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Abstract. We consider a natural generalization of classical scheduling
problems in which using a time unit for processing a job causes some
time-dependent cost which must be paid in addition to the standard
scheduling cost. We study the scheduling objectives of minimizing the
makespan and the sum of (weighted) completion times. It is not difficult
to derive a polynomial-time algorithm for preemptive scheduling to min-
imize the makespan on unrelated machines. The problem of minimizing
the total (weighted) completion time is considerably harder, even on a
single machine. We present a polynomial-time algorithm that computes
for any given sequence of jobs an optimal schedule, i.e., the optimal set of
time-slots to be used for scheduling jobs according to the given sequence.
This result is based on dynamic programming using a subtle analysis
of the structure of optimal solutions and a potential function argument.
With this algorithm, we solve the unweighted problem optimally in poly-
nomial time. Furthermore, we argue that there is a (4+ε)-approximation
algorithm for the strongly NP-hard problem with individual job weights.
For this weighted version, we also give a PTAS based on a dual scheduling
approach introduced for scheduling on a machine of varying speed.

1 Introduction

We consider a natural generalization of classical scheduling problems in which
occupying a time slot incurs certain cost that may vary over time and which must
be paid in addition to the actual scheduling cost. Such a framework has been
proposed recently in [11] and [7]. It models additional cost for operating servers
or machines that vary over time such as, e.g., labor cost that may vary by the
day of the week, or the hour of the day [11], or electricity cost fluctuating over
day time [7]. On the one hand, the latter have economically a huge impact on
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facilities with enormous power consumption such as large data centers, and on
the other hand, these fluctuations reflect the imbalance between generation and
consumption of electricity on a daily or weekly basis. Hence, cost aware schedul-
ing is economically profitable and supports an eco-aware usage and generation of
energy. Another motivation stems from cloud computing. Users of such services,
e.g., Amazon EC2, are offered time-varying pricing schemes for processing jobs
on a remote cloud server [1]. It is a challenging task for them to optimize the
tradeoff between resource provisioning cost and the scheduling quality.

Problem Definition. We first describe the underlying classical scheduling
problems. We are given a set of jobs J := {1, . . . , n} where every job j ∈ J
has given a processing time pj ∈ N and possibly a weight wj ∈ Q≥0. The
task is to find a preemptive schedule on a single machine such that the total
(weighted) completion time,

∑
j∈J wjCj , is minimized. Here Cj denotes the

completion time of job j. In the standard scheduling notation, this problem
is denoted as 1 | pmtn | ∑

(wj)Cj . We also consider makespan minimization on
unrelated machines, typically denoted as R | pmtn |Cmax. Here we are given a
set of machines M , and each job j ∈ J has an individual processing time pij ∈ N

for running on machine i ∈ M . The task is to find a preemptive schedule that
minimizes the makespan, that is, the completion time of the latest job.

In this paper, we consider a generalization of these scheduling problems
within a time-varying reservation cost model. We are given a cost function
e : N → R, where e(t) denotes the reservation cost for processing job(s) at
time t. We assume that e is piecewise constant with given breakpoints at inte-
gral time points. We assume, more formally, that time is discretized into unit-size
time slots, and the time horizon is partitioned into given intervals Ik = [sk, dk)
with sk, dk ∈ N, k = 1, . . . ,K, within which unit-size time slots have the same
unit reservation cost ek. To ensure feasibility, let dK ≥ ∑

j∈J mini∈M pij .
Given a schedule S, let y(t) be a binary variable indicating if any processing

is assigned to time slot [t, t + 1). The reservation cost in S is E(S) =
∑

t e(t)y(t).
That means, for any time unit that is used in S we pay the full unit reservation
cost, even if the unit is only partially used. We also emphasize that in case
of multiple machines, a reserved time slot can be used by all machines. This
models applications in which reserving a time unit on a server gives access to all
processors on this server.

The overall objective now is to find a schedule that minimizes the scheduling
objective, Cmax resp.

∑
j∈J wjCj , plus the reservation cost E. We refer to the

resulting problems as R | pmtn |Cmax + E and 1 | pmtn | ∑
wjCj + E.

