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Abstract. In predicate encryption, a ciphertext is associated with
descriptive attribute values x in addition to a plaintext μ, and a secret
key is associated with a predicate f . Decryption returns plaintext μ if
and only if f(x) = 1. Moreover, security of predicate encryption guar-
antees that an adversary learns nothing about the attribute x or the
plaintext μ from a ciphertext, given arbitrary many secret keys that are
not authorized to decrypt the ciphertext individually.

We construct a leveled predicate encryption scheme for all circuits,
assuming the hardness of the subexponential learning with errors (LWE)
problem. That is, for any polynomial function d = d(λ), we construct
a predicate encryption scheme for the class of all circuits with depth
bounded by d(λ), where λ is the security parameter.

1 Introduction

Predicate encryption [BW07,SBC+07,KSW08] is a new paradigm for public-key
encryption that supports searching on encrypted data. In predicate encryption,
ciphertexts are associated with descriptive attribute values x in addition to plain-
texts μ, secret keys are associated with a predicate f , and a secret key decrypts
the ciphertext to recover μ if and only if f(x) = 1. The security requirement
for predicate encryption enforces privacy of x and the plaintext even amidst
multiple secret key queries: an adversary holding secret keys for different query
predicates learns nothing about the attribute x and the plaintext (apart from
the fact that x does not satisfy any of the query predicates) if none of them is
individually authorized to decrypt the ciphertext.
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Motivating Applications. We begin with several motivating applications for pred-
icate encryption [BW07,SBC+07]:

– For inspecting recorded log files for network intrusions, we would encrypt
network flows labeled with a set of attributes from the network header, such as
the source and destination addresses, port numbers, time-stamp, and protocol
numbers. We could then issue auditors with restricted secret keys that can only
decrypt the network flows that fall within a particular range of IP addresses
and some specific time period.

– For credit card fraud investigation, we would encrypt credit card transactions
labeled with a set of attributes such as time, costs and zipcodes. We could then
issue investigators with restricted secret keys that decrypt transactions over
$1,000 which took place in the last month and originated from a particular
range of zipcodes.

– For anti-terrorism investigation, we would encrypt travel records labeled with
a set of attributes such as travel destination and basic traveller data. We
could then issue investigators with restricted secret keys that match certain
suspicious travel patterns.

– For online dating, we would encrypt personal profiles labeled with dating
preferences pertaining to age, height, weight, salary and hobbies. Secret keys
are associated with specific attributes and can only decrypt profiles for which
the attributes match the dating preferences.

In all of these examples, it is important that unauthorized parties do not learn the
contents of the ciphertexts, nor of the meta-data associated with the ciphertexts,
such as the network header or dating preferences. On the other hand, it is often
okay to leak the meta-data to authorized parties. We stress that privacy of the
meta-data is an additional security requirement provided by predicate encryption
but not by the related and weaker notion of attribute-based encryption (ABE)
[SW05,GPSW06]; the latter only guarantees the privacy of the plaintext μ and
not the attribute x.

Utility and Expressiveness. The utility of predicate encryption is intimately
related to the class of predicates for which we could create secret keys. Ideally,
we would like to support the class of all circuits. Over the past decade, sub-
stantial advances were made for the weaker primitive of ABE, culminating
most recently in schemes supporting any policy computable by general cir-
cuits [GVW13,BGG+14] under the standard LWE assumption [Reg09]. How-
ever, the state-of-the-art for predicate encryption is largely limited to very simple
functionalities related to computing an inner product [BW07,SBC+07,KSW08,
AFV11,GMW15].

1.1 Our Contributions

In this work, we substantially advance the state of the art to obtain predicate
encryption for all circuits (c.f. Fig. 1):
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Theorem (Informal). Under the LWE assumption, there exists a pred-
icate encryption scheme for all circuits, with succint ciphertexts and
secret keys independent of the size of the circuit.

As with prior LWE-based ABE for circuits [GVW13,BGG+14], to support cir-
cuits of depth d, the parameters of the scheme grow with poly(d), and we require
sub-exponential nΩ(d) hardness of the LWE assumption. In addition, the security
guarantee is selective, but can be extended to adaptive security via complexity
leveraging [BB04].

Privacy Guarantees. The privacy notion we achieve is a simulation-based variant
of “attribute-hiding” from the literature [SBC+07,OT10,AFV11]. That is, we
guarantee privacy of the attribute x and the plaintext μ against collusions hold-
ing secret keys for functions f such that f(x) = 0. An even stronger requirement
would be to require privacy of x even against authorized keys corresponding to
functions f where f(x) = 1; in the literature, this stronger notion is referred to
as “full attribute-hiding” [BW07,KSW08]. This stronger requirement is equiva-
lent to “full-fledged” functional encryption [BSW11], for which we cannot hope
to achieve simulation-based security for all circuits as achieved in this work
[BSW11,AGVW13].

Relation to Prior Works. Our result subsumes all prior works on predicate
encryption under standard cryptographic assumptions, apart from a few excep-
tions pertaining to the inner product predicate [BW07,KSW08,OT12]. These
results achieve a stronger security notion for predicate encryption, known as full
(or strong) security (please refer to Sect. 3.1, and the full version for definitions).

In a recent break-through work, Garg et al. [GGH+13b] gave a beautiful
candidate construction of functional encryption (more general primitive than
predicate encryption) for arbitrary circuits. However, the construction relies on
“multi-linear maps” [GGH13a,CLT13,GGH15], for which we have few candi-
dates and which rely on complex intractability assumptions that are presently
poorly understood and not extensively studied in the literature. It remains an
intriguing open problem to construct a functional encryption scheme from a
standard assumption, such as LWE.

