces were introduced by Kihara and P. in [17].

7 A Non-deceiving Representation of COrd?

The trusted recipe of identifying suitable representations of some structure is to
pick an admissible representation whose final topology coincides with some nat-
ural topology on the structure3. However, the usual topology on COrd would be
the order topology, which is not separable – and every represented space is sepa-
rable. In this section, we shall explore whether a weaker topological requirement
could be imposed on a representation.

Inspired by a property studied in the context of winning conditions for
infinite sequential games in [19] by Le Roux and P., we shall call a function
f :⊆ N

N → COrd non-deceiving, iff whenever (pn)n∈N is a sequence converging
to p in dom(f) such that ∀n ∈ N f(pn) < f(pn+1), then ∀i ∈ N f(pi) < f(p).

Theorem 8 (Gregoriades4). Any non-deceiving function f :⊆ N
N → COrd

is bounded by some countable ordinal.

Corollary 5. There is no non-deceiving representation of COrd.

The preceding corollary presumably destroys any hope to find a suitable repre-
sention of COrd that is admissible w.r.t. some weak limit space structure in the
sense of Schröder [32,33].

8 The Computable Hausdorff-Kuratowski Theorem

We shall now prepare the formulation of the Hausdorff-Kuratowski theorem in
the framework of computable endofunctors on the category of represented spaces
as introduced by de Brecht and P. in [6,29,30]. The setting closely follows the

3 In fact, it is sometimes claimed that it has to be done like that – the present work
ought to disprove this.

4 This theorem is based on a personal communication by Vassilios Gregoriades.

416 A. Pauly

corresponding section in [6] by de Brecht, where a weaker (and non-effective)
version of our desired result was proven.

For any sequence of countable ordinals (αi)i∈N, we define a function
L(αi)i∈N

:⊆ N
N → N

N. The sequence only impacts the domain, but whenever
L(αi)i∈N

(p) is defined, then 2L(αi)i∈N
(p)(n) = p(max{i ∈ N | p(i) is odd}+n+1);

i.e. L(αi)i∈N
takes the maximal tail of its input consisting of only even values,

and returns the result of pointwise division by 2. Obviously any sequence in the
domain of L(αi)i∈N

has to contain only finitely many odd entries; and we addi-
tionally demand that for p ∈ dom(L(αi)i∈N

), if n < m, and p(n) = 2k + 1 and
p(m) = 2j + 1, then αk > αj .

Definition 9. We define a computable endofunctorL(αn)n∈N
byL(αn)n∈N

(X, δ) =
(X, δ ◦ L(αi)i∈N

) and the straightforward extension to functions.

Each endofunctor L(αn)n∈N
captures a version of computability with finitely many

mindchanges (e.g. [38,39]): The regular outputs are encoded as even numbers.
Finitely many times, the output can be reset by using an odd number, however,
when doing so, one has to count down within the list of ordinals parameterizing
the function (which in particular ensures that it happens only finitely many
times). We thus find it connected to the level introduced by Hertling [12], and
further studied by him and others in [6,11,13,14,23,25].

Definition 10. Given a function f :⊆ N
N → N

N, we define the sets Lα(f) ⊆ N
N

inductively via:

1. L0(f) = dom(f)
2. Lα+1(f) = {x ∈ Lα(f) | f |Lα

is discontinuous at x}
3. Lγ(f) =

⋂
β<γ Lβ(f) for limit ordinals γ.

Then we say Lev(f) := min{α | Lα(f) = ∅}.
Theorem 9. If f : N

N → L(αi)i∈N
N

N is continuous, then Lev(f) ≤
(supi∈N αi) + 1.

Proposition 5. Let (αi)i∈N be such that ∃α ∈ COrd with {αi | i ∈ N} = {β ∈
COrd | β < α}. Then Lev(L(αi)i∈N

) = α + 1.

The computable Hausdorff-Kuratowski theorem has at its heart a dependent
sum type; namely the construction

∑
(αi)i∈N∈COrdN

(C(X,L(αi)i∈N
Y)

)
for some

represented spaces X, Y. A point in this space is a pair, consisting of a sequence
of countable ordinals and a function f : X → Y, the latter given only in a
L(αi)i∈N

-continuous way.

Theorem 10 (Computable Hausdorff-Kuratowski Theorem). Let X, Y
be represented spaces, and X be complete. Then the map HK : C(X,Y∇) ⇒∑

(αi)i∈N∈COrdN

(C(X,L(αi)i∈N
Y)

)
where ((αi)i∈N, g) ∈ HK(f) iff f = g, is

computable.

Computability on the Countable Ordinals 417

Corollary 6. Let f : X → Y be computable with finitely many mindchanges,
and X be complete. Then Lev(f) exists and is a computable ordinal.

The result of the preceding corollary was also announced by Selivanov at CCA
2014.

Acknowledgements. I am grateful to Victor Selivanov for sparking my interest in
a computable version of the Hausdorff Kuratowski theorem and to Vasco Brattka and
Matthew de Brecht for various discussions on this question. The comparison of the var-
ious representations of the countable ordinals started with a discussion with Vassilios
Gregoriades.

This work benefited from the Royal Society International Exchange Grant IE111233
and the Marie Curie International Research Staff Exchange Scheme Computable Analy-
sis, PIRSES-GA-2011- 294962.

References

1. Brattka, V., de Brecht, M., Pauly, A.: Closed choice and a uniform low basis
theorem. Ann. Pure Appl. Logic 163(8), 968–1008 (2012)

2. Brattka, V., Gherardi, G.: Effective choice and boundedness principles in com-
putable analysis. Bull. Symbolic Logic 1, 73–117 (2011). arXiv:0905.4685

3. Brattka, V., Gherardi, G.: Weihrauch degrees, omniscience principles and weak
computability. J. Symbolic Logic 76, 143–176 (2011). arXiv:0905.4679

4. Brattka, V., Gherardi, G., Hölzl, R.: Probabilistic computability and choice.
arXiv:1312.7305 (2013)

5. Brattka, V., Pauly, A.: On the algebraic structure of Weihrauch degrees (forth-
coming)

6. de Brecht, M.: Levels of discontinuity, limit-computability, and jump operators.
In: Brattka, V., Diener, H., Spreen, D. (eds.) Logic, Computation, Hierarchies, pp.
79–108. de Gruyter, Berlin (2014). arXiv 1312.0697

7. Duparc, J., Fournier, K.: Reductions by relatively continuous relations on N
≤ω

(unpublished notes)
8. Escardó, M.: Synthetic topology of datatypes and classical spaces. Electron. Notes

Theoret. Comput. Sci. 87, 21–156 (2004)
9. Gherardi, G., Marcone, A.: How incomputable is the separable Hahn-Banach the-

orem? Notre Dame J. Formal Logic 50(4), 393–425 (2009)
10. Gregoriades, V., Kispéter, T., Pauly, A.: A comparison of concepts from com-

putable analysis and effective descriptive set theory. arXiv:1401.3325 (2014)
11. Hertling, P.: Topological complexity with continuous operations. J. Complex.

12(4), 315–338 (1996)
12. Hertling, P.: Unstetigkeitsgrade von funktionen in der effektiven analysis. Ph.D.

thesis, Fernuniversität, Gesamthochschule in Hagen, Oktober 1996
13. Hertling, P.: Topological complexity of zero finding with algebraic operations. J.

Complex. 18, 912–942 (2002)
14. Hertling, P., Weihrauch, K.: Levels of degeneracy and exact lower complexity

bounds. In: 6th Canadian Conference on Computational Geometry, pp. 237–242
(1994)

15. Higuchi, K., Pauly, A.: The degree-structure of Weihrauch-reducibility. Log. Meth-
ods Comput. Sci. 9(2), 1–17 (2013)

http://arxiv.org/abs/0905.4685
http://arxiv.org/abs/0905.4679
http://arxiv.org/abs/1312.7305
http://arXiv.org/abs/1312.0697
http://arxiv.org/abs/1401.3325

418 A. Pauly

16. Jayne, J., Rogers, C.: First level borel functions and isomorphisms. Journal de
Mathématiques Pures et Appliquées 61, 177–205 (1982)

17. Kihara, T., Pauly, A.: Point degree spectra of represented spaces. arXiv:1405.6866
(2014)

18. Kleene, S.C.: On notation for ordinal numbers. J. Symbolic Logic 3, 150–155 (1938)
19. Le Roux, S., Pauly, A.: Infinite sequential games with real-valued payoffs

arXiv:1401.3325 (2014). arXiv:1401.3325
20. Li, Z., Hamkins, J.D.: On effectiveness of operations on countable ordinals. unpub-

lished notes
21. Moschovakis, Y.N.: Descriptive Set Theory, Studies in Logic and the Foundations

of Mathematics, vol. 100. North-Holland publishing company, Amsterdam (1980)
22. Ros, M.L., Semmes, B.: A new proof of a theorem of Jayne and Rogers. Real Anal.

Exch. 35(1), 195–204 (2009)
23. Pauly, A.: Methoden zum Vergleich der Unstetigkeit von Funktionen. Masters the-

sis, FernUniversität Hagen (2007)
24. Pauly, A.: How incomputable is finding Nash equilibria? J. Univ. Comput. Sci.

16(18), 2686–2710 (2010)
25. Pauly, A.: On the (semi)lattices induced by continuous reducibilities. Math. Logic

Q. 56(5), 488–502 (2010)
26. Pauly, A.: On the topological aspects of the theory of represented spaces.

arXiv:1204.3763 (2012)
27. Pauly, A.: The descriptive theory of represented spaces. arXiv:1408.5329 (2014)
28. Pauly, A.: Computability on the countable ordinals and the Hausdorff-Kuratowski

theorem. arXiv 1501.00386 (2015)
29. Pauly, A., de Brecht, M.: Towards synthetic descriptive set theory: An instantiation

with represented spaces. arXiv:1307.1850 (2013)
30. Pauly, A., de Brecht, M.: Non-deterministic computation and the Jayne Rogers

theorem. Electron, Proc. Theoret. Comput. Sci. 143, 87–96 (2014). dCM 2012
31. Pequignot, Y.: A Wadge hierarchy for second countable spaces. Arch. Math. Logic,

1–25 (2015). http://dx.doi.org/10.1007/s00153-015-0434-y
32. Schröder, M.: Admissible Representations for Continuous Computations. Ph.D.

thesis, FernUniversität Hagen (2002)
33. Schröder, M.: A natural weak limit space with admissible representation which is

not a limit space. ENTCS 66(1), 165–175 (2002)
34. Turing, A.: On computable numbers, with an application to the Entscheidung-

sproblem. Proc. LMS 2(42), 230–265 (1936)
35. Turing, A.: On computable numbers, with an application to the Entscheidung-

sproblem: Corrections. Proc. LMS 2(43), 544–546 (1937)
36. Weihrauch, K.: The TTE-interpretation of three hierarchies of omniscience princi-

ples. Informatik Berichte 130, FernUniversität Hagen, Hagen (1992)
37. Weihrauch, K.: Computable Analysis. Springer, Heidelberg (2000)
38. Ziegler, M.: Real hypercomputation and continuity. Theory Comput. Syst. 41,

177–206 (2007)
39. Ziegler, M.: Revising type-2 computation and degrees of discontinuity. Electron.

Notes Theoret. Comput. Sci. 167, 255–274 (2007)

http://arxiv.org/abs/1405.6866
http://arxiv.org/abs/1401.3325
http://arxiv.org/abs/1401.3325
http://arxiv.org/abs/1204.3763
http://arxiv.org/abs/1408.5329
http://arxiv.org/abs/1307.1850
http://dx.doi.org/10.1007/s00153-015-0434-y

Emergence on Decreasing Sandpile Models

Kévin Perrot1(B) and Éric Rémila2

1 Aix Marseille Université - CNRS - LIF UMR 7279, 13288 Marseille, France
kevin.perrot@lif.univ-mrs.fr

2 Université de Lyon - CNRS - GATE LSE UMR 5824, 42023 Saint-Etienne, France
eric.remila@univ-st-etienne.fr

Abstract. Sand is a proper instance for the study of natural algorith-
mic phenomena. Idealized square/cubic sand grains moving according to
“simple” local toppling rules may exhibit surprisingly “complex” global
behaviors. In this paper we explore the language made by words corre-
sponding to fixed points reached by iterating a toppling rule starting from
a finite stack of sand grains in one dimension. Using arguments from lin-
ear algebra, we give a constructive proof that for all decreasing sandpile
rules the language of fixed points is accepted by a finite (Muller) automa-
ton. The analysis is completed with a combinatorial study of cases where
the emergence of precise regular patterns is formally proven. It extends
earlier works presented in [15–17], and asks how far can we understand
and explain emergence following this track?

Keywords: Sandpile models · Fixed points · Emergence

1 Introduction

In the spirit of Chazelle’s natural algorithms [3], we propose a study of sandpile
models via the tools of theoretical computer science. In this discrete dynamical
system (DDS), configurations are words over the alphabet N (or Z), where each
letter is a number of stacked sand grains. The dynamics is described by local
rules letting grains move from column to column. Historically, discrete sandpile
models were first introduced by the physicists Bak, Tang and Wiesenfeld, as
a paradigmatic example of self-organized critical systems in which instabilities
are described by power laws [2]. The combinatorial study of one-dimensional
models has been initiated by Goles in [9] as a case where simple rules lead to
surprisingly complex, yet tractable, mathematical problems on term rewriting
systems. A particular focus has been given to the dynamics starting from a finite
pile of sand grains (which is equivalent to adding them one by one, as they would
fall in an hourglass), and to the structure of the language L made of fixed point
configurations reached at the end of the stabilization process [5–7,11].

This work was partially supported by IXXI (Complex System Institute, Lyon), ANR
projects Dynamite and QuasiCool (ANR-12-JS02-011-01), Modmad Federation of U.
St-Etienne, FONDECYT Grant 3140527 (DIM, Universidad de Chile), and Núcleo
Milenio Información y Coordinación en Redes (ACGO).

c© Springer-Verlag Berlin Heidelberg 2015
G.F. Italiano et al. (Eds.): MFCS 2015, Part I, LNCS 9234, pp. 419–431, 2015.
DOI: 10.1007/978-3-662-48057-1 33

420 K. Perrot and É. Rémila

Fig. 1. The rule (2, 1)
can be applied if and
only if Δhi ≥ 5. For
convenience, right is the
direction of grains fall.

The Model. Let Z
N

f denote the set of integer
sequences which are ultimately null (a sequence h =
(h0, h1, h2, . . .) is ultimately null if there exists a posi-
tive integer i such that, for j ≥ i, we have hj = 0). We
note by Δ the morphism Z

N

f → Z
N

f such that for any
h ∈ Z

N

f and any i ∈ N, Δhi = hi − hi+1. Notice that
Δ is bijective. We say that hi is the number of grains
and Δhi is the slope of h in column i. The set C is the
subset of sequences of Z

N

f which are non increasing.

Definition 1. A decreasing sandpile model is a DDS
defined by:

– Configurations. The set of configurations is the subset C of Z
N

f ,
– Transition rule. Determined by a p-tuple R = (g1, g2, . . . , gp) of integers

with g1 ≥ · · · ≥ gp > 0. From a configuration h ∈ C, a transition at i leads to
h′ ∈ C, denoted h

i→ h′, when:
• h′

i = hi − G with G =
∑p

j=1 gj;
• h′

i+j = hi+j + gj for 1 ≤ j ≤ p.

To lighten them, almost all notations do not mention the rule R = (g1, . . . , gp),
as it does not change during the evolution. Since configurations must be non-
increasing, the rule can be applied at column i if and only if Δhi ≥ G + g1
(see Fig. 1). Note that the rule application at i (which we also call fire at i)
conserves the total number of sand grains. We also write h → h′ when the fired
column is not given, and denote by →∗ the reflexo-transitive closure of →. When
Δhi ≥ G+g1, we say that column i is unstable. A configuration is stable, or a fixed
point, if a it has no unstable columns. Let Cs be the set of stable configurations.

Cs =
{
h ∈ C | ∀ i ∈ N : 0 ≤ Δhi < G + g1

}
.

We denote 0ω the infinite sequence of 0. The models are non-deterministic: the
rule is applied once at each time step. An example of successive applications for
the rule (2, 1), ending in a fixed point, is given below:

h = (26, 0ω) 0→ (23, 2, 1, 0ω) 0→ (20, 4, 2, 0ω) 0→ (17, 6, 3, 0ω) 0→ (14, 8, 4, 0ω)
0→ (11, 10, 5, 0ω) 1→ (11, 7, 7, 1, 0ω) 2→ (11, 7, 4, 3, 1, 0ω).

Since Δ is a bijection on Z
N

f , a configuration h can be encoded by Δh, or Δ2h.
The sequence Δh of slopes is a more local (spatially uniform) representation of
configurations. For the fixed point of the example above, Δh = (4, 3, 1, 2, 1, 0ω).
When not specified, the sequence of slopes is the default manner to give a con-
figuration throughout the paper.

