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Abstract. Halldórsson, Sun, Szegedy, and Wang (ICALP 2012) [16]
investigated the space complexity of the following problem CLIQUE-
GAP(r, s): given a graph stream G, distinguish whether ω(G) ≥ r or
ω(G) ≤ s, where ω(G) is the clique-number of G. In particular, they give
matching upper and lower bounds for CLIQUE-GAP(r, s) for any r and
s = c log(n), for some constant c. The space complexity of the CLIQUE-
GAP problem for smaller values of s is left as an open question. In
this paper, we answer this open question. Specifically, for s = Õ(log(n))
and for any r > s, we prove that the space complexity of CLIQUE-

GAP problem is Θ̃(ms2

r2
). Our lower bound is based on a new connection

between graph decomposition theory (Chung, Erdös, and Spencer [11],
and Chung [10]) and the multi-party set disjointness problem in commu-
nication complexity.

1 Introduction

Graphs are ubiquitous structures for representing real-world data in several sce-
narios. In particular, when the data involves relationships between entities it
is natural to represent it as a graph G = (V,E) where V represents entities
and E represents the relationships between entities. Examples of such entity-
relationship pairs include webpages-hyperlinks, papers-citations, IP addresses-
network flows, and people-friendships. Such graphs are usually very large in size,
e.g. the people-friendships “Facebook graph” [24] has 1 billion nodes. Because
of the massive size of such graphs, analyzing them using classical algorithmic
approaches is challenging and often infeasible. A natural way to handle such
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massive graphs is to process them under the data streaming model. When deal-
ing with graph data, algorithms in this model have to process the input graph
as a stream of edges. Such an algorithm is expected to produce an approxima-
tion of the required output while using only a limited amount of memory for
any ordering of the edges. This streaming model has become one of the most
widely accepted models for designing algorithms over large data sets and has
found deep connections with a number of areas in theoretical computer science
including communication complexity [3,9] and compressed sensing [14].

While most of the work in the data streaming model is for processing numer-
ical data, processing large graphs is emerging as one of the key topics in this
area. Graph problems considered so far in this model include counting prob-
lems such as triangle counting [4,6,12,17,18,23], MAX-CUT [19] and small
graph minors [8], and classical graph problems such as bipartite matching [15],
shortest path [13], and graph sparsification [1]. We refer the reader to a recent
survey by McGregor for more details on streaming algorithms for graph prob-
lems [22]. Recently, Halldórsson, Sun, Szegedy, Wang [16] considered the problem
of approximating the size of maximum clique in a graph stream. In particular,
they introduced the CLIQUE-GAP(r, s) problem:

Definition 1. CLIQUE-GAP(r, s): given a graph stream G, integer r and s
with 0 ≤ s ≤ r, output “1” if G has a r-clique or “0” if G has no (s + 1)-clique.
The output can be either 0 or 1 if the size of the max-clique w(G) is in [s+1, r].

In this paper we further investigate the space complexity of the CLIQUE-GAP
problem and its relation to other well studied topics including multiparty com-
munication, graph decomposition theory, and counting triangles. We establish
several new results including a solution to an open question raised in [16].

1.1 Our Results

In this paper, we establish a new connection between graph decomposition
theory [10,11] and the multi-party set disjointness problem of the communi-
cation complexity theory. Using this connection, we prove new lower bounds for
CLIQUE-GAP(r, s) when s = O(log n) and complement the results of [16]. Our
main technical results are Theorems 1, 2, 3, and 4. We summarize our results
below.

The Upper Bound : We give a one-pass streaming algorithm that solves CLIQUE-
GAP(r, s) using Õ(ms2/r2) space. Note that our results do not contradict the
lower bounds in [16], since their results apply for dense graphs with m = Θ(n2).

Theorem 1. For any r and s where r ≥ 100s, there is a one-pass streaming
algorithm (Algorithm 1) that, on any streaming graph G with m edges and n
vertices, answers CLIQUE-GAP(r, s) correctly with probability ≥ 0.99, using
Õ(ms2/r2) space.1

1 In this and following theorems, the constants we choose are only for demonstrative
convenience.
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Lower Bounds : We give a matching lower bound of Ω̃(ms2/r2) on the space
complexity of CLIQUE-GAP(r, s) when s = O(log n).

