
Michael Brenner · Nicolas Christin
Benjamin Johnson · Kurt Rohloff (Eds.)

 123

LN
CS

 8
97

6

FC 2015 International Workshops, BITCOIN, WAHC, and Wearable
San Juan, Puerto Rico, January 30, 2015
Revised Selected Papers

Financial Cryptography
and Data Security

Lecture Notes in Computer Science 8976

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7410

http://www.springer.com/series/7410

Michael Brenner • Nicolas Christin
Benjamin Johnson • Kurt Rohloff (Eds.)

Financial Cryptography
and Data Security
FC 2015 International Workshops
BITCOIN, WAHC, and Wearable
San Juan, Puerto Rico, January 30, 2015
Revised Selected Papers

123

Editors
Michael Brenner
Leibniz Universität
Hannover
Germany

Nicolas Christin
Carnegie Mellon University
Pittsburgh, PA
USA

Benjamin Johnson
Carnegie Mellon University
Pittsburgh, PA
USA

Kurt Rohloff
New Jersey Institute of Technology
Newark, NJ
USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-662-48050-2 ISBN 978-3-662-48051-9 (eBook)
DOI 10.1007/978-3-662-48051-9

Library of Congress Control Number: 2015943047

LNCS Sublibrary: SL4 – Security and Cryptology

Springer Heidelberg New York Dordrecht London
© International Financial Cryptography Association 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

Springer-Verlag GmbH Berlin Heidelberg is part of Springer Science+Business Media
(www.springer.com)

BITCOIN 2015: Second Workshop on Bitcoin Research

Building on the success of the First Workshop on Bitcoin Research, which was
co-hosted with Financial Cryptography and Data Security 2014, we were delighted to
have the opportunity to offer this workshop again this year. If 2013 marked the year in
which Bitcoin burst onto the media stage, 2014 was a year of consolidation, in which
Bitcoin and distributed payment systems cemented their status as a worthy and prac-
tical research topic. Bitcoin’s exchange rate, which had been surpassing record high
after record high in 2013, settled down to much more modest levels in 2014, driving
some of the speculators away.

Meanwhile, researchers identified a number of fascinating challenges brought upon
by Bitcoin in domains ranging from legal aspects, to game theory, to distributed system
design. Our goal in organizing this second workshop was to continue offering a forum
for this exciting research to be heard and discussed. We believe that the program the
authors contributed is a good reflection of the diversity of the research Bitcoin can
foster.

We gave authors of accepted papers the opportunity to publish the paper in extenso
in these proceedings or to limit themselves to an abstract if they decided to pursue other
avenues for publication. As a result, the proceedings in the volume contain the full,
revised versions of nine of the ten accepted papers, and one extended abstract. Authors
of Bitcoin-related papers submitted to the main conference were also automatically
considered for the workshop. All in all, we considered 15 manuscripts for inclusion in
this proceedings volume. These manuscripts were evaluated through a thorough
peer-review process, in which each paper was assigned to at least three reviewers.

We thank the authors of all submissions, the members of the Program Committee,
and the external reviewers for their efforts; Rainer Böhme and Tyler Moore, the
organizers of the first edition, for their sage advice; the presenters and the numerous
participants for attending; and the organizers of Financial Cryptography and Data
Security 2015 for hosting this workshop. We are especially grateful to the Bitcoin
Foundation who acted as Bitcoin-grade sponsor of the main conference and the
workshop.

April 2015 Nicolas Christin
Emin Gün Sirer

BITCOIN 2015 Program Committee

Gavin Andresen Bitcoin Foundation, USA
Elli Androulaki IBM Zürich, Switzerland
Rainer Böhme University of Münster, Germany
Joseph Bonneau Princeton University, USA
Srdjan Capkun ETH Zürich, Germany
Jeremy Clark Concordia University, Canada
Stefan Dziembowski University of Warsaw, Poland
Benjamin Edelman Harvard University, USA
Ittay Eyal Cornell University, USA
Christina Garman Johns Hopkins University, USA
Matt Green Johns Hopkins University, USA
Joshua Kroll Princeton University, USA
Sarah Meiklejohn University College London, UK
Tyler Moore Southern Methodist University, USA
Andrew Miller University of Maryland, USA
Roger Wattenhofer ETH Zürich, Switzerland
Nicholas Weaver ICSI, USA
Aviv Zohar Hebrew University of Jerusalem, Israel

VI BITCOIN 2015

WAHC 2015: Third Workshop on Encrypted Computing
and Applied Homomorphic Cryptography

The cloud hype and recent disclosures show there is demand for secure and practical
computing technologies. The workshop addresses the challenge in safely outsourcing
data processing onto remote computing resources by protecting programs and data even
during processing. This allows users to outsource computation over confidential
information independently from the trustworthiness or the security level of the remote
delegate. The workshop serviced these research needs by collecting and bringing
together some of the top researchers and practitioners from academia, government, and
industry to present, discuss, and share the latest progress in the field relevant to
real-world problems with practical approaches and solutions.

The workshop was uniformly attended by academia, government, and industry,
with attendees both from prior years with experience in the domain and new attendees
learning from the community. Specific encrypted computing technologies focused on
homomorphic encryption and secure multiparty computation. The technologies and
techniques discussed in this workshop are key to extending the range of applications
that can be securely and practically outsourced.

Presentations and discussion at the workshop were of the high quality and deep
insight we have come to expect from our community. Topics of conversation included
insights and lessons learned from experience implementing encrypted computing
schemes, and experience reports on applying these technologies. Special thanks to the
invited speakers: Drew Dean from SRI International and Dov Gordon from Applied
Communication Sciences, who shared their experiences and involvements from
multiple past encrypted computing projects.

The workshop received 16 submissions. All contained unique and interesting
results. Each was reviewed by at least three Program Committee members. While all
the papers were of high quality, only six papers were accepted to the workshop. We
thank the authors for all submissions, the members of the Program Committee for their
effort, the workshop participants for attending, and the FC organizers for supporting us.

April 2015 Michael Brenner
Kurt Rohloff

WAHC 2015 Program Committee

Dan Bogdanov Cybernetica, Estonia
Kevin Butler University of Florida, USA
David Cousins BBN, USA
Dario Fiore IMDEA Software Institute, Madrid, Spain
Shai Halevi IBM, USA
Vladimir Kolesnikov Bell Labs, USA
Tancrde Lepoint CryptoExperts, France
David Naccache Ecole Normale Superieure, Paris, France
Michael Naehrig Microsoft, USA
Maire O’Neill Queen’s University Belfast, UK
Pascal Paillier CryptoExperts, France
Benny Pinkas Bar-Ilan University, Israel
Christoph Sorge Universität Saarland, Germany
Osman Ugus Exceet Secure Solutions, Germany
Yevgeniy Vahlis University of Toronto, Canada
Marten van Dijk University of Connecticut, USA
Fre Vercauteren Katholieke Universiteit Leuven, Belgium
Adrian Waller Thales, UK

VIII WAHC 2015

Wearable 2015: First Workshop
on Wearable Security and Privacy

Wearable 2015, the First Workshop on Wearable Security and Privacy, was held
January 30, 2015, at the InterContinental San Juan Hotel in Isla Verde, Puerto Rico, in
association with Financial Cryptography and Data Security 2015. This workshop
focused on the unique challenges of security and privacy for wearable devices.

The workshop received eight submissions of which six were accepted. These
proceedings contain revised versions of the accepted papers. An invited lecture, entitled
“Privacy in the Age of Pervasive Cameras: When Electronic Privacy Gets Physical”
was given by Apu Kapadia, Assistant Professor of Computer Science and Informatics
at Indiana University.

The Program Committee consisted of 12 members with diverse research interests
related to the workshop topic. Each paper was assigned to at least three reviewers. We
ensured that each paper received a fair and objective review by experts and also a
broader group of Program Committee members. The final decisions on accepted papers
were based on reviews and discussion.

We sincerely thank the authors of all submissions. Their efforts gave us an
opportunity for a strong and diverse program. We also sincerely thank the efforts of the
Program Committee. We are very fortunate that so many brilliant people invested so
much time not only in writing reviews, but also in participating actively in follow-up
discussions. A list of Program Committee members appears after this note.

April 2015 Benjamin Johnson
John Chuang

Wearable 2015 Program Committee

Alessandro Acquisti Carnegie Mellon University, USA
Srdjan Capkun ETH Zürich, Switzerland
John Chuang University of California, Berkeley (Co-chair), USA
Cory Cornelius Intel Research, USA
Yves-Alexandre

de Montjoye
MIT, USA

Benjamin Johnson Carnegie Mellon University (Co-chair), USA
Jaeyeon Jung Microsoft Research, USA
Apu Kapadia Indiana University, USA
Krishna Ksheerabdhi Gemalto, The Netherlands
Ivan Martinovic University of Oxford, UK
Tara Mathews Google, USA
Franziska Roesner University of Washington, USA

X Wearable 2015

Contents

On the Malleability of Bitcoin Transactions . 1
Marcin Andrychowicz, Stefan Dziembowski, Daniel Malinowski,
and Łukasz Mazurek

Trends, Tips, Tolls: A Longitudinal Study of Bitcoin Transaction Fees. 19
Malte Möser and Rainer Böhme

ZombieCoin: Powering Next-Generation Botnets with Bitcoin 34
Syed Taha Ali, Patrick McCorry, Peter Hyun-Jeen Lee, and Feng Hao

Cuckoo Cycle: A Memory Bound Graph-Theoretic Proof-of-Work 49
John Tromp

When Bitcoin Mining Pools Run Dry . 63
Aron Laszka, Benjamin Johnson, and Jens Grossklags

Issues in Designing a Bitcoin-like Community Currency 78
David Vandervort, Dale Gaucas, and Robert St Jacques

The Bitcoin Market Potential Index . 92
Garrick Hileman

Cryptographic Currencies from a Tech-Policy Perspective: Policy Issues
and Technical Directions . 94

Emily McReynolds, Adam Lerner, Will Scott, Franziska Roesner,
and Tadayoshi Kohno

Blindcoin: Blinded, Accountable Mixes for Bitcoin 112
Luke Valenta and Brendan Rowan

Privacy-Enhancing Overlays in Bitcoin . 127
Sarah Meiklejohn and Claudio Orlandi

Search-and-Compute on Encrypted Data . 142
Jung Hee Cheon, Miran Kim, and Myungsun Kim

Accelerating SWHE Based PIRs Using GPUs. 160
Wei Dai, Yarkın Doröz, and Berk Sunar

Combining Secret Sharing and Garbled Circuits for Efficient Private IEEE
754 Floating-Point Computations . 172

Pille Pullonen and Sander Siim

http://dx.doi.org/10.1007/978-3-662-48051-9_1
http://dx.doi.org/10.1007/978-3-662-48051-9_2
http://dx.doi.org/10.1007/978-3-662-48051-9_3
http://dx.doi.org/10.1007/978-3-662-48051-9_4
http://dx.doi.org/10.1007/978-3-662-48051-9_5
http://dx.doi.org/10.1007/978-3-662-48051-9_6
http://dx.doi.org/10.1007/978-3-662-48051-9_7
http://dx.doi.org/10.1007/978-3-662-48051-9_8
http://dx.doi.org/10.1007/978-3-662-48051-9_8
http://dx.doi.org/10.1007/978-3-662-48051-9_9
http://dx.doi.org/10.1007/978-3-662-48051-9_10
http://dx.doi.org/10.1007/978-3-662-48051-9_11
http://dx.doi.org/10.1007/978-3-662-48051-9_12
http://dx.doi.org/10.1007/978-3-662-48051-9_13
http://dx.doi.org/10.1007/978-3-662-48051-9_13

Cryptanalysis of a (Somewhat) Additively Homomorphic Encryption
Scheme Used in PIR . 184

Tancrède Lepoint and Mehdi Tibouchi

Homomorphic Computation of Edit Distance . 194
Jung Hee Cheon, Miran Kim, and Kristin Lauter

HEtest: A Homomorphic Encryption Testing Framework 213
Mayank Varia, Sophia Yakoubov, and Yang Yang

Users’ Privacy Concerns About Wearables . 231
Vivian Genaro Motti and Kelly Caine

On Vulnerabilities of the Security Association in the IEEE 802.15.6
Standard . 245

Mohsen Toorani

Visual Cryptography and Obfuscation: A Use-Case for Decrypting
and Deobfuscating Information Using Augmented Reality 261

Patrik Lantz, Bjorn Johansson, Martin Hell, and Ben Smeets

Ok Glass, Leave Me Alone: Towards a Systematization of Privacy
Enhancing Technologies for Wearable Computing. 274

Katharina Krombholz, Adrian Dabrowski, Matthew Smith,
and Edgar Weippl

Design and Analysis of Shoulder Surfing Resistant PIN Based
Authentication Mechanisms on Google Glass . 281

Dhruv Kumar Yadav, Beatrice Ionascu, Sai Vamsi Krishna Ongole,
Aditi Roy, and Nasir Memon

Glass OTP: Secure and Convenient User Authentication on Google Glass 298
Pan Chan, Tzipora Halevi, and Nasir Memon

Author Index . 309

XII Contents

http://dx.doi.org/10.1007/978-3-662-48051-9_14
http://dx.doi.org/10.1007/978-3-662-48051-9_14
http://dx.doi.org/10.1007/978-3-662-48051-9_15
http://dx.doi.org/10.1007/978-3-662-48051-9_16
http://dx.doi.org/10.1007/978-3-662-48051-9_17
http://dx.doi.org/10.1007/978-3-662-48051-9_18
http://dx.doi.org/10.1007/978-3-662-48051-9_18
http://dx.doi.org/10.1007/978-3-662-48051-9_19
http://dx.doi.org/10.1007/978-3-662-48051-9_19
http://dx.doi.org/10.1007/978-3-662-48051-9_20
http://dx.doi.org/10.1007/978-3-662-48051-9_20
http://dx.doi.org/10.1007/978-3-662-48051-9_21
http://dx.doi.org/10.1007/978-3-662-48051-9_21
http://dx.doi.org/10.1007/978-3-662-48051-9_22

On the Malleability of Bitcoin Transactions

Marcin Andrychowicz, Stefan Dziembowski,
Daniel Malinowski, and �Lukasz Mazurek(B)

University of Warsaw, Warsaw, Poland
{marcin.andrychowicz,stefan.dziembowski,daniel.malinowski,

lukasz.mazurek}@crypto.edu.pl

Abstract. We study the problem of malleability of Bitcoin transactions.
Our first two contributions can be summarized as follows:
(i) we perform practical experiments on Bitcoin that show that it is

very easy to maul Bitcoin transactions with high probability, and
(ii) we analyze the behavior of the popular Bitcoin wallets in the situa-

tion when their transactions are mauled; we conclude that most of
them are to some extend not able to handle this situation correctly.

The contributions in points (i) and (ii) are experimental. We also address
a more theoretical problem of protecting the Bitcoin distributed con-
tracts against the “malleability” attacks. It is well-known that malleabil-
ity can pose serious problems in some of those contracts. It concerns
mostly the protocols which use a “refund” transaction to withdraw a
financial deposit in case the other party interrupts the protocol. Our
third contribution is as follows:
(iii) we show a general method for dealing with the transaction mal-

leability in Bitcoin contracts. In short: this is achieved by creating
a malleability-resilient “refund” transaction which does not require
any modification of the Bitcoin protocol.

1 Introduction

Malleability is a term introduced in cryptography by Dolev et al. [15]. Very
informally, a cryptographic primitive is malleable if its output C can be trans-
formed (“mauled”) to some “related” value C ′ by someone who does not know
the cryptographic secrets that were used to produce C. For example, a symmet-
ric encryption scheme (Enc,Dec) is malleable if the knowledge of a ciphertext
C = Enc(K,M) suffices to compute C ′ such that M ′ = Dec(K,C ′) is not equal
to M , but is related to it (e.g. M ′ is equal to M with the first bit set to 0). It is
easy to see that the standard cryptographic security definitions (like the seman-
tic security of encryption schemes) in general do not imply non-malleability, and
hence the non-malleability is usually viewed as an additional (but often highly

This work was supported by the WELCOME/2010-4/2 grant founded within the
framework of the EU Innovative Economy (National Cohesion Strategy) Operational
Programme. Moreover, �Lukasz Mazurek is a recipient of the Google Europe Fellow-
ship in Security, and this research is supported in part by this Google Fellowship.

c© International Financial Cryptography Association 2015
M. Brenner et al. (Eds.): FC 2015 Workshops, LNCS 8976, pp. 1–18, 2015.
DOI: 10.1007/978-3-662-48051-9 1

2 M. Andrychowicz et al.

desirable) feature of the cryptosystems. Since its introduction the concept of
non-malleability was studied profoundly, mostly by the theory community, in
several different contexts including the encryption and commitment schemes,
zero-knowledge [15], multiparty computation protocols [12], hash functions and
one-way functions [10], privacy amplification [14], tamper-resilient encoding [16],
and many others. Until last year, however, the malleability problem remained
largely out of scope of the interests of the security practitioners.

This situation has changed dramatically, when the MtGox Bitcoin exchange
suspended its trading in February 2014, announcing that around 850,000 bitcoins
belonging to customers were stolen by an attacker exploiting the “malleability
of the Bitcoin transactions” [18]. Although there is a good evidence that MtGox
used the malleability only as an excuse [13], this announcement definitely raised
the awareness of the Bitcoin community of this problem, and in particular, as
argued in [13] it massively increased the attempts to exploit this weakness for
malicious purposes.

The fact that the Bitcoin transactions are malleable has been known much
before the MtGox collapse [21]. Briefly speaking, “malleability” in this case
means that, given a transaction T , that transfers x bitcoins from an address
A to address B (say), it is possible to construct another transaction T ′ that is
syntactically different from T , but semantically it is identical (i.e. T ′ also trans-
fers x bitcoins from A to B)1. This can be done by anybody, and in particular
by an adversary who does not know A’s private key. On a high level, the source
of the malleability comes from the fact that in the current version of the Bitcoin
protocol, each transaction is identified by a hash on its whole contents, and hence
in some cases such a T ′ will be considered to be a different transaction than T .

There are actually several ways T ′ can be produced from T . One can, e.g.
exploit the malleability of the signature schemes used in Bitcoin, i.e., the fact that
given a signature σ (computed on some message M with a secret key sk) it is easy
to compute another valid signature σ′ on M (with respect to the same key sk)2.
Since the standard Bitcoin transactions have a form T = (message M , signature
σ on M), thus T ′ = (M,σ′) is a valid transaction with the same semantics
as T , but syntactically different from T . Another method is based on the fact
that Bitcoin permits more complicated transactions than those in the format
described above. More precisely, in the so-called “non-standard transactions”
the “σ” part is in fact a script in the stack based Bitcoin scripting language.
Therefore, e.g., adding dummy PUSH and POP instructions to σ produces σ′

that is operationally equivalent to σ, yet, from the syntactic point of view it is
different. See, e.g., [13,22] for more detailed list of different ways in which the
Bitcoin transactions can be mauled.

1 For a short description of Bitcoin and the non-standard transactions see Sect. 2.
2 This is because Bitcoin uses the Elliptic Curve Digital Signature Algorithm (ECDSA)

that has the property that for every signature σ = (r, s) ∈ {1, . . . , N − 1}2 the value
σ′ = (r, N − s) is also a valid signature on the same message and with respect to the
same key as σ.

On the Malleability of Bitcoin Transactions 3

Recall that in order to place a transaction T on the block chain a user simply
broadcasts T over the network. Thus it is easy for an adversary A to learn T
before it is included in the block chain. Hence he can produce a semantically
equivalent T ′ and broadcast T ′. If A is lucky then the miners will include T ′

into the block chain, instead of T . At the first sight this does not look like a
serious problem: since T ′ is equivalent to T , thus the financial effect of T ′ will
be identical to the effect of T . The reason why malleability may cause problems
is that typically in Bitcoin the transactions are identified by their hashes. More
precisely (cf., e.g., [8]), an identifier (TXID) of every transaction T = (M,σ) is
defined to be equal to H(M,σ), where H is the doubled SHA256 hash function.
Hence obviously TXID of T will be different than TXID of T ′.

There are essentially three scenarios when this can be a problem. The first
one comes from the fact that apparently some software operating on Bitcoin does
not take into account the malleability of the transactions. The alleged MtGox
bug falls in this category. More concretely, the attack that MtGox claimed to
be the victim of looked as follows: (1) a malicious user P deposits x coins on
his MtGox account, (2) the client P asks MtGox to transfer his coins back to
him, (3) MtGox issues a transaction T transferring x coins to P , (4) the user P
launches the malleability attack, obtaining T ′ that is equivalent to T but has a
different TXID (assume that T ′ gets included into the block chain instead of T),
(5) the user complains to MtGox that the transaction was not performed, (6)
MtGox checks that there is no transaction with the TXID H(T) and concludes
that the user is right, hence MtGox credits the money back to the user’s account.
Hence effectively P is able to withdraw his coins twice. The whole problem is
that, of course, in Step (6) MtGox should have searched not for the transaction
with TXID H(T), but for any transaction semantically equivalent to T .

The second scenario is related to the first one in the sense that it should not
cause problems if the users are aware that malleability attacks can happen. It is
connected to the way in which the procedure of “giving change” is implemented
in Bitcoin. Suppose a user A has 3B as an unspent output of the transaction T0

on the block chain, and he wants to transfer 1B to some other user B. Typically,
what A would do in this case is: create a transaction T1 that has input T0 and
has two outputs: one that can be claimed by B and has value 1B, and the one
that can be claimed by himself (i.e. A) and has value 2B. He would then post T1

on the block chain. If he now creates a further transaction T2 that claims money
from T1 without waiting for T1 to appear on the block chain, then he risks that
T2 will be invalid, in case someone mauls T1.

The third scenario is much more subtle, as it involves the so-called Bitcoin
contracts which are protocols to form financial agreements between mutually
distrusting Bitcoin users. In this paper we assume readers familiarity with this
Bitcoin feature. For an introduction to it see, e.g., [3,4,19] (in this paper we
use the notation from [3,4]). Recall that contracts are more complicated than
normal money transfers in the standard transactions. To accomplish their goal
contracts use the non-standard transactions. One of the common techniques used
in constructing such contracts is to let the users sign a transaction T1 before its
input T0 is included in the block chain. Very informally speaking, the problem

4 M. Andrychowicz et al.

is that T1 is constructed using the TXID H(T0), which means that an adversary
that mauls T0 into some (equivalent but syntactically different) T ′

0 can make
the transaction T1 invalid. There are many examples of such situations. One of
them is the “Providing a deposit” contract from [19], which we describe in more
detail in Sect. 4, where we also explain this attack in more detail. Note that,
unlike in the first two scenarios, this problem cannot be mitigated by patching
the software.

1.1 Possible Fixes to the Bitcoin Malleability Problem

There are several ways in which one can try to fix the problems caused by
the malleability of Bitcoin transactions. For example one can try to modify
Bitcoin in order to eliminate malleability from it. Such proposals have indeed
been recently put forward. In particular, Pieter Wuille [22] proposed a number
of ad-hoc methods to mitigate this problem, by restricting the syntax of Bitcoin
transactions. While this interesting proposal may work in practice, it is heuristic
and it comes with no formal argument. In particular, it implicitly assumes that
the only way to maul the ECDSA signatures is the one described in Footnote 2,
and we are not aware of any formal proof that this is indeed the case.

In our previous paper [3] we proposed another modification of Bitcoin which
eliminates the malleability problem. The idea of this modification is to identify
the transactions by the hashes of their simplified versions (excluding the input
scripts). With this modification one can of course still modify the input script of
the transaction, but the modified transaction would have the same hash. Unlike
[22] this solution does not rely on heuristic properties of the signature schemes.
On the other hand, the proposal of [22] may be easier to implement in practice,
since it requires milder modifications of the Bitcoin specification.

Another solution proposed recently by Peter Todd [1] is to introduce a new
instruction OP CHECKLOCKTIMEVERIFY to the Bitcoin scripting language that
allows a transaction output to be made unspendable until some point in the
future. It does not concern the problem of malleability directly, but using this
opcode would allow to easily create Bitcoin contracts resilient to malleability.

Unfortunately, changing the Bitcoin is in general hard, since it is not con-
trolled by any central authority, and hence the modifications done without proper
care can result in a catastrophic fork, i.e. a situation where there is a disagree-
ment among the honest parties about the status of transactions3. Thus, it is not
clear if such modifications will be implemented in the close future. It is therefore
natural to ask what can be done, assuming that the Bitcoin system remains
malleable.

First of all, fortunately, as described above in many cases malleability is not
a problem if the software is written correctly, and therefore the most obvious
thing to do is the following.
3 An example of such a fork was experienced by the Bitcoin community in March

2013, when it was caused by a bug in a popular mining client software update
[11]. Fortunately it was resolved manually, but it is still remembered as one of the
moments when Bitcoin was close to collapse.

On the Malleability of Bitcoin Transactions 5

Direction 1: Educate the Bitcoin software developers about this issue. Convince
them that it is a real threat and they should always test their software against
such attacks.

The only context in which the malleability cannot be dealt with by better pro-
gramming are the Bitcoin contracts. Hence a natural research objective is as
follows.

Direction 2: Develop a technique that helps to deal with the malleability of
Bitcoin transactions in the Bitcoin contracts.

The goal of this paper is to contribute to both of these tasks.

1.2 Our Contribution

The technical contents of this paper is divided into two parts corresponding to
the research directions described above. We first focus on “Direction 1” (this is
done in Sect. 3). Since most of the software practitioners will probably only care
about problems where the threat is real, not theoretic, we executed practical
experiments that examine the feasibility of the malleability attacks. It turns
out that these attacks are quite easy to perform, even by an attacker that has
resources comparable to those of an average user. In fact, our experiments show
that it is relatively easy to achieve success rates close to 50%.

We then analyze the behavior of popular Bitcoin clients when they are
exposed to such attacks. Our results indicate that all of them show a certain
resilience to such attacks. In particular we did not identify weaknesses that
would allow users to steal money (as argued in Sect. 1.3 this is in fact something
that one would expect from the beginning). On the other hand, we identified a
number of smaller weaknesses in most of these clients. In particular, we observed
that in many cases the malleability attack results in making the user unable to
issue further transactions, unless he “resets” the client. In most cases such a
reset can be performed relatively easy, in one case it required an intervention of
a technically-educated user (restoring the backup files), and in two cases there
seemed to be no way to perform such action.

This shows that some of the Bitcoin developers seem to still ignore the mal-
leability problem, despite of the fact that over 8 months have passed since the
infamous MtGox statement.

The second part (contained in Sect. 5) of this paper concerns the “Direction 2”.
We provide a general technique for transforming a Bitcoin contract that is vulner-
able to the malleability attacks (but secure otherwise), into a Bitcoin contract that
is secure against such attacks. Our method covers all known to us cases of such con-
tracts, in particular, those listed on the “Contracts” page of the Bitcoin Wiki [19],
and the lottery protocol of [5]. It can also be applied to [3], what gives the first fair
Two-Party Computation Protocol (with financial consequences) for any function-
ality whose fairness is guaranteed by the Bitcoin deposits, and which, unlike the
original protocol of [3] can be used on the current version of Bitcoin4.
4 The protocol of [3] was secure only under the assumption that the Bitcoin is modified

to prevent the malleability attacks.

6 M. Andrychowicz et al.

Related Work. Some of the related work was already described in the previ-
ous sections. The idea of using Bitcoin to guarantee fairness in the multiparty
protocols and to force the users to respect the outcome of the computation was
proposed independently in [3,4] and in [6] (and implicitly in [5]), and was also
studied in [7]. The protocols of [4] and [5] work only for specific functionalities
(i.e. are not generic), and [5] is vulnerable to the malleability attack. The pro-
tocols of [3,6] are generic, but are insecure against the malleability attack. Also
the protocol of [7] seems to be insecure against such attacks.

1.3 Ethical Issues

We realize that performing the malleability attacks against the Bitcoin can raise
questions about the ethical aspects of our work. We would like to stress that
we were only attacking transactions that were issued by ourselves (and we never
tried to maul transactions coming from third parties). It is also clear that per-
forming such attacks cannot be a threat to stability of the whole Bitcoin system,
since, as reported by [13] Bitcoin remained secure even against attacks on a
much higher scale ([13] registered 25,752 individual malleability attacks involv-
ing 286,076 bitcoins just on two days of February 2014).

Let us also note that even before we started our work we could safely assume
that none of the popular Bitcoin clients is vulnerable to the malleability attacks
to the extent that would allow malicious users to steal money, as it is practically
certain that any such weakness would be immediately exploited by malicious
users. In fact, as argued in [13] such malicious attempts were probably behind the
large number of malleability attacks immediately after the MtGox collapse. In
other words: the experiments that we performed were almost certainly performed
by several hackers before us. We believe that therefore making these results
public is in the interest of the whole Bitcoin community.

2 Bitcoin Description

We assume reader’s familiarity with the basic principles of Bitcoin. For general
description of Bitcoin, see e.g. [4,17,20]. For the description of non-standard
transaction scripts, see [3,4,19]. Let us only briefly recall that the Bitcoin cur-
rency system consists of addresses and transactions between them. An address
is simply a public key pk (technically an address is a hash of pk). We will fre-
quently denote key pairs using the capital letters (e.g. A). We will also use the
following convention: if A = (sk , pk) then sigA(m) denotes a signature on a mes-
sage m computed with sk and verA(m,σ) denotes the result (true or false) of
the verification of a signature σ on message m with respect to the public key pk .

Each Bitcoin transaction can have multiple inputs and outputs. Inputs of a
transaction Tx are listed as triples (y1, a1, σ1), . . . , (yn, an, σn), where each yi is
a hash of some previous transaction Tyi

, ai is an index of the output of Tyi
(we

say that Tx redeems the ai-th output of Tyi
) and σi is called an input-script. The

outputs of a transaction are presented as a list of pairs (v1, π1), . . . , (vm, πm),

On the Malleability of Bitcoin Transactions 7

where each vi specifies some amount of coins (called the value of the i-th output
of Tx) and πi is an output-script. A transaction can also have a time-lock t, mean-
ing that it is valid only if time t is reached. Hence, altogether transaction’s most
general form is: Tx = ((y1, a1, σ1), . . . , (yn, an, σn), (v1, π1), . . . , (vm, πm), t). The
body of Tx

5 is equal to Tx without the input-scripts, i.e.: ((y1, a1), . . . , (yn, an),
(v1, π1), . . . , (vm, πm), t), and denoted by [Tx].

One of the most useful properties of Bitcoin is that the users have flexibility
in defining the condition on how the transaction Tx can be redeemed. This is
achieved by the input- and the output-scripts. One can think of an output-script
as a description of a function whose output is Boolean. A transaction Tx defined
above is valid if for every i = 1, . . . , n we have that π′

i([Tx], σi)6 evaluates to
true, where π′

i is the output-script corresponding to the ai-th output of Tyi
.

Another conditions that need to be satisfied are that the time t has already
passed, v1 + · · · + vm ≤ v′

1 + · · · + v′
n where each v′

i is the value of the ai-
th output of Tyi

and each of these outputs has not been already spent. The
scripts are written in the Bitcoin scripting language. Following [4] we will present
the transactions as boxes. The redeeming of transactions will be indicated with
arrows (cf. e.g. Fig. 3). The transactions where the input script is a signature,
and the output script is a verification algorithm are the most common type of
transactions and are called standard transactions. The address against which the
verification is done will be called a recipient of this transaction.

We use the security model defined in [4]. In particular, we assume that each
party can access the current contents of the block chain, and post messages on
it. Let Δ be the is maximal possible delay between broadcasting the transaction
and including it in the block chain.

3 Experiments

The Implementation of the Malleability Attack. In order to perform
malleability attacks we have implemented a special program called adversary
(using the bitcoinj [2] library). This program is connected as a peer to the Bitcoin
network and listens for transactions sending bitcoins to a particular address
Addr7 owned by us. Whenever such a transaction is received by the program, it
mauls the transaction by changing (r, s) into (r,N − s) in the ECDSA signature
(cf. footnote 2 on Page 2) and broadcasts the modified version of the transaction.

The effectiveness of the attack is measured by the percent of cases in which
the mauled transaction becomes confirmed and the original one invalidated. It
depends on the fraction of the network (and hence miners), which receives the
mauled transaction before the original one. In order to achieve a high effective-
ness we need to push the modified transaction to the whole peer-to-peer network

5 In the original Bitcoin documentation this is called “simplified Tx”.
6 Technically in Bitcoin [Tx] is not directly passed as an argument to π′

i. We adopt
this convention to make the exposition clearer.

7 In our experiments we used addresses 13eb7BFXgHeXfxrdDev1ehrBSGVPG6obu8 and
115g32FHp77hQpuuWpw8j8RYKPvxD1AXyP.

8 M. Andrychowicz et al.

as fast as possible. Therefore, the adversary connects to many more peers than a
typical Bitcoin client, more precisely it maintains on average 1000 connections8.
Moreover, it connects directly to some nodes, which are known to be maintained
by the mining pools9 and sends the mauled transaction to them in the first place.

Effectiveness Analysis. In order to measure the effectiveness of our attack
we set up another machine called victim, which makes hundreds of transactions
sending bitcoins to the address Addr . More concretely we measured the effec-
tiveness of mauling transactions under 3 different circumstances:

(A) The IP address of a victim is not known to the adversary.
(B) The IP address of a victim is known to the adversary. In this case the

adversary can connect directly to the victim, what allows him to discover
transactions broadcast by the victim much faster. In our experiments both
machines — adversary and victim were located in the same local network,
which in some cases can be possible also in real life (a motivated adver-
sary can connect to the local network used by the victim). Our experiments
showed that connecting directly to the victim greatly increases the effective-
ness of the attack.

(C) The victim is aware of the malleability problem and tries to protect against
it by broadcasting her transactions on a higher number of connections. In
our experiment the victim was connected to 100 peers on the network and
her IP address was not known to the adversary.

The results of our experiments are presented on Fig. 1. The effectiveness depends
on the nodes to which the victim is connected, so after each transaction she drops
all her connections and establishes new ones. Moreover, the effectiveness depends
on the distribution of mined blocks among miners in the testing period, so exper-
iments were performed over longer periods of time (e.g. 24 hours). In order to
exclude the influence of the factors like physical proximity of adversary and victim
(in experiments A and C) we performed part of them with victim and adversary
running on machines far away from each other.

Clients Testing. In order to determine the significance of the malleability
problem for individual Bitcoin users, we decided to test how the most popular
Bitcoin wallets behave when a transaction is mauled. We have tested 14 Bitcoin
wallets listed in [9]. In every test we performed several Bitcoin transfers from
the wallet to Addr. During the tests the adversary was trying to maul every
transaction addressed to this address.

We observed that (1) most of the clients determine whether the transaction is
confirmed by looking for a transaction with a matching hash in the block chain,
and (2) the clients are likely to receive from the network the modified transaction

8 Typical Bitcoin client maintains about 8 connections.
9 More precisely it connects to the nodes maintained by mining pools GHash.IO and
Eligius.

On the Malleability of Bitcoin Transactions 9

A B C

40

60

80

100

48%

94%

41%

ef
fe

ct
iv

en
es

s
of

th
e

at
ta

ck

Fig. 1. Effectiveness of the attack under different circumstances.

and therefore list in the transaction history either the original transaction or the
modified one or both. This can lead to unpredictable behavior of the wallet of
many types, in most cases being hard to precisely describe. In Table 1 we present
the results of our tests. In a nutshell, we have observed the following types of
behavior of the clients:

(a) the wallet incorrectly computes the balance,
(b) the wallet is unable to make an outgoing transaction because it assumes that

some transaction will be confirmed in the future (which in fact will never
happen),

(c) the application crashes.

Note that if the client refuses to make an outgoing transaction and it is not
possible to remove the troublesome transaction from the history, the user will
be unable to spend his bitcoins forever. Moreover, because of the “giving change”
procedure, an attack against a single transaction can potentially make all the
money in the wallet unspendable (cf. the second scenario on Page 2).

Going more into the details: Bitcoin Core and Xapo appear to handle the
malleability problem correctly. For example Bitcoin Core detects the malleabil-
ity attack and marks it as “double spending” (indicating it with an exclamation
mark). Green Address and Armory display incorrect balances (however, when it
comes to allowing a user to make a transaction, they seem to take into account
the real balance). Blockchain.info, Coinkite, Coinbase, Electrum, MultiBit, Bit-
coin Wallet, and KnC Wallet may get stuck waiting for the confirmation of the
transaction, which will never be confirmed and hence prevent the user from cre-
ating correctly the next transaction. Fortunately, these clients either give the
user an option to “synchronize the list of transactions with block chain” or they
do it automatically after some time, which makes the problem disappear. In Hive
we were able the obtain the effect of “resetting” the transaction list only by a
manual action (which may be non-trivial for a non-technically educated user).

10 M. Andrychowicz et al.

Table 1. The results of testing 14 Bitcoin wallets listed on [9] against malleability
attack. The “X” sign means that the client (a) incorrectly computes the balance, (b)
refuses to make an outgoing transaction despite the available funds or (c) crashes. All
the tests took place in October 2014 and hence may not correspond to the current
software version. Value never in the last column means that we could not figure out a
way to solve the problem and it did not disappear on its own after a few days.

Wallet name Type (a) (b) (c) When the problem disappears

Bitcoin core Desktop -

Xapo Web -

Armory Desktop ✘ never

Green address Destop ✘ never

Blockchain.info Web ✘ ✘ after six blocks without confirmation

Coinkite Web ✘ ✘ after several blocks without confirmation

Coinbase Web ✘ ✘ after several hours

Electrum Desktop ✘ ✘ after application reset

MultiBit Desktop ✘ ✘ after “Reset block chain and transactions” procedure

Bitcoin wallet Mobile ✘ ✘ after “Reset block chain” procedure

KnC wallet Mobile ✘ ✘ ✘ after “Wallet reset” procedure

Hive Desktop ✘ ✘ ✘ after restoring the wallet from backup

BitGo Web ✘ ✘ never

Mycelium Mobile ✘ ✘ never

The problem is much more severe in case of BitGo and Mycelium, which also
display the troublesome transaction, but there appears to be no way to reset
the list. We note that, since BitGo is a web-client, the wrong transaction can be
removed by the administrator.10

4 Malleability in Bitcoin Contracts

As shown in the earlier sections malleability of Bitcoin transactions can pose a
problem to users if Bitcoin clients or services they are using have bugs in their
implementation. But when these bugs are fixed then there should be no prob-
lems or dangers in typical usage of Bitcoin. Unfortunately malleability is a bigger
problem for the security of the Bitcoin contracts. In this section we will describe a
(known) malleability attack on a protocol for a deposit. Later we will also identify
other protocols that are vulnerable to the malleability attack (Fig. 2).

4.1 The Deposit Protocol

The Deposit protocol [19] is executed between parties A and B. To remain con-
sistent with the rest of this paper we describe it here using the notation from
[3,4] (cf. Sect. 2). The idea of this protocol is to allow A to create a financial

10 In fact, the BitGo administrators reacted to our experiments by contacting us
directly.

On the Malleability of Bitcoin Transactions 11

Fig. 2. Different behavior of clients during malleability attacks: (a) BitGo, (b)
Blockchain.info., (c) Hive, and (d) Armory.

deposit worth d B for some period of time. A has to be sure that after time t she
will get her money back and B has to be sure that A will not be able to claim her
money earlier. One of the possible applications of this protocol is the scenario
when B is a server and A is a user that wants to open an account on the server
B. In this case B wants to be sure that A is a human and not a bot that creates
the accounts automatically. To assure that, B forces A to create a small deposit
for some time. For an honest user this should not be a big problem, because the
deposit is small and she will get this money back. On the other hand it makes it
expensive to create many fake accounts (for some malicious purposes), because
the cumulative value of the deposits would grow huge.

We will now describe the deposit protocol in an informal way. The main
idea of this protocol is fairly simple: A “deposits” her money using a transaction
Deposit that can be spent only using the signatures of both A and B. To be sure
that this money will go back to her she creates a transaction Fuse that spends
Deposit . This transaction needs to be signed by B, and hence A asks B to sign it,
and only after A receives this signature she posts Deposit on the block chain. In
order to prevent A from claiming her money too early Fuse contains a timelock
t. In more detail the protocol looks as follows:

1. At the beginning A and B exchange their public keys used for signing Bitcoin
transactions and they agree on the deposit size d and time t at which the
deposit will be freed.

2. Then A creates a transaction Deposit of value d B, but she does not broadcast
it. This transaction is constructed in such a way that to spend it someone
has to include both signatures of A and B.

12 M. Andrychowicz et al.

3. Afterwards A creates the transaction Fuse that has a time lock t, spends the
transaction Deposit and sends the money back to her. This transaction is also
not yet broadcast.

4. Then A sends the transaction Fuse to B, he signs it and sends back to A.
5. Only then A sends the transaction Deposit to the block chain.
6. After time t she sends the transaction Fuse to get the deposit back.

The graph of transactions in the Simple deposit protocol is presented on Fig. 3.
The security properties that one would expect from this protocol are as follows:

(a) A is not able to get her deposit back before the time t (assuming that B
follows the protocol).

(b) A will not lose her deposit, i.e. she will get d B back before the time (t + Δ)
(where Δ denotes the maximum latency between broadcasting transaction
and its confirmation).

Deposit(in: T)

in-script: sigA([Deposit])

out-script(body , σ1, σ2):
verA(body , σ1) ∧ verB(body , σ2)
val: d B

Fuse(in: Deposit)

in-script: sigA([Fuse]), sigB([Fuse])

out-script(body , σ): verA(body , σ)
val: d B
tlock: t

d B d B

d B

Fig. 3. The Deposit protocol (vulnerable to malleability) from [19].

It is easy to see that (a) holds, since there is no way Deposit can be spent before
time t (as it requires B’s signature to be spent). One would be tempted to say
that also (b) holds, since A can always claim her money back by posting Fuse on
the block chain. Unfortunately, it turns out that this argument strongly relies on
the fact that Deposit was posted on the block chain exactly in the same version
as the one that was used to create the Fuse transaction. Hence, if the adversary
mauls Deposit and posts some Deposit ′ (syntactically different, but semantically
equivalent to Deposit) then the Fuse transaction will not be able to spend it (as
it expects its input to have TXID equal to H(Deposit), not H(Deposit ′)).

4.2 Other Protocols Vulnerable to the Malleability Attack

In this section we will list other known Bitcoin contracts that are vulnerable to
the malleability attack. The problem with all of them is that they are creating
a transaction spending another transaction before the latter is included in the
block chain. Each of this protocols can be made resistant to malleability using
our technique described in the next section.

On the Malleability of Bitcoin Transactions 13

– “Example 5: Trading across chains” from [19]11

– “Example 7: Rapidly-adjusted (micro)payments to a pre-determined party”
from [19]12

– Back and Bentov’s lottery protocol [5]13

– Simultaneous Bitcoin-based timed commitment scheme protocol from [3]14

5 Our Technique

In this section we will show how to fix the Deposit protocol to make it resistant
to malleability. This technique can be used also to other protocols, e.g. those
listed in Sect. 4.2. Recall that the reason why the protocols from Sects. 4.1 and
4.2 were vulnerable to the malleability attacks was that one party, say A, had
to obtain a signature of the other party (B) on a transaction T1, whose input
was a transaction T0, and this had to happen before T0 was posted on the block
chain (in case of the Deposit protocol T0 and T1 were the Deposit and the Fuse
transactions, resp.). Our main idea is based on the observation that, using the
properties of the Bitcoin scripting language, we can modify this step by making
T0 spendable not by using the B’s signature, but by providing a preimage s of
some value h under a hash function H (where H can be, e.g., the SHA256 hash
function available in the Bitcoin scripting language)15. In other words, the T0’s
spending condition

out-script(body , . . . , σ): · · · ∧ verB(body , σ)

(cf. the Deposit protocol in Fig. 3) would be replaced by

out-script(body , . . . , x): · · · ∧ H(x) = h,

11 The malleability problem occurs in Step 3 when Party A generates Tx2 (the contract)
which spends Tx1, and then asks B to sign it and send it back. This happens before
Tx1 is included in the block chain and hence if later the attacker succeeds in posting
a mauled version Tx1′ of Tx1 on the block chain, then the transaction Tx2 becomes
invalid.

12 The malleability problem is visible in Step 3, where the refund transaction T2 is
created. This transaction depends on the transaction T1 that is not included in the
block chain at the time when both parties sign it (in Steps 3 and 4).

13 The problem occurs in Steps 4 and 7, where the “refund bet” and “refund reveal”
transactions are signed before theirs input transactions “bet” and “reveal” are broad-
cast.

14 The problem is visible in Step 2 of the Commit phase of this protocol (the FuseA

and FuseB transactions are created before their input transaction Commit appears
on the block chain).

15 Such transactions are called hash locked in the Bitcoin literature. Notice that having
an output script, which requires only preimages and no signatures is not secure,
because anyone who notices in the network a transaction trying to redeem such
output script learns the preimages and can try to redeem this output script on his
own. In our case the output script of the transaction T0 requires also a signature of
A, but we omit it (. . .) to simplify the exposition.

14 M. Andrychowicz et al.

where h = H(s) is communicated by B to A, and s is chosen by B at random. This
would allow A to spend T0 no matter how it is mauled by the adversary, provided
that A learns s. At the first sight this solution makes little sense, since there is
no way in which B can be forced to send s to A (obviously in every protocol
considered above s would need to be sent to A some time after T0 appears
on the block chain, as otherwise a malicious A could spend T0 immediately).
Fortunately, it turns out that this problem can be fixed by adding one more
element to the protocol. Namely, we can use the Bitcoin-based timed commitment
scheme from [4] which is a protocol that does exactly what we need here: it allows
one party, called the Committer (in our case: B) to commit to a string s by
sending h = H(s) to the Recipient (here: A). Later, B can open the commitment
by sending s to A (before this happens s is secret to A). The special property
of this commitment scheme is that the users can specify a time t until which
B has to open the commitment. If he does not do it by this time, then he
is forced to pay a fine (in bitcoins) to A. As shown in [4], the Bitcoin-based
timed commitment scheme is secure even against the malleability attacks. For
completeness we present this protocol in more detail in the next section.

5.1 Bitcoin-Based Timed Commitment Scheme

The Bitcoin-based timed commitment scheme protocol (CS) is being executed
between the Committer B and the Recipient A. During the commitment phase
the Committer commits himself to some string s by revealing its hash h = H(s).
Moreover the parties agree on a moment of time t until which the Committer
should open the commitment, i.e. reveal the secret value s. The protocol is
constructed in such a way that if the Committer does not open the commitment
until time t, then the agreed amount of d B is transferred from the Committer
to the Recipient. More precisely, at the beginning of the protocol the Committer
makes a deposit of d B, which is returned to him if he opens the commitment
before time t or taken by the Recipient otherwise.

The graph of transactions and the full description of the CS protocol is pre-
sented on Fig. 4. The main idea is that if the Committer is honest then only
the transactions Commit and Open will be used (to commit to s and to open s
respectively). If, however, the Committer refuses to open his commitment, then
the Recipient will post the Fuse transaction on the block chain and claim B’s
deposit. Observe that Fuse is time-locked and therefore a malicious recipient
cannot claim the money before the time t (and after time t he can do it only if
B did not open the commitment). The reader may refer to [4] for more details.
Note that even if the transaction Commit is maliciously changed before being
included in the block chain, the protocol still succeeds because the transaction
Fuse is created after Commit is included in the block chain, so it always con-
tains the correct hash of Commit . Therefore, the CS protocol is resistant to the
transaction malleability. The properties of the CS protocol are as follows:

On the Malleability of Bitcoin Transactions 15

Fig. 4. The CS protocol from [4]. The scripts’ arguments, which are omitted are denoted
by ⊥.

(a) The Recipient has no information about the secret s before the Committer
broadcasts the transaction Fuse (this property is called hiding).

(b) The Committer cannot open his commitment in a different way than reveal-
ing his secret s (this property is called binding).

(c) The honest Committer will never lose his deposit, i.e. he will receive it back
not later than at the time t.

(d) If the Committer does not reveal his secret s before the time (t + Δ) then
the Recipient will receive d B of compensation.

16 M. Andrychowicz et al.

Fig. 5. The solution of the deposit problem resistant to malleability. CS(B,A, d, t, r)
denotes the transactions in the appropriate execution of the CS protocol.

5.2 The Details of Our Method

We now present in more detail our solution of the malleability problem in Bitcoin
contracts that was already sketched at the beginning of Sect. 5. It can be used in
all of the Bitcoin contracts that are vulnerable to the malleability attacks that
we are aware of. In this paper we show how to apply it to the Deposit protocol
(described in Sect. 4.1).

The main idea of our solution is to use the CS protocol instead of standard
Fuse transaction. More precisely at the beginning of the protocol B samples a
random secret s and commits himself to it using the Commit phase of the CS
protocol. Now A knows that B will have to reveal his secret (i.e. the value s s.t.
H(s) = h) before the time t. So A can create a Deposit transaction in such a way
that to spend it she has to provide her signature and the value s. That means
that after the time t either B will reveal the value s and A will be able to spend
the transaction Deposit or A will get the deposit of B from the CS protocol. Such
a modified protocol is denoted NewDeposit. Its graph of transactions and its full
description is presented on Fig. 5.

On the Malleability of Bitcoin Transactions 17

The properties of the NewDeposit protocol are as follows (all of them hold
even against the malleability attacks):

(a) A is not able to get her deposit back before the time (t − Δ).
(b) The honest A will not lose her deposit, i.e. she will get d B back before the

time (t + 2Δ).
(c) Additionally the honest B will not lose his deposit, i.e. he will get it back

before the time t.

The proof of the above properties is straightforward and it is omitted because
of the lack of space. We note that this protocol may not be well-suited for the
practical applications, as it requires the server to make a deposit. Nevertheless,
it is a very good illustration of our technique, that is generic and has several
other applications.

References

1. bips/bip-0065.mediawiki. http://github.com/bitcoin/bips/blob/master/bip-0065.
mediawiki. Accessed on 10 December 2014

2. bitcoinj library homepage. http://bitcoinj.github.io. Accessed on 20 October 2014
3. Andrychowicz, M., Dziembowski, S., Malinowski, D., Mazurek, �L.: Fair two-party

computations via bitcoin deposits. In: Böhme, R., Brenner, M., Moore, T., Smith,
M. (eds.) Financial Cryptography and Data Security. Lecture Notes in Computer
Science, pp. 105–121. Springer, Berlin Heidelberg (2014)

4. Andrychowicz, M., Dziembowski, S., Malinowski, D., Mazurek, L.: Secure multi-
party computations on bitcoin. In: 2014 IEEE Symposium on Security and Privacy
(SP), May (2014)

5. Back, A., Bentov, I.: Note on fair coin toss via bitcoin (2013). http://www.cs.
technion.ac.il/7Eidddo/cointossBitcoin.pdf

6. Bentov, I., Kumaresan, R.: How to use bitcoin to design fair protocols. In: Garay,
J.A., Gennaro, R. (eds.) CRYPTO 2014, Part II. LNCS, vol. 8617, pp. 421–439.
Springer, Heidelberg (2014)

7. Bentov, I., Kumaresan, R.: How to use Bitcoin to design fair protocols. Cryp-
tology ePrint Archive, Report 2014/129 (2014). http://eprint.iacr.org/2014/129.
Accepted to ACM CCS 2014

8. Bitcoin.org. Developer reference. http://bitcoin.org/en/developer-reference.
Accessed on 20 October 2014

9. Bitcoin.org. List of bitcoin wallets. http://bitcoin.org/en/choose-your-wallet.
Accessed on 20 October 2014

10. Boldyreva, A., Cash, D., Fischlin, M., Warinschi, B.: Foundations of non-malleable
hash and one-way functions. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS,
vol. 5912, pp. 524–541. Springer, Heidelberg (2009)

11. Vitalik, B.: Bitcoin network shaken by blockchain fork, March 2013. Bitcoin Mag-
azine. http://bitcoinmagazine.com/3668/bitcoin-network-shaken-by-blockchain-
fork

12. Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-
party and multi-party secure computation. In: 34th Annual ACM Symposium on
Theory of Computing, pp. 494–503. ACM Press (2002)

http://github.com/bitcoin/bips/blob/master/bip-0065.mediawiki
http://github.com/bitcoin/bips/blob/master/bip-0065.mediawiki
http://bitcoinj.github.io
http://www.cs.technion.ac.il/7Eidddo/cointossBitcoin.pdf
http://www.cs.technion.ac.il/7Eidddo/cointossBitcoin.pdf
http://eprint.iacr.org/2014/129
http://bitcoin.org/en/developer-reference
http://bitcoin.org/en/choose-your-wallet
http://bitcoinmagazine.com/3668/bitcoin-network-shaken-by-blockchain-fork
http://bitcoinmagazine.com/3668/bitcoin-network-shaken-by-blockchain-fork

18 M. Andrychowicz et al.

13. Decker, C., Wattenhofer, R.: Bitcoin transaction malleability and mtgox. In:
Kuty�lowski, M., Vaidya, J. (eds.) ICAIS 2014, Part II. LNCS, vol. 8713, pp. 313–
326. Springer, Heidelberg (2014)

14. Dodis, Y., Wichs, D.: Non-malleable extractors and symmetric key cryptography
from weak secrets. In: Mitzenmacher, M. (ed.) 41st Annual ACM Symposium on
Theory of Computing, pp. 601–610. ACM Press (2009)

15. Dolev, D., Dwork, C., Naor, M.: Nonmalleable cryptography. SIAM J. Comput.
30(2), 391–437 (2000)

16. Dziembowski, S., Kazana, T., Obremski, M.: Non-malleable codes from two-source
extractors. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol.
8043, pp. 239–257. Springer, Heidelberg (2013)

17. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system. Consulted 1, 28
(2008)

18. Weisenthal, J.: Bitcoin just completely crashed as major exchange says with-
drawals remain halted, Business Insider (2014). http://www.businessinsider.com/
mtgox-statement-on-withdrawals-2014-2

19. Bitcoin Wiki. Contracts. http://en.bitcoin.it/wiki/Contracts. Accessed on 20 Octo-
ber 2014

20. Bitcoin Wiki. Main page. http://en.bitcoin.it/. Accessed on 20 October 2014
21. Bitcoin Wiki. Transaction malleability. http://en.bitcoin.it/wiki/Transaction

Malleability. Accessed on 20 October 2014
22. Wuille, P.: Bitcoin improvement proposal: dealing with malleability. http://github.

com/bitcoin/bips/blob/master/bip-0062.mediawiki. Accessed on 20 October 2014

http://www.businessinsider.com/mtgox-statement-on-withdrawals-2014-2
http://www.businessinsider.com/mtgox-statement-on-withdrawals-2014-2
http://en.bitcoin.it/wiki/Contracts
http://en.bitcoin.it/
http://en.bitcoin.it/wiki/Transaction_Malleability
http://en.bitcoin.it/wiki/Transaction_Malleability
http://github.com/bitcoin/bips/blob/master/bip-0062.mediawiki
http://github.com/bitcoin/bips/blob/master/bip-0062.mediawiki

Trends, Tips, Tolls: A Longitudinal Study
of Bitcoin Transaction Fees

Malte Möser1 and Rainer Böhme2(B)

1 Department of Information Systems, University of Münster, Münster, Germany
malte.moeser@uni-muenster.de

2 Institute of Computer Science, University of Innsbruck, Innsbruck, Austria
rainer.boehme@uibk.ac.at

Abstract. The Bitcoin protocol supports optional direct payments from
transaction partners to miners. These “fees” are supposed to substitute
miners’ minting rewards in the long run. Acknowledging their role for
the stability of the system, the right level of transaction fees is a hot
topic of normative debates. This paper contributes empirical evidence
from a historical analysis of agents’ revealed behavior concerning their
payment of transaction fees. We identify several regime shifts, which can
be largely explained by changes in the default client software or actions of
big intermediaries in the ecosystem. Overall, it seems that rules dominate
ratio, a state that is sustainable only if fees remain negligible.

1 Introduction

Bitcoin is a protocol claimed to enable a decentralized cryptographic currency
[25]. The amount of bitcoin “in circulation”, that is the book value managed in
a distributed transaction ledger, is worth about 4–5 billion USD, converted at
current market prices [7]. A selling proposition of Bitcoin is that it enables cheap
online payments independent of the geographical location of the transaction
partners. Therefore, Bitcoin directly competes with established payment systems
on the Internet, such as credit cards or PayPal.

Factors influencing the adoption of innovative payment systems are primarily
risks and costs [3,21]. While there is already some work on technical and finan-
cial risks of using Bitcoin (e.g., [1,9,19,22–24]), the actual costs of the system
are not extensively studied yet. Edelman [13] and Böhme et al. [9] note that,
disregarding intangible factors of (in)convenience, Bitcoin may not be as cheap
for consumers as it appears. The authors argue that most purchases settled in
bitcoin require costly conversions from and to conventional currencies, and con-
sumers forgo kickbacks offered by many credit cards. On top of that, Bitcoin
users are encouraged to pay fees to miners, up to 10 cents (of USD) per transac-
tion, irrespective of the amount paid. This is in the same order of magnitude as
recently imposed caps on interchange fees for conventional card-based payment
systems [12].

Transaction fees are designed to gradually replace the minting revenue as
a compensation to miners for contributing to the distributed consensus mecha-
nism that maintains the (probabilistic) consistency of the global system state.
c© International Financial Cryptography Association 2015
M. Brenner et al. (Eds.): FC 2015 Workshops, LNCS 8976, pp. 19–33, 2015.
DOI: 10.1007/978-3-662-48051-9 2

20 M. Möser and R. Böhme

The long-term level of fees is uncertain, yet the question is highly relevant given
its connection to the security and sustainability of the system as a whole. Several
authors speculate that high fees will render Bitcoin uneconomical for micro pay-
ments [14,20,29]. Other plausible scenarios include vast variations in fees paid
depending on users’ time preferences, a low-fee equilibrium with altruistic action
to keep the system alive for niche demands [17], or a combination of both with
a system of off-blockchain compensation arrangements. Predicting the future
regime is hard because it depends not only on properties of the protocol, but
also on agent behavior and resulting path dependencies in the Bitcoin ecosystem.

To explore the space of possible future developments, we conduct a longitu-
dinal study of past conventions by analyzing the transaction fees paid with all
55.5 million transactions recorded in the public block chain from the inception
of Bitcoin until the end of December 2014. To the best of our knowledge, this
first systematic account reveals several regime shifts concerning the payment of
transaction fees in Bitcoin’s short history. We try to explain these shifts and
extract evidence that allows us to test several hypotheses that belong to the
conventional wisdom of the Bitcoin community, including:

1. Do higher transaction fees lead to faster confirmation? (yes)
2. Do impatient users offer higher fees? (yes)
3. Do mining pools systematically enforce strictly positive fees? (rather not)

The rest of this paper is structured as follows. Section 2 recalls important
properties of Bitcoin with regard to transaction fees. Section 3 documents how
we collect and analyze data from the Bitcoin block chain and external sources.
Section 4 presents our findings. We discuss limitations and design options for
optimal fees in Sect. 5, and conclude in Sect. 6.

2 Background and Research Questions

We refrain from explaining Bitcoin and its terminology in detail and refer the
reader to existing high-level [2,9] or technical [25] descriptions.

Bitcoin’s security builds on the block chain, a distributed data structure that
allows everyone to look up account balances and to verify unspent transactions.1

Arguably, the block chain can be seen as a public good, defined by the proper-
ties non-excludability and non-rivalry. Exclusion is hard because everyone can
anonymously connect to a number of peers and download the block chain. Non-
rivalry follows from the block chain being an information good that does not
wear out from being shared.

The demand of public goods is characterized by concurrent consumption of
all members of a community. This raises issues about the incentives to supply a
public good, in particular if the provision incurs costs that cannot be socialized
to all members of the community [15]. This is exactly the case in Bitcoin. Miners

1 More precisely: to verify that all inputs of a transaction one is about to receive
reference to so far unspent outputs of past transactions.

Trends, Tips, Tolls: A Longitudinal Study of Bitcoin Transaction Fees 21

unilaterally bear the cost of solving the proof-of-work puzzle,2 but all potential
transaction partners benefit from the consistency and security of the block chain.

A critical success factor behind Bitcoin’s adoption was the reward mecha-
nism that couples, albeit loosely [16], the provision of the public good with newly
minted units of currency [8]: 25 BTC per block in 2014. However, this reward
mechanism is incompatible with an upper limit of money supply, another stated
design goal of Bitcoin. Therefore, the protocol prescribes a transition from mint-
ing rewards to transaction fees offered by the sender of a transaction to the
miners. By definition, the fee is encoded as difference between the sum of all
inputs and the sum of all outputs of a transaction. Miners are free to accept the
offer by including the transaction in the block chain, or to ignore it. This creates
a market mechanism to find the price of Bitcoin transactions.

In theory, perfectly competitive miners will include transactions as long as
the fee exceeds the marginal cost of inclusion. Production costs are fixed per
block (but may vary between miners depending on access to technology and
energy/cooling) and the protocol defines a maximum block size (1 megabyte at
the time of writing). As a result, the marginal cost of inclusion is zero if there are
fewer unconfirmed transactions than capacity in the block, and it is determined
by the opportunity cost of foregone fees from competing transactions as soon as
the capacity is reached. Competitive miners make positive expected profits only if
transactions compete for space in the block chain. Hence, Houy [17] argues that a
maximum block size is necessary for the stability of Bitcoin. However, dominant
mining pools or cartels may extract excess profits from reduced competition.

If space in the block chain is scarce and the transaction partners’ benefit does
not emerge from merely looking up information in the block chain, but depends
on the ability to permanently include data, then space in the block chain changes
its characteristic from a public to something close to a private good. Rivalry
comes with the space constraint and excludability with the miners’ discretion
to exclude unprofitable transactions. However, what remains is that space in
the block chain generates substantial externalities: positive ones for parties who
benefit from the information and negative externalities for parties who store
redundant copies of the block chain in a distributed network.

In practice, historical transaction fees in Bitcoin were so small that senders
and miners did not care a lot. Many users kept the default value for the trans-
action fee that is hard-coded in the client software, thereby following a sort of
social norm, like for tipping, rather than economic calculus [26]. Likewise, miners
followed hard-coded rules [6] to include zero-fee transactions even against their
own best interest. Over time, the hard-coded defaults have been changed several
times, allegedly to discourage tiny payments (by adding complicated calculation
rules) and to offset the rising exchange rate. The latter, in particular, puts con-
sumers’ interest over miners’, who had to struggle with even steeper increases
of the proof-of-work difficulty. A group of programmers went even further and
created a fork of the client software that does not offer fees at all [27].

2 We suggest that a probabilistic summation function, in Hirshleifer’s terminology
[15], is a reasonable approximation in the short run.

22 M. Möser and R. Böhme

This leads us to the first (open-ended) research question (RQ):

Research Question 1. How did transaction fees develop and change over time?

If the client software leaves the users freedom to choose the amount of the trans-
action fees, then users may follow conventional wisdom about how miners react
upon being “tipped” or not.3

Research Question 2. Do higher fees offered to miners reduce the time until
a transaction is first confirmed?

If RQ 2 is supported with evidence, then it would be rational for users to adjust
fees to their time preference.

Research Question 3. Do impatient users offer higher fees?

The last research question tests the rationality of the miners, who have no incen-
tive in general to confirm zero-fee transactions. We concentrate on the major
mining pools to identify potential differences in their behavior.

Research Question 4. Do any major mining pools systematically exclude zero-
fee transactions?

In summary, while many are talking about the importance of transaction fees,
we are not aware of a comprehensive overview of how fees have changed in the
past and why users might decide to deviate from the default. We set out to close
this gap with the available data.

3 Data and Method

To study trends of Bitcoin transaction fee conventions over the past couple of
years, we combine data from four sources (cf. Table 1). First, we load the block
chain by parsing the block files of the Bitcoin Core reference client and extract
information on the size of blocks and transactions. To analyze transaction fees
as a function of the relation between transactions in the transaction graph, we
import all relevant transaction information into an instance of the Neo4j graph
database, from which we then extract output amounts, transaction fees, and the
duration (based on the blocks’ time stamps) until the first output was reused.
We also estimate the net amount of bitcoin transferred, that is total outputs
minus estimated change, based on a set of heuristics.

Some analyses require additional data gathered from the website blockchain.
info. We use this source to identify the mining pool (if any) that solved a given

3 The default client implements soft rules reflecting part of this wisdom. But uncer-
tainty remains as users cannot anticipate enforcement of these rules. Unlike hard
rules (for instance, the requirement to verify signatures), soft rules do not decide
the validity of a block. Moreover, miners organized in pools are less likely to heed
the defaults than individuals who use the standard client to manage their own
transactions.

http://www.blockchain.info
http://www.blockchain.info

Trends, Tips, Tolls: A Longitudinal Study of Bitcoin Transaction Fees 23

block and to obtain the time stamps for when a transaction was first seen on
the network. This information is not included in the block chain.

Data on the bitcoin exchange rate is taken from coindesk.com, which provides
an average bitcoin price in USD. This price index is based on the exchange rates
of multiple global exchanges since July 2013, and on the exchange rate of the
former exchange Mt. Gox for the time before [11].

Table 1. Data sources and information gathered

Source Entity Information

Block files Block Height, time stamp, #transactions, size

Transaction #inputs, #outputs, size

Graph database Transaction Output volume, fee, unused period,

net amount, heuristics

Blockchain.info Block Relayed by (mining pool)

Transaction Time first seen, time included in block

Coindesk.com Price USD value

We select the time range from January 2011 to December 2014 for our analy-
sis. Although the Bitcoin block chain exists since 2009, the popularity of the
system was low in the first years and interpreting this early data would not be
very instructive to understand agent behavior.

In our longitudinal plots, each data point visualizes aggregated data of 1008
blocks, i.e., about one week. The time axis is defined in these epochs of block
time with calendar dates added for readability, always using the closest time
stamp in the block chain. The constant 1008 was chosen to divide the fixed
interval of 2016 blocks of the difficulty control loop that adjusts the proof-of-
work requirements. As a result, each pair of consecutive epochs represents blocks
mined with the same difficulty. When appropriate, we plot a fitted smoothing
spline (with six degrees of freedom) besides the raw data.

To answer RQ 2, we compare the time when a transaction was first seen on
the network and the time stamp of the block that includes the transaction. We
call the difference transaction latency. Both clocks are not necessarily in sync,
but it is reasonable to assume that clock differences are not correlated with our
dependent variable. The time when a transaction was first seen on the network
has to be extracted by crawling and parsing the blockchain.info website. To limit
the amount of requests, we analyze a representative subset of 9,000 transactions
randomly chosen from all eligible transaction between June 2012 and May 2013,
a period in which the conventions of fee offers remained relatively stable (see
Fig. 3 below). Eligible transactions are defined as transactions that offer a fee of
0, 0.0005, or 0.001 BTC and have a size between 200 and 300 bytes. 60.6 % or,
in absolute terms, 9.17 of all 15.1 million transactions in the chosen time range
are eligible by these criteria. Limiting our analysis to this homogenous subset
removes the need to control for the influence of third variables.

http://www.coindesk.com
http://www.blockchain.info

24 M. Möser and R. Böhme

For better comparability, we use the same subset of 9.17 million transactions
to answer RQ 3. For each transaction, we compute the holding time, which is the
period until one of the outputs was spent again. The computation of this time
interval is based on the time stamps of the original block and the block that
contains the transaction spending the output. A time interval of zero means,
that the output was spent in the same block, i.e., without confirmation. Again,
the clocks used for the timestamps of different blocks may not be in sync, but
deviations from the true value should not correlate with our variable of interest.

Answering RQ 4 requires information about the mining pool that won each
particular block race. We use the information on blockchain.info, parsed from
168,530 HTML pages, as baseline and cross-check against two additional data
sources. First, we make use of the fact that some mining pools include a signa-
ture in the coinbase transactions of their blocks. This way, we are able to learn
the origin of 75,750 blocks mined by the pools 50BTC, AntPool, ASICMiner,
BitMinter, BTC Guild, EclipseMC, Eligius, KnCMiner, Polmine, and Slush. This
information matches the baseline data from blockchain.info for 99.98 % of all rel-
evant blocks. A second cross-check against the website blockorigin.pfoe.be, which
maps pools to blocks based on the announced blocks on the pools’ websites, con-
firms 99.92 % of the entries. However, this website only provides information for
the latest 2016 blocks. All this indicates that our data is pretty reliable when it
comes to the attribution of blocks to the major mining pools.

4 Results

4.1 Trends: Descriptive Analysis

We start with an exploratory analysis of transaction fees. The black lines in
Fig. 1 show the average sum of transaction fees per block from January 2011
until December 2014. It grew from about 0.1 BTC in early 2012 to 0.25 BTC
by mid 2013, with occasional spikes up to 0.5 BTC. In the course of 2014, it fell
back to about 0.1 BTC. Overall, miners’ revenue from transaction fees is small
compared to the minting reward (50 BTC until November 2012, then 25 BTC).

The blue lines visualize the relative transaction fees as percentage of the
(estimated) net amount. This value is of interest when looking at the competition
between online payment systems. Overall, Bitcoin transaction fees are lower than
0.1 % of the transmitted value, which is significantly below the fees charged
by conventional payment systems even if one accounts for the fact that some
payments settle in two or more Bitcoin transactions.

The red lines show the average block size (in MB), which grew steadily to
about 0.3 MB in December 2014. In the recent past, the default block size limits
were increased from 250 KB to 350 KB in September 2013, and from 350 KB to
750 KB in March 2014. Although some blocks get close to the limit, it appears
that hard size limits do not (yet) significantly drive the level of transaction fees.

When comparing the total transaction fees per block in USD to the Bitcoin
exchange rate against USD, we see substantial co-movement (cf. Fig. 2). This
indicates that BTC is the dominant unit of account when deciding about fee

http://www.blockchain.info
http://www.blockchain.info
http://blockorigin.pfoe.be

Trends, Tips, Tolls: A Longitudinal Study of Bitcoin Transaction Fees 25

Jan Apr Jul Oct Jan Apr Jul Oct Jan Apr Jul Oct Jan Apr Jul Oct

2011 2012 2013 2014

Absolute fee per block (in BTC)

Block size (in MB)

Relative fee (in % of est. net amount)

0.1

0.5

Fig. 1. Transaction fees per block (in BTC) and block size (in MB) (Color figure online)

offers, unlike prices for many goods and services paid with Bitcoin but fixed in a
conventional currency. The smoothed curve shows that total fees have stabilized
at about 45 USD per block in 2014.

Next, we explore changes in the nominal values of fees. Figure 3 shows trends
for the fees paid per transaction over time. Each region represents the percentage
of transactions with a specific nominal fee. Starting in January 2011, almost no
transaction pays a fee. In the following months, a growing share of transactions
started to include a fee of 0.01 BTC. The first notable change occurs after June
2011. Transactions with a fee of 0.0005 BTC appear and account for about
20–30 % of all transactions. In the second quarter of 2012, the share of zero-
fee transactions drops significantly and 60–70 % of all transactions pay a fee of
0.0005 BTC. In the fourth quarter of 2012, this dominant share registers a sharp
decrease, with a fee of 0.001 BTC now accounting for 30–40 % of all transactions.
In May 2013, the nominal value of 0.001 BTC makes space for a tenth: 0.0001
BTC. This fee level stays on and gains a share of more than 70 % towards the
end of the sample. The second largest nominal fee paid at the time of writing
is 0.0002 BTC. This value started to appear in late 2013 and has a share of
15–20 %. It is very evident from Fig. 3 that the conventions on transaction fees
are not static, but exhibit distinct trends over time.

In order to reason about these changes, we map important events in the
Bitcoin ecosystem to the timeline (cf. Fig. 3). Generally, there seem to be two
main reasons for shifts in trends: changes to the Bitcoin reference implementation
and actions by large intermediaries in the ecosystem.

The emergence of 0.0005 BTC fees in June 2011 can be mapped to the release
of version 0.3.23 of the Bitcoin Core client, which reduced the default transaction

26 M. Möser and R. Böhme

Jan Apr Jul Oct Jan Apr Jul Oct Jan Apr Jul Oct Jan Apr Jul Oct

2011 2012 2013 2014

1000

100

Absolute fee per block in USD

Bitcoin price index in USD

Fig. 2. Transaction fees per block (in USD)

fee from 0.01 BTC to 0.0005 BTC. The rise of transactions with a 0.0005 BTC
fee in the second quarter of 2012 is probably due to the launch of the gambling
website SatoshiDice. This service works as follows. A user can send a hand-
picked amount of bitcoin to an address controlled by SatoshiDice. The service
owns several deposit addresses with different associated win and payout ratios.
For every incoming transaction, SatoshiDice instantly creates a new transaction
to the incoming transaction’s source address. This new transaction returns the
prize to the user in case he is lucky, or a very small output value to signal a loss.4

After its announcement on 24 April 2012, the service quickly gained popularity.
It started to flood the block chain with transactions, leading to allegations of
being a “DDoS attack against the Bitcoin network” [5].

While we could not find a plausible reason for the drop of the 0.0005 BTC
nominal fee in late 2012, we found a possible explanation when looking at
the payout transactions of SatoshiDice before and after this shift. Prior to it,
SatoshiDice added a transaction fee of 0.0005 BTC to each payment. Then, in
the fourth quarter of 2012, it doubled the fee to 0.001 BTC, while everyone else
still payed the Bitcoin client’s default fee of 0.0005 BTC.

On 29 May 2013, version 0.8.2 of Bitcoin Core, the reference implementation,
was released. In this update, the default transaction fee was lowered from 0.0005
BTC per KB to 0.0001 BTC per KB. Hence, the growing share of 0.0001 BTC
fees might also visualize the adoption rate of both the new version of the reference
client and other clients following this change.

The emergence of 0.0002 BTC fees starting in November 2013 can possibly
be attributed to the release of version 1.9 of the Electrum wallet, which set
this default fee in order to account for larger transactions due to the use of
uncompressed addresses.
4 It was one Satoshi initially, then increased to 0.00005460 BTC after the default client

required a minimum output value of 0.00005430 BTC to fight transaction spam [10].

Trends, Tips, Tolls: A Longitudinal Study of Bitcoin Transaction Fees 27

Jan Apr Jul Oct Jan Apr Jul Oct Jan Apr Jul Oct Jan Apr Jul Oct

2011 2012 2013 2014

0

100

v0.3.23 Satoshi Dice v0.8.2 Electrum

0 BTC 0.0001

0.0005

0.00020.001

0.01

Fig. 3. Distribution of transaction fees

4.2 Tips: Explaining the Decision to Offer a Fee

Even at the time of writing there is a small share of transactions that does not offer
a transaction fee to miners. Many of those paying a fee adhere to the default, but
some were even willing to pay a higher fee. A plausible rationale is that paying
a fee provides incentives for miners to prioritize a transaction, leading to faster
confirmation. If this holds true, impatient users would be more willing to pay a
fee, i. e., if transaction outputs are to be spent again soon after inclusion.

Table 2 shows the quantiles of transaction latencies for different fees. Half
of all zero-fee transactions had to wait more than twenty minutes for their first
confirmation. In contrast to that, paying a fee of 0.0005 BTC lead to an inclusion
into a block in half of the time. While this seems acceptable for less time-critical
transactions, the 90 % quantile shows a more extreme difference. Ten percent of
all zero-fee transactions took almost 4 hours to confirm, in contrast to 40 min
for transactions paying a 0.0005 BTC fee. The difference between paying a fee
of 0.0005 or 0.001 BTC is not as pronounced, but the difference in medians is
still statistically and economically significant.

Figure 4 reports the amount of transactions that include a fee dependent on
the holding time. It is easy to see that the percentage of transactions including
a fee is higher for those where outputs are spent shortly after being included
in a block. The curve levels off to about 60–70 % for holding times of more
than one hour. Another observation is that the amount of transactions whose
outputs are reused in the same block amounts to slightly more than 40 %. We sus-
pect that many of these transactions belong to SatoshiDice’s zero-confirmation
transactions.

28 M. Möser and R. Böhme

Table 2. Transaction latency in seconds by transaction fee

Quantiles of the latency distribution

10% 25 % 50 % 75% 90 %

Fee # Tx (median)

0 1503 180 444 1339 4270 13927

0.0005 5735 106 255 600 1244 2440

0.001 1905 90 212 520 1129 2135

Sample period: June 2012 to May 2013. See text for details.

Minutes

102030405060

Hours

2 4 6 8 10 12 14 16 18 20 22 24

Days

2 3 4 5 6 70
0

100

mean

% of transactions paying a fee
total share of transactions

Fig. 4. Distribution of holding times and propensity to pay a fee (June 2012–May 2013)

4.3 Tolls: Mining Pools as Gatekeepers

Finally, we analyze pool behavior regarding a possible systematic exclusion of
zero-fee transactions. Figure 5 shows the block solution share of each mining
pool over time. Shares have shifted between pools quite extensively. In 2013,
BTC Guild had a market share of up to 40 %. In 2014 both GHash.IO – which
triggered controversial discussions when reaching almost a share of 50 % for a
short time (cf. [4]) – and Discus Fish ousted this pool. Also, the share of “other”
pools has risen in 2014. Previous incumbents like Slush or 50BTC have lost
popularity. Possible reasons include economic and technical factors, like pool
fees, service availability, or robustness against attacks (cf. [18,28]).

Given the dominance of a few mining pools, we now tackle the question
whether some pools systematically enforce fees. Table 3 shows the share of zero-
fee transactions as well as the share of blocks without any zero-fee transaction
(excluding the always present coinbase transaction) for the ten biggest pools.

Trends, Tips, Tolls: A Longitudinal Study of Bitcoin Transaction Fees 29

Apr Jul Oct Jan Apr Jul Oct Jan Apr Jul Oct
2012 2013 2014

0

100

Other

Slush

50BTC

ASICMiner

BTC Guild

Eligius

GHash.IO

Discus Fish

Fig. 5. Block solution share of mining pools

Table 3. Enforcement of transaction fees by mining pools

Blocks solved (%) % of zero-fee % of blocks w/o any

transactions zero-fee transaction

Apr 2012– Jan 2014– Apr 2012– Jan 2014–

All miners 100.0 7.2 2.7 8.5 17.7

BTC Guild 18.0 6.5 2.2 1.5 4.1

GHash.IO 13.0 4.0 3.4 2.0 2.3

Slush 7.2 5.6 3.4 6.9 2.7

Discus Fish 7.0 0.7 0.3 66.3 72.5

Eligius 5.2 4.1 0.7 26.1 29.2

50BTC 3.9 8.2 11.9 0.4 3.3

BitMinter 3.5 10.4 14.9 3.5 0.8

EclipseMC 3.3 22.3 3.8 2.0 2.6

OzCoin 2.8 8.0 3.3 1.2 7.7

ASICMiner 1.9 8.8 5.9 1.7 0.0

Excluding coinbase transactions. Pool data before Apr 2012 is unreliable.

To account for developments over time, we contrast a longer sample (since April
2012) to the more recent past (since January 2014). The results show that two
pools, Discus Fish and Eligius, have a considerably higher share of blocks without
any zero fee-transaction: 29.2 % for Eligius and 72.5 % for Discus Fish (since
January 2014) – in contrast to an average of 17.7 %. Other than that, there is
no clear evidence for enforcement of strictly positive transaction fees.

30 M. Möser and R. Böhme

A reason for the high number of blocks without zero-fee transactions for
Discus Fish and Eligius could be that these blocks do not contain any transac-
tions (besides the unavoidable coinbase transaction). Empty blocks appear on
the block chain every now and then (one in 117 in 2014). To control for this, we
calculate the median number of transactions within these blocks. For Eligius, the
median number of transactions amounts to 83, for Discus Fish to 352. Hence,
blocks without zero-fee transactions are not completely empty. These two pools
seem to take a stricter line at enforcing transaction fees in their blocks than the
other big pools.

5 Discussion

We interpret the heterogeneity and instability over time in transaction fees as
an indication that the protocol’s built-in market mechanism fails to set a fair
price for transactions. This may be tolerable as long as minting rewards domi-
nate miners’ revenue and set the right incentive to defend the system, e. g., by
keeping the cost of 51 % attacks high at any point in time. Two questions with
relevance for the future of Bitcoin remain: 1. What factors influence a fair level
of transaction fees? 2. Which mechanism can (approximately) find and enforce
this level of fees?

A discussion section of an empirical paper is not the right place for a formal
theoretical model. But it is safe to state that a fair price for transactions should
internalize the externalities (cf. Sect. 2). Costs to others arise in two forms, born
by two different types of agents in the system. First, miners bear the cost of
solving the proof-of-work puzzle for the first confirmation. This cost is one-
off, fixed per block, and thus depends on the number of transactions seeking
confirmation at the same time. Second, relays in the network (that are all clients
who store the entire block chain) bear the cost of storing the transaction record.
It is current practice to store transactions forever, but in theory records can be
pruned after all outputs are spent [25]. Cost of this second kind are incurred over
time and depend on the size of the transaction (storage space), the time until
all outputs are spent, and the size of the network (number of redundant copies).

It is conceivable that an internalization of the costs of the first kind can be
enforced by miners (with some caveats, e.g., [17]). But there remains a free-riding
problem regarding the provision of a public good with uninternalized costs of
the second kind. Two out of three factors driving the costs of the second kind
are not predictable at the time when the transaction is created. Taking averages
over many transactions is no solution. It will lead to cherry-picking and other
frictions. The time dimension makes it particularly challenging to find a mecha-
nism that internalizes these externalities, as well as the positive externalities to
longterm investors and potential transaction partners who extract utility from
the very existence of the block chain although they rarely make transactions.
In a fee-only regime, those with higher transaction demand and time preference
subsidize others who can silently sit on their assets. Against this backdrop, it
seems that the devaluation of stock, as implemented through monetary inflation

Trends, Tips, Tolls: A Longitudinal Study of Bitcoin Transaction Fees 31

in the minting era, could be a closer approximation of the optimal mechanism
than taxing transaction activity.

A limitation of our empirical approach is that off-blockchain payments and
other agreements are unobservable. For instance, mining pools could allow excep-
tions for their own transactions used for reward redistribution or accept other
forms of compensation from business partners, such as large intermediaries.
(Such compensations are attractive because they can also be hidden from the
miners and need not be redistributed.) As a result, what we identify as not
rational may indeed be rational under the hidden agenda.5 Another limitation is
that this initial analysis relies on central moments (mean, median) and subsam-
ples of homogeneous transactions. This hides many particularities in a total of
55.5 million heterogeneous transactions. We suspect that various other factors
influence the transaction fees in subsets of transactions too small to isolate in
this analysis.

6 Concluding Remarks

A longitudinal analysis of 55.5 million transaction records reveals several regime
shifts in agents’ behavior related to the payment of transaction fees. This calls
for caution against the risk of unobserved heterogeneity in all analyses that do
not explicitly consider the time dimension.

Throughout Bitcoin’s history, it appears that the level of transaction fees is
primarily driven by social norms and conventions formed by key actors in the
ecosystem rather than set by the protocol’s implied market mechanism, which
in principle could match miners’ supply with transaction partners’ demand. In
other words, most agents seem to follow rules instead of economic ratio.

This history, however instructive it may be, is unlikely to offer good predic-
tions for a (distant) future. Fees were generally low in the past, so that agents’
ignorance can be explained with information, search, and decision costs. (In sim-
ple terms: they do not care.) At least agents will need to revisit their behavior
when transaction fees replace minting rewards as the incentive for miners to
maintain the system secure. Possibly, the Bitcoin stakeholders may also need to
revisit the protocol’s incentive system.

Acknowledgements. We thank the anonymous reviewers for their feedback and the
hint on the emergence of 0.0002 BTC fees. We also thank blockchain.info for providing
us with an API key to bypass their request limit.

References

1. Ali, R., Barrdear, J., Clews, R., Southgate, J.: Innovations in payment technologies
and the emergence of digital currencies. In: Digital Currencies: Quarterly Bulletin
2014 Q3. Bank of England (2014)

5 We appreciate hints and anecdotes which might lead to testable hypotheses.

32 M. Möser and R. Böhme

2. Ali, R., Barrdear, J., Clews, R., Southgate, J.: The economics of digital currencies.
In: Digital Currencies: Quarterly Bulletin 2014 Q3. Bank of England (2014)

3. Anderson, R.: Risk and privacy implications of consumer payment innovation. In:
Federal Reserve Bank Payments Conference (2012)

4. Bershidsky, L.: Trust Will Kill Bitcoin (2014). http://www.bloombergview.com/
articles/2014-07-17/trust-will-kill-bitcoin. Accessed 16 Oct 2014

5. Bitcoin Wiki. SatoshiDice. https://en.bitcoin.it/wiki/SatoshiDice. Accessed 17
Sept 2014

6. Bitcoin Wiki. Transaction Fees (2014). https://en.bitcoin.it/w/index.php?
title=Transaction fees&olddid=45501. Accessed 15 Oct 2014

7. Blockchain.info. Bitcoin Market Capitalization (2014). https://blockchain.info/
charts/market-cap. Accessed 08 Oct 2014

8. Böhme, R.: Internet protocol adoption: learning from Bitcoin. In: IAB Workshop
on Internet Technology Adoption and Transition (ITAT), Cambridge, UK (2013)

9. Böhme, R., Christin, N., Edelman, B., Moore, T.: Bitcoin: economics, technol-
ogy, and governance. J. Econ. Perspect. (2014). Available at SSRN: http://ssrn.
com/abstract=2495572. Forthcoming; Harvard Business School NOM Unit Work-
ing Paper No. 15–015

10. Buterin, V.: Bitcoin Developers Adding $0.007 Minimum Transaction Output
Size (2013). http://bitcoinmagazine.com/4465/bitcoin-developers-adding-0-007-
minimum-transaction-output-size/. Accessed 17 Oct 2014

11. Coindesk. About the Bitcoin Price Index (2014). http://www.coindesk.com/price/
bitcoin-price-index/. Accessed 23 Oct 2014

12. The Economist. Plastic stochastic (2014). http://www.economist.com/news/
finance-and-economics/21621882-capping-fees-card-transactions-has-not-worked-
out-planned-plastic-stochastic. Accessed 22 Oct 2014

13. Edelman, B.: Consumers Pay More When They Pay with Bitcoin (2014). http://
www.pymnts.com/in-depth/2014/consumers-pay-more-when-they-pay-with-bit
coin/. Accessed 15 Jan 2015

14. Gavin Andresen comments on Bitcoin 0.8.6 Released, Updates to Block Size
Limit, Free Transactions, OSX Bugs (2013). http://www.reddit.com/r/Bitcoin/
comments/1sk3df/bitcoin 086 released updates to block size limits/cdyrab7.
Accessed 13 Oct 2014

15. Hirshleifer, J.: From weakest-link to best-shot: the voluntary provision of public
goods. Public Choice 41(3), 371–386 (1983)

16. Houy, N.: The Bitcoin Mining Game. Working Paper GATE 2014–12 (2014)
17. Houy, N.: The Economics of Bitcoin Transaction Fees. Working Paper GATE 2014–

07 (2014)
18. Johnson, B., Laszka, A., Grossklags, J., Vasek, M., Moore, T.: Game-theoretic

analysis of DDoS attacks against Bitcoin mining pools. In: Böhme, R., Brenner,
M., Moore, T., Smith, M. (eds.) FC 2014 Workshops. LNCS, vol. 8438, pp. 72–86.
Springer, Heidelberg (2014)

19. Karame, G.O., Androulaki, E., Capkun, S.: Two bitcoins at the price of one?
double-spending attacks on fast payments in Bitcoin. In: Proceedings of the ACM
Conference on Computer and Communications Security (CCS) (2012)

20. Kaskaloglu, K.: Near zero Bitcoin transaction fees cannot last forever. In: The
International Conference on Digital Security and Forensics (DigitalSec 2014), pp.
91–99 (2014)

21. Luther, W.J.: Cryptocurrencies, Network Effects, and Switching Costs. Mercatus
Center Working Paper No. 13–17 (2013)

http://www.bloombergview.com/articles/2014-07-17/trust-will-kill-bitcoin
http://www.bloombergview.com/articles/2014-07-17/trust-will-kill-bitcoin
https://en.bitcoin.it/wiki/SatoshiDice
https://en.bitcoin.it/w/index.php?title=Transaction_fees&olddid=45501
https://en.bitcoin.it/w/index.php?title=Transaction_fees&olddid=45501
https://blockchain.info/charts/market-cap
https://blockchain.info/charts/market-cap
http://ssrn.com/abstract=2495572
http://ssrn.com/abstract=2495572
http://bitcoinmagazine.com/4465/bitcoin-developers-adding-0-007-minimum-transaction-output-size/
http://bitcoinmagazine.com/4465/bitcoin-developers-adding-0-007-minimum-transaction-output-size/
http://www.coindesk.com/price/bitcoin-price-index/
http://www.coindesk.com/price/bitcoin-price-index/
http://www.economist.com/news/finance-and-economics/21621882-capping-fees-card-transactions-has-not-worked-out-planned-plastic-stochastic
http://www.economist.com/news/finance-and-economics/21621882-capping-fees-card-transactions-has-not-worked-out-planned-plastic-stochastic
http://www.economist.com/news/finance-and-economics/21621882-capping-fees-card-transactions-has-not-worked-out-planned-plastic-stochastic
http://www.pymnts.com/in-depth/2014/consumers-pay-more-when-they-pay-with-bitcoin/
http://www.pymnts.com/in-depth/2014/consumers-pay-more-when-they-pay-with-bitcoin/
http://www.pymnts.com/in-depth/2014/consumers-pay-more-when-they-pay-with-bitcoin/
http://www.reddit.com/r/Bitcoin/comments/1sk3df/bitcoin_086_released_updates_to_block_size_limits/cdyrab7
http://www.reddit.com/r/Bitcoin/comments/1sk3df/bitcoin_086_released_updates_to_block_size_limits/cdyrab7

Trends, Tips, Tolls: A Longitudinal Study of Bitcoin Transaction Fees 33

22. Meiklejohn, S., Pomarole, M., Jordan, G., Levchenko, K., McCoy, D., Voelker,
G.M., Savage, S.: A fistful of Bitcoin: characterizing payments among men with no
names. In: Proceedings of the ACM Internet Measurement Conference (IMC), pp.
127–140. ACM, New York (2013)

23. Moore, T., Christin, N.: Beware the middleman: empirical analysis of Bitcoin-
exchange risk. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 25–33.
Springer, Heidelberg (2013)

24. Möser, M., Böhme, R., Breuker, D.: Towards risk scoring of Bitcoin transactions.
In: Böhme, R., Brenner, M., Moore, T., Smith, M. (eds.) FC 2014 Workshops.
LNCS, vol. 8438, pp. 16–32. Springer, Heidelberg (2014)

25. Nakamoto, S.: Bitcoin: A Peer-to-Peer Electronic Cash System (2008)
26. Sherif, M.: The Psychology of Social Norms. Harper, New York (1936)
27. [UPDATE: 2014–10-05] Bitcoin Core soft-fork “No Forced TX Fee” v0.9.3. https://

bitcointalk.org/index.php?topic=22434.0. Accessed 23 Oct 2014
28. Vasek, M., Thornton, M., Moore, T.: Empirical Analysis of Denial-of-Service

Attacks in the Bitcoin Ecosystem. In: Böhme, Rainer, Brenner, Michael, Moore,
Tyler, Smith, Matthew (eds.) FC 2014 Workshops. LNCS, vol. 8438, pp. 57–71.
Springer, Heidelberg (2014)

29. Wong, J.I.: New Study: Low Bitcoin Transaction Fees Unsustainable
(2014). http://www.coindesk.com/new-study-low-bitcoin-transaction-fees-unsus
tainable/. Accessed 13 Oct 2014

https://bitcointalk.org/index.php?topic=22434.0
https://bitcointalk.org/index.php?topic=22434.0
http://www.coindesk.com/new-study-low-bitcoin-transaction-fees-unsustainable/
http://www.coindesk.com/new-study-low-bitcoin-transaction-fees-unsustainable/

ZombieCoin: Powering Next-Generation
Botnets with Bitcoin

Syed Taha Ali(B), Patrick McCorry, Peter Hyun-Jeen Lee, and Feng Hao

Newcastle University, Newcastle upon Tyne, UK
{taha.ali,patrick.mccorry,peter.lee,feng.hao}@ncl.ac.uk

Abstract. Botnets are the preeminent source of online crime and
arguably the greatest threat to the Internet infrastructure. In this paper,
we present ZombieCoin, a botnet command-and-control (C&C) mecha-
nism that runs on the Bitcoin network. ZombieCoin offers considerable
advantages over existing C&C techniques, most notably the fact that
Bitcoin is designed to resist the very regulatory processes currently used
to combat botnets. We believe this is a desirable avenue botmasters may
explore in the near future and our work is intended as a first step towards
devising effective countermeasures.

1 Introduction

Almost eight years have passed since Vint Cerf’s dire warning of a botnet
“pandemic” [1], and since then the threat has only intensified. Large botnets
today typically number millions of infected victims (individually referred to as
bots or zombies), employed in a wide range of illicit activity including spam
and phishing campaigns, spying, information theft and extortion [2]. The FBI
recently estimated that 500 million computers are infected annually, incurring
global losses of approximately $110 billion [3]. Botnets have now started con-
scripting mobile phones [4] and smart devices, such as refrigerators and surveil-
lance cameras to spam and mine cryptocurrencies [5].

The fatal weak point for botnets is the C&C infrastructure, the central ner-
vous system of the botnet. Downstream communication comprises instructions
and software updates sent by the botmaster, whereas upstream communication
from bots includes loot, such as financial data, login credentials, etc. Security
researchers usually reverse engineer a bot, infiltrate the C&C network, trace
the botmaster and disrupt the botnet. The overwhelming majority of success-
ful takedown operations to date have relied heavily on exploiting or subverting
botnet C&C infrastructures [2].

In this paper, we argue that Bitcoin is an ideal C&C dissemination mecha-
nism for botnets. Bitcoin offers botmasters considerable advantages over exist-
ing C&C techniques such as chatrooms, HTTP rendezvous points, or P2P
networks. First, by piggybacking communications onto the Bitcoin network,
the botmaster is spared the costly and hazardous process of maintaining a cus-
tom C&C network. Second, Bitcoin provides some degree of anonymity which

c© International Financial Cryptography Association 2015
M. Brenner et al. (Eds.): FC 2015 Workshops, LNCS 8976, pp. 34–48, 2015.
DOI: 10.1007/978-3-662-48051-9 3

ZombieCoin: Powering Next-Generation Botnets with Bitcoin 35

may be enhanced using conventional mechanisms like VPNs or Tor. Third, Bit-
coin has built-in mechanisms to harmonize global state, eliminating the need for
bot-to-bot communication. Capture of one bot therefore does not expose others,
and an observer may not easily enumerate the size of the botnet.

Most importantly, C&C communications over the Bitcoin network cannot
be shut down simply by confiscating a few servers or poisoning routing tables.
Furthermore, disrupting C&C communication would be very hard to do without
seriously impacting legitimate Bitcoin users and may break Bitcoin. Any form
of regulation would be a fragrant violation of the libertarian ideology Bitcoin
is built upon [6]. It would also entail significant protocol modification on the
majority of Bitcoin clients scattered all over the world.

In this paper, we explore in detail the possibility of running a botnet over Bit-
coin. Our goal, of course, is not to empower criminal operations, but to evaluate
this threat so that preemptive solutions may be devised. This is in the spirit of
existing research efforts exploring emergent threats (such as cryptovirology [7] and
the FORWARD initiative [8]). Our specific contributions are:

1. We present ZombieCoin, a mechanism enabling botmasters to communicate
with bots by embedding C&C information in Bitcoin transactions.

2. We enumerate various strategies to embed C&C information in transactions
and undertake a detailed comparison.

3. We prototype and deploy ZombieCoin and issue C&C commands to bots
over the Bitcoin network. Our results show that bots receive and respond in
a 5–12 s window.

2 Background

We summarize here the evolutionary path of C&C mechanisms, followed by a
brief overview of Bitcoin.

2.1 Botnet C&C Mechanisms

First generation botnets, such as Agobot, SDBot, and SpyBot (observed in 2002–
2003) [9], maintain C&C communications over Internet Relay Chat (IRC)
networks. The botmaster hardcodes IRC server and channel details into the
bot executable prior to deployment, and, after infection, bots log on to the spec-
ified chatroom for instructions. This method has numerous advantages: the IRC
protocol is widely used across the Internet, there are several public servers which
botnets can use, and communication is in real-time. However, the network signa-
ture of IRC traffic is easily distinguished. More critically, this C&C architecture
is centralized. Researchers can reverse-engineer bots, allowing them to eavesdrop
in C&C chatrooms, identify the bots and track the botmaster. Researchers also
regularly coordinate with law enforcement to legally take down C&C chatrooms,

36 S.T. Ali et al.

crippling the entire botnet in just one step. According to insider accounts, two
thirds of IRC botnets are shut down in just 24 hours [10].

