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Abstract. The most commonly studied energy management technique
is speed scaling, which involves operating the processor in a slow, energy-
efficient mode at non-critical times, and in a fast, energy-inefficient mode
at critical times. The natural resulting optimization problems involve
scheduling jobs on a speed-scalable processor and have conflicting dual
objectives of minimizing energy usage and minimizing waiting times. One
can formulate many different optimization problems depending on how
one models the processor (e.g., whether allowed speeds are discrete or
continuous, and the nature of relationship between speed and power), the
performance objective (e.g., whether jobs are of equal or unequal impor-
tance, and whether one is interested in minimizing waiting times of jobs
or of work), and how one handles the dual objective (e.g., whether they
are combined in a single objective, or whether one objective is trans-
formed into a constraint). There are a handful of papers in the algo-
rithmic literature that each give an efficient algorithm for a particular
formulation. In contrast, the goal of this paper is to look at a reasonably
full landscape of all the possible formulations. We give several general
reductions which, in some sense, reduce the number of problems that
are distinct in a complexity theoretic sense. We show that some of the
problems, for which there are efficient algorithms for a fixed speed proces-
sor, turn out to be NP-hard. We give efficient algorithms for some of the
other problems. Finally, we identify those problems that appear to not be
resolvable by standard techniques or by the techniques that we develop
in this paper for the other problems.
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1 Introduction

The most commonly studied energy management technique is speed scaling. It
involves operating the processor in a slow, energy-efficient mode at non-critical
times, and in a fast, energy-inefficient mode at critical times. The natural result-
ing optimization problems involve scheduling jobs on such a processor and have
conflicting dual objectives of minimizing both energy usage and waiting times.
This leads to many different optimization problems, depending on how one mod-
els the processor, the performance objective, and how one handles the dual
objectives. There are several papers in algorithmic literature that give an effi-
cient algorithm for a particular formulation. In contrast, we strive to look at a
reasonably full landscape of all the possible formulations. We give several general
reductions which reduce the number of problems that are distinct in a complexity
theoretic sense. We show that some of the problems, for which there are efficient
algorithms for a fixed speed processor, turn out to be NP-hard. We give efficient
algorithms for some of the other problems. Finally, we identify those problems
that appear to not be resolvable by standard techniques or by the techniques
that we develop in this paper for the other problems.

Models. We now describe the different models that have been considered in the
literature. Given the multitude of problems, we use a succinct representation,
which we introduce in parenthesis.

– Energy Budget (B) vs. Flow plus Energy (FE): In an energy budget problem,
the energy objective is turned into a constraint that the total energy used is
at most some budget B. This setting is most appropriate when the energy is
limited to some finite supply, such as the battery of a laptop. In a flow plus
energy problem, the performance and energy objectives are linearly combined
into a single objective. We use a constant coefficient β for the energy objective
that, intuitively, represents the desired trade-off between the value of energy
and the value of performance.

– Integral Flow (I) vs. Fractional Flow (F): In an integral flow problem, the
objective is total (weighted) flow/waiting time of the jobs. In a fractional
flow problem, the objective is total (weighted) flow of the work (job parts). If
there is no benefit in partially completing a job, then integral flow is the right
performance metric. Otherwise, fractional flow may be more appropriate.

– Continuous Speeds (C) vs. Discrete Speeds (D): In the discrete speed setting,
the processor has a finite collection of allowable speeds and corresponding
powers at which it may run. In the continuous speed setting, the allowable
speeds are the nonnegative real numbers. While the discrete speed model is
more realistic, it is often mathematically convenient to assume continuous
speeds.

– Weighted (W) vs. Unweighted (U): In the unweighted setting, each job is of
equal importance and is weighted equally in the performance objective. How-
ever, the raison d’être for power heterogeneous technologies, such as speed-
scalable processors, is ubiquity of heterogeneity in the jobs. In the weighted
case, the flow of jobs/work is weighted by their importance.
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– Arbitrary Size (A) vs. Unit Size (U): In the unit size setting, each job has the
same amount of work. Similar sized jobs occur in many information technology
settings (e.g., for name servers). In the arbitrary size setting, the jobs may
have different sizes.

– Power Function: In the continuous speed setting, one needs to model how a
speed s maps to power. There are two common assumptions: Most commonly
one assumes P (s) = sα for a constant α, slightly generalizing the well-known
cube-root rule that speed is approximately the cube-root of dynamic power.
The second common assumption is that P (s) is a general “nice” convex func-
tion. Intuitively, the complexity of speed scaling should not come from the
power function’s complexity. Foreshadowing slightly, our results support this
intuition.