In contrast, if we consider functional encryption with a-priori bounded col-
lusions size (that is, the number of secret keys any collusion of adversaries may
obtain is fixed by the scheme at the setup phase), then it is possible to obtain
functional encryption for general circuits under a large class of standard assump-
tions [SS10,GVW12,GKP+13]. This notion is weaker than standard notion of
functional encryption, yet remains very meaningful for many applications.

1.2 Overview of Our Construction

Our starting point is the work of Goldwasser, Kalai, Popa, Vaikuntanathan
and Zeldovich [GKP+13] who show how to convert an attribute-based encryp-
tion (ABE) scheme into a single key secure functional encryption (FE) scheme.
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Functional Encryption
[SS10,GVW12,GKP+13,GGH+13b]

Predicate Encryption
[this work]

Attribute-Based Enc
[GVW13,BGG+14]

IPE
[KSW08]

Fig. 1. State of the art in functional encryption. The white region refers to function-
alities for which we have constructions under standard cryptographic assumptions like
LWE or decisional problems in bilinear groups: these functionalities include inner prod-
uct encryption (IPE), attribute-based encryption for general circuits (ABE) and pred-
icate encryption for general circuits. The grey region refers to functionalities beyond
predicate encryption for which we only have constructions for weaker security notions
like bounded collusions, or under non-standard cryptographic assumptions like obfus-
cation or multilinear maps.

Interface Security Guarantee given skf
ABE Enc(x, µ) µ is secret iff f(x) = 0

x is always public
PE Enc(x, µ) (x, µ) is secret iff f(x) = 0
FE Enc(x) user learns only f(x)

Fig. 2. Comparison of the security guarantees provided by attribute-based (ABE),
predicate (PE) and functional encryption (FE), where secret keys are associated with
a Boolean function f ; the main distinction lies in how much information about x is
potentially leaked to the adversary. The main distinction between ABE and PE is that
x is always public in ABE, but remains secret in PE when the user is not authorized
to decrypt. The main distinction between PE and FE is that x always remains hidden
(even when f(x) = 1) and hence the user only learns the output of the computation of
f on x.

Recall that in an attribute-based encryption scheme [GPSW06], a ciphertext is
associated with a descriptive value (a public “attribute”) x and plaintext μ,
and it hides μ, but not x. The observation of Goldwasser et al. [GKP+13]
is to hide x by encrypting it using a fully homomorphic encryption (FHE)
scheme [Gen09,BV11b], and then using the resulting FHE ciphertext as the pub-
lic “attribute” in an ABE scheme for general circuits [GVW13,BGG+14]. This
has the dual benefit of guaranteeing privacy of x, while at the same time allowing
homomorphic computation of predicates f on the encryption of x (Fig 2).

This initial idea quickly runs into trouble. The decryptor who is given the
predicate secret key for f and a predicate encryption of (x, μ) can indeed com-
pute an FHE encryption of f(x). However, the decryption process is confronted
with a decision, namely whether to release the message μ or not, and this decision
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depends on whether the plaintext f(x) is 0 or 1.1 Clearly, resolving this conun-
drum requires obtaining f(x), which requires knowledge of the FHE secret key.
Goldwasser et al. [GKP+13] solved this by employing a (single use) Yao garbling
of the FHE decryption circuit, however this limited them to obtaining single key
secure predicate/functional encryption schemes.2

Our first key idea is to embed the FHE secret key as part of the attributes in
the ABE ciphertext. That is, in order to encrypt a plaintext μ with attributes
x in the predicate encryption scheme, we first choose a symmetric key fhe.sk for
the FHE scheme, encrypt x into a FHE ciphertext x̂, and encrypt μ using the
ABE scheme with (fhe.sk, x̂) as the attributes to obtain an ABE ciphertext ct.
Our predicate encryption ciphertext is then given by

(x̂, ct)

To generate the predicate secret key for a function f , one simply generates the
ABE secret key for the function g that takes as input (fhe.sk, x̂) and computes

g(fhe.sk, x̂) = FHE.Dec(fhe.sk;FHE.Eval(f, x̂))

That is, g first homomorphically computes a FHE encryption of f(x), and then
decrypts it using the FHE secret key to output f(x).

At first glance, this idea evokes strong and conflicting emotions as it raises
two problems. The first pertains to correctness: we can no longer decrypt the
ciphertext since the ABE decryption algorithm needs to know all of the attributes
(x̂ and fhe.sk), but fhe.sk is missing. The second pertains to security: the ABE
ciphertext ct is not guaranteed to protect the privacy of the attributes, and could
leak all of fhe.sk which together with x̂ would leak all of x. Solving both of these
problems seems to require designing a predicate encryption scheme from scratch!

Our next key observation is that the bulk of the computation in g, namely the
homomorphic evaluation of the function f , is performed on the public attribute
x̂. The only computation performed on the secret value fhe.sk is FHE decryp-
tion which is a fairly lightweight computation. In particular, with all known FHE

1 In fact, there is a syntactic mismatch since f̂(·) is not a predicate, as it outputs an
FHE ciphertext.

2 A reader familiar with [GKP+13] might wonder whether replacing single-use garbled
circuits in their construction with reusable garbled circuits (also from [GKP+13].)
might remove this limitation. We remark that this does not seem possible, essentially
because the construction in [GKP+13] relies crucially on the simplicity of computing
garbled inputs from the “garbling key”. In particular, in Yao’s garbled circuit scheme,
the garbling key is (many) pairs of “strings” L0 and L1, and a garbling of an input
bit b is simply Lb. This fits perfectly with the semantics of ABE (rather, a variant
termed two-input ABE in [GKP+13]) that releases one of two possible “messages”
L0 or L1 depending on the outcome of a computation. In contrast, computing a
garbled input in the reusable garbling scheme is a more complex and randomized
function of the garbling key, and does not seem to align well with the semantics of
ABE.
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schemes [Gen09,BV11b,BV11a,BGV12,GSW13,BV14,AP14], decryption corre-
sponds to computing an inner product followed by a threshold function. Further-
more, we do know how to construct lattice-based predicate encryption schemes
for threshold of inner product [AFV11,GMW15]. We stress that the latter do not
correspond to FHE decryption since the inner product is computed over a vector
in the ciphertext and one in the key, whereas FHE decryption requires computing
an inner product over two vectors in the ciphertext; nonetheless, we will build
upon the proof techniques in achieving attribute-hiding in [AFV11,GMW15] in
the proof of security.