The second generation of botnets upgraded to HTTP-based C&C com-
munications. Examples include Rustock, Zeus and Asprox (observed in 2006–
2008). Bots periodically contact a webserver using HTTP messages to receive
instructions and offload loot. HTTP is ubiquitous on most networks and bot
communications blend in with legitimate user traffic. However, web domains
can be blocked at the DNS level, C&C webservers can be located and seized and
the botmaster can be traced.

To adapt, botmasters came up with two major innovations. Bots are no longer
hardcoded with a web address prior to deployment, but with a Domain Gener-
ation Algorithm (DGA) that takes date and time as seed values to generate
custom domain names at a very rapid rate. The rationale is that it is very costly
and time-consuming for law enforcement to seize a large number of domains
whereas the botmaster has to register only one to successfully rendezvous with
his bots in a given time-window. Conficker-C generated 50,000 domain names
daily, distributed over 116 Top Level Domains (TLDs) which proved nearly
impossible to block [11]. However, DGAs can be reverse-engineered. Security
researchers hijacked the Torpig botnet for a period of ten days by registering
certain domains ahead of the botmasters [12].

The second innovation is Domain Flux: botmasters now link several hun-
dreds of destination IP addresses with a single fully qualified domain name in a
DNS record (e.g. www.domain.com). These IP addresses are swapped with very
high frequency (as often as every 3 min), so that different parties connecting to
the same domain within minutes of each other are redirected to different loca-
tions. Furthermore, destination IP addresses often themselves point to infected
hosts which act as proxies for the botmaster. Yet another layer of confusion
can be added into the equation by similarly concealing the Authoritative Name
Servers for the domain within this constantly changing fast flux cloud.

The third major botnet C&C infrastructure, decentralized P2P networks,
have been used by Conficker, Nugache and Storm botnets in 2006–2007. Bots
maintain individual routing tables, and every bot actively participates in routing
data in the network, making it very difficult to identify C&C servers. However,
P2P-based bots also have weak points: for instance, to bootstrap entry into the
P2P network, Phatbot uses Gnutella cache servers on the Internet and Nugache
bots are hardcoded with a seed list of IP addresses, both of which are central-
ized points of failure [13]. Security researchers have been able to detect P2P
traffic signatures, successfully crawl P2P networks to enumerate the botnet,
and poison bot routing tables to disrupt the botnet. In a concerted takedown
effort, Symantec researchers took down the ZeroAccess botnet by flooding rout-
ing advertisements that overwhelmed bot routing tables with invalid or sinkhole
entries, isolating bots from each other and crippling the botnet [14].

Some botnets employ multiple solutions for robustness, for example, Con-
ficker uses HTTP-based C&C in addition to its P2P protocol [11]. More recently
botnets have begun experimenting with esoteric C&C mechanisms, includ-
ing darknets, social media and cloud services. The Flashback Trojan retrieved
instructions from a Twitter account [15]. Whitewell Trojan used Facebook as

www.domain.com

ZombieCoin: Powering Next-Generation Botnets with Bitcoin 37

a rendezvous point to redirect bots to the C&C server [16]. Trojan.IcoScript
used webmail services like Yahoo Mail for C&C communications [17]. Makadocs
Trojan [18] and Vernot [19] used Google Docs and Evernote respectively as prox-
ies to the botmaster. The results have been mixed. Network administrators rarely
block these services because they are ubiquitously used, and C&C traffic is there-
fore hard to distinguish. On the other hand, C&C channels are again centralized
and companies like Twitter and Google are quick to crack down on them.

2.2 Bitcoin

Bitcoin may be visualized as a distributed database which tracks the ownership
of virtual currency units (bitcoins). Bitcoins are not linked to users or accounts
but to addresses. A Bitcoin address is simply a transformation on a public-
key, whereas, the private-key is used to spend the bitcoins associated with that
address. A transaction is a statement containing an input address, an output
address, and the quantity to be transferred, digitally signed using the private-
key associated with the input. More complex transactions may include multiple
inputs and outputs. All inputs and outputs are created using scripts that define
the conditions to claim the bitcoins.

Transactions are circulated over the Bitcoin network, a decentralized global
P2P network. Users known as miners collect transactions and craft them into
blocks, which are chained into a blockchain to maintain a cryptographically ver-
ifiable ordering of transactions. Miners compete to solve a proof-of-work puzzle
to insert their block into the blockchain. New blocks are generated at the rate of
approximately once every ten minutes. The double spending problem of digital
currencies is overcome by replicating the blockchain at the network nodes and
using a consensus protocol to ensure global consistency of state.

Trustlessness is fundamental to Bitcoin: Bitcoin was deliberately designed to
resist the kind of centralization, monetary control, and oversight which restrict
fiat currencies [6]. Users have some degree of anonymity1 which may be enhanced
using Tor and mixing services. The decentralized nature of the network and the
proof-of-work puzzle ensures that transactions in the network cannot be easily
regulated. Bitcoin can only be subverted if a malicious party in the network
musters more computing power than the rest of the network combined.

3 ZombieCoin

Here we outline briefly how ZombieCoin works:

(1) We assume the botmaster owns Bitcoin credentials, i.e. a key pair (sk, pk).
The public-key, pk, is hardcoded into the bot binary file prior to deployment,
so that bots can authenticate communication from the botmaster. Bots are
also equipped with an instruction set to decode commands. Our implementa-
tion, described in Sect. 4, consists of simple instructions such as REGISTER,
PING, UPDATE, etc. with associated parameters.

1 Bitcoin technically provides pseudonymity, a weaker form of anonymity, in that Bit-
coin addresses are not tied to identity and it is trivial to generate new addresses.

38 S.T. Ali et al.

(2) The botnet is then released into the wild. We assume there is an infection
mechanism to propagate the botnet.

(3) Bots then individually connect to the Bitcoin network and receive and prop-
agate incoming transactions. All network communication proceeds as per the
standard Bitcoin protocol specification described in [20]. By adhering to the
standard protocol, the network behavior of the botnet to an outside observer
is indistinguishable from the traffic of a genuine Bitcoin user.

(4) The botmaster periodically issues C&C instructions by obfuscating and
embedding them into transactions. Bots identify these transactions by scan-
ning the ScriptSig field in the input which contains the botmaster’s public-key,
pk, and the digital signature (computed over the transaction) using private-
key sk. Bots verify the signature and decode and execute the instructions.

3.1 Inserting C&C Instructions in Transactions

The most straightforward method is to insert C&C data in the OP RETURN
output script function. This function is a recent feature included in the 0.9.0
release of the Bitcoin Core client, allowing users to insert up to 40 bytes of
data in transactions. This inclusion is due to immense lobbying by the Bitcoin
community [21]. Developers anticipate the usage of this function to be along the
lines of meaningful transaction identifiers (similar to text fields in online banking
transactions), hash digests of some data such as contracts [22], cryptotokens,
or even index values to link to other data stores. Analysis of a recent 80-block
portion of the blockchain reveals that the OP RETURN field was used in about a
quarter of transactions in that portion [23], indicating that this feature is proving
popular. One company has already launched timestamping services which rely
on embedding hash data in this field [23].

This bandwidth is more than sufficient to embed most botnet commands
which are typically instruction sets in the format < command >< parameter >
... < parameter >. For instance, the DDoS attack library for Agobot [9] con-
tains commands: ddos.synflood < host >< time >< delay >< port > and
ddos.httpflood < url >< number >< referrer >< delay >< recursive >,
etc. Agobot has over ninety such commands and they can be encoded numeri-
cally using efficient schemes like Huffman coding to fit within the 40 byte limit.

A second approach offering greater bandwidth possibilities is to embed C&C
instructions as unspendable outputs. This is a common technique and used by
Counterparty [24] and Mastercoin [25]. We dissect a typical Mastercoin transac-
tion in Fig. 1. The first output address, 1EXoDusjG..., referred to as the Master-
coin Exodus Address, identifies this as a Mastercoin transaction. The last output
address is an unspendable output, which decodes into a Mastercoin transaction.
Very small bitcoin values are generally associated with such outputs because they
cannot be redeemed. Up to 20 bytes of data may be inserted into an unspendable
output, and a single transaction may have multiple such outputs. Proof of Exis-
tence [26], a Bitcoin-based notary public service, timestamps data by inserting
hash digests as multiple unspendable outputs in transactions.

ZombieCoin: Powering Next-Generation Botnets with Bitcoin 39

Fig. 1. Decoding a mastercoin transaction

Incidentally, however, Mastercoin, Counterparty, and Proof of Existence plan
to migrate to using the OP RETURN function [21]. As we noted, unspendable
outputs are inherently wasteful. This method is also clumsy: Bitcoin clients
maintain a live inventory of unspent transaction outputs (UTXO) to efficiently
verify validity of new transactions. Clients cannot identify malformed outputs,
with the result that these addresses populate the UTXO data set indefinitely
(since they are never spent), affecting the efficiency of the network as a whole.

A more elegant technique is to communicate C&C messages by key leak-
age. Signing two different messages using the same random factor in the ECDSA
signature algorithm allows an observer to derive the signer’s private-key. Such
instances have already been observed in the blockchain, resulting in coin theft
[27]. In this case, the botmaster frames the C&C instruction within a 32 byte
ECDSA private-key (including padding with random data so that identical com-
mands do not always yield the same private-key). This is followed an obfuscation
technique to give the data enough randomness to function as a private-key. The
public-key is then derived. The botmaster then signs two transactions using the
same random factor allowing bots to derive the private key.

This approach is used by Commitcoin [28] to insert hash digests in transac-
tions. Bitcoins are not wasted using this method, and bandwidth is up to 32 bytes
per input. However, two transactions are needed to leak the instructions.

A more covert solution is to use subliminal channels. Simmons [29,30]
notably demonstrated that two parties can set up a secret communications chan-
nel in digital signature schemes. This is again done by exploiting the random
factor used by the signing algorithm. The botmaster creates a C&C instruction
bitstring of length x bits. He then repeatedly generates signatures on the trans-
action using different random factors, until he gets a match, i.e. a signature,
the first x bits of which match the target bitstring. He attaches this signature

40 S.T. Ali et al.

to the transaction and publishes it. Nodes receive the transaction, verify that
the signature is valid, and propagate it. Bots, on the other hand, extract the
instructions from the first x bits and execute them.

Bandwidth is restricted using this technique due to the one-way nature of the
signing function. Generating x bits of an ECDSA signature to match a bitstring
takes on average 2x iterations. For larger instructions, the botmaster may choose
to split them into smaller target bitstrings inserted in multiple signatures. We
briefly investigate here the practicality of this approach. We use an Intel i7
machine operating at 2.8 GHz with 8 GB RAM, running 64-bit Windows 7, and
we use the OpenSSL toolkit to construct ECDSA signatures with subliminal
channels of incrementing size. In each run we construct eight signatures matching
a target string and record the time taken. Results are plotted in Fig. 2.

As demonstrated, it takes under 10 min (600 s) to sequentially generate eight
signatures with subliminal channels of size 14 bits each. Total bandwidth in this
case is 14 ·8 bits (i.e. 14 bytes overall). We consider here a couple of optimiza-
tions: first, we use multithreading to parallelize the operations across the multiple
processors of the machine. It now takes about 3 min to generate eight signatures
with 14-bit channels, a reduction of nearly 65 %.

Second, instead of passing each thread a single target bitstring, each thread
now searches across the whole range of targets. The process stops as soon as
each thread has located at least one distinct target. This shared-search step
exploits the randomness of the signature generation process, increasing the odds
of a successful match. We note an approximate 20 % improvement over the basic
multithreading scenario, taking only about 2 min to generate eight 14-bit sub-
liminal channels, which is very practical. The botmaster can order the resulting
signatures accordingly in the transaction to construct the full channel.

Fig. 2. Bandwidth vs. signature generation time for subliminal channels

ZombieCoin: Powering Next-Generation Botnets with Bitcoin 41

4 Proof of Concept

We build a 14 node botnet and evaluate its performance over the Bitcoin network.
We use the BitcoinJ library [31], which is an open source Java implementation of
the Bitcoin protocol. We chose the Simplified Payment Verification (SPV) mode
[32], which has a very low memory and traffic footprint, ideally suited for botnets.
As opposed to Core nodes, SPV nodes do not replicate the entire blockchain
but only a subset of block headers and filter incoming traffic to transactions
of interest. Our bot application is 7 MB in size, the locally stored blockchain
content is maintained at 626 kB, and at the network level, the bot’s traffic is
indistinguishable from that of any other SPV client.

To simulate a distributed presence, we installed our bots in multiple locations
in the United States, Europe, Brazil, and East Asia using Microsoft’s Azure cloud
platform [33], and ran two bots locally in our Computing Science Department.
The bots individually connect to the Bitcoin network, download peer lists, and
scan for transactions circulated by the botmaster (us).

Our experiment loops approximately once per hour through an automated
cycle of rudimentary instructions in the sequence depicted in Fig. 3. We embed
C&C instructions in the OP RETURN field and in (3-bit) subliminal channels
in the authorized signatures. Bots are hardcoded with the a public-key, enabling
them to identify our transactions. Bots receive transactions, verify, decode, and
execute them.

We simulate botnet leasing in Step 3. Botmasters commonly monetize their
botnet by partitioning and leasing it as “botnets for hire”. In our case, botmas-
ter and tenant sign and publish a multi-input transaction containing the LEASE
command. This transaction is a bona fide contract between botmaster and ten-
ant and includes the lease payment in bitcoins from the tenant to botmaster.
Bots verify input signatures, record the tenant’s public-key, and accept C&C
instructions issued by the tenant for the specified lease period.

Fig. 3. Sequence of commands in the experiment

42 S.T. Ali et al.

Fig. 4. Cumulative probability distribution of bot response time

When the tenant assumes control, he may send bots new encryption creden-
tials or software modules. We simulate this with the DOWNLOAD command
which uses transaction chaining to send bots a 256 byte RSA public-key, split
over 7 back-to-back transactions. When bots receive the SCREENSHOT com-
mand, they capture a snapshot of the victim’s desktop, encrypt it using the
tenant’s RSA public-key and send it to the web address specified.

We collect over 2300 responses from our bots over a 24 hour period. We are
interested in the C&C channel latency and in the time it takes for bots to respond
to an instruction. To synchronize readings over multiple time zones, we configure
bots to set their clocks using a common timeserver.

Figure 4 plots the cumulative probability distribution of the bot response
time. About 50 % of the time, the bots responded within 5 s, and 90 % of the
time within 10 s. Median response time is 5.54 s. In the interest of improved
visualization, our results do not show outliers beyond the 100 s mark. Only in
15 instances (0.6 % of overall results) was bot response time greater, ranging
from 100–260 s.

5 Discussion

We believe our preliminary results highlight the realistic and practical aspects of
ZombieCoin and we should take seriously the threat of botnets upgrading C&C
communications onto the Bitcoin network.

So far we have assumed bots identify messages from the botmaster based
on transaction input which raises the possibility of blacklisting the botmaster’s
Bitcoin address. This is not likely to resolve the problem. For one, it would be

ZombieCoin: Powering Next-Generation Botnets with Bitcoin 43

a form of regulation, a fundamental violation of the Bitcoin ethos [6], and we
expect Bitcoin users would be the first to vigorously resist such attempts.

Second, such a step would require a significant protocol upgrade which could
potentially degrade performance and usability of Bitcoin for legitimate users.
Miners by themselves could, with relative ease, cooperate and ensure ZombieCoin
transactions are ignored and do not appear in the blockchain. However, this does
not solve the underlying problem of the circulation of valid ZombieCoin transac-
tions throughout the network. In the current protocol version, nodes that receive
incoming transactions perform checks for correctness (i.e. the input address is
valid, the transaction is in the correct format, sum of inputs equals outputs, dig-
ital signature verification, etc.) and then forward the transaction on to other
nodes. In our demo described earlier, our bots do not look up transactions
from incoming blocks of the blockchain at approximate 10 min intervals, but
receive them within a 5–12 s window as the transactions propagate throughout
the network. Even if all C&C transactions are ultimately rejected by miners, the
bots have already received them, validated them, and carried out the embed-
ded instructions. Halting the propagation of these transactions in the Bitcoin
network would require the cooperation of the majority of nodes in the network.

Furthermore, the botmaster can switch to alternate authentication strategies
which do not rely solely on Bitcoin addresses but may use subliminal channels
in transaction outputs or digital signatures. Botmasters could potentially keep
escalating the fight, making it harder for legitimate clients to use the network.

In theory, an anti-virus installed on a victim’s machine could scan the Bitcoin
network in lockstep with bots and block incoming C&C instructions. However,
new malware are adept at evading anti-viruses: Torpig bots [12] contain rootkit
functionality, executing their code prior to loading the OS, or injecting their
code into legitimate processes to escape detection.

We would also make brief mention here of the costs of running ZombieCoin.
Typically it costs about 3 cents (0.1mBTC) for every 1000 bytes of data in the
transaction. If a botmaster were to issue one command every 20 min, this would
translate to about US$ 2.2 a day. Our experiment ran over 24 hours and 250
C&C instructions were sent at a cost of US$ 7.50. This cost is trivial not only
compared to the profits of successful botnets which is typically in the hundreds
of thousands of dollars, but also if one considers the alternative scenario where
a botmaster runs his own customized C&C network. This dramatically increases
the odds of detection, botnet takedown, and risks exposing the botmaster.

Thus far we have not found any recognition of this threat among the Bitcoin
community. We urgently need constructive dialogue regarding the grave risks
associated with unregulated networks. Perhaps we also need to shift research
focus back to traffic analysis and malware detection techniques. The new par-
adigm of software-defined networking (SDN) may hold some promise: there
is already research suggesting SDN assists significantly in detecting malware-
related anomalies at the network level [34].

We would stress here an earlier suggestion from the literature [12]: researchers
and law enforcement should cultivate working relationships with registrars and
ISPs to enable rapid response time to malware threats. Another approach

44 S.T. Ali et al.

proposed before, but, to the best of our knowledge, never applied in practice
is to combat the botnet problem at its root, the economy that drives it. Ford
et al. [35] propose deliberately infecting large numbers of decoy virtual machines
(honeypots) to join the botnet but remain under control of the white hats. By
disruptive, unpredictable behavior, these sybils will actively undermine the eco-
nomic relationship between botmaster and clients. An ad master for instance,
may pay for a certain number of ad impressions, and sibyls making artificial
clicks will not translate to the expected increase in actual sales. Targeting the
economic incentive may prove a potent counter to the botnet threat.

6 Prior Work

Botnet-related research follows multiple strands. There are studies on the botnet
economy [35–37]. Researchers have autopsied botnets, including early varieties
like Agobot, SDbot [9], and state-of-the-art worms, Conficker [38], Storm [39],
Waladec [40], and ZeroAccess [41]. There is extensive work on botnet tracking
methods [42,43] and traffic analysis and detection tools such as BotSniffer [44],
BotMiner [45], and BotHunter [46]. Researchers have infiltrated botnets [12]
and documented insider perspectives [47]. Readers interested in comprehensive
surveys of the botnet phenomenon are directed to [48,49].

There is a growing literature on exploring novel C&C mechanisms so that
preemptive solutions may be devised. We summarize here a few such efforts:

Starnberg et al. present Overbot [50] which uses the P2P protocol Kademlia
for stealth C&C communications. The authors share our design concerns that
bot traffic is covert and not easily distinguishable. However, there are critical
differences: Overbot nodes carry the private key of the botmaster, and capturing
one bot compromises the entire botnet’s communications. Furthermore, unlike
our case where instructions are circulated within seconds, for Overbot this may
take up to 12 hours. ZombieCoin also requires substantially less network man-
agement as the Bitcoin network handles message routing and global consistency.

The work closest to ours is that of Nappa et al. [51] who propose a C&C
channel overlaid on the Skype network. Skype is closed-source, has a large user
base, is resilient to failure, enforces default encryption, and is notoriously difficult
to reverse engineer, all of which are ideal qualities for C&C communications.
As in our case, disrupting this botnet would significantly impact legitimate Skype
users. However, unlike Bitcoin, Skype is not designed to maintain low latency
global consistency of state. Furthermore, after the Microsoft takeover in 2011,
Skype has switched to a centralized cloud-based architecture [52].

Researchers have also proposed esoteric C&C mechanisms: Stegobot [53] cre-
ates subliminal channels on social networks by steganographic manipulation of
user-shared images. Zeng et al. [54] describe a mobile P2P botnet concealing
C&C communication in SMS spam messages. Desimone et al. [55] suggest cre-
ating covert channels in BitTorrent protocol messages. These solutions present
interesting possibilities but are not very practical, with limitations in terms of
bandwidth, latency and security.

ZombieCoin: Powering Next-Generation Botnets with Bitcoin 45

7 Conclusion

In this paper we have described ZombieCoin, a mechanism to control botnets
using Bitcoin. ZombieCoin inherits key strengths of the Bitcoin network, namely
it is distributed, has low latency, and it would be hard to censor C&C instructions
inserted in transactions without significantly impacting legitimate Bitcoin users.
Our prototype implementation demonstrates that it is easy to build this C&C
functionality by modifying freely available software, and experimental results
show that instructions propagate in near real-time on the Bitcoin network.

We believe ZombieCoin poses a credible threat and we hope our work prompts
further discussion and a step towards devising effective countermeasures.

Acknowledgements. This work is supported by the European Research Council
(ERC) Starting Grant (No. 106591). The authors thank Hassaan Bashir, Mike Hearn,
Pawel Widera, and Siamak Shahandashti for invaluable assistance with experiments
and helpful comments.

References

1. Weber, T.: Criminals ‘may overwhelm the web’. BBC Home, 25 January 2007.
Accessed on 22 July 2014

2. Dittrich, D.: So you want to take over a botnet. In: Proceedings of the 5th USENIX
Conference on Large-Scale Exploits and Emergent Threats, pp. 6–6. USENIX Asso-
ciation (2012)

3. Stevenson, A.: Botnets infecting 18 systems per second, warns FBI. V3.co.uk, 16
July 2014. Accessed on 22 July 2014

4. Android smartphones ‘used for botnet’, researchers say 5 July 2012. http://www.
bbc.co.uk/news/technology-18720565

5. Vincent, J.: Could your fridge send you spam? security researchers report ‘internet
of things’ botnet. The Independent, 20 January 2014. Accessed on 22 July 2014

6. Bustillos, M.: The Bitcoin Boom. The New Yorker, April 2013. Accessed on 22
July 2014

7. Young, A., Yung, M.: Malicious Cryptography: Exposing Cryptovirology. John
Wiley & Sons, Chichester (2004)

8. ICT-FORWARD Consortium. FORWARD: Managing Emerging Threats in ICT
Infrastructures, 2007–2008. Accessed on 22 July 2014

9. Barford, P., Yegneswaran, V.: An inside look at botnets. In: Christodorescu, M.,
Jha, S., Maughan, D., Song, D., Wang, C. (eds.) Malware Detection. Advances in
Information Security, vol. 27, pp. 171–191. Springer, New York (2007)

10. Westervelt, R.: Botnet Masters Turn to Google, Social Networks to Avoid Detec-
tion. TechTarget, 10 November 2009. Accessed on 4 Aug 2014

11. Bowden, M.: Worm: The First Digital World War. Atlantic Monthly Press, New
York (2011)

12. Stone-Gross, B., Cova, M., Cavallaro, L., Gilbert, B., Szydlowski, M., Kemmerer,
R., Kruegel, C., Vigna, G.: Your botnet is my botnet: analysis of a botnet takeover.
In: Proceedings of the 16th ACM Conference on Computer and Communications
Security (CCS), pp. 635–647. ACM (2009)

http://www.bbc.co.uk/news/technology-18720565
http://www.bbc.co.uk/news/technology-18720565

46 S.T. Ali et al.

13. Wang, P., Sparks, S., Zou, C.C.: An advanced hybrid peer-to-peer botnet. IEEE
Trans. Dependable Sec. Comput. 7(2), 113–127 (2010)

14. Neville, A., Gibb, R.: Security response: zeroaccess indepth. White paper, Syman-
tec, 4 October 2013

15. Prince, B.: Flashback botnet updated to include twitter as C&C. SecurityWeek,
30 April 2012. Accessed on 22 July 2014

16. Lelli, A.: Trojan.Whitewell: What’s your (bot) Facebook Status Today? Symantec
Security Response Blog, October 2009. http://www.symantec.com/connect/blogs/
trojanwhitewell-what-s-your-bot-facebook-status-today. Accessed on 22 July 2014

17. Kovacs, E.: RAT Abuses Yahoo Mail for C&C Communications. SecurityWeek, 4
August 2014. Accessed on 4 August 2014

18. Katsuki, T.: Malware Targeting Windows 8 Uses Google Docs. Symantec Official
Blog, 16 November 2012. Accessed on 4 August 2014

19. Gallagher, S.: Evernote: So useful, even malware loves it. Ars Technica, 27 March
2013. Accessed on 4 August 2014

20. Protocol Specification. Bitcoin Wiki. Accessed 22 July 2014
21. Apodaca, R.L.: OP RETURN and the Future of Bitcoin. Bitzuma, 29 July 2014.

Accessed on 4 August 2014
22. Andresen, G.: Core Development Update #5. Bitcoin Foundation, 24 October 2013.

Accessed on 4 Aug 2014
23. Bradbury, D.: BlockSign Utilises Block Chain to Verify Signed Contracts. Coin-

Desk, 27 August 2014. Accessed on 27 August 2014
24. Counterparty: Pioneering Peer-to-Peer Finance. Accessed on 22 July 2014
25. Willet, J.R.: The Second Bitcoin Whitepaper, v. 0.5, January 2012. https://sites.

google.com/site/2ndbtcwpaper/2ndBitcoinWhitepaper.pdf. Accessed on 22 July
2014

26. Kirk, J.: Could the Bitcoin Network be Used as an Ultrasecure Notary Service?
PCWorld, 24 May 2013. Accessed on 27 August 2014

27. Bos, J.W., Halderman, J.A., Heninger, N., Moore, J., Naehrig, M., Wustrow, E.:
Elliptic curve cryptography in practice. In: Christin, N., Safavi-Naini, R. (eds.) FC
2014. LNCS, vol. 8437, pp. 156–174. Springer, Heidelberg (2014). IACR Cryptology
ePrint Archive

28. Clark, J., Essex, A.: CommitCoin: carbon dating commitments with bitcoin. In:
Keromytis, A.D. (ed.) FC 2012. LNCS, vol. 7397, pp. 390–398. Springer, Heidelberg
(2012)

29. Simmons, G.J.: The prisoners problem and the subliminal channel. In: Chaum, D.
(ed.) Advances in Cryptology, pp. 51–67. Springer, Cambridge (1984)

30. Simmons, G.J.: The subliminal channel and digital signatures. In: Beth, T., Cot, N.,
Ingemarsson, I. (eds.) EUROCRYPT 1984. LNCS, vol. 209, pp. 364–378. Springer,
Heidelberg (1985)

31. BitcoinJ: A Java implementation of a Bitcoin client-only node. https://code.google.
com/p/bitcoinj/

32. Nakamoto, S.: Bitcoin: A Peer-to-peer Electronic Cash System (2009). http://
www.bitcoin.org/bitcoin.pdf. Accessed on 22 July 2014

33. Azure: Microsoft’s Cloud Platform. https://azure.microsoft.com/en-gb/
34. Mehdi, S.A., Khalid, J., Khayam, S.A.: Revisiting traffic anomaly detection using

software defined networking. In: Sommer, R., Balzarotti, D., Maier, G. (eds.) RAID
2011. LNCS, vol. 6961, pp. 161–180. Springer, Heidelberg (2011)

35. Ford, R., Gordon, S.: Cent, five cent, ten cent, dollar: hitting botnets where it
really hurts. In: Proceedings of the 2006 Workshop on New Security Paradigms,
pp. 3–10. ACM (2006)

http://www.symantec.com/connect/blogs/trojanwhitewell-what-s-your-bot-facebook-status-today
http://www.symantec.com/connect/blogs/trojanwhitewell-what-s-your-bot-facebook-status-today
https://sites.google.com/site/2ndbtcwpaper/2ndBitcoinWhitepaper.pdf
https://sites.google.com/site/2ndbtcwpaper/2ndBitcoinWhitepaper.pdf
https://code.google.com/p/bitcoinj/
https://code.google.com/p/bitcoinj/
http://www.bitcoin.org/bitcoin.pdf
http://www.bitcoin.org/bitcoin.pdf
https://azure.microsoft.com/en-gb/

ZombieCoin: Powering Next-Generation Botnets with Bitcoin 47

36. Franklin, J., Perrig, A., Paxson, V., Savage, S.: An inquiry into the nature and
causes of the wealth of internet miscreants. In ACM Conference on Computer and
Communications Security, pp. 375–388 (2007)

37. Li, Z., Liao, Q., Striegel, A.: Botnet economics: uncertainty matters. In: Johnson,
M.E. (ed.) Managing Information Risk and the Economics of Security, pp. 245–267.
Springer, New York (2009)

38. Porras, P., Säıdi, H., Yegneswaran, V.: A foray into confickers logic and rendezvous
points. In: USENIX Workshop on Large-Scale Exploits and Emergent Threats
(2009)

39. Holz, T., Steiner, M., Dahl, F., Biersack, E., Freiling, F.C.: Measurements and
mitigation of peer-to-peer-based botnets: a case study on storm worm. In: Pro-
ceedings of the First USENIX Workshop on Large-Scale Exploits and Emergent
Threats (LEET), pp. 1–9 (2008)

40. Stock, B., Gobel, J., Engelberth, M., Freiling, F.C., Holz, T.: Walowdac-analysis
of a peer-to-peer botnet. In: 2009 European Conference on Computer Network
Defense (EC2ND), pp. 13–20. IEEE (2009)

41. Andriesse, D., Rossow, C., Stone-Gross, B., Plohmann, D., Bos, H.: Highly resilient
peer-to-peer botnets are here: an analysis of gameover zeus. In: 2013 8th Interna-
tional Conference on Malicious and Unwanted Software: “The Americas” (MAL-
WARE), pp. 116–123. IEEE (2013)

42. Cooke, E., Jahanian, F., McPherson, D.: The zombie roundup: understanding,
detecting, and disrupting botnets. In: Proceedings of the USENIX SRUTI Work-
shop, vol. 39, p. 44 (2005)

43. Ramsbrock, D., Wang, X., Jiang, X.: A first step towards live botmaster traceback.
In: Lippmann, R., Kirda, E., Trachtenberg, A. (eds.) RAID 2008. LNCS, vol. 5230,
pp. 59–77. Springer, Heidelberg (2008)

44. Gu, G., Zhang, J., Lee, W.: Botsniffer: detecting botnet command and control
channels in network traffic. In: Proceedings of the 15th Annual Network and Dis-
tributed System Security Symposium, NDSS (2008)

45. Gu, G., Perdisci, R., Zhang, J., Lee, W. et al.: Botminer: clustering analysis of net-
work traffic for protocol-and structure-independent botnet detection. In: USENIX
Security Symposium, pp. 139–154 (2008)

46. Gu, G., Porras, P.A., Yegneswaran, V., Fong, M.W., Lee, W.: Bothunter: detecting
malware infection through ids-driven dialog correlation. USENIX Secur. 7, 1–16
(2007)

47. Cho, C.Y., Caballero, J., Grier, C., Paxson, V., Song, D.: Insights from the inside:
a view of botnet management from infiltration. In: USENIX Workshop on Large-
Scale Exploits and Emergent Threats (LEET) (2010)

48. Khattak, S., Ramay, N., Khan, K., Syed, A., Khayam, S.: A Taxonomy of Botnet
Behavior, Detection, and Defense. IEEE Commun. Surv. Tutor. 16(2), 898–924
(2014)

49. Silva, S.S.C., Silva, R.M.P., Pinto, R.C.G., Salles, R.M.: Botnets: a survey. Comput.
Netw. 57(2), 378–403 (2013)

50. Starnberger, G., Kruegel, C., Kirda, E.: Overbot: a botnet protocol based on
kademlia. In: Proceedings of the 4th International Conference on Security and
Privacy in Communication Networks (SecureComm), p. 13. ACM (2008)

51. Nappa, A., Fattori, A., Balduzzi, M., Dell’Amico, M., Cavallaro, L.: Take a deep
breath: a stealthy, resilient and cost-effective botnet using skype. In: Kreibich, C.,
Jahnke, M. (eds.) DIMVA 2010. LNCS, vol. 6201, pp. 81–100. Springer, Heidelberg
(2010)

48 S.T. Ali et al.

52. Whittaker, Z.: Skype ditched peer-to-peer supernodes for scalability, not
surveillance 24 June 2013. http://www.zdnet.com/skype-ditched-peer-to-peer-
supernodes-for-scalability-not-surveillance-7000017215/

53. Nagaraja, S., Houmansadr, A., Piyawongwisal, P., Singh, V., Agarwal, P., Borisov,
N.: Stegobot: a covert social network botnet. In: Filler, T., Pevný, T., Craver, S.,
Ker, A. (eds.) IH 2011. LNCS, vol. 6958, pp. 299–313. Springer, Heidelberg (2011)

54. Zeng, Y., Shin, K.G., Hu, X.: Design of SMS commanded-and-controlled and P2P-
structured mobile botnets. In: Proceedings of the Fifth ACM Conference on Secu-
rity and Privacy in Wireless and Mobile Networks (WiSec), pp. 137–148 (2012)

55. Desimone, J., Johnson, D., Yuan, B., Lutz, P.: Covert channel in the bittor-
rent tracker protocol. In: International Conference on Security and Management.
Rochester Institute of Technology (2012). http://scholarworks.rit.edu/other/300

http://www.zdnet.com/skype-ditched-peer-to-peer-supernodes-for-scalability-not-surveillance-7000017215/
http://www.zdnet.com/skype-ditched-peer-to-peer-supernodes-for-scalability-not-surveillance-7000017215/
http://scholarworks.rit.edu/other/300

Cuckoo Cycle: A Memory Bound
Graph-Theoretic Proof-of-Work

John Tromp(B)

600 Route 25A, East Setauket, New York 11733, USA
john.tromp@gmail.com

http://tromp.github.io/

Abstract. We introduce the first graph-theoretic proof-of-work system,
based on finding small cycles or other structures in large random graphs.
Such problems are trivially verifiable and arbitrarily scalable, presum-
ably requiring memory linear in graph size to solve efficiently. Our cycle
finding algorithm uses one bit per edge, and up to one bit per node. Run-
time is linear in graph size and dominated by random access latency, ideal
properties for a memory bound proof-of-work. We exhibit two alternative
algorithms that allow for a memory-time trade-off (TMTO)—decreased
memory usage, by a factor k, coupled with increased runtime, by a factor
Ω(k). The constant implied in Ω() gives a notion of memory-hardness,
which is shown to be dependent on cycle length, guiding the latter’s
choice. Our algorithms are shown to parallelize reasonably well.

1 Introduction

A proof-of-work (PoW) system allows a verifier to check with negligible effort
that a prover has expended a large amount of computational effort. Originally
introduced as a spam fighting measure, where the effort is the price paid by an
email sender for demanding the recipient’s attention, they now form one of the
cornerstones of crypto currencies.

As proof-of-work for new blocks of transactions, Bitcoin [1] adopted Adam
Back’s hashcash [2]. Hashcash entails finding a nonce value such that application
of a cryptographic hash function to this nonce and the rest of the block header,
results in a number below a target threshold1. The threshold is dynamically
adjusted by the protocol so as to maintain an average block interval of 10 min.

Bitcoin’s choice of the simple and purely compute-bound SHA256 hash func-
tion allowed for an easy migration of hash computation from desktop processors
(CPUs) to graphics-card processors (GPUs), to field-programmable gate arrays
(FPGAs), and finally to custom designed chips (ASICs), with huge improvements
in energy-efficiency at every step.

Since Bitcoin, many other crypto-currencies have adopted hashcash, with var-
ious choices of underlying hash function. the most well-known being scrypt as
introduced by Tenebrix [3] (since faded into obscurity) and copied by Litecoin [4].

1 or, less accurately, results in many leading zeroes.

c© International Financial Cryptography Association 2015
M. Brenner et al. (Eds.): FC 2015 Workshops, LNCS 8976, pp. 49–62, 2015.
DOI: 10.1007/978-3-662-48051-9 4

50 J. Tromp

Scrypt, designed as a sequential memory-hard key derivation function, was specif-
ically chosen to resist the migration away from CPUs and be “GPU-hostile”. How-
ever, to adapt to the efficient verifiability requirement of proof-of-work, its mem-
ory footprint was severely limited, and migration slowed down only slightly.

Primecoin [5] introduced the notion of a number-theoretic proof-of-work,
thereby offering the first alternative to hashcash among crypto-currencies.
Primecoin identifies long chains of nearly doubled prime numbers, constrained
by a certain relation to the block header. Verification of these chains, while very
slow compared to bitcoin’s, is much faster than attempting to find one. This
asymmetry between proof attempt and verification is typical in non-hashcash
proofs of work. Recently, two other prime-number based crypto-currencies were
introduced. Riecoin is based on finding clusters of prime numbers, and Gapcoin
on finding large gaps between consecutive prime numbers.

Momentum [6] proposes finding birthday collisions of hash outputs, in what
could well be the simplest possible asymetric proof-of-work, combining scalable
memory usage with trivial verifiability. In Sect. 12 we show that Momentum is
in essence a special case of Cuckoo Cycle, one that is particularly susceptible to
time-memory trade-offs.

Adam Back [7] has a good overview of proof-of-work papers past and present.

2 Motivation

Cuckoo Cycle aims to be an “egalitarian” proof-of-work, that is, to mini-
mize performance-per-dollar differences across hardware architectures, and make
mining—the process of looking for proofs—on commodity hardware cost-effective.
This is to be achieved by making main memory latency a bottleneck, since DRAM
latencies have remained relatively stable while cpu-speed and memory bandwidth
vary highly across hardware architecture and process technology.

Our aim of a memory bound PoW translates to the following desirable
properties:

MB1 a target memory footprint that exceeds a single memory chip
MB2 a pattern of necessarily random memory accesses
MB3 minimal computation per random memory access2

MB4 no feasible trade-off of memory for time3

A memory bound PoW aims to take advantage of the huge economies of
scale of commodity DRAM production to make DRAM chips the most cost-
effective vehicle for mining. Just as SRAM is one order of magnitude faster but
two orders more expensive than DRAM, so it is conceivable that development
and production of custom memory chips for a memory bound PoW will incur a
sufficient cost premium to wipe out any performance gains.
2 Preferably less than the roughly 50 nanosecond row activation delay for switching

rows on a memory bank.
3 Rather arbitrarily defined as incurring an order of magnitude increase in time ×

memory used per expected solution.

Cuckoo Cycle: A Memory Bound Graph-Theoretic Proof-of-Work 51

We thus disagree with the premise of [8] that PoWs should be compute bound
in order to have ongoing energy costs dominate mining, which results in an expen-
sive ASIC design arms race to drive up performance per Watt, rapid hardware
obsolescence, and geographical centralization towards cheap electric power.

We will not strive for provable lower bounds on memory usage. Such bounds
appear to be attainable only under the so-called random oracle model, where
memory tends to be used merely as a store for chains of compute-intensive hash
outputs. Instead, we present an efficient proof-finding algorithm along with our
best attempts at memory-time trade-offs, and conjecture that these cannot be
significantly improved upon. Lacking precise definitions and proofs of memory
bound-ness, this work should be considered more empirical than formal.

3 Graph-Theoretic Proofs-of-work

We propose to base proofs-of-work on finding certain subgraphs in large pseudo-
random graphs. In the Erdős-Rényi model, denoted G(N,M), a graph is chosen
uniformly at random from the collection of all graphs with N nodes and M
edges. Instead, we choose edges deterministically from the output of a keyed
hash function, whose key could be chosen uniformly at random. For a well-
behaved hash function, these two classes of random graphs should have nearly
identical properties.

Formally, fix a keyed hash function h : {0, 1}K × {0, 1}Wi → {0, 1}Wo , and a
small graph H as a target subgraph4. Now pick a large number N ≤ 2Wo as the
number of nodes, and M ≤ 2Wi−1 as the number of edges. Each key k ∈ {0, 1}K
generates a graph Gk = (V,E) where V = {v0, . . . , vN−1}, and

E = {(vh(k,2i) mod N , vh(k,2i+1) mod N)|i ∈ [0, . . . ,M − 1]} (1)

The inputs i ∈ [0, . . . ,M − 1] are also called nonces5. The graph has a solution
if H occurs as a subgraph. Denote the number of edges in H as L. A proof of
solution is an ordered list of L nonces that generate the edges of H’s occurrence
in Gk. Such a proof is verifiable in time depending only on H (typically linear
in L), independent of N and M .

A simple variation generates random bipartite graphs:Gk = (V0∪V1, E) where
(assuming N is even) V0 = {v0, v2, . . . , vN−2}, V1 = {v1, v3, . . . , vN−1}, and

E = {(v2(h(k,2i) mod N
2), v2(h(k,2i+1) mod N

2)+1)|i ∈ [0, . . . ,M − 1]} (2)

The expected number of occurrences of H as a subgraph of G is a function
of both N and M , and in many cases is roughly a function of M

N (half the aver-
age node degree). For fixed N , this function is monotonically increasing in M .

4 Hash functions generally have arbitrary length inputs, but here we fix the input
width at Wi bits.

5 These micro nonces should be distinguished from the macro nonce used to generate
key k.

52 J. Tromp

To make the proof-of-work challenging, one chooses a value of M that yields less
than one expected solution.

The simplest possible choice of subgraph is a fully connected one, or a clique.
While an interesting choice, akin to the number-theoretic notion of a prime-
cluster as used in Riecoin, we leave its consideration to a future paper.

4 Cuckoo Cycle

In this paper we focus on what is perhaps the next-simplest possible choice, the
cycle. Specifically, we propose the hash function siphash with a K = 128 bit key,
Wi = Wo = 64 input and output bits, N ≤ 264 a 2-power, M = N/2, and H
an L-cycle. Using the lightweight siphash2-4 with only 6 rounds helps to attain
property MB3. The reason for calling the resulting proof-of-work Cuckoo Cycle
is that inserting items in a Cuckoo hashtable naturally leads to cycle formation
in random bipartite graphs.

5 Cuckoo Hashing

Introduced by Rasmus Pagh and Flemming Friche Rodler [9], a Cuckoo hashtable
consists of two same-sized tables each with its own hash function mapping a key
to a table location, providing two possible locations for each key. Upon insertion
of a new key, if both locations are already occupied by keys, then one is kicked
out and inserted in its alternate location, possibly displacing yet another key,
repeating the process until either a vacant location is found, or some maximum
number of iterations is reached. The latter is bound to happen once cycles have
formed in the Cuckoo graph. This is a bipartite graph with a node for each
location and an edge for every inserted key, connecting the two locations it can
reside at. It matches the bipartite graph defined above if the cuckoo hashtable
were based on function h. In fact, the insertion procedure suggests a simple
algorithm for detecting cycles.

6 Cycle Detection in Cuckoo Cycle

We enumerate the M nonces, but instead of storing the nonce itself as a key
in the Cuckoo hashtable, we store the alternate key location, and forget about
the nonce. We thus maintain the directed cuckoo graph, in which the edge for
a key is directed from the location where it resides to its alternate location.
Moving a key to its alternate location thus corresponds to reversing its edge.
The outdegree of every node in this graph is either 0 or 1. When there are no
cycles yet, the graph is a forest, a disjoint union of trees. In each tree, all edges
are directed, directly, or indirectly, to its root, the only node in the tree with
outdegree 0. Initially there are just N singleton trees consisting of individual
nodes which are all roots. Addition of a new key causes a cycle if and only if
its two endpoints are nodes in the same tree, which we can test by following

Cuckoo Cycle: A Memory Bound Graph-Theoretic Proof-of-Work 53

2 4 8 10 12

5 9 11 13 15

2 4 8 10 12

5 9 11 13 15

2 4 8 10 12

5 9 11 13 15

Fig. 1. Cycle formation and detection in a Cuckoo graph

the path from each endpoint to its root. In case of different roots, we reverse all
edges on the shorter of the two paths, and finally create the edge for the new
key itself, thereby joining the two trees into one. Let us illustrate this process
with an actual example.

The left diagram in Fig. 1 shows the directed cuckoo graph for header “39” on
N = 8 + 8 nodes after adding edges (2, 15), (4, 9), (8, 5), (4, 15), (12, 11), (10, 5)
and (4, 13) (nodes with no incident edges are omitted for clarity). In order to
add the 8th edge (10, 11), we follow the paths 10 → 5 → 8 and 11 → 12 to
find different roots 8 and 12. Since the latter path is shorter, we reverse it to
12 → 11 so we can add the new edge as (11 → 10), resulting in the middle
diagram. In order to add to 9th edge (10, 13) we now find the path from 10
to be the shorter one, so we reverse that and add the new edge as (10 → 13),
resulting in the right diagram. When adding the 10th edge (8, 9), we find the
paths 8 → 5 → 10 → 13 → 4 → 15 → 2 and 9 → 4 → 15 → 2 with equal roots.
In this case, we can compute the length of the resulting cycle as 1 plus the sum
of the path-lengths to the node where the two paths join. In the diagram, the
paths join at node 4, and the cycle length is computed as 1 + 4 + 1 = 6.

7 Union-Find

The above representation of the directed cuckoo graph is an example of a disjoint-
set data structure [10], and our algorithm is closely related to the well-known
union-find algorithm, where the find operation determines which subset an ele-
ment is in, and the union operation joins two subsets into a single one. For each
edge addition to the cuckoo graph we perform the equivalent of two find oper-
ations and one union operation. The difference is that the union-find algorithm
is free to add directed edges between arbitrary elements. Thus it can join two
subsets by adding an edge from one root to another, with no need to reverse
any edges. Our algorithm on the other hand solves the union-find problem by
maintaining a direction on all union operations while keeping the maximum
outdegree at 1.

54 J. Tromp

8 Cuckoo Cycle Basic Algorithm

The above algorithm for inserting edges and detecting cycles forms the basis
for our basic proof-of-work algorithm. If a cycle of length L is found, then we
solved the problem, and recover the proof by storing the cycle edges in a set and
enumerating nonces once more to see which ones generate edges in the set. If a
cycle of a different length is found, then we keep the graph acyclic by ignoring
the edge. There is some risk of overlooking other L-cycles through that edge,
but when the expected number of cycles is low (which is what we design for),
this ignoring of cycle forming edges hardly affects the rate of solution finding.

This algorithm is available online at https://github.com/tromp/cuckoo as
either the C-program simple miner.cpp or the Java program SimpleMiner.java.
A proof verifier is available as cuckoo.c or Cuckoo.java, while the repository
also has a Makefile, as well as the latest version of this paper. ‘make example’
reproduces the example shown above. The simple program uses 32 bits per node
to represent the directed cuckoo graph, plus about 64 KB per thread for two path-
following arrays. The left plot in Fig. 2 shows both the total runtime in seconds
and the runtime of just the hash computation, as a function of (log)size. The
latter is purely linear, while the former is superlinear due to increasing memory
latency as the nodes no longer fit in cache. The right plot show this more clearly
as the percentage of hashing to total runtime, ending up around 5 %.

15 20 25 30

10−4

10−3

10−2

10−1

100

101

102

log2(N)

se
co

n
d
s

hashing runtime

total runtime

15 20 25 30

0

20

40

60

80

100

log2(N)

%
ru

n
ti

m
e

hashing percentage

Fig. 2. Runtime and compute intensity of the basic algorithm

The left plot in Fig. 3 shows the probability of finding a 42-cycle as a function
of the percentage edges/nodes, while the right plot shows the average number of
memory reads and writes per edge as a function of the percentage of processed
nonces (progress through main loop). Both were determined from 10000 runs at
size 220; results at size 225 look almost identical. In total the basic algorithm
averages 3.3 reads and 1.1 writes per edge.

https://github.com/tromp/cuckoo

Cuckoo Cycle: A Memory Bound Graph-Theoretic Proof-of-Work 55

40 45 50 55 60 65 70

0

0.2

0.4

0.6

0.8

1

M
N

in %

p
ro

b
a
b
il
it
y

has 42-cycle

0 20 40 60 80 100
0

2

4

6

8

10

12

% nonces processed

#
m

em
o
ry

a
cc

es
se

s
p
er

n
o
n
ce

reads

writes

Fig. 3. Threshold nature of solution, and increasing memory usage on threshold
approach

9 Difficulty Control

The ratio M
N determines a base level of difficulty, which may suffice for appli-

cations where difficulty is to remain fixed. Ratios M
N ≥ 0.7 are suitable when a

practically guaranteed solution is desired.
For crypto currencies, where difficulty must scale in precisely controlled man-

ner across a large range, adjusting the number of edges is not suitable. The
implementation default M

N = 1
2 gives a solution probability of roughly 2.2%,

while the average number of cycles found increases slowly with size; from 2 at
220 to 3 at 230.

For further control, a difficulty target 0 < T < 2256 is introduced, and
we impose the additional constraint that the sha256 digest of the cycle nonces
in ascending order be less than T , thus reducing the success probability by a
factor 2256

T .

10 Edge Trimming

David Andersen [11] suggested drastically reducing the number of edges our
basic algorithm has to process, by repeatedly identifying nodes of degree one
and eliminating their incident edge. Such leaf edges can never be part of a cycle.
This works well when M

N ≤ 1
2 since the expected degree of a node is then at

most 1, and a significant fraction of edges are expected to be leaf edges.
Trimming is implemented in our main algorithm in cuckoo miner and

hcuckoo miner.cpp. It maintains a set of alive edges as a bit vector. Initially
all edges are alive. In each of a given number of trimming rounds, it shrinks this
set as follows. A vector of 2-bit degree counters, one per even node, is initialized
to all zeroes. Next, for all alive edges, compute its even endpoint and increase the
corresponding counter, capping the value at 2. Next, for all alive edges, compute
its even endpoint and if the corresponding counter is less than 2, set the edge to

56 J. Tromp

be not-alive. These steps, both of which cause the random accesses required in
property MB2, are repeated for all odd endpoints.

Preprocessor symbol PART BITS, whose value we’ll denote as B, allows
for counter partitioning, which trades off node counter storage for runtime, by
processing nodes in multiple passes depending on the value of their B least
significant bits6. The memory usage is M bits for the alive set and N/2B for the
counters.

The diagrams in Fig. 4 show two rounds of edge trimming on the earlier
example. In round one even nodes 2 and 12 lose their single incident edge and
in round two, odd nodes 11 and 15 lose their remaining single incident edge. At
this point only the 6-cycle is left, so further trimming would be pointless.

2 4 8 10 12

5 9 11 13 15

2 4 8 10 12

5 9 11 13 15

2 4 8 10 12

5 9 11 13 15

Fig. 4. Trimming of edges which cannot be part of a cycle

After all edge trimming rounds, the counter memory is freed, and allocated
to a custom cuckoo hashtable (based on [12]) that presents the same interface as
the simple array in the basic algorithm, but gets by with much fewer locations, as
long as its load, the ratio of remaining edges to number of locations, is bounded
away from 1; e.g. under 90 percent.

The number of trimming rounds, which can be set with option -n, defaults
to 1 + (B + 3) ∗ (B + 4)/2, which was determined empirically to achieve a load
close to 50%.

11 Time-Memory Trade-Offs (TMTOs)

David Andersen also suggested an alternative method of trimming that avoids
storing a bit per edge. Expanding on that idea led to the algorithm implemented
in tomato miner.h, which, unlike the main algorithm, can trade-off memory
directly for runtime. On the downside, to even achieve memory parity with the
main algorithm, it already incurs a big slowdown. To the extent that this slow-
down is unavoidable, it can be called the memory hardness of the proof-of-work.

The TMTO algorithm selects a suitably small subset Z of even vertices as
a base layer, and on top of that builds a breadth-first-search (BFS) forest of

6 excluding the very least significant bit distinguishing even from odd nodes.

Cuckoo Cycle: A Memory Bound Graph-Theoretic Proof-of-Work 57

depth L/2, i.e. half the cycle length. For each new BFS layer, it enumerates
all edges to see which ones are incident to the previous layer, adding the other
endpoint. It maintains a directed forest on all BFS nodes, like the base algorithm
does on all nodes. For increased efficiency, the base layer Z is filtered for nodes
with multiple incident edges. If the graph has an L-cycle one of whose nodes is
in Z, then the above procedure will find it. If one choice of Z doesn’t yield a
solution, then the data structures are cleared and the next subset is tried.

A variation on the above algorithm omits the filtering of Z, and expands
the BFS to a whole L levels. This way, an L-cycle will be found as long as the
distance from (any node in) Z to the cycle is at most L/2. It thus has a much
higher chance of finding a cycle, but requires more space to store the significantly
bigger BFS forest.

For each value of L ∈ {2, 4, 6, 8, 10, 12, 14, 16, 20, 24, 28, 32, 40, 48, 56, 64} we
ran these 2 algorithms on 200 graphs of size 225 that include an L-cycle, choosing
subset size as a 2-power that results in a memory usage of 4MB, and analysed
the distribution of number of subsets tried before finding a solution. Since there
is possible overlap between the BFS forests of different initial subsets, especially
with the second algorithm, the distributions are skewed toward lower numbers.
To maximize solution finding rate then, it pays to give up on a graph when
the first few subsets tried fail to provide a solution. For each algorithm and
cycle length, we determined the minimum number of tries needed to guarantee
solutions in at least 50 of the 200 graphs. In Fig. 5 we plot the slowdown relative
to the reference algorithm also using 4MB (2MB for edges and 2MB for nodes).

0 10 20 30 40 50 60 70
0

20

40

60

80

cycle length L

sl
o
w

d
ow

n
fa

ct
o
r

BFS(L/2)

BFS(L)

Fig. 5. Reduction in solution finding rate for two TMTO algorithms

58 J. Tromp

The zigzagging is caused by the current implementation being limited to 2-
power sizes of both subsets and cuckoo tables while the load of the latter is kept
between 45 % and 90. The BFS(L) algorithm exhibits at least one order of mag-
nitude slowdown, that grows very slowly with cycle length, while the BFS(L/2)
algorithm exhibits roughly linear slowdown. Assuming that these algorithms can-
not be significantly improved upon, this shows Cuckoo Cycle with larger cycle
lengths satisfying property MB4.

12 Choice of Cycle Length

A cycle of length 2 means that two nonces produce identical edge endpoints—a
collision in edge space. The Momentum proof-of-work looks for collisions on 50
bits of hash output among 226 nonces. This is in essence Cuckoo Cycle with
N = 225 + 225 nodes and cycle length L = 2, with two differences.

First, edges are generated not by Eq. (2), but by splitting a SHA512 hash
of (k,nonce/8) into 8 64-bit words, taking the most significant 50 bits of the
(nonce mod 8)th one, and viewing that as a pair of two 25-bit edge endpoints,
appending a bit to make them even and odd.

Second, the choice of M = 226 gives a ratio M
N of 1 rather than 1

2 and as
such prohibits the use of edge trimming.

Since the extreme case of L = 2 is so special, there is likely to be a greater
variety of algorithms that are more efficient than for the general case. While we
haven’t found (and don’t know of) a improved main algorithm, we did find an
improved BFS(L/2) TMTO algorithm (implemented in momentomatum.cpp)
that cuts the memory usage in half, resulting in a slowdown of only 1.75—a lack
of memory-hardness.

The preceding analysis suggests that cycle length should be at least 20 to
guard against the more efficient BFS(L/2) algorithm, with an additional safety
factor of 2.

In order to keep proof size manageable, the cycle length should not be too
large either. We thus consider 20-64 to be a healthy range, and suggest the use
of the average of 42.

The plot below shows the distribution of cycle lengths found for sizes
210, 215, 220, 225, as determined from 100000,100000,10000, and 10000 runs
respectively. The tails of the distributions beyond L = 100 are not shown. For
reference, the longest cycle found was of length 2120.

13 Parallelization

All our implementations allow the number of threads to be set with option -t.
For 0 ≤ t < T , thread t processes all nonces t mod T . Parallelization in the basic
algorithm presents some minor algorithmic challenges. Paths from an edge’s two
endpoints are not well-defined when other edge additions and path reversals are
still in progress. One example of such a path conflict is the check for duplicate
edges yielding a false negative, if in between checking the two endpoints, another

Cuckoo Cycle: A Memory Bound Graph-Theoretic Proof-of-Work 59

0 20 40 60 80 100
0

5 · 10−2

0.1

0.15

0.2

0.25

cycle length L

p
ro

b
a
b
il
it
y

10
15
20
25

Fig. 6. Distribution of cycle lengths in random graphs

thread reverses a path through those nodes. Another is the inadvertent creation
of cycles when a reversal in progress hampers another thread’s path following
causing it to overlook root equality. Thus, in a parallel implementation, path
following can no longer be assumed to terminate. Instead of using a cycle detec-
tion algorithm such as [13], our implementation notices when the path length
exceeds MAXPATHLEN (8192 by default), and reports whether this is due to a
path conflict (Fig. 6).

In the main algorithm, cycle detection only takes a small fraction of total
runtime and the conflicts above could be avoided altogether by running the cycle
detection single threaded.

In edge trimming, parallelization is achieved by partitioning the set of edges.
To maintain efficient access to the bitmap of live edges, each thread handles
words (of 32 edge-bits each) spaced T apart.

Atomic access is used by default for accessing the 2-bit counters. Disabling
this results in a small chance of removing multiple edges incident to a node that
access the counter at the same time.

The implementation further benefits from bucketing the addresses of counters
to be updated or tested, based on their most significant bits. Thus, when a
bucket becomes full and is emptied by actually performing those updates/tests,
the accesses are limited to a certain address range, which turns out to reduce
memory access latencies.

The plot below shows the speedup over single thread performance achieved
by multithreading at 230 nodes and various counter-partition levels.

60 J. Tromp

0 5 10 15 20
0

5

10

number of threads

sp
ee

d
u
p

fa
ct

o
r

speedup30

speedup30.0

speedup30.1

speedup30.2

Fig. 7. Multi-threading speedup

14 Choice of Graph Size

For cryptocurrency purposes, the choice of Cuckoo graph size should be in
accordance to its block interval time. To illustrate, suppose an average desk-
top machine needs 1 min for a single proof attempt, and the block interval time
is only 2 min. Then it will waste a large fraction (almost half) of its attempts,
as about half the time, someone else finds a proof in under 2 min. To reduce
such waste to a small percentage, the time for a single proof attempt should be
a similarly small fraction of the block interval time. This desirable property is
known as progress-freeness, and in our case is achieved more easily with a small
graph (and hence memory) size (Fig. 7).

Larger memory sizes have two advantages. Beyond satisfying property MB1,
they also make it harder for botnets to mine without causing excessive swap-
ping. Sending a computer into swap-hell will likely alert its owner and trigger a
cleanup, so botnet operators can be expected to eschew memory bound PoWs
in favor of low-memory ones.

We expect these opposing goals to lead to graph sizes from 228 to 232, with
the larger ones geared more toward longer block interval times and faster mining
hardware.

Cuckoo Cycle: A Memory Bound Graph-Theoretic Proof-of-Work 61

15 Dynamic Sizing

Ideally, graph size should grow with evolving memory chip capacities, so as
to preserve property MB1. Although these have shown remarkable adherence to
Moore’s Law in the past, this cannot be relied on for the more distant future. We
therefore propose to re-evaluate the graph size every so-many difficulty adjust-
ments. If the difficulty target is sufficiently low, then the graph size is deemed
to have become “too easy” for existing hardware, and gets doubled.

In order to make this transition smoother and avoid severe loss of proof-of-
work power, we propose having a range of sizes allowed at any time, namely
k consecutive 2-powers for some small number k ≥ 2. As with Myriad-coin,
separate difficulty controls are maintained for each size, adjusted so that each
size accounts for roughly 1

k of all blocks.
Doubling graph sizes is then equivalent to disabling the smallest 2-power,

and enabling a new largest one, whose initial difficulty target is twice that of the
previous largest. Even if none of the hardware that was working on the smallest
2-power is repurposed for a larger size, since this hardware only accounted for a
fraction 1

k of the rewards, the loss of proof-of-work power should be acceptable.
It remains to decide what exact form the “difficulties too low” condition

should take.

16 Conclusion

Cuckoo Cycle is a novel graph-theoretic proof-of-work design that combines scal-
able memory requirements with instant verifiability, and the first where memory
latency dominates the runtime.

Barring any unforeseen memory-time trade-offs, it makes for a near-ideal
memory bound proof-of-work whose cost effectiveness on commodity hardware
could greatly benefit decentralization of mining.

References

1. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system. Technical Report,
May 2009. http://www.bitcoin.org/bitcoin.pdf

2. Back, A.: Hashcash - a denial of service counter-measure. Technical Report, August
2002. (implementation released in Mar 1997)

3. Lolcust: [announce] tenebrix, a cpu-friendly, gpu-hostile cryptocurrency, September
2011. https://bitcointalk.org/index.php?topic=45667.0

4. Coblee: [ann] litecoin - a lite version of bitcoin. launched! October 2011. https://
bitcointalk.org/index.php?topic=47417.0

5. King, S.: Primecoin: Cryptocurrency with prime number proof-of-work. Technical
Report, July 2013. http://primecoin.org/static/primecoin-paper.pdf

6. Larimer, D.: Momentum - a memory-hard proof-of-work via finding birthday colli-
sions. Technical Report, October 2013. www.hashcash.org/papers/momentum.pdf

7. Back, A.: Hashcash.org, February 2014. http://www.hashcash.org/papers/

http://www.bitcoin.org/bitcoin.pdf
https://bitcointalk.org/index.php?topic=45667.0
https://bitcointalk.org/index.php?topic=47417.0
https://bitcointalk.org/index.php?topic=47417.0
http://primecoin.org/static/primecoin-paper.pdf
www.hashcash.org/papers/momentum.pdf
http://www.hashcash.org/papers/

62 J. Tromp

8. Poelstra, A.: Asics and decentralization faq (2014). https://download.wpsoftware.
net/bitcoin/asic-faq.pdf

9. Pagh, R., Rodler, F.F.: Cuckoo hashing. J. Algorithms 51(2), 122–144 (2004).
doi:10.1016/j.jalgor.2003.12.002

10. Wikipedia, Disjoint-set data structure – wikipedia, the free encyclopedia
(2014). Accessed from 23-March-2014. http://en.wikipedia.org/w/index.php?
title=Disjoint-set data structure

11. Andersen, D.: A public review of cuckoo cycle, April 2014. http://da-data.blogspot.
com/2014/03/a-public-review-of-cuckoo-cycle.html

12. Preshing, J.: The world’s simplest lock-free hash table, June 2013. http://preshing.
com/20130605/the-worlds-simplest-lock-free-hash-table/

13. Brent, R.P.: An improved Monte Carlo factorization algorithm. BIT 20, 176–184
(1980)

https://download.wpsoftware.net/bitcoin/asic-faq.pdf
https://download.wpsoftware.net/bitcoin/asic-faq.pdf
http://dx.doi.org/10.1016/j.jalgor.2003.12.002
http://en.wikipedia.org/w/index.php?title=Disjoint-set_data_structure
http://en.wikipedia.org/w/index.php?title=Disjoint-set_data_structure
http://da-data.blogspot.com/2014/03/a-public-review-of-cuckoo-cycle.html
http://da-data.blogspot.com/2014/03/a-public-review-of-cuckoo-cycle.html
http://preshing.com/20130605/the-worlds-simplest-lock-free-hash-table/
http://preshing.com/20130605/the-worlds-simplest-lock-free-hash-table/

When Bitcoin Mining Pools Run Dry

A Game-Theoretic Analysis of the Long-Term Impact
of Attacks Between Mining Pools

Aron Laszka1(B), Benjamin Johnson2, and Jens Grossklags3

1 Institute for Software Integrated Systems, Vanderbilt University, Nashville, USA
laszka.aron@gmail.com

2 CyLab, Carnegie Mellon University, Pittsburgh, USA
3 College of Information Sciences and Technology,

Pennsylvania State University, University Park, USA

Abstract. Bitcoin has established itself as the most successful cryp-
tocurrency with adoption seen in many commercial scenarios. While
most stakeholders have jointly benefited from the growing importance
of Bitcoin, conflicting interests continue to negatively impact the ecosys-
tem. In particular, incentives to derive short-term profits from attacks
on mining pools threaten the long-term viability of Bitcoin.

We develop a game-theoretic model that allows us to capture short-
term as well as long-term impacts of attacks against mining pools. Using
this model, we study the conditions under which the mining pools have
no incentives to launch attacks against each other (i.e., peaceful equilib-
ria), and the conditions under which one mining pool is marginalized by
attacks (i.e., one-sided attack equilibria). Our results provide guidelines
for ensuring that the Bitcoin ecosystem remains long-term viable and
trustworthy.

Keywords: Bitcoin · Mining · Attacks · DDoS · Game theory

1 Introduction

Conceived in 2008, Bitcoin is a cryptocurrency system which is controlled
through an online communication protocol and facilitated in a decentralized
fashion [15]. Bitcoin has experienced considerable growth in popularity and con-
stitutes the dominant cryptocurrency [2]. It has also increasingly found adoption
as a viable payment scheme in mainstream electronic commerce.

Despite setbacks, such as the closure of the Mt. Gox exchange, most stake-
holders of the Bitcoin ecosystem have profited from its development and expect
to benefit also in the future from the trust placed in the cryptocurrency. As such,
participants in the Bitcoin ecosystem share a common goal with the improve-
ment (or avoidance of the erosion) of trust of the currency system. Interactions in
most economic systems usually involve such common but at the same time also
conflicting interests [18]. In the Bitcoin ecosystem, such misaligned incentives
are manifested in several ways.
c© International Financial Cryptography Association 2015
M. Brenner et al. (Eds.): FC 2015 Workshops, LNCS 8976, pp. 63–77, 2015.
DOI: 10.1007/978-3-662-48051-9 5

64 A. Laszka et al.

Most centrally, the process of mining new bitcoins is organized in the form of
a race in which the miner that solves a proof-of-work task first will be rewarded;
all other miners will leave empty-handed. Mining involves a probabilistic element,
so that not only the most powerful miner would win a particular round of this
competition with certainty. Nevertheless, individual miners have found it bene-
ficial to join forces in the form of mining pools. For example, averaging mining
proceeds across many participants makes earnings more predictable. The specific
setup of each mining pool typically differs across several dimensions which can
be tangible (e.g., related to the computing and communication infrastructure)
or intangible (such as reputation or details of the payout schemes). We term the
sum of these factors the attractiveness of a mining pool.

However, the decentralized and quasi-anonymous nature of the Bitcoin
ecosystem also lowers the bar for unfair competition in the form of different
attacks which can benefit a malicious mining pool. First, attackers may abuse
the resources of unsuspecting computer users for mining purposes through secu-
rity compromises [8,16]. Second, attackers may attempt to redirect or siphon off
mining capabilities from a competing pool [12]. Third, attackers may diminish
the mining power of competing pools, for example, through Distributed Denial
of Service (DDoS) attacks [20], or by exploiting specific weaknesses in the imple-
mentation of the procedure/software used by a particular pool.

The third dimension of unfair competition has been the focus of two recent
research contributions. Vasek et al. provided empirical evidence that, during a
two-year period, about 29 % of all known mining pools had been the subject of
at least one DDoS attack, and for mining pools above 5 % share of hash rate, the
likelihood of suffering an attack was 63 %. They further characterized the types
of pools that are more likely to be attacked [20]. Building on these findings,
we developed a game-theoretic model in [9], which investigated the adversarial
interaction between two representative mining pools that can choose between
productive and destructive investments (i.e., computing power vs. DDoS attack
on its competitor). We found that the relative size of the mining pools is a critical
factor for the incentives to engage in attacks.

Both research studies primarily focus on the immediate impact of attacks
on mining pools, i.e., the temporary shutdown of mining power and its payoff
consequences. However, previous research on DDoS attacks in the context of
electronic commerce has shown that the future (medium or long-term) impact
of service unavailability can actually be more significant [6]. In the context of
mining pools, individual members can permanently shift to an unaffected pool,
which lowers the future prospects of the attacked pool. Even though the long-
term impact of attacks can have a strong influence on the behavior of service
providers, this phenomenon has not been studied from a theoretical perspec-
tive for DDoS attacks in general, or in the context of Bitcoin mining pools in
particular [9].

In this paper, we develop a game-theoretic model that allows us to investigate
the long-term impact of attacks against mining pools. Using this model, we study
the conditions under which the mining pools have no incentives to launch attacks

When Bitcoin Mining Pools Run Dry 65

against each other (i.e., peaceful equilibria), and the conditions under which one
mining pool is marginalized by attacks (i.e., one-sided attack equilibria). Our
results provide guidelines for ensuring that the Bitcoin ecosystem remains long-
term viable and trustworthy.

The remainder of this paper is organized as follows. In Sect. 2, we discuss
related work relevant to the context of DDoS attacks in networked systems. We
describe our model and key assumptions in Sect. 3. We conduct our analysis and
present numerical results/illustrations in Sects. 4 and 5, respectively. We offer
concluding remarks in Sect. 6.

2 Related Work

Decision-making in the context of security has been extensively studied using
various game-theoretic approaches [10,14]. Of particular interest to our work
are studies which address the incentives for adversarial behaviors. For exam-
ple, Schechter and Smith [17] build upon the literature on the economics of
crime to construct a model of attackers in the computer-security context. The
authors derive penalties and probabilities of enforcement that will deter a utility-
optimizing attacker, who evaluates the risks and rewards of committing an
offense. Clark and Konrad propose a game-theoretic model with one defender
and one attacker [4]. In their model, the defending player has to successfully
protect multiple nodes, while the attacker needs to compromise only a single
node. Fultz and Grossklags study the competition between multiple strategic
attackers in different interdependent decision-making scenarios [5,7].

Previous economic work has improved our understanding of DDoS attacks
and potential countermeasures. Focusing on defender behaviors, Christin et al.
investigate the incentives of a group of bounded rational agents when they face
the threat of being absorbed into a botnet, e.g., for the purpose of a DDoS attack
[3]. In contrast, Liu et al. model attackers and work towards identifying DDoS
attacker strategies in a specific case study [13]. Li et al. model the incentives of
a botnet master to maintain a zombie network for the primary purpose of rent-
ing a sufficiently large subset to a DDoS attacker [11]. The authors investigate
whether this business relationship can remain profitable if defenders can pol-
lute the botnet with decoy machines (which lowers the effectiveness of a DDoS
attack). In addition, there are several other research studies which are concerned
with the organization of effective countermeasures against DDoS [19,21].

As discussed in the introduction, our current work draws on Vasek et al. who
provided empirical evidence on the prevalence of DDoS attacks in the Bitcoin
economy [20]. They showed, for example, that the size of mining pools is related
to the probability of being targeted by an attack. Those findings motivated us to
develop a game-theoretic model of attack behaviors between two mining pools
which is, however, restricted to studying short-term effects of attacks [9].

66 A. Laszka et al.

3 Model

3.1 Overview

Our modeling framework is designed to capture two distinct effects of attacks
against mining pools. The first, and most obvious is a short-term effect on the
revenue of the attacked pool. While an attack is ongoing, the communication
of the pool is disrupted, and hence the revenue decreases. The second effect
is a longer term decrease in the size of the pool. Due to the myopic behavior
of miners, an ongoing attack may cause some miners to permanently leave the
attacked pool and mine for other pools.

In our previous paper [9], we focused on the first effect and did not take into
account the second. In this paper, we extend our analysis to incorporate both
effects using a sequential game played over an indefinite number of rounds. In
each round, the choices of players result in both short-term revenue consequences,
which affect player utilities, as well as long-term migration consequences, which
affect the relative sizes of pools in the next round.

Miner migration is an interesting feature in itself. Our modeling framework
assumes that there is some level of migration in each round, regardless of any
attacks. That is to say there is a percentage of miners who are sufficiently fluid
in their preferences that they re-evaluate their choice of pool each round. The
remaining percentage of miners in a given round will continue mining for the
same pool in the next round.

Our main focus in studying this model will be determining steady-state equi-
librium strategies. These are strategies that stabilize the long-term migration
effects, so that the players’ sizes remain the same from round to round; and that
also constitute best-response strategies for each player. Steady-state equilibria
are consistent with what we observe in the Bitcoin ecosystem, where we observe
little change in the relative sizes of pools from round to round.1

Table 1 summarizes the notations used in the model.

3.2 Players

Our game has exactly two players: a bigger mining pool B and a smaller mining
pool S. Each pool has a base level of attractiveness which we parameterize with
two constants AB , AS . We may interpret AB (for example) as the percentage of
fluid miners who will migrate to pool B in the next round.

In contrast to the attractiveness levels which are fixed for the duration of
the game, each pool also has a current size for each round. For example, s

(k)
B

is the relative size of pool B in round k. Relative size is interpreted to mean
the percentage of hash power possessed by its miners, compared to the entire
Bitcoin ecosystem.
1 Steady-state equilibrium analysis has been used relatively sparingly in the security

economics literature (see, for example, [1]), while it is a frequently employed solution
concept in other areas of economics.

When Bitcoin Mining Pools Run Dry 67

Table 1. Table of Notations

Symbol(s) Constraints Description

M ∈ [0, 1] Base miner migration rate

C ∈ [0, 1] Unit cost of attack

AB , AS ∈ [0, 1] and Relative attractiveness of the pool

AB + AS ∈ [0, 1]

s
(k)
B , s

(k)
S ∈ [0, 1] and Relative size of the pool in round k

s
(k)
B + s

(k)
S ∈ [0, 1]

a
(k)
B , a

(k)
S ∈ [0, 1] Attack level of the pool in round k

From round to round, the sizes of pools may change; and in fact it may
happen that a bigger pool becomes a smaller pool in the next round. To be
consistent with our terminology then, the salient feature we use to distinguish
B from S is the assumption that AB ≥ AS .

3.3 Choices

In each round, players simultaneously choose an attack level in [0, 1]. In round
k, pool B chooses a

(k)
B , while pool S chooses a

(k)
S . The attack level is intended to

be interpreted generically, independent of the specific attack form. The attack
could be distributed denial of service (DDoS), or any other form of adversarial
action that disrupts the attacked pool’s mining efforts.

3.4 Consequences

The choices of mining pools affect both the short-term utilities of players, as
well as the longer-term size of each pool as a result of miner migration.

Short-Term Consequences. Let C ∈ [0, 1] be the per unit cost of an attack,
then the utility of pool B in round k can be expressed in terms of the relative
sizes of B and S via

u
(k)
B =

s
(k)
B · (1 − a

(k)
S)

1 − s
(k)
B · a

(k)
S − s

(k)
S · a

(k)
B

− C · a
(k)
B . (1)

In the above formula, s
(k)
B · (1 − a

(k)
S) is the mining power of B considering S’s

attack, 1 − s
(k)
B · a

(k)
S − s

(k)
S is the mining power of the whole Bitcoin ecosystem

considering both attacks, and C · a
(k)
B is the total cost of attack incurred by B.

The utility function is designed to correspond directly to the percentage of
mining revenue obtain by the pool in the given round. The relative amount of
coins being mined in round k is decreased by the two players’ attacks, which
explains the denominator; while the relative amount of coins being mined by

68 A. Laszka et al.

pool B in round k is affected proportionally to the attack level against pool B
by pool S, which explains the numerator.

Note that by symmetry, we have the utility of S in round k as

u
(k)
S =

s
(k)
S · (1 − a

(k)
B)

1 − s
(k)
S · a

(k)
B − s

(k)
B · a

(k)
S

− C · a
(k)
S . (2)

Long-Term Consequences. Attack strategies also have long-term conse-
quences, that do not affect the players’ immediate revenue, but do affect miner
migration, and hence the relative sizes of the pools in the next round.

In each round, the miners that are affected by an attack re-evaluate their
choices and start to migrate. Formally, in each round, s

(k)
B · a

(k)
S (or s

(k)
S · a

(k)
B)

miners leave pool B (or S) due to attacks. The group of migrating miners redis-
tribute themselves in the next round among the pools in a manner proportional
to each pool’s relative attractiveness level (AB , AS , or 1−AB −AS , for pool B,
pool S, and all other pools, respectively).

Miners may also re-evaluate their choices from time to time even when they
are not affected by an attack. Let M ∈ [0, 1] denote the level of this base migra-
tion. If M = 0, then from any initial state s

(0)
B , s

(0)
S , the pool sizes remain con-

stant from round to round when there are no attacks. If M = 1, then every
miner re-evaluates her pool choice in each round. Similarly to migration due to
attacks, the group of migrating miners redistribute themselves among the pools
in a manner proportional to each pool’s relative attractiveness level.

We may thus express the relative size of pool B in round k + 1 in terms of
the relative sizes of pools in round k, together with attack levels and the base
migration rate:

s
(k+1)
B = s

(k)
B

+ AB · [(1 − s
(k)
B) · M + s

(k)
S a

(k)
B (1 − M)] (migration into B)

− s
(k)
B · (1 − AB) · [M + a

(k)
S (1 − M)] (migration out of B). (3)

Analogously, the relative size of pool S in round k + 1 may be expressed as

s
(k+1)
S = s

(k)
S

+ AS · [(1 − s
(k)
S) · M + s

(k)
B a

(k)
S (1 − M)] (migration into S)

− s
(k)
S · (1 − AS) · [M + a

(k)
B (1 − M)] (migration out of S). (4)

4 Model Analysis

We begin the analysis of our modeling framework by proving a uniqueness result
for each pool’s relative size in a steady-state equilibrium.

When Bitcoin Mining Pools Run Dry 69

4.1 Steady-State Pool Sizes

Theorem 1. If M > 0, then for any strategy profile (aS , aB), there exists a
unique pair of relative sizes (sS∗, sB∗) such that

(s(k+1)
S , s

(k+1)
B) = (s(k)S , s

(k)
B) = (s∗

S , s∗
B).

Proof. Given a strategy profile (aS , aB), the conditions of the theorem require
(s∗

S , s∗
B) to satisfy

s∗
B · (1 − AB) · [M + aS(1 − M)] (migration out of B)
= AB · [(1 − s∗

B) · M + s∗
SaB(1 − M)] (migration into B)

and

s∗
S · (1 − AS) · [M + aB(1 − M)] (migration out of S)
= AS · [(1 − s∗

S) · M + s∗
BaS(1 − M)] (migration into S).

Solving B’s migration equation for s∗
B , we obtain

s∗
B =

AB · [M + s∗
SaB(1 − M)]

M + aS(1 − AB)(1 − M)
.

This linear constraint is satisfied by all points (sS , sB) on the line segment con-
necting the points

(
0, ABM

M+aS(1−AB)(1−M)

)
and

(
1, AB [M+aB(1−M)]

M+aS(1−AB)(1−M)

)
.

Similarly, the migration equation for S may be reduced to the linear con-
straint

s∗
B =

−ASM + s∗
S [M + aB(1 − AS)(1 − M)]
ASaS(1 − M)

,

which is satisfied by all pairs (sS , sB) on the line segment connecting the points(
0, −M

aS(1−M)

)
and

(
1, (1−AS)[M+aB(1−M)]

aSAS(1−M)

)
.

We now wish to show that these two segments must intersect in the interval
[0, 1]. More precisely, we claim that the second segment starts below the first
segment when sS = 0; and ends above the first segment when sS = 1.

The two relevant inequalities are:

−M

aS(1 − M)
<

ABM

M + aS(1 − AB)(1 − M)
(5)

and
AB [M + aB(1 − M)]

M + aS(1 − AB)(1 − M)
<

(1 − AS)[M + aB(1 − M)]
aSAS(1 − M)

(6)

Inequality (5) follows because the first term is negative while the second term
is positive (or zero if AB = 0). Inequality (6) follows from:

70 A. Laszka et al.

AB [M + aB(1 − M)]
M + aS(1 − AB)(1 − M)

≤ (1 − AS)[M + aB(1 − M)]
M + aSAS(1 − M)

(AS + AB ≤ 1)

<
(1 − AS)[M + aB(1 − M)]

aSAS(1 − M)
(M > 0).

��
As a result of the theorem, the unique steady-state solution can be expressed

directly in terms of the strategies aS and aB , the attractiveness levels AS and
AB , and the migration constant M :

s∗
S =

ASM [M + aS(1−M)]
[M + aB(1−AS)(1−M)][M + aS(1−AB)(1−M)] − ABaBASaS(1−M)2

(7)

s∗
B =

ABM [M + aB(1−M)]
[M + aB(1−AS)(1−M)][M + aS(1−AB)(1−M)] − ABaBASaS(1−M)2

.

(8)

Furthermore, we know that these values are in [0, 1] under our modeling assump-
tions without having to do further case analysis.

4.2 Steady-State Pool Utilities

Since there is a unique pair of steady-state pool sizes for each strategy profile, we
can find a steady-state equilibrium by assuming that the pool sizes and, hence,
the players’ utilities are given by Eqs. (7) and (8). In other words, given a strategy
profile (aS , aB), we may write the utility of each pool under the assumption that
the relative sizes are the steady-state sizes s∗

S and s∗
B.

For pool S, we obtain

uS =
ASM [M + aS(1 − M)](1 − aB)

Denominator
− aSC, (9)

and for pool B, we have

uB =
ABM [M + aB(1 − M)](1 − aS)

Denominator
− aBC, (10)

where

Denominator = M + aS(1 − M − AB)][M + aB(1 − M − AS)]

+ aSaB [(1 − AS − AB)(1 − M)2 − ASAB]. (11)

This formulation will permit us to determine all the steady-state equilibria
for the sequential game presented in Sect. 3 by finding Nash equilibria for a
single-shot two-player game with the above utilities.

When Bitcoin Mining Pools Run Dry 71

4.3 Peaceful Equilibria

We begin our analysis of equilibria by determining the conditions under which
it is a stable strategy profile for each player to refrain from attacking the other
player.

Theorem 2. The strategy profile (aS , aB) = (0, 0) is a Nash equilibrium just in
case

C ≥ ABAS

min{M, 1 − AB , 1 − AS} . (12)

Proof. Suppose that aS = 0. We want to characterize the conditions under which
aB = 0 is a best response. First, we express the utility of B in a steady state by
substituting aS = 0 into Eq. (10), obtaining

uB =
AB [M + aB(1 − M)]

[M + aB(1 − M − AS)]
− aBC . (13)

When B does not attack (aB = 0), her resulting steady-state utility is uB =
AB ; while if she attacks with full force (aB = 1) her utility becomes uB =
AB

1−AS
−C. Because the utility function is analytic in aB , any intermediate attack

level can only be a utility-maximizing response strategy if the partial derivative
of uB with respect to aB evaluated at that specific attack level is zero.

Computing the first and second partial derivatives of uB with respect to aB ,
we obtain

∂uB

∂aB
=

ABASM

[M + aB(1 − M − AS)]2
− C , (14)

and
∂2uB

∂a2
B

=
−2ABASM(1 − M − AS)
[M + aB(1 − M − AS)]3

. (15)

Since the denominator of Eq. (15) is always positive, the second derivative
itself is of constant sign; and this sign is negative if and only if 1− M − AS > 0,
or equivalently M < 1 − AS . It is only in this case where the roots of the first
derivative will give relevant maximizing solutions for the attack level.

In the case M > 1−AS , the roots of the first derivative will give minimizing
attack levels, and in the case M = 1 − AS the first derivative will be constant,
and hence the utility B will be maximized at either one of the endpoints of [0, 1],
or on the entire interval.

Setting the derivative from Eq. (14) equal to zero and solving for aB , we
obtain

aB =

√
ABASM

C − M

1 − AS − M
. (16)

Now we consider two parameter cases.

72 A. Laszka et al.

– First, if M ≥ 1−AS , then the maximizing attack level is one (or both) of the
two endpoints 0 or 1. In this case an optimal response is aB = 0 exactly when
AB ≥ AB

1−AS
− C, or equivalently, when

C ≥ ABAS

1 − AS
=

ABAS

min{M, 1 − AS} .

– Second, if M < 1 − AS , then the maximizing attack level will be zero if and
only if the point at which the derivative is zero is non-positive. Since we are
in the case 1 − AS < M , we may deduce from Eq. (16) that the analytically-

maximizing aB is non-positive if and only if
√

ABASM
C −M ≥ 0. This condition

reduces to
C ≥ ABAS

M
=

ABAS

min{M, 1 − AS} .

These two parameter cases exhaust all options; and we have shown that in
each case aB = 0 is a best response to aS = 0 if and only if

C ≥ ABAS

min{M, 1 − AS} .

To have (aS , aB) = (0, 0) be an equilibrium, we also need aS = 0 to be a best
response to aB = 0. By symmetry, this will happen if and only if

C ≥ ABAS

min{M, 1 − AB} .

We conclude that a peaceful equilibrium exists if and only if

C ≥ ABAS

min{M, 1 − AB , 1 − AS} .

��

4.4 One-Sided Attack Equilibria

Our next special case to consider is when exactly one of the players attacks while
the other remains peaceful.

Theorem 3. The strategy profile (aS , aB) = (0, 1) forms a Nash equilibrium if
and only if

C ≤ ABAS

(1 − AS)2
· min{M, 1 − AS} (17)

Proof. First suppose that aB = 1. Then the utility of S is given by

uS = −aSC, (18)

and this quantity is clearly maximized for aS ∈ [0, 1] by taking aS = 0. So aS = 0
is always a best response to aB = 1.

When Bitcoin Mining Pools Run Dry 73

Next suppose that aS = 0. We want to characterize the conditions under
which aB = 1 is a best response. From the previous special case analysis, we
have

uB =
AB [M + aB(1 − M)]

[M + aB(1 − M − AS)]
− aBC.

Exactly as in the previous analysis, when aB = 0, we have uB = AB ; and if
aB = 1, we get uB = AB

1−AS
−C. The same conditions applied to the derivative of

uB determine when the maximizing value of aB is reached at a boundary point
(0 or 1) or whether it may relate to where the derivative is zero at

aB =

√
ABASM

C − M

1 − AS − M
.

The derivative value is relevant if and only if M < 1 − AS .
In the case where M ≥ 1 − AS , a maximizing attack level is one of the

endpoints of [0,1]; and in this parameter case, the best response is aB = 1 if and
only if

C ≤ ABAS

1 − AS
=

ABAS

(1 − AS)2
· min{M, 1 − AS}.

In the case M < 1 − AS , the maximizing value is 1 if and only if the global
analytically-derived maximum is at least 1. This happens when

√
ABASM

C − M

1 − AS − M
≥ 1

√
ABASM

C
− M ≥ 1 − AS − M

ABASM

C
≥ (1 − AS)2

ABASM

(1 − AS)2
≥ C

C ≤ ABAS

(1 − AS)2
· min{M, 1 − AS}

Again these two parameter cases exhaust all options; and in each case
(aS , aB) = (0, 1) is an equilibrium configuration if and only if

C ≤ ABAS

(1 − AS)2
· min{M, 1 − AS}.

��

74 A. Laszka et al.

To have (aS , aB) = (1, 0) be an equilibrium, we would need the condition

C ≤ ABAS

(1 − AB)2
· min{M, 1 − AB}.

Of course both conditions may be simultaneously satisfied for C sufficiently
small, in which case both one-sided attack configurations will be equilibria.

5 Numerical Illustrations

5.1 The Peaceful Equilibrium

Figure 1 shows the parameter combinations where the peaceful equilibrium exists
(i.e., aS = 0 and aB = 0 being best responses to each other). In Fig. 1(a), we fix
the parameters AS = 0.2 and AB = 0.3, and we vary the parameters M and C.
The figure shows that, if both M and C are high, then the peaceful equilibrium
is possible; however, if either of these parameters is low, then there can be no
peace. The latter is especially important in the case of M , which has no effect
on the existence of the peaceful equilibrium once its value reaches 1−Aj (0.7 in
the figure). In practice, this means that both the pools and the users have to act
in order to reach the peaceful equilibrium: the pools have to employ defensive
countermeasures which increase C, while the users have to be proactive in their
mining-pool choice, which increases M .

In Fig. 1(b), we fix the parameters M = 0.5 and C = 0.1, and we vary the
parameters AS and AB . The figure shows that the peaceful equilibrium exists
if either one (or both) of the pools has a low attractiveness. In practice, this

(a) AS = 0.2, AB = 0.3 (b) M = 0.5, C = 0.1

Fig. 1. Existence of the peaceful equilibrium (i.e., aS = 0 and aB = 0). Lighter shaded
areas represent parameter combinations where the peaceful equilibrium exists.

When Bitcoin Mining Pools Run Dry 75

means that a healthy competition between the pools, in which both of them try
to attract miners, is very beneficial: not only will it result in better deals for the
miners, but it may also bring peace.

5.2 One-Sided Attack Equilibria

Figure 2 shows the parameter combinations where one-sided attack equilibria
exist (i.e., when pool i ∈ {S,B} playing ai = 1 and the other pool playing aī = 0
forms an equilibrium). In Fig. 2, we fix the parameters AS = 0.2 and AB = 0.3,
and we vary the parameters M and C. The figure shows that one-sided attack
equilibria are more likely to exist when M is high but C is low. This means
that, to avoid a one-sided attack equilibrium, the pools must employ defensive
countermeasures that increase the cost of attack C. Furthermore, the figure
also shows that less attractive pools are more likely to play a one-sided attack
strategy (darker shaded middle section representing (aS = 1, aB = 0)). While
this may seem counterintuitive at first, it is actually very easy to explain. The
more attractive pool has more miners even without launching an attack; hence,
it is less inclined to dominate the other player with a marginalizing attack. The
less attractive pool, on the other hand, has a lot to gain from such an attack;
hence, it is more inclined to try to “steal” the miners of the more attractive pool.

In Fig. 2(b), we fix the parameters M = 0.5 and C = 0.1, and we vary the
parameters AS and AB . The figure shows that , once a pool is highly attractive
to the miners, the other pool will have an incentive to launch a marginalizing
attack against it. While attacks are generally harmful to the Bitcoin ecosystem,
they have positive effects in this context, as they prevent one pool from growing
too large.

(a) AS = 0.2, AB = 0.3 (b) M = 0.5, C = 0.1

Fig. 2. Existence of one-sided attack equilibria. Shades from darker to lighter: no one-
sided attack equilibrium, (aS = 1, aB = 0) forms an equilibrium, (aS = 0, aB = 1)
forms an equilibrium, both form equilibria.

76 A. Laszka et al.

6 Conclusion and Future Work

In this paper, we proposed a game-theoretic model of attacks between Bitcoin
mining pools, which – to the best of our knowledge – is the first study to consider
long-term consequences. The analysis of our model has revealed a number of
interesting implications for making the Bitcoin ecosystem more viable. We have
seen that, in order to make the peaceful equilibrium viable, the unit cost of
attack and the miners’ base migration rate both have to be increased, and no
pool can have an overwhelming attractiveness. We have seen that these factors
also help preventing a marginalizing attack against one pool.

We limited the mining pools’ strategic choices to launching attacks and
assumed that the effects of defensive countermeasures are incorporated into the
unit cost of attack. In future work, we can extend this model by allowing the
pools to deploy additional defenses for some fixed cost, which decrease the effec-
tiveness of attacks. As another direction, we can also extend the model by allow-
ing the pools to choose some of the parameters that affect their attractiveness
levels. For example, a pool could choose to increase its fee, which decreases its
attractiveness but increases its utility for a given steady-state size. Finally, in
this paper, we modeled only two pools as strategic players, but we intend to
extend our work towards the case of multiple mining pools.

Acknowledgments. We thank the reviewers for their detailed feedback. This work
was supported in part by the National Science Foundation under Award CNS-1238959.

References

1. Bensoussan, A., Kantarcioglu, M., Hoe, S.R.C.: A game-theoretical approach for
finding optimal strategies in a botnet defense model. In: Alpcan, T., Buttyán, L.,
Baras, J.S. (eds.) GameSec 2010. LNCS, vol. 6442, pp. 135–148. Springer, Heidel-
berg (2010)

2. Böhme, R., Christin, N., Edelman, B., Moore, T.: Bitcoin. J. Econ. Perspect.
(forthcoming)

3. Christin, N., Grossklags, J., Chuang, J.: Near rationality and competitive equilib-
ria in networked systems. In: Proceedings of the ACM SIGCOMM Workshop on
Practice and Theory of Incentives in Networked Systems, pp. 213–219 (2004)

4. Clark, D., Konrad, K.: Asymmetric conflict: weakest link against best shot. J.
Conflict Resolut. 51(3), 457–469 (2007)

5. Fultz, N., Grossklags, J.: Blue versus red: towards a model of distributed security
attacks. In: Dingledine, R., Golle, P. (eds.) FC 2009. LNCS, vol. 5628, pp. 167–183.
Springer, Heidelberg (2009)

6. Goldfarb, A.: The medium-term effects of unavailability. Quant. Mark. Econ. 4(2),
143–171 (2006)

7. Grossklags, J., Christin, N., Chuang, J.: Secure or insure? A game-theoretic analy-
sis of information security games. In: Proceedings of the 2008 World Wide Web
Conference (WWW 2008), pp. 209–218, April 2008

When Bitcoin Mining Pools Run Dry 77

8. Huang, D.Y., Dharmdasani, H., Meiklejohn, S., Dave, V., Grier, C., McCoy, D.,
Savage, S., Weaver, N., Snoeren, A.C., Levchenko, K.: Botcoin: monetizing stolen
cycles. In: Proceedings of the 2014 Network and Distributed System Security Sym-
posium (NDSS) (2014)

9. Johnson, B., Laszka, A., Grossklags, J., Vasek, M., Moore, T.: Game-theoretic
analysis of DDoS attacks against bitcoin mining pools. In: Böhme, R., Brenner,
M., Moore, T., Smith, M. (eds.) FC 2014 Workshops. LNCS, vol. 8438, pp. 72–86.
Springer, Heidelberg (2014)

10. Laszka, A., Felegyhazi, M., Buttyán, L.: A survey of interdependent information
security games. ACM Comput. Surv. 47(2), 23:1–23:38 (2014)

11. Li, Z., Liao, Q., Blaich, A., Striegel, A.: Fighting botnets with economic uncer-
tainty. Secur. Commun. Networks 4(10), 1104–1113 (2011)

12. Litke, P., Stewart, J.: BGP hijacking for cryptocurrency profit, August 2014.
http://www.secureworks.com/cyber-threat-intelligence/threats/bgp-hijacking-for-
cryptocurrency-profit/

13. Liu, P., Zang, W., Yu, M.: Incentive-based modeling and inference of attacker
intent, objectives, and strategies. ACM Trans. Inf. Syst. Secur. 8(1), 78–118 (2005)

14. Manshaei, M., Zhu, Q., Alpcan, T., Bacşar, T., Hubaux, J.P.: Game theory meets
network security and privacy. ACM Comput. Surv. 45(3), 25:1–25:39 (2013)

15. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2008). http://
bitcoin.org/bitcoin.pdf

16. Plohmann, D., Gerhards-Padilla, E.: Case study of the miner botnet. In: Proceed-
ings of the 4th International Conference on Cyber Conflict (CYCON), pp. 345–360
(2012)

17. Schechter, S.E., Smith, M.D.: How much security is enough to stop a thief? In:
Wright, R.N. (ed.) FC 2003. LNCS, vol. 2742, pp. 122–137. Springer, Heidelberg
(2003)

18. Schelling, T.: The Strategy of Conflict. Oxford University Press, Oxford (1965)
19. Spyridopoulos, T., Karanikas, G., Tryfonas, T., Oikonomou, G.: A game theoretic

defence framework against DoS/DDoS cyber attacks. Comput. Secur. 38, 39–50
(2013)

20. Vasek, M., Thornton, M., Moore, T.: Empirical analysis of denial-of-service attacks
in the bitcoin ecosystem. In: Böhme, R., Brenner, M., Moore, T., Smith, M. (eds.)
FC 2014 Workshops. LNCS, vol. 8438, pp. 57–71. Springer, Heidelberg (2014)

21. Wu, Q., Shiva, S., Roy, S., Ellis, C., Datla, V.: On modeling and simulation of game
theory-based defense mechanisms against DoS and DDoS attacks. In: Proceedings
of the 2010 Spring Simulation Multiconference, pp. 159:1–159:8 (2010)

http://www.secureworks.com/cyber-threat-intelligence/threats/bgp-hijacking-for-cryptocurrency-profit/
http://www.secureworks.com/cyber-threat-intelligence/threats/bgp-hijacking-for-cryptocurrency-profit/
http://bitcoin.org/bitcoin.pdf
http://bitcoin.org/bitcoin.pdf

Issues in Designing a Bitcoin-like
Community Currency

David Vandervort(&), Dale Gaucas, and Robert St Jacques

PARC, Webster, NY, USA
{david.vandervort,dale.gaucas,

robert.stjacques}@xerox.com

Abstract. The invention of the Bitcoin protocol has opened the door to new
forms of financial interaction. One such form may be to adapt Bitcoin technology
for use as a community currency. A community currency is a form of money
issued by a non-government entity to serve the economic or social interests of a
group of people, often in a small geographic area. We propose a model of a
community cryptocurrency that includes a community fund from which com-
munity members may take out loans if the community votes to approve them. We
consider possible vulnerabilities and mitigations to issues that would affect this
community fund, including issues of identity, voting protocols and funds man-
agement. We conclude that these vulnerabilities are, in most cases, amenable to
technological mitigations that must be adaptable to both community values and
changing conditions, emphasizing the need for careful currency design.