Related Work. Scheduling with time-varying reservation cost (aka variable
time slot cost) has been studied explicitly in [11] and [7]. The seminal paper [11]
is concerned with several non-preemptive single machine problems, which are
polynomial-time solvable in the classical setting, such as minimizing the total
completion time, lateness, and total tardiness, or maximizing the weighted num-
ber of on-time jobs. These problems are shown to be strongly NP-hard when
taking reservation cost into account, while efficient algorithms exist for restricted
reservation cost functions. In particular, the problem 1 | | ∑

Cj + E is strongly
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NP-hard, and it is efficiently solvable when the reservation cost is increasing
or convex non-increasing [11]. The research focus in [7] is on online flow-time
minimization using resource augmentation. Their main result is a scalable algo-
rithm that obtains a constant performance guarantee when the machine speed
is increased by a constant factor and there are only K = 2 distinct unit reser-
vation cost. They also show that, in this online setting, for arbitrary K there is
no constant speedup-factor that allows for a constant approximate solution.

In this paper, we study the simpler—but not yet well understood—
offline problem without release dates. For this problem, the authors in [7]
announce the following results: a pseudo-polynomial (4 + ε)-approximation for
1 | pmtn | ∑

wjCj + E, which gives an optimal solution in case that all weights
are equal, and a constant approximation in quasi-polynomial time for a constant
number of distinct reservation costs or when using a machine that is processing
jobs faster by a constant factor.

The general concept of taking into consideration additional (time-dependent)
cost for resource utilization when scheduling has been implemented differently in
other models. We mention the area of energy-aware scheduling, where the energy
consumption is taken into account (see [2] for an overview), or scheduling with
generalized non-decreasing (completion-) time dependent cost functions, such
as minimizing

∑
j wjf(Cj), e.g. [5,6,10], or even more general job-individual

cost functions
∑

j fj(Cj), e.g. [3]. Our model differs fundamentally since our
cost function may decrease with time, because delaying the processing in favor
of cheaper time slots may decrease the overall cost. This is not the case in
the above-mentioned models. Thus, in our framework we have the additional
dimension in decision-making of choosing the time slots to be reserved.

There is also some similarity between our model and scheduling on a machine
of varying speed. Notice that the latter problem (with

∑
j wjCj as objective func-

tion) can be reformulated as minimizing
∑

j wjf(Cj) on a single machine with
constant speed. Interestingly, the independently studied problem of scheduling
with non-availability periods, see e.g. the survey [9], is a special case of both,
the time-varying speed and the time-varying reservation cost model. Indeed,
machine non/availability can be expressed either by 0/1-speed or equivalently
by ∞/0 unit reservation cost. Results shown in this context imply that our
problem 1 | pmtn | ∑

j wjCj + E is strongly NP-hard, even if there are only two
distinct unit reservation costs [12].

Our Contribution. We present new optimal algorithms and best-possible
approximation results for a generalization of standard scheduling problems to a
framework with time-varying reservation cost.

Firstly, we give an optimal polynomial-time algorithm for the problem
R | pmtn |Cmax + E (Sect. 2). It relies on a known algorithm for the problem
without reservation cost [8] to determine the optimal number of time slots to be
reserved, together with a procedure for choosing the time slots to be reserved.

Our main results concern single-machine scheduling to minimize the
total (weighted) completion time (Sect. 3). We present an algorithm that com-
putes for a given ordered set of jobs an optimal choice of time slots to be used
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for scheduling. We derive this by first showing structural properties of an opti-
mal schedule, which we then exploit together with a properly chosen potential
function in a dynamic program yielding polynomial running time. Based on this
algorithm, we show that the unweighted problem 1 | pmtn | ∑

Cj + E can be
solved in polynomial time and that there is a (4 + ε)-approximation algorithm
for the weighted version 1 | pmtn | ∑

wjCj + E. A pseudo-polynomial (4 + ε)-
approximation has been known before [7]. While pseudo-polynomial time algo-
rithms are rather easy to derive, it is quite remarkable that our DP’s running
time is polynomial in the input, in particular, independent of dK .