Theorem 2. For any 0 < δ < 1/2 there exists a global constant c > 0 such that
for any 0 < s < r, M > 0, there exists graph families G1 and G2 that satisfy the
following:

– for all graph G1 ∈ G1, |E(G1)| = m ≥ M , G1 has a r-clique;
– for all graph G2 ∈ G2; |E(G2)| = m ≥ M , G2 has no (s + 1)-clique;
– any randomized one-pass streaming algorithm A that distinguishes whether

G ∈ G1 or G ∈ G2 with probability at least 1 − δ uses at least cm/(r2 log2s r)
memory bits.

For s = O(log n) our lower bound matches, up to polylogarithmic factors, the
upper bound of Theorem 1. Using the terminology from graph decomposition
theory [10,11] we extend our results to a lower bound theorem for the gen-
eral promise problem GAP(P,Q), which distinguishes between any two graph
properties P and Q satisfying the following restrictions. Note that α∗(G0,Q) is
a parameter denotes the minimum decomposition of G0 by graphs in Q, first
defined in [10]. Please refer to Eq. 5 for details.

Theorem 3. Let P,Q be two graph properties such that

– P ∩ Q = ∅;
– If G′′ ∈ P and G′′ is a subgraph of G′, then G′ ∈ P;
– If G′, G′′ ∈ Q and V (G′) ∩ V (G′′) = ∅, then G̃ = (V (G′) ∪ V (G′′), E(G′) ∪

E(G′′)) ∈ Q;

Let G0 be an arbitrary graph in P. Given any graph G with m edges and n
vertices, if a one-pass streaming algorithm A solves GAP(P,Q) correctly with
probability at least 3/4, then A requires Ω( n

|V (G0)|
1

α2∗(G0,Q) ) space in the worst
case.

We use the tools we develop for the CLIQUE-GAP problem to give a new two-
pass algorithm to distinguish between graphs with at least T triangles and
triangle-free graphs. For T = n2+β , the space complexity of our algorithm is
o(m/

√
T ) for β > 2/3. Cormode and Jowhari [12] give a two-pass algorithm

using O(m/
√

T ) space. Also, for T ≤ n2 they provide a matching lower bound.
Our results demonstrate that for some T > n2, it might be possible to refine the
lower bound of Cormode and Jowhari. We state our results in Theorem 4.

Theorem 4. Let G1 be a class of graphs of n vertices that has at least T = n2+β

triangles for some β ∈ [0, 1]. Let G2 be a class of graphs of n vertices and triangle-
free. Given graph G = (V,E) with n nodes and m edges, there is a two-pass
streaming algorithm that distinguishes whether G ∈ G1 or G ∈ G2 with constant
probability using Õ(mn2−β

T ) space. In particular, for β > 2/3, the algorithm uses
o(m/

√
T ) space.
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Incidence Model : We also give a new lower bound for the space complexity of
CLIQUE-GAP(r, 2) in the incidence model of graph streams (Theorem 5).

Theorem 5. If one-pass streaming algorithm solves CLIQUE-GAP(r, 2) in the
incidences model for any G with m edges and n vertices with probability at least
3/4, it requires Ω(m/r3) space in the worst case.

We omit the proofs of Theorems 3, 4 and 5 due to space limitation. The readers
who are interested can find the proofs in the full version, which is available on
arXiv.

1.2 Related Work

Prior work that is closest to our work is the above-mentioned paper of Halldórsson
et al. [16]. They show that for any ε > 0, any randomized streaming algorithm
for approximating the size of the maximum clique with approximation ratio
cn1−ε/ log n requires n2ε space (for some constant c). To prove this result they
show a lower bound of Ω(n2/r2) for CLIQUE-GAP(r, s) (using the two-party
communication complexity of the set disjointness problem) when r = n1−ε and
s = 100 · 21/ε log n.

The problem related to cliques that has received the most attention in the
streaming setting is approximately counting the number of triangles in a graph.
Counting the number of triangles is usually an essential part of obtaining impor-
tant statistics such as the clustering coefficient and transitivity coefficient [5,20] of
a social network. Starting with the work of Bar-Yossef, Kumar and Sivakumar [4],
triangle counting in the streaming model has received sustained attention by
researchers [6,12,18,23]. Researchers have also considered counting other sub-
structures such as K3,3 subgraphs [7] and cycles [5,21].

The problem of clique identification in a graph has also been considered in
other models. For example, Alon, Krivelevich, and Sudakov [2] considered the
problem of finding a large hidden clique in a random graph.