1 Background

Money issued by national governments is a dominant fixture of modern economic
exchange. So called fiat currency is freely traded for goods and services, with its
printing, issue and acceptance protected by law. Bitcoin and its derivatives are a
different kind of currency, useable for many purchases despite being non-government
issued and protected by no law. Community currencies, including such subtypes as
Local Exchange Trading Systems (LETS), time banks and business trade exchanges,
are similar non-state issued moneys that circulate in parallel with fiat currencies [1].
Purposes of community currencies often go beyond economic exchange to supporting
values and causes including social, environmental or ethical dimensions [2].

Examples of community currencies include the Brixton Pound, Ithaca Hours and
BerkShares. Each serves a different local area and evinces a different philosophy of
society and economics in its construction. Bitcoin is a digital currency that was
developed in order to remove the need for a central authority (i.e. banks) to mediate and
clear transactions and to protect the privacy of those engaging in transactions [3]. This
is clearly also a philosophy. In a sense, Bitcoin can be regarded as a community
currency, with the community being those people who care about Bitcoin. They have
shown the ability to work together toward goals large and small, to hold informative
discussions, to build an economy and to help each other in times of need. It seems
reasonable then, to consider ways in which Bitcoin technology could benefit other
communities.

© International Financial Cryptography Association 2015
M. Brenner et al. (Eds.): FC 2015 Workshops, LNCS 8976, pp. 78–91, 2015.
DOI: 10.1007/978-3-662-48051-9_6

1.1 Cryptocurrencies

Because of its use of cryptographic methods to protect the integrity of transactions and
of the currency itself, Bitcoin is known as a cryptocurrency. Advantages of Bitcoin
include immutability of transactions, pseudonymity, distributed control that prevents
manipulation by a central authority, complete transparency (as anyone, anywhere can
download the blockchain and view all transactions) and strong cryptographic protection
against tampering.

While Bitcoin was the first cryptocurrency, it was quickly followed by an explosion
of currencies based on the same or very similar technology. There are a plethora of
cryptocoins available besides Bitcoin, including Litecoin, Mastercoin, Primecoin,
Marscoin, Zerocoin, Dogecoin, Reddcoin and many others. Many of these experiment
with slight differences in the protocol to serve perceived needs of the community and
the world.

Bitcoin is a software based system. Bitcoin transactions manipulate data to
exchange ownership of bitcoins between addresses, with no requirement for physical
exchanges of notes or coins. This allows complex scripting of behaviors, such as m of n
(multi-signature) transactions and smart contracts [4]. It also means that any behavior
that can be expressed in code can theoretically be encoded into a Bitcoin-like protocol.
If this is true, then features found in community currencies may be added to Bitcoin to
make something new.

2 Community Cryptocurrency Features

Community currencies include features beyond direct economic value that are intended
to advance their goals. Two important features for the present discussion are demurrage
and the maintenance of a fund for loans or grants. Demurrage is the practice of
reducing the value of currency in proportion to the time it is held, rather than spent.
Reportedly, the “peanuts” LETS currency in Chiba Prefecture in Japan charges a 1%
fee per month on currency that is not used. Demurrage encourages people to keep
circulating currency so as to avoid the loss of value. This is reportedly a significant
factor in the success of Peanuts [5]. Note that the velocity of a community currency
(roughly, the number of times a single note or coin is re-spent in the economy) can be
quite high and demurrage is sometimes cited as one of the reasons [6].

A loan or grant fund is possibly one of the most powerful tools of development
possessed by community currencies. The BerkShares currency maintains a loan fund
for local businesses [7]. It is not unusual for hours based systems such as Ithaca Hours
and Calgary dollars also to provide small loans or outright grants to local businesses
[8]. Small business loans can be a driver of economic development. As well, personal
loans and grants can be tools for assisting those in need. Loans can also be targeted at
types of businesses, or interest rates tailored to meet social as well as economic goals.

Other possible features for community currencies include restriction to a small
geographic area (geofencing), privileged transactions, interest payments and participant
dividends. Because the last two features must have a source of funds, their imple-
mentation will likely involve draws from the same fund as loans and grants. For that

Issues in Designing a Bitcoin-like Community Currency 79

reason they will not be dealt with at length. The focus here is on the community loan
and grant fund. For simplicity, this fund will be referred to in most instances as the
community fund.

There have been several forays into using Bitcoin technology for community
currencies. Examples include the following.

• Mazacoin (http://mazacoin.org). Mazacoin claims to be the national currency of the
Lakota Nation, though it is unclear from reports if the officials of the nation share this
view. The creator of Mazacoin pre-mined 25 million coins (meaning he created them
before allowing others to mine for their own) to be set aside for a tribal fund that
would give grants to individuals, businesses and non-profits focused on the tribe [9].

• IrishCoin (http://IrishCoin.org/). IrishCoin is targeted specifically at promoting
tourism to Ireland and has allocated 7% of the total volume of the coin for distri-
bution to businesses and organizations associated with that industry for use as a
“discount token” [10].

• Marscoin (http://marscoin.org). This coin has the unusual goal of becoming the
currency used by colonists on Mars.1 Four hundred thousand coins were pre-mined
and donated to the Mars Society, a not-for-profit organization that seeks to establish
a colony on Mars. The eventual goal is for colonists to take the Marscoin block-
chain with them to Mars and use it as the basis for a local economy [11].

These and similar examples of community cryptocurrencies adapt the Bitcoin pro-
tocol to serve their needs without significant new features. More extensive adaptations
of existing Bitcoin features and new capabilities can increase differentiation and utility
for community cryptocurrencies. The remainder of this paper will discuss integrating
these extended features into a cryptocurrency so it may serve an individual community.
A significant portion will be devoted to a vulnerability analysis of the community fund
and to methods of community decision making, centered around the community fund.

2.1 Mining

One of the protections Bitcoin has against fraud and manipulation is that coins are
created and transactions verified in a distributed manner. All the working nodes check
each other’s work. It is, however, a consensus algorithm, with the blockchain reflecting
work that the majority of nodes agree on. This makes it vulnerable to what is known as
a 51% attack. In this attack, one person, node or mining pool acquires enough power
(possibly through having more or better hardware than other nodes) to force a con-
sensus on its own terms. Thus this powerful unit can conceivably corner the market on
coin creation or even insert fraudulent transactions into the blockchain [12].

In a community cryptocurrency limits to the participant pool imposed by geogra-
phy, interest, or other factors may increase this risk. Careful attention must therefore be
paid to the numbers of mining and verification nodes. It may be then that proof-of-stake
algorithms may be safer for community cryptocurrencies than the Bitcoin

1 One of the authors of this paper (Vandervort) has mined Marscoin. His wallet currently holds
321.824521 Marscoin. He has no plan to go to Mars.

80 D. Vandervort et al.

http://mazacoin.org
http://IrishCoin.org/
http://marscoin.org

proof-of-work method. Proof-of-stake protocols require participants to prove posses-
sion of some amount of the currency for a minimum period of time before being
permitted to produce new blocks (and with them, new coins) [13]. One way of
jump-starting this is for a small amount of currency to be automatically given to new
members of the community, probably from the community fund. Membership may be
determined simply by downloading a new wallet, registering a new identity (discussed
below) or some other method.

2.2 Geofencing

Community currencies are often intended to serve a local geographic area. BerkShares
and Ithaca Hours are examples of these kinds of community currencies. Implementing
geographic limitations in a cryptocurrency may have wide ranging consequences and
difficulties.

Thanks to the revolution in geopositioning systems (GPS), software can be aware
of the location where it is being used. This is not universal as location is often con-
sidered private data and many people block it by default. For a community crypto-
currency, location data can be used to verify the location of transactions and even
software downloads. However, locations can be spoofed, for example by accessing a
download site through a virtual private network. The question of how to handle offline
transactions, which may experience delays before being committed to the blockchain is
also an issue, since verification of location information may not necessarily occur at the
time of the transaction.

Even putting aside the possibility of spoofing IP addresses and other location
identifiers, there are issues with geofencing a digital currency. Enforcing the restric-
tions means forcing both businesses that accept the currency and users who spend it to
reveal location information. Many may find this intrusive and the pool of available
users will then be reduced accordingly. The size of the area and the mobility of people
within it is also an issue. What happens to someone who travels outside the area briefly
then realizes a bill needs to be paid? Is the payment prevented from going through until
the payer returns home? There are many other cases that could be imagined in which
geographic restrictions are an impediment even to people who live and work within the
assigned area. Softer restrictions that allow transactions outside the defined area seem
more supportable but risk allowing the area to artificially widen. This may not be a
disadvantage in practice as it allows the pool of participants to widen as well.

Mining for new coins is a different question. Should this be allowed outside the
intended area? If communities answer yes, they run the risk that outsiders will come to
dominate mining, removing control of the currency from its intended community. If,
however, they discourage this option, the total number of mining nodes may be too low to
keep the currency stable or to fend off attempts to take over 51% of the processing power.

It can be seen then, that enforcing geographic limits at the protocol or software
levels may create complications for a currency and its users. This indicates that the best
course may be for real human beings to concentrate on working with their neighbors
and with local businesses to make their currency popular in the local region rather than
to use technology to enforce geographic restrictions. Therefore, at the current time
geofencing related features are not recommended for community cryptocurrencies.

Issues in Designing a Bitcoin-like Community Currency 81

2.3 Privileged Transactions

Privileged transactions are those that the community encourages by providing extra
incentives. These transactions are considered to advance community goals or express
community values. Examples include giving bonus payments for services performed
for the elderly, or discounts for purchases of environmentally friendly products. In each
case, for the economic equation to work, the difference between the normal price and
the privileged price must be made up from somewhere. The most logical source for
these additional funds is the community fund (discussed below).

As a direct expression of the community’s values, privileged transactions are a
means of fostering community cohesion. Including this feature in a digital currency
requires some method of indicating what types of transactions would be privileged and
how much privilege they would receive. Privileges expressed numerically, such as
discounts and bonuses, are the simplest to translate into rules that can be interpreted by
software. Less deterministic privileges, such as a promise of invitations to dinner at
some time in the future, might be specified by text strings but automating verification of
their delivery is difficult. The Bitcoin protocol may enable creative solutions to this
problem. For example, a promise of dinner can be encoded as a very small
multi-signature transaction, that is completed when all parties are satisfied that the
promise has been kept. Verification of some sort is important for the sake of trans-
parency. When users can check in the blockchain to see that promises are being kept,
their faith in the currency and the community is likely to be greater than cases where
there is no such verification.

The problem of verification brings up another issue that is important to the design
and function of a community currency: trust. In some communities, methods of veri-
fication might be relaxed as a show of trust among community members. In such
communities it might be enough for someone to send an email to one of the community
leaders describing the privileged transactions they have been involved in and asking for
bonuses thus earned. Particularly in small groups where the members have considerable
face-to-face contact this kind of informality may be acceptable. Whether this type of
small, trusting community needs a cryptocurrency is another question. In any case, the
ability to automatically adjust compensation for different types of transactions and to
verify the accuracy and nature of payments is a significant advantage of software-based
systems over more traditional paper currencies or even many electronic exchanges. The
convenience of having an account automatically credited by the correct amount the
moment the transaction takes place, rather than having to go to a local “bank” and
exchange notes or access a website and enter verification details is a significant
advantage of a Bitcoin-based model for these currencies.

2.4 Demurrage

In order to encourage economic transactions, some currencies use demurrage, meaning
they reduce the value of unspent notes over time. This gives people holding them
incentive to move them quickly in order to capture as much value as possible. This in
turn may magnify the economic multiplier effect (or velocity) of such currencies.

82 D. Vandervort et al.

Though many factors may affect the velocity of a currency, demurrage appears to have
been at least somewhat effective for several community currencies [14] making it a
potentially desirable feature.

Administering demurrage means that the time of transfer of each note must be
recorded so that the value can be properly calculated. In the physical world, this means
that either a note must have a timestamp (or series of timestamps) on its face, or it must
have an identifier such as a serial number that can be associated with the timestamps in
a central registry. This second method of tracking time for notes and transactions is
similar to the function of the Bitcoin blockchain, which directly incorporates time-
stamps into transaction block data [3]. There are, however, potential pitfalls. Differ-
ences in time zones, system clocks and even the representation of time in different
programming languages may make it impractical to calculate reductions in value over
short periods of time. Recalculating the value of a particular coin should probably be
done on a scale of days or weeks rather than seconds or minutes.

It is essential, also, that changes in the value of currency be verified at the mining
level, similar to the way transactions are incorporated into the blockchain. In fact, the
simplest implementation is to remove some portion of currency at the time it is used
and deposit that portion into the community fund. This implementation prevents
unintentional destruction of the total value of the currency, which could adversely
affect the stability of the currency over time. It could also help to keep the balance of
the community fund healthy.

The question arises of the relationship between demurrage and a proof-of-stake
system. One of the advantages of proof-of-stake is that it may allow anyone who has a
stake to mine new coins. Typically, coins must be shown not just to exist but to be
reasonably “fresh” [13]. If the rate at which demurrage removes value is too fast, it
could then interfere with the ability to show stake, both by directly removing coins that
would otherwise show stake and by encouraging people to spend their coins so quickly
that they have little or no stake in their wallets for verification. Yet, if demurrage is too
slow, it provides little incentive for people to spend their coins, defeating its purpose.
Thus if both proof-of-stake and demurrage are implemented in the same currency, the
rate of change must be carefully calibrated to encourage spending while preserving
stake.2

Related to demurrage is the payment of interest, which increases holdings over time
rather than decreasing them. The money to pay interest must come from some source.
That source is most probably the community fund. Interest incentivizes saving rather
than spending, which may not be in the best interest of the community economy.
However, it also provides clear value, which may improve trust in the community. It
can be used to demonstrate proof-of-stake by adding “fresh” currency to a wallet.
Variation in interest rates, such as a reduction in interest payments when the com-
munity fund has a low balance, may offset the benefits, however.

2 At the time of this writing (September 2014), a patent application titled “Peer-to-peer (p2p) currency
platform implementing demurrage,” (USPTO patent application number 20130346164) may affect
implementations of demurrage. The application can be viewed at http://appft1.uspto.gov/netacgi/
nph-Parser?Section1=PTO1&Sect.2=HITOFF&d=PG01&p=1&u=/netahtml/PTO/srchnum.html&r=
1&f=G&l=50&s1=20130346164.PGNR.

Issues in Designing a Bitcoin-like Community Currency 83

http://appft1.uspto.gov/netacgi/nph-Parser%3fSection1%3dPTO1%26Sect.2%3dHITOFF%26d%3dPG01%26p%3d1%26u%3d/netahtml/PTO/srchnum.html%26r%3d1%26f%3dG%26l%3d50%26s1%3d20130346164.PGNR
http://appft1.uspto.gov/netacgi/nph-Parser%3fSection1%3dPTO1%26Sect.2%3dHITOFF%26d%3dPG01%26p%3d1%26u%3d/netahtml/PTO/srchnum.html%26r%3d1%26f%3dG%26l%3d50%26s1%3d20130346164.PGNR
http://appft1.uspto.gov/netacgi/nph-Parser%3fSection1%3dPTO1%26Sect.2%3dHITOFF%26d%3dPG01%26p%3d1%26u%3d/netahtml/PTO/srchnum.html%26r%3d1%26f%3dG%26l%3d50%26s1%3d20130346164.PGNR

2.5 The Community Loan Fund

Some community currencies maintain a fund that can be used to make small grants or
loans, usually for the purposes of starting or improving small businesses. Such funds
can be effective at building owner-operated businesses [15], therefore incorporation of
loans or grants into a community currency may contribute toward community goals.
There are two questions to consider in designing this capability. Where do the funds
come from, and how are decisions made concerning their disbursement? We propose
that the answers to both questions be incorporated directly into the currency software.

2.5.1 Adding to the Community Fund
In cryptocurrencies, the most common method of stocking the community fund is
currently for the creator(s) to pre-mine some amount that they can keep under their
control. This method is easy to implement by simply running the first mining node or a
small number of such nodes, without allowing others to download the software and run
their own nodes, until a sum deemed sufficient has been mined. The cryptocurrency
community in general tends to frown on this practice since it allows an unscrupulous
operator to introduce a currency that they control from the very beginning. Note again
the issue of trust comes into play.

It is possible for cryptocurrencies to add coins to a general fund in other ways, for
example by adding a small fee to all transactions, or to all transactions above a certain
amount, which will be paid to an address associated with the fund. In a corollary to
privileged transactions, it may be possible to charge an extra fee for discouraged
transactions, such as buying gasoline, if the goals of the community are environmen-
tally oriented. The Bitcoin protocol already uses transaction fees as a means of com-
pensating miners. Adding another fee or increasing the fee slightly and splitting
between two recipients are relatively simple modifications that can support a com-
munity fund without pre-mining.

A related method of adding currency to the community fund is to take a small
portion of mining rewards for the fund. In current cryptocurrencies, a node that is the
first to generate a solution for a block is given a reward in new coins. This is called
mining the currency. In the Bitcoin network the current reward is 25 bitcoins per block.
In a community cryptocurrency, splitting off a portion of the block reward for the
community fund is feasible. Miner objections may be reduced if the amount remaining
to them is enough for a profit, or if they perceive some other benefit such as a good
reputation within the community. The reputation factor could be enhanced by allowing
miners to adjust the amount deposited to the community fund, therefore making it more
a donation than an involuntary side effect. Designers of community cryptocurrencies
may find it advisable to set a minimum donation, rather than depending entirely on the
altruism of the miners.

2.5.2 Disbursing from the Community Fund
In traditional finance, the most common method of disbursing funds for loans and
grants has been for a small number of administrative persons to make all decisions.
Even in community currencies, this seems to be the default approach. So, for example,
the creators of IrishCoin stocked a distribution fund by pre-mining and indicated a

84 D. Vandervort et al.

preference for distributing it to businesses and organizations associated with Irish
tourism [10]. This approach requires no custom programming to implement in the
current Bitcoin protocol.

Another method can be built that uses the distributed nature of the protocol to take
the disbursement out of the hands of a few members and give it to the whole com-
munity. This would involve a multi-step process. First, a transaction of a new type,
community loan, is created by any authorized user, which in many communities may
include any member of the community. The amount of the transaction is the amount of
the loan (or grant) from the community fund. Then members of the community submit
transactions of another new type, vote. Each vote either approves or disapproves of the
transaction. When a threshold is reached, the vote is finalized. If the loan is approved the
funds are released to the address specified. If the loan is disapproved, the transaction is
invalidated. The voting threshold for or against the loan will vary from community to
community. Some will require a majority of voting members. Others will require a
supermajority. Any amount that can be mathematically described can be conceived.

The advantages of a system where the community votes on the disbursement of
funds are in increased trust among community members and commensurately increased
investment in the goals and activities of the community. There are numerous difficulties
created by the proposed system as well. The next sections of this paper will discuss the
problem of identifying “voting” members of the community as well as the recipient of
proposed loans. This will be followed by a discussion of potential vulnerabilities to the
integrity of the community fund.

3 Challenges with a Cryptocurrency Community Fund

The community fund and votes concerning loans from it are where the community
works together, expressing shared values and building economic and social structures
to make the community stronger. Conversely, should the loan fund become depleted or
weaknesses in the system of proposing and voting on loans develop, the community
could suffer a loss of trust, cohesion and even economic viability. Our analysis iden-
tified three major areas where design must be carefully considered in order for a
community fund regulated by community participation to be viable. Those areas are
identification of community members, tallying of votes and regulation of loans. The
issues related to these factors are often interrelated.

3.1 Identity

The original Bitcoin system is highly successful at allowing relatively anonymous,
trustless transactions. In a community currency there are at least three reasons why
identity might be revealed to some extent. It may be necessary to ensure the proper
counting of votes, to validate the recipient of grants and loans and to find businesses that
will accept the currency in payment. Serving these purposes may require different levels
of disclosure of identifying information. For example, while identifying a loan recipient
may require a full name and address, voting may require no more than a unique
identifier. In other cases, some third party identifier or certificate issued by a provider

Issues in Designing a Bitcoin-like Community Currency 85

who possesses but does not share more specific identification information, may be a
good compromise between the extremes of full identification and full anonymity.

The level and type of identifier used may also vary depending on purposes.
Businesses may prefer to be more open about their true name and location than people
whose purpose is not business related. Registering clear identifying information as a
public identity is a simple form of advertising. In communities with a strong local
component, geographic coordinates might also be part of an identifier.

How identity data is stored and accessed is an important consideration. Do identities
need to be registered directly in the blockchain (or some blockchain) or is it enough to
have some identifier such as a username associated with a wallet address? Could a
separate blockchain for identity be used, with transaction meta-data incorporating a hash
of a location in the identity chain? In this case, is it enough to reference identities
registered with some service such as Namecoin? While this low level of identification is
suitable for many purposes, it seems likely that a higher level of disclosure is required in
communities that vote on local issues, or in which reputation is important.

3.2 Voting

Voting is integral to the model of community currency being developed here. Voting is
one way that people participate in the community which ties it closely to identity. In
order to verify that only people who belong to the community cast votes, voters must
be identified in some way. If, however, the community requires votes to be cast in
secret, verification and tallying become separate steps. When using a structure such as a
blockchain to store votes, meeting the goals of both secrecy and identity verification is
a difficult technical problem.

In the physical world, voting is usually restricted to a specific time period. This
makes sense especially when dealing with monetary loans, which may be time sen-
sitive. Rules for determining winning and losing vary with locality and context. For a
political election, the highest number of votes may win, or a majority (>50%) may be
required with lower numbers resulting in a runoff. In a jury, unanimity may be required.
In a legislature, some actions may pass by majority vote while others may require a
supermajority. An additional concept to consider is the need for a quorum. This is the
smallest number or percentage of the membership that must vote for results to be
considered valid. Without a reasonable number for a quorum, a community risks
having its resources come under the control of a small number of members. All of these
properties can be modeled in the community cryptocurrency software. As discussed
above, votes are treated in this system as another form of transaction. Therefore, mining
nodes may apply rules to voting transactions and voting blocks as the community
requires, though choosing optimal values may be challenging.

3.3 Loan Regulation

In order for a loan fund to be viable, it must not loan out more currency than it has
coming in and loans must be paid back in a timely manner. The way loans are proposed
to and approved by the community influences these factors. Communities should

86 D. Vandervort et al.

consider factors such as who is allowed to propose loans. Should anyone be allowed or
should it be restricted to members in good standing? Does a proposed loan have to be
seconded before it is put up for a vote to the whole community? Should there be a
maximum size to loans either in whole numbers or a percentage of available funds?
Should loan recipients be allowed to receive new loans while a previous loan has not
yet been paid back?

There must be some method of stocking the community loan fund. As mentioned
above, methods include taking tithes from transactions or from miners. There may also
be a tax on wallet balances above a certain amount or membership fees for businesses.
Whatever method is used to fill the fund, it must be carefully balanced with outgoing
loans. If the community fund becomes too large it may stifle other economic activity
effectively creating deflation. If it is too small, loans will be choked off and economic
growth may suffer.

In addition to the need to encode policy into software comes the question of how to
change policy. Any policy may need to be revised to accommodate real world expe-
riences. Perhaps if too many loans default, a temporary cap needs to be put in place, or
certain members need to be permanently banned from proposing or receiving loans or
grants. Creating a system that is comprehensive, secure and also responsive is a sig-
nificant challenge for both currency designers and software developers.

4 Vulnerability Assessment

While Bitcoin transactions provide a level of protection of user identity, in a com-
munity fund this may be compromised to some extent. Businesses, including those
operated by the self-employed, may desire more visibility to the community in order to
advertise their services and so their names may accrue a good reputation. The counting
of votes is tied to identity as well. Vote tallies must be accurate and, in many com-
munities, secret, in order to ensure that the will of the community as to the disburse-
ment of funds is not subverted. Similarly, the regulation of loans refers to the way in
which loans are proposed, disbursed and even repaid.

In a community in which all the members know and trust each other, these prob-
lems may be ignored. In more common communities where self-interest sometimes
conflicts with the community interest, controls are needed to mitigate potential risks.
We analyze the risks from the point of view of the STRIDE framework, slightly
modified to accommodate analysis at the fund operation level rather than at the point of
software implementation.

4.1 STRIDE Framework

STRIDE is an acronym for a common set of risks to software-based systems. It stands
for Spoofing, Tampering, Repudiation, Information disclosure, Denial of service and
Elevation of Privilege [16]. Our analysis, however, is not of the software implemen-
tation but of potential risks at the community fund level, as the structure of the system
must be determined before being implemented in software. Therefore we use the terms,

Issues in Designing a Bitcoin-like Community Currency 87

plus one other, for structural issues that may impact fund operations. This gives the
following categories for the analysis.

– Spoofing. When a person pretends to be another, the pretend identity is said to be
spoofed. In this case, one person may spoof multiple identities and control multiple
votes. Those identities may be created by the person who controls them or they may
be hijacked from other users. This is not an issue for normal Bitcoin transactions,
which do not support personal identifiers.

– Tampering. When transactions are changed after a user believes they are finalized,
they have been tampered with. It is assumed that the nature of the Bitcoin block-
chain will provide strong protection for completed transactions, including votes.
This issue is therefore most prevalent at the software and communication levels and
is not considered here.

– Repudiation. When a person rejects a transaction they have allegedly made they
have repudiated that transaction. In standard Bitcoin practice, the blockchain pro-
vides strong protection against this as well. However, because the community
system introduces a level of identity that is not present in the baseline Bitcoin
protocol, there may be issues with repudiation here, particularly in voting.

– Information disclosure. Like repudiation and spoofing, the introduction of user
identity adds complications that are not present in the original Bitcoin protocol.
How much complication is introduced is determined by how much identity infor-
mation is disclosed versus how much is protected, which may vary greatly between
different communities.

– Denial of service. At the fund level, denial of service means that the community fund
is depleted. In some communities this may be seen as only a temporary inconve-
nience. In others it may be a catastrophe. At some level, funds must be maintained.

– Elevation of privilege. When someone is able to access funds which they do not
have the right to use, or to propose loans or open or close voting when they are not
designated as having that authority, they are said to have elevated their privilege.
This is very sensitive to community standards.

– Operational. In addition to the STRIDE categories described above, we use the
operational category to show risks that may be aggravated or mitigated by the way
community cryptocurrency features, such as voting, are designed.

4.2 The Vulnerability Matrix

Using the STRIDE+O categories, and the classifications of voting, identity or loan
problems, we have developed the matrix of potential problems in designing a com-
munity currency seen in Table 1 (below). This list is not considered exhaustive but
should contain the most prominent risks that must be considered when designing a
currency for community use.

4.3 Mitigations

Multiple issues flow from insecure identity implementations. If a small number of
people can control a large number of votes - that is more than one each - they can

88 D. Vandervort et al.

dictate who gets loans, including steering loans to themselves and their friends. One
partial solution to this is to require that the identity of new voting members be verified
by some number of previously existing members. It is a partial solution because it can
never be guaranteed that those who provide verification will perform due diligence,
such as meeting new members face to face, or that they will not be fooled. Therefore
this is only a first level of protection. Some method of revoking voting privileges
should exist as well, though this could also introduce the potential for problems if not
carefully handled. Methods of temporarily suspending voting rights, loan proposal and
loan receipt rights may also be necessary to police issues.

Table 1. Vulnerability matrix

Category Issue Effect Mitigation strategy

Identity Too few registered
users (O).

Small coalition
controls funds.

None (community has failed).

Too many registered
users (O).

No quorum, no
completed votes.

Adjust quorum rules to accept lower
percentages of voters.

Spoofed identities
(S, R, E).

People propose and
vote on loans for
themselves.

Require identity confirmation.

Abandoned IDs (O). No quorum, no
completed votes.

Require proof of activity for voting.

Voting Voter turnout too
high (D).

If people are paid to
vote, this could
deplete funds.

Do not pay for votes or reduce
payments once quorum is reached.

Voter turnout too
low (O).

No quorum, no
completed votes.

Time limit voting period and reduce
or eliminate quorum rules.

Voter turnout too
low due to
apathy (O).

No quorum, no
completed votes,
few loan proposals.

Pay for votes. May pay for the first n
votes or for votes in first t minutes
or choose random sample of voters
to be paid.

Voter turnout low
due to confusion
about issues (O).

No quorum, no
completed votes,
voter
dissatisfaction.

Require proposal summaries; use
wallets or other means to support
information dissemination and
debate.

Too many proposals
to vote on (D).

Depleted funds, not
enough votes on
individual items.

Limit number of concurrent proposals
or pay for votes on items that have
not reached quorum.

Falsified votes (S). See spoofed IDs. See spoofed IDs.
Loans Not repaid (O). Funds depleted. Garnish payments after some time

limit.
Too many loans (D). Funds depleted. Set a maximum level of concurrent

loans and/or increase interest rates.
Too few loans (O). Community loses

credibility.
Reduce interest rates. Pay dividends
to all community members.

Too few
transactions (O).

Funds depleted. Introduce demurrage, transaction fees
or request donations.

Issues in Designing a Bitcoin-like Community Currency 89

Controls can also be built that take note of community participation. For example,
someone who has not posted a transaction of any kind within the last 30 days could be
barred from voting or from proposing loans. This should discourage the creation of
membership accounts solely intended to influence votes. There is a risk with this
method that too many users will be barred if transaction volumes drop too low. This
likely cannot be remedied by automatically or even manually adjusting the time period
to allow more to vote. When participation is too low, the remedies are social. The
community needs to be encouraged to participate more.

The problem of too frequent or too large loans is more readily amenable to software
controls. With guidance from the world of banking and finance, formulae can be
developed to balance loans that are being repaid, those that are not and the funds
available to make more loans. The performance of the loan fund can be scored and loan
proposals compared with currently advisable amounts before voting is allowed.

The danger of underperforming loans in community currencies is significant,
especially if the community includes assisting the poor among its values. To at least
partially offset this, repayment terms can be automated, for example garnishing 1% of
every transaction which the loan recipient receives until the loan is repaid. This may be
more reliable than mandating manual monthly payments.

Interest rates on community loans are often low or non-existent [6]. If the loan fund
is low or the proposed loan high, a prudent policy might be to charge a higher rate of
interest than at other times. This would discourage depletion of the fund as well as
bringing in extra revenue to rebuild it. Again, this can be expressed in software easily.

The mitigation efforts described here may be implemented in various ways to meet
the needs and expectations of various communities. However, unless a community has
perfect trust, the issues described must be considered and controls decided on before
the currency is launched.

5 Conclusion and Future Research

It has been shown here that the configuration of a community currency is significantly
different from that of the standard Bitcoin model. Its needs are more social, requiring
degrees of identity and fiduciary care not found in the pseudonymous world of Bitcoin.
These needs produce their own opportunities for economic engagement and commu-
nity cohesion while also generating significant risks for collapse of a community using
a currency with a significantly flawed design. We discussed three major vulnerability
areas in the community fund of a community cryptocurrency. In almost all cases we
found possible mitigation strategies that could be built into the cryptocurrency soft-
ware. The operation of these mitigations in practice and ways to adapt them to com-
munity values and changing conditions are important areas for future research.

Different models of identity, including those based on a model such as Namecoin
and more complex, more deterministic measures should be implemented and their risk
models worked out in detail. Experimentation with different loan models, such as
interest bearing, non-interest bearing and multi-party, as well as differing payback rates
and garnished and voluntary payments, can yield unprecedented information about
financial dynamics and human financial behavior.

90 D. Vandervort et al.

Equally important as the proper balance of features are the sociological aspects of
how a community works. A community cryptocurrency may be a powerful tool for
advancing shared goals but financial issues may also divide people. What controls,
either technological or social, exist to ensure that people perform diligently and in good
faith? What are the effects of information passing on the quality and nature of votes?
How does the size and frequency of loans affect members’ trust in the community or its
governance?

The concept of a community cryptocurrency is one that joins the financial, tech-
nological and social worlds in new ways. Designing a currency that has a reasonable
chance of working is only the beginning of the effort. In this paper we have tried to
explore the most important variables and potential features at a high level. There are
more levels and more variables still to be considered.

References

1. About: International Journal of Community Currency Research. Retrieved September 2,
2014. (n.d.) http://ijccr.net/about/

2. Seyfang, G.: Tackling social exclusion with community currencies: learning from LETS to
Time banks. Int. J. Community Currency Res. 6(1), 1–11 (2002)

3. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system. Consulted 1(2012), 28 (2008)
4. Butterin, V.: A next-generation smart contract and decentralized application platform (2014)
5. Lietaer, B.: Complementary currencies in japan today: history, originality and relevance. Int.

J. Community Currency Res. 8(1), 1–23 (2004)
6. Lietaer, B., Hallsmith, G.: Community currency guide. Global Community Initiatives

(2006). http://www.lyttelton.net.nz/timebank/Community%20Currency%20Guide.pdf.. July
20 2007

7. Hess, D.J.: An Introduction to Localist Movements. American Sociological Association,
Denver (2012)

8. Mascornick, J.: Local Currency Loans and Grants: Comparative Case Studies of
Ithaca HOURS and Calgary Dollars (Doctoral dissertation, University of Montana) (2006)

9. Ecoffey, Brandon. Oglala Sioux Tribe surprised by MazaCoin plan. Indianz. Native Sun
News, 7 Mar. 2014. Web. 2 Sept. 2014. http://www.indianz.com/News/2014/012781.asp

10. IrishCoin. IrishCoin.org. N.p., n.d. Web. 2 Sept. 2014. http://irishcoin.org/irishcoin.html
11. BitcoinForMars. Not every cause needs a coin but every planet does. (n.d.). Retrieved

September 2, 2014. http://marscoin.org/
12. Weaknesses. (2014, August 2). Retrieved September 2, 2014. https://en.bitcoin.it/wiki/

Weaknesses#Attacker_has_a_lot_of_computing_power
13. Bentov, I., Gabizon, A., Mizrahi, A.: Cryptocurrencies without Proof of Work (2014). arXiv

preprint arXiv:10.1406.5694
14. De la Rosa, J.L., Stodder, J.: On velocity in several complementary currencies. In: 2nd

International Conference on Complementary and Community Currencies Systems, The
Hague (2013)

15. Williams, C.C., Aldridge, T., Lee, R., Leyshon, A., Thrift, N., Tooke, J.: Bridges into work?
An evaluation of local exchange and trading schemes (LETS). Policy Stud. 22(2), 119–132
(2001)

16. Shostack, A.: Threat Modeling: Designing for Security. Wiley, Indianapolis (2014)

Issues in Designing a Bitcoin-like Community Currency 91

http://ijccr.net/about/
http://www.lyttelton.net.nz/timebank/Community%2520Currency%2520Guide.pdf.
http://www.indianz.com/News/2014/012781.asp
http://irishcoin.org/irishcoin.html
http://marscoin.org/
https://en.bitcoin.it/wiki/Weaknesses%23Attacker_has_a_lot_of_computing_power
https://en.bitcoin.it/wiki/Weaknesses%23Attacker_has_a_lot_of_computing_power
http://dx.doi.org/10.1406.5694

The Bitcoin Market Potential Index

Garrick Hileman(&)

London School of Economics, London, UK
g.hileman@lse.ac.uk

The Bitcoin Market Potential Index (BMPI) is a new composite indicator that con-
ceptualizes and ranks the potential utility of bitcoin across 178 countries to show which
countries have the most and least potential to see bitcoin adoption. The index utilizes a
data set with 40 variables grouped into the index’s seven equally weighted sub-indices:
technology penetration, international remittances, inflation, size of informal economy,
financial repression, historical financial crises, and bitcoin penetration. Data across the
different BMPI variables were first standardized as follows:

z ¼ x� �x
s

Where x = each data point, �x = the average of the sample data points, s = the sample
standard deviation, and z = the standardized data point. Data were also re-scaled to fit a
scale of 0 to 1 as follows:

x0to1 ¼ x� xmin
xmax � xmin

Where x = each data point, xmin = the minimum value of the sample data points, xmax =
the maximum value of the sample data points, x0 to 1 = the normalized data point,
scaled from 0 to 1.

Sub-Saharan Africa is the most fertile region for bitcoin adoption, followed by
Latin America and the Post-Soviet/Communist countries. Index rankings with re-scaled
data are broadly similar to standardized results. The largest change observed between
the two methods was for the United States, which fell from a ranking of 5th to 72th

when data were re-scaled. This change was largely due to the United States’ high
Bitcoin Penetration ranking and the fact that, put simply, re-scaling can reduce the
effect of outliers on index rankings more than standardization (Table 1).

While the BMPI provides a useful conceptual reference for better understanding the
factors that may influence bitcoin adoption it is important to acknowledge some of the
index’s current limitations. Specifically, due to limited data availability a number of
variables that will impact bitcoin adoption are not currently included in the index (e.g.,
regulation).

© International Financial Cryptography Association 2015
M. Brenner et al. (Eds.): FC 2015 Workshops, LNCS 8976, pp. 92–93, 2015.
DOI: 10.1007/978-3-662-48051-9_7

References

Böhme, R., Christin, N., Edelman, B.G., Moore, T.: Bitcoin. J. Econ. Perspect. (2014) (Forth-
coming: 15, 2015)

Christin, N.: Traveling the Silk Road: A measurement analysis of a large anonymous online
marketplace (2012). arXiv preprint arXiv:1207.7139

Cirasino, M.,: How can we cut the high costs of remittances to Africa?. In: The World Bank
(2013)

Hileman, G.: A History of Alternative Currencies (2014)
Nardo, M., Saisana, M., Saltelli, A., Tarantola, S., Hoffman, A., Giovannini, E.: Handbook on

Constructing Composite Indicators: Methodology and User Guide. OECD publishing, Paris
(2005)

Saisana, M., Saltelli, A., Tarantola, S.: Uncertainty and sensitivity analysis techniques as tools for
the quality assessment of composite indicators. J. Roy. Stat. Soc. Ser. A (Stat. Soc.) 168(2),
307–323 (2005)

Saltelli, A., Nardo, M., Saisana, M., Tarantola, S.: Composite indicators: the controversy and the
way forward. Statistics, Knowledge and Policy Key Indicators to Inform Decision Making,
p. 359 (2005)

Table 1. BMPI Top 10 Country Rankings - Standardized and Re-Scaled Data

Ranking Country (Standardized) Country (Re-scaled)

1 Argentina Argentina
2 Venezuela, RB Venezuela, RB
3 Zimbabwe Zimbabwe
4 Malawi Iceland
5 United States Malawi
6 Belarus Guinea-Bissau
7 Nigeria Congo, Dem. Rep.
8 Congo, Dem. Rep. Belarus
9 Iceland Nigeria
10 Iran, Islamic Rep. Angola

The Bitcoin Market Potential Index 93

Cryptographic Currencies
from a Tech-Policy Perspective:

Policy Issues and Technical Directions

Emily McReynolds(B), Adam Lerner, Will Scott,
Franziska Roesner, and Tadayoshi Kohno

Tech Policy Lab and Security and Privacy Research Lab,
University of Washington, Seattle, WA, USA

Abstract. We study legal and policy issues surrounding crypto curren-
cies, such as Bitcoin, and how those issues interact with technical design
options. With an interdisciplinary team, we consider in depth a variety of
issues surrounding law, policy, and crypto currencies—such as the phys-
ical location where a crypto currency’s value exists for jurisdictional and
other purposes, the regulation of anonymous or pseudonymous curren-
cies, and challenges as virtual currency protocols and laws evolve. We
reflect on how different technical directions may interact with the rel-
evant laws and policies, raising key issues for both policy experts and
technologists.

1 Introduction

Bitcoin [32] and other crypto currencies have recently become a key topic of
research interest for the financial cryptography community and have seen sig-
nificant adoption. The research community has considered numerous aspects
of crypto currencies, including: the development of new crypto currencies with
different properties (e.g., [8,31]), the measurement of existing currency deploy-
ments [30], and the uncovering of vulnerabilities in currency protocols followed
by the creation of defenses (e.g., [19]). In the applied world, we have seen numer-
ous commercial efforts to mine bitcoins, serve as Bitcoin exchanges, and provide
financial tools based on bitcoins. Bitcoin has been featured regularly in the
news, from the acceptance by well-known institutional investors to the scan-
dals surrounding Mt. Gox and the Silk Road. Bitcoin has also gained a level of
acceptance from traditional merchants, with leading organizations like Dell [16],
Overstock.com [34], and Wikipedia [24] supporting the technology.

These incidents have given observers some insights into the legal standing of
crypto currencies today, as well as the challenges to making them secure, robust,
and widely-used. However, to the best of our knowledge, the public academic
community has not stepped back and asked from a holistic perspective: what are
the most important legal and policy issues surrounding Bitcoin and other crypto
currencies, and how do those issues interact with technical design options? We
seek to fill that gap here. Our team combines expertise in computer security,
c© International Financial Cryptography Association 2015
M. Brenner et al. (Eds.): FC 2015 Workshops, LNCS 8976, pp. 94–111, 2015.
DOI: 10.1007/978-3-662-48051-9 8

Cryptographic Currencies from a Tech-Policy Perspective 95

cryptography, and law to evaluate key issues surrounding crypto currencies. In
doing so, we hope to inform present and future crypto currency designers about
key issues linking technology and policy. Given our legal background, we also
write this paper with law and policy experts as an intended audience and hope
that this paper can be used to inform future national and international policies.

In the following sections, we consider in depth a variety of issues surround-
ing law, policy, and crypto currencies—also commonly referred to by regula-
tors as virtual currencies—including Bitcoin. We consider the legal requirements
that exist around Bitcoin (Sect. 4), the location of where Bitcoin’s value exists
physically (Sect. 5.1), the regulation of anonymous or pseudonymous curren-
cies (Sect. 5.2), and challenges as virtual currency protocols and laws evolve
(Sect. 5.3).

This paper does not intend to deep dive into all of the technical and legal
nuances related to virtual currencies, about which entire volumes could be writ-
ten. Rather, we aim to expose key issues that have yet to be addressed and
technical directions. In determining what were the key issues we looked to both
existing policy work on Bitcoin (e.g., [9,10,20]), and the central questions arising
in our own discussions (see Sect. 2). For tractability, our focus is also on the legal
system of a single country (the United States), though we do refer to laws and
policies in other countries when appropriate.

2 Our Process

We survey our research process here, to provide a context for interpreting our
results. Our team is interdisciplinary, including members trained in computer
security, cryptography, and the law. In parallel with significant literature reviews
(including technical academic publications, as well as governmental legal and pol-
icy determinations), we initiated our research with numerous co-located meetings
in which we brainstormed important areas of technology, policy, and law that
relate directly or indirectly to crypto currencies.

We observed that most of our conversations centered around questions—
questions from those with legal expertise about the properties of technology, and
questions from those with technical expertise about aspects of the law and policy.
Since these questions can represent knowledge gaps, we considered it valuable
to capture these questions—and their answers—for the greater computer secu-
rity and policy communities. We therefore chose to structure this paper around
those questions. We then proceeded to iterate on the questions and answers, the
final form appearing in Sect. 5. We realize that the resulting discussions are not
exhaustive—there are countless other questions one might ask. However, we aim
to cover questions of interest to both policy experts and technologists.

3 Background: Bitcoin and Crypto Currencies

Chaum’s Electronic Cash. There is a long history of work in the cryp-
tographic community on electronic currencies. In 1982, Chaum described an

96 E. McReynolds et al.

untraceable form of electronic cash [13], and in 1988 enhanced that design to
prevent double-spending [12]. The premise of this system of cash was to pre-
vent giving the same piece of electronic cash to two people (“double-spending”)
by holders of cash while also preserving the anonymity of those spenders. In
Chaum’s system, a central issuer (a “bank”) participated in the protocol to
issue cash and to confirm to participants that transactions were valid.

Bitcoin and Relatives. More recently, Nakamoto proposed Bitcoin [32], an
electronic cash system which does away with the need for a central bank. Unlike
Chaum’s electronic cash, Bitcoin is fully decentralized, with no bank acting as
issuer. Instead, all transactions are completely public and can be verified by any
participant. The Bitcoin protocol consists of peer-to-peer interactions between
participants, which maintain a public ledger of every transaction, including both
the issuing of new cash and all transfers of cash. This ledger is called the block
chain, composed of blocks that include one or more transactions in a time period,
where the mining reward (described below) is counted as a transaction. Not all
participants in the Bitcoin network need to store the entire block chain in order
to verify transactions. An individual using Bitcoin generates a public-private
keypair which becomes their pseudonym in the network. A wallet may house
one or more key pairs. Transactions in the network are identified only by these
pseudonyms. Bitcoin does not directly link pseudonym to real-world identities,
allowing its design to claim the possibility of some level of anonymity for its
users. Yet while Bitcoin tries for anonymity, there is significant evidence that
de-anonymization of its users via transactions is possible [30].

Bitcoin assumes that at least half of participants are honest, and thus that
half of the computational power in the system is controlled by honest partici-
pants. Nakamoto describes this as one-CPU-one-vote. Adding a new transaction
to the block chain ledger takes a large amount of computational work, which
is performed by participants in the system known as miners, who must solve
a computational puzzle based on a cryptographic hash before including a new
transaction in the block chain. Participants only accept blocks in the chain for
which the answer to the puzzle has been computed and included. As such, the
length of the block chain is determined by the total amount of computational
power possessed by miners in the system.

Block chain forks might exist, but the protocol is designed to recover from
such forks. An attacker might spend coins and then attempt to create a new block
chain which does not include those spending transactions. This is effectively a
double-spending attack: the attacker spends the coin once, receives goods or
services for it, and then performs an attack to form a new block chain in which
the spending transaction is removed, effectively recovering the coin. To defend
against fake block chain forks, participants consider the longest block chain in
existence to be the correct one, and a transaction is considered recorded if a
sufficient number of blocks follow it in the longest block chain. Since the protocol
assumes that more than half of the computational power in the network is honest,
and more computational power means a block chain will be longer, it follows that
the block chain worked on by honest participants will be the longest. Attackers

Cryptographic Currencies from a Tech-Policy Perspective 97

need to control more computational power than all other participants combined
in order to create a malicious block chain that is trusted as the real ledger.

Physical Electronic Currency. Recall that bitcoins are stored in “wallets”
consisting of public-private key pairs. The power to spend the coins in a wallet
is held by anyone who possesses the enclosed private key. Thus, it is possible to
create physical versions of Bitcoin by writing, printing, or engraving the private
key for a wallet onto a physical artifact like a banknote or a coin. The private
key is often hidden in a tamper-resistant or tamper-evident manner (e.g., under
a sticker), to allow the coin to transfer multiple times while providing assurance
to the final recipient that the private key has not been stolen en route.

Note that a user might also make their own physical copies of their private
key. For example, a person might store a key, printed on paper, in a safe. Addi-
tionally, a person might keep multiple digital copies of a private key on different
storage media or devices for backup or easier usage.

Exchanges and Real-World Use. Bitcoin and several of its relatives, such as
Dogecoin and Litecoin, have entered real-world use recently. Businesses with the
role of converting electronic coins into accepted national currencies have sprung
up and are known as exchanges, by analogy to ordinary currency exchanges.
Exchanges (such as Coinbase) facilitate the buying and selling of real currencies
for electronic currencies and vice-versa. These exchanges represent a significant
level of centralization in the system, as many users wish to be able to convert
between real-world currencies and different types of electronic cash.

Internally, exchanges typically operate by matching requests to transfer value
between a pair of currencies. A percentage of matched volume is typically taken
from one of two parties as revenue for the exchange. Most Bitcoin exchanges
require that users transfer coins they wish to sell into a wallet controlled by the
exchange. This lowers risk for prospective buyers, who now only need to trust
the exchange and not also the user who previously owned the bitcoins they are
buying. The risk is instead held by sellers who must trust the exchange to honor
its obligations, and to protect their personal information needed for payments.

4 Analysis of Relevant Legal Contexts

The first step in any legal analysis of an emerging technology is to look to existing
legal frameworks. Before examining the key tech-policy issues, in this section we
begin with an overview of existing legal frameworks and current legal status of
virtual currencies. While our effort in this paper is focused on virtual currencies
in general, because of Bitcoin’s widespread examination and adoption, many of
our examples rely on determinations specific to Bitcoin.

It is often said that technology moves faster than law, and while that can be
true, laws and regulations should be designed when possible to be broad enough
to cover future developments. There is currently some proposed Bitcoin-specific
regulation, including in the U.S. (New York State) [33] and in France [29], but
the danger is that the legislation will be out of date before it can even be fully

98 E. McReynolds et al.

implemented. Examining virtual currencies as a general category, as the U.S.
and European Union (EU) have done, allows laws to be more adaptable.

In the U.S., the starting point for laws and regulations is the U.S. Constitu-
tion, which includes the authority for the U.S. Congress to “coin money” and
“regulate the value thereof” [1]. The Constitution provides the U.S. Congress
with the ability to pass laws, which may include the creation of federal agencies
with the ability to create rules. Thus, while the U.S. currently has no specific
Bitcoin regulation, many federal agencies have interpreted existing regulations
for their application to virtual currencies and thus Bitcoin (e.g., [14,22,27,42]).

Legal Status of Bitcoin and Other Virtual Currencies. The legal status
of Bitcoin and virtual currencies varies from country to country. Often Bitcoin’s
legality is related to a country’s currency controls. In China, where there are
strong currency controls, Bitcoin was specifically banned for financial and pay-
ment institutions; however, participating in the network and mining appears to
be allowed [39]. Sometimes Bitcoin’s use is limited due to a lack of understand-
ing. In Thailand, for example, the Central Bank halted its use after an attempt
by a Bitcoin exchange to present their business to banking authorities [7]. The
Thai determination was made based on the lack of applicable laws.

Meanwhile, Bitcoin is (at time of writing) legal in other countries, includ-
ing the U.S. and the EU, who are working to regulate virtual currencies (e.g.,
[18,22,27]). We mention specific U.S. regulations where they apply in later
sections.

Thailand’s ban may be lifted when the legislature clarifies Bitcoin’s legal
standing, but some Bitcoin enthusiasts believe that the myriad of rules the U.S.
government is applying may actually be more detrimental to Bitcoin’s future
since, while an outright ban may be lifted, the layered regulations in the U.S. are
complicated and make Bitcoin less easy to use [25]. With this legal background
we turn to tech-policy issues for cryptographic currencies.

5 Tech-Policy Issues for Crypto Currencies

We now consider questions that span technology, policy, and the law. Through
literature review and our discussions, we identified three areas under-addressed
in previous work: understanding where the money resides; distinguishing
anonymity versus pseudonymity; and issues that arise as the world evolves. These
questions span multiple areas of law; our aim is not an exhaustive examination
but to look at the current situation, both legal and technical, with a view towards
technical mechanisms that will improve policy outcomes. We anchor much of our
discussions in Bitcoin in particular due to its current popularity, but many of
our analyses extend to other cryptographic or virtual currencies.

5.1 Where Is the Money?

We found the following question arise in numerous forms: Where is the money
located in Bitcoin or any similar crypto currency system? This question is

Cryptographic Currencies from a Tech-Policy Perspective 99

relevant to understanding the laws applicable to interactions between virtual
currencies and international border crossings, taxation, theft, and insurance.

From a technical perspective, it may be tempting to say that there is no
physical manifestation of the money, and hence it does not exist in any one
physical place at a given time. However, from a legal perspective, determining
the location of the money is seen by governments and their regulators as the
first step to concluding who has jurisdiction—who has the official power to make
regulatory and policing decisions. Thus, though a technologist may argue that
the money has no physical location, the law will likely decide that it does, and
hence we explore a set of options below. Although we consider these different
possibilities for the location of virtual currencies and particularly Bitcoin, we
stress that not all options are equal in terms of technical or legal viability.

Location of Private Keys. Because the private key gives access to the bitcoins
for transactions, one might argue that the private key location could provide the
basis for legal location. However, a private key is not a singular item: unlike a
safe deposit box that exists in only one location, a private key can be stored on
a hard drive, in the cloud, on a piece of paper, or even memorized so as not to be
written anywhere. Further, a private key could be split into multiple components
that are each stored at different locations or using different storage mechanisms.

Money is with the Individual. In practice, an individual could access their
bitcoins from anywhere, since all they need is their private key and Internet
connectivity. In this situation, a determination that the bitcoins are where the
individual is or is using their bitcoins could provide a workable foundation for
application of laws. In U.S. criminal cases thus far—Silk Road/Ulbricht [5],
Bitcoin Savings and Trust Ponzi Scheme [3], Faiella and Schrem [6]—the prose-
cution has evaluated jurisdiction based on the location of the individual and the
exchange. From a technical perspective, we observe that a person might use a
remote server to perform transactions, which means that their private keys may
not be near them.

Location of the Exchange. While some transactions go directly between indi-
viduals, others use exchanges. If an exchange is used for Bitcoin transactions,
determining the location of the bitcoins may be an easier task for jurisdictional
purposes. Exchanges might hold bitcoins for you (like having an account at
a bank), might facilitate buying and selling of Bitcoin (like a stock market),
and even provide insurance. While exchanges began with very little regulation
attached to them, currently government authorities in many countries are begin-
ning to regulate them. In the U.S., exchanges must register as a money services
business with the Department of the Treasury, requiring them to follow money
transmitter laws in all of the U.S. states [22]. In 2013, Mt. Gox (prior to all of
its other problems) and its U.S. subsidiary were pursued for failing to register
as a money services business [4]. If bitcoins are stored in an exchange, like Coin-
base or Bitinstant, because that business should be registered with a government
somewhere, jurisdiction could be based on the location of the exchange.

100 E. McReynolds et al.

The generation of bitcoins through the mining process is also centralized in
practice in the form of mining pools. If the mining pool is registered as a business
it would provide jurisdictional location similar to an exchange. In mining pools,
users submit hashes to a centralized coordinator, who divvies earnings from
the pool across all members based on work. Mining pools are typically distinct
entities from exchanges, and so far have received less regulatory scrutiny, but we
can expect that they could be subject to similar policies in how they pay out
earnings to participants.

Money is Stored in Block Chain. One might argue that the money is also
stored in all locations in which the block chain is stored, even if not all parties
storing the block chain can access the bitcoins. This brings up many of the
same issues governments have had with regulating conduct on the Internet. The
U.S. authorities have used the Internet’s ubiquitous nature to prosecute crimes
federally, establishing jurisdiction with the location of the prosecutor [37]. While
establishing that the money as stored in all locations the block chain is stored
might seem outlandish technically, legally it could be an option.

The Legal Process. From a legal perspective, determining what constitutes the
location of the money will likely be an iterative process, involving different courts
that may make different decisions. In the U.S. if the courts decide in one case that
the money is with the private key, another court can decide in a different case
that the money is with the individual. For example, Ross Ulbricht is currently in
federal court but at a district court level, which means any decisions made there
do not have to be followed by other courts [5]. In the case of an appeal, decisions
made by a Federal Appeals Court apply only to that court’s region; cases may
go to the Supreme Court when one circuit disagrees with another [40].

Case Studies. We now present several case studies in which we consider what
the law is trying to accomplish by locating the money. We explore what the law
currently is, what future laws might be, the technical mechanisms that should be
considered for future policymaking, as well as possible directions for the technical
community. We conclude the section with a discussion of what technologists
might consider to impact these laws.

5.1.1 Border Crossings

Current Situation. Most countries have a requirement that monetary instru-
ments above a certain value be declared as people cross the border. When trans-
ferring bitcoins through an exchange, most likely the exchange has established
the necessary legal procedures registering either as a money services business,
as is currently required in the U.S. and Canada, or meeting other government
requirements. If the law determines that a bitcoin does have a location (con-
trary to a technical argument that no such location exists), then carrying it
across a national border will have legal implications. Currently, in the United
States any amount over $10,000 must be declared on a FinCEN form 105, and
the penalty for not doing so can be up to a $500,000 fine and up to ten years in

Cryptographic Currencies from a Tech-Policy Perspective 101

prison [41]. These rules are in place as part of anti-money laundering measures;
the implications of money laundering will be discussed further in Sect. 5.2.

Future Possibilities. There is discussion that virtual currencies are not mon-
etary instruments. Using the IRS’s determination that virtual currency is prop-
erty and not currency [27], the Silk Road’s accused founder argued through his
attorney that Bitcoin could thus not be a monetary instrument [17]. Presently,
the argument had been unsuccessful [23] but could be revisited on appeal. This
may mean that future laws will clarify virtual currency’s status. Already a bill
has been proposed in the U.S. Congress to declare Bitcoin currency [36].

Technical Mechanisms. We now explore technical nuances that should be
considered for future policymaking. Using the location of the private key for
jurisdiction makes sense when the private key is stored on paper or on a hard
drive in a location such as a safe. It could then be considered to be in that
location rather than on the person crossing the border. However, if the private
key is stored in a safe in the U.S. and another copy is stored in another country,
then the authority seeking to determine its location may argue that the coins are
in both locations. If the courts make such a determination, then by replicating a
key in different locations, an individual may subject themselves to each of those
jurisdictions. This possibility suggests that replicating keys in multiple locations
(something individuals may wish to do for recovery purposes if one location’s
keys are destroyed) may create new legal challenges for the individual.

Another possibility is if the private key is in a password-protected format. In
the U.S., it would be difficult for an authority to force individuals to reveal their
password because of rights against self-incrimination; however, there are many
countries where this would not be true. If threshold cryptography were used to
split the private key into two parts, with each part stored on a different smartcard
where both smartcards are needed to perform transactions with this private key,
a government authority might simplify the situation by attributing location to
the individual. Governments would likely make the same attribution—that the
money is with the individual—if individuals use other sophisticated techniques
to obscure (their belief of the interpretation of) the “location” of the money,
e.g., by encrypting the private key with another key for which the corresponding
decryption key is stored in another jurisdiction. Thus, as with some of the earlier
examples, we see that technical mechanisms designed to achieve one valuable
property (e.g., security) have the potential to negatively impact an individual
when trying to determine the location of the user’s coins.

Turning to exchanges, we observe that an exchange can be treated similar to
a bank and therefore when an individual crosses a border it is as if the money
is in a bank account. However, this also leads to the following scenario: A user
transfers bitcoins from his private wallet managed by an exchange in Japan
to purchase goods from a U.S. merchant using an exchange in Canada. If the
locations of the exchanges are used as the location of the money, this process
could be interpreted as him or her transferring funds from Japan to Canada—
even if he or she, and the destination merchant, were in the U.S. the entire
time.

102 E. McReynolds et al.

5.1.2 Taxes

Current Situation. Countries have taken different stances on the status of
virtual currencies for tax purposes. In the U.S., the IRS has determined that
virtual currency and Bitcoin will be taxed as property [27]. This means that
capital gains tax applies and even that Bitcoin mining must be reported under
self-employment tax requirements. Both Brazil and Finland have also required
citizens to report Bitcoin investment income as capital gains [38]. While some
countries have established how virtual currencies like Bitcoin are to be taxed,
the real-world application of taxation is quite complicated. In the U.S. there
are rules covering different kinds of income, taxes based on where and how the
income was earned, and when securities are bought and sold. There are also
requirements about reporting income earned in foreign countries [26]. We do not
go into detail here about forms of taxation for that reason.

Future Possibilities. While virtual currency has been considered taxable
income in countries including the U.S. for years [28], the determination that
it and Bitcoin is to be taxed as property is a recent development [27]. Since
there is little Bitcoin-specific regulation thus far, it is possible that a legislature
or central bank could still determine that Bitcoin is currency. In the U.S., legisla-
tors have begun proposing laws to classify Bitcoin as currency [33,36]. Whether
this classification would have a positive impact is unclear. If it were currency,
the legal implications could be problematic because of laws in many countries
establishing that only the government has the right to issue currency [38].

Technical Mechanisms. If the private key provides the legal location of the
money, and the key is stored in a single location such as a safe, then determining
which government’s taxation rules apply might be simpler than in alternate
scenarios. If, however, the location of the money is with the individual, the
complex rules for an individual’s income, whether earned in their country of
residence or foreign location, would likely apply. Attributing the location of the
money to an exchange may provide more clarity if the exchange is registered
with a government, though rules about individual income taxation would likely
still apply. Even if one were to argue that the money in Bitcoin is in the block
chain and therefore on every node, tax authorities would likely still rely on
the individual’s location and self-reporting of income. In other words, technical
options (like claiming that the money does not exist in any single location)
cannot enable people to avoid laws like taxation, and legal determinations may
not always match what (some) technologists believe to be true.

Stepping back, we find that the question of taxation is related to the previ-
ous question of “where is the money?” because the location of the money can
determine the applicable jurisdiction. As with the earlier discussions, technical
decisions can help simplify the determination of where the money is (e.g., only
store a single copy of the private key in a single location) or complicate matters
(e.g., replicate a key across multiple jurisdictions, or use secret-sharing to split
a key across multiple jurisdictions so that pieces from different jurisdictions are
required in order to reconstruct the key). However, policymakers may choose

Cryptographic Currencies from a Tech-Policy Perspective 103

specific answers for questions like “where is the money?” that are not directly
correlated to the system’s technical properties. Nevertheless, we believe that it
will empower technologists to understand the issues that we analyze here.

5.1.3 Theft and Fraud

Current Situation. If an unauthorized charge is made on a bank account or
credit card as a result of card or identity theft, there is recourse to be had.
The financial institution will typically reimburse the false charges. If consumers
object to a charge on their account, banks may even reverse the charge. Today’s
widely-deployed virtual peer-to-peer currencies do not provide this option. Once
a Bitcoin transaction is confirmed into the block chain it is not reversible (under
normal functioning of the system, with an honest miner majority). Proving bit-
coins were stolen may eventually lead to the government seizing them from the
guilty party, when technically possible, e.g., when the government obtains the
corresponding private keys. If the thieves have “lost” their private keys, however,
then the money may be lost from the system entirely.

Future Possibilities. Exchanges may prove to be a policy-based answer to
providing recourse for theft and fraud victims. Depending on their terms of
service and the country they are registered in, an exchange could provide similar
services to those financial institutions currently perform. For example, exchanges
could build into their model the cost of lost bitcoins, just as banks do not often
recover the money they refund customers but view it as a cost of doing business.
In other words, exchanges could absorb the cost of lost bitcoins rather than
reversing transactions. There is also a developing market for insurance. Most
insurance protections against crime do not protect against bitcoin theft, though
certain exchanges (e.g., Circle, Coinbase, Elliptic, and Xapo) do provide some
form of insurance. Insurance may be an easier solution for bitcoin theft, compared
to pursuing criminal charges and possible later seizure from the guilty party.

Technical Mechanisms. There are several technical options for responding
to theft that could be implemented through protocol changes. As one technical
direction, though not one that we necessarily advocate for, would be to modify
the Bitcoin protocol such that coins can be tagged with a set of allowable tar-
get addresses (or domains) for transactions. Thus, the system could ensure that
bitcoins never leave a set of authorized exchanges, and these exchanges could
have an agreement to (effectively) revoke transactions. Alternately, it might be
possible to modify the Bitcoin protocol and allow coins to be “tainted.” For
example, trusted authorities could somehow flag bitcoins to indicate that they
are “dirty.” Miners or individuals could choose to ignore dirty money and any
money that derives from that money. Such a protocol modification would allow
a trusted party to revoke transactions—a change that may be met with resis-
tance by some members of the cryptographic currency community, but may help
prevent criminals from spending stolen money.

104 E. McReynolds et al.

5.1.4 Technical Directions and the Law

Above we reflected on the legal context surrounding Bitcoin and other crypto-
graphic currencies and have discussed the interplay between technology and pol-
icy. In doing so, we raised potential directions for additional exploration within
the technical community. However, we stress that while technical innovations
may affect legal decisions—that is, technical architectures can affect policies—
technical innovations cannot prevent prosecution. For example, suppose someone
uses threshold secret sharing with a private keys in an attempt to avoid laws in
a particular jurisdiction. If the person did something illegal, the courts would
still try to find a way to prosecute, even if the details of the case (e.g., where
the money is) may not directly relate to technical properties of the system.

5.2 What About Anonymity and Pseudonymity?

There are a number of public misconceptions surrounding anonymity in virtual
currency. Part of legislators’ concerns over money laundering is their belief that
cryptographic currencies provide anonymity. However, as some Bitcoin experts
would point out, the blockchain’s public nature makes Bitcoin pseudonymous
rather than anonymous. Providing a better understanding of Bitcoin’s status as
pseudonymous is key to successful policymaking.

Bitcoin and other crypto currencies explore a new space in financial privacy
compared to other technologies like cash, checks, and credit cards. One key
difference is that the block chain is public, though identities can be pseudonyms.
Another key difference is that virtual currencies enable the quick transfer of large
sums of money outside of conventional systems (e.g., without banks).

While in Bitcoin it may not always be possible to use the public block chain to
link transactions with the involved parties, it can sometimes be possible [30].
While Bitcoin entities can use techniques to make linking more difficult, like
using mixers (aka, tumblers or laundries) or throw-away public-private key pairs,
the mere potential for anyone with access to the public block chain to link
transactions with individuals raises challenges for the finance sector. Similarly,
the potential for individuals to mask their identities and transfer large sums of
money also creates challenges for the financial sector. We explore these issues,
as well as the implications of strongly anonymous crypto currencies, here.

On the Potential for Anyone to Link Some Transactions to Parties.
Bitcoin’s public block chain has proven to allow transactions to be traceable
both by academics and authorities. Meiklejohn et al. [30] studied methods that
could be used to re-identify the groups behind Bitcoin transactions.

In traditional banking, there are privacy requirements regarding what infor-
mation banks can share with other groups and how they must preserve an indi-
vidual’s privacy [11]. These provisions have yet to be applied to virtual currencies
and Bitcoin specifically. The nature of the protocol likely means that they could
not apply to the protocol itself but since exchanges have to register in the same
way that financial institutions do [22], they may eventually be subject to the
same compliance requirements.

Cryptographic Currencies from a Tech-Policy Perspective 105

There exist numerous other examples for which the ability to link transactions
with individuals might lead individuals to not use (accept or send) bitcoins. For
example, consider political party donations. The U.S. Federal Election Commis-
sion has decided that campaigns may accept bitcoins, but that such a contributor
must provide his or her name, physical address, and employer, and affirms that
the contributed bitcoins are owned by him or her and that the contributor is
not a foreign national [21]. These requirements could link them to that wallet
and/or transaction, as well as enable the tracing of others.

On the Potential for Parties to Mask their Identities. One of the central
concerns about virtual currencies for governments is the potential for money
laundering through the potential for anonymity that Bitcoin and other virtual
currencies provide [10,38]. Money laundering is generally defined as activities
and financial transactions that are undertaken to hide the source of the money.
Part of the money laundering concern is based in a misunderstanding of Bitcoin’s
status as an anonymous exchange. Since Bitcoin transactions have proven to be
traceable, it is not strongly anonymous but rather pseudonymous.

On Strongly Anonymous Crypto Currencies. Zerocoin [8,31] poses a more
realistic anonymous money laundering threat. Zerocoin uses the same distributed
ledger as Bitcoin, but encodes transactions such that they do not reveal how
much currency was transferred or publicly reveal the public keys of the sender
and receiver, while still allowing for distributed verification of the ledger. While
transfer in and out of the Zerocoin system in practice continues to use centralized
exchanges which could be subject to regulation, transactions within the system
cannot be monitored in the same way as with Bitcoin, and it is not possible
for an external observer to determine how much currency an individual wallet
possesses without access to the private key.

As currently designed, Zerocoin would validate regulator concerns over the
money laundering threat of virtual currencies. The development of Zerocoin, if
its use becomes widespread, could have a large impact on the developing regu-
lation around Bitcoin and virtual currencies. We stress, however, that there are
are both advantages and disadvantages with strongly anonymous cryptographic
currencies. As noted above, increased anonymity could facilitate adoption by
financial institutions given current laws about bank transaction privacy, and
anonymity could also facilitate adoption in contexts where privacy is highly val-
ued (e.g., paying for certain types of medical care).

Technical Mechanisms. While privacy advocates may disagree, from an intel-
lectual perspective, the law and policy community may be interested in the
existence of escrowed anonymity systems. For example, would it be possible to
create a cryptographic currency that is strongly anonymous unless a quorum of
trusted third parties agree to de-anonymize a set of transactions? Or would it
be possible to create a cryptographic currency that is strongly anonymous for
n-years, after which the strong anonymity of each transaction melts away? For
example, each transaction could be encrypted in a provably verifiable way to
a time-specific public key of a trusted authority (or set of authorities). Those

106 E. McReynolds et al.

authorities could commit to releasing the corresponding private keys after the
appropriate time has lapsed. The resulting protocol would not require trusting
the authorities to assist in the preservation of the integrity of the network, but
would trust the authorities not to de-anonymize transactions early. We encourage
the technical community to explore these and similar dimensions as well.

5.3 What Happens as the World Evolves?

The world is not static. New crypto currencies will be developed, the Bitcoin
protocol will evolve, and the uses of Bitcoin and the Bitcoin infrastructure may
evolve as well. We now shift our attention to policy and technical issues to
consider as this evolution takes place. We begin with a short detour: a discussion
of the Computer Fraud and Abuse Act.

Computer Fraud andAbuseAct. In the U.S., the Computer Fraud and Abuse
Act (CFAA), passed in 1986, assesses whether someone knowingly accessed a com-
puter without authorization or exceeded their authorized access [2]. Prosecutors
in the U.S. have used a broad interpretation of these clauses in criminal cases.
Many countries, including Brazil, the UK, and others, have equivalent laws [15],
but the U.S. is one of the prominent prosecutors. Though the CFAA may seem
broad and unlikely to apply to virtual currencies, recent history has shown that
it is often applied to most criminal cases involving computers.

While U.S. courts have not yet specifically ruled on the CFAA’s application
to virtual currencies or Bitcoin, the alleged creator of the Silk Road has been
charged with violations of CFAA [5]. Because CFAA covers unauthorized access,
there are a number of possible applications to protocol attacks.

The 51% Attack, and Other Attacks. It is well known that an adversary
with more than 50 % of the resources in the Bitcoin mining network could cause
attacks against the integrity of the block chain. Other attacks also exist, such as
selfish mining [19]. Suppose that a party—such as a mining pool—can put itself
in a position to mount one of these attacks, e.g., by controlling 51 % or more of
the resources in the mining network. Depending on the method of attack and its
impact, it is possible that the operators could be charged with CFAA violations
or their local equivalent. While technically we desire a cryptographic currency
that is strong enough to resist reasonable technical attacks, we find the conclu-
sion in this paragraph valuable because it means that even if an organization
develops the capability of compromising the integrity of the block chain, there
may be legal impediments for them making use of those attack capabilities.

Vulnerabilities. When a vulnerability is discovered in a popular product pro-
duced by a major manufacturer—such as a browser or an operating system—it is
generally clear who the responsible party is for fixing the vulnerability. If a vul-
nerability is found in a particular Bitcoin mining or client software package, then
it is also clear who should be responsible for fixing the vulnerability. But suppose
that the vulnerability is uncovered in the protocol itself. There would need to be
a process to ensure that the protocol—as well as all relevant implementations—
can be updated quickly after a vulnerability is discovered. This means having

Cryptographic Currencies from a Tech-Policy Perspective 107

a process in place in advance of any vulnerability discovery. As Bitcoin (or any
other cryptographic currency) becomes more popular and accepted by societies
and governments, we argue that there becomes an increasing need for a clear
process for protocol updates. Whereas there may already be a set of core devel-
opers trusted with the process today, the acceptable trust model may change if
a government determines that the protocol constitutes a currency. As a point
to consider: would laws speak to specific protocol versions, or protocol update
processes?

Because of the challenges with protocol updates, we propose a technical stop-
gap mitigation technique which could potentially be incorporated into the pro-
tocol: If people own bitcoins under version M of the protocol, and version M
is found to be insecure, those people could have the capability to freeze their
bitcoins (so that they cannot be spent) until version N of the protocol, N > M .

Illegal Content in the Block Chain. Bitcoin miners store copies of the block
chain, and they may have some expectations for what will be stored in the block
chain. For example, they may have the expectation that only transactions are
stored in the block chain. There are already, however, many non-transaction
related images and text embedded in the block chain [35]. Suppose that some
malicious party, Mallory, inserts illegal content in the block chain (such as classi-
fied government documents, certain types of pornography, and so on). Mallory’s
actions could cause Alice’s and Bob’s computers to store copies of that illegal
data, without Alice’s and Bob’s knowledge or consent. Alice and Bob might face
liability in criminal charges though they did not put the content there.

While one might evaluate whether the license agreements for some (although
perhaps not all) Bitcoin clients and miners clarify that arbitrary content may be
stored in the block chain, raising the awareness of such potential does not mean
that illegal or inappropriate content might not be inserted into the block chain.
A separate question therefore arises: could Mallory’s actions ultimately lead to
Bitcoin becoming illegal in some jurisdictions? For example, what would the
legal implications be if any node wishing to store the entire block chain must,
by definition, also store certain types of illegal pornography? (The definition
of legal content may vary between legal jurisdictions.) Similarly, suppose that
someone inserts classified U.S. documents or corporate intellectual property into
the block chain. Could these possibilities lead to Bitcoin becoming too risky for
citizens to use or could these possibilities result in it becoming illegal to run
a full Bitcoin node? It may be possible to hold those storing the node legally
responsible for the block chain content because it is on their server or computer.

While the use of a central authority may be antithetical to some of the prin-
ciples underlying Bitcoin, a future version of the protocol (or a similar protocol)
might allow a central authority (or threshold set of trusted authorities) to remove
specific blocks from the block chain. In the new cryptographic currency, it may
be possible to use cryptographic techniques, under some trust model, to (1) allow
the removal of the relevant block but create a new block that would (2) allow
a verifier to verify that only certain transactions were removed or obfuscated
and also (3) allow a third party to verify the details of the financial transactions

108 E. McReynolds et al.

associated with the illegal content (so that any money transferred with the illegal
content is not lost). We leave as an open problem whether it might be possi-
ble to achieve these properties in a new cryptographic currency, or to otherwise
develop a currency that would support the removal of illegal content under a
reasonable threat model.

Excessive Content in the Block Chain. Mallory might also attempt to
excessively grow the size of the block chain, thereby depleting the resources
of those nodes storing the entire block chain. In doing so, Mallory’s actions will
result in the consumption resources on those nodes without those nodes’ consent.
Depending on the agreements and contracts signed, Mallory could face liability
in a tort lawsuit for damages and cost reimbursement.

Protocol Updates. Society, corporations, and individuals may become more
dependent on Bitcoin (or other crypto currencies) over time. Bitcoins are already
accepted by major online organizations like Dell and Wikipedia, and the U.S.
government has already determined that (for now) Bitcoin should be treated as
a commodity. In the future, there is a possibility of Bitcoin (or a derivative)
becoming a currency. A question arises: what happens if the Bitcoin protocol
is subsequently updated? This question is important because a protocol update
could introduce a vulnerability or change the economics of participation in the
Bitcoin ecosystem. In the latter case, we argue that for the United States, the
U.S. National Institute of Standards and Technology (NIST) may be the appro-
priate body for specifying the details of the cryptographic protocol. Should NIST
ever be put in a position of being asked to formalize the specification of a cryp-
tographic currency, we suggest that NIST consider a competition-like process,
similar to the process it used to select AES and SHA3. The resulting currency
may be similar to Bitcoin but may not be Bitcoin if the current Bitcoin devel-
opers do not agree to transferring responsibility to NIST.

Digital Divide. A virtual currency, almost by definition, suggests a technical
requirement for participation in the ecosystem. While there are corner cases that
might seem like exceptions (e.g., printed Bitcoin coins), individuals operating in
those cases can still benefit from technology (e.g., to use a computer to verify the
integrity of a printed coin). Virtual currencies thus have the potential to amplify
the digital divide—to widen the gap between those who have technologies (and
hence the ability to fully participate in the crypto currency ecosystem) and those
who do not. A policy implication is that it may be unlikely for a virtual currency
like Bitcoin to ever be the only currency accepted in a particular jurisdiction.
A technical implication is the opportunity for a low cost, easily accessible Bitcoin
hardware implementation which would assist in the narrowing of the gap—by
making Bitcoin technology accessible to all (possibly with a government subsi-
dizing the (low) cost of the hardware). Until such time, we believe that a crypto
currency will likely not be the only currency in a jurisdiction.

Cryptographic Currencies from a Tech-Policy Perspective 109

6 Conclusion

The interactions between technology, policy, and law for crypto currencies such
as Bitcoin are often complicated and nuanced. We have considered key issues,
including the physical location of the value in a crypto currency, the interac-
tion between regulation and anonymity or pseudonymity in a virtual currency,
and challenges that arise as the world evolves. While technical architectures
can affect laws and policies, and vice versa, we also observe that—contrary to
what technologists might prefer—laws may not necessarily match a technologist’s
expectations. We explore the interplay between the law, policy, and technical
mechanisms in our analysis.

We believe that the results of our analysis will be beneficial to law and policy
makers. As a consequence of our interdisciplinary investigations into crypto cur-
rencies, we also proposed several directions for the technical community. Some
of the directions we propose may be compatible with Bitcoin’s underlying tenets
such as distributed control, whereas others may require more centralization. In
suggesting technical directions for future research and innovation, we do not
mean to also suggest that any one directions is more valuable or appropriate
than another; we leave that decision to the reader and the technical community
based on their individual values and interests. The directions that we propose
are possible approaches to address current legal and policy challenges, and may
possibly also help shape future policies.

Acknowledgements. We thank Jeff Haley, the members of the University of
Washington Tech Policy Lab, and the members of the University of Washington Secu-
rity and Privacy Research Lab for valuable discussions, and we thank our anonymous
reviewers for feedback on an earlier version. This work was supported in part by NSF
Award CNS-0846065, by the Short-Dooley Endowed Career Development Professor-
ship, and by the University of Washington Tech Policy Lab.

Appendix: Disclaimer

Since this effort involves the collaboration of individuals in both the law and
technology fields, we must give this disclaimer: This analysis is for informational
purposes only and does not constitute legal advice.

References

1. U.S. Constitution, Article I, Section 8
2. U.S. Title 18, Section 1030 (Computer Fraud and Abuse Act)
3. Securities and Exchange Commission vs. Trendon T. Shavers and Bitcoin

Savings and Trust, July 2013. http://www.sec.gov/litigation/complaints/2013/
comp-pr2013-132.pdf

4. Seizure Warrant for Mutum Sigillum, a subsidiary of Mt. Gox, May 2013. http://
cdn.arstechnica.net/wp-content/uploads/2013/05/Mt-Gox-Dwolla-Warrant-5-14-
13.pdf

http://www.sec.gov/litigation/complaints/2013/comp-pr2013-132.pdf
http://www.sec.gov/litigation/complaints/2013/comp-pr2013-132.pdf
http://cdn.arstechnica.net/wp-content/uploads/2013/05/Mt-Gox-Dwolla-Warrant-5-14-13.pdf
http://cdn.arstechnica.net/wp-content/uploads/2013/05/Mt-Gox-Dwolla-Warrant-5-14-13.pdf
http://cdn.arstechnica.net/wp-content/uploads/2013/05/Mt-Gox-Dwolla-Warrant-5-14-13.pdf

110 E. McReynolds et al.

5. United States vs. Ross William Ulbricht, October 2013. http://www.popehat.com/
wp-content/uploads/2013/10/UlbrichtCriminalComplaint1.pdf

6. United States vs. Robert M. Faeilla and Charlie Shrem, January 2014. http://www.
justice.gov/usao/nys/pressreleases/January14/SchremFaiellaChargesPR/Faiella

7. Bangkok Pundit: Has Bitcoin really been banned in Thailand?, July 2013. http://
asiancorrespondent.com/111332/has-bitcoin-been-banned-from-thailand/

8. Ben-Sasson, E., Chiesa, A., Garman, C., Green, M., Miers, I., Tromer, E., Virza,
M.: Zerocash: decentralized anonymous payments from Bitcoin. In: IEEE Sympo-
sium on Security and Privacy (2014)

9. Brito, J., Castillo, A.: Bitcoin: a primer for policymakers. Mercatus Cen-
ter, George Mason University, August 2013. http://mercatus.org/publication/
bitcoin-primer-policymakers

10. Bryans, D.: Bitcoin and money laundering: mining for an effective solution. Indiana
Law J. 89(1), 441–472 (2014)

11. Bureau of consumer protection. In Brief: The Financial Privacy Requirements of
the Gramm-Leach-Bliley Act, July 2002. http://www.business.ftc.gov/documents/
bus53-brief-financial-privacy-requirements-gramm-leach-bliley-act

12. Chaum, D., Fiat, A., Naor, M.: Untraceable electronic cash. In: Goldwasser, S.
(ed.) CRYPTO 1988. LNCS, vol. 403, pp. 319–327. Springer, Heidelberg (1990)

13. Chaum, D.: Blind signatures for untraceable payments. In: Advances in Cryptology,
CRYPTO 1982 (1982)

14. Consumer Financial Protection Bureau: risks to consumers posed by vir-
tual currencies, August 2014. http://files.consumerfinance.gov/f/201408 cfpb
consumer-advisory virtual-currencies.pdf

15. CyberCrime Law: Cybercrime laws from around the world. http://www.
cybercrimelaw.net/Cybercrimelaws.html

16. Dell: Dell now accepts Bitcoin (2014). http://www.dell.com/learn/us/en/uscorp1/
campaigns/bitcoin-marketing

17. Dratel, J.L.: Memorandum of Law in Support of Defendant Ross Ulbricht’s Pre-
Trial Motions Challenging the Face of the Indictment, April 2014. http://www.
wired.com/wp-content/uploads/2014/04/Ulbricht3.pdf

18. European Central Bank: Virtual Currency Schemes, October 2012. http://www.
ecb.europa.eu/pub/pdf/other/virtualcurrencyschemes201210en.pdf

19. Eyal, I., Sirer, E.G.: Majority is not enough: Bitcoin mining is vulnerable. In:
Financial Cryptography and Data Security (2013)

20. Fairfield, J.: Smart Contracts, Bitcoin Bots, and Consumer Protection. Washington
& Lee University Law Review Online, September 2014. http://lawreview.journals.
wlu.io/smart-contracts-bitcoin-bots-and-consumer-protection

21. Federal Election Commission: FEC Memorandum, May 2014. http://www.fec.gov/
agenda/2014/documents/mtgdoc 14-24-b.pdf

22. Financial Crimes Enforcement Network: Guidance FIN-2013-G001: Application of
FinCEN’s Regulations to Persons Administering, Exchanging, or Using Virtual
Currencies, March 2013

23. Greenberg, A.: Forrest denial of defense motion in silk road case, July
2014. http://www.scribd.com/doc/233234104/Forrest-Denial-of-Defense-Motion-
in-Silk-Road-Case

24. Gruwell, L.: Wikimedia foundation now accepts Bitcoin, July 2014. http://blog.
wikimedia.org/2014/07/30/wikimedia-foundation-now-accepts-bitcoin/

25. Hill, K.: 21 Things I Learned About Bitcoin Living On It A Sec-
ond Time, May 2014. http://www.forbes.com/sites/kashmirhill/2014/05/15/
21-things-i-learned-about-bitcoin-living-on-it-a-second-time

http://www.popehat.com/wp-content/uploads/2013/10/UlbrichtCriminalComplaint1.pdf
http://www.popehat.com/wp-content/uploads/2013/10/UlbrichtCriminalComplaint1.pdf
http://www.justice.gov/usao/nys/pressreleases/January14/SchremFaiellaChargesPR/Faiella
http://www.justice.gov/usao/nys/pressreleases/January14/SchremFaiellaChargesPR/Faiella
http://asiancorrespondent.com/111332/has-bitcoin-been-banned-from-thailand/
http://asiancorrespondent.com/111332/has-bitcoin-been-banned-from-thailand/
http://mercatus.org/publication/bitcoin-primer-policymakers
http://mercatus.org/publication/bitcoin-primer-policymakers
http://www.business.ftc.gov/documents/bus53-brief-financial-privacy-requirements-gramm-leach-bliley-act
http://www.business.ftc.gov/documents/bus53-brief-financial-privacy-requirements-gramm-leach-bliley-act
http://files.consumerfinance.gov/f/201408_cfpb_consumer-advisory_virtual-currencies.pdf
http://files.consumerfinance.gov/f/201408_cfpb_consumer-advisory_virtual-currencies.pdf
http://www.cybercrimelaw.net/Cybercrimelaws.html
http://www.cybercrimelaw.net/Cybercrimelaws.html
http://www.dell.com/learn/us/en/uscorp1/campaigns/bitcoin-marketing
http://www.dell.com/learn/us/en/uscorp1/campaigns/bitcoin-marketing
http://www.wired.com/wp-content/uploads/2014/04/Ulbricht3.pdf
http://www.wired.com/wp-content/uploads/2014/04/Ulbricht3.pdf
http://www.ecb.europa.eu/pub/pdf/other/virtualcurrencyschemes201210en.pdf
http://www.ecb.europa.eu/pub/pdf/other/virtualcurrencyschemes201210en.pdf
http://lawreview.journals.wlu.io/smart-contracts-bitcoin-bots-and-consumer-protection
http://lawreview.journals.wlu.io/smart-contracts-bitcoin-bots-and-consumer-protection
http://www.fec.gov/agenda/2014/documents/mtgdoc_14-24-b.pdf
http://www.fec.gov/agenda/2014/documents/mtgdoc_14-24-b.pdf
http://www.scribd.com/doc/233234104/Forrest-Denial-of-Defense-Motion-in-Silk-Road-Case
http://www.scribd.com/doc/233234104/Forrest-Denial-of-Defense-Motion-in-Silk-Road-Case
http://blog.wikimedia.org/2014/07/30/wikimedia-foundation-now-accepts-bitcoin/
http://blog.wikimedia.org/2014/07/30/wikimedia-foundation-now-accepts-bitcoin/
http://www.forbes.com/sites/kashmirhill/2014/05/15/21-things-i-learned-about-bitcoin-living-on-it-a-second-time
http://www.forbes.com/sites/kashmirhill/2014/05/15/21-things-i-learned-about-bitcoin-living-on-it-a-second-time

Cryptographic Currencies from a Tech-Policy Perspective 111

26. Internal Revenue Service. http://www.irs.gov
27. Internal Revenue Service: Notice 2014–21, March 2014.http://www.irs.gov/pub/

irs-drop/n-14-21.pdf
28. Internal Revenue Service: Tax Consequences of Virtual World Transactions,

August 2014. http://www.irs.gov/Businesses/Small-Businesses-&-Self-Employed/
Tax-Consequences-of-Virtual-World-Transactions

29. Marini, P., Marc, F.: La Regulation a L’epreuve de L’innovation: Les Pou-
voirs Publics Face au Developpement des Monnaies Virtuelles. French Senate,
July 2014. http://www.bitcoin.fr/public/divers/docs/Rapport de la commission
des finance du Senat.pdf

30. Meiklejohn, S., Pomarole, M., Jordan, G., Levchenko, K., McCoy, D., Voelker,
G.M., Savage, S.: A fistful of bitcoins: characterizing payments among men with
no names. In: Internet Measurement Conference (2013)

31. Miers, I., Garman, C., Green, M., Rubin, A.D.: Zerocoin: anonymous distributed
e-cash from Bitcoin. In: IEEE Symposium on Security and Privacy (2013)

32. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008). https://
bitcoin.org/bitcoin.pdf

33. New York State Department of Financial Services: BitLicense Framework: Title 23.
Department of Financial Services Chapter I. Regulations of the Superintendent of
Financial Services Part 200. Virtual Currencies, Jul 2014. http://www.dfs.ny.gov/
about/press2014/pr1407171-vc.pdf

34. Overstock.com: Bitcoin on overstock.com (2014). http://www.overstock.com/
bitcoin

35. Shirriff, K.: Hidden surprises in the Bitcoin blockchain and how they are stored:
Nelson Mandela, Wikileaks, photos, and Python software, February 2014. http://
www.righto.com/2014/02/ascii-bernanke-wikileaks-photographs.html

36. Stockman, S.: Stockman plans to introduce the “virtual currency tax
reform act”, April 2014. http://stockman.house.gov/media-center/press-releases/
stockman-plans-to-introduce-the-virtual-currency-tax-reform-act

37. Tavakoli, Y., Yohannan, D.: Personal Jurisdiction in Cyberspace: Where Does It
Begin, and Where Does It End? Intellectual Property and Technology Law Jour-
nal, January 2011. http://www.kelleydrye.com/publications/articles/1431.pdf,
http://www.kelleydrye.com/publications/articles/1431/ res/id=Files/index=0/
Personal%20Jurisdiction%20in%20Cyberspace IP%26Tech%20Law%20Journal
January2011.pdf

38. The Law Library of Congress, Global Legal Research Directorate Staff: Regulation
of Bitcoin in Selected Jurisdictions, January 2014

39. The People’s Bank of China and Five Associated Ministries: Prevention of
Risks Associated with Bitcoin, December 2013. https://vip.btcchina.com/page/
bocnotice2013

40. United States Courts: courts of appeals. http://www.uscourts.gov/FederalCourts/
UnderstandingtheFederalCourts/CourtofAppeals.aspx

41. U.S. Department of the Treasury: report of international transportation of currency
and monetary instruments. http://www.fincen.gov/forms/files/fin105 cmir.pdf

42. U.S. Securities and Exchange Commission: investor alert: Bitcoin and other vir-
tual currency-related investments, May 2014). http://investor.gov/news-alerts/
investor-alerts/investor-alert-bitcoin-other-virtual-currency-related-investments

http://www.irs.gov
http://www.irs.gov/pub/irs-drop/n-14-21.pdf
http://www.irs.gov/pub/irs-drop/n-14-21.pdf
http://www.irs.gov/Businesses/Small-Businesses-&-Self-Employed/Tax-Consequences-of-Virtual-World-Transactions
http://www.irs.gov/Businesses/Small-Businesses-&-Self-Employed/Tax-Consequences-of-Virtual-World-Transactions
http://www.bitcoin.fr/public/divers/docs/Rapport_de_la_commission_des_finance_du_Senat.pdf
http://www.bitcoin.fr/public/divers/docs/Rapport_de_la_commission_des_finance_du_Senat.pdf
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
http://www.dfs.ny.gov/about/press2014/pr1407171-vc.pdf
http://www.dfs.ny.gov/about/press2014/pr1407171-vc.pdf
http://www.overstock.com/bitcoin
http://www.overstock.com/bitcoin
http://www.righto.com/2014/02/ascii-bernanke-wikileaks-photographs.html
http://www.righto.com/2014/02/ascii-bernanke-wikileaks-photographs.html
http://stockman.house.gov/media-center/press-releases/stockman-plans-to-introduce-the-virtual-currency-tax-reform-act
http://stockman.house.gov/media-center/press-releases/stockman-plans-to-introduce-the-virtual-currency-tax-reform-act
http://www.kelleydrye.com/publications/articles/1431.pdf
http://www.kelleydrye.com/publications/articles/1431/_res/id=Files/index=0/Personal%20Jurisdiction%20in%20Cyberspace_IP%26Tech%20Law%20Journal_January2011.pdf
http://www.kelleydrye.com/publications/articles/1431/_res/id=Files/index=0/Personal%20Jurisdiction%20in%20Cyberspace_IP%26Tech%20Law%20Journal_January2011.pdf
http://www.kelleydrye.com/publications/articles/1431/_res/id=Files/index=0/Personal%20Jurisdiction%20in%20Cyberspace_IP%26Tech%20Law%20Journal_January2011.pdf
https://vip.btcchina.com/page/bocnotice2013
https://vip.btcchina.com/page/bocnotice2013
http://www.uscourts.gov/FederalCourts/UnderstandingtheFederalCourts/CourtofAppeals.aspx
http://www.uscourts.gov/FederalCourts/UnderstandingtheFederalCourts/CourtofAppeals.aspx
http://www.fincen.gov/forms/files/fin105_cmir.pdf
http://investor.gov/news-alerts/investor-alerts/investor-alert-bitcoin-other-virtual-currency-related-investments
http://investor.gov/news-alerts/investor-alerts/investor-alert-bitcoin-other-virtual-currency-related-investments

Blindcoin: Blinded, Accountable
Mixes for Bitcoin

Luke Valenta1(B) and Brendan Rowan2

1 University of Pennsylvania, Philadelphia, PA, USA
lukev@seas.upenn.edu

2 University of Maryland, College Park, MD, USA
browan@cs.umd.edu

Abstract. Mixcoin is a Bitcoin mixing protocol proposed by Bonneau
et al. which provides strong accountability guarantees [13]. However, in
the Mixcoin protocol, the mapping from a user’s input to output address
is visible to the mixing server. We modify the Mixcoin protocol to provide
guarantees that the input/output address mapping for any user is kept
hidden from the mixing server. In order to achieve this, we make use of a
blind signature scheme [14,23] as well as an append-only public log. The
scheme is fully compatible with Bitcoin, forces mixes to be accountable,
preserves user anonymity even against a malicious mix, is resilient to
denial of service attacks, and easily scales to many users.

1 Introduction

Bitcoin is a decentralized electronic cash system that has become increasingly
popular since its introduction in 2008 [27]. The base unit of currency, the bitcoin
or BTC, is defined in terms of transactions, which are transfers of BTC from a
sender address to a receiver address, where addresses are simply public keys. All
transactions are stored in a public ledger, the block chain. Since all transactions
are public, user anonymity in Bitcoin relies on pseudonyms. There has been much
work on de-anonymizing users in the bitcoin block chain by linking together
addresses [10,22,26,28,30,31]. If any one of the linked addresses can be mapped
to the true identity of a user, then all past and future transactions involving the
linked addresses can be associated with that user, compromising their anonymity.
While a discussion of the costs and benefits of anonymity is beyond the scope of
this work, there is much debate over the importance of this property [5,20,29].

1.1 Mixing Services

To alleviate this risk of deanonymization in Bitcoin, one can use a mixing ser-
vice or mix. Mixes for anonymous communication were originally introduced by
Chaum [15], but many recent services have adapted this idea to the financial

B. Rowan—This work originated as a project in a computer networks course at the
University of Maryland.

c© International Financial Cryptography Association 2015
M. Brenner et al. (Eds.): FC 2015 Workshops, LNCS 8976, pp. 112–126, 2015.
DOI: 10.1007/978-3-662-48051-9 9

Blindcoin: Blinded, Accountable Mixes for Bitcoin 113

setting. These services allow users to exchange their bitcoins for “clean” bitcoins
that—within some anonymity set—cannot be linked to their current addresses
and identities by an adversary (See Sect. 4.1). To participate in a mixing opera-
tion, a user supplies some amount of bitcoins from an input address, and specifies
an output address that they wish these bitcoins to end up in eventually. Although
many such mixing services exist, current designs lack certain important features.
We now state properties that we believe an ideal system should offer.

– Accountability. When a user sends funds to the mix, they should be confident
that if a theft occurs, they can present a proof of the mix’s misconduct.

– Anonymity. The user should be the only entity that knows the mapping from
their input address to their output address.

– Resilience to Denial of Service Attacks. The system should not be vulnerable
to attacks by a small number of malicious parties that could potentially DoS
the exchange [24,34].

– Scalability. The system should be efficient enough to be able to scale to a large
number of users and large anonymity sets.

– Incentive for Participation. There should be a mechanism for the mix to collect
mixing fees fairly that will incentivize it to provide the service. On the user
end, the service should come at a reasonable cost and should be convenient,
so that a large number of users participate.

– Backwards-Compatibility. The system should be compatible with the current
Bitcoin system to allow for practical integration.

1.2 Current Bitcoin Mixing Services

Mixcoin. Mixcoin achieves all of the above properties, except for anonymity
against a malicious mix [13]. In this protocol, a mix has access to the mapping
from a user’s input to output address and can store this information. At any
point in the future, the mix could reveal this information and compromise the
anonymity of its users.

CoinJoin. CoinJoin is a decentralized protocol in which all users must sign a
joint transaction [24]. Users remain anonymous and their funds cannot be stolen,
since a user will only provide its signature if they agree to the transaction.
However, CoinJoin is vulnerable to a DoS by a single user if they refuse to
provide a signature during the signing round of the protocol. Thus, Coinjoin is
not resilient to misbehaving users.

CoinShuffle. The protocol CoinShuffle is built on CoinJoin [32]. CoinShuffle is
decentralized and uses a multiparty sorting protocol [34] to achieve anonymous
mixing. It ensures that a joint transaction will eventually go through by including
a blaming process in which misbehaving users can be eliminated from future
mixing attempts by the honest participants. There is no financial commitment
required (i.e. mixing fees) for a user to participate in or DoS a round of the
protocol, so a large-scale Sybil attack [19] would be a cheap way to delay a
round of mixing. Overall, this seems to be a promising approach.