Finally, we design for the strongly NP-hard weighted problem variant
(Sect. 4) a pseudo-polynomial algorithm that computes for any fixed ε a (1+ ε)-
approximate schedule for 1 | pmtn | ∑

wjCj +E. If dK is polynomially bounded,
then the algorithm runs in polynomial time for any ε, i.e., it is a polynomial-
time approximation scheme (PTAS). In terms of approximation, our algorithm
is best possible since the problem is strongly NP-hard even if there are only two
different reservation costs [12].

Our approach is inspired by a recent PTAS for scheduling on a machine
of varying speed [10] and it uses some of its properties. As discussed above,
there is no formal mathematical relation known between these two seemingly
related problems which allows to directly apply the result from [10]. The key is
a dual view on scheduling: instead of directly constructing a schedule in the
time-dimension, we first construct a dual scheduling solution in the weight-
dimension which has a one-to-one correspondence to a true schedule. We design
an exponential-time dynamic programming algorithm which can be trimmed to
polynomial time using techniques known for scheduling with varying speed [10].

For both the makespan and the min-sum problem, job preemption is crucial
for obtaining worst-case bounds. For non-preemptive scheduling, a reduction
from 2-Partition shows that no approximation within a polynomial ratio is
possible, unless P=NP, even if there are only two different reservation costs, 0
and ∞.

Finally, we remark that in general it is not clear that a schedule can be
encoded polynomially in the input. However, for our completion-time based min-
imization objective, it is easy to observe that if an algorithm reserves p unit-size
time slots in an interval of equal cost, then it reserves the first p slots within this
interval, which simplifies the structure and output of an optimal solution.

2 Minimizing the Makespan on Unrelated Machines

The standard scheduling problem without reservation R | pmtn |Cmax can be
solved optimally in polynomial time [8]. We show that taking into account time-
varying reservation cost does not significantly increase the problem complexity.

Consider the generalized preemptive makespan minimization problem with
reservation cost. Recall that we can use every machine in a reserved time slot
and pay only once. By [8] it is sufficient to find an optimal reservation decision.
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Observation 1. Given the set of time slots reserved in an optimal solution, we
can compute an optimal schedule in polynomial time.

Given an instance of our problem, let Z be the optimal makespan of the relaxed
problem without reservation cost. Notice that Z is not necessarily integral. To
determine an optimal reservation decision, we use the following observation.

Observation 2. Given an optimal makespan C∗
max for R | pmtn |Cmax + E, an

optimal schedule reserves the �Z� cheapest slots before �C∗
max�.

Note that we must pay full reservation cost for a used time slot, no matter how
much it is utilized, and so does an optimal solution. In particular, this holds for
the last reserved slot. Hence, it remains to design a procedure for computing an
optimal value C∗ := �C∗

max�.
We compute for every interval Ik = [sk, dk), k = 1, . . . , K, an optimal point

in time for C∗ assuming that C∗ ∈ Ik. Start from the value C∗ = sk, if feasible,
with the corresponding cheapest �Z� reserved time slots. Notice that any of
these reserved time slots that has cost e such that e > ek + 1 can be replaced
by a time slot from Ik leading to a solution with less total cost. Thus, if such
a time slot does not exist, then sk is the best choice for C∗ in Ik. Otherwise,
let R ⊆ {1, . . . , k − 1} be the index set of intervals that contain at least one
reserved slot. We define I� to be the interval with e� = maxh∈R eh and denote
by rh the number of reserved time slots in Ih. Replace min{r�, dk − sk − rk}
reserved slots from I� by slots from Ik and update R, I� and rk. This continues
until e� ≤ ek +1 or the interval Ik is completely reserved, i.e., rk = dk −sk. This
operation takes at most O(K) computer operations per interval to compute the
best C∗-value in that interval. It yields the following theorem.

Theorem 1. The scheduling problem R | pmtn |Cmax +E can be solved in poly-
nomial time equal to the running time required to solve an LP for R | pmtn |Cmax

without reservation cost plus O(K2).

