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Abstract. We investigate probabilistic space-bounded Turing machines
that are allowed to make multiple passes over the random tape. As our
main contribution, we establish a connection between derandomization
of such probabilistic space-bounded classes to the derandomization of
probabilistic time-bounded classes. Our main result is the following.

– For some integer k > 0, if all the languages accepted by bounded-error
randomized log-space machines that use O(log n log(k+3) n) random
bits and make O(log(k) n) passes over the random tape is in deter-
ministic polynomial-time, then BPTIME(n) ⊆ DTIME(2o(n)). Here
log(k) n denotes log function applied k times iteratively.

This result can be interpreted as follows: If we restrict the number of
random bits to O(log n) for the above randomized machines, then the
corresponding set of languages is trivially known to be in P. Further,
it can be shown that (proof is given in the main body of the paper)
if we instead restrict the number of passes to only O(1) for the above
randomized machines, then the set of languages accepted is in P. Thus
our result implies that any non-trivial extension of these simulations
will lead to a non-trivial and unknown derandomization of BPTIME(n).
Motivated by this result, we further investigate the power of multi-pass,
probabilistic space-bounded machines and establish additional results.

1 Introduction

In this paper we investigate probabilistic space-bounded Turing machines that
are allowed to access their random bits multiple times. In the traditional defin-
ition of probabilistic space-bounded computations, a probabilistic machine can
access its random tape in a one-way, read-only manner and the random tape
does not count towards the space complexity of the probabilistic machine. In
particular, the machine cannot reread the random bits unless they are stored in
its work tapes. This access mechanism is the most natural one as it corresponds
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to modeling probabilistic machines as coin-tossing machines, originally defined
by Gill [8]. The complexity class BPL is the class of languages accepted by
such bounded-error probabilistic machines that use logarithmic space and halt
in polynomial time1. The class RL is its one-sided error counterpart. Whether
BPL or even RL can be derandomized to deterministic log-space is one of the
central questions in the study of space-bounded computation. In spite of clear
and steady progress in space-bounded derandomization, this question is far from
settled [4,11,15,17–19,21].

Even though one-way access to the random tape is the standard in inves-
tigating probabilistic space-bounded computations, researchers have considered
space-bounded models where the base probabilistic machines are allowed to read
contents of the random tape multiple times [3,5,6,16]. However, our understand-
ing of such multiple-access models is limited. For example, consider the class of
languages that are accepted by bounded-error probabilistic log-space machines
that have an unrestricted two-way access to the random tape (we denote this
class by 2-wayBPL). While we know that BPL is in deterministic polynomial
time, it is not known whether 2-wayBPL is even in deterministic sub-exponential
time (note that it is in BPP). This is because, while one-way access machines
can be characterized using certain graph reachability problem, we do not have
such a nice combinatorial characterization for two-way access machines. It is also
interesting to note that allowing two way access to the random tape for a space-
bounded machine makes the corresponding nonuniform classes more closer to
randomized circuit complexity classes. It is known that log-space uniform NC1

is in deterministic log-space, where NC1 is the class of languages accepted by
polynomial-size, bounded fan-in O(log n)-depth circuits. However, a randomized
version of this inclusion is not known to hold. That is, we do not know whether
(uniform) BPNC1 is contained in BPL. However, it is a folklore that (uniform)
BPNC1 is in 2-wayBPL (for example, see [16]).

This paper revisits probabilistic space-bounded machines that are allowed to
access their random bits multiple times. In particular, we study a model where
the probabilistic space-bounded machines are allowed to make multiple passes
over the random tape, where in each pass the machines access their random
tapes in a traditional one-way manner. This model was first considered by David,
Papakonstantinou, and Sidiropoulos [6]. Clearly, the multi-pass model is inter-
mediate between the standard model and the two-way access model. Our focus
is to investigate the consequences of derandomizing such machines. Our main
conceptual contribution is that derandomizing such probabilistic space-bounded
machines leads to derandomization of probabilistic time-bounded classes.

Our Results. As our main result, we show a connection between derandomiza-
tion of multi-pass probabilistic space-bounded machines and derandomization of
probabilistic (linear) time-bounded machines. In particular, we prove the follow-
ing theorem.