Previous Results. We now summarize the known complexity theoretic and
offline algorithmic results using the succinct notation we just introduced. The
format of our description is essentially a 5-tuple of the form *-****. The first
entry captures the objective (Budget or Flow plus Energy). The remaining
entries are Integral or Fractional flow, Continuous or Discrete speed, Weighted
or Unweighted, and Arbitrary or Unit size. A * represents a “don’t care” entry.
See Table 1 for an overview that puts all these results into the context of the full
range of possible problems.

– B-ICUU: [17] gave a polynomial-time homotopic optimization algorithm for
the problem of minimizing integral flow (I) with continuous speeds (C) subject
to an energy budget (B) for unweighted jobs (U) of unit size (U). They also
used the assumption that P (s) = sα. The key insights were that jobs should
be scheduled in FIFO order and that the KKT conditions for the natural
convex program can be used to guide the homotopic search.

– FE-ICUU: [2] gave a polynomial-time dynamic programming algorithm for
the problem of minimizing integral flow (I) with continuous speeds (C) for
unweighted jobs (U) of unit size (U) and the objective of flow plus β energy
(FE). Again, they were under the assumption that the power function was
P (s) = sα, and again the key insight was that jobs should be scheduled in
FIFO order.

– FE-FCWA: [10] gave a (not necessarily polynomial-time) homotopic optimiza-
tion algorithm for the problem of minimizing fractional flow (F) with contin-
uous speeds (C) for weighted jobs (W) of arbitrary size (A) and the objective
of flow plus β energy (FE). The algorithm guides its search via the KKT
conditions of the natural convex program.

– FE-FDWA: [4] gave a polynomial-time algorithm for the problem of minimizing
fractional flow (F) with discrete speeds (D) for weighted jobs (W) of arbi-
trary size (A) and the objective of flow plus β energy (FE). The algorithm
constructed an optimal schedule job by job, using the duality conditions of
the natural linear program to find a new optimal schedule when a new job is
added.

– *-I*WA: NP-hardness for integral flow (I) and weighted jobs (W) of arbitrary
size (A) for the objective of flow plus β energy (FE) follows from NP-hardness
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of weighted integral flow for fixed speed processors [14] (via a suitable power
function). The same holds for weighted integral flow (I) for weighted jobs (W)
of arbitrary size (A) subject to a budget (B).

Our Results. The goal in this paper is to more fully map out the landscape of
complexity and algorithmic results for the range of problems reflected in Table 1.
In particular, for each setting our aim is to either give a combinatorial algorithm
(i.e., without the use of a convex program) or show it is NP-hard. Let us sum-
marize our results:

Hardness Results:

– B-IDUA is NP-hard: The reduction is from the subset sum problem. The basic
idea is to associate several high density and low density jobs with each number
in the subset sum instance, and show that for certain parameter settings, there
are only two possible choices for this set of jobs, with the difference in energy
consumption being this number.

– B-IDWU is NP-hard: A reduction similar to B-IDUA, but more technical.

These results are a bit surprising as, unlike the previous NP-hardness results
for speed scaling in Table 1, these problems are either open or can be solved in
polynomial time on a fixed speed processor.

Polynomial Time Algorithms:

– FE-ICUU is in P: We extend [2] to general power functions. This follows by
noticing that a certain set of equations can be solved for general “nice” power
functions.

– FE-IDUU is in P: The algorithm utilizes the structure of the unit size
unweighted case. Here, discrete speeds allow for a much simpler algorithm
than for FE-ICUU.

– FE-FCWA is in P: We generalize [4]’s algorithm to continuous speeds. The
main hurdle is a more complicated equation system at certain points in the
algorithm.

Equivalence Reductions:

– Reduction from B-FC** to FE-FC**: We reduce any energy budget problem
with fractional flow and continuous speeds to the corresponding flow plus β
energy problem using binary search.

– Reduction from B-ICUU to FE-ICUU: The difficulty here stems from the fact
that there may be multiple optimal flow plus energy schedules for a β (so
binary search over β does not suffice).

– Reduction from *-*D** to *-*C**: We give a reduction from any discrete
speed problem to the corresponding continuous speed problem.

