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Abstract. We propose the first construction for achieving adaptively
secure functional encryption (FE) for poly-sized circuits (without com-
plexity leveraging) from indistinguishability obfuscation (iO). Our reduc-
tion has polynomial loss to the underlying primitives. We develop a
“punctured programming” approach to constructing and proving sys-
tems where outside of obfuscation we rely only on primitives realizable
from pseudo random generators.

Our work consists of two constructions. Our first FE construction is
provably secure against any attacker that is limited to making all of its
private key queries after it sees the challenge ciphertext. (This notion
implies selective security.) Our construction makes use of an we intro-
duce called puncturable deterministic encryption (PDE) which may be
of independent interest. With this primitive in place we show a simple
FE construction.

We then provide a second construction that achieves adaptive secu-
rity from indistinguishability obfuscation. Our central idea is to achieve
an adaptively secure functional encryption by bootstrapping from a one-
bounded FE scheme that is adaptively secure. By using bootstrapping
we can use “selective-ish” techniques at the outer level obfuscation level
and push down the challenge of dealing with adaptive security to the one-
bounded FE scheme, where it has been already been solved. We combine
our bootstrapping framework with a new “key signaling” technique to
achieve our construction and proof. Altogether, we achieve the first con-
struction and proof for adaptive security for functional encryption.

1 Introduction

In traditional encryption systems a message, m, is encrypted with a particular
user’s public key PK. Later a user that holds the corresponding secret key will
be able to decrypt the ciphertext and learn the contents of the message. At
the same time any computationally bounded attacker will be unable to get any
additional information on the message.
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While this communication paradigm is appropriate for many scenarios such
as targeted sharing between users, there exist many applications that demand a
more nuanced approach to sharing encrypted data. For example, suppose that
an organization encrypts video surveillance images and stores these ciphertexts
in a large online database. Later, we would like to give an analyst the ability
to view all images that match a particular pattern such as ones that include a
facial image that pattern matches with a particular individual. In a traditional
encryptions system we would be forced to either give the analyst the secret key
enabling them to view everything or give them nothing and no help at all.

The concept of functional encryption (FE) was proposed to move beyond
this all or nothing view of decryption. In a functional encryption system a secret
key SKf is associated with a function f . When a user attempts to decrypt
a ciphertext CT encrypted for message m with secret key SKf , he will learn
f(m). The security of functional encryption states that an attacker that receives
keys for any polynomial number of functions f1, . . . , fQ should not be able to
distinguish between an encryption of m0,m1 as long as ∀i fi(m0) = fi(m1).

The concept of functional encryption first appeared under the guise of pred-
icate encryption [BW07,KSW08] with the nomenclature later being updated
[SW08,BSW11] to functional encryption. In addition, functional encryption has
early roots in Attribute-Based Encryption [SW05] and searching on encrypted
data [BCOP04].

A central challenge is to achieve functional encryption for as expressive
functionality classes as possible — ideally one would like to achieve it for
any poly-time computable function. Until recently, the best available was
roughly limited to the inner product functionality proposed by Katz, Sahai, and
Waters [KSW08]. This state of affairs changed dramatically with the introduc-
tion of a candidate indistinguishability obfuscation [BGI+12] system for all poly-
size circuits by Garg, Gentry, Halevi, Raykova, Sahai, and Waters [GGH+13]
(GGHRSW). The authors showed that a functional encryption system for any
poly-sized circuits can be built from an indistinguishability obfuscator plus pub-
lic key encryption and statistically simulation sound non-interactive zero knowl-
edge proofs.

Thinking of Adaptive Security. While the jump from inner product functional-
ity to any poly-size circuit is quite significant, one limitation of the GGHRSW
functional encryption system is that it only offers a selective proof of security
where the attacker must declare the challenge messages before seeing the parame-
ters of the FE system. Subsequently, Boyle, Chung and Pass [BCP14] proposed
an FE construction based on an obfuscator that is differing inputs secure. We
briefly recall that an obfuscator O is indistinguishability secure if it is compu-
tationally difficult for an attacker to distinguish between obfuscations O(C0)
and O(C1) for any two (similar sized) circuits that are functionally equivalent
(i.e. ∀x C0(x) = C1(x)). Recall, that differing inputs [BCP14,ABG+13] secu-
rity allows for an attacker to use circuits C0 and C1 that are not functionally
equivalent, but requires that for any PPT attacker that distinguishes between
obfuscations of the two circuits there must a PPT extraction algorithm that
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finds some x such that C0(x) �= C1(x). Thus, differing inputs obfuscation is
in a qualitatively different class of “knowledge definitions”. Furthermore, there
is significant evidence [GGHW14] that there exist certain functionalities with
auxiliary input that are impossible to build obfuscate under the differing inputs
definition.

Our goal is to build adaptively secure functional encryption systems from
indistinguishability obfuscation. We require that our reductions have polynomial
loss of security relative to the underlying primitives. (In particular, we want to
avoid the folklore complexity leveraging transformation of simply guessing the
challenge messages with an exponential loss.) In addition, we want to take a min-
imalist approach to the primitives we utilize outside of obfuscation. In particular,
we wish to avoid the use of additional “strong tools” such as non-interactive zero
knowledge proofs or additional assumptions over algebraic groups. We note that
our focus is on indistinguishability notions of functional encryption as opposed
to simulation definitions [BSW11,O’N10].

Our Results. In this work we propose two new constructions for achieving
secure functional encryption (for poly-sized circuits) from indistinguishability
obfuscation. We develop a “punctured programming” approach [SW14] to con-
structing and proving systems where our main tools in addition to obfuscation
are a selectively secure puncturable pseudo random functions. We emphasize
puncturable PRFs are themselves constructible from pseudo random genera-
tors [GGM84,BW13,BGI13,KPTZ13].