In other words, if we could enhance ABE with a modicum of secrecy so that
it can perform a heavyweight computation on public attributes followed by a
lightweight privacy-preserving computation on secret attributes, we are back in
business. Our first contribution is to define such an object, that we call partially
hiding predicate encryption.

Partially Hiding Predicate Encryption. We introduce the notion of partially hid-
ing predicate encryption (PHPE), an object that interpolates between attribute-
based encryption and predicate encryption (analogously to partial garbling in
[IW14]). In PHPE, the ciphertext, encrypting message μ, is associated with an
attribute (x, y) where x is private but y is always public. The secret key is asso-
ciated with a function f , and decryption succeeds iff f(x, y) = 1. On the one
extreme, considering a dummy x or functions f that ignore x and compute on y,
we recover attribute-based encryption. On the other end, considering a dummy y
or functions f that ignore y and compute on x, we recover predicate encryption.

We will be interested in realizing PHPE for functions φ of the form φ(x, y) =
g(x, h(y)) for some functions g and h where h may perform arbitrary heavy-
weight computation on the public y and g only performs light-weight computa-
tion on the private x. Mapping back to our discussion, we would like to achieve
PHPE for the “evaluate-then-decrypt” class of functions, namely where g is the
FHE decryption function, h is the FHE evaluation function, x is the FHE secret
key, and y is the FHE ciphertext. In general, we would like g to be simple and
will allow h to be complex. It turns out that we can formalize the observation
above, namely that PHPE for this class of functions gives us a predicate encryp-
tion scheme. The question now becomes: can we construct PHPE schemes for
the “evaluate-then-decrypt” class of functions?

Assuming the subexponential hardness of learning with errors (LWE), we
show how to construct a partially hiding predicate encryption for the class of
functions f : Zt

q × {0, 1}� → {0, 1} of the form

fγ(x,y) = IPγ(x, h(y)),

where h : {0, 1}� → {0, 1}t, γ ∈ Zq, and IPγ(x, z) = 1 iff 〈x, z〉 =
(∑

i∈[t] x[i] ·

z[i]
)

= γ mod q.

This is almost what we want, but not quite. Recall that FHE decryption in
many recent schemes [BV11b,BGV12,GSW13,BV14,AP14] is a function that
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checks whether an inner product of two vectors in Z
t
q (one of which could be

over {0, 1}t) lies in a certain range. Indeed, if z ∈ {0, 1}t is an encryption of 1
and x ∈ Z

t
q is the secret key, we know that 〈x, z〉 ∈ [q/2 − B, q/2 + B] (mod q),

where B is the noise range. Applying the so-called “modulus reduction” [BV11b]
transformation to all these schemes, we can assume that this range is polynomial
in size.

In other words, we will manage to construct a partially hiding PE scheme
for the function

fγ(x,y) : 〈x, h(y)〉 ?= γ (mod q)

whereas we need a partially hiding PE scheme for the FHE decryption function
which is

f ′
R(x,y) : 〈x, h(y)〉 ?∈ R (mod q)

where R is the polynomial size range [q/2 − B, q/2 + B] from above. How do we
reconcile this disparity?

The “Lazy OR” Trick. The solution, called the “lazy OR trick” [SBC+07,
GMW15] is to publish secret keys for all functions fγ for γ ∈ R := [q/2 −
B, q/2 + B]. This will indeed allow us to test if the FHE decryption of the eval-
uated ciphertext is 1 (and reveal the message μ if it is), but it is also worrying.
Publishing these predicate secret keys for the predicates fγ reveals more infor-

mation than whether 〈x, h(y)〉 ?∈ R. In particular, it reveals what 〈x, h(y)〉 is.
This means that an authorized key would leak partial information about the
attribute, which we do allow for predicate encryption. On the other hand, for an
unauthorized key where the FHE decryption is 0, each of these fγ , γ ∈ R is also
an unauthorized key in the PHPE and therefore leaks no information about the
attribute. This extends to the collection of keys in R since the PHPE is secure
against collusions. For simplicity, we assume in the rest of this overview that
FHE decryption corresponds to exactly to inner product.

Asymmetry to the Rescue: Constructing Partially Hiding PE. Our final contri-
bution is the construction of a partially hiding PE for the function class fγ(x,y)
above. We will crucially exploit the fact that fγ computes an inner product on
the private attribute x. There are two challenges here: first, we need to design
a decryption algorithm that knows fγ and y but not x (this is different from
decryption in ABE where the algorithm also knows x); second, show that the
ciphertext does not leak too much information about x. We use the fully key-
homomorphic encryption techniques developed by Boneh et al. [BGG+14] in the
context of constructing an “arithmetic” ABE scheme. The crucial observation
about the ABE scheme of [BGG+14] is that while it was not designed to hide
the attributes, it can be made to partially hide them in exactly the way we
want. In particular, the scheme allows us to carry out an inner product of a
public attribute vector (corresponding to the evaluated FHE ciphertext) and a
private attribute vector (corresponding to the FHE secret key fhe.sk), thanks to
an inherent asymmetry in homomorphic evaluation of a multiplication gate on
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ABE ciphertexts. More concretely, in the homomorphic evaluation of a cipher-
text for a multiplication gate in [BGG+14], the decryption algorithm works even
if one of the attribute remains private, and for addition gates, the decryption
algorithms works even if both attributes remain private. This addresses the first
challenge of a decryption algorithm that is oblivious to x. For the second chal-
lenge of security, we rely on techniques from inner product predicate encryption
[AFV11] to prove the privacy of x Note that in the latter, the inner product
is computed over a vector in the ciphertext and one in the key, whereas in our
scheme, the inner product is computed over two vectors in the ciphertext. Inter-
estingly, the proof still goes through since the ciphertext in the ABE [BGG+14]
has the same structure as the ciphertext in [AFV11]. We refer the reader to
Sect. 3.2 for a detailed overview of the partial hiding PE, and to Sect. 4 for an
overview of how we combine the partial hiding PE with FHE to obtain our main
result.