While not explicitly needed for our main results, we also provide the other direc-
tions for the first two reductions, in order to improve the understanding of struc-
tural similarities.
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Table 1 summarizes our results and sets them into context of previous work.
Note that for some of the problems shown to be solvable in polynomial time we
give a direct algorithm, while others follow by one of our reductions. For problems
that are solvable by reduction to linear/convex programming, our algorithms
are faster and simpler than general linear/convex programming algorithms. The
key takeaways from this more holistic view of the complexity of speed scaling
problems are:

Certain parameters are sufficient for determining complexity:

– Fractional Flow: Looking at the first two rows, we see that any problem involv-
ing fractional flow can be solved in polynomial time. This generally follows
from the ability to write the problem as a convex program, although we can
give simpler and more efficient algorithms.

– Integral Flow: For integral flow there is a more fine grained distinction:
• Weighted & Arbitrary Size: Everything with these settings is NP-hard.

Given the NP-hardness of weighted flow for a fixed speed processor, this is
not surprising.

• Unweighted & Unit Size: Everything with these settings can be solved in
polynomial time largely because FIFO is the optimal ordering of the jobs.

• Unweighted & Arbitrary or Weighted & Unit size: These seem to be the
most interesting settings (w.r.t. complexity). We show their hardness for a
budget, but flow plus energy remains open.

Complexity of budget problem vs. flow plus energy: For every setting for which
the complexity of each is known, the complexities (in terms of membership in P
or NP-hardness) match. This might be seen as circumstantial evidence that the
resolution to the remaining open complexity questions is that they are NP-hard.
If these open problems do indeed have polynomial algorithms, it will require
new insights as there are clear barriers to applying known techniques to these
problems.

Other Related Work. There is a fair number of papers that study approxi-
mately computing optimal trade-off schedules, both offline and online. [16] also
gives PTAS’s for minimizing total flow without release times subject to an energy
budget in both the continuous and discrete speed settings. [2,3,5–7,11,12,15]
consider online algorithms for optimal total flow and energy, [5,7,12] considers
online algorithms for fractional flow and energy. In particular, [7] show that there
are O(1)-competitive algorithms for all of the flow plus β energy problems that
we consider (with arbitrary power functions). For a survey on energy-efficient
algorithms, see [1]. For a fixed speed processor, all the fractional problems can
be solved by running the job with highest density (=weight/size). Turning to
integral flow, if all jobs are unit size, then always running the job of highest
weight is optimal. The complexity of the problem if all jobs have the same (not
unit) size is open [8,9]. The complexity of FE-I*WU seems at least as hard (but
perhaps not much harder) than this problem. If all jobs have unit weight, then
Shortest Remaining Processing Time is optimal for total flow.

Outline of the Paper. Section 2 provides basic definitions. In Sect. 3 we show
that B-IDWU and B-IDUA are NP-hard. In Sect. 4 we give several polynomial time
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Table 1. Summary of known and new results. Each cell’s upper-half refers to the
flow + β · energy objective and the lower-half refers to flow minimization subject to an
energy constraint. Results of this paper are indicated by [�], and ≡ indicates that two
problems are computationally equivalent

algorithms. Finally, in Sect. 5, we give the reductions between budget and flow
plus β energy problems. Due to space constraints, omitted proofs are left to the
full version of the paper.

2 Model and Notation

We consider n jobs J = 1, 2, . . . , n to be processed on a single, speed-scalable
processor. In the continuous setting, the processor’s energy consumption is
modeled by a power function P : R≥0 → R≥0 mapping a speed s to a power
P (s). We require P to be continuous, convex, and non-decreasing. Other than
that, we merely assume P to be “nice” in the sense that we can solve basic
equations involving the power function and, in particular, its derivative and
inverse. In the discrete setting, the processor features only k distinct speeds
0 < s1 < s2 < · · · < sk, where a speed si consumes energy at the rate Pi ≥ 0.
Even in the discrete case, we will often use P (s) to refer to the power consump-
tion when “running at a speed s ∈ (si, si+1)” in between the discrete speeds.
This is to be understood as interpolating the speed s = si + γ(si+1 − si) (run-
ning for a γ fraction at speed si+1 and a 1 − γ fraction at speed si), yielding an
equivalent discrete schedule. Each job j ∈ J has a release time rj , a processing
volume pj , and a weight wj . The density of j is wj/pj . For each time t, a sched-
ule S must decide which job to process at what speed. Preemption is allowed,
so that a job may be suspended and resumed later on. We model a schedule
S by a speed function V : R≥0 → R≥0 and a scheduling policy J : R≥0 → J .
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Here, V(t) denotes the speed at time t, and J (t) the job that is scheduled at
time t. Jobs can be processed only after they have been released. For job j let
Ij = J −1(j)∩ [rj ,∞) be the set of times during which it is processed. A feasible
schedule must finish the work of all jobs. That is, the inequality