We start toward our FE construction which is provably secure against any
attacker that is limited to making all of its private key queries after it sees the
challenge ciphertext.1 While this is attacker is still restricted relative to a fully
adaptive attacker, we observe that such a definition is already stronger than the
commonly used selective restriction.

To build our system we first introduce an abstraction that we call punc-
turable deterministic encryption (PDE). The main purpose of this abstrac-
tion is to serve in some places as a slightly higher level and more convenient
abstraction to work with than puncturable PRFs. A PDE system is a symmet-
ric key and deterministic encryption scheme and consists of four algorithms:
SetupPDE(1λ),EncryptPDE(K,m), DecryptPDE(K,CT), and PuncturePDE

(K,m0,m1). The first three algorithms have the usual correctness semantics. The
fourth puncture algorithm takes as input a master key and two messages (m0,m1)
and outputs a punctured key that can decrypt all ciphertexts except for those
encrypted for either of the two messages — recall encryption is deterministic so
there are only two such ciphertexts. The security property of PDE is stated as
a game where the attacker gives two messages (m0,m1) to the attacker and then
returns back a punctured key as well as two ciphertexts, one encrypted under each
message. In a secure system no PPT attacker will be able to distinguish which
ciphertext is associated with which message.

1 This model has been called semi-adaptive in other contexts [CW14].
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Our PDE encryption mechanism is rather simple and is derived from the
hidden trigger mechanism from the Sahai-Waters [SW14] deniable encryption
scheme. PDE Ciphertexts are of the form:

CT = (A = F1(K1,m), B = F2(K2, A) ⊕ m).

where F1 and F2 are puncturable pseudo random functions, with F1 being an
injective function. Decryption requires first computing m′ = B ⊕ F2(K2, A) and
then checking that F1(K1,m

′) = A.2

With this tool in place we are now ready to describe our first construction.
The setup algorithm will first choose a puncturable PRF key K for function F .
Next, it will create the public parameters PP as an obfuscation of a program
called InitialEncrypt. The InitialEncrypt program will take in randomness
r and compute a tag t = PRG(r). Then it will output t and a PDE key k that is
derived from F (K, t). The encryption algorithm can use this obfuscated program
to encrypt as follows. It will simply choose a random value r ∈ {0, 1}λ, where λ
is the security parameter. It then runs the obfuscated program on r to receive
(t, k) and then creates the ciphertext CT as (t, c = EncryptPDE(k,m)).

The secret key SKf for a function f will be created as an obfuscated program.
This program will take as input a ciphertext CT = (t, c). The program first
computes k from F (K, t), then uses k to decrypt c to a message m and outputs
f(m). The decryption algorithm is simply to run the obfuscated program on the
ciphertext.

The proof of security of our first system follows what we can a “key-
programming” approach. The high level idea is that for each key we will hardwire
in the decryption response into each secret key obfuscated program for when the
input is the challenge ciphertext. For all other inputs the key computes decryp-
tion normally. Our key-programming approach is enabled by two important fac-
tors. First, in the security game there is a single challenge ciphertext so only
one hardwiring needs to be done per key. Second, since all queries come after
the challenge messages (m0,m1) are declared we will know where we need to
puncture to create our hardwiring.

Intuitively, our proof can be broken down into two high level steps. First, we
will perform a set of steps that allow us to hardwire the decryption answers to
all of the secret keys for the challenge ciphertext. Next, we use PDE security
to move from encrypting mb for challenge bit b ∈ {0, 1} to always encrypting
m0— independent of the bit b. (The actual proof contains multiple hybrids and
is more intricate.)

Handling Full Security. We now move to dealing with full security where we
need to handle private key queries on both sides of the challenge ciphertext. At
this point it is clear that relying only on key-programming will not suffice. First,
a pre-challenge ciphertext key for function f will need to be created before the
2 Despite sharing the term deterministic, our security definition of PDEs does not

have much in common with deterministic encryption [BFO08,BFOR08] which has a
central goal of hiding information among message distributions of high entropy.
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challenge messages (m0,m1) are declared, so it will not even be known at key
creation time what f(m0) = f(m1) will be.

Our central idea is to achieve an adaptively secure functional encryption by
bootstrapping from a one-bounded FE scheme that is adaptively secure. At a
high level a ciphertext is associated with a tag t and a private key with a tag y.
From the pair of tags (t, y) one can (with the proper key material) pseudoran-
domly derive a master secret key k for a one bounded FE system. The ciphertext
will be equipped with an obfuscated program, C, which on input of a key tag
y will generate the one bounded key k (associated with the pair (t, y)) and
then uses this to create an encryption of the message m under the one-bounded
scheme with key k. Likewise, the private key for functionality f comes equipped
with an obfuscated program Pf which on input of a ciphertext tag t derives the
one bounded secret key k and uses this to create a one-bounded secret key.

The decryption algorithm will pass the key tag y to the ciphertext program
to get a one bounded ciphertext CTOB and the ciphertext tag t to the key
program to get a one bound key SKOB. Finally, it will apply the one bounded
decryption algorithm as DecryptOB(CTOB,SKOB) to learn the message m. The
one bounded key and ciphertext are compatible since they are both derived
psuedorandomly from the pair (t, y) to get same one-bounded key k. (Note a
different pair (t′, y′) �= (t, y) corresponds to a different one bounded FE key k′

with high probability.)
Our bootstrapping proof structure allows us to develop “selective-ish” tech-

niques at the outer level since in our reductions the ciphertext and private key
tags can be chosen randomly ahead of time before the challenge message or any
private key queries are known. Then the challenge of dealing with adaptive secu-
rity is then “pushed down” to the one bounded FE scheme, where it has been
solved in previous work [GVW12].