2 Definitions and Results

2.1 Notations and Definitions

We give notations and definitions that are necessary to explain our results. For
a graph G = (V,E) with vertex set V and edge set E, we use m to denote the
number of edges, n to denote the number of vertices, T to denote the number of
triangles in G, Δ to denote the maximum degree of G, and ω(G) to denote the
size of the maximum clique (also known as the clique number). We use Õ and
Ω̃ to suppress logarithmic factors in the asymptotics.

We consider the adjacency streaming model for processing graphs [4,6]. In
this model the graph G is presented as a stream of edges 〈e1, e2, ..., em〉. We
process edges under the cash register model: edge deletion is not allowed.

A k-pass streaming algorithm can access the stream k times and should work
correctly irrespective of the order in which the edges arrive (the ordering is fixed
for all passes).
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2.2 Lower Bound Techniques

To establish our lower bounds on the CLIQUE-GAP(r, s) problem for arbitrarily
small s, we use the well known approach of reducing a communication complex-
ity problem to CLIQUE-GAP(r, s). For the reduction, we make use of graph
decomposition theory [10,11]. The communication complexity problem we use is
the set disjointness problem in the one-way multi-party communication model.

The set disjointness problem in the one-way k-party communication model,
denoted by DISJn

k , is the following promise problem. The input to the problem
is a collection of k sets S1, . . . , Sk over a universe [n], with the promise that
either all the sets are pairwise disjoint or there is a unique intersection (that is
there is a unique a ∈ [n] so that a ∈ Si for all 1 ≤ i ≤ n). There are k players
with unlimited computational power and with access to randomness. Player i
has the input Si. Player i can only send information to Player (i + 1). After all
the communication between players, the last player (Player k) outputs “0” if
the k sets are pairwise disjoint or outputs “1” if the sets uniquely intersect. For
instances that do not meet the promise the last player can output “0” or “1”
arbitrarily. The communication complexity of such a protocol is the total number
of bits communicated by all players. This problem was first introduced by [3]
to prove lower bounds on the space complexity of approximating the frequency
moments. In [9], it is shown that the communication complexity of DISJn

k is
Ω(n/k).

We review basics of graph decomposition [10,11]. An H-decomposition of
graph G is a family of subgraphs {G1, G2, . . . , Gt} such that each edge of G
is exactly in one of the Gis and each Gi belongs to a specified class of graphs
H. Let f be a nonnegative cost function on graphs. The cost of a decompo-
sition with respect to f is defined as αf (G,H) ≡ minD

∑t
i=1 f(Gi), where

D = {G1, G2, . . . , Gt} is an H-decomposition of G. Two functions that have
received attention are f0(G) ≡ 1 and f1(G) ≡ |V (G)|. The former one counts
the minimum number of subgraphs among all decompositions; and the later
one counts the total number of nodes in the minimum decomposition. Many
interesting problems in graph theory are related to this framework. For example
αf0(G,P) is the thickness of G, for P the set of planar graphs; αf1(G,B), where
B is the set of complete bipartite graphs, arises in the study of network contacts
realizing certain symmetric monotone Boolean functions. Refer to [10,11] for
more details on graph decomposition.

We are interested in the cost function f0. αf0(G,H) is typically denoted as
α∗(G,P) which is what we use in this paper. For the class B, the class of complete
bipartite graphs, it is known that α∗(Kn,B) = �log2 n
 [10].

To illustrate the reduction, consider CLIQUE-GAP(r, 2). Let k = �log2 r
.
Let {H1,H2, . . . , Hk} be a decomposition of G so that Hi’s are bipartite and
∪Hi is Kr. We will reduce an instance S1, . . . , Sk of DISJn/r

k to a graph G on n
vertices as follows. The graph G has n/r groups of r vertices each. The players
collectively and independently build the graph G as follows. Consider Player i
and her input Si ⊆ [n/r]. For an a ∈ Si, Player i puts the graph Hi on r vertices
of group a into the stream. It is clear that if Sis are disjoint then the graph G
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is a collection of disjoint bipartite graphs and if there is a unique intersection
a, the group a forms ∪Hi = Kr. Using standard arguments, we can show that
the space complexity of CLIQUE-GAP(r, 2) is Ω(n/r log22 r). Details are given
in Sect. 4.

This proof can be generalized. In particular, we prove Theorem 2 by choosing
H as set of s-partite graphs and prove Theorem 5 by choosing H as set of k-star
graphs.