∫
Ij

V(t)dt ≥ pj

must hold for all jobs j.
We measure the quality of a given schedule S by means of its energy con-

sumption and its fractional or integral flow. The energy consumption of a job
j is Ej =

∫
Ij

P (V(t))dt, and the energy consumption of schedule S is
∑

j∈J Ej .
The integral flow Fj = wj(Cj − rj) of a job j is the weighted difference between
its completion time Cj and release time rj . The integral flow of schedule S is
F (S) =

∑
j∈J Fj . In contrast, the fractional flow can be seen as the flow on a

per workload basis (instead of per job). More formally, if pj(t) denotes the work
remaining on job j at time t, the fractional flow time of job j is wj

∫ ∞
rj

pj(t)
pj

dt.
Our goal is to find energy-efficient schedules that provide a good (low) flow. We
consider two different ways to combine these conflicting goals. In the budget set-
ting, we fix an energy budget B ≥ 0 and seek the minimal (fractional or integral)
flow achievable with this energy. In the flow plus energy setting, we want to min-
imize a linear combination F (S) + βE(S) of energy and (fractional or integral)
flow.

3 Hardness Results

This section proves NP-hardness for the problems B-IDUA and B-IDWU. The
reductions are from the subset sum problem, where we are given n elements
a1 ≥ a2 ≥ · · · ≥ an with ai ∈ N as well as a target value A ∈ N with a1 <
A <

∑n
i=1 ai. The goal is to decide whether there is a subset L ⊆ [n] such that∑

i∈L ai = A.

Basic Idea. For both reductions, we define for each element ai a job set Ji such
that jobs of different sets will not influence each other. Each Ji contains one low
density job and one/several high density jobs. Starting from a base schedule, we
choose the parameters such that investing roughly ai energy into Ji improves its
flow by roughly ai. More precisely, when Ji gets ai energy, additional energy can
be used to decreases the flow at a rate � 1/2 per energy unit. Given substantially
more or less energy, additional energy decreases the flow at a rate of only 1/2.
We achieve this by ensuring that at about ai energy, the schedule switches from
finishing the low density job after the high density jobs to finishing it before
them. For an energy budget of A, we can define a target flow that is reached if
and only if there is an L ⊆ [n] such that

∑
i∈L ai = A (corresponding to job sets

that are given about ai extra energy).

Remarks. We assume a processor with two speeds s1 = 1 and s2 = 2 and
power consumption rates P1 = 1 and P2 = 4. For an isolated job of weight w,
this means that increasing a workload of x from speed s1 to s2 increases the
energy by x and decreases the flow by w · x

2 . To ensure that jobs of different
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job sets do not influence each other, one can increase all release times of the job
set Ji by the total workload of all previous job sets. For ease of exposition, we
consider each job group Ji in isolation, and assume its first job is released at
time 0. Due to space constraints, the reduction for B-IDWU is deferred to the full
version.

3.1 Hardness of B-IDUA

For i ∈ [i], we define a job set Ji = (i, 1), (i, 2) of two unit weight jobs and set
δ = 1

a1n2 . The release time of job (i, 1) is ri1 = 0 and its size is pi1 = ai. The
release time of job (i, 2) is ri2 = ai/2 and its size is pi2 = 2δai.

Definition 1 (Base Schedule). The base schedule BSi schedules job (i, 1) at
speed 1 and job (i, 2) at speed 2. It finishes job (i, 1) after (i, 2), has energy
consumption E(BSi) = ai + 4δai, and flow F (BSi) = ai + 2δai.

Note that BSi is optimal for the energy budget E(BSi). Consider an optimal
schedule S for the jobs J =

⋃n
i=1 Ji (release times shifted such that they do not

interfere) for the energy budget B =
∑n

i=1 E(BSi)+A. Let L ⊆ [n] be such that
i ∈ L if and only if Ji gets at least E(BSi) + ai − 4δai = 2ai energy in S.