In the description above we have so far omitted one critical ingredient. In
addition to generating a one bounded secret key on input t, the program Pf on
input t will also generate an encrypted signal a that is passed along with the
tag y to the ciphertext program C on decryption to let it know that it is “okay”
to generate the one-bounded ciphertext for the pair (t, y). In the actual use of
the system, this is the only functionality of the signal. However, looking ahead
to our proof we will change the signal encrypted to tell the program C to switch
the message for which it generates one bounded encryption encryptions of.

Our proof replaces key programming with a method we call “key-signaling”.
In a key-signaling system a normal ciphertext will be associated with a single
message m which we refer to as an α-message. The decryption algorithm will use
the secret key to prepare an α-signal for the ciphertext which will enable normal
decryption. However, the ciphertext can also have a second form in which it is
associated with two messages mα and mβ . The underlying semantics are that if
it receives an α-signal it uses mα and if it receives a β-signal it uses mβ .

These added semantics open up new strategy for proving security. In the
initial security game the challenge ciphertext encrypts mb for challenge bit b.
It will only receive α-signals from keys. Next we (indistinguishably) move the
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challenge ciphertext to encrypt mb as the α-message and m0 as the β-message.
All keys still send only α-signals. Now one by one we change each key to send
an β-signal to the challenge ciphertext as opposed to an α-signal. This step is
feasible since for any queried function f we must have that f(mb) = f(m0).
Finally, we are able to erase the message mb since no key is signaling for it.

Stepping back we can see that instead of storing the response of decryption
for the challenge ciphertext at each key, we are storing the fact that it is using
the second message in decryption.

We note that we can instantiate the one-bounded system using the construc-
tion of Gorbunov, Vaikuntanathan and Wee [GVW12] (GVW) who proved adap-
tive security of a public key FE 1-bounded scheme from IND-CPA secure public
key encryption. Since we actually only need master key encryption, we observe
that this can be achieved from IND-CPA symmetric key encryption. Thus, we
maintain our goal of not using heavy weight primitives outside of obfuscation.
One important fact is that the GVW scheme is proven to be 1-bounded adap-
tively secure regardless of whether the private key query comes before or after
the challenge ciphertext. We note that the GVW system actually allows for a
single key, but many ciphertexts; however, we only require security for a single
ciphertext. The actual proof of security requires several hybrid steps and we
defer further details to Sect. 5.

Recent Work. Recently, Garg, Gentry, Halevi, and Zhandry [GGHZ14a] showed
how to realize adaptively secure Attribute-Based Encryption from multilinear
graded encodings. It is based on U-graded encodings.

Subsequent to both of these works, the same authors [GGHZ14b] gave a con-
struction of Functional Encryption from multilinear encodings. This construc-
tion required a new multilinear encoding functionality of allowing the “encoding
grades” to be dynamically extended by any party using just the public parame-
ters. Their scheme crucially leverages this capability and is also reflected in the
assumption.

There are different tradeoffs between and pure indistinguishability obfusca-
tion approach and that used in [GGHZ14b]. On one hand the approach of
[GGHZ14b] allows one to directly get to mutlilinear encodings. On the other
hand the novel use of extensions of grades both gives a novel technical idea,
but possibly presents new risks. For example, there has been a flurry of recent
activity consisting of attacks and responses to certain candidate constructions
and assumptions of multilinear enocdings [CHL+14,BWZ14,GHMS14,CLT14].

If one reduces to indistinguishability obfuscation, it can potentially be real-
ized from different types of assumptions, including different forms of multilinear
encodings or potentially entirely different number theory. An interesting open
question is whether indistinguishability obfuscation or some close variant of it
can be reduced to a basic number theoretic assumption that does not rely on
sub exponential hardness. One interesting variant of this direction is to consider
different variations of iO that are more amenable to such proofs, but can be
leveraged in similar ways.
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Bootstrapping with a Flipped One-time FE Scheme. More recently, Ananth,
Brakerski, Segev and Vaikuntanathan [ABSV14] showed an eloquent adaptation
of our technique of bootstrapping from an adaptive 1-bounded scheme. Instead
of starting with the 1-bounded FE scheme of GVW, they use a simple transfor-
mation on GVW due Brakerski and Segev [BS14] and applying universal circuits
to create a flipped version of it. While the GVW scheme we used can handle a
single key and many ciphertexts, the flipped version does the opposite. It can
handle multiple keys, but only generating one ciphertext (this is done with secret
key encryption).

They go on to show that using the flipped version of one-bounded FE for
bootstrapping enables simplifications in the construction and proof. Instead of
having attaching an obfuscated program to the ciphertext to generate one-
bounded ciphertexts, the composite ciphertext contains a single 1-bounded
ciphertext. In addition, it has a separate (“trojan”) component that allows for
transmitting the 1-bounded secret key used create a ciphertext to a program on
the key side. Taken together the flipping and the trojan transmission allow for
the private key to consist of a selectively secure functional encryption system.

2 Functional Encryption

Definition 1 (Functional Encryption). A functional encryption scheme for
a class of functions F = F(λ) over message space M = M(λ) consists of four
algorithms FE = {Setup,KeyGen,Encrypt,Decrypt}:

Setup(1λ) – a polynomial time algorithm that takes the unary representation of
the security parameter λ and outputs public parameters PP and a master
secret key MSK.