Let C(h) = {h′ |h →∗ h′} denote the set of configurations reachable from h.
We focus on the case when h = (N, 0ω) i.e. configurations with a finite number

Emergence on Decreasing Sandpile Models 421

N ∈ N of grains stacked on column 0, and no grains elsewhere. The set C((N, 0ω))
is simply denoted by C(N).

The following theorem is obtained from diamond property plus termination
(see for example [1] and [12]).

Theorem 1. C(h) endowed with → has a graded lattice structure. Moreover, for
any column i and any h′ ∈ C(h), the number of firings of i during a sequence of
transitions from h to h′ does not depend of the chosen sequence of transitions.

In particular, even though decreasing sandpile models are non-deterministic,
a unique fixed point, denoted by π(h), is reached from any finite configuration
h. The goal of this study is to understand the structure of π(N) = π((N, 0ω)).
Configurations h′ of C(h) admit another representation called shot sequence. It
is the sequence v = (vi)i∈N where vi is the number of times column i has been
fired, from h to h′. The shot sequence of the stable configuration on our example
is v = (5, 1, 1, 0ω). Of course Δv or Δ2v can also encode a configuration of C(h).
Surprisingly, the encoding Δ2v plays a fundamental role in the study of fixed
points.

Remark 1. The classical one-dimensional sandpile rule corresponds to the 1-
tuple (1), and the Kadanoff rule with parameter p to the p-tuple (1, 1, . . . , 1).
Important simplifications arise when the rule is a 1-tuple (g1), and a result similar
to [9,10] is obtained with the same technics (by grouping grains in little stacks
of g1 units). Consequently, in the present work, we focus on the case p > 1.

The Contribution. For a given decreasing sandpile rule R, we are interested
in the language (of sequences of slopes) of fixed points reached from initial con-
figurations of the form (N, 0ω),

LR = {π(N), N ∈ N} =

(⋃
N∈N

C(N)

)
∩ Cs.

Experiments suggest that all words from this language present regular repeti-
tions of short patterns. Interestingly, when p > 1 these regular repetitions do not
cover the entire non null part of the fixed point, but emerge from the dynamics:
all the grains are initially stacked on column 0, and their toppling towards a sta-
ble configuration lets the regularities appear only on the right of some relatively
small but asymptotically infinite position. Figure 2 presents some computer sim-
ulations, which lead to the following conjecture.

Conjecture 1. For any rule R = (g1, . . . , gp), there exist words wl, wc, wc′ , wl,
wf and wf ′ , each of length at most p, such that if h = π(N) then there exists an
integer n in Ø(log(N)) such that (Δhi)i≥n = w∗

l (wc +wc′ + ε)w∗
r (wf +wf ′) 0ω,

where ∗ denotes finite repetitions, + the or, and ε the empty word1. There also
exist words ul, ur on the alphabet {0, 1}, each of length at most p, such that if v

1 i ∈ Ø(f(N)) stands for i ≤ c f(N) for a suitable constant c.

422 K. Perrot and É. Rémila

is the shot sequence of π(N), then there exists an integer n′ in Ø(log(N)) such
that (Δ2vi)i≥n′ = u∗

l (0 + ε)u∗
r 0ω.

Remark that the length Ø(log(N)) of the irregular left part is negligible compared
to the length Θ(

√
N) of the non null part of the sequences (given a decreasing

rule, it is not hard to notice that this part is in Θ(
√

N) because the fixed point
is a rectangular triangle of area N and bounded slope, by stability from above
and from below since there are no plateau of length greater than p + 1). Thus the
conjecture gives a nearly exhaustive characterization of fixed points. Also remark
that the first part of the conjecture is a (spectacular but direct) consequence of
the second part. Thus, in the study, we will focus on the second part.

Fig. 2. Examples of fixed points with the regularly repeated pattern highlighted.

For the Kadanoff sandpile models, this conjecture has been proven in [15–17].
In the present paper we generalize in a large way the result about fixed points on
Kadanoff sandpiles (note that Kadanoff sandpiles already generalize the classi-
cal one-dimensional model of [9,10]). We treat the extreme cases: when g1 is suf-
ficiently large to control the evolution (Theorem 4), and when g1 is sufficiently
small (Theorem 5).

First, the language LR is investigated via arguments of linear algebra linked
to static constraints obtained from the definition of a fixed point (Sect. 2). By
static constraints, we mean constraints telling that the configuration is stable,
but nothing (or very few) about its creation process. This step gives an automa-
ton whose set of accepting words contains LR. Then, we use a dynamic and
recursive construction of fixed points to refine the result. More precisely, the
fixed point π(N + 1) is obtained from π(N) by adding a single grain on column
0 and performing all the possible firings until stability is reached (this process
is called the (N + 1)th avalanche). Using combinatorial arguments, we formally
prove that fixed points admit regular patterns, when the rule verifies arithmetic
properties (Sect. 3).

Notice that these two steps informally correspond to the hybrid nature of
sand. The algebraic part considers it as a (quasi) continuous fluid, while the
combinatorial one considers it as a set of discrete atoms. To achieve this general-
ization, we made major improvements of the developments around the Kadanoff
model. The first one is the use of stronger algebraic theorems about matrix
norms, to ensure a convergence of the algebraic part. The second one is the intro-
duction of the encoding Δ2v of configurations, which is very useful to describe

Emergence on Decreasing Sandpile Models 423

fixed points and avalanches, and allows to easily consider these two notions
simultaneously. For the Kadanoff model, the automaton is quite simple (and so
is the second step), thus the tools we introduce in the present work were not
explicitly defined and used previously [15–17].

Finally, we discuss the results and conjecture their generalization to all
decreasing sandpile models (Sect. 4). We strongly conjecture that our approach
can succeed for any decreasing sandpile model. But, currently, we do not have a
general proof, even if we are able to prove the conjectures for numerous particular
rules.

2 Static Study of the Fixed Points

Equivalent Representations. Decreasing sandpile models can also be seen as
chip-firing games (basically with a vertex for each column and a chip content
corresponding to the slope) with a sink, what Dhar calls abelian sandpile models
in [4]. The same notion of equivalence class applies. We define it on the set Z

N

f

of all ultimately null configurations (possibly increasing). For all h, h′ ∈ Z
N

f , we
have h ≡R h′ if and only if h′ can be reached from h by a sequence of firings
and anti-firings (the reverse of a firing) on column indices in N (configurations
may have columns with negative sand content). It is reflexive, symmetric and
transitive, hence an equivalence relation. The equivalence class of a configuration
h is denoted [h]. Let

Π(h) = [h] ∩ Cs and L′
R =

⋃
N∈N

Π(N).

As an example (1, 1, 1, 0ω) ∈ L′
(1) \ L(1). The developments of this section will

give clues on the language L′
R. Note that π(N) ∈ Π(N), hence LR ⊆ L′

R,
therefore the conclusions of Sect. 2 will apply to our main language of interest.
The arguments are based on static equations about the final stability of the
configurations of Π(N). The main static relation we exploit is simple to notice.
Let us canonically extend the definition of shot sequence to the configurations
of [N]. This representation is obviously linked to the sequence of heights. The
equality below simply expresses the grain balance on column i after firings and
anti-firings, with respect to a decreasing rule R = (g1, . . . , gp) with p > 1.

For all i ≥ p we have hi = −Gvi + g1 vi−1 + g2 vi−2 + · · · + gp vi−p. (1)

In this section, we will basically make use of Eq. (1) and the constraint that
the configurations in Π(N) are stable, non-increasing, and ultimately null. From
this we will first construct a recurrence equation describing the fixed point from
left to right: given (Δvj)i≤j<i+p we will express (Δvj)i+1≤j<i+p+1. Then argu-
ments of linear algebra will be employed in order to prove a convergence result
on iterations of this system: columns on the right of a position in Ø(log(N))
have strong regularity properties. The results will eventually be expressed as an

424 K. Perrot and É. Rémila

automaton (depending on R) recognizing the sequences of slopes of any configu-
ration in Π(N). Talking about the language L′

R is not a goal in itself, but a way
to express the fact that the arguments we exploit in this section are quite gen-
eral: using static arguments we set up restrictions on the language of sequences
of slopes for any configuration in Π(N).

Section 3 will present a different and complementary kind of arguments,
linked to the dynamics of the model, that will allow to refine the results to
get a precise characterization of LR when the rule R verifies some arithmetic
properties.

The Perturbed Weighted Mean System. Equation (1) can be expressed in
terms of Δh and Δv, leading to the recurrence relation

Δvi =
1
G

(
g1Δvi−1 + g2Δvi−2 + · · · + gpΔvi−p

)
− Δhi

G
. (2)

In matricial form, it gives a system from Z
p to Z

p that we call perturbed weighted
mean system:

ΔVi = MΔVi−1 − Δhi

G
K (3)

with

ΔVi =

⎛
⎜⎜⎜⎝

Δvi−p+1

...
Δvi−1

Δvi

⎞
⎟⎟⎟⎠ M =

⎛
⎜⎜⎜⎝

0 1 0
. . .

0 0 1
gp

G
gp−1

G . . . g1
G

⎞
⎟⎟⎟⎠ K =

⎛
⎜⎜⎜⎝

0
...
0
1

⎞
⎟⎟⎟⎠ .

It is composed of two parts. First, a linear map M : R
p → R

p that

– Shifts all the values one row upward;
– For the last component, computes the mean of ΔVi−1 weighted by (g1, . . . , gp).

Second, a discrete perturbation Δhi

G subtracted to the last component, so that
Δvi ∈ Z. Intuitively, iterating the system, i.e., computing the weighted mean and
subtracting a bounded perturbation ((Δhi)i∈N ∈ Cs) will quickly tend to output
values which are close to each other. In other words, the sequence (ΔVi)i≥p−1

will tend to uniform vectors. This is what we are about to prove. For convenience,
let mi = 1

G (gp, . . . , g1)ΔVi denote the weighted mean of ΔVi, and mi (resp. mi)
the minimal (resp. maximal) value of ΔVi.

As a starting point of the system, we define ΔV−1 = t(N
gp

, 0, . . . , 0,−v0),
emulating the fact that column 0 receives N units of sand grains. Now Eq. (2) and
the perturbed weighted mean system hold for all i ∈ N. For the configurations
of Π(N) we have

N

G + g1
≤ v0 ≤ N

G
, (4)

because from the initial configuration we have to perform at least the left bound
number of firings (less and the configuration cannot be stable), and at most the

Emergence on Decreasing Sandpile Models 425

right bound number of firings (more and it is not possible to get a non-increasing
and ultimately null configuration).

Regarding the discrete perturbation Δhi

G , for all configurations of the set
Π(N) we have a relation for stability (left) and a relation for integrity (right).

0 ≤ Δhi

G
< 1 +

g1
G

≤ 2 and Δhi+1 ≡ Gmi mod G. (5)

Note that consequently, for a given mi there are at most two possible values of
Δhi that match these two constraints, and only one when mi ≥ G + g1. This
will be a key point in the construction of automata at the end of this section.

For the convergence of (ΔVi)i∈N towards uniform vectors, we first prove that
it converges in Ø(log(N)) iterations to vectors of bounded amplitude.

Lemma 1. There exist a constant α and a n0 ∈ Ø(log(N)) s.t. mi − mi < α
for all i > n0.

Proof (sketch). Equation (4) implies that m−1 − m−1 is in Θ(N). In order to
prove that iterations of the perturbed weighted mean system tend to uniform
vector, that is, each value will become closer and closer to the mean value, we take
Mi = t(mi, . . . , mi) ∈ R

p and study the sequence (Zi)i∈N where Zi = ΔVi −Mi,
which converges to �p = t(0, . . . , 0) ∈ Z

p. From Eq. (3) we get a relation of the
form

Zi = O Zi−1 − Δhi

G
L

where O is a contracting map: its spectral radius is strictly smaller than 1 (proved
with a classical result due to Eneström and Kakeya, see for example [8]), and L
has bounded norm. As a consequence, we can isolate the contracting map and
the sum of perturbations,

Zn = On+1 Z−1 +
1
G

n∑
i=0

Δhi On−i L.

The left part of the sum tends exponentially to �p (see for example [13] for a
discussion on contracting maps), and the right part is upper bounded by some
constant α−1. Since the norm of Zi is in the order of mi −mi, the norm of Z−1

is in Θ(N) and there exists an iteration n0 in Ø(log(N)) such that the left term
is strictly smaller that 1, leading to the result. ��
Secondly, it converges, at least linearly in the amplitude, to a sequence which is
non-increasing and where two consecutive values are equal or differ by one.

Lemma 2. There exists d in Ø(mi − mi), such that for all k ≥ i + d, we have
Δvk − Δvk+1 ∈ {0, 1}. Moreover, Δvk − Δvk+1 = 1 only if mi − mi < g1

G .

426 K. Perrot and É. Rémila

Proof (sketch). The core argument of this proof is that, when mi = mi, the
weighted mean mi is strictly between mi and mi. The perturbation (bounded
by Eq. (5)) subtracted to it then always leads to an integer Δvi+1 which is
strictly below mi and greater or equal to mi − 1. As a consequence, the result
holds if the sequence (Δvk)k≥i+d is non-increasing. In order to prove this, we can
first notice that while Δvi+1 is above or equal to mi, it is still strictly below mi

so ΔVi tend linearly to uniform vectors. When it happens that Δvi+1 = mi − 1,
the values embedded in ΔVi must already be very close to each other, in order
for the mean mi to be just a little bit above mi, so that the perturbation (strictly
smaller than 2 from Eq. (5)) subtracted to it can lead to a Δvi+1 strictly below
mi. In this case, a careful look at the constraints on the closeness of the values
embedded in ΔVi allows to conclude. ��
The combination of Lemmas 1 and 2 gives the expected result, which we will
express in term of the second derivative of the shot sequence. Let Δ2Vi =
t(Δ2vi−p+1, . . . , Δ

2vi−1). Note that Δ2Vi can be computed from ΔVi, and so
can the difference mi − mi, with the function m defined as

m(q1, . . . , qp−1) =
∑

1≤j<k≤p

qp−jgk =
p−1∑
j=1

⎡
⎣qp−j

⎛
⎝ p∑

k=j+1

gk

⎞
⎠

⎤
⎦.

Property 1.

– For the product order, if U < U ′ then m(U) < m(U ′).
– If Δvi = mi then m(Δ2Vi) = G (mi − mi).
– m(0, 0, . . . , 0, 0, 1) = g2 + g3 + · · · + gp ; m(0, 0, . . . , 0, 1, 0) = g3 + · · · + gp ;

m(1, 0, . . . , 0, 0, 0) = gp ; m(1, 1, . . . , 1, 1, 1) = g2 + 2 g3 + · · · + (p − 1) gp.

Proposition 1. There exists a column n1 in Ø(log(N)), such that

for all i ≥ n1 we have Δ2vi ∈ {0, 1}.

Moreover, Δ2vi = 1 only if m(Δ2Vi) < g1, and

for all i ≥ n1 we have Δhi+1 = m(Δ2Vi) + Δ2vi G.

Proof. First part is a straight combination of Lemmas 1 and 2. For the middle
part, when Δv is non-increasing we always have Δvi = mi and Property 1
applies. For the last part, from Relation (3) we have Δhi+1 = G (mi − Δvi+1).
When i ≥ n1 the first part states that Δ2vi equals 0 or 1 (recall that mi = Δvi),
and in both cases the conclusion is reached by applying Property 1. ��
Remark 1. To avoid confusion, remark that Δ2vi is not the last component of
Δ2Vi, but the last component of Δ2Vi+1.

Emergence on Decreasing Sandpile Models 427

The Automaton. Proposition 1 gives restrictions on the language L′
R. Let us

now express these restrictions in the framework of automata theory. Given a
decreasing sandpile rule, its recurrence automaton will be a Muller automaton
(a kind of Büchi automaton with stronger accepting condition, see [14] for a
definition) recognizing a subset of Cs which includes L′

R (asymptotically).
States of the automata correspond to vectors Δ2Vi ∈ {0, 1}p−1, and transi-

tions to iterations of the perturbed weighted mean system. Depending on the
value of m(Δ2Vi), Proposition 1 tells that there is one or two out-going tran-
sitions from a state. We label a transition with the value of Δhi+1 given by
Proposition 1. We consider the whole set of states as potential initial states, and
0p−1 as the unique entry in the acceptance table of Muller automata, i.e., runs
must end in an infinite loop on the state 0p−1, corresponding to the fact that all
words of L′

R are ultimately null (by definition).

Definition 2. Given a decreasing sandpile rule R, let AR be its recurrence
automaton, which is the Muller automaton whose set of states is {0, 1}p−1, alpha-
bet is N, set of initial states is {0, 1}p−1, acceptance table is 〈{0p−1}〉, and there
exists a transition (q1, . . . , qp−1)

a−→R (q′
1, . . . , q

′
p−1) if and only if

– (q′
1, . . . , q

′
p−2) = (q2, . . . , qp−1);

– either q′
p−1 = 0

or q′
p−1 = 1 and m(q) < g1;

– a = m(q) + q′
p−1G.

