
Densest Subgraph in Dynamic Graph Streams

Andrew McGregor(B), David Tench, Sofya Vorotnikova, and Hoa T. Vu

University of Massachusetts, Amherst, USA
{mcgregor,dtench,svorotni,hvu}@cs.umass.edu

Abstract. In this paper, we consider the problem of approximating the
densest subgraph in the dynamic graph stream model. In this model
of computation, the input graph is defined by an arbitrary sequence of
edge insertions and deletions and the goal is to analyze properties of
the resulting graph given memory that is sub-linear in the size of the
stream. We present a single-pass algorithm that returns a (1+ε) approx-
imation of the maximum density with high probability; the algorithm
uses O(ε−2n polylog n) space, processes each stream update in polylog(n)
time, and uses poly(n) post-processing time where n is the number of
nodes. The space used by our algorithm matches the lower bound of Bah-
mani et al. (PVLDB 2012) up to a poly-logarithmic factor for constant ε.
The best existing results for this problem were established recently by
Bhattacharya et al. (STOC 2015). They presented a (2 + ε) approxi-
mation algorithm using similar space and another algorithm that both
processed each update and maintained a (4 + ε) approximation of the
current maximum density in polylog(n) time per-update.

1 Introduction

In the dynamic graph stream model of computation, a sequence of edge insertions
and deletions defines an input graph and the goal is to solve a specific problem on
the resulting graph given only one-way access to the input sequence and limited
working memory. Motivated by the need to design efficient algorithms for process-
ing massive graphs, over the last four years there has been a considerable amount
of work designing algorithms in this model [1–5,8,9,11,17,19,21,22,24,25]. Spe-
cific results include testing edge connectivity [3] and node connectivity [19],
constructing spectral sparsifiers [21], approximating the densest subgraph [8],
maximum matching [5,9,11,24], correlation clustering [1], and estimating the
number of triangles [25]. For a recent survey of the area, see [27].

In this paper, we consider the densest subgraph problem. Let GU be the
induced subgraph of graph G = (V,E) on nodes U . Then the density of GU is
defined as

d(GU) = |E(GU)|/|U |,
where E(GU) is the set of edges in the induced subgraph. We define the maximum
density as

This work was supported by NSF Awards CCF-0953754, IIS-1251110, CCF-1320719,
and a Google Research Award.

c© Springer-Verlag Berlin Heidelberg 2015
G.F. Italiano et al. (Eds.): MFCS 2015, Part II, LNCS 9235, pp. 472–482, 2015.
DOI: 10.1007/978-3-662-48054-0 39

Densest Subgraph in Dynamic Graph Streams 473

d∗ = max
U⊆V

d(GU).

and say that the corresponding subgraph is the densest subgraph. The dens-
est subgraph can be found in polynomial time [10,15,18,23] and more efficient
approximation algorithms have been designed [10]. Finding dense subgraphs is an
important primitive when analyzing massive graphs; applications include com-
munity detection in social networks and identifying link spam on the web, in
addition to applications on financial and biological data. See [26] for a survey of
applications and existing algorithms for the problem.

1.1 Our Results and Previous Work

We present a single-pass algorithm that returns a (1+ε) approximation with high
probability1. For a graph on n nodes, the algorithm uses the following resources:

– Space: O(ε−2npolylog n). The space used by our algorithm matches the lower
bound of Bahmani et al. [7] up to a poly-logarithmic factor for constant ε.

– Per-update time: polylog(n). We note that this is the worst-case update time
rather than amortized over all the edge insertions and deletions.

– Post-processing time: poly(n). This will follow by using any exact algorithm
for densest subgraph [10,15,18] on the subgraph generated by our algorithm.