KeyGen(MSK, f) – a polynomial time algorithm that takes as input the master
secret key MSK and a description of function f ∈ F and outputs a corre-
sponding secret key SKf .

Encrypt(PP, x) – a polynomial time algorithm that takes the public parameters
PP and a string x and outputs a ciphertext CT.

Decrypt(SKf ,CT) – a polynomial time algorithm that takes a secret key SKf

and ciphertext encrypting message m ∈ M and outputs f(m).

A functional encryption scheme is correct for F if for all f ∈ F and all
messages m ∈ M:

Pr[ (PP,MSK) ← Setup(1λ);

Decrypt(KeyGen(MSK, f),Encrypt(PP,m)) �= f(m) ] = negl(λ).

Indistinguishability Security for Functional Encryption. We describe
indistinguishability security as a multi-phased game between an attacker A and
a challenger.

Setup: The challengers runs (PP,MSK) ← Setup(1λ) and gives PP to A.
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Query Phase 1: A adaptively submits queries f in F and is given SKf ←
KeyGen(MSK, f). This step can be repeated any polynomial number of times
by the attacker.

Challenge: A submits two messages m0,m1 ∈ M such that f(m0) = f(m1) for
all functions f queried in the key query phase. The challenger then samples
CT∗ ← Encrypt(PP,mb) for the attacker.

Query Phase 2: A continues to issue key queries as before subject to the
restriction that any f queried must satisfy f(m0) = f(m1).

Guess: A eventually outputs a bit b′ in {0, 1}.

The advantage of an algorithm A in this game is AdvA = Pr[b′ = b] − 1
2 .

Definition 2. A functional encryption scheme is indistinguishability secure if
for all poly-time A the function AdvA(λ) is negligible.

Definition 3. In the above security game we define a post challenge ciphertext
attacker as one that does not make any key queries in Phase 1. We define a
functional encryption scheme to be post challenge ciphertext indistinguishability
secure if for any poly-time algorithm A that is a post challenge ciphertext attacker
the advantage of A is negligible in the indistinguishability security game.3

3 Puncturable Deterministic Encryption

In this section we define a primitive of puncturable deterministic encryption and
show how to build it from (injective) puncturable PRFs. The main purpose of
this abstraction is to give a slightly higher level tool (relative to puncturable
PRFs) to work with in our punctured programming construction and proofs.

Definition 4 (Puncturable Deterministic Encryption). A puncturable
deterministic encryption (PDE) scheme is defined over a message space
M = M(λ) and consists of four algorithms: (possibly) randomized algorithms
SetupPDE, and PuncturePDE along with deterministic algorithms EncryptPDE and
DecryptPDE. All algorithms will be poly-time in the security parameter.

SetupPDE(1λ) The setup algorithm takes a security parameter and uses its ran-
dom coins to generate a key K from a keyspace K.

EncryptPDE(K,m) The encrypt algorithm takes as input a key K and a message
m. It outputs a ciphertext CT. The algorithm is deterministic.

DecryptPDE(K,CT) The decrypt algorithm takes as input a key K and ciphertext
CT. It outputs either a message m ∈ M or a special reject symbol ⊥.

PuncturePDE(K,m0,m1) The puncture algorithm takes as input a key K ∈ K as
well as two messages m0,m1. It creates and outputs a new key K(m0,m1) ∈
K. The parentheses are used to syntactically indicate what is punctured.

3 We remark that any system that is post challenge ciphertext secure must also be
selectively secure.
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Correctness. A punctured deterministic encryption scheme is correct if there
exists a negligible function negl such that the following holds for all λ and all
pairs of messages m0,m1 ∈ M(λ).

Let K = SetupPDE(1λ) and K(m0,m1) ← PuncturePDE(K,m0,m1). Then for
all m �= m0,m1

Pr[DecryptPDE(K(m0,m1),EncryptPDE(K,m)) �= m] = negl(λ).

In addition, we have that for all m (including m0,m1)

Pr[DecryptPDE(K,EncryptPDE(K,m)) �= m] = negl(λ).

Definition 5. We say that a correct scheme is perfectly correct if the above
probability is 0 and otherwise say that it is statistically correct.

(Selective) Indistinguishability Security for Punctured Deterministic
Encryption. We describe indistinguishability security as a multi-phased game
between an attacker A and a challenger.

Setup: The attacker selects two messages m0,m1 ∈ M and sends these to
the challenger. The challenger runs K = SetupPDE(1λ) and K(m0,m1) =
PuncturePDE(K,m0,m1). It then chooses a random bit b ∈ {0, 1} and com-
putes

T0 = EncryptPDE(K,mb), T1 = EncryptPDE(K,m1−b).

It gives the punctured key K(m0,m1) as well as T0, T1 to the attacker.
Guess: A outputs a bit b′ in {0, 1}.

The advantage of an algorithm A in this game is AdvA = Pr[b′ = b] − 1
2 .

Definition 6. A puncturable deterministic encryption scheme is indistinguisha-
bility secure if for all poly-time A the function AdvA(λ) is negligible.

Sampling Master Keys. At times instead of running the SetupPDE(1λ) algorithm
to generate the master key for a PDE scheme we will generate the master key by
simply sampling a uniformly random string k ∈ {0, 1}λ where λ is the security
parameter. We can also do this without loss of generality.

In our full version [Wat14] we give a construction of puncturable deterministic
encryption puncturable PRFs. This follows the hidden triggers construction from
[SW14].