Fig. 3. Recurrence automata AR for R =
(3, 2, 1, 1), where irrelevant states are
shaded. Note that it is in accordance with
the example from Fig. 2.

An example of recurrence automa-
ton is given on Fig. 3. Theorem 2
rephrases Proposition 1 in order to
characterize L′

R.

Theorem 2. Let L(AR) denotes the
language of infinite words recognized
by AR. For all h ∈ Π(N), there exists
a column n2 in Ø(log(N)) such that

(Δhi)i≥n2 ∈ L(AR).

Theorem 2 is equally valid if we simplify recurrence automata to their ultimately
relevant states, i.e., those belonging to a directed cycle (note that 0p−1 is always
an ultimately relevant state with a loop labelled with slope value 0). Let A′

R
denote these simplified automata. Languages L(A′

R) contain suffixes of the lan-
guages we are interested in. It is not tight enough to fit LR, not even exactly
L′

R, but can nevertheless be considered as an important progress compared to
Cs. Furthermore, the developments so far are only based on static relations com-
ing from the model definition. Finally, let us recall that w(π(N)) ∈ Θ(

√
N)

for all rule and number of grains N , therefore L(A′
R) contains prefixes of L′

R
that asymptotically account for the whole fixed points. Note that this is not an
equality: A′

R recognizes other words.

428 K. Perrot and É. Rémila

3 Dynamic Study of the Fixed Points

Avalanches. This section complements the developments around LR presented
so far (p > 1), with arguments linked to the dynamics of decreasing sandpile
models. It is based on the fact that for a given rule, π(0), π(1), π(2), . . . , π(N)
must all belong to L(A′

R) (starting from some index n2 in Ø(log(N))). Let us
present the notion of avalanche, and two cases where combinatorial arguments
allow to characterize asymptotically (Δ2vi)i∈N (hence (Δhi)i∈N) when g1 is above
some upper threshold or below some lower threshold (note that the second case
includes Kadanoff sandpile models).

Let c↓0 denote the configuration obtained from c by adding one grain on
column 0. If c

i1→ . . .
ik→ c′ then c↓0 i1→ . . .

ik→ c′↓0. This is in particular true for
c = (N, 0ω) and c′ = π(N), thus fixed points can inductively be computed with

π(N + 1) = π(π(N)↓0),

from π(0) = (0ω), repeating N times the addition of one grain followed by the
stabilization process. We will now use this point of view. Let the (N + 1)th

avalanche be the sequence (ai)i≥0 where ai denotes the number of times that
column i has been fired in the stabilization process from π(N)↓0 to π(N +1). Let
plain h, v (resp. primed h′, v′) denote representations of π(N) (resp. π(N + 1)),

(v′
i − vi)i≥0 = (ai)i≥0 and (Δ2v′

i − Δ2vi)i≥0 = (Δ2ai)i≥0. (6)

Avalanches are studied in [15], which is generalized as follows.

Theorem 3.

1. For each integer i ≥ 1, we have ai ∈ {0, 1}.
2. If aj = aj+1 = ... = aj+p−1 = 0 for some j ∈ N, then ak = 0 for all k ≥ j.
3. If Δhj+r + gr+1 < G + g1 for some j ∈?N and all 0 ≤ r ≤ p − 1, then integer

j satisfies condition 2 above.

Proof (sketch). Arguments similar to [15], telescoping sum for third point. ��
First, note that Proposition 1 and Eq. (6) imply that there exists n2 ∈ Ø(log(N))
such that (Δ2ai)i≥n2 ∈ {−1, 0, 1}ω, hence there is no factor 010 or 101 in
(ai)i≥n2 . A simple case by case study of what does the value of Δ2ai implies
on ai, ai+1 and ai+2 shows that, up to a one unit shift, the patterns 1(−1) and
(−1)1 of (Δ2ai)i≥n2 are delimiters of the intervals of 0 and 1 in (ai)i≥n2 . More-
over, the length of intervals of 0 in (ai)i≥n2 is at most p−1 (except the ultimate
0ω). Basic considerations of this type lead to the following proposition (∗ is the
Kleene star denoting finite repetitions).

Proposition 2. (Δ2ai)i≥n2 is suffix of a sequence in
(
0∗ 1(−1) 0∗ (−1)1

)∗
0ω.

We will have two main arguments: the stopping condition of Theorem 3, and the
compatibility between π(N) and π(N + 1) (Proposition 1 and Theorem 2). For
1 ≤ i ≤ p − 1, let Ei ∈ {0, 1}p−1 have all null components except the ith.

Emergence on Decreasing Sandpile Models 429

Case g1 > M(1, 1, . . . , 1). In this case two transitions are possible from any state
in the automaton i.e., Theorem 2 gives no constraint other than Δ2vi ∈ {0, 1} for
all i ≥ n2. Nevertheless we show that, on the right of column n2, the avalanche
process fires a set of consecutive columns and stops.

Lemma 3. If ∃ k ∈ N such that Δ2vn2+k = 0, then aj = 0 for j ≥ n2 + k + 1.

Proof (sketch). The goal is to reach the stopping condition of Theorem 3. From
the hypothesis, Δhn2+k+1 = m(Δ2Vn2+k) + Δ2vn2+k G ≤ m(1, . . . , 1) < g1. For
2 ≤ r ≤ p we have Δ2Vn2+k+r−1 ≤ t(1, . . . , 1) − Ep+1−r and m(Ep+1−r) =
gr + gr+1 + · · · + gp. Since m is a linear map, Δhn2+k+r + gr ≤ m(1, . . . , 1) +
g1 + g2 + · · · + gr < g1 + G and from Theorem 3 the avalanche stops (item 3). ��
Theorem 4. (ai)i≥n2 ∈ 1∗ 0ω and (Δ2vi)i≥n2 ∈ 1∗ (0 + ε) 1∗ 0ω.

Proof (sketch). The result is proven by induction on N , the base case is obvious.
For the induction, we have (Δ2vi)i≥n2 ∈ 1k (0+ε) 1k′

0ω. From Proposition 2 and
Eq. 6, we have either (Δ2ai)i≥n2 = 0ω, or (Δ2ai)i≥n2 = 0k−1 (−1)1 0ω, otherwise
it contradicts Proposition 1. In both cases the statement holds. ��

Case m(Er) ≤ G1 < M(Er+1) with r + 1 ≤ p
2 . Note that it is always true

that m(E1) = gp ≤ g1. In this case, we will prove two preliminary lemmas and
a description of (Δ2vi)i≥n2 similar to Theorem 4.

Lemma 4. In (Δ2vi)i≥n2 two 1 are separated by at least p − r − 1 values 0.

Proof (sketch). In terms of the automaton AR, while the state q ends with
strictly less than p − r − 1 values 0, there is only one transition (adding a new 0
at the end of q) because m(q) ≥ g1 (the minimal case for m is q = 0r 1 0p−r−2 =
Er+1). The result follows by induction. ��
The next Lemma tells that p − r values 0 in Δ2v stop the avalanche.

Lemma 5. If Δ2vj = 1 and Δ2vj+p−r = 0 for j > n2 + p, then (ai)i≥j+2 = 0ω.

Proof (sketch). The goal is again to reach the stopping condition of Theorem 3.
From Lemma 4, the hypothesis, and because m(Ep−1)+g1 = G, we have Δhj+2+
g1 = m(Δ2Vj+1)+g1 ≤ m(Ep−1)+m(Er−1)+g1 < G+g1. It follows from similar
arguments that Δhj+k + gk−1 < G + gk−1 for 2 ≤ k ≤ p + 1, thus Theorem 3
(item 3) applies. ��
Theorem 5. (ai)i≥n2+p ∈ 1∗ 0ω and (Δ2vi)i>n2+p is suffix of an element in
(0p−r−1 1)∗ (0 + ε) (0p−r−1 1)∗ 0ω.

Proof (sketch). The result is proven by induction on N . The base case is obvi-
ous, and the induction is obtained from Eq. (6), and the constraints given by
Proposition 1, Lemmas 4 and 5. ��

430 K. Perrot and É. Rémila

4 Conclusions and Perspectives

This paper has explored the language LR of the sequences of slopes of fixed
points in decreasing sandpile models described by a transition rule R. After a
general development based on linear algebra, in two cases, Theorems 4 and 5
give precise asymptotic characterizations of Δ2v, which apply to the sequences
of slopes (via Proposition 1). We conjecture that a similar characterization holds
for any decreasing sandpile rule (see Conjecture 1).

Note that for the two cases we solved, we have wl = wr (from the label-
ing of recurrence automata and Theorem 2), but this is not always the case.
For example, we strongly conjecture that for the rule (6, 1, 1, 1, 1), the sequence
Δ2v is asymptotically of the form (0011)kl (0 + ε) (01)kr and a subsequent
avalanche leads to (1100)kl−1 0 (01)kr+2 when the central part was 0, and to
(1100)kl+1 (01)kr−2 when the central part was ε. Hence wl and wr may differ.

The proof technique works in several stages, that may highlight the fact that
sandpiles are at the edge between discrete and continuous systems. Lemma 1
uses arguments of linear algebra corresponding to a rough continuous nature,
while Lemma 2 and Sect. 3 refine the study with precise combinatorial arguments
corresponding to discrete dynamical phenomena.

The structure of avalanches is also an interesting point of view. We propose
the following conjecture, satisfied for the cases treated completely in Sect. 3.

Conjecture 2. For any decreasing sandpile rule R and any positive integer N ,
there exists n in Ø(log(N)) such that the N th avalanche verifies (ai)i≥n ∈ 1∗ 0ω.

According to the conjectures above, fixed points and avalanches are characterized
on the right of some column n in Ø(log(N)) compared to their width in Θ(

√
N)

i.e., asymptotically completely. Though its relative size tends to be null, the
unknown part between 0 and n is not bounded. The conjectures mean that as
we add grains one by one, they trigger avalanches that let grains create and
maintain regular patterns, after a transitional phase of unbounded length. Let
us finish on a question: should this process be called self-organized emergence?

References

1. Baader, F., Nipkow, T.: Term Rewriting and all that. University Press, Cambridge
(1998)

2. Bak, P., Tang, C., Wiesenfeld, K.: Self-organized criticality: an explanation of the
1/f noise. Phys. Revi. Letter 59, 381–384 (1987)

3. Chazelle, B.: Natural algorithms. In: SODA, pp. 422–431 (2009)
4. Dhar, D.: Theoretical studies of self-organized criticality. Phys. Stat. Theor. Phys.

369(1), 29–70 (2006)
5. Durand-Lose, J.O.: Parallel transient time of one-dimensional sand pile. Theor.

Comput. Sci. 205(1–2), 183–193 (1998)
6. Formenti, E., Masson, B.: On computing fixed points for generalized sand piles.

Int. J. Unconventional Comput. 2(1), 13–25 (2005)

Emergence on Decreasing Sandpile Models 431

7. Formenti, E., Van Pham, T., Phan, H.D., Tran, T.H.: Fixed point forms of the
parallel symmetric sandpile model. Theor. Comput. Sci. 533, 1–14 (2014)

8. Gardner, R.B., Govil, N.K.: Some generalizations of the eneström-kakeya theorem.
Acta Math. Hung. 74(1–2), 125–134 (1997)

9. Goles, E., Kiwi, M.: One-dimensional sandpiles, cellular automata and related mod-
els, pp. 169–185. Nonlinear Phenomena in Fluids, Solids and Other Complex Sys-
tems (1991)

10. Goles, E., Kiwi, M.: Games on line graphs and sand piles. Theor. Comput. Sci.
115(2), 321–349 (1993)

11. Goles, E., Latapy, M., Magnien, C., Morvan, M., Phan, H.D.: Sandpile models and
lattices: a comprehensive survey. Theor. Comput. Sci. 322(2), 383–407 (2004)

12. Goles, E., Morvan, M., Phan, H.D.: The structure of a linear chip firing game and
related models. Theor. Comput. Sci. 270(1–2), 827–841 (2002)

13. Katok, A., Hasselblatt, B.: Introduction to the Modern Theory of Dynamical Sys-
tems. University Press, Cambridge (1996)

14. Muller, D.E.: Infinite sequences and finite machines. In: SWCT, pp. 3–16 (1963)
15. Perrot, K., Rémila, E.: Kadanoff sand pile model. Avalanche structure and wave

shape. Theor. Comput. Sci. 504, 52–72 (2013)
16. Perrot, K., Rémila, É.: Emergence of wave patterns on kadanoff sandpiles. In:

Pardo, A., Viola, A. (eds.) LATIN 2014. LNCS, vol. 8392, pp. 634–647. Springer,
Heidelberg (2014)

17. Perrot, K., Rémila, E.: Strong emergence of wave patterns on kadanoff sandpiles.
submitted to a journal (2015)

Lost in Self-Stabilization

Damien Regnault1(B) and Éric Rémila2

1 IBISC, EA4526, Université d’Évry Val-d’Essonne,
91037 Évry, France

damien.regnault@ibisc.univ-evry.fr
2 GATE LSE (UMR CNRS 5824), Université de Lyon,

Site Stéphanois, 42023 Saint-Etienne, France
eric.remila@univ-st-etienne.fr

Abstract. Let ta and tb a pair of relatively prime positive integers. We
work on chains of n(ta + tb) agents, each of them forming an upper and
rightward directed path of the grid Z

2, from O = (0, 0) to M = (nta, ntb).
We are interested on evolution rules such that, at each time step, an agent
is randomly chosen on the chain and is allowed to jump to another site
of the grid, with preservation of the connectivity of the chain, and the
endpoints. The rules must be local, i.e. the decision of jumping or not
only depends on the neighborhood of fixed size s of the randomly chosen
agent, and not on the parameters ta, tb, n.

In the paper, we design such a rule which, starting from any chain
which does not crosses the continuous line segment [O, M], reorganizes
the chain by iterate applications of the rule, in such a way such that
it stabilizes into one of the best possible approximations of [O, M]. The
stabilization is reached after O(n(ta + tb))

4) iterations.

1 Introduction

1.1 The Result

In this paper, we define and analyze a random process whose interest is at the
crossroad of many different domains. Among all the different interpretations
of our work, we choose a simple graphical representation to ease the reading
of the article. Our model is precisely described in Sect. 2, but we now give an
informal presentation. We work on a 2D discrete grid of size A × B. We are
given a chain of A + B agents, which forms an upper and rightwards directed
path between the opposite endpoints of the grid, of coordinates (0, 0) and (A,B)
such that two successive agents are neighbors. We want to design a rule such
that, at each time step, an agent is randomly chosen and is allowed to jump in
an other site of the grid, with preservation of the connectivity of the chain. The
goal of the process is to reorganize the chain in such a way such that it stabilizes
into the best possible approximation of the continuous line, of slope B

A , passing

This work is partially supported by Programs ANR Dynamite, Quasicool (ANR-12-
JS02–011-01) and IXXI (Complex System Institute, Lyon).

c© Springer-Verlag Berlin Heidelberg 2015
G.F. Italiano et al. (Eds.): MFCS 2015, Part I, LNCS 9234, pp. 432–443, 2015.
DOI: 10.1007/978-3-662-48057-1 34

Lost in Self-Stabilization 433

by the opposite endpoints, i.e. the path which is included in a strip of slope B
A

with the lowest possible thickness.
We present here a distributed algorithm which achieves this goal with very

few requirements. All modifications are decided locally by the agents which are
memoryless, disoriented and have a limited range of communication. The deci-
sions only rely on the relative position of the closest neighboring agents. The
resulting dynamics stabilizes into the desired position in O((A+B)4) time steps
in expectation up to two constraints.

The first constraint concerns the local sight s of each agent (i.e. an agent
can only observe sites which are at distance at most s from its own position).
Let (ta, tb) be the pair of relatively prime positive integers such that tb

ta
= B

A .
We prove that our process succeeds as soon as ta + tb ≤ s. We also show that
this bound on the sight is almost tight: a sight of at least ta + tb − 1 is needed
to self-stabilize a discrete line of slope B

A .
The second constraint is that initially all agents are in the same side of the

continuous line linking the two endpoints. We conjecture that this constraint can
be removed by allowing a larger sight to sites close to endpoints. Nevertheless,
in the general case, we can ensure a good approximation of the continuous line.
Moreover, if we avoid boundary effects by identifying the endpoints of the chain,
(creating a cycle) we also get an optimal approximation of the continuous line.