114 L. Valenta and B. Rowan

CoinSwap/Fair Exchange. These protocols allow users to exchange coins anony-
mously with no risk of theft [7,11]. However, it is not clear how mixing fees
could be collected in an anonymous manner to incentivize the mix to provide
the service.

Altcoins. Another way to mix one’s bitcoins is to exchange them for some alter-
nate currency, or altcoin, and at some later time exchange the altcoins back for
bitcoins. Some protocols designed for this purpose are Zerocoin and Zerocash
[12,25]. These techniques can achieve strong anonymity properties, but require
additional infrastructure or modifications to the bitcoin protocol.

Deployed Services. Several mixing services that are used in practice have no
provable guarantees of anonymity or theft protection [1–3,8] For example, some
Bitcoin Fog users claim that their coins were stolen by the service [4], and Möser
et al. are able to link input/output transactions in the graph of BitLaundry [26].

1.3 Our Contribution

Wemodify theMixcoin protocol to prevent themix from learning the input/output
address mappings of participating users. The Mixcoin authors, as well as [24], posit
that such a scheme could be possible using blinded tokens as described in Chaum’s
original digital cash scheme [14]. We show that this is indeed possible and present
a protocol that achieves this goal, and at the same time preserves the accountabil-
ity property of Mixcoin and the mechanism for collecting fair, randomized mix
fees. The main modifications that we make are the introduction of an append-only
public log that is used to keep the mix accountable, and the utilization of a blind
signature scheme to hide the mapping between a user’s input and output addresses
from the mix.

Our proposed system meets all of the above goals for a mixing service. For
accountability, we use a warranty scheme that allows the user to provide evidence
against the mix if it misbehaves, similar to [13]. Anonymity against the mixing
service is provided by using a blind signature scheme to hide the input/output
address mappings of participants. The system is resilient to DoS attacks by a
single user refusing to sign a joint transaction, as certain schemes are suscepti-
ble to [24,34]. This is possible since the mix deals with each user individually,
and can exclude users from the exchange on a case-by-case basis. The system is
scalable since it does not require any computationally complex cryptography as
do some other systems [34]. The scheme employs fair, randomized mixing fees to
incentivize mixes to provide the service to users at a reasonable cost and within
a relatively short timespan. We expect the mixing of a single “chunk” of coins
to take on the order of a few hours, and multiple chunks can be mixed simulta-
neously. Finally, the system is backwards compatible with Bitcoin, requiring no
changes to the current protocol.

Blindcoin: Blinded, Accountable Mixes for Bitcoin 115

2 Background

2.1 Mixcoin Summary

We give a summary of the properties and contributions of Mixcoin.

Chunk Size. Each user sends a fixed quantity v of bitcoins to the mix. The
intuition behind this is as follows: suppose some amount X BTC is tranferred
to some output address. Then, it is easy to link this output address to the set of
all input addresses that spent X BTC within that particular time interval. We
want this set to be as large as possible, since “anonymity loves company” [17].

Accountability. Mixcoin forces mixing servers to be accountable for their actions.
That is, when a user sends funds to a mix, they are provided with a warranty
such that, in the event that the mix steals the user’s coins, the user can present
proof (verifiable by any party) of the mix’s cheating. This warranty consists
of a signed agreement from the mix that if the user pays funds to an escrow
address specified by the mix by a certain time, then the mix will transfer an
equal amount of funds to the output address specified by the user before an
agreed-upon deadline.

Sequential Mixing. In the Mixcoin model, the mixing server learns the
input/output address mapping, and must be trusted to keep this information
private. In order to remain anonymous in the event that the mix is compro-
mised, users are encouraged to mix coins through multiple rounds of indepen-
dent mixes, which would be costly in terms of both time and mixing fees. Our
proposed changes obviate the need for these extra rounds of mixing, since the
mixing servers are blinded to the input/output address mappings.

Mixing Fees. Another important contribution that Mixcoin makes is the intro-
duction of randomized mixing fees. The authors argue that the collection of
mixing fees incentivizes mixes to act honestly. If the mixing fees are sufficiently
high, then a rational mix looking to maximize profits will not risk cheating, lest
they get caught. A warranty proving their dishonesty would damage their rep-
utation and hurt their business model. Furthermore, the Mixcoin authors argue
that the strongest anonymity properties are achieved when mix fees are all-or-
nothing, instead of some fixed rate per chunk. In essence, rather than keeping
ρ fraction of each chunk, the mix will keep an entire chunk with ρ probability.
To determine which of the inputs to keep as a mixing fee, the mix calculates a
Beacon function [16], which depends on a public source of randomness (e.g.,
future blocks of the Bitcoin block chain). The function maps a random nonce
(unique to each of the inputs) to a value in the interval [0, 1]. If this output falls
below ρ, the mixing fee rate, then the mix claims the corresponding coins as its
mixing fee. According to the Mixcoin paper, a typical value for ρ might be less
than 0.01, although this will depend on the market.

116 L. Valenta and B. Rowan

2.2 Blind Signatures

The idea of blind signatures originated with Chaum in 1983 [14]. In [23],
Fuchsbauer gave the first efficient implementation of a blind signature scheme
with round-optimal issuing [21], meaning that only one message from the user
and one message from the signer is required for the user to obtain the signature.
A blind signature scheme works as follows: a user wishes to obtain a signature
on some message without the signer knowing the message contents. To achieve
this, the user computes some commitment function (which can be thought of
as encryption) on the message and sends that along with a randomization of
the message to the signer. The signer then makes a “pre-signature” and sends
it back to the user. From this, the user can compute an actual signature on
the message by adapting the randomness. The blind signature is then a proof
of knowledge of a signature on the message. The scheme achieves the following
requirements: Blindness: Given a set of blind signatures, the signer cannot relate
the signatures to their issuings. Unforgeability : Given a set of blind signatures,
an adversary cannot compute a valid signature on a new message.

3 Blindcoin Description

3.1 Model

In addition to the two entities of the Mixcoin protocol—the user and the mixing
server—our protocol requires another entity, the public log. We summarize the
entities present in the system below:

Public Mix. The public mix, M , is assumed to have a long standing public key
Mpub and associated private key Mpriv, used for signing. The model assumes
that there are many such mixes that will compete. Mixes that have poor repu-
tations will be less likely to be chosen by users, since users want to reduce their
likelihood of being cheated. Thus, a mix is incentivized to participate in the
protocol without allowing any proof of cheating to be made public.

The User. The user, A, is a party that has an amount of Bitcoins in an address
kin (possibly linked to their true identity) and wishes to transfer the coins to a
different address kout, such that it is hard for any adversary to link the addresses
kin and kout. The user is also able to post anonymously to the public log with
an alternate identity, A′. This could be achieved through Tor [18], for example.
The user must be careful not to allow A and A′ to be linked in any way.

Public Log. The public log is a public, append-only log used for third party
verification purposes. If a party breaches protocol, the public log will contain
enough information to incriminate the misbehaving party. Anyone can post to
the log, and messages can never be erased once they are posted. Each message
is also associated with a timestamp. One possible way to implement this would
be within the Bitcoin block chain. To send a message, the sender could just
transfer a small amount of BTC to one or more addresses corresponding to the

Blindcoin: Blinded, Accountable Mixes for Bitcoin 117

message. Of course, if the user wishes to post to the log anonymously, the coins
must be sent from an address that cannot be linked back to the user’s identity.
An example of a service that provided this capability is the Bitcoin Message
Service [6].

3.2 Protocol

In this section, we describe the core protocol for the mixing of a single “chunk”
of A’s funds. At a high level, the protocol proceeds as follows: the mix announces
mix parameters, the user opts in to the mix, the mix sends a partial warranty
back to the user, the user transfers funds, the mix completes the warranty by
posting to the public log, the user unblinds the output address, and finally the
mix transfers funds to the output address. See Fig. 1 for an illustration of the
protocol and to trace the protocol steps. We also indicate the differences in
Blindcoin and Mixcoin at each step in the protocol. For ease of presentation, we
use the notation [x]k for a message x committed with commitment function k,
and the notation {x}k to represent a signature on message x with signing key
k. We also assume that whenever a signature on a message is sent, the entire
message x is sent as well in case the contents of the message need to be recovered.

kin the address from which the A pays, possibly linked to A’s true identity
kout the address to which the user wishes funds transferred
kesc an escrow address, unique for each user, that M provides for A to pay
k′
esc an escrow address that M uses to pay to kout

A′ an anonymous identity that A can use to post to the public log
Mpub the public key of M
Mpriv the private signing key of M
AC a secret commitment/encryption function of A
AC′ the inverse of AC

ω the number of blocks M requires to confirm A’s payment
n a per-user nonce, used to determine payment of randomized mixing fees
v the value (chunk size) to be mixed
ρ the mixing fee rate A will pay
T the token, which is the triple (kout, n)
t1 the time by which A must v BTC to kesc in order to participate in the mix
t2 the time by which M must post the token T to the public log
t3 the time by which A′ must unblind the output address via the public log
t4 the time by which the mix must transfer v BTC to kout
D the mix parameters, a tuple {t1, t2, t3, t4, v, ω, ρ}
Beacon the beacon function, a publicly verifiable random function

Setup. The mix M publishes a set of mix parameters, D, to the public log. This
data includes times (t1, t2, t3, t4) by which different steps of the protocol must
be completed; the chunk size, v, which is the amount of BTC that each user
inputs into the transaction; ρ, the fraction of user inputs that will be kept as a
mixing fee; and ω, the number of blocks that the mix requires to verify the users
payments. All of these parameters are part of the original Mixcoin protocol,
except for two additional time deadlines.

118 L. Valenta and B. Rowan

1) A
anon−→ M :

〈D=(v, t1, t2, t3, t4, ω, ρ), [T=(kout, n)]AC 〉

2a) A
anon←− M :

{[T]AC , kesc, D}Mpriv

M accepts terms,
specifies kesc

2b) A
anon←− M :
⊥

M rejects terms

A destroys kout

3) A (by time t1):
Transfer (v, kin, kesc)

A pays on time
(from any address)

M aborts protocol

A doesn’t pay

4a) M −→ public log:
{[T]AC}Mpriv

M broadcasts
(by time t2)

4b)A publicizes:
{[T]AC , kesc, D}Mpriv

M doesn’t broadcast

5) A′ anon−→ public log:
{T}Mpriv

A′ unblinds output
address anonymously

(by time t3)
M retains or returns funds

A′ doesn’t unblind

X = Beacon(t3, ω, n)

X > ρ

M retains funds
X ≤ ρ

6a) M : (by time t4)
Transfer (v, k′

esc, kout)

M acts honestly

6b) No transfer to
kout by time t4

M steals funds

A, M destroy records

Protocol successful

7) A publicizes in-
crimintating evidence.
See Sect. 3.2, step 7

A detects theft (after t4)

Fig. 1. The Blindcoin protocol

Blindcoin: Blinded, Accountable Mixes for Bitcoin 119

User Sends Offer. See step (1). The user A opts in to the mix by sending its
offer to M . The offer includes the mix parameters followed by a blinded token
T . The token consists of the output address and a private, randomly selected
nonce n which is used for fee collection. In order to keep these values hidden,
the token is encrypted using a commitment function AC known only to A (who
also knows the inverse AC′). The offer has the following form: (D, [T]AC

), where
T = (kout, n). In Mixcoin, the output address is not blinded, and the offer has
the form: (v, t1, t2, ω, kout, ρ, n).

Mix Sends Partial Warranty. See step (2a). If M accepts the offer, it sends a
partial warranty back to the user. The partial warranty consists of the blinded
token, an escrow address for the user to pay to, and the mix parameters. This is
all signed with Mpriv. The partial warranty has the form {[T]AC

, kesc,D}Mpriv
.

Note that given this partial warranty the user cannot recover the signed token
directly, since other fields were included in the signed message. Also, the escrow
addresses that the mix provides should be unique to each user, so that the mix
can verify which users have paid. In Mixcoin, the mix simply sends back the
warranty ({v, t1, t2, ω, kout, ρ, n}Mpriv

).

Mix Rejects Offer. See step (2b). If the mix rejects the offer, the user destroys
the output address. This step is the same as in Mixcoin.

User Pays. See step (3a). A then transfers v coins from any input address kin
to kesc by time t1. This step is the same as in Mixcoin.

User Fails to Pay. See step (3b). If the user fails to tranfser the funds on time,
then both parties abort the protocol. This step is the same as in Mixcoin.

Mix Completes Warranty. See step (4a). Once the user has transferred the funds,
M must complete the warranty by signing the blinded token and publishing it
to the public log by time t2 (which should be long enough after t1 to allow the
transaction to be at least ω blocks deep into the chain). By publishing a user’s
token, the mix is publicly acknowledging that the user did indeed transfer their
funds to the escrow address on time. The fact that this is public allows any
third party verifier to check that the mix has completed the warranty by time
t2. The signed blinded token has the form {[T]AC

}Mpriv
. Mixcoin does not have

an equivalent step, since the user already has the warranty.

Mix Fails to Complete Warranty. User Publishes Incriminating Evidence. See
step (4b). If M fails to publish a user A’s token by t2, A can publish informa-
tion to incriminate M . A can present the following evidence: the partial war-
ranty {[T]AC

, kesc,D}Mpriv
, the transaction Transfer(v, kin, kesc) present in

the block chain before time t1, and the fact that the signed token was not pub-
lished to the public log before t2 (this may require an enumeration of all messages
in the blockchain between times t1 and t2). Any third party verifier can see that
M has signed the partial warranty, confirm that someone has transferred funds

120 L. Valenta and B. Rowan

to kesc, and verify that indeed no token of the correct form was published to the
public log before t2, proving that M deviated from the protocol. Mixcoin does
not have an equivalent step.

User Anonymously Unblinds Output Address. See step (5). Once their signed
blinded token of the form {[T]AC

}Mpriv
has been published to the public log, A

can apply AC′ to recover the signed unblinded token {T}Mpriv
= {kout, n}Mpriv

.
The user connects anonymously as user A′ and unblinds kout by posting the signed
token to the public log. The mix M can verify that the output address is valid, since
the signed token is a proof-of-knowledge that the mix signed the corresponding
commitment. If A′ fails to publish the unblinded token to the public log by time
t3, M can choose to either refund the coins back to A or retain them. Since A
breached the protocol, it cannot produce evidence to incriminate M , so M can do
as it pleases with the funds. Mixcoin does not have an equivalent step.

Mix Computes Beacon Function. If the user unblinds their output address by
time t3, M computes a beacon function Beacon(t3, ω, n) for each (kout, n) pair
to determine which output addresses to collect mixing fees from (by not sending
any coins to them). The beacon function is a publicly verifiable function that
uses entropy collected from the block chain to produce a number uniformly in the
range [0, 1] (see [13,16]). If the value for a particular input is less than or equal to
the value ρ from the mix parameters, the chunk destined for that output address
is kept by M as a mixing fee. Otherwise, the protocol proceeds to the next step.
This step is equivalent to Mixcoin’s Beacon step, except that in Blindcoin the
mix does not know which input addresses correspond to which (kout, n) pairs.

Mix Pays to Output Address. See step (6a). If M acts honestly, then before time
t4 it will transfer v BTC to all unblinded output addresses that have passed the
Beacon function. The mix does not know which input and output addresses are
from the same user, so the mapping from input to output addresses does not
matter. Mixcoin has an equivalent step.

Mix Steals Coins. See step (6b). M steals the funds and fails to transfer a chunk
to each of the output addresses by time t4. Again, Mixcoin has an equivalent step.

User Detects Theft and Publishes Incriminating Evidence. See step (7). The user
A detects the theft at time t4 (since no funds were transferred to its output
address), and can publish information to incriminate M . The user publishes the
following: the commitment function AC and its inverse AC′ , the partial warranty
{[T]AC

, kesc,D}Mpriv
in the public log, the transaction Transfer(v, kin, kesc)

present in the block chain before time t1, the signed token {kout, n}Mpriv
, and

the fact that no such transaction Transfer(v, k′
esc, kout) is present in the block

chain before time t4. Any third party can verify that the token was signed with
Mpriv and recover the contents of the signed token with AC′ . Then, the ver-
ifier can check the public log and the block chain to see if both parties fol-
lowed the protocol by transferring funds and posting to the public log by the

Blindcoin: Blinded, Accountable Mixes for Bitcoin 121

correct deadlines. In Mixcoin, the incriminating evidence that the user pub-
lishes consists of the the warranty ({v, t1, t2, ω, kout, ρ, n}Mpriv

), the transaction
Transfer(v, kin, kesc) present in the blockchain before time t1, and the fact that
no transaction Transfer(v, k′

esc, kout) exists in the blockchain before time t2.

4 Analysis

In this section, we discuss properties of Blindcoin, evaluate its efficiency and
usability, and discuss side channel attacks.

4.1 Properties

The Blindcoin protocol inherits many properties from the Mixcoin system.
Below, we outline the properties of both systems and discuss any changes that
occur due to our modifications.

Accountability. This propery is inherited from Mixcoin. In our modifications,
we ensure that this property is preserved.

We define mix accountability to be the property that if the mix deviates from
the protocol, their cheating can be provably exposed. A mix can deviate from
the protocol and steal the user’s funds, but the user can then publish their mix-
signed warranty along with other evidence to show that the mix has cheated.
A mix can steal user funds at several points in the protocol, but at each point
the user is “protected” by their warranty.

The warranty is slightly more complex in Blindcoin than in Mixcoin. When
the mix agrees to a user’s (blinded) offer, they issue a partial warranty back to
the user, which is an agreement saying “if the user pays, the mix will publish
the signed blinded token to the public log by the warranty deadline.” The mix
waits until the user has paid to publish the token to the public log so that it
can make sure that only valid, paid-for tokens are in the log. The reason that
the token must be published to the log is so that third party verifiers can check
that the mix has acknowledged a user’s payment. As described in Sect. 3.2, if
the mix does not publish the signed blinded token to the public log before the
agreed-upon deadline, the user can present a proof of misconduct, which would
be damaging to the reputation of the mix.

Another point in time that the mix could potentially cheat is when deter-
mining which output addresses to send funds to. If users have correctly followed
the protocol and published their signed, unblinded tokens to the public log, then
any party can see that the mix has signed the token. Furthermore, after the mix
computes Beacon to determine the random collection of fees, it is possible for
any party to verify that it has correctly computed the function, since Beacon
is public. If the mix fails to transfer funds to an output address that has passed
Beacon, then the user can again present a proof of misconduct.

122 L. Valenta and B. Rowan

Anonymity. Mixcoin provides strong anonymity guarantees for its users except
for the case in which the mix is the adversary. If a mix stores records, they could
potentially release them to deanonymize users. In Blindcoin, we extend many of
the guarantees provided by Mixcoin and show that anonymity is possible even
against a malicious mix. As in the Mixcoin protocol, we assume than an adver-
sary wishes to link an output address kout to the corresponding input address kin.

The first adversarial model we consider is that of a global passive adversary.
Since the Bitcoin block chain is public and anyone can access all Bitcoin trans-
actions (and the public log in Blindcoin), this is the weakest adversarial model
that we consider. Both Mixcoin and Blindcoin provide guarantees that no pas-
sive adversary can link input/output address pairs within a particular mix. Thus,
Blindcoin achieves k-anonymity [33] within the set of all non-malicious users par-
ticipating in the mix simultaneously. There are no constraints on the number of
users that can participate in a mix simultaneously except for the mix server’s
resources, so the more participants there are, the larger the anonymity set.

A second adversarial model is one of an active attacker who is able to com-
promise some subset of the input/output address pairs for a particular mixing
operation. For both Mixcoin and Blindcoin, the anonymity set for a user remains
the number of non-compromised address pairs. An active adversary can also
carry out a Sybil attack [19] to convince a user that their anonymity set is larger
than it really is. Although there is no real solution to this type of attack, mixing
fees make it expensive to carry out.

We also consider the model where the mix is the adversary. This could occur
if a mix is compromised or coerced into revealing its records. In the case of
Mixcoin, all input/output mappings are revealed, since the mix has access to
this information. This problem can be alleviated if the user sends their coins
through multiple independent mixes, but a strong adversary could potentially
compromise all of them. This also causes a significant degradation in perfor-
mance and increase in price since user must repeat the entire mixing procedure
multiple times. However, a compromised mix does not weaken the anonymity
guarantees for Blindcoin since mixes are blinded to the mapping from input to
output addresses through the use of the blinded token scheme. This is the main
contribution of Blindcoin.

One property that Mixcoin provides is mix indistinguishability. This property
is unique to Mixcoin, and no other mixing services provide this same guarantee
[13]. Against a global passive adversary, this property extends a user’s anonymity
set to all users participating in different mixes that use the same parameters for
mixing. Unfortunately, this does not hold for Blindcoin, since in the process of
unblinding their output addresses, users must publish their signed tokens to the
public log. This allows an adversary to link the output addresses to the signing
key of the mixing server, defeating mix indistinguishability. We note that mix
indistinguishability breaks for Mixcoin when adversaries are active or the mix is
malicious. From a user perspective, the loss of mix indistinguishability implies
that their anonymity set is limited to only other users participating in the same
mix simultaneously (the typical case for Bitcoin mixes), so users must ensure

Blindcoin: Blinded, Accountable Mixes for Bitcoin 123

that this set is large enough for their anonymity purposes. With Blindcoin, a
user can easily check the public log a posteriori to determine the number of users
that participated in their mix.

If enough care is not taken, side channels can leak user information that may
lead to deanonymization and address linkage [10,13,30]. These side channels
include timing, precise values, network layer information, and interactions with
the public log.

– Timing. To avoid timing analysis attacks, users should not make their inter-
actions with the mix predictable. For example, if a malicious mix posts a
particular signed blinded token to the public log and then an output address
is unblinded immediately after, the mix may be able to link the token to the
output address.

– Precise Values. The size of a user’s anonymity set is equal to the number of
(non-compromised) users participating in a mixing exchange with the same
mix parameters. If each user negotiated its own set of parameters with the
mix, then it would be trivial for anyone to link a user’s input and output
addresses together. For example, if users had unique unblinding deadlines,
then an observer could easily map an unblinded output address back to its
associated input address.

– Network-Layer Information. For example, two identities connecting with the
same IP address could be linked. We assume that users connect via a secure
anonymity network such as Tor [18] and keep their connecting identities A
and A′ separate and unlinkable. In practice, keeping these connecting identies
from being linked may be hard against a well-provisioned adversary, but our
system does not have a solution to this problem and we consider it outside
the scope of this paper.

– Public Log. If transactions fees are required to post messages to the public
log, users must be careful not to pay the fees from linkable addresses.

Resilience to Denial of Service Attacks. This property is inherited from
Mixcoin. In many distributed mixing protocols, a single user can DoS the entire
exchange by participating in the protocol up to a certain point, and then refusing
to transfer funds, causing the whole operation to fail [24,32,34]. However, in
both Mixcoin and Blindcoin, each user interacts only with the mixing server,
and refusing to comply with the protocol does not affect any other users or slow
down the mixing process. One could also attempt to carry out a DoS attack to
prevent transactions from entering the blockchain on time or to prevent messages
from being posted to the public log. However, these attacks would be difficult
to carry out in practice, since they would require the attacker to control a large
portion of the Bitcoin block mining pool.

Scalability. This property is inherited from Mixcoin. It is efficient to add more
users to a mixing operation since users interact only with the centralized mix
and not each other. Further, if having a single server proves to be a bottleneck,

124 L. Valenta and B. Rowan

it is possible to load balance the function of the mix onto several different servers,
all operating with the same cryptographic keys.

Incentive for Participation. Both users and mixes are incentivized to partic-
ipate in the system. For a small fee, users are able to safely mix their bitcoins.
Although there is some delay associated with a mixing operation in Blindcoin,
the fact that one does not need to trust any party clearly makes this a valuable
tool. Mix servers are also incentivized. The fees collected by the mix can be set
so that they are sufficient to cover operational costs, and make it a worthwhile
to provide the service.

Backwards-Compatibility. Blindcoin does not require any changes to the
existing Bitcoin protocol, so it can be easily deployed.

4.2 Overheads

A successful Blindcoin mixing operation requires two message directly between
A and M , two messages (one from each) posted to the public log, and two
Bitcoin transactions. The two messages to the public log are the extra overhead
of our protocol over Mixcoin. Each of these new messages come with a deadline
by which they must be posted. The time in between deadlines must allow the
previous message to be at least ω blocks deep into the block chain to prevent
double spending (a typical value might be ω = 6). The expected time between
blocks is 10 min, so on average it would take one hour for a message to be
6 blocks deep into the chain. However, the time deadlines should be set much
further apart to allow for variations in the time it takes to mine each block.
Since the protocol requires four deadlines, and the gap between deadlines is the
dominating factor in how long the protocol takes to run, our estimate of the
total time for a mixing operation is on the order of a few hours.

Posting messages to the public log (assuming it is implemented in the Bitcoin
block chain) costs extra in transaction fees, in addition to the fees paid for the
funds transfer. According to [9], the typical transaction fee rate is 0.0001 BTC
per 1000 bytes. Although the exact message size depends on the implementation,
we believe 5000 bytes is a reasonable estimate, for a total cost per message of
0.0005 BTC per message. Overall, the financial cost to a user is composed of
the mixing fee and the transaction fees. For a chunk size of 0.1 BTC, a fee rate
of 0.01, and a transaction fee of 0.0005 BTC per message, the total cost to the
user is around 0.002 BTC or 2 %, which we believe is a reasonable price to pay
for the anonymity benefits.

To summarize, the main downsides of Blindcoin are the loss of mix indistin-
guishability, the necessity to maintain two unlinkable identities A and A′, and
the additional costs and delays associated with posting messages to the public
log. The benefits are that the mixing server does not learn the input/output
address matching, so multiple rounds of mixing are not required to achieve an
adequate level of anonymity.

Blindcoin: Blinded, Accountable Mixes for Bitcoin 125

5 Conclusion

De-anonymization of the Bitcoin block chain is a problem that has attracted
much attention. Many different designs of Bitcoin mixing services have been
proposed, but we find that each of these systems lacks certain desirable features.
In order to make steps towards an ideal system, we propose a list of proper-
ties that a mixing system should offer. We believe an ideal mix should be all
of the following: accountable, anonymous, scalable, resilient, incentivized, and
compatible with the original system.

We present a mixing system that meets the above requirements. The proposed
system, Blindcoin, modifies the Mixcoin [13] mixing protocol by using blind
signatures [14,23] and a public append-only log. The log makes it possible for
a third party to verify the validity of accusations when blind signatures are
used. The system retains many of the benefits of the Mixcoin system, while also
relaxing the constraint that the mix must be trusted to keep the input/output
address mappings of users hidden.

Acknowledgements. We would like to thank the anonymous reviewers, as well as
Nadia Heninger, Andrew Miller, Dave Levin, and Bobby Bhattacharjee for their helpful
comments and input.

References

1. Bitcoin fog. http://www.bitcoinfog.com/
2. Bitlaundry. http://app.bitlaundry.com/
3. Bitmixer.io. https://bitmixer.io/
4. The current state of coin-mixing services. http://www.thebitcoinreview.com/site.

php?site id=759
5. Online anonymity is not only for trolls and political dissidents. https://www.eff.

org/deeplinks/2013/10/online-anonymity-not-only-trolls-and-political-dissidents
6. Bitcoin message service, October 2011. https://bitcointalk.org/index.php?

topic=47283.0
7. Coinswap, October 2013. https://bitcointalk.org/index.php?topic=321228
8. blockchain.info, October 2014. https://blockchain.info/
9. Transaction fees, March 2014. https://en.bitcoin.it/wiki/Transaction fees

10. Androulaki, E., Karame, G.O., Roeschlin, M., Scherer, T., Capkun, S.: Evaluating
user privacy in bitcoin. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp.
34–51. Springer, Heidelberg (2013)

11. Barber, S., Boyen, X., Shi, E., Uzun, E.: Bitter to better — how to make bitcoin a
better currency. In: Keromytis, A.D. (ed.) FC 2012. LNCS, vol. 7397, pp. 399–414.
Springer, Heidelberg (2012)

12. Ben-Sasson, E., Chiesa, A., Garman, C., Green, M., Miers, I., Tromer, E., Virza,
M.: Zerocash: decentralized anonymous payments from bitcoin. In: 2014 IEEE
Symposium on Security and Privacy (SP). IEEE (2014)

13. Bonneau, J., Narayanan, A., Miller, A., Clark, J., Kroll, J.A., Felten, E.W.: Mix-
coin: anonymity for bitcoin with accountable mixes. IACR Cryptology ePrint
Archive, 2014:77 (2014)

http://www.bitcoinfog.com/
http://app.bitlaundry.com/
https://bitmixer.io/
http://www.thebitcoinreview.com/site.php?site_id=759
http://www.thebitcoinreview.com/site.php?site_id=759
https://www.eff.org/deeplinks/2013/10/online-anonymity-not-only-trolls-and-political-dissidents
https://www.eff.org/deeplinks/2013/10/online-anonymity-not-only-trolls-and-political-dissidents
https://bitcointalk.org/index.php?topic=47283.0
https://bitcointalk.org/index.php?topic=47283.0
https://bitcointalk.org/index.php?topic=321228
https://blockchain.info/
https://en.bitcoin.it/wiki/Transaction_fees

126 L. Valenta and B. Rowan

14. Chaum, D.: Blind signatures for untraceable payments. In: Chaum, D., Rivest,
R.L., Sherman, A.T. (eds.) Advances in Cryptology, pp. 199–203. Springer, Hei-
delberg (1983)

15. Chaum, D.L.: Untraceable electronic mail, return addresses, and digital
pseudonyms. Commun. ACM 24(2), 84–90 (1981)

16. Clark, J., Hengartner, U.: On the use of financial data as a random beacon. IACR
Cryptology ePrint Archive, 2010:361 (2010)

17. Dingledine, R., Mathewson, N.: Anonymity loves company: usability and the net-
work effect. In: WEIS (2006)

18. Dingledine, R., Mathewson, N., Syverson, P.: Tor: The second-generation onion
router. Technical report, DTIC Document (2004)

19. Douceur, J.R.: The sybil attack. In: Druschel, P., Kaashoek, M.F., Rowstron, A.
(eds.) IPTPS 2002. LNCS, vol. 2429, pp. 251–260. Springer, Heidelberg (2002)

20. Doyle, T., Veranas, J.: Public anonymity and the connected world. Ethics Inf.
Technol. 16(3), 207–218 (2014)

21. Fischlin, M.: Round-optimal composable blind signatures in the common reference
string model. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 60–77.
Springer, Heidelberg (2006)

22. Fleder, M., Kester, M.S., Pillai, S.: Bitcoin transaction graph analysis (2014).
http://people.csail.mit.edu/spillai/data/papers/bitcoin-transaction-graph-analy
sis.pdf

23. Fuchsbauer, G.: Automorphic signatures in bilinear groups and an application to
round-optimal blind signatures. IACR Cryptology ePrint Archive, 2009:320 (2009)

24. Maxwell, G.: Coinjoin: Bitcoin privacy for the real world, August 2013. https://
bitcointalk.org/index.php?topic=279249

25. Miers, I., Garman, C., Green, M., Rubin, A.D.: Zerocoin: anonymous distributed
e-cash from bitcoin. In: 2013 IEEE Symposium on Security and Privacy (SP), pp.
397–411. IEEE (2013)

26. Möser, M., Bohme, R., Breuker, D.: An inquiry into money laundering tools in the
bitcoin ecosystem. In: eCrime Researchers Summit (eCRS), pp. 1–14. IEEE (2013)

27. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system. Consulted 1(2012),
28 (2008)

28. Ober, M., Katzenbeisser, S., Hamacher, K.: Structure and anonymity of the bitcoin
transaction graph. Future Internet 5(2), 237–250 (2013)

29. Palme, J., Berglund, M.: Anonymity on the internet. Accessed 15 August 2009
(2002)

30. Reid, F., Harrigan, M.: An analysis of anonymity in the bitcoin system. In: Alt-
shuler, Y., Elovici, Y., Cremers, A.B., Aharony, N., Pentland, A. (eds.) Security
and Privacy in Social Networks. Springer, Heidelberg (2013)

31. Ron, D., Shamir, A.: Quantitative analysis of the full bitcoin transaction graph.
In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 6–24. Springer, Heidelberg
(2013)

32. Ruffing, T., Moreno-Sanchez, P., Kate, A.: Practical decentralized coin mixing for
bitcoin. HotPETS, Coinshuffle, July 2014

33. Sweeney, L.: k-anonymity: a model for protecting privacy. Int. J. Uncertainty Fuzzi-
ness Knowl.-Based Syst. 10(05), 557–570 (2002)

34. Yang, E.Z.: Secure multiparty bitcoin anonymization, July 2013. http://blog.
ezyang.com/2012/07/secure-multiparty-bitcoin-anonymization/

http://people.csail.mit.edu/spillai/data/papers/bitcoin-transaction-graph-analysis.pdf
http://people.csail.mit.edu/spillai/data/papers/bitcoin-transaction-graph-analysis.pdf
https://bitcointalk.org/index.php?topic=279249
https://bitcointalk.org/index.php?topic=279249
http://blog.ezyang.com/2012/07/secure-multiparty-bitcoin-anonymization/
http://blog.ezyang.com/2012/07/secure-multiparty-bitcoin-anonymization/

Privacy-Enhancing Overlays in Bitcoin

Sarah Meiklejohn1(B) and Claudio Orlandi2

1 University College London, London, UK
s.meiklejohn@ucl.ac.uk

2 Aarhus University, Aarhus, Denmark
orlandi@cs.au.dk

Abstract. In this paper, we explore the role of privacy-enhancing over-
lays in Bitcoin. To examine the effectiveness of different solutions, we first
propose a formal definitional framework for virtual currencies and put
forth a new notion of anonymity, taint resistance, that they can satisfy.
We then approach the problem from a theoretical angle, by proposing
various solutions to achieve provable taint resistance, and from a practi-
cal angle, by examining the taint resistance of the Coinjoin protocol.

1 Introduction

Virtual currencies have existed in various forms — e.g., customer loyalty pro-
grams — for decades, yet only in recent years have they exploded in popularity.
The initial virtual currency driving this success, Bitcoin, was introduced in Jan-
uary 2009; today, it boasts an exchange rate of over 250 EUR per bitcoin and
is in the process of integrating into the traditional banking system via payment
gateways such as Bitpay — which as of March 2014 had signed up 26,000 mer-
chants to accept the currency— and partnerships between Bitcoin exchanges
such as Bitcoin.de and banks such as Fidor Bank AG. This tremendous growth
has impelled regulators and law enforcement officials around the world to take a
stand on virtual currencies, with the European Central Bank calling Bitcoin “the
most successful— and probably most controversial — virtual currency scheme to
date” [7] and the Federal Bureau of Investigation cautioning that, within the
Bitcoin network, “law enforcement faces difficulties detecting suspicious activ-
ity, identifying users and obtaining transaction records” [8].

This tension between the growing popularity of virtual currencies and their
perceived anonymity provides a unique problem for both users of these currencies
and for regulators seeking to understand the true risks that they pose. The initial
perception of Bitcoin was arguably that it provided anonymity, as evidenced by
its adoption in the underground marketplace Silk Road (where bitcoins could
be exchanged for goods such as drugs, firearms, and assassins) and by criminals
running ransomware such as CryptoLocker or Ponzi schemes [18]. A recent line
of research [2,12,15,16,19], however, showed that it was often possible to trace
the movement of bitcoins throughout the network, so as a result the average
Bitcoin user was not achieving much anonymity at all.

c© International Financial Cryptography Association 2015
M. Brenner et al. (Eds.): FC 2015 Workshops, LNCS 8976, pp. 127–141, 2015.
DOI: 10.1007/978-3-662-48051-9 10

128 S. Meiklejohn and C. Orlandi

Perhaps in reaction to these results, a variety of new privacy-enhancing tech-
niques have been proposed for virtual currencies. These techniques can be split
into roughly two types: the first type introduces a new virtual currency— such
as Zerocash [4,13] or DarkCoin — that seeks to improve on the anonymity prop-
erties of Bitcoin, and the second type proposes overlays that can be used without
modifying the existing Bitcoin protocol. It is this latter approach that we focus
on in this paper.

The main obstacle towards achieving anonymity in Bitcoin is its inherent
transparency: while peers can identify themselves using a variety of pseudonyms,
every transaction that has ever taken place — and thus the entire spending
history of any given bitcoin — is globally visible. One method for improving
anonymity in Bitcoin is to mix bitcoins together as follows: Alice holds 1 bitcoin
and wishes to send it to Charlie, and Bob holds 1 bitcoin and wishes to send it to
Dora. If Alice sends her bitcoin to Dora and Bob sends his to Charlie, then they
have now essentially swapped the spending histories of these bitcoins; if Alice is
a thief, Bob a legitimate user, and Charlie the exchange where Alice wants to
cash out her bitcoin, then this swap has effectively “cleaned” the stolen bitcoin.
To address the difficulty of finding users to mix with, mix services such as Bit-
coin Fog and BitLaundry accept bitcoins and — in exchange for a fee — promise
to send untainted bitcoins (i.e., bitcoins independent of the ones it received) to
any address provided by the user.

Until a year ago, mix services were fairly unattractive, as a fair amount of
trust was required to assume that a user would in fact receive his promised bit-
coins. In August 2013, however, Gregory Maxwell proposed Coinjoin [10], which
promised trustless mixing, and essentially provided a way for users like Alice and
Bob in the above example to mix their bitcoins in a single transaction, without
relying on either a central service or even any trust in each other. Since then,
numerous other trustless mix services have been introduced, such as SharedCoin
(sharedcoin.com) and CoinWitness [11], and SharedCoin has been integrated
into blockchain.info’s popular wallet service (as of November 2013).

Our Contributions. In this paper, we examine the landscape of privacy-
enhancing overlays for Bitcoin in an attempt to determine the extent to which
they succeed in achieving anonymity, and the extent to which their anonymity
can be strengthened. By looking at the problem from these dual perspectives,
we can obtain a picture of both what is feasible in theory and what happens in
practice.

To understand the extent to which existing overlays achieve anonymity, it is
first necessary to have a common framework in which these techniques can be
analyzed. In Sect. 2, we propose such a framework and provide — to the best of
our knowledge — the first formal definition of anonymity, taint resistance, that
can be satisfied by Bitcoin and related virtual currencies. (The main previous
definition of anonymity for virtual currencies, unlinkability, cannot be met here.)
In Sect. 3, we then analyze how different mechanisms can provide taint resistance.
While our framework provides a way to analyze the security of protocols, it is
also important to understand the performance of these protocols in practice.

Privacy-Enhancing Overlays in Bitcoin 129

In Sect. 4, we thus perform an experimental analysis of the Coinjoin protocol.
We do so from the perspective of both a passive adversary, who uses only the
publicly available data from the transaction ledger, and — by engaging in our
own coinjoin transactions — an active adversary, who uses its own participation
to attempt to de-anonymize the activity of other participants. We find that näıve
versions of these adversaries are not particularly successful in identifying which
input addresses taint a given output address, and moreover that their success is
heavily tied to the quirks of the Coinjoin protocol being used.

2 Definitions and Notation

We begin with formal specifications of decentralized electronic cash (or e-cash)
and Coinjoin. We then introduce a notion of anonymity for virtual currencies
that we call taint resistance.

2.1 Distributed Electronic Cash

To the best of our knowledge, the only existing formal definitions of anonymity
in electronic cash are either in a centralized setting or the definition put forth
for Zerocoin [13]. The former definitions are out of the scope of this work, as
all our currencies of interest are fundamentally decentralized. The Zerocoin def-
initions do explicitly consider decentralization, but are not applicable in our
setting because their definition of anonymity still closely matches the standard
cryptographic notion of unlinkability (where, briefly, a user should not be able
to distinguish between two coins), which is impossible to achieve for Bitcoin and
the many altcoins that it has inspired.

With these considerations in mind, we set out to create a formal defini-
tion that encompasses existing virtual currencies. We define a decentralized e-
cash protocol as a set of PT algorithms (KeyGen,Mint,Spend,Verify,KeyCheck,

HistCheck,ValCheck) that behave as follows: via (pk , sk) $←− KeyGen(1λ) one can

generate a keypair; via (hist, {coini, sk i}i)
$←− Mint(hist, aux) one can generate

coins and create a record of this generation; via tx
$←− Spend(hist, {coini, sk i}i∈[m],

{pk j , vj}j∈[n]) one can send vj coins to recipients pk j ; via accept/reject ←
Verify(hist, tx) one can (deterministically) decide if a transaction is valid or
not; via KeyCheck(sk , coin) one can (deterministically) determine if a coin is
compatible with a given secret key; via HistCheck(hist, coin) one can (deter-
ministically) determine if a coin is compatible with a given history; and via
ValCheck(v, {coini}i) one can (deterministically) determine if a set of coins is
compatible with a given value.

To define correctness of the protocol, we say that a set {(coini, sk i)}i is valid
with respect to a given history hist and value v if (1) KeyCheck(sk i, coini) =
accept for all i, (2) HistCheck(hist, coini) = accept for all i, and (3) ValCheck(v,
{coini}i) = accept. We say that the protocol achieves correctness if Verify(hist′,
Spend(hist, {(coini, sk i)}i, {(pk j , vj)}j)) = accept for all sets {(coini, sk i)}i that
are valid with respect to hist and

∑
j vj , and for all hist′ such that hist ⊆ hist′.

130 S. Meiklejohn and C. Orlandi

2.2 Coinjoin

The Coinjoin protocol is designed to make a simplistic taint tracking more diffi-
cult. If we consider how bitcoins get spent (or the inputs to the Spend algorithm
specified above), we recall that the sender needs to create a transaction using
the secret key corresponding to each of the input public keys. One might thus
think that a party forming a transaction needs to know each of these keys, so
that the input keys in a transaction are all owned by the same entity. Indeed,
this observation has formed the basis of a number of heuristics used to clus-
ter together different Bitcoin addresses [2,12,15,16,19]. In fact, the signatures
required in a transaction can be formed in a distributed manner, so that — while
highly indicative of single ownership until a year ago — multiple entities can come
together to form an ordinary-looking transaction without having to share secret
signing keys at all. Coinjoin exploits this ability to distribute the generation of
a transaction, and in its simplest form operates as seen in Algorithm2.1.

Algorithm 2.1. coinjoin: Output a transaction tx

Input: Sets
{{coinsk,i}i∈[mk], {pkk,j , vk,j}j∈[nk]

}
k∈[N]

belonging to each of N

parties.

1 Each party k sends the set {pkk,j , vk,j}j∈[nk] to all the other parties.

2 Define So = ∪k∈[N],j∈[nk]{pkk,j , vk,j}; after the previous step, each party can

now compute So. Each party k further computes σk,i
$←− Sign(skk,i, hist, So) for

all i, 1 ≤ i ≤ mk.
3 Each party k sends the set {pkk,i, σk,i}i∈[mk] to all the other parties.

4 Define Si = ∪k∈[N],i∈[mk]{pkk,i, σk,i}; after the previous step, each party can
now compute Si. The final transaction is tx = (Si, So), which each party can
broadcast to the Bitcoin network.

Briefly, each party broadcasts their desired output keys to the other par-
ties, individually signs the completed list, and then broadcasts the signatures
to the other parties; each party can then broadcast this list of signatures and
recipients — presumably in randomized order to prevent trivial de-
anonymization — as the collective transaction. The way in which the order and
the transaction fees are determined can be used to identify the behavior of dif-
ferent Coinjoin services, as we will see in Sect. 4.

To attempt to understand the growing popularity of coinjoin transactions,
we looked at how many transactions matched a rough pattern of what we might
expect coinjoins1 to look like. We defined this pattern as any transaction having
more than five inputs and more than five outputs, and looked at how many
transactions matched this pattern (which is admittedly only roughly correlated
with coinjoins, but as coinjoins are indistinguishable from other transactions
1 In the rest of the paper, we follow the convention of called the protocol Coinjoin and

the resulting transactions coinjoins.

Privacy-Enhancing Overlays in Bitcoin 131

we cannot do better than an approximation). Prior to August 2013, we saw an
average of zero matching transactions per block, but afterwards we saw a steady
increase: first to an average of two matching transactions per block in December
2013, then to a peak of 14 in March 2014, and finally settling to an average of
10 in July 2014, where it has remained ever since.

2.3 Taint Resistance

As mentioned above, the existing notions of unlinkability for electronic cash
require that a valid coin belonging to one user is indistinguishable from a valid
coin belonging to another. In Bitcoin, it is impossible to satisfy this definition: a
bitcoin essentially is its spending history, and it is thus trivial to distinguish two
valid bitcoins. Any notion of anonymity that is useful for Bitcoin must therefore
focus less on the coins themselves and more on ownership. Looking back at the
Coinjoin protocol in Sect. 2.2, we can see that it is attempting to obscure not
the individual origins of the bitcoins involved — as, again, this can be trivially
discerned using the public ledger — but rather the ownership of the bitcoins at
each point in their spending histories.

To focus more on ownership, we thus present a notion of anonymity called
taint resistance, which attempts to capture how well an adversary can discern
the ownership of a bitcoin based on its previous spending history. Our definition
has the advantage that we can not only provide proofs of security (i.e., prove that
a protocol achieves optimal taint resistance), but that it also provides a concrete
measurement of the degree to which a proposed solution such as Coinjoin is
effective in improving anonymity.

In order to define taint resistance, we must first define what it means for
bitcoins to be tainted at all. The näıve version of the definition is simple: if a
public key has received some bitcoins as the result of a transaction, then all the
inputs to that transaction have tainted those bitcoins (or, in a public-key-based
definition, have tainted that output public key). As this is exactly the type of
taint analysis that protocols like Coinjoin are designed to thwart, however, we
consider a more specific definition.

Definition 2.1 (Taint Set). For a coinjoin tx produced as specified in
Algorithm2.1 and a public key pk ∈ outputs(tx), the taint set for pk is the set
T = {pk i}i∈[m] such that vi,j �= 0.

The definition of the taint set only makes sense when applied to “real” coinjoins,
since it explicitly mentions the values vi,j transferred from Ui to Uj . In general,
it is impossible to define a taint set unless we make some assumption on how the
transaction was generated; to see why, recall the example in the introduction,
where Alice and Bob pay 1 coin each to Charlie and Dora. If one looks only at
the transaction, there are potentially exponentially many explanations for the
transaction; i.e., for each value v < 1, Alice and Bob could have been paying
(v, 1 − v) respectively to Charlie and (1 − v, v) to Dora (or vice versa).

To consider the success of an adversary, we use the Matthews correlation
coefficient (MCC), which is a way to measure the quality of a binary classifier.

132 S. Meiklejohn and C. Orlandi

This fits well with an adversary attempting to de-anonymize transactions, as
we can view it as assigning a ‘yes’ value to an input if it thinks it taints a
given output, and a ‘no’ value if it does not. The MCC ranges from −1 to
+1: −1 indicates a complete mismatch between the underlying truth and the
classification, 0 indicates that the classifier does no better than random, and +1
indicates a perfect match. (We define 0/0 = 0.)

For our purposes, we can define all the relevant terms in the original MCC
formula using the set A output by an adversary, the underlying taint set T , and
the full set of input keys S. Plugging these in, we get the following definition:

Definition 2.2 (Accuracy). For a transaction tx, a public key pk ∈
outputs(tx) and its corresponding taint set T , auxiliary information aux ∈
{0, 1}∗, and an adversary A, we say that the adversary achieves ε-accuracy with
respect to aux , where

ε =
|A ∩ T | · |S \ (A ∪ T)| − |A \ T | · |T \ A|√|A| · |T | · |S \ T | · |S \ A|

for S ← inputs(tx) and A
$←− A(tx, aux).

Definition 2.3 (Taint Resistance). For a transaction tx, a public key pk ∈
outputs(tx), auxiliary information aux ∈ {0, 1}∗, and a set of public keys S ⊆
inputs(tx), we say that tx achieves ε-taint resistance with respect to aux if no
(potentially unbounded) adversary A can achieve more than (1 − ε)-accuracy.

Unlike accuracy, taint resistance is quantified over all possible adversaries (it is
a property of the transaction, not the adversary), and taint resistance ranges
from 0 to 1 since there is always a trivial adversary that outputs S or the empty
set and thus achieves accuracy 0. In the sequel, we first identity constructive
solutions for achieving taint resistance, and then attempt to analyze the effect
that the auxiliary information aux can have on a transaction’s taint resistance.

3 Achieving Taint Resistance

In this section, we describe and analyze different mechanisms for achieving taint
resistance. All of the solutions use well-known methods from the cryptographic
literature; i.e., we do not claim any novelty in the cryptographic tools, but instead
seek to explore how they can be used to achieve taint resistance.

It is instructive to start our discussion by describing how an adversary can
identify the taint set of a given public key in a coinjoin; this will also be useful
in our experimental analysis in Sect. 4. We describe a few scenarios below:

– The Transaction Itself. A coinjoin has two input values x and y and two
output values x − Fx and y − Fy (where the transaction fee is Fx + Fy). If
x �= y and Fx and Fy are small, the adversary can use this information to
increase his belief in which input address transferred value to a given output
address.

Privacy-Enhancing Overlays in Bitcoin 133

– Participating in Coinjoins. An unlucky user performs a coinjoin with
the adversary as his sole mixing partner. Regardless of how the coinjoin is
performed, the adversary — who controls one input address and one output
address — can trivially compute the taint set of the other output address
(assuming one input and one output address per participant).

– Influencing the Creation of Coinjoins. An adversary can learn informa-
tion about the taint set of an output address in a coinjoin by maliciously
influencing the way in which a coinjoin is created. This includes not only the
protocol for generating the coinjoin, but also the process of choosing the other
participants (where, for example, the adversary might try to force an honest
user to perform coinjoins with adversarially controlled addresses).

3.1 Using a Trusted Server

We describe now an ideal setting for performing coinjoins; i.e., one that leads
to optimal taint resistance. We then proceed to replace some of the (unrealistic)
assumptions using cryptographic tools.

To start, we assume a central trusted server, which partitions users into
different coinjoins, permutes their addresses at random, and transfers an amount
equal to the minimum of all input values (and returns the differences to change
addresses).

Grouping Users: A user U j who wish to perform a coinjoin sends his addresses
(pkj

i , pkj
o, pkj

c) (for input address, output address and change address respec-
tively) to a central server S, where pkj

o and pkc
j are freshly generated

addresses. The server S randomly assigns the user to a bucket � of size n.
Performing Transactions: Let U1, . . . , Un be the users assigned to a certain

bucket �. Let vj
i be the values associated to pkj

i and v∗ = min(vj
i). The server

S prepares a transaction with input addresses (pk1
i , . . . , pkn

i) and outputs
addresses (pk

π(1)
o , pk

π(n)
o , pk1

c , . . . , pkn
c), for a random permutation π. Let F

be the transaction fee: then for each j, the address pkj
c receives vj

c = vj
i −

v∗ − F/n coins, and all pkj
o receive the same value v∗.

Signing Transactions: The server S sends the transactions tx to all users U j

in the bucket �. If U j ’s output address is present in the transaction and
the amount received by the change address of U j is correct, U j signs the
transaction and sends it back to the server.

Claim 1. Any tx generated using the above protocol achieves an expected 1-taint
resistance for the first n output addresses, against every adversary who does not
control (U1, . . . , Un, S).

The proof of the claim is trivial: the first n output addresses are fresh unused
addresses in a randomly permuted order, are generated independently, and all
receive the same amount of bitcoins. Since the adversary does not control any
other user participating in the transaction nor the server, the adversary has no
auxiliary information about the permutation π.

134 S. Meiklejohn and C. Orlandi

3.2 Reducing Trust in the Central Server

The solution presented in the previous section offers taint resistance against
only simplistic adversaries. We propose here a solution that also works against
a partially corrupted server. The solution uses anonymous channels in a crucial
way and is a simple application of the results of [9] in this setting.

Grouping Users: User U j sends his input and change address (pkj
i , pkj

c) to the
server S, which replies with the index � of the bucket to which the user has
been assigned. Now, using a (different) anonymous channel,2 user U j sends
the pair (�, pkj

o) to the server.
Performing Transactions: As before.
Signing Transaction: As before.

Intuitively, since the users communicate the input and output key to the server
using two distinct anonymous channels, the server cannot link those addresses
together.

Claim 2. Any tx generated using the above protocol achieves an expected (1−ε)-
taint resistance for the first n output addresses, against every adversary who does
not control (U1, . . . , Un) and corrupts S in a passive way.

Since S is passively corrupted, we need to add S’s view to the auxiliary infor-
mation aux given to the adversary. The main idea is that, since each user sends
its output public key using a fresh anonymous channel, even the central server
does not learn the mapping between the input keys and output keys.

More formally, as shown by [9], our use of the anonymous channel is a secure
implementation of an ideal functionality that performs a secure shuffle. There-
fore, the view of the server can be efficiently simulated, which implies that any
adversary that can achieve non-negligible accuracy in this protocol can be used
to do so in the previous protocol as well.

3.3 Removing the Central Server

Finally, we sketch a solution that does not require any central server. Here we
think of a high number of users N who want to perform coinjoins and have
access to some broadcast channel. It is at this point (conceptually) trivial to let
all parties run a secure computation protocol to replace the central server; in
practice, however, this is quite cumbersome, as it requires high communication
and computational resources.

Instead, we seek a solution that allows the users to partition themselves in
smaller sets of (expected) size n and then perform simple “mix-nets” between
them (a very similar solution has also been described in [17]). Here it is crucial
that users are assigned to groups at random (even in the presence of other
actively corrupted users) to guarantee that an adversary who controls few (say
n − 1) parties cannot force an honest user to perform a coinjoin with those
addresses. Let H : {0, 1}∗ → [n] be a cryptographic hash function.
2 This can implemented by creating a new identity on Tor.

Privacy-Enhancing Overlays in Bitcoin 135

Grouping Users: All users perform a simultaneous exchange of their input
and change addresses (pkj

i , pkj
c). (This can be implemented by having all

parties commit to their addresses, and then send the opening only after all
commitments have been received). Each user j is assigned to group H(pkj

i).
Performing Transactions: Let U1, . . . , Un be the users assigned to a cer-

tain bucket �. Now these users can perform a simple mix-nets as follows:
User U1 encrypts his output address pkj

o under all the public keys of the
other parties — i.e., forms C1

2 = Epk2(Epk3(· · · (Epkn
(pkj

o)))) — and sends it
to U2. Now U2 samples a random permutation π of {1, 2}, decrypts the
received ciphertexts and computes C

π(1)
3 = Dsk2(C

1
2) as well as C

π(2)
3 =

Epk3(Epk4(· · · (Epkn
(pkj

o)))) and so on. That is, at every step user U j removes
one layer of encryption from all the ciphertexts he receives, encrypts his own
output public key under the public keys of the next users, shuffles the cipher-
texts and sends them on to the next user. Finally, Un decrypts and obtains
the full list of the output addresses, and prepares a transaction tx in the
same way as the server did in the previous solutions.

Signing Transaction: The user Un sends the transactions tx to all users U j

in the bucket �. If pk j
o is present in the transaction and the amount received

by pk j
c is correct, U j signs the transaction and sends it back to Un.

Claim 3. Any tx generated using the above protocol achieves an expected (1 −
nτn−1)-taint resistance for the first n output addresses, against every adversary
who controls a fraction τ of parties.

There are two key ideas here. First, there is no guarantee that a user will perform
the correct decryption and shuffle. Still, it suffices to use a passively secure mix-
nets protocol, as users will sign the transaction only if their address is present in
the final transaction. Second, unless the adversary controls exactly n − 1 users
in a given bucket, then the resulting mix between the two hones user will leave
the adversary without any information to do any better than guessing. Since the
adversary cannot control how the users are assigned into buckets (due to the use
of commitments and the hash function), assuming that the adversary controls
less than τ · N parties then the probability that he controls exactly the other
n − 1 users in the bucket assigned to the target public key is less than n · τn−1.

4 Experimental Analysis

In the previous section, we saw methods for achieving taint resistance. All of
these approaches, however, achieved security only with respect to the auxiliary
information that an adversary could obtain. In this section, we explore this
auxiliary information and consider how much it could affect taint resistance.

We consider different forms of auxiliary information from two perspectives.
First, we consider a minimal passive adversary that can glean information about
coinjoins based only on what it sees in the block chain. To emulate such an
adversary, we need only download the Bitcoin block chain, which we did as
recently as 2 September 2014 (at which point there were 318,768 blocks, 45.84
million transactions, and 45.79 million distinct public keys).

136 S. Meiklejohn and C. Orlandi

Next, we consider an active adversary that participates in coinjoins. To emu-
late this adversary, we used blockchain.info’s SharedCoin service to partici-
pate in our own coinjoins. We used this service 54 times between 30 June 2014
and 11 August 2014; in each transaction, we sent 0.02 BTC from a single address
we owned to a new one (freshly generated). As blockchain.info requires at least
two repetitions of the Coinjoin protocol (in their own words, “a higher number of
repetitions makes the transaction more difficult to trace and improves privacy”),
this resulted in two transactions: in the first 0.0205 BTC was sent to a freshly
generated intermediate address and the remainder was sent to a freshly gener-
ated change address, and in the second 0.02 BTC was sent to the address we
specified. We therefore ended up with 108 distinct coinjoins, each of which took
between 8 and 74 seconds to complete (on average, 30), and had between 4 and
40 input addresses (on average, 14.5) and between 4 and 42 output addresses
(on average, 25.8).

4.1 Auxiliary Information Based on Value

One bitcoin is divisible down to the eighth decimal place, meaning that it is often
possible to end up with “jagged” bitcoin values. If each user in a coinjoin sends
different jagged values, then — as discussed in Sect. 3 — these values might help
an adversary discover the permutation between input and output addresses. This
is an acknowledged limitation of the Coinjoin protocol, and the only solution for
achieving full taint resistance is to ensure that all participants send the same
amount of bitcoins. From a usability perspective, however, this is not particularly
desirable, so it is useful to understand the degree to which differing amounts
really degrade taint resistance.

We first consider the different behaviors in which coinjoin users might engage.
For example, a user might aggregate bitcoins by combining the balances of m
separate addresses into one address, and a user might split bitcoins by moving
the balance of one address into n separate addresses. (This latter case often
arises in the case of making change, where n = 2.) We attempt to correlate the
values in a coinjoin by identifying subsets of the input values whose sum adds
up to an output value (the m-to-1 scenario) and which output values are part
of a subset whose sum adds up to an input value (the 1-to-n scenario). As these
are the only two behaviors that we engaged in our own coinjoins (and because
the subset sum problem is NP-complete), we do not consider the more general
m-to-n setting.

Finally, because transactions have fees, we perform a noisy subset sum by
allowing the sum of the subsets to potentially exceed the target value by at most
the transaction fee. We present our algorithm in Algorithm4.1.

As a sanity check, we ran this algorithm using the ground truth data collected
from our coinjoins; i.e., for each of our known output addresses. (As we knew
that we engaged only in 1-to-2 or 1-to-1 transactions, we also “cheated” by
considering only subsets of size at most 2.) We then compared this to the known
taint set to get the accuracy (see Definition 2.2) of an adversary running this
algorithm, and plotted the results in Fig. 1.

Privacy-Enhancing Overlays in Bitcoin 137

Algorithm 4.1. find taint: Output the taint set for a public key
Input: a transaction tx and a public key pk ∈ outputs(tx).

1 Compute the fee F for tx
2 Compute Sm-to-1 ← noisy subset sum(inputs(tx), val(pk), F)
3 S1-to-n ← ∅
4 forall the pk ′ ∈ inputs(tx) do
5 Compute S ← noisy subset sum(outputs(tx), val(pk ′), F)
6 if pk ∈ S then
7 S1-to-n ← S1-to-n ∪ {pk ′}
8 return Sm-to-1 ∪ S1-to-n

Fig. 1. For our known output addresses, the MCC for Algorithm 4.1 when run on coin-
joins with differing numbers of input addresses. The points in blue represent the MCC
when considering just m-to-1 taint (Sm-to-1), the points in red 1-to-n taint (S1-to-n),
and the points in green the combined taint set S. All use a maximum subset size of 2
when running noisy subset sum.

As we can see, the algorithm was fairly inconsistent in its accuracy. This is
due in part to a quirk of blockchain.info’s service: in the first step, 0.0205 BTC
was sent to an intermediate address, but in the second step, only 0.02 BTC was
sent to the final address; the remainder was kept by blockchain.info as a
service charge. As a result, our algorithm did not positively associate the input
and output addresses, so any non-empty set it output was a false positive (as
indicated by the largely non-positive MCC for the m-to-1 taint). For the first
type of transaction, in which the initial address split its value between the change
and intermediate addresses, we see that (unsurprisingly) the 1-to-n and combined
taint did fairly well overall, and — especially for transactions with fewer input
keys and thus fewer options — often found the taint set perfectly (as indicated
by the points with an MCC of 1).

138 S. Meiklejohn and C. Orlandi

Active Adversaries. To emulate the benefit that an active adversary has — that
in a coinjoin in which it participated, it can rule out its own addresses—
we started with our own coinjoins, eliminated our own addresses, and ran
Algorithm 4.1 on the remainder. As we could no longer use ground truth data to
compute the accuracy, we instead plotted the size of the set S. The results are
in Fig. 2.

Fig. 2. For the unknown addresses in known coinjoins, the size of the set output by
Algorithm 4.1. The points in blue consider just m-to-1 taint (Sm-to-1), the points in red
1-to-n taint (S1-to-n), and the points in green the combined taint set S. The value of s
is the maximum subset size when running noisy subset sum.

On average, we can see that the set S was of a fairly small size; in the many
cases that it was 0, either (1) a more general m-to-n Coinjoin was used, (2) the
input subset was of size larger than 4, or (3) most likely, our basic algorithm did
not take into account some quirk of the blockchain.info service (as was the
case with our own transactions). In the cases where S was larger, we ultimately
do not know whether it truly captured the taint set or whether it was simply
capturing “noise” from other inputs that happened to sum to the target value.
To nevertheless attempt to capture some of this noise, we considered for the case
of m-to-1 taint not the possible taint set but rather how many subsets of input
addresses summed to the correct output value. Here, a lower value indicates that
the algorithm is more sure about which input addresses taint the given output
(as there are fewer options), while a larger number of subsets indicates noise
from the inputs (for example, if many of the inputs have the same value), and
consequently less certainty. Of our 5156 data points, only 62 had exactly one
matching subset (again, using only the m-to-1 taint), and 4812 had no matching
subsets at all. Our simple active adversary was thus not particularly successful at
identifying the taint set, although it did at least manage to avoid false positives.

Privacy-Enhancing Overlays in Bitcoin 139

Fig. 3. For potential coinjoins, the size of the set output by Algorithm 4.1. The points
in blue consider just m-to-1 taint (Sm-to-1), the points in red 1-to-n taint (S1-to-n), and
the points in green the combined taint set S. The value of s is the maximum subset
size when running noisy subset sum.

Passive Adversaries. Finally, we consider a passive adversary; i.e., one that does
not participate in any coinjoins, but instead tries to infer from an examination
of the block chain which transactions are coinjoins and which coinjoin input
addresses taint which output addresses. To do this, we considered the same pat-
tern used in Sect. 2.2: a potential coinjoin has more than five inputs, more than
five outputs, and took place after 30 August 2013. This is of course a very rough
heuristic, and before using this data we eliminated any obvious mismatches; this
included behavior such as a user combining funds to place bets on different odds
in dice and other gambling games. From this set, we then randomly sampled
100 transactions (to match the size of our set of real coinjoins). We again ran
Algorithm 4.1 and recorded the size of the set S; the results are in Fig. 3.

Again, we ultimately cannot know how successfully the analysis identified the
taint set. We can, however, see a clear increase in the size of the set S for these
passively identified coinjoins over the size for the definite coinjoins. Running the
same analysis to determine the number of possible subsets in the m-to-1 scenario,
we found that of our 3476 data points, 278 had exactly one matching subset and
2513 had no matching subsets. The subsets produced by the algorithm were thus
far noisier than the ones produced for the definite coinjoins, indicating that an
active adversary has a distinct advantage over a passive one.

5 Related Work

We consider related work that both proposes ways to enhance privacy in virtual
currencies and attempts to analyze the existing anonymity in Bitcoin.

140 S. Meiklejohn and C. Orlandi

In terms of the latter, perhaps the work most similar to our own is Coin-
join Sudoku [3], in which Atlas analyzes the same mixing service (namely, the
SharedCoin one provided by blockchain.info) and finds that it “offers only
limited privacy to users due to weaknesses in its design.” As we did, Atlas per-
formed his own coinjoins and examined possible relationships between input and
output addresses based on the values. He claims to be able to taint the majority
of inputs and outputs, but the details of the analysis are not given and as of
this writing no source code or tool is available, despite a promised release date
of 23 June 2014. A recent line of research has examined anonymity in the over-
all Bitcoin network [2,12,15,16,19], and a recent paper by Möser et al. found
that centralized mix services do make tracing transactions significantly more
difficult [14].

In terms of privacy enhancements, alternative virtual currencies have been
proposed such as Zerocash [4,13] and Darkcoin [1]. There are also a number of
proposed overlays for Bitcoin, such as Pinocchio Coin [6], Mixcoin [5], CoinWit-
ness [11], and CoinShuffle [17]. None of these papers formally prove the security
of their proposed constructions, but our decentralized construction is almost
identical to the one in CoinShuffle and our centralized construction is related to
the one in Mixcoin.

6 Conclusions and Open Problems

In this paper, we presented a definitional framework for the anonymity that
virtual currencies such as Bitcoin provide. We then provided constructive solu-
tions for achieving this new notion of anonymity, and analyzed the extent to
which it was already being achieved by existing Bitcoin overlays. For both of
our results, several interesting open problems and extensions remain. Our con-
structions require additional cryptographic techniques, and it is important to
understand the overhead that these techniques require. Similarly, our analysis of
SharedCoin was relatively simplistic and did not take into account certain quirks
of the service being used. Extending the analysis to consider these quirks — or
understanding the extent to which doing so would affect scalability — would
provide a more complete picture of the successes and limitations of the Coinjoin
protocol.

Acknowledgments. The second author was supported by the Danish National
Research Foundation (under the grant 61061130540, CTIC research center) and by the
Danish Strategic Research Council (CFEM research center) within which this work
was performed.

References

1. Darkcoin. https://www.darkcoin.io
2. Androulaki, E., Karame, G.O., Roeschlin, M., Scherer, T., Capkun, S.: Evaluating

user privacy in bitcoin. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp.
34–51. Springer, Heidelberg (2013)

https://www.darkcoin.io

Privacy-Enhancing Overlays in Bitcoin 141

3. Atlas, K.: Coinjoin Sudoku. http://www.coinjoinsudoku.com
4. Ben-Sasson, E., Chiesa, A., Garman, C., Green, M., Miers, I., Tromer, E., Virza,

M.: Zerocash: decentralized anonymous payments from bitcoin. In: Proceedings of
the IEEE Symposium on Security and Privacy (2014)

5. Bonneau, J., Narayanan, A., Miller, A., Clark, J., Kroll, J.A., Felten, E.W.: Mixcoin:
anonymity for bitcoinwith accountablemixes. In:Christin,N., Safavi-Naini,R. (eds.)
FC 2014. LNCS, vol. 8437, pp. 486–504. Springer, Heidelberg (2014)

6. Danezis, G., Fournet, C., Kohlweiss, M., Parno, B.: Pinocchio coin: building zero-
coin from a succinct pairing-based proof system. In: Proceedings of PETShop 2013
(2013)

7. European Central Bank. Virtual Currency Schemes. ECB Report, October 2012.
www.ecb.europa.eu/pub/pdf/other/virtualcurrencyschemes201210en.pdf

8. Federal Bureau of Investigation. (U) Bitcoin Virtual Currency Unique Features
Present Distinct Challenges for Deterring Illicit Activity. Intelligence Assessment,
Cyber Intelligence and Criminal Intelligence Section, April 2012. http://cryptome.
org/2012/05/fbi-bitcoin.pdf

9. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Cryptography from anonymity.
In: Proceedings of 47th Annual IEEE Symposium on Foundations of Computer
Science (FOCS 2006), Berkeley, California, USA, pp. 239–248, 21–24 October 2006

10. Maxwell, G.: CoinJoin: Bitcoin privacy for the real world. Post on bitcointalk.org.
https://bitcointalk.org/index.php?topic=279249

11. Maxwell, G.: Really Really ultimate blockchain compression: CoinWitness. Post
on bitcointalk.org. https://bitcointalk.org/index.php?topic=277389

12. Meiklejohn, S., Pomarole, M., Jordan, G., Levchenko, K., McCoy, D., Voelker,
G.M., Savage, S.: A fistful of bitcoins: characterizing payments among men with
no names. In: Proceedings of IMC 2013 (2013)

13. Miers, I., Garman, C., Green, M., Rubin, A.D.: Zerocoin: anonymous distributed
E-Cash from bitcoin. In: Proceedings of the IEEE Symposium on Security and
Privacy (2013)

14. Möser, M.: An inquiry into money laundering tools in the bitcoin ecosystem. In:
Proceedings of the IEEE 2013 eCrime Researchers Summit (2013)

15. Reid, F., Harrigan, M.: An analysis of anonymity in the bitcoin system. In:
Altshuler, Y., Elovici, Y., Cremers, A.B., Aharony, N., Pentland, A. (eds.) Security
and Privacy in Social Networks, pp. 197–223. Springer, New York (2013)

16. Ron, D., Shamir, A.: Quantitative analysis of the full bitcoin transaction graph.
In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 6–24. Springer, Heidelberg
(2013)

17. Ruffing, T., Moreno-Sanchez, P., Kate, A.: Coinshuffle: practical decentralized coin
mixing for bitcoin. In: Kuty�lowski, M., Vaidya, J. (eds.) ICAIS 2014, Part II. LNCS,
vol. 8713, pp. 345–364. Springer, Heidelberg (2014)

18. Securities and Exchange Commission. SEC Charges Texas Man With Running
Bitcoin-Denominated Ponzi Scheme, July 2013. www.sec.gov/News/PressRelease/
Detail/PressRelease/1370539730583

19. Spagnuolo, M., Maggi, F., Zanero, S.: BitIodine: extracting intelligence from the
bitcoin network. In: Christin, N., Safavi-Naini, R. (eds.) FC 2014. LNCS, vol. 8437,
pp. 457–468. Springer, Heidelberg (2014)

http://www.coinjoinsudoku.com
www.ecb.europa.eu/pub/pdf/other/virtualcurrencyschemes201210en.pdf
http://cryptome.org/2012/05/fbi-bitcoin.pdf
http://cryptome.org/2012/05/fbi-bitcoin.pdf
https://bitcointalk.org/index.php?topic=279249
https://bitcointalk.org/index.php?topic=277389
www.sec.gov/News/PressRelease/Detail/PressRelease/1370539730583
www.sec.gov/News/PressRelease/Detail/PressRelease/1370539730583

Search-and-Compute on Encrypted Data

Jung Hee Cheon1(B), Miran Kim1, and Myungsun Kim2

1 Department of Mathematical Sciences, Seoul National University,
Seoul, South Korea

{jhcheon,alfks500}@snu.ac.kr
2 Department of Information Security,

The University of Suwon, Hwaseong, South Korea
msunkim@suwon.ac.kr

Abstract. Private query processing on encrypted databases allows users
to obtain data from encrypted databases in such a way that the user’s
sensitive data will be protected from exposure. Given an encrypted data-
base, the users typically submit queries similar to the following examples:

– How many employees in an organization make over $100,000?
– What is the average age of factory workers suffering from leukemia?

Answering the above questions requires one to search and then com-
pute over the encrypted databases in sequence. In the case of privately
processing queries with only one of these operations, many efficient solu-
tions have been developed using a special-purpose encryption scheme
(e.g., searchable encryption). In this paper, we are interested in effi-
ciently processing queries that need to perform both operations on fully
encrypted databases. One immediate solution is to use several special-
purpose encryption schemes at the same time, but this approach is associ-
ated with a high computational cost for maintaining multiple encryption
contexts. The other solution is to use a privacy homomorphic scheme.
However, no secure solutions have been developed that meet the effi-
ciency requirements.

In this work, we construct a unified framework so as to efficiently
and privately process queries with “search” and “compute” operations.
To this end, the first part of our work involves devising some underly-
ing circuits as primitives for queries on encrypted data. Second, we apply
two optimization techniques to improve the efficiency of the circuit prim-
itives. One technique is to exploit SIMD techniques to accelerate their
basic operations. In contrast to general SIMD approaches, our SIMD
implementation can be applied even when one basic operation is exe-
cuted. The other technique is to take a large integer ring (e.g., Z2t) as
a message space instead of a binary field. Even for an integer of k bits
with k > t, addition can be performed with degree 1 circuits with lazy
carry operations. Finally, we present various experiments by varying the
parameters, such as the query type and the number of tuples.

Keywords: Encrypted databases · Private query processing · Homo-
morphic encryption

c© International Financial Cryptography Association 2015
M. Brenner et al. (Eds.): FC 2015 Workshops, LNCS 8976, pp. 142–159, 2015.
DOI: 10.1007/978-3-662-48051-9 11

Search-and-Compute on Encrypted Data 143

1 Introduction

Privacy homomorphism is an important notion for encrypting clear data while
allowing one to carry out operations on encrypted data without decryption. The
concept was first introduced by Rivest et al. [17], and much later, Feigenbaum
and Merritt’s question [12] affirmed the concept: Is there an encryption func-
tion E(·) such that both E(x + y) and E(x · y) are easy to compute from E(x)
and E(y)? Since then, there had been very little progress made in determin-
ing whether such efficient and secure encryption schemes exist until 2009, when
Gentry constructed such an encryption scheme [13].

While the use of Gentry’s scheme and other HE schemes (e.g., [6,7,22]) allows
us to securely evaluate any function in a theoretical sense, the evaluation cost is
still far from being practical for many functions. Among the important functions,
we restrict our interest to a set of functions for databases, which raises the
following question: Given a set of fully encrypted databases, can we construct a
set of efficient functions to process queries over the encrypted databases? If so,
what is the computational cost of the functions?

Although this question is the starting point of this work, to facilitate a better
understanding of the approach, we describe the motivation for our work from a dif-
ferent perspective. Currently, perhaps the simplest way to search for records satis-
fying a particular condition over encrypted databases is via searchable encryption
(e.g., [2,3,10,21]). However, privately processing sum and avg aggregation queries
in the same condition is performed using homomorphic encryption (e.g., [5,11]
and [16]). Thus, the private processing of a query that includes both matching
conditions and aggregate operations requires the use of two distinct encryption
techniques in parallel, i.e., searchable encryption and homomorphic encryption.

Recently, Ada Popa et al.’s CryptDB [1] processed general types of data-
base queries using layers of different encryption schemes: deterministic encryption
for equality condition queries, order-preserving encryption for range queries, and
homomorphic encryption for aggregate queries. The disadvantage of their work is
that in the long run, it downgrades to the lowest level of dataprivacyprovidedby the
weakest encryption scheme. This observation leads to the natural question: Canwe
construct a solution to efficiently address such a database querywithoutmaintaining
multiple contexts of encryption? However, there exists no solutions for expressing
and processing various queries on fully encrypted databases in an efficient way.

1.1 Our Results

Our main results are as follows:

– A unified framework for private query processing: We provide a com-
mon platform so that database users may work on a single underlying cryp-
tosystem, represent their query as a function in a conceptually simpler manner,
and efficiently carry out the function on fully encrypted databases.

– Optimizing Circuits and their Applications to Compact Expressions
of Queries: The foundation of our simple framework is a set of optimized

144 J.H. Cheon et al.

circuits: equality, greater-than comparison and integer addition. We call these
circuit primitives. Our optimizations of circuit primitives have been taken in
such a way as to minimize the circuit depth and the number of homomorphic
operations. To do this, we make extensive use of single-instruction-multiple-
data (SIMD) techniques to move data across plaintext slots. In general, SIMD
technology allows for basic operations to be performed on several data ele-
ments in parallel. On the contrary, our proposal works on packed ciphertexts
of several data elements and thus enables one to improve the efficiency of the
basic operations of circuit primitives. Furthermore, we find that all circuit
primitives have O(log μ) depth for μ-bit data.
We then express more complicated queries by a composition of the optimized
circuit primitives. The resulting query functions are conceptually simpler than
other representations of database queries and are compact in the sense that
retrieval queries require at most O(log μ) depth.

– Further Improvements in the Performance of Query Processing: HE
schemes usually use Z2 as a message space so that their encryption algorithm
encrypts each bit of message. While our circuit primitives efficiently work on
bit encryptions, we can achieve further improvements by adopting a large inte-
ger ring (e.g., Z2t), especially in the case of computing on encrypted numeric-
data. Even for an integer of k bits with k > t, addition can be performed with
degree 1 circuits by processing lazy carry operations. Although this rectifi-
cation requires to amend our circuit primitives, we can again preserve their
optimality by SIMD operations. In other words, search-and-compute queries
can be processed with only O(log μ)-depth circuits.

– Comprehensive Experiments: We conduct comprehensive experiments for
evaluating the performance of various queries expressed by our techniques
from a theoretical as well as practical perspective.

1.2 A High-Level Overview of Our Approach

Fig. 1. Our PSnC framework

Assuming a database con-
sisting of N blocks, i.e.,
R1 ‖ R2 ‖ · · · ‖ RN , to
encrypt the record Ri, a
DB user prepares a pair of
public/private keys (pk, sk)
for a HE scheme and pub-
lishes the public key to a DB
server. The users store their
encrypted records R̄i =
Epk(Ri) for 1 ≤ i ≤ N
in the same way as normal

Search-and-Compute on Encrypted Data 145

write queries (e.g., using the insert-into statement). Suppose that the user
wants to submit a retrieval query Q to the DB server. Before being submit-
ted, the query Q needs to be properly pre-processed so that all clear messages,
such as constant values, are encrypted under the public key pk. We denote this
transformed query by Q̄.

Upon receiving Q̄, the DB server compiles it into Q̄∗ by applying our tech-
niques. The readers can consider a dedicated module for performing this task.1

Hereafter, we call the module a Private Search-and-compute (PSnC) processor.
Next, the DB server homomorphically evaluates Q̄∗ over the fully encrypted
databases and returns the resulting ciphertexts to the user. The DB user can
decrypt the output using his private key sk while learning no additional data
except for the records satisfying the where conditions.

Figure 1 graphically illustrates the high-level architecture of our approach.

1.3 Closely Related Work

A few results closely related to our work can be found in the literature. First,
Lauter et al. in [15] showed how to privately compute avg and var functions
using a variant of Brakerski et al.’s SWHE scheme [8]. However, their work only
focused on applying homomorphic encryption to compute aggregate functions in
query statements. Thus, it is not clear how to address their where clauses in a
private manner.

Recently, Boneh et al. [4] proposed a way to privately process the where clause
in a select statement and produce a set of matching indices. Their technique
uses private set intersection together with homomorphic encryption. It also has
the following drawbacks: (1) their scheme only allows conjunctive and disjunctive
conditions; (2) the equality test is restricted to comparisons with a constant
value; and (3) the users must revisit the server to obtain a list of real tuples
because they only know the indices of those tuples.

Our work differs in several ways from prior efforts. First, our solution can
privately process the select clause and the where clause all at once. Second,
our solution supports a wide range of query types–from simple search queries
to join queries. In particular, our solution allows the DB users to express rich
conditions, including <,≤, >,≥, and <>.

Oraganization. The remainder of the paper is structured as follows. In Sect. 2,
we briefly review the BGV-type homomorphic encryption scheme. In Sect. 3,
we construct the optimized circuits for expressing queries. Then, in Sect. 4, we
show how to construct database queries having search and/or compute opera-
tions using our circuit primitives. Section 5 presents our optimization techniques
for further improvements in performance, and Sect. 6 shows the experimental
evaluations of our constructions.
1 Alternatively, one may imagine that Q̄∗ transformed by the DB user directly is sent

to the DB server. However, considering optimization and performance, we believe
that the better choice involves the module becoming part of the DBMS.

146 J.H. Cheon et al.

2 Preliminaries

In this section, we focus on describing the efficient variant of the Brakerski-
Gentry-Vaikuntanathan(BGV)-type cryptosystem [6,14], which is our underly-
ing encryption scheme. In what follows, we give a description of the security
model that our constructions assume.

2.1 The BGV-Type SWHE Scheme

For a security parameter κ, we choose an m ∈ Z that defines the m-th cyclo-
tomic polynomial Φm(X). For a polynomial ring A = Z[X]/〈Φm(X)〉, we set the
message space to At := A/tA for some fixed t ≥ 2 and the ciphertext space to
Aq := A/qA for an integer q. We choose a chain of moduli q0 < q1 < · · · < qL = q
whereby the SWHE scheme can evaluate a depth-L arithmetic circuit. Here is
the RLWE-based SWHE scheme:

– (a, b; s) ← Kg(1κ, h, σ, qL) : The algorithm Kg chooses a weight h secret key s
and generates a RLWE instance (a, b) relative to that secret key. We set the
secret key sk = s and the public key pk = (a, b).

– c ← Epk(x) : To encrypt a message x ∈ At, the algorithm chooses a small poly-
nomial v and two Gaussian polynomials e0, e1 (with variance σ2). It outputs
the ciphertext c = (c0, c1) by computing

(c0, c1) = (x, 0) + (bv + te0, av + te1) mod qL.

– x ← Dsk(c) : Given a ciphertext c = (c0, c1) at level l, the algorithm outputs
x = [c0 − s · c1]ql

mod t.
– cf ← Evek(f ; c, c′) : If the function f is an addition over ciphertexts, the algo-

rithm outputs the ciphertext performed by simple component-wise addition
of the two ciphertexts. If f is a multiplication over ciphertexts, it outputs the
one performed using a tensor product.

2.2 Security Model

We will consider the following threat model. First, we assume that an SQL server
is semi-honest. Thus, it should follow all specifications of our scheme. However,
an adversary is allowed to access all databases maintained by a corrupted SQL
server. Moreover, a corrupted DBA may become such an attacker. It is fairly
plausible for an attacker to legally login to the SQL server, to make an illegal
copy of interesting data, and to hand it over to any malicious buyer. Therefore,
the DB server should learn nothing about a query beyond what is explicitly
revealed (e.g., the number of tuples).

Second, we assume that a DB user is also semi-honest but is not allowed
to collude with an SQL server. Some corrupted DB users can create an illegal
copy of sensitive data; however, the volume of illegally copied data leaked at any
given time is assumed to be negligible. The DB user should not be given access
to data that are not part of the query result.

Search-and-Compute on Encrypted Data 147

To formulate our security model, we follow Boneh et al.’s security defini-
tion [4]. Specifically, the dishonest DB server should not be able to distinguish
between Q̄0 and Q̄1, where two transformed queries Q̄0 and Q̄1 have the same
syntactical form. Moreover, the adversarial DB user should not be able to dis-
tinguish two encrypted DBs D̄B0 and D̄B1 for every fixed query Q and for all
pairs of DBs (DB0,DB1) such that Q(D̄B0) = Q(D̄B1).

3 Circuit Primitives

We devise three primitives: equality, comparison (for the where clauses) and an
integer addition circuit (for the select clauses). We focus on a method of opti-
mizing these circuits with respect to the depth and required homomorphic oper-
ations. To do this, we make use of SIMD along with automorphism operation.

When input messages are decomposed and encrypted in a bitwise manner,
the encryption x̄ of a message x = xμ−1 · · · x1x0 means {x̄0, x̄1, . . . , x̄μ−1}, where
xi ∈ {0, 1}. We use “+” to denote homomorphic addition and A to denote
the number of additions. Similarly, for homomorphic multiplication, we use “·”
and M.

3.1 Equality Circuit

For two μ-bit integers x and y, we define an arithmetic circuit for the equality
test as follows:

equal(x̄, ȳ) =
μ−1∏
i=0

(1 + x̄i + ȳi). (1)

The output of equal(·, ·) is 1̄ in the case of equality and 0̄ otherwise. In the bit-
sliced implementation, we assume that one ciphertext is used per bit; therefore,
we have 2μ ciphertexts in total for evaluating the equality test. Instead of regular
multiplication, if we multiply each term after forming a binary-tree structure,
the depth of the equal circuit becomes log μ. Specifically, the algorithm requires
two homomorphic additions for computing 1 + x̄i + ȳi and that μ ciphertexts be
multiplied by each other while consuming log μ depth.

Optimizations. Our optimizations are focused on minimizing the number of
homomorphic operations, especially for homomorphic multiplication. As shown
by Smart and Vercauteren [20], we can pack each bit xi into a single ciphertext.
Next, we expand the right-hand side of Eq. (1) and rearrange each term so as
to fit in well with the SIMD executions. Then, we repeatedly apply SIMD oper-
ations to a vector of SIMD words. This is the key to reducing the number of
homomorphic multiplications from μ−1 to log μ. We provide a better description
of the complexity in Table 1.

148 J.H. Cheon et al.

Table 1. Complexity of circuit primitives

Circuits Complexity

Depth equal log μ

comp 1 + log μ

fadd 1 + log (ν − 2)

Comp.a equal 2A + (log μ)M

comp (μ + 1 + log μ)A + (2μ − 2)M

fadd νA + (3ν − 5)M
aComp.: Computational complexity during homo-
morphic evaluations

3.2 Greater-than Comparison Circuit

For two unsigned μ-bit integers, the circuit comp(x̄, ȳ) outputs 0̄ if x ≥ y and 1̄
otherwise. This operation can be recursively defined as follows:

comp(x̄, ȳ) = c̄μ−1, (2)

where c̄i = (1 + x̄i) · ȳi + (1 + x̄i + ȳi) · c̄i−1 for i ≥ 1 with an initial value
c̄0 = (1 + x̄0) · ȳ0.

Optimizations. As the first step of optimization, we express Eq. (2) in the
following closed form

c̄μ−1 = (1 + x̄μ−1) · ȳμ−1 +
μ−2∑
i=0

(1 + x̄i) · ȳi · di+1di+2 · · · dμ−1,

where dj = (1 + x̄j + ȳj). Because it has degree μ + 1, we can deduce that the
depth of the circuit is log(μ+1). Next, it is easy to see that a naive construction
of the circuit incurs O(μ2) homomorphic multiplications.

The key observation is that the closed form is expressed by a sum of products
of (1 + x̄i) · ȳi and (1 + x̄i + ȳi) terms for i ∈ [0, μ − 1]. We are able to compute
(1 + x̄i) · ȳi for all i using only 1 homomorphic multiplication due to the use of
the SIMD technique. Now, we have to compute

∏μ−1
k=i dk for each i ∈ [1, μ − 2].

As mentioned above, a naive method incurs O(μ2), but using SIMD operations
requires one to perform only 2μ − 4 homomorphic multiplications, consuming
log μ depth. Finally, we need to multiply (1 + x̄i) · ȳi by the result of the above
computation, which also incurs only 1 homomorphic multiplication. Thus, the
total number of homomorphic multiplications equals 2μ − 2.

Remark 1. We can address the signed numbers by slightly modifying the cir-
cuit. Assume that we place a sign bit in the leftmost position of a value (e.g., 0 for
a positive number and 1 for a negative number) and use the two’s complement

Search-and-Compute on Encrypted Data 149

system. Then, for two μ-bit values x and y, comp(x̄, ȳ) = c̄μ−1 + x̄μ−1 + ȳμ−1. It
is clear that the case of two positive numbers corresponds to x̄μ−1 = ȳμ−1 = 0̄.

3.3 Integer Addition Circuit

Suppose that for two μ-bit integers x and y and for an integer ν > μ, we construct
two ν-bit integers by padding zeros on the left. Then, a size-ν full-adder faddν

is recursively defined as follows: faddν (x̄, ȳ) = (s̄0, s̄1, · · · , s̄ν−1) where a sum
s̄i = x̄i + ȳi + c̄i−1 and a carry-out c̄i = (x̄i · ȳi)+((x̄i + ȳi) · c̄i−1) for i ∈ [1, ν−1]
with initial values s̄0 = x̄0 + ȳ0 and c̄0 = x̄0 · ȳ0. The main reason for considering
such a large full-adder is to cover SQL aggregate functions with many additions.

Optimizations. Our strategy for optimization is the same as above. Namely,
we express each sum and carry in the closed form and find a way to min-
imize the number of homomorphic operations using SIMD operations. As a
result, s̄i’s are written as follows: s̄i = x̄i + ȳi +

∑i−1
j=0 tij where tij =

(x̄j · ȳj)
∏

j+1≤k≤i−1 (x̄k + ȳk) for j < i − 1 and ti,i−1 = x̄i−1 · ȳi−1. When
i = ν −1 and j = 0, because ν −2 homomorphic multiplications are required, we
see that the circuit has log(ν − 2) depth. However, we need to perform an addi-
tional multiplication by x̄j · ȳj . Thus, the total depth amounts to log(ν − 2) + 1.
As before, the use of SIMD and parallelism by automorphism allows us to eval-
uate the integer addition circuit with only 3ν − 5 homomorphic multiplications,
while a naive method requires (ν3 − 3ν2 + 8ν)/6 homomorphic multiplications.

4 Search-and-Compute on Encrypted Data

In this section, we show how to efficiently perform queries on encrypted data
using the circuit primitives. We first describe our techniques in a general setting
and then show how our ideas are applied to database applications.

4.1 General-Purpose Search-and-Compute

We begin by describing our basic idea for performing a search operation over
encrypted data. We assume that a collection of data is partitioned into N μ-bit
items denoted by R1 ‖ · · · ‖ RN and that the data have been encrypted and
stored in the form of R̄1 ‖ · · · ‖ R̄N .

For a predicate ϕ on a ciphertext C, a search on encrypted data outputs R̄i

if ϕ(R̄i) = 1̄ and 0̄ otherwise. More formally, let ϕ : C → {0̄, 1̄} be a predicate on
encrypted data. Then, we say that Sϕ : CN → CN is a search on the encrypted
data and define Sϕ(R̄1, . . . , R̄N) := (ϕ(R̄1) · R̄1, . . . , ϕ(R̄N) · R̄N).

We then extend this operation to a more general operation on encrypted data,
i.e., search-and-compute on encrypted data, as follows. Let F : CN → C be an

150 J.H. Cheon et al.

arithmetic function on encryptions. Then, for restricted search Sϕ : CN → CN ,
we say that (F ◦ Sϕ)(R̄1, . . . , R̄N) is search-and-compute on encryptions.

Further, we measure the efficiency of the search-and-compute operations on
encrypted data in Theorem 1. The theorem states that if we can perform a search
on encrypted data restricted by ϕ, which specifies only the equality operator,
then the search queries on encrypted data require N(2A+log μM) homomorphic
operations in total. If a predicate ϕ allows one to specify all the comparison
operators in the set {<,≤, >,≥, �=}, then we can perform Sϕ(R̄1, . . . , R̄N) with
O(μN) homomorphic multiplications.

Theorem 1. Let M(ϕ) and M(F) be the total number of homomorphic multi-
plications for ϕ and F , respectively. Then, we can perform (F ◦Sϕ)(R̄1, . . . , R̄N)
with O(N(M(ϕ))+M(F)) homomorphic operations. Specifically, we can perform
a search on encrypted data restricted by ϕ using at most O(N(M(ϕ))) homo-
morphic operations.

Proof. Because homomorphic multiplication dominates the performance of the
operation, we might only count it. Because a predicate ϕ requires O(M(ϕ))
homomorphic operations, we see that Sϕ requires O(N(M(ϕ))) homomorphic
operations to compute the predicate N times. Then, the operation uses O(M(F))
homomorphic operations to evaluate an arithmetic function F on encrypted data.
Therefore, we can conclude that the total computation complexity of search-and-
compute on encryptions is O(N(M(ϕ)) + M(F)). In particular, if we consider
the search on encrypted data, F can be considered to be the identity map.
Therefore, we can perform a search on encrypted data restricted by ϕ using at
most O(N(M(ϕ))) homomorphic operations. �
Security. Secrecy against a semi-honest DB server is ensured because encrypted
data cannot be leaked due to the semantic security of our underlying SWHE
scheme. Secrecy against a semi-honest DB user follows because the result of
queries expressed by our circuit primitives is equivalent to 0̄ if specified conditions
do not hold; therefore, the resulting ciphertext is equal to 0̄. This implies that
the evaluated ciphertexts do not leak anything else except for the number of
unsatisfied tuples.

4.2 Applications to Encrypted Databases

We denote R(A1, . . . , Ad) as a relation schema R of degree d consisting of
attributes A1, . . . , Ad, and we denote by Āj the corresponding encrypted
attribute. As mentioned above, we use A

(i)
j to denote the j-th attribute value of

the i-th tuple, and for convenience, we assume that each of them has a length
of μbits.

Search-and-Compute on Encrypted Data 151

4.2.1 Search Queries

Simple Selection Queries. Consider a simple retrieval query as follows:

select Aj1 , . . . , Ajs

from R
where Aj0 = α;

(Q.1)

where α is a constant value. An efficient construction of (Q.1) using our equal
circuit is as follows:

equal
(
Ā

(i)
j0

, ᾱ
)

·
(
Ā

(i)
j1

, . . . , Ā
(i)
js

)
(Q̄∗.1)

for each i ∈ [1, N]. It follows from Theorem 1 that (Q̄∗.1) has the complexity
evaluation given in Table 2.

Conjunctive & Disjunctive Queries. The query (Q.1) is extended by adding one
or more conjunctive or disjunctive conditions to the where clause. Consider a
conjunctive query as follows:

select Aj1 , . . . , Ajs

from R
where Aj′

1
= α1 and · · · and Aj′

τ
= ατ ;

(Q.2)

The query (Q.2) is expressed as the following: For each i ∈ [1, N],

τ∏
k=1

equal
(
Ā

(i)
j′
k
, ᾱk

)
·
(
Ā

(i)
j1

, . . . , Ā
(i)
js

)
. (Q̄∗.2)

A disjunctive query whose logical connectives are all ors is also evaluated by
changing the predicate into

(
1 +

∏τ
k=1

(
equal

(
Ā

(i)
j′
k
, ᾱk

)
+ 1

))
. Denoting by τ

the number of connectives, Q̄∗.2 additionally requires log τ in depth to compute
the multiplications among the τ equality tests in comparison with (Q̄∗.1). Table 2
reports the complexity analysis.

Table 2. Complexity of search queries

Queries Complexity

Depth (Q̄∗.1) 1 + log μ

(Q̄∗.2) 1 + log μ + log τ

Comp. (Q̄∗.1) 2NA + N (1 + log μ)M

(Q̄∗.1) 2τNA + τN (1 + log μ)M

152 J.H. Cheon et al.

4.2.2 Search-and-Compute Queries

We continue presenting important real constructions as an extension of
Theorem 1, in which F is one of the built-in SQL aggregate functions–
sum, avg, count and max. We begin with the case F = sum.

Search-and-sum Query. Consider the following sum query:

select sum(Aj1)
from R

where Aj0 = α;
(Q.3)

As mentioned above, due to our plaintext space being Z2, repeatedly apply-
ing simple homomorphic additions does not ensure correctness. This is the moti-
vation for our integer addition circuit (See Sect. 3.3). Now, we can efficiently
perform (Q.3), expressed as follows:

faddμ+log N

(
equal

(
Ā

(i)
j0

, ᾱ
)

· Ā
(i)
j1

)
. (Q̄∗.3)

Because the result of the search-and-sum query is less than 2μN , it suffices to
use a full adder of size ν = μ+log N for adding all the values. Using our optimized
equality circuit, (Q̄∗.3) requires N equality tests in total and N homomorphic
multiplications for each result of the test. Thus, the total computation cost is
(2N +ν(N −1))A+(N (1 + log μ)+(N −1) (3ν − 5)M with the depth 1+log μ+
log N (1 + log(ν − 2)) based on Theorem 2 below.

Theorem 2. Let |R| denote the cardinality of a set of tuples from a relation
schema R. Suppose that all the keyword attributes in the where clause and the
numeric attributes in the select clause have ‖kwd‖ bits and ‖num‖ bits, respec-
tively. Then, a search-and-sum query can be processed with the depth

1 + � log(‖kwd‖)� + � log |R|� · (1 + � log (‖num‖ + � log |R|� − 2) �) .

Proof. The query Q̄∗.3 consumes 1 + � log(‖kwd‖)� levels to compute all
the equality tests. Then, it performs (|R| − 1) full-adder operations on the
results, each of which is of size (‖num‖ + � log |R|�) and which consumes
(1 + � log(‖num‖+ � log |R|� − 2)�) levels. �

Search-and-Count Query. We observe that search-and-count queries can be
processed in a similar manner. For example, assume a search-and-count query
with count(∗) in place of sum(Aj1) in (Q.3). The query can also be efficiently

processed by faddlog N

(
equal

(
Ā

(i)
j0

, ᾱ
))

.