4 A Post Challenge Ciphertext Secure Construction

We now describe our construction for a functional encryption (FE) scheme that
is post challenge ciphertext secure. We let the message space M = M(λ) =
{0, 1}�(λ) for some polynomial function � and the function class be F = F(λ).
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We will use a puncturable PRF F (·, ·) such that when we fix the key K we
have that F (K, ·) takes in a 2λ bit input and outputs λ bits. In addition, we
use a puncturable deterministic encryption scheme (PDE) where the message
space M is the same as that of the (FE) system. In our PDE systems master
(non-punctured) keys are sampled uniformly at random from {0, 1}λ. Finally,
we use an indistinguishability secure obfuscator and a length doubling pseudo
random generator PRG : {0, 1}λ → {0, 1}2λ.

Our Construction. In our system the setup algorithm will produce an obfuscated
program P that serves as the public parameters. Encryption proceeds in two
steps. First the encryptor will choose a random string r and run P (r). The
obfuscated program will first use r to generate a tag t. Next the program will
apply a (puncturable) psuedorandom function on t with global key K to generate
a PDE key k. The program outputs both the tag t and PDE key k to the
encryptor. Finally, the encryptor will use k to perform an encryption of the
actual message m getting PDE ciphertext c. The (total) ciphertext CT consists
of the tag t and c. Intuitively, the ciphertext component c is the “core encryption”
of the message and the tag t tells how one can derive the PDE key k (if one knows
the system’s puncturable PRF key).

The authority generates a private key for function f as an obfuscated program
Pf . To decrypt a ciphertext CT = (t, c) the decrypt or simply runs Pf (t, c). The
obfuscated program will first generate the same PDE key k that was used to
encrypt the ciphertext.

We make two intuitive remarks about security. First, we note that the sys-
tem’s puncturable PRF key K only appears in obfuscated programs and not in
the clear. Second, it is not necessarily a problem perform the core encryption
of the message under a deterministic scheme. The reason is that the encryption
procedure implicitly chooses a fresh k so with high probability any single PDE
key should only be used once. (Clearly, performing a deterministic encryption
step more than once with the same key would be problematic.)

We now give our construction in detail.

Setup(1λ)
The setup algorithm first chooses a random punctured PRF key K ← KeyF (1λ)
and sets this as the master secret key MSK. Next it creates an obfuscation of the
program Initial-Encrypt as P ← iO(1λ, Initial-Encrypt:1[K]).4 (See Fig. 1)
This obfuscated program, P , serves as the public parameters PP.

Encrypt(PP = P (·),m ∈ M)
The encryption algorithm chooses random r ∈ {0, 1}λ. It then runs the obfus-
cated program P on r to get:

(t, k) ← P (r).

It then computes EncryptPDE(k,m) = c. The output ciphertext is CT = (t, c).
4 The program Initial-Encrypt:1 is padded to be the same size as Initial-
Encrypt:2.



688 B. Waters

KeyGen(MSK, f ∈ F(λ)) The KeyGen algorithm produces an obfuscated pro-
gram Pf by obfuscating5

Pf ← iO(Key-Eval:1[K, f ]).

Decrypt(CT = (t, c),SK = Pf ) The decryption algorithm takes as input a cipher-
text CT and a secret key SK which is an obfuscated program Pf . It runs Pf (t, c)
and outputs the response.

Correctness. Correctness follows in a rather straightforward manner from the
correctness of the underlying primitives. We briefly sketch the correctness argu-
ment. Suppose we call the encryption algorithm for message m with randomness
r. The obfuscated program generates (t, k) = (PRG(r), F (K, t)). Then it creates
the ciphertext CT = (t, c = EncryptPDE(k,m)). Now let’s examine what occurs
when Decrypt(CT = (t, c),SKf = Pf ) is called where Pf was a secret key cre-
ated from function f . The decryption algorithm calls Pf (t, c). The (obfuscated)
program will compute the same PDE key k = F (K, t) as used to create the
ciphertext. Then it will use the PDE decryption algorithm and obtain m. This
follows via the correctness of the PDE scheme. Finally, it outputs f(m) which
is the correct output.

Initial-Encrypt:1

Constants: Puncturable PRF key K.
Input: Randomness r ∈ {0, 1}λ.

1. Let t = PRG(r).
2. Compute: k = F (K, t).
3. Output: (t, k).

Fig. 1. Program Initial-Encrypt:1

4.1 Proof of Security

Before delving into our formal security proof we give a brief overview with some
intuition. In our system a challenge ciphetext CT∗ will be a pair (t∗, c∗) of a tag
and PDE ciphertext. The first step of our proof is to use pseudorandom generator
security to (indetectably) move t∗ out of the set of tags T that might be generated
from the program P . (Note the set T corresponds to the possible outputs of the
pseudorandom generator.) This then enables us to perform multiple puncturing
and hardwiring steps detailed below. Eventually, instead deriving the PDE key
k∗ as F (K, t∗), it will be chosen uniformly at random. (Here k∗ is the PDE key
used in creating the challenge ciphertext.)
5 The program Key-Eval:1 (of Fig. 2) is padded to be the same size as Key-Eval:2.
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Key-Eval:1

Constants: PRF key K, function description f ∈ F .
Input: (t, c).

1. Compute: k = F (K, t).
2. Output f(DecryptPDE(k, c)). (If DecryptPDE(k, c) evaluates to ⊥

the program outputs ⊥.)