1.2 Contexts

The algorithm developed here draw inspiration from many different works. Due
to space constraints, we cannot develop in details all these interconnections. The
model was initially developed to study the cooling process of crystals. At high
temperature, the arrangement of atoms is chaotic but when the temperature
decreases atoms self-stabilize into an ordered structure: a crystal. Crystals are
commonly modeled by tilings [8]. In a set of studies [2,3] we developed a model
which transforms an unordered tiling into an ordered one. This article extends
a previous study [7] to deal with non-identical initial proportions of atoms.
A source of inspiration to develop the solution proposed here came from the
Go-To-The-Middle algorithm to solve the robot chain problem [4] in distrib-
uted computing. For this community, our work can be seen as a discretization of
Go-To-The-Middle. Note that this discretization of a continuous algorithm is
far from trivial. As a proof of this complexity, we show that if the space is dis-
crete then the robots need to know the position of more than two of their nearest
neighbors to be efficient (see Theorem 4) unlike the continuous case where this
condition is not necessary. Also, it is important to note that this problem is
heavily linked to language theory. Indeed a discrete line on the plane can be rep-
resented as a word. Words representing a discrete approximation of a continuous
line of rational slope are called Christoffel word [1] (Sturm words are a discrete
approximation of continuous lines of irrational slope). Also, for dealing with
technical details during the analysis of our algorithm, we use a height function
[9,11] on tilings and some previous studies on probabilistic cellular automata [6].

434 D. Regnault and É. Rémila

In Sect. 2, we define formally our problem. In Sect. 3, we present our process
and its main properties. We show that the obtained dynamics quickly converges
to a solution which is close to the objective line, and give our results in Sect. 41.
Finally in Sect. 5, we present some questions left open by this paper.

2 The Model

2.1 Configurations and Associated Words

Let (A,B) be a pair of positive integers. We state gcd(A,B) = n, ta = A
n ,

tb = B
n , ta,b = ta + tb and m = A + B = n ta,b. The ratio B

A = tb
ta

represents the
slope of the continuous line of equation: −tbx + tay = 0, passing by (0, 0) and
(A,B), that we wish to approximate. This line is called the ideal line. In this
paper, elements of N2 are called sites.

We state: a = (1, 0), b = (0, 1) and Σ = {a, b}. A configuration c is a sequence
(c0,, cm) of sites such that c0 = (0, 0), cm = (A,B) and for each i < m, either
ci+1 − ci = a or ci+1 − ci = b. The set of configurations is denoted by P. The
word w associated to the configuration c is the word w = w1w2...wm of Σm, such
that; for each i of {1, 2, ...m}, wi is the value of ci − ci−1.

For each word w of Σ∗, let |w|a (respectively |w|b) denote the number of
letters a (respectively b) in w, and |w| = |w|a + |w|b. If w is associated to a
configuration c, then we have |w|a = A; |w|b = B. Conversely, for each word w
of Σm, with |w|a = A and |w|b = A, can be associated to a unique configuration
c of P, i.e. P and {w ∈ Σm : |w|a = A and |w|b = B} are in bijection.

For each site c = (x, y), we define the height h(c) = −tbx + tay. In the
following, we will extensively use the following properties:

Property 1. Let c and c′ denote two sites.

– h(c + a) = h(c) − tb and h(c + b) = h(c) + ta,
– we have h(c) = h(c′) if and only if there exists an integer k such that c′ − c =

k(ta, tb),
– we have h(c) ≡ h(c′) mod (ta,b) if and only if there exists two integers k and

k′ such that c′ − c = k(ta, tb) + k′(−a + b).
In particular, for each i of {0, . . . , m}, the value h(ci) mod (ta,b) does not
depend on the configuration c but only on i mod (ta,b).

For a configuration c, we define hmin(c) = min{h(ci), 0 ≤ i ≤ m} and
hmax(c) = max{h(ci), 0 ≤ i ≤ m}. Thus the configuration c is included the
closed strip limited by lines (of slope tb

ta
) of equations −tbx + tay = hmin(c) and

−tbx + tay = hmax(c). Moreover this strip is the smallest one among all strips
limited by lines of slope tb

ta
. The thickness Δh(c) of the configuration c is defined

by Δh(c) = hmax(c) − hmin(c). The properties of values modulo ta,b imply that
Δh(c) ≥ ta + tb − 1.

1 An extended version of the analysis of Sect. 4 can be found in http://arxiv.org/abs/
1410.7669.

http://arxiv.org/abs/1410.7669
http://arxiv.org/abs/1410.7669

Lost in Self-Stabilization 435

Among all configurations of P, we will focus on the ones which are good
approximations of the ideal line, i.e. configurations c such that Δh(c) is minimal.
The words associated to these configurations are called Christoffel words and are
extensively studied [1]. We use the following definition of Christoffel words, which
is the most practical in our context: the word w associated to a configuration c
is a Christoffel word of slope tb

ta
if and only if Δh(c) = ta + tb − 1. We will also

say that, in such a case, c is a Christoffel configuration.

2.2 Local Transition Rules

Configurations are static objects, now we introduce a way to modify them locally.
Consider a configuration c and 2 ≤ i ≤ m, the configuration c′ obtained by
flipping letters i − 1 and i in c is defined as follows: consider the words w,w′

of Σm where w is the word associated to configuration c and w′ is obtained
by flipping letters wi−1 and wi in w, i.e. w′

i−1 = wi, w′
i = wi−1 and for all

j ∈ {1, . . . , m} \ {i− 1, i}, w′
j = wj ; then c′ is the configuration associated to w′.

Note that for all 0 ≤ j ≤ m such that j �= i we have cj = c′
j and:

– if wi−1 = a and wi = b then c′
j = cj − a + b and the flip is called increasing,

– if wi−1 = b and wi = a then c′
j = cj + a − b and the flip is called decreasing.

We will also denote this operation as “flipping in site ci” for a configuration
c. Consider a configuration c, doing an increasing (resp. decreasing) flip in ci

increases (resp. decreases) the height of this site from ta,b units.
We fix a positive integer s. Let Σ≤s denote the set of non-empty words on Σ of

length at most s, i.e. Σ≤s =
⋃s

s′=0 Σs′
. Let c be a configuration, w its associated

word, and i such that 1 ≤ i ≤ m − 1. The right word wr(c, i) in i for c is the
word w(c, i) of Σ≤s defined by wr(c, i) = wi+1 wi+2 ...wi+s when i + s ≤ m,
and wr(c, i) = wi+1 wi+2 ...wm when i + s > m. In a similar way, the left word
wl(c, i) in i for c is the word wl(c, i) of Σ≤s defined by wl(c, i) = wi wi−1...wi−s+1

when i ≥ s, and wl(c, i) = wi wi−1...w1 when i < s. We choose to write wl(c, i)
reversing indices, since we adopt the point of view of a processor located in ci,
which reads words starting from its own position.

A local transition rule of sight s is given by a function δ : (Σ≤s)2 →
{0, 1}. Given a configuration c, we say that the site ci is active in c when
δ(wl(c, i), wr(c, i)) = 1. Otherwise, the site ci is inactive.

Notice that from our formalism, the activity status of a site ci does not
depend on any global parameters ta, tb, n,m, the integer i and the position of ci

on the grid. We say that the rule is local, anonymous and that ci is partially lost.
We say “partially lost” since there exist rules which allow ci to use some local
elements of orientation: the site does not know its own position, but, nevertheless,
it can possibly make difference between the top and the bottom, and between
clockwise and counterclockwise senses, and use these informations to choose its
activity status. We want to use a rule for which sites are “completely lost”, in
the sense that the rule does not use the informations above. Formally, a rule δ

436 D. Regnault and É. Rémila

is totally symmetric when for each pair (w,w′) of (Σ≤s)2, we have δ(w,w′) =
δ(w′, w) = δ(g(w), g(w′)), where g is the word morphism on Σ∗ such that g(a) =
b and g(b) = a.

By abuse of notation, for a configuration c (which may be a random con-
figuration), we design by δ(c) the random configuration obtained as follows:
a number i of {1, 2, ...,m − 1} is selected uniformly at random, and if the corre-
sponding site ci is active, then it is flipped, otherwise δ(c) = c.

The transition rule δ introduces a discrete Markovian process on configura-
tions: let ct design the configuration at time t, c0 is the initial configuration. The
configuration at time t + 1 is a random variable defined by ct+1 = δ(ct).

3 The Specific Transition Rule

Our aim is to specify the rule δ in order to construct a coalescence process, i.e.
a totally symmetric local transition rule such that:

– any initial configuration will reach a Christoffel configuration of slope tb
ta

in
polynomial expected time,

– all Christoffel configurations of slope tb
ta

are stable, i.e. have no active site.

We will now describe our transition rule δ. We use an auxiliary rule δ′ such
that, for each pair (w,w′) of (Σ≤s)2, δ′(w,w′) = δ′(g(w), g(w′)). We define δ by:
for each pair (w,w′) of (Σ≤s)2, we have δ(w,w′) = max{δ′(w,w′), δ′(w′, w)}.
This ensures δ to be totally symmetric.

To completely define δ′, since for each pair (w,w′) of (Σ≤s)2, δ′(w,w′) =
δ′(g(w), g(w′)), it suffices to define δ′(w,w′) when w′

1 = b. We have several
constraints to have δ′(w,w′) = 1. If those constraints are simultaneously satisfied
then, δ′(w,w′) = 1. Otherwise δ′(w,w′) = 0. These constraints are stated and
explained below.

Sight Constraint: the first constraint is that:

|w′| = s. (1)

The interpretation is clear, ci must have a visibility at least s on its right side.

Weak Thickness Constraint: This second constraint is the heart of the
process. It ensures that the thickness of the configuration is not increasing wher-
ever the flip is done. This is not trivial without the knowledge of (ta, tb).

For 1 ≤ i ≤ s, we define a′
i (respectively b′

i) as the number of a (respectively
b) in the prefix of length i of w′, i.e. the word w′

1w
′
2...w

′
i; and for 1 ≤ j ≤ |w|,

we define aj (respectively bj) as the number of a (respectively b) in the prefix
of length j of w. i.e. the word w1w2...wj . We define (ra, rb) as (a′

i, b
′
i), with b′

i

a′
i

minimum (with the convention b
0 = +∞). In case of tie, we take the pair with

the lowest index i (according to the previous convention, for w′ = bb....b, we take
(ra, rb) = (1, 0)).

Lost in Self-Stabilization 437

The second constraint necessary to possibly have δ′(w,w′) = 1 is:

∃ j ∈ {1, 2, ..., s} | rbaj − rabj ≥ ra + rb. (2)

•
•

•

•
•

ci

ir

ci−3

ci−6

ci−7

ci − a+ b

Fig. 1. The site ci has a sight of 8 and this scheme represents the test to determine if ci
is active or not. Sites ci−3, ci−6 and ci−7 satisfy the weak thickness constraint ensuring
that the thickness will not increase by doing a flip in ci. Nevertheless, site ci−6 does not
satisfy the strong thickness constraint (introduced later) needed to ensure a polynomial
convergence time on expectation.

Notice that −rbx + ray ≥ ra + rb + h(ci) is an equation of the half-plane
limited by the line �′

r of slope rb

ra
passing by ci − a + b, and not containing ci.

The condition claims that there exists a site ci−j , with 1 ≤ j ≤ s, which is
element of this half-plane, i. e. is over the limit line (Fig. 1).

Definition 1. Let s be a positive integer. A pair (u, v) of N2 is visible by s if
u + v ≤ s.

Lemma 1. Assume that (ta, tb) is visible by s. Let c be a configuration and
i ∈ {1, 2, ...,m − 1} such that, if we state (wl(c, i), (wr(c, i)) = (w,w′), then
(w,w′) satisfies the two constraints above, and let j be an integer allowing to
satisfy the thickness constraint.

– If rb

ra
> tb

ta
, then h(ci) + ta + tb ≤ h(ci+ta+tb),

– If rb

ra
< tb

ta
, then h(ci) + ta + tb < h(ci−j),

– If rb

ra
= tb

ta
, then h(ci) + ta + tb ≤ h(ci−j). Moreover, in this case we have the

equivalence:

rbaj − rabj = ra + rb ⇐⇒ h(ci) + ta + tb = h(ci−j).

Proof. The two first cases are illustrated in Fig. 2. If rb

ra
> tb

ta
, then, first, since

i ≡ (i+ta+tb) mod (ta+tb), we have h(ci) ≡ h(ci+ta+tb) mod (ta+tb). Thus, it
suffices to prove that h(ci+ta+tb) > h(ci). We have h(ci+ta,b

) = h(ci)−a′
ttb+b′

tta.

438 D. Regnault and É. Rémila

Thus, if a′
t = 0 (which implies b′

t = ta,b) then we are done. Otherwise, we have
b′
t

a′
t

≥ rb

ra
> tb

ta
, which gives

h(ci+ta,b
) = h(ci) − a′

ttb + b′
tta = h(ci) + a′

t(−tb +
b′
t

a′
t

ta)

> h(ci) + a′
t(−tb +

tb
ta

ta) = h(ci)

which gives the first item.
If rb

ra
< tb

ta
, then, h(ci−j) = h(ci−aja−bjb) = h(ci)+tbaj−tabj . Thus, we have

to prove that tbaj − tabj > ta + tb, which can be rewritten in tb
ta

(aj −1) > bj +1.
On the other hand, the condition 2 can be rewritten in rb

ra
(aj − 1) ≥ bj + 1

(notice, that, with our convention, rb

ra
< tb

ta
implies that ra �= 0). This ensures

that aj − 1 > 0. Thus, since rb

ra
< tb

ta
, we obtain:

tb
ta

(aj − 1) >
rb

ra
(aj − 1) ≥ bj + 1.

which is the result.
If rb

ra
= tb

ta
, we proceed as in the second case to get

tb
ta

(aj − 1) =
rb

ra
(aj − 1) ≥ bj + 1.

which gives the inequality. On the other hand, tb
ta

(aj − 1) = bj + 1 if and only if
tbaj − tabj = ta + tb, i.e. h(ci−j) = h(ci) + ta + tb. This gives the equivalence.

Corollary 1. For any configuration c, we have:

hmin(c) ≤ hmin(δ(c)) ≤ hmax(δ(c)) ≤ hmax(c),

and, therefore, Δh(δ(c)) ≤ Δh(c).

ci

ci − a + b

•
•

ci

ci − a + b

•
•

�r

�′
r

l′opt

l′opt
lopt

•ci−j

•
•

ci+ta,b

(3, 1)

Case (a) Case (b)

Fig. 2. The main ideas of Lemma 1: the site ci has a sight of 8, (ra, rb) = (1, 2), thus
the slope of �r and �′

r is 1
2
. In the case (a), the line �′

opt has a slope of 2
3
and the site

ci−j is over �′
opt. In the second case, the line �′

opt has a slope of 1
3
and the site ci+ta,b

is over �′
opt.

Lost in Self-Stabilization 439

We also have the corollary below, noticing that if a site was flipped in a Christoffel
configuration, then either hmax would be increased, which is not possible, or hmin

would be decreased, which is also impossible, by symmetry of the process.

Corollary 2. Christoffel configurations are stable for any process satisfying the
constraints above.

Strong Thickness Constraint: Assume now that both previous constrains
are satisfied, and that, when a flip is done on i, then the new site indexed
by i is of maximal height. This may happen when h(ci) + ta,b = hmax. If the
maximal height appears in i, then the closest indices where the maximal height
can eventually also be reached are i + ta,b and i − ta,b, because of congruence
conditions of Property 1. We want to be sure that our process creates no isolated
maximum: if the maximal height hmax is reached in i, then i is not an isolated
maximum, in the sense of h(ci+ta,b

) = hmax or h(ci−ta,b
) = hmax. This is useful

in the analysis, for energy compensations.
But in the same time, we want to allow a sufficient instability to the process

in order to make it move to a better configuration. This is ensured by enforcing
the weak thickness constraint as follows (the set {1, 2, . . . , s} is denoted by [s]):

∃j ∈ [s]|(aj − rabj > ra + rb) ∨ (aj − rabj = ra + rb ∧ gcd(aj − 1, bj + 1) = 1).
(3)

The strong constraint adds that if all sites ci−j are in the limit line, directed by
(ra, rb) passing through the site ci − a + b, then there exists a site such that the
components of the vector ci − a + b − ci−j are relatively prime.

If this strong constraint is satisfied, then the weak constraint is automatically
satisfied. Nevertheless we prefer to present the process in this way, in order to
have a real understanding of the motivations of the rules.

Lemma 2. Assume that (ta, tb) is visible by s. Let c be a configuration, i ∈
{1, 2, ...,m − 1} and (wl(c, i), wr(c, i)) = (w,w′). Assume that (w,w′) satisfies
the three constraints above and h(ci) + ta,b = hmax(c).

Then h(ci+ta,b
) = hmax(c) or h(ci−ta,b

) = hmax(c).

Proof. Lemma 1 directly gives the result when rb

ra
> tb

ta
, and, from Lemma 1 the

hypotheses cannot occur when rb

ra
< tb

ta
. Thus it remains to study the case when

rb

ra
= tb

ta
and h(ci) + ta,b = h(ci−j), which ensures that rbaj − rabj = ra + rb,

from Lemma 1.
In this case h(ci−j +a− b) = h(ci−j)− tb − ta = h(ci), thus, from Property 1,

there exists an integer k such that ci−j +a−b−ci = k(ta, tb), i.e. (−aj +1,−bj −
1) = k(ta, tb). We have −bj − 1 < 0 and, from the strong thickness constraint,
gcd(aj − 1, bj + 1) = 1. Thus, we necessarily have k = −1, which gives that
j = aj + bj = aj − 1 + bj + 1 = ta + tb = ta,b. Thus h(ci) + ta,b = h(ci−ta,b

).