1 We only consider probabilistic machines that halt on all inputs on all settings of the
random tape. If we do not require the machines to halt, then we get a potentially
larger class of languages [13,20].
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Theorem 1. For some constant k > 0, if every language decided by a bounded-
error probabilistic log-space machine that uses O(log n log(k+3) n) random bits
and makes O(log(k) n) passes over its random tape is in P, then BPTIME(n) ⊆
DTIME(2o(n)).

Here log(k) n denotes log function applied k times iteratively. Showing that
BPTIME(n) is a subset of DTIME(2o(n)) is a significant open problem. The best
unconditional derandomization of BPTIME(n) till date is due to Santhanam
and van Melkebeek [22] who showed that any bounded-error linear time prob-
abilistic machine can be simulated in DTIME(2εn), where ε > 0 is a constant
that depends on the number of tapes and the alphabet size of the probabilis-
tic machine. Here we show that derandomizing a slightly non-constant pass
probabilistic space-bounded machine that uses slightly larger than O(log n) ran-
dom bits yields a non-trivial derandomization of BPTIME(n). Notice that if we
restrict the number of random bits from O(log n log(k+3)(n)) to O(log n), then
the corresponding set of languages is trivially in P. If we restrict the number
of passes from O(log(k) n) to O(1), we can still show that the set of languages
accepted is in P (refer to Sect. 3.2 for a proof). Thus, the above theorem states
that any extension of these simulations will lead to a non-trivial and unknown
derandomization of BPTIME(n).

We also present some upper bounds on the class of languages accepted by
multi-pass probabilistic space-bounded machines. Even though we are unable
to prove that the hypothesis of Theorem 1 holds, we show that for every con-
stants k ≥ 3 and ε > 0, languages accepted by probabilistic log-space machines
that use O(log n log(k+3) n) random bits and make O(log(k) n) passes over its
random tapes are in DSPACE(log n(log log n)1/2+ε), which in turn is contained
in DTIME(n(log log n)1/2+ε

). We also show that any k(n)-pass, s(n)-space, prob-
abilistic machine can be simulated by traditional k(n)s(n)-space bounded prob-
abilistic machines. Thus, in particular, a constant number of passes do not add
power to the traditional one-way random tape machines.

Finally, we extend some well-known results regarding standard probabilistic
log-space classes to multi-pass, probabilistic log-space classes.

Prior Work on Multiple Access Models. As mentioned earlier, the lit-
erature on probabilistic space-bounded Turing machines with multiple access
to random bits is limited compared to the standard model. Borodin, Cook,
and Pippenger [3], while investigating deterministic simulations of probabilistic
space-bounded classes, raised the question whether two-way probabilistic s(n)-
space-bounded machines can be simulated deterministically in O(s2(n)) space.
Karpinsky and Verbeek [13] showed that the answer is negative in general. They
showed that two-way log-space probabilistic machines that are allowed to run
for time 2nO(1)

time can simulate PSPACE with zero error probability. Another
relevant result is due to Nisan [16] who showed BPL can be simulated by zero-
error, probabilistic, space-bounded machines that has a two-way access to the
random tape. Nisan also showed that 2-wayBPL is same as almost-logspace,
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where almost-logspace is the class of languages accepted by deterministic log-
space machines relative to a random oracle.

Probabilistic space-bounded machines that can make multiple passes over the
random tape was first considered by David, Papakonstantinou, and Sidiropou-
los [6]. They showed that any pseudo-random generator that fools traditional
k(n)s(n)-space bounded machines can also fool k(n)-pass s(n)-space bounded
machines. As a corollary, they obtain that polylog-pass, randomized log-space
is contained in deterministic polylog-space. David, Nguyen, Papakonstantinou,
and Sidiropoulos [5] considered probabilistic space-bounded machine that have
access to a stack and a two-way/multiple pass access to the random tape and
related them to traditional classes.