3 An Upper Bound

In this section we give an algorithm for CLIQUE-GAP(r, s) that uses Õ(ms2/r2)
space. Note that for s = Ω(r), the trivial algorithm that stores the entire graph
has the required space complexity. Hence we will assume s = o(r).

Algorithm 1. Algorithm for CLIQUE-GAP(r, s)
1: Input:

Graph edge stream 〈e1, e2, . . . , em〉 of graph G = (V, E), positive
integers r, s.

2: Output:
“1” if a clique of order r is detected in G; “0” if G is
(s + 1)-clique free.

3: Initialize:
Set p = 40(s + 1)/r.
Set memory buffer M empty.
Compute n pairwise independent bits {Qv|for all v ∈ V } using
O(log n) space such that for each v ∈ V , Pr[Qv = 1] = p.

4: while not the end of the stream do
5: Read an edge e = (a, b).
6: Insert e into M if Qa = 1 and Qb = 1.
7: If there is an (s + 1)-clique in M , then output “1”.

8: output “0”.

Theorem 1. For any r and s where r ≥ 100s, there is a one-pass streaming
algorithm (Algorithm 1) that, on any streaming graph G with m edges and n
vertices, answers CLIQUE-GAP(r, s) correctly with probability ≥ 0.99, using
Õ(ms2/r2) space.2

Proof. If s < 2, it is trivial to detect an edge. So let us assume s ≥ 2. If the
input graph G has no (s + 1)-clique, the algorithm always outputs “0” since the
algorithm outputs “1” only if there is an (s+1)-clique on a sampled subgraph of
G. Consider the case where G has a r-clique. Let Kr = (VK , EK) be such a clique.

2 In this and following theorems, the constants we choose are only for demonstrative
convenience.
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Let the random variable Z denote the number of nodes ‘sampled’ from VK . That
is, Z =

∑
v∈VK

Qv. The probability that Qv = 1 is p and Var(Qv) = p(1 − p).
Hence E (Z) = rp and since each Qv is pairwise independent, V ar(Z) = rp(1−p).
Thus for s ≥ 2, by Chebyshev’s bound, we have

Pr(Z ≤ s) =Pr(Z − E(Z) < s + 1 − E(Z))
≤Pr(|Z − E(Z)| ≥ |s + 1 − E(Z)|)

≤ V ar(Z)
(s + 1 − E(Z))2

=
rp(1 − p)

(s + 1 − rp)2
≤ 40(s + 1)

392(s + 1)2
≤ 1/100. (1)

The probability of sampling an edge (u, v) is p2, given by the probability of
sampling both u and v. Thus the expected memory used by the above algorithm
is Õ(ms2/r2).

4 Lower Bounds

In this section we present our lower bounds on the space complexity of the
CLIQUE-GAP problem. Our main theorem is the following.

Theorem 2. For any 0 < δ < 1/2 there exists a global constant c > 0 such that
for any 0 < s < r, M > 0, there exists graph families G1 and G2 that satisfy the
following:

– for all graph G1 ∈ G1, |E(G1)| = m ≥ M , G1 has a r-clique;
– for all graph G2 ∈ G2; |E(G2)| = m ≥ M , G2 has no (s + 1)-clique;
– any randomized one-pass streaming algorithm A that distinguishes whether

G ∈ G1 or G ∈ G2 with probability at least 1 − δ uses at least cm/(r2 log2s r)
memory bits.

For s = O(log n), this matches our Õ(ms2/r2) upper bound up to poly-
logarithmic factors and solves the open question of obtaining lower bounds for
CLIQUE-GAP(r, s) for small values of s (from [16]). Our main technical contri-
bution is a reduction from the multi-party set disjointness problem (DISJn

k )
in communication complexity to the CLIQUE-GAP problem. The reduction
employs efficient graph decompositions.

We use the following optimal bound on the communication complexity of
DISJn

k proved in [9].

Theorem 6 ([9]). Any randomized one-way communication protocol that
solves DISJn

k correctly with probability > 3/4 requires Ω(n/k) bits of commu-
nication.