440 D. Regnault and É. Rémila

4 Analysis

We start by presenting the lemma used to prove time efficiency of our process.
Lemma 3 is a classical result about martingales, its proof can be found in [6].

Lemma 3. Let k ∈ N and ε > 0. Consider (ct)t≥0 a random sequence of config-
urations, and E : P → N an energy function. Let, for any c, ΔE(c) = E(δ(c))−
E(c)), and let T = min{t : E(ct) = 0} be the random variable which denotes
the first time t where E(ct) = 0. Assume that, for any c such that E(c) > 0, we
conjointly have: E(c) ≤ k, E[ΔE(c)|c] ≤ 0, and Prob{|ΔE(c)| ≥ 1} ≥ ε. Then,
E[T] ≤ kE(c0)

ε .

Our strategy consists in using Lemma 3 for an “ad hoc” energy function, that we
will define now. Fix a configuration c0 such that hmax(c0) ≥ ta,b. The energy E(c)
of any configuration c is defined as follows. If hmax(c) �= hmax(c0), then E(c) = 0.
If hmax(c) = hmax(c0), then consider the set Border+ = {i ∈ {1, 2, ...m −
1}|∃i0 ∈ {1, 2, ...m − 1}h(c0i0) = hmax(c0) and i ≡ i0 mod (ta,b)}.

We recall that if i and j are both elements of Border+, then i ≡ j mod (ta,b).
Remark that n − 1 ≤ |Border+| ≤ n. We define the sets: Top+(c) = {i ∈
{1, 2, ...m − 1}|h(ci) = hmax(c0)}, Down+(c) = {(i ∈ Top+(c)|i + ta,b ≤ m, i +
ta,b /∈ Top+(c)}, Up+(c) = {i ∈ Top+(c)|i − ta,b ≥ 0, i − ta,b /∈ Top+(c)}. Notice
that we have Top+(c) ⊆ Border+. The energy E(c) of the configuration c is
the sum:

E(c) = 2|Top+(c)| + |Down+(c)| + |Up+(c)|
Proposition 1. When hmax(c0) ≥ ta,b, the energy defined above satisfies the
hypotheses of Lemma 3 with ε = 1

m−1 , and k = 3n

Proof. (sketch) One easily sees that E(c) < 3n since |Top+(c)| ≤ n,
|Down+(c)| + |Up+(c)| ≤ n − 1 and at least one equality must be strict. This
gives E(c) ≤ 3n.

Make a partition P+(c) of Border+(c) in subsets of at most three consecutive
elements in such a way that, for each i ∈ Down+(c), integers i and i + t are in
the same subset, and for each i ∈ Up+(c) such that i − 2ta,b /∈ Top+(c), then
integers i and i − ta,b are in the same subset. A straighforward case by case
analysis gives that or each subset S the total contribution of elements of S to
the value of E[ΔE(c)|c] is not positive. Thus, we get E[ΔE(c)|c] ≤ 0.

The fact that Prob{|ΔE(c)| ≥ 1} ≥ 1
m−1 is a direct consequence of Lemma 4

below. By definition, Top+ is not empty. The site ci of Top+ of lowest index is
active. (notice that we need the hypothesis : hmax(c0) ≥ ta,b to ensure it, in the
case when i < ta,b), and when i is randomly chosen, with probability 1

m−1 , the
energy decreases from at least 1 unit (actually 2 units, except when i < ta,b and
i + ta,b ∈ Top+(c)), or i > m − ta,b and i − ta,b ∈ Top+(c)).

Lemma 4. Let c be a configuration. Assume that there exists i ≤ m − s such
that h(ci) = hmax(c) (respectively h(ci) = hmin(c)), and there exists j such that
0 < j ≤ ta,b and h(ci−j)+ ta,b ≤ hmax(c) (respectively h(ci−j)− ta,b ≥ hmin(c)).
Then, the site ci is active in c.

Lost in Self-Stabilization 441

The proof is done by a local analysis.

4.1 Results

Nonnegative Configurations. We say that a configuration is nonnegative if
for each i ∈ {0, 1, ...,m} we have h(ci) ≥ 0.

Theorem 1. If (ta, tb) is visible by s, and the configuration c0 is nonnegative,
then the random process is a coalescence process in O(n4) time units in average.
The configuration reached is the unique Christoffel configuration c[0,ta,b−1] such
that hmax(c[0,ta,b−1]) = ta,b − 1 and hmin(c[0,ta,b−1]) = 0.

Proof. We can decompose T =
∑2n−1

j=ta,b
Tj where Tj is the time to get a con-

figuration c such that hmax(c) ≥ j − 1 from a configuration c′ such that
hmax(c′) ≥ j. From Proposition 1, we have E[Tj] ≤ (2n−1)2(m−1), thus E[T] ≤
(2n − 1)3(m − 1). Moreover, from Corollary 1 we have, for any t, hmin(ct) ≥ 0.
Thus, after time T , we get a configuration c such that, hmax(c) ≤ ta,b − 1 and
hmin(c) ≥ 0 which ensures that c = c[0,ta,b−1]. We know that c[0,ta,b−1] is stable,
from Corollary 2.

The General Case with Fixed Endpoints. If we work with two energies,
one as described above, related to hmax, and one symmetric, related to hmin,
one gets, in a similar way:

Theorem 2. If (ta, tb) is visible by s, then, with any initial configuration, the
random process almost surely reaches a configuration c such that: −ta,b + 1 ≤
hmin(c) < hmax(c) ≤ ta,b−1. The time T necessary to reach such a configuration
is O(n4) in average.

Notice that our arguments fail to continue to decrease the thickness, because of
difficulties at the boundary. For hmax(c) ≤ ta,b − 1, when the lowest element i
of Top+(c) is such that i ≤ ta,b, we can cannot ensure that i is active.

Thus Theorem 2 is partially satisfying: we reach a set of configurations which
are only partially stable. Sites ci with i ≡ 0 mod (ta,b) are no more active and
are on the ideal line of equation −tbx+ tay = 0. But some other sites can remain
active. Nevertheless, these sites only have the freedom to oscillate around the
ideal line, between the two postions which are the closest ones to the ideal line,
i.e. the positions of lowest positive height, and of largest negative height.

It is not possible to always get the optimal thickness with our algorithm.
For example, for s = 5 and (ta, tb) = (3, 2), consider the configuration
c associated word (ba2ba)n−1ba3b. We have h(cm−1) = hmin(c) = −3 and
h(c1) = hmax(c) = 3. Moreover, with Lemma 1, one can easily see that, for
any integer t > 0, h(δt(c)1) = 3 and h(δt(c)m−1) = −3.

442 D. Regnault and É. Rémila

The General Periodic Case. Notice that configurations can be seen as cycles
by identifying site c0 and site cm. We call it the cyclic model. Formally, instead
of considering sites as elements of Z

2, they are considered as elements of the
quotient space Z

2/n(ta, tb)Z. This makes two main differences: the site c0 can be
possibly active, and for each configuration c and each index i, we have |wl(c, i)| =
|wr(c, i)| = s, so the sight constraint becomes irrelevant.

Using a very light modification of the energy function (adding two units for
the energy when Top+(c) = Border+), we obtain the following result.

Theorem 3. In the cyclic model, if (ta, tb) is visible by s, from any origin con-
figuration c0, the random process is a coalescence process whose coalescence time
T is O(n4) in average.

Theorem 4 (Impossibility Result). Consider any local rule δ of sight s for
which Christoffel configurations of slope 1

s+1 are stable.
Then, for any k > 0, there exists a configuration c, linking (0, 0) to (2k(s+1),

2k), such that Δh(c) ≥ k and c is stable for δ.

Proof Consider the words w = as+1b, w′ = asb, w′′ = as+2b, the configura-
tion c corresponding to w2k and c′ corresponding to w(w′′)k−1(w′)k−1w. The
configuration c corresponds to a Christoffel word where all letters b are sepa-
rated by at least s + 1 letters a. Then, if c is stable under the local rule δ, then
δ(as, bas−1) = δ(bas−1, as) = 0.

The equalities above ensure that if a letter b is surrounded by s letters a
in each of its sides, then this letter cannot be involved in a flip induced by the
process δ. It follows that c′ is stable for δ, since in configuration c′, all letters b
are separated by at least s letters a.

5 Conclusion and Open Questions

In this part, we start by presenting the improvements which can be done to this
paper. Then we focus on the possible extensions and applications of our work.

We think that the rule introduced here is optimal in terms of sight and
convergence speed in our setting. Nevertheless, we think that our analysis is
not optimal and we conjecture that our random process converges in O(n3).
Our analysis considers only the sites of maximal height and forgets about a lot
of useful updates which are done in parallel. Also, we think that our rule for
synchronizing the endpoints is not optimal in time and sight. We conjecture
that both endpoints can be synchronized in polynomial time according to n, s
and ta,b with agents whose sight is 2s (which is the minimum to see two potential
periods, when there is no visibility in one side) at the endpoints.

Another interesting question is to generalize our process to dimensions
greater than two, i.e. to an alphabet with more than two letters for the lan-
guage theory version of this problem. In ongoing works, our process is work-
ing well experimentally in greater dimensions, if it is given a big enough sight,

Lost in Self-Stabilization 443

but we are not able yet to prove that there is no interlocking between the letters.
This extension is interesting for two applications of our work.

The first application is for studying a model of cooling processes in crystal-
lography [2,3,7]. In this paper, we study in fact a “simple” case where two kinds
of atoms are disposed on a line and these atoms want to diminish the interac-
tions with the atoms of the same kind. Increasing the dimension of this problem
corresponds to consider more than two kinds of atoms. All these studies aims
to present and analyze a cooling model for a 2D aperiodic tiling like Penrose
tiling. Aperiodic tilings correspond to quasicrystal and actually fabricating a
quasicrystal of large size is not possible because the cooling process is not well
understood. The result presented here is the first which does not require to have
the same proportions of the different kinds of atoms.

The second application would be to generalize the density classification prob-
lem [10]. In this problem, we consider a one dimensional chain of agents. There
are two states and each agent can memorize only one state. Using a distributed
algorithm, agents must determine the majority state in the initial configuration
while storing only one state by agent. Recently Fatès [5] solved this problem
with any arbitrary precision using a probabilistic dynamics. We think that our
result can be used to generalize the density classification to densities different
than 1

2 . Moreover, if our process can be generalized to more than two states,
then we may be able to solve the density classification problem, with more than
two states.

References

1. Berstel, J.: Sturmian and episturmian words. In: Bozapalidis, S., Rahonis, G. (eds.)
CAI 2007. LNCS, vol. 4728, pp. 23–47. Springer, Heidelberg (2007)

2. O. Bodini, T. Fernique, and D. Regnault. Quasicrystallization by stochastic flips.
In: Proceedings of Aperiodics 2009 Journal of Physics, vol. 226(012022) (2010)

3. Bodini, O., Fernique, T., Regnault, D.: Stochastic flip of two-letters words. In:
Proceedings of ANALCO2010, pp. 48–55. SIAM (2010)

4. Dynia, M., Kutylowski, J., Lorek, P., auf der Heide, F.M.: Maintaining communica-
tion between an explorer and a base station. In: Pan, Y., Rammig, F.J., Schmeck,
H., Solar, M. (eds.) BICC 2006. IFIP. Springer, Heidelberg (2006)

5. Fatès, N.: Stochastic cellular automata solve the density classification problem with
an arbitrary precision. In: Proceedings of STACS 2011, pp. 284–295 (2011)

6. Fatès, N., Morvan, M., Schabanel, N., Thierry, É.: Fully asynchronous behavior
of double-quiescent elementary cellular automata. Theor. Comput. Sci. 362(1–3),
1–16 (2006)

7. Fernique, T., Regnault, D.: Stochastic flip on dimer tilings. In: Proceedings of
AofA2010, DMTCS, vol. AM, pp. 207–220 (2010)

8. Henley, C.L.: Random tiling models. In: Quasicrystal, A State of the Art. World
Scientific (1991)

9. Burton, Jr., J.K., Henley, C.L.: A constrained potts antiferromagnet model with
an interface representation. J. Phys. A 30, 8385–8413 (1997)

10. Packard, N.H.: Adaptation toward the edge of chaos. In: Dynamic Patterns in
Complex Systems, pp. 293–301. World Scientific, Singapore (1988)

11. Thurston, W.P.: Conways tiling groups. Am. Math. Mon. 97, 757–773 (1990)

Equations and Coequations
for Weighted Automata

Julian Salamanca1(B), Marcello Bonsangue1,2, and Jan Rutten1,3

1 CWI Amsterdam, Amsterdam, The Netherlands
salamanc@cwi.nl

2 LIACS - Leiden University, Leiden, The Netherlands
3 Radboud University Nijmegen, Nijmegen, The Netherlands

Abstract. We study weighted automata from both an algebraic and a
coalgebraic perspective. In particular, we consider equations and coequa-
tions for weighted automata. We prove a duality result that relates sets
of equations (congruences) with (certain) subsets of coequations. As a
consequence, we obtain two equivalent but complementary ways to define
classes of weighted automata. We show that this duality cannot be gen-
eralized to linear congruences in general but we obtain partial results
when weights are from a field.

1 Introduction

Weighted automata are a generalization of non-deterministic automata intro-
duced by Schützenberger [14]. Every transition is associated with an input let-
ter from an alphabet A and a weight expressing the cost (or probability, time,
resources needed) of its execution. This weight is typically an element of a semi-
ring. The multiplication of the semiring is used to accumulate the weight of a
path by multiplying the weights of each transition in the path, while the addition
of the semiring computes the weight of a string w by summing up the weights of
the paths labeled with w [11]. In this way, the behaviour of weighted automata
is given in terms of formal power series, i.e. functions assigning a weight to each
finite string w over A.

Weighted automata may have a non-deterministic behaviour because differ-
ent transitions from the same state may be labeled by the same input letter,
with possibly different weights. However, they can be determinized by assigning
a linear structure to the state-space using a generalization of the powerset con-
struction for non-deterministic automata [5]. As such, determinized weighted
automata are typically infinite-state, but determinization allows us to study
weighted automata both from an algebraic perspective and a coalgebraic one.
From the algebraic perspective, a (determinized) weighted automaton is just an
algebra with a unary operation for each input symbol, whereas coalgebraically,

J. Salamanca—The research of this author is funded by the Dutch NWO project
612.001.210.

c© Springer-Verlag Berlin Heidelberg 2015
G.F. Italiano et al. (Eds.): MFCS 2015, Part I, LNCS 9234, pp. 444–456, 2015.
DOI: 10.1007/978-3-662-48057-1 35

Equations and Coequations for Weighted Automata 445

a weighted automaton is a deterministic transition system with output weights
associated to each state.

In this context, and building on the work by [3] on ordinary determinis-
tic automata and on the duality between reachability and observability [2,4,6],
we study equations and coequations for weighted automata. In general, equa-
tions characterize classes of algebras called varieties [7], whereas coequations
characterize classes of coalgebras, so-called covarieties [13]. Using the algebraic
perspective, an equation for a weighted automaton is just a pair of words (u, v).
Satisfaction becomes reachability: a weighted automaton satisfies an equation
(u, v) if from any state, the linear combination of states reached after reading u
is the same as the one reached after reading v [3].

Dually, the coalgebraic perspective allows us to define coequations for weighted
automata as subsets (or predicates) of power series. A weighted automaton M
satisfies a coequation S if for any function associating an output weight to each
state, the behaviour of M from any initial state is a power series in S.

Our main result is a duality between sets of equations called congruences
and sets of coequations called closed subsystems. More precisely, we prove that
the classes of weighted automata defined by congruences are in a one-to-one
correspondence with classes of weighted automata defined by closed subsystems.
This allows, for example, to give equational characterizations to some specific
subsets of power series and, vice versa, to define the least subset of power series
specified by a set of equations.

In the second part of the paper, we retain the linear structure of the transi-
tions of the determinized weighted automata, allowing for a more general kind
of equations, called linear. In general, a full duality result does not hold any-
more, but when the weights come from a field, we still have one direction of it:
a variety defined by a linear congruence can be recovered from a corresponding
covariety. As an example, we show that linear congruences (under certain condi-
tions) are finitely generated by a set of equations, using the fact that by Hilbert
basis theorem [10, VIII, Theorem 4.9], linear congruences correspond to ideals
of polynomials.

We will proceed as follows. After some mathematical preliminaries, in Sect. 3
we show how to construct the set of equations and coequations for a given weighted
automaton. In Sect. 4, we give the duality result between congruences and closed
subsystems. In Sect. 5, we move from Set to vector spaces and linear equations.
We conclude, in Sect. 6, with a discussion of related work.