Search-and-Avg Query. To process a search-and-compute query with the avg
aggregate function, it suffices to compute search-and-sum queries because an
average can be obtained using one division after decryption.

Search-and-Compute on Encrypted Data 153

Search-and-Max(Min) Query. It is clear that one can obtain the max (or min)
aggregate function by repeatedly applying the comp circuit primitive.

4.2.3 Join Queries

Now, we design the join queries within the search-and-compute paradigm. Sup-
pose that we have the other relation S(B1, . . . , Be) consisting of M tuples for
M ≤ N . First, we consider a simple join query as follows:

select r.Aj1 , . . . , r.Ajs
, s.Bj′

1
, . . . , s.Bj′

s′
from R as r,S as s

where r.Ajk
= s.Bj′

k′ ;
(Q.4)

Then this type of query is expressed as the following: For each i ∈ [1, N], i′ ∈
[1,M],

equal
(
r.Ā

(i)
jk

, s.B̄
(i′)
j′
k′

)
·
(
r.Ā

(i)
j1

, s.B̄
(i′)
j′
1

, . . .
)

. (Q̄∗.4)

For fixed i and i′, we suppose that each numeric-type attribute is packed in only
one ciphertext. Then, the only difference from (Q̄∗.1) is that (Q̄∗.4) requires
two homomorphic multiplications by the result of search operations; thus, we
need to perform NM equality tests in total. Hence, the depth of circuit needed
to process (Q̄∗.4) is 1 + log μ, and the computation complexity is (2NM)A +
NM (2 + log μ)M.

Next, we consider an advanced join query (Q.5) with two aggregate func-
tions sum(r.Aj), count(∗) and the same simple condition as (Q.4). Assuming
sum(r.Aj) < 2μNM , we use a full adder of size ν = μ + log (NM). By contrast,
the result of count(∗) < NM , and it suffices to use a full adder of size log (NM).
Thus, one candidate of circuit construction for (Q.5) is as follows:

faddμ+log NM

(
equal

(
r.Ā

(i)
jk

, s.B̄
(i′)
j′
k′

)
· r.Ā(i)

j

)

faddlog NM

(
equal

(
r.Ā

(i)
jk

, s.B̄
(i′)
j′
k′

))
.

(Q̄∗.5)

With respect to sum(r.Aj), this is the same as Q̄∗.3, except for the number of
operands for additions. Therefore, the depth for evaluation amounts to 1+log μ+
log(NM) (1 + log(ν − 2)) and the computation complexity is (2NM + ν(NM −
1))A + (NM (1 + log μ) + (NM − 1) (3ν − 5))M.

5 Performance Improvements

There is still room to further improve the performance of the circuit primitives
in Sect. 3. Our strategies are composed of three interrelated parts: Switch the
message space Z2 into Zt, adapt the circuit primitives to Zt, and fine-tune the
circuit primitives using SIMD operations again.

154 J.H. Cheon et al.

5.1 Larger Message Spaces with Lazy Carry Processing

If we encrypt messages in a bit-by-bit manner, the primary advantage is that two
comparison operations are very cheap, but running an integer addition circuit
on encrypted data is expensive (see Table 3). On the contrary, it would be of
substantial benefit to take the message domain as a large integer ring if one can
quite efficiently evaluate the addition circuit with much lesser depth. One of the
important motivations of using such a large message space is that the bit length
of keyword attributes (e.g., ≤ 20 bits) in the where clause is generally smaller
than that of numeric-type attributes (e.g., ≥ 30 bits) in the select clause.

Specifically, if we represent a numeric-type attribute A in the radix 2ω, then
we have

∑
i

A(i) =
∑

k

∑
i

[A(i)]k · (2ω)k;

therefore, it suffices to compute
∑

i[A
(i)]k over the integers. Assuming that the

plaintext modulus t is sufficiently large, we are able to perform addition without
overflow in Zt. We should note that we only have to process carry operations
after computing each of them over the large integer ring.

To verify the performance gained by integer encoding, we report the running
time of each circuit primitive in Table 3. We suspect that integer encoding yields
more benefits in performing search-and-compute queries because aggregate func-
tions extensively rely on addition.

Table 3. Running-time comparisons in Z2 and Z214

Message space equal comp add

(10-bits) (10-bits) (30-bits)

Z2 2.2621 ms 8.5906 ms 228.5180 ms

Z214 208.6543 ms 307.5200 ms 0.0004 ms

5.2 Calibrating Circuit Primitives

It is clear that the use of a different message space results in modifications of
our circuit primitives. Before discussing our modifications in detail, we need
to determine some lower bounds of depth for homomorphic multiplication as a
function of t. We have two types of homomorphic multiplications: multiplying
a ciphertext either by another ciphertext or by a known constant. We formally
state this in Theorem 3.

Theorem 3. Suppose that the native message space of the BGV cryptosystem
is a polynomial ring Zt[X]/〈Φm(X)〉 and that a chain of moduli is defined by a
set of primes of roughly the same size, p0, · · · , pL, that is, the i-th modulus qi

is defined as qi =
∏i

k=0 pk. For simplicity, assume that p is the size of the pk’s.

Search-and-Compute on Encrypted Data 155

Let us denote by h the Hamming weight of the secret key. For i ≤ j, let c and c′

be normal ciphertexts at level i and j, respectively. Then, the depth, denoted by
d̃, for multiplying c and c′ is the smallest nonnegative integer that satisfies the
following inequality:

t2 · φ(m) · (1 + h) · ([q−1
i]t)2 < 6p2·d̃.

In addition, the depth, denoted by d̃c, for multiplying c by a constant is the
smallest nonnegative integer for which the following inequality holds:

φ(m) · (t/2)2 < p2·d̃c .

Proof. Before multiplying two ciphertexts, we set their noise magnitude to be
smaller than the pre-set constant B = t2φ(m)(1 + h)/12 by modulus switch-
ing. Subsequently, we obtain a tensor product of the ciphertexts, and the result
has the noise magnitude as 2B([q−1

i]t)2. Next, the scale-down is performed by
removing small primes pk’s from the current prime-set of the tensored cipher-
text; we say that Δ is the product of the removed primes. We then have
2B2([q−1

i]t)2/Δ2 < B. By assumption, it may be considered that Δ = pd̃, which
means that d̃ is the smallest nonnegative integer that satisfies the inequality
2B([q−1

i]t)2 < p2·d̃.
We now consider the case in which c is multiplied by a constant. As above,

the result has approximately the same noise estimate as B · φ(m) · (t/2)2. Thus,
we see that d̃c is the smallest nonnegative integer that satisfies the inequality
φ(m) · (t/2)2 < p2·d̃c . �
As a concrete example, we have d̃ = 2 and d̃c = 1 in Z214 with the assumption
that h = 64 and m = 13981.

We now describe a basic idea that underlies our modifications. It is well
known that for x, y ∈ {0, 1}, the following properties hold:

x⊕y = x + y − 2 · x · y and x ∧ y = x · y,

where +, −, and · are arithmetic operations over integers. Based on this obser-
vation, our equality test can be rewritten as follows:

equal(x̄, ȳ) =
μ−1∏
i=0

(1 − x̄i − ȳi + 2 · x̄i · ȳi) .

We then see that with only a small extra cost, we can construct a new arithmetic
circuit for an equality test working on Zt. Next, consider the comp circuit on Zt.
Recall that the closed form of c̄μ−1 is

c̄μ−1 = (1 − x̄μ−1) · ȳμ−1 +
μ−2∑
i=0

(1 − x̄i) · ȳi · (di+1di+2 · · · dμ−1).

Rather than dj = (1+x̄j+ȳj), we set dj = (1+2·x̄j ·ȳj−ȳj−x̄j)·(1+2·x̄j ·ȳj−2ȳj).
As a result, Table 4 shows the complexity results of the search-and-compute
queries on encrypted databases of N tuples with μ-bit attributes from using the
new message space Zt.

156 J.H. Cheon et al.

Table 4. Complexity of search-and-sum queries

Search Complexity

Depth equal (2 + log μ) d̃ + d̃c

conjτ (2 + log μ + log τ) d̃ + d̃c

comp (4 + log μ) d̃ + d̃c

Comp. equal (4N − 1)A + N (3 + log μ)M

conjτ ((3τ + 1) N − 1)A + τN (3 + log μ)M

comp (N (μ + 5 + log μ) − 1)A + N (2μ + 1)M

6 Experimental Results

This section demonstrates the performance of query processing expressed by our
optimized circuit primitives. The essential goal of the experiments in this section
is to verify the efficiency of our solution in terms of performance.

All experiments reported in our paper were performed on a machine with
an Intel Xeon 2.3 GHz processor with 192 GB of main memory running a Linux
3.2.0 operating system. All methods were implemented using the GCC com-
piler version 4.2.1. In our experiments, we used a variant of a BGV-type SWHE
scheme [14] with Shoup’s NTL library [18] and Shoup-Halevi’s HE library [19].
Throughout this section, when we measured the average running times, we
excluded computing times used in data encryption and decryption.

6.1 Adjusting the Parameters

Without a loss of generality, we assume that the bit length of keyword attributes
in the where clause is 10-bit and that of numeric-type attributes in the select
clause is 30-bit. The keyword attributes are expressed in a bit-by-bit manner, and
each bit is an element of Z2r . In addition, numeric-type attributes are expressed
by the radix 2ω but are still in the same space Z2r .

We begin by observing the following relation among the parameters. At this
point, we consider the selectivity of a selection condition, which means the frac-
tion of tuples that satisfies the condition, and we denote it by ε.

Theorem 4. Let A be a numeric-type attribute. For a positive integer ω ≥ 1,
suppose that each attribute is written as A =

∑
k[A]k · (2ω)k with 0 ≤ [A]k < 2ω.

Then, to process a search-and-sum query, one can take a plaintext modulus with
r = iTheta(ω + log(εN)).

Proof. The goal of the theorem is to provide a bound for the size of a plaintext
modulus; therefore, we simply omit an overhead bar for all variables. Let us
denote by ϕ a predicate on encrypted data and by A∗ a keyword attribute.
Then, a search-and-sum query can be written as

∑
i

Sϕ(A∗, α) · A(i) =
∑

k

(∑
i

Sϕ(A∗, α) · [A(i)]k

)
· (2ω)k

.

Search-and-Compute on Encrypted Data 157

We then have that
∑

i Sϕ(A∗, α) · [A(i)]k < 2ω
∑

i Sϕ(A∗, α) = 2ω · (εN). Thus,
for a database with N records, it is sufficient to choose r such that 2ω ·(εN) ≤ 2r.
Note, the larger we make the plaintext modulus 2r, the more noise there is in
the ciphertexts and thus the faster we consume the ciphertext level. Therefore,
it appears that ω + log(εN) is the tight bound for the parameter r. �

One may wonder why Sϕ(·, . . .) does not take multiple keyword attributes in
the proof. Because we consider the selectivity ratio, it does not need to do so.
In our experiments, we varied the selectivity ratio from 5 to 40 % and plotted
the average running time of queries over a database with N = 102, 103, and 104

tuples.

6.2 Experiments for Search

We measured the running time per query while varying the number of numeric-
type attributes. We take the ring modulus m = 8191, and each of the ciphertexts
has 630 plaintext slots. For N = 1, the experiment of (Q̄∗.1) query is given in

Table 5. Experiment results

158 J.H. Cheon et al.

the top three rows of Table 5a and that of (Q̄∗.2) is in the bottom three rows in
Table 5a, where s is the number of attributes and L is the number of ciphertext
moduli.

6.3 Experiments for Search-and-Sum

We conducted a series of additional experiments to measure performance of
search-and-sum queries. Because each of the ciphertexts can hold plaintext
slots of elements in Z2r and because a numeric-type attribute with a length
of 30 bits is encoded into ω̃ (= �30/ log(2ω)� = �30/ω�) slots, we can process ̃
(= �/ω̃�) attributes per ciphertext. At first glance, a larger ω seems to be better.
However, if ω is too large, by Theorem 4, a plaintext modulus 2r becomes large.
This results in an increased depth of circuits. Therefore, we need to choose a
sufficiently large ω whereby the resulting plaintext space is not too large.

We divided our experiment into four cases by types of predicates: (1) Single
equality, (2) Single comparison, (3) Multiple equality, and (4) Multiple compar-
ison. In this paper, we only report the experiment results of Case I in Table 5b.
We recommend that the readers review the original reference [9] for other exper-
iments in more details.

Case I: Single Equality. This case contains one equality test in the where clause.
We chose a plaintext space so that the number of plaintext slots is divisible by
10. Then, the entire keyword attribute is packed in only one ciphertext. We used
m = 13981 so that each of the ciphertexts holds 600 plaintext slots.

Acknowledgements. The authors would like to thank the anonymous reviewers of
WAHC 2015 for their valuable comments. Jung Hee Cheon and Miran Kim were sup-
ported by Samsung Electronics, Co., Ltd. (No. 0421-20140013). Myungsun Kim was
supported by Basic Science Research Program through the National Research Foun-
dation of Korea (NRF) funded by the Ministry of Education (2014R1A1A2058377).

References

1. Ada Popa, R., Redfield, C., Zeldovich, N., Balakrishnan, H.: CryptDB: protecting
confidentiality with encrypted query processing. In: Wobber, T., Druschel, P. (eds.)
SOSP, pp. 85–100 (2011)

2. Bellare, M., Boldyreva, A., O’Neill, A.: Deterministic and efficiently searchable
encryption. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 535–552.
Springer, Heidelberg (2007)

3. Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public key encryption
with keyword search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004)

4. Boneh, D., Gentry, C., Halevi, S., Wang, F., Wu, D.J.: Private database queries
using somewhat homomorphic encryption. In: Jacobson, M., Locasto, M., Mohassel,
P., Safavi-Naini, R. (eds.) ACNS 2013. LNCS, vol. 7954, pp. 102–118. Springer,
Heidelberg (2013)

Search-and-Compute on Encrypted Data 159

5. Boneh, D., Goh, E.-J., Nissim, K.: Evaluating 2-DNF formulas on ciphertexts. In:
Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341. Springer, Heidelberg
(2005)

6. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic
encryption without bootstrapping. In: Goldwasser, S. (ed.) ITCS, pp. 309–325
(2012)

7. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from
(standard) LWE. In: Ostrovsky, R. (ed.) FOCS, pp. 97–106 (2011)

8. Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from ring-LWE
and security for key dependent messages. In: Rogaway, P. (ed.) CRYPTO 2011.
LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011)

9. Cheon, J.H., Kim, M., Kim, M.: Search-and-compute on encrypted data. IACR
Cryptology ePrint Archive, 2014(812) (2014)

10. Curtmola, R., Garay, J., Kamara, S., Ostrovsky, R.: Searchable symmetric encryp-
tion: improved definitions and efficient constructions. J. Comput. Secur. 19(5),
895–934 (2011)

11. El Gamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196,
pp. 10–18. Springer, Heidelberg (1985)

12. Feigenbaum, J., Merritt, M.: Open questions, talk abstracts, and summary of dis-
cussions. DIMACS Ser. Discrete Math. Theor. Comput. Sci. 2, 1–45 (1991)

13. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzenmacher,
M. (ed.) STOC, pp. 169–178 (2009)

14. Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the AES circuit. In:
Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 850–867.
Springer, Heidelberg (2012)

15. Lauter, K., Naehrig, M., Vaikuntanathan, V.: Can homomorphic encryption be
practical? In: Cachin, C., Ristenpart, T. (ed.) CCSW, pp. 113–124 (2011)

16. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999)

17. Rivest, R., Adleman, L., Dertouzos, M.: On data banks and privacy homomor-
phisms. In: Foundations of Secure Computation, pp. 165–179 (1978)

18. Shoup, V.: NTL: A library for doing number theory (2009). http://www.shoup.
net/ntl/

19. Shoup, V., Halevi, S.: Design and implementation of a homomorphic-encryption
library. Technical report, IBM Technical Report (2013)

20. Smart, N., Vercauteren, F.: Fully homomorphic SIMD operations. IACR Cryptol-
ogy ePrint Archive, 2011(133) (2011)

21. Song, D., Wagner, D., Perrig, A.: Practical techniques for searching on encrypted
data. In: IEEE Symposium on Security and Privacy, pp. 44–55 (2000)

22. van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic
encryption over the integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 24–43. Springer, Heidelberg (2010)

http://www.shoup.net/ntl/
http://www.shoup.net/ntl/

Accelerating SWHE Based PIRs Using GPUs

Wei Dai(B), Yarkın Doröz, and Berk Sunar

Worcester Polytechnic Institute, Worcester, USA
wdai@wpi.edu

Abstract. In this work we focus on tailoring and optimizing the compu-
tational Private Information Retrieval (cPIR) scheme proposed in WAHC
2014 for efficient execution on graphics processing units (GPUs). Exploit-
ing the mass parallelism in GPUs is a commonly used approach in speeding
up cPIRs. Our goal is to eliminate the efficiency bottleneck of the Doröz
et al. construction which would allow us to take advantage of its excellent
bandwidth performance. To this end, we develop custom code to support
polynomial ring operations and extend them to realize the evaluation func-
tions in an optimized manner on high end GPUs. Specifically, we develop
optimized CUDA code to support large degree/large coefficient polyno-
mial arithmetic operations such as modular multiplication/reduction, and
modulus switching. Moreover, we choose same prime numbers for both
the CRT domain representation of the polynomials and for the modu-
lus switching implementation of the somewhat homomorphic encryption
scheme. This allows us to combine two arithmetic domains, which reduces
the number of domain conversions and permits us to perform faster arith-
metic. Our implementation achieves 14–34 times speedup for index com-
parison and 4–18 times speedup for data aggregation compared to a pure
CPU software implementation.

Keywords: Private information retrieval · Homomorphic encryption ·
NTRU

1 Introduction

A Private Information Retrieval (PIR) permits Alice to store a database D at a
remote server Bob with the promise that Alice can retrieve D(i) without reveal-
ing i or D(i) to Bob. An information theoretic PIR scheme was first introduced
in [1] where Bob’s knowledge of i was limited using information theoretic argu-
ments. Chor and Gilboa [2,3] introduced the concept of computational PIRs
(cPIR). In cPIR, Alice is content to have Bob facing instead a computationally
difficult problem to extract any significant information about i or D(i). In [4]
Kushilevitz and Ostrovsky presented the first single server PIR scheme based
on the computational difficulty of deciding the quadratic residuosity of a num-
ber modulo a product of two large primes. Other cPIR constructions include [5]
which is based on the computational difficulty of deciding whether a prime p
divides φ(m) for any composite integer m of unknown factorization where φ()
c© International Financial Cryptography Association 2015
M. Brenner et al. (Eds.): FC 2015 Workshops, LNCS 8976, pp. 160–171, 2015.
DOI: 10.1007/978-3-662-48051-9 12

Accelerating SWHE Based PIRs Using GPUs 161

denotes Euler’s totient function. In [6] another cPIR scheme was presented that
generalizes the scheme in [5] while using a variation on the security assump-
tion. The construction in [6] achieves a communication complexity of O(k + d)
where k is the security parameter satisfying k > log(N), N is the database size,
and d is the bit-length of the retrieved data. In [7] Lipmaa presented a differ-
ent cPIR scheme that employs an additively homomorphic encryption scheme
with improved communication performance. Later in [8], an efficient PIR scheme
was constructed using a partially homomorphic encryption algorithm. The first
lattice based cPIR construction was proposed by Aguilar-Melchor and Gaborit
[9]. Olumofin and Goldberg [10] revisited the performance analysis and found
that the lattice-based PIR scheme by Aguilar-Melchor and Gaborit [9] to be
an order of magnitude more efficient than the trivial PIR. These schemes uti-
lize a combination of clever approaches and a diverse set of tools to construct
cPIR schemes. Clearly given a fully or somewhat homomorphic encryption (FHE
or SWHE) scheme achieving a cPIR construction would be conceptually triv-
ial. With the recent advances and renewed interest in homomorphic encryption,
new FHE schemes [11–15] and optimizations such as modulus and key switching
[16], batching and SIMD optimizations [17] have become available. The more
recent work by Doröz, Sunar and Hammouri [18] leveraged an NTRU based lev-
eled SWHE scheme along with optimizations to construct an efficient cPIR. The
rather simple cPIR construction has excellent bandwidth performance compared
to previous implementations, i.e. about three orders of magnitude. However, to
enable SWHE evaluation the scheme uses large parameters and therefore the
computational cost is excessively higher than traditional PIR constructions, i.e.
about 1-2 orders of magnitude.

Our Contribution. We present an Nvidia GPU implementation of a cPIR
scheme based on SWHE proposed by Doröz et al. We develop optimized CUDA
code to support large degree/large coefficient polynomial arithmetic operations
such as modular multiplication/reduction, and modulus switching. For efficiency,
we utilize number theoretical transform (NTT) based polynomial multiplication
while the operands are kept in the CRT domain representation. The CUDA
arithmetic library is then used to implement the two modes of the Doröz
et al. cPIR [18]. While the bandwidth requirements are the same as in [18] our
implementation is significantly faster. For instance, for a database size of 64 K
entries, our index comparison implementation is about 33 times faster while the
data aggregation operation is 18 times faster than the implementation of [18].

2 Background

In this section, we briefly explain the Doröz-Sunar-Hammouri (DSH) SWHE
based PIR construction. First, we give details about the NTRU based SWHE
scheme proposed by López-Alt, Tromer and Vaikuntanathan (ATV) [15]. Second,
we explain the PIR construction proposed by Doröz et al. which is based on
ATV-SWHE scheme.

162 W. Dai et al.

ATV-SWHE Scheme: The NTRU scheme [19] was originally proposed as a
public key encryption scheme. It was later modified by Stehlé and Steinfeld [20]
to create a variant whose security is based on the ring learning with error
(RLWE) problem. With a number of optimizations, López-Alt, Tromer and
Vaikuntanathan extended the construction to a multi-key FHE scheme [15].

Doröz, Sunar, and Hammouri [18] tailored the ATV-SWHE to construct an
efficient cPIR. Here we briefly summarize the construction: The polynomials
are sampled from a probability distribution χ on B-bounded polynomials in
Rq := Zq[x]/(xn +1) where a polynomial is “B-bounded” if all of its coefficients
lie in [−B,B]. The sampled polynomials are used to compute public/secret keys.
The scheme can support XOR and AND operations using polynomial additions
and multiplications respectively. Noise grows significantly in AND operations, so
after each AND operation noise is managed using a technique call modulus switch
that is introduced by Brakerski, Gentry and Vaikuntanathan [12]. In modulus
switch, a decreasing sequence of moduli q0 > q1 > · · · > qd are selected for each
level of the circuit. Also each modulus holds following property: qi|qi+1. The
primitive functions of the DSH scheme is as follows:

– KeyGen: Choose m-th cyclotomic polynomial Φm(x) of degree n = ϕ(m) as
the modulus polynomial. Sample u and g from the distribution χ and compute
f = 2u + 1 and h = 2g (f)−1 in ring Rqi

= Zqi
[x]/〈Φ(x)〉.

– Encrypt: Sample s and e from χ distribution and compute c = hs + 2e + b,
where b ∈ {0, 1} is message and h is public key.

– Decrypt: Message m is computed by: m = cf (i) (mod 2). The f (i) corresponds
to private key for ith level that holds: f (i) = f2i ∈ Rqi

.
– XOR: The addition of two ciphertexts c1 = Enc(b1) and c2 = Enc(b2) corre-

sponds to XOR operation, i.e. c1 + c2 = Enc(b1 ⊕ b2).
– AND: The multiplication of two ciphertexts corresponds to AND operation,

i.e. c1 × c2 = Enc(b1 · b2). After each multiplication, noise level is controlled
by applying modulus switch: c̃(x) =

⌊
qi+1
qi

c̃(x)
⌉
2
.

DSH-PIR Scheme: For a given database D with |D| = 2� rows and given
index x ∈ {0, 1}� we may retrieve data dx as follows:

∑
y∈[2�](x = y)dy (mod 2),

where y is an index of the database. The equality check (x = y) is computed
using the bits of the indices as:

∏
i∈[�](xi + yi + 1). Basically, we compare if the

bits of x are same with the bits of y for the same positions. If all the bits are
same, the product yields a 1. Otherwise, the product evaluates to a 0. Therefore,
we can retrieve dy by computing the sums of products between the comparison
results and the corresponding data dy entries. In the protocol, the bits of the
search index xi are given in encrypted form while the comparison index yi is
in cleartext. Therefore, the (x = y) circuit has to compute the product of �
polynomials, i.e.

∏
i∈[�](Enc(xi) + yi + 1). This is evaluated with a depth log2(�)

circuit by using a binary tree. Furthermore, the scheme may be extended into a
symmetric PIR in which also data is encrypted. In other words, we may encrypt
the data as Enc(dy) and multiply it with the corresponding ciphertext. This
increments the depth of circuit level log2(�) + 1.

Accelerating SWHE Based PIRs Using GPUs 163

Query Modes: Doröz et al. [18] propose two query modes: Single Query and
Bundled Query by two complementary uses of a batching technique introduced
by Smart and Vercauteren [16,17]. The technique relies on the CRT where a pack
of message bits are encoded into a single binary polynomial using inverse-CRT.
This allows us to evaluate a circuit on multiple independent data inputs simulta-
neously by embedding them into the same ciphertext. The working mechanisms
of the two query protocols is as follows:

– Bundled Query. In Bundled Query, a client creates multiple queries and
batches them into a ciphertext, so the server can process multiple requests
at a time. First, the client prepares multiple queries β[j], which j ∈ ε and
ε is the total message slot number, with the following bit representation
{β�−1[j], . . . , β0[j]}. Then, the client encrypts and encodes the message poly-
nomials for each bit index as: β̃i(x) = Enc(CRT−1(βi[1], βi[2], . . . , βi[ε])).
For each bit location we have a ciphertext which is � in our case. Once the
ciphertexts β̃i(x) are ready, they are sent to the server. The server computes
the PIR using the formula: r(x) =

∑
y∈[2�]

(∏
i∈[�]

(
β̃i(x) + yi(x) + 1

))
dy(x).

Here yi(x) is the batched and encoded row index bits {yi, yi, . . . , yi}, which
results in a single bit result yi(x) = yi, since each message bit has same
value. Once the r(x) is evaluated the server sends the result to the client who
then decrypts and decodes the ciphertext and forms a list of retrieved values
{d0, d1, . . . , dε−1} = Decode(Dec(r(x))).

– Single Query. In this mode, the client only gives one index query. The
server encodes the indices and the database entries to perform comparison
operations for different entries in parallel for same index query. Basically, the
client takes the bits of a query β, encrypts each bit β̃i(x) = Enc(βi) and
sends the ciphertexts to the server. The server computes the PIR operation:
r(x) =

∑
y∈[2�]

(∏
i∈[�]

(
β̃i(x) + yi(x) + 1

))
dy(x). However, this time yi(x)

and dy(x) are binary polynomials since we are comparing a single query to
a block of entries. The term yi(x) is computed by encoding bits at the same
locations of different entries, i.e. yi(x) = inverse-CRT{yi[1], . . . , yi[ε]}. Simi-
larly, dy is also equal to inverse-CRT{d0, . . . , dε−1}. The process compares ε
indices simultaneously in each iteration which decreases the overall runtime of
the scheme. Once r(x) is computed, the client receives the computed cipher-
text which he then decrypts and decodes. If all the bits on the message slots
are zero, than dy = 0 and dy = 1 otherwise.

3 GPU Implementation

Here we present an overview of the NTRU based PIR protocol implementation
on CUDA GPUs. The client sends an encrypted query to the server. The server
homomorphically evaluates the retrieval request, and returns a single ciphertext
to the client. We optimize the scheme to better fit our target GPU device, i.e.
NVIDIA GeForce GTX690. Nevertheless, the parallelization and optimization

164 W. Dai et al.

techniques we employ here should work on other GPUs as well. Our GPU device
consists of two GK104 chips where each chip holds 1536 cores and 2 GBytes
of memory. We make use of both chips and almost evenly distribute workload
to the two chips. The performance can be easily improved with a multi-GPUs
setup, since the algorithm we present here has a high degree of parallelism.

Platform Overview and Design Strategy. A GPU based server or cluster
consists of multiple GPUs. Every GPU is an efficient many-core processor system
designed to reach high performance by exploiting parallelism in the computa-
tional task. Each core can execute a sequential thread. All cores in the same
group execute the same instruction at the same time. With a GPU with warp
size of 32, the code is executed in groups of 32 threads. Threads are further
grouped into blocks. All threads in the same block are executed on a single
multiprocessor, and therefore are able to share a single software data cache and
memory. With general-purpose computing on GPUs, a portion of code that can
achieve significant speedup when executed in parallel runs on the GPU, while
other code remains on the CPU. Basically, data sets are sent to GPU memory,
processed on the GPU and returned from GPU memory. This will pay off as long
as the speedup of processing on GPU over on CPU outweighs the latency intro-
duced by the input and output transfers. When GPU cores are handling tasks,
besides the computation, memory access latencies also limit the performance
gain. Memory on GPU is classified into several types which we list according
to the access latency from low to high along with sizes for the Nvidia GeForce
GTX 690 GPU: constant memory (64 KB), shared memory (48 KB per block),
and global memory (4 GB). Given the drastically different make up of our tar-
get platform, it becomes clear that when translating our algorithms into GPU
code we need to create a high degree of parallelism and minimize dependencies
between data entries to take advantage of the multi-core architecture. Also data
transfers between GPU and CPU needs to be reduced to a minimum. In our
target application, we are processing a PIR database. The PIR database infor-
mation is preloaded into the GPU memory. With a database index of b bits (e.g.
b = 32, 16 or 8 bits), we send the query packaged into b ciphertexts to the server.
After retrieval the query returns a single ciphertext per database entry bit back
to the client. The entire retrieval computation is performed on the GPUs. For
polynomial coefficient-wise operations, since we chose a large polynomial size
(n = 4096, 8190 or 16384), we achieve a significant level of parallelism without
any effort simply due to the way parameters are selected for security. For poly-
nomial operations we introduce two conversions: CRT and NTT. CRT is able
to divide any type of polynomial operation into independent operations. NTT
is crucial to efficiently support parallel large polynomial multiplication.

GPU Memory. We store polynomials as 1D arrays of integers. To prevent
memory contention between the read and write operations by the kernels, we
pre-allocate memory pools on GPUs and divide them into smaller chunks with
enough space for the CRT domain polynomials. We not only avoid the over-
head associated with frequently allocating memory, but also can reclaim memory
and reduce the overall memory usage. We always use the faster memory type

Accelerating SWHE Based PIRs Using GPUs 165

available, minimize the global memory access in the kernels, and adjust the
number of threads per block to match the shared memory size. We store some
data used to generate database indices in advance, since it is constant and takes
only 64 MBytes in our largest setting. The input/output data transfer latencies
are partially hidden behind database index generation and inverse-CRT opera-
tions. We use shared memory as data buffers in CRT and NTT kernels to ensure
coalesced memory access.

Mapping the PIR Computation to CUDA Kernels. As described earlier,
the Doröz et al. PIR [18] computation is

∑
y∈[2�]

[∏
i∈[�] (xi + yi + 1)

]
dy. The

query retrieval scheme mainly consists of polynomial multiplications over Rq. In
addition, as circuit level increases, a modular reduction operation on ciphertexts,
i.e. modulus switching, is performed on the polynomial coefficients. For � bits
of data, there are (� − 1) multiplications and (� − 1) modular reductions. We
aim at optimizing these two operations. The input ciphertexts are polynomials
in the ring Rq. The size of q is very large according to our parameter selection
(e.g. 512 bits). We use CRT to convert large polynomials with large integer
coefficients into a set of large polynomials with coefficient size small enough to
permit streamlined processing. In the transformation we use a series of prime
moduli p1, p2, . . . , pl. The result is recovered by computing the CRT inverse.

Chinese Remainder Theorem. With l prime numbers p1, p2, . . . , pl, we
obtain a set of independent polynomials from the polynomial a(x) ∈ Rq as
a(x) = CRT−1{a[1](x), a[2](x), . . . , a[l](x)}. If a(x) = an−1x

n−1+an−2x
n−2+

· · · + a1x + a0, we have: ai = CRT−1{ai[1], ai[2], . . . , ai[l]}, i ∈ Zn. Since the
inverse-CRT returns a result in Zpipi−1...p1 instead of Zq, modular reduction on
coefficients is needed. Wang et al. [21] introduced a large integer modular reduc-
tion implementation on GPUs. Given that a single modular reduction costs mul-
tiple threads, processing all the coefficients in a polynomial would be inefficient.
In [13], the authors proposed a way to combine inverse-CRT and modulo q reduc-
tion steps. We generate q as the product of a sequence of prime numbers and use
the prime numbers for CRT: qi =

∏l−i
j=1 pj , i < j. The size of the primes, should

be large enough to control the noise growth during homomorphic evaluations.
The upper bound on the prime numbers depends on the polynomial multiplica-
tion scheme which will be explained later. After the initial CRT conversion on
the input ciphertexts, all the computations are performed in the CRT domain,
until we have to compute the inverse-CRT on the output ciphertexts. Focusing
more closely on inverse CRT operation, we notice that after the inversion is car-
ried out the coefficients remain in Zp1p2...pl−i

= Zqi
, which means that modulo

q reduction is no longer needed. We can also obtain modulo qj result from a
coefficient in Zqi

for j > i. For all z = CRT−1{z[1], z[2], . . . , z[l − i]} ∈ Zqi
,

given that j > i, we have z (mod qj) = CRT−1{z[1], z[2], . . . , z[l − j]}.

Polynomial Multiplication. In [22], the authors present an efficient polyno-
mial multiplication algorithm on CUDA GPUs. They basically follow Strassen’s
scheme [23] to multiply two polynomials a(x) =

∑n−1
i=0 aix

i and b(x) =∑n−1
i=0 bix

i. Consider the n coefficients of a polynomial as elements in a 0 padded

166 W. Dai et al.

array of 2n elements: a = {a0, a1, . . . , an−1, 0, . . . , 0} and b = {b0, b1, . . . , bn−1,
0, . . . , 0}. Perform 2n-point NTT on a and b to obtain arrays A = NTT(a) and
B = NTT(b). Compute the element-wise product C = A · B. Finally recover
c = NTT−1(C), in which the elements are the coefficients of c(x) = a(x) · b(x).
Four-step Cooley-Tukey NTT iterations [24] are adopted for a fast NTT compu-
tation and hence create parallelism for CUDA GPU processors. A special prime
number P = 0xFFFFFFFF00000001 is chosen for better performance [25]. Since P
should be larger than the possible largest coefficient of the polynomial product,
we have our limit for the size of CRT prime numbers: pi <

√
P/n, (i = 1, 2, . . . l).

Polynomial Reduction. In the generic NTRU scheme all polynomial opera-
tions are performed in Rq = Zq/〈Φm(x)〉. Polynomial multiplication is therefore
followed by a polynomial reduction. The cyclotomic polynomial modulus Φm(x)
is a factor of the special polynomial (xm − 1). We need to perform a polynomial
reduction after every polynomial multiplication with Barrett Reduction which
by itself costs three polynomial multiplications. Instead we keep the product in
R′

q = Zq/〈xm−1〉 form during query retrieval and only further (fully) reduce the
polynomials to Rq = Zq/〈Φm(x)〉 in decryption. Polynomial reduction can be
achieved by c(x) (mod xm − 1) = c(x) (mod xm) + c(x)/xm. However, the lat-
ter method could possibly increase the size of polynomial operands greatly. For
instance, with parameters (n,m) = (16384, 21845), we have to conduct 65536-
point NTT to multiply two 21845-degree polynomials, instead of 32768-point
NTT for 16384-degree multiplication. Nevertheless, assuming the overhead of
single sized multiplication is T , double sized NTT takes about 2T , which is
better than the method with Barrett Reduction [26] that takes more than 4T
in total. Moreover, with parameters (n,m) = (8190, 8191), we can still use the
8192-point NTT.

Modulus Switching. In the NTRU based SWHE, when the circuit level
increases, e.g. from level i to level (i+1), polynomials should be scaled from ring
Rqi

to ring Rqi+1 without disturbing the message embedded within the cipher-
text. This requires a modular reduction operation on coefficients, namely modu-
lus switching. For a ciphertext c ∈ Rqi

at level i, obtain c′ ∈ Rqi+1 at level (i+1)
as follows. First compute c′ = c (mod 2). Note that c′ will be close to c · qi+1

qi
.

This operation is coefficient independent, hence can be executed in parallel. We
explain the procedure on a single coefficient. Let a be the target coefficient in
Zq. One way is to first compute a′ = �a · qi+1

qi
�. Then if a′ �= a (mod 2), add or

subtract 1 for a′ to satisfy the equality. The method requires a to stay in Zqi
.

Since in our implementation all operands are kept in the CRT domain, with a
straightforward implementation we would have to call the expensive inverse-CRT
in every level of the circuit. A technique to avoid the conversion by performing
modulus switching in the CRT domain was proposed in [13]. Since qi =

∏l−i
j=1 pj

is the product of a sequence of CRT prime numbers, the first step of the previous
method can be represented as a′ = � a

pl−i
�+ε, ε ← {−1, 0, 1}. If r = a (mod pl−i),

we have a′·pl−i = a−r+ε·pl−i. Let a∗ = r−ε·pl−i. If and only if a∗ is even, a′ = a
(mod 2). Therefore, a′ = a−a∗

pl−i
∈ Zqi=1 is the result and we only need a∗. Start-

ing from a = CRT−1{a[1], a[2], . . . , a[l − i]}, let a∗ = a (mod pl−i) = a[l − i].

Accelerating SWHE Based PIRs Using GPUs 167

If a∗ is odd, add or subtract pl−i to a∗ so that a∗ ∈ (−pl−i, 2pl−i) is even.
Let a′[j] = (a[j] − a∗)/pl−i (mod pj), j = 1, 2, . . . , l − i − 1. Then we have
a′ = CRT−1{a′[1], a′[2], . . . , a′[l − i − 1]} as the new coefficient in Zqi+1 .

Algorithm 1. Modulus Switching on Coefficients
Input: Coefficient a = CRT−1{a[1], a[2], . . . , a[l − i]} from level i
Output: Coefficient a′ = CRT−1{a′[1], a′[2], . . . , a′[l − i − 1]} for level (i + 1)
1: a∗ ← a[l − i]
2: if a∗ = 1 (mod 2) then
3: if a∗ > (pl−i − 1)/2 then
4: a∗ ← a∗ − pl−i

5: else
6: a∗ ← a∗ + pl−i

7: end if
8: end if
9: for j ← 1 to l − i − 1 do

10: a′[j] ← (a[j] − a∗)/pl−i (mod pj)
11: end for

CUDA Kernels on Devices. As described earlier, the GPU devices receive b
ciphertexts. Let d be the number of circuit levels for computing the product of the
ciphertexts. Using a binary tree: 2d−1 < b � 2d. In Fig. 1, we show the process of
computing a single product term of

∑
y∈[2�]

[∏
i∈[�] (xi + yi + 1)

]
dy on a GPU

for b = 32. After the last step an additional multiplication operation is required
for generating the response. This consists of either a single multiplication or
multiple multiplications depending on bundled query or single query mechanism.
Ignoring the last step, we have (b − 1) polynomial multiplications or one binary
tree of d depth, and (b − 1) modulus switchings:
– Multiplication. First we convert the polynomials to the CRT domain with l

prime numbers. In the first level we have (l × b) polynomials. In the subsequent
levels of the computation tree, l is decremented after each modulus switching
operation. The number of parallel computation threads is initialized with b
and is reduced by half after each multiplication level. At the end we obtain a
((l − d) × 1) polynomials. Ideally we would like to distribute the workload
evenly to all devices. Since the Nvidia GeForce GTX 690 only has two GPUs,
each device is provided with (l × (b/2)) polynomials to process. Until the
last final multiplication the devices work independently.

– Modulus Switching and Reduction. In the second stage we process a half
binary tree with modulus switching on each device. We need 3 kernels per poly-
nomial per CRT element for each of NTT and INTT, 1 kernel per polynomial
for coefficient wise multiplication in NTT domain and 1 kernel per polynomial
for modulus switching. A polynomial reduction is performed after multiplica-
tion. We hide polynomial reduction at the beginning of modulus switching and
inverse-CRT, instead of an extra kernel only for polynomial reduction.

168 W. Dai et al.

Fig. 1. Realization of the comparison circuit in the PIR scheme using single GPU for
database with 232 entries.

4 Performance

We implemented the DSH-PIR with both the Single and Bundled Querying
modes using Nvidia GeForce GTX 6901 running @915 Mhz with 3072 stream
processors and 4 GBytes of memory. In Table 1, we compare our query/response
sizes with DSH scheme [18] for different entry sizes N = 22

d

. In our imple-
mentation query/response sizes are slightly larger because we choose the clos-
est modulus in DSH scheme that holds q = 24k. In Table 2, we compare our
Bundled/Single Query computation times with DSH implementation which the
timings are normalized with message slot size ε. For an index comparison of
a Single Query, we achieved 15 times speedup for d = 5 and ∼ 33 times for
d = {4, 3} cases. In data aggregation2, we achieved 4–6 times speedup com-
pared to DSH Scheme. In Table 3, we compare the Query Size of our scheme
with BGN, O-K and DSH schemes for various database sizes. Our ciphertext
sizes are (almost) identical to those of the DSH scheme. When compared to the

1 The NVIDIA GeForce GTX 690 series actually consist of two GTX 680 series graph-
ical processors.

2 In cases where we extract entries with more than 1-bit size, we use the same index
comparison result to process the remaining bits of a database entry. Also timings
that given on the table are per polynomial operation and they are not normalized.

Accelerating SWHE Based PIRs Using GPUs 169

Table 1. Polynomial parameters and Query/Response sizes necessary to support var-
ious database sizes N .

Schemes N (log q, n) ε Query size (MB) Response size (KB)

DSH [18] 232 (512, 16384) 1024 32 784

216 (250, 8190) 630 3.9 154

28 (160, 4096) 256 0.625 44

Ours 232 (528, 16384) 1024 33 796

216 (264, 8190) 630 4.12 164

28 (168, 4096) 256 0.656 46.8

Table 2. Index comparison and data aggregation times per entry in the database for
(d, ε) choices of (5, 1024), (4, 630) and (3, 256) on GPU.

Depth (d) Bundled query (msec) Single query (msec)

5 4 3 5 4 3

DSH [18] Index comparison 4.45 0.71 0.31 4.56 2.03 1.29

Data aggregation 0.22 0.09 0.04 37 7.45 3.40

Ours Index comparison 0.26 0.04 0.02 0.31 0.06 0.04

Data aggregation 0.037 0.005 0.004 9.60 1.26 0.71

Speedup Index comparison ×17 ×18 ×15 ×15 ×34 ×32

Data aggregation ×6 ×18 ×10 ×4 ×6 ×5

Table 3. Comparison of query sizes for databases upto 232, 216 and 28 entries. Band-
width complexity is given in the number of ciphertexts; α denotes the ciphertext size.

BW α Query size

compl. d = 5 d = 4 d = 3 d = 5 d = 4 d = 3

Boneh-Goh-Nissim α
√

N 6144 6144 6144 96 MB 384 KB 24 KB

Kushilevitz-Ostrovsky α
√

N 2048 2048 2048 32 MB 128 KB 8 KB

DSH [18] (Single) α logN 1MB 249KB 80KB 32MB 3.9MB 640KB

DSH [18] (Bundled) α logN 1KB 406B 130B 32KB 6.32KB 2.5KB

Ours (Single) α logN 1.03MB 263KB 84KB 33MB 4.1MB 672KB

Ours (Bundled) α logN 1.03KB 429B 336B 33KB 6.34KB 2.6KB

K-O scheme in Bundled Query mode, our ciphertext sizes are three orders of
magnitude smaller for d = 5 and an order of magnitude smaller for d = {4, 3}.

In Table 4, we compare our timing and ciphertext size estimates for a real
time application given by Aguilar-Melchor and Gaborit [9]. The information
given in the table is for N = 1024 entries with each entry holding 3 MBytes
of data. We select d = 4 and assume both GPUs are running data aggregation
tasks. In bundled query mode, we are better both in query size and amortized
timings compared to other schemes results with the exception for query size of
Gentry and Ramzan [6].

170 W. Dai et al.

Table 4. Comparison of various schemes for real time applications.

Scheme Query size Computation time

Lipmaa 2 Mb 33 h

Gentry and Ramzan 3 Kb 17 h

Aguilar-Melchor and Gaborit 300 Mb 10 min

Ours (Single) 20.6Mb 8.8 h

Ours (Bundled) 33.4Kb 1.5min

Acknowledgments. Funding for this research was in part provided by the US
National Science Foundation CNS Award #1319130.

References

1. Chor, B., Kushilevitz, E., Goldreich, O., Sudan, M.: Private information retrieval.
J. ACM 45, 965–981 (1998)

2. Chor, B., Gilboa, N.: Computationally private information retrieval (extended
abstract). In: Proceedings of the Twenty-ninth Annual ACM Symposium on The-
ory of Computing, STOC 1997, pp. 304–313. ACM, New York (1997)

3. Ostrovsky, R., Shoup, V.: Private information storage (extended abstract) (1996)
4. Kushilevitz, E., Ostrovsky, R.: Replication is not needed: single database,

computationally-private information retrieval. FOCS 1997, 364–373 (1997)
5. Cachin, C., Micali, S., Stadler, M.A.: Computationally private information retrieval

with polylogarithmic communication. In: Stern, J. (ed.) EUROCRYPT 1999.
LNCS, vol. 1592, p. 402. Springer, Heidelberg (1999)

6. Gentry, C., Ramzan, Z.: Single-database private information retrieval with constant
communication rate. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C.,
Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 803–815. Springer, Heidelberg
(2005)

7. Lipmaa, H.: An oblivious transfer protocol with log-squared communication.
In: Zhou, J., López, J., Deng, R.H., Bao, F. (eds.) ISC 2005. LNCS, vol. 3650,
pp. 314–328. Springer, Heidelberg (2005)

8. Boneh, D., Goh, E.-J., Nissim, K.: Evaluating 2-DNF formulas on ciphertexts. In:
Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341. Springer, Heidelberg
(2005)

9. Aguilar-Melchor, C., Gaborit, P.: A lattice-based computationally-efficient private
information retrieval protocol (2007)

10. Olumofin, F., Goldberg, I.: Revisiting the computational practicality of private
information retrieval. In: Danezis, G. (ed.) FC 2011. LNCS, vol. 7035, pp. 158–
172. Springer, Heidelberg (2012)

11. Gentry, C., Halevi, S.: Implementing gentry’s fully-homomorphic encryption
scheme. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 129–
148. Springer, Heidelberg (2011)

12. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (leveled) fully homomorphic encryp-
tion without bootstrapping. In: Proceedings of the 3rd ITCS, ITCS 2012, pp. 309–
325. ACM, New York (2012)

Accelerating SWHE Based PIRs Using GPUs 171

13. Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the AES circuit. In:
Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 850–867.
Springer, Heidelberg (2012)

14. Bos, J.W., Lauter, K., Loftus, J., Naehrig, M.: Improved security for a ring-based
fully homomorphic encryption scheme. In: Stam, M. (ed.) IMACC 2013. LNCS,
vol. 8308, pp. 45–64. Springer, Heidelberg (2013)

15. López-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty computation
on the cloud via multikey fully homomorphic encryption. In: Proceedings of the
44th Annual ACM STOC, STOC 2012, pp. 1219–1234. ACM New York (2012)

16. Gentry, C., Halevi, S., Smart, N.P.: Fully homomorphic encryption with polylog
overhead. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS,
vol. 7237, pp. 465–482. Springer, Heidelberg (2012)

17. Smart, N., Vercauteren, F.: Fully homomorphic SIMD operations. Des. Codes
Crypt. 71, 57–81 (2014)

18. Doröz, Y., Sunar, B., Hammouri, G.: Bandwidth efficient PIR from NTRU. In:
Böhme, R., Brenner, M., Moore, T., Smith, M. (eds.) FC 2014 Workshops. LNCS,
vol. 8438, pp. 195–207. Springer, Heidelberg (2014)

19. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a ring-based public key cryptosys-
tem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288. Springer,
Heidelberg (1998)

20. Stehlè, D., Steinfeld, R.: Making NTRU as secure as worst-case problems over ideal
lattices. In: Paterson, K. (ed.) Advances in Cryptology-EUROCRYPT 2011. LNCS,
vol. 6632, pp. 27–47. Springer, Heidelberg (2011)

21. Wang, W., Hu, Y., Chen, L., Huang, X., Sunar, B.: Accelerating fully homomorphic
encryption using GPU. In: HPEC, IEEE, pp. 1–5 (2012)

22. Dai, W., Doröz, Y., Sunar, B.: Accelerating ntru based homomorphic encryption
using gpus. (2014)

23. Schönhage, A., Strassen, V.: Schnelle multiplikation großer zahlen. Computing 7,
281–292 (1971)

24. Cooley, J., Tukey, J.: An algorithm for the machine calculation of complex fourier
series. Math. Comput. 19, 297–301 (1965)

25. Emmart, N., Weems, C.C.: High precision integer multiplication with a gpu using
strassen’s algorithm with multiple fft sizes. PPL 21, 359–375 (2011)

26. Barrett, P.: Implementing the rivest shamir and adleman public key encryption
algorithm on a standard digital signal processor. In: Odlyzko, A.M. (ed.) CRYPTO
1986. LNCS, vol. 263, pp. 311–323. Springer, Heidelberg (1987)

Combining Secret Sharing and Garbled Circuits
for Efficient Private IEEE 754 Floating-Point

Computations

Pille Pullonen1,2 and Sander Siim1,2(B)

1 Cybernetica AS, Tartu, Estonia
2 University of Tartu, Tartu, Estonia

{pille.pullonen,sander.siim}@cyber.ee

Abstract. Two of the major branches in secure multi-party computa-
tion research are secret sharing and garbled circuits. This work succeeds
in combining these to enable seamlessly switching to the technique more
efficient for the required functionality. As an example, we add garbled
circuits based IEEE 754 floating-point numbers to a secret sharing envi-
ronment achieving very high efficiency and the first, to our knowledge,
fully IEEE 754 compliant secure floating-point implementation.

1 Introduction

Secure multi-party computation (MPC) enables parties to securely compute
some function on their secret inputs and receive the secret outputs, without leak-
ing anything to other parties. The fastest MPC protocols for integer arithmetic,
like Sharemind [5,8] and SPDZ [10], rely on additive secret sharing. Additive
sharing supports efficient addition and multiplication due to the algebraic prop-
erties of the scheme. However, floating-point arithmetic is much more sophisti-
cated and contains a composition of different operations, both integer arithmetic
as well as bitwise operations. Existing implementations based on secret sharing
provide near approximations to the IEEE 754 standard [1,17,22]. Although [11]
proposes IEEE 754 protocols, no implementation is provided.

Another MPC approach is based on the garbled circuits method (GC)
attributed to Yao [29] and detailed in [21]. A good overview of the recent
advances can be found in [2,3], especially in the full versions. The baseline
method is applicable to the two-party setting, however it can be extended to the
case with more parties [4]. State-of-the-art garbling methods are already very
efficient [2] and, in addition, means to derive optimized circuits from existing
programs have been developed [14,19]. This allows secure protocols for arbi-
trary computations to be built with small effort using a general GC approach.

This research was, in part, funded by the U.S. Government. The views and con-
clusions contained in this document are those of the authors and should not be
interpreted as representing the official policies, either expressed or implied, of the
U.S. Government. This work has also received funding from the Estonian Research
Council through grant IUT27-1, and ERDF through EXCS.

c© International Financial Cryptography Association 2015
M. Brenner et al. (Eds.): FC 2015 Workshops, LNCS 8976, pp. 172–183, 2015.
DOI: 10.1007/978-3-662-48051-9 13

Combining Secret Sharing and Garbled Circuits 173

However, in many cases the obtained protocols are less efficient than their secret-
sharing-based alternatives. In practice, it would be useful to choose the more
efficient technique, either secret sharing or GC, for each particular subproto-
col, but this requires interleaving secret sharing and GC based protocols in one
computation.

In this paper, we present a hybrid protocol, which enables arbitrary secure
computations through a combination of GC and secret sharing protocols. In our
protocol, GC gives the power to do bit-level operations in a compact manner,
whereas secret sharing complements the construction with a fast oblivious trans-
fer as well as composability with other secret-sharing-based protocols. Thereby,
large and complex algorithms can be implemented by composition of the most
efficient basic primitives. We illustrate the benefits by extending the Sharemind
MPC framework [5,8] with, to our knowledge, the first secure floating-point
protocol suite fully conforming to the IEEE 754 standard.

2 Preliminaries

In MPC, parties P1, . . . , Pm want to securely compute a function f on secret
inputs x1, . . . , xm to learn f(x1, . . . , xm) = (y1, . . . , ym), without leaking any-
thing about inputs xi to other parties. Secret sharing is a mechanism of dis-
tributing data between participants without giving any of them direct access
to the data, but enabling computations [27]. We denote a secret-shared vector
x of n elements shared between parties P1,. . . ,Pm by [[x]] = [[x1, x2, . . . , xn]] =
[[x1]], . . . , [[xn]] where party Pi holds [[x]]i = [[x1, x2, . . . , xn]]i. We focus on the
additive secret sharing scheme, where sharing is defined with

∑m
i=1[[x]]i = x.

However, other schemes may also be used to implement our proposed protocol.
In the garbled circuits protocol [21,29], two parties called garbler and evalua-

tor securely compute a known function f(x, y) on their joint inputs. The garbler
encrypts a Boolean circuit of g = f(a, ·) and sends the garbled truth tables of
gates to the evaluator. The evaluator then uses oblivious transfer to obtain the
keys corresponding to its input to decrypt the garbled circuit and evaluate g(b).

We use notation from [2] to describe circuits as a tuple f = (n,m, q,A,B,G),
where n, m and q respectively denote the number of external input wires, external
output wires and gates in f . All wires are labelled by indexes. Namely, 1 to n are
input wires, n+1 to n+ q mark gate output wires and n+ q −m+1 to n+ q are
circuit outputs. Functions A and B, respectively, identify the first and second
input wire of any gate. For each gate g in f , the function G(g) : {0, 1}2 → {0, 1}
denotes the functionality of g. We use Xb

j ∈ {0, 1}k to denote the token of the
j-th wire corresponding to bit b ∈ {0, 1}, where k is the length of the generated
tokens. We say Xb

j has the semantics of b and type lsb(Xb
j).

Here we only emphasize the important aspects of the used security proof
framework, for details we refer to [6]. A protocol is said to be input private if,
for any collection of allowed corrupted parties, there exists a simulator that can
simulate the view of the adversary based on the inputs of corrupted parties. The
ordered composition of an input private and a secure protocol, where all outputs

174 P. Pullonen and S. Siim

are provided by the secure protocol, is secure if it is output predictable. The latter
means that the composed protocols are correct and the final protocol does not
leak information about its input shares to ensure the privacy of the first part.

Garbled circuits have two important security definitions: privacy and oblivi-
ousness [3]. Respectively, we consider prv.ind, prv.sim and obv.ind, obv.sim for
either indistinguishability or simulation based versions of these definitions. Both
properties are formalised via the side-information function Φ that captures the
information that is revealed by the garbled circuit. We consider Φtopo and Φxor

that leak the topology and XOR operations. These functions are both efficiently
invertible [2]. Therefore, by equivalence relations from [3], indistinguishability
and simulation-based definitions coincide for both privacy and obliviousness.

3 Combining Garbled Circuits with Secret Sharing

Our goal is to construct an efficient protocol for securely evaluating Boolean
circuits on bitwise secret-shared input, thereby allowing secret sharing protocols
to be composed with computations more suitable for GC. Thus, each subprotocol
can use the method more suitable for the given functionality and inputs. A
similar approach is also used in the TASTY framework that combines GC and
additively homomorphic encryption in a two-party setting [13].

The idea of our protocol is to set up GC to accept secret-shared inputs
and to produce shared outputs. Thus, our protocol in Algorithm1 consists of
three important steps. First, we require an efficient oblivious garbling scheme to
securely evaluate circuits. Suppose we have CP1, . . . ,CPm who hold some secret-
shared data. We will let computing parties CP1 and CP2 respectively perform
the computations of garbler and evaluator from the GC protocol. Note that
additionally to the properties of the secret sharing scheme we require that CP1

and CP2 are not colluding. Second, the GC protocol requires a special oblivious
transfer (OT) to provide the input tokens to the evaluator from the secret-shared
inputs. Third, we must convert the garbled outputs to the appropriate secret-
shared form.

Algorithm 1. Hybrid protocol for processing bitwise secret-shared data
with a garbled circuit
Input: Shared bit vector [[x]] = [[x1, . . . , xn]]
Boolean circuit f that calculates f : {0, 1}n → {0, 1}m

Output: Shared bit vector [[y]] = [[y1, . . . , ym]] such that [[y]] = f([[x]])
1 foreach input wire i ∈ {1, . . . , n} do

2 CP1 generates a token pair (X0
i , X

1
i) ∈ {0, 1}k × {0, 1}k

3 The computing parties initiate an OT protocol which results in CP2 receiving
X = {Xx1

1 , . . . , Xxn
n } (the input tokens corresponding to the actual input bits)

4 CP1 garbles circuit f and sends the garbled truth tables to CP2

5 CP2 evaluates garbled f using X to get output tokens Y = {Xy1
o1 , . . . , X

ym
om }

6 The garbled output is converted to secret-shared form to receive [[y]]
7 return [[y]]

Combining Secret Sharing and Garbled Circuits 175

Algorithm 2. Oblivious transfer of input tokens (OT)
Input: CP1 holds the input tokens

{
X0

1 , . . . , X
0
n, X

1
1 , . . . , X

1
n

}

The input bit vector [[x]] = [[x1, . . . , xn]] is shared between all parties
Output: CP2 receives input tokens {Xx1

1 , . . . , Xxn
n }

1 [[X0]] = [[X0
1 , . . . , X

0
n]] and [[X1]] = [[X1

1 , . . . , X
1
n]] are instantiated as shared

values, with shares of CP2 and CP3 initialized to 0
2 [[X]] ← [[X0]] · ([[1]] − [[x]]) + [[X1]] · [[x]]
3 CP1 and CP3 send their shares of [[X]] to CP2

4 CP2 combines the shares of [[X]] to get {Xx1
1 , . . . , Xxn

n }
5 return {Xx1

1 , . . . , Xxn
n }

3.1 An Implementation of the Hybrid Protocol

Generally, the hybrid protocol canbe implementedusing various secret sharing and
garbling schemes, provided they retain the security properties from Sect. 3.2 and
conversion protocols in Algorithm 1 exist. However, we will focus on our instan-
tiation built into the Sharemind MPC platform [5]. We chose Sharemind because
it already provides an optimized multi-party computation environment based on
secret sharing, which could easily be extended with our GC based protocol.

Our protocol extends Sharemind’s additive3pp protection domain, which
implements various secure computation protocols using 3-out-of-3 additive secret
sharing [7]. This allows us to easily compose the hybrid protocol with fast existing
primitives for integer arithmetic. Note that different data types provided by
Sharemind can be efficiently converted to shared bit vectors required in our
construction [8]. Consequently, we fix a setting with three computing parties
CP1, CP2 and CP3 and additive secret sharing. As with additive3pp protocols,
our construction provides security against a single passively corrupted party.

Oblivious Transfer. The garbler CP1 generates a pair (X0
i ,X1

i) of tokens
for every bit xi in the beginning of the garbling process. We need to trans-
fer the tokens that correspond to the protocol inputs to the evaluator CP2.
Clearly, if we have a subprotocol that calculates the necessary secret-shared
tokens [[Xx1

1 , . . . , Xxn
n]], then we can complete the transfer by sending all result

shares to CP2. This subprotocol can be easily implemented using secret-sharing-
based multiplication and addition protocols. The resulting OT protocol is given
in Algorithm 2. In addition to basic OT security properties, we also require that
the inputs xi are not leaked.

The computations on line 2 are performed using the secure and input private
multiplication and addition protocols from [8]. As a result, [[X]] = [[Xx1

1 , . . . , Xxn
n]]

and the inputs [[x]] remain private. Note that each xi can easily be extended to
the length of the tokens, therefore the operations are performed in Z2k . On line
3, the shares [[X]] are sent to CP2 who combines them to receive the input tokens.

Garbling. The emphasis of efficient GC is on reducing network communication,
as this is the bottleneck for GC protocols. Recent garbling schemes bring the cost

176 P. Pullonen and S. Siim

of local computations to a minimum as demonstrated in [2]. Due to these consid-
erations, we chose the GaXR scheme with the A4 DKC instantiation from [2]
for our protocol, which is one of the fastest to date. Other garbling schemes
could be used just as well, provided they retain the obliviousness property [3].
The GaXR scheme incorporates free-XOR [18] and garbled row reduction [24]
optimizations, both of which significantly reduce network communication of GC.

The authors of [2,3] formalize the underlying encryption primitive of the
garbling process as a dual-key cipher. The dual-key cipher used in the GaXR
scheme is a function E : {0, 1}k × {0, 1}k × {0, 1}τ × {0, 1}k → {0, 1}k. It takes
secret wire tokens A and B and a tweak T to encrypt a wire token X, resulting
in a ciphertext E(A,B, T,X) = π(K ‖ T)[1:k] ⊕ K ⊕ X, where K = 2A ⊕ 4B and
X,A,B ∈ {0, 1}k and T ∈ {0, 1}τ . Here π(K ‖ T)[1:k] denotes the first k bits of
the result. The decryption is completely symmetric.

The function π : {0, 1}k+τ → {0, 1}k+τ denotes a random permutation, as
the security of GaXR is shown in the random permutation model. We use a fixed-
key AES-128 with k = 80 and τ = 48 to instantiate π, which provides reasonable
security guarantees for this garbling scheme [2]. Tweak T is the encrypted gate
index encoded as a τ -bit integer. For the doubling function denoted by 2A we
use multiplication with element x over finite field GF (2k), as it provides the best
security guarantees over other possible alternatives [2]. Here k corresponds to bit-
length of the wire tokens. Our implementation uses the irreducible polynomial
x80 + x9 + x4 + x2 + 1 from [26] for defining the finite field.

Figure 1 summarizes the hybrid protocol. The garbler CP1 first generates a
token pair (X0

i ,X1
i) for each input wire, with X0

i and X1
i having the semantics

of 0 and 1 respectively. Then all three computing parties synchronously execute
the OT protocol in Algorithm2. As a result CP2 receives the correct input tokens
needed for evaluation. Next, CP1 garbles the circuit according to the GaXR
scheme and sends the garbled truth tables P to CP2. The evaluator CP2 can
then evaluate the garbled circuit using the transferred input tokens to receive
the garbled output.

As an implementation detail, we have parallelized our protocol on two levels.
First, the garbled tables are streamed by fixed-size batches from garbler to eval-
uator, similarly to [15]. The evaluator can then start evaluating the circuit while
the garbler encrypts the next batch. This is especially relevant performance-wise
for large circuits. The batch size can be fixed for different circuits separately and
fine-tuned to match the Sharemind instance’s network and hardware capabilities.

In addition, our implementation allows both garbler and evaluator to run
several threads to evaluate the same circuit with different inputs simultaneously.
This can be thought of as using a number of garbler-evaluator pairs, similarly to
the cut-and-choose implementation of [20] for actively secure GC. Besides par-
allel garbling, this allows a joint OT to be done for all the scheduled evaluations.
This parallelization greatly reduces the cost of a single circuit evaluation.

Resharing. The final step in the protocol is resharing the output between all
three computing parties using perfectly secure Reshare protocol Algorithm 1
from [5]. This protocol rerandomizes the output shares held by CP1 and CP2 as

Combining Secret Sharing and Garbled Circuits 177

Fig. 1. Detailed algorithms of the hybrid protocol for all computing parties.

y = [[y]]′1 +[[y]]′2 to a uniformly secret-shared output [[y]] and ensures that we can
securely compose our protocol with all additive3pp protocols, which is vital for
efficient computations that would benefit from both GC and secret sharing.

3.2 Security of the Hybrid Protocol

Based on [6], we need to prove that the protocol up until the Reshare function
is passively input private and then apply the composition result from [6]. For
this, we also need to establish the output predictability of the composition. We
denote the part of the hybrid protocol on Fig. 1 before final Reshare protocol as
Hybrid’. This section gives an overview of the important aspects of the proof,
a full proof can be found in the full version of this paper [25]. Note, that the

178 P. Pullonen and S. Siim

obliviousness of the garbling scheme [3] is quite like the input privacy [6] and is
necessary for the input privacy of the Hybrid’ protocol.

Theorem 1. Ordered composition of Hybrid’ and Reshare is output
predictable.

Proof (Proof sketch). Clearly, Hybrid’ and Reshare are in ordered composition
because all outputs of Hybrid’ are inputs to Reshare. There is no data flow from
Reshare to Hybrid’. The correctness of Hybrid’ follows from the correctness of
the sub-protocols used in the OT part and the correctness of the GaXR garbling
scheme. Therefore, output predictability follows from Lemma 2 in [6].

Theorem 2. GaXR scheme is computationally obv.ind and obv.sim secure.

Proof (Proof sketch). The types of the input wires are independent of the seman-
tics as they are generated independently on line 3 by CP1. In short, the obv.ind
security follows from the fact that the keys of the outputs are generated the
same way as the intermediate keys. Therefore, if there exists an adversary that
breaks the obv.ind security for two functions f1 and f2 then this adversary can
be extended to break the prv.ind security for two functions c ◦ f1 and c ◦ f2 for
a constant function c. Finally, obv.ind security and obv.sim security coincide.

Theorem 3. Protocol Hybrid’ is perfectly input private for statically corrupted
CP1 or CP3 and computationally input private against corrupted CP2.

Proof (Proof sketch). We have to show the existence of the privacy simulator
that can simulate the view of the corrupted party based on its inputs.

Corrupted CP1 or CP3. The only incoming communication for these protocols
occurs during the OT computation phase. Therefore, the perfect input privacy of
these parties is ensured by the perfect input privacy of the addition and multi-
plication protocol and the composability of input privacy (Theorem 3 in [6]).

Corrupted CP2. From obv.sim security in Theorem 2 we know that there
exists a simulator S such that, for inputs S(1k, Φ(f)), it outputs (F,X) indistin-
guishable from those output by the garbling scheme. This simulator is defined
by the game ObvSim in [3]. The privacy simulator P for CP2 can be built from
the simulator S. This P knows the circuit f and also has the security parameter
k, therefore, it can run S(1k, Φ(f)) to obtain (F,X). Next, it has to simulate
the OT that can be done perfectly by using the privacy simulator for the com-
putation part and simulating the declassifying procedure with output X. All of
the simulation, except for the choice of F and X, is perfect. Therefore, if the
adversary gains any power to distinguish between the real life and simulation
P, it must result from the values F and X. However, this would invalidate the
obv.sim security.

Corollary 4. Hybrid protocol (Fig. 1) is perfectly secure against passively cor-
rupted CP1 and CP3 and computationally secure against passively corrupted CP2.

Proof. The composition is jointly output predictable (Theorem1) and Hybrid’,
first part of the ordered composition, is input private (Theorem3). Using the
composition result (Theorem 2 in [6]) we conclude that the full hybrid protocol
is secure.

Combining Secret Sharing and Garbled Circuits 179

4 Using the Hybrid Protocol for Efficient Computations

Sharemind’s additive3pp protocols enable fast integer operations. On the other
hand, bit-level operations are more costly. However, in practical applications we
are also interested in more complex primitives that rely heavily on bit-level
operations. A very relevant example of this is floating-point computations.

The de facto standard today for binary floating-point arithmetic is IEEE
754 [16]. Although existing secure implementations of floating-point operations
resemble IEEE 754 [1,17,22], they do not always produce identical results com-
pared to regular hardware implementations. The main shortcomings are in not
rounding inexact results to nearest representable floating-point numbers, lack of
support for gradual underflow and missing error handling [12].

Using the CBMC-GC circuit compiler [14] (v.0.9.3 [9]), we were able to imple-
ment an efficient and fully IEEE 754 compliant floating-point protocol suite
based on our hybrid protocol. The CBMC-GC compiler transforms C programs
directly to highly optimized circuits usable in a GC protocol. This allowed us to
use exact IEEE 754 software implementations as a basis for our protocols.

We implemented both single and double precision secret-shared floating-point
data types. The float and double types are represented as 32-bit and 64-bit
bitwise secret-shared integers that correspond exactly to the IEEE 754 standard.
Our construction guarantees bit-by-bit identical results to those of regular hard-
ware floating-point procedures, excluding non-standardized details such as the
significand bits of a NaN. We empirically verified this claim for the four arith-
metic operations and square root on a machine with Intel Core i7-870 2.93 GHz
processor against equivalent C programs compiled with GCC 4.8.1-2.

4.1 Circuits for IEEE 754 Primitives

The circuits used in our protocol suite are listed and described in Table 1. We
list circuit sizes as well as the number of garbled tables batches sent during
one evaluation of the circuit. The circuits were compiled on a workstation with
16 GB RAM and an Intel Core i7-870 2.93 GHz processor. Although it would
have much reduced the circuit sizes, we were unable to use the SAT-minimization
functionality of CBMC-GC for larger circuits due to high compilation times.

We used the efficient SoftFloat [28] IEEE 754 software implementation for
compiling addition, multiplication, division and square root circuits. We addi-
tionally used musl libc [23] for double precision ex and error function (erf) as
an example of more complex operations and the flexibility of our approach to
implement arbitrary primitives. Only minor syntactic modifications of the source
code were required to compile it with CBMC-GC. We hardcoded rounding to
the default “Round to nearest even” mode defined in IEEE 754, since this is
most used in practice and provides the best bounds on rounding errors [12].
Alternatively, we could give the rounding mode as input to the circuit.

We chose to ignore all floating-point exceptions that may be raised during
computations, since in an MPC environment, raising an exception (e.g. division
by zero) in the middle of a computation can possibly leak information about

180 P. Pullonen and S. Siim

Table 1. IEEE 754 floating-point operation circuits compiled with CBMC-GC

Circuit Non-XOR gates Total gates No of batches Used SAT-

minimization

Compilation time

float add 5671 7052 1 + 8min 32 s

float sub 5671 7052 1 + 5min 28 s

float mul 5138 7701 1 + 5min 1 s

float div 12851 21384 1 − 58 s

float sqrt 35987 66003 2 − 2min 40 s

double add 13129 15882 1 + 1h 8min

double sub 13129 15882 1 + 1h 11min

double mul 13104 25276 1 + 3h 46min

double div 36133 73684 2 − 5min 35 s

double sqrt 85975 169932 4 − 10min 11 s

double exp 393807 579281 8 − 1 h 13min

double erf 2585188 3979603 52 − 47 h 4min

inputs. As our protocols correctly handle all special cases defined in the standard
(NaNs, infinities, denormalized numbers), any exceptions will be reflected in the
final result. Previous implementations [1,17,22] did not explicitly handle such
cases and produced valid but meaningless results in error situations.

4.2 Performance Analysis

We benchmarked the performance of our implemented IEEE 754 primitives as
well as the existing floating-point operations [17] in Sharemind for comparison.
The benchmarks were performed on a cluster of three nodes hosting Sharemind.
All nodes had 48 GB of RAM and a 12-core 3 GHz Intel CPU supporting AES-
NI and HyperThreading. The nodes were connected to a LAN with 1 Gbps full
duplex links. All tests were executed with a maximum of 24 concurrent garbler-
evaluator pairs, as the hardware supports up to 24 parallel threads.

The performance results are shown in Table 2 for single precision and Table 3
for double precision. All measurements are presented in operations per second
(ops) as the mean of 5 to 1000 iterations depending on the circuit size. The
measurements depict the whole running time of the protocol including oblivious
transfer, garbling and evaluation. Circuits are parsed and cached in an offline
phase, however. The input size refers to the number of respective operations
computed in one test using the parallelization techniques described in Sect. 3.1.

Our measurements show that hybrid protocol IEEE 754 operations, excluding
error function, are faster than approximation-based operations for smaller input
sizes. The error function clearly illustrates the substantial overhead for evaluat-
ing very large circuits, thereby motivating the composition of small but efficient
primitives as opposed to full circuit programs. The IEEE 754 division and square
root perform very well compared to approximation-based versions, whereas the
error function and multiplication are slower on larger input sizes. Our protocols

Combining Secret Sharing and Garbled Circuits 181

Table 2. Performance of single precision floating-point operations (ops)

Input size in elements

1 10 100 1000 10000

Add Approx. 2.43 24.1 228.1 1496 3790

IEEE 754 24.99 134.5 477.2 583.6 597

Multiply Approx. 7.76 77.94 751.6 5413 16830

IEEE 754 26.17 135.5 506 632.9 632.9

Divide Approx. 0.53 5.25 46.48 237 432.6

IEEE 754 14.53 88.2 233.6 279.1 284.5

Square root Approx. 0.34 3.26 28.07 126.1 206.1

IEEE 754 7.83 44 92.9 105.1 106.6

Table 3. Performance of double precision floating-point operations (ops)

Input size in elements

1 10 100 1000

Add Approx. 2.29 22.22 188.2 857.7

IEEE 754 16 103 228 260

Multiply Approx. 7.17 71.98 647.9 3560

IEEE 754 13.74 90.8 221 259

Divide Approx. 0.5 4.78 35.22 115.7

IEEE 754 7.31 46 89.2 101

Square root Approx. 0.26 2.4 14.23 31

IEEE 754 3.57 23.3 39.5 43.4

ex Approx. 0.28 2.57 14.7 31.1

IEEE 754 1.1 6.38 9 9.5

Error function Approx. 0.3 2.92 19.8 55.4

IEEE 754 0.18 0.95 1.35 1.47

well outperform the results from [22] and our double precision addition and divi-
sion are faster than the implementation of [1], however, multiplication is slightly
slower. The latter is expected, since it is efficient to implement floating-point
multiplication using secret sharing and less is gained from a GC approach.

The results also show that IEEE 754 operations do not benefit much from
parallelization already after inputs of size ∼100, while the approximation-based
operations parallelize well to 10000 elements. This is due to the large size of the
garbled tables that are transmitted over the network. In all larger tests with the
IEEE 754 operations, the network link was constantly saturated, which intro-
duced an inevitable upper bound on performance. This demonstrates the tradeoff
between GC and secret sharing, as GC generally requires more network commu-
nication, but has better round-complexity. For example, in our instantiation,

182 P. Pullonen and S. Siim

the garbled circuit for float addition has size ∼175 KB, whereas the
approximation-based protocol uses at most 12 KB of one-way network commu-
nication over a series of communication rounds. Consequently, the sharing-based
protocols have better amortized performance for larger inputs. In practice, the
input size can be used to dynamically choose between GC or sharing-based pro-
tocols.

The IEEE 754 protocols used significantly more memory and processing
power, as all processor cores of the garbler node were nearly constantly working
at maximum capacity. The effect of the high-speed parallel garbling on overall
performance was nevertheless ultimately dominated by the network bandwidth,
suggesting that less powerful hardware could be used for similar results. The
approximation-based counterparts used only ∼10 % of the hardware capability.

5 Conclusion

This work provided a protocol for combining GC with secret sharing. For this we
consider a setting where the oblivious transfer for the garbled evaluation inputs
can work for secret-shared inputs rather than the inputs known to the evalua-
tor. In addition, it is required that the outputs of the garbled evaluation remain
private. This allows us to combine the strengths of both approaches. Especially,
efficient secret-sharing-based computation protocols can be augmented with eas-
ily generated GC based protocols for the functionalities where no known efficient
sharing-based protocol exists. As an example, we added a very efficient first fully
IEEE 754 compliant secure floating-point implementation to Sharemind.

Acknowledgments. We would like to thank the authors of the CBMC-GC circuit
compiler for supporting us in our efforts to generate the described circuits.

References

1. Aliasgari, M., Blanton, M., Zhang, Y., Steele, A.: Secure computation on floating
point numbers. In: Proceedings of NDSS 2013. The Internet Society (2013)

2. Bellare, M., Hoang, V.T., Keelveedhi, S., Rogaway, P.: Efficient garbling from a
fixed-key blockcipher. In: Proceedings of SP 2013, pp. 478–492. IEEE Computer
Society, Washington, DC (2013)

3. Bellare, M., Hoang, V.T., Rogaway, P.: Foundations of garbled circuits. In: Pro-
ceedings of CCS 2012, pp. 784–796. ACM, New York (2012)

4. Ben-David, A., Nisan, N., Pinkas, B.: FairplayMP: a system for secure multi-party
computation. In: Proceedings of CCS 2008, pp. 257–266. ACM (2008)

5. Bogdanov, D.: Sharemind: programmable secure computations with practical
applications. Ph.D. thesis. University of Tartu (2013)

6. Bogdanov, D., Laud, P., Laur, S., Pullonen, P.: From input private to universally
composable secure multi-party computation. In: Proceedings of CSF 2014. IEEE
Computer Society (2014)

7. Bogdanov, D., Laud, P., Randmets, J.: Domain-polymorphic programming of
privacy-preserving applications. In: Proceedings of PETShop 2013, pp. 23–26.
ACM (2013)

Combining Secret Sharing and Garbled Circuits 183

8. Bogdanov, D., Niitsoo, M., Toft, T., Willemson, J.: High-performance secure multi-
party computation for data mining applications. IJIS 11(6), 403–418 (2012)

9. CBMC-GC. http://forsyte.at/software/cbmc-gc/
10. Damg̊ard, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from

somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012)

11. Franz, M., Katzenbeisser, S.: Processing encrypted floating point signals. In: Pro-
ceedings of MM&Sec 2011, pp. 103–108. ACM, New York (2011)

12. Goldberg, D.: What every computer scientist should know about floating-point
arithmetic. ACM Comput. Surv. 23(1), 5–48 (1991)

13. Henecka, W., Kögl, S., Sadeghi, A.R., Schneider, T., Wehrenberg, I.: TASTY: tool
for automating secure two-party computations. In: Proceedings of CCS 2010, pp.
451–462. ACM, New York (2010)

14. Holzer, A., Franz, M., Katzenbeisser, S., Veith, H.: Secure two-party computations
in ANSI C. In: Proceedings of CCS 2012, pp. 772–783. ACM (2012)

15. Huang, Y., Evans, D., Katz, J., Malka, L.: Faster secure two-party computation
using garbled circuits. In: Proceedings of SEC 2011. USENIX Association (2011)

16. 754-2008 - IEEE standard for floating-point arithmetic (2008). http://ieeexplore.
ieee.org/servlet/opac?punumber=4610933

17. Kamm, L., Willemson, J.: Secure floating-point arithmetic and private
satellite collision analysis. IJIS (2014). http://link.springer.com/article/10.
1007%2Fs10207-014-0271-8

18. Kolesnikov, V., Schneider, T.: Improved garbled circuit: free XOR gates and
applications. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M.,
Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126,
pp. 486–498. Springer, Heidelberg (2008)

19. Kreuter, B., Mood, B., Shelat, A., Butler, K.: PCF: a portable circuit format for
scalable two-party secure computation. In: Proceedings of SEC 2013, pp. 321–336.
USENIX Association, Berkeley (2013)

20. Kreuter, B., Shelat, A., Shen, C.: Billion-gate secure computation with malicious
adversaries. In: Proceedings of Security 2012. USENIX Association (2012)

21. Lindell, Y., Pinkas, B.: A proof of security of Yao’s protocol for two-party compu-
tation. J. Cryptol. 22(2), 161–188 (2009)

22. Liu, Y.C., Chiang, Y.T., Hsu, T.S., Liau, C.J., Wang, D.W.: Floating point arith-
metic protocols for constructing secure data analysis application. Procedia Com-
put. Sci. 22, 152–161 (2013)

23. musl libc. http://www.musl-libc.org/
24. Pinkas, B., Schneider, T., Smart, N.P., Williams, S.C.: Secure two-party compu-

tation is practical. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp.
250–267. Springer, Heidelberg (2009)

25. Pullonen, P., Siim, S.: Combining secret sharing and garbled circuits for efficient
private IEEE 754 floating-point computations. Cryptology ePrint Archive, Report
2014/990 (2014)

26. Seroussi, G.: Table of low-weight binary irreducible polynomials (1998). http://
www.hpl.hp.com/techreports/98/HPL-98-135.html

27. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
28. SoftFloat. http://www.jhauser.us/arithmetic/SoftFloat.html
29. Yao, A.C.: Protocols for secure computations. In: Proceedings of SFCS 1982, pp.

160–164. IEEE Computer Society, Washington, DC (1982)

http://forsyte.at/software/cbmc-gc/
http://ieeexplore.ieee.org/servlet/opac?punumber=4610933
http://ieeexplore.ieee.org/servlet/opac?punumber=4610933
http://springerlink.bibliotecabuap.elogim.com/article/10.1007%2Fs10207-014-0271-8
http://springerlink.bibliotecabuap.elogim.com/article/10.1007%2Fs10207-014-0271-8
http://www.musl-libc.org/
http://www.hpl.hp.com/techreports/98/HPL-98-135.html
http://www.hpl.hp.com/techreports/98/HPL-98-135.html
http://www.jhauser.us/arithmetic/SoftFloat.html

Cryptanalysis of a (Somewhat) Additively
Homomorphic Encryption Scheme Used in PIR

Tancrède Lepoint1(B) and Mehdi Tibouchi2

1 CryptoExperts, Paris, France
tancrede.lepoint@cryptoexperts.com

2 NTT Secure Platform Laboratories, Tokyo, Japan
tibouchi.mehdi@lab.ntt.co.jp

Abstract. Private Information Retrieval (PIR) protects users’ privacy
in outsourced storage applications and can be achieved using additively
homomorphic encryption schemes. Several PIR schemes with a “real
world” level of practicality, both in terms of computational and commu-
nication complexity, have been recently studied and implemented. One
of the possible building block is a conceptually simple and computation-
ally efficient protocol proposed by Trostle and Parrish at ISC 2010, that
relies on an underlying secret-key (somewhat) additively homomorphic
encryption scheme, and has been reused in numerous subsequent works
in the PIR community (PETS 2012, FC 2013, NDSS 2014, etc.).

In this paper, we show that this encryption scheme is not one-way: we
present an attack that decrypts arbitrary ciphertext without the secret
key, and is quite efficient: it amounts to applying the LLL algorithm
twice on small matrices. Used against existing practical instantiations of
PIR protocols, it allows the server to recover the users’ access pattern in
a matter of seconds.

1 Introduction

Cloud computing has gained widespread importance and adoption in recent
years. One of the main concerns of cloud security is user privacy. Encryption
of data at rest is a first step towards the protection of user data in such a set-
ting. In combination with fully homomorphic encryption [Gen09], cloud servers
can continue to provide services to users while only manipulating encrypted data.
However, encryption of users’ data is only a partial solution to cloud security.
Private Information Retrieval (PIR), introduced by Chor, Goldreich, Kushilevitz
and Sudan [CKGS98], allows a user to retrieve its data in a manner that pre-
vents the server from knowing which data was retrieved. In a PIR protocol with
a single server, the only way to information theoretically hide the users’ access
pattern is to send the entire data back at each query. (By considering several
servers with a copy of the data, secure information theoretic PIR protocols with
smaller communication complexity can be achieved.)

In [KO97], Kushilevitz and Ostrovsky presented the first (single database)
computational PIR (cPIR) where security is achieved against a computationally
c© International Financial Cryptography Association 2015
M. Brenner et al. (Eds.): FC 2015 Workshops, LNCS 8976, pp. 184–193, 2015.
DOI: 10.1007/978-3-662-48051-9 14

Cryptanalysis of a (Somewhat) Additively Homomorphic Encryption 185

bounded server. More generally, they present a construction of a cPIR from
an additively homomorphic encryption scheme, i.e. from an encryption scheme
that allows to publicly compute an encryption of the sum of the plaintexts from
the ciphertexts (see, e.g., [DSH14] for one example). Since this result, numerous
protocols of cPIR have been proposed.

In this paper, we focus on the cPIR protocol proposed by Trostle and Par-
rish at ISC 2010, and more precisely on its underlying (somewhat) additively
homomorphic encryption scheme—the TP scheme. Due to its conceptual sim-
plicity and computational efficiency, this scheme was used as a building block of
other PIR protocols [BPMÖ12,MBC13,MBC14,EÖM14], and to a private spec-
trum availability information retrieval protocol [GZL+13]. In particular, it was
implemented in Java by Mayberry et al. [MBC13,MBC14] to demonstrate the
practicality of PIR in a “real world” setting.

Our Contributions. In this paper we focus on the TP scheme. We present a
concrete attack showing that the scheme is not one-way: one can in fact recover
the plaintext of any given ciphertext. Our attack is based on the notion of
orthogonal lattice introduced by Nguyen and Stern at Crypto ’97 [NS97], and it
is very efficient: it amounts to applying LLL reduction twice on lattices of small
dimension. We implemented it and carried out the attack on the parameters
suggested in [TP10] as well as those used in existing implementations of the TP
scheme [MBC13,MBC14]. Every time, it succeeded in a matter of seconds on a
desktop computer. Our technique can be described as follows.

The secret key in the TP scheme consists of a pair (b,m) where m is a large
secret prime and b ∈ Zm is a secret odd multiplicative mask. A bit μ is encrypted
as c ∈ Zm given by

c = b · (2r + μ)mod m = b · e + m · k ,

where r is some random small noise value, e = 2r + μ, and k is quotient in the
Euclidean division of c by m.

Now consider a vector c ∈ Z
t of ciphertexts associated with the plaintext

vector µ, and let e , k be the corresponding vectors of “noisy plaintexts” and
Euclidean quotients:

c = b · e + m · k .

The first step of our attack is similar to [NS98,CNT10]: by applying lattice
reduction on the lattice of vectors orthogonal to c in Z

t, we can obtain a short
basis {u1, . . . ,u t−2} of the lattice orthogonal to L = Ze ⊕ Zk , and taking the
orthogonal again, we get a short basis {x ,y} of L. In particular, e = ux + vy
for some integers u, v. As a result, µ = e mod 2 is equal modulo 2 to one of 0,
x , y or x + y , and can thus be recovered with probability at least 1/4.

We stress that our attack differs from [NS98,CNT10] in at least two respects:
on the one hand, the modulus m is secret, which is the main reason why Trostle
and Parrish believed their scheme to be secure; and on the other hand, the

186 T. Lepoint and M. Tibouchi

vectors x ,y are actually too short to allow us to recover r and k (or the integers
u, v above) directly, due to an exponentially large search space. To the best of our
knowledge, this last point is an unheard of situation in the realm of orthogonal
lattice techniques so far, and makes this particular attack quite interesting from
a theoretical cryptanalytic viewpoint as well.

Outline. In Sect. 2, we recall Trostle and Parrish’s scheme, some of its applica-
tions to PIR and provide some background on orthogonal lattices. In Sect. 3, we
describe our attack against the scheme. And finally, we assess its practicality in
Sect. 4.

2 Preliminaries

For any integer n ∈ Z, we denote by [n] the set {1, . . . , n}. Vectors are denoted in
bold characters. For any vectors x ,y ∈ Z

t, ‖x‖ denotes the Euclidean norm of
x , [x]n = (xi mod n)i∈[t] denotes the componentwise reduction of the coefficients
of x modulo n, and 〈x ,y〉 denotes the scalar product of x and y .

2.1 Trostle and Parrish’s SHE Scheme

In this section, we present the secret-key encryption scheme of Trostle and
Parrish [TP10], a key ingredient of their PIR protocol.

Let λ be the security parameter, η the bit-length of the secret modulus m
and ρ the bit-length of the noise in a fresh ciphertext (both η and ρ are functions
of λ).

KeyGen(1λ). On input the security parameter λ, generate a η-bit secret modulus
m, and an odd secret random invertible mask b ∈ Zm. Output sk = {m, b}.

Encrypt(sk, μ ∈ {0, 1}). On input the secret key sk = {m, b} and a message μ,
sample r

u← [0, 2ρ−1) and output c = b · (2 · r + μ)mod m.
Decrypt(sk, c). On input the secret key sk = {m, b}, a ciphertext c, output μ =

(b−1 · cmod m)mod 2.

This scheme is (somewhat) additively homomorphic, i.e. can be used to com-
pute the sum of (a bounded number of) values only manipulating encrypted
values. More precisely consider two ciphertexts c1 = b · (2r1 + μ1)mod m and
c2 = b ·(2r2+μ2)mod m where r1 (resp. r2) is a ρ1-bit (resp. ρ2-bit) integer. One
can homomorphically add the ciphertexts: the ciphertext c1+c2 is an encryption
of μ1 + μ2 mod 2 under a (max(ρ1, ρ2) + 1)-bit noise. Note that the ciphertext
noise must remain smaller than m to maintain correctness.

Remark 1. In [TP10], the scheme is also described with message space ZN for
any N � 2. An encryption of μ ∈ ZN is an integer c such that c = b · (N ·
r + μ)mod m with r

u← [0, 2ρ/N), and we recover μ from c by μ = (b−1 ·
cmod m)mod N . We discuss extension of our attack to this setting in Sect. 3.3.

Cryptanalysis of a (Somewhat) Additively Homomorphic Encryption 187

2.2 Applications to PIR

Due to its simplicity and computational efficiency (the homomorphic addition
being a simple addition of integers), the TP scheme is used as building block
in several PIR protocols [TP10,GZL+13,MBC13,MBC14,EÖM14]. Below, we
briefly describe the original PIR protocol, and the protocols implemented by
Mayberry et al. [MBC13,MBC14]. In the following, assume a user want to recover
a file among t files of bitsize s from a server.

In their initial paper, Trostle and Parrish described the following protocol
(we present the variant in which a user wants to recover one row of a database
that is a square bit array). The database D is a t × s matrix of bits, and a user
send c = (c1, . . . , ct) to the server, where ci ← Encrypt(1) if the user requests
the i-th row of D and cj ← Encrypt(0) for j �= i. The server then multiplies the
j-th row by cj for all j, adds all the rows and sends the result to the user. Since
the TP scheme is additively homomorphic, the users recovers a vector c′ such
that c′

k encrypts the k-th coefficient of the i-th row of D.
In [MBC13], Mayberry et al. considered the TP scheme with plaintext space

ZN with N = 2�, and use the fact that if c ← Encrypt(1) and μ ∈ ZN , then μ · c
encrypts μ (this is a special property of the TP scheme – and could be obtained
from any somewhat homomorphic encryption scheme [Gen09] by “encrypting”
μ). The database D is a table of t× (s/�) �-bit integers. The rest of the protocol
is as above.

Finally, in [MBC14], Mayberry et al. combined the previous approach with
an Oblivious RAM protocol to obtain an ORAM-like protocol in which the com-
munication complexity is significantly improved compared to previous ORAM
protocols, at the cost of some computational complexity on the server side (com-
ing from the PIR protocol).1

Note that in all three protocols, a user seeking to recover the i-th row of the
database will send a vector of ciphertexts

c = (c1, . . . , ct) ,

where ci encrypts 1 and the cj ’s for j �= i encrypt 0. Without loss of generality
(see Remark 3 page 7), we assume that N = 2 and we describe an attack which
allows to recover the index of the queried row efficiently.

2.3 The Orthogonal Lattice

In this section, we recall some useful facts about the notion of orthogonal lattice
and LLL [NS97,NS01,LLL82].

Let t be an integer. For any vectors u , v ∈ Z
t, we say that u and v are

orthogonal if 〈u , v〉 = 0, and we denote it u⊥v . For any vector u ∈ Z
t, we

denote u⊥ the set of vectors in Z
t orthogonal to u . More generally, if L is a

1 The TP scheme was one possible building block of this protocol; therefore the latter
might still be secure when instantiated with a different homomorphic encryption
scheme.

188 T. Lepoint and M. Tibouchi

lattice in Z
t, its orthogonal lattice L⊥ is defined as the set of vectors in Z

t

orthogonal to the points in L, i.e.

L⊥ = {v ∈ Z
t | ∀u ∈ L, 〈u , v〉 = 0}.

We have the following theorems [NS97]:

Theorem 1. If L is a lattice in Z
t, then dim(L) + dim(L⊥) = t.

Theorem 2. There exists an algorithm which, given any basis {b1, . . . , bd} of
a lattice L in Z

t of dimension d, outputs an LLL-reduced basis of the orthogonal
lattice L⊥, and whose running time is polynomial with respect to t, d and any
upper bound on the bit-length of the ‖bj‖’s.
Most of the vectors of a reduced basis of L⊥ are quite shorts, with norm around
det(L⊥)1/(t−dim(L)). In practice, a very simple algorithm for Theorem 2 consists
in a single call to LLL [LLL82]; we refer the reader to [NS97] for details, and
will use that algorithm in Sect. 4.

3 Breaking the One-Wayness of the Scheme

In this section, we show that the scheme described in Sect. 2.1 is not one-way.

3.1 Overview

Let sk = {m, b} ← KeyGen(1λ) be a secret key, and c = (ci)i∈[t] ∈ Z
t be a vector

of ciphertexts such that ci ← Encrypt(sk, μi) where µ = (μi)i∈[t] ∈ {0, 1}t. We
can write, for each i ∈ [t]:

ci = b · (2ri + μi)mod m = b · ei + m · ki

with ei = 2ri + μi and ki the quotient in the Euclidean division of b · ei by m.
Thus, if we let e = (ei)i∈[t] and k = (ki)i∈[t] we have:

c = b · e + m · k . (1)

Now a rough sketch of the attack is as follows. Consider short vectors
u1, . . . ,u t−2 ∈ Z

t orthogonal to c. For all j ∈ [t − 2], we get that

0 = 〈uj , c〉 = b · 〈uj , e〉 + m · 〈uj , k〉 .

If the ‖uj‖’s are sufficiently short, the fact that e and k are also short yields:

〈uj , e〉 = 0 and 〈uj , k〉 = 0

for all j, and hence e and k belong to the orthogonal L⊥ of the lattice L spanned
by u1, . . . ,u t−2. Then, if {x ,y} is any basis of L⊥ (easy to find from the uj ’s),
there are only three possible non-zero linear combinations of x and y modulo 2
(namely x ,y and x +y), and we know that the vector of plaintexts µ = e mod 2
is either one of them or equal to 0. The encryption scheme is therefore not
one-way.

Cryptanalysis of a (Somewhat) Additively Homomorphic Encryption 189

3.2 Applying Orthogonal Lattice Techniques

The first steps of our attack resemble the attack of Nguyen and Stern [NS98]
against the Itoh-Okamoto-Mambo cryptosystem [IOM97], and similar attacks
such that the one of Coron et al. on EMV signatures [CNT10]. See also [NT12]
for a relevant theoretical discussion. In particular, a simple observation common
with those previous attacks is that a vector orthogonal to c is either large, or
orthogonal to both e and k .

Lemma 1. Let u ∈ Z
t. If u⊥c, then (u⊥e and u⊥k), or ‖u‖ � m/(t1/2 ·2ρ+1).

Proof. Let u ∈ Z
t such that ‖u‖ < m/(t1/2 · 2ρ+1) and u⊥c. We have that

|〈u , e〉| � ‖u‖ · ‖e‖ < m. Now,

0 = 〈u , c〉 = b · 〈u , e〉 + m · 〈u , k〉,
and since gcd(b,m) = 1, this yields that 〈u , e〉 = 0, and then that 〈u , k〉 = 0. ��

From Theorem 2, it is possible to compute a reduced basis {u1, . . . ,u t−1} of
c⊥ ⊂ Z

t of vectors orthogonal to c in Z
t. From Lemma 1, we get that for all

j ∈ [t − 1], there are two possibilities:

(1) uj⊥e and uj⊥k , in which case uj belongs to the lattice {e , k}⊥ of vectors
in Z

t orthogonal to both e and k ;
(2) ‖uj‖ � m/(t1/2 · 2ρ+1).

Since e and k are linearly independent, the first possibility cannot hold for all
j ∈ [t − 1] (for reasons of dimensions) and the largest uj , say u t−1, must satisfy
‖u t−1‖ � m/(t·2ρ+1). Now the other vectors form a lattice L = Zu1⊕· · ·⊕Zu t−2

of rank t − 2 and of volume

V = vol(L) ≈ vol(c⊥)
‖u t−1‖ =

‖c‖
‖u t−1‖ � t · 2ρ+1,

which can heuristically be expected to behave like a random lattice. In particular,
assuming the Gaussian heuristic, we should have

‖uj‖ = O(
√

t − 2 · V 1/(t−2)) = O(t1/2 · V 1/(t−2)) for j ∈ [t − 2].

Thus, the condition for u1, . . . ,u t−2 all being orthogonal to e , k becomes:
(
t · 2ρ+1

)1+ 1
t−2 � m.