The most relevant previous results for the problem were established recently
by Bhattacharya et al. [8]. They presented two algorithms that use similar space
to our algorithm and process updates in polylog(n) amortized time. The first
algorithm returns a (2 + ε) approximation of the maximum density of the final
graph while the second (the more technically challenging result) outputs a (4+ε)
approximation of the current maximum density after every update while still
using only polylog(n) time per-update. Our algorithm improves the approxima-
tion factor to (1+ε) while keeping the same space and update time. It is possible
to modify our algorithm to output a (1 + ε) approximation to the current max-
imum density after each update but the simplest approach would require the
post-processing step to be run after every edge update and this would not be
efficient.

Bhattacharya et al. were one of the first to combine the space restriction
of graph streaming with the fast update and query time requirements of fully-
dynamic algorithms from the dynamic graph algorithms community. Epasto,
Lattanzi, and Sozio [14] present a fully-dynamic algorithm that returns a (2+ ε)
approximation of the current maximum density. Other relevant work includes
papers by Bahmani, Kumar, and Vassilvitskii [7] and Bahmani, Goel, and
Munagala [6]. The focus of these papers is on designing algorithms in the MapRe-
duce model but the resulting algorithms can also be implemented in the data
stream model if we allow multiple passes over the data.
1 Throughout this paper, we say an event holds with high probability if the probability

is at least 1 − n−c for some constant c > 0.

474 A. McGregor et al.

1.2 Our Approach and Paper Outline

The approach we take in this paper is as follows. In Sect. 2, we show that if we
sample every edge of a graph independently with a specific probability then we
generate a graph that is a) sparse and b) can be used to estimate the maximum
density of the original graph. This is not difficult to show but requires care since
there are an exponential number of subgraphs in the subsampled graph that we
will need to consider.

In Sect. 3, we show how to perform this sampling in the dynamic graph stream
model. This can be done using the �0 sampling primitive [12,20] that enables
edges to be sampled uniformly from the set of edges that have been inserted
but not deleted. However, a naive application of this primitive would necessitate
Ω(n) per-update processing. To reduce this to O(polylog n) we reformulate the
sampling procedure in such a way that it can be performed more efficiently. This
reformulation is based on creating multiple partitions of the set of edges using
pairwise independent hash functions and then sampling edges within each group
in the partition. The use of multiple partitions is somewhat reminiscent of that
used in the Count-Min sketch [13].

2 Subsampling Approximately Preserves Maximum
Density

In the section, we consider properties of a random subgraph of the input graph G.
Specifically, let G′ be the graph formed by sampling each edge in G independently
with probability p where

p = cε−2 log n · n

m

for some sufficiently large constant c > 0 and 0 < ε < 1/2. We may assume that
m is sufficiently large such that p < 1 because otherwise we can reconstruct the
entire graph in the allotted space using standard results from the sparse recovery
literature [16].

We will prove that, with high probability, the maximum density of G can be
estimated up to factor (1+ε) given G′. While it is easy to analyze how the density
of a specific subgraph changes after the edge sampling, we will need to consider
all 2n possible induced subgraphs and prove properties of the subsampling for
all of them.

The next lemma shows that d(G′
U) is roughly proportional to d(GU) if d(GU)

is “large” whereas if d(GU) is “small” then d(G′
U) will also be relatively small.

Lemma 1. Let U be an arbitrary set of k nodes. Then,

P [d(G′
U) ≥ pd∗/10] ≤ n−10k if d(GU) ≤ d∗/60

P [|d(G′
U) − pd(GU)| ≥ εpd(GU)] ≤ 2n−10k if d(GU) > d∗/60 .

Proof. We start by considering the density of the entire graph d(G) = m/n
and therefore conclude that the maximum density, d∗, is at least m/n. Hence,
p ≥ (cε−2 log n)/d∗.