2 Preliminaries

In this section, we will define the main concepts and notation used in this paper.
Given two sets X and Y we define Y X = {f | f : X → Y }. For a function
f ∈ Y X , we define the kernel and the image of f by

ker(f) = {(x1, x2) ∈ X × X | f(x1) = f(x2)} Im(f) = {f(x) | x ∈ X}.

For any set A we denote by A∗ the free monoid on A, its identity element
will be denoted by ε. Given an element f ∈ XA∗

and w ∈ A∗, we define the right

446 J. Salamanca et al.

derivative fw of f with respect to w and the left derivative wf of f with respect
to w as the elements wf, fw ∈ XA∗

such that for every u ∈ A∗,

fw(u) = f(wu), and wf(u) = f(uw).

Let A be an alphabet (not necessarily finite), a deterministic automaton on
A is a pair (X,α) where α : X×A → X is a function. We can add an initial state
x0 ∈ X or an output function c : X → O to get a pointed automaton (X,x0, α)
or a Moore automaton (X, c, α) with outputs in O, respectively. For any x ∈ X
and u ∈ A∗ we define u(x) inductively as ε(x) = x and wa(x) = α(w(x), a).

We have that pointed automata are F -algebras for the endofunctor F on Set
given by F (X) = 1 + (A × X). By using the correspondence α : X × A → X ⇔
α′ : X → XA, given by α(x, a) = α′(x)(a), Moore automata with outputs in O
are G-coalgebras for the endofunctor G on Set given by G(X) = O × XA. The
initial F–algebra is (A∗, ε, τ), where the transition function τ is concatenation,
that is τ(w, a) = wa, for all w ∈ A∗ and a ∈ A, and for any pointed automaton
(X,x0, α) the unique F–algebra morphism rx0 : (A∗, ε, τ) → (X,x0, α) is given
by rx0(w) = w(x0). Dually, the final G–coalgebra is (OA∗

, ε̂, τ̂), where ε̂(f) =
f(ε) and τ̂(f)(a) = fa, and for any Moore automaton (X, c, α) with outputs
in O, the unique G–coalgebra morphism oc : (X, c, α) → (OA∗

, ε̂, τ̂) is given by
oc(x) = λw.c(w(x)) ∈ OA∗

.
A semiring S is an algebra S = (S,+, ·, 0, 1), where + and · are binary oper-

ations and 0 and 1 are nullary operations, such that (S,+, 0) is a commutative
monoid, (S, ·, 1) is a monoid, · distributes over + on the left and on the right,
and 0 · s = s · 0 = 0 for every s ∈ S. Given a semiring S, a semimodule over
S, or S–semimodule, is a commutative monoid R = (R,+, 0) together with an
S-left-action · : S × R → R such that

(s + s′) · r = s · r + s′ · r 0 · r = 0 1 · r = r
s · (r + r′) = s · r + s · r′ s · 0 = 0 s · (s′ · r) = (s · s′) · r

for any s, s′ ∈ S and r, r′ ∈ R. We will often write sr instead of s · r. For an
alphabet A and a semiring S, elements in S

A∗
are called power series. Given

a set X, the free S–semimodule on the generators X, denoted by V (X), is the
S–semimodule whose underlying set is V (X) = {φ ∈ S

X | supp(φ) is finite},
where supp(φ), the support of φ, is defined as supp(φ) = {x ∈ X | φ(x) �= 0}.
Addition in V (X) is component-wise, 0 ∈ V (X) is the constant function with 0
as its value, and the action of S over V (X) is multiplication of a constant by a
function. For φ ∈ V (X) we have the correspondence φ ⇔ s1 · x1 + · · · + sn · xn,
where supp(φ) = {x1, . . . , xn} and φ(xi) = si, i = 1, . . . , n. Notice that we are
using formal sums here. According to this correspondence there is a copy of X
in V (X), namely x �→ 1 · x; in this case, 1 · x will be simply denoted as x.

A linear map between S–semimodules S1 and S2 is a function h : S1 → S2

such that for any x, y ∈ S1 and c, d ∈ S, h(cx + dy) = ch(x) + dh(y). Let S

Equations and Coequations for Weighted Automata 447

be an S–semimodule, X a set, and f : X → S a function. We define the linear
extension of f as the linear map f̄ : V (X) → S given by

f̄(c1 · x1 + · · · + cn · xn) = c1f(x1) + · · · + cnf(xn).

A weighted automaton with input alphabet A and weights over a semiring S

is a pair (X,α), where X is a set (not necessarily finite) and α : X → V (X)A

is a function. We can add an initial state i : 1 → V (X) and/or a final state
function, or colouring, f : X → S, yielding the following situation:

S

V (X)A

V (X)

ᾱ

f̄1
i

Notice that if we remove f̄ we have a pointed automaton, and if we remove i
we have a Moore automaton with outputs in S. In particular, every weighted
automaton (X,α) gives rise to a deterministic automaton (V (X), ᾱ).

An equation is a pair (u, v) ∈ A∗ × A∗, sometimes also denoted by u = v.
Given a weighted automaton (X,α) and an equation (u, v) ∈ A∗ ×A∗, we define
(X,α) |= (u, v); and say (X,α) satisfies the equation (u, v), as follows:

(X,α) |= (u, v) ⇔ ∀φ ∈ V (X) u(φ) = v(φ),

recall the definition of u(x) at the beginning of this section. For any set of
equations E ⊆ A∗ × A∗ we write (X,α) |= E if (X,α) |= (u, v) for every
(u, v) ∈ E. Observe that since ᾱ is the linear extension of α, the condition
∀φ ∈ V (X) u(φ) = v(φ) is equivalent to ∀x ∈ X u(x) = v(x). In other words,
u = v is satisfied if the linear combination of states in V (X) reached after u
from every x ∈ X is equal to that reached after v.

A set of coequations is a subset D ⊆ S
A∗

. We define (X,α) |= D; and say
(X,α) satisfies the set of coequations D, as follows:

(X,α) |= D ⇔ ∀f ∈ S
X , φ ∈ V (X) of̄ (φ) ∈ D

The power series of̄ (φ) is the behaviour of the state φ in (X,α) with respect to
the colouring f . According to this, (X,α) |= D means that D includes all the
possible behaviours for the automaton (X,α).

An equivalence relation C on A∗ is a congruence on A∗ if for any t, u, v, w ∈
A∗, (t, v) ∈ C and (u,w) ∈ C imply (tu, vw) ∈ C. If C is a congruence on
A∗, the congruence quotient A∗/C has a pointed automaton structure A∗/C =
(A∗/C, [ε], [τ]) with transition function given by [τ]([w], a) = [τ(w, a)] = [wa],
which is well defined since C is a congruence.

448 J. Salamanca et al.

3 Free and Cofree Construction for Weighted Automata

In this section we will show how to construct the maximum set of equations
and the minimum set of coequations satisfied by a weighted automaton (X,α)
(thereby generalizing the approach of [3, Sect.5]). We use the notation freew and
cofreew to distinguish between the free and cofree construction for weighted
automata from the construction free and cofree for deterministic automata
defined in [3], respectively.

To get the maximum set of equations of (X,α) we are going to construct the
pointed deterministic automaton freew(X,α) by taking the following steps:

1. Define the pointed deterministic automaton
∏

(X,α) = (
∏

x∈X V (X),Δ, α̂)
where α̂ is the product of ᾱ |X| times, that is α̂(θ)(a)(x) = ᾱ(θ(x))(a), and
Δ ∈ ∏

x∈X V (X) is given by Δ(x) = x. Then, by initiality of A∗ = (A∗, ε, τ),
we get a unique F -algebra morphism rΔ : A∗ → ∏

(X,α).
2. Define freew(X,α) and Eqw(X,α) as

freew(X,α) := A∗/ ker(rΔ) and Eqw(X,α) := ker(rΔ)

By construction, we have the following theorem.

Theorem 1. Eqw(X,α) is the maximum set of equations satisfied by (X,α).

Example 2. Consider the weighted automaton with input alphabet A = {a, b}
and weights on the semiring (field) Z3 given by the following diagram:

x y

a, 1; b, 2
b, 1

a, 1; b, 1

b, 2
According to the definition freew(X,α) = A∗/ ker(rΔ) ∼= Im(rΔ), so in order to
construct freew(X,α) we only need to construct the reachable part of

∏
(X,α)

from the state Δ = (x, y). By doing that we get the automaton:

(x, y) (2x + y, 2x + y) (0, 0)

a a a, b

b b

Thus Eqw(X,α) is the congruence generated by {a = ε, bb = bbb} and
freew(X,α) is the automaton with states [ε] = a∗, [b] = a∗ba∗, and [bb] =
a∗ba∗b(a + b)∗. �

Now we will show how to get the minimum set of coequations satisfied by (X,α).
First some notation: for any family of sets {Xi}i∈I we denote by

∐
i∈I Xi the

disjoint union (coproduct in Set) of the family which is given by
∐

i∈I Xi =⋃
i∈I{i}×Xi. We will construct the Moore automaton cofreew(X,α) by taking

the following steps:

Equations and Coequations for Weighted Automata 449

1. Define the Moore automaton
∐

(X,α) = (
∐

f∈SX
V (X), Φ, α̃) where α̃ and Φ

are given by α̃(f, φ)(a) = (f, a(φ)) and Φ(f, φ) = f̄(φ). Then, by finality of
S

A∗
=

(
S

A∗
, ε̂, τ̂

)
, we get a unique G-coalgebra morphism oΦ :

∐
(X,α) → S

A∗
.

2. Define cofreew(X,α) and coEqw(X,α) as

cofreew(X,α) = coEqw(X,α) := Im(oΦ).

Similarly as in the case of equations we have the following theorem.

Theorem 3. coEqw(X,α) is the minimum set of coequations satisfied by (X,α).

4 Duality Between Equations and Coequations

In this section, we will use the free and cofree construction given in [3, Sect. 5],
to show a duality result between equations and coequations (here the we are
going to use the semiring S as a set of colours on the coalgebraic side). In the
sequel S will be a fixed semiring.

Proposition 4. For every congruence quotient A∗/C,

cofree(A∗/C) = {f ∈ S
A∗ | C ⊆ ker(f)}.

Observe that the previous proposition is a generalization of [3, Proposition 14].
As a consequence, we have:

Theorem 5. For any congruence quotient A∗/C, free◦cofree(A∗/C) = A∗/C.

Now we will define one of the main concepts that will lead us to the duality.
A subset S ⊆ S

A∗
is called a closed subsystem if

(i) S is closed under left and right derivatives.
(ii) B(S) def= ({supp(f)|f ∈ S},∩, ()′, A∗) is a complete atomic Boolean

algebra.
(iii) Let At(B(S)) be the set of atoms of B(S), then

S =
{

f ∈ S
A∗ | ∀P ∈ At(B(S)) f�P is constant

}
.

Notice that condition i) implies that in fact S is a subsystem of S
A∗

, i.e. a
subcoalgebra. For the case of the Boolean semiring, that is S = B, the notion of
closed subsystem coincides with that of preformation of languages defined in [3],
which was one of the reasons and motivations to state the previous definition in
its final form. We can think of closed subsystems as S-colourings of the atoms of
B(S), according to condition iii), which in the case of preformations of languages
are only 2-colourings, but we also need those colourings to be well-behaved in
the sense of being closed under left and right derivatives to get a subsystem
of the final coalgebra S

A∗
, and also to induce a congruence defining the system

in the following sense.

450 J. Salamanca et al.

Theorem 6. Let S be a subset of S
A∗

. S is a closed subsystem if and only if
S = cofree(A∗/C) for some congruence quotient A∗/C.

Observe that by Theorem 5, the congruence C of the previous theorem is unique.

Example 7. Let S ⊆ S
A∗

be the set S =
{
f ∈ S

A∗ ∣∣ ∀w ∈ A∗f(w) = f
(
b|w|b)},

where |w|b is the number of b’s in the word w. Then one can verify that S is
a closed subsystem in which At(B(S)) = {a∗, a∗ba∗, a∗(ba∗)2, a∗(ba∗)3, . . .} and
S = cofree(A∗/C), if we take for C the congruence generated by {a = ε}. �

Corollary 8. For any closed subsystem S of S
A∗

, cofree ◦ free(S) = S.

Example 9. Consider the congruence quotient A∗/C = {[ε], [b], [bb]} from
Example 2, that is A = {a, b} and C is the congruence generated by {a =
ε, bb = bbb}. If S = Z3, then by Proposition 4 we know that

cofree(A∗/C) =
{

f ∈ (Z3)A∗ | ∀[w] ∈ A∗/C, f�[w] is constant
}

,

that is cofree(A∗/C) has 27 elements. For any partition A = {[wi] | 1 ≤ i ≤
n} of A∗ and ci ∈ S we define the function c1χ[w1] + · · · + cnχ[wn] ∈ S

A∗
as

(c1χ[w1] + · · · + cnχ[wn])(w) = ci if and only if w ∈ [wi], which is well-defined
since A is a partition of A∗. Using the previous notation, we have that every
element in cofree(A∗/C) is of the form c1χ[ε] + c2χ[b] + c3χ[bb], ci ∈ Z3. Here
are some examples:

(i) Consider the colouring c : A∗/C → Z3 given by c([ε]) = 0, c([b]) = 1, and
c([bb]) = 2, then we get that oc([b]) ∈ (Z3)A∗

is given by

oc([b])(w) =

{
1 if w ∈ a∗,
2 otherwise.

That is, oc([b]) = χ[ε] + 2χ[b] + 2χ[bb].
(ii) For any ci ∈ Z3, the reader can easily verify the following identities for left

derivatives

a

(
c1χ[ε] + c2χ[b] + c3χ[bb]

)
= c1χ[ε] + c2χ[b] + c3χ[bb]

b

(
c1χ[ε] + c2χ[b] + c3χ[bb]

)
= c2χ[ε] + c3χ[b] + c3χ[bb].

�

Next we define the category C of congruence quotients and the category K of
closed subsystems, for a fixed semiring S, as follows:

objects(C) = {(A∗/C, [τ]) | A∗/C is a congruence quotient}
arrows(C) = {e : A∗/C → A∗/D | e is an epimorphism}

objects(K) = {(K,α) | K is a closed subsystem of S
A∗}

arrows(K) = {m : K → K ′ | m is a monomorphism}
By Theorem 5 and Corollary 8, we have the following.

Equations and Coequations for Weighted Automata 451

Theorem 10. cofree : C ∼= Kop : free

Example 11. Let C1 be the congruence generated by {a = ε, bb = bbb} and let C2

be the congruence generated by {a = ε, b = bb}. Clearly we have that C1 ⊆ C2,
A∗/C1 = {[ε]1, [b]1, [bb]1}, and A∗/C2 = {[ε]2, [b]2} where

[ε]1 = [ε]2 = a∗ [b]1 = a∗ba∗

[bb]1 = a∗ba∗b(a + b)∗ [b]2 = a∗b(a + b)∗ = [b]1 ∪ [bb]1.

By the duality, we have the following situation:

[ε]1 [b]1 [bb]1

a a a, b

b b

[ε]2 [b]2

a a, b

b

e

{c1χ[ε]1 + c2χ[b]1 + c3χ[bb]1 | ci ∈ S}

{c1χ[ε]2 + c2χ[b]2 | ci ∈ S}

m

cofree

free

where the epimorphism e : A∗/C1 → A∗/C2 is given by e([w]1) = [w]2, and the
monomorphism m : cofree(A∗/C2) → cofree(A∗/C1) is given by m(c1χ[ε]2 +
c2χ[b]2) = c1χ[ε]1 + c2χ[b]1 + c2χ[bb]1 . �

There is also the following consequence of the duality, which basically tells us
that we can either work with congruences or closed subsystems in weighted
automata.

Theorem 12. Let S ⊆ S
A∗

be a closed subsystem, C a congruence on A∗, and
(X,α) a weighted automata. Then

(i) (X,α) |= C if and only if (X,α) |= coEq(A∗/C).
(ii) (X,α) |= S if and only if (X,α) |= Eq(S).

Example 13. (Example 7 continued) Let A = {a, b}. We showed the correspon-
dence between the congruence C on A∗ generated by {a = ε} and the closed
subsystem S ⊆ S

A∗
given by S =

{
f ∈ S

A∗ ∣∣ ∀w ∈ A∗f(w) = f
(
b|w|b)}, that is

cofree(A∗/C) = S or, equivalently, free(S) = A∗/C. In this case, we have, for
a weighted automaton (X,α) on A

(X,α) |= C ⇔ (X,α) |= S ⇔ ∀x ∈ X α(x, a) = x. �

452 J. Salamanca et al.

5 Linear Equations and Coequations

In this section, we work with a more general kind of equations and a more
general kind of automata. In the previous sections we defined equations to be
pairs (u, v) ∈ A∗ × A∗ and we said that an automaton (X,α) with weights in
S satisfies (u, v) if for any x ∈ X, u(x) = v(x). Since u(x) ∈ V (X) (the free S-
semimodule generated by X) for any u ∈ A∗, it makes sense to define expressions
like

(s1w1 + · · · + snwn)(x) := s1w1(x) + · · · + snwn(x)

for elements si ∈ S and wi ∈ A∗, that is, for any ϕ =
∑n

i=1 siwi ∈ V (A∗)
and x ∈ X we get an element ϕ(x) ∈ V (X). In this case we can ask whether
ϕ(x) = ψ(x) holds or not for some given ϕ,ψ ∈ V (A∗) and x ∈ X. A pair
(ϕ,ψ) ∈ V (A∗) will be called a linear equation, and note that this is now a more
general kind of equation since A∗ ⊆ V (A∗). We write (X,α) |= (ϕ,ψ); (X,α)
satisfies the equation (ϕ,ψ), if for every x ∈ X, ϕ(x) = ψ(x).