Lemma 1. S has flow at most F =
∑n

i=1 F (BSi) − ( 12 + δ)A iff
∑

i∈L ai = A.

Proof. For the first direction, given that
∑

i∈L ai = A, note that the schedule
that gives each job set Ji with i ∈ L exactly E(BSi)+ai energy and each Ji with
i 	∈ L exactly E(BSi) energy adheres to the energy budget and has flow exactly
F . For the other direction, consider i ∈ [n], let Ei be the total energy used to
schedule Ji in S, and let Δi = Ei − E(BSi) the additional energy used with
respect to the base schedule. Then, for i 	∈ L, the flow of Ji is F (BSi) − 1

2Δi,
yielding an average flow gain per energy unit of 1/2. For i ∈ L, the flow gain per
energy unit is 1 for the interval [2ai, 2ai + 2δai) and 1/2 otherwise. Thus, the
maximum average flow gain is achieved for Ei = 2ai + 2δai, where the energy
usage is E(BSi)+ai−2δai and the flow is F (BSi)−ai/2. This yields a maximum
average flow gain per energy unit of ai/2

ai−2δai
= 1

2−4δ . Using these observations,
we now show that, if

∑
i∈L ai 	= A, the schedule has either too much flow or uses

too much energy. Let us distinguish two cases:

Case 1:
∑

i∈L ai < A: Using ai, A ∈ N and our observations, the flow decreases
by at most (w.r.t.

∑n
i=1 BSi)

1

2 − 4δ

∑

i∈L

ai+
1

2

(
A−
∑

i∈L

ai

)
=

1

2
A+

δ

1 − 2δ

∑

i∈L

ai ≤ 1

2
A+

δ

1 − 2δ
(A−1) <

(1
2
+δ
)
A.

The last inequality follows from δ = 1
a1n2 < 1

2A .
Case 2:

∑
i∈L ai > A: This implies

∑
i∈L ai ≥ A + 1. Note that even if all jobs

(i, 2) with i ∈ 1, 2, . . . , n are run at speed 1 instead of speed 2, the total
energy saved with respect to the base schedules is at most

∑n
i=1 2δai ≤ 2

n .
By this and the previous observations, the additional energy used by S with
respect to the base schedules is at least (1−4δ)

∑
i∈L ai − 2

n ≥ ∑
i∈L ai − 6

n ≥
A + 1 − 6

n > A. �
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Theorem 1. B-IDUA is NP-hard.

4 Polynomial Time Algorithms

In this section we provide polynomial time algorithms for FE-IDUU, FE-ICUU, and
FE-FCWA. The algorithm for FE-ICUU generalizes and makes slight modifications
to the algorithm in [2] to handle arbitrary power functions. We also provide
a new, simple, combinatorial algorithm for FE-IDUU. While by the results of
Sect. 5.1 we could use the algorithm for FE-ICUU to solve FE-IDUU, the algorithm
we provide has the advantages of not having the numerical qualifications of the
algorithm for FE-ICUU, as well as providing some additional insight into the
open problem FE-IDUA. The algorithm for FE-FCWA generalizes and makes slight
modifications to the algorithm in [4] to handle arbitrary power functions.

4.1 An Algorithm for FE-IDUU

Here we give a polynomial time algorithm for FE-IDUU. We describe the algo-
rithm for two speeds; it is straightforward to generalize it to k speeds. The
algorithm relies heavily upon the fact that, when jobs are of unit size, the opti-
mal completion ordering is always FIFO (since any optimal schedule uses the
SRPT (shortest remaining processing time) scheduling policy).1 Before describ-
ing the algorithm, we provide the necessary optimality conditions in Lemma 2.
They are based on the following definitions, capturing how jobs may affect each
other.

Definition 2 (Lower Affection). For a fixed schedule, a job j1 lower affects
a job j2 if there is an ε > 0 such that decreasing the speed of j1 by any value in
(0, ε] increases the flow of j2.

Definition 3 (Upper Affection). For a fixed schedule, a job j1 upper affects
a job j2 if there is some ε > 0 such that increasing the speed of j1 by any value
in (0, ε] decreases the flow of j2.

Lemma 2. Be S an optimal schedule and s1 and s2 consecutive speeds. Define
α = P2−P1

s2−s1
and κ = −(P1 − αs1) ≥ 0. For job j with (interpolated) speed

sj ∈ [s1, s2]: (a) sj > s1 ⇒ j lower affects at least κ jobs, and (b) sj < s2 ⇒ j
upper affects at most κ − 1 jobs.