Taking logarithms and ignoring logarithmic factors, this means:

t � 2 +
ρ + 1

η − ρ − 1
=

2 − α

1 − α
where α =

ρ + 1
η

. (2)

Assuming this condition (2) is satisfied, the vectors e and k belong to L⊥. Denote
{x ,y} an arbitrary basis of that lattice. Since e ∈ L⊥, there exist integers
u, v ∈ Z such that e = ux + vy . This yields

µ = [e]2 ∈ {0, [x]2, [y]2, [x + y]2} ,

which breaks the one-wayness of the scheme (and in applications to e.g. PIR, the
case µ = 0 is excluded, so we really find µ as one of three possible bit vectors).

190 T. Lepoint and M. Tibouchi

Remark 2. It is interesting to note that we can find a (short) basis such that

‖x‖, ‖y‖ = O(
√

2 · V 1/2) = O(t1/2 · 2ρ/2) .

Quite surprisingly these vectors x ,y (of the “doubly orthogonal” lattice) are
actually too short to provide a direct break, in the sense that the coefficients
(u, v) of e in the basis {x ,y} of L⊥ are actually exponentially large (of ≈ ρ/2
bits), so that we cannot hope to recover the vector e itself from this data.

In fact, e and k are in some sense hidden, since for any pair (u′, v′) of
coprime integers of the same size as (u, v), we can complete the “fake” vector
e ′ = u′x +v′y into a basis {e ′, k ′} of L⊥ of the correct size, and deduce a “fake”
secret key (m′, b′) also of the correct size such that c = b′ · e ′ + m′ · k ′. This
is, to the best of our knowledge, an unheard of situation for orthogonal lattice
attacks!

But again, our attack does not need to recover e completely to break the
one-wayness of the scheme. Since the scheme encrypts bits, we only need to
recover [e]2, and that is easy.

3.3 Larger Message Space

As mentioned in Remark 1, instead of Z2, the message space could be ZN for
N � 2. Let N0 be the smallest prime factor of N (if N is prime, N0 = N).

Using the notation of previous section, our attack recovers a basis {x ,y} of
L⊥. Since e ∈ L⊥, there exists u, v ∈ Z such that e = ux + vy . Now there are
at most N2 pairs (u mod N, v mod N). Therefore, we can recover the plaintext
by a random guess with probability at least N−2, and the scheme is therefore
not one-way provided that N = poly(λ).

Similarly, if N0 = poly(λ), the same attack shows that the scheme is not
IND-CPA-secure, because for every component μi of µ divisible by N0, the
corresponding components xi, yi of x ,y are both divisible by N0 with significant
probability 1/N2

0 , whereas this cannot happen if μi is not divisible by N0.
Finally, for a superpolynomial choice of N0, our attack allows to recover

small messages µ. Denote e = N · r + µ. If the ‖uj‖’s and ‖µ‖ are sufficiently
small (e.g. such that 〈uj ,µ〉 < N for all j), then uj ⊥ e yields uj ⊥ r and
uj ⊥ µ for all j. Therefore µ is likely to be the shortest vector of L⊥ and can
be efficiently recovered by lattice reduction. Our attack seems only ineffective
against a superpolynomial choice of N0 when encrypting large messages.

Remark 3. In the PIR protocols of [MBC13,MBC14], the message space is cho-
sen to be N = 2� for � � 1. From the discussion above, it follows that one can
recover the queried index file to the server.2

4 Implementation of the Attack

Since the attack is heuristic, one needs to assess its behavior in practice. We
implemented the attack described in Sect. 3 using SAGE [S+14].
2 Note that taking selecting N as a superpolynomial prime does not thwart the attack

since the users sends encryption of bits.

Cryptanalysis of a (Somewhat) Additively Homomorphic Encryption 191

4.1 Attack Summary

Assume that, for t bits μ1, . . . , μt, we know the ciphertexts c1, . . . , ct. Then we
can heuristically recover µ = (μi)i∈[t] as follows.

(1) Define c = (c1, . . . , ct) ∈ Z
t.

(2) Compute an LLL-reduced [LLL82] basis {u1, . . . ,u t−1} of the lattice c⊥ ⊂ Z
t

of vectors in Z
t orthogonal to c. This is done by applying LLL to the lattice

in Z
1+t generated by the rows of the following matrix:

⎛
⎜⎝

γ · c1 1 0
...

. . .
γ · ct 0 1

⎞
⎟⎠ ,

where γ is a large constant, and keeping only the t last coefficients of each
resulting vector.

(3) Compute an LLL-reduced basis {x ,y} of the orthogonal L⊥ to the lattice
L = Zu1 ⊕ · · · ⊕ Zu t−2 ⊂ Z

t of rank t − 2. Again, this amounts at applying
LLL to the lattice in Z

t−2+t generated by the rows of
⎛
⎜⎝

γ′ · u1,1 · · · γ′ · ut−2,1 1 0
...

...
. . .

γ′ · u1,t · · · γ′ · ut−2,t 0 1

⎞
⎟⎠ ,

where γ′ is a large constant, and keeping only the t last coefficients of each
resulting vector.

(4) Output 0, [x]2, [y]2 and [x + y]2.

Heuristically, this attack allows us to guess µ with probability at least 1/4.
Moreover, if we know t − 1 coefficients of µ and have to guess the last one (as
in a security game, or in PIR protocols where only one bit is 1), the previous
method is likely for large enough t’s to make us guess it with probability 1.

4.2 Experimental Results

We ran our attack against the parameters suggested by Trostle and Parrish
[TP10] and the parameters used in the proof-of-concept implementations in Java
of Mayberry et al. [MBC13,MBC14] – we give these parameters in Table 1.

Table 2a gives the success probability of our attack in function of the parame-
ters and the number of ciphertext t used. As expected when (log2 m−ρ) becomes
small, one will need more ciphertexts for the attack to be successful. Finally, our
attack proves to be really efficient against parameters of Table 1, i.e. parameters
used in “real world” implementations of PIR protocols [TP10,MBC13,MBC14] –
cf. Table 2b.

192 T. Lepoint and M. Tibouchi

Table 1. Parameters sets.

Set of parameters log2(m) ρ

Set-Ia [TP10] 200 188

Set-Ib [TP10] 400 385

Set-IIa [MBC13] 4513 4113

Set-IIb [MBC13] 2195 1155

Set-IIIa [MBC14] 522 384

Set-IIIb [MBC14] 396 296

Table 2. Attack success probability and efficiency for each parameter set, in function
of the number t of ciphertexts used for the attack (average value over 500 experiments
on a single 3.4Ghz Intel Core i7 CPU).

References

[BPMÖ12] Blass, E.-O., Di Pietro, R., Molva, R., Önen, M.: PRISM – privacy-
preserving search in mapreduce. In: Fischer-Hübner, S., Wright, M. (eds.)
PETS 2012. LNCS, vol. 7384, pp. 180–200. Springer, Heidelberg (2012)

[CKGS98] Chor, B., Kushilevitz, E., Goldreich, O., Sudan, M.: Private information
retrieval. J. ACM 45(6), 965–981 (1998)

[CNT10] Coron, J.-S., Naccache, D., Tibouchi, M.: Fault attacks against emv signa-
tures. In: Pieprzyk, J. (ed.) CT-RSA 2010. LNCS, vol. 5985, pp. 208–220.
Springer, Heidelberg (2010)

[DSH14] Doröz, Y., Sunar, B., Hammouri, G.: Bandwidth efficient PIR from NTRU.
In: Böhme, R., Brenner, M., Moore, T., Smith, M. (eds.) FC 2014 Work-
shops. LNCS, vol. 8438, pp. 195–207. Springer, Heidelberg (2014)

[EÖM14] Elkhiyaoui, K., Önen, M., Molva, R.: Privacy preserving delegated word
search in the cloud. In: Obaidat, M.S., Holzinger, A., Samarati, P. (eds.)
SECRYPT 2014, pp. 137–150. SciTePress (2014)

[Gen09] Gentry, C.: Fully homomorphic encryption using ideal lattices. In:
Mitzenmacher, M. (ed.) STOC 2009, pp. 169–178. ACM (2009)

[GZL+13] Gao, Z., Zhu, H., Liu, Y., Li, M., Cao, Z.: Location privacy in database-
driven cognitive radio networks: attacks and countermeasures. In: INFO-
COM 2013, pp. 2751–2759. IEEE (2013)

[IOM97] Itoh, K., Okamoto, E., Mambo, M.: Proposal of a fast public key cryp-
tosystem. In: Adams, C., Just, M. (eds.) SAC 1997, pp. 224–230 (1997)

Cryptanalysis of a (Somewhat) Additively Homomorphic Encryption 193

[KO97] Kushilevitz, E., Ostrovsky, R.: Replication is NOT needed: SINGLE data-
base, computationally-private information retrieval. In: FOCS 1997, pp.
364–373. IEEE Computer Society (1997)

[LLL82] Lenstra, A.K., Lenstra Jr., H.W., Lovász, L.: Factoring polynomials with
rational coefficients. Math. Ann. 261(4), 515–534 (1982)

[MBC13] Mayberry, T., Blass, E.-O., Chan, A.H.: PIRMAP: efficient private infor-
mation retrieval for mapreduce. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS,
vol. 7859, pp. 371–385. Springer, Heidelberg (2013)

[MBC14] Mayberry, T., Blass, E.-O., Chan, A.H.: Efficient private file retrieval by
combining ORAM and PIR. In: NDSS 2014 (2014)

[NS97] Nguyen, P.Q., Stern, J.: Merkle-hellman revisited: a cryptanalysis of
the Qu-vanstone cryptosystem based on group factorizations. In: Kaliski
Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 198–212. Springer,
Heidelberg (1997)

[NS98] Nguyen, P.Q., Stern, J.: Cryptanalysis of a fast public key cryptosystem
presented at SAC 1997. In: Tavares, S., Meijer, H. (eds.) SAC 1998. LNCS,
vol. 1556, p. 213. Springer, Heidelberg (1999)

[NS01] Nguyen, P.Q., Stern, J.: The two faces of lattices in cryptology. In:
Silverman, J.H. (ed.) CaLC 2001. LNCS, vol. 2146, pp. 146–180. Springer,
Heidelberg (2001)

[NT12] Nguyen, P.Q., Tibouchi, M.: Lattice-based fault attacks on signatures. In:
Joye, M., Tunstall, M. (eds.) Fault Analysis in Cryptography. Information
Security and Cryptography, pp. 201–220. Springer (2012)

[S+14] Stein, W.A., et al.: Sage Mathematics Software (Version 6.2). The Sage
Development Team (2014). http://www.sagemath.org

[TP10] Trostle, J., Parrish, A.: Efficient computationally private information
retrieval from anonymity or trapdoor groups. In: Burmester, M., Tsudik,
G., Magliveras, S., Ilić, I. (eds.) ISC 2010. LNCS, vol. 6531, pp. 114–128.
Springer, Heidelberg (2011)

http://www.sagemath.org

Homomorphic Computation of Edit Distance

Jung Hee Cheon1(B), Miran Kim1, and Kristin Lauter2

1 Seoul National University (SNU), Seoul, Republic of Korea
{jhcheon,alfks500}@snu.ac.kr

2 Microsoft Research, Redmond, WA, USA
klauter@microsoft.com

Abstract. These days genomic sequence analysis provides a key way
of understanding the biology of an organism. However, since these
sequences contain much private information, it can be very dangerous to
reveal any part of them. It is desirable to protect this sensitive informa-
tion when performing sequence analysis in public. As a first step in this
direction, we present a method to perform the edit distance algorithm
on encrypted data to obtain an encrypted result. In our approach, the
genomic data owner provides only the encrypted sequence, and the public
commercial cloud can perform the sequence analysis without decryption.
The result can be decrypted only by the data owner or designated rep-
resentative holding the decryption key.

In this paper, we describe how to calculate edit distance on encrypted
data with a somewhat homomorphic encryption scheme and analyze its
performance. More precisely, given two encrypted sequences of lengths
n and m, we show that a somewhat homomorphic scheme of depth
O((n + m) log log(n + m)) can evaluate the edit distance algorithm in
O(nm log(n+m)) homomorphic computations. In the case of n = m, the
depth can be brought down to O(n) using our optimization technique.
Finally, we present the estimated performance of the edit distance algo-
rithm and verify it by implementing it for short DNA sequences.

Keywords: Edit distance · Homomorphic encryption · Arithmetic
circuit

1 Introduction

In bioinformatics, the term “Sequence Analysis” refers to the process of arrang-
ing DNA, RNA, or peptide sequences to understand their structures and fea-
tures. Relationships between sequences are usually discovered by aligning them
appropriately and identifying the most closely matching subsequences. In this
paper, we focus on the well-known edit distance algorithm [25], which measures
the dissimilarity of two strings. Calculating the edit distance between public
reference strings and patients’ DNA sequences can be used to solve the prob-
lem of approximate string matching. In practice, there are deployed services to
compare DNA sequences. For example, the European Bioinformatics Institute

c© International Financial Cryptography Association 2015
M. Brenner et al. (Eds.): FC 2015 Workshops, LNCS 8976, pp. 194–212, 2015.
DOI: 10.1007/978-3-662-48051-9 15

Homomorphic Computation of Edit Distance 195

(EBI) website [6] provides “Bic-SW Database Searches” where one can apply a
sequence analysis algorithm to any two DNA sequences (e.g., Smith-Waterman
algorithm).

Privacy Threats from Exposing Genomic Data. There are many projects
to collect DNA information from participants in order to discover genomic
sequences associated with disease susceptibility. The Personal Genome Project
displays genotypic and phenotypic information in a public database [21] and the
HapMap Project has developed a public repository of genome sequences [12],
which means that genomic data has become publicly accessible. However, even
anonymized genomic data can leak significant information about the participants
(see for example [7,9,23]). In fact, in 2012, an artist created portrait sculptures
from analyses of genetic material collected in public places [24]. From some sam-
ples, he could infer physical characteristics of strangers such as the gender, eye
color, nose size and so on. Secondly, even if DNA sequences are not associated
with explicit identifiers such as name, sex, date of birth, or address, one can
recover such personal data using re-identification methods: genotype-phenotype
inference [19], location-visit patterns [20], family structure [10], and dictionary
attacks. Thus, DNA sequences are sensitive and valuable enough that we should
not reveal our own sequences even when performing sequence analysis.

Privacy through Encryption. In this work, we consider the potential for
using homomorphic encryption to protect privacy in genomic computations.
Compared with MPC protocols based on recent optimizations of garbled cir-
cuit techniques [11,14], homomorphic encryption is often considered to be slower
and less efficient. But homomorphic encryption has a number of other advan-
tages, allowing for more flexible scenarios and functionality and requiring less
interaction, thereby reducing communication complexity. Typically no interac-
tion is required for applications of (single-key) homomorphic encryption. Also,
homomorphic encryption schemes have become more practical recently, due to
a number of improvements, including techniques which avoid the costly boot-
strapping procedure for fixed computations, such as using leveled or somewhat
homomorphic encryption (SWHE) schemes.

Fig. 1. Scenario of proposed system

Scenarios. Homomorphic encryption allows
the data owner to upload encrypted data to
a cloud service. The cloud service can oper-
ate on the encrypted data without requir-
ing the decryption key or any interaction
with the data owner. The service returns
the encrypted results to the data owner,
who can decrypt using the secret key. A
cloud provider could thus provide Direct-
to-patient services in encrypted form, such
as the service mentioned above provided by
EBI (Fig. 1).

196 J.H. Cheon et al.

As an extension to the scenario, additional functionality can be achieved
using public key homomorphic encryption schemes by allowing third parties to
upload data directly to the cloud service, encrypted using the public key of the
data owner. This scenario could be of interest in situations relevant to genomic
computation: for example the data owner is a hospital or clinic, and the third
parties are patients or other healthcare providers for those patients. The hospital
would like to use the cloud service for analyzing lots of patients. Auxiliary data
(from tests, genome sequencing, etc.) can be uploaded to the service using the
public key of the hospital. Computations on the encrypted data, such as com-
paring DNA sequences, output encrypted results which can be decrypted by the
hospital or clinic. The secrecy of DNA sequences in the cloud can be protected
under the semantic security of homomorphic encryption scheme.

Our Contributions. In this paper, we first describe the homomorphic eval-
uation of the edit distance algorithm which was suggested by Wagner and
Fischer [25]. We show that the algorithm can be implemented on two encrypted
sequences of lengths n and m with a somewhat homomorphic scheme of depth
O((n + m) log(log(n + m))) in O(nm log(n + m)) homomorphic computations.
Moreover, we introduce an optimization technique to reduce the depth required
to implement the algorithm: Divide the edit distance matrix into sub-blocks of
size-(τ + 1) and solve the edit distance problem in each block. We can compute
each of them diagonally, consuming O(τ) levels in one diagonal-round. Namely,
evaluating the circuits in each cell can be processed by a somewhat homomorphic
encryption of a constant depth. In particular, in the case of n = m, it suffices to
compute only a little part of the sub-blocks, so the depth can be brought down
to O(n).

Finally, we estimate the running time of the proposed algorithm for a large
n and verify it by implementing it for short DNA sequences. For two encrypted
DNA sequences of length 50, we expect that the algorithm would run in one day
when estimated based on the recent CCK+ scheme [4]. We also demonstrate the
experimental result that it takes about 27.5 sec. for n = m = 8 using the GHS
scheme [8].

Related Works. Since Wagner and Fischer [25] introduced the problem of
determining the edit distance between two strings and presented an algorithm for
calculating the distance, there have been a number of approaches for private com-
putation of the distance. In 2003, Atallah et al. [1] proposed a privacy-preserving
protocol using an additive homomorphic encryption scheme and oblivious trans-
fers, which had expensive computational and communication costs. Given two
strings of lengths n and m, the number of iterations is equal to nm and the
total online computational cost is O(nm log(n+m)). In 2008, Jha et al. [14] pre-
sented a more practical privacy-preserving protocol to compute the edit distance
with Yao’s “garbled circuits” method [18,26], and it was improved by Huang
et al. [11]. Their computation cost is tractable, but their protocol requires a lot
of interactions (e.g., O(nm log(n+m)) oblivious transfers for Protocol 2 in [14]).

Homomorphic Computation of Edit Distance 197

On the other hand, there is prior art on analyzing genomic data using
homomorphic encryption. Some of the work is based on additively homomor-
phic encryption schemes: Kantarcioglu et al. [15], Kolesnikov et al. [16], and
Ayday et al. [2]. In [15], they presented a novel cryptographic framework that
allows organizations to support data mining without violating the privacy of
the genomic sequences, and in particular they used the Paillier cryptosystem
for experimental analysis. The garbled circuit protocols of [16] were given for
secure computation of the minimum distance (Hamming distance and Euclidean
distance). In [2], they proposed a “privacy-preserving disease susceptibility test”
on encrypted genomic data using a modified Paillier cryptosystem. Meanwhile,
Cristofaro et al. [5] presented an efficient and secure protocol called “Size- and
position-hiding private substring matching” based on a multiplicative homomor-
phic ElGamal variant so as to check for the presence of DNA markers. Finally,
Yasuda et al. [27] gave a practical solution for computation of multiple Ham-
ming distance values using the LNV scheme [17], so that they could find the
locations where a pattern occurs in a text. By contrast, the aim of this paper is
to compute edit distance on encrypted sequences under somewhat homomorphic
encryption schemes (which support additions and a limited number of multipli-
cations of encrypted inputs). Besides DNA sequence analysis, edit distance has
many other applications such as spelling correction or determining the longest
common subsequences of two strings.

Outline. In Sect. 2, we review the main concept of homomorphic encryption and
explain the edit distance algorithm. Section 3 presents the basic circuit building
blocks for equality, comparison, and addition. Next, in Sect. 4, we describe our
encrypted edit distance algorithm using these primitive circuits and give the
analysis of our method. We also introduce optimizations to reduce the depth of
implementing the algorithm. Finally, in Sect. 5, we estimate the performance of
the proposed algorithm for large DNA sequences and present the real perfor-
mance for our implementation of the algorithm for short sequences.

2 Preliminaries

In this section, we briefly review the concept of homomorphic encryption and
describe the edit distance algorithm which is a measure to quantify the dissimi-
larity of two strings.

2.1 Homomorphic Encryption

We will encrypt bit-by-bit in this paper, so consider the concept of homomor-
phic encryption in this respect. For x ∈ {0, 1}, we denote the encryption of x
by x̄ or Enc(x). Let ⊕ and ∧ be the XOR and AND gate, each of which corre-
sponds to addition and multiplication over Z2, respectively. Also, we let + and ×

198 J.H. Cheon et al.

denote homomorphic addition and multiplication over encrypted data. Then a
homomorphic encryption Enc(-) satisfies the following properties:

Enc(x ⊕ y) = Enc(x) + Enc(y), Enc(x ∧ y) = Enc(x) × Enc(y).

In our paper, we focus on SWHE schemes for which additions are essentially
free and a limited number of multiplications are supported. In particular, SWHE
schemes [3,8] use a practical noise-management technique-modulus switching,
which scales down the ciphertext after every multiplication to reduce the noise
by its scaling factor. When we say the (multiplicative) depth D(C) of a circuit
C under homomorphic encryption, it means the total number of reduced levels
in the circuit that is being evaluated homomorphically.

2.2 Edit Distance

Assume that there are two strings α = α1 . . . αn and β = β1 . . . βm over an
alphabet Σ. One can make another string with the same length by inserting
spaces “−”, called gaps, and consider a matrix having two rows with these new
strings. A gap in the first (resp. second) row is called Insertion (resp. Deletion).
A column with the same (resp. distinct) characters is called Match (resp.
Mismatch). Then the edit distance between two strings is the minimum num-
ber of these edit operations needed to transform one string into the other. More
specifically, for two characters αi and βj , let us define ti,j as follows:

ti,j =

{
0 if αi = βj (Match),
1 if αi �= βj (Mismatch).

In Algorithm 1, we describe the Wagner-Fischer edit distance algorithm [25],
and the edit distance is simply Dn,m.

Homomorphic Computation of Edit Distance 199

3 Circuit Building Blocks

In this section, we present the basic circuit building blocks for computing the
edit distance: equality circuit (for checking the equality of two numbers so as to
determine match/mismatch of two characters), comparison circuit, and addition
circuits. Since it may assume that we can evaluate homomorphic additions for
free, it suffices to count the number of multiplication gates sequentially in order
to compute the depth of a homomorphic encryption scheme. Thus, we focus on
minimizing the number of sequential multiplication gates for circuits so that we
can implement them efficiently.

For a circuit C, we denote the number of homomorphic additions and multi-
plications by HA(C) and HM(C). Note that addition with a constant is faster
than a classical homomorphic addition, so those are not counted in the number
of the homomorphic additions. In Tables 1, 2, and 4, the depth of homomorphic
encryption is cumulative while the number of homomorphic computations is not
cumulative.

We will express an unsigned μ-bit integer in its binary representation xμ . . . x1

and denote the i-th coordinate of x by xi (or x[i]). Then the encryption of x
means {x̄1, x̄2, . . . , x̄μ}.

3.1 Equality Circuit

A binary circuit for checking the equality of two μ-bit values is defined to have
value 1 if the inputs are the same and 0 otherwise. Then it can be written as
an arithmetic circuit EQU(x, y) = ∧μ

i=1 (1 ⊕ xi ⊕ yi). Using a binary tree, we give
the required depth and complexity in Table 3 where log is the binary logarithm.

3.2 Comparison Circuit

For two unsigned μ-bit values x and y, the comparison circuit is defined by

COM(x, y) =

{
0 if x ≥ y,

1 otherwise,

and this is written recursively as COM(x, y) := cμ where ci = ((xi ⊕ 1) ∧ yi) ⊕
((xi ⊕ 1 ⊕ yi) ∧ ci−1) for i ≥ 2 with an initial value c1 = (x1 ⊕ 1) ∧ y1. In
Table 1, we provide a pseudocode description of this circuit together with an
approximation of the levels that it consumes during these operations. Unlike
the other steps, the fourth cannot be computed simultaneously for each i, so
it consumes linear levels and we have D(COM) = μ. On the other hand, the
comparison circuit can be evaluated homomorphically with a logarithmic depth,
which is formally captured in Lemma1 below.

Lemma 1. The Comparison circuit of Table 2 can be evaluated homomor-
phically on two μ-bits with a somewhat homomorphic encryption of depth
log(μ − 1) + 1 in O(μ log μ) homomorphic computations.

200 J.H. Cheon et al.

Table 1. Pseudocode of COM between two μ-bit values and its complexity

Comparison circuit Depth of
hom. enc.

HA HM

Input: fresh ciphertexts x̄i, ȳj 0

1. compute x̄i + 1 for i = 1, . . . , μ 0 − −
2. x̄i1 ← (x̄i + 1) + ȳi for i = 2, . . . , μ 0 μ − 1 −
3. x̄i2 ← (x̄i + 1) × ȳi for i = 1, . . . , μ (in particular,

let c̄1 ← x̄12)
1 − μ

4. c̄i ← x̄i1 + x̄i2 × c̄i−1 for i = 2, . . . , μ μ μ − 1 μ − 1

Total μ 2μ − 2 2μ − 1

Proof. We consider the comparison circuit as the following expression:

COM(x, y) = d1 ⊕ d2 ⊕ . . . ⊕ dμ

where di = (xi ⊕ 1) ∧ yi ∧ (∧μ
j=i+1(xj ⊕ 1 ⊕ yj)). From now, the following argu-

ments are underlying ciphertexts for the above circuit. For simplicity, we denote
zi := (x̄i + 1) + ȳi for i = 2, . . . , μ, and HMi the number of homomorphic
multiplications to evaluate

∏μ
j=i+1 zj for i = 1, . . . , μ − 2.

We first construct a binary tree of product with {z2, . . . , zμ}. Then the total
number of multiplications to proceed recursively with each of the two nodes is

1 + 2 + 4 + · · · +
μ − 1

2
≈ μ − 2,

and it needs log(μ − 1) levels. We observe that
∏μ

j=i+1 zj has been computed if
the number to be multiplied by is in the form of powers of 2 or μ − 1.

Now, we consider the case of i ∈ {1, 2, · · · , μ − 2} with μ − i �= 21, 22, · · · ,
2� log(μ−1)�, μ − 1. It is true that μ − i is uniquely written as 2ki1 + 2ki2 +
· · · + 2kil where kij

’s are increasing nonnegative numbers. Denote μir
:= μ−(

2kil + 2kil−1 + · · · + 2kir+1 + 2kir

)
for 1 ≤ r ≤ l and μil+1 = μ, then we have

μ∏
j=i+1

zj =
l∏

r=1

(zμir+1zμir+2 · · · zμir+1
).

Since all zμir+1zμir+2 · · · zμir+1
’s have been computed as above, what we have

to do is just to multiply them each other, which requires log l levels and (l − 1)
homomorphic multiplications. From these observations, we see that

∑
2t−1<u−i<2t

HMi =
t−1∑
l=1

l ·
(

t − 1
l

)
= (t − 1) · 2t−2

Homomorphic Computation of Edit Distance 201

for t ∈ {2, 3, . . . , 	 log(μ − 1)
}. So we have

μ−2∑
i=1

HMi =
∑

u−i=21,22,...,μ−1

HMi +
∑

t=2,3,...,� log(μ−1)�

⎛
⎝ ∑

2t−1<u−i<2t

HMi

⎞
⎠

≈ (μ − 2) +
∑

t=2,3,...,� log(μ−1)�
(t − 1) · 2t−2

=
(μ − 1) log(μ − 1)

2
− 2.

Therefore, as described in Table 2, evaluating the COM circuit can be accomplished
using

μ +
(

(μ − 1) log(μ − 1)
2

− 2
)

+ (μ − 1) = 2μ − 3 +
(μ − 1) log(μ − 1)

2

homomorphic multiplications with a SWHE scheme of depth log(μ − 1) + 1. ��
In the following, we show that the comparison circuit leads to the minimal
circuits.

Table 2. Pseudocode of COM between two μ-bit values and its complexity

Comparison circuit Depth of hom. enc. HA HM

Input: fresh ciphertexts
x̄i, ȳj

0

1. compute x̄i + 1 for
1 ≤ i ≤ μ

0 − −

2. d̄i ← (x̄i + 1) × ȳi for
1 ≤ i ≤ μ

1 − μ

3. zi ← (x̄i + 1) + ȳi for
2 ≤ i ≤ μ

0 μ − 1 −

4.
∏µ

j=i+1 zj for
1 ≤ i ≤ μ − 2

log(μ − 1) − (µ−1) log(µ−1)
2

− 2

5. d̄i ← d̄i ×∏µ
j=i+1 zj for

1 ≤ i ≤ μ − 1
log(μ − 1) + 1 − μ − 1

6. COM(x, y) ← d̄1+· · ·+d̄µ − μ − 1 −

Total log(μ − 1) + 1 2μ − 2 2μ − 3 + (µ−1) log(µ−1)
2

Lemma 2. Given two μ-bit values x = xμ . . . x1 and y = yμ . . . y1, then z =
zμ . . . z1 is the minimum value of x and y where

zi = (COM(x, y) ∧ xi) ⊕ (1 ⊕ COM(x, y) ∧ yi) .

202 J.H. Cheon et al.

Proof. Let us denote a multiplication over integers by “·”. Then it is true that

min{x, y} = COM(x, y) · x + (1 ⊕ COM(x, y)) · y

= COM(x, y) ·
(μ∑

i=1

xi · 2i−1
)

+ (1 ⊕ COM(x, y)) ·
(μ∑

i=1

yi · 2i−1
)

=
μ∑

i=1

(
(COM(x, y) · xi) + ((1 ⊕ COM(x, y)) · yi)

) · 2i−1,

where the inputs x and y can be written as binary representations in the second
line. Since “COM(x, y) · xi” and “(1 ⊕ COM(x, y)) · yi” cannot simultaneously be
“1”, the lemma follows. ��
From Lemma 2, we define minimum circuits MIN2 = (MIN21, . . . , MIN

2
μ) by

MIN2i = (COM(x, y) ∧ xi) ⊕ ((1 ⊕ COM(x, y)) ∧ yi) .

Then one can evaluate these circuits homomorphically with a SWHE scheme of
depth (log(μ−1)+2). We also obtain a natural generalization of computing the
minimum value between many numbers: apply repeatedly the minimum circuits.
Then this naive method has D(MIN2) = (log(μ − 1) + 2) · (log k).

On the other hand, we consider another way to compute the minimum value
which requires circuits of lesser depth: Given μ-bit values x1, . . . , xk, we define
MINk = (MINk

1 , . . . , MIN
k
μ) by MINk

i =
⊕k

j=1

(
cj ∧ xj

i

)
where

cj =

⎧
⎪⎪⎨

⎪⎪⎩

COM(x1, x2) ∧ · · · ∧ COM(x1, xk) if j = 1,
(
1 ⊕ COM(x1, xj)

)
∧ · · · ∧

(
1 ⊕ COM(xj−1, xj)

)
∧ COM(xj , xj+1) ∧ · · · ∧ COM(xj , xk) if 2 ≤ j < k,

(
1 ⊕ COM(x1, xk)

)
∧ · · · ∧

(
1 ⊕ COM(xk−1, xk)

)
if j = k.

It is easy to show that this method has

D(MINk) = log(μ − 1) + log(k − 1) + 2,

HM(MINk) =
(

2μ − 3 +
(μ − 1) log(μ − 1)

2

)
(k − 1)(k − 2)

2
+ k (k − 2 + μ) .

3.3 Addition Circuits

For two unsigned μ-bit values x and y, we assume that their sum over the integers
is less than 2μ, say s1 + · · · + sμ · 2μ−1. Then the standard method to add them
is the Ripple-carry adder such that ADD(x, y) is defined by (s1, . . . , sμ) satisfying

si =

{
x1 ⊕ y1 if i = 1,

xi ⊕ yi ⊕ ei−1 otherwise,
ei =

{
x1 ∧ y1 if i = 1,

(xi ∧ yi) ⊕ ((xi ⊕ yi) ∧ ei−1) otherwise.

From now, the k-th value sk of the sum is denoted by ADD(x, y)[k]. Table 3
reports the required depth and its complexity analysis.

Homomorphic Computation of Edit Distance 203

Table 3. Complexity of primitive circuits between two μ-bit values

Circuit Depth of hom. enc. HA HM

EQU log μ μ μ − 1

COM log(μ − 1) + 1 2μ − 2 2μ − 3 + (µ−1) log(µ−1)
2

ADD μ − 1 3μ − 3 2μ − 3

4 Encrypted Edit Distance Algorithm

We now describe how to execute the homomorphic computation of the edit
distance algorithm with regards to the primitive circuits and analyze the perfor-
mance of our encrypted edit distance algorithm.

Let |Σ| be the size of a alphabet and denote ω = log |Σ|�. As mentioned
before, let α and β be two strings over ω-bit alphabet. Then each character of
the strings can be seen as an ω-bit value. Suppose that each of them is given
encrypted bit-by-bit through a homomorphic encryption.

4.1 Encrypted Edit Distance Algorithm

Since all the values Di,j ’s are less than n + m − 1, we may assume that
they are log(n + m − 1)�-bits, say μ. Suppose that we have computed
Di−1,j−1,Di,j−1,Di−1,j , and ω-bit characters αi and βj . From the fact that
ti,j = EQU(αi, βj) ⊕ 1, we know

(Di−1,j−1 + ti,j)[k] = ((ti,j ⊕ 1) ∧ Di−1,j−1[k]) ⊕ (ti,j ∧ ADD(Di−1,j−1, 1)[k])

= (EQU(αi, βj) ∧ Di−1,j−1[k]) ⊕ ((EQU(αi, βj) ⊕ 1) ∧ ADD(Di−1,j−1, 1)[k])

for 1 ≤ k ≤ μ and

ADD(Di−1,j−1, 1)[k] =

{
Di−1,j−1[1] ⊕ 1 if k = 1,

Di−1,j−1[k] ⊕ (∧k−1
l=1 Di−1,j−1[l]

)
if 2 ≤ k ≤ μ.

In the same way as in Sect. 3.2, ADD(Di−1,j−1, 1) can be implemented with a

SWHE scheme of depth log(μ − 1) in μ additions and
(

(μ−1) log(μ−1)
2 − 2

)
mul-

tiplications since we only need to compute
∏k−1

l=1 Enc(Di−1,j−1[l]). From these
observations, Di,j = min{Di−1,j−1 + ti,j ,Di,j−1 + 1,Di−1,j + 1} can be writ-
ten as arithmetic circuits using the above circuits. Hence, given ciphertexts
Enc(Di−1,j−1), Enc(Di,j−1), Enc(Di−1,j), Enc(αi), and Enc(βj), one can apply
these operations so as to compute the encryption of Di,j . Continuing this way,
we obtain the encrypted edit distance Enc(Dn,m).

204 J.H. Cheon et al.

Table 4. Pseudocode of computing the encrypted value Di,j and its complexity (μ =
log(n + m − 1))

4.2 Performance Analysis of Encrypted Edit Distance Algorithm

In Table 4, we describe a pseudocode for obtaining the encrypted value Di,j , and
provide an approximation of the levels and computational complexity during
homomorphic operations. By the building block algorithms of COM (in Lemma 1)
and ADD (in Sect. 4.1), the one diagonal-round circuits have

D = 2 log(μ−1)+4, HA = 15μ+ω−6, HM = 3(μ−1) log(μ−1)+11μ+ω−13.

It is possible to compute Di,j ’s simultaneously when i + j is a fixed value from
1, 2, ..., (n+m−1), so we expect to consume (2 log(μ−1)+4) · (n+m−1) levels
for computing them diagonally, which requires (15μ + ω − 6)nm homomorphic
additions and (3(μ− 1) log(μ− 1)+11μ+ω − 13)nm multiplications in total. In
other words, given two encrypted sequences of lengths n and m, a SWHE scheme
of depth O((n + m) log(log(n + m))) can evaluate the edit distance algorithm in
O(nm log(n + m)) homomorphic computations.

Remark 1. Lemma 1 shows that we can compare two μ-bits with a circuit of
depth log μ using a homomorphic bit-encryption scheme. If we consider a large
integer ring Zt as a message space instead of a binary field, an addition is per-
formed with a degree-1 circuit. However, one can compute the equality circuit
via the following method: EQU(x, y) = 1 − (x − y)t−1 for a prime t. Then this
circuit has D(EQU) ≈ log t ≈ log(n + m) using the square-and-multiply algo-
rithm. Moreover, the comparison algorithm seems to require a circuit of at least
depth log t. This implies that a large message space increases the depth of one
diagonal-round circuits to O(log(n + m)), so the edit distance algorithm can be
evaluated with a SWHE scheme of depth O((n + m) log(n + m)).

Homomorphic Computation of Edit Distance 205

4.3 Optimization of Encrypted Edit Distance Algorithm

We present an optimization to reduce the depth during the homomorphic eval-
uations of the algorithm. Let us consider the 3 × 3 block B in Fig. 2.

Fig. 2. Block of size 3

It is true that if we have computed the top and left values of this block,
Di−2,j−2, Di−2,j−1, Di−2,j , Di−1,j−2, Di,j−2, then all other values can be
expressed in terms of them. For example, Di,j is the minimum value between
the following 7 numbers:

Di−2,j−2 + ti−1,j−1 + ti,j , Di−2,j−1 + ti−1,j + 1, Di−2,j−1 + ti−1,j + 1,

Di−1,j−2 + ti,j−1 + 1, Di−1,j−2 + ti,j−1 + 1, Di−2,j + 2, Di,j−2 + 2.

In general, we consider a block of size-(τ + 1) which consists of the following
sets:

top : T = {Di−τ,j−τ ,Di−τ,j−τ+1, . . . , Di−τ,j},

left : L = {Di−τ,j−τ ,Di−τ+1,j−τ , . . . , Di,j−τ},

right : R = {Di−τ,j ,Di−τ+1,j , . . . , Di,j},

bottom : B = {Di,j−τ ,Di,j−τ+1, . . . , Di,j}.

Then all the values of R and B are expressed in terms of values of T and L.

Di−τ,j−τ

Di−τ,j−τ+1

Di−τ,j−τ+2 Di−τ+l,j

Di−τ,j−k

Di−τ,j

Di,j

R

T

Fig. 3. Grid of size-(τ + 1) block

206 J.H. Cheon et al.

More precisely, consider the grid shown in Fig. 3. One can only move one unit
right or down on the grid: if moving right from Di−k,j−l, then ti−k+1,j−l+1 is
added to the value and we obtain Di−k,j−l + ti−k+1,j−l+1. In the case of mov-
ing one unit down, “1” is added to it. We note that the number of shortest
paths from Di−τ,j−k to Di−τ+l,j is l!

k!(l−k)! =
(

l
k

)
for some l ≥ k since the paths

include k steps in the x axis and (l − k) steps in y axis. It is seen as the num-
ber of the functions of Di−τ+l,j in terms of Di−τ,j−k. From these observations,
Di−τ+l,j is the minimum between

∑l
k=0

(
l
k

)
= 2l values. In particular, Di,j is

the minimum between 2 · ∑τ
k=0

(
τ
k

) − τ = 2τ+1 − τ values because the set of
all the paths of Di,j is symmetric with respect to the line from Di−τ,j−τ to
Di,j . We know that the minimum circuits consume the largest number of levels
than others (equality circuit or addition circuits), and it needs O(log k) levels to
evaluate the minimum circuits MINk that compute the minimum value between
k numbers, which requires O(k2) homomorphic computations. Thus, one can
compute a block of size-(τ +1) by evaluating the circuits with a SWHE of depth
O(log(2τ+1 − τ)) ≈ O(τ) in

∑
k=2,22,...,2τ−1

O(k2) + O((2τ+1 − τ)2) ≈ O(22τ)

homomorphic operations. From the fact that all the blocks of size-(τ +1) can be
computed diagonally while shares of the values of T and L have been computed,
we can conclude that the edit distance algorithm can be implemented using
O(22τ · nm

τ2) homomorphic operations with a SWHE scheme of depth O(τ ·(n+m
τ −

1)) ≈ O(n + m) for given two encrypted sequences of lengths n and m. Hence,
this optimization reduces the depth, but the entire computation increases as
τ becomes larger. In particular, in the case of n = m, we can implement the
algorithm with lesser depth circuits. The essence of the idea is formally captured
in Lemma 3 below.

Lemma 3. Let σj denote the elementary symmetric polynomial of degree j in
x1, x2, . . . , xn and σ̃j the binary circuit which is a conversion of σj by the
following rules: + �→ ⊕ and · �→ ∧. Also, let μ := log n�. Then the addition
circuits ADDn convert the sum of n one-bit xi’s into a μ-bit integer, defined by
(S[1], S[2], . . . , S[μ]) satisfying

S[i] =
⊕

1≤j≤n

(
⊕

1≤k≤j
k[i]=1

[(
j

k

)]

2

) ∧ σ̃j .

Proof. Denote Sn the symmetric group on the n letters and

Xk :=
∑

ζ∈Sn

(
xζ(1) · · · xζ(k) · (xζ(k+1) + 1) · · · (xζ(n) + 1)

)
.

Let us cj denote a coefficient of σj in Xk over integers. We show that
cj · (

n
j

)
=

(
n−k
j−k

) · (
n
k

)
. More precisely, the number of monomials of degree j in

Xk is cj · (
n
j

)
because

(
n
j

)
can be seen as the number of the monomials of σk.

Homomorphic Computation of Edit Distance 207

Note that for a fixed ζ ∈ Sn, the number of monomials of degree j in(
xζ(1) · · · xζ(k) · (xζ(k+1) + 1) · · · (xζ(n) + 1)

)
is

(
n−k
j−k

)
. Since the number of such

polynomials is
(
n
k

)
, we have cj =

(
j
k

)
and Xk =

∑
cjσj =

∑
k≤j≤n

(
j
k

) · σj .

Now let us consider the binary circuit X̃k, that is,

X̃k =
⊕

ζ∈Sn

(xζ(1) ∧ · · · ∧ xζ(k) ∧ (xζ(k+1) ⊕ 1) ∧ · · · ∧ (xζ(n) ⊕ 1)),

so we have X̃k = ⊕k≤j≤n(
[(

j
k

)]
2

∧ σ̃j). Hence, we can conclude that

S[i] =
⊕

1≤k≤n

(X̃k ∧ k[i]) =
⊕

1≤k≤n

⎛
⎝ ⊕

k≤j≤n

[(
j

k

)]

2

∧ σ̃j

⎞
⎠ ∧ k[i]

=
⊕

1≤k≤j≤n
k[i]=1

[(
j

k

)]

2

∧ σ̃j =
⊕

1≤j≤n

⎛
⎜⎜⎝

⊕
1≤k≤j
k[i]=1

[(
j

k

)]

2

⎞
⎟⎟⎠ ∧ σ̃j .

The first equality follows since only k values of x1, . . . , xn can be
“1”(i.e.,

∑n
i=1 xi = k) if and only if X̃k = 1. ��

The lemma implies that if we have computed “⊕[(
j
k

)]
2
” satisfying 1 ≤ k ≤ j and

k[i] = 1 (for 1 ≤ i ≤ μ and 1 ≤ j ≤ n), then Si’s are expressed in terms of the
symmetric polynomials with degree no more than n. The following proposition
follows from Lemma 3.

Proposition 4. Encrypted Edit distance algorithm can be implemented on two
sequences of length n over an ω-bit alphabet with a somewhat homomorphic
scheme of depth

 log ω� + log n� + log
(
	log(n + n

2
� − 1)

)
� + log (n′) � + 2

where n′ = −n
2 � − 1 + 2

∑� n
2 	−1

i=0

(
n
i

)
.

Proof. Let us consider a size-(n + 1) block. Since Dn,n = Dn is less than n and
Di,0,D0,i are greater than 2i, Dn can be expressed as a function of D0,0,D1,0, . . . ,
D� n

2 	−1,0, D0,1, . . . , D0,� n
2 	−1, and ti,j ’s satisfying |i − j| ≤ n

2 �, as shown in
Fig. 4 (which means that it is enough to compute only a little part of the block).

Firstly it needs log ω� levels to compute ti,j ’s with the equality circuits
over ω-bits. Next, from the fact that the number of the functions of Dn with
respect to Di,0 is

(
n
i

)
, the edit distance Dn is the minimum between n′ = −n

2 �+

2
∑� n

2 	−1
i=0

(
n
i

)
values which have the following form:

Di,0 + ti1,j1 + ti2,j2 + · · · + tin−k,jn−k
+ i = 2i + ti1,j1 + ti2,j2 + · · · + tin−k,jn−k

208 J.H. Cheon et al.

D0,0

D0,1

D0,2

· · ·

D0,� n
2 �−1

Dn

D1,0

D2,0

D� n
2 �−1,0

· · ·

Fig. 4. Grid of (n + 1)-block

where 1 ≤ i1 ≤ i2 ≤ · · · ≤ in−k ≤ n and 1 ≤ j1 ≤ j2 ≤ · · · ≤ jn−k ≤ n.
In particular, “t1,1 + t2,2 + · · · + tn,n” has binary circuits which consume the
largest levels to be evaluated, and from Lemma 3 we expect that it needs log n�
levels. We note that all the values to be compared are less than n + n

2 � − 1 and
they are considered to be of 	log(n + n

2 � − 1)
 + 1-bit, so we have D(COM) =
 log

(log(n + n
2 � − 1)
) � + 1. Finally, the proposition follows that

D(ti,j) + D(t1,1 + · · · + tn,n) + D(COM) + D(MINn′
)

= (log ω�) + (log n�) +
(
 log(log(n + n

2
� − 1)
)� + 1

)
+ (log (n′) � + 1) .��

The result of Proposition 4 tells us that we can reduce the depth of computing
edit distance to O(log n′) ≈ O(log(2 · 2

n
2 −1)) ≈ O(n). In particular, if n =

m = 8, then the number of levels consumed by the edit distance algorithm is
approximately 16.

5 Implementation and Discussions

In the following we give an estimated performance of the encrypted edit distance
algorithm over DNA sequences and provide concrete timings for homomorphic
evaluation of the algorithm with Shoup’s NTL library [22] and Halevi-Shoup’s
HE library [13] over GMP. A complete description of this scheme is given in [8].
We may assume that ω = 2 from the fact that Σ = {A,G,C,D}.

In our scenario, the third parties first partition their own DNA sequences into
segments of length n or m. Then each of the DNA sequences is expressed in a
binary representation. After that, each bit is encrypted as a different ciphertext
with a homomorphic encryption scheme. For parallel computation, we use an
encryption scheme with plaintext space Z

�
2 supporting SIMD operations with 	

slots. Then one party sends the ciphertexts which hold the 	 segments together
to a cloud. Finally, the cloud service computes the edit distances of 	 different

Homomorphic Computation of Edit Distance 209

sequence pairs simultaneously. The amortized time is computed as the total time
of this algorithm evaluation divided by 	.

5.1 Estimates

In addition to the modulus switching method, there is another noise-management
technique-bootstrapping which evaluates the decryption circuit of homomorphic
encryption scheme using the decryption key. This results in a different encryption
of the ciphertext with reduced noise, so the number of homomorphic operations
becomes unlimited, called fully homomorphic encryption (FHE).

If the length of DNA sequences is large, our encrypted edit distance algo-
rithm requires large depth. So for sufficiently long sequences, we estimate the
algorithm using an FHE scheme instead of an SWHE scheme. In particular,
we present the estimated performance using the batch DGHV scheme [4]. Since
bootstrapping is more costly than other operations and this scheme performs a
bootstrapping right after each multiplication, the number of homomorphic mul-
tiplications directly affects the total evaluation performance. We note that the
edit distance algorithm in Sect. 4.3 needs many more multiplications than the
one in Sect. 4.1. For these reasons, the latter is more suitable for being evaluated
via FHE.

We assume that the length of DNA sequence segments is less than 100 because
a single DNA sequencer can generate millions of short DNA sequences with 100-
120 nucleotides. We first count the total number of homomorphic multiplications
in the edit distance algorithm up to size (100, 100), which can be seen as the
number of bootstrapping operations during the evaluations. Then it is multiplied
by the timing for a single bootstrapping operation with their results (using the
same parameters as in [4]). We present the estimates of the proposed algorithm
in Table 5.

5.2 Experimental Result

Using the optimization techniques as described in Sect. 4.3, we can evaluate the
edit distance algorithm homomorphically with low depth circuits for small DNA
sequences. Taking 80-bits of security, we used many different parameters for
several level parameters L according to the length of the two DNA sequences,
that is, we chose SWHE scheme so as to support the depth which are incurred by
the computations for each case. In the set up stage, we determine the parameters
of a SWHE scheme and generate a secret/public key pair and the modulus
switching data.

We implemented the encrypted edit distance algorithm for two sequences
of length n and m. In our implementation, we use τ = n = m as mentioned
before. The implementation results are described in Table 6. For example, it
takes 27.5 sec. to obtain the encrypted edit distance from the two encrypted
DNA sequences of length 8. This is about 45 times faster than the result of
Sect. 5.1, which is expected to take 20 min. for 72-bits of security.

210 J.H. Cheon et al.

Table 5. Estimates of amortized timing for homomorphic edit distance computation
using a FHE scheme [4]

(n,m) Toy Small Medium Large

Security 42 52 62 72

of slots 10 37 138 531

pk size 647KB 13.3MB 304MB 5.6GB

(1, 1) 0.108 s 0.297 s 0.891 s 3.402 s

(2, 2) 1.104 s 3.046 s 9.107 s 34.776 s

(3, 3) 3.996 s 11.025 s 32.962 s 2min 5 s

(4, 4) 7.104 s 19.600 s 58.599 s 3min 44 s

(6, 6) 22.032 s 1min 1 s 3min 2 s 11min 34 s

(8, 8) 39.168 s 1min 48 s 5min 23 s 20min 34 s

(10, 10) 1min 18 s 3min 35 s 10min 43 s 40min 57 s

(20, 20) 6min 19 s 17min 26 s 52min 8 s 3 h 19min

(30, 30) 14min 13 s 39min 14 s 1 h 57min 7 h 27min

(50, 50) 46min 30 s 2 h 8min 6 h 23min 1 day 24min

(100, 100) 3 h 34min 9 h 50min 1 day 5 h 4 days 16 h

Table 6. Timing of an implementation of homomorphic edit distance on an Intel Xeon
i7 2.3GHz, 192GB (80 bit security)

(n,m) Depth of
hom. enc.

Ring modulus Φd � Key generation Encryption Total time Amortized
time

(1,1) 1 d = 4369 256 1.4761 s 0.1118 s 0.0693 s 0.0003 s

(2,2) 2 d = 4369 256 1.8358 s 0.2844 s 0.2532 s 0.0009 s

(3,3) 8 d = 8191 630 7.0162 s 1.7117 s 34.3091 s 0.0540 s

(4,4) 9 d = 8191 630 7.4489 s 2.4154 s 67.5116 s 0.1071 s

(6,6) 16 d = 13981 600 16.1076 s 9.9498 s 26 min 33 s 2.6555 s

(8,8) 19 d = 15709 682 27.5454 s 16.4524 s 5h 13min 27.5528 s

6 Conclusion

In this paper, we proposed an algorithm to perform the edit distance algorithm
on encrypted genomic sequences. More precisely, upon input two encrypted
sequences of lengths n and m by a SWHE scheme, our algorithm outputs
an encrypted value of their edit distance. We show that this can be done in
O(nm log(n + m)) computations with a SWHE scheme which can homomor-
phically evaluate any circuit of depth O((n + m) log(log(n + m))). With our
optimization technique, we can reduce the depth of computing edit distance to
O(n + m) and the implementation shows that it takes 27.5 sec. for n = m = 8
using the Halevi-Shoup code [13].

Homomorphic Computation of Edit Distance 211

Currently we could not implement our algorithm for larger parameters due
to large memory requirements, but if one can manage large memory or improve
the scheme to reduce the memory requirements, it is expected that the algorithm
would run in one day for n = m = 50 when estimated based on the recent CCK+
scheme [4].

The proposed algorithm enables us to perform any sequence analysis over
encrypted genomic sequences without worrying about privacy leakage. It would
be very interesting to make our algorithm practical for larger parameters by
improving the algorithm with the help of more efficient homomorphic encryption.

Acknowledgements. This work was supported by IT R&D program of MSIP/
KEIT [No. 10047212] and the MSIP (Ministry of Science, ICT&Future Planning),
Korea, under the ITRC (Information Technology Research Center) support pro-
gram (NIPA-2014-H0301-14-1010) supervised by the NIPA (National IT Industry Pro-
motion Agency). The authors would like to thank the anonymous reviewers of WAHC
2015 for their helpful comments.

References

1. Atallah, M.J., Kerschbaum, F., Du, W.: Secure and private sequence comparisons.
In: WPES, pp. 39–44 (2003)

2. Ayday, E., Hubaux, J.-P., Raisaro, J.L., Rougemont, J.: Protecting and evaluating
genomic privacy in medical tests and personalized medicine. In: WPES, pp. 95–106
(2013)

3. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic
encryption without bootstrapping. In: Goldwasser, S. (ed.) ITCS, pp. 309–325
(2012)

4. Cheon, J.H., Coron, J.-S., Kim, J., Lee, M.S., Lepoint, T., Tibouchi, M., Yun, A.:
Batch fully homomorphic encryption over the integers. In: Johansson, T.,
Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 315–335. Springer,
Heidelberg (2013)

5. Cristofaro, E.D., Faber, S., Tsudik, G.: Secure genomic testing with size- and
position-hiding private substring matching. In: WPES, pp. 107–117 (2013)

6. The European Bioinformatics Institute. http://www.ebi.ac.uk
7. Erlich, Y., Narayanan, A.: Routes for breaching and protecting genetic privacy

(2013). arXiv:1310.3197
8. Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the AES circuit. In:

Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 850–867.
Springer, Heidelberg (2012)

9. Gymrek, M., McGuire, A.L., Golan, D., Halperin, E., Erlich, Y.: Identifying per-
sonal genomes by surname inference. Science 339, 321–324 (2013)

10. Humbert, M., Ayday, E., Hubaux, J.-P., Telenti, A.: Addressing the concerns of
the lacks family: Quantification of kin genomic privacy. In: CCSW Secure Pattern
Matching using Somewhat Homomorphic Encryption, pp. 1141–1152. ACM (2013)

11. Huang, Y., Evans, D., Katz, J., Malka, L.: Faster secure two-party computation
using garbled circuits. In: Proceedings of the 20th USENIX Security Symposium,
pp. 35–50 (2011)

12. HapMap (2007). http://www.hapmap.org/

http://www.ebi.ac.uk
http://arxiv.org/abs/1310.3197
http://www.hapmap.org/

212 J.H. Cheon et al.

13. Halev, S., Shoup, V.: Design and implementation of a homomorphic-encryption
library. Technical report, IBM Technical report (2013)

14. Jha, S., Kruger, L., Shmatikov, V.: Towards practical privacy for genomic compu-
tation. In: IEEE Symposium on Security and Privacy, pp. 216–230 (2008)

15. Kantarcioglu, M., Jiang, W., Liu, Y., Malin, B.: A cryptographic approach to
securely share and query genomic sequences. IEEE Trans. Inf. Technol. Biomed.
12(5), 606–617 (2008)

16. Kolesnikov, V., Sadeghi, A.-R., Schneider, T.: Improved garbled circuit building
blocks and applications to auctions and computing minima. In: Garay, J.A., Miyaji,
A., Otsuka, A. (eds.) CANS 2009. LNCS, vol. 5888, pp. 1–20. Springer, Heidelberg
(2009)

17. Lauter, K., Naehrig, M., Vaikuntanathan, V.: Can homomorphic encryption be
practical?. In: CCSW, pp. 113–124. ACM (2011)

18. Lindell, Y., Pinkas, B.: A proof of Yao’s protocol for secure two-party computation
(2004). http://eprint.iacr.org/2004/175

19. Malin, B., Sweeney, L.: Inferring genotype from clinical phenotype through a knowl-
edge based algorithm. In: Pac. Symp. Biocomput. 41–52 (2002)

20. Malin, B., Sweeney, L.: How (not) to protect genomic data privacy in a distributed
network: using trail re-identification to evaluate and design anonymity protection
systems. J. Biomed. Inform. 37(3), 571–588 (2004)

21. Personal Genome Project. http://www.personalgenomes.org/community.html
22. Shoup, V.: NTL: a library for doing number theory (2009). http://www.shoup.

net/ntl
23. Sweeney, L., Abu, A., Winn, J.: Identifying Participants in the Personal Genome

Project by Name. In: Harvard University. Data Privacy Lab. White Paper 1021–1
(2013)

24. Stranger Visions (2012). http://deweyhagborg.com/strangervisions
25. Wagner, R.A., Fischer, M.J.: The string to string correction problem. J. ACM

21(1), 168–173 (1974)
26. Yao, A.: How to generate and exchange secrets. In: Ostrovsky, R. (ed.) FOCS, pp.

162–167 (1986)
27. Yasuda, M., Shimoyama, T., Kogure, J., Yokoyama, K., Koshiba, T.: Secure pat-

tern matching using somewhat homomorphic encryption. In: CCSW, pp. 65–76.
ACM (2013)

http://eprint.iacr.org/2004/175
http://www.personalgenomes.org/community.html
http://www.shoup.net/ntl
http://www.shoup.net/ntl
http://deweyhagborg.com/strangervisions

HEtest: A Homomorphic Encryption Testing
Framework

Mayank Varia1, Sophia Yakoubov1, and Yang Yang2(B)

1 MIT Lincoln Laboratory, Lexington, MA, USA
{mayank.varia,sophia.yakoubov}@ll.mit.edu

2 Blizzard Entertainment, Irvine, CA, USA
y4n9@alum.mit.edu

Abstract. In this work, we present a generic open-source software
framework that can evaluate the correctness and performance of homo-
morphic encryption software. Our framework, called HEtest, automates
the entire process of a test: generation of data for testing (such as cir-
cuits and inputs), execution of a test, comparison of performance to an
insecure baseline, statistical analysis of the test results, and production
of a LaTeX report. To illustrate the capability of our framework, we
present a case study of our analysis of the open-source HElib homomor-
phic encryption software. We stress though that HEtest is written in a
modular fashion, so it can easily be adapted to test any homomorphic
encryption software.

1 Introduction

Homomorphic encryption is a cryptographic primitive that enables computation
directly on encrypted data. This technology has the potential to change the
way that we protect arbitrary computation on the cloud. Moreover, it may be
judiciously applied to special-purpose problems such as database searches in
order to develop usable technologies [1] with stronger security guarantees than
were possible before [4,18,20].

The last five years have seen substantial research into the design of homomor-
phic encryption algorithms [2,3,5,7,9,11,23,24]. Some of these algorithms have
been implemented in software [8,10,12,13]. Evaluations of these software imple-
mentations allow the research community to determine the applications that
could benefit most from targeted use of homomorphic encryption technology.
However, prior evaluations of homomorphic encryption software were tedious to
conduct and ad hoc in nature. This resulted in evaluations that cannot be directly
compared because the data were produced on different platforms. Additionally,

Y. Yang—Work performed while at MIT Lincoln Laboratory.
This work is sponsored by the Intelligence Advanced Research Projects Activity
under Air Force Contract FA8721-05-C-002. Opinions, interpretations, conclusions
and recommendations are those of the authors and are not necessarily endorsed by
the United States Government.

c© International Financial Cryptography Association 2015
M. Brenner et al. (Eds.): FC 2015 Workshops, LNCS 8976, pp. 213–230, 2015.
DOI: 10.1007/978-3-662-48051-9 16

214 M. Varia et al.

while tests were repeatable in principle, the ad hoc nature of prior evaluation
software made it challenging to reproduce others’ test results.

Our main contribution is to provide a generic, open-source framework for
the testing of homomorphic encryption schemes. In this paper, we describe the
design of our test framework and our use of this framework to evaluate portions
of the HElib software package [12,13].

Homomorphic Encryption. The goal of fully homomorphic encryption (FHE)
research is to design an encryption scheme that is purposely malleable in a
specific way to enable computation on encrypted data. More specifically, an FHE
scheme has a special operation Evaluate that takes a circuit representation C of
a program and a series of ciphertexts ci = Enc(mi) and returns an encryption of
C(m1, . . . , mk).

Due to their number-theoretic properties, many public-key encryption
schemes are naturally homomorphic with respect to a single operation like addi-
tion or multiplication [6,17,19,22]. An intriguing question, initially posed in 1978
by Rivest et al. [21], is whether there exists an encryption scheme that simultane-
ously permits the evaluation of both addition and multiplication on ciphertexts.
Since these two operations constitute a logically complete set of operations, the
vision described above would follow.

In 2009, the seminal work of Gentry [7] affirmatively answered this long-
standing question by demonstrating an encryption scheme based on ideal lat-
tices that exploits the ring structure of the ciphertext space to provide Evaluate
operations for both addition and multiplication. Gentry split the FHE prob-
lem into two components: the design of a somewhat homomorphic encryption
scheme (SWHE) that permitted a limited number of Evaluate operations and
the insight of a bootstrapping algorithm that achieved fully homomorphic encryp-
tion through the use of multiple applications of SWHE. A slight tweak of this
initial scheme was implemented in [8].

After Gentry’s initial work, many cryptographers have designed new FHE
algorithms [2,3,5,9,11,23,24] that make substantial improvements along several
dimensions:

– Improving the performance of a single addition or multiplication Evaluate
operation,

– Increasing the number of Evaluate operations possible in a SWHE scheme
before bootstrapping,

– Batching multiple plaintext bits into one ciphertext whose bits are operated
on in parallel, and

– Basing the cryptography upon weaker, more accepted number-theoretic
assumptions.

Some of these improved algorithms have been implemented in software [10,12,13].
However, the FHE community lacks a simple benchmarking tool that enables sim-
ple comparisons between these homomorphic encryption schemes and with näıve
unprotected computation.

HEtest: A Homomorphic Encryption Testing Framework 215

Our Software. We have designed and developed a software program for eval-
uating homomorphic encryption schemes called HEtest [15,26]. Our code has
been open-sourced for use under a BSD license [16] and is available for down-
load at https://www.ll.mit.edu/mission/cybersec/softwaretools/hetest/hetest.
html. The HEtest software package comprises four components:

1. A circuit generator that can create configurable instances of boolean circuits.
Customizable options include circuit depth and the desired distribution of
gates in a circuit.

2. A baseline that parses and evaluates the circuits as quickly as possible without
homomorphic encryption, for comparison purposes.

3. A test harness that interfaces with any homomorphic encryption software
through a communication protocol. The harness executes test scripts that
repeatedly call for key generation, circuit ingestion (using the circuits gener-
ated above), encryption, homomorphic evaluation, and decryption. During a
test, the harness captures and logs metrics pertaining to the correctness and
performance of the homomorphic encryption software.

4. A report generator that (with no human input) analyses the test harness’
logs and produces a LaTeX report with tables and graphs that summarize
the correctness and performance results (both in absolute terms and relative
to the baseline).

The circuit and report generators are written in Python, whereas the baseline
and test harness, which are performance-critical, are written in C++.

Our Testing. We used our HEtest software to evaluate submissions to the Secu-
rity and Privacy Assurance Research (SPAR) program. The SPAR program
was developed in 2010 by the Intelligence Advanced Research Projects Activ-
ity (IARPA). Its objective was to design and build new privacy-preserving data
searching technologies that are fast and expressive enough to use in practice.

The SPAR program comprised nine research teams who worked on three
separate problems, two of which were about the design and implementation of
privacy-preserving database or publish-subscribe schemes [4,14,20,25]. The final
component of the project focused on the design of homomorphic encryption
schemes, with the aim of producing an efficient SWHE building block that could
be used in the design of privacy-preserving search algorithms with strong security
guarantees. There were two performers involved in the homomorphic encryption
component of SPAR: the IBM Thomas J. Watson Research Center (hereafter
referred to as IBM) and Stealth Software Technologies, Inc (hereafter referred
to as Stealth).

In this paper, we provide a case study for the use of the HEtest framework
by describing our evaluation of the IBM submission to the SPAR project, which
is largely based on the open-source HElib implementation [12,13]. Thus, the
results of our case study can easily be reproduced by interested readers. We
wish to emphasize that our discussion of HElib in this paper is merely as a case
study: we used HEtest to evaluate Stealth’s software as well, and all of the code
in HEtest is written in a modular, extensible fashion, so it can easily be extended

https://www.ll.mit.edu/mission/cybersec/softwaretools/hetest/hetest.html
https://www.ll.mit.edu/mission/cybersec/softwaretools/hetest/hetest.html

216 M. Varia et al.

to test other homomorphic encryption software with only minor changes to the
data generation and baseline code if support is needed for different types of
circuits.

Organization. The rest of this paper is organized as follows. In Sect. 2, we provide
a definition for homomorphic encryption and a brief overview of HElib [12,13].
In Sect. 3, we describe the process by which HEtest generates and stores data.
Section 4 describes the test execution framework in HEtest. Section 5 explains
HEtest’s automated data analysis and report generation. Finally, Sect. 6 provides
a case study of the use of our framework to study IBM’s HElib software.

2 Overview of Homomorphic Encryption and HElib

A basic public-key encryption scheme has the three algorithms KeyGen, Encrypt,
and Decrypt. KeyGen is a randomized algorithm that inputs a security parameter
λ and outputs a public/secret key pair (pk, sk). Encrypt is a randomized algo-
rithm that takes a public key pk and a plaintext message m from the plaintext
space P and outputs a ciphertext c from the ciphertext space C. Finally, Decrypt
is an algorithm that takes as input a secret key sk and a ciphertext c and outputs
a plaintext message m ∈ P. The computational complexity of these algorithms
must be polynomial in λ.

A homomorphic encryption scheme has an additional algorithm Evaluate,
which takes as input a public key pk, a function represented as a circuit C, and a
vector of ciphertexts c = (c1, . . . , cw) where ci is the encryption of mi. It outputs
a ciphertext c′ that is an encryption under pk of C(m1, . . . , mw), the result of
evaluating the circuit C using m1, . . . , mw as inputs. The scheme satisfies the
homomorphic property that for all (pk, sk), circuits C, and ci = Encrypt(pk,mi),

Decrypt(sk,Evaluate(pk,C, c1, . . . , cw)) = C(m1, . . . , mw).

In recent years, one construction of a homomorphic encryption scheme based
on the ring-LWE assumption by Brakerski, Gentry, and Vaikuntanaithan [2] has
shown promise of becoming “somewhat practical.” In this scheme, plaintext bits
are represented as coefficients of a polynomial in the ring Fp[x]/(f(x)). Gentry,
Halevi, and Smart [11] design a variant of the BGV scheme in which p = 2
and f(x) is chosen to be the n-th cyclotomic polynomial Φn(x). IBM’s HElib
software is an implementation of this cryptosystem, with further optimizations in
ciphertext packing or “batching” [24]. Specifically, if the polynomial ring Φn(x)
can be factored modulo 2 into � irreducible factors, then there are � “slots” in
which one can encode a plaintext bit by application of the Chinese Remainder
Theorem for polynomials. Using this construction, addition and multiplication
in the polynomial ring Fp[x]/(f(x)) correspond to element-wise addition and
multiplication in the vector of slots, giving rise to single instruction multiple
data (SIMD) style operations.

If c is the smallest integer such that n divides pc − 1, then Φn(x) factors into
� = φ(n)/c irreducible polynomials modulo p, where φ(·) denotes Euler’s totient
function. In order to maximize �, one needs to choose an n that minimizes c.

HEtest: A Homomorphic Encryption Testing Framework 217

Table 1. Depth of each gate type, as defined by IBM.

Gate Depth (d)

MULT 1

MULTconst 0.5

ADD 0.1

ADDconst 0

SELECT 0.6

ROTATEa 0.25 to 0.75
aThe depth of a ROTATE

gate depends on �, the
number of plaintexts
packed or “batched” into
a ciphertext.

However, n is also constrained by the choice of security parameter λ and the
maximum circuit depth d.

In the HElib cryptosystem, the parameter n was set between 4500 and 45000
for λ = 80 bits of security and d ∈ [4, 24]. These settings yielded batch widths of
approximately � ∈ [256, 1285]. Their scheme produced ciphertexts with bit-size
asymptotically equal to O(φ(n) · d · log(λ)). Since ciphertext blow-up represents
an enormous cost of computing data homomorphically, packing multiple inde-
pendent plaintext bits into a single ciphertext is a substantial improvement to
efficiency.

In HElib, the circuit depth d has a special meaning because the various
SIMD operations introduce different amounts of noise to the ciphertext. For
instance, adding two ciphertexts increases the noise in the resulting ciphertext
linearly while multiplying two ciphertexts increases the noise quadratically. Con-
sequently, MULT increases the circuit depth substantially more than ADD. Table 1
lists the contributions to circuit depth made by the six gate types supported
by HElib. We stress that a gate’s depth is different than its level : the minimum
number of gates between it and the input wires.

3 Test Data

In this section, we describe the process of generating circuits and corresponding
inputs on which to test homomorphic encryption software such as IBM’s HElib
or Stealth’s software. We stress that our tool can generate a diverse set of circuits
using various gate types. In this section, we describe the generation of circuits
that IBM supported: deep circuits consisting of arithmetic SIMD gates with
fan-in 2. However, we also used HEtest to evaluate Stealth’s software on wide,
shallow Boolean circuits with large fan-in.

We developed a Python script that generated circuit descriptions and inputs
based on configurable circuit parameters. Circuit descriptions were output in
ASCII-format and stored as text files, later to be parsed by the test harness

218 M. Varia et al.

described in Sect. 4.1 and the performers’ software. In Sect. 3.1, we discuss the
input parameters to our data generation system. In Sect. 3.2, we discuss the
process by which a circuit and a corresponding input are constructed, given
those inputs. In Sect. 3.3, we discuss the format in which the test harness expects
the circuit and input data, and in Sect. 3.4, we discuss the format in which our
analysis tools discussed in Sect. 5 expect the data.

3.1 Generation Parameters

The parameters for circuit generation include desired circuit width w (i.e. num-
ber of input wires), circuit depth d, batch size �, the security parameter λ, and
the distribution of gate types that the circuit comprises. Optionally, a random
seed could be specified to reliably reproduce data. If the seed is omitted, a ran-
dom one is chosen at runtime. All parameters were contained in a configuration
file that the script read.

Most of our tests were run on circuits consisting of a uniformly selected set
of gates over the six types shown in Table 1; we refer to these tests as ‘mixed.’
However, it was also very useful to be able to produce circuits consisting entirely
of one of the six gate types, so as to be able to compare the relative efficiency of
HElib’s evaluation of these gate types. Note that for circuits composed entirely
of one gate type, a different notion of depth was needed because some gate types
do not contribute to depth d. Therefore, for such single gate type circuits we
used the number of levels num levels in place of depth, referring to the length of
the longest path from the output gate to any of the input wires.

3.2 Circuit and Input Generation

Circuits are generated starting with the input wires and ending with the output
gate. A total of w input wires were created, and for each subsequent level of the
circuit, w gates were created for which either one or two inputs (depending on
the gate type) are randomly chosen from amongst the gates and wires of the two
levels above it. If the test type was ‘mixed,’ generation went on until all of the
gates at the last level had depth greater than d; then, a random gate from the
set of gates with the correct depth d was chosen to be the output gate. If the
test type was not ‘mixed,’ generation went on until num levels levels had been
generated, and a random gate from the num levelsth level was chosen to be the
output gate. Once the output gate was chosen, all gates and wires that did not
contribute to the output were discarded. For each desired input, w binary strings
of length � were generated.

3.3 Test Suite Representation

Once the test data was generated, it had to be stored in a way that was easily
accessible to both the test harness and the prototype. Each generated security
parameter, circuit, and input was stored in a separate text file. Inputs were

HEtest: A Homomorphic Encryption Testing Framework 219

naturally represented as lists of binary strings; for instance, here is an example
of an input for a circuit with w = 4 input wires, each expecting an input of size
� = 5: “[11010,01011,01010,11011].”

Our syntax for describing circuits is somewhat more involved, and we illus-
trate it here with an example in both written and graphical form in Fig. 1. The
first line of Fig. 1 specifies the number of input wires (w), the depth of the circuit
(d) as defined by IBM, and the batch size (�). Following this header, all gates
are listed ordered by their level (not depth d). This guarantees that all inputs
to a gate are defined before the gate is defined. (Note, however, that gates on
the same level appear in arbitrary order.) Each gate is identified by a string
containing the character ‘G’ followed by a unique id. Note that not all gate ids
between 1 and the maximum gate id are represented; this is because not all gates
end up contributing to the output gate, and those that do not get dropped. The
input wires are indexed by a string containing the character ‘W’ followed by a
unique id in 0 . . . w − 1. Following the gate id, on the same line, is the gate type
and a list of the gate’s inputs. These can be pointers to input wires, other gates,
or constants if the gate type requires a constant input. Note that the wires are
not defined separately in the circuit description; they appear only as inputs to
gates. Any constants will always be the last of the gate’s inputs.

W=4,D=4,L=5
G4:LMULconst(W2,01101)
G6:LMUL(W2,W0)
G5:LROTATE(W2,4)
G8:LMUL(G6,W2)
G9:LMULconst(G5,00101)
G7:LADD(G4,W0)
G13:LMULconst(G8,00000)
G11:LMULconst(G8,11010)
G14:LSELECT(G11,G7,11001)
G16:LSELECT(G13,G9,00001)
G18:LSELECT(G14,G13,11110)
G19:LADDconst(G16,10000)
G22:LMULconst(G19,01000)
G25:LADD(G22,G18)
G26:LMULconst(G25,11010)

Fig. 1. The syntax of a generated circuit (left) and a graphical illustration of the same
circuit (right). In the illustration, gates are labeled first by their level (e.g. ‘L4’) and
then by their id within that level (e.g. ‘G2’).

Once the security parameter, circuit and input files were created, a single test
script file corresponding to the test suite was produced. It contained the paths
to the files that stored each data object, in the order in which they were meant
to be sent to the performer binaries. This test script facilitates the test execution
process. Finally, in order to have a common repository for all test artifacts, the
parameters of each circuit and input were stored in a SQLite database that is
described in Sect. 3.4.

220 M. Varia et al.

3.4 SQLite Database

HEtest uses a SQLite database as a central repository for test information. This
database served as the “glue” that enabled integration of the components of our
test framework and the automation of our entire test process. We use a SQLite
database because it is lightweight, SQL-based, and easy to share and back up.

Our SQLite database is built during the data generation process, and it is ini-
tially populated with some descriptive information about the circuits and inputs
such as the circuit depth, the number of input wires, and the number of gates
of each type present. Baseline and performer test results are later automatically
added upon execution of a test, as detailed in Sect. 4. The SQLite database is
used during automatic generation of a report characterizing the correctness and
performance of the homomorphic encryption prototype, as described in Sect. 5.
Because of all the circuit- and input-specific information we store, our report
can correlate performance with specific circuit parameters, making for a very
detailed analysis. We are also able to add new metrics at any time, without hav-
ing to repeat the entire testing process, because the SQLite database contains
all of the necessary information.

4 The Test Framework

The design of our test framework was motivated by three goals. First, we wanted
to assess the performance of homomorphic encryption schemes by measuring the
duration of key generation, encryption, decryption, and homomorphic evalua-
tion. Second, we wanted to characterize the overhead of privacy assurance by
comparing the system that uses homomorphic encryption to one that offers no
security. Finally, we wanted to design a test harness that could be used to eval-
uate arbitrary homomorphic encryption schemes (such as those from IBM and
Stealth) in a black-box manner.

The homomorphic encryption software being instrumented by our test frame-
work comprised two processes: a server that performed homomorphic evaluation
and a client that performed key generation, encryption, and decryption. They
are collectively called the system under test, or SUT.

4.1 The Test Harness

The test harness, a program that we developed in C++, spawned the client and
server processes of the SUT. It communicated with the SUT through the client’s
and server’s standard input and output streams. After both processes were prop-
erly initialized, the test harness called on them to repeatedly perform key gen-
eration, encryption, circuit ingestion, homomorphic evaluation, and decryption.
A configuration file, read by the test harness on start up, specified the location of
files containing the security parameters, plaintext inputs, and circuits to be used.

In the key generation step, the test harness sends the value of the security
parameter to the client and receives a public key. In the circuit ingestion step,

HEtest: A Homomorphic Encryption Testing Framework 221

the public key and circuit description are sent to the server. When the server
finishes parsing the circuit description and is ready to accept inputs, it returns
a READY message to the test harness. In the encryption step, the test harness
sends a series of plaintext messages to the client and receives their ciphertexts.
Next, in the homomorphic evaluation step, the ciphertexts are sent to the server.
The server evaluates the circuit using the ciphertexts as input and returns a
ciphertext representing the output to the circuit. Finally, in the decryption step,
the test harness forwards the ciphertext returned by the server to the client.
The client decrypts the ciphertext and returns the plaintext message. Figure 2
illustrates these steps.

Client Test Harness Server

λ

pk = KeyGen(λ)

m

c = Enc(sk, m)

pk, C

READY

c

c′ = Evaluate(C, c)

c′

m′ = Dec(sk, c′)

Harness Command SUT Response

Key Generation
KEY

<security parameter>

ENDKEY

KEY

<public key>

ENDKEY

Circuit Ingestion

CIRCUIT

<circuit description>

ENDCIRCUIT

KEY

<public key>

ENDKEY

CIRCUIT

CIRCUIT READY

ENDCIRCUIT

Encryption

PDATA

<input1>

<input2>

ENDPDATA

EDATA

<size>

<ciphertext>

ENDEDATA

Hom. Evaluation

EDATA

<size>

<ciphertext>

ENDEDATA

EDATA

<size>

<ciphertext>

ENDEDATA

Decryption

EDATA

<size>

<ciphertext>

ENDEDATA

PDATA

<output>

ENDPDATA

Fig. 2. Sequence diagram showing data flows during a test (left) and the actual packets
sent between the test harness and SUT client/server (right). Angle brackets denote
variables to be replaced by actual values.

Communication between the test harness and the SUT was dictated by a sim-
ple packet-based communication protocol that we developed. A packet consisted
of a header, either ASCII-encoded plaintext data or binary-encoded ciphertext
data, and a footer. These components were delimited by linefeeds. Security para-
meters, public keys, plaintext messages, and circuit descriptions were encoded
in ASCII while ciphertexts were encoded in binary (with a prefix indicating the
size of the binary payload in bytes). Our testing framework assumed that the
client and server only communicate through the test harness interface (as shown
in Fig. 2), never with each other directly.

222 M. Varia et al.

In each of the steps described above, the duration of the cryptographic oper-
ation was measured from when the test harness wrote the first byte of com-
mand packet to when last byte of the response packet was read. Consequently,
unavoidable communication overhead such as writing data to pipes were cap-
tured; however, the latency of these calls were negligible (about 10−4 seconds)
compared to those of cryptographic operations. Our test harness captured the
following metrics:

1. Evaluation Accuracy: The fraction of circuit evaluations that are correct,
i.e. the decrypted result returned by the SUT is equal to the result of directly
evaluating the circuit on the plaintext inputs.

2. Key Generation Time: A measure of how long it takes for the client to
generate cryptographic keys.

3. Key Size: The size of public keys generated by the client prototype
4. Ingestion Time: A measure of how long it takes for the server to prepare a

circuit for evaluation.
5. Encryption Time: A measure of how long it takes for the client to encrypt

a plaintext message.
6. Ciphertext Size: The average size of ciphertext per bit of plaintext input.
7. Evaluation Time: A measure of how long it takes for the server to evaluate

a circuit.
8. Decryption Time: A measure of how long it takes the client to decrypt a

ciphertext.
9. Total elapsed Time: The sum of the encryption, evaluation, and decryption

times.

4.2 The Baseline

In order to characterize performance in a setting without privacy assurance, we
provided a baseline: a client-server implementation of a circuit evaluator that
operates on plaintext inputs. The client offered stubbed implementations of key
generation, encryption, and decryption in order to adhere to the communication
protocol. They returned properly-formed response packets. The server supported
two operations: circuit ingestion and direct evaluation on plaintext inputs.

Like the test harness, we developed the baseline system in C/C++. It was
reasonably efficient, with optimizations that would normally be found in circuit
evaluation programs. Most notably, it short-circuits gate operations when pos-
sible (e.g., an AND gate returns false as soon as one of its inputs is determined
to be false). In addition, we provided an API for defining new gate types should
the need arise.

In the circuit ingestion step, the baseline uses a scanner and parser to read
textual circuit descriptions and construct circuits. A scanner, oftentimes called
a tokenizer, is a program that recognizes lexical patterns in text. Any circuit
description output by our circuit generator tool that we described in Sect. 3 can
be read and tokenized by the scanner. These tokens are subsequently fed into a
parser, which constructs circuit gates and eventually builds a circuit.

HEtest: A Homomorphic Encryption Testing Framework 223

We recognized that implementing scanners and parsers for circuit descrip-
tions is tedious, error-prone, and non-extensible. As a result, we used two tools,
Flex and Lemon, to programmatically generate these software components. Flex
is a scanner generator – given a set of rules (i.e. mappings between regular
expressions and tokens), it outputs C source code, which when compiled, pro-
duces a scanner. The rules that we used to parse IBM-style circuits are found
in the ibm-scanner.l file in our open-source repository. Lemon is a parser
generator – given a context-free grammar, it produces C source code, which when
compiled, produces a parser. The grammar for IBM-style circuits is defined in
the ibm-parser.y file. To extend our baseline to evaluate a new gate type, one
would need to add an additional rule, define a new token type, and provide a
C++ implementation of the gate that extends the base gate type.

5 Report Generation

After executing a test, the final step in the HEtest chain is the production of a
concise report that presents the correctness and performance results in such a
way that a human can quickly draw intelligent conclusions about the prototype
performance.

In the initial version of our software, this process was mostly performed
manually with the aid of a few analysis scripts that produced the graphs and
tables we desired. However, the addition of any new data necessitated a repetition
of the entire process, which was tedious and time-consuming.

To simplify this task, we developed a tool that automatically generated a
detailed report describing the performance and correctness of the prototype. In
addition to giving us a summary of the system’s performance within seconds
after the completion of a test, this tool allowed us to identify odd or unexpected
behaviors exhibited by the system in near real-time without having to manually
search through test data.

The report generator read from a centralized SQLite database containing
all of the timing and correctness data, as well as all of the parameters of the
tests. It automatically performed analyses of the correctness of the homomorphic
encryption software under test (i.e., whether its outputs agree with those from
the baseline), and it also determined the dependency of the latency on various
factors such as input size, batch size, and circuit depth. It characterized the
latency both in absolute terms and relative to the baseline described in Sect. 4.2.

In Sect. 6, we display the power of the report generator by showing the results
of an execution of HEtest on the IBM HElib software. Note that the formats of
graphs and tables were stored in easily-updated template files, so the tool could
easily be extended to produce a new type of graph or table if desired.

6 Experimental Results

In this section, we present some of the auto-generated analyses that we performed
over the HElib test results. All of the statistical analysis and graphs in this

224 M. Varia et al.

section, as well as much of the expository text, were automatically produced by
our report generator tool.

We stress that our use of HElib is mainly as a case study. While we do believe
that the data about HElib in this section will be of interest to some readers, we
are including this data principally to demonstrate the capacity of our HEtest
tool.

6.1 Experimental Setup

We ran the test harness and performers’ system on a Dell PowerEdge R710 server
machine with two Intel Xeon X5650 processors and 96 GB of RAM. All software
was run on the 64-bit Ubuntu 12.04 LTS Linux distribution.

Throughout this section, all times will be presented in units of seconds and
all sizes will be presented in units of bytes; for brevity, we will often omit a
statement of units. Also in the interest of brevity, we only present here a subset
of our results. For instance, we describe the results for security parameter k = 80,
which provides 80-bits of security, but omit the results for k = 128.

6.2 Real-World Applicability

Before presenting our results, we wish to issue a warning that the data from
HEtest does not easily translate into intuition about the performance of HElib
(or any existing homomorphic encryption scheme) in real-world applications.
This is because the optimal representation of the functions in real-world appli-
cations is rarely as a circuit; there is almost always conditional logic involved,
and no existing homomorphic encryption scheme supports such logic directly.
In order to use HElib to securely evaluate a real-world function, the function
would first have to be re-written as a circuit, which would almost surely cause
a significant slow-down even if it is computed in the clear. This complication
motivates the creation of our baseline in Sect. 4.2: it isolates the slow-down in
computing due to homomorphic encryption from that caused by the (inefficient)
circuit representation.

Today, HElib can be used for specific small components of real-world appli-
cations that can be naturally represented as a circuit; we hope that the analyses
in this section will illuminate the costs associated with this.

6.3 Parameters Tested

Table 2 describes the parameter values on which we tested HElib. Note that we
only include values for k = 80; the values of d, � and w are different for k = 128.
We also tested two additional ‘large’ circuit settings, with (� = 682, d = 24, w =
200) and (� = 1285, d = 60, w = 50). For each of the above combinations, we
generated two circuits, with five inputs each. Additionally, for each of the six
gate types, we generated 20 circuits composed entirely of that gate type, with
5 inputs each. These circuits each had 5 levels, and w = 100. Ten circuits of each
gate type had � = 6, and ten had � = 42.

HEtest: A Homomorphic Encryption Testing Framework 225

Table 2. Parameters tested for k = 80, based on batch width �, circuit depth d, and
maximum number of inputs w.

Values of � Values of d Values of w

378 {6, 7} {4, 10, 20, 50, 100, 1000}
630 12 {4, 10, 20, 50, 100, 200}
600 18 {4, 10, 20, 50, 100}
682 {21, 24} {4, 10, 20, 50, 100}

6.4 Overview of Results

We tested HElib for correctness and performance. Our report generator tool
automatically determined that HElib had perfect correctness during the test:
for all 1582 circuit/input pairs tested, the outputs from HElib matched those
from our baseline. Additionally, the average ratio between the total elapsed time
of HElib and an insecure baseline was approximately 52,600.

Fig. 3. Total elapsed time percentiles for HElib and the baseline separately (left) and
their ratio (right)

To provide a more detailed analysis of the total elapsed time for HElib and
our insecure baseline, the report generator created the two graphs in Fig. 3.
The left graph in the figure shows a histogram of the total elapsed time for
HElib and our baseline over the 1582 circuit/input pairs. For legibility, the data
are grouped into percentiles: the graph shows the time for the fastest 1 % of
circuit/input pairs tested (i.e., the 16th fastest test out of 1582), then for the
next 1 % of tests, and so on. The right graph shows the ratio between HElib and
the baseline; in other words, it is the quotient between the two curves on the left
graph. These figures demonstrate that the overhead of homomorphic encryption
grows as the circuits evaluated become deeper and more complex.

6.5 Key Generation

We found that key generation time and key size were highly correlated with the
circuit depth d and batch width �, but were not correlated with the number of

226 M. Varia et al.

inputs w. Note that the combinations of d, �, w, and k were selected jointly for
our test at IBM’s request, and thus the relationships between the variables may
be more complex than presented here.

Table 3. Key sizes, in bytes

Count 25

Mean 2.02 · 108

Std Dev 2.75 · 108

Min 9.28 · 105

Max 7.08 · 108

Figure 4 presents a profile of key generation time varying as a function of
circuit depth d and batch width �. In the ranges that we tested, both generation
time and key size are linear in � and quadratic in d. Our best-fit model of key
generation time is:

t = 0.07d2 − 1.21d + 0.013� + 1.4,

with an r2 value of 1.0. Table 3 also provides descriptive statistics for generated
key size.

6.6 Circuit Ingestion

Overall, HElib’s circuit ingestion is very fast, and is negligible compared to the
time taken for other parts of the scheme. We believe that the ingestion times
we observed depended primarily on the simple task of parsing rather than on
any complexity of the performer’s scheme. Circuit description sizes varied in the
kilobyte to low megabyte range.

Some basic statistics about circuit ingestion latency are provided in Table 4.
Our analysis reveals that ingestion time was mildly correlated with �, but we
attribute this to the fact that the bit representation of a circuit description in
our format increases with � because gates that have a constant parameter (such
as “add a constant to the input” or “multiply by a constant”) require � bits to
describe.

Table 4. Circuit ingestion latency (left), encryption latency (middle), and decryption
latency (right), in seconds

Ingestion
Count 81
Mean 0.009
Std Dev 0.017
Min 0.0
Max 0.119

Encryption
Count 999
Mean 0.033
Std Dev 0.304
Min 0.0
Max 5.694

Decryption
Count 999
Mean 0.116
Std Dev 0.36
Min 0.0
Max 5.091

HEtest: A Homomorphic Encryption Testing Framework 227

6.7 Encryption and Decryption

The total encryption time was very fast, with our data (displayed in Table 4
showing that encryption took just 33 milliseconds on average. However, the col-
lected data are contaminated because IBM’s software did not adhere to our test
harness’ communication protocol, so our encryption timer erroneously included
network transmission time.

Decryption time is also fast in HElib. While it can take up to 5 seconds for
the largest circuits, even this amount of time is negligible compared to the hours
such circuits would take for homomorphic evaluation. See Table 4 for detailed
statistics.

Finally, HEtest captures ciphertext sizes for both “fresh” ciphertexts (i.e.,
after encryption and before evaluation) and “evaluated” ciphertexts (i.e., after
evaluation and before decryption). A summary of these data are shown in
Table 5.

Table 5. Average sizes of fresh and evaluated ciphertexts, as a function of batch size

� Count Fresh CT size Evaluated CT size

6 306 5.41 KB 5.65 KB

42 300 203KB 212 KB

378 121 593KB 864 KB

600 51 3.60 MB 3.59 MB

630 60 1.66 MB 1.81 MB

682 151 4.16 MB 6.04 MB

1285 10 42.0 MB 46.8 MB

Fig. 4. Key generation time (left) and homomorphic evaluation time (right), in seconds

228 M. Varia et al.

6.8 Homomorphic Evaluation

Evaluation time was highly correlated with d and w. It also showed a small
correlation with �, but the vast majority of this correlation can be explained as
a result of the parameters being selected jointly. The best-fit model for k = 80 is

t = 2.77d2 − 74.6d − 1.43w + 0.215wd + 403,

with an r2 value of 0.991. Figure 4 shows a graph of evaluation time.

6.9 Evaluation Time by Gate Type

Finally, we ran several circuits through the performers’ system whereby all gates
were of the same type. These tests give us an indication of the time required
to compute a single gate of each of the various types supported by HElib. Our
results are shown in Table 6. Here, our measurements are averaged across all
levels of a circuit. If a homomorphic encryption scheme has the property that
the performance of gates various substantially by level, this analysis would not
be useful. Due to the special-purpose nature of single gate type tests, note that
these data are not included in any of the analyses done in the prior sections.

Table 6. Evaluation time per gate, in seconds

Gate Type Count Mean Std Dev Min Max

ADD 101 2.04 · 10−4 1.99 · 10−4 1.10 · 10−5 6.18 · 10−4

ADDconst 101 1.85 · 10−4 1.75 · 10−3 6.00 · 10−5 4.43 · 10−3

MULT 101 1.45 · 10−2 1.39 · 10−2 4.76 · 10−4 3.00 · 10−2

MULTconst 101 1.92 · 10−3 1.82 · 10−3 7.60 · 10−5 5.19 · 10−3

ROTATE 101 1.19 · 10−2 1.14 · 10−2 2.07 · 10−4 2.59 · 10−2

SELECT 101 1.72 · 10−3 1.62 · 10−3 6.10 · 10−5 3.60 · 10−3

7 Conclusion

In this work, we built a comprehensive framework for the test and evaluation of
homomorphic encryption software with a focus on generalizability, test automa-
tion, and integration of test components. We presented a case study application
of our HEtest software to the IBM HElib software. We stress though that our
test framework can be easily adapted to test any other homomorphic encryption
software.

We have open-sourced HEtest under a BSD license [16]. We encourage
interested readers to download our code at https://www.ll.mit.edu/mission/
cybersec/softwaretools/hetest/hetest.html, and we welcome feedback about our
software at hetest@ll.mit.edu.

https://www.ll.mit.edu/mission/cybersec/softwaretools/hetest/hetest.html
https://www.ll.mit.edu/mission/cybersec/softwaretools/hetest/hetest.html

HEtest: A Homomorphic Encryption Testing Framework 229

Acknowledgements. The authors would like to thank the following people:
– Tim Meunier, for writing the parsers for the test harness output that transfer the
test data into the SQLite database.
– Oliver Dain, Nick Hwang and Ben Price, for their help with code reviews and general
guidance throughout the software engineering process.
– Mike Depot and John O’Connor, for their IT support during the tests.

References

1. Boneh, D., Gentry, C., Halevi, S., Wang, F., Wu, D.J.: Private database queries
using somewhat homomorphic encryption. In: Jacobson, M., Locasto, M., Mohassel,
P., Safavi-Naini, R. (eds.) ACNS 2013. LNCS, vol. 7954, pp. 102–118. Springer,
Heidelberg (2013)

2. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic
encryption without bootstrapping. In: ITCS 2012 Proceedings of the 3rd Innova-
tions in Theoretical Computer Science Conference, pp. 309–325. ACM, New York
(2012). http://doi.acm.org/10.1145/2090236.2090262

3. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from
(standard) LWE. In: FOCS, pp. 97–106 (2011)

4. Cash, D., Jarecki, S., Jutla, C., Krawczyk, H., Roşu, M.-C., Steiner, M.: Highly-
scalable searchable symmetric encryption with support for boolean queries. In:
Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 353–
373. Springer, Heidelberg (2013)

5. van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic
encryption over the integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 24–43. Springer, Heidelberg (2010)

6. Gamal, T.E.: A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Trans. Inf. Theory 31(4), 469–472 (1985)

7. Gentry, C.: A fully homomorphic encryption scheme. Ph.D. thesis, Stanford Uni-
versity (2009). https://www.crypto.stanford.edu/craig

8. Gentry, C., Halevi, S.: Implementing gentry’s fully-homomorphic encryption
scheme. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 129–
148. Springer, Heidelberg (2011)

9. Gentry, C., Halevi, S., Smart, N.P.: Fully homomorphic encryption with polylog
overhead. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS,
vol. 7237, pp. 465–482. Springer, Heidelberg (2012)

10. Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the AES circuit. In:
Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 850–867.
Springer, Heidelberg (2012)

11. Gentry, C., Halevi, S., Smart, N.P.: Better bootstrapping in fully homomorphic
encryption. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS,
vol. 7293, pp. 1–16. Springer, Heidelberg (2012)

12. Halevi, S., Shoup, V.: HElib. https://github.com/shaih/HElib. Accessed 23 Sep-
tember 2014

13. Halevi, S., Shoup, V.: Algorithms in HElib. In: Garay, J.A., Gennaro, R. (eds.)
CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 554–571. Springer, Heidelberg (2014)

14. IARPA: Broad agency announcement IARPA-BAA-11-01: Security and pri-
vacy assurance research (SPAR) program, February 2011. https://www.fbo.gov/
notices/c55e38dbde30cb668f687897d8f01e69

http://doi.acm.org/10.1145/2090236.2090262
https://www.crypto.stanford.edu/craig
https://github.com/shaih/HElib
https://www.fbo.gov/notices/c55e38dbde30cb668f687897d8f01e69
https://www.fbo.gov/notices/c55e38dbde30cb668f687897d8f01e69

230 M. Varia et al.

15. MIT Lincoln Laboratory: HEtest, February 2011. https://www.ll.mit.edu/mission/
cybersec/softwaretools/hetest/hetest.html

16. Open Source Initiative: The BSD 2-clause license. http://opensource.org/licenses/
BSD-2-Clause. Accessed 23 September 2014

17. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, p. 223. Springer,
Heidelberg (1999)

18. Popa, R.A., Redfield, C.M.S., Zeldovich, N., Balakrishnan, H.: Cryptdb: protecting
confidentiality with encrypted query processing. In: (SOSP 2011) ACM Symposium
on Operating Systems Principles (2011)

19. Rabin, M.O.: Digitalized signatures and public-key functions as intractable as
factorization. MIT Laboratory for Computer Science, January 1979. http://
publications.csail.mit.edu/lcs/pubs/pdf/MIT-LCS-TR-212.pdf

20. Raykova, M., Cui, A., Vo, B., Liu, B., Malkin, T., Bellovin, S.M., Stolfo, S.J.:
Usable, secure, private search. IEEE Secur. Priv. 10(5), 53–60 (2012)

21. Rivest, R.L., Adleman, L., Dertouzos, M.L.: On data banks and privacy homomor-
phisms. Found. Secur. Comput. 4(11), 169–180 (1978)

22. Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)

23. Smart, N.P., Vercauteren, F.: Fully homomorphic encryption with relatively small
key and ciphertext sizes. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS,
vol. 6056, pp. 420–443. Springer, Heidelberg (2010)

24. Smart, N.P., Vercauteren, F.: Fully homomorphic SIMD operations. Des. Codes
Cryptogr. 71(1), 57–81 (2011)

25. Varia, M., Price, B., Hwang, N., Cunningham, R., Hamlin, A., Herzog, J., Poland,
J., Reschly, M., Yakoubov, S.: Automated assessment of secure search systems.
Oper. Syst. Rev. (OSR) 49(1), 22–30 (2015). Special Issue on Repeatability and
Sharing of Experimental Artifacts

26. Yang, Y.: Evaluation of Somewhat Homomorphic Encryption Schemes. Master’s
thesis, Massachusetts Institute of Technology (2013)

https://www.ll.mit.edu/mission/cybersec/softwaretools/hetest/hetest.html
https://www.ll.mit.edu/mission/cybersec/softwaretools/hetest/hetest.html
http://opensource.org/licenses/BSD-2-Clause
http://opensource.org/licenses/BSD-2-Clause
http://publications.csail.mit.edu/lcs/pubs/pdf/MIT-LCS-TR-212.pdf
http://publications.csail.mit.edu/lcs/pubs/pdf/MIT-LCS-TR-212.pdf

Users’ Privacy Concerns About Wearables

Impact of Form Factor, Sensors and Type of Data
Collected

Vivian Genaro Motti(&) and Kelly Caine

School of Computing, Clemson University, Clemson, USA
{vgenaro,caine}@clemson.edu

Abstract. Wearables have become popular in several application domains,
including healthcare, entertainment and security. Their pervasiveness, small size
and autonomy, enlarges the potential of these devices to be employed in dif-
ferent activities and scenarios. Wearable devices collect data ubiquitously and
continuously, about the individual user and also her surroundings, which can
pose many privacy challenges that neither users nor stakeholders are ready to
deal with. Before designing effective solutions for developing privacy-enhanced
wearables, we need first to identify and understand what are the potential pri-
vacy concerns that users have and how they are perceived. To contribute to that
purpose, in this paper we present findings from a qualitative content analysis of
online comments regarding privacy concerns of wearable device users. We also
discuss how form factors, sensors employed, and the type of data collected
impact the users’ perception of privacy. Our results show that users have dif-
ferent levels and types of privacy concerns depending on the type of wearable
they use. By better understanding the users’ perspectives about wearable pri-
vacy, we aim at helping designers and researchers to develop effective solutions
to create privacy-enhanced wearables.