Densest Subgraph in Dynamic Graph Streams 475

Let X be the number of edges in G′
U and note that E [X] = pkd(GU). First

assume d(GU) ≤ d∗/60. Then, by an application of the Chernoff Bound (e.g.,
[28, Theorem 4.4]), we observe that

P [d(G′
U) ≥ pd∗/10] = P [X ≥ pkd∗/10] ≤ 2−pkd∗/10 < 2−ck(log n)/10

and this is at most n−10k for sufficiently large constant c.
Next assume d(GU) > d∗/60. Hence, by an application of an alternative form

of the Chernoff Bound (e.g., [28, Theorems 4.4 and 4.5]), we observe that

P [|d(G′
U) − pd(GU)| ≥ εpd(GU)] = P [|X − pkd(GU)| ≥ εpkd(GU)]

≤ 2 exp(−ε2pkd(GU)/3)
≤ 2 exp(−ε2pkd∗/180)
≤ 2 exp(−ck(log n)/180).

and this is at most 2n−10k for sufficiently large constant c. ��
Corollary 1. With high probability, for all U ⊆ V :

d(G′
U) ≥ (1 − ε)pd∗ ⇒ d(GU) ≥ 1 − ε

1 + ε
· d∗.

Proof. There are
(
n
k

) ≤ nk subsets of V that have size k. Hence, by appealing to
Lemma 1 and the union bound, with probability at least 1−2n−9k, the following
two equations hold,

d(G′
U) ≥ pd∗/10 ⇒ d(GU) > d∗/60

d(GU) > d∗/60 ⇒ d(GU) ≥ d(G′
U)

p(1 + ε)

for all U ⊆ V such that |U | = k. Since (1 − ε)pd∗ ≥ pd∗/10, together these two
equations imply

d(G′
U) ≥ (1 − ε)pd∗ ⇒ d(GU) ≥ d(G′

U)
p(1 + ε)

≥ 1 − ε

1 + ε
· d∗

for all sets U of size k. Taking the union bound over all values of k establishes
the corollary. ��
We next show that the densest subgraph in G′ corresponds to a subgraph in G
that is almost as dense as the densest subgraph in G.

Theorem 1. Let U ′ = argmaxU d(G′
U). Then with high probability,

1 − ε

1 + ε
· d∗ ≤ d(GU ′) ≤ d∗.

Proof. Let U∗ = argmaxU d(GU). By appealing to Lemma 1, we know that
d(G′

U∗) ≥ (1 − ε)pd∗ with high probability. Therefore

d(G′
U ′) ≥ d(G′

U∗) ≥ (1 − ε)pd∗,

and the result follows by appealing to Corollary 1. ��

476 A. McGregor et al.

3 Implementing in the Dynamic Data Stream Model

In this section, we show how to sample each edge independently with the pre-
scribed probability in the dynamic data stream model. The resulting algorithm
uses O(ε−2npolylog n) space. The near-linear dependence on n almost matches
the Ω(n) lower bound proved by Bahmani et al. [7]. The main theorem we
prove is:

Theorem 2. There exists a randomized algorithm in the dynamic graph stream
model that returns a (1 + ε)-approximation for the density of the densest sub-
graph with high probability. The algorithm uses O(ε−2npolylog n) space and
O(polylog n) update time. The post-processing time of the algorithm is polyno-
mial in n.

To sample the edges with probability p in the dynamic data stream model there
are two main challenges:

1. Any edge we sample during the stream may subsequently be deleted.
2. Since p depends on m, we do not know the value of p until the end of the

stream.

To address the first challenge, we appeal to an existing result on the �0 sampling
technique [20]: there exists an algorithm using polylog(n) space and update time
that returns an edge chosen uniformly at random from the final set of edges in
the graph. Consequently we may sample r edges uniformly at random using
O(r polylog n) update time and space. To address the fact we do not know p
apriori, we could set r � pm = cε−2n log n, and then, at the end of the stream
when p and m are known a) choose X ∼ Bin(m, p) where Bin(·, ·) denotes the
binomial distribution and b) randomly pick X distinct random edges amongst
the set of r edges sampled (ignoring duplicates). This approach will work with
high probability if r is sufficiently large since X is tightly concentrated around
E [X] = pm. However, a naive implementation of this algorithm would require
ω(n) update time. The main contribution of this section is to demonstrate how
to ensure O(polylog n) update time.