3 Minimizing
∑

j(wj)Cj on a Single Machine

In this section, we consider the problem 1 | pmtn | ∑
(wj)Cj + E. We design

an algorithm that computes, for a given (not necessarily optimal) scheduling
sequence σ, an optimal reservation decision for σ. We firstly identify struc-
tural properties of an optimal schedule, which we then exploit in a dynamic
program. Based on this algorithm, we show that the unweighted problem
1 | pmtn | ∑

Cj+E can be solved optimally in polynomial time and that there is a
(4+ε)-approximation algorithm for the weighted problem 1 | pmtn | ∑

wjCj +E.
In principle, an optimal schedule may preempt jobs at fractional time points.

However, since time slots can only be reserved entirely, any reasonable schedule
uses the reserved slots entirely as long as there are unprocessed jobs. The fol-
lowing lemma shows that this is also true if we omit the requirement that time
slots must be reserved entirely. (For the makespan problem considered in Sect. 2
this is not true.)
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Lemma 1. There is an optimal schedule S∗ in which all reserved time slots are
entirely reserved and jobs are preempted only at integral points in time.

In the following, we assume that we are given a (not necessarily optimal)
sequence of jobs, σ = (1, . . . , n), in which the jobs must be processed. We want
to characterize an optimal schedule S∗ for σ, that is, in particular the optimal
choice of time slots for scheduling σ. We first split S∗ into smaller sub-schedules,
for which we introduce the concept of a split point.

Definition 1 (Split Point). Consider an optimal schedule S∗ and the set of
potential split points P :=

⋃K
k=1 {sk, sk + 1} ∪ {dK}. Let Sj and Cj denote the

start time and completion time of job j, respectively. We call a time point t ∈ P
a split point for S∗ if all jobs that start before t also finish their processing not
later than t, i.e., if {j ∈ J : Sj < t} = {j ∈ J : Cj ≤ t}.
Given an optimal schedule S∗, let 0 = τ1 < τ2 < · · · < τ� = dK be the maximal
sequence of split points of S∗, i.e. the sequence containing all split points of
S∗. We denote the interval between two consecutive split points τx and τx+1 as
region RS∗

x := [τx, τx+1), for x = 1, . . . , � − 1.
Consider now any region RS∗

x for an optimal schedule S∗ with x ∈
{1, . . . , � − 1} and let JS∗

x :=
{
j ∈ J : Sj ∈ RS∗

x

}
. Note that JS∗

x might be empty.
Among all optimal schedules we shall consider an optimal solution S∗ that min-
imizes the value

∑dK−1
t=0 t · y(t), where y(t) is a binary variable that indicates if

time slot [t, t + 1) is reserved or not.

Observation 3. There is no job j ∈ JS∗
x with Cj ∈ RS∗

x ∩ P.

Namely, every Cj with Cj = sk ∈ RS∗
x or Cj = sk + 1 ∈ RS∗

x would make
sk or sk + 1 a split point, whereas RS∗

x is defined as the interval between two
consecutive split points.

We say that an interval Ik is partially reserved if at least one slot in Ik is
reserved, but not all.

Lemma 2. There exists an optimal schedule S∗ in which at most one interval
is partially reserved in RS∗

x .

We are now ready to bound the unit reservation cost spent for jobs in JS∗
x .

Let ej
max be the maximum unit reservation cost spent for job j in S∗. Further-

more, let Δx := maxj∈JS∗
x

(ej
max+

∑
j′<j wj′) and let jx be the last job (according

to sequence σ) that achieves Δx. Suppose, there are b ≥ 0 jobs before and a ≥ 0
jobs after job jx in JS∗

x . The following lemma gives for every job j ∈ JS∗
x \ {jx}

an upper bound on the unit reservation cost spent in the interval [Sj , Cj).

Lemma 3. Consider an optimal schedule S∗. For any job j ∈ JS∗
x \ {jx} a slot

[t, t + 1) ∈ [Sj , Cj) is reserved if and only if the cost of [t, t + 1) satisfies the
upper bound given in the table below.

jx − b . . . jx − 1 jx + 1 . . . jx + a

≤ ejxmax +
∑jx−1

j′=jx−b wj′ . . . ≤ ejxmax + wjx−1 < ejxmax − wjx . . . < ejxmax −∑jx+a−1
j′=jx

wj′
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Proof. Consider any job j := jx − � with 0 < � ≤ b. Suppose there is a job j
for which a slot is reserved with cost ej

max > ejx
max +

∑jx−1
j′=j wj′ . Then ej

max +
∑

j′<j wj′ > ejx
max +

∑
j′<jx

wj′ , which is a contradiction to the definition of job
jx. Thus, ej

max ≤ ejx
max +

∑jx−1
j′=j wj′ .