Example 14. Let (X,α) be the weighted automata on A = {a, b, c} with weights
on Z3 given by the following diagram:

x y
a, 1; b, 2; c, 1

a, 1; b, 1 a, 1; b, 1

Then one easily verifies the following linear equations are satisfied by (X,α):
ac = c, a + c = b, and 2c + b = b2.

We have that freew(X,α) is the following automaton:

[c] [cc][b]

[ε]

[a]

c

a, b

a

b

c
a

b
c

ab

c

a, b, c

Hence, Eqw(X,α) is the congruence generated by

{c2 = c3, b3 = ε, a3 = ε, ab = ε, ba = ε, ac = c, bc = c, ca = c, cb = c}.

Observe that none of the linear equations a + c = b nor 2c + b = b2 can be
deduced from Eqw(X,α), even though (X,α) satisfies both of them. �

As the previous example shows, equations of the form (ϕ,ψ) ∈ V (A∗) × V (A∗)
that are satisfied by (X,α) are interesting. We now turn to define the notion of
linear automata.

Equations and Coequations for Weighted Automata 453

For a field K, let VecK denote the category of vector spaces over K with linear
maps as morphisms. A K–linear automaton, or VecK automaton, on an alphabet
A is a pair (S, α), where S is an vector space and α : S → SA is a linear map.
As in weighted automata, we can have an initial state s0 ∈ VecK(K, S) and/or a
colouring c ∈ VecK(S, K). Notice that s0 is completely determined by its value
at 1, so we can identify s0 with the element s0 := s0(1) ∈ S. Observe that every
weighted automaton over a field K yields a VecK automaton and conversely.
A pointed VecK automaton (S, s0, α) is a H-algebra for the endofunctor H :
VecK → VecK given by H(S) = K + A × S (formally, H(S) is the sum of the
space K and A copies of the space S), and a coloured VecK automaton (S, c, α)
is an I-coalgebra for the endofunctor I : VecK → VecK given by I(S) = K × SA.

The initial H-algebra is (V (A∗), ε, τ) where τ is given by τ (
∑

siwi) (a) =∑
si(wia), and for any pointed VecK automaton (S, s0, α) the unique H-algebra

morphism rs0 : V (A∗) → S is given by rs0 (
∑

siwi) =
∑

siwi(s0). Dually,
the final I-coalgebra is

(
K

A∗
, ε̂, τ̂

)
, where ε̂(f) = f(ε) and τ̂(f)(a) = fa, and

for any coloured VecK automaton (S, c, α) the unique I-coalgebra morphism
oc : S → K

A∗
is given by oc(s)(w) = c(w(s)).

A VecK automaton (S, α) satisfies the linear equation (φ, ψ) ∈ V (A∗)×V (A∗),
denoted by (S, α) |= (φ, ψ), if for any s ∈ S we have that φ(s) = ψ(s).

An equivalence relation C on V (A∗) is a linear congruence on V (A∗) if:

(i) (ϕ1, ψ1), (ϕ2, ψ2) ∈ C imply (ϕ1 + ϕ1, ψ1 + ψ2) ∈ C.
(ii) (ϕ,ψ) ∈ C, k ∈ K, and w ∈ A∗ imply (kϕ, kψ), (wϕ,wψ), (ϕw,ψw) ∈ C.

Where, for φ =
∑n

i=1 kiwi ∈ V (A∗), kφ, wφ, and φw are defined as

kφ :=
n∑

i=1

kkiwi, wφ =
n∑

i=1

kiwwi, φw =
n∑

i=1

kiwiw.

Observe that if C is a linear congruence on V (A∗) then the set V (A∗)/C has
the structure of a VecK pointed automaton.

Similarly to the case of weighted automata, we will define freel(S, α) and
Eql(S, α) by taking the following steps:

1. Define the pointed VecK automaton
∏

(S, α) = (
∏

s∈S S,Δ, α̂) where α̂ is the
product of α, |S| times, that is α̂(x)(a)(s) = α(x(s))(a), and Δ ∈ ∏

s∈S S
is given by Δ(s) = s. Then, by initiality of (V (A∗), ε, τ), we get a unique
H-algebra morphism rΔ : V (A∗) → ∏

(S, α).
2. Define freel(S, α) and Eql(S, α) as

freel(S, α) := V (A∗)/ ker(rΔ), and Eql(S, α) := ker(rΔ).

Notice that Eql(S, α) is a linear congruence on V (A∗).

Theorem 15. Eql(S, α) is the maximum set of equations satisfied by (S, α).

A set of coequations is a subspace D ⊆ K
A∗

. We define (S, α) |= D, and say
(S, α) satisfies the set of coequations D, as follows:

(S, α) |= D ⇔ ∀c ∈ VecK(S, K), s ∈ S oc(s) ∈ D.

454 J. Salamanca et al.

For a family {Si}i∈I of vector spaces, we denote the coproduct of that family by∐
i∈I Si. The minimum set of coequations satisfied by (S, α) is obtained by the

following construction:

1. Define the coloured VecK automaton
∐

(S, α) = (
∐

c∈VecK(S,K) S, c̃, α̃) where
α̃ is the coproduct of the morphism α, |VecK(S, K)| times in VecK, that is
α̃ (

∑
(ci, si)) (a) =

∑
(ci, a(si)), and c̃ is the coproduct of all c ∈ VecK(S, K)

which is given by c̃ (
∑

(ci, si)) =
∑

ci(si). Then, by finality of
(
K

A∗
, ε̂, τ̂

)
, we

get a unique I-coalgebra morphism oc̃ :
∐

(S, α) → K
A∗

.
2. Define cofreel(S, α) and coEql(S, α) as

cofreel(S, α) = coEql(S, α) = Im(oc̃).

Theorem 16. cofreel(S, α) is the minimum set of coequations satisfied by (S, α).

From the previous constructions we get the following result.

Theorem 17. For a linear congruenceC, freel◦cofreel(V (A∗)/C) = V (A∗)/C.

The inclusion from right to left above does not hold in general when considering
semimodules (over a semiring) instead of vector spaces. Let N be the semiring
of natural numbers with the usual sum and product, A = {a, b}, and let C be
the linear congruence on V (A∗) associated to the partition {{0}, V (A∗) � {0}}
of V (A∗). Then V (A∗)/C ∼= B, the Boolean semiring, where the action of N on
B is given by n ·x = 0 if and only if n = 0 or x = 0. However, one can verify that
cofreel(V (A∗)/C) has only one element and therefore it satisfies any identity.
It follows that V (A∗)/C cannot be a subset of freel ◦ cofreel(V (A∗)/C) = 1.

Similarly to the case of weighted automata we can show that for a VecK
automaton (S, α) and a linear congruence C we have that

(S, α) |= C if and only if (S, α) |= coEql(V (A∗)/C).

Example 18. Let A = {x, y}, and let C = 〈xy = yx〉 be the linear congruence
generated by the equation xy = yx. Then the VecK automaton V (A∗)/C is
isomorphic to K[x, y], the ring of polynomials on indeterminates x and y with
coefficients in K. Here the transition function on K[x, y] is (right) multiplication,
that is, for a polynomial p(x, y) ∈ K[x, y] we have that x(p(x, y)) = p(x, y)x, and
y(p(x, y)) = p(x, y)y. Then, cofreel (V (A∗)/C) is the set

{
f ∈ K

A∗
∣∣∣∣ ∀w1, w2

(
|w1|x = |w2|x ∧ |w1|y = |w2|y ⇒ f(w1) = f(w2)

)}
,

where |w|x is the number of x’s in the word w ∈ A∗. We can go a little bit
further and notice that cofreel (V (A∗)/C) ∼= K

M(K[x,y]) where M(K[x, y]) are
the monic monomials in K[x, y]. �

Equations and Coequations for Weighted Automata 455

Example 19. Let A = {x, y}, and, for a fixed k ∈ K, let C = 〈xy = yx, y−k = 0〉
be the linear congruence generated by the equations xy = yx and y − k = 0.
Then the VecK automaton V (A∗)/C is isomorphic to K[x, y]/〈y − k〉 ∼= K[x],
where 〈y − k〉 is the ideal generated by y − k. A similar calculation as in the
previous example shows that cofreel (V (A∗)/C) ∼= K

{x}∗ ∼= K
N. �

Example 20. Let A be a finite alphabet, and C a linear congruence on V (A∗)
such that for any x, y ∈ A, (xy, yx) ∈ C. We claim that C = 〈C0〉 for some
finite C0 ⊆ C. In fact, if A = {x1, . . . , xn} then V (A∗)/C ∼= K[x1, . . . , xn]/I
for the ideal I of K[x1, . . . , xn] given by I = {φ − ψ | (φ, ψ) ∈ C}, which is an
ideal of K[x1, . . . , xn] since C is a linear congruence (here φ − ψ is calculated
as in K[x1, . . . , xn]). Then by Hilbert basis theorem we have that I is finitely
generated, say I = 〈ϕ1, . . . , ϕm〉. It follows that

C = 〈{xixj = xjxi | 1 ≤ i < j ≤ n} ∪ {ϕl = 0 | 1 ≤ l ≤ m}〉.
�

Proposition 21. Let S ⊆ K
A∗

be a set that is closed under left derivatives.
Then (S, α) ⊆ cofreel ◦ freel(S, α).

To complete a duality result in this case we still need to characterize systems S
of the form S = cofreel(V (A∗)/C) for some linear congruence C. The previous
proposition is a first step, but a full duality result is an open problem.

6 Conclusion

All the results we proved concerning weighted automata can be easily adapted
to the case of probabilistic automata, that is, we can replace V (X) by D(X),
where D(X) = {f : X → [0, 1] | supp(f) is finite and

∑
x∈supp(f) f(x) = 1},

and replace the semiring S by the real interval [0, 1] to get similar results. In
fact, the linear extension ᾱ : V (X) → V (X)A of a function α : X → V (X)A is
well-defined if we replace V (X) by D(X) and the elements 0 and 1 in S are the
elements 0 and 1 in [0, 1], respectively. In the future we plan to study other types
of automata such as tree automata. Furthermore, we also want to understand
the duality for linear weighted automata.

The closest related work is [3] which can be considered as a special case of our
study here. While we allow automata with infinite sets of states, other dualities
have concentrated on the finitary case [1,8,9,12]. Another difference with those
approaches is that we present a local duality, in which the alphabet is (possibly
infinite but) fixed, while [8,9,12] consider all finite alphabets at the same time.

References

1. Adámek, J., Milius, S., Myers, R.S.R., Urbat, H.: Generalized eilenberg theorem
i: local varieties of languages. In: Muscholl, A. (ed.) FOSSACS 2014 (ETAPS).
LNCS, vol. 8412, pp. 366–380. Springer, Heidelberg (2014)

456 J. Salamanca et al.

2. Arbib, M.A., Manes, E.G.: Foundations of system theory: the hankel matrix. J.
Comput. Syst. Sci. 20(3), 330–378 (1980)

3. Ballester-Bolinches, A., Cosme-Llópez, E., Rutten, J.J.M.M:. The dual equivalence
of equations and coequations for automata. CWI Technical report FM-1403, pp.
1–41 (2014, To appear in Information and Computation)

4. Bezhanishvili, N., Kupke, C., Panangaden, P.: Minimization via duality. In: Ong,
L., de Queiroz, R. (eds.) WoLLIC 2012. LNCS, vol. 7456, pp. 191–205. Springer,
Heidelberg (2012)

5. Bonchi, F., Bonsangue, M., Boreale, M., Rutten, J., Silva, A.: A coalgebraic per-
spective on linear weighted automata. Inf. Comp. 211, 77–105 (2012)

6. Bonchi, F., Bonsangue, M.M., Hansen, H.H., Panangaden, P., Rutten, J., Silva,
A.: Algebra-coalgebra duality in brzozowski’s minimization algorithm. ACM Trans.
Comput. Logic 15(1), 3 (2014)

7. Burri, S.N., Sankappanava, H.P.: A course in universal algebra. Graduate Texts in
Mathematic, vol. 78. Springer, New York (1981)

8. Eilenberg, S.: Automata, languages, and machines, vol. B. Academy Press, New
York (1976)

9. Gehrke, M., Grigorieff, S., Pin, J.É.: Duality and equational theory of regu-
lar languages. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M.,
Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp.
246–257. Springer, Heidelberg (2008)

10. Hungerford, T.W.: Algebra. Graduate Texts in Mathematics, vol. 73. Springer,
New York (1974)

11. Kuich, W.: Semirings and formal power series. In: Rozenberg, G., Salomaa, A.
(eds.) Handbook of Formal Languages, Word, Language, Grammar, vol. 1, pp.
609–677. Springer, Heidelberg (1997)

12. Petković, T.: Varieties of fuzzy languages. In: Proceedings of International Confer-
ence on Algebraic Informatics. Aristotle University of Thessaloniki (2005)

13. Rutten, J.J.M.M.: Universal coalgebra: a theory of systems. Theor. Comput. Sci.
249(1), 3–80 (2000)

14. Schützenberger, M.P.: On the definition of a family of automata. Inf. Control 4,
245–270 (1961)

Author Index

Abbes, Samy I-63
Abed, Fidaa II-1
Aceto, L. I-76
Allender, Eric II-14
Arvind, V. II-26, II-38
Avni, Guy I-89

Baartse, Martijn II-50
Babenko, Maxim II-62
Baier, Christel I-344
Barcelo, Neal II-75, II-90
Baswana, Surender II-102
Belmonte, Rémy II-115
Berlinkov, Mikhail I-103
Berthé, Valérie I-116
Boldi, Paolo I-3
Bonsangue, Marcello I-444
Bottesch, Ralph II-127
Boudou, Joseph I-129
Brandstädt, Andreas II-139
Braverman, Vladimir II-151
Bulatov, Andrei A. II-175

Cadilhac, Michaël I-141
Caferov, Cafer II-187
Caragiannis, Ioannis II-1
Case, Adam II-199
Cesaratto, Eda I-116
Chen, Lin II-211
Chen, Ruiwen II-223
Choudhary, Keerti II-102
Chumbalov, Daniyar II-235
Coan, Brian II-274
Cord-Landwehr, Andreas II-248
Crépeau, Claude II-261
Crespi Reghizzi, Stefano I-154

Dabrowski, Konrad K. II-139
Daviaud, Laure I-167
Della Monica, D. I-76
Di Crescenzo, Giovanni II-274
Dima, Cătălin I-179

Droste, Manfred I-192
Dubslaff, Clemens I-344
Dück, Stefan I-192
Dumitran, Marius I-205
Durand, Bruno I-218

Ésik, Zoltán I-18
Etscheid, Michael II-287

Fábregas, I. I-76
Fafianie, Stefan II-299
Farhat, Saman II-483
Ferraioli, Diodato II-311
Fomin, Fedor V. II-115
Fournier, Hervé II-324

Gajardo, Anahí I-231
Gajarský, Jakub II-336
Gál, Anna II-14
Ganian, Robert II-348
García-Marco, Ignacio II-361
Gavinsky, Dmitry II-127
Gawrychowski, Paweł I-243
Goldberg, Andrew V. II-62
Golovach, Petr A. II-115
Grellois, Charles I-256
Grilo, Alex Bredariol II-163

Hagerup, Torben II-372
Hahn, Michael II-384
Hannula, Miika I-269
Hartinger, Tatiana R. II-395
Hella, Lauri I-281
Hoffmann, Udo II-407
Huang, Shenwei II-139

Iacobelli, Giulio I-293
Ingólfsdóttir, A. I-76

Jakobsen, Sune K. II-420
Joglekar, Pushkar II-38
Johnson, Matthew II-395

Kaminski, Benjamin Lucien I-307
Kaplan, Haim II-62
Katoen, Joost-Pieter I-307
Kaya, Barış II-187
Kazmi, Raza Ali II-261
Kerenidis, Iordanis II-163
Kiefer, Sandra I-319
Kim, Eun Jung II-348
Kirsch, Jonathan II-274
Kisielewicz, Andrzej I-331
Klauck, Hartmut II-127
Kleist, Linda II-407
Kling, Peter II-75
Köbler, Johannes II-26
Koiran, Pascal II-361
König, Daniel II-445
Kontinen, Juha I-269
Kosolobov, Dmitry II-432
Krähmann, Daniel I-344
Kratsch, Stefan II-287, II-299
Krebs, Andreas I-141, II-384
Kupferman, Orna I-89
Kutrib, Martin I-38
Kuusisto, Antti I-281