Finally, we remark that exploiting asymmetry in multiplication has been used
in fairly different contexts in both FHE [GSW13,BV14] and in ABE [GVW13,
GV14]. In [GSW13] and in this work, the use of asymmetry was crucial for real-
izing the underlying cryptographic primitive; whereas in [GVW13,BV14,GV14],
asymmetry was used to reduce the noise growth during homomorphic evaluation,
thereby leading to quantitative improvements in the underlying assumptions and
hence improved efficiency.

1.3 Discussion

Comparison with Other Approaches. The two main alternative approaches for
realizing predicate and functional encryption both rely on multi-linear maps
either implicitly, or explicitly. The first is to use indistinguishability obfuscation
as in [GGH+13b], and the second is to extend the dual system encryption frame-
work to multi-linear maps [Wat09,GGHZ14]. A crucial theoretical limitation of
these approaches is that they all rely on non-standard assumptions; we have few
candidates for multi-linear maps [GGH13a,CLT13,GGH15] and the correspond-
ing assumptions are presently poorly understood and not extensively studied
in cryptanalysis, and in some cases, broken [CHL+15]. In particular, the lat-
est attack in [CHL+15] highlight the importance of obtaining constructions and
developing techniques that work under standard cryptographic assumptions, as
is the focus of this work.

Barriers to Functional Encryption from LWE. We note the two main barriers
to achieving full-fledged functional encryption from LWE using our framework.
First, the lazy conjunction approach to handle threshold inner product for FHE
decryption leaks the exact inner product and therefore cannot be used to achieve
full attribute-hiding. Second, we do not currently know of a fully attribute-hiding
inner product encryption scheme under the LWE assumption, although we do
know how to obtain such schemes under standard assumptions in bilinear groups
[OT12,KSW08].
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2 Preliminaries

We refer the reader to the full version for the background on lattices.

2.1 Fully-Homomorphic Encryption

We present a fairly minimal definition of fully homomorphic encryption (FHE)
which is sufficient for our constructions. A leveled homomorphic encryption
scheme is a tuple of polynomial-time algorithms (HE.KeyGen,HE.Enc,HE.Eval,
HE.Dec):

– Key generation. HE.KeyGen(1λ, 1d, 1k) is a probablistic algorithm that takes
as input the security parameter λ, a depth bound d and message length k and
outputs a secret key sk.

– Encryption. HE.Enc(sk, μ) is a probabilistic algorithm that takes as input sk
and a message μ ∈ {0, 1}k and outputs a ciphertext ct.

– Homomorphic evaluation. HE.Eval(f, ct) is a deterministic algorithm that
takes as input a boolean circuit C : {0, 1}k → {0, 1} of depth at most d and
a ciphertext ct and outputs another ciphertext ct′.

– Decryption. HE.Dec(sk, ct′) is a deterministic algorithm that takes as input
sk and ciphertext ct′ and outputs a bit.

Correctness. We require perfect decryption correctness with respect to homo-
morphically evaluated ciphertexts: namely for all λ, d, k and all sk ←
HE.KeyGen(1λ, 1d, 1k), all μ ∈ {0, 1}k and for all boolean circuits C : {0, 1}k →
{0, 1} of depth at most d:

Pr
[
HE.Dec(sk, HE.Eval(C, HE.Enc(sk, μ))) = C(μ)

]
= 1

where the probablity is taken over HE.Enc and HE.KeyGen.

Security. We require semantic security for a single ciphertext: namely for every
stateful p.p.t. adversary A and for all d, k = poly(λ), the following quantity

Pr

⎡
⎢⎢⎢⎢⎣b = b′ :

sk ← Setup(1λ, 1d, 1k);
(μ0, μ1) ← A(1λ, 1d, 1k);
b

$← {0, 1};
ct ← Enc(sk, μb);
b′ ← A(ct)

⎤
⎥⎥⎥⎥⎦ − 1

2

is negligible in λ.

FHE from LWE We will rely on an instantiation of FHE from the LWE
assumption:
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Theorem 2.1. (FHE from LWE [BV11b,BGV12,GSW13,BV14,AP14]).
There is a FHE scheme HE.KeyGen,HE.Enc,HE.Eval,HE.Dec that works for any
q with q ≥ O(λ2) with the following properties:

– HE.KeyGen outputs a secret key sk ∈ Z
t
q where t = poly(λ);

– HE.Enc outputs a ciphertext ct ∈ {0, 1}� where � = poly(k, d, λ, log q);
– HE.Eval outputs a ciphertext ct′ ∈ {0, 1}t;
– for any boolean circuit of depth d, HE.Eval(C, ·) is computed by a boolean

circuit of depth poly(d, λ, log q).
– HE.Dec on input sk, ct′ outputs a bit b ∈ {0, 1}. If ct′ is an encryption of 1

then
t∑

i=1

sk[i] · ct′[i] ∈ [�q/2	 − B, �q/2	 + B]

for some fixed B = poly(λ). Otherwise, if ct′ is an encryption of 0, then

t∑
i=1

sk[i] · ct′[i] /∈ [�q/2	 − B, �q/2	 + B];

– security relies on dLWEΘ(t),q,χ.