Fig. 2. Program Key-Eval:1

Furthermore, instead of putting the PDE key k∗ into the obfuscated programs
given out as keys we will put a punctured version k′. This punctured version is
can decrypt all ciphertexts except it cannot tell the difference between a PDE
encryption of the challenge message m0 from m1. However, by the rules of the
security game it must be the case that the bit df = f(m0) = f(m1) for any
queried private key function f . Therefore, an obfuscated program for private
key f can output df when either of the two PDE ciphertexts arises without
knowing which one is which. We note that the reduction knows which messages
(m0,m1) to puncture the PDE key k at since in this security game all keys are
given out after the challenge ciphertext is generated.

Finally, at this stage we can simply apply the PDE security game to argue
that the message is hidden. We note that the first steps of the proof have similar-
ities to prior programming puncturing proofs [SW14], but we believe the intro-
duction of and the way we utilize puncturable deterministic encryption are novel
to this construction. Details of our formal proof are in our full version [Wat14].

5 An Adaptively Secure Construction

We now describe our construction of a functional encryption (FE) scheme that is
adaptively secure. We let the message space M = {0, 1}�(λ) for some polynomial
function � and the function class be F(λ) = F .

We will use two puncturable PRFs F1, F2 such that when we fix the keys
K we have that F1(K, ·) takes in a 2λ bit input and outputs two bit strings
of length λ and F2(K, ·) takes λ bits to five bitstrings of length λ. In addition,
we use a puncturable deterministic encryption scheme where the message space
is {0, 1}λ. In our Puncturable PRF and PDE systems master keys are sampled
uniformly at random from {0, 1}λ. Finally, we use an indistinguishability secure
obfuscator and an injective length doubling pseudo random generator PRG :
{0, 1}λ → {0, 1}2λ.

Finally, we use a one-bounded secure functional encryption system with mas-
ter key encryption consisting of algorithms: KeyGenOB,EncryptOB,DecryptOB.
We assume without loss of generality that the master key is chosen uniformly
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from {0, 1}λ. The message space M and key description space f ∈ F of the one
bounded scheme is the same as the scheme we are constructing.

Our Construction. Our construction achieves an adaptively secure functional
encryption by bootstrapping from a one-bounded FE scheme that is adaptively
secure. At a high level a ciphertext is associated with a tag t and a private key
with a tag y. From the pair of tags (t, y) one can (with the proper key material)
pseudorandomly derive a master secret key k for a one bounded FE system.
The ciphertext will be equipped with an obfuscated program, C, which on input
of a key tag y will generate the one bounded key k (associated with the pair
(t, y)) and then uses this to create an encryption of the message m under the
one-bounded scheme with key k. Likewise, the private key for functionality f
comes equipped with an obfuscated program Pf which on input of a ciphertext
tag t derives the one bounded secret key k and uses this to create a one-bounded
secret key.

The decryption algorithm will pass the key tag y to the ciphertext program
to get a one bounded ciphertext CTOB and the ciphertext tag t to the key
program to get a one bound key SKOB. Finally, it will apply the one bounded
decryption algorithm as DecryptOB(CTOB,SKOB) to learn the message m. The
one bounded key and ciphertext are compatible since they are both derived
psuedorandomly from the pair (t, y) to get same one-bounded key k. (Note a
different pair (t′, y′) �= (t, y) corresponds to a different one bounded FE key k′

with high probability.)
Our bootstrapping proof structure allows us to develop “selective-ish” tech-

niques at the outer level since in our reductions the ciphertext and private key
tags can be chosen randomly ahead of time before the challenge message or any
private key queries are known. Then the challenge of dealing with adaptive secu-
rity is then “pushed down” to the one bounded FE scheme, where it has been
solved in previous work [GVW12].

In the description above we have so far omitted one critical ingredient. In
addition to generating a one bounded secret key on input t, the program Pf on
input t will also generate an encrypted signal a that is passed along with the
tag y to the ciphertext program C on decryption to let it know that it is “okay”
to generate the one-bounded ciphertext for the pair (t, y). In the actual use of
the system, this is the only functionality of the signal. However, looking ahead
to our proof we will change the signal encrypted to tell the program C to switch
the message for which it generates one bounded encryption encryptions of.

Setup(1λ)
The algorithm first chooses a random punctured PRF key K ← KeyF1

(1λ)
which is set as the master secret key MSK. Next it creates an obfuscation of the
program Initial-Encrypt as P ← iO(1λ, Initial-Encrypt:1[K]).6

Encrypt(PP = P (·),m ∈ M)
The encryption algorithm performs the following steps in sequence.
6 The program Initial-Encrypt:1 is padded to be the same size as Initial-
Encrypt:2.) This obfuscated program, P serves as the public parameters PP.
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1. Chooses random r ∈ {0, 1}λ.
2. Sets (t,Kt, α) ← P (r).
3. Sets α̃ = PRG(α).
4. Creates the program C ← iO(1λ,CT-Eval:1[Kt, α̃,m]).7

5. The output ciphertext is CT = (t, C).

KeyGen(MSK, f ∈ F(λ))
The KeyGen algorithm first chooses a random y ∈ {0, 1}λ. It next produces an
obfuscated program Pf by obfuscating Pf ← iO(Key-Signal:1[K, f, y]).8

The secret key is SK = (y, Pf ).

Decrypt(CT = (t, C),SK = (y, Pf ))
The decryption algorithm takes as input a ciphertext CT = (t, C) and a secret
key SK = (y, Pf ). It first computes (a,SKOB) = Pf (t). Next it computes
CTOB = C(a, y). Finally, it will use the produced secret key to decrypt the
produced ciphertext as DecryptOB(CTOB,SKOB) and outputs the result.