2 Preliminaries

We assume familiarity with the standard complexity classes [2]. We are interested
in probabilistic space-bounded machines that can access random bits multiple
times. For such machines, the random bits appear on a special read-only tape
called the random tape. In addition to the random tape, these machines have
one read-only input tape and few read-write work tapes, as standard in space-
bounded machine models. The total space used by the work tapes signify the
space bound of such a machine. We also assume that all the probabilistic space-
bounded machines halt in time at most exponential in their space bounds. Thus,
the number of random bits used by them is at most exponential in their space-
bounds. More formally, our multi-pass machines are defined as follows:

Definition 1. A language L is in k(n)-pass BPSPACE[s(n), r(n)] if there exists
an O(s(n))-space bounded probabilistic Turing machine M such that on any input
x of length n:

– M makes k(n) passes over the random tape, during each pass it accesses the
contents of random tape in a one-way manner,

– M uses at most O(r(n)) random bits, and
– the probability that M incorrectly decides x is at most 1/3.

In our notation, BPL = 1-pass BPSPACE[log n, nO(1)]. In Sect. 3, we observe
that a constant factor in the number of passes does not add power to the model
and hence O(1)-pass BPSPACE[log n, nO(1)] is also same as BPL.

Since we assume that every space-bounded probabilistic machine halts on all
settings of random tape on all inputs, the running time of the multi-pass machine
is bounded by 2O(s(n)) where s(n) is the space bound. Thus, this machine can
only access random tape of length 2O(s(n)). Indeed, when the number of ran-
dom bits is exponential in space, i.e., r(n) = 2O(s(n)), we simply write the
above class as k(n)-pass BPSPACE(s(n)). Further, when the space of the k(n)-
pass BPSPACE machine is bounded by O(log n), we simply write the class as
k(n)-pass BPL[r(n)].

log(k)(·) is the iterated logarithmic function applied k times with itself.
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3 Space-Bounded Machines with Multiple Passes Over
the Random Tape

In this section, we consider probabilistic space-bounded machines that are
allowed to make multiple passes over the random tape. First, we establish results
that connect derandomization of such machines to derandomization of proba-
bilistic time classes. Next, we consider the problem of simulating multi-pass,
probabilistic, space-bounded machines with the traditional one-pass machines.
Finally, we provide a space-efficient deterministic nonuniform simulation of the
multi-pass machines.

3.1 Derandomization of Probabilistic Time

As our main result of this section, we show that a time-efficient derandomization
of probabilistic log-space machines that use very few random bits and make
very few passes over their random tape, yields a non-trivial derandomization of
probabilistic time. In particular, we show the following theorem.

Theorem 2. If for some constant k > 0, O(log(k) n)-pass BPL
[
log n log(k+3) n

]

is in P, then BPTIME(n) ⊆ DTIME(2o(n)).

Remark. We use the iterated logarithmic function for simplicity, but the above
theorem can be proved with any “nice” slowly growing function f(n) ∈ ω(1).

We establish the theorem by first proving that every BPTIME(n) machine
can be simulated by a bounded-error probabilistic space-bounded machine that
makes O(log(k) n) passes over the random tape and uses o(n) space, on inputs of
size n. There is a trade-off between the number of passes and space used by the
simulating machine and this trade-off is essential in the proof. More formally, we
prove the following theorem.

Theorem 3. For every constant k > 0,

BPTIME(n) ⊆ O(log(k) n)-pass BPSPACE
[
n/ log(k+3) n, n

]
.

Remark. The above theorem may be of independent interest. Hopcroft, Paul, and
Valiant [10] showed that DTIME(n) ⊆ DSPACE(o(n)). The analogous inclusion
relationship for probabilistic classes is not known. That is, we do not know uncon-
ditionally if BPTIME(n) is a subset of BPSPACE(o(n)) (see [12,14] for condi-
tional results in this direction). The above theorem can be viewed as a partial
solution; if we allow the space-bounded machine to have a slightly non-constant
number of passes, then BPTIME(n) can be simulated in o(n) probabilistic space.

We first give the proof of Theorem 2 assuming Theorem 3. The proof uses a
simple padding argument.
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Proof of Theorem 2. Let k > 0 be a constant for which the hypothesis in
the statement of Theorem 2 holds. Let L be a language in BPTIME(n). By
Theorem 3, L is in O(log(k−1) n)-pass BPSPACE

[
n/ log(k+2) n, n

]
. Let

L′ =
{

〈x, 02
n/ log(k+2) n−n〉 | x ∈ L, |x| = n

}
.