Lagerkvist, Victor I-357
Lampis, Michael II-336
Lange, Klaus-Jörn II-384
Latte, Markus I-369
Lenzner, Pascal II-248
Limaye, Nutan II-324
Liu, Zaoxing II-151
Lohrey, Markus II-445
Lonati, Violetta I-154
Ludwig, Michael I-141, II-384
Lutz, Jack H. II-199

Mahajan, Meena II-324
Mairesse, Jean I-63
Makino, Kazuhisa II-336
Mandal, Debasis II-459
Mandrioli, Dino I-154
Manea, Florin I-205
Mansour, Yishay I-53
Maubert, Bastien I-179
Mauro, Jacopo I-382
Mazowiecki, Filip I-394
McGregor, Andrew II-472
Meer, Klaus II-50

Megow, Nicole II-211
Meier, Arne I-281
Melliès, Paul-André I-256
Mertz, Ian II-14
Milanič, Martin II-395
Miltzow, Tillmann II-407
Mitsou, Valia II-336
Mneimneh, Saad II-483
Mnich, Matthias II-287
Montanari, Sandro II-493
Mühlenthaler, Moritz II-505

Niewerth, Matthias I-369
Nugent, Michael II-75, II-90

O’Donnell, Ryan II-187
Ochremiak, Joanna I-394
Ollinger, Nicolas I-231
Ordyniak, Sebastian II-336

Paperman, Charles I-141, I-167
Paulusma, Daniël II-139, II-395
Pauly, Arno I-407
Pavan, A. II-459
Penna, Paolo II-493
Perrot, Kévin I-419
Philip, Geevarghese II-517
Pinchinat, Sophie I-179
Pradella, Matteo I-154
Pruhs, Kirk II-75, II-90

Rahn, Mona II-529
Rai, Ashutosh II-517
Ramanujan, M.S. II-115
Rattan, Gaurav II-26, II-38
Regnault, Damien I-432
Rémila, Éric I-419, I-432
Rischke, Roman II-211
Röglin, Heiko II-287
Romashchenko, Andrei I-218, II-235
Rotondo, Pablo I-116
Rutten, Jan I-444

Salamanca, Julian I-444
Saurabh, Saket II-517
Savchenko, Ruslan II-62
Say, A.C. Cem II-187
Schäfer, Guido II-529
Schmid, Markus L. II-542

458 Author Index

Schnoor, Henning II-555
Schubert, Jana I-344
Schweitzer, Pascal I-319
Scquizzato, Michele II-75, II-90
Selman, Erkal I-319
Sikora, Jamie II-163
Singh, Tejasvam II-151
Sitters, René II-567
Skvortsov, Evgeny S. II-175
Srinivasan, Srikanth II-324
Stougie, Leen II-211
Straszak, Damian I-243
Szeider, Stefan II-348
Szykuła, Marek I-103, I-331

Tavenas, Sébastien II-361
Tench, David II-472
Torres-Avilés, Rodrigo I-231
Tribastone, Mirco I-293

Vallée, Brigitte I-116
van Ee, Martijn II-567
Vandin, Andrea I-293
Ventre, Carmine II-311

Verbitsky, Oleg II-26
Verschae, José II-211
Vinodchandran, N.V. II-151, II-459
Viola, Alfredo I-116
Virtema, Jonni I-269
Vollmer, Heribert I-269, I-281
Vorotnikova, Sofya II-472
Voudouris, Alexandros A. II-1
Vu, Hoa T. II-472

Weller, Mathias II-62
Witkowski, Adam I-394
Woizekowski, Oliver II-555
Wu, Xiaowei II-577

Yang, Lin F. II-151
Yu, Bin II-601

Zavattaro, Gianluigi I-382
Zehavi, Meirav II-589
Zhang, Chenzi II-577
Zhang, Miaomiao II-601
Zu, Quan II-601

Author Index 459

	Preface
	Conference Organization
	Invited Contributions
	Modular Reasoning for Behavior-PreservingData Structure Refactorings
	Minimal and Monotone Minimal PerfectHash Functions
	Equational Properties of Fixed PointOperations in Cartesian Categories:An Overview
	Reversible and Irreversible Computationsof Deterministic Finite-State Devices
	Robust Inference and Local Algorithms

	Contents – Part I
	Contents – Part II
	Invited Contributions
	Minimal and Monotone Minimal Perfect Hash Functions
	1 Introduction
	2 Definitions and Notation
	3 Generalities
	4 Minimal Perfect Hash Functions
	4.1 The MWHC Construction
	4.2 Hash, Displace and Compress

	5 Monotone Minimal Perfect Hash Functions
	5.1 Longest Common Prefixes
	5.2 Z-Fast Tries

	6 Conclusions
	References

	Equational Properties of Fixed Point Operations in Cartesian Categories: An Overview
	1 Introduction
	2 Models
	3 Axiomatization
	4 Analysis of the Axioms
	5 Implicational Axiomatizations
	6 Relative Axiomatization
	7 Adding Residuation
	References

	Reversible and Irreversible Computations of Deterministic Finite-State Devices
	1 Introduction
	2 Preliminaries and the Notion of Logical Reversibility
	3 Size of Reversible Finite Automata
	3.1 Trade-Offs
	3.2 Decidability

	4 Queues and Pushdown Stores
	4.1 Computational Capacity
	4.2 Decidability and Closure Properties

	References

	Robust Inference and Local Algorithms
	1 Introduction
	1.1 Motivating Scenarios
	1.2 Model: Overview
	1.3 Results: Highlights
	1.4 Algorithmic Techniques

	2 Related Work
	3 Model
	4 Main Results
	References

	Logic, Semantics, Automata and Theory of Programming
	Uniform Generation in Trace Monoids
	1 Introduction
	2 Warm-Up: Uniform Measure for Commuting Alphabets
	3 Uniform and Sub-uniform Measures for Trace Monoids
	4 Uniform Generation of Finite Traces
	References

	When Are Prime Formulae Characteristic?
	1 Introduction
	2 Process Semantics Defined Logically
	2.1 Characteristic and Prime Formulae

	3 Characterization by Primality for Logical Preorders
	3.1 Paths to Decomposability

	4 Application to Finitely Many Processes
	5 Application to Semantics in van Glabbeek's Spectrum
	5.1 Finite Characterization
	5.2 Existence of

	6 Conclusions
	References

	Stochastization of Weighted Automata
	1 Introduction
	2 Preliminaries
	3 Motivation
	3.1 A WFA-Based Approach to Reasoning About Online Algorithms
	3.2 Approximated Determinization

	4 Stochastization of General WFAs
	5 Stochastization of Constant Ambiguous WFAs
	References

	Algebraic Synchronization Criterion and Computing Reset Words
	1 Introduction
	2 Algebraic Synchronization Criterion
	3 The Černý Conjecture and Random Automata
	4 Synchronizing Finite Prefix Codes
	5 Finding Reset Words of the Bounded Lengths
	5.1 Synchronizing Quasi-Eulerian Automata
	5.2 Synchronizing Quasi-One-Cluster Automata

	References

	Recurrence Function on Sturmian Words: A Probabilistic Study
	1 Introduction
	2 The Recurrence Function of Sturmian Words
	3 Probabilistic Model and Main Results
	3.1 Position
	3.2 Probabilistic Model
	3.3 Results for a Constant Position
	3.4 Results When the Sequence k 0

	4 Strategy for the Proofs.
	4.1 Smooth Sequences
	4.2 The Dynamical System and the Perron-Frobenius Operator
	4.3 Smooth Random Variables and Perron-Frobenius Operator
	4.4 Asymptotic Study of Smooth Variables

	5 Conclusion
	References

	Exponential-Size Model Property for PDL with Separating Parallel Composition
	1 Introduction
	2 Propositional Dynamic Logic with Separating Parallel Composition (PPDL)
	3 Fischer-Ladner Closure
	3.1 Placeholders and Marking Functions
	3.2 Fischer-Ladner Closure

	4 Threads, Twines and Neat Models
	5 Neat Model Property
	5.1 Unraveling
	5.2 Pruning

	6 Piecewise Filtration

	7 Conclusion

	References

	A Circuit Complexity Approach to Transductions
	1 Preliminaries
	2 Circuit Frameworks for Variable-Length Functions
	2.1 Noninversability
	2.2 Output Length as a Parameter

	3 Separability, Definability, and Lm-Varieties of Stamps
	4 The Transductions in
	5 An Application to and
	6 Discussion and Limitations
	References

	Locally Chain-Parsable Languages
	1 Introduction
	2 Preliminaries
	3 Chain-Driven Automata
	4 Locally Chain-Parsable Languages
	4.1 Extended Chains, Conflicts and Decidability of the LCP Property
	4.2 Basic Properties of Local Chain-Parsable Languages

	5 LCPL Versus Operator-Precedence and Input-Driven Languages
	6 Related Work and Conclusions
	References

	Classes of Languages Generated by the Kleene Star of a Word
	1 Introduction
	2 Recognisability and the Profinite Monoid
	3 The Languages u*
	4 Equational Characterisations of L, Lq and Bq
	4.1 Equational Characterisations of Algebraic Structures of Regular Languages
	4.2 Characterisations of L, Lq and Bq

	5 The Case of the Boolean Algebra B
	5.1 Equivalence Classes Over N and Profinite Numbers
	5.2 Characterisation of B

	6 Decidability
	7 The Case of a Unary Alphabet
	8 Conclusion
	References

	Relating Paths in Transition Systems: The Fall of the Modal Mu-Calculus
	1 Introduction
	2 Preliminary Notions
	3 Expressive Completeness Issues
	4 Tree Automata for the jumping -calculus
	5 Games and the jumping -calculus
	6 Conclusion and Perspectives
	References

	Weighted Automata and Logics on Graphs
	1 Introduction
	2 Graph Acceptors
	3 Weighted Graph Automata
	4 A Nivat Theorem for Weighted Graph Automata
	5 Weighted Logics for Graphs
	6 Words, Trees, and Other Structures
	7 Conclusion
	References

	Longest Gapped Repeats and Palindromes
	1 Introduction
	2 Preliminaries
	3 Lower and Upper Bounded Gap
	4 Lower Bounded Gap
	5 Long Armed Repeats and Palindromes
	References

	Quasiperiodicity and Non-computability in Tilings
	1 Introduction
	2 Self-simulating Tilings (Reminder)
	2.1 Implementing Some Given Tile Set with a Large Enough Zoom Factor
	2.2 A Self-similar Tile Set: Implementing Itself

	3 Quasiperiodicity and Aperiodicity
	3.1 Supplementary Features: What Else We Can Assume on the Fixed-Point Tiling

	4 Proof of Theorem??
	5 From Aperiodicity to Non-computability
	References

	The Transitivity Problem of Turing Machines
	1 Introduction
	2 Definitions
	2.1 Turing Machines
	2.2 Topological and Symbolic Dynamics
	2.3 Turing Machines Seen as Dynamical Systems

	3 Transitivity of Turing Machines
	3.1 Characterizing Transitivity Properties
	3.2 The SMART Machine

	4 The Complexity of Topological Transitivity
	4.1 Construction Techniques
	4.2 Undecidability of Transitivities

	5 The Complexity of Minimality
	References

	Strong Inapproximability of the Shortest Reset Word
	1 Introduction
	2 Preliminaries
	3 Simple Hardness Result
	4 Hardness with Ratio n
	5 Hardness with Ratio n1-
	References

	Finitary Semantics of Linear Logic and Higher-Order Model-Checking
	1 Introduction
	2 Higher-Order Recursion Schemes and the Y-Calculus
	3 MSO and Alternating Parity Tree Automata
	4 The Scott Semantics of Linear Logic
	5 A Finitary Interpretation of the Simply-Typed -calculus
	6 The recursion operator Y
	7 Decidability of the Selection Problem
	8 Conclusions and Perspectives
	References

	Complexity of Propositional Independence and Inclusion Logic
	1 Introduction
	2 Preliminaries
	2.1 Syntax and Semantics
	2.2 Auxiliary Operators
	2.3 Satisfiability, Validity, and Model Checking in Team Semantics

	3 Complexity of Satisfiability and Validity
	3.1 The Logics PL[c] and PL[]
	3.2 The Logics PL[c,] and PL[,]

	4 Complexity of Model Checking
	5 Conclusion
	References

	Modal Inclusion Logic: Being Lax is Simpler than Being Strict
	1 Introduction
	2 Preliminaries
	3 Computational Complexity
	3.1 Upper Bound for Lax Semantics
	3.2 Lower Bound for Lax Semantics
	3.3 Upper Bound for Strict Semantics
	3.4 Lower Bound for Strict Semantics

	4 Conclusion
	References

	Differential Bisimulation for a Markovian Process Algebra
	1 Introduction
	2 Preliminaries: FEPA
	3 Differential Bisimulation and ODE Lumpability
	4 Computing Differential Bisimilarity
	5 Related Work
	6 Conclusion
	References

	On the Hardness of Almost--Sure Termination
	1 Introduction
	2 Preliminaries
	3 Probabilistic Programs
	4 Expected Outcomes and Termination Probabilities
	5 The Hardness of Computing Expected Outcomes
	6 The Hardness of Deciding Probabilistic Termination
	7 Conclusion
	References

	Graphs Identified by Logics with Counting
	1 Introduction
	2 Preliminaries
	2.1 Relational Structures and Partially Oriented Graphs

	3 Inversion
	3.1 Inversion for Graphs
	3.2 Inversion for Finite Relational Structures

	4 Characterization of the Graphs Identified by C2
	5 General Finite Structures
	6 Higher Dimensions
	References

	Synchronizing Automata with Extremal Properties
	1 Introduction
	2 A Series with Quadratically Extendable Subsets
	3 Relaxing the Extension Property
	3.1 Image Extending Conjecture
	3.2 Separating States

	4 Slowly Synchronizing Automata on a Ternary Alphabet
	References

	Ratio and Weight Quantiles
	1 Introduction
	2 Theoretical Foundations
	3 Ratio and Weight Decision Problems
	4 Computing Ratio and Weight Quantiles
	4.1 Weight Quantiles
	4.2 Ratio Quantiles

	5 Conclusions
	References

	Precise Upper and Lower Bounds for the Monotone Constraint Satisfaction Problem
	1 Introduction
	2 Preliminaries
	2.1 Constraint Languages and Functions
	2.2 Cores of Constraint Languages
	2.3 The Monotone Constraint Satisfaction Problem
	2.4 Closure Operators on Functions and Relations
	2.5 Restricted Closure Operators on Functions and Relations

	3 The Complexity of Monotone Constraint Satisfaction
	3.1 Partial Endomorphisms and CV-reductions
	3.2 Intervals of Strong Partial Endomorphism Monoids

	4 Upper and Lower Bounds for the Complexity of Monotone Constraint Satisfaction
	5 Concluding Remarks
	References

	Definability by Weakly Deterministic Regular Expressions with Counters is Decidable
	1 Introduction
	2 Preliminaries
	3 Normal Form
	4 Looping Subexpression
	5 Non-Looping Subexpression
	6 Iterators
	7 Upper Bounds for Counters
	8 Upper Bound
	9 Lower Bound
	10 Conclusion
	References

	On the Complexity of Reconfiguration in Systems with Legacy Components
	1 Introduction
	2 Formalising the Reconfiguration Problem
	3 Solving the Reconfiguration Problem
	4 The Reconfiguration Problem Is PSpace-hard
	5 Related Work and Conclusions
	References

	Eliminating Recursion from Monadic Datalog Programs on Trees
	1 Introduction
	2 Preliminaries
	3 Equivalence
	4 Boundedness
	5 Boundedness vs Equivalence
	6 Conclusions
	References

	Computability on the Countable Ordinals and the Hausdorff-Kuratowski Theorem (Extended Abstract)
	1 Introduction
	1.1 Represented Spaces
	1.2 Weihrauch Reducibility

	2 Representations of the Space of Countable Ordinals
	3 Computability on COrd
	4 Computability on COrdK
	5 COrdM and Boundedness
	6 Computability on COrdHL
	7 A Non-deceiving Representation of COrd?
	8 The Computable Hausdorff-Kuratowski Theorem
	References

	Emergence on Decreasing Sandpile Models
	1 Introduction
	2 Static Study of the Fixed Points
	3 Dynamic Study of the Fixed Points
	4 Conclusions and Perspectives
	References

	Lost in Self-Stabilization
	1 Introduction
	1.1 The Result
	1.2 Contexts

	2 The Model
	2.1 Configurations and Associated Words
	2.2 Local Transition Rules

	3 The Specific Transition Rule
	4 Analysis
	4.1 Results

	5 Conclusion and Open Questions
	References

	Equations and Coequations for Weighted Automata
	1 Introduction
	2 Preliminaries
	3 Free and Cofree Construction for Weighted Automata
	4 Duality Between Equations and Coequations
	5 Linear Equations and Coequations
	6 Conclusion
	References

	Author Index