We highlight several properties of the above scheme: (1) the ciphertext is a bit-
string, (2) the bound B is a polynomial independent of q (here, we crucially
exploit the new results in [BV14] together with the use of leveled bootstrap-
ping)3, (3) the size of normal ciphertexts is independent of the size of the circuit
(this is the typical compactness requirement).

3 Partially Hiding Predicate Encryption

3.1 Definitions

We introduce the notation of partially hiding predicate encryption (PHPE),
which interpolates attribute-based encryption and predicate encryption (analo-
gously to partial garbling in [IW14]). In PHPE, the ciphertext, encrypting mes-
sage μ, is associated with an attribute (x, y) where x is private but y is always
public. The secret key is associated with a predicate C, and decryption succeeds
iff C(x, y) = 1. The requirement is that a collusion learns nothing about (x, μ)
if none of them is individually authorized to decrypt the ciphertext. Attribute-
based encryption corresponds to the setting where x is empty, and predicate
encryption corresponds to the setting where y is empty. We refer the reader to
the full version for the standard notion of predicate encryption.

Looking ahead to our construction, we show how to:

– construct PHPE for a restricted class of circuits that is “low complexity” with
respect to x and allows arbitrarily polynomial-time computation on y;

– bootstrap this PHPE using FHE to obtain PE for all circuits.
3 Recall that no circular security assumption needs to be made for leveled

bootstrapping.
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Syntax. A Partially-Hiding Predicate Encryption scheme PHPE for a pair of
input-universes X ,Y, a predicate universe C, a message space M, consists of
four algorithms (PH.Setup,PH.Enc, PH.Keygen,PH.Dec):

PH.Setup(1λ,X ,Y, C,M) → (ph.mpk, ph.msk). The setup algorithm gets as
input the security parameter λ and a description of (X ,Y, C,M) and outputs
the public parameter ph.mpk, and the master key ph.msk.

PH.Enc(ph.mpk, (x, y), μ) → cty. The encryption algorithm gets as input ph.mpk,
an attribute (x, y) ∈ X ×Y and a message μ ∈ M. It outputs a ciphertext cty.

PH.Keygen(ph.msk, C) → skC . The key generation algorithm gets as input
ph.msk and a predicate C ∈ C. It outputs a secret key skC .

PH.Dec((skC , C), (cty, y)) → μ. The decryption algorithm gets as input the secret
key skC , a predicate C, and a ciphertext cty and the public part of the
attribute y. It outputs a message μ ∈ M or ⊥.

Correctness. We require that for all PH.Setup(1λ,X ,Y, C,M) → (ph.mpk,
ph.msk), for all (x, y, C) ∈ X × Y × C, for all μ ∈ M,

– if C(x, y) = 1, Pr
[
PH.Dec((skC , C), (cty, y)) = μ

] ≥ 1 − negl(λ),
– if C(x, y) = 0, Pr

[
PH.Dec((skC , C), (cty, y)) =⊥ ] ≥ 1 − negl(λ),

where the probabilities are taken over skC ← PH.Keygen(ph.msk, C), cty ←
PH.Enc(ph.mpk, (x, y), μ) and coins of PH.Setup.

Definition 3.1 (PHPE Attribute-Hiding). Fix (PH.Setup,PH.Enc,
PH.Keygen, PH.Dec). For every stateful p.p.t. adversary Adv, and a p.p.t. sim-
ulator Sim, consider the following two experiments:

expreal
PHPE,Adv(1

λ): expideal
PHPE,Sim(1λ):

1: (x, y) ← Adv(1λ,X ,Y, C,M)
2: (ph.mpk, ph.msk) ←

PH.Setup(1λ,X ,Y, C,M)
3: μ ← AdvPH.Keygen(msk,·)(ph.mpk)
4: cty ← PH.Enc(ph.mpk, (x, y), μ)
5: α ← AdvPH.Keygen(ph.msk,·)(cty)
6: Output (x, y, μ, α)

1: (x, y) ← Adv(1λ,X ,Y, C,M)
2: (ph.mpk, ph.msk) ←

PH.Setup(1λ,X ,Y, C,M)
3: μ ← AdvPH.Keygen(ph.msk,·)(ph.mpk)
4: cty ← Sim(mpk, y, 1|x|, 1|μ|)
5: α ← AdvPH.Keygen(msk,·)(cty)
6: Output (x, y, μ, α)

We say an adversary Adv is admissible if all oracle queries that it makes C ∈ C
satisfy C(x, y) = 0. The Partially-Hiding Predicate Encryption scheme PHPE
is then said to be attribute-hiding if there is a p.p.t. simulator Sim such that for
every stateful p.p.t. adversary Adv, the following two distributions are compu-
tationally indistinguishable:

{
expreal

PHPE,Adv(1
λ)

}
λ∈N

c≈
{

expideal
PHPE,Sim(1λ)

}
λ∈N
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Remarks. We point out some remarks of our definition (SIM-AH) when treated
as a regular predicate encryption (i.e. the setting where y is empty; see the
full version for completeness) and how it compares to other definitions in the
literature.

– We note the simulator for the challenge ciphertext gets y but not x; this cap-
tures the fact that y is public whereas x is private. In addition, the simulator
is not allowed to program the public parameters or the secret keys. In the ideal
experiment, the simulator does not explicitly learn any information about x
(apart from its length); nonetheless, there is implicit leakage about x from the
key queries made by an admissible adversary. Finally, we note that we can
efficiently check whether an adversary is admissible.

– Our security notion is “selective”, in that the adversary “commits” to (x, y)
before it sees ph.mpk. It is possible to bootstrap selectively-secure scheme to
full security using standard complexity leveraging arguments [BB04,GVW13],
at the price of a 2|x| loss in the security reduction.

– Our definition refers to a single challenge message, but the definition extends
readily to a setting with multiple challenge messages. Moreover, our definition
composes in that security for a single message implies security with multiple
messages (see the full version). The following remarks refer to many messages
setting.