Proof. We start with (a). To get a contradiction, assume sj > s1 but j lower
affects less than κ jobs. Thus, for any ε > 0, increasing j’s completion time by ε
increases the flow of at most κ − 1 jobs by ε. If the resulting schedule is S′. For
t = 1

sj
, the energy from S to S′ decreases by

1 In fact, a slightly more general result yields an optimal FE-IDUA schedule given an
optimal completion ordering.
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tP

(
1

t

)
− (t + ε)P

(
1

(t + ε)

)
t
(α

t
+ P1 − αs1

)
− (t + ε)

(
α

(t + ε)
+ P1 − αs1

)

= α + tP1 − tαs1 − α − (t + ε)P1 + (t + ε)αs1 = −ε(P1 − αs1) = κε.

So, the total change in the objective function is at most (κ − 1)ε − κε < 0,
contradicting the optimality of S. Statement (b) follows similarly by decreasing
the completion time of j by ε. �
Observation 2. Consider two arbitrary jobs j and j′ in an arbitrary schedule S.

(a) If j upper affects j′ 	= j and j does not run at s2, j′ must run at s1.
(b) While raising j’s speed, the number of its lower and upper affections can only

decrease.
(c) If j upper affects j′, then changing the speed of j′ will not change j’s affection

on j′.
(d) Assume j runs at speed sj and upper affects m jobs. Then, in any schedule

where j’s speed is increased (and all other jobs remain unchanged), j lower
affects at most m jobs.

Our algorithm GreedyAffection initializes each job with speed s1. Con-
sider jobs in order of release times and let j denote the current job. While j upper
affects at least κ jobs and is not running at s2, increase its speed. Otherwise,
update j to the next job (or terminate if j = n).

Theorem 3. GreedyAffection solves FE-IDUU in polynomial time.

Proof. Assume A is not optimal and let O be an optimal schedule agreeing with
A for the most consecutive job speeds (in order of release times). Let j be the
first job that runs at a different speed and let sA and sO be the job’s speeds in A
and O. We consider two cases: If sA > sO, Observation 2(a) implies that every
job that is upper affected by j in O other than j itself is run at s1. Consider
the time of A’s execution when the speed of j was at sO. Since A continued to
raise j’s speed, j upper affected at least κ jobs. Let J be this set of jobs. By
Observation 2(c), j still upper affects all jobs j′ ∈ J in O. This contradicts the
optimality of O (Lemma 2). For the second case, assume sA < sO. By Lemma 2,
j upper affects less than κ jobs in A. When A stops raising j’s speed, all jobs
to the right run at s1. Observations 2(b) and (d) imply that j lower affects less
than κ jobs in O, contradicting O’s optimality (Lemma 2). �

4.2 An Algorithm for FE-ICUU

In this subsection we show that FE-ICUU is in P. Essentially, it is possible to
modify the algorithm from [2] to work with arbitrary power functions. The main
alteration is that, for certain power functions that would yield differential equa-
tions too complicated for the algorithm to solve, we use binary search to find
solutions to a these equations rather than solve the equations analytically.

Theorem 4. There is a polynomial time algorithm for solving FE-ICUU.
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4.3 An Algorithm for FE-FCWA

This subsection shows that FE-FCWA is in P. The basic idea is to modify the
algorithm from [4] to work with arbitrary power functions, under some mild
assumptions. In order to maintain polynomial running time, the algorithm must
efficiently find the next occurrence of certain events. In [4], this is done by ana-
lytically solving a series of differential equations, which are too complicated to
solve for arbitrary power functions. Instead, our algorithm finds the occurrence
of the next event by using binary search to “guess” its occurrence, and then
(numerically) solve a (simpler) set of equations to determine if an event did,
in fact, occur. Our only assumption is that it is possible to numerically find a
solution to the involved equations.

Theorem 5. There is a polynomial time algorithm for solving FE-FCWA.

5 Equivalence Reductions

Here we provide the reductions to obtain the hardness and algorithmic results
that are not proven explicitly. First, we reduce B-ICUU to FE-ICUU. Combined
with the algorithm from Sect. 4.2, this shows that B-ICUU is in P. The second
reduction is from any problem in the discrete power setting to the corresponding
continuous variant. As a result, the hardness proofs from Sect. 3 for B-IDWU and
B-IDUA imply that B-ICWU and B-ICUA are NP-hard. Our final reduction is from
B-FCWA to FE-FCWA. As a result of the algorithm in Sect. 4.3, this shows that
B-FCWA is in P.