It is easy to see that L′ is in O(log(k) n)-pass BPL
[
log n log(k+3) n

]
. By our

hypothesis, L′ is in P. So L′ ∈ DTIME(n�) for some � > 0. From this it follows

that for some � > 0, L is in DTIME
(

2
�n

log(k+2) n

)
and thus in DTIME(2o(n)). ��

Now we move on to proving Theorem 3. The proof relies on the classical result of
Hopcroft, Paul, and Valiant [10] who showed that every deterministic machine
running in time O(n) can be simulated by a deterministic machine that uses
O(n/ log n) space. If we adopt their proof to the case of probabilistic machines,
we obtain that every bounded-error probabilistic machine running in time O(n)
can be simulated by a bounded-error, probabilistic machine that uses space
O(n/ log n); however the simulating machine makes an exponential number of
passes over the random tape. We observe that the number of passes can be
greatly reduced at the expense of a little increase in space. This is essentially
achieved by using a careful choice of parameters than those used in [10].

To proceed with the proof we need the notions of block-respecting Turing
machines and pebbling games [10].

Definition 2. Let M be a multi-tape Turing machine running in time t(n). Let
b(n) be a function such that 1 ≤ b(n) ≤ t(n)/2. Divide the computation of M
into a(n) time segments so that each segment has b(n) = t(n)/a(n) steps. Also
divide each tape of M into a(n) blocks so that each block has exactly b(n) cells.
We say that the machine M is b(n)-block respecting if during each time segment
every tape head of the machine M visits cells of exactly one block. I.e, a tape
head can cross a block boundary only at time step c · b(n) for some integer c > 0.

Hopcroft, Paul, and Valiant showed that every �-tape Turing machine running
in time t(n) can be simulated by a (� + 1) tape b(n)-block respecting Turing
machine running in time O(t(n)) for any b(n) such that 1 ≤ b(n) ≤ t(n)/2.

Pebbling Game. Let G be a directed acyclic graph and w be a special vertex of
the graph. We say that a vertex u is a predecessor of vertex v if there is an edge
from u to v. The goal is to place a pebble on the special vertex w using as little
pebbles as possible, subject to the following constraints: we can place a pebble
on a vertex v only if all predecessors of v have pebbles on them, a pebble can
be removed from a vertex at any time.

Hopcroft, Paul, and Valiant showed (by means of a clever divide-and-conquer
algorithm) that every bounded-degree graph with n vertices can be pebbled
using O(n/ log n) pebbles, and there is a deterministic algorithm S that does
this pebbling in time O(2n2

). Now we are ready to prove Theorem 3.
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Proof of Theorem 3. Fix k > 0, and set b(n) = n/ log(k+2) n. Let L be a lan-
guage in BPTIME(n) and let M be an �-tape, b(n)-block respecting probabilistic
machine that accepts L in time t(n) = O(n). Set a(n) = t(n)/b(n). Without loss
of generality, we can assume that M reads the contents of the random-tape in
a one-way manner. The computation graph GM of M is an edge-labeled graph
defined as follows. The vertex set is V = {1, · · · , a(n)}. For 1 ≤ i < a(n),
〈i, i + 1〉 ∈ E with label 0, implying the computation at time segment i + 1
requires the computation of the time segment i. Assume that the tape heads
are numbered 1, · · · , �. We place an edge from i to j with label h ∈ [1, �] if the
following holds: Suppose that during the time segment i the tape head h is in
some block b and the next time segment that the tape head h revisits block b
is j (i.e., the computation at time segment j requires the content of the block b
from the time-segment i). This process defines a multi-graph.

Given 1 ≤ i ≤ a(n), let B1(i), · · · , B�(i) be the blocks that each of the � tape
heads are visiting during time segment i. Let C(i) be a string that describes the
contents of blocks B1(i), · · · , B�(i) and the state q at the end of time segment i.
The following observation is crucial.