Now suppose, there is a slot [t, t + 1) ∈ [Sj , Cj) with cost e(t) ≤ ejx
max +

∑jx−1
j′=j wj′ that is not reserved. There must be a slot [t′, t′ + 1) ∈ [Sjx , Cjx)

with cost exactly ejx
max. If we reserve slot [t, t + 1) instead of [t′, t′ + 1), then the

difference in cost is non-positive, because the completion times of at least � jobs
(j = jx − �, . . . , jx − 1 and maybe also jx) decrease by one. This contradicts
either the optimality of S∗ or our assumption that S∗ minimizes

∑dK−1
t=0 t · y(t).

The proof of the statement for any job jx + � with 0 < � ≤ a follows a similar
argument, but now using the fact that for every job j := jx + � we have ej

max <

ejx
max − ∑j−1

j′=jx
wj′ , because jx was the last job with ej

max +
∑

j′<j wj′ = Δx. �
To construct an optimal sub-schedule, we need the following two lemmas.

Lemma 4. Let [t′, t′ + 1) ∈ [Sjx , Cjx) be the last time slot with cost ejx
max that

is used by job jx. If there is a partially reserved interval Ik in RS∗
x , then either

(i) Ik is not the last interval of RS∗
x and Ik contains [t′, t′ + 1) as its last reserved

time slot or (ii) Ik is the last interval of RS∗
x .

Lemma 5. Let [t′, t′ + 1) ∈ [Sjx , Cjx) be the last time slot with cost ejx
max that

is used by job jx. There exists an optimal solution S∗ such that if there is a
partially reserved interval Ik in RS∗

x and it is the last one in RS∗
x , then there is

no slot [t, t + 1) ∈ [Sjx , Cjx) with cost at most ejx
max that is not reserved.

We now show how to construct an optimal partial schedule for a given ordered
job set in a given region in polynomial time.

Lemma 6. Given a region Rx and an ordered job set Jx, we can construct in
polynomial time an optimal schedule for Jx within the region Rx, which does not
contain any other split point than τx and τx+1, the boundaries of Rx.

Proof. Given Rx and Jx, we guess the optimal combination
(
jx, ejx

max

)
, i.e., we

enumerate over all nK combinations and choose eventually the best solution.
We firstly assume that a partially reserved interval exists and it is the last

one in Rx (case (ii) in Lemma 4). Based on the characterization in Lemma 3 we
find in polynomial time the slots to be reserved for the jobs jx − b, . . . , jx − 1.
This defines Cjx−b, . . . , Cjx−1. Then starting job jx at time Cjx−1, we check
intervals in the order given and reserve as much as needed of each next interval
Ih if and only if eh ≤ ejx

max, until a total of pjx time slots have been reserved for
processing jx. Lemma 5 justifies to do that. This yields a completion time Cjx .
Starting at Cjx , we use again Lemma 3 to find in polynomial time the slots to be
reserved for processing the jobs jx + 1, . . . , jx + a. This gives Cjx+1, . . . , Cjx+a.

Now we assume that there is no partially reserved interval or we are in case (i)
of Lemma 4. Similar to the case above, we find in polynomial time the slots
that S∗ reserves for the jobs jx − b, . . . , jx − 1 based on Lemma 3. This defines
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Cjx−b, . . . , Cjx−1. To find the slots to be reserved for the jobs jx + 1, . . . , jx + a,
in this case, we start at the end of Rx and go backwards in time. We can start
at the end of Rx because in this case the last interval of Rx is fully reserved.
This gives Cjx+1, . . . , Cjx+a. Job jx is thus to be scheduled in [Cjx−1, Sjx+1). In
order to find the right slots for jx we solve a makespan problem in the interval
[Cjx−1, Sjx+1), which can be done in polynomial time (Theorem 1) and gives a
solution that cannot be worse than what an optimal schedule S∗ does.