Keywords: Privacy �Wearable computing �Wearable devices � Form factors �
Privacy concerns � User studies � Human factors

1 Introduction

The significant advances in technology in the past decades, characterized by the
miniaturization of components, more efficient power sources, alternative network
solutions and novel sensors, boosted the development of wearable devices. As a
consequence, a variety of form factors have been created, enabling wearable devices to
be applied for multiple different purposes. Despite the large potential and known
benefits of wearable devices, their spread usage entails several privacy concerns.
Wearables, by continuously collecting, transmitting and storing data, handle informa-
tion that are often considered as personal, private, sensitive or confidential. This
information can be publicly available or posted in social media, where it is shared with
a network of friends of the individual user or even with unknown or untrusted parties.
While the data collection and sharing brings many benefits for end users, it also brings
novel privacy challenges for stakeholders involved in the creation of wearable devices
and applications. Wearables enable the surveillance and sousveillance of individuals,

© International Financial Cryptography Association 2015
M. Brenner et al. (Eds.): FC 2015 Workshops, LNCS 8976, pp. 231–244, 2015.
DOI: 10.1007/978-3-662-48051-9_17

their behaviors and surroundings as well, which can lead to severe privacy implica-
tions, threats and risks. These issues affect not only the individual user but also the
society and organizations involved, for instance when the data collected are misused.
Due to the novelty of the wearable field such implications are not yet fully understood.

The continuous use of wearables involves a variety of privacy concerns, however
because the usage of these devices is relatively recent, users are not aware of the
potential privacy implications of continuous data collection, storage and online sharing.
To better understand how users actually perceive wearable privacy and to identify what
are their main concerns nowadays, we collected commentaries from users (end users
and prospective users) from online sources (such as IT forums, websites, discussion
lists and social medias) about several wearable devices (either commercially available
or to be soon launched in the market) including head-mounted and wrist-mounted
devices. With the analysis of the users’ comments extracted from a set of online
sources, we identified different concerns about wearable privacy, and we analyzed how
they are related to specific form factors, sensors employed and data collected.

The main contributions of this paper consist in identifying: (i) what are the users’
concerns for wearable privacy; (ii) how form factors, data collected and sensors
employed impact these privacy concerns (regarding their levels and nature); and
(iii) what concerns are specific to wearable devices, sensors and applications.

This paper is organized as follows: Sect. 2 motivates and contextualizes this
research by presenting related works and the scope in which this research is inserted;
Sect. 3 describes the method of the research; Sect. 4 presents the results obtained;
Sect. 5 discusses them and Sect. 6 concludes.

2 Related Work

Privacy concerns are not exclusive from the technological domain, being discussed
since 1890 [1]. Despite being in discussion for a long time, privacy issues related to
mobile technologies are relatively new, complex to study and still poorly understood
[2]. Moreover, mobile and wearable devices continuously collect data, spreading the
use of sensors, such as: cameras, GPS, and accelerometers, whose small size and
invisibility adds novel challenges to ensure users’ privacy.

Most of the previous works on user privacy has focused on mobile devices and
their applications [3], social networks [4, 5], web applications [6], or other security
concerns, as account hijacking [7]. Little is known about wearable privacy [8, 9] from a
human-centered perspective. Existing solutions frame the privacy problems too nar-
rowly and satisfactory general solutions remain elusive [8], besides having a frag-
mented landscape [5]. The nature of privacy concerns remains an open question,
requiring a better understanding of privacy behaviors in technology [10].

The following sections summarize related research findings, presenting and discussing
privacy concerns and human perspectives in ubiquitous, mobile and wearable computing.

2.1 Privacy in Ubiquitous Computing

Characterized by the integration of computational solutions into the physical envi-
ronment, ubiquitous computing enables inanimate objects to acquire intelligence, by

232 V.G. Motti and K. Caine

sensing, processing and communicating data [11]. These data concern the individual
user and also her surroundings, and can imply in privacy issues. Despite the existence
and importance of these issues, users have a limited understanding about those. By
centering potential solutions for privacy-enhanced technologies on the users’ per-
spectives and concerns, stakeholders can aid users to better understand and control their
privacy in these systems [12].

2.2 Privacy in Mobile Devices

Significant improvements in mobile computing in the past decades popularized the use
of mobile devices, with smart phones and mobile apps playing nowadays a funda-
mental and intimate role in users’ everyday life. Despite the continuous data collection
and transmission with these devices and apps, previous research shows that users are
not aware about what data are collected and how they are used [3]. Despite the
importance of mobile privacy concerns, they still remain poorly understood [2].

2.3 Privacy in Wearable Devices

Similarly to ubiquitous and mobile computing, in wearable computing, privacy is one
of the main challenges yet to be solved [13]. Not only because wearable computers are
able to sense, process and store intimate information about the users, but also because
wearables are able to do it continuously and discreetly [14]. Besides this, currently,
users cannot fully understand the potential risks, threats and implications involved with
data collection and tend to underestimate those. However the data collected often
enable to infer private information, especially when combined with other data, which
can result in significant risks to the users’ privacy [15].

As previous research identified, privacy became a key concern to users [14], being
for instance among the top five concerns that users consider important in the wear-
ability of HMD (head-mounted devices) [16]. Despite its relevancy, wearable privacy is
still an emergent topic and many questions remain open.

Previous works related to wearable privacy have focused on its different aspects,
including: (i) users’ behaviors with wearable cameras, to identify the factors that impact
how sensitive a photo is [9] and the privacy concerns in pictures illustrating eating
behaviors of users [17]; (ii) requirements for remote communication in fashion garments
[18]; (iii) perceptions of anklet wearers, to identify location-based privacy concerns [8];
(iv) privacy for augmented reality systems [19]; and v) surveillance concerns of Google
Glass users [20]. Although these works aid to understand how users perceive wearable
privacy, they focus on specific wearable devices or applications.

2.4 Users’ Perspectives on Privacy

Privacy behaviors across multiple technologies were identified and analyzed in [10],
aiding to understand the users’ perspectives and concerns and to propose and devise
novel solutions to ensure users’ privacy. Despite extensive user studies, this work

Users’ Privacy Concerns About Wearables 233

targets a general understanding of privacy concerns, regardless of the technology
employed. User studies were also conducted by [21], to better understand users’ pri-
vacy concerns. This work, although focused on e-commerce applications, suggests a
significant gap between reported concerns and actual users’ behaviors, reinforcing that
users often sacrifice their privacy in exchange of benefits. For [22], considering current
users’ needs and their cognitive models is key to ensure privacy control. The users’
understanding about privacy was also analyzed in [6], but mainly regarding their
interaction with web sites.

Despite previous works focusing on ubiquitous, mobile and wearable computing, it
is still not clear what are the users’ concerns about wearable privacy and how these are
related to specific devices, sensors and applications. However, without understanding
what the privacy problems are, privacy cannot be addressed in a meaningful way [23].

3 Methods

Because we were interested in assessing the privacy perceptions of a broad range of
people who already had interest or experience in using wearable devices, and we
wanted to gather a geographically and demographically diverse sample, we chose to
conduct an observational study of online comments posted by wearable users. To
identify concerns, we extracted comments from a series of online sources (described
below). First, we selected a set of devices and data sources, then we identified, selected
and analyzed the users’ concerns about privacy in wearable devices. Further details
about the methodology of this work are described in the following sections.

3.1 IRB Approval

To ensure the protection of human subjects, before data collection started, the Clemson
University Institutional Review Board (IRB) approved this study as exempt.

3.2 Data Selection, Extraction and Analysis

Due to the fact the head-mounted and wrist-mounted devices are the most popular form
factors available and in use today, we considered both form factors for data collection.
To minimize bias in the data collected we selected a set of 59 different online sources,
including popular websites for discussion and reviews of technology and e-commerce
pages for shopping, reviewing and recommending devices. The data collection process
resulted in more than 2,000 commentaries extracted for analysis. This process was
conducted in April and May 2014 and consisted in visiting the online sources previously
selected, searching for the users’ comments regarding specific devices, and manually
extracting the contents of interest to compose a report.

For the analysis, we filtered and selected the commentaries related to privacy
concerns. For that a member of our research team read and analyzed each comment, to
identify and annotate those related to privacy. Then, the annotated comments were
analyzed again to identify the nature of the privacy concern regarding its motivations

234 V.G. Motti and K. Caine

and rationale behind it. For example, a user who fears the consequences of his/her
location being posted online in a live feed through social media apps concerns the
Implications of Location Disclosure). In order to identify the relationships between the
privacy concerns and respective data collected and sensors, we analyzed the nature of
the concerns identified and assessed whether they were specific to a given form factor
and/or application or generic to mobile devices. The results of this analysis are
graphically presented in a Venn diagram (Fig. 1).

3.3 Devices, Online Data Sources and Figures

The users’ commentaries collected were generated at latest in May 2014. The date
when a commentary was posted was not always available in the web sources selected,
however users start commenting about a new device usually when a vendor announce
it, launch it for sale or when a new release is made available. The comments collected
were related to six wrist-mounted devices with different purposes, including:

• 27 privacy comments about six armbands and smart watches: Sony SWR10 (Core)
Smartwear and Thalmic Labs Myo, Basis, Qualcomm Toq, LG Lifeband Touch,
Razer Nabu.

The users’ commentaries about the 32 head-mounted devices analyzed, included:

Fig. 1. Privacy concerns per form factor and according to their influencing factors: device,
application, sensor or data. Concerns marked with a ‘*’ were identified particularly for
head-mounted devices.

Users’ Privacy Concerns About Wearables 235

• 11 privacy comments about 19 earpieces, headbands and headphones: Looxcie, LG
Lifeband Earphones, Intel Smart Earbuds, Microsoft Septimu, Avegant glyph, the
Immersion headset, The Vigo, iRiver On, The Voyager Legend, NeuronOn,
Recon’s Snow 2, The Cynaps Enhance, iWinks Aurora Dreamband, Life Beam’s
Sports Headband, Emotiv Insight, Axio EEG Headband, InteraXon Muse, Muzik,
Neurowear Zen tune Headphones;

• 34 privacy comments about 13 glasses: EmoPulse Nano Glass, Epson Moverio
BT-200, Google Glass, Google Smart Contact Lenses, ICIS, K-Glass, Laster See
Tru, Meta Pro, Oculus Rift, Olympus MEG4.0, Second Sight’s Argus II, Sony
HMz-T1, The Atheer One, Vuzix Smart Sun Glasses.

The 59 online sources used for data collection included 15 forums, 34 technical
websites, 6 e-commerce websites, and 4 social medias, e.g.: Amazon, Ars Technica,
BestBuy, CNET, ComputerWorld, DigitalTrends, ExpertReviews, Engadget, eWeek,
Geek, GizMag, GizModo, Overstock, PCAdvisor, PCMag, PCPro, PCWorld,
PhoneArena, Popular Science, Mashable, MIT Technology Review, Reddit, Slate,
TechCrunch, TechRadar, TheInquirer, TheNextWeb, TheVerge, T3, TrustedReviews,
Wearable Computing Review, Wearable Technologies, Wired, ZDNet. With a diversity
of sources, we aimed at more representativeness in the data collected and minimizing
the potential bias of commentaries that were not posted by actual users. The main
differences among the comments consisted in: more extensive, detailed and formal
comments produced by reviewers (posted in IT forums), and shorter, more informal
and objective comments produced by end users and posted in e-commerce websites. By
gathering comments from heterogeneous sources, we ensure a diversity of user profiles,
and still focus on the study goals, covering a set of specific wearable devices and
privacy concerns of users for different wearable applications.

The analysis of online reviews has some drawbacks, for instance, little is known
about the profile of the user who posted a comment and we cannot ensure whether the
comment was in fact generated by an individual user or by a bot, a spammer or even a
competitor company, which can introduce bias in the study. In our analysis, to mini-
mize this risk, we selected heterogeneous online sources (59 websites with high
popularity) and an extensive list of comments (n > 2,000). Despite these drawbacks, as
previous research indicate [24–27], the analysis of online reviews has several benefits
as well, for instance: (i) users are placed in a wild study, i.e. not constrained by
laboratory settings, (ii) the commentaries are self-reports of the users’ opinions, without
a standard format or pre-defined set of questions, and (iii) a large sample of reviews can
be analyzed covering heterogeneous user profiles.

4 Identifying User Privacy Concerns for Wearable
Technologies

The analysis of the online comments, revealed 13 users’ concerns about wearable
privacy. These concerns are closely related to the type of data each device collects,
stores, processes and shares. Embedded sensors, such as cameras and microphones,
capture data about the individual user or people nearby, often without their awareness

236 V.G. Motti and K. Caine

or consent. These data are oftentimes personal, confidential, and sensitive, which poses
privacy challenges, for instance regarding surveillance. Other sensors, such as heart
rate monitors, glucometers and activity trackers, are often considered by users as
involving fewer privacy concerns.

By analyzing the users’ commentaries, 13 privacy concerns emerged, six for
wrist-mounted devices and seven for head-mounted devices. These concerns are pre-
sented in the following sections, ordered by form factor and the activity they are related
to, respectively: data collection, data processing and data sharing (according to the
three first groups of activities defined in the Solove’s privacy taxonomy [23]).

4.1 Privacy Concerns for Wrist-Mounted Devices

Wrist-mounted devices collect data whose nature is less sensitive than head-mounted
devices, at least in a first sight. Some HMDs are able to capture audio, image and
videos, whose privacy implications tend to be more critical or at least apparent for
users. WMDs, on the other hand, often include activity trackers and sense the user
location, which is considered by users as less privacy-critical data. Actually, from our
analysis, the GPS sensor is pointed as the most critical privacy concern for users of
WMDs, as their location is sensed and stored, and sometimes even shared online in real
time through live feeds of social media applications. Besides this, the form factors of
wrist-mounted devices are similar to conventional accessories worn in a daily basis,
such as watches and bracelets, so they fit seamlessly in conventional outfits of users,
raising less attention or suspicion from other people. Among the six privacy concerns
identified for WMDs and presented below, the two first ones are related to data col-
lection and the other four refer to data sharing.

4.1.1 General Social Implications: Unawareness
An activity tracker that synchronizes data (e.g., location and photos) and relates it to the
network of friends of an authenticated user, can also impact the privacy of other people
(e.g., individuals belonging to the social network contacts of a given user):

‘it does not just record your activities, but also activities of people around you, it can also
connect to other devices’

The people belonging to the social network of a user are not necessarily aware of
and compliant with the data collected, stored, published or shared.

4.1.2 Right to Forget
When data are continuously collected, stored, published and shared, they can include
information that users do want to recall later, but also events and facts that users were
not willing to capture or to be reminded of later on:

‘it gives a record of everything you’ve done, day in and day out, possibly even some things you
don’t want to be reminded of’

4.1.3 Implications of Location Disclosure
The users’ comments analyzed revealed that users were afraid that their location when
tracked could be disclosed to malicious parties and criminals, such as thieves and

Users’ Privacy Concerns About Wearables 237

stalkers. These malicious parties could then misuse the user location, for instance to
better plan a crime or other harmful actions:

‘It [wearable device] just knows when to take pictures of the epic moments, know if you’re
riding in your car so your friends and stalkers know where you are at all times of the day,
know when you go to sleep, riding a car, or climbing a mountain’

4.1.4 Discrete Display of Confidential Information: Non-Disclosure
Wrist-worn devices, such as smart watches, often use a screen to display notifications.
These notifications can include sensitive or confidential information, which is also
accessible to people located close to the end user. Being able to hide this information
from co-located individuals is considered good for some users:

‘the second screen will act as sort of a privacy screen, keeping folks from reading your texts by
glancing at your wrist’

4.1.5 Lack of Access Control
Users who are aware about data storage in the cloud, fear that organizations or even the
government will use their personal data without their awareness or consent, for instance
for abusive or malicious purposes:

‘[wearable devices are] the NSA’s new best friend’

4.1.6 Users’ Fears: Surveillance and Sousveillance
While most wearable device users acknowledge the many benefits of collecting and
tracking their personal information, they fear the continuous surveillance and sous-
veillance and potential implications that this can bring them in the future:

‘I’m not sure if I should be totally excited or totally frightened about this Sony band logging my
every move. I can’t help but think it could be good ole big brother in disguise’

4.2 Privacy Concerns for Head-Mounted Devices

Head-mounted devices that focus on augmented and virtual reality and gaming expe-
riences did not raise as many privacy concerns for users (e.g., Oculus Rift and Sony
HMz-T1), because less sensitive data are collected, and also because the device does
not store or share information, keeping it protected from social media and other online
applications with networks of online users. On the other hand, head-worn computers,
such as Google Glass, which are equipped with cameras and microphones, are often
synchronized with a smart phone, allowing users to connect to social media applica-
tions. This results in several privacy concerns, as indicated our analysis of the users’
commentaries. The next sections detail specific users’ concerns with HMD. Among the
seven users’ concerns, the four first are related to data collection, one to data pro-
cessing, and the last two refer to data sharing.

238 V.G. Motti and K. Caine

4.2.1 Speech Disclosure
Using speech recognition enables users to have a hands-free interaction, however when
users are not alone and need to handle confidential information, audio as a unique input
modality poses serious privacy concerns:

‘though you can’t mind people overhearing what you are saying’

4.2.2 Surveillance, Sousveillance and Criminal Abuse
By capturing data without any consent or awareness, users reported that they were
concerned about a potential for criminal abuse:

‘There are a lot of concerns about privacy invasion, spying and situations where people are
more concerned with recording an event than actually engaging with it’

4.2.3 Surreptitious Audio and Video Recording: Unawareness
Although smart phones and mobile computers such as tablet PCs also include cameras
and microphones, a HMD allows users to start recording content discreetly:

‘the video camera that is even easier to use than a smartphone’s … privacy issues are indeed
huge with that’
‘Placing a tiny wearable device on someone’s eye could potentially be a lot more discreet,
though some privacy advocates might see that as a downside’
‘I do believe there is a difference between snapping pictures with something which is obviously
a camera, and recording video surreptitiously. Social norms already frown on making sur-
reptitious audio recordings (though it isn’t illegal, it is done only infrequently and with an air
of “secret agency” about it); video is much more of an intrusion.’
‘the more subtle and high tech augmented vision gets, the more dangerous it gets as well.
Basically, we’re teetering on a slippery slope here unless we find a solution for the
privacy/harassment concern that is growing’

4.2.4 Surveillance, Sousveillance and Social Implications: Unawareness
The fact that the device captures information from the users’ surrounding extends the
privacy issues to the social environment, as people nearby are often unaware or not
compliant with the data collection:

‘There’s also another challenge that affects not only those who wear Glass, but everyone else
around: privacy’

Users may not feel comfortable to wear a device with a camera on their heads, at
least nowadays and especially in environments in which this is not a common practice:

‘The privacy concerns may very well be overblown, but I think it’ll take a while for people to
get comfortable with the idea of others walking around with camera-equipped devices strapped
to their faces’

4.2.5 Facial Recognition: Identifiability
Users acknowledge the benefits of facial recognition to augment their memory, how-
ever, they are also aware that privacy concerns will likely emerge in the near future, as
previously pointed out by [28]:

Users’ Privacy Concerns About Wearables 239

‘…totally needs a camera. I want to be able to look at people and it have them tell me their
names, limit it to my personal database of contacts if you must, but I’m terrible with names, if it
wants to give me an immersive world experience, then it needs to be able to see what I see
regardless of privacy worries.’
‘Privacy officials understand that Google won’t include facial recognition in Glass for now, but
raised concerns about Google’s future facial recognition plans’
‘…image analysis. This of course raises all sorts of new privacy concerns with things like
identifying people through facial recognition associated with Facebook pictures…’

4.2.6 Automatic Synchronization with Social Media: Linkability
Some users do not like the idea of their devices to immediately synchronize with social
media applications and share their data without being able to control it:

‘Why in the HELL would I ever want to tweet or facebook from a pair of headphones. Isn’t
there enough horror in the world without these in it?’
‘Oh, how nice! Another unsubscribe factor to add to my unsubscribe rule list. Tweets from
headphones? Unsubscribed!’
‘Can’t wait for the trend when not having a Facebook integration is a big thing…’

4.2.7 Visual Occlusion: Non-Disclosure
HMDs that cover the field of view of the user, e.g., Oculus Rift and Sony HMz-T1,
allow users to interact privately because their vision is occluded:

‘Not as a primary display but for those times when I really need some privacy’
‘watch what they want in the privacy of their own rooms.’
‘covered design will enable complete privacy for the viewer.’
‘What I want is a head-mounted replacement for my laptop screen. So I don’t have to have its
size, weight, fragility, power consumption, and lack of privacy when I’m traveling’
‘provide you some privacy for your augmented-reality browsing.’

4.3 Privacy Concerns Across Form Factors

The analysis of the users’ comments collected resulted in 13 privacy concerns for
wearable devices, some of them existing regardless of the form factor. By analyzing
these concerns we noticed that some concerns (4) are device-specific, others (3) are
sensor-specific, few (2) depend on the data collected, or (2) are both device/application-
and data-specific:

• Device-specific Privacy Concerns: social implications (in general, devices that
collect data that do not belong solely to an individual user, impact social aspects of
privacy), criminal abuse (collecting personal data can facilitate criminal abuse),
facial recognition can take place if the appropriate algorithms are available in the
device, social media synchronization are not necessarily a user wish for wearables;

• Sensor-specific Privacy Concerns: location disclosure is associated with GPS
usage, speech disclosure depends on the ability of using audio as input modality
(HMD with a microphone), and surreptitious audio and video recording (HMD with
cameras) depend on how invisible the sensors are embedded in a device, as data can
be captured without it being noticeable;

• Data-specific Privacy Concerns: right to forget (all data that are collected without
the consent, awareness or users’ will should be able to be deleted after collection),
users fear that certain data types when combined could have critical implications;

240 V.G. Motti and K. Caine

• Device/Application and Data-specific Privacy Concerns: discrete display and
visual occlusion depends on devices with a screen available which should enable
users to decide what, when and even if information can be displayed.

Most of the users’ concerns, although identified in the analysis of one specific form
factor, can also relate to different devices, depending usually on the availability of a
specific sensor, feature or application. The location disclosure for instance depends
mainly on a GPS to track users’ location, which is usually embedded in a wrist-mounted
device, but can be also found in an anklet or a helmet. Besides the GPS, other sensors or
data sources can also be used to track the users’ location. Figure 1 illustrates how the
privacy concerns identified can be placed regarding their influencing factors.

5 Discussion

From the analysis of the users’ concerns in wearable privacy we note that several
factors affect the privacy concerns among users. These include: the nature of the data
collected, their respective levels of confidentiality and sensitiveness, ability to share
and disclose the information, and also potential implications (social, criminal, etc.).

The findings indicate that privacy concerns are not necessarily unique to one
specific device or form factor, but are intimately related to the sensors embedded in the
device and the respective data collected. We found that devices that include cameras
and microphones resulted in more and more extreme privacy concerns, followed by
devices with GPS and displays. Activity trackers that monitor heart rate, steps, and
pulse for instance, are usually seen as inoffensive to the users’ privacy, however it is
likely that users are not aware of how such data could be misused by third-parties or
potential privacy implications when the data are collected in a long term or associated
with complementary information.

We also note a significant overlap between the users’ concerns about mobile pri-
vacy and wearable privacy, mostly because the tasks that users can perform with
wearables are also possible with alternative devices, which were previously used in a
large scale (including cameras, pedometers, and tablet PCs). However from the analysis
of the users’ comments we do notice that specific characteristics of wearables
strengthen these concerns. For example, while cameras and microphones were already
employed in mobile devices, wearables make it easier to record data without other
people noticing, so their lack of awareness, compliance and consent becomes more
critical for privacy in the wearable context. Similarly, users have privacy concerns
about location information, primarily because wrist-mounted devices are able to track
their position and immediately publish it online in social media applications to a
network of contacts. Users worry that this group can include malicious users and
people that the individual user does not know or trust.

5.1 Limitations

An extensive list of 38 devices has been covered in the analysis of online comments,
however, because the landscape of wearable devices is shifting very rapidly, obviously
this list did not include every wearable device possible. For example, our analysis of

Users’ Privacy Concerns About Wearables 241

wrist-mounted devices included six devices, mainly armbands and smart watches. In
future work, to complement our research findings, we plan to analyze fitness trackers as
well, as we hypothesize that this specific type of WMD may pose more privacy
concerns than smart watches and armbands currently do.

Although this work focuses mainly on head and wrist-mounted devices, we believe
that chest and back-mounted devices, such as the Polar band for heart rate monitoring
and Lumo back band for posture tracking could also raise privacy concerns. To observe
this, in future work, we plan to verify potential privacy implications that such devices
could involve, and identify potential users’ concerns.

Collecting and analyzing online data is a relatively new research method, and
despite enabling the analysis of large amounts of contents, it involves two main lim-
itations: first, no well-established and validated protocol is available regarding data
collection and analysis, so the method employed in this research is both exploratory
and empirical. Second, little is known about the users’ profiles, as all data collected are
anonymous. However, we can assume that users who post online comments access
frequently the web (forums, IT websites) and are interested in technology (to follow
new trends and news in the domain). Despite being a niche of users, which limits the
generalization of the research findings, they also correspond to actual or potential users
interested in wearable technologies.

6 Conclusion

The analysis of the users’ comments shows that the privacy concerns about wearables
are similar, but in some cases more specific than privacy concerns about mobile devices.
It also shows that users are aware about potential privacy implications, but mainly during
data collection and sharing. The privacy concerns of users are related to the ability of the
wearable device to sense, collect, and store data, which are often private, personal,
confidential or sensitive, and then share these data with unknown or untrusted parties.

Users’ concerns about wearable privacy cover different aspects of the user inter-
action with a wearable, including: disclosure of sensitive information, subtle data
collection (of audio and video), public posts in social media apps (sharing), and lack of
control and awareness regarding who has access to the data collected.

Although the level of privacy concerns of users is similar to that of mobile devices,
the nature of their concerns is critical, showing that because users are somewhat
unaware about potential privacy implications, vendors should alert them about possible
problems, enabling them to apply a fine-grained control about what is collected, when,
and how, and also how data are shared (who has access).

While there is a long way to go to build wearable devices and applications that are
actually privacy-enhanced, this work brings insight in clarifying the users’ concerns
about wearable privacy, aiding to devise better solutions in the future.

Acknowledgments. This material is based upon work supported by the National Science
Foundation under Grant No. 1314342. Any opinions, findings, and conclusions or recommen-
dations expressed in this material are those of the author(s) and do not necessarily reflect the
views of the National Science Foundation.

242 V.G. Motti and K. Caine

References

1. Warren, S.D., Brandeis, L.D.: Right to privacy. Harv. Law Rev. 4, 193–220 (1890)
2. Mancini, C., Thomas,K., Rogers,Y., Price, B.A., Jedrzejczyk, L., Bandara, A.K., Joinson,A.N.,

Nuseibeh, B.: From spaces to places: emerging contexts in mobile privacy. In: Proceedings of
the 11th International Conference on Ubiquitous Computing (UbiComp 2009), pp. 1–10. ACM,
New York (2009). doi:10.1145/1620545.1620547, http://doi.acm.org/10.1145/1620545.
1620547

3. Shklovski, I., Mainwaring, S.D., Skúladóttir, H.H., Borgthorsson, H.: Leakiness and
creepiness in app space: perceptions of privacy and mobile app use. In: Proceedings of the
32nd Annual ACM Conference on Human Factors in Computing Systems (CHI 2014),
pp. 2647–2656. ACM, New York (2014). doi:10.1145/2556288.2557421, http://doi.acm.
org/10.1145/2556288.2557421

4. Ur, B., Wang, Y.: A cross-cultural framework for protecting user privacy in online social
media. In: Proceedings of the 22nd International Conference on World Wide Web
Companion (WWW 2013 Companion), pp. 755–762. International World Wide Web
Conferences Steering Committee, Republic and Canton of Geneva (2013)

5. Gürses, S., Diaz, C.: Two tales of privacy in online social networks. IEEE Secur. Priv. 11(3),
29–37 (2013). doi:10.1109/MSP.2013.47, http://dx.doi.org/10.1109/MSP.2013.47

6. Reidenberg, J.R. et al.: Disagreeable Privacy Policies: Mismatches between Meaning and
Users’ Understanding, 15 August 2014. Fordham Law Legal Studies. At: http://ssrn.com/
abstract=2418297

7. Shay, R., Ion, I., Reeder, R.W., Consolvo, S.: My religious aunt asked why I was trying to
sell her viagra: experiences with account hijacking. In: Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (CHI 2014), pp. 2657–2666. ACM,
New York (2014). doi:10.1145/2556288.2557330, http://doi.acm.org/10.1145/2556288.
2557330

8. Troshynski, E., Lee, C., Dourish, P.: Accountabilities of presence: reframing location-based
systems. In: Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems (CHI 2008), pp. 487–496. ACM, New York (2008). doi:10.1145/1357054.1357133,
http://doi.acm.org/10.1145/1357054.1357133

9. Hoyle, R., Templeman, R., Armes, S., Anthony, D., Crandall, D., Kapadia, A.: Privacy
behaviors of lifeloggers using wearable cameras. In: Proceedings of the 2014 ACM
International Joint Conference on Pervasive and Ubiquitous Computing (UbiComp 2014),
pp. 571–582. ACM, New York (2014). doi:10.1145/2632048.2632079, http://doi.acm.org/
10.1145/2632048.2632079

10. Caine, K.: Exploring everyday privacy behaviors and misclosures. Ph.D. thesis. Georgia
Institute of Technology (2009)

11. Schaub, F.M.: Dynamic privacy adaptation in ubiquitous computing. Ph.D. thesis.
Universität Ulm (2014)

12. Könings, B., Schaub, F., Weber, M.: Who, how, and why? Enhancing privacy awareness in
ubiquitous computing. In: 2013 IEEE International Conference on Pervasive Computing and
Communications Workshops (PERCOM Workshops), pp. 364–367 (2013). doi:10.1109/
PerComW.2013.6529517

13. Starner, T.: The challenges of wearable computing: part 1. In: IEEE Micro 21(4), 44–52
(2001). doi:10.1109/40.946681

14. Starner, T.: The challenges of wearable computing: part 2. In: IEEE Micro 21(4), 54–67
(2001). doi:10.1109/40.946683

Users’ Privacy Concerns About Wearables 243

http://dx.doi.org/10.1145/1620545.1620547
http://doi.acm.org/10.1145/1620545.1620547
http://doi.acm.org/10.1145/1620545.1620547
http://dx.doi.org/10.1145/2556288.2557421
http://doi.acm.org/10.1145/2556288.2557421
http://doi.acm.org/10.1145/2556288.2557421
http://dx.doi.org/10.1109/MSP.2013.47
http://dx.doi.org/10.1109/MSP.2013.47
http://ssrn.com/abstract=2418297
http://ssrn.com/abstract=2418297
http://dx.doi.org/10.1145/2556288.2557330
http://doi.acm.org/10.1145/2556288.2557330
http://doi.acm.org/10.1145/2556288.2557330
http://dx.doi.org/10.1145/1357054.1357133
http://doi.acm.org/10.1145/1357054.1357133
http://dx.doi.org/10.1145/2632048.2632079
http://doi.acm.org/10.1145/2632048.2632079
http://doi.acm.org/10.1145/2632048.2632079
http://dx.doi.org/10.1109/PerComW.2013.6529517
http://dx.doi.org/10.1109/PerComW.2013.6529517
http://dx.doi.org/10.1109/40.946681
http://dx.doi.org/10.1109/40.946683

15. Raij, A., Ghosh, A., Kumar, S., Srivastava, M.: Privacy risks emerging from the adoption of
innocuous wearable sensors in the mobile environment. In: Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (CHI 2011), pp. 11–20. ACM, New
York (2011). doi:10.1145/1978942.1978945, http://doi.acm.org/10.1145/1978942.1978945

16. Motti, V.G., Caine, K.: Understanding the wearability of head-mounted devices from a
human-centered perspective. In: Proceedings of the 2014 ACM International Symposium on
Wearable Computers (ISWC 2014), pp. 83–86. ACM, New York (2014). doi:10.1145/
2634317.2634340, http://doi.acm.org/10.1145/2634317.2634340

17. Thomaz, E., Parnami, A., Bidwell, J., Essa, I., Abowd, G.D.: Technological approaches for
addressing privacy concerns when recognizing eating behaviors with wearable cameras. In:
Proceedings of the 2013 ACM International Joint Conference on Pervasive and Ubiquitous
Computing (UbiComp 2013), pp. 739–748. ACM, New York (2013). doi:10.1145/2493432.
2493509, http://doi.acm.org/10.1145/2493432.2493509

18. Jacob, C., Dumas, B.: Designing for intimacy: how fashion design can address privacy
issues in wearable computing. In: Proceedings of the 2014 ACM International Symposium
on Wearable Computers: Adjunct Program (ISWC 2014 Adjunct), pp. 185–192. ACM, New
York (2014). doi:10.1145/2641248.2641353, http://doi.acm.org/10.1145/2641248.2641353

19. Roesner, F., Kohno, T., Molnar, D.: Security and privacy for augmented reality systems.
Commun. ACM, 57(4), 88–96 (2014). doi:10.1145/2580723.2580730, http://doi.acm.org/
10.1145/2580723.2580730

20. Mcnaney, R., Vines, J., Roggen, D., Balaam, M., Zhang, P., Poliakov, I., Olivier, P.:
Exploring the acceptability of google glass as an everyday assistive device for people with
parkinson. In: Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems (CHI 2014), pp. 2551–2554. ACM, New York (2014). doi:10.1145/2556288.
2557092, http://doi.acm.org/10.1145/2556288.2557092

21. Berendt, B., Günther, O., Spiekermann, S.: Privacy in e-commerce: stated preferences vs.
actual behavior. In: Commun. ACM 48(4), 101–106 (2005). doi:10.1145/1053291.1053295

22. Nguyen, D., Mynatt, E.: Privacy mirrors: understanding and shaping socio-technical
ubiquitous computing systems. Georgia Institute of Technology GVU Technical Report
(GIT-GVU-02-16) (2002)

23. Solove, D.J.: Understanding Privacy. Harvard University Press, May 2008. GWU Legal
Studies Research Paper No. 420, GWU Law School Public Law Research Paper No. 420.
SSRN: http://ssrn.com/abstract=1127888 (2008)

24. Hedegaard, S., Simonsen, J.: Extracting usability and user experience information from
online user reviews. In: Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems (CHI 2013), pp. 2089–2098. ACM, New York (2013). doi:10.1145/
2470654.2481286, http://doi.acm.org/10.1145/2470654.2481286

25. Iacob, C., Veerappa, V., Harrison, R.: What are you complaining about?: a study of online
reviews of mobile applications. In: Proceedings of the 27th International BCS Human
Computer Interaction Conference (BCS-HCI 2013). British Computer Society, Swinton, p. 6
(2013). Article 29

26. Fu, B., Lin, J., Li, L., Faloutsos, C.: Why people hate your app: making sense of user feedback
in a mobile app store. In: Proceedings of the 19th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD 2013), pp. 1276–1284. ACM, New York
(2013). doi:10.1145/2487575.2488202, http://doi.acm.org/10.1145/2487575.2488202

27. Khalid, H., Shihab, E., Nagappan, M., Hassan, A.: What do mobile app users complain about?
a study on free iOS apps. In: IEEE Softw. 32(3), 70–77 (2015). doi:10.1109/MS.2014.50

28. Acquisti, A., Gross, R., Stutzman, F.: Faces of facebook: privacy in the age of augmented
reality. In: BlackHat Webcast Series USA (2011)

244 V.G. Motti and K. Caine

http://dx.doi.org/10.1145/1978942.1978945
http://doi.acm.org/10.1145/1978942.1978945
http://dx.doi.org/10.1145/2634317.2634340
http://dx.doi.org/10.1145/2634317.2634340
http://doi.acm.org/10.1145/2634317.2634340
http://dx.doi.org/10.1145/2493432.2493509
http://dx.doi.org/10.1145/2493432.2493509
http://doi.acm.org/10.1145/2493432.2493509
http://dx.doi.org/10.1145/2641248.2641353
http://doi.acm.org/10.1145/2641248.2641353
http://dx.doi.org/10.1145/2580723.2580730
http://doi.acm.org/10.1145/2580723.2580730
http://doi.acm.org/10.1145/2580723.2580730
http://dx.doi.org/10.1145/2556288.2557092
http://dx.doi.org/10.1145/2556288.2557092
http://doi.acm.org/10.1145/2556288.2557092
http://dx.doi.org/10.1145/1053291.1053295
http://ssrn.com/abstract=1127888
http://dx.doi.org/10.1145/2470654.2481286
http://dx.doi.org/10.1145/2470654.2481286
http://doi.acm.org/10.1145/2470654.2481286
http://dx.doi.org/10.1145/2487575.2488202
http://doi.acm.org/10.1145/2487575.2488202
http://dx.doi.org/10.1109/MS.2014.50

On Vulnerabilities of the Security Association
in the IEEE 802.15.6 Standard

Mohsen Toorani(B)

Department of Informatics, University of Bergen, Bergen, Norway
mohsen.toorani@uib.no

Abstract. Wireless Body Area Networks (WBAN) support a variety
of real-time health monitoring and consumer electronics applications.
The latest international standard for WBAN is the IEEE 802.15.6. The
security association in this standard includes four elliptic curve-based
key agreement protocols that are used for generating a master key. In
this paper, we challenge the security of the IEEE 802.15.6 standard by
showing vulnerabilities of those four protocols to several attacks. We
perform a security analysis on the protocols, and show that they all have
security problems, and are vulnerable to different attacks.

Keywords: Wearable security · Cryptographic protocols · Authenti-
cated Key Exchange · Elliptic curves · Attacks

1 Introduction

Advances in wireless communication and embedded computing technologies,
such as wearable and implantable biosensors, have enabled the design, devel-
opment, and implementation of Body Area Networks (BAN) [1]. A BAN, also
referred to as a Wireless Body Area Network (WBAN) or a Body Sensor Network
(BSN), is a wireless network of wearable computing devices. BAN devices may be
embedded inside the body (implants), may be mounted on the body (wearable
technology), or may be accompanying devices that humans can carry in clothes
pockets, by hand or in various bags. WBAN can be used for many applications
such as military, ubiquitous health care, sport, and entertainment [1,2]. WBANs
have a huge potential to revolutionize the future of health care monitoring by
diagnosing many life-threatening diseases, and providing real-time patient mon-
itoring [2]. WBANs may interact with the Internet and other existing wireless
technologies.

The latest standardization of WBANs is the IEEE 802.15.6 standard [3]
which aims to provide an international standard for low power, short range, and
extremely reliable wireless communication within the surrounding area of the
human body, supporting a vast range of data rates for different applications.

The network topology consists of nodes and hubs. A node is an entity that con-
tains a Medium Access Control (MAC) sublayer and a physical (PHY) layer, and
optionally provides security services. A hub is an entity that possesses a node’s
c© International Financial Cryptography Association 2015
M. Brenner et al. (Eds.): FC 2015 Workshops, LNCS 8976, pp. 245–260, 2015.
DOI: 10.1007/978-3-662-48051-9 18

246 M. Toorani

functionality, and coordinates the medium access and power management of the
nodes. Nodes can be classified into different groups based on their functionality
(personal devices, sensors, actuators), implementation (implant nodes, body sur-
face nodes, external nodes) and role (coordinators, end nodes, relays) [2].

Although security is a high priority in most networks, little study has been
done in this area for WBANs. As WBANS are resource-constrained in terms of
power, memory, communication rate and computational capability, security solu-
tions proposed for other networks may not be applicable to WBANs. Confiden-
tiality, authentication, integrity, and freshness of data together with availability
and secure management are the security requirements in WBAN [2]. A security
association is a procedure in the IEEE 802.15.6 standard to identify a node and
a hub to each other, to establish a new Master Key (MK) shared between them,
or to activate an existing MK pre-shared between them. The security associ-
ation in the IEEE 802.15.6 standard is based on four key agreement protocols
that are presented in the standard [3].

Authenticated Key Exchange (AKE) and Password-Authenticated Key
Exchange (PAKE) protocols aim to exchange a cryptographic session key
between legitimate entities in an authenticated manner. Several security proper-
ties must be satisfied by AKE and PAKE protocols, and they should obviously
withstand well-known attacks. Many protocols have been proposed in the liter-
ature, but some of them have been shown to have security problems [4–6]. It is
desirable for AKE protocols to provide known-key security, forward secrecy, key
control, and resilience to well-known attacks such as Key-Compromise Imperson-
ation (KCI) and its variants, unknown key-share (UKS), replay, and Denning-
Sacco attacks. PAKE protocols must also be resilient to dictionary attacks [7,8].

In this paper, we perform a security analysis on four key agreements protocols
that are used in the security association process of the IEEE 802.15.6 standard
[3]. We challenge the security of the IEEE 802.15.6 standard by showing vul-
nerabilities of those four protocols to several attacks. Excluding vulnerability
of the first protocol to the impersonation attack which has been implied in the
standard, no attack or security vulnerability has been reported in the standard
or literature. All the protocols are available in the latest version of the IEEE
802.15.6 standard. The rest of this paper is organized as follows. We review the
security structure of the IEEE 802.15.6 standard in Sect. 2, these key agreement
protocols in Sect. 3, and report their security problems in Sect. 4.

2 Security Structure of the IEEE 802.15.6 Standard

The Security hierarchy of the IEEE 802.15.6 standard is depicted in Fig. 1. All
nodes and hubs must choose three security levels: unsecured communication
(level 0), authentication but no encryption (level 1), and authentication and
encryption (level 2). During the security association process, a node and a hub
need to jointly select a suitable security level. In unicast communication, a pre-
shared or a new MK is activated. A Pairwise Temporal Key (PTK) is then
generated that is used only once per session. In multicast communication, a

On Vulnerabilities of the Security Association in the IEEE 802.15.6 Standard 247

Fig. 1. Security hierarchy in IEEE 802.15.6 Standard [3]

Fig. 2. MAC and security state diagrams in IEEE 802.15.6 Standard [3]

Group Temporal Key (GTK) is generated that is shared with the corresponding
group [3]. All nodes and hubs in a WBAN have to go through certain stages at
the MAC layer before data exchange. The security state diagrams of the IEEE
802.15.6 Standard for secured and unsecured communication are depicted in
Fig. 2. In a secured communication, a node can be in one of following states [3]:

– Orphan: The initial state where the node does not have any relationship with
the hub for secured communication. The node should activate a pre-shared
MK or share a new MK with the hub. They cannot proceed to the Associated
state if they fail to activate/establish a shared MK.

– Associated : The node holds a shared MK with the hub for their PTK cre-
ation. The node and hub are allowed to exchange PTK frames with each
other to confirm the possession of a shared MK, create a PTK and transit
to the Secured state. If the MK is invalid/missing during the PTK creation,
they will move back to the Orphan state.

– Secured : The node holds a PTK with the hub. The node and hub can exchange
security disassociation frames, connection assignment secure frames, connec-
tion request and control unsecured frames. The node can exchange Connection
Request and Connection Assignment frames with the hub to form a connec-
tion, and transit to the Connected state.

248 M. Toorani

– Connected : The node holds an assigned Connected NID, a wakeup arrange-
ment, and optionally one or more scheduled and unscheduled allocations with
the hub for abbreviated node addressing, desired wakeup, and optionally
scheduled and unscheduled access. The node and hub are not allowed to send
any unsecured frame to each other, other than unsecured control frames if
authentication of control type frames was not selected during the association.

3 Key Agreement Protocols in the IEEE 802.15.6
Standard

The security association in the 802.15.6 standard involves a Master Key (MK)
which is generated using one of four two-party key agreement protocols, pro-
posed in the standard. Those four protocols, that will be referred to as protocols
I-IV in this paper, are depicted in Figs. 3, 4, 5 and 6. The goal is to establish
a new MK between a node and a hub. The node and hub are denoted by A
and B, respectively. For simplicity, we have used simpler notations than those
of the standard [3]. We have deleted Immediate Acknowledgement (I-Ack) mes-
sages that B sends to A, after receiving each frame from A. I-Ack is kind of
control type frames, and consists of current allocation slot number (8 bits) and
current allocation slot offset (16 bits). We deleted I-Ack because they are sent in
clear. Any information sent in clear, can be deleted from the security analysis.
Protocols I-IV are similar, but vary in details and requirements. Protocol I is
unauthenticated, and does not have any special requirement. Protocol II requires
pre-shared and out-of-band transfer of a node’s public key to the hub. Then, it
is assumed that a hub obtains a node’s public key via a separate protected chan-
nel, and a hub needs to save public keys of the nodes. Protocol III requires that
a node and hub pre-share a password (PW). Protocol IV requires that A and
B each has a display that shows a decimal number. It also requires that before
accepting a new MK, human user(s) verify that both displays show the same
number.

Protocols I-IV are based on elliptic curve public key cryptography. The
domain parameters consist of an elliptic curve with Weierstrass equation of the
form y2 = x3 + ax + b, defined over the finite field GF (p) where p is a prime
number. In order to make the elliptic curve non-singular, a, b ∈ GF (p) should
satisfy 4a3 + 27b2 �= 0. There are other conditions that should be satisfied in
order to avoid known attacks on elliptic curve-based schemes [9]. The base point
G in the elliptic curve is of order n, where n × G = O in which O denotes the
point at infinity. The IEEE 802.15.6 standard suggests using the Curve P-256 in
FIPS Pub 186-3. Values of a, b, p, n and G are public, and given in [3].

The private keys shall be 256-bit random integers, chosen independently from
the set of integers {1, ..., n − 1}. The private key of A and B is denoted by
SKA and SKB , respectively. The corresponding public keys are generated as
PKA = (PKAX , PKAY) = SKA×G and PKB = (PKBX , PKBY) = SKB×G.

The IEEE 802.15.6 standard does not include having a digital certificate
for public keys. Public keys are self-generated by involved parties, and are not

On Vulnerabilities of the Security Association in the IEEE 802.15.6 Standard 249

F
ig
.
3
.
U

n
a
u
th

en
ti

ca
te

d
k
ey

a
g
re

em
en

t
p
ro

to
co

l
(P

ro
to

co
l
I)

.

250 M. Toorani

F
ig
.
4
.
H

id
d
en

p
u
b
li
c

k
ey

tr
a
n
sf

er
a
u
th

en
ti

ca
te

d
k
ey

a
g
re

em
en

t
p
ro

to
co

l
(P

ro
to

co
l
II

).

On Vulnerabilities of the Security Association in the IEEE 802.15.6 Standard 251

F
ig
.
5
.
P
a
ss

w
o
rd

a
u
th

en
ti

ca
te

d
a
ss

o
ci

a
ti

o
n

p
ro

ce
d
u
re

(P
ro

to
co

l
II

I)
.

252 M. Toorani

F
ig
.
6
.
D

is
p
la

y
a
u
th

en
ti

ca
te

d
a
ss

o
ci

a
ti

o
n

p
ro

ce
d
u
re

(P
ro

to
co

l
IV

).

On Vulnerabilities of the Security Association in the IEEE 802.15.6 Standard 253

accompanied by digital certificates. It is because nodes are likely to be severely
resource-constrained, and hence cannot store certificates or perform the certifi-
cate validation. The process of certificate validation consists of verifying the
integrity and authenticity of the certificate by verifying the certificate author-
ity’s signature on the certificate, verifying that the certificate is not expired, and
verifying that the certificate is not revoked [9].

The standard specifies that the node and the hub will abort execution of
the protocols if the received public key, sent from the other party, is not a valid
public key. A received public key PKi = (PKiX , PKiY) shall be treated valid
only if it is a non-infinity point (i.e. PKi �= O) on the defined elliptic curve,
i.e. PKiX and PKiY satisfy the elliptic curve equation given above. This has
been explained in protocol descriptions in the IEEE 802.15.6 standard, but they
are absent in the corresponding figures of the standard. We do not show such
verifications in Figs. 3, 4, 5 and 6 either. It is noteworthy that validation of elliptic
curve public keys includes more steps than those mentioned in the standard. In
addition to those conditions, one should check that PKiX and PKiY are properly
represented elements in GF (p), and that n × PKi = O. The last condition is
implied by the other three conditions if the cofactor of the elliptic curve h = 1,
which is the case for curves over prime finite fields [10].

In protocols I-IV, B always sends his public key PKB in clear. In Protocols
I and IV, A sends her public key in clear. In Protocols II, A does not send her
public key, as PKA is pre-shared with B. However, in protocol III, A first sends
a masked public key PK ′

A = PKA −Q(PW) in which PW is a positive integer,
converted from the pre-shared password between A and B. PW is converted
according to the IEEE 1363-2000 standard from the UTE-16BE representation,
specified in ISO/IEC 10646:2003, by treating the leftmost octet as the octet
containing the Most Significant Bits (MSB). The Q(.) function is a mapping
which converts the integer PW to the point Q(PW) = (QX , QY) on the elliptic
curve in which QX = 232PW + MX where MX is the smallest nonnegative
integer such that QX becomes the X-coordinate of a point on the elliptic curve.
QY is an even positive integer, and is the Y-coordinate of that point. In protocol
III, A shall choose a private key SKA such that the X-coordinate of PKA is not
equal to the X-coordinate of Q(PW).

CMAC(K,M,L) represents the L-bit output of the Cipher-based Mes-
sage Authentication Code (CMAC), applied under key K to message M . The
standard suggests to use CMAC with the AES forward cipher function as
specified in the NIST SP800-38B, and to use a 128-bit key as specified in
FIPS197. LMBL(S) and RMBL(S) designates the L leftmost and the L right-
most bits of the bit string S, respectively. X(P) denotes the X-coordinate
of point P on the elliptic curve, i.e. X(P) = X(PX , PY) = PX . The sign
|| denotes concatenation of bit strings that are converted according to the
IEEE 1363-2000 standard. BS2DI(BS) converts the bit string BS to a pos-
itive decimal integer for display. SSS is the Security Suite Selector (16 bits),
AC is the Association Control (16 bits), and XX is X0000000000000000.
Security Suite Selector specifies type of cryptographic algorithms and protocols

254 M. Toorani

that will be used during the protocol execution. It consists of the type of secu-
rity association protocol (3 bits), i.e. binary representation of the protocol type
according to our numbering I-IV, security level (2 bits), Control Frame Authen-
tication (1 bit), cipher function (4 bits), and 6 bits reserved for future uses.
Association Control consists of Association Sequence Number (4 bits), Associa-
tion Status (4 bits), and 8 bits reserved for future. SSS is fixed during a protocol
execution, but AC will be different for each message. This is because AC includes
the Association Sequence Number which is increased by one after each frame is
sent during a protocol execution. Excluding I-Ack frames that are deleted from
the protocols, there are four paths between A and B in all protocols.

4 Security Problems

In this section, we show that protocols I-IV are vulnerable to several attacks.
All the protocols are vulnerable to the KCI attack, and they do not provide
the forward secrecy. Furthermore, protocols I, III and IV are vulnerable to the
impersonation attack. Protocol III is also vulnerable to an offline dictionary
attack. Excluding vulnerability of protocol I to the impersonation attack which
has been implied in the standard, no attack has been reported on the protocols,
and they are available in the IEEE 802.15.6 standard.

The impersonation attack is feasible because public keys are self-generated
by involved parties, and they are not accompanied by digital certificates due
to resource constraints in the nodes. Although this is not recommended in the
standard, if one can use certified public keys, or we can have a lightweight PKI
[11,14], this can prevent the impersonation attacks. However, all the protocols
will still be vulnerable to the KCI attack. The KCI attack is a variant of the
impersonation attack, and has been considered in the eCK security model [12] for
AKE protocols. Resilience to the KCI attack is an important security attribute
for AKE protocols. If the private key of an entity A is compromised, an adver-
sary M can impersonate A in one-factor authentication protocols. However,
such compromise should not enable M to impersonate other honest entities in
communication with A. For the sake of briefness, we skip description of the KCI
attack on protocols I, III and IV, because they are already vulnerable to the
impersonation attack which is stronger than the KCI attack.

Forward secrecy is an important security attribute in AKE protocols. If an
entity’s private key has been compromised, it should not affect the security of
session keys that have been established before the compromise. We have also the
notion of Perfect Forward Secrecy (PFS) which is a bit stronger than the forward
secrecy. PFS means that the established session keys should remain secure even
after compromising the private keys of all the entities that are involved in the
protocol. We have the concept of weak-PFS which only allows a passive attack
after compromise of all involved private keys.

Protocols I-IV use elliptic curve cryptography. Then, it is crucial to have
the public key validation. Upon receiving an ephemeral or static public key, the
recipient entity must validate it. Otherwise, the protocol would be vulnerable

On Vulnerabilities of the Security Association in the IEEE 802.15.6 Standard 255

to further attacks. In description of protocols I-IV in the IEEE 802.15.6 stan-
dard, it has been mentioned that public keys should be validated. However, such
validations are absent in corresponding figures in the standard. If one imple-
ments the protocols according to the standard’s figures, and does not consider
public key validations, further security vulnerabilities will arise. There will be
extra scenarios for impersonation attacks on the protocols. Furthermore, all the
protocols will be vulnerable to an invalid-curve attack [13] whereby an attacker
can extract the private key of another entity. We do not consider those extra
vulnerabilities, and strongly recommend to validate public keys.

In the rest of this paper, E denotes the adversary in a passive attack, and M
denotes the adversary in an active attack. The order of protocols and attacks
does not imply any preference or importance. The numbering is according to the
standard, and will be included in the SSS during protocol executions.

4.1 Protocol I

Protocol I is an unauthenticated key exchange protocol. It is trivially vulnerable
to an impersonation attack, but we consider it just for completeness of our
security analysis. Such vulnerability has been implied in the standard only for
this protocol, where the protocol is introduced as a protocol “without the benefit
of keeping third parties from launching impersonation attacks” [3]. Protocol I
does not provide the forward secrecy.

Impersonation Attack: Here is an impersonation attack on protocol I, in
which M impersonates A:

– M selects a private key SKM , and generates the corresponding public key as
PKM = (PKMX , PKMY) = SKM ×G. M selects a 128-bit random number
NM , and sends {IDB ||IDA||SSS||AC||NM ||PKMX ||PKMY ||XX} to B.

– B selects a 128-bit random number NB , and sends {IDA||IDB ||SSS||AC||NB

||PKBX ||PKBY ||XX} to M.
– B computes DHKey = X(SKB × PKM), T ′

1 = RMB128(DHKey), T ′
2 =

CMAC(T ′
1, IDA||IDB ||NM ||NB ||SSS, 64), and T ′

3 = CMAC(T ′
1, IDB ||IDA||

NB ||NM ||SSS, 64). B sends {IDA||IDB ||SSS||AC||NB ||PKBX ||PKBY ||
T ′
2} to M.

– M computes DHKey = X(SKM × PKB), T1 = RMB128(DHKey), T2 =
CMAC(T1, IDA||IDB ||NM ||NB ||SSS, 64), and T3 = CMAC(T1, IDB ||IDA

||NB ||NM ||SSS, 64). M sends {IDB ||IDA||SSS||AC||NM ||PKMX ||PKMY

||T3} to B. M computes T4 = LMB128(DHKey), and generates the master
key MK = CMAC(T4, NM ||NB , 128).

– B verifies that T3 = T ′
3, computes T ′

4 = LMB128(DHKey), and generates the
master key MK = CMAC(T ′

4, NM ||NB , 128).

M and B reach to the same MK at the end. M could successfully imper-
sonate A. A similar scenario for an impersonation attack can be written where
M impersonates B in communication with A.

256 M. Toorani

Lack of Forward Secrecy: Here we show that Protocol I does not provide the
forward secrecy, and then does not provide the weak-PFS or PFS:

– Assume that SKB has been compromised. E , that has eavesdropped and saved
all the messages exchanged through previous runs of the protocol, knows PKA,
NA and NB . E computes DHKey = X(SKB×PKA), T ′

4 = LMB128(DHKey),
and obtains the established key MK = CMAC(T ′

4, NA||NB , 128).
– If SKA has been compromised, E computes DHKey = X(SKA × PKB),
T4 = LMB128(DHKey), and obtains MK = CMAC(T4, NA||NB , 128).

4.2 Protocol II

Protocol II requires out-of-bank transfer of a node’s public key to the hub. It is
vulnerable to the KCI attack, and lacks the forward secrecy.

Key Compromise Impersonation Attack: Protocol II is vulnerable to the
KCI attack. Here is the attack scenario in which M has SKA and impersonates
B. As the public key of B is sent in clear, we can assume that M has obtained
PKB by eavesdropping a previous protocol run.

– A selects a 128-bit random number NA, and sends {IDB ||IDA||SSS||AC||NA

||0||0||XX} to B. M hijacks the session, and tries to impersonate B.
– M selects a 128-bit random number NM , and sends {IDA||IDB ||

SSS||AC||NM ||PKBX ||PKBY ||XX} to A.
– M has SKA. M computes DHKey = X(SKA × PKB), T ′

1 = RMB128

(DHKey), T ′
2 = CMAC(T ′

1, IDA||IDB ||NA||NM ||SSS, 64), and T ′
3 =

CMAC(T ′
1, IDB ||IDA||NM ||NA||SSS, 64). M sends {IDA||IDB ||SSS||AC||

NM ||PKBX ||PKBY ||T ′
2} to A.

– A computes DHKey = X(SKA × PKB), T1 = RMB128(DHKey), and
T2 = CMAC(T1, IDA||IDB ||NA||NM ||SSS, 64). A verifies that T2 = T ′

2,
and computes T3 = CMAC(T1, IDB ||IDA||NM ||NA||SSS, 64). A sends
{IDB ||IDA||SSS||AC||NA||0||0||T3} to M.

– A computes T4 = LMB128(DHKey), and generates the master key MK =
CMAC(T4, NA||NM , 128).

– M computes T ′
4 = LMB128(DHKey), and generates the master key MK =

CMAC(T ′
4, NA||NM , 128).

M and A compute the same MK. M could successfully impersonate B.

Lack of Forward Secrecy: Protocol II does not provide the forward secrecy.
As it is assumed that PKA has been securely shared with B, we just consider the
case that SKA has been compromised. We show how E can extract previously
established MK from the eavesdropped messages which proves lack of forward
secrecy and PFS: As PKB , NA and NB are sent in clear, we can assume that
they are eavesdropped and saved by E . E computes DHKey = X(SKA ×PKB),
T4 = LMB128(DHKey), and obtains MK = CMAC(T4, NA||NB , 128).

On Vulnerabilities of the Security Association in the IEEE 802.15.6 Standard 257

4.3 Protocol III

Protocol III is a PAKE protocol. It is vulnerable to impersonation and offline
dictionary attacks. It does not provide the forward secrecy.

Impersonation Attack: For performing an impersonation attack to Protocol
III, M first eavesdrops messages between A and B in a protocol run. M then
obtains PK ′

A and PKA from messages (1) and (4) of the protocol. M computes
Q′ = PKA −PK ′

A, and uses Q′ for an impersonation attack. Note that we have
Q′ = Q(PW). Here is an impersonation attack on protocol III, in which M
impersonates A:

– M selects a private key SKM , and generates the corresponding public key as
PKM = (PKMX , PKMY) = SKM × G. M computes PK ′

M = PKM − Q′.
If PK ′

M = O, M selects a new private and public key and continues the
process until PK ′

M �= O. M selects a 128-bit random number NM , and sends
{IDB ||IDA||SSS||AC||NM ||PK ′

MX ||PK ′
MY ||XX} to B.

– B selects a 128-bit random number NB , and sends {IDA||IDB ||SSS||AC||NB

||PKBX ||PKBY ||XX} to M.
– B calculates PKM = PK ′

M + Q(PW), and computes DHKey = X(SKB ×
PKM), T ′

1 = RMB128(DHKey), T ′
2 = CMAC(T ′

1, IDA||IDB ||NM ||
NB ||SSS, 64), and T ′

3 = CMAC(T ′
1, IDB ||IDA||NB ||NM ||SSS, 64). B sends

{IDA||IDB

||SSS||AC||NB ||PKBX ||PKBY ||T ′
2} to M.

– M computes DHKey = X(SKM × PKB), T1 = RMB128(DHKey), T2 =
CMAC(T1, IDA||IDB ||NM ||NB ||SSS, 64), and T3 = CMAC(T1, IDB ||IDA

||NB ||NM ||SSS, 64). M sends {IDB ||IDA||SSS||AC||NM ||PKMX ||PKMY

||T3} to B. M computes T4 = LMB128(DHKey), and generates the master
key MK = CMAC(T4, NM ||NB , 128).

– B verifies that T3 = T ′
3, computes T ′

4 = LMB128(DHKey), and generates the
master key MK = CMAC(T ′

4, NM ||NB , 128).

M and B reach to the same MK at the end. M could successfully imper-
sonate A. A similar scenario for an impersonation attack can be written where
M impersonates B in communication with A.

Offline Dictionary Attack: Protocol III is a PAKE protocol with two-factor
authentication. It requires both public keys and a shared password. For PAKE
protocols, it is crucial to provide resilience to offline dictionary attacks. If an
adversary could guess a password, he should not be able to verify his guess
offline. For performing a dictionary attack on protocol III, it is sufficient that E
eavesdrops messages between A and B in a protocol run. E then obtains PK ′

A

and PKA from messages (1) and (4) of the protocol. E computes PKA−PK ′
A =

Q(PW) = (QX , QY). As QX = 232PW + MX and QX is known, this can be
used as a verifier. E can then try probable passwords from a dictionary of most

258 M. Toorani

probable passwords, and check which password PW will map to QX . This can
be done very fast, and E can find the password PW that is shared between A
and B.

Lack of Forward Secrecy: Protocol III does not provide the forward secrecy.
As PKB , NA and NB are sent in clear, we can assume that they are eaves-
dropped and saved by E . If SKA is compromised, E computes DHKey =
X(SKA × PKB), T4 = LMB128(DHKey), and obtains the master key MK =
CMAC(T4, NA||NB , 128).

4.4 Protocol IV

Protocol IV is vulnerable to an impersonation attack, and lacks the forward
secrecy.

Impersonation Attack: Here is an impersonation attack on protocol IV, in
which M impersonates A:

– M selects a private key SKM , and generates the corresponding public key as
PKM = (PKMX , PKMY) = SKM ×G. M selects a 128-bit random number
NM , and computes WM = CMAC(NM , IDA||IDB ||PKMX ||PKMY , 128).
M sends {IDB ||IDA||SSS||AC||WM ||PKMX ||PKMY ||XX} to B.

– B selects a 128-bit random number NB , and sends {IDA||IDB ||SSS||AC||NB

||PKBX ||PKBY ||XX} to M.
– B computes DHKey = X(SKB × PKM), T ′

1 = RMB128(DHKey), T ′
2 =

CMAC(T ′
1, IDA||IDB ||WM ||NB ||SSS, 64), and T ′

3 = CMAC(T ′
1, IDB ||IDA

||NB ||WM ||SSS, 64). B sends {IDA||IDB ||SSS||AC||NB ||PKBX ||PKBY ||
T ′
2} to M.

– M computes DHKey = X(SKM × PKB), T1 = RMB128(DHKey), T2 =
CMAC(T1, IDA||IDB ||WM ||NB ||SSS, 64), and T3 = CMAC(T1, IDB ||IDA

||NB ||WM ||SSS, 64). M sends {IDB ||IDA||SSS||AC||NM ||PKMX ||PKMY

||T3} to B.
– DisplayM will show BS2DI(D) in which D = CMAC(NM ||NB ,

NB ||NM ||T1, 16).
– B verifies that T3 = T ′

3, computes W ′
M = CMAC(NM , IDA||IDB ||PKMX ||

PKMY , 128), and verifies that WM = W ′
M . DisplayB will show BS2DI(D′)

where D′ = CMAC(NM ||NB , NB ||NM ||T1, 16).
– As DisplayM = DisplayB , B computes T ′

4 = LMB128(DHKey) and MK =
CMAC(T ′

4, NM ||NB , 128). M computes T4 = LMB128(DHKey) and MK =
CMAC(T4, NM ||NB , 128).

M and B compute the same MK. M could successfully impersonate A.
A similar scenario can be written for an impersonation attack where M imper-
sonates B in communication with A.

On Vulnerabilities of the Security Association in the IEEE 802.15.6 Standard 259

Lack of Forward Secrecy: Protocol IV does not provide the forward secrecy.
As PKA, PKB , NA and NB are sent in clear, we can assume that they are
eavesdropped and saved by E .

– If SKB has been compromised, E computes DHKey = X(SKB × PKA),
T ′
4 = LMB128(DHKey), and obtains MK = CMAC(T ′

4, NA||NB , 128).
– If SKA has been compromised, E computes DHKey = X(SKA × PKB),
T4 = LMB128(DHKey), and obtains MK = CMAC(T4, NA||NB , 128).

5 Conclusion

The security of the IEEE 802.15.6 standard for WBAN [3] has been challenged
in this paper. We analyzed the security of four key agreement protocols that
are used for establishing a master key in the security association process of the
standard. We showed that all four protocols have security problems. They are
vulnerable to the KCI attack, and lack the forward secrecy. Furthermore, the
first, third and fourth protocols are vulnerable to the impersonation attack. The
third protocol is also vulnerable to the offline dictionary attack. Further attacks
will be feasible if public keys are not validated. The standard aims to provide the
confidentiality, authentication, integrity, privacy protection and replay defence.
However, our attacks show that the confidentiality and authentication are not
achieved by the current security mechanisms in the standard.

Acknowledgement. The author would like to thank Øyvind Ytrehus and the anony-
mous reviewers for their comments.

References

1. Chen, M., Gonzalez, S., Vasilakos, A., Cao, H., Leung, V.C.: Body area networks:
a survey. Mob. Netw. Appl. 16(2), 171–193 (2011)

2. Movassaghi, S., Abolhasan, M., Lipman, J., Smith, D., Jamalipour, A.: Wireless
body area networks: a survey. Commun. Surv. Tutorials, IEEE 16(3), 1658–1686
(2014)

3. Association, T.I.S.: IEEE P802.15.6-2012 Standard for Wireless Body Area Net-
works (2012). http://standards.ieee.org/findstds/standard/802.15.6-2012.html

4. Krawczyk, H.: HMQV: a high-performance secure diffie-hellman protocol. In:
Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 546–566. Springer, Hei-
delberg (2005)

5. Menezes, A.: Another look at HMQV. Math. Cryptology JMC 1(1), 47–64 (2007)
6. Toorani, M.: On continuous after-the-fact leakage-resilient key exchange. In: Pro-

ceedings of the 2nd Workshop on Cryptography and Security in Computing Sys-
tems (CS2 2015), ACM (January 2015)

7. Toorani, M.: Cryptanalysis of a new protocol of wide use for email with perfect
forward secrecy. Secur. Commun. Netw. 8(4), 694–701 (2015)

8. Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated key exchange secure
against dictionary attacks. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol.
1807, pp. 139–155. Springer, Heidelberg (2000)

http://standards.ieee.org/findstds/standard/802.15.6-2012.html

260 M. Toorani

9. Toorani, M., Beheshti, A.: A directly public verifiable signcryption scheme based
on elliptic curves. In: Proceedings of the 14th IEEE Symposium on Computers and
Communications (ISCC 2009), pp. 713–716 (2009)

10. Hankerson, D., Vanstone, S., Menezes, A.J.: Guide to Elliptic Curve Cryptography.
Springer, Berlin (2004)

11. Misra, S., Goswami, S., Taneja, C., Mukherjee, A.: Design and implementation
analysis of a public key infrastructure-enabled security framework for ZigBee sensor
networks. International Journal of Communication Systems (2014)

12. LaMacchia, B.A., Lauter, K., Mityagin, A.: Stronger security of authenticated key
exchange. In: Susilo, W., Liu, J.K., Mu, Y. (eds.) ProvSec 2007. LNCS, vol. 4784,
pp. 1–16. Springer, Heidelberg (2007)

13. Toorani, M., Beheshti, A.: Cryptanalysis of an elliptic curve-based signcryption
scheme. Int. J. Netw. Secur. 10(1), 51–56 (2010)

14. Toorani, M., Beheshti, A.: LPKI-a lightweight public key Infrastructure for the
mobile environments. In: Proceedings of the 11th IEEE International Conference on
Communication Systems(ICCS 2008), pp. 162–166, November 2008. doi:10.1109/
ICCS.2008.4737164

http://dx.doi.org/10.1109/ICCS.2008.4737164
http://dx.doi.org/10.1109/ICCS.2008.4737164

Visual Cryptography and Obfuscation:
A Use-Case for Decrypting and Deobfuscating

Information Using Augmented Reality

Patrik Lantz1,2(B), Bjorn Johansson1, Martin Hell2, and Ben Smeets1,2

1 Ericsson Research, Lund, Sweden
{patrik.lantz,bjorn.a.johansson,ben.smeets}@ericsson.com

2 Department of Electrical and Information Technology,
Lund University, Lund, Sweden

{patrik.lantz,martin.hell,ben.smeets}@eit.lth.se

Abstract. As new technologies emerge such as wearables, it opens up
for new challenges, especially related to security and privacy. One such
recent technology is smart glasses. The use of glasses introduces security
and privacy concerns for the general public but also for the user itself.
In this paper we present work which focus on privacy of the user during
authentication. We propose and analyze two methods, visual cryptography
and obfuscation for protecting the user against HUD and camera logging
adversaries as well as shoulder-surfing.

Keywords: Visual cryptography · Visual obfuscation · Augmented
reality · Wearables

1 Introduction

Recent research [1,2] in privacy-preserving human-computer interaction allows
users to authenticate and decipher data using smart glasses equipped with a
camera. Decrypted data or one-time authorization codes (OTAC) are displayed
as an image overlay in a heads-up display (HUD). The user can then interact
with a terminal screen while preventing shoulder-surfing as an adversary cannot
observe the HUD. However, this does not mitigate attacks where the adversary
has access to the information presented in the HUD.

In our proposed methods, using visual obfuscation and a modified visual
cryptography scheme, we split information shown in the HUD into two or three
partitions. These partitions are displayed on a terminal screen and in the HUD.
Decrypting and deobfuscating information is then a matter of aligning the image
overlay in the HUD with the information displayed on the screen. For the attack
model we assume that an adversary has access to (a) one of two or (b) two
of three partitions. The adversary could be shoulder-surfing or is capable of
observing the HUD. In case (b) we assume that the adversary is capable of
combining these partitions easily. In case of an adversary which has control over
the camera, then we rely on (b) only. However, case (a) still holds if camera
recording can be disabled or prevented to record [3].
c© International Financial Cryptography Association 2015
M. Brenner et al. (Eds.): FC 2015 Workshops, LNCS 8976, pp. 261–273, 2015.
DOI: 10.1007/978-3-662-48051-9 19

262 P. Lantz et al.

2 Related Work

Earlier work has focused on private interactions and authentications between a
user with smart glasses and a terminal screen, protecting against a shoulder-
surfing.

Forte et al. present EyeDecrypt [1] which allows an authorized user to deci-
pher data shown on a display. The decrypted data is shown on a mobile device
or smart glasses as an image overlay. If the overlay displays digits in a PIN pad,
then using augmented reality, the user can securely enter input onto a screen if
the user interface is randomized.

In Ubic [2], Simkin et al. describe an authentication protocol involving smart
glasses. Users approach a terminal screen and decode a signed visual encoding
(such as QR codes). Then the user initiates the protocol by sending his identi-
fication to the terminal host which checks the public key of the identifier. The
terminal host creates a challenge, encrypted with the public key and displays it
on the screen. The user decodes yet another visual encoding, decrypts it and the
challenge is displayed in form of an OTAC in the HUD of the glasses which the
user enters on a keypad. Simkin et al. shows that the protocol protects against
shoulder-surfing but also against active attackers, such as a man-in-the-middle
attack.

Previous work on visual cryptography which this paper is influenced by is
the Naor-Shamir visual cryptography scheme [4]. In this secret sharing scheme
2 or n users can mechanically decrypt a visual image by overlaying the shares
of the images, assuming transparency in the shares. A secret image is broken up
into n shares so that the original image will only be decrypted by someone with
possession of all the shares.

3 Visual Cryptography

3.1 Original Version

The original idea of Naor-Shamir visual cryptography scheme uses two compo-
nents created as a number of black and white sub-pixels. These two components
are superimposed to reveal the original image. Using a one-time-pad (OTP)
with the same size as the original image as the first component and creating
an encrypted image by taking the XOR of the original image and the OTP is
well known. In order to create a XOR visually each pixel in the original image
is represented by a pair of, or 4 sub-pixels and the superimpose is performed by
pixel-wise addition. This creates an image which has all white sub-pixels where
the original image was 1 and half white/half black where the original image
was 0.

3.2 Modified Version

Now we consider the application where a number of secret digits (or characters)
are to be shown to a user, e.g. an OTAC or a randomized PIN pad. The digit

Visual Cryptography and Obfuscation 263

information is split into two (or more) parts shown on a terminal screen and a
HUD. Instead of having two components of the same type consisting of black
and white sub-pixels as in [4], we have one component (screen) consisting of
black and white sub-pixels, and one component (HUD) consisting of white and
transparent sub-pixels. The HUD dominates the screen meaning that a white
pixel in the HUD will make the corresponding pixel in the superimposed image
white regardless of the value on the screen for this pixel. For a pixel position
that is transparent in the HUD the superimposed image will get the value on
the screen for this position. This can be formulated as follows; If we represent
black/transparent as 0 and white as 1 we superimpose by pixel-wise OR, or the
max-operation in the case of grayscale images as in our experiments.

The creation of the encrypted components is performed as follows, also shown
in Fig. 1. First we create a temporary OTP with the same size as the original
image consisting of ones and zeros. We then represent a one in the temporary
OTP by four sub-pixels in a new OTP with white subpixels on the diagonal
A =

(
W T
T W

)
and a zero by two transparent pixels on the diagonal B =

(
T W
W T

)
.

This larger image is now used as our OTP. We then create an encrypted original
image with the following rule, assuming black digits on white background. If
original image pixel is white and OTP is A or original image pixel is black
and OTP is B then let the encrypted pixel be represented by C =

(
B W
W B

)
,

otherwise represented by D =
(
W B
B W

)
. This way the black pixels on the screen

are placed so that they are covered by white pixels in the glasses when we want to
create a white pixel in the superimposed image, but placed to be seen through
the transparent pixels in the glasses when we want to create a black pixel in
the superimposed image. This corresponds to creating the encrypted image by
taking the exclusive or (XOR) of the original pixel value and OTP.

We use the described technique to encrypt digits which are visually revealed
when the two components are superimposed. Figure 2(a) shows a randomized
OTP where to each pixel in the original image we have created a 2× 2 matrix
of sub-pixels. Figure 2(b) shows a picture of the encrypted data visualized on
a computer screen captured by a camera. For each pixel in the original image
a 2× 2 pattern for the encrypted image was created according to the above.
Estimated camera parameters were used to compensate for radial and tangential
distortions in the picture. The transformation used for warping the OTP to
match the picture was estimated manually but could be estimated automatically

Fig. 1. Encryption by superimposing OTP

264 P. Lantz et al.

(a) Randomized OTP (b) Encrypted data

(c) Superimposed result

Fig. 2. Encrypting digits

using standard techniques in computer vision, alternatively the screen and head
could be rotated and tilted so that the components match. The superimposed
result is shown in Fig. 2(c) where the original text can be seen. Due to the
following sources for errors the visual decryption is not perfect

– Image distortions due to imperfect camera (e.g. nonlinearities)
– ‘Bleeding’ of white areas into black in picture smoothing OTP
– Estimated transformation does not perfectly warp OTP to picture

3.3 Using a Seven-Segment Display

Next we restrict the visual representation of the digits to the well known digital
font consisting of seven bars. In this case we can use two sub-bars for each line-
segment in the font, similar to what is described by Bochert [5]. In the OTP and
in the encrypted image one of the two bars for each line-segment is set, white
sets in Fig. 3(a) (black background is transparency) and black sets in Fig. 3(b)
respectively. For the line-segment that are set in the original image to create
the digit, the OTP and encrypted image will have different sub-bars set. For
the line-segments that are not set in the original image, the line-segments in the
OTP and the encrypted image will have the same sub-bars set and will cancel
out each other. In the superimposed image the digit will appear in the clear, see
Fig. 3(c). Note that in the example below the OTP sub-bars are created larger
than in the encrypted image, in order to make the system less sensitive to the

Visual Cryptography and Obfuscation 265

(a) (b) (c)

Fig. 3. Using two sub-bars for each line-segment

errors mentioned before. Compared to the approach above, this approach is less
sensitive to the alignment between the OTP and the encrypted image but may
be visually less attractive.

4 Visual Obfuscation

In this next section we describe a method for obfuscating digits. As opposed to
the visual cryptography scheme that might suffer from difficulties of alignment
the proposed method is not as sensitive. However, in this scenario the attacker
has a higher probability to guess correct digit compared to the visual encryption
where no information about the digit is learned from by observing one of the
partitions.

4.1 Digit Representation

For the obfuscation case we represent the digits using seven-segment fonts. This
font can easily be divided into several partitions that are shared among a number
of digits. The more digits that share the same partitions, the harder it is to guess
the correct digit. Figure 4 shows the bars numbered 0 to 6 that can form all
possible digits zero to nine. The digits can be encoded using the binary sequence
x0x1..x6 where

xi =
{

1, if bar i is used
0, otherwise

As an example, digit four in Fig. 4 is encoded as the sequence 1100101. The
full table of encodings is shown in Table 1.

4.2 Analysis of 2-Way Partitioning

Each of the digits shown to the user are partitioned into two parts, one of the
partitions are shown in the HUD of the glasses and the other partitions are
located on the terminal screen. The user aligns the image overlay in the HUD

266 P. Lantz et al.

Fig. 4. Bar numberings for binary encoding

Table 1. List of binary encodings and number of partitions for n >= 2

Digit Binary encoding # of partitions

1 1100000 2

2 1011011 16

3 1110011 16

4 1100101 8

5 0110111 16

6 0111111 32

7 1100010 4

8 1111111 48

9 1100111 16

0 1111110 32

with the partitions shown on the screen in order to deobfuscate. If an adversary
gets access to one of the two partitions, the probability to guess correct digit
should be low.

The number of combinations a digit can be partitioned into two parts in is
shown in Table 1. Note that one partition can be displayed in the HUD and the
other partition on the screen or vice versa which make the actual number of
possible partitions twice the number shown in Table 1. In general, the number
of partition combinations should be mi where m is number of partitions and
i is number of ones in the binary encoding needed to represent a digit. We
only consider partitions which could potentially be used by more than one digit.
Therefore, for the digit eight the value should be 27/2 partitions but instead it
is 48. This is due to the fact that in some partitions, one of the parts reveals the
whole digit, leaving no other candidates to choose from except the digit eight.

Each partition can be part of n number of candidate digits giving a näıve
attacker a chance of 1/n to guess the correct digit by observing only one
partition.

However, the probability that a particular part is derived from a particular
digit is not the same for all digits so an analysing attacker can do much better.
Assume all digits have the same probability and we have an equal probability
distribution for the partitions of each digit. The best strategy for an attacker in
this case is to guess on the digit having the largest probability for the observed

Visual Cryptography and Obfuscation 267

partition. As an illustrative example we choose the digit 4 and partition 5 from
Table 2. In this case the adversary would guess number 4 with the probability to
guess correct equal to Pr(4 | 0000100) = 0.3808 using the values in Table 3. On
the other hand, if the adversary has access to the second partition the probability
becomes Pr(4 | 1100001) = 0.470. We calculated the mean probability to guess
one digit correct observing one partition to be 0.45 when observing only one
part and assuming equally probable digits and equal distribution among the
partitions for each digit. In Sect. 4.3 we elaborate on the details for how this is
computed.

From simulations we also conclude that the mean number of possible PIN pad
solutions that match an observed partition of a 10-digit PIN pad is approximately
1300. The number of solutions s for one PIN pad with one partition for each
digit drawn randomly with equal probability is computed using s = |S|. S is a
set of 10-tuples with distinct elements and is given by

S = {tj | ak �= al, ∀ak, al ∈ tj ∧ k �= l}
where tj ∈ T , for j = 1, 2, ..., |T | and

T = Dp0 × Dp1 × ... × Dp9

pi denotes the partition at index i in the PIN pad and D is a set of possible
digits that a partition pi can form. In the simulations we compute the average
number of solutions for a large number of random PIN pads using s. This gives
a näıve attacker about 1 in 1300 to guess the PIN pad correct. Note that the
attacker only has to guess the pressed buttons correct in order to have the PIN
though.

Table 2. All possible partitions of digit 4 as described in Table 1 and how many possible
digits each part could originate from

Partition Part 1 Part 2 Possible digits from part 1 Possible digits from part 2

1 0000000 1100101 10 3

2 1000000 0100101 8 5

3 0100000 1000101 9 3

4 1100000 0000101 7 5

5 0000100 1100001 6 4

6 1000100 0100001 4 6

7 0100100 1000001 6 5

8 1100100 0000001 4 7

268 P. Lantz et al.

Table 3. Probabilities for the two parts of partition number 5 from Table 2 being part
of a particular digit

Partition 1 2 3 4 5 6 7 8 9 0

0000100 0 0 0 0.0625 0.0313 0.0156 0 0.0078 0.0313 0.0156

1100001 0 0 0.0313 0.0625 0 0 0 0.0078 0.0313 0

4.3 Optimizing the Partitioning

The equal probability distribution for the different parts a digit can be parti-
tioned into as described above may not be the optimal choice if we want to
minimize the probability for an adversary to guess correct digit when observing
only one part of the partitioning. Let aij be the probability that digit Dj is cho-
sen to be partitioned and that part Pi is used as one partition. We represent the
distribution in a 128× 10 matrix A where entry (i, j) is denoted aij . Only 380
out of 1280 entries in A have non-zero entries since most partitions cannot be
used to create a particular digit. Note that Table 3 consist of two rows from A.

A =

⎡
⎢⎢⎢⎣

a00 a01 . . . a09
a10 a11 . . . a19
...

...
. . .

...
a127,0 . . . a127,9

⎤
⎥⎥⎥⎦

First we assume that an attacker knows the distributions of the digits and parti-
tions, that is the matrix A. The optimal strategy for the attacker is to guess the
digit having the highest value among the observed partition. The probability of
a correct guess when observing partition i is equal to

maxj aij∑
j aij

and the mean probability to guess correct on any partition is equal to∑
i maxj aij . In order to minimize the probability for a successful attack we

want to minimize this expression over all aij . There are constraints on A to be
valid though. In some applications the probability for each digit should be equal
and the probability for all digits should sum up to 1 which gives the constraint∑

i aij = 0.1, for j = 1, ..., 10. Secondly, the two partitions that form the digit
must have the same probability, akj = alj if partition Pk and partition Pl form
digit Dj . Our optimization problem can then be expressed as follows:

minimize
∑
i

max
j

aij

subject to:
∑
i

aij = 0.1, j = 1, .., 10

akj = alj if Pk and Pl form Dj , aij = 0 if Pi is not part of Dj

Visual Cryptography and Obfuscation 269

This optimization problem is not linear, but can be made linear by the fol-
lowing trick. By introducing helper variables x0, ..., x127 one for each maximum,
adding constraints x0 ≥ a0, ..., x0 ≥ a9, x1 ≥ a10, ..., x127 ≥ a127,9 and change
the expression to minimize to

∑
i xi we get a linear optimization problem that

can be solved e.g. using linear programming (LP). We have solved the opti-
mization problem above and the optimal solution gives the attacker a chance
of 0.3743 to guess the correct digit observing only one part and knowing which
distribution is used when splitting the digits.

A variant of the conditions above is that we do not require the digits to have
equal probability. A possible scenario could be when we want to show an OTAC
consisting of a number of digits to a user by partitioning it in two parts. If you
want to minimize the chance for an attacker to guess the digits in the OTAC
you might want to use the digits that are easier to guess (e.g. 1) less frequently
than digits that are harder to guess. The first constraint from above is then
substituted for ∑

ij

aij = 1

A simple distribution that fulfills the constraints is to let all aij be equal, in
this case aij = 1/380 ∀i, j. This gives a probability of guessing correct 0.2947. If
we use LP to determine the global optimum given this new constraint we get a
probability of 0.2867 for an attacker to guess correct if he knows the distribution.

In the analysis above we assume that the attacker knows the distribution
matrix and uses an optimal strategy for guessing. In reality we may use different
distributions each time. If it is known that the attacker uses the equally dis-
tributed matrix B in the guessing we could create other distributions that make
the attacker less successful. Also the problem to create such a distribution that
minimizes the probability for a successful attack can be expressed as a linear
optimization problem and solved e.g. using LP. Let bij be entries in the known
distribution matrix B the attacker uses. The optimization problem can then be
expressed as

min
∑
ij

cij · aij over aij

akj = alj , if Pk and Pl form Dj

aij = 0 if Pi is not part of Dj

where cij is constructed according to

cij = 0 if bij = 0

cij = 1/d if bij = max
j

bij and d = number of max on row j

Using a distribution created this way an attacker guessing according to the
equal probability distribution will only have a probability of 0.2833 to guess
correct.

270 P. Lantz et al.

4.4 Analysis of 4-Bar Shape

The main reason the attacker has a rather high probability to guess a digit correct
is that the font we use for the digits has 7 bars to represent only 10 digits. If
we instead should use the minimal number of bars (four) it would be harder for
an attacker to guess correct. Then we would not recognize the representation as
our traditional digits but it is interesting to compare the probabilities for this
case with our earlier results.

We use 4-bar shapes using the binary encodings x0x1..x3 and choose 10
shapes among the 15 possible shapes. Similar calculations as for the 2-way par-
tition analysis were performed for the 4-bar shapes in which the probability
becomes 0.2667 instead to guess the correct shape. This result shows that using
fewer bars improves this obfuscation method. If we compare this to a two digit
OTAC where we have one digit in clear and require to guess the other one, the
probability is 0.10 compared with using four 4-bar shapes in which the proba-
bility is 0.071.

An alternative way to minimize the number of bars is to let the 7 bars
represent more figures. Besides the traditional digits we include a number of
characters that can be created from the used digital font. These can be chosen
from the set A,C,E,F,G,H,J,L,P,U. We found that the optimal distributions for
the scenario with 10 digits and 8 characters, an attacker who knows the distribu-
tion has probability 0.2479 to guess correct for equal probable digits/characters
and 0.1753 to guess correct for non-equal probable digits/characters. We did the
same analysis for the case where we use all 127 figures that can be made up from
the seven bars for comparison. In Sect. 5 we compare the results for the different
scenarios from above and discuss the conclusions from them.

4.5 Analysis of 3-Way Partitioning

In our worst-case scenario, the attacker has access to the HUD display and has
hijacked the camera in order to combine the HUD- and terminal-view and is
able to record the user input. In this case, the adversary will always be able to
guess the digits by either manual analysis or computational image analysis.

Now we assume that there is an autostereoscopic [6] display available for
which the left eye will see different information on the screen than the right eye
(camera-view). The obfuscation can be split into three partitions designated for
the left and right eye and the HUD.

In our simulations we assume that we do not know what partitions the adver-
sary can observe, it could theoretically be any two. In a simulation similar to
the 2-way partitioning we investigate the mean probability for an adversary to
guess a digit while having two out of three partitions and combining these for
calculating the best candidate digit. The result becomes now 0.60, assuming
equal probability of the partitions. If observing only one of three partitions, the
probability is 0.28 to guess correct.

Visual Cryptography and Obfuscation 271

5 Results

In this section we describe comparative results of the analysis from Sect. 3.
The probability 0.3743 for using all digits makes the chance to guess a two

digit OTAC equal to 0.1401 which is larger than the probability to guess one digit
out of 10 (0.10), which would be the case if we instead would have obfuscated
using our benchmark case, that is showing half of the digits in cleartext on the
screen and remaining digits in cleartext on the HUD. If we use certain digits
that are easy to guess less frequently (non-equally probable digits) as we can in
the OTAC case, the probability of guessing one digit correct becomes 0.2867,
the probability to guess the two digit OTAC is 0.0822. Hence, the attacker is
less successful if we use this approach for showing an OTAC compared to the
benchmark case.

In the comparison we want to show how long OTACs are needed if we com-
pare against an OTAC of length 100 as the benchmark case. The cases we com-
pare with and the results are shown in Table 4.

Table 4. Comparison of OTAC lengths for different constructions against the bench-
mark case consisting of 100 digits.

Type Digits Description

Benchmark 100 Half of the digits in cleartext on the screen and the
remaining digits in the HUD

10Dig-I 118 10 digits, all with equal probability

10Dig-II 93 10 digits with different probability

10Dig10Let-I 106 10 digits and 10 letters, all with equal probability

10Dig10Let-II 85 10 digits and 10 letters with different probability

10Dig8Let-I 102 10 digits and 8 letters, all with equal probability

10Dig8Let-II 83 10 digits and 8 letters with different probability

127Char-I 93 127 characters, all with equal probability

127Char-II 79 127 characters with different distributions

10Dig4Bar-I 83 10 digits represented as 4-bars, all with equal probability

10Dig4Bar-II 79 10 digits represented as 4-bar with different probability

Uniform 91 It is known that the attacker guess according to equal
distribution

More specifically, these values show how many digits we can use for the dif-
ferent cases before the probability to guess the digits becomes equal to guessing
our 100 digit benchmark. According to our analysis our approach is much better
than the benchmark if we use some digits more frequently. Even better results
are achieved if we also use characters along with the digits. Note that these
results assume that the attacker knows the distribution used for splitting the

272 P. Lantz et al.

digits. If he does not know the distribution, or if it is known what distribution
the attacker is using in the guessing, the probability to guess an OTAC correct
is even lower.

6 Discussion

In the PIN pad case it is crucial that the same digits are placed in each parti-
tion. If we would place digits randomly between the partitions, an attacker that
observes multiple sessions will be able to combine the sessions and learn the full
PIN pad. The PIN pad can be randomized as the authors also suggest in [1],
additionally, similar to their advantages, a keylogger running on the host will not
learn anything about the user input if there is a touchscreen present. The main
differences are that we prevent the information to be leaked when an adversary
can observe the HUD or even perform camera logging while at the same time
preventing shoulder-surfing. Instead of splitting information in three partitions
we can split it into two partitions and disable the camera as our method does not
rely on a camera. The user can align the glasses himself to the screen by moving
and tilting the head. However, the camera might need to be activated during
initial interaction with the terminal needed for any necessary setup between the
glasses and the terminal, but after this it could be deactivated.

It is also worth mentioning that the visual cryptography scheme can also be
split into three partitions. In this case, the encrypted data can be shown on an
autostereoscopic screen while the OTP is displayed in the HUD.

Future work involves mainly to achieve better alignment for the visual cryp-
tograph scheme and investigate the usability of both methods by implementing
them in a real pair of smart glasses and conducting user-studies. Applying these
methods on letters for sensitive text materials seems to be an interesting appli-
cation as well.

7 Conclusion

In the first method we have adapted the traditional visual cryptography scheme
for use with smart glasses. Using this instead of splitting the digits in two parts
as described in Sect. 3 has the advantage that the number of bars in the model
of the digit has no effect on the probability to guess correct digit if you view
only one component. However, it requires a more precise aligning between the
two components and is perhaps visually not as attractive.

Our second suggestion is to visually obfuscate digits by partitioning them
into two or three distinct parts so that it is hard for the attacker to guess correct
when observing only one part. The probability for an attacker to guess correct
is dependent on how we chose to split up the digits and what strategy and infor-
mation the attacker has. We have formalized this and formulated optimization
problems to find the best distributions used to split up the digits into parts
minimizing the probability for a successful attack. There are different scenarios
depending on whether all digits must be equally probable or some digits can be

Visual Cryptography and Obfuscation 273

more frequent, if the attacker knows the distribution used to split up the digits,
if digits and characters are used, etc. By converting the nonlinear optimization
problem to a linear optimization problem we can be sure that the found optimum
is global. The conclusion from the results is that if the digital font with 7 bars
is used to represent only the digits with the traditional appearance, all digits
are equally probable and the attacker knows the distribution used to split up
the digits, then the benchmarking approach to display half of the digits on the
screen and the other half in the HUD makes it harder for an attacker to guess
correct digit. However, if we are allowed to use some digits more frequently our
approach is much better. Even better results can be achieved by also using char-
acters along with the digits and if the attacker does not know the distribution he
will be even less successful in guessing correct. These results makes the OTAC
application more suitable than the PIN pad for our obfuscation as in the PIN
pad all digits must occur once and only once.

References

1. Forte, A.G., Garay, J.A., Jim, T., Vahlis, Y.: EyeDecrypt - private interactions in
plain sight. In: Abdalla, M., De Prisco, R. (eds.) SCN 2014. LNCS, vol. 8642, pp.
255–276. Springer, Heidelberg (2014)

2. Simkin, M., Schröder, D., Bulling, A., Fritz, M.: Ubic: bridging the gap between
digital cryptography and the physical world. In: Kuty�lowski, M., Vaidya, J. (eds.)
ICAIS 2014, Part I. LNCS, vol. 8712, pp. 56–75. Springer, Heidelberg (2014)

3. Truong, K.N., Patel, S.N., Summet, J.W., Abowd, G.D.: Preventing camera record-
ing by designing a capture-resistant environment. In: Beigl, M., Intille, S.S., Reki-
moto, J., Tokuda, H. (eds.) UbiComp 2005. LNCS, vol. 3660, pp. 73–86. Springer,
Heidelberg (2005)

4. Naor, M., Shamir, A.: Visual cryptography. In: De Santis, A. (ed.) EUROCRYPT
1994. LNCS, vol. 950, pp. 1–12. Springer, Heidelberg (1995)

5. Borchert, B.: Segment-based visual cryptography, Technical report WSI-2007-04.
Wilhelm-Schickard-Institut für Informatik, Tübingen (2007)

6. Dodgson, N.A.: Autostereoscopic 3D displays. IEEE Comput. 38(8), 31–36 (2005)

Ok Glass, Leave Me Alone:
Towards a Systematization of Privacy Enhancing

Technologies for Wearable Computing

Katharina Krombholz1(B), Adrian Dabrowski1,
Matthew Smith2, and Edgar Weippl1

1 SBA Research, Vienna, Austria
{kkatharinakrombholz,aadriandabrowski,eedgarweippl}@sba-research.org

2 Usable Security and Privacy Group, University of Bonn, Bonn, Germany
smith@cs.uni-bonn.de

Abstract. In the coming age of wearable computing, devices such as
Google Glass will become as ubiquitous as smartphones. Their foresee-
able deployment in public spaces will cause distinct implications on the
privacy of people recorded by these devices. Particularly the discreet
recording capabilities of such devices pose new challenges to consen-
sual image disclosure. Therefore, new Privacy Enhancing Technologies
(PETs) will be needed to help preserve our digital privacy. At the time
of writing, no such PETs are available on the market to communicate
privacy preferences towards Glass. In the scientific literature, a handful
of approaches has been presented. However, none of them has been eval-
uated regarding their affordances and overall usefulness. In this paper,
we provide the first systematization and qualitative evaluation of state
of the art PETs that were designed to communicate privacy preferences
towards (wearable) cameras, such as Google Glass. The purpose of this
paper is to foster a broader discourse on how such technology should be
designed in order to be fully privacy preserving and usable.