– We distinguish between two notions of indistinguishability-based (IND)
definitions used in the literature: attribute-hiding (IND-AH)4 and strong
attribute-hiding (IND-SAH)5 [BW07,SBC+07,KSW08,AFV11]. In the IND-
AH, the adversary should not be able to distinguish between two pairs of
attributes/messages given that it is restricted to queries which do not decrypt
the challenge ciphertext (See the full version for details). It is easy to see that
our SIM-AH definition is stronger than IND-AH. Furthermore, IND-SAH also
ensures that adversary cannot distinguish between the attributes even when
it is allowed to ask for queries that decrypt the messages (in this case, it must
output μ0 = μ1). Our SIM-AH definition is weaker than IND-SAH, since we
explicitly restrict the adversary to queries that do not decrypt the challenge
ciphertext.

– In the context of arbitrary predicates, strong variants of definitions (that is,
IND-SAH and SIM-SAH) are equivalent to security notions for functional
encryption (the simulation definition must be adjusted to give the simulated
the outputs of the queries). However, the strong variant of notion (SIM-SAH)
is impossible to realize for many messages [BSW11,AGVW13]. We refer the
reader to the full version for a sketch of the impossibility. Hence, SIM-AH is
the best-possible simulation security for predicate encryption which we realize
in this work. The only problem which we leave open is to realize IND-SAH
from standard LWE.

4 Sometimes also referred as weak attribute-hiding.
5 Sometimes also referred as full attribute-hiding.
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3.2 Our Construction

We refer the reader to the full version for the complete description of our con-
struction. Below, we provide an overview.

Overview. We construct a partially hiding predicate encryption for the class
of predicate circuits C : Zt

q × {0, 1}� → {0, 1} of the form Ĉ ◦ IPγ where Ĉ :
{0, 1}� → {0, 1}t is a boolean circuit of depth d, γ ∈ Zq, and

(Ĉ ◦ IPγ)(x,y) = IPγ(x, Ĉ(y)),

where IPγ(x, z) = 1 iff 〈x, z〉 =
(∑

i∈[t] x[i] · z[i]
)

= γ mod q. We refer to

circuit IP as the generic inner-product circuit of two vectors.
Looking ahead, Ĉ corresponds to FHE evaluation of an arbitrary circuit C,

whereas IPγ corresponds to roughly to FHE decryption; in the language of the
introduction in Sect. 1, Ĉ corresponds to heavy-weight computation h, whereas
IPγ corresponds to light-weight computation g.

The scheme. The public parameters are matrices
(
A, A1, . . . ,A�, B1, . . . ,Bt

)

An encryption corresponding to the attribute (x,y) ∈ Z
t
q × {0, 1}� is a GPV

ciphertext (an LWE sample) corresponding to the matrix
[
A | A1 + y[1] · G | · · · | A� + y[�] · G | B1 + x[1] · G | · · · | Bt + x[t] · G ]

To decrypt the ciphertext given y and a key for Ĉ ◦ IPγ , we apply the
BGGHNSVV algorithm to first transform the first part of the ciphertext into a
GPV ciphertext corresponding to the matrix

[
A | A

̂C1
+ z[1] · G | · · · | A

̂Ct
+ z[t] · G]

where Ĉi is the circuit computing the i’th bit of Ĉ and z = Ĉ(y) ∈ {0, 1}t. Next,
observe that

−
(
(A

̂Ci
+z[i]·G)·G−1(Bi)

)
+z[i]·

(
Bi+x[i]·G

)
= −A

̂Ci
G−1(Bi)+x[i]·z[i]·G.

Summing over i, we have

�∑
i=1

−
(
(A

̂Ci
+ z[i] · G) · G−1(Bi)

)
+ z[i] ·

(
Bi + x[i] · G

)
= A

̂C ◦ IP + 〈x, z〉 · G

where
A
̂C ◦ IP := −

(
A
̂C1
G−1(B1) + · · · + A

̂Ct
G−1(Bt)

)
.
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Therefore, given only the public matrices and y (but not x), we may transform
the ciphertext into a GPV ciphertext corresponding to the matrix[

A | A
̂C ◦ IP + 〈x, z〉 · G ]

.

The secret key corresponding to Ĉ ◦ IPγ is essentially a “short basis” for the
matrix [

A | A
̂C ◦ IP + γ · G ]

which can be sampled using a short trapdoor T of the matrix A.

Proof Strategy. There are two main components to the proof. Fix the selective
challenge attribute x,y. First, we will simulate the secret keys without knowing
the trapdoor for the matrix A: here, we rely on the simulated key generation for
the ABE [BGG+14]. Roughly speaking, we will need to generate a short basis
for the matrix [

A | AR
̂C ◦ IP + (γ − Ĉ ◦ IP(x,y)) · G ]

where R
̂C ◦ IP is a small-norm matrix known to the simulator. Now, whenever

Ĉ ◦ IP(x,y) 
= γ as is the case for admissible adversaries, we will be able to
simultae secret keys using the puncturing techniques in [ABB10,AFV11,MP12].

Next, we will show that the attribute x is hidden in the challenge ciphertext.
Here, we adopt the proof strategy for attribute-hiding inner product encryption
in [AFV11,GMW15]. In the proof, we simulate the matrices A,B1, . . . ,Bt using

A,AR′
1 − x[1]G, . . . ,AR′

t − x[t]G

where R′
1, . . . ,R

′
t

$← {±1}m×m. In addition, we simulate the corresponding
terms in the challenge ciphertext by c, cTR′

1, . . . , c
TR′

t, where c is a uniformly
random vector, which we switched from ATs+e using the LWE assumption. Here
we crucially rely on the fact that switched to simulation of secret keys without
knowing the trapdoor of A. Going further, once c is random, we can switch back
to simulating secret keys using the trapdoor T. Hence, the secret keys now do
not leak any information about R′

1, . . . ,R
′
t. Therefore, we may then invoke the

left-over hash lemma to argue that x is information-theoretically hidden.