If anywhere in both cases the reserved intervals can not be made sufficient
for processing the job(s) for which they are intended, or if scheduling the jobs in
the reserved intervals creates any intermediate split point, then this

(
jx, ejx

max

)
-

combination is rejected. Hence, we have computed the optimal schedules over all
nK combinations of

(
jx, ejx

max

)
and over both cases of Lemma 4 concerning the

position of the partially reserved interval. We choose the schedule with minimum
total cost and return it with its value. This completes the proof. �
Now we are ready to prove our main theorem.

Theorem 2. Given an instance of 1 | pmtn | ∑
wjCj + E and an arbitrary

processing sequence of jobs σ, we can compute an optimal reservation decision
for σ in polynomial time.

Proof. We give a dynamic program. We define a state for every possible potential
split point t ∈ P. By definition, there are 2K + 1 of them. A state also includes
the set of jobs processed until time t. Given the sequence σ, this job set can be
uniquely identified by the index of the last job, say j, that finished by time t.
By relabeling the job set J , we can assume w.l.o.g. that σ = (1, . . . , n).

For each state (j, t) we compute and store recursively the optimal scheduling
cost plus reservation cost Z(j, t) by

Z(j, t) = min

{

Z(j′, t′) + z
({

j′+ 1, . . . , j
}
, [t′, t)

)
: t′, t ∈ P, t′ < t,j′, j ∈ J, j′ < j

}

,

where z
({

j′ + 1, . . . , j
}
, [t′, t)

)
denotes the value of an optimal partial schedule

for job set {j′+1, j′+2, . . . , j
}

in the region [t′, t), or ∞ if no such schedule exists.
This value can be computed in polynomial time, by Lemma 6. Hence, we compute
Z(j, t) for all O(nK) states in polynomial time, which concludes the proof. �
The following observation follows from a standard interchange argument.

Observation 4. In an optimal schedule S∗ for the problem 1 | pmtn | ∑
Cj +E,

jobs are processed according to the Shortest Processing Time First (SPT) policy.

Combining this observation with Theorem 2 gives the following corollary.

Corollary 1. There is a polynomial-time algorithm for 1 | pmtn | ∑
Cj + E.

For the weighted problem 1 | pmtn | ∑
wjCj + E, there is no sequence that is

universally optimal for all reservation decisions [5]. However, in the context of
scheduling on an unreliable machine there has been shown a polynomial-time
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algorithm that computes a universal (4 + ε)-approximation [5]. More precisely,
the algorithm constructs a sequence of jobs which approximates the scheduling
cost for any reservation decision with a factor at most 4 + ε.

Consider an instance of problem 1 | pmtn | ∑
wjCj + E and compute such a

universally (4+ε)-approximate sequence. Applying Theorem 2 to σ, we obtain a
schedule S with an optimal reservation decision for σ. Let S ′ denote the schedule
which we obtain by changing the reservation decision of S to the reservation in
an optimal schedule S∗ (but keeping the scheduling sequence σ). The schedule
S ′ has cost no less than the original cost of S. Furthermore, given the reservation
decision in the optimal solution S∗, the sequence σ approximates the scheduling
cost of S∗ within a factor of 4 + ε. This gives the following result.

Corollary 2. There is a (4 + ε)-approx. algorithm for 1 | pmtn | ∑
wjCj + E.

4 A PTAS for Minimizing Total Weighted Completion
Time

The main result of this section is an approximation scheme for minimizing the
total weighted completion time with time-varying reservation cost.

Theorem 3. For any fixed ε > 0, there is a pseudo-polynomial time algorithm
that computes a (1 + ε)-approximation for the problem 1 | pmtn | ∑

j wjCj + E.
This algorithm runs in polynomial time if dK is polynomially bounded.

In the remainder of this section we describe some preliminaries, present a
dynamic programming (DP) algorithm with exponential running time, and then
we argue that it can be trimmed down to (pseudo-)polynomial size. As noted
in the introduction, our approach is inspired by a PTAS for scheduling on a
machine of varying speed [10], but a direct application does not seem possible.