1 Introduction

Wearable computers with integrated cameras such as Google Glass might soon
become as ubiquitous as smartphones. Due to their hands-free user interface
and the discreet recording capabilities, collecting and sharing images and videos
becomes easier than ever. In contrary to smartphones and other mobile devices,
Google Glass literally remains in the wearer’s face all the time. Consequentially,
many bystanders view such wearables as invasive and fear substantial implica-
tions on their digital privacy. Since the paradigm shift to user-generated content
on the Internet, the awareness for picture privacy has risen. The foreseeable
deployment of wearable technology in public spaces is about to multiply the set
of challenges related to non-consensual disclosure of graphical material on the
Internet. In such situations, getting informed consent of all people recorded by
such a device is unfeasible. Recently, attacks against Google Glass wearers in
public have been reported in the media [1]. These scenarios highlight the high
c© International Financial Cryptography Association 2015
M. Brenner et al. (Eds.): FC 2015 Workshops, LNCS 8976, pp. 274–280, 2015.
DOI: 10.1007/978-3-662-48051-9 20

Ok Glass, Leave Me Alone 275

societal demand for Privacy Enhancing Technologies (PETs). At the time of
writing, no PETs are available on the market to communicate privacy preferences
towards wearable cameras. In scientific literature, a handful of approaches has
been published, however none of them placed an emphasis on whether they are
actually useful if deployed in particular situations where users are constrained in
what artifacts they can carry or wear. The goal of this paper is to provide a first
systematization of PETs that have been published in scholarly articles. To do
so, we propose a collection of properties and criteria for categorization. The pur-
pose of this paper is to start a discussion on both design and research directions
in the fields of security, privacy and HCI in order to ensure that future PETs
successfully counter privacy threats in the upcoming era of wearable computing.
Additionally, our systematization provides a first suggestion how a standard-
ized evaluation framework for (wearable) PETs could look like. In the course of
our extensive literature review, we found approaches of how future PETs might
look like. Most of them however, have substantial limitations such as that they
address a narrow scenario, exclude particular user groups or cause further pri-
vacy challenges due to their privacy-violating functionality. These limitations
may reduce the user’s subjective satisfaction and introduce errors. Hence, they
potentially have an impact on user experience.

2 Properties

The properties presented in this section haven been selected as a set we believe
highlights important evaluation dimensions with respect to usability, in particu-
lar subjective user satisfaction, learnability, memorability, errors and efficiency.

User-Initiated: In order to mediate privacy-preferences, some PETs require
a user to perform an action. Due to the unobtrusive recording capabilities of
wearable cameras, users may be recorded by such a device without actually
being aware of it. Therefore, user-triggered mediation hinders the consequent
communication of a user’s privacy preference. This is very likely to cause errors
and misunderstandings which are very likely to have a negative impact on the
overall user experience.

Location-Based: As determined by Denning et al. [4], privacy preferences can
be determined by certain situations or locations. The definition of a privacy-
sensitive space mostly varies from user to user, highly depending on their socio-
cultural background. However, most users may require a device that works
regardless of a certain location. Therefore, location-dependency may be a lim-
iting factor. As a location-based approach usually requires the transmission of
location information to other entities (e.g. a trusted server via a secure channel
or another device in the surrounding), new privacy challenges are implied.

Face-Recognition-Based: In order to correlate the user of a PET with a user
in an image or video taken by a wearable camera, facial recognition could be
an efficient method of choice as state of the art algorithms provide sufficient
accuracy to correctly identify individuals. Certainly, facial recognition requires

276 K. Krombholz et al.

the transmission of privacy-sensitive data to an associated service and therefore
poses significant challenges to preserve the user’s privacy.

Visual-Marker-Based: As widely used in augmented reality applications,
person-tracking can efficiently be performed using visual markers. For PETs,
this means that a user has to carry or wear one or multiple visual markers in
order to communicate privacy policies towards wearable cameras. Markers can
be designed in an obtrusive or unobtrusive way. In certain situations or cultural
groups, subtle markers could be preferred over invasive ones and vice versa.

Gesture-Based: In augmented reality applications, gestures are another feasi-
ble approach to track individuals in videos. This approach is mostly limited to
long or full-shot videos as it is obviously difficult to perform gesture-recognition
on single images or smaller image selections. Furthermore, gestures have to be
actively performed and therefore require a user who is aware of being filmed.
It furthermore poses distinct accessibility challenges for people with physical
disabilities and elderly users.

Signal-Emission-Based: As cameras are sensitive to a certain light spec-
trum, signal-emitting jamming could be used in PETs. Signal-emission based
approaches are mostly expensive as they require a dedicated technical artifact
which makes them significantly obtrusive.

Physical-Artifact-Required and/or Dedicated-Device-Required: This is
an umbrella property for all approaches that require a dedicated physical artifact
in order for the PET to function (e.g. an electronic device or visual markers).
From the user’s perspective, tangible interfaces as provided by such artifacts
offer advantages and disadvantages. The main disadvantage is that the user has
to carry or wear the artifact at any time. In some situations, this is unfeasible
(e.g. in spaces where digital artifacts cannot be operated due to environmental
constraints). In contrary, physical artifacts are often easier to understand for the
user and give them a sense of control.

Requires-Trusted-Third-Party-Service: If communication with an external
service is required, an Internet connection is indispensable. This might be unfea-
sible in some scenarios, where users are limited in what devices they can carry
(e.g. at a beach)

Smartphone-Based: Smartphone-based approaches are easy to deploy since
most individuals in today’s society carry one with them all the time. However,
situations where smartphones are not applicable but preserving an individual’s
privacy is required. An example of such a situation would be sunbathing and
wearing only a bikini.

Visibility: Some PETs require physical artifacts in order to function. When
deployed, some of them are highly visible to bystanders and therefore instantly
disclose a certain privacy preference to nearby individuals. In some cultures or
even particular situations, a more subtle and unobtrusive technology could be
preferred by the user. However, others may want to use an obtrusive PET in

Ok Glass, Leave Me Alone 277

order to disclose their privacy preference or policy openly when recorded by a
wearer of Google Glass or a similar device. Low visibility however may constrain
the communication of a cognitive model towards the user. It also implies a lack
of feedback options.

Accessibility: As digital privacy affects all user groups likewise, a PET should
work regardless of disabilities or other physical or cognitive conditions, such as
low motor control or visual impairments.

Anonymity: PETs should not imply further privacy violations due to their
functionality. Approaches that use facial recognition or location-tracking poten-
tially violate the privacy of their users. Presumably, users of PETs are highly
concerned about their privacy and potentially perceive privacy-violating PETs
as paradoxical.

Impacts-User-Behavior: Some PETs heavily impact the user’s behavior, as
they either require a high effort in preparation or require the user to perform
an action. PETs that require a user to be aware of being filmed also potentially
influence the user’s behavior.

Requires-Devices-To-Comply: This property indicates whether a PET can
be deployed only if (wearable) cameras are updated accordingly (software and/or
hardware).

3 Systematization of Privacy Enhancing Technologies

Table 1 presents our systematization in which we indicate if a certain PET has
a certain attribute or not. If a PET could be configured in a way to evoke a
certain property, we assume a best-case working scenario supposing that a poor
implementation would make any concept potentially unusable. Obviously, some
properties are disadvantageous for the overall user experience. For this systemati-
zation, we refrain from introducing a rating scheme and prefer a non-judgmental
presentation. The reason for this is that neither we nor the authors of the respec-
tive PETs conducted user studies that would confirm these assumptions. While
some of the PETs presented in this section have been particularly designed for
the mobile/wearable computing domain, others were designed to preserve pic-
ture privacy in general. For the purpose of fostering a fruitful discourse however,
we discuss some potentially impacting factors in a qualitative way.

The Privacy Makeup and hair-style approach as presented by Harvey
et al. [5] exploits the weaknesses of commonly used face detection systems. To
inhibit the feature response of face detection algorithms, significantly invasive
distortions are created with camouflage makeup. This approach is time consum-
ing in preparation and visually dominant. It therefore hinders everyday social
interaction and can provoke unwanted reactions. It is only feasible when facial
recognition algorithms are used or the makeup is applied in a way that its wearer
is unrecognizable. For unexperienced users, it is hard to apply the makeup cor-
rectly. The Respectful Cameras approach as presented in [9] uses colored hats

278 K. Krombholz et al.

Table 1. Systematization of PETs

U
se
r-
In
iti
at
ed

Lo
ca
tio
n-
B
as
ed

Fa
ce
-R
ec
og
ni
tio
n-
B
as
ed

V
is
ua
l-M

ar
ke
r-
B
as
ed

G
es
tu
re
-B
as
ed

Si
gn
al
-E
m
is
si
on
-B
as
ed

D
ed
ic
at
ed
-D
ev
ic
e-
R
eq
ui
re
d

Ph
ys
ic
al
-A
rti
fa
ct
-R
eq
ui
re
d

C
om

m
un
ic
at
es
-W

ith
-S
er
ve
r

In
te
rn
et
-C
on
ne
ct
io
n-
R
eq
ui
re
d

Sm
ar
tp
ho
ne
-B
as
ed

V
is
ib
ili
ty

A
cc
es
si
bi
lit
y

A
no
ny
m
ity

Im
pa
ct
s-
U
se
r-
B
eh
av
io
r

R
eq
ui
re
s-
D
ev
ic
es
-T
o-
C
om

pl
y

Privacy Makeup [5] • • • •
Respectful Cameras [9] • • • • • •
P3F [3] • • •
OfflineTags [7] • • • • • • • •
Privacy Visor [11, 12] • • • • •
SnapMe [6] • • • • • •
FaceBlock [13] • • • • • •
BlindSpot [8] • • • • • •
Place Avoider [10] • • • •
Privacy Gestures [2] • • • • • •

and scarfs as visual markers. Depending on whether an individual prefers to be
made irrecognizable or not, the corresponding artifact is chosen and worn in
front of a camera. The Picture-Privacy-Policy framework (P3F) as presented
in [3] uses a similar approach, however the privacy policies used in this scheme
are more complex and fine-grained. The visual markers of the respectful cam-
eras approach [9] is based on a binary privacy policy and obtrusive markers.
The P3F use not only dedicated accessories but aims at providing a clothing
pattern database with fashionable clothing patterns that are then used as visual
markers. A large-scale deployment as presented in the paper, however, would
require all cameras or picture publishing platforms to use the P3F software to
detect the visual markers and to deduct the privacy policies from them. Another
visual-marker based approach is Offlinetags [7]. Offlinetags uses four different
symbols readable by the open-source Offlinetags software. These symbols can
simply be printed on a piece of paper and then presented to a camera. In con-
trary to the other visual-marker-based approaches presented in this section, the
obtrusive markers must be presented actively towards a camera. Yamada et al.
[11,12] presented the Privacy Visor, i.e. glasses with infrared light sources that
are visible to most camera sensors but invisible to the human eye. The goggles
approach requires a constant power supply and infrared LEDs that can keep
up with the ambient light. As most portable devices come with GPS sensors,
location-based technologies such as the SnapMe privacy watchdog [6] or Blind
Spot [8] are feasible to mediate privacy preferences. These approaches are based
on correlated location information of a camera and its bystanders. Addition-
ally to the location-reference, SnapMe proposes the use of facial recognition to

Ok Glass, Leave Me Alone 279

identify individuals in pictures. In comparison to SnapMe, the Blind Spot app-
roach is based on fixed cameras and intended for CCTV-like surveillance systems
and thus limited to a specific location. FaceBlock [13] is based on biometric
features on images taken by a (wearable) camera. Similar to the other facial-
recognition-based approaches in this section, the FaceBlock system implies fur-
ther privacy challenges, as privacy-sensitive biometric information is processed
and transferred to a (trusted) server. Both FaceBlock and SnapMe provide a
smartphone app where users can configure their privacy-settings. The PlaceAv-
oider [10] approach is not only intended to protect the privacy of bystander but
also of the wearer of a wearable camera. Similar to BlindSpot, it provides black-
listing of privacy-sensitive spaces like bathrooms and bedrooms. Similar to other
location-based approaches, it requires a predefined location and might therefore
not be applicable in all desired situations.

Barhm et al. [2] presented a gesture-based method (Privacy Gestures)
to communicate privacy preferences. Individuals perform defined gestures when
recorded by a camera. Even though no additional artifact is required, its feasi-
bility is limited to situations where an individual is aware of being recorded.

4 Conclusion and Work in Progress

As wearables such as Google Glass are very likely to capture private informa-
tion of individuals recorded by these devices, PETs have become necessary to
preserve our digital privacy. In this work, we provide an evaluation of PETs to
communicate privacy preferences towards wearable cameras. At the time of writ-
ing, no such technology is available on the market. In this work, we assembled
and systematized PETs that were mostly published at distinguished scientific
conferences. We found that most of them are limited to certain pre-defined sce-
narios or exclude specific user groups: Smartphone-based approaches exclude
smartphone abstainers who might refrain from using smartphones for privacy
reasons. Some PETs require the collection and transmission of private infor-
mation such as the location or biometric features and therefore imply further
privacy challenges. The purpose of this work is to initiate a discourse between
designers as well as security and usability experts and researchers and to provide
the fundamentals for establishing a standard benchmark to evaluate conceptual
PETs. Based on the results presented in this paper, we are currently conducting
a comprehensive user study with qualitative interviews in the field. Our pre-
liminary results suggest that privacy-aware potential users highly desire fully
privacy-preserving tools. Furthermore, we found that some particularly unob-
trusive PETs are hard for the user to understand and to use as PETs with low
visibility do not sufficiently communicate cognitive models to the user.

Acknowledgements. We would like to thank Johanna Ullrich and the reviewers for
their insightful comments. The research was funded by COMET K1, FFG - Austrian
Research Promotion Agency.

280 K. Krombholz et al.

References

1. Google Glass targeted as symbol by anti-tech crowd. http://edition.cnn.com/2014/
04/14/tech/mobile/google-glass-attack/. Accessed 10 July 2014

2. Barhm, M.S., Qwasmi, N., Qureshi, F.Z., el-Khatib, K.: Negotiating privacy pref-
erences in video surveillance systems. In: Mehrotra, K.G., Mohan, C.K., Oh, J.C.,
Varshney, P.K., Ali, M. (eds.) IEA/AIE 2011, Part II. LNCS, vol. 6704, pp. 511–
521. Springer, Heidelberg (2011)

3. Dabrowski, A., Weippl, E.R., Echizen, I.: Framework based on privacy policy hiding
for preventing unauthorized face image processing. In: 2013 IEEE International
Conference on Systems, Man, and Cybernetics (SMC), pp. 455–461. IEEE (2013)

4. Denning, T., Dehlawi, Z., Kohno, T.: In situ with bystanders of augmented real-
ity glasses: perspectives on recording and privacy-mediating technologies. In: Pro-
ceedings of the 32nd Annual ACM Conference on Human Factors in Computing
Systems, pp. 2377–2386. ACM (2014)

5. Harvey, A.: CV Dazzle, 2010–2012. http://cvdazzle.com/. Accessed 10 April 2014
6. Henne, B., Szongott, C., Smith, M.: Snapme if you can: privacy threats of other

peoples’ geo-tagged media and what we can do about it. In: Proceedings of the
Sixth ACM Conference on Security and Privacy in Wireless and Mobile Networks,
pp. 95–106. ACM (2013)

7. Pallas, F., Ulbricht, M.-R., Jaume-Palaśı, L., Höppner, U.: Offlinetags: a novel
privacy approach to online photo sharing. In: CHI 2014 Extended Abstracts on
Human Factors in Computing Systems, CHI EA 2014, pp. 2179–2184. ACM,
New York (2014)

8. Patel, S.N., Summet, J.W., Truong, K.N.: Blindspot: creating capture-resistant
spaces. In: Senior, A. (ed.) Protecting Privacy in Video Surveillance, pp. 185–201.
Springer, Heidelberg (2009)

9. Schiff, J., Meingast, M., Mulligan, D.K., Sastry, S., Goldberg, K.: Respectful cam-
eras: detecting visual markers in real-time to address privacy concerns. In: Senior,
A. (ed.) Protecting Privacy in Video Surveillance, pp. 65–89. Springer, Heidelberg
(2009)

10. Templeman, R., Korayem, M., Crandall, D., Kapadia, A.: Placeavoider: steering
first-person cameras away from sensitive spaces. In: Network and Distributed Sys-
tem Security Symposium (NDSS) (2014)

11. Yamada, T., Gohshi, S., Echizen, I.: Use of invisible noise signals to prevent privacy
invasion through face recognition from camera images. In: Proceedings of the 20th
ACM International Conference on Multimedia, MM 2012, pp. 1315–1316. ACM,
New York (2012)

12. Yamada, T., Gohshi, S., Echizen, I.: Privacy visor: method for preventing face
image detection by using differences in human and device sensitivity. In: De Decker,
B., Dittmann, J., Kraetzer, C., Vielhauer, C. (eds.) CMS 2013. LNCS, vol. 8099,
pp. 152–161. Springer, Heidelberg (2013)

13. Yus, R., Pappachan, P., Das, P.K., Mena, E., Joshi, A., Finin, T.: Demo: faceblock:
privacy-aware pictures for google glass. In: Proceedings of the 12th Annual Inter-
national Conference on Mobile Systems, Applications, and Services, pp. 366–366.
ACM (2014)

http://edition.cnn.com/2014/04/14/tech/mobile/google-glass-attack/
http://edition.cnn.com/2014/04/14/tech/mobile/google-glass-attack/
http://cvdazzle.com/

Design and Analysis of Shoulder Surfing
Resistant PIN Based Authentication

Mechanisms on Google Glass

Dhruv Kumar Yadav1, Beatrice Ionascu2, Sai Vamsi Krishna Ongole3,
Aditi Roy3(B), and Nasir Memon2,3

1 Indian Institute of Technology Kanpur, Kanpur, India
dhruvkr@iitk.ac.in

2 New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
bi305@nyu.edu

3 Polytechnic School of Engineering, New York University, Brooklyn, NY, USA
{svo214,ar3824,memon}@nyu.edu

Abstract. This paper explores options to the built-in authentication
mechanism of the Google Glass which is vulnerable to shoulder surfing
attacks. Two simple PIN-based authentication techniques are presented,
both of which provide protection against shoulder surfing. The techniques
employ two interfaces for entering the PIN, namely, voice (Voice-based
PIN) and touchpad (Touch-based PIN). To enter the same PIN, user has
the freedom to choose either technique and thereby interface, as per the
environment in which authentication is being performed. A user study
was conducted with 30 participants to compare the performance of the
proposed methods with the built-in technique. The results show that the
proposed mechanisms have a significantly better login success rate than
the built-in technique. Interestingly, although the average authentica-
tion times of the proposed methods are higher than that of the built-in
one, the users perceived them as being faster. The results also indicate
that the proposed methods have better perceived security and usabil-
ity than the built-in method. The study reveals that when it comes to
authentication on augmented reality devices, there is a need for authen-
tication mechanisms that complement each other as users tend to prefer
a different interface in different contexts.

Keywords: Google Glass · PIN · Authentication · Security · Usability

1 Introduction

Wearable computing devices like the Google Glass [1] are becoming increasingly
popular in health-care applications [2–4] and there is a promise of growing adop-
tion in many other innovative applications [5,6]. As with any personal computing
device, in order to deter theft and protect personal information, there is a need
for an authentication mechanism that binds the specific user to the Glass [7].

c© International Financial Cryptography Association 2015
M. Brenner et al. (Eds.): FC 2015 Workshops, LNCS 8976, pp. 281–297, 2015.
DOI: 10.1007/978-3-662-48051-9 21

282 D.K. Yadav et al.

In order to authenticate the device user, Google Glass offers a touchpad
based pattern lock mechanism. The password is a sequence of four touch gestures
chosen from a set of ten gestures, thereby providing the same number of possible
passwords as a 4 digit PIN. The gesture set consists of tap or swipe gestures using
one or two fingers (see Fig. 1). The user interface for password entry is shown
in Fig. 2(a), where the three entered gestures are tap, two-finger tap and swipe
back.

The key advantage of the built-in technique is that it is universal in the
sense that it can be employed in different ambient conditions including noisy
and poorly lit environments. A free hand and a sense of touch is all that is
needed. However, the technique has some limitations. First, it is susceptible to
shoulder surfing, as the sequence of finger movements on the touchpad located
on right side of the head is easily visible to others. Second, some of the gestures
(specifically the ones involving the hook swipe gesture) require complicated hand
movements and are difficult to perform. Finally, the built-in technique does not
exploit the full capabilities of this head mounted device where the screen is only
visible to the user.

This paper explores the design and usability of two PIN-based authentication
mechanisms that are easy to use while providing reasonable security against
shoulder surfing unlike the built-in mechanism offered by Google. The techniques
are novel in the sense that two different interfaces can be used to enter the
PIN, voice and touch, depending on user choice and the external environment.
For Voice-based PIN (VBP) entry, a user utters a cipher PIN corresponding to
the actual PIN. It should be noted that voice is the natural choice of interface
for entering the PIN in a wearable headset device like the Google Glass where
textual input is provided by voice. Also, the hands-free format of the mechanism
makes it ideal for the device. However, the drawbacks of natural language voice
commands, specifically noisy background, prevents it from being used in all
contexts. To account for such situations, the other interface through which the
Google Glass is controlled, i.e. touchpad, can be employed. Thus, we introduce
a second technique, namely Touch-based PIN (TBP), which complements the
VBP. Both of the techniques leverage the private display visible only to the user
to provide protection against shoulder surfing. Although, it could be argued
that the display of the Glass is not completely private because the screen is
visible from the other side. However, the screen is too small for an adversary
to read without being strikingly close to the user or using sophisticated camera
equipment. The adversary would have to record and post-process the screen
(and also the cipher PIN uttered by the user in the case of VBP) to determine
the PIN. This is an unrealistic threat for the average Glass user and thus goes
beyond the purpose of this paper.

A user study with 30 participants was conducted to evaluate the security,
usability, efficiency, and likability of the proposed authentication mechanisms
with respect to the built-in authentication technique. From the user’s point of
view, any authentication mechanism is bound to fail if perceived as complex
or time consuming or vulnerable by the user even though it it is theoretically

Design and Analysis of Shoulder Surfing Resistant PIN 283

Fig. 1. Available gesture set in the built-in authentication mechanism: (a) tap
(b) swipe forward (c) swipe back (d) hook swipe forward (e) hook swipe back
(f) two-finger tap (g) two-finger swipe forward (h) two-finger swipe back (i) two-finger
hook swipe forward (j) two-finger hook swipe back

resilient. With this in mind it is important to access the perception of security.
In this work, experience of the user is investigated and quantified using System
Usability Scale (SUS) assessment [27]. To the best of our knowledge, this work is
the first to explore alternative authentication mechanisms on the Google Glass
with an extensive user study.

The main contributions of the paper are as follows:

– Design of alternate PIN-based password schemes on Google Glass using either
voice or touchpad input.

– Quantitative evaluation of efficiency and effectiveness of the PIN-based authen-
tication mechanisms along with the built-in one in terms of login time and
login success rate, respectively.

– Qualitative evaluation of the three authentication mechanisms in terms of
perceived security, usability, and likelihood of future use.

– Analysis of user reaction and preference in different usage contexts.

Results show that VBP and TBP have a higher perceived security and usabil-
ity than the built-in method. VBP and built-in methods have comparable login
times but TBP requires longer time. However, performance of users improved
with number of trials. The study also reveals that users prefer different mech-
anisms in different contexts. They picked either VBP or TBP over the built-in
mechanism in public settings.

The rest of the paper is organized as follows. Section 2 discusses existing
authentication mechanisms for various user interfaces. In Sect. 3, the PIN-based
authentication schemes are introduced. Section 4 presents the user study design.
Evaluation results are presented in Sect. 5. Detailed interpretation of the results
is done in Sects. 6 and 7 concludes the paper.

2 Related Work

Personal identification number (PIN) [9] is the most common user authentica-
tion method to prevent unauthorized access in modern hand-held computing

284 D.K. Yadav et al.

(a) (b) (c)

Fig. 2. Layout of the authentication systems. (a) built-in mechanism: the first three
entered gestures are tap, two-finger tap, and swipe back (b) VBP mechanism: the white
colored digits show the real PIN numbers whereas the red colored digits are the cipher
numbers temporarily representing the real PIN digits (c) TBP mechanism: randomly
assigned keypad layout that changes with every instance (Color figure online)

devices like mobile phones, tablet, etc. Although in recent times, some devices
have incorporated finger-print authentication due to its uniqueness, accuracy,
speed and robustness, the mechanism is unlikely to make large impact due to
extra cost, additional hardware, non-replaceable nature and fear of identity theft
[10]. However, based on short term and lab studies (e.g. [11]), it has been argued
that PIN has low memorability and security. To address these issues, multiple
methods have been proposed to replace PIN with graphical and pattern-based
passwords [12–16]. However, most of them are not robust enough against vari-
ous vulnerabilities like shoulder surfing and eavesdropping [9]. Several techniques
([17], [18]) were introduced including hardware based [19–21] and biometric fea-
ture based ones [22–24] to counter these challenges.

With the evolution of touch-screen based devices, the need for authentica-
tion mechanisms better suited for such interfaces became evident. Among the
previously mentioned schemes, only pattern-based approaches have seen wide-
spread adoption. The drawmetric scheme Draw-a-Secret [14] is implemented in
the Android OS as ‘pattern lock’ [25]. However, one recent study in a real world
setting over a reasonable period of time shows that PIN outperforms the pattern
lock in terms of speed and error rates [26]. Hence, it can be argued that given
the threat model and usability constraints, PIN-based authentication is a rea-
sonable alternative, often in combination with another factor, and will be hard
to replace.

The approaches discussed above were designed for devices that have key-
boards or touch-screens emulating keyboards. Therefore, none of these methods
can be applied in their original form on augmented-reality glasses, like the Google
Glass, that do not support traditional user interfaces. Authentication methods
that employ the novel interfaces of the Google Glass are yet to emerge. As men-
tioned before, the built-in mechanism is vulnerable to shoulder surfing attack.
Some possible solutions for handling such an attack were outlined in [8]. The
idea of voice command based PIN entry mechanism referenced in [8] is similar
to the proposed VBP method. The system would display some random number
for every digit and the user would have to add his secret digit to this random

Design and Analysis of Shoulder Surfing Resistant PIN 285

number and speak the result mod 10. Manual computation required to enter the
PIN makes this method less usable. The other mentioned concept is to display a
randomly assigned letter to each digit, and the user has to utter the associated
letters corresponding to the PIN digits. However, the authors did not present
any prototype design and user study to evaluate the methods. This motivated
us to explore alternative authentication schemes for the Google Glass with an
aim to increase the security of the built-in method while at least maintaining its
current usability level.

3 Authentication Mechanisms

In this section, the authentication mechanisms for voice and touch interfaces are
presented in detail.

3.1 Voice-Based PIN (VBP) Authentication

The VBP mechanism uses voice to capture a PIN to unlock the Google Glass. In
case the PIN is spoken directly, anyone around the user can hear and learn the
secret value. One possible solution is to conceal the real PIN with a cipher text.
The ciphers representing the digits could be another set of digits or alphabets
(for e.g., {A, ..., Z}) or short words (for e.g., {‘cat′, ..., ‘dog′}). One initial study
with different types of ciphers shows that users preferred digits as the cipher in
terms of usability and time taken to authenticate. Hence, in our design we map
plain text digits to cipher text digits. Of course, the mapping from plain text to
cipher text PIN has to change with every instance. For this, the private display
visible only to the user can be used.

The Google Glass display is programmed to show a numeric touchpad-like
grid, with each cell containing two different digits as shown in Fig. 2(b). The
digits on the left in the cells (white ones) represent the real PIN digits found
in a standard numeric touchpad. The second digit on the right side (red ones)
of each cell shows the randomly mapped cipher digit that the user will have
to utter in order to enter the corresponding real PIN digit. So for instance, in
Fig. 2(b), cipher digit 7 is used to represent PIN digit 1. To enter the PIN, the
user is required to utter the red cipher digits which will then be mapped back
to the actual cell numbers to compute the PIN. For instance to enter PIN 3961,
a user has to utter 2437 (see Fig. 2(b)).

The voice signal, captured by the mounted microphone on the Google Glass,
is then processed by the Android speech recognition API to detect the corre-
sponding cipher digits. Once the digits are recognized, the input PIN is computed
by reverse mapping of the cipher digits into the corresponding real PIN num-
bers. If the detected input PIN matches with the stored PIN, the user is granted
access to the Google Glass. It should be noted that the randomly assigned red
cipher digits change with every instance.

286 D.K. Yadav et al.

3.2 Touch-Based PIN (TBP) Authentication

The second authentication mechanism uses the mounted touchpad and requires
swipe and tap gestures on the touchpad to enter the PIN. Since the Google Glass
has the downward swipe reserved for the ‘go back’ or ‘return to the Home screen’
actions, the proposed method is designed with forward and backward swipes
only. Figure 2(c) shows the layout of the user interface for the TBP mechanism.
As can be observed from the figure, the cells of the virtual grid are overlaid with
different digits which are randomly arranged for each authentication input.

To enter a PIN, the user is required to navigate to each of the corresponding
cells using swipes and select the digit by tapping. Forward and backward swipe
movements allow the user to move from the current cell to the next cell or
previous cell, respectively. To verify a user, the input PIN is compared with the
stored one. If they are matched, access is granted.

Since the digit assignment to the grid is different on every instance, the
sequence of gestures performed by the user to enter the same PIN will be different
each time. Hence, even by observing finger movements on the touchpad, it is
difficult to deduce the actual PIN.

4 User Study

A user study was performed to systematically evaluate the properties of the
VBP and TBP as alternate authentication mechanisms in terms of their security,
usability, effectiveness (e.g., login success rate), efficiency (e.g., login times), and
likeability. The study also investigated the following presumptions:

1. The login time for the PIN-based methods will decrease as the user becomes
more familiar with the method.

2. The time it takes for authentication and the effort required are negatively
correlated with preference.

3. One single mechanism of authentication is not enough for the different envi-
ronments in which the Google Glass may be used. There is a need for multiple
login mechanisms that can be efficiently used in specific situations. A voice
based technique such as VBP might be preferred when the user’s hands are
busy, whereas the TBP might be suitable in noisy environments or situations
where the user is not comfortable speaking the PIN loudly.

We used a Google Glass with 1.2 Ghz dual-core processor, 1 GB RAM, 16 GB
memory, and display of 640 × 360 pixels for the study. The applications were
developed on the Android platform 4.4. The user’s identity was protected as no
information about the user was stored that would make it possible to identify
them.

4.1 Participants

The study was conducted with a total of 30 participants (11 females and 19
males) in a quiet conference room. The subject pool comprised high school,

Design and Analysis of Shoulder Surfing Resistant PIN 287

undergraduate, graduate, PhD students, and faculty without any security exper-
tise. Among the users, only 16.67 % had some prior experience with the Google
Glass. 56.67 % of the participants belonged to the 18–24 years age group, 23.33 %
to the 25–30 years group, 6.67 % to the 30–35 years group, and the remaining
13.33 % to the 35–40 years group.

75 % of the users reported that they use a locking mechanism for their phone.
70 % of the users strongly agreed that they would be concerned if someone gained
access to their Google Glass assuming that the Glass contained or provided access
to their personal information such as pictures, videos, messages, and emails.
72.4 % of the users said that they would like to use a locking mechanism for the
Glass and that they believe it is important to have it in order to protect their
private information.

4.2 User Study Design

The passwords were fixed in advance to limit the number of variables affecting
the experiment and to ensure that sufficiently complex passwords were used.
Two sets of passwords were chosen as mentioned below:

– Set 1 : PIN was 8340. Pattern was two-finger swipe forward, tap, hook swipe
forward, two-finger swipe back.

– Set 2 : PIN was 2791. Pattern was two-finger swipe back, swipe forward,
two-finger tap, hook swipe forward.

The PINs were chosen with no repeated, consecutive or neighboring digits. The
same PIN was used for the VBP and TBP mechanisms to allow for comparison
between the methods. Similarly, for the built-in mechanism, patterns of high
strength were chosen. The use of two sets of passwords helped in minimizing the
effect of password choice on the analysis.

The group of 30 users was randomly divided into two subgroups and each
subgroup was assigned with one of the password sets. Each participant per-
formed three authentication methods in random order to ensure no bias towards
a particular mechanism. After an introductory session, each user went through
three authentication sessions and a final feedback session as described below.

Introductory Session (5 min): The user was given a short tutorial on how to
handle the Google Glass and was allowed to operate and get familiarized with
the Glass. The user was assigned the passwords according to the group he/she
belonged to.

Authentication Session (approximately 60 min): For each authentication
mechanism, the users went through three phases: (1) practice (2) verification,
and (3) survey.

At the beginning of each experimental condition, the authentication method
was first briefly explained and the user was guided through the authentication
interface. The user was allowed to practice the authentication method for a brief
time.

288 D.K. Yadav et al.

Following the practice phase, the user was asked to log into the Google Glass
repeatedly until ten successful logins were achieved. The user’s inputs, authen-
tication times, and authentication success rates were recorded during this veri-
fication phase.

Finally, the user answered a number of questions about usability and secu-
rity of the authentication mechanism just used before moving on to the next
mechanism.

Feedback Session (5 min): At the end of the study, the users were asked a
final set of questions comparing all the methods.

4.3 Questionnaire

Part I: At the end of each authentication session, participants were asked to
evaluate the security and usability of the method. To get subjective assessment
about the usability, the ten-question System Usability Scale (SUS) [27] was used.
The term “system” in SUS refers to the “authentication method” to be evaluated
in our study. In the SUS assessment, responses to each of the ten questions
are given on a five-point scale ranging from “strongly disagree” to “strongly
agree”. Apart from the raw SUS score, for better interpretation of the results,
SUS percentile [28] and corresponding A-F grading [29] are also reported in this
paper.

Part II: Next, five questions were asked about perceived security, convenience,
speed, stability, and PIN guessability using the same five-point response scale
as follows: (a) I think the method is very secure, (b) I think the method is very
convenient, (c) I think the method is very fast, (d) I think the method is very
stable, (e) I think the degree of guessability of the PIN is high using this method.

Part III: At the end of the experiment, the users were asked to rank the methods
in terms of security, login time, comfort, and likelihood of future use. Some of the
questions from Part II were repeated here to study whether the user’s perception
changes after using all the methods.

Part IV: To get insight about the preference of the users in choosing different
mechanisms in different usage situations of the Google Glass, the users were
asked to rank the methods based on the likelihood of future usage in the following
situations: (a) a quiet classroom or office, (b) a busy subway or a party, (c) at
home with family or friends, (d) at home alone, (e) during jogging or biking, (f)
listening to loud music alone.

5 Results

This section summarizes the results obtained by the study as described above.

Design and Analysis of Shoulder Surfing Resistant PIN 289

5.1 Login Success Rate

For the VBP, 13 % of the participants accomplished the criterion of 10 success-
ful logins in 10 attempts with no incorrect logins, 63 % participants made 1–3
incorrect logins and the rest required more than 3 attempts making the mean
percentage of accuracy for password inputs to be 83 % as shown in Table 1. The
reason behind failure to authenticate was one of the following: (a) wrong user
input (b) client side error and no speech input due to weak internet connection
or heating up of the Google Glass for prolonged use and (c) incomplete voice
signal as the user took more time than the allocated one (20 s). It was observed
that the utterance of wrong sequence of digits caused error only 32.4 % times
while the other two reasons happened 58.1 % and 9.5 % times, respectively.

Table 1. Performance study

VBP TBP Built-in method

Average success rate (%) 83 87 68

Average authentication time (Secs) 6.4 13.9 5.6

For the TBP, 27 % of the users logged in without any error, 57 % accomplished
it with maximum 3 incorrect attempts. The overall success rate was 87 %.

For the built-in method, the success rate was lowest, i.e., 68 %. Only 7 % of
the users were able to login in the first attempt and 17 % made 1–3 incorrect
logins. Most of the users required more than 13 attempts to perform 10 correct
logins. Since all the computations were done on the Google Glass itself with-
out information being sent over the network to external server, the only reason
behind failure to authenticate for both the TBP and built-in techniques was
wrong user input.

5.2 Authentication Time

The authentication time was calculated from the time a participant starts enter-
ing the password to the time that he/she successfully logs into the device. It
includes the time spent to enter the VBP or TBP (for the built-in method, this
is the time to enter the pattern), processing time to perform authentication, and
server response delays.

This measure was calculated for the 10 successful trials per participant.
Table 1 shows the average time taken by each successful trial for the three authen-
tication mechanisms. It can be observed from these comparisons that the VBP
mechanism approximately takes the same authentication time as the built-in
method, while the TBP method takes much longer.

The variation in authentication time with 10 login attempts is shown in
Fig. 3. The time required for a successful login decreases with successive runs as
the users become more skillful and comfortable with the mechanism. The median

290 D.K. Yadav et al.

Fig. 3. Variations in login time for 10 trials using (a) VBP (b) TBP (c) built-in method

Fig. 4. Variations in median login time over 10 trials using the VBP, TBP and built-in
method

Table 2. System Usability Scale (SUS) study

VBP TBP Built-in method

SUS score 76.1 % 69.1 % 61.2 %

SUS response percentile (approx.) 77th 54th 33th

SUS grade B C C

authentication time also indicates a slight learning curve. The learning effect on
the speed of authentication is shown in Fig. 4.

5.3 Usability and Security Study

As described in Sect. 4.3 Part I questionnaire, users were asked 10 SUS ques-
tions about the respective method. It has been observed from the feedback that

Design and Analysis of Shoulder Surfing Resistant PIN 291

participants rated the VBP high as compared to the other two methods on the
usability factors, such as “ease of use” (question 3 of SUS), “would like to use”
(question 1 of SUS). Most of them also reported that the VBP could be learned
quickly (question 7 of SUS) without taking any technical help (question 4 of
SUS) as it was less complex (question 2 of SUS), less cumbersome (question 8
of SUS), and well integrated (question 5 of SUS) compared to the TBP and
built-in methods. Users perceived the built-in method to be more complex and
hence could not be learned as easily as the two PIN-based methods. Moreover,
the built-in method is more inconsistent (question 6 of SUS) and the users had
lowest confidence (question 9 of SUS) using the method.

Results of quantitative analysis of the feedback are reported in Table 2. The
table shows the average SUS score, response percentile, and grade for each
authentication mechanism. The VBP was rated highest with a score of 76.1 %,
well above the average SUS response value (68 %). This marks the VBP in the
77th percentile with a SUS grade of B. The TBP method also scored above
the average SUS response value, with score of 69.1 %, 54th percentile and a SUS
grade of C. The built-in mechanism was rated lowest, with a SUS score of 61.2 %,
33th percentile and a SUS score of C.

Fig. 5. Overall user experience after using the VBP, TBP, and built-in method

Figure 5 shows the result of Part II questionnaire in Box plot using the same
5-point Likert scale (in the 5 point scale 1 represents “strongly disagree” and 5
represents “strongly agree”). Based on this feedback, the average score for each
method is computed as shown in Table 3.

It can be observed from the median ratings in Fig. 5 that the security of
the VBP and TBP was thought to be higher than the built-in method. VBP
was perceived as most secure with an average score of 4.17 out of 5. Average
score for the TBP is 4.14, which is comparable to the VBP. The VBP was also
considered to have the lowest degree of PIN guessability with a score of 1.93.
The average score of the TBP (2.07) is also significantly lower than that of the
built-in method (3.53).

292 D.K. Yadav et al.

Table 3. Overall user experience results

VBP TBP Built-in method

Security 4.17 4.14 2.50

Convenience 3.53 2.57 3.10

Speed 4.20 2.33 2.90

Stability 3.53 3.90 3.20

Degree of guessability 1.93 2.07 3.53

In terms of convenience, the VBP was rated highest with an average score of
3.53 out of 5, followed by the built-in method and TBP.

The users perceived the VBP to be the fastest one (average score 4.20 out of 5)
and the TBP to be slowest (average score 2.33 out of 5). This ranking contradicts
with the ranking based on actual average authentication time reported in Table 1,
where the built-in method required least time. The perceived speed for the TBP
(2.33 in 5) was also close to the built-in method (2.90 in 5). This observation
shows that although the VBP or TBP required more processing time, they were
not perceived as onerous.

The users also reported that the two PIN-based mechanisms were more stable
than the built-in method. The TBP was rated as the most stable method with
a score of 3.90.

5.4 Overall User Experience

The feedback data for Part III questionnaire is plotted in Fig. 6.
For security, 53.3 % of the users ranked the VBP first and 46.7 % ranked the

TBP first. This result goes along with the feedback taken after each authenti-
cation session (discussed in the previous section), which shows that VBP was
perceived to be the most secure authentication method.

Fig. 6. User rankings of the VBP, TBP, and built-in method in terms of security,
authentication time, comfort, and likelihood of future usage

Design and Analysis of Shoulder Surfing Resistant PIN 293

Fig. 7. User rankings of the VBP, TBP, and built-in method in different usage scenarios

In terms of authentication time, 66.7 % of the users ranked the VBP first
whereas 26.7 % ranked the built-in method first. This feedback also supports
our previous observation that VBP’s perceived speed is higher than that of the
built-in method in spite of having longer login time.

In the case of comfort, the VBP was ranked first by 66.7 % of the users,
whereas the other methods got 16.7 % of the votes each. Similarly, 63.3 % of the
users gave first rank to the VBP for the likelihood of future usage, 20.0 % for
the TBP, and 16.7 % for the built-in mechanism. This shows that the users had
a clear inclination towards the PIN-based techniques over the built-in method.

5.5 Context Dependent Preference Study

Figure 7 shows the feedback of the users for Part IV questionnaire.
For the first situation, a quiet office or classroom, 43.3 % of the users ranked

the TBP as first and 36.7 % ranked the built-in method as first. Similarly, for the
second situation, a busy subway or social gathering, 56.7 % of the users ranked
the TBP as first and 30 % ranked the built-in method as first. In spite of being
slower, users preferred the TBP more than the built-in method in public settings.
This shows users’ concern about the low security of the built-in method. They
were ready to compromise on speed to ensure enhanced security.

For the third situation, at home with family or friends, the VBP was ranked
first by 53.3 % of the users, whereas the other methods got only 23.3 % of the
votes each. For the fourth situation, at home alone, 76.7 % of the users ranked
the VBP as first and only 16.7 % ranked the built-in method as first. For the
fifth situation, while jogging or biking, 86.7 % ranked the VBP as first. Thus,
whenever users had a chance to use the VBP (in low background noise situation),
they always chose it over any other method.

294 D.K. Yadav et al.

For the sixth situation, listening to loud music alone, 63.3 % ranked the built-
in method as first and 33.3 % ranked the TBP as first. Since the users would be
alone, there was less concern about security. Hence, they felt comfortable to use
the built-in method in place of the TBP.

The above study shows that while choosing one mechanism, security is the
most important criterion to the users. As a consequence, PIN-based mechanisms
were preferred in all the public settings. Even if the users were alone, they opted
for the VBP if viable. Only in the last case, the built-in method was chosen as
security was not a concern and the VBP could not be used.

6 Discussion

Effectiveness: The study provides an understanding of the relative user effort
required by the different authentication techniques. With minimal instructions
and very little practice, the users were able to login using the TBP and VBP
successfully more than 80 % of the time whereas using the built-in mechanism
they succeeded only 68 % of the time. This shows that the PIN-based mechanisms
are more effective than the built-in one. Moreover, incase of VBP, authentication
failure due to incorrect user input accounted for only 32.4 % of all the failed
authentication attempts and the rest were due to limitations at the level of
Google Glass. With this observation, it is safe to say that VBP will be much
more effective with the advancements in the Glass technology.

Efficiency: While the VBP and built-in methods had comparable login times,
the TBP needed a significantly longer login time. Multiple horizontal swipes
needed to select the desired digits of the PIN may lead to longer login time.
On an average, the VBP and built-in method had an 8.0-8.4s shorter login time
than the TBP.

However, the actual authentication time does not always match with the
users’ perception of speed of an authentication mechanism. Although the built-
in method outperformed the TBP and VBP in terms of authentication time,
participants rated VBP as the fastest. Further, the TBP scored quite close to
the built-in mechanism in spite of taking almost double average login time. The
effort required to enter a PIN may have affected users’ perception of speed.

Learning Effect: One way the PIN input can be speeded up is for users to
become more skillful. In our study, all the participants were novice users who
were able to increase their speed moderately in the VBP and built-in mechanism
over ten trials. However, significant improvement in speed with the TBP was
observed, where average login time was halved in 10th trial from the 1st one.
This gives us reason to hope that with practice the TBP would be more efficient
and acceptable. Thus, the first presumption mentioned in Sect. 4 is validated.
Further field studies in natural environments with more experienced users are
needed to get a more complete understanding of the learning effect.

Usability: User responses to the SUS were above average for the two PIN-based
authentication mechanisms. The built-in mechanism scored lower than average,
which indicates that it was not well accepted by the users in spite of being

Design and Analysis of Shoulder Surfing Resistant PIN 295

faster. Overall, users were more satisfied with the new mechanisms compared to
the built-in one. This observation was supported by the outcome of the feed-
back question on likelihood of future usage at the end of the experiment, where
participants rated the VBP first followed by the TBP and built-in mechanisms.

Discussion on login time, perceived speed, and likelihood of future usage
shows that users always preferred the method with least effort, i.e., VBP. This
may not lead to choosing the method with least authentication time. Perceived
speed played a more important role in the selection. Thus, our second presump-
tion is partially confirmed.

Security: With respect to security, participants always rated the VBP and TBP
much higher than the built-in method. They also reported that the guessability
of the PIN using the built-in method is much higher than the two proposed
mechanisms. Inclination towards the VBP and TBP was also evident from the
users’ choice of authentication technique in public space. They always opted for
either one of these two methods over the built-in one.

Preferred Mechanism in Hypothetical Usage Situations: Feedback on
the likelihood of usage of the three authentication techniques in different usage
contexts shows that people tend to choose different authentication mechanisms
depending on the environment. Apart from the situational constraints, security
was an important aspect in selecting the method. The built-in mechanism was
never chosen in public settings.

To choose the preferred authentication method, just like the main menu of
the Google Glass, user needs to simply utter ‘yes’ or ‘no’ for an authentication
option seen on the screen or tap to choose an option. This would allow for a
successful integration of the two methods in a real system, without significantly
increasing authentication time.

Limitations: The main drawback of the proposed method is that it restricts
the use of PINs with repeated digits. The problem is more prominent with VBP,
whereas TBP suffers only if there is consecutive occurrences of same digit. Even
if a single digit of a PIN is repeated, then the number of guessable passwords
reduces to 1000. However, the problem can be solved by changing the cipher
digit assignment or the keypad layout after each digit entry for VBP and TBP,
respectively.

7 Conclusions

This paper presents two PIN based authentication methods, namely, TBP and
VBP for the Google Glass. Both of them take advantage of the unique character-
istics of the wearable device, especially the private display, to make the method
robust against shoulder surfing and eavesdropping. Since the same PIN can be
entered using both methods, a user has the freedom to choose any one depending
on the environment.

A detailed user study was conducted to compare the PIN based authen-
tication techniques with the built-in method, testing authentication accuracy,

296 D.K. Yadav et al.

security, usability and overall user experience. The results show that VBP and
TBP have better accuracy than the built-in method, users being able to suc-
cessfully login more than 80 % of the time using the VBP or TVP, while only
68 % of the time using the built-in mechanism. The VBP and built-in methods
have comparable login times (∼8 s) but the TBP requires a significantly longer
login time (14 s). However, users perceived VBP to be the fastest followed by the
built-in and TBP methods. In terms of perceived security, the VBP and TBP
were ranked ahead of the built-in method. 53.3 % of the users ranked the VBP
and 46.7 % ranked the TBP as the most secure mechanism. The usability of the
PIN based methods was also higher as the SUS score for the VBP (76.1 %) and
TBP (69.1 %) was better than that for the built-in method (61.2 %). The results
also suggest that the PIN based authentication mechanisms have overall better
user perception in terms of stability, and likeability than the built-in method.
Further, the study provides insight into users’ preference when using these three
techniques under different contexts. The PIN based techniques complement one
another in different scenarios and were preferred more in public settings than
the built-in one. The results show that the PIN based methods have the poten-
tial to be used for secure user authentication on Google Glass in various usage
contexts.

Acknowledgment. This work is supported by the National Science Foundation under
Grant No. 1228842.

References

1. Google Glass. http://www.google.com/glass/start/
2. Glauser, W.: Doctors among early adopters of google glass. Can. Med. Assoc. J.

185(16), 1385 (2013). doi:10.1503/cmaj.109-4607
3. McNaney, R., Vines, J., Roggen, D., Balaam, M., Zhang, P., Poliakov, I., Olivier,

P.: Exploring the acceptability of google glass as an everyday assistive device for
people with parkinsons. In: Proceedings of CHI, pp. 2551–2554 (2014)

4. Hernandez, J., Li, Y., Rehg, J. M., Picard, R. W.: BioGlass: physiological parame-
ter estimation using a head-mounted wearable device. Accepted in Mobihealth

5. Ishimaru, S., Kunze, K., Kise, K., Weppner, J., Dengel, A., Lukowicz, P., Bulling,
A.: In the blink of an eye: combining head motion and eye blink frequency for
activity recognition with Google Glass. In: Proceedings of the Augmented Human
International Conference, vol. 15 (2014)

6. Yus, R., Pappachan, P., Das, P. K., Mena, E., Joshi, A., Finin, T.: Demo: Face-
Block: privacy-aware pictures for google glass. In: Proceedings of International
Conference on Mobile Systems, Applications, and Services, vol. 366 (2014)

7. Egelman, S., Jain, S., Portnoff, R. S., Liao, K., Consolvo, S., Wagner, D.: Are you
ready to lock? understanding user motivations for smartphone locking behaviors.
In: Proceedings of ACM SIGSAC Conference on Computer and Communications
Security (2014)

8. Bailey, D. V., Drmuth, M., Paar, C.: “Typing” passwords withvoice recognition:
how to authenticate to google glass. In: Proceedings ofthe Symposium on Usable
Privacy and Security (2014)

http://www.google.com/glass/start/
http://dx.doi.org/10.1503/cmaj.109-4607

Design and Analysis of Shoulder Surfing Resistant PIN 297

9. Rogers, J.: Please enter your four-digit pin. In: Financial Services Technology, U.S.
Edition, vol. 4 (2007)

10. Ratha, N.K., Chikkerur, S., Connell, J.H., Bolle, R.M.: Generating cancelable fin-
gerprint templates. IEEE Trans. PAMI 29(4), 561–572 (2007)

11. Weiss, R., De Luca, A.: PassShapes: utilizing stroke based authentication to
increase password memorability. In: Proceedings of NordiCHI, pp. 383–392 (2008)

12. Davis, D., Monrose, F., Reiter, M.K.: On user choice in graphical password
schemes. In: Proceedings of USENIX Security Symposium, vol. 13, pp. 1–14 (2004)

13. Birget, J.-C., Dawei, H., Memon, N.: Graphical passwords based on robust dis-
cretization. IEEE Trans. Inf. Forensics Secur. 1(3), 395–399 (2006)

14. Jermyn, I., Mayer, A., Monrose, F., Reiter, M.K., Rubin, A.D.: The design and
analysis of graphical passwords. In: Proceedings of SSYM (1999)

15. Dirik, A.E., Memon, N., Birget, J.C.: Modeling user choice in the PassPoints graph-
ical password scheme. In: Proceedings of Usable Privacy and Security, pp. 20–28
(2007)

16. http://www.passfaces.com/pfphelp/logon.htm
17. Roth, V., Richter, K., Freidinger, R.: A pin-entry methodresilient against shoulder

surfing. In: Proceedings of Conference on Computer and Communications Security,
pp. 236–245 (2004)

18. Wiedenbeck, S., Waters, J., Sobrado, L., Birget, J.-C.: Design andevaluation of a
shoulder-surfing resistant graphical passwordscheme. In: Proceedings of Conference
on Advanced Visual Interfaces, pp. 177–184(2006)

19. Bianchi, A., Oakley, I., Kwon, D.S.: The secure haptic keypad: atactile password
system. In: Proceedings of International Conference on Human Factors in Com-
puting Systems, pp. 1089–1092 (2010)

20. Kim, D., Dunphy, P., Briggs, P., Hook, J., Nicholson, J., Nicholson, J., Olivier, P.:
Multi-touch authentication ontabletops. In: Proceedings of International Confer-
ence on Human Factors in Computing Systems, pp. 1093–1102 (2010)

21. De Luca, A., von Zezschwitz, E., Hussmann, H.: Vibrapass: secureauthentication
based on shared lies. In: Proceedings of International Conference on Human Factors
in Computing Systems, pp. 913–916 (2009)

22. De Luca, A., Hang, A., Brudy, F., Lindner, C., Hussmann, H.: Touchme once
and i know it’s you! Implicit authentication based ontouch screen patterns. In:
Proceedings of International Conference on Human Factors in Computing Systems
(2012)

23. Sae-Bae, N., Memon, N.: Online signature verification on mobiledevices. IEEE
Trans. Inf. Forensics Secur. 9(6), 947 (2014)

24. Sae-Bae, N., Memon, N., Isbister, K., Ahmed, K.: Multitouch gesture-based
authentication. IEEE Trans. Inf. Forensics Secur. 9(4), 568–582 (2014)

25. Shabtai, A., Fledel, Y., Kanonov, U., Elovici, Y., Dolev, S., Glezer, C.: Google
android: a comprehensive security assessment. Secur. Priv. IEEE 8(2), 35–44 (2010)

26. Von Zezschwitz, E., Dunphy, P., De Luca, A.: Patterns in the wild: a field study of
the usability of pattern and pin-based authentication on mobile devices. In: Pro-
ceedings of International Conference on Human-computer Interaction with Mobile
Devices and Services, pp. 261–270 (2013)

27. Brooke, J.: SUS: a quick and dirty usability scale, pp. 189–194. Taylor and Francis
(1996)

28. Sauro, J.: Measuring usability with the System Usability Scale (SUS) (2011)
29. Bangor, A., Kortum, P.T., Miller, J.T.: An empirical evaluation of the system

usability scale. Int. J. Hum. Comput. Interact. 24(6), 574–594 (2008)

http://www.passfaces.com/pfphelp/logon.htm

Glass OTP:
Secure and Convenient User Authentication

on Google Glass

Pan Chan(&), Tzipora Halevi, and Nasir Memon

NYU School of Engineering, New York, USA
{pc1260,thalevi,memon}@nyu.edu

Abstract. Wearable computing devices have become increasingly popular and
while these devices promise to improve our lives, they come with new chal-
lenges. This paper focuses on user authentication mechanisms for the Google
Glass device (Glass). Glass only has three sources of input: a camera, a
microphone, and a touchpad. This limited set of interfaces makes the use of
standard passwords infeasible or cumbersome. We therefore propose a
One-Time-Password (OTP) authentication scheme, Glass OTP that uses the
Glass camera to scan a QR code displayed on the user’s smartphone. We
implement a proof of concept Glass lock screen which unlocks only upon
scanning an OTP generated by the companion Android smartphone application.
We also discuss the reliability, security, and convenience of the proposed
solution as compared to the current solutions in use.

Keywords: Authentication � User authentication � Wearable computing �
Google glass � One time passwords � Password alternative

1 Introduction

As technology advances and miniaturizes, companies have begun to innovate by cre-
ating new wearable computing devices ranging from simple bracelets for tracking daily
activity [1] to reality augmenting head-mounted displays. The focus of this paper is on
the latter type of wearable device, specifically the Glass by Google [2].

Glass presents new challenges in terms of security. Being a device worn on a user’s
head, Glass is potentially an easier target for thieves. In addition, the limited input
capabilities available make the creation of an authentication mechanism that balances
security with usability much more difficult. This paper proposes Glass OTP, a simple
authentication mechanism for the Glass and discusses its security challenges and
considerations of possible solutions.

As of the time of this paper’s writing, two authentication applications exist for the
Glass. The first and oldest is “Bulletproof” released in April 2013 [7]. The second and
most recent one is the lock screen developed by Google and included as of version
XE12 [8]. Both of these authentication mechanisms are similar in that they interpret a
user’s gestures on the touchpad of the Glass to unlock the device.

© International Financial Cryptography Association 2015
M. Brenner et al. (Eds.): FC 2015 Workshops, LNCS 8976, pp. 298–308, 2015.
DOI: 10.1007/978-3-662-48051-9_22

Bulletproof is a relatively simple lock screen, developed and released as the first
lock screen for Glass. It allows a user to configure a combination of single tap, long tap,
fling left and fling right to unlock the device. Fling left is a swipe from the back of a
user’s head to the front, fling right is the opposite. The combination chosen by a user is
written in the source code before the app is built; as a result there is no limit on how
long a combination can be [7].

The official Glass lock screen was released and came packaged with the XE12
update in December 2013. This lock screen works similarly to Bulletproof, but has
more gesture options and is a more polished product. Available gestures include
swiping forwards or backwards with one or two fingers, hook swipes – swiping for-
ward and back in the same motion, and tapping with one or two fingers. The config-
uration for this lock screen is built into the settings UI of Glass. A user is required to
use a combination of exactly four gestures. In the case of a forgotten combination, a
user may log in to the MyGlass website and obtain a QR code to reset the Glass lock
screen [8].

The touchpad based method of authentication described above aims to be intuitive
and easy, but has some limitations in terms of security. In Google’s implementation,
there are 4096 possible lock combinations and also a lock out after enough failed
attempts. Bulletproof does not have a lock out threshold, but it does allow for a
technically unlimited combination length. As a result, both of these implementations
appear to mitigate random brute force attacks.

However, there is one major issue that can make these implementations insecure.
The unlock pattern combination must be entered by a user on the touchpad which is
located by the user’s right temple. This means that the gesture a user enters is very
visible to all surrounding people. Unlike traditional “shoulder surfing” attacks, an
attacker observing a Glass user from a far is much less obvious and suspicious. This
also means that it is very easy for a person to record a user unlocking their Glass from a
distance without arousing suspicion. A user can also be unintentionally recorded by
surveillance equipment in the vicinity.

Usability of touchpad gesture based unlock patterns on the glass is also of limited
value. In a recent study that proposed a novel touch-based pin (TBP) authentication
[22], 27 % of the participants achieved successful login without any errors in 10 trials
with a success rate of 87 % overall for the method. The TBP method did surpass the
Google Glass Pattern Lock mechanism, for which only 7 % of the participants managed
to log-in 10 times without any errors and provided 68 % overall success rate. In that
study, users indicated they preferred a voice-based pin authentication over TBP, and
that both options were preferred over the Glass Pattern Lock mechanism.

The rest of this paper is organized as follows. In the next section, we explore
different alternatives that one may employ to create a user authentication mechanism
for Glass. In Sect. 3 we present Glass OTP, a One-Time-Password (OTP) authentica-
tion scheme that can be used to secure the Glass. Two proof of concept applications
that are developed and described: “Glass OTP Companion” application for Android
smartphone devices and “Glass OTP” lock screen for Glass devices. In Sect. 4 we
analyze the security and usability of the proposed scheme based on a framework
developed by Bonneau et al. [9]. In Sect. 5 we conclude with a discussion and a
description of possible future work.

Glass OTP: Secure and Convenient User Authentication on Google Glass 299

2 Options for User Authentication on Glass

In simpler terms, Glass is a wearable device consisting of a small display, which can
project a transparent picture in a person’s line of view when worn on the head like a
normal glass. It has a microphone, a camera, and a touchpad for input. Wi-Fi and
Bluetooth are available for connectivity [2].

Glass is a device worn on the head during use and often worn for extended periods
of time [2]. As a result, the Glass is potentially an easier target for theft. It is easy to
identify someone who is wearing Glass and easy to steal Glass from the head of an
inattentive user. With a higher risk of physical theft, the security of the data it contains
becomes even more important and hence the need for user authentication.

If we consider the user input mechanisms available on the Glass, we have limited
options for user authentication schemes. The standard keyboard based password or pin
based authentication implemented in virtually all computing devices are infeasible to
implement here as there is no physical keyboard for input, and it appears to be difficult
to implement a usable virtual keyboard with the existing Glass hardware. This requires
developers to get creative with the hardware provided.

Using the microphone, a user could speak a specific passphrase to unlock the Glass.
This would leverage the existing development on voice recognition for Glass [3].
However, the obvious problem here would be an attacker eavesdropping for the
passphrase. A novel solution to this has been recently proposed by Yadav et al. [22].
The proposed algorithm employs a pin substitution that is only visible to the user,
therefore overcoming the threat from an eavesdropping attack.

Using the touchpad, a user could perform a pattern of gestures to unlock the Glass.
There are two existing implementations based on this idea, one being the current
official lock screen developed by Google [7, 8]. In Sect. 4 will briefly analyze these
existing solutions and their weaknesses.

Aside from traditional user-input, Bluetooth connectivity is available and may be
used to transfer data between Glass and a user’s smartphone. The use of Bluetooth as a
proximity-based locking mechanism was considered prior to the solution presented in
this paper. However, there were a few concerns that made Bluetooth an undesirable
choice. Bluetooth is often interpreted as a major cause of battery drain and while
Bluetooth 4.0’s Low Energy mode greatly reduces power consumption [12], it must
also be supported by the user’s smartphone. For Android, Bluetooth 4.0 LE was not
supported until the release of Android 4.3 (API 18) in June 2013 [13]. Additionally,
Bluetooth radios commonly used by mobile devices have a range up to 10 meters [12]
and determining the distance between devices connected by Bluetooth is not trivial
[14]. This would create additional security related concerns. As a result, while Blue-
tooth may be a possible solution to the problem stated, it is not the solution explored in
this work.

Finally, using the front-facing camera, a user could scan a specific image to unlock
the Glass. The solution presented in this paper, Glass OTP, relies on this method of
input and will be discussed in detail in the next section.

300 P. Chan et al.

3 Glass OTP

Glass OTP is a new and novel authentication scheme for the Google Glass device,
which is designed to be both secure and convenient. The work presented here includes
the development of two applications to support this authentication scheme: the “Glass
OTP” lock screen for Glass devices and the “Glass OTP Companion” application for
Android smartphones.

Glass OTP relies on a private key which is generated by the Glass OTP Companion
application and shared with the Glass device. Using this private key, a time based OTP
is generated by the Glass OTP Companion application and embedded in a QR code.
The Glass OTP lock screen then uses the Glass camera to scan this QR code and verify
the OTP before unlocking the device. Code from the ZXing project [6] was used to
handle QR generation and QR scanning in the two Glass OTP applications.

3.1 Private Key and OTP Generation

The Glass OTP authentication scheme relies on the HMAC-SHA-256 algorithm to
generate OTPs from random symmetric 256-bit keys. The key itself is generated by a
smartphone using the Glass OTP Companion application. This application was
developed to generate symmetric keys using the built in javax.crypto.KeyGenerator
class [5]. Using this function, a 256-bit key is created and stored locally on the
smartphone device in Android’s “MODE_PRIVATE” [4]. Security of this storage
method assumes the Android smartphone is not “rooted” or compromised in any way.
As for the security of the algorithm chosen; as of the time of this paper’s writing,
SHA-256 has been successfully attacked up to 52 rounds out of 64 and still remains
secure [10].

Glass OTP uses a time-based scheme following suggestions in IETF RFC 6238
[11] to generate passwords. The hashing algorithm used in Glass OTP,
HMAC-SHA-256, is one of two algorithms suggested for implementation of TOTP
schemes by the IETF. Glass OTP uses a 30 s time step based on the local system’s
current UNIX time. The OTP is obtained by first generating a hash of the current time
step using HMAC-SHA-256 initialized with the shared private key. The resulting hash
is then converted from the resultant byte array to a binary integer and modulo to the
desired OTP length (6 digits in the case of Glass OTP). This implementation is used by
both applications involved in the Glass OTP scheme to generate and verify OTPs.

It is realized that this implementation is not without possible vulnerabilities.
Relying on local system UNIX time may allow for a replay attack using old OTPs and
maliciously modified local time. Obtaining time from verified NTP servers may be one
solution. Using local storage in “MODE_PRIVATE” [4] is also not foolproof. More
secure means of storage include using the built-in “Android Key Store” or
hardware-backed “KeyChain” credential storage, both of which were introduced with
Android 4.3 (API 18) [15, 16]. The risks mentioned here were deemed acceptable for
GlassOTP in its current stage of development and may be mitigated in the future.

Glass OTP: Secure and Convenient User Authentication on Google Glass 301

3.2 Initial Setup Procedure

The setup procedure for Glass OTP is designed to be quick and requires minimal effort
from the user.First, a secret key must be generated by the Glass OTP Companion
application on a smartphone. The companion application can then embed the secret key
in a QR code using ZXing libraries and display the code for a Glass device running
Glass OTP to scan as seen in Fig. 1. Upon scanning the QR code, the Glass OTP lock
screen will store the secret key locally and use it to verify scanned OTPs in the future.
At this point, setup is complete.

3.3 Unlocking the Glass

Unlocking Glass using Glass OTP is a process designed to be quick and natural,
requiring only a glance at one’s smartphone. When a user tries to unlock their Glass,
Glass OTP will prompt them to scan an OTP QR code. At this point, the user must
launch the Glass OTP Companion application on their smartphone. When the com-
panion application launches, it will automatically generate and display an OTP QR
code as seen in Fig. 2. Scanning this OTP QR code with the Glass OTP lock screen will
unlock the device.

Fig. 1. The key management screen of
Glass OTP Companion, where a private key
is generated and displayed for scanning.

Fig. 2. The main/front screen of Glass OTP
Companion where an OTP is generated and
displayed for scanning.

302 P. Chan et al.

4 Security and Usability Analysis

In a recent paper Bonneau et al. [9] analyzed existing alternatives to traditional pass-
words. Their work focused on authentication schemes implemented on traditional
computing devices (e.g. a PC with keyboard and mouse). As a result, direct compar-
isons of Glass authentication schemes to analysis done in that research would not be
useful. However, Bonneau et al. [9] do outline very specific and detailed criteria upon
which to judge an authentication scheme. Below we analyze the proposed Glass OTP
authentication scheme against these criteria.

The criteria are separated into three categories: usability, deployability and security.
For each criteria, an authentication scheme either “offers the benefit,” “almost offers the
benefit,” or “does not offer the benefit.” And for each criteria, an authentication scheme
is also evaluated to be “worse than passwords,” “better than passwords,” or “no
change.” [9] In our work, we will be comparing Glass OTP against gesture pattern
authentication schemes where applicable.

Figure 3 summarizes the analysis against the given criteria and is followed by
further explanation of each criterion.

Usability:

• Memorywise-Effortless: The Glass OTP requires nothing to remember. The user
must remember to carry his or her phone, but Glass is currently designed as a
companion device to smartphones. It can be reasonably assumed the user will carry
their smartphone for other reasons as well. This solution is better than pattern locks,
where users must memorize a specific sequence of gestures.

• Scalable-for-Users: Each user of Glass OTP is independent from other users and
there is no reliance on a support infrastructure, which therefore makes it scalable.

• Nothing-to-Carry: User is required to carry a smartphone to use Glass OTP com-
panion app. Pattern locks have an advantage here, as they do offer this benefit.
However, since a large percentage of the population carries a smartphone [20], this
does not change the usage model for these users.

• Physically-Effortless: Both OTP and smart phone require some physical effort on
the side of the user. For OTP, the user is required to hold a smartphone in front of
Glass for scanning, while for pattern locks, physical effort is required to perform
gestures correctly. Both lock screens can be set to lock the device only when
removed from a user’s head [17].

• Easy-to-Learn: Glass OTP has an easy-to-follow setup procedure and is designed to
be simple for the user. This is similar to pattern locks, which also require learning as
they are a new authentication scheme.

• Efficient-to-Use: Initial setup is required to exchange and share a private key for the
Glass OTP. After initial one-time setup, pointing the Glass at a smartphone to scan a
Glass OTP QR code is easy. Some Inconvenience/inefficiency may exist in having
to launch the Glass OTP Companion application on the smartphone.

Glass OTP: Secure and Convenient User Authentication on Google Glass 303

• Infrequent-Errors: Glass camera is able to accurately scan the Glass OTP QR code
with ease. There are no possible user input errors to account for. This is better than
pattern locks, where users must enter a sequence of gestures perfectly or try again.

• Easy-Recovery-from-Loss: A user is able to save their generated private key, either
as text or as a screenshot of the private key QR code. Recovery involves scanning
this code with a new smartphone running the Glass OTP Companion app. This is
similar to the official Glass lock screen’s recovery feature [8].

Glass OTP Pattern Lock

Usability
Memorywise-Effortless

Scalable-for-Users

Nothing-to-Carry

Physically-Effortless
Easy-to-Learn

Efficient-to-Use

Infrequent-Errors

Easy-Recovery-from-Loss

Deployability
Accessible
Negligible-Cost-per-User

Server-Compatible N/A N/A
Browser-Compatible N/A N/A
Mature
Non-Proprietary

Security
Resilient-to-Physical-Observation

Resilient-to-Targeted-Impersonation

Resilient-to-Throttled-Guessing

Resilient-to-Unthrottled-Guessing

Resilient-to-Internal-Observation

Resilient-to-Leaks-from-Other-Verifiers

Resilient-to-Phishing

Resilient-to-Theft

No-Trusted-Third-Party

Requiring-Explicit-Consent

Unlinkable

 = offers the benefit; no circle = does not offer the benefit; N/A = criteria not applicable

Fig. 3. Similar to the table used to compare criteria in “The Quest to Replace Passwords”
(Microsoft [9]). This table compares Glass pattern locks and Glass OTP with the given criteria.

304 P. Chan et al.

Deployability:

• Accessible: Glass OTP requires more physical effort due to necessary handling of
the smartphone. Although the effort may be negligible, it must still be considered in
this analysis. Pattern locks are similar as they require physical effort to lift one’s arm
to the proper position and perform the correct gestures.

• Negligible-Cost-per-User: Glass is designed as a companion device to smart
phones. It is assumed that the Glass user will have a smart phone capable of running
the Glass OTP companion app.

• Server-Compatible: Glass OTP functions are entirely client-side, with no require-
ment for web-hosted resources. Pattern locks are similar in this criteria.

• Browser-Compatible: Glass OTP isn’t a meant as an everyday password replace-
ment for multiple scenarios.

• Mature: This protocol introduces the first Glass security application that utilizes
OTPs. Patterns locks for the Glass are also fairly immature, having existed only as
early as April 2013 [7].

• Non-Proprietary: Glass OTP will be open source once released and would be
non-proprietary. Google’s pattern lock is proprietary [8], Bulletproof pattern lock is
open source [7].

Security:

• Resilient-to-Physical-Observation: Any observed OTP QR code is time sensitive
and useless after a short period of time, and is therefore resilient to physical
observations. This offers better solution than pattern locks, where a user’s gestures
are clearly visible to nearby observers.

• Resilient-to-Targeted-Impersonation: Users decide how they want to keep their own
private keys securely backed up. Better than pattern lock, as Google’s pattern lock
can be reset if an attacker obtains access to a victim’s Google account [8].

• Resilient-to-Throttled-Guessing: It is infeasible to try all possible number combi-
nations for the OTP before the current valid combination would expire, which
renders it resilient to throttled guessing. Google’s pattern lock has a lockout
threshold [8]. Bulletproof has no limit on pattern length [7].

• Resilient-to-Unthrottled-Guessing: It is infeasible to try all possible number com-
binations before the current valid combination would expire. Google’s pattern lock
has a lockout threshold [8]. Bulletproof has no limit on pattern length [7].

• Resilient-to-Internal-Observation: An intercepted OTP would expire before it is
useful. It is infeasible that an attacker could intercept an OTP, steal the user’s Glass
and authenticate before the OTP expires. This assumes the user does not store
private key in an insecure manner. I.e. user does not store private key on Glass or
smartphone in unencrypted form. The mechanism is better than pattern locks, where
if a user’s touchpad input is intercepted; the pattern of gestures for unlocking the
device can be obtained and replayed.

• Resilient-to-Leaks-from-Other-Verifiers: All verification is done locally by
Glass OTP, which renders it resilient to such leaks. Pattern locks also perform
verification locally.

Glass OTP: Secure and Convenient User Authentication on Google Glass 305

• Resilient-to-Phishing: All verification is done locally by Glass OTP. This is better
than pattern locks, where a successful phishing attack on a victim’s Google account
would grant access to the Glass device if using pattern lock [8].

• Resilient-to-Theft: Compromise of Glass OTP requires theft of Glass device and
paired smartphone. Resilience to theft depends on the security of the user’s
smartphone. This is better than pattern lock that does not rely on a separate physical
device for authentication (only requires theft of Glass and pattern knowledge).

• No-Trusted-Third-Party: Glass OTP only allows a user to keep his own private key
locally. All verification is done locally by Glass OTP. This is better than pattern
lock which relies on Google services for pattern recovery.

• Requiring-Explicit-Consent: Glass OTP requires a user to purposefully use and
position their phone in front of Glass.

• Unlinkable: All verification is done locally by Glass OTP. Same as pattern locks,
which also verify locally.

Glass Camera Accuracy and Reliability. Another concern regarding the Glass OTP
authentication scheme is the reliance on the Glass’s front facing camera. Questions
have been raised about if the camera can quickly and accurately scan QR codes
displayed by the smartphone in various conditions. The distance a smartphone must be
from the Glass camera is also something to be considered. Tests performed until the
time of this paper’s writing has yielded good results, however these tests were not done
under properly controlled environments so official results were not recorded. The
following results are recollections of experience from hands-on testing in every-day
real world environments.

The Glass camera and ZXing code [6] (for QR code interpretation) is able to quickly
and easily scan QR codes under most conditions. In normal light, such as outdoors in
overcast conditions or indoors with regular lighting, QR codes are quickly and easy
scanned. In low light or no light, the same was true since the QR code is being
displayed by a smartphone screen which is backlit. In these cases, the smartphone
displaying a QR code could be held away as far as one to two feet (almost half an
average arm’s length) away from Glass and still be successfully scanned.

The only issues arose during testing in bright sunlight. In some cases, direct sunlight
was able to overpower the backlighting of smartphone screens and make scanning the
displayed QR code difficult to impossible. Indirect sunlight also posed an issue with
smartphones which had insignificant maximum screen brightness. On newer phones,
such as the HTC One M8 used for testing, max brightness was enough to display a
clear QR code for the Glass to scan in bright but indirect sunlight. In the worst cases,
the QR code on a smartphone could still be scanned if the user shaded the phone with
his or her hand; bringing the phone closer to the camera also improved chances of a
successful scan.

Key Backup and Recovery. A major concern with any kind of authentication
scheme, especially ones which rely on a second physical token, is how to back-up and
restore a key. With Glass OTP, the solution is fairly simple but places more respon-
sibility on the user. Currently, a user can have the Glass OTP Companion application

306 P. Chan et al.

display the saved private key as both a string and QR code at any time. The easiest way
to back up the private key would be to take a screenshot of the QR code representation
and store it somewhere safe. If the smartphone used to unlock a specific Glass device is
ever lost, a user just has to scan the private key QR code with the Glass OTP Com-
panion application installed on a new smartphone.

5 Conclusions and Future Work

Wearable devices are improving and becoming increasingly popular as time goes on in
our electronically connected society. Some people have a desire for as much infor-
mation as possible, as fast as possible, and as accessible as possible. Wearables promise
to fulfill such desires, but in doing so come with large privacy and security concerns.

Google Glass is such a device; it aims to keep a user connected at all times,
containing and providing data relevant, specific, and sometimes private to the user.
Unfortunately, as a result of its form factor, passwords as we know it cannot be used to
secure the device. There is no keyboard to input long, random, and secure passwords.

Existing solutions aim to provide an alternative relying on gestures on the touch-
pad. But these gesture combinations are out in the open, for anyone nearby to see and
worse, record.

This paper presents Glass OTP, an authentication scheme which finds a balance
security and convenience not seen in existing authentication schemes. Glass OTP has
offers resiliency to numerous security risks, similar to traditional One-Time-Password
password schemes [9]. However, Glass OTP overcomes the inconvenience associated
with One-Time-Passwords by using the Glass camera, sparing the user from having to
manually input the password before it becomes invalid.

Future solutions could be introduced alongside hardware improvements by Google.
For example, adding a biometric security mechanism similar to Apple’s Touch ID [18]
could prove to be a good solution compared to the alternatives examined in this paper.
With the rising affordability of fingerprint readers, and as new applications –such as the
Paypal app [19] – begin accepting fingerprints for authentication, integrating fingerprint
readers into Google Glass may offer a promising authentication solution. However, this
requires changes to the hardware that are not currently available on the system.

Future work should include a user study that examines the security and the usability
of the OTP mechanism vs. the Pattern Lock mechanism. It should compare the actual
time and the perceived time and convenience of using each approach. As users pre-
viously expressed significant concerns about privacy issues posed by Google Glass
[21], the effect of adding a locking mechanism should be explored, and whether it will
raise potential users’ willingness to accept the system.

Acknowledgments. This work was supported in part by the NSF (under grant 1228842). The
views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of any of
the sponsors.

Glass OTP: Secure and Convenient User Authentication on Google Glass 307

References

1. Fitbit, Inc. Fitbit Official Site. http://www.fitbit.com. Accessed 2 October 2014
2. Google. Google Glass. http://www.google.com/glass. Accessed 20 September 2014
3. Google. Google Developers Voice Input. https://developers.google.com/glass/develop/gdk/

voice. Accessed 8 October 2014
4. Google. Context Android Developers. http://developer.android.com/reference/android/

content/Context.html. Accessed 1 October 2014
5. Oracle. KeyGenerator (Java Platform SE 7). http://docs.oracle.com/javase/7/docs/api/javax/

crypto/KeyGenerator.html. Accessed 1 October 2014
6. Github, Inc. zxing/Zxing. https://github.com/zxing/zxing. Accessed 12 October 2014
7. Github, Inc. kaze0/Bulletproof. https://github.com/kaze0/bulletproof. Accessed 10 October

2014
8. Google. Screen Lock – Google Glass Help. https://support.google.com/glass/answer/

4389349?hl=en. Accessed 8 October 2014
9. Bonneau, J., Herley, C., van Oorschot, P.C., Stajano, F.: The Quest to Replace Passwords: A

Framework for Comparative Evaluation of Web Authentication Schemes. Microsoft. http://
research.microsoft.com/pubs/161585/QuestToReplacePasswords.pdf

10. Li, J., Isobe, T., Shibutani, K.: Converting MITM Preimage Attack into Pseudo Collision
Attack: Application to SHA-2 (2012). Sony China Research Laboratory. Sony Corporation.
http://fse2012.inria.fr/SLIDES/67.pdf

11. M’Raihi, D., Machani, S., Pei, M., Rydell, J.: TOTP: Time-Based One-Time Password
Algorithm. Int. Eng. Task Force (2011). https://tools.ietf.org/html/rfc6238

12. Bluetooth SIG, Inc. Basics | Bluetooth Technology Website. http://www.bluetooth.com/
Pages/Basics.aspx. Accessed 10 December 2014

13. Google. Bluetooth Low Energy | Android Developers. https://developer.android.com/guide/
topics/connectivity/bluetooth-le.html. Accessed 12 December 2014

14. Ghose, A., Bhaumik, C., Chakravarty, T.: BlueEye – A System for Proximity Detection
Using Bluetooth on Mobile Phones. UbiComp. http://www.ubicomp.org/ubicomp2013/
adjunct/adjunct/p1135.pdf

15. Google. Android 4.3 APIs | Android Developers. https://developer.android.com/about/
versions/android-4.3.html. Accessed 16 December 2014

16. Elenkov, N.: Jelly Bean hardware-backed credential storage. http://nelenkov.blogspot.com/
2012/07/jelly-bean-hardware-backed-credential.html. Accessed 16 December 2014

17. Google. On-Head Detection – Google Glass Help. https://support.google.com/glass/answer/
3079857. Accessed 20 December 2014

18. Apple. Apple – iPhone 6 – Touch ID. https://www.apple.com/iphone-6/touch-id/. Accessed
20 December 2014

19. FinExtra. PayPal adds fingerprint authentication to more Samsung devices (2014). http://
www.finextra.com/news/announcement.aspx?pressreleaseid=56577&topic=retail

20. PewReseach Internet Project, Mobile Technology Fact Sheet. http://www.pewinternet.org/
fact-sheets/mobile-technology-fact-sheet/

21. Cnet, 72 percent say no to Google Glass because of privacy. http://www.cnet.com/news/72-
percent-say-no-to-google-glass-because-of-privacy/

22. Yadav, D.K., Ionascu, B., Ongole, S.V.K., Roy, A., Memon, N.: Design and analysis of
shoulder surfing resistant PIN based authentication bechanisms on google glass. In:
Wearable S&P 2015 (2015)

308 P. Chan et al.

http://www.fitbit.com
http://www.google.com/glass
https://developers.google.com/glass/develop/gdk/voice
https://developers.google.com/glass/develop/gdk/voice
http://developer.android.com/reference/android/content/Context.html
http://developer.android.com/reference/android/content/Context.html
http://docs.oracle.com/javase/7/docs/api/javax/crypto/KeyGenerator.html
http://docs.oracle.com/javase/7/docs/api/javax/crypto/KeyGenerator.html
https://github.com/zxing/zxing
https://github.com/kaze0/bulletproof
https://support.google.com/glass/answer/4389349?hl=en
https://support.google.com/glass/answer/4389349?hl=en
http://research.microsoft.com/pubs/161585/QuestToReplacePasswords.pdf
http://research.microsoft.com/pubs/161585/QuestToReplacePasswords.pdf
http://fse2012.inria.fr/SLIDES/67.pdf
https://tools.ietf.org/html/rfc6238
http://www.bluetooth.com/Pages/Basics.aspx
http://www.bluetooth.com/Pages/Basics.aspx
https://developer.android.com/guide/topics/connectivity/bluetooth-le.html
https://developer.android.com/guide/topics/connectivity/bluetooth-le.html
http://www.ubicomp.org/ubicomp2013/adjunct/adjunct/p1135.pdf
http://www.ubicomp.org/ubicomp2013/adjunct/adjunct/p1135.pdf
https://developer.android.com/about/versions/android-4.3.html
https://developer.android.com/about/versions/android-4.3.html
http://nelenkov.blogspot.com/2012/07/jelly-bean-hardware-backed-credential.html
http://nelenkov.blogspot.com/2012/07/jelly-bean-hardware-backed-credential.html
https://support.google.com/glass/answer/3079857
https://support.google.com/glass/answer/3079857
https://www.apple.com/iphone-6/touch-id/
http://www.finextra.com/news/announcement.aspx?pressreleaseid=56577&topic=retail
http://www.finextra.com/news/announcement.aspx?pressreleaseid=56577&topic=retail
http://www.pewinternet.org/fact-sheets/mobile-technology-fact-sheet/
http://www.pewinternet.org/fact-sheets/mobile-technology-fact-sheet/
http://www.cnet.com/news/72-percent-say-no-to-google-glass-because-of-privacy/
http://www.cnet.com/news/72-percent-say-no-to-google-glass-because-of-privacy/

Author Index

Ali, Syed Taha 34
Andrychowicz, Marcin 1

Böhme, Rainer 19

Caine, Kelly 231
Chan, Pan 298
Cheon, Jung Hee 142, 194

Dabrowski, Adrian 274
Dai, Wei 160
Doröz, Yarkın 160
Dziembowski, Stefan 1

Gaucas, Dale 78
Grossklags, Jens 63

Halevi, Tzipora 298
Hao, Feng 34
Hell, Martin 261
Hileman, Garrick 92

Ionascu, Beatrice 281

Jacques, Robert St 78
Johansson, Bjorn 261
Johnson, Benjamin 63

Kim, Miran 142, 194
Kim, Myungsun 142
Kohno, Tadayoshi 94
Krishna Ongole, Sai Vamsi 281
Krombholz, Katharina 274

Lantz, Patrik 261
Laszka, Aron 63
Lauter, Kristin 194
Lee, Peter Hyun-Jeen 34

Lepoint, Tancrède 184
Lerner, Adam 94

Malinowski, Daniel 1
Mazurek, Łukasz 1
McCorry, Patrick 34
McReynolds, Emily 94
Meiklejohn, Sarah 127
Memon, Nasir 281, 298
Möser, Malte 19
Motti, Vivian Genaro 231

Orlandi, Claudio 127

Pullonen, Pille 172

Roesner, Franziska 94
Rowan, Brendan 112
Roy, Aditi 281

Scott, Will 94
Siim, Sander 172
Smeets, Ben 261
Smith, Matthew 274
Sunar, Berk 160

Tibouchi, Mehdi 184
Toorani, Mohsen 245
Tromp, John 49

Valenta, Luke 112
Vandervort, David 78
Varia, Mayank 213

Weippl, Edgar 274

Yadav, Dhruv Kumar 281
Yakoubov, Sophia 213
Yang, Yang 213

	BITCOIN 2015: Second Workshop on Bitcoin Research
	WAHC 2015: Third Workshop on Encrypted Computing and Applied Homomorphic Cryptography
	Wearable 2015: First Workshop on Wearable Security and Privacy
	Contents
	On the Malleability of Bitcoin Transactions
	1 Introduction
	1.1 Possible Fixes to the Bitcoin Malleability Problem
	1.2 Our Contribution
	1.3 Ethical Issues

	2 Bitcoin Description
	3 Experiments
	4 Malleability in Bitcoin Contracts
	4.1 The Deposit Protocol
	4.2 Other Protocols Vulnerable to the Malleability Attack

	5 Our Technique
	5.1 Bitcoin-Based Timed Commitment Scheme
	5.2 The Details of Our Method

	References

	Trends, Tips, Tolls: A Longitudinal Study of Bitcoin Transaction Fees
	1 Introduction
	2 Background and Research Questions
	3 Data and Method
	4 Results
	4.1 Trends: Descriptive Analysis
	4.2 Tips: Explaining the Decision to Offer a Fee
	4.3 Tolls: Mining Pools as Gatekeepers

	5 Discussion
	6 Concluding Remarks
	References

	ZombieCoin: Powering Next-Generation Botnets with Bitcoin
	1 Introduction
	2 Background
	2.1 Botnet C&C Mechanisms
	2.2 Bitcoin

	3 ZombieCoin
	3.1 Inserting C&C Instructions in Transactions

	4 Proof of Concept
	5 Discussion
	6 Prior Work
	7 Conclusion
	References

	Cuckoo Cycle: A Memory Bound Graph-Theoretic Proof-of-Work
	1 Introduction
	2 Motivation
	3 Graph-Theoretic Proofs-of-work
	4 Cuckoo Cycle
	5 Cuckoo Hashing
	6 Cycle Detection in Cuckoo Cycle
	7 Union-Find
	8 Cuckoo Cycle Basic Algorithm
	9 Difficulty Control
	10 Edge Trimming
	11 Time-Memory Trade-Offs (TMTOs)
	12 Choice of Cycle Length
	13 Parallelization
	14 Choice of Graph Size
	15 Dynamic Sizing
	16 Conclusion
	References

	When Bitcoin Mining Pools Run Dry
	1 Introduction
	2 Related Work
	3 Model
	3.1 Overview
	3.2 Players
	3.3 Choices
	3.4 Consequences

	4 Model Analysis
	4.1 Steady-State Pool Sizes
	4.2 Steady-State Pool Utilities
	4.3 Peaceful Equilibria
	4.4 One-Sided Attack Equilibria

	5 Numerical Illustrations
	5.1 The Peaceful Equilibrium
	5.2 One-Sided Attack Equilibria

	6 Conclusion and Future Work
	References

	Issues in Designing a Bitcoin-like Community Currency
	Abstract
	1 Background
	1.1 Cryptocurrencies

	2 Community Cryptocurrency Features
	2.1 Mining
	2.2 Geofencing
	2.3 Privileged Transactions
	2.4 Demurrage
	2.5 The Community Loan Fund
	2.5.1 Adding to the Community Fund
	2.5.2 Disbursing from the Community Fund

	3 Challenges with a Cryptocurrency Community Fund
	3.1 Identity
	3.2 Voting
	3.3 Loan Regulation

	4 Vulnerability Assessment
	4.1 STRIDE Framework
	4.2 The Vulnerability Matrix
	4.3 Mitigations

	5 Conclusion and Future Research
	References

	The Bitcoin Market Potential Index
	References

	Cryptographic Currencies from a Tech-Policy Perspective: Policy Issues and Technical Directions
	1 Introduction
	2 Our Process
	3 Background: Bitcoin and Crypto Currencies
	4 Analysis of Relevant Legal Contexts
	5 Tech-Policy Issues for Crypto Currencies
	5.1 Where Is the Money?
	5.2 What About Anonymity and Pseudonymity?
	5.3 What Happens as the World Evolves?

	6 Conclusion
	References

	Blindcoin: Blinded, Accountable Mixes for Bitcoin
	1 Introduction
	1.1 Mixing Services
	1.2 Current Bitcoin Mixing Services
	1.3 Our Contribution

	2 Background
	2.1 Mixcoin Summary
	2.2 Blind Signatures

	3 Blindcoin Description
	3.1 Model
	3.2 Protocol

	4 Analysis
	4.1 Properties
	4.2 Overheads

	5 Conclusion
	References

	Privacy-Enhancing Overlays in Bitcoin
	1 Introduction
	2 Definitions and Notation
	2.1 Distributed Electronic Cash
	2.2 Coinjoin
	2.3 Taint Resistance

	3 Achieving Taint Resistance
	3.1 Using a Trusted Server
	3.2 Reducing Trust in the Central Server
	3.3 Removing the Central Server

	4 Experimental Analysis
	4.1 Auxiliary Information Based on Value

	5 Related Work
	6 Conclusions and Open Problems
	References

	Search-and-Compute on Encrypted Data
	1 Introduction
	1.1 Our Results
	1.2 A High-Level Overview of Our Approach
	1.3 Closely Related Work

	2 Preliminaries
	2.1 The BGV-Type SWHE Scheme
	2.2 Security Model

	3 Circuit Primitives
	3.1 Equality Circuit
	3.2 Greater-than Comparison Circuit
	3.3 Integer Addition Circuit

	4 Search-and-Compute on Encrypted Data
	4.1 General-Purpose Search-and-Compute
	4.2 Applications to Encrypted Databases

	5 Performance Improvements
	5.1 Larger Message Spaces with Lazy Carry Processing
	5.2 Calibrating Circuit Primitives

	6 Experimental Results
	6.1 Adjusting the Parameters
	6.2 Experiments for Search
	6.3 Experiments for Search-and-Sum

	References

	Accelerating SWHE Based PIRs Using GPUs
	1 Introduction
	2 Background
	3 GPU Implementation
	4 Performance
	References

	Combining Secret Sharing and Garbled Circuits for Efficient Private IEEE 754 Floating-Point Computations
	1 Introduction
	2 Preliminaries
	3 Combining Garbled Circuits with Secret Sharing
	3.1 An Implementation of the Hybrid Protocol
	3.2 Security of the Hybrid Protocol

	4 Using the Hybrid Protocol for Efficient Computations
	4.1 Circuits for IEEE 754 Primitives
	4.2 Performance Analysis

	5 Conclusion
	References

	Cryptanalysis of a (Somewhat) Additively Homomorphic Encryption Scheme Used in PIR
	1 Introduction
	2 Preliminaries
	2.1 Trostle and Parrish's SHE Scheme
	2.2 Applications to PIR
	2.3 The Orthogonal Lattice

	3 Breaking the One-Wayness of the Scheme
	3.1 Overview
	3.2 Applying Orthogonal Lattice Techniques
	3.3 Larger Message Space

	4 Implementation of the Attack
	4.1 Attack Summary
	4.2 Experimental Results

	References

	Homomorphic Computation of Edit Distance
	1 Introduction
	2 Preliminaries
	2.1 Homomorphic Encryption
	2.2 Edit Distance

	3 Circuit Building Blocks
	3.1 Equality Circuit
	3.2 Comparison Circuit
	3.3 Addition Circuits

	4 Encrypted Edit Distance Algorithm
	4.1 Encrypted Edit Distance Algorithm
	4.2 Performance Analysis of Encrypted Edit Distance Algorithm
	4.3 Optimization of Encrypted Edit Distance Algorithm

	5 Implementation and Discussions
	5.1 Estimates
	5.2 Experimental Result

	6 Conclusion
	References

	HEtest: A Homomorphic Encryption Testing Framework
	1 Introduction
	2 Overview of Homomorphic Encryption and HElib
	3 Test Data
	3.1 Generation Parameters
	3.2 Circuit and Input Generation
	3.3 Test Suite Representation
	3.4 SQLite Database

	4 The Test Framework
	4.1 The Test Harness
	4.2 The Baseline

	5 Report Generation
	6 Experimental Results
	6.1 Experimental Setup
	6.2 Real-World Applicability
	6.3 Parameters Tested
	6.4 Overview of Results
	6.5 Key Generation
	6.6 Circuit Ingestion
	6.7 Encryption and Decryption
	6.8 Homomorphic Evaluation
	6.9 Evaluation Time by Gate Type

	7 Conclusion
	References

	Users' Privacy Concerns About Wearables
	Abstract
	1 Introduction
	2 Related Work
	2.1 Privacy in Ubiquitous Computing
	2.2 Privacy in Mobile Devices
	2.3 Privacy in Wearable Devices
	2.4 Users' Perspectives on Privacy

	3 Methods
	3.1 IRB Approval
	3.2 Data Selection, Extraction and Analysis
	3.3 Devices, Online Data Sources and Figures

	4 Identifying User Privacy Concerns for Wearable Technologies
	4.1 Privacy Concerns for Wrist-Mounted Devices
	4.1.1 General Social Implications: Unawareness
	4.1.2 Right to Forget
	4.1.3 Implications of Location Disclosure
	4.1.4 Discrete Display of Confidential Information: Non-Disclosure
	4.1.5 Lack of Access Control
	4.1.6 Users' Fears: Surveillance and Sousveillance

	4.2 Privacy Concerns for Head-Mounted Devices
	4.2.1 Speech Disclosure
	4.2.2 Surveillance, Sousveillance and Criminal Abuse
	4.2.3 Surreptitious Audio and Video Recording: Unawareness
	4.2.4 Surveillance, Sousveillance and Social Implications: Unawareness
	4.2.5 Facial Recognition: Identifiability
	4.2.6 Automatic Synchronization with Social Media: Linkability
	4.2.7 Visual Occlusion: Non-Disclosure

	4.3 Privacy Concerns Across Form Factors

	5 Discussion
	5.1 Limitations

	6 Conclusion
	Acknowledgments
	References

	On Vulnerabilities of the Security Association in the IEEE 802.15.6 Standard
	1 Introduction
	2 Security Structure of the IEEE 802.15.6 Standard
	3 Key Agreement Protocols in the IEEE 802.15.6 Standard
	4 Security Problems
	4.1 Protocol I
	4.2 Protocol II
	4.3 Protocol III
	4.4 Protocol IV

	5 Conclusion
	References

	Visual Cryptography and Obfuscation: A Use-Case for Decrypting and Deobfuscating Information Using Augmented Reality
	1 Introduction
	2 Related Work
	3 Visual Cryptography
	3.1 Original Version
	3.2 Modified Version
	3.3 Using a Seven-Segment Display

	4 Visual Obfuscation
	4.1 Digit Representation
	4.2 Analysis of 2-Way Partitioning
	4.3 Optimizing the Partitioning
	4.4 Analysis of 4-Bar Shape
	4.5 Analysis of 3-Way Partitioning

	5 Results
	6 Discussion
	7 Conclusion
	References

	Ok Glass, Leave Me Alone: Towards a Systematization of Privacy Enhancing Technologies for Wearable Computing
	1 Introduction
	2 Properties
	3 Systematization of Privacy Enhancing Technologies
	4 Conclusion and Work in Progress
	References

	Design and Analysis of Shoulder Surfing Resistant PIN Based Authentication Mechanisms on Google Glass
	1 Introduction
	2 Related Work
	3 Authentication Mechanisms
	3.1 Voice-Based PIN (VBP) Authentication
	3.2 Touch-Based PIN (TBP) Authentication

	4 User Study
	4.1 Participants
	4.2 User Study Design
	4.3 Questionnaire

	5 Results
	5.1 Login Success Rate
	5.2 Authentication Time
	5.3 Usability and Security Study
	5.4 Overall User Experience
	5.5 Context Dependent Preference Study

	6 Discussion
	7 Conclusions
	References

	Glass OTP: Secure and Convenient User Authentication on Google Glass
	Abstract
	1 Introduction
	2 Options for User Authentication on Glass
	3 Glass OTP
	3.1 Private Key and OTP Generation
	3.2 Initial Setup Procedure
	3.3 Unlocking the Glass

	4 Security and Usability Analysis
	5 Conclusions and Future Work
	Acknowledgments
	References

	Author Index