Correctness. We briefly sketch a correctness argument. Consider a cipher-
text CT = (t, C) created for message m that is associated with tag t and
a key for function f that is associated with tag y. On decryption the algo-
rithm first calls (a,SKOB) = Pf (t). Here the obfuscated program computes:
(Kt, α) = F1(K, t), (d, k, s1, s2, s3) = F2(Kt, y), and a = EncryptPDE(d, α) and
SKOB = KeyGenOB(k, f ; s2).

Next, it calls CTOB = C(a, y), where C was generated as an obfuscation
of program CT-Eval:1[Kt, α̃,m] where α̃ = PRG(α). This obfuscated program
will compute the same values of (d, k, s1, s2, s3) = F2(Kt, y) as the key signal pro-
gram. By correctness of the PDE system we will have that DecryptPDE(d, a) = α
and thus the program will output EncryptOB(k,m; s1). At this point the decryp-
tion algorithm has a one bounded private key for function f and a one bounded
ciphertext for message m both created under the same master key k. Therefore,
running the one-bounded decryption algorithm will produce f(m) (Figs. 3, 4
and 5).

5.1 Proof of Security

Before delving into our formal security proof we will give a brief intuitive
overview of its structure and sequence of games steps. In the first steps of our
sequence of games proof we will use pseudorandom generator security to (inde-
tectably) move t∗ out of the set of tags T that might be generated from the
program P .9 Then we use use puncturing techniques to remove the key mate-
rial, K∗

t∗ , associated with t∗ from the obfuscated program given in the public
parameters. In addition, the proof will hardwire in the response of all private
7 The program CT-Eval:1 is padded to be the same size as the maximum of CT-
Eval:2 and CT-Eval:3.

8 The program Key-Signal:1 is padded to be the same size as Key-Signal:2.
9 Note the set T corresponds to the possible outputs of the pseudorandom generator.
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Initial-Encrypt:1

Constants: Puncturable PRF key K.
Input: Randomness r ∈ {0, 1}λ.

1. Let t = PRG(r).
2. Compute (Kt, α) = F1(K, t).
3. Output: (t, Kt, α).

Fig. 3. Program Initial-Encrypt:1

CT-Eval:1

Constants: PRF key Kt, α̃ ∈ {0, 1}2λ, message m ∈ M.
Input: PDE ciphertext a and value y ∈ {0, 1}λ.

1. Compute (d, k, s1, s2, s3) = F2(Kt, y).
2. Compute e = DecryptPDE(d, a).
3. If PRG(e) = α̃ output EncryptOB(k, m; s1).
4. Else output a rejecting ⊥.

Fig. 4. Program CT-Eval:1

Key-Signal:1

Constants: PRF key K, function description f ∈ F , tag y ∈ {0, 1}λ.
Input: t ∈ {0, 1}2λ.

1. Compute (Kt, α) = F1(K, t).
2. Compute (d, k, s1, s2, s3) = F2(Kt, y).
3. Compute and output a = EncryptPDE(d, α) and SKOB =

KeyGenOB(k, f ; s2).

Fig. 5. Program Key-Signal:1

keys Pf1 , . . . , PfQ
to the input of t∗, where Q is the number of queries issued.

These actions are covered in moving from Game 1 to Game 5.
In the next grouping of steps we will introduce a second alternative message

m0 into the challenge ciphertext program C∗ to go along with the message mb

for b ∈ {0, 1}. The behavior of the obfuscated program is now (by Game 7) such
that if C∗ receives an an “α-signal” as input it will output a one-bounded FE
encryption of mb and if it receives a “β-signal” it will output a one-bounded FE
encryption of m0. However, the private key programs Pfi

are only set to generate
α signals. Before this grouping of steps was executed only α-signals existed.

Subsequently, each private key program Pf is transformed one by one such
that they are programmed to send out β-signals upon receiving the tag t∗.
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When used in decryption this will cause the challenge ciphertext to output one
time encryptions of m0 instead of m1. Intuitively, this is undetectable because
f(mb) = f(m0) for all private key functions f that can legally be requested.
Executing this transformation requires multiple sub steps and is the most com-
plex piece of the proof. It is also where the security one bounded FE scheme is
invoked.

Finally, after the above transformations are made we are able to execute two
final cleanup steps that remove the message mb from the ciphertext program
C∗. At this point all information about the bit b is removed from the challenge
ciphertext and the advantage of any attacker is 0.

Theorem 1. The above functional encryption scheme is adaptively secure if
instantiated with a secure punctured PRF, puncturable deterministic encryption
scheme, pseudo random generator, an adaptively secure one-bounded functional
encryption scheme and indistinguishability secure obfuscator.

To prove the above theorem, we first define a sequence of games where the first
game is the original FE security game. We begin by with describing Game 1
in detail, which is the adaptive FE security game instantiated with our con-
struction. From there we describe the sequence of games, where each game is
described by its modification from the previous game.

In the main body we describe the proof hybrid structure. In our full ver-
sion [Wat14] we provide the lemmas showing that any poly-time attacker’s
advantage in each game must be negligibly close to that of the previous game
(based on the security of different primitives).

Game 1 The first game is the original security game instantiated for our con-
struction.

1. Challenger computes keys K ← KeyF1
(1λ) and randomly chooses the chal-

lenge bit b ∈ {0, 1}.
2. Challenger chooses random r∗ ∈ {0, 1}λ and computes t∗ = PRG(r∗).
3. Challenger computes K∗

t∗ , α∗ = F1(K, t∗).
4. Challenger sets α̃∗ = PRG(α∗).
5. Challenger creates P ← iO(1λ, Initial-Encrypt:1[K]) and passes P to

attacker.
6. Phase 1 Queries: Let fj be the function of associated with the j-th query.