4.1 Preliminaries and Scheduling in the Weight-Dimension

We describe a schedule S not in terms of completion times Cj(S), but in terms
of the remaining weight function WS(t) which, for a given schedule S, is defined
as the total weight of all jobs not completed by time t. Based on the remaining
weight function we can express the cost for any schedule S as

∫ ∞

0

WS(t) =
∑

j∈J

wjCj(S) .

This has a natural interpretation in the standard 2D-Gantt chart, which was
originally introduced in [4].

For a given reservation decision, we follow the idea of [10] and implicitly
describe the completion time of a job j by the value of the function W at the
time that j completes. This value is referred to as the starting weight Sw

j of job j.
In analogy to the time-dimension, the value Cw

j := Sw
j + wj is called completion
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weight of job j. When we specify a schedule in terms of the remaining weight
function, then we call it a weight-schedule, otherwise a time-schedule. Other
terminologies, such as feasibility and idle time, also translate from the time-
dimension to the weight-dimension. A weight-schedule is called feasible if no two
jobs overlap and the machine is called idle in weight-dimension if there exists a
point w in the weight-dimension with w /∈ [

Sw
j , Cw

j

]
for all jobs j ∈ J .

A weight-schedule together with a reservation decision can be translated into
a time-schedule by ordering the job in decreasing order of completion weights
and scheduling them in this order in the time-dimension in the reserved time
slots. For a given reservation decision, consider a weight-schedule S with com-
pletion weights Cw

1 > · · · > Cw
n > Cw

n+1 := 0 and the corresponding completion
times 0 =: C0 < C1 < · · · < Cn for the jobs j = 1, . . . , n. We define the (schedul-
ing) cost of a weight schedule S as

∑n
j=1

(
Cw

j+1 − Cw
j

)
Cj . This value equals

∑n
j=1 πS

j Cw
j , where πS

j := Cj − Sj , if and only if there is no idle weight. If there
is idle weight, then the cost of a weight-schedule can only be greater, and we
can safely remove idle weight without increasing the scheduling cost [10].

4.2 Dynamic Programming Algorithm

Let ε > 0. Firstly, we apply standard geometric rounding to the weights to gain
more structure on the input, i.e., we round the weights of all jobs up to the
next integer power of (1 + ε), by losing at most a factor (1 + ε) in the objective
value. Furthermore, we discretize the weight-space into intervals of exponentially
increasing size: we define intervals WIu := [(1 + ε)u−1

, (1 + ε)u) for u = 1, . . . , ν
with ν := �log1+ε

∑
j∈J wj�.

Consider a subset of jobs J ′ ⊆ J and a partial weight-schedule of J ′. In
the dynamic program, the set J ′ represents the set of jobs at the beginning
of a corresponding weight-schedule, i.e., if j ∈ J ′ and k ∈ J \ J ′, then Cw

j <
Cw

k . As discussed in Sect. 4.1, a partial weight-schedule S for the jobs in J ′

together with a reservation decision for all jobs in J can be translated into a time-
schedule. Note that the makespan of this time-schedule is completely defined by
the reservation decision and the total processing volume

∑
j∈J pj . Moreover,

knowing the last p(J ′) :=
∑

j∈J ′ pj reserved slots is sufficient for scheduling the
jobs in J ′ in the time-dimension, since we know that the first job in the weight-
schedule finishes last in the time-schedule, i.e., at the makespan. This gives a
unique completion time Cj and a unique execution time πS

j := Cj − Sj for each
job j ∈ J ′. The total scheduling and reservation cost of this partial schedule is∑

j∈J ′ πS
j Cw

j + E.
Let Fu := {Ju ⊆ J :

∑
j∈Ju

wj ≤ (1 + ε)u}. The set Fu contains all the pos-
sible job sets Ju that can be scheduled in WIu or before. With every possible pair
(Ju, t), Ju ∈ Fu and t ∈ [0, dK), we associate a recursively constructed weight-
schedule together with a reservation decision starting at time t so that the current
scheduling and reservation cost is a good approximation of the optimal total cost
for processing the set Ju starting at t. More precisely, given a u ∈ {1, . . . , ν},
a set Ju ∈ Fu, and a time point t ∈ [0, dK), we create a table entry Z(u, Ju, t)
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that represents a (1 + O(ε))-approximation of the scheduling and reservation
cost of an optimal weight-schedule of Ju subject to Cw

j ≤ (1 + ε)u for all j ∈ Ju

and Sj ≥ t for all j ∈ Ju. Initially, we create table entries Z(0, ∅, t) := 0 for
all t = 0, . . . , dK and we define F0 = {∅}. With this, basically, we control the
makespan of our time-schedule.

