
Round-Optimal Black-Box Two-Party
Computation

Rafail Ostrovsky1, Silas Richelson1, and Alessandra Scafuro2(B)

1 UCLA, Los Angeles, USA
2 Boston University and Northeastern University, Boston, USA

{rafail,sirichel}@ucla.edu, scafuro@bu.edu

Abstract. In [Eurocrypt 2004] Katz and Ostrovsky establish the exact
round complexity of secure two-party computation with respect to black-
box proofs of security. They prove that 5 rounds are necessary for secure
two-party protocols (4-round are sufficient if only one party receives the
output) and provide a protocol that matches such lower bound. The
main challenge when designing such protocol is to parallelize the proofs
of consistency provided by both parties – necessary when security against
malicious adversaries is considered– in 4 rounds. Toward this goal they
employ specific proofs in which the statement can be unspecified till
the last round but that require non-black-box access to the underlying
primitives.

A rich line of work [1,9,11,13,24] has shown that the non-black-box
use of the cryptographic primitive in secure two-party computation is
not necessary by providing black-box constructions matching basically
all the feasibility results that were previously demonstrated only via non-
black-box protocols.

All such constructions however are far from being round optimal. The
reason is that they are based on cut-and-choose mechanisms where one
party can safely take an action only after the other party has success-
fully completed the cut-and-choose phase, therefore requiring additional
rounds.

A natural question is whether round-optimal constructions do inher-
ently require non-black-box access to the primitives, and whether the
lower bound shown by Katz and Ostrovsky can only be matched by a
non-black-box protocol.

In this work we show that round-optimality is achievable even with
only black-box access to the primitives. We provide the first 4-round
black-box oblivious transfer based on any enhanced trapdoor permuta-
tion. Plugging a parallel version of our oblivious transfer into the black-
box non-interactive secure computation protocol of [12] we obtain the
first round-optimal black-box two-party protocol in the plain model for
any functionality.

1 Introduction

Secure two-party computation allows two mutually distrustful parties to com-
pute a function of their secret inputs without revealing any information except
c© International Association for Cryptologic Research 2015
R. Gennaro and M. Robshaw (Eds.): CRYPTO 2015, Part II, LNCS 9216, pp. 339–358, 2015.
DOI: 10.1007/978-3-662-48000-7 17



340 R. Ostrovsky et al.

what can be gathered from the output. It is known that achieving secure two-
party computation information theoretically is impossible, and thus computation
assumptions are required. In this work we are interested in construction for two-
party computation based on general hardness assumptions in the plain model.
Protocols based on general assumptions are flexible in that they allow the pro-
tocol to be implemented based on a variety concrete assumptions; even possibly
ones which where not considered when the protocol was designed. Constructions
based on general assumptions may use the cryptographic primitive based on the
assumption in two ways: black-box usage, if the construction refers only to
the input/output behavior of the underlying primitive; non-black-box usage,
if the construction uses the code computing the functionality of the primitive.
The advantage of black-box constructions is that their complexity is indepen-
dent of the complexity of the implementation of the underlying primitive and
are typically considered the first step towards practical constructions.

Secure Two-Party Computation Under General Assumptions. Yao [29] provided
an elegant construction which securely realizes any two-party functionality, and
which uses the underlying cryptographic primitives as black-box. This con-
struction however guarantees security only against semi-honest adversaries, i.e.,
adversaries that honestly follow the protocol. [5] show that semi-honest security
is sufficient, as any protocol tolerating semi-honest adversaries can be compiled
into one secure against malicious adversaries (i.e., adversaries who can arbitrar-
ily deviate from the protocol), by forcing the parties to prove, after each step,
that they behaved honestly. Roughly, in this compiler, each party commits to
his input at the very beginning and use a coin-flipping protocol to define the
randomness that will be used in the semi-honest protocol. Then, for each pro-
tocol message, they add a zero-knowledge “proof of consistency” proving that
the message was correctly computed according to the input committed and the
randomness generated in the coin-flipping.

Unfortunately, this compiler is highly inefficient as the proofs of consistency
require Karp reductions involving the circuits of the cryptographic primitives
used. The exact complexity of these reductions grows more than linearly in the
circuit complexity of the cryptographic primitive.1 Researchers naturally began
to wonder whether security against malicious adversaries could be achieved with-
out relying on non-black-box use of cryptographic primitives.

Black-Box Secure Two-Party Computation. Ishai et al. [9,11] show that mali-
cious security can be achieved without using expensive zero-knowledge proofs
involving the code of the cryptographic primitives. Their work is based on the
following observation: we can check that a party is honestly computing the pro-
tocol messages, by challenging the party to reveal the input and the randomness

1 We note that a different approach altogether was taken by Kilian in [16], which does
not require the use of cryptographic assumptions at all. However, his compiler works
in the OT-hybrid model, thus we still need a protocol that implements the oblivious
transfer functionality against malicious adversaries.



Round-Optimal Black-Box Two-Party Computation 341

used in the computation. While this will certainly prove consistency2, it is not
zero-knowledge, as it leaks parties’ entire inputs. Thus, the next idea is to have
the parties engage in several parallel executions of the semi-honest protocol,
where they run with random inputs. When a party is challenged on a random
subset of protocol executions, she can safely reveal the randomness/inputs used
in those executions which are independent of her actual inputs. If the party pro-
vides all convincing answers, then the challenger is guaranteed that the majority
of the remaining executions are honestly computed as well. This step is repeated
again in the opposite direction. Eventually after both parties have passed the
tests, they run an additional step to “connect” the random inputs with their
actual inputs and combine them across the remaining executions.

Following [9,11] subsequent work have shown black-box construction for
adaptively secure two-party protocols [1], and constant-round black-box two-
party protocols [13,24].

Round-Optimal Secure Two-Party Computation. In [15] Katz and Ostrovsky
establish the exact round complexity of secure two-party computation from gen-
eral assumptions. They show that 5 rounds are necessary and sufficient to com-
pute any two-party functionality where both parties obtain the output, and 4
rounds are sufficient if only one party receives the output. To prove the upper
bound they give a protocol that uses non-black-box proofs of consistency to
enforce semi-honest behavior. The main technical difficulty they face is getting
these proofs to complete in only 4 rounds − not an easy task as zero-knowledge
in the standard model requires at least 4 rounds. Nevertheless, they manage
to parallelize the proof and the computation into just 4 rounds using special
properties of certain constructions of witness-indistinguishable (WI) proofs of
knowledge. Namely, they crucially use the fact that in the WI proof of [19],
the statement can be specified in the last round. Unfortunately, however, the
statements to be proved concern values committed or computed in the protocol,
and require the use of the circuits of the cryptographic primitives used in the
protocol.

Previous results [1,11,24] have shown that essentially any feasibility result for
two-party computation demonstrated using non-black-box techniques can also be
obtained via black-box constructions. A natural question however, which so far
has not been answered, is whether this is true for round optimal non-black-box
constructions. This question is the focus of the current work. Namely,

Can we construct a round-optimal fully black-box protocol for two-party
computation based on general assumptions?

Black-Box Round-Optimal Two-Party Computation? When it comes to round
optimality, the current state of the art suggests a negative answer. All known
black-box protocols for secure computation achieve malicious security using a
2 For sake of better clarity we are oversimplifying here. In [11] they introduce the

definition of defensible adversaries and show how to use it in the cut-and-choose. We
refer the reader to [11] for more details.