Before we prove Theorem 2 in detail, we will give the construction for CLIQUE-
GAP(4, 2). The reduction is from DISJn/4

2 to CLIQUE-GAP(4, 2) (for the gen-
eral case it will be from DISJn/r

�logs r� to CLIQUE-GAP(r, s)). For any instance
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of DISJn/4
2 , where Player 1 holds a set S1 ⊂ [n/4] and Player 2 holds a set

S2 ⊂ [n/4], we construct an instance G with n vertices of CLIQUE-GAP(4,2) as
follows. The n vertices are denoted by {vi,j |i = 1, 2, 3, . . . , n/4, j = 0, 1, 2, 3}.
This notation partitions the vertex set to be n/4 groups, each of size 4,
denoting as Vi ≡ {vi,0, vi,1, vi,2, vi,3} for i = 1, 2, 3, . . . , n/4. We partition
Vi = Vi,0 ∪ Vi,1, where Vi,0 = {vi,0, vi,1} and Vi,1 = {vi,2, vi,3}. Further partition
Vi,0 = Vi,0,0 ∪Vi,0,1 and Vi,1 = Vi,1,0 ∪Vi,1,1, where Vi,0,0 = {vi,0}, Vi,0,1 = {vi,1},
Vi,1,0 = {vi,2} and Vi,1,1 = {vi,3}.

Player 1 places all edges of the complete bipartite graphs between Vi,0 and
Vi,1 if i ∈ S1.

Player 2 places all edges between Vi,0,0 and Vi,0,1 and edges between Vi,1,0,
Vi,1,1 if i ∈ S2.

The edges and partitions are shown in Fig. 1a.
If S1 ∩ S2 = {i}, then there is a clique on vertex set Vi (which is of size 4).

If S1 ∩ S2 = ∅, since both Player 1 and Player 2 have only bipartite graph edges
on disjoint vertex sets, the output graph is triangle free.

If there is a one-pass streaming algorithm A for CLIQUE-GAP(4, 2) that
distinguishes whether the input graph G has clique of size 4 or triangle-free, the
players can use this algorithm to solve DISJn/4

2 as follows: Player 1 runs A on his
edge set and communicates the content of the working memory at the end of his
computation to Player 2. Player 2 continues to run the algorithm on his edge set
and outputs the result of the algorithm as the answer of the DISJ problem. Hence
if A uses space M , then total communication between players ≤ M (in general
if there are k players we have the inequality: total communication ≤ (k − 1)M).
This leads to the required lower bound.

The edge decomposition for the reduction from DISJn/8
3 to CLIQUE-

GAP(8, 2) is shown in Fig. 1b.

(a) (b)

Fig. 1. (a) The decomposition of K4 to log2 4 = 2 bipartite graphs. (b) The decom-
position of K8 to log2 8 = 3 bipartite graphs.

For obtaining a lower bound on the space complexity of CLIQUE-GAP(r, s),
we will reduce DISJn/r

�logs r� to CLIQUE-GAP(r, s) and use the lower bound
stated in Theorem 6. For the reduction, we give an extension of the bipartite
graph decomposition result. In particular, we show (implicitly) that α∗(Kr,H) ≤
�logs r
 where H is the class of all s-partite graphs.
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Proof (of Theorem 2). We will reduce DISJn/r
t to CLIQUE-GAP(r, s) where

t = �log r/ log s
. Consider an instance of DISJn/r
t , where Player l holds a set Sl

⊂ [n/r] for l = 1, 2, . . . , t. To construct an instance G on n vertices of CLIQUE-
GAP(r, s), for l = 1, . . . , t, Player l places an edge set El as described below.

The Construction of El: The construction follows the same pattern as in the
figures above. To explain it precisely we need to structure the vertex set of the
graph in certain way. W.l.o.g set r = st and n = 0 mod r. We will denote an
integer in [r] by its s-ary representation using a t-tuple. We denote the n vertices
by V = {vi,[j1,j2,...,jt]|i = 1, 2, 3, . . . , n/r, for all j1, j2, . . . , jt ∈ [s]} ([j1, j2, . . . , jt]
represents an integer in [r] uniquely). This notation partitions the set V into n/r
subsets, each of size r. We denote them as V1, V2, . . . , Vn/r. That is, for each fixed
i = 1, 2, . . . , n/r, Vi = {vi,[j1,j2,...,jt]|for all j1, j2, . . . , jt ∈ [s]}. Next we define a
series of s partitions of each Vi where lth partition is a refinement of the (l − 1)th

partition.
Partition 1: Vi = Vi,0 ∪ Vi,1 . . . ∪ Vi,s−1, where for each fixed j1 ∈ [s]

Vi,j1 ≡ {vi,[j1,j2,j3,...,jt]| for all j2, j3, . . . , jt ∈ [s]}. (2)