The table entries in iteration u are created based on the table entries from
iteration u−1 in the following way. Consider candidate sets Ju ∈ Fu and Ju−1 ∈
Fu−1, a partial weight-schedule S of Ju, in which the set of jobs with completion
weight in WIu is exactly Ju \ Ju−1, and two integer time points t, t′ with t < t′.

We let APXu(Ju \ Ju−1, [t, t′)) denote a (1 + ε)-approximation of the mini-
mum total cost (for reservation and scheduling) when scheduling job set Ju\Ju−1

in the time interval [t, t′), i.e.,

APXu(Ju \ Ju−1, [t, t′)) := (1 + ε)u · (t′ − t) + RES(Ju \ Ju−1, [t, t′)) ,

where RES(Ju \ Ju−1, [t, t′)) denotes the cost of the p(Ju \ Ju−1) cheapest slots
in the interval [t, t′). If p(Ju \ Ju−1) > t′ − t, then we set RES(Ju \ Ju−1, [t, t′))
to infinity to express that we cannot schedule all jobs in Ju \ Ju−1 within [t, t′).

Based on this, we compute the table entry Z(u, Ju, t) with Ju ∈ Fu according
to the following recursive formula

Z(u, Ju, t) := min {Z(u − 1, Ju−1, t
′) + APXu(Ju \ Ju−1, [t, t′)) :

Ju−1 ∈ Fu−1, Ju−1 ⊆ Ju, t ≤ t′} .

We return Z(ν, J, 0) after iteration ν. From Z(ν, J, 0) we can construct a
schedule and its reservation decision by backtracking.

Notice that the values APXu(Ju \ Ju−1, [t, t′)) do not depend on the entire
schedule, but only on the time interval [t, t′) and the total processing volume of
jobs in Ju \Ju−1. Since we approximate the scheduling cost by a factor 1+ε and
determine the minimum reservation cost, the dynamic programming algorithm
obtains the following result.

Lemma 7. The DP computes a (1 + O(ε))-approximate solution.

4.3 Trimming the State Space

The set Fu, containing all possible job sets Ju, is of exponential size, and so is
the DP state space. In the context of scheduling with variable machine speed,
it has been shown in [10] how to reduce the set Fu for a similar DP (without
reservation decision, though) to one of polynomial size at only a small loss in
the objective value. In general, such a procedure is not necessarily applicable
to our setting because of the different objective involving additional reservation
cost and the different decision space. However, the compactification in [10] holds
independently of the speed of the machine and, thus, independently of the reser-
vation decision of the DP (interpret non/reservation as speed 0/1). Hence, we
can apply it to our cost aware scheduling framework and obtain a PTAS. For
more details on the procedure we refer to the full version.
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5 Open Problems

Our PTAS for the weighted problem runs in polynomial time when dK is poly-
nomially bounded. Otherwise, the scheme is a “PseuPTAS”. The question is
if, by a careful analysis of the structure of optimal solutions, we can avoid the
dependence of the running time on dK , as in our dynamic program from Sect. 3.

Furthermore, it would be interesting to algorithmically understand other
scheduling problems in the model of time-varying reservation cost. An imme-
diate open question concerns the problems considered in this paper when there
are release dates present. In the full version we show that the makespan prob-
lem 1 | rj , pmtn |Cmax + E can be solved in polynomial time. We can also
solve R | pmtn, rj |Cmax optimally if we allow fractional reservation. The seem-
ingly most simple open problem in our (integral) model is 1|rj , pmtn|∑j Cj +E.
While the problem without reservation cost can be solved optimally in polyno-
mial time, the complexity status in the time-varying cost model is unclear, even
with only two different unit reservation costs.

Machine-individual time-slot reservation opens a different stream of research.
While a standard LP can be adapted for optimally solving R | pmtn, rj |Cmax

with fractional reservation cost, the integrality gap is unbounded for our model.
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