Choose random yj ∈ {0, 1}λ. Generate the j-th private key by computing
Pfj

← iO(Key-Signal:1[K, fj , yj ]). Output the key as (yj , Pfj
).

7. Attacker gives messages m0,m1 ∈ M to challenger.
8. Challenger sets the program C∗ ← iO(1λ,CT-Eval:1[K∗

t∗ , α̃∗,mb]).
9. The output ciphertext is CT = (t∗, C∗).

10. Phase 2 Queries: Same as Phase 1 in step 6.
11. The attacker gives a bit b′ and wins if b′ = b.

Game 2
2. Challenger chooses random t∗ ∈ {0, 1}2λ.
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Game 3
2. Challenger chooses random t∗ ∈ {0, 1}2λ and sets K(t∗) = PunctureF (K, t∗).
5. Challenger creates P ← iO(1λ, Initial-Encrypt:2[K(t∗)]) and passes P to

attacker.

Game 4
6. Phase 1 Queries: Let fj be the function of associated with the j-th query.

(a) Choose random yj ∈ {0, 1}λ.
(b) Compute (d∗

j , k
∗
j , s∗

1,j , s
∗
2,j , s

∗
3,j) = F2(Kt∗ , yj).

(c) Compute a∗
j = EncryptPDE(d∗

j , α
∗) and SK∗

OB,j = KeyGenOB(k∗
j , fj ; s∗

2,j).
(d) Compute Pfj ← iO(Key-Signal:2[K(t∗), t∗, a∗

j , SK∗
OB,j , fj , yj ]).

(e) Output the key as (yj , Pfj
).

10. Phase 2 Queries: Same as Phase 1 in step 6. (These are also changed as
described above.)

Game 5
3. Challenger chooses random K∗

t∗ , α∗.

Game 6
4. Challenger sets α̃∗ = PRG(α∗) and chooses random β̃∗ ∈ {0, 1}2λ.
8. Challenger sets the program C∗ ← iO(1λ,CT-Eval:2[K∗

t∗ , α̃∗, β̃∗, mb, m0]).

Game 7
4. Challenger sets α̃∗ = PRG(α∗), chooses β∗ ∈ {0, 1}λ at random and
sets β̃∗ = PRG(β∗).

Game 8, i Defined for i = 0 to Q. (Q is number of key queries.)

6. Phase 1 Queries: Let fj be the function of associated with the j-th query.
(a) Choose random yj ∈ {0, 1}λ.
(b) Compute (d∗

j , k
∗
j , s∗

1,j , s
∗
2,j , s

∗
3,j) = F2(Kt∗ , yj).

(c) If j > i then set a∗
j = EncryptPDE(d∗

j , α
∗); otherwise if j ≤ i set a∗

j =
EncryptPDE(d∗

j , β
∗).

Let SK∗
OB,j = KeyGenOB(k∗

j , fj ; s∗
2,j).

(d) Compute Pfj ← iO(Key-Signal:2[K(t∗), t∗, a∗
j , SK∗

OB,j , fj , yj ]).
(e) Output the key as (yj , Pfj

).

Game 9
4. Challenger chooses α̃∗ ∈ {0, 1}2λ at random, chooses β∗ ∈ {0, 1}λ at random

and sets β̃∗ = PRG(β∗).
6. Phase 1 Queries: Let fj be the function of associated with the j-th query.

(a) Choose random yj ∈ {0, 1}λ.
(b) Compute (d∗

j , k
∗
j , s∗

1,j , s
∗
2,j , s

∗
3,j) = F2(Kt∗ , yj).

(c) Set a∗
j = EncryptPDE(d∗

j , β
∗). Let SK∗

OB,j = KeyGenOB(k∗
j , fj ; s∗

2,j).
(d) Compute Pfj

← iO(Key-Signal:2[K(t∗), t∗, a∗
j , SK∗

OB,j , fj , yj ]).
(e) Output the key as (yj , Pfj

).
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Initial-Encrypt:2

Constants: Puncturable PRF key K(t∗).
Input: Randomness r.

1. Let t = PRG(r).
2. Compute (Kt, α) = F1(K(t∗), t).
3. Output: (t, Kt, α).

Fig. 6. Program Initial-Encrypt:2

Key-Signal:2

Constants: PRF key K(t∗), t∗, a∗, SK∗
OB, function description f , tag

y ∈ {0, 1}λ.
Input: t ∈ {0, 1}2λ.

1. If t = t∗ output a∗, SK∗
OB.

2. Compute (Kt, α) = F1(K(t∗), t).
3. Compute (d, k, s1, s2, s3) = F2(Kt, y).
4. Compute and output a = EncryptPDE(d, α) and SKOB =

KeyGenOB(k, f ; s2)

Fig. 7. Program Key-Signal:2

CT-Eval:2

Constants: PRF key Kt, α̃, β̃ ∈ {0, 1}2·λ, messages m, mfixed ∈ M.
Input: (a, y).

1. Compute (d, k, s1, s2, s3) = F2(Kt, y).
2. Compute e = DecryptPDE(d, a).
3. If PRG(e) = α̃ output EncryptOB(k, m; s1).
4. If PRG(e) = β̃ output EncryptOB(k, mfixed; s3).
5. Else output a rejecting ⊥.

Fig. 8. Program CT-Eval:2

Game 10
8. Challenger sets the program C∗ ← iO(1λ,CT-Eval:1[K∗

t∗ , β̃∗, m0]).

We observe at this stage the interaction with the challenger is completely
independent of b — note the message m0 is encrypted regardless of b — and
thus the attacker’s advantage is 0 in this final game (Figs. 6, 7 and 8).
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