3.1 Reformulating the Sampling Procedure

We first describe an alternative sampling process that, with high probability,
returns a set of edges S where each edge in S has been sampled independently
with probability p as required. The purpose of this alternative formulation is
that it will allow us to argue that it can be emulated in the dynamic graph
stream model efficiently.

Basic Approach. The basic idea is to partition the set of edges into different
groups and then sample edges within groups that do not contain too many
edges. We refer to such groups as “small”. We determine which of the edges in
a small group are to be sampled in two steps:

Densest Subgraph in Dynamic Graph Streams 477

– Fix the number X of edges to sample: Let X ∼ Bin(g, p) where g is the
number of edges in the relevant group.

– Fix which X edges to sample: We then randomly pick X edges without replace-
ment from the relevant group.

It is not hard to show that this two-step process ensures that each edge in the
group is sampled independently with probability p. At this point, the fate of all
edges in small groups has been decided: they will either be returned in the final
sample or definitely not returned in the final sample.

We next consider another partition of the edges and again consider groups
that do not contain many edges. We then determine the fate of the edges in such
groups whose fate has not hitherto been determined. We keep on considering
different partitions until every edge has been included in a small group and has
had its fate determined.

Lemma 2. Assume for every edge there exists a partition such that the edge is
in a small group. Then the distribution over sets of sampled edges is the same
as the distribution had each edge been sampled independently with probability p.

Proof. The proof does not depend on the exact definition of “small” and the
only property of the partitions that we require is that every edge is in a small
group of some partition. We henceforth consider a fixed set of partitions with
this property.

We first consider the jth group in the ith partition. Let g be the number of
edges in this group. For any subset Q of � edges in this group, we show that the
probability that Q is picked by the two-step process above is indeed p�.

P [∀e ∈ Q, e is picked] =
g∑

t=�

P [∀e ∈ Q, e is picked |X = t]P [X = t]

=
g∑

t=�

(
g−�
t−�

)

(
g
t

) ·
(

g

t

)
· pt(1 − p)g−t

= p�

g∑

t=�

(
g − �

t − �

)
· pt−�(1 − p)g−t = p�.

and hence edges within the same group are sampled independently with prob-
ability p. Furthermore, the edges in different groups of the same partition are
sampled independently from each other.

Let f(e) be the first partition in which e is placed in a group that is small and
let Wi = {e : f(e) = i}. Restricting Q to edges in Wi in the above analysis estab-
lishes that edges in each Wi are sampled independently. Since f(e) is determined
by the fixed set of partitions rather than the randomness of the sampling proce-
dure, we also conclude that edges in different Wi are sampled independently. As
we assume that every edge belongs to at least one small group in some partition,
if we let r be the total number of partitions, then {Wi}i∈[r] partition the set of
edges E. Hence, all edges in E are sampled independently with probability p. ��

478 A. McGregor et al.

Details of Alternative Sampling Procedure. The partitions considered will be
determined by pairwise independent hash functions and we will later argue that it
is sufficient to consider only O(log n) partitions. Each hash function will partition
the m edges into nε−2 groups. In expectation the number of edges in a group will
be ε2m/n and we define a group to be small if it contains at most t = 4ε2m/n
edges. We therefore expect to sample less than 4pε2m/n = 4c log n edges from a
small group. We will abort the algorithm if we attempt to sample significantly
more edges than this from some small group. The procedure is as follows:

– Let h1, . . . , hr :
(
n
2

) → [nε−2] be pairwise independent hash functions where
r = 10 log n.

– Each hi defines a partition of E comprising of sets of the form

Ei,j = {e ∈ E : hi(e) = j}.

Say Ei,j is small if it is of size at most t = 4ε2m/n. Let Di be the set of all
edges in the small sets determined by hi.

– For each small Ei,j , let
Xi,j = Bin(|Ei,j |, p)

and abort if
Xi,j ≥ τ where τ = 24c log n.