Partition l: For each set Vi,j1,j2,...,jl−1 in Partition (l−1), partition Vi,j1,j2,...,jl−1

= Vi,j1,j2,...,jl−1,0∪Vi,j1,j2,...,jl−1,1 . . . ∪ Vi,j1,j2,...,jl−1,s−1 as s subsets, each of which
is of size st−l. Here, for each fixed i = 1, 2, . . . , n/r and for each fixed j1, j2, . . . , jl ∈
[s], we have

Vi,j1,j2,...,jl
≡ {vi,[j1,j2,j3,...,jl,jl+1,...,jt]| for all jl+1, jl+2, . . . , jt ∈ [s]}. (3)

With this structuring of vertices, we can now define El for each Player l. If an
element i is in the set Sl, then for all j1, j2, . . . , jl−1 ∈ [s], Player l has all the s-
partite graph edges between the s partitions of the vertex set Vi,j1,j2,...,jl−1 , namely,
Vi,j1,j2,...,jl−1,0, Vi,j1,j2,...,jl−1,1, Vi,j1,j2,...,jl−1,3, . . . and Vi,j1,j2,...,jl−1,s−1. Formally,
El = ∪i∈Sl

∪j1,j2,...,jl−1∈[s] E(i, j1, j2, . . . , jl−1), where

E(i, j1,j2, . . . , jl−1)
≡ ∪jl,j′

l∈[s],jl �=j′
l
{(a, b)| for all a ∈ Vi,j1,j2,...,jl−1,jl

, b ∈ Vi,j1,j2,...,jl−1,j′
l
}.

(4)

Note that each edge appears only in one of the edge set. End of Construction
of El.

Correctness of the Reduction: On a negative instance, players’ input sets
S1, S2 . . . St are pairwise disjoint. The above construction builds all the s-partite
graphs on disjoint sets of vertices, hence the output graph is s-partite and hence
(s + 1)-clique free.

On a positive instance, players’ input sets have a unique intersection, S1 ∩
S2 . . .∩St = {i}. For each Player l, the edge set El includes all the s-partite graph
edges on each vertex set Vi,j1,j2,...,jl−1 , i.e. ∪j1,j2,...,jl−1∈[s]E(i, j1, j2, . . . , jl−1). We
claim that there is a r-clique on vertex set Vi. Consider any two distinct vertices
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u, v ∈ Vi, where u = vi,[j1,j2,...,jt], v = vi,[j′
1,j′

2,...,j′
t]
. Since u �= v, (j1, j2, . . . , jt) �=

(j′
1, j

′
2, . . . , j

′
t). Let q be first integer such that jq �= j′

q. By the definition of the par-
titions, u ∈ Vi,j1,j2,...,jq−1,jq

and v ∈ Vj,j1,j2,...,jq−1,j′
q
. Therefore, there is an edge

(u, v) in the edge set output by Player q.

Proof of the Bound: Suppose there is a one-pass streaming algorithm A that
solves CLIQUE-GAP(r, s) in M(n, r, s) space. Then consider the following one-
way protocol for DISJn/r

t . For each 1 ≤ l < t, Player l simulates A on his edge set El

and communicates the memory content to Player (l+1). Finally Player t simulates
A on Et and outputs the result of A. The total communication ≤ (t−1)M(n, r, s).
Hence from the known lower bound onDISJn/r

t , we have thatM(n, r, s) = Ω(n/rt2) =
Ω(n/r log2s r). Now consider the hard instance of DISJn/r

t , any player holds a non-
empty set (otherwise this is an easy instance). From the construction, for each hard
instance we know m = Ω(r2 ×n/r) = Ω(nr). Hence any one-pass streaming algo-
rithm that solves CLIQUE-GAP(r, s) requires Ω(m/r2 log2s r) space. We further
justify this argument by the following modification of the reduction.

Constructing Graphs with m Edges: Suppose we are given m, r, s. For an
instance of DISJm/2r

t we can construct a graph on m/r vertices with m edges as
follows. Without loss of generality, assume r = o(

√
m), otherwise the bound is

trivially Ω(1). Divide the set of vertices into two groups each with m/2r nodes.
For the first m/2r nodes, construct the graph as discribed above with m′ ≤ m/2
edges. For the second group of m/2r nodes, the last player outputs a graph with
(m − m′) edges incident on this group that does not have an s-clique. This can
be done since by Turán’s theorem, an (m/2r)-vertices graph can have up to (1 −
1/s)m2/8r2 = ω(m) edges without creating an s-clique. The analysis of the lower
bound is the same as the previous analysis. By picking up graphs constructed for
the hard instances for DISJ problem, we construct the graph class as required by
the theorem.