Observation 1. Suppose a vertex j has predecessors i1, · · · , ir (1 ≤ r ≤ �).
Then we can simulate the computation of M during time segment j by knowing
C(i1), · · · , C(ir). Thus we can compute C(j).

Using this observation, as in [10], we simulate M by a machine M ′ as follows.
We describe a simulation algorithm that gets a bounded degree graph (degree
≤ � + 1) G as input and attempts to simulate M .

Call the pebbling algorithm S on graph G. If S places pebble on vertex
i, then compute C(i) and store C(i). If S removes pebble from a vertex
i, then erase C(i).

Note that a priori, we do not know the correct computation graph GM . We will
first assume that the correct computation graph GM is known to us and thus can
be given as input to the above algorithm. Latter we will remove this restriction.
By Observation 1, it follows that the above algorithm correctly simulates M
(under the assumption that GM is known). Now we bound the space, time,
number of passes, and number of random bits required by the above simulation
algorithm (under the assumption that GM is known). We start with the following
two claims.

Claim 1. The total space used by the above simulation is O
(

a(n)b(n)
log a(n) + 2a2(n)

)
.

Claim 2. The above simulation algorithm makes at most O(2a2(n)) passes over
the random tape.

Now we address the assumption that the computation graph GM is known.
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Observation 2. Suppose that G is not the correct computation graph. If the
above simulation algorithm gets G as input, then it will discover that G is not
the correct computation graph, using O(a(n)b(n)

log a(n) + 2a2(n)) space and by making

O(2a2(n)) passes over the random tape.

So our final simulation of M proceeds as follows: Iterate through all possible
computation graphs; for each graph G, attempt to simulate M using the above
algorithm. If it discovers that G is not a correct computation graph, then proceed
to next graph.

By Claim 1 and Observation 2, each iteration needs O(a(n)b(n)
log b(n) + 2a2(n))

space. Since we can reuse space from one iteration to the next iteration, total
space is bounded by O(a(n)b(n)

log b(n) + 2a2(n)). By Claim 2 and Observation 2, each

iteration can be done making 2a2(n) passes. Since there are at most 2a2(n) possible
computation graphs, the total number of passes is 22a2(n).

By plugging in the values of a(n) and b(n) from above, we obtain that the
space used by the simulating machine is O(n/ log(k+3) n) and the number of
passes is O(log(k) n). Finally, note that the number of random bits used by the
simulating machine remains same as the number of random bits used by M , i.e.,
O(n). This completes the proof of the Theorem. ��
The proofs of Claims 1, 2, and Observation 2 will appear in the full version of
the paper.

3.2 Simulating Multiple Passes with Single Pass

An obvious question at this point is the following: Can we simulate multi-pass
probabilistic machines with traditional one-pass probabilistic space bounded
machines? The main result of this subsection shows that passes can be traded
for space. This helps us to obtain an upper bound on the deterministic space to
simulate a multi-pass probabilistic space-bounded machine. We first start with
the following lemma whose proof appears in the full version of the paper.

Lemma 1. If a language L is in k(n)-pass BPSPACE[s(n), r(n)], then there is
a probabilistic O(k(n)s(n))-space bounded machine N that has one-way access
to the random tape and for every x ∈ Σn,

Pr[N(x) = L(x)] ≥ 1
2

+
1

2O(k(n)s(n))
.

Moreover, N uses O(r(n) + k(n)s(n)) random bits.

Using above Lemma, we obtain the following.

Theorem 4. k(n)-pass BPSPACE(s(n)) ⊆ BPSPACE(k(n)s(n)).

Proof. Let L be a language that is accepted by a k(n)-pass BPSPACE(s(n))
machine M . By definition, this machine uses 2O(s(n)) random bits. Thus
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by Lemma 1, there is an O(k(n)s(n))-space bounded, one-pass, probabilistic
machine N that uses O(2O(s(n)) + k(n)s(n)) random bits, and

Pr[L(x) = N(x)] ≥ 1
2

+
1

2O(k(n)s(n))
.

We can amplify the success probability of N to 2/3 by simulating it 2O(k(n)s(n))

times and taking the majority vote. This will use 2O(k(n)s(n)) random bits. Thus
we obtain a O(k(n)s(n))-space bounded machine that uses 2O(k(n)s(n)) random
bits. Thus L is in BPSPACE(k(n)s(n)). ��
Corollary 1. O(1)-pass BPL = BPL.