5.1 Reducing B-ICUU to FE-ICUU

We show that, given an algorithm for the flow plus energy variant, we can solve
the energy budget variant of ICUU. The basic idea is to modify the coefficient β
in the flow plus energy objective until we find a schedule that fully utilizes the
energy budget B. This schedule gives the minimum flow for B. The major techni-
cal hurdles to overcome are that the power function P may be non-differentiable,
and may lead to multiple optimal flow plus energy schedules, each using different
energies. Thus, we may not find a corresponding schedule for the given budget,
even if there is one. To overcome this, we define the affectance νj of a job j. Intu-
itively, νj represents how many jobs’ flows will be affected by a speed change
of j. We show that a job’s affectance is, in contrast to its energy and speed,
unique across optimal schedules and changes continuously in β. This will imply
that job speeds change continuously in β (i.e., for small enough changes, there
are two optimal schedules with speeds arbitrarily close). We also give a continu-
ous transformation process between any two optimal schedules. This eventually
allows us to apply binary search to find the correct β.

Definitions and Notation. We start with some formal definitions for this
section and a small overview of what they will be used for in the remainder.
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Definition 6 (affectance) will be most central to this section, as it will be shown
in Lemma 3 and Corollary 1 to characterize optimal schedules. It uses the sub-
differential2 ∂P (s) to handle non-differentiable power functions P .

Definition 4 (Total Weight of Lower/Upper Affection). In any schedule,
lj and uj are the total weight of jobs lower and upper affected by j, respectively
(see Definitions 2 and 3).

Definition 5 (Job Group). A job group is a maximal subset of jobs such that
each job in the subset completes after the release of the next job. Let Ji denote
the job group with the i-th earliest release time and Wi the total weight of Ji

(Ji = ∅ and Wi = 0 if Ji does not exist). Job groups Ji and Ji+1 are consecutive
if the last job in Ji ends at the release time of the first job in Ji+1. We set the
indicator ζi = 1 if and only if Ji+1 exists and Ji and Ji+1 are consecutive.

Definition 6 (Affectance Property). The ith job group of a schedule satisfies
the affectance property if either ζi+1 = 0 or the i + 1st job group also satisfies
the affectance property, and there exists N i such that for all vi ∈ N i and j ∈ Ji

vi ∈ [0, ζi+1(νi+1 + Wi+1)], (1)

vj = vi + uj, and (2)
vj = sjd − P (sj) for some d ∈ ∂P (s). (3)

Here, νi = max N i if job group i exists, and νi = 0 otherwise. A schedule satisfies
the affectance property if all job groups in the schedule satisfy the affectance
property.

Definition 7 (Affectance of a Job). The set of speeds satisfying Eq. (3) for
vj = ν is S(ν). For each job j in group i with the affectance property, the
affectance of job j is νj = νi + uj.

Characterizing Optimal Schedules. We first prove that the affectance prop-
erty characterizes optimal schedules. Lemma 3 shows that this property is nec-
essary, Lemma 4 shows that affectance is unique across optimal schedules, and
Corollary 1 shows that the affectance property is sufficient for optimality.

Lemma 3. Any optimal schedule for FE-ICUU satisfies the affectance property.

Lemma 4. Let S1 and S2 be schedules with the affectance property and let νi
j

denote the affectance of job j in the corresponding schedule. Then ν1
j = ν2

j for
all j.

Next, we show how to transform any schedule that has the affectance prop-
erty into any other such schedule without changing the flow plus energy value.

2 Subdifferentials generalize the derivative of convex functions. ∂P (s) is the set of
slopes of lines through (s, P (s)) that lower bound P . It is closed, convex on the
interior of P ’s domain, and non-decreasing if P is increasing [13].



On the Complexity of Speed Scaling 87

Together with Lemma 3, this immediately implies that the affectance property
is sufficient for optimality (Corollary 1). Also, Lemma 3 is a nice algorithmic
tool, as it allows us to find schedules “in between” any two optimal schedules
with arbitrary precision. We will make use of that in the proof of Theorem 6.