A Lower Bound for The General GAP Problem

Using the terminology from graph decomposition theory we prove a general lower
bound theorem for the promise problem GAP(P,Q) which is defined as follows.

Definition 2. Let P and Q be two graph properties (equivalently, P and Q are
two sets of graphs) such that P ∩ Q = ∅. Given an input graph G, an algorithm
for GAP(P,Q) should output “1” if G ∈ P and ‘0’ if G ∈ Q. For G �∈ P ∪ Q,
the algorithm can output “1” or “0”.

We first recall the necessary definitions. Let H be a specified class of graphs.
An H-decomposition3 of a graph G is the decomposition of G into subgraphs
G1, G2, . . . , Gt such that any edge in G is an edge of exactly one of the Gi’s and
3 Note that some papers define the decomposition on connected graph. We here use a

more general statement.
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all Gis belong to H. Define α∗(G,H) as:

α∗(G,H) ≡ min
D

|D| (5)

where D = {G1, G2, . . . , Gt} is an H-decomposition of G. For convenience, we
define α∗(G,H) = ∞ if the H-decomposition of G is not defined.

Theorem 3. Let P,Q be two graph properties such that

– P ∩ Q = ∅;
– If G′′ ∈ P and G′′ is a subgraph of G′, then G′ ∈ P;
– If G′, G′′ ∈ Q and V (G′) ∩ V (G′′) = ∅, then G̃ = (V (G′) ∪ V (G′′), E(G′) ∪

E(G′′)) ∈ Q;

Let G0 be an arbitrary graph in P. Given any graph G with m edges and n
vertices, if a one-pass streaming algorithm A solves GAP(P,Q) correctly with
probability at least 3/4, then A requires Ω( n

|V (G0)|
1

α2∗(G0,Q) ) space in the worst
case.

Remark 1. We note that in the above statement G0 is an arbitrary graph. To get
the optimal bound, we can select a G0 such that the denominator |V0|α2

∗(G,Q) of
the bound is minimized. We also note that this theorem is indeed a generalization
of Theorem 2. Let P = {G | G has a r-clique } and Q = {G | G has no
(s + 1)-clique }. In the proof of Theorem 2 we use G0 = Kr and shows that
α∗(Kr,Q) ≤ logs r (in this case m = O(nr)).
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12. Cormode, G., Jowhari, H.: A second look at counting triangles in graph streams.
Theoret. Comput. Sci. 552, 44–51 (2014)

13. Demetrescu, C., Finocchi, I., Ribichini, A.: Trading off space for passes in graph
streaming problems. In: Proceedings of ACM-SIAM Symposium on Discrete Algo-
rithms. pp. 714–723. ACM (2006)

14. Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52, 1289–1306 (2006)
15. Goel, A., Kapralov, M., Khanna, S.: On the communication and streaming com-

plexity of maximum bipartite matching. In: Proceedings of the Twenty-third
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 468–485.
SIAM (2012)
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vol. 6942, pp. 677–688. Springer, Heidelberg (2011)

22. McGregor, A.: Graph stream algorithms: a survey. SIGMOD Rec. 43(1), 9–20
(2014). http://doi.acm.org/10.1145/2627692.2627694

23. Pavan, A., Tangwongsan, K., Tirthapura, S., Wu, K.L.: Counting and sampling
triangles from a graph stream. Proc. VLDB Endowment 6(14), 1870–1881 (2013)

24. Ugander, J., Karrer, B., Backstrom, L., Marlow, C.: The anatomy of the facebook
social graph. CoRR abs/1111.4503 (2011). http://arxiv.org/abs/1111.4503

http://arxiv.org/abs/1310.7665
http://arxiv.org/abs/1409.2138
http://doi.acm.org/10.1145/2627692.2627694
http://arxiv.org/abs/1111.4503

	New Bounds for the CLIQUE-GAP Problem Using Graph Decomposition Theory
	1 Introduction
	1.1 Our Results
	1.2 Related Work

	2 Definitions and Results
	2.1 Notations and Definitions
	2.2 Lower Bound Techniques

	3 An Upper Bound
	4 Lower Bounds
	References