Let Si,j be a set of Xi,j edges sampled without replacement from Ei,j .
– Let S be set of edges that were sampled among some Di that are not in

D1 ∪ D2 ∪ . . . ∪ Di−1, i.e., edges whose fate had not already been determined.

S =
r⋃

i=1

{e ∈ Di : e ∈ ∪jSi,j and e �∈ D1 ∪ D2 ∪ . . . ∪ Di−1}

Analysis. There are two main things that we need to show to establish that
the above process emulates our basic sampling approach with high probability.
First, we will show that with high probability for every edge e there exists i and
j such that e ∈ Ei,j and Ei,j is small. This ensures that we will make a decision
on whether e is included in the final sample. Second, we will show that it is very
unlikely we abort because some Xi,j is too large.

Lemma 3. With probability at least 1−n−8, for every edge e there exists i such
that e ∈ Ei,j and Ei,j is small.

Proof. Fix i ∈ [r] and let j = hi(e). Then E [|Ei,j |] ≤ 1+ ε2(m− 1)/n ≤ 2ε2m/n
assuming m ≥ ε−2n. By an application of the Markov bound:

P
[|Ei,j | ≥ 4mε2/n

] ≤ 1/2.

Since each hi is independent,

P
[|Ei,hi(e)| ≥ 4mε2/n for all i

] ≤ 1/2r = 1/n10.

Therefore by the union bound over all m ≤ n2 edges there exists a good partition
for each e with probability at least 1 − n−8. ��

Densest Subgraph in Dynamic Graph Streams 479

Lemma 4. With high probability, all Xi,j are less than τ = 24c log n.

Proof. Since Ei,j is small then E [Xi,j] = |Ei,j |p ≤ 4ε2pm/n = 4c log n. Hence,
by an application of the Chernoff bound,

P [Xi,j ≥ 24c log n] ≤ 2−24c log n ≤ n−10.

Taking the union bound over all 10 log n values of i and ε−2n values of j estab-
lishes the lemma. ��

3.2 The Dynamic Graph Stream Algorithm

We are now ready to present the dynamic graph stream algorithm. To emulate
the above sampling process in the dynamic graph stream model, we proceed as
follows:

1. Pre-Processing: Pick the hash functions h1, h2, . . . , hr. These define the sets
Ei,j .

2. During One Pass:
– Compute the size of each Ei,j and m. Note that m is necessary to define p.
– Sample τ edges S′

i,j uniformly without replacement from each Ei,j .
3. Post-Processing:

– Randomly determine the values Xi,j based on the exact values of |Ei,j | and
m for each Ei,j that is small. If Xi,j exceeds τ then abort.

– Let Si,j be a random subset of S′
i,j of size Xi,j .

– Return p−1 maxU d(G′
U) where G′ is the graph with edges:

S =
r⋃

i=1

{e ∈ Di : e ∈ ∪jSi,j and e �∈ D1 ∪ D2 ∪ . . . ∪ Di−1}

Note that is possible to compute |Ei,j | using a counter that is incremented or
decremented whenever an edge e is added or removed respectively that satisfies
hi(e) = j. We may evaluate pairwise independent hash functions in O(polylog n)
time. The exact value of maxU d(G′

U) can be determined in polynomial time
using the result of Charikar [10]. To prove Theorem 2, it remains to describe
how to sample τ edges without replacement from each Ei,j .

Sampling Edges Without Replacement Via �0-Sampling. To do this, we use the
�0-sampling algorithm of Jowhari et al. [20]. Their algorithm returns, with high
probability, a random edge from Ei,j and the space and update time of the
algorithm are both O(polylog n). Running τ independent instantiations of this
algorithm immediately enables us to sample τ edges uniformly from Ei,j with
replacement.

However, since their algorithm is based on linear sketches, there is an elegant
way (at least, more elegant than simply over sampling and removing duplicates)
to ensure that all samples are distinct. Specifically, let x be the characteristic

480 A. McGregor et al.

vector of the set Ei,j . Then, τ instantiations of the algorithm of Jowhari et al.
[20] generate random projections

A1(x) , A2(x) , . . . , Aτ (x)

of x such that a random non-zero entry of x (which corresponds to an edge from
Ei,j) can be identified by processing each Ai(x). Let e1 be the edge reconstructed
from A1(x). Rather than reconstructing an edge from A2(x), which could be the
same as e1, we instead reconstruct an edge e2 from

A2(x) − A2(ie1) = A2(x − ie1)

where ie1 is the characteristic vector of the set {e1}. Note that e2 is necessarily
different from e1 since x − ie is the characteristic vector of the set Ei,j \ {e1}.
Similarly we reconstruct ej from

Aj(x) − Aj(ie1) − Aj(ie2) − . . . − Aj(iej−1) = A2(x − ie1 − . . . − iej−1)

and note that ej is necessarily distinct from {e1, e2, . . . , ej−1}.

4 Conclusion

We presented the first algorithm for estimating the density of the densest sub-
graph up to a (1 + ε) factor in the dynamic graph stream model. Our algo-
rithm used O(ε−2npolylog n) space, polylog(n) per-update processing time, and
poly(n) post-processing to return the estimate. The most relevant previous
results, by Bhattacharya et al. [8], were a (2 + ε) approximation in similar space
and a (4 + ε) approximation with polylog(n) per-update processing time that
also outputs an estimate of the maximum density after each edge insertion or
deletion. A natural open question is whether it is possible to use ideas contained
in this paper to improve the approximation factor for the problem of maintaining
a running estimate of the maximum density.

References

1. Ahn, K.J., Cormode, G., Guha, S., McGregor, A., Wirth, A.: Correlation clustering
in data streams. In: Proceedings of the 32nd International Conference on Machine
Learning, ICML 2015, Lille, France, July 6–11, 2015 (2015)

2. Ahn, K.J., Guha, S., McGregor, A.: Analyzing graph structure via linear measure-
ments. In: Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2012, pp. 459–467 (2012)

3. Ahn, K.J., Guha, S., McGregor, A.: Graph sketches: sparsification, spanners, and
subgraphs. In: 31st ACM SIGMOD-SIGACT-SIGART Symposium on Principles
of Database Systems, pp. 5–14 (2012)

4. Ahn, K.J., Guha, S., McGregor, A.: Spectral sparsification in dynamic graph
streams. In: Raghavendra, P., Raskhodnikova, S., Jansen, K., Rolim, J.D.P.
(eds.) RANDOM 2013 and APPROX 2013. LNCS, vol. 8096, pp. 1–10. Springer,
Heidelberg (2013)

Densest Subgraph in Dynamic Graph Streams 481

5. Assadi, S., Khanna, S., Li, Y., Yaroslavtsev, G.: Tight bounds for linear sketches
of approximate matchings. CoRR, abs/1505.01467 (2015)

6. Bahmani, B., Goel, A., Munagala, K.: Efficient primal-dual graph algorithms for
mapreduce. In: Bonato, A., Graham, F.C., Pra�lat, P. (eds.) WAW 2014. LNCS,
vol. 8882, pp. 59–78. Springer, Heidelberg (2014)

7. Bahmani, B., Kumar, R., Vassilvitskii, S.: Densest subgraph in streaming and
mapreduce. PVLDB 5(5), 454–465 (2012)

8. Bhattacharya, S., Henzinger, M., Nanongkai, D., Tsourakakis, C.E.: Space- and
time-efficient algorithm for maintaining dense subgraphs on one-pass dynamic
streams. In: STOC (2015)

9. Bury, M., Schwiegelshohn, C.: Sublinear estimation of weighted matchings in
dynamic data streams. CoRR, abs/1505.02019 (2015)

10. Charikar, M.: Greedy approximation algorithms for finding dense components in
a graph. In: Jansen, K., Khuller, S. (eds.) APPROX 2000. LNCS, vol. 1913, pp.
84–95. Springer, Heidelberg (2000)

11. Chitnis, R.H., Cormode, G., Esfandiari, H., Hajiaghayi, M., McGregor, A.,
Monemizadeh, M., Vorotnikova, S.: Kernelization via sampling with applications
to dynamic graph streams. CoRR, abs/1505.01731 (2015)

12. Cormode, G., Firmani, D.: A unifying framework for �0-sampling algorithms. Dis-
trib. Parallel Databases 32(3), 315–335 (2014)

13. Cormode, G., Muthukrishnan, S.: An improved data stream summary: the count-
min sketch and its applications. J. Algorithms 55(1), 58–75 (2005)

14. Epasto, A., Lattanzi, S., Sozio, M.: Efficient densest subgraph computation in
evolving graphs. In: WWW (2015)

15. Gallo, G., Grigoriadis, M.D., Tarjan, R.E.: A fast parametric maximum flow algo-
rithm and applications. SIAM J. Comput. 18(1), 30–55 (1989)

16. Gilbert, A.C., Indyk, P.: Sparse recovery using sparse matrices. Proc. IEEE 98(6),
937–947 (2010)

17. Goel, A., Kapralov, M., Post, I.: Single pass sparsification in the streaming model
with edge deletions. CoRR, abs/1203.4900 (2012)

18. Goldberg, A.V.: Finding a maximum density subgraph. Technical report, Berkeley,
CA, USA (1984)

19. Guha, S., McGregor, A., Tench, D.: Vertex and hypergraph connectivity in dynamic
graph streams. In: PODS (2015)

20. Jowhari, H., Saglam, M., Tardos, G.: Tight bounds for lp samplers, finding dupli-
cates in streams, and related problems. In: PODS, pp. 49–58 (2011)

21. Kapralov, M., Lee, Y.T., Musco, C., Musco, C., Sidford, A.: Single pass spectral
sparsification in dynamic streams. In: FOCS (2014)

22. Kapralov, M., Woodruff, D.P.: Spanners and sparsifiers in dynamic streams. In:
ACM Symposium on Principles of Distributed Computing, PODC 2014, Paris,
France, July 15–18, 2014, pp. 272–281 (2014)

23. Khuller, S., Saha, B.: On finding dense subgraphs. In: Albers, S., Marchetti-
Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part
I. LNCS, vol. 5555, pp. 597–608. Springer, Heidelberg (2009)

24. Konrad, C.: Maximum matching in turnstile streams. CoRR, abs/1505.01460
(2015)

25. Kutzkov, K., Pagh, R.: Triangle counting in dynamic graph streams. In: Ravi, R.,
Gørtz, I.L. (eds.) SWAT 2014. LNCS, vol. 8503, pp. 306–318. Springer, Heidelberg
(2014)

482 A. McGregor et al.

26. Lee, V., Ruan, N., Jin, R., Aggarwal, C.: A survey of algorithms for dense subgraph
discovery. In: Aggarwal, C.C., Wang, H. (eds.) Managing and Mining Graph Data.
Advances in Database Systems, vol. 40, pp. 303–336. Springer, US (2010)

27. McGregor, A.: Graph stream algorithms: a survey. SIGMOD Rec. 43(1), 9–20
(2014)

28. Mitzenmacher, M., Upfal, E.: Probability and Computing: Randomized Algorithms
and Probabilistic Analysis. Cambridge University Press, New York (2005)

	Densest Subgraph in Dynamic Graph Streams
	1 Introduction
	1.1 Our Results and Previous Work
	1.2 Our Approach and Paper Outline

	2 Subsampling Approximately Preserves Maximum Density
	3 Implementing in the Dynamic Data Stream Model
	3.1 Reformulating the Sampling Procedure
	3.2 The Dynamic Graph Stream Algorithm

	4 Conclusion
	References