Lemma 5. Let S1 and S2 be schedules with the affectance property. We can
transform S1 to S2 without changing its flow plus energy. All intermediate sched-
ules satisfy the affectance property and we can make the speed changes between
intermediate schedules arbitrarily small.

Corollary 1. Any schedule satisfying the affectance property is optimal.

Binary Search Algorithm. We now provide the main technical result of this
section, a polynomial time algorithm for B-ICUU based on any such algorithm
for FE-ICUU (Theorem 6). In order to state the algorithm and its correctness,
we need two more auxiliary lemmas. Lemma 6 proves that the affectance of jobs
is continuous in β, while Lemma 7 does the same for job speeds.

Lemma 6. For β > 0 and ε > 0, there exists δ > 0 such that for all jobs j and
β′ ∈ [β − δ, β + δ], any optimal FE-ICCU schedules S for β and S′ for β′ adhere
to ν′

j ∈ [νj − ε, νj + ε].

Lemma 7. For β > 0 and ε > 0, there exists δ > 0 such that for all jobs j and
β′ ∈ [β − δ, β + δ], any optimal FE-ICUU schedules S for β and S′ for β′ adhere
to s′

j ∈ [sj − ε, sj + ε].

Theorem 6. Given a polynomial time algorithm for the continuous flow plus
energy problem with unit size unit weight jobs, there is a polynomial time algo-
rithm for the budget variant.

Proof. Suppose we are given an energy budget B, and an algorithm to solve
FE-ICUU. As we formally show in the proof of Theorem 8, the energy of optimal
schedules increases as β decreases (even though we are considering here integral
flow rather than fractional flow). Thus, the first step of the algorithm is to binary
search over β until we find a schedule that fully utilizes B. If we find such a β,
we are done (any optimal FE-ICUU schedule must minimize flow for the energy
it consumes). Otherwise, we consider three cases:

Case 1: We find a β for which the optimal FE-ICUU schedule runs every job at
the lowest speed used by any optimal schedule and uses > B energy. Here,
this lowest speed is (if it exists) the largest speed s such that for all s′ < s

we have P (s)
s ≤ P (s′)

s′ . In this case, no solution exists, since running a job at
a lower speed increases its flow but does not decrease its energy.

Case 2: We find a β for which the optimal FE-ICUU schedule runs every job at
the highest speed used by any optimal schedule and uses ≤ B energy. Here,
this highest speed is (if it exists) the largest speed s such that for all s′ > s
we have P (s′) = ∞. In this case, β yields the optimal budget solution, since
running any job at a higher speed uses infinite energy.
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Case 3: There is ε > 0 such that for any β, the computed optimal FE-ICUU
schedule uses at least B + ε or at most B − ε energy. Since job speeds are
continuous in β (Lemma 7) and the energy increases as β decreases, we know
that there is some β such that the corresponding FE-ICUU solutions contain
schedules using both B+ε1 energy and B−ε2 energy (ε1, ε2 > 0). Fix such a
β and let S1 and S2 be the corresponding schedules using B − ε1 and B + ε2,
respectively. By Lemma 5, we can continuously change the speeds (and, thus,
energy) of S1 to obtain S2. During this process, we obtain an intermediate
optimal FE-ICUU schedule that uses exactly B energy. As described above,
this schedule is also optimal for B-ICUU. �

5.2 Reducing the Discrete to the Continuous Setting

The main result of this subsection is a reduction from the discrete to the continu-
ous setting. Using mild computational power assumptions, Theorem 7 shows how
to use an algorithm for the continuous variant of one of our problems (*-*C**)
to solve the corresponding discrete variant (*-*D**). It is worth noting that our
reduction makes use of arbitrary continuous power functions (especially power
functions with a maximum speed).

Theorem 7. Given a polynomial time algorithm for any budget or flow plus
energy variant in the continuous setting, there is a polynomial time algorithm
for the discrete variant.

5.3 Reducing from Budget to Flow Plus Energy for Fractional Flow

This subsection gives a reduction from the budget to the flow plus energy objec-
tive. The reduction given in Theorem 8 is for fractional flow, assumes the most
general setting (weighted jobs of arbitrary size), and preserves unit size and unit
weight jobs, making it applicable to reduce B-FC** to FE-FC**.

Theorem 8. Given a polynomial time algorithm for the budget variant and frac-
tional flow, there is a polynomial time algorithm for the corresponding flow plus
energy variant.
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