We relate the above lemma to the result of [6].

Theorem 5. Let M be a k(n)-pass, s(n)-space bounded machine that uses r(n)
random bits. Any pseudo-random generator that fools k(n)s(n)-space bounded
machines (that read their input in a one-way manner) running on r(n)-bit input
strings also fools M .

Their result states that to deterministically simulate k(n)-pass, s(n)-space
bounded probabilistic machines, a pseudo-random generator against standard
O(k(n)s(n))-space bounded probabilistic machine suffices. Lemma 1 can be
interpreted as an explanation of their result, as it shows that any k(n)-pass,
s(n)-space bounded machine can indeed be simulated by a standard O(k(n)s(n))
space bounded machine.

Next, we consider the main result of this subsection: deterministic simulation
of the class k(n)-pass BPSPACE(s(n)). By above theorem, this is a subclass
of BPSPACE(k(n)s(n)). By the celebrated results of Nisan [15] and Saks and
Zhou [21], it follows that this class is a subset of DSPACE(k3/2(n)s3/2(n)).
Observe below that we can get rid of the polynomial factor off the number of
passes, more formally,

Theorem 6. k(n)-pass BPSPACE(s(n)) ⊆ DSPACE(k(n)s3/2(n)).

Proof. Let L be a language that is accepted by a k(n)-passBPSPACE(s(n))
machine M . Since M halts in 2O(s(n)) time, k(n) is bounded by 2O(s(n)) and
M uses 2O(s(n)) random bits. Thus, by Lemma 1, there is an O(k(n)s(n))-space
bounded, one-pass, probabilistic machine N that uses 2O(s(n)) random bits and

Pr[L(x) = N(x)] ≥ 1
2

+
1

2O(k(n)s(n))
.

Saks and Zhou [21], building on Nisan’s [15] work showed that any language
accepted by a probabilistic machine using O(s(n))-space, 2O(r(n)) random bits,
with success probability as low as 1/2 + 1/2O(s(n)), is in deterministic space
O(s(n)r1/2(n)). Applying this to our case, we obtain that N can be simulated
by a deterministic space-bounded machine that uses O(k(n)s3/2(n)). ��
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Recall that our hypothesis in Theorem 2 states that for some k > 0 if the com-
plexity class log(k) n-pass BPL(log n log(k+2) n) is in P. We obtain the following
upper bound for this class, by applying Lemma 1 and the techniques of Saks
and Zhou [21]. The proof is similar to the proof of Theorem 6.

Corollary 2. For any constants k ≥ 3 and ε > 0,

log(k) n-pass BPL[log n log(k+3) n] ⊆ DSPACE(log n(log log n)
1
2+ε)

⊆ DTIME(n(log log n)1/2+ε

).

3.3 Deterministic Simulation of Multi-pass Machines with Linear
Advice

Fortnow and Klivans [7] showed that standard (one-pass) randomized log-space
machines (BPL) can be simulated by deterministic log-space machines that have
access to a linear amount of advice. I.e., they showed that BPL is a subset of
L/O(n). On the other hand, using Adleman’s technique [1], it can be shown that
randomized log-space machines with two-way access to the random tape can be
simulated in deterministic log-space using a polynomial amount of advice [16].
Thus, any multi-pass, randomized log-space machine can be simulated in deter-
ministic log-space with polynomial amount of advice. Can we bring down the
advice to linear? We show that this is indeed possible with a small increase in
space.

Let M be a O(log n)-pass, randomized log-space machine. By Theorem 4, M
can be simulated by a one-pass randomized machine that uses O(log2 n) space,
and by applying the techniques of Fortnow and Klivans [7], it follows that M
can be simulated in deterministic space O(log2 n) with linear advice. Below we
show that we can improve the space bound of the deterministic machine to
O(log n log log n). More formally, we prove the following.