4 Predicate Encryption for Circuits

In this section, we present our main construction of predicate encryption for
circuits by bootstrapping on top of the partially-hiding predicate encryption.
That is,

– We construct a Predicate Encryption scheme PE = (Setup,Keygen,Enc,Dec)
for boolean predicate family C bounded by depth d over k bit inputs.

starting from

– an FHE scheme FHE = (HE.KeyGen,HE.Enc,HE.Dec,HE.Eval) with prop-
erties as described in Sect. 2.1. Define � as the size of the initial ciphertext
encrypting k bit messages, and t as the size of the FHE secret key and evalu-
ated ciphertext vectors;



Predicate Encryption for Circuits from LWE 517

– a partially-hiding predicate encryption scheme PHPE = (PH.Setup,
PH.Keygen, PH.Enc,PH.Dec) for the class CPHPE of predicates bounded by
some depth parameter d′ = poly(d, λ, log q). Recall that

(Ĉ ◦ IPγ)(x ∈ Z
t
q,y ∈ {0, 1}t) = 1 iff

( ∑
i∈[t]

x[i] · Ĉ(y)[i]
)

= γ mod q

where Ĉ : {0, 1}� → {0, 1}t is a circuit of depth at most d′.

Overview. At a high level, the construction proceeds as follows:

– the PE ciphertext corresponding to an attribute a ∈ {0, 1}k is a PHPE
ciphertext corresponding to an attribute (fhe.sk, fhe.ct) where fhe.sk

$← Z
t
q

is private and fhe.ct := HE.Enc(a) ∈ {0, 1}� is public;
– the PE secret key for a predicate C : {0, 1}k → {0, 1} ∈ C is a collection

of 2B + 1 PHPE secret keys for the predicates {Ĉ ◦ IPγ : Zt
q × {0, 1}� →

{0, 1}}γ=�q/2�−B,...,�q/2�+B where Ĉ : {0, 1}� → {0, 1} is the circuit:

Ĉ(fhe.ct) := HE.Eval(fhe.ct, C),

so Ĉ is a circuit of depth at most d′ = poly(d, λ, log q);
– decryption works by trying all possible 2B + 1 secret keys.

Note that the construction relies crucially on the fact that B (the bound on the
noise in the FHE evaluated ciphertexts) is polynomial. For correctness, observe
that for all C,a:

C(a) = 1

⇔ HE.Dec(fhe.sk,HE.Eval(C, fhe.ct)) = 1

⇔ ∃ γ ∈ [�q/2� − B, �q/2� + B] such that

(∑
i∈[t]

fhe.sk[i] · fhe.ct[i]
)

= γ mod q

⇔ ∃ γ ∈ [�q/2� − B, �q/2� + B] such that (Ĉ ◦ IPγ)(fhe.sk, fhe.ct) = 1

where fhe.sk, fhe.ct, Ĉ are derived from C,a as in our construction.

4.1 Our Predicate Encryption Scheme

Our construction proceeds as follows:

– Setup(1λ, 1k, 1d): The setup algorithm takes the security parameter λ, the
attribute length k and the predicate depth bound d.
1. Run the partially-hiding PE scheme for family CPHPE to obtain a pair of

master public and secret keys:

(ph.mpk, ph.msk) ← PH.Setup(1λ, 1t, 1�, 1d′
)
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where for k-bit messages and depth d circuits: t is the length of FHE
secret key, � is the bit-length of the initial FHE ciphertext and d′ is the
bound on FHE evaluation circuit (as described at the beginning of this
section).

2. Output (mpk
.= ph.mpk,msk

.= ph.msk).
– Keygen(msk, C): The key-generation algorithms takes as input the master

secret key msk and a predicate C. It outputs a secret key skC computed
as follows.
1. Let Ĉ(·) := HE.Eval(·, C) and let (Ĉ ◦ IPγ) be the predicates for γ =

�q/2	 − B, . . . , �q/2	 + B.
2. For all γ = �q/2	 − B, . . . , �q/2	 + B, compute

sk
̂C ◦ IPγ

← PH.Keygen
(
ph.msk, Ĉ ◦ IPγ

)

3. Output the secret key as skC
.=

({sk
̂C ◦ IP}γ=�q/2�−B,...,�q/2�+B

)
.

– Enc(mpk,a, μ): The encryption algorithm takes as input the public key mpk,
the input attribute vector a ∈ {0, 1}k and message μ ∈ {0, 1}. It proceeds as
follow.
1. Samples a fresh FHE secret key fhe.sk ∈ Z

t
q by running

HE.KeyGen(1λ, 1d′
, 1k).

2. Encrypt the input to obtain

fhe.ct ← HE.Enc(fhe.sk,a) ∈ {0, 1}�

3. Compute
ctfhe.ct ← PH.Enc

(
mpk, (fhe.sk, fhe.ct), μ

)
Note that the fhe.sk corresponds to the hidden attribute and fhe.ct cor-
responds to the public attribute.

4. Output the ciphertext ct = (ctfhe.ct, fhe.ct).
– Dec((skC , C), ct) : The decryption algorithm takes as input the secret key

skC with corresponding predicate C and the ciphertext ct. If there exists
γ = �q/2	 − B, . . . , �q/2	 + B such that

PH.Dec((sk
̂C ◦ IPγ

, Ĉ ◦ IPγ), (ctfhe.ct, fhe.ct)) = μ 
=⊥

then output μ. Otherwise, output ⊥.

4.2 Correctness

Lemma 4.1. Let C be a family of predicates bounded by depth d and let PHPE
be the partially-hiding PE and FHE be a fully-homomorphic encryption as per
scheme description. Then, our predicate encryption scheme PE is correct. More-
over, the size of each secret key is poly(d, λ) and the size of each ciphertext is
poly(d, λ, k).

We refer the reader to the full version for the proof.
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4.3 Security

Theorem 4.2. Let C be a family of predicates bounded by depth d and let PHPE
be the secure partially-hiding PE and FHE be the secure fully-homomorphic
encryption as per scheme description. Then, our predicate encryption scheme
PE is secure.

Proof. We define p.p.t. simulator algorithms EncSim and argue that its output is
indistinguishable from the output of the real experiment. Let PH.EncSim be the
p.p.t. simulator for partially-hiding predicate encryption scheme.

– EncSim(mpk, 1|a|, 1|μ|): To compute the encryption, the simulator does the
following. It samples FHE secret key fhe.sk by running HE.KeyGen(1λ, 1d′

, 1k).
It encrypts a zero-string fhe.ct ← HE.Enc(fhe.sk,0). It obtains the ciphertext
as ctfhe.ct ← PH.EncSim(mpk, fhe.ct, 1|fhe.sk|, 1|μ|).

We now argue via a series of hybrids that the output of the ideal experiment.

– Hybrid 0: The real experiment.
– Hybrid 1: The real encryption algorithm is replaced with Enc∗, where Enc∗

is an auxiliary algorithm defined below. On the high level, Enc∗ computes the
FHE ciphertext honestly by sampling a secret key and using the knowledge
of a. It then invokes PH.EncSim on the honestly generated ciphertext.

– Hybrid 2: The simulated experiment.

Auxiliary Algorithms. We define the auxiliary algorithm Enc∗ used in Hybrid 1.

– Enc∗(a, 1|μ|): The auxiliary encryption algorithm takes as input the attribute
vector a and message length.
1. Sample a fresh FHE secret key fhe.sk by running HE.KeyGen(1λ, 1d′

, 1k).
2. Encrypt the input attribute vector to obtain a ciphertext

fhe.ct ← HE.Enc(fhe.sk,a) ∈ {0, 1}�

3. Run PH.EncSim on input (mpk, fhe.ct, 1|fhe.sk|, 1|μ|) to obtain the ciphertext
ctfhe.ct.

Lemma 4.3. The output of Hybrid 0 is computationally indistinguishable from
the Hybrid 1, assuming security of Partially-Hiding Predicate Encryption.

Proof. Assume there is an adversary Adv and a distinguisher D that distin-
guishes the output (a, μ, α) produced in either of the two hybrids. We construct
an adversary Adv′ and a distinguisher D′ that break the security of the Partially-
Hiding Predicate Encryption. The adversary Adv′ does the following.

1. Invoke the adversary Adv to obtain an attribute vector a.
2. Sample a fresh FHE secret key fhe.sk using HE.KeyGen(1λ, 1d′

, 1k). Encrypt
the attribute vector

fhe.ct ← HE.Enc(fhe.sk,a)

and output the pair (fhe.sk, fhe.ct) as the “selective” challenge attribute.
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3. Upon receiving mpk, it forwards it to Adv.
4. For each oracle query C that Adv makes which satisfies C(a) 
= 0, Adv′ uses

its oracle to obtain secret keys sk
̂C ◦ IPγ

for γ = �q/2	 − B, . . . , �q/2	 + B. It
outputs skC =

({sk
̂C ◦ IPγ

}γ=�q/2�−B,...,�q/2�+B

)
.

5. It outputs message μ that Adv produces, obtains a ciphertext ctfhe.ct and
sends ct = (ctfhe.ct, fhe.ct) back to Adv to obtain α.

We note that given Adv that is admissible, Adv′ is also admissible. That is, for
all queries Ĉ ◦ IPγ that Adv′ makes satisfies (Ĉ ◦ IPγ)(fhe.sk, fhe.ct) = 0 since
〈fhe.sk, Ĉ(fhe.ct)〉 
= γ for γ = �q/2	 − B, . . . , �q/2	 + B by the correctness of
FHE in Sect. 2.1 and the fact that C(a) 
= 0. Finally, the distinguisher D′ on
input (fhe.sk, fhe.ct, μ, α) invokes D and outputs whatever it outputs. Now, in
Hybrid 0 the algorithms used as PH.Setup,PH.Keygen,PH.Enc which corresponds
exactly to the real security game of PHPE. However, in Hybrid 1 the algorithms
correspond exactly to the simulated security game. Hence, we can distinguish
between the real and simulated experiments contradicting the security of PHPE
scheme.

Lemma 4.4. The output of Hybrid 1 and Hybrid 2 are computationally indis-
tinguishable, assuming semantic security of Fully-Homomorphic Encryption
Scheme.

Proof. The only difference in Hybrids 1 and 2 is how the FHE ciphertext is
produced. In one experiment, it is computed honestly by encrypting the attribute
vector a, while in the other experiment it is always an encryption of 0. Hence, we
can readily construct an FHE adversary that given a, distinguishes encryption
of a from encryption of 0 as follows:

1. Invoke the admissible PE adversary Adv to obtain an attribute vector a.
2. Run the honest PH.Setup and forwards mpk to Adv.
3. For each oracle query C that Adv makes which satisfies C(a) 
= 0,

return skC =
({sk

̂C ◦ IPγ
}γ=�q/2�−B,...,�q/2�+B

)
as computed using the hon-

est PH.Keygen algorithm.
4. To simulate the ciphertext, first forward the pair (a,0) to the FHE challenger

to obtain a ciphertext fhe.ct. Then, run PH.EncSim(mpk, fhe.ct, 1|fhe.sk|, 1μ) to
obtain a ciphertext ctfhe.ct and forward it to Adv

5. Finally, it runs the PE distinguisher on input (a, μ, α) and outputs its guess.

The lemma then follows from semantic security of the FHE completing the secu-
rity proof. We also refer the reader to the full version for the summary of para-
meters selection.
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