342 R. Ostrovsky et al.

cut-and-choose mechanism that introduces additional rounds. The need for addi-
tional rounds seems inherent because in such mechanisms a party will take an
action only after the other party has successfully completed the cut-and-choose
phase. Additional rounds are used to combine and connect the random inputs
used in the unopened sessions of the cut-and-choose with the real inputs.

An alternative to the traditional cut-and-choose approach for black-box con-
struction was shown by Ishai et al. in [12], where they provide a black-box
protocol for non-interactive secure two-party computation (NISC) based on the
“MPC-in-the-head” paradigm of [13]. This approach however, following [14,16],
works in the OT-hybrid model, and thus can only hope to achieve round opti-
mality in the plain model if there exists a 4-round black-box oblivious transfer
protocol in the plain model with parallel security.

One might hope that perhaps we can build a 4-round black-box oblivious
transfer in the plain model starting from the 2-round OT protocol of Peikert
et al. [25] − whose security is in the CRS model − by running a two-party coin
flipping protocol to generate the CRS. We note that this approach seems doomed
to fail because, as proved in [15], secure coin-flipping requires at least 5 rounds,
regardless of the use of the underlying cryptographic primitives.

Our Contribution. In this paper we answer the above question positively by
constructing a 4-round black-box oblivious transfer protocol based on the exis-
tence of (enhanced) trapdoor permutations. Our construction is easily extended
to achieve parallel secure oblivious transfer which, using the compiler of [12],
gives a round-optimal black-box protocol for two-party computation in the plain
model.

1.1 Our Techniques

As mentioned above, it suffices to build a 4-round black-box oblivious transfer
protocol based on general assumptions. We start with a high-level overview of
the main ideas behind the construction.

Our starting point is the following basic 3-round protocol for OT based on
black-box use of enhanced trapdoor permutations (TDP).

1. S chooses trapdoor permutation (f, f−1) ← Gen(1κ) and sends f to R.
2. R chooses x

R← {0, 1}κ, and sends (z0, z1) to S where zb = f(x) and where
z1−b

R← {0, 1}κ is random.
3. S returns (w0, w1) where wa = sa ⊕ hc

(
f−1(za)

)
, a ∈ {0, 1}

where hc(·) is a hardcore bit of f . If both parties follow the protocol then S can’t
learn anything about R’s input bit b as both z0 and z1 are just random κ−bit
strings. Similarly, the security of the TDP f ensures that R cannot distinguish
w1−b from random as long as z1−b was truly chosen randomly. Unfortunately,
there are two serious problems with this protocol. First, there is nothing to
stop a malicious R from sending (z0, z1) such that he knows the pre-images of
both values under f , thus allowing him to learn both s0 and s1. Indeed, the



Round-Optimal Black-Box Two-Party Computation 343

above protocol only offers security against a semi-honest receiver. Second, while
the above protocol leaks no information to S about R’s input bit, it is not
simulateably secure. Input indistinguishably is often sufficient if a protocol is to
be executed once in isolation, however we aim to use our OT as a building block
for general 2PC, as such, stronger security is required.

Katz and Ostrovsky [15] solve the first problem by having the parties engage
in a secure coin-flipping protocol to produce a random r ∈ {0, 1}κ and forcing
R to prove that either z0 = r or z1 = r using a witness-indistinguishable proof
of knowledge. This denies R the freedom to generate both z0 and z1. Such WI
proofs, however, require using the underlying commitment scheme, used for the
coin-flipping, in a non-black-box way. Our solution to this problem can be seen
as implementing the coin-flipping idea of [15] while making only black-box use
of the commitment scheme. For this we use an adaptation of the black-box
commit-and-prove protocol of Kilian [17].

We solve the second problem by having S commit the inputs already in the
second round and prove that such committed inputs are the ones used for the
OT. Doing this näıvely would require making non-black-box use of cryptographic
primitives, so, in typical cut-and-choose style, we instead have S commit to shares
of the inputs, and play the protocol many times in parallel where R opens mostly
the shares corresponding to his input bit (to enable reconstruction of sb) but
enough shares of s1−b to be convinced that S is playing fairly. This introduces
several subtleties, that we discuss in the next paragraph.

We construct our OT protocol in two steps. First, we construct a 4-round OT
protocol, ΠR

OT, that is simulatable only against a malicious receiver. Then, we
use ΠR

OT as a building block to build the final OT protocol that is simulatable for
both parties. In the next two paragraphs we describe the ideas outlined above
in greater details.

A 4-Round Black-Box OT Secure Against Malicious Receivers. We want to
implement the coin-flipping that we mentioned above, without requiring R to
give non-black-box proofs about the committed values. We do it by recasting
the above problem in terms of equivocal and binding commitments, and having
the output of the coin-flipping to be the pair of strings (z0, z1) (instead of a ran-
dom r such that either z0 = r or z1 = r). We provide a mechanism that allows
R to compute one binding commitment and one equivocal commitment. In the
coin-flipping, R first sends such commitments to S, then after seeing S’s random
strings, she opens both commitments. The crucial point is that R can control
the output of one of the strings by equivocating one the commitments, while
the other string will be truly random. With this tool we can directly obtain a
black-box OT protocol that is simulatable for the receiver as follows.

1. R, on secret input b, chooses random strings r0, r1. Then sends commitments
C0, C1 such that commitment Cb is equivocal. R proves that one of the com-
mitments is binding.

2. S chooses trapdoor permutation (f, f−1) ← Gen(1κ) and sends f to R. Addi-
tionally S sends a random string r to R.



344 R. Ostrovsky et al.

3. R chooses x
R← {0, 1}κ and computes zb = f(x). Then it equivocates com-

mitment Cb so that it opens to rb = zb ⊕ r, while it honestly opens value
r1−b.

4. S upon receiving r0, r1, computes z0 = r ⊕ r0 and z1 = r ⊕ r1 and sends
(w0, w1) where wa = sa ⊕ hc

(
f−1(za)

)
.

If the proof in Step 1 is sound, R can only equivocate one string and thus
knows the preimage of one value only. If the proofs and the commitments are
hiding, the sender has no advantage in distinguishing which string is controlled
by the receiver. Additionally, if we make the proof extractable, then the above
protocol is simulatable against a malicious receiver.

Thus, what is left to do is to construct the tool that allows R to compute an
equivocal commitments and a binding commitment and a WI proof of the binding
of one of the two. This proof must be black-box and 3 rounds only. We implement
this proof, by employing ideas from the black-box commit-and-prove protocol due
to Kilian [17] which allows a party to commit to two bits x0 and x1 and prove the
equality x0 = x1 without revealing the value of the committed bit. Kilian’s pro-
tocol for proving equality of two committed bits goes as follows. (In the following
matrix, think of each column of the matrix as the shares of one bit.)

1. R chooses M =
(

x0,0 x0,1

x1,0 x1,1

)
∈ {0, 1}2×2 randomly such that x0,a ⊕x1,a = xa

for a ∈ {0, 1}. R then computes and sends Com(xa,a′) for a, a′ ∈ {0, 1} over
to S along with v = x0,0 ⊕ x0,1.

2. S sends a random b
R← {0, 1} to R.

3. R sends to S the decommitments to xb,0 and xb,1. S verifies that v = xb,0⊕xb,1.

Note that the sum of the columns of M are equal iff x0 = x1, in which case
the sum of the rows of M are also equal, and so if R is honest the protocol will
complete and S’s verification will succeed. On the other hand, if x0 �= x1 then
the sum of the rows of M are different and so no matter which value v was sent
by R in Step 1, there is only a 1/2 chance that S will ask for the row which sums
to v. To decommit, R decommits to one of the remaining two values that he has
not yet revealed, x1−b,0 and x1−b,1. Revealing one is enough since either one can
be used to reconstruct x0. The interesting feature of this protocol, which was
already used in [4], is that opening only one of the columns, instead of two, can
enable equivocality: assume R can guess the row S will ask to open, then R could
commit to a matrix where each column sums to a different bit, and compute v as
the xor of the row that S will select. In this way S will be convinced and later R
can adaptively choose whether to decommit to 0 or 1, by opening one column or
another. This observation is particularly useful when combined with a standard
trick for composing two Σ-protocols to compute the OR of two statements [2].
Recall that Σ-protocols satisfy the property that, if the challenge is known in
advance, then one can simulate an accepting transcript without knowledge of the
witness. The trick is to run two independent executions, say Σ0, Σ1, in parallel,
but have the challenges c0, c1 derived in such a way that the prover can control



Round-Optimal Black-Box Two-Party Computation 345

exactly one of the challenge cb while the other c1−b will be totally random, and
the verifier cannot tell the difference. In this way, the prover can successfully
finish both protocols Σ0, Σ1 by simulating one of the transcripts and computing
the other one honestly.

Putting the two ideas together, we can build a protocol where R commits
to a bit x and a bit y, using two executions of the above protocol for equality
proofs, and then using the trick for OR composition, R can cheat in one of the
equality proofs. Thus one of the value between x and y is equivocal.

One can extend this idea to a string commitment having R commits to two
strings X and Y by committing each single bit and then cheat in all the proof for
bits belonging to one string, and being honest in all bits belonging to the other
string, by using the OR trick as before. Note however, that in the string case we
must show that a malicious committer, cannot gain advantage by committing
equivocally only some of the bits of each string. We protect our protocol from
such behavior by using error-correction: we expand each κ-bit string into a 3κ
bit string, while having the committer being able to control in total only κ bits
for both strings. We are able to prove that due to error-correcting property,
corrupting only some bits for each string is not enough to control the final value
of the string. We provide more details on how this mechanism is implemented
in Sect. 3.

From One-Side Simulatable OT to Fully Simulatable OT. The protocol ΠR
OT is

not simulatable against a malicious sender. Just as with the basic protocol, S is
not committed to any value till the last round so any rewinding strategy will be
ineffective. Therefore we have the sender commit to two secret keys in the second
round via an extractable commitment3 and then have him play ΠR

OT using the
decommitments as inputs. In the last round the server encrypts the actual inputs
using the committed keys. This gives the simulator some hope of extracting S’s
secret inputs by rewinding. This idea by itself doesn’t exactly work; the simulator
has no guarantee that S used valid decommitments as inputs in the OT played
with R. This opens the door to input-dependent abort attacks. We fix this by
having S first secret share his inputs and commit to the shares. Then R and
S run many executions of the OT protocol ΠR

OT, where in the i-th execution,
S uses as input the decommitments to the i−th shares. Intuitively, this helps
solving the input-depended abort attack, because now R will also check some of
the shares corresponding to sb−1. This check, however, must be done in such a
way that the probability of S passing the check is independent of the bit b. A bit
more in details, obtaining a fully secure protocol requires dealing with two types
of malicious behavior. First, we need a mechanism that allows S to prove that
he committed to valid shares of a secret. For this we use t-out-of-κ Shamir secret
sharing scheme and another variant of Kilian’s commit-and-prove protocol. Our
main observation is that Kilian’s technique is actually quite general and can be
used, not only to prove equality of committed values, but that the committed

3 Note that extractable commitments can be built from black-box use of any one-way-
permutation [21]. In particular it does not require trapdoor permutation.



346 R. Ostrovsky et al.

values satisfy any linear relation. In particular, it can be used to prove that a
committed vector is a set of valid shares of some secret according to Shamir
secret sharing scheme.

Secondly, we must give R a strategy to detect the case in which S is not
using valid decommitment of the shares in some of the OT executions. Consider,
for example, what happens if S were to give correct decommitment in all of the
parallel executions of ΠR

OT except one, where he uses a wrong decommitment in
correspondence of the bit 1. Then since R opens more of the ΠR

OT using input b
he is noticeably more likely to notice the bad input b = 1. We fix this problem
by having R performing first a test, which is independent on his secret bit b. R
opens an equal number of execution of ΠR

OT, say κ/4, using inputs b = 0 and
b = 1. This test is clearly independent on R’s actual input and allows R to check
that S is playing honestly in most of the OT executions for both inputs. If the
test passes, then R is guaranteed that he will obtain at least t − n/4 more valid
decommitments from the remaining OTs and will be able to reconstruct the
secret.

1.2 Further Discussions

Following the OT protocol used in [15], our protocol is based only on enhanced
trapdoor permutation. We do not require any additional assumption. Moreover,
we stress that the lower bound of 4 rounds for secure two-party computation only
applies in the plain model. Indeed, in the UC-setting we know how to construct
2-round OT [25] (although under different, standard, assumptions).

We also emphasize that aim of this paper is to match the upper bound of
4-round for two-party computation from general assumptions, that so far was
achieved only with a non-black-box construction. As such, our result should be
seen as a feasibility result rather than an attempt of building more efficient
two-party protocols under general assumptions. It is an interesting direction to
improve our techniques to achieve better efficiency.

1.3 Other Related Work on Black-Box Secure Computation

We mention additional related work that are less relevant for our result but
that have contributed in the understanding of the power of black-box access
to cryptographic primitives. In [3] Damgaard and Ishai show a constant round
multi-party protocol where the party have only black-box access to a PRG. This
work assumes honest majority. In [27], Wee shows the first black-box construc-
tions with sub-linear round complexity for MPC, which Goyal [6] improves to
obtain constant-round MPC constructions based on the black-box use of any
OWF. In [7] black-box use of OWFs has been shown to be sufficient to construct
constant-round concurrent non-malleable commitments. Other black-box con-
structions for commitment schemes have been considered w.r.t. selective opening
attacks in [22,28]. In [20] Lin and Pass showed the first black-box construction
for MPC in the standard model that satisfies a non-trivial form of concurrent
security. Their construction requires a non-constant number of rounds. Very



Round-Optimal Black-Box Two-Party Computation 347

recently, Kiyoshima et al. in [18] improved on the round complexity providing a
constant- round construction for the same result. Finally, another line of research
has looked at achieving black-box construction for protocols that requires non-
black-box simulation, such as black-box public coin ZK [8] and resettably-sound
ZK from OWF [23].

2 Preliminaries

General Notation. We denote by κ the security parameter, and by PPT a
machine running in probabilistic polynomial time. We denote vector using bold
notation v and we denote the i-th coordinate of a vector v using notation [v]i.
We denote a matrix using capital and bold letters M, and we denote the element
in position i, j of Mindex by xindex

i,j . Let [n] be the set {1, . . . , n} and Zq be the
integers mod q. For a bit b ∈ {0, 1} we write b as shorthand for 1 − b. We write
negl(·) for an unspecified negligible function.

Trapdoor Permutations. Trapdoor permutations are permutations which are
easy to compute and hard to invert unless you know the trapdoor, in which
case they are easy to invert. The formal definition is as follows.

Definition 1 (Trapdoor Permutation). Let F = (Gen,Eval, Invert) be three
PPT algorithms such that

– Gen(1κ) outputs a pair (f, trap) where f : {0, 1}κ → {0, 1}κ is a permutation;
– Eval(f, ·) = f(·) evaluates f ; and
– Invert(f, trap, ·) = f−1(·) evaluates f−1.

We say that F is a family of trapdoor permutations (TDPs) if for any PPT
algorithm R R

Pr(f,trap)←Gen(1κ),y←{0,1}κ

(
R(f, y) = f−1(x)

)
= negl(κ).

Additionally, we assume that our TDP families have a weak form of certifiability.
Namely, we assume that given some f output by Gen(1κ) it is possible to tell
in polynomial time whether f is a permutation on {0, 1}κ or not. It will be
convenient for us to have trapdoor permutations which act on vector spaces over
fields instead of just {0, 1}κ. This can be arranged by identifying {0, 1}κ with
F

κ
2 , or if we need a larger alphabet, we can identify {0, 1}κ with F

κ/k

2k . When we

are using this point of view we will write (f, trap) R← Gen(Fκ
2 ).

Hard-Core Bits. We assume the reader is familiar with the notion of a hard-
core bit of a oneway permutation. Briefly, we say that a family of predicates
H =

{
h : {0, 1}κ → {0, 1}} is hard-core for the TDP family F if for random

(f, trap) R← Gen(1κ), h
R← H, and x

R← {0, 1}κ, h(x) is hard to predict given f(x).
A hardcore big can be extended to output a vector in a natural way: h(x) =
h(x) ◦ h

(
f(x)

) ◦ · · · ◦ h
(
fk−1(x)

)
, which is indistinguishable from random, given

fk(x). When we identify the domain {0, 1}κ of f with a κ−dimensional vector
space over F2, we will likewise identify the output of h(·) with an F2−vector of
the same dimension.



348 R. Ostrovsky et al.

Oblivious Transfer. Oblivious Transfer (OT) is a two-party functionality FOT,
in which a sender S holds a pair of strings (s0, s1), and a receiver R holds
an a bit b, and wants to obtain the string sb. The security requirement for
the FOT functionality is that any malicious receiver does not learn anything
about the string s1−b and any malicious sender does not learn which string has
been transfered. This security requirement is formalized via the ideal/real world
paradigm. In the ideal world, the functionality is implemented by a trusted
party that takes the inputs from S and R and provides the output to R and is
therefore secure by definition. A real world protocol Π securely realizes the ideal
FOT functionalities, if the following two conditions hold. (a) Security against
a malicious receiver. The output of any malicious receiver R∗ running one
execution of Π with an honest sender S can be simulated by a PPT simulator
Sim that has only access to the ideal world functionality FOT and oracle access
to R∗. (b) Security against a malicious sender. The joint view of output of
any malicious sender S∗ running one execution of Π with R and the output of
R can be simulated by a PPT simulator Sim that has only access to the ideal
world functionality functionality FOT and oracle access to S∗. In this case the
output of the malicious S∗ is combined with the output of R in the ideal world.

We also consider a weaker definition of FOT that is called one-sided simu-
latable FOT, in which we do not demand the existence of a simulator against a
malicious sender, but we only require that a malicious sender cannot distinguish
whether the honest receiver is playing with bit 0 or 1. A bit more formally, we
require that for any PPT malicious sender S∗ the view obtained from executing
Π when the receiver R plays with bit 0 is computationally indistinguishable from
the view obtained when R is playing with bit 1.

Finally, we consider the Fm
OT functionality where the sender S and the receiver

R runs m execution of OT in parallel.

Secure Two-Party Computation. Let F(x1, x2) be a two-party functionality run
between parties P1 holding input x1 and P2 holding input x2. In the ideal world,
Pi (with i ∈ {1, 2}) sends its input xi to the f and obtains only y = F(x1, x2).
We say that a protocol Π securely realizes F(·, ·) if the view of any malicious
P ∗

i executing Π with an honest Pj with i �= j combined with the output of Pj

(if any) can be simulated by a PPT simulator that has only access to F and has
oracle access to P ∗

i .

Shamir Secret Sharing Scheme. A t-out-of-n secret sharing scheme gives a way
to break a secret into shares in such a way so that any set of shares either
reveals nothing about the secret, if the set has size less than t, or allows one
to reconstruct the entire secret, if the set has size at least t. Shamir secret
sharing [26] constructs such a scheme using polynomials. Fix a prime q > n.
To share a secret field element α ∈ Zq, the function Share chooses a random
polynomial f(x) ∈ Zq[x] of degree at most t − 1 and defines the vector [α] =(
[α]1, . . . , [αn]

) ∈ Z
n
q , by setting [α]i = f(i). That this is a t−out−of−n secret

sharing scheme follows from basic properties of polynomials. To reconstruct a
secret, the fuction Recon takes in input a set of t + 1 valid shares and uses



Round-Optimal Black-Box Two-Party Computation 349

Lagrange interpolation to compute the unique t-degree polynomial f defined by
such shares and output the free coefficient of f .

We briefly comment on another property of this scheme that we will use
in our protocol. The map which sends a degree t − 1 polynomial to its vector
of shares is linear over Zq. It follows that the set of vectors in Z

n
q which are

valid sharings is a t−plane in Z
n
q , or equivalently, that there exists a linear map

ψ : Zn
q → Z

n−t
q such that ψ(v) = 0 iff v is a valid sharing.

Extractable Commitments. A commitment scheme scheme is a two-party func-
tionality run between a sender with input a secret message m and a committer
that has no input, and consists of two phase: commitment and decommitment
phase. In the commitment phase the sender commits to its message m. A com-
mitment scheme is hiding if any PPT malicious receiver cannot distinguish the
secret message m in this phase. In the decommitment phase the message reveals
m and the randomness used to compute the commitment. This phase is statis-
tically binding if any malicious sender cannot successfully open to any message
m′ �= m in this phase.

We say that a commitment scheme is extractable if there exists an efficient
extractor that having black-box access to any malicious sender that successfully
performs the commitment phase, is able to efficiently extract the committed
string. In the paper we employ the extractable commitment provided in [21]. The
commitment phase consists of 3 rounds, that we denote by (ExtCom1, ExtCom2,
ExtCom3). The decommitment phase is non-interactive.

3 Four-Round Black-Box Oblivious Transfer

In this section we describe our 4-round black-box OT protocol ΠOT in details. We
present it in two steps. First we give an OT protocol that is simulatable against
a malicious receiver and provides only indistinguishability security against a
malicious sender. We denote this protocol by ΠR

OT. We then show how to use
(black-box) extractable commitments and Shamir secret sharing, to compile ΠR

OT

into a protocol that is fully simulatable.

3.1 Four-Round Black-Box OT Secure Against Malicious Receivers

The building block for ΠR
OT is a protocol that allows the receiver to compute two

string commitments, C0, C1, such that one commitment is equivocal, and prove
that at least one commitment is binding.

As a warm up for our construction we show how to implement such building
block for the simpler case where the receiver commits to two bits, and then
he is able to equivocate one bit. The soundness of the warm up protocol is
1/2. The idea is to have two executions of Kilian’s black-box commit-and-prove
protocol (outlined in Sect. 1.1), and combine the two proofs using the OR trick
of Σ-protocols. The details are shown in Protocol 1.



350 R. Ostrovsky et al.

Protocol 1. Compute One Biding and One Equivocal Commitment.
Input to R: A bit b indicating which commitment should be equivocal.

1. R chooses two matricesM0 andM1 where eachMa =
(

xa
0,0 xa

0,1

xa
1,0 xa

1,1

)
∈ {0, 1}2×2

is random such that:
– Matrix Mb: this matrix represent two different bits, therefore the xor of the

first column is 0, and the xor of the second column is 1. Namely, xb
0,0 ⊕

xb
1,0 = 0 and xb

0,1 ⊕ xb
1,1 = 1;

– Matrix M1−b: both columns are representing the same bit: x1−b
0,0 ⊕ x1−b

1,0 =
x1−b
0,1 ⊕ x1−b

1,1 = r1−b for r1−b ∈ {0, 1}.
R commits to all of the xa

a′,a′′ in both matrixes and sends to S values v0 and
v1 computed as follows:
– v1−b is honestly computed as the xor of the first row (as in Kilian’s proto-

col), namely, v1−b = x1−b
0,0 ⊕ x1−b

0,1 .
– vb is a random bit.

2. S sends R a random r′ R← {0, 1} and a challenge c ∈ {0, 1}.
3. R computes challenges (c0, c1) such that c0 ⊕ c1 = c and the challenge cb is

pointing exactly to the row of Mb the xor of which is vb. Namely, cb is such
that vb = xb

cb,0 ⊕xb
cb,1. Note this is always possible as xb

0,0 ⊕xb
0,1 �= xb

1,0 ⊕xb
1,1.

Next, R decommits to x0
c0,0, x0

c0,1 from matrix M0 as well as x1
c1,0, x1

c1,1 from
matrix M1.

Finally, for each matrix, R decommits to one column. For M1−b, which
is honestly computed, R opens one column chosen at random (R will need
to decommit one value of the column as the other one was already opened to
answer the challenge). For Mb, R will decommit to the column rb such that
rb ⊕ r′ = sb where sb is the bit that R wants to obtain out of the coin-flipping
of the bit in position b. Formally, R decommits to one of xb

cb,0 and xb
cb,1 at

random (using the shorthand b = 1 − b), completing a decommitment to the
value s1−b = r1−b. R decommits to xb

cb,rb
(completing a decommitment to

sb = rb ⊕ r′). R also sends (c0, c1).
4. Verification: S checks that c0 ⊕ c1 = c and that xa

ca,0 ⊕ xa
ca,1 = va for

a ∈ {0, 1}. If not S aborts.
5. Output: Both parties set output to (z0, z1) where za = sa ⊕ r′.

If R correctly follows the protocol then the output (z0, z1) satisfies zb = rb

while z1−b is random. Furthermore, if R, in an attempt to cheat, chooses M0

and M1 both such that xa
0,0 ⊕ xa

1,0 �= xa
1,0 ⊕ xa

1,1, then S will abort whenever
c �= d0 ⊕d1 (which happens with probability 1/2), where da ∈ {0, 1} is such that
va = xa

da,0 ⊕ xa
da,1. This protocol can be seen as partial coin-flipping protocol

that output two coins and guarantee that at least one coin is fair.
The ability for R to completely control one but not both of the output bits

in the above protocol is essentially exactly what we need in order to compile the
OT which is secure only against a semi-honest R into one which is maliciously
secure. The basic idea is to extend the above coin-flipping to strings and enable



Round-Optimal Black-Box Two-Party Computation 351

R to obtain two strings z0, z1 ∈ {0, 1}κ such that zb = fk(x) for some value x
chosen by her. As mentioned, this forces z1−b to be random, and so R cannot
know a preimage without breaking the trapdoor permutation.

However, when extending the above warm-up protocol to a string via bit-wise
commit-and-proofs we must enforce that a malicious receiver cannot cheat by
controlling some of the bits of both z0 and z1 and wind up knowing preimages of
both values. We protect our protocol from such behavior by letting A ∈ Z

3κ×κ
q be

a matrix with good error correcting properties (such as a Vandermonde matrix)
and working in the image of A.

This introduces some complications. Specifically it requires moving to a non-
binary base field as we need an error correcting code with (constant but) large
distance. In our actual protocol we use a variant of the unfair coin flipping
described above, adapted to work over over Zq for some prime power q = Ø(κ).
The major difference is that instead of committing to every entry in 2−by−2
matrices, R commits to every entry in 2−by−q matrices. For each matrix R
proves that the sum of the elements in each column is the same. In order to
commit equivocally, R chooses the q columns of the matrices corresponding to
his bit b to have distinct sums. Namely, for every α ∈ Zq there is exactly one
column whose entries add to α. The final protocol ΠR

OT is formally described in
Protocol 2.

Protocol 2 (ΠR
OT). Public Input: A prime q = O(κ), a Vandermonde matrix

A ∈ Z
3κ×κ
q and a statistically binding commitment scheme Com.

Sender’s Input: s0, s1 ∈ Z
κ
q . Receiver’s Input: b ∈ {0, 1}.

1.
(
R −→ S

)
: R chooses rb R←− Z

κ
q and sets r̂b = Arb ∈ Z

3κ
q . R then chooses

6κ matrices
{
(M0,i,M1,i)

}
i=1,...,3κ

where Ma,i =
(

xa,i
0,0 xa,i

0,1 · · · xa,i
0,q−1

xa,i
1,0 xa,i

1,1 · · · xa,i
1,q−1

)
∈

Z
2×q
q is random such that:

– xb,i
0,0 + xb,i

1,0 = · · · = xb,i
0,q−1 + xb,i

1,q−1 = [r̂b]i, ∀ i.
– xb,i

0,0 + xb,i
1,0 = σi(0), . . . , xb,i

0,q−1 + xb,i
1,q−1 = σi(q − 1) ∀ i, where the σi are

random permutations of Zq.
R commits to all of the xa,i

a′,a′′ using Com. Let xa,i
0 = (xa,i

0,0, . . . , x
a,i
0,q−1) ∈ Z

q
q

be the top row vector of Ma,i. Similarly, let xa,i
1 be the bottom row of Ma,i.

Also let ψ : Zq
q → Z

q−1
q be the linear map ψ : x = (x0, . . . , xq−1) 	→ (x1 −

x0, . . . , xq−1−x0). R sends vectors {v0,i,v1,i}i=1,...,3κ where each va,i ∈ Z
q−1
q

is generated as follows:
– vb,i = ψ(xb,i

0 );
– draw cb

R← {0, 1}3κ and set vb,i = ψ(xb,i
0 ) if cb,i = 0, vb,i = −ψ(xb,i

1 ) if
cb,i = 1.

2.
(
S −→ R

)
: S chooses random c

R←− {0, 1}3κ, r′ R←− Z
κ
q , and sends c and

r′. Additionally, S chooses a trapdoor permutation (f, f−1) R←− Gen(Zκ
q ) and

sends f to R.



352 R. Ostrovsky et al.

3.
(
R −→ S

)
: R parses c into (c0, c1) such that c0 ⊕ c1 = c where cb is as in step

1. For both a ∈ {0, 1}, R decommits to every coordinate of xa,i
ca,i

as well as
to one coordinate, [xa,i

ca,i
]j, of xa,i

ca,i
. When a = b, this coordinate j is chosen

randomly, completing a decommitment to r̂b (defined in step 1). When a = b,
R draws a random y R←− Z

κ
q and sets r̂b = A

(
fκ(y) − r′) ∈ Z

3κ
q . Finally, R

decommits to xb,i
cb,i,j

∀ i, where j is such that [r̂b]i = xb,i
0,j + xb,i

1,j. Note that R
has decommitted to (r̂0, r̂1).

4.
(
S −→ R

)
: For all (a, i), S has received decommitments to all of the coor-

dinates of exactly one of xa,i
0 and xa,i

1 . S checks either that vi,a = ψ(xa,i
0 )

or that va,i + ψ(xa,i
1 ) = 0. If any of these checks fails, S aborts. Otherwise,

S computes vectors (z0, z1) where za ∈ Z
κ
q is the unique vector such that

Aza = r̂a + Ar′ (such a value exists by linearity). If no such za exists for
some a then S aborts. S sends (w0,w1) to R where wa = sa − h

(
f−κ(za)

)
.

Output: R outputs sb = wb + h(y).

3.2 Four-Round Fully Simulatable Oblivious Transfer from ΠR
OT

We transform the one-sided simulatable ΠR
OT into an OT which is simulatable for

both the sender and the receiver using the following ingredients. We use a (κ +
1, 2κ)-secure Shamir Secret sharing scheme. Let A ∈ Z

2κ×κ
q be the Vandermonde

matrix and let φ be a linear map such that φ(A) = 0.
First, the sender picks two random keys x0, x1, and computes their corre-

spondent vectors of 2κ shares v0,v1 according to Shamir secret sharing. Then,
the sender commits to each coordinate of vectors v0,v1 and proves that they are
valid shares, in a black-box way. We build this proof using the observation that
v is a valid vector of shares for a (κ + 1, 2κ)-secure Shamir secret sharing, iff
φ(v) = 0, and that for any pair of vectors a,b it holds that if a+b = v then also
φ(a) + φ(b) = 0. Thus, to prove that a vector v is a vector of valid shares, the
sender will commit to κ pairs of vectors aj ,bj such that v = aj +bj , and prove
that there exists at least a j such that the predicate φ(a)+φ(b) = 0 holds. This
proof is easily implemented by having the sender commit to aj ,bj and zj = φ(aj)
and having the receiver ask to either open aj and check that zj = φ(aj), or to
open bj and check that φ(bj) + zj = 0. Note that this proof only guarantees
that there exists at least one j for which the condition φ(a) + φ(b) = 0 is true.
Summing up, S will commit to vectors a0,jb0,j and a1,jb1,j (for shares v0,v1)
with an extractable commitment scheme, and run a proof of validity for each
such pair. In the last round S will send the encryptions x0 + s0, x1 + s1 of his
actual secret inputs. Now we need a way for R to retrieve the decommitments
of the shares for the secret he is interested in, without the server knowing which
decommitments are revealed. We accomplish this by using the OT protocol ΠR

OT

implemented above. Therefore, in parallel to such extractable commitments and
proofs, the sender and the receiver will engage in 2κ parallel executions of ΠR

OT:
in the i-th OT execution S plays with inputs the opening of the i-th coordinate



Round-Optimal Black-Box Two-Party Computation 353

of (a0,j ,b0,j) and (a1,j ,b1,j) for all j, and R plays with bit bi. Note that, open-
ing to the i-th coordinate of all j vectors allows the receiver to check that all j
vectors agree on the same coordinate [vbi

]i. This check, together with the proof
of consistency provided above, will guarantee that most of the shares received
via OT (and extracted by the simulator via the extractable commitments) are
valid.

Before attempting to reconstruct the secret, R will test the consistency of
κ/2 coordinates for vector v0 and v1 by playing with bit 0 and 1 accordingly, in
the correspondent OTs, while he plays with the his secret bit b for the remaining
κ executions. R will attempt to reconstruct the vector vb only if the consistency
test passes. We provide a formal description of such steps in Protocol 3.

Protocol 3 (ΠOT). Sub-protocols. Let ΠR
OT = {OT1,OT2,OT3,OT4} denote

the 4 messages exchanged in protocol ΠR
OT (Prot. 2). Let OT[i] denote the i-th

parallel execution of ΠR
OT. Let ExtCom = (ExtCom1, ExtCom2, ExtCom3) be a 3-

round statistically binding extractable commitment scheme with non-interactive
decommitment ExtDec. Let Share,Recon be a (κ + 1)-out-of-2κ Shamir secret
sharing scheme over Zp, together with a linear map ψ : Z2κ

p → Z
κ−1
p such that

ψ(v) = 0 iff v is a valid sharing of some secret.

Public Input: A prime p and 	 = 
log q� st 2�/p = 1−negl(κ), a Vandermonde
matrix A ∈ Z

2κ×κ
p , linear map φ.

Sender’s Input: s0, s1 ∈ Zp. Receiver’s Input: b ∈ {0, 1}.
1.

(
R −→ S

)
: R randomly chooses a set T1−b ∈ [2κ] of κ/2 coordinates. R plays

the i-th execution of ΠR
OT with input bi = (1− b). For the remaining i /∈ T1−b

set bi = b R sends (OT1[1], . . . ,OT1[2κ]) to S, where OT1[i] is computed on
input bi.

2.
(
S −→ R

)
: Upon receiving a correct first message, S proceeds as follows.

– Pick random strings x0, x1 ∈ Zp and secret share each string: Compute
shares vb = ([vb]1, . . . , [vb]2κ) ← Share(xb) for b ∈ {0, 1}.

– To commit to shares v0,v1 and prove that they are valid shares of a κ-
degree polynomial S proceeds as follows.
• For j = 1, . . . , κ, pick random a0,j ,b0,j ∈ Z

2κ
p such that a0,j +b0,j = v0

and compute z0,j = φ(a0,j) for all j. Resp., compute a1,j ,b1,j = v1

• Commit to each coordinate of ab,j and bb,j using ExtCom, namely send
acomb,j,i = ExtCom1([ab,j ]i)), bcomb,j,i = ExtCom1([bb,j ]i).

S sends to R the messages (OT2[1], . . . ,OT2[2κ]), {ExtCom1([ab,j ]i),
{ExtCom1([bb,j ]i)}i∈2κ, and zb,j for b = 0, 1 and j ∈ [κ].

3.
(
R −→ S

)
: R sends (OT3[1], . . . ,OT3[2κ]), the second message ExtCom2 for

the extractable commitment, and a random challenge c1, . . . , cκ ∈ {0, 1}κ.
4.

(
S −→ R

)
: S computes OT message OT4[i] using as inputs the i-th coor-

dinate of all j vectors committed before. Specifically, in the i-th OT it uses
decommitment to values (a[0,j ]i, [b0,j ]i) ∀j; (a[1,j ]i, b1,j ]i) ∀j. Additionally, for
each j, S reveals vector a0,j ,a1,j if cj = 0; or vectors b0,j ,b1,j if cj = 1;
and the messages for the third round of the extractable commitments, namely
{ExtCom3([ab,j ]i), {ExtCom3([bb,j ]i)}i∈2κ,j∈κ. Finally, S sends C0 = s0 ⊕ x0

and C1 = s1 ⊕ x1.



354 R. Ostrovsky et al.

Verification and Output: If the extractable commitments are all successfully
completed, proceeds as follows.

– Check Validity of Shares. For j = 1, . . . , κ, if cj = 0 check that z0,j =
φ(a0,j) and z1,j = φ(a1,j). Else, if cj = 1 check that φ(b0,j) + z0,j = 0 and
φ(b1,j) + z0,j = 1.

– Test Phase. R randomly chooses a set Tb of κ/2 coordinates in {[2κ]/T1−b}.
For each i ∈ Tσ, with σ ∈ {0, 1}; let [aσ,j ]i, [bσ,j ]i be the coordinates obtained
from the i-th OT. R checkes that, for all j, there exists a unique [vσ]i such
that [aσ,j ]i + [bσ,j ]i = [vσ]i. If so, [vσ]i is then marked as consistent. If all
shares obtained in this phase are consistent, R proceeds to the reconstruction
phase. Else abort.

– Reconstruction Phase. For i ∈ {[2κ]/T1−b}, if there exists a unique [vb]i
such that [ab,j ]i + [bb,j ]i = [vb]i, mark share [vb]i as consistent. If R obtains
less than κ + 1 consistent shares, he aborts. Else, let [vb]j1 , . . . , [vb]jκ+1 be any
set of κ+1 consistent shares. R computes xb ← Recon([vb]j1 , . . . , [vb]jκ+1) and
outputs sb = Cb ⊕ xb.

3.3 Proof of Security

In this section we provide the intuition behind the security of our constructions.
The reader is referred to the full version for the complete proof.

Security of ΠR
OT. We start by proving that ΠR

OT is one-sided simulatable.

Indistinguishability Against a Malicious Sender. It follows from the hiding of the
commitment scheme used by R to commit to the secret vectors r0, r1. Indeed, the
only difference between the transcript of a completed execution of ΠR

OT when R
uses input bit b = 0 and when R uses bit 1 is in the matrices that are computed
equivocally. In turn, the equivocal matrix differs from a binding matrix in that
the sum of the rows of an equivocal Mi,b leads to the vector of all permuted
values in Zq while in a binding matrix the sum of the row of the i-th matrix
corresponds to the vector r̂b

i .

Simulatability Against a Malicious Receiver. For the case of a malicious receiver,
we build a simulator who rewinds S and extracts R’s input bit from the coin-
flipping protocol. Note that when R’s input bit is b, R commits equivocally
to the matrices Mb,i, and therefore cannot commit equivocally to the Mb,i. It
follows that when R is rewound and asked a new query, his decommitment from
the b matrices will be the same. In this way, our simulator can figure out R’s
input bit. It remains to show that a malicious R cannot gain some advantage by
committing equivocally to some of the M0,i and some of the M1,i. This follows
from the error-correction property guaranteed by the choice of the matrix A.
A more detailed proof is provided in the full version.



Round-Optimal Black-Box Two-Party Computation 355

Security of ΠOT. We now sketch the main ideas behind the security of ΠOT.
Correctness follows from the correctness of the underlying ΠR

OT protocol, the
correctness of the statistically binding commitment scheme and the Shamir secret
sharing scheme: the receiver will be able to retrieve more than κ + 1 shares and
reconstruct the key xb that allows to decrypt sb. We now analyze the security of
the protocol in case either of the parties is corrupted.

Simulatability Against Malicious Receiver. We show a PPT simulator that sim-
ulates the attack of the receiver in the ideal world as follows. Sim computes the
messages of protocol ΠOT honestly till the third round, by committing to ran-
domly selected x0, x1. In parallel, Sim extracts the bits played by R∗ in protocol
ΠR

OT by running the simulator SimOT
R guaranteed by the one-sided simulatabil-

ity property of ΠR
OT. SimOT

R outputs the bits b1, . . . , b2κ which are the selections
made by R∗ in the first 3 rounds of protocol ΠR

OT. (Note that in ΠR
OT the server

commits to its input only in the fourth round, when the selection has already
beed committed. However, this will not be a problem because in ΠOT the sender
is still using its secret input only in the last round). If there are more than
κ+1 bits pointing to the same bit b then Sim sends this bit to FOT and receives
the string sb. Otherwise it will just send a random bit and continue the sim-
ulation of the protocol with random values. In the last round the simulator
uses SimOT

R to complete the OT using in input the shares that were dictated
by the bits b1, . . . , b2κ and it obtains messages OT4[i] for i ∈ [2κ]. Finally, Sim
completes the protocol by honestly computing message CPmsg3, but it prepares
cb = xb ⊕ sb, c1−b = r, where r is a randomly chosen string.

The indistinguishability of the simulation follows from the simulatability of
the underlying OT, the security of Shamir secret sharing and the hiding of the
underlying commitment scheme. We stress that in the proof we need to argue
about the hiding of the unopened shares. Namely, we require to prove that the
protocol satisfies a form of hiding in presence of selective opening attack. This is
not a problem as our protocol is interactive and the positions that the receiver
is choosing to open are fixed in advance before observing any commitment. This
property allows us to prove indistinguishability by relying on standard hiding
definition.

Simulatability Against Malicious Sender. We show a simulator that, having ora-
cle access to the malicious sender S∗, extracts both inputs s0, s1. Sim runs as
receiver in the ΠOT protocol by choosing sets T0 and T1, and playing with a
random bit in the remaining OT executions. Then, if the Test phase passes, Sim
rewinds S∗ to extract the vectors (a0,j ,b0,j) and (a01,j ,b1,j) from the extractable
commitments. Due to the indistinguishability property of the underlying ΠR

OT

we have that any malicious sender cannot detect on which coordinates he will
be tested. Therefore, if the test phase passes, then it holds that, for each bit,
at least κ/2 + 1 of the remaining OT were computed correctly for that bit. Due
to the binding of the commitment scheme, to the correctness of Shamir’s secret
sharing, and the correctness of the proof of consistency of the shares, the val-
ues reconstructed from the shares extracted by the simulator in the extractable



356 R. Ostrovsky et al.

commitments correspond to the unique value that a honest receiver would have
obtained from the shares retrieved via ΠR

OT.

3.4 Parallel OT

Protocol ΠOT can be used as a building block for constructing a protocol imple-
menting the Fm

OT functionality. The idea is to have the Sender S and the receiver
R compute m executions of ΠOT in parallel, and accepting a round of commu-
nication if and only if all the m executions are computed correctly.

3.5 Round-Optimal Secure Two-Party Computation

The non-interactive secure two-party protocol proposed in [12] it is based on
Yao [29] garbled circuits and works in the OT-hybrid model. The main contribu-
tion of [12] is to show an (asymptotically) more efficient black-box cut-and-choose
for proving that a garbled circuit is computed correctly. The cut-and-choose is
non-interactive in the OT-hybrid model. We can cast their construction to the
simpler setting of stand-alone two-party computation and replace the ideal calls
to the OT with our parallel OT Πm

OT.

Acknowledgments. We thank the anonymous reviewers for helpful comments. Work
supported in part by NSF grants 09165174, 1065276, 1118126 and 1136174, US-Israel
BSF grant 2008411, OKAWA Foundation Research Award, IBM Faculty Research
Award, Xerox Faculty Research Award, B. John Garrick Foundation Award, Teradata
Research Award, and Lockheed-Martin Corporation Research Award. This material
is based upon work supported by the Defense Advanced Research Projects Agency
through the U.S. Office of Naval Research under Contract N00014 -11 -1-0392. The
views expressed are those of the author and do not reflect the official policy or position
of the Department of Defense or the U.S. Government.

References

1. Choi, S.G., Dachman-Soled, D., Malkin, T., Wee, H.: Simple, Black-box construc-
tions of adaptively secure protocols. In: Reingold, O. (ed.) TCC 2009. LNCS, vol.
5444, pp. 387–402. Springer, Heidelberg (2009)

2. Cramer, R., Damg̊ard, I.B., Schoenmakers, B.: Proof of partial knowledge
and simplified design of witness hiding protocols. In: Desmedt, Y.G. (ed.)
CRYPTO 1994. LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994).
http://dx.doi.org/10.1007/3-540-48658-5 19

3. Damg̊ard, I.B., Ishai, Y.: Constant-round multiparty computation using a black-
box pseudorandom generator. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621,
pp. 378–394. Springer, Heidelberg (2005). http://dx.doi.org/10.1007/11535218 23

4. Damg̊ard, I., Scafuro, A.: Unconditionally secure and universally composable
commitments from physical assumptions. In: Sako, K., Sarkar, P. (eds.) ASI-
ACRYPT 2013, Part II. LNCS, vol. 8270, pp. 100–119. Springer, Heidelberg (2013).
http://dx.doi.org/10.1007/978-3-642-42045-0 6

http://dx.doi.org/10.1007/3-540-48658-5_19
http://dx.doi.org/10.1007/11535218_23
http://dx.doi.org/10.1007/978-3-642-42045-0_6


Round-Optimal Black-Box Two-Party Computation 357

5. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or A com-
pleteness theorem for protocols with honest majority. In: Aho, A.V. (ed.) Proceed-
ings of the 19th Annual ACM Symposium on Theory of Computing, pp. 218–229.
ACM, New York (1987). http://doi.acm.org/10.1145/28395.28420

6. Goyal, V.: Constant round non-malleable protocols using one-way functions. In:
Proceedings of the 43rd Annual ACM Symposium on Theory of Computing, STOC
2011, pp. 695–704. ACM (2011)

7. Goyal, V., Lee, C.K., Ostrovsky, R., Visconti, I.: Constructing non-malleable com-
mitments: A black-box approach. In: FOCS, pp. 51–60. IEEE Computer Society
(2012)

8. Goyal, V., Ostrovsky, R., Scafuro, A., Visconti, I.: Black-box non-black-box zero
knowledge. In: Symposium on Theory of Computing, STOC 2014, pp. 515–524
(2014)

9. Haitner, I.: Semi-honest to malicious oblivious transfer—the black-box way. In:
Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 412–426. Springer, Heidelberg
(2008)

10. Hazay, C., Lindell, Y.: Efficient secure two-party protocols - techniques and con-
structions. In: Information Security and Cryptography. Springer (2010). http://
dx.doi.org/10.1007/978-3-642-14303-8

11. Ishai, Y., Kushilevitz, E., Lindell, Y., Petrank, E.: Black-box constructions for
secure computation. In: Proceedings of the 38th Annual ACM Symposium on The-
ory of Computing, STOC 2006, pp. 99–108 (2006)

12. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Prabhakaran, M., Sahai, A.: Efficient
non-interactive secure computation. In: Paterson, K.G. (ed.) EUROCRYPT 2011.
LNCS, vol. 6632, pp. 406–425. Springer, Heidelberg (2011)

13. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge from secure
multiparty computation. In: Proceedings of the 39th Annual ACM Symposium on
Theory of Computing, STOC 2007, pp. 21–30 (2007)

14. Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious transfer
– efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 572–591.
Springer, Heidelberg (2008). http://dx.doi.org/10.1007/978-3-540-85174-5 32

15. Katz, J., Ostrovsky, R.: Round-optimal secure two-party computation. In:
Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 335–354. Springer, Hei-
delberg (2004)

16. Kilian, J.: Founding cryptography on oblivious transfer. In: Proceedings of the
20th Annual ACM Symposium on Theory of Computing, May 2–4, 1988, Chicago,
Illinois, USA, pp. 20–31. ACM (1988)

17. Kilian, J.: A note on efficient zero-knowledge proofs and arguments. In: STOC, pp.
723–732 (1992)

18. Kiyoshima, S., Manabe, Y., Okamoto, T.: Constant-round black-box construction
of composable multi-party computation protocol. In: Lindell, Y. (ed.) TCC 2014.
LNCS, vol. 8349, pp. 343–367. Springer, Heidelberg (2014)

19. Lapidot, D., Shamir, A.: Publicly verifiable non-interactive zero-knowledge proofs.
In: Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 353–
365. Springer, Heidelberg (1991)

20. Lin, H., Pass, R.: Black-box constructions of composable protocols without set-
up. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp.
461–478. Springer, Heidelberg (2012)

21. Micciancio, D., Ong, S.J., Sahai, A., Vadhan, S.P.: Concurrent zero knowledge
without complexity assumptions. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS,
vol. 3876, pp. 1–20. Springer, Heidelberg (2006)

http://doi.acm.org/10.1145/28395.28420
http://dx.doi.org/10.1007/978-3-642-14303-8
http://dx.doi.org/10.1007/978-3-642-14303-8
http://dx.doi.org/10.1007/978-3-540-85174-5_32


358 R. Ostrovsky et al.

22. Ostrovsky, R., Rao, V., Scafuro, A., Visconti, I.: Revisiting lower and upper bounds
for selective decommitments. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp.
559–578. Springer, Heidelberg (2013)

23. Ostrovsky, R., Scafuro, A., Venkitasubramanian, M.: Resettably sound zero-
knowledge arguments from OWFs - the (semi) black-box way. In: Dodis, Y.,
Nielsen, J.B. (eds.) TCC 2015, Part I. LNCS, vol. 9014, pp. 345–374. Springer,
Heidelberg (2015)

24. Pass, R., Wee, H.: Black-box constructions of two-party protocols from one-way
functions. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 403–418. Springer,
Heidelberg (2009)

25. Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient and com-
posable oblivious transfer. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157,
pp. 554–571. Springer, Heidelberg (2008)

26. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
27. Wee, H.: Black-box, round-efficient secure computation via non-malleability ampli-

fication. In: Proceedings of the 51th Annual IEEE Symposium on Foundations of
Computer Science, pp. 531–540 (2010)

28. Xiao, D.: (Nearly) round-optimal black-box constructions of commitments secure
against selective opening attacks. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597,
pp. 541–558. Springer, Heidelberg (2011)

29. Yao, A.C.C.: How to generate and exchange secrets (extended abstract). In: FOCS,
pp. 162–167 (1986)


	Round-Optimal Black-Box Two-Party Computation
	1 Introduction
	1.1 Our Techniques
	1.2 Further Discussions
	1.3 Other Related Work on Black-Box Secure Computation

	2 Preliminaries
	3 Four-Round Black-Box Oblivious Transfer
	3.1 Four-Round Black-Box OT Secure Against Malicious Receivers
	3.2 Four-Round Fully Simulatable Oblivious Transfer from ROT
	3.3 Proof of Security
	3.4 Parallel OT
	3.5 Round-Optimal Secure Two-Party Computation

	References