Theorem 7. For any k(n) ∈ ω(1), a k(n)-pass s(n)-space bounded randomized
machine using R(n) = 2r(n) random bits can be simulated by a deterministic
machine using O(s(n) + r(n) log(k(n)s(n))) space that uses an advice of size
O(r(n)k(n)s(n) + n). I.e.,

k(n)−pass BPSPACE[s(n), 2r(n)] ⊆
DSPACE(s(n) + r(n) log k(n)s(n))/O(r(n)k(n)s(n) + n).

Before we sketch a proof of the theorem, we note the following corollaries.

Corollary 3. For every constant k > 0,

O(logk n)-passBPL ⊆ DSPACE(log n log log n)/O(n).

Corollary 4. For every 0 < ε < 1, nε-pass BPL ⊆ DSPACE(log2 n)/O(n).
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Proof Sketch of Theorem 7. Consider a k(n)-pass s(n)-space bounded one-sided
randomized machine M that uses R(n) = 2r(n) random bits. By Theorem 5,
any pseudorandom generator that fools standard (one-pass) O(k(n)s(n)) space-
bounded machine using 2r(n) random bits also fools M . For our proof, we use
Nisan’s generator [15]. Note that Nisan’s generator, for our choice of parameters
of space and random bits, stretches a seed of length �(n) = O(r(n)k(n)s(n)) to
2r(n). The seed for this pseudorandom generator is a tuple consisting of r(n)
hash functions from {0, 1}O(s(n)k(n)) to {0, 1}O(s(n)k(n)) and one string of length
O(s(n)k(n)). Let us denote the hash functions by h1, · · · , hr(n) and the string
by y. Consider the following simulation M ′ of M : M ′ has a seed of length �(n)
on its random tape. On any input of length n, it will apply Nisan’s generator
on the contents of random tape and simulate M on the output of the generator.
Note that M ′ accesses the contents of the random tape in a 2-way manner.

By applying Adleman’s technique to M ′, we can fix n seeds which will act
as good random string for all strings of length n. We can hardwire the n seeds
(each of length �(n)) and obtain a deterministic simulation. Note that the space
used by this simulation is O(s(n)k(n)) as we need O(s(n)k(n)) space to simulate
Nisan’s generator and the length of the advice is O(n�(n)). However, we observe
that for any i, the ith bit of the output of the generator can in fact be computed
in space O(r(n)× log(k(n)s(n)). This is because, the output of Nisan’s generator
is a concatenation of blocks of strings where each block is of length O(k(n)s(n)).
Each block is obtained by composing r(n) hash functions (in some predetermined
order based on the index of the block) on the input y. Note that the output of
each individual hash function can be computed in O(log(s(n)k(n)) space. Thus,
composition of r(n) hash functions can be computed in O(r(n) log(s(n)k(n))
space. So we get that a k(n)-pass s(n)-space-bounded randomized machine using
R(n) = 2r(n) random bits can be simulated deterministically in space O(s(n) +
r(n) log(k(n)s(n)) with O(n×�(n)) length advice. Instead of using n independent
seeds of length �(n), we do a random walk on an expander graph of size O(2�(n))
and reduce the advice size to O(n + �(n)), as done by Fortnow and Klivans [7]
(using the work of Gutfreund and Viola [9]).

The proof can be extended to two-sided error multi-pass Turing machines as
well, as mentioned in [7]. We omit the details. ��

4 Conclusions

This paper establishes that time efficient derandomization of probabilistic, log-
space machines that make a non-constant passes over the random tape yields a
new non-trivial derandomization of probabilistic time. This result suggests that
it is fruitful to further study multi-pass, probabilistic, space-bounded machines.
One interesting question that arises is on error reduction. Let M be a k(n)-pass,
s(n)-space bounded, bounded-error probabilistic space-bounded machine with
error probability less than 1/3. Can we reduce the error probability to 1/2e(n)

for a polynomial e without substantial increase in passes and space used? Note
that by increasing the number of passes to O(k(n)e(n)) this is indeed possible.
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On the other hand, if we were not to increase the number of passes, then by
increasing the space to O(e(n)s(n)) we can achieve the same reduction in error
probability. Can we do better? Can we reduce the error probability to 1/2e(n)

while keeping the number of passes to O(k(n)) and the space bound to O(s(n